
Compositionality & Abstrationin veri�ation ofProbabilisti Transition Systems
Antoinette Ahiable and Tu Hoang AnhKim G. Larsen(Supervisor)

Aalborg UniversityFaulty of Engineering & SieneDepartment of Computer Siene
Compositionality & Abstrationin veri�ation ofProbabilisti Transition SystemsSemester Period:Spring 2003February 3, 2003 - June 11, 2003Projet Group:SSE4, B1-215Authors:Antoinette Ahiable, atnets�s.au.dkTu Hoang Anh, tuhoang�s.au.dkSupervisor:Kim G. Larsen, kgl�s.au.dkNumber Of Pages: 103Total Number of Copies: 6

1

AbstratIn this thesis, we present tehniques adapted to probabilisti transition systemsin order to avoid or redue the state spae explored in veri�ation. By usingompositional abstration, abstrats of omponents of a onurrent system anbe used for model heking. We use probabilisti simulation preorder to establisha good abstrat. We further present a minimization algorithm for probabilistitransition systems, whih generates a minimized struture, with respet to sim-ulation equivalene. Finally, we introdue the Quotient tehnique for our PTSmodel with the onept of using the minimization algorithm to minimize the sizeof the transformed spei�ations. However, it is realized that this situation neverarises, as the transformed spei�ation is the minimal struture possible givenour onstraints and assumptions. We propose at the end, the appliation of thesimpli�ation heuristi on omponents of the system, before applying the Quoti-enting tehnique rather than afterwards. We implement the quotient tehniqueas part of our tool, CAPS and demonstrate the algorithms proposed in this thesis.

2

PrefaeThis report is the thesis in our �nal semester of the International Masters Programin Software Systems Engineering of the Faulty of Engineering & Sienes, inthe Computer Siene Department at Aalborg University, Denmark, during theperiod February 3, 2003 to June 11, 2003, under the Distributed Systems andSemantis group.This Master thesis is a joint projet by the authors and is the result of work doneover the last year of our program.We will like to sinerely thank our supervisor Kim G. Larsen for everything! Itsays it all.

Antoinette Ahiable Tu Hoang Anh||||||||{ ||||||||{

3

Contents
1 Introdution 71.1 Formal Veri�ation . 71.1.1 Model Cheking . 81.1.2 State Explosion . 81.2 Probabilisti Models . 91.2.1 Markovian Models . 91.2.2 Probabilisti Model Classi�ations 101.3 Spei�ations . 121.4 Topis of Thesis . 121.4.1 Related Work . 121.4.2 Outline of thesis . 132 Preliminaries 142.1 Probability Theory . 142.2 Probabilisti Transition Systems 152.2.1 Probabilisti Exeutions 162.2.2 Parallel Compositions . 172.3 Spei�ation Formalism . 202.3.1 Logi-based Spei�ation 202.3.2 Model-based Spei�ation 222.4 Equivalenes and Preorders . 224

3 Computing The Simulation Preorder 253.1 Introdution . 253.2 Networks and Flow . 263.3 Maximum Flow Problem . 263.4 Probabilisti Simulation and Maximum Flow 284 General Methods for Compositionality & Abstration 324.1 Compositional Abstration . 324.2 Partitioning . 344.3 The Quotient Method . 374.3.1 Speial Sublasses . 405 Methods for Finite State 425.1 Minimization . 425.1.1 De�nitions and Theorems 425.1.2 The Minimizing Algorithm 455.2 The Quotient Tehnique . 475.2.1 The Model, Satisfation Formalism, Parallel Composition 485.2.2 The Quotient Struture 495.2.3 General Quotient Struture Algorithm 516 Minimization for PTSs 576.1 Probabilisti Transition Systems 576.1.1 The Size of a PTS struture 586.2 The Probabilisti Minimizing Algorithm 626.3 Generating a Redued PTS . 62
CONTENTS CONTENTS 5

7 The Quotient Tehnique for PTS 657.1 The Model . 657.2 The Logi and its bPTS Representation 667.3 Quotient Struture . 677.4 Algorithm for Computing the Quotient 687.4.1 An Informal Approah . 687.4.2 A Formal Approah . 708 The Appliation of the Quotient Tehnique with Minimization 738.1 Quotient and then Minimize . 738.2 Minimize and then Quotient . 769 Implementation 789.1 Data Struture . 789.2 Modules Desription . 819.2.1 Maximum Flow Problem, Ford-Fulkerson Algorithm 819.2.2 Computing Probabilisti Simulation 829.2.3 Compositional and Abstration Cheking 839.2.4 Quotient Cheking . 839.3 Input File and Output Sreen . 839.3.1 Input File . 839.3.2 Output Sreen . 8610 Experimental Result 8810.1 Compositional and Abstrat Test Cases 8810.2 Quotient Test Cases . 9311 Conlusion 9611.1 Conlusion . 9611.2 Further Work . 98CONTENTS CONTENTS 6

Chapter 1Introdution
1.1 Formal Veri�ationFormal veri�ation methods are strong tools in the development of high qualityproduts. In the design of omplex systems, more time and e�ort is spent onveri�ation than on onstrution. Tehniques are sought to redue and ease theveri�ation e�orts while inreasing their overage.Formal methods o�er a large potential to obtain an early integration of veri-�ation in the design proess, to provide more e�etive veri�ation tehniquesand to redue the veri�ation time. As aording to J.-P Katoen in ([33℄), for-mal methods are one of the "highly reommended" veri�ation tehniques forsoftware development of safety-ritial systems aording to e.g., the best pra-tises standards by the IEA (International Eletrotehnial Commission) and thestandards by the ESA (European Spae Ageny).Formal methods provide a preise notion between systems and their spei�a-tions, so that it an be deided without ambiguity whether or not a systemmeets its spei�ation. They, however have their advantages and disadvantages.Comparatively, model heking is automati and faster than theorem provers.A major problem, though, in applying model heking even to moderate-sizesystems is the potential ombinatorial explosion of the state spae arising fromparallel omposition of omponents.When I use a model heker, it runs and runs forever and never omes bak. . . when I use a stati analysis tool it omes bak immediately and says I don'tknow - Patrik Cousot

7

1.1.1 Model ChekingOne of the alaimed approahes of verifying �nite state systems is that of modelheking. It is a veri�ation tehnique that explores all possible system states ina brute fore manner. One a system an be aurately represented by a model,a spei�ation an be veri�ed within this model and onlusions drawn about thesystem as to whether the spei�ation holds to be true or otherwise within thesystem. This tehnique has been applied to many types of systems from �nitestate representations, through real time ones to probabilisti systems. However,the main disadvantage of the model heking tehnique is the explosion in thestate spae during its brute fore exploration.1.1.2 State ExplosionThe size of the a parallel system of even moderate-sized systems grows exponen-tially. In order to avoid this inherent problem of model hekers, several methodshave been sought that avoid the exhaustive state spae exploration.Some of these methods are based on a symboli representation of the system usingBinary Deision Diagrams ([14℄, [40℄), whih has proved to be very suessful forvarious types of veri�ation problems for parallel systems. Other methods arebased on the onept of partial order redution ([43℄, [24℄) whih is based on theobservation that the interleaved exeution of independent ations allows one toinvestigate only a representative fragment of the state spae.The onept of ompositionality, where the motivation is to reason about thebehavior of a large system based on knowledge of its omponents has also inu-ened some of the methods. In those ases where a global investigation an beavoided eÆieny is gained. In ([42℄), ompositional reasoning has proven to bea suessful tehnique in the veri�ation of onurrent systems and embeddedsoftware, ([10℄). Another very signi�ant alternative is by abstrations. Thismethod seeks to use abstrations of the model under onsideration, whih aresmaller than the originals in model heking, hopefully dereasing the time in-volved and minimizing memory used. Model abstration redues the number ofstates neessary to perform formal veri�ation and thus redues the state spaeto be explored in formal veri�ation tools suh as COSPAN.Another approah, whih was �rst proposed by Larsen ([38℄) and further extendedby Andersen([10℄), Bodentien et al ([9℄), introdued a very promising heuristimodel heking tehnique for �nite state systems alled the Quotient Tehnique.The idea behind it, is to fator out omponents of a parallel system, one at a time,into the spei�ation, and by ontinuously, applying simpli�ation heuristis,minimize the resulting struture. By transforming the spei�ation aordingly,1 Introdution - Formal Veri�ation 8

one is able to draw onlusions about the model and the spei�ation. Thistehnique has also been applied in real time systems ([35℄). In this thesis, weexplore this tehnique with �nite state systems and extend it to our probabilistimodel. Our aim is to establish the basis for using the Quotient Tehnique inprobabilisti transition systems and also to experimentally verify if there areindeed optimal results using this tehnique.1.2 Probabilisti ModelsDue to the fat that a system an not always be guaranteed to work orretly,there is the need for a way of desribing the unreliability of a system. This isespeially important in safety ritial systems suh as ight ontrol systems andmedial systems. This has led to more models being onsidered with probabilitiesinorporated. Probabilisti models are important for the quantitative designand analysis of safety ritial systems. They are also useful for the analysis ofquantitative behavior in a wide variety of systems e.g. through the omputationof performane measures.1.2.1 Markovian ModelsThe idea of inorporating probabilities into the modelled system has lead tovarious developments. In reent years, many researhers have foused on rea-soning about probabilisti transition systems. A lot of work has been doneto extend those models and methods whih have been suessful for the non-probabilisti ase to probabilisti systems. The basi onept of all these modelshowever, is that of a transition system whih has been extended appropriatelywith probabilities. They an be lassi�ed though, with respet to their treatmentof non-determinism. This has been aording to either Markov hains where non-determinism is ompletely replaed by probabilisti hoies or Markov deisionproesses, in whih both non-determinism and probabilities are present. Themodels based on Markov hains are suitable to formalize the behavior of sequen-tial randomized algorithms or proesses of probabilisti aluli with synhronousparallel omposition. On the other hand Markov deision proesses based modelsare suitable for distributed randomized algorithms or proesses of asynhronousprobabilisti alulus. In our work, we hoose to use Markov Deision Proessesalso known as Probabilisti Transition Systems, simply PTS, as our main model.There are di�erent variants of probabilisti systems and we present these in Se-tion 1.2.2.1 Introdution - Probabilisti Models 9

1.2.2 Probabilisti Model Classi�ationsWe present work in the �eld of probabilisti transition systems. Probabilistitransition systems provide a framework that allows us to express that a failure anonly our with a ertain probability, and as a tool it an be used to verify that asystem, with some probability, behaves aording to its spei�ation.(i.e. there isa 0.0002% possibility that a medial monitor will shut down without a warning).There are three main lassi�ations: Reative, Generative and Strati�ed models.Reative ModelThis model onsists of states and labelled transitions assoiated with probabili-ties. For eah state, the sum of probabilities on outgoing transitions must be 1for transitions with the same label.Larsen and Skou ([39℄) de�ne a reative probabilisti transition system as follows:De�nition 1 A reative probabilisti transition system is a struture P = (Pr; At; �),where Pr is a set of proesses(or states), At is the set of ations that the proessmay perform, and � is a transition probability funtion � : Pr�At�Pr! [0; 1℄suh that for eah P 2 Pr and a 2 At:XP 02Pr �(P; a; P 0) = 1 or XP 02Pr �(P; a; P 0) = 0indiating the possible next states and their probabilities after P has performedation a.In Figure 1.1 is an example of a reative proess.Generative ModelThis model onsists also of states and labelled transitions with probabilities, butwith the sum of probabilities of all outgoing transitions equal to 1. Jou andSmolka ([32℄) have formally de�ned the Generative model as follows:De�nition 2 A generative probabilisti transition system is a triple hPr;�; �i,where Pr is a set of proesses; � is the set of all atomi ations and 0 is a speialsymbol not in � alled the zero ation; � : (Pr � (� [0 � Pr) ! [0; 1℄ is atotal funtion alled the probabilisti transition funtion satisfying the followingrestrition: 8P 2 Pr, Xa2�[0;Q2Pr�(P; a;Q) = 1Figure 1.2 is an example of a generative proess.1 Introdution - Probabilisti Models 10

P
a 1

4 3
4

a 1b

1a 1b

Figure 1.1: An example of a reative proess
Q

1
6 1

2
a b

a

3
1

a
2
1

b
2
1

1c

Figure 1.2: An example of a generative proessStrati�ed ModelStrati�ed models onsists of states and two kinds of transitions, probabilistiand ation based. In the ase of probabilisti transitions, the sum of probabilitiesmust be 1, and for the ation transitions the restrition is that there must be onlyone outgoing ation transition from a state. van Glabbeek et al ([23℄) have a welldoumented paper on these models. They show that the generative model is anabstration of the strati�ed model, and that the reative model is an abstrationof the generative model.
1 Introdution - Probabilisti Models 11

1.3 Spei�ationsThe spei�ation or property to be veri�ed in a model, is usually stated in somelogi as a formula. This in the non-probabilisti ase ould be a Linear TreeLogi (LTL, [18℄) or Computational Tree Logi (CTL, [19℄) or some temporallogi. More suited to your model of a probabilisti model, is the Probabilis-ti Computational Tree Logi (PCTL, [12℄, [25℄) whih an express quantitativebounds on the probability of system evolutions. We give the syntax and seman-tis of this logi in Setion 2.3. However, there is an alternative to this logirepresentation of formulas of the spei�ation in model heking.There are two main approahes for speifying properties in model heking: logi-based (eg CTL, [19℄) and automaton-based(eg ! � automata, [34℄) or transitionsystem based. In the latter ase, spei�ation formalism satis�ability will nor-mally be given by some suitable behavioral equivalene or preorder between theimplementation and spei�ation.We are interested in a restrited lass of reahability properties, and hene inter-ested in partiular sequenes of exeution that lead to ertain �nal onditions.These properties allow to speify that the probability of reahing a partiular�nal ondition �f from any reahable state satisfying a given initial ondition �iis smaller (or greater) than a given probability p.1.4 Topis of Thesis1.4.1 Related WorkIn this setion, we �rst mention some of the existing work in area of methods andtehniques to avoid the state spae exploration during model heking.MinimizationThe main idea, in Minimization, is to redue the size of the model used in modelheking by algorithms, so that the redued(and smaller) struture is used inplae of the original. By this the state spae to be explored, is redued beforemodel heking. However, the minimization is arried out with respet to thespei�ation in question and by preserving the relations that hold on the models.Orna Grumberg's ([16℄) minimization tehnique is applied to Kripke struturesby upholding the simulation preorder.1 Introdution - Spei�ations 12

Compositional AbstrationsIn our previous work, ([1℄), we desribed a proedure in whih, a system madeup of omponents interating together, will have eah omponent being replaedby a good abstration, based on the probabilisti simulation preorder. Theseomponent-based abstrations then replae the originals in the model hekingproedure. The implementation is a tool, CAPS, whih, heks if two probabilistitransition systems (a model and its abstrat) simulate eah other, and hene theabstrat is used in plae of the original.The Quotient TehniqueA new approah towards ompositional veri�ation of onurrent systems is theQuotient Tehnique where omponents are gradually removed from the onur-rent system while transforming the spei�ation aordingly. The intermediatespei�ation is kept small using heuristis for minimization. This tehnique hasbeen used for state/event systems, ([10℄) and also , some version of probabilistisystems ([46℄).1.4.2 Outline of thesisThis thesis is organized as suh: The next hapter we introdue some basi de�-nitions and theorems in Probability Theory, fous on the Probabilisti TransitionSystems, whih is our main working model, desribe the formalism for our spe-i�ations, and state what equivalenes and preorders we use in this work.Chapter 3 is dediated to Networks and Maximum Flows and how this is used inomputing the probabilisti simulation preorder. This hapter is basially workdown in our last report.In Chapter 4, we disuss some general methods for ompositionality and abstra-tions. In Chapter 5, we disuss the Minimization Method and The QuotientTehnique for �nite states and in Chapter 6 and 7, we fous on these two meth-ods, and propose algorithms adapted to our probabilisti model, respetively.Chapter 8 disusses the appliation of these methods in the veri�ation proess.Chapter 9, desribes the implementation of these methods in our existing tool,CAPS. Some tests are used in Chapter 10 to draw some experimental results, andChapter 11, draws onlusions on the work done in this thesis with some futurediretions.
1 Introdution - Topis of Thesis 13

Chapter 2Preliminaries
2.1 Probability TheoryIn this setion we give some basi de�nitions assoiated with the term probabilitythat we �nd useful in this work.A sample spae S lists all the possible outomes of a random phenomenon. Ingeneral the event (E) is a subset of a sample spae, or in other words, an eventis any olletion of outomes.The probability funtion � is a funtion from the sample spae S to a numberbetween 0 and 1. � : S ! [0; 1℄For eah event A in an experiment of a sample spae S, �(A) is the probabilitythat A will our. The probability value, �(A), assigned to an outome (event)must satisfy the three axioms below in order to satisfy the mathematial notionof probability.Axiom 1 : For any event A, �(A) � 0.Axiom 2 : �(S) = 1.Axiom 3 : For an in�nite sequene of disjoint events A1; A2; : : :�(1[i=1Ai) = 1Xi=1 �(Ai):14

De�nition 3 A probability distribution or probability on a sample spae S is aspei�ation of the numbers �(A) whih satis�es Axioms 1,2, and 3.Consequently, for any event A, 0 � �(A) � 1.Generally, if the ourrene of an event A does not inuene the ourrene ofanother event B, it is said that the two events A and B are independent. If eventsA and B are independent, then �(A and B) = �(A) � �(B).2.2 Probabilisti Transition SystemsIn this thesis, systems are desribed in terms of Markov Deision Proesses ([29℄),also alled Probabilisti Transition Systems (PTS). This model is a labelled tran-sition system with both non-determinism and probabilisti hoies present. Thehoie of this model is partly due to the fat that it is losed under parallel om-position (whih failitates modelling and ompositional reasoning) but primarilybeause PTSs are amenable to abstration. This is a key fator for the tehniquesproposed in this work.We give a formal de�nition as suh:De�nition 4 A Probabilisti Transition System PTS is a tuple (S, �!, V)where� S is a non-empty �nite set of states� !� S � At � Dist(S), is a �nite transition relation where At is a �niteset of ations, Dist(S) is a distribution over states S,� V : S ! 2AP is a labelling funtion.Note should be taken of the ation-labelled transitions. In the ases where anation is impliit and the same through out a system we leave it out of the repre-sentation.We use s a�! � to denote (s; a; �) 2�! and s a6�! to denote that (s; a; �) 62�!for all �. A Rooted PTS is a PTS with a prede�ned initial state, (S;�!; V; s0).Figure 2.1 is an example of a PTS with an initial state s.
2 Preliminaries - Probabilisti Transition Systems 15

c < 3
s

P

F

0.75

0.25
1

c++Figure 2.1: A Probabilisti Transition System2.2.1 Probabilisti ExeutionsEah ation � leads to a distribution � 2 Dist(S) over suessor states. We referto s ��! � as a transition. Finite proesses have �nite number of states and thetransition relation is ayli. A PTS is a Fully Probabilisti T ransition System(FPTS) if whenever s ��! � and s ��! � then � = �.Let T = (S;!; V). A simple path starting from s0 2 S in T is a �nite sequene ofS-states, � = s0s1s2:::sn, where for eah 0 � i < n there exists �i 2 Distr(S) suhthat si ! �i and �i(si+1) > 0. Let �(i) denote the state in the i-th position. Letj�j be the length of �. Let first(�) = �(1) and last(�) = �(j�j). Let paths(T)denote the set of all probabilisti paths of T and s-paths(T) denote the sets ofsimple paths in T starting from any s 2 S. A state t is reahable from otherstate s in T if there is � 2 s-paths(T) with s = first(�) and t = last(�). Letreah(T,s) denote the set of all states reahable from s in T.For any rooted FPTS(F, s), the probability measure PF;s on the �-algebra in-dued by (F, s) is the unique probability measure de�ned suh that PF;s(�) =�0(s1)��1(s2)�:::�n�1(sn) if (s = so) else 0. In partiular, PF;s(�) is the probabilityof � in F starting from s.Any given PTS T de�nes a set of probabilisti exeutions, eah one obtainedby iteratively sheduling one of the possible post-state distributions from eahpre-state, starting from a given state s0 2 S. This is the unique path leadingfrom the start state to s.De�nition 5 A probabilisti path of T is a FPTS, F = (s�path(T);!F ; fÆlast)where q !F � implies last(q) !T � with �(ps) = �(s) for all s 2 S. If inaddition, for all q 2 s � path(T) suh that jqj < i; last(q) !T implies thatq !F , then the rooted FPTS (F; s0) is said to be a probabilisti exeution fragmentof length i of T starting from s0 2 S. If i = 1; then(F; s0) is said to be aprobabilisti exeution of T starting from s0 2 S.2 Preliminaries - Probabilisti Transition Systems 16

Given a simple path � 2 s-paths(T) de�ne �" 2 s-paths(F)(F being a probabilis-ti path of T) suh that j�"j = j�j and for all 0 < i � j�j, �"(i) = �(1):::�(i).Let f 2 PF where PF is the set of propositional formulas losed under ^ and :. De�ne �f M= f� 2 s-paths(T)j last(�) j= f and 80 < i < j�j. �(i) j= : fg,i.e. �f is the set of all minimal paths in T that end in �nal ondition f. Theminimum(in�mum) and maximum (supremum) probabilities of reahing a �nalondition f 2 PF from an initial ondition i 2 PF in a rooted PTS(T, s0) arede�ned respetively by:PinfT;s0 (i,f) M= inf fPF;q(�"f) j s 2 reah(T, s0), s j= i, and (F, q) 2 exes(T, s)gPsupT;s0 (i,f) M= sup fPF;q(�"f) j s 2 reah(T, s0), s j= i, and (F, q) 2 exes(T, s)gwhere exes(T; s) be the set of all probabilisti exeutions starting from s.Figure 2.2 presents a probabilisti exeution F of an exam PTS T. The probabilityto eventually pass the ourse(p holds) after 3 attempts (< 3) is alulated asfollows:PF;p M= �Æ2�"f PF;Æ = 0:75 + 0:25 � 1(0:75 + 0:25 � 1 � 0:75) = 0:9843
c < 3

s

p

f

0.75

0.25
1

c++

T

(s,0)

(sp, 0)

(sf, 0) (sfs, 1)

(sfsp, 1)

(sfsf, 1)

0.75

0.75

0.25

0.25

1

1

F

(sfsfs, 2)

(sfsfsf, 2)

0.75

0.25

(sfsfsp, 2)

Figure 2.2: Probabilisti Exeution of PTS2.2.2 Parallel CompositionsGiven two PTSs T1 = (S1;!1; V) and T2 = (S2;!2; V) over the same set ofatomi propositions, we investigate the parallel omposition of these two andhene extrapolate to the omposition of several models together.2 Preliminaries - Probabilisti Transition Systems 17

First, lets onsider an asynhronous interleaving of the individual proesses(j).The parallel omposition is a produt omposition of the states. This produtstruture gets huge quikly with the number of proesses involved. Formally T1j T2 = (S1 � S2;!; V (S1; S2)) where� (S1 � S2) = f(si; sk)jsi 2 S1 ^ sk 2 S2g� V (S1; S2) = V (S1) [V (S2)� ! de�ned by the following rules:{ If s1 �!1 �1 then (s1; s2) �! �s21 where�s21 (s01; s02) = (�1(s01); s02 = s20; s02 6= s2{ If s2 �!2 �2 then (s1; s2) �! �s12 where�s12 (s01; s02) = (�2(s02); s01 = s10; s01 6= s1Figure 2.3 presents the examination models, that a student takes two ourses.The probability to pass both is examined on the parallel omposition, depitedin �gure 6.4.
c < 3

s

P

F

0.75

0.25
1

c++

T1 T2

c < 3
s

P

F

0.75

0.25
1

c++

1

1

1

2

2

2
21

21Figure 2.3: Two PTS exams T1, T2As an be seen from the �gure of the parallel omposition, the distribution fromeah parallel state (s1; s2) to another state (s1; p2) is based on the distributionof the omponent state making the transition, that is (s2) ! (p2), just as isde�ned under the rules for the parallel omposition. Following the Figure 6.4logially from the start points (s1; s2), a student taking the 2 ourses an only2 Preliminaries - Probabilisti Transition Systems 18

0.75

s s12

P s12 s F12 s P12

F F12 F P12P F12
P P12

c ++1

c ++1

c ++2

c ++2

c, c ++
12

11

1

1

0.25 0.750.25

0.750.250.75 0.25 0.75 0.25

0.75

0.25

1

F s12

c ,c < 3
1 2

c ,c < 3
1 2

c ,c < 3
1 2 c ,c < 3

1 2 c ,c < 3
1 2

c ,c < 3
1 2

Figure 2.4: Parallel Composition of two proesses, T1kT2fail or pass one at a time. The �rst alphabet represents the �rst ourse and theseond represents the seond ourse. So one an start the exams (s1; s2), take theseond ourse and fail it (s1; F2). From this point, one might deide to try the�rst ourse. If this is also failed you end up in (F1; F2) or fortunately in (P1; F2)if it is passed. At this point if the number of trials of the failed ourse 2 is stillless than 3, one an start from (P1; s2) and then hope to end up at (P1; P2).From the above example, an interesting spei�ation to explore ould be if theprobability of passing at least one of the ourses taken is greater than say, 0:5.However, to arry out this exploration, one might need to onsider all the exeu-tion paths inident to this parallel omposition.Seondly, we onsider the synhronous parallel omposition(jj). Formally T1kT2 =(S1 � S2;!; V (S1; S2)) where� (S1 � S2) = f(si; sk)jsi 2 S1 ^ sk 2 S2g� V (S1; S2) = V (S1) \ V (S2)� ! de�ned by the following rules:{ If (s1 �!1 �) ^ (s2 �!2 �) then (s1; s2) �! (� � �)(s01; s02) where(� � �)(s01; s02) = (�(s01) � �(s02)0; (ifs1 �!1 ^s2 �6!)then(s1; s2) �6! :2 Preliminaries - Probabilisti Transition Systems 19

2.3 Spei�ation FormalismThe two main approahes for speifying properties are desribed in this setion.We state the syntax and semantis of the Probabilisti Computational Tree Logi(PCTL, [25℄) and also desribe a model-based spei�ation formalism.2.3.1 Logi-based Spei�ationIn speifying the property to be veri�ed in the model, the formula for the propertyis often stated in some logi. Branhing time logis suh as Computational TreeLogi(CTL) [Clarke & Emerson℄ allow quanti�ation over the possible futureswhih leads to a formula stating eg. the existene or non-existene of an exeutionwith a ertain property. CTL distinguishes between state and path formulas.The states formulas subsume the propositional onnetives and basi temporaloperators of the form " a path quanti�er followed by a single temporal modality"where the path quanti�ers are 8 and 9 that range over all paths. We omit thesyntax and semantis of CTL.[Hansson & Jonsson℄ onsidered systems modelled by disrete markov hains andintrodued the logis of Probabilisti Computational Tree Logi (PCTL), that anexpress quantitative bounds on the probability of system evolutions. This logian thus be used to reason about the reliability and performane of systems. It isobtained by adding to the branhing time logi CTL, the probabilisti operator[℄wp suh that the formula ['℄wp is true at a given point of the system evolution,if starting from that point, the probability that a future evolution satis�es 'is at least (most) p. PCTL allows one to express quantitative properties ofprobabilisti proesses suh as ' the system terminates with probability of atleast 0.75'. It also distinguishes between state and path formulas. PCTL ontainsatomi propositions and operators:next-step X and until U . The operators areused in onnetion with an interval of probabilities.[Biano & Alfaro℄ extend the logis of PCTL to systems in whih nondeterminismand probabilisti behavior o-exist. Due to the presene of nondeterminism, it isnot possible, in general, to talk about the probability with whih a formula is sat-is�ed but only about the lower and upper bounds of suh probability. Therefore,the formula ['℄wp is true at a given point of the system evolution if the systemevolution starting from that point satis�es ' with a probability bounded frombelow(above) by p.The logi we ould be work with, is essentially this Probabilisti ComputationalTree Logi PCTL over PTSs. However in our veri�ation proess, where we onlyseek to establish the properties that are of the type of probabilisti reahability,these formulas only speify a quanti�ation over path: a path or all paths. This2 Preliminaries - Spei�ation Formalism 20

is a fragment of PCTL as some of the assumptions we speify do not hold on allPCTL. Below we present the syntax and semantis of this PCTL over PTSs.Syntax : We distinguish between two lasses of formula: the lass of state formu-las(whose truth values are evaluated on the states, state) and the lass of sequeneformulas(whose truth values are evaluated on in�nite sequene of states,path).The lasses state and path are de�ned as follow:P � state�; ' 2 state =) � ^ ';:� 2 state� 2 path =) A�;E�; [�℄wp 2 state� 2 state =) � 2 path�; ' 2 state =) 2�; ��; � U' 2 pathwhere p 2 [0,1℄ and w is either � or >.Semantis : For a formula � 2 state, indiate with s j= � its satisfation on states 2 S, and for � 2 path indiate with � j= � its satisfation on the in�nite statesequene path �. The semantis of the logial onnetives and of the temporaloperators are de�ned in the usual way; the semantis of A, E, [℄wp are de�ned asfollows: s j= A� i� 8� 2 s-path. � j= �s j= E� i� 9� 2 s-path. � j= �s j= [�℄�p i� infimum(f� 2 s-pathj� j= �g)�ps j= [�℄�p i� supremum(f� 2 s-pathj� j= �g)�pIf s j= [�℄�p, it means that regardless of the hoies made in a nondeterminististate, the probability that the future evolution satis�es � is at least p (and alsofor s j= [�℄�p). A formula � 2 state is satis�ed by a rooted PTS S, written S j= �if so j= �.
2 Preliminaries - Spei�ation Formalism 21

2.3.2 Model-based Spei�ationWe use a transition system based spei�ation in this thesis.Our representationof the spei�ation is a model, whih an be expliitly translated into the Prob-abilisti Modal Logi of Larsen et al [℄. We are interested in a restrited lassof reahability properties, and hene interested in partiular sequenes of exeu-tion that lead to ertain �nal states. These properties allow us to speify thatthe probability of reahing a partiular �nal ondition �f from any reahablestate satisfying a given initial ondition �i is smaller (or greater) than a givenprobability p. To minimize the omplexity of the sequenes possible, we later inChapter ??, introdue a model (Bloking PTS) whih is a type of a PTS whihwell desribes the reahable properties we work with.2.4 Equivalenes and PreordersSimulation(v) and bisimulation relations (�) have been widely onsidered([31℄[41℄) to ompare the stepwise behavior of states in transition systems. Bisimula-tion relations are equivalenes(these are reexive, symmetri and transitive) suhthat two bisimular states exhibit idential stepwise behavior. On the ontrary,simulation relations are preorders (these are reexive and transitive) on the statespae suh that if s v s0 (s0 simulates s) state s0 an mimi all stepwise behaviorof s; the onverse, that is s0 v s, is not guaranteed, so state s0 may perform stepsthat an not be mathed by s. Thus if s v s0, then every suessor of s has aorresponding, related suessor of s0, but the reverse does not neessarily hold.Simulation an be lifted to the entire transition systems by omparing (aord-ing to v) their initial states. Simulation relations are often used for veri�ationpurposes to show that one system orretly implements another, more abstratsystem.Bisimulation relations possess the strong preservation property whereas simu-lation has weak preservation. Strong preservation means if s � s0, then for allformulas �, it follows s j= � iff s0 j= �. This property holds, for instane, forCTL and strong bisimulation ([13℄). The use of simulation relies on the preser-vation of ertain lasses of formulas, not for all formulas (suh as for �). Forinstane, if s v s0 then all safety formulas �, it follows that s0 j= � implies s j= �.However, the onverse s 6j= �, annot be used to dedue that � does not hold inthe simulated state s; hene the name weak preservation.Simulation relations are the basis for abstration tehniques where the basi ideais to replae the large system to be veri�ed by a small abstrat model and tomodel hek the abstrat system. ([4℄)2 Preliminaries - Equivalenes and Preorders 22

In this setion, we state the de�nitions for the bisimulation and simulation rela-tions for a labelled transition system and then extend them to the probabilistiase.Given a labelled transition system (LTS) as a tuple (S, A,!) where S is a set ofstates, A is a set of ations and !� S �A� S the transition relation, we de�neR � S � S as a binary relation over S and R�1 = fhs0; sijhs; s0i 2 Rg for theinverse of R.De�nition 6 Let hS;A;!i be a LTS and let R � S � S be a relation. Then:1. R is a simulation if for every hs1; s2i 2 R and a 2 A, whenever s1 a�! s01,then there is a s02 suh that s2 a�! s02 and hs01; s02 2 Ri.2. R is a bismulation if both R and R�1 are simulations.For any LTS there is a maximal simulation(a preorder), � and bisimulation(anequivalene), �. The following states a onnetion between � and �.Theorem 1 Let hS;A;�!i be a LTS, with s1; s2; s3 2 S. Then:1. If s1 � s2 and s2 � s3, then s1 � s3.2. If s1 � s2 and s2 � s3, then s1 � s3.Extending the notion of simulation to two LTSs, T1 = hS1; A1;�!1i and T2 =hS2; A2;�!2i, we say T1 � T2 if their initial states s1 � s2.With this bakground, we extend this equivalene and preorder to the ase ofProbabilisti Transition Systems. We examine the onept of Probabilisti Sim-ulation between two PTS models and its assoiated states and distributions.De�nition 7 Let S1 and S2 be �nite sets, suh that R � S1 � S2, and �1 2�(S1), �2 2 �(S2). A weight funtion for �1; �2 with respet to R is a funtionÆ : S1 � S2 ! [0,1℄ whih satis�es1. For all (s1 2 S1) : �s22S2Æ(s1; s2) = �1(s1)2. For all (s2 2 S2) : �s12S1Æ(s1; s2) = �2(s2)3. If Æ(s1; s2) > 0 then (s1; s2) 2 R2 Preliminaries - Equivalenes and Preorders 23

R an equivalene relation, is a bisimulation if and only if for all (s1; s2) 2 R:whenever (s1; s2) 2 R and s1 �!1 �1 then there exists a transition s2 �!2 �2 and aweight funtion for (�1; �2) with respet to R. Intuitively the weight funtion Æ,show how to split the probability distributions �1 and �2 on s1, s2 2 S, see Figure2.5, so that the relation is preserved. For simulation, the requirement that R isan equivalene relation is dropped (if and not if and only if). We write �1 vR �2if there exists a weight funtion between �1; �2 with respet to R. Also s1 vR s2if whenever s1 ��! �1 then s2 ��! �2 with �1 vR �2:
t

t1

t2

t

t1

t2

t

t1

t2

s

s1

s2

s3

s

s1

s2

s3

0.50

s

s1

s2

s3

0.25

0.25

0.25

0.25

0.25

0.25

0.50

0.50

(s,t)(s,t)

Figure 2.5: Weight Funtion, s vR tDe�nition 8 A simulation between a rooted PTS T1 = (S1;!1; V1; s10) and T2 =(S2;!2; V2; s20) is a subset R of S1 � S2 suh that1. (s10; s20) 2 R2. whenever (s1; s2) 2 R and s1 �!1 �1 then there exists a transition s2 �!2 �2and a weight funtion Æ for (�1; �2) with respet to R i.e. �1 vR �2.We say s1 is simulated by s2(denoted by s1 v s2) i� there exists a simulation thatontains (s1; s2): Consequently, T1 v T2 if the above onditions hold.

2 Preliminaries - Equivalenes and Preorders 24

Chapter 3Computing The Simulation Preorder
3.1 IntrodutionIn using abstrations in veri�ation, we need to establish what a good abstratis. As stated previously, we use the simulation preorder to guarantee this. In thishapter, we desribe how to establish that two PTSs probabilistially simulateeah other. We introdue a mathematial problem and use its solution to omputethe simulation preorder relation.By the de�nition of simulation over PTSs (De�nition 8), �nding the relationR = S � S 0 is the key point of determining whether one PTS simulate the other.The basi algorithm for omputing the simulation relation ([16℄) is as follows:R := S � S;While there exists (s; s0) 2 R with s6vRs0 doR := Rnf(s; s0)gReturn R.Figure 3.1: The Basi Shema for omputing the Simulation Preorder.In PTSs though, the task of heking s vR s0 (simulation by state), extends toheking � vR �0 (simulation by distribution) as in the de�nition. In heking� vR �0, a network-based tehnique is used. The algorithm for omputing thesimulation relation between two PTSs, basially tests if a weight funtion, fordistributions �; �0 with respet to a given relation R, exists. The problem of�nding a weight funtion is redued to a maximum ow problem in networks.In the next setion we introdue the onept of networks and ows in them, anhow the value of ow is omputed in these networks.25

3.2 Networks and FlowA network is a tuple N = (N;E;?;>;) where (N;E) is a �nite direted graph(i.e N is a set of nodes, E � N � N a set of edges) with two spei�ed nodes ?(thesoure:s) and >(the sink:t) and a apaity . is a funtion whih assigns to eahedge e = (u; v) 2 E a non-negative number (e). (e) : E ! R�0.A flow funtion f for N is a funtion whih assigns to edge e a real numberf(e) suh that 0 � f(e) � (e) for all edges e.Let in(v) be the set of inoming edges to node v and out(v)the set of outgoingedges from node v. Then for eah node v 2 N n f?;>g:Xe2in(v) f(e) = Xe2out(v) f(e)De�nition 9 Flow. A ow is a funtion f : E ! R satisfying the following(1) Capaity Constraint: f(u, v) � (u, v) , 8(u, v)(2) Skew Symmetry: f(u, v) = - f(u, v) , 8(u, v) 2 E(3) Flow Conservation: �v2N f(u, v) = 0 ; 8u 2 N - fs; tgThe value of a ow f is jf j = �v2Nf(s; v).The exess of a node (v) isexess(v) = �e2in(v)f(e) - �e2out(v)f(e)The maximum flow in N is the suprenum (maximum) of the value of ow inthe network where f is a ow funtion in N .3.3 Maximum Flow ProblemGiven a network (N;E;?;>;), �nd a ow of maximum value from soure(?)to sink(>) i.e. determine a ow f for whih jf j is maximum.Finding this maximum ow in a network is ahieved by adjusting the ow andapaities on the edges until they are stable. From the de�nition of the owfuntion, we assign ows to the edges based on their apaities. We present thison the edges as apaity=flow, Figure 3.2. The ows into a node(exept for thesoure and sink nodes) must be equal to the ows out of it. Consequently, theexess of nodes is 0.3 Computing The Simulation Preorder - Networks and Flow 26

s1

s2

s3

0.25/0.25

0.5/0.5

0.25/0.25

t1

t2

0.3/0.3

0.7/0.7

1/0.25

1/0.5

1/0.20

1/0.5Figure 3.2: A Network with Maximum Flow of 1Residual NetworksLet N be a network with a ow f . For any (u; v) 2 E, the residual apaity of(u; v) is f(u; v) = (u; v)� f(u; v). The residual graph of G = (N;E) induedby f is Gf = (N;Ef)where Ef = f(u; v) 2 N j f (u; v) > 0gThe ow f also gives rise to the residual ow network N f = (G; �f ; s; t) where�f(u; v) = f (u; v) for (u; v) 2 Ef and 0 otherwise(i.e. for (u; v) 2 E � Ef).Given a graph G = (N;E) and a flow f . An augmenting path � is a simplepath from s to t in the residual graph, Gf , indued by flow f . Every edge inGf has positive apaity. The maximum amount of net ow that an ow alongedges of � is alled the residual apaity of �:f(�) = minff (u; v) j (u; v) is on �gFor every edge e = (u; v) in G there are up to two edges e0 and e00 in Gf1. If ap(e) < f(e), e0 = (u; v) 2 Gf ; r(e0) = ap(e)� f(e)2. If f(e) > 0, e00 = (v; u) 2 Gf ; r(e00) = f(e)3. If (e) = f(e), e00 = (v; u) 2 Gf ; r(e00) = (e)Lemma Fix F= (G; ; s; t), with ow f , and augmenting path � in Gf , de�ne3 Computing The Simulation Preorder - Maximum Flow Problem 27

f�(u; v) = 8><>:f(e) + f ; ife0 2 �f(e)� f ; ife00 2 �0; otherwiseThe generi algorithms for alulating maximum ow are based on general graphs.Some examples are the Ford-Fulkerson Algorithm, Dini's Algorithm, and theFirst-In First-Out(FIFO) Preorder Push Algorithm. Modi�ations have beenmade to adapt these algorithms to bipartite graphs, whih is more useful in ourase. When the probabilisti simulation problem is redued to the maximum owproblem, a network N = ((N;E);?;>;) is established. G = (N;E) is atuallya bipartite graph, written G = (X [Y;E). We implement an improved versionof the Ford-Fulkerson Algorithm for bipartite graphs. This improved algorithmperforms at O(p4) where p = max fj X j; j Y jg.The Ford-Fulkerson AlgorithmGiven a network (G; s; t), with soure and sink nodes, s and t respetively,1. Initialize ow f to 02. While there exists an augmenting path � in GfDo augment ow f along �3. Return fGiven the graph G with speial nodes s and t as soure and sink nodes, respe-tively, the algorithm starts with zero ows f(e) = 0 for all edges e. It thenonstruts the residual network Gf . In this residual network, it heks whethert an be reahed from s. If there is an augmenting path, then this is possible. Ifnot it stops else flow is adjusted along the augmenting path and it iterates. Thevalue of flow obtained when there is no augmenting path, has been found to bethe Maximum Flow of the network.3.4 Probabilisti Simulation andMaximum FlowWe now show how the problem of omputing the probabilisti simulation(� vR�0), is redued to that of The Maximum Flow Problem.3 Computing The Simulation Preorder - Probabilisti Simulation and MaximumFlow 28

For eah transition s �! �, let Childs;�(�) � S is a set of states, whose elementsare distributed by �, for instane, in Figure 3.4 Childs0;�(�) = (s1; s2; s3). Giventhe preorder relation R � S � S 0, s �! � and s0 �!0 �0, where � 2 Dist(S),�0 2 Dist(S 0). Choose ?;> suh that ? = s;> = s0. We derive a network N(N;E;?;>;) or N (�; �0; R) suh thatN = f?;>g [fChilds;�(�) [Childs0;�(�0)gE = f(s; s0) : (s; s0) 2 Rg [f(?; s) : s 2 Childs;�(�)g [f(s0;>) : s0 2Childs0;�(�0)g(?; s) = �(s); (s0;>) = �0(s); (s; t0) = 1Lemma: The following are equivalent1. There exists a weight funtion Æ for (�; �0) with respet to R2. The maximum ow in N (�; �0; R) is 1.The algorithm that omputes the maximum ow in the probabilisti simulationindued network N , is given in Figure 3.3.Input : A nonempty, �nite set S, distribution �; �0 2 Distr(S)and R � S � SOutput : If � vR �0 2 then "Yes"else "No"Method :Construt the network N (�; �0; R);Compute the maximum ow F in N (�; �0; R);If F < 1 then return then "No"else "Yes" Figure 3.3: The Test for � vR �0.As an example onsider the PTSs in Figure 3.4. In order to hek whether �0 sim-ulates �, with relation R = f(s1; t1); (s2; t1); (s2; t2); (s3; t2); :::g we an establisha network for eah state, as shown in Figure 3.2.Example: Applying the algorithm for omputing the probabilisti simulationrelation R for two given PTSs, T and T 0 in Figure 3.4. We start with the relationR ontaining the pairs:3 Computing The Simulation Preorder - Probabilisti Simulation and MaximumFlow 29

- (s0; t0), (s0; t3), (s3; t2), (s5; t3),- (si; tj), where (i = 1; 2; 4; 6; :::; 9) and (j = 0; :::; 4)
T'

s0

s1 s2 s3 s4

s5 s6

0.25 0.50.25
0.5

0.5

1

s7

s8 s9

0.45

0.55

0.25

0.25
0.5

0.45

0.10

T

t0

t1 t2

t3 t4

0.3 0.7

0.4

0.60.350.651

Figure 3.4: An example of a PTSIntuitively, there are some pairs whih are not in the initial R, suh as (s5; t0)beause the ation set over (s5) 6� the ation set over(t0), (fg 62 f�g).The pair (s0; t3), (s3; t2) are also removed from the set R during the investigation.For (s0; t3), Distr(s0; �) = f�s0; �s4; �g andDistr(t3; �) = f�t3g, and as � 6vR �t3then s0 6vR t3. For (s3; t2) the omputed maximum ow is 0.85, whih impliess3 6vR t2. Although the pair (s0; t0) is still in R in the initial investigation asDistr(s0; �) = f�s0; �s4; �g and Distr(t0; �) = f�0g , it is later removed, beauseafter the pair (s3; t2) is removed from R, its maximum ow of (�; �0) is adjustedand is less than 1. Finally, we get the relation R ontaining the pairs:- (s5; t3),- (si; tj), where (i = 1; 2; 4; 6; :::; 9) and (j = 0; :::; 4)Putting it all together, we now present the algorithm that omputes the proba-bilisti simulation relation between two given PTSs.3 Computing The Simulation Preorder - Probabilisti Simulation and MaximumFlow 30

Initialization:R := f(s; s0) 2 S � S : ats(s) � at(s0)gFor all (s; s0) 2 R and s! � do Sim(s;�;�)(s0) := Steps�(s0))Iteration:Repeat: ;Rold := R;R := 0For all (s; s0) 2 Rold do� sim := true;� For all s! � doRepeat:hoose some �0 2 Sim(s;�;�)(s0);If � vR �0 then remove �0 from Sim(s;�;�)(s0);until Sim(s;�;�)(s0) = 0 or � vR �0;If Sim(s;�;�)(s0) = 0 then sim := false;� If :sim then R := R [f(s; s0)g;until Rold = R;Output: Return R.Figure 3.5: Basis algorithm for omputing the Simulation Preorder.

3 Computing The Simulation Preorder - Probabilisti Simulation and MaximumFlow 31

Chapter 4General Methods for Compositionality &Abstration
Frege's Priniple of ompositionality: The meaning of the whole is a funtion ofthe meaning of the parts.Abstration is one of the most useful ways to �ght the state explosion problem.They should however preserve the properties of interest suh that propertiesthat hold for the abstrat system should hold for the onrete model. Modelabstration redues the number of states neessary to perform formal veri�ationwhile maintaining the funtionality of the original model with respet to thespei�ation to be veri�ed . As a result model abstration enables large designs tobe formally veri�ed. The resulting abstrat models an replae the original modelfor formal veri�ation provided that eah of the abstrations is homomorphi tothe orresponding part of the original model that it replaes with respet to thespei�ation to be veri�ed([34℄)Model Cheks M j= �, an be abstrated by simplifying the model M ([17℄), theproperty, � ([26℄), or the satisfation relation, j= .Model partitioning takes a portion of a model and replaes it with an abstratmodel. E.g. if a portion of a model does not a�et (i.e. is independent from)the rest of the model with respet to the properties to be veri�ed, it may beadvantageous to abstrat that portion of the model away.4.1 Compositional AbstrationIn this setion we desribe work that uses the onepts of ompositionality andabstration to break down and loalize abstration to the individual proesses32

of a system that synhronize for the total behavior of the system. In our pre-vious work, we used this approah to help minimize the state spae exploredduring model heking and also developed a tool alled CAPS (aronymed fromCompositional Abstration by Probabilisti Simulation).Given the model heking problem:C1kC2kC3k:::kCn j= � (4.1)where C1; C2; C3; :::; Cn are omponents of an asynhronous parallel system. Wereplae this equation with A1kA2kA3k:::kAk j= � (4.2)where A1 � � �Ak are abstrat omponents satisfyingC1k:::kCi1 v A1Ci1+1k:::kCi2 v A2...Cik�1+1k:::kCn v AkThis result was upheld provided that v satis�ed the following properties :(Preongruene) C v A =) CkR v AkR(Property Preservation) (A j= � ^ C v A) =) C j= �We used the probabilisti simulation preorder [44℄,[29℄ as the relation whih musthold between the original omponent and the abstration. We hose the prob-abilisti extension of the simulation preorder, and not an equivalene relationsuh as bisimulation, beause it permits a smaller model being obtained or inthe worst ase an equal model. Bisimulation fores a strit equivalene whihwill often not be of muh help in an abstration. This method of abstration tominimize the model an only be used in the model heking, if the probabilistisimulation preorder has been established. If for all the omponents of a model,an abstration an be found for eah omponent, in suh a way that eah om-ponent is probabilistially simulated by its abstration, we an then substitutethese abstrations for the omponents and proeed with model heking. Conse-quently, we avoid the expliit onstrution and exploration of the state spae ofthe original model with signi�ant savings on time and spae.4 General Methods for Compositionality & Abstration - CompositionalAbstration 33

4.2 PartitioningModel partitioning tehniques redue the state spae by grouping several statesinto the same abstrat state (i.e. partition) and by removing parts of the modelnot related to the spei�ation to be veri�ed. The abstrations onsidered areusually obtained by suessive re�nement , starting from an initial oarse parti-tioning of the state spae, derived from the property under study. If the analysisof this abstrat PTS allows to onlude that the property is satis�ed by the on-rete PTS, the veri�ation proess is �nished. Otherwise a partition re�nementstep is performed in order to obtain more preise information. The proess isiterated up to suess or until all lasses of the partition are stable. If the latterours, it an onlude that the property is false and extrat a ounter-examplepath, ([20℄). In Setion 2.2.1, we desribed how the maximum and minimumprobabilities of reahing a �nal ondition(�f or state) from an initial ondition(�i or state) are obtained. This setion is based on work done by Pedro D'Argenioet al ([20℄) and their approah in obtaining good abstrations by partitioning.Lets denote the sets of states satisfying �i and �f by I and F respetively. Ifs 2 F then F inf(f)(s) = F sup(f)(s) = 1, that is the state s is in (satis�es) the�nal ondition. If s 62 F thenF inf(f)(s) = min(s!�)Ps02S �(s0) � f(s0) andF sup(f)(s) = max(s!�)Ps02S �(s0) � f(s0)In ([20℄), the equations are transformed into a linear optimization problem whihis solved by linear programming.A partition is indued by an equivalent relation. We now de�ne an equivalenerelation based on simulation.De�nition 10 Let (S;�!; V) be a probabilisti transition system. Let C � S�Sbe a relation on states de�ning a disrimination riterion. R is a C- probabilistisimulation if, whenever sRt,1. (s; t) 2 C, and2. ifs �! �, and t �! � and there exist Æ 2 Distr(S � S) suh that for alls; t 2 S,(a) �(s) = Æ(s; S)(b) �(t) = Æ(S; t), and() sRt whenever Æ(s; t) > 0:4 General Methods for Compositionality & Abstration - Partitioning 34

We say that t C-simulates s, notation s �C t if there is a C-simulation R suhthat sRt.Our interest is to hek when a PTS reahes a goal �f starting from any statesatisfying some initial ondition i. Let C�i;�f be the disriminating onditionde�ned by(s; t) 2 C�i;�f =) (s j= �f , t j= �f) and (s j= �i , t j= �i).Our main purpose is to answer the question whether the probability of eventuallyreahing the �nal ondition f from any state satisfying a given initial ondition iis smaller than a given value p 2 [0; 1℄. C is an equivalene relation. The nexttheorem states that if a PTS T� satis�es this property, and another PTS T isC-simulate by T�, then T also satis�es the property.Theorem 2 Let (T1; s10) and (T2; s20) be two rooted PTSs, suh that none of themhas a sink node and let C�i;�f be the disriminating ondition as de�ned. Then1. (T1; s10) �C (T2; s20) implies PsupT1;s10(�i; �f) � PsupT2;s20(�i; �f) and2. PinfT1;s10(�i; �f) � PinfT2;s20(�i; �f).A PTS an be abstrated by partitioning its state spae, and any suh partitionwill indue an abstrat PTS whih should simulate the original (onrete) one.See Theorem 4. Consequently, the abstrat model will satisfy the same reaha-bility properties as the original model. The minimum and maximum propertiesis preserved by the abstrat system, and establish its limits (bounds).Theorem 3 Let A = fA1; � � � ; Akg be a partitioning of the �nite set of states Sof a PTS T, then the following holds:1. Ai � S2. AiTAj = � (i 6= j)3. Si=1:::kfAig = SDe�nition 11 Let T be a PTS and A = fAi; � � � ; Akg be a partitioning of thestates of T. Then the partitioned PTS T=A = (A;!A; fA) where1. A is its �nite set of states,2. !A transitions: A a! � i� there exists s 2 A with s a! � and �(A0) =Ps02A0 �(s0)4 General Methods for Compositionality & Abstration - Partitioning 35

3. fA = Vs2A f(s) .For a rooted PTS (T; s0), the partitioned PTS (T; s0)=A = (T=A;Ai) provideds0 2 Ai 2 A. This means that the partition that ontains the initial state of thePTS T , beomes the initial state (partition) of the partitioned PTS.Theorem 4 For a PTS T and its partitioned self (T=A), T v T=A.As an example, onsider a oin being tossed to play out the throw of a die. Referto Figure 4.1. To throw a "two", the toss sequene of the oin will be a head,tail and �nally a head. An interesting property to verify in this model will be�nding out the probability of throwing a partiular number, say a "six". i.e.the probability of reahing a "six" in three suessive oin tosses, (the sequeneTail; Tail; Head). By PCTL logi, we obtain the minimum and maximum prob-abilities for the �nal ondition f 2 PF (propositional formulas) from an initialondition i 2 PF, as a six from oin (s0, the initial state), for the die will beobtained as PinfD;s0 (s0, "six"); PsupD;s0 (s0, "six");
coin

H

H

T

T

H

T

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

Figure 4.1: A fair oin toss as a die thrownWe obtain a oarse partition on the state of the die (D), based on the reahabilityproperty of interest, obtaining a "six". In Figure 4.3, we present an intuitiveabstration whih is an illustration of the partitioned PTS, where the states areinfat independent partitions. This is a signi�ant redution in the states, from13 to 6 states, to be exponentially explored. We �rst show whih states is put inone partition, by enlosing these in the dotted square box.4 General Methods for Compositionality & Abstration - Partitioning 36

coin

H

H

T

T

H

T

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

Figure 4.2: Partitioning the die model
coin

H'

T

H'

T

1

0.5

0.5

0.5
0.5

0.5

0.5

1

Figure 4.3: An abstration of the oin toss4.3 The Quotient MethodIn this setion we disuss the quotient tehnique, �rst introdued by Kim G.Larsen in his PhD thesis [38℄, whih is a promising tehnique for avoiding the stateexplosion problem in model heking. It has been studied within the last deadeand has been proven to be suessful for �nite-state systems and real-time systems[3, 35℄. Our aim is to extend the method for probabilisti systems. Consider thefollowing model heking problem involving a system with n proesses in parallel:A1ed:::edAn ` ' (4.3)4 General Methods for Compositionality & Abstration - The Quotient Method37

where parameters of omponents, parallel omposition (ed), spei�ation formal-ism and the satisfation relation in (4.3) may be instantiated as follows:1. Component Type� Finite State System FS = (S;!), where S is a �nite set of states and!� S � At� S is a transition relation.� Timed Automata TA = (L; l0; E; Label; C; loks; guards; inv), whereL is a �nite set of loations with an initial loation l0; E � L� L is aset of edges; Label : L! 2AP a funtion that assigns to eah loation,a set of Label(l) of atomi propositions; C is a �nite set of loks;loks : E ! 2, a funtion that assigns a set of loks, loks(e) toeah edge; guard : E ! 	(C) a funtion that labels eah edge, with alok onstraint guard(e) and inv : L! 	(C) a funtion that assignsto eah loation an invariant.� Probabilisti Transition System PTS = (S;!; V), where S is a �niteset of states, !� S � At � Dist(S), is a �nite transition relation,where Dist(S) is distribution over states S,2. Parallel Composition� Interleaving P ��!P 0P jQ ��!P 0jQ , Q ��!Q0P jQ ��!P jQ0� Synhronization P ��!P 0 Q ��!Q0PkQ ��!P 0kQ0� Mixed SynhronizationP ��!P 0P jjjQ ��!P 0jjjQ , Q ��!Q0P jjjQ ��!P jjjQ0 andP ��!P 0 Q ��!Q0P jjjQ ��!P 0jjjQ0where P;Q; P 0; Q0 an be one kind of the omponents in (1); (j); (k) and(jjj) respetively present an interleaving, a synhronous and a mixed syn-hronous parallel omposition.4 General Methods for Compositionality & Abstration - The Quotient Method38

3. Spei�ation Formalism� Logi, where the spei�ation formalism is presented in terms of alogi, suh as Hennessy Milner Logi, CTL, TCTL, PCTL, normallydenoted by �; '; : : :� Model, where the spei�ation is presented by a model, suh as Fi-nite State, Timed Automata, Markov Chain or Labelled TransitionSystems, normally denoted by A; P; T:4. Satisfationality Relation (`)� For the logi, it is a logi satisfation, denoted by (j=).� For the model, it ould be a simulation preorder (�; �), probabilistisimulation preorder (v; w) or a bisimulation equivalane (�).In the model heking equation, (4.3), we wish to verify that the parallel ompo-sition of those systems satis�es ' without having to onstrut the omplete statespae of A1ed:::edAn. We will avoid this omplete onstrution by removing theomponent Ai one by one from the parallel system, while simultaneously trans-forming the formula aordingly. Thus, when fatoring out the omponent Anwe will transform the formula ' into the quotient formula '=An suh that:(A1ed:::edAn) ` ' if and only if (A1ed:::edAn�1) ` '=AnHowever, while repeatedly applying quotienting, another problem arises: thestate explosion now ours in the size of the quotient formula. Therefore the ideabehind the Quotient Tehnique is that eah quotienting should be followed by asimpli�ation heuristi, suh as minimization method, whih will be disussed inthe next hapter. We onsequently obtain a ombined proess of quotienting andminimizing as:(A1ed:::edAn) ` ' if and only if (A1ed:::edAn�1) ` ('=An)sBy repeatedly applying quotient and simplifying the problem we �nally ahievethe following lause:(A1ed:::edAn) ` ' if and only if ~ ` (((('=An)s)=An�1)s= : : : =A1)swhere ~ is the unit with respet to parallel omposition.In our thesis, we are interested in applying the quotient method for a modelspei�ation suh as �nite-state or PTS spei�ation rather than a logial spei-�ation. For this reason, we heneforth investigate the quotient tehnique for thefollowing onrete model heking equation:4 General Methods for Compositionality & Abstration - The Quotient Method39

A1ed:::edAn ` Bwhere,� Components Ai; B are FSs, and the satisfation relation (`) is simulationpreorder (�; �) in ase of �nite-state systems or,� Components Ai; B are PTSs, and the satisfation relation (`) is probabilis-ti simulation preorder (v; w) in ase of probabilisti systems.We now restate that the purpose of the quotient tehnique is to try to avoidthe state-explosion problem in parallel systems by fatoring out omponents,one at a time while simultaneously transforming the spei�ation aordingly forthe whole system and thereafter applying simpli�ation heuristi repeatedly foreah quotienting. In this thesis we disuss the quotient tehnique for �nite-statesystems by adapting the equation solving method proposed by Larsen and Xinxin[47℄ and extend the methods for the probabilisti labelled transition systems.4.3.1 Speial SublassesIn this projet we fous on applying the quotient tehnique for speial sublassesof model heking. The aim is to answer the question when a parallel ompositionsimulates (�; w) or is simulated (�; v) by a model spei�ation without havingto onstrut the omplete state spae by using the quotient tehnique in �nite-state systems and probabilisti systems. Consider the onrete model heking(inequation): A1ed:::edAn ./ Bwhere ./ is either (�; w) or (�; v).Let Xn = B, by applying the quotient tehnique we might obtain the followingset of equivalent equations:A1ed:::edAn ./ Xni� A1ed:::edAn�1 ./ Xn=An = Xn�1...i� A1 ./ X2=A2 = X14 General Methods for Compositionality & Abstration - The Quotient Method40

i� ~ ./ X1=A1 = X0where ~ is the unit with respet to parallel omposition.Now learly, if for eah i 2 1::n the quotient (Xi=Ai) = Xi�1 is the small-est/largest, respetively for (�; w) and (�; v), with respet to (probabilisti)simulation preorder, we have sueeded in "quotient" solving the problem. Morepreisely, we give the following:Corollary 1 Given omponent A and spei�ation B, the existene of quotientsis a onstrut B=A suh that for all X the following holds:AedX ./ B i� X ./ B=AIntuitively, the main problem now is that given a model spei�ation B and aomponent A we wish to �nd the largest/smallest X suh that AedX ./ B. In thenext setions we disuss the quotient tehnique applied to �nite-state systems.The quotient tehnique for probabilisti systems is disussed in Chapter 7

4 General Methods for Compositionality & Abstration - The Quotient Method41

Chapter 5Methods for Finite State
In this hapter, we examine two main methods for �nite states and in subsequenthapters extend them to the probabilisti transition system.5.1 MinimizationIn this setion, we introdue Orna Grumbergs work on Simulation based Mini-mization ([16℄). By this, we aim at being able to redue (minimize) the strutureof a model, as an individual omponent or as a result of some parallel omposition.In her paper, Grumberg presents a minimization algorithm whih reeives aKripke struture,M and returns the smallest struture whih is simulation equiv-alent toM . The redued struture is obtained is based on simulation equivalene.Although bisimulation equivalene has the advantage of preserving more expres-sive logis, it requires the abstrat struture to be too similar to the original thusallowing less powerful redutions.5.1.1 De�nitions and TheoremsDe�nition 12 Kripke Struture M over atomi proposition(AP), is a fourtuple M = (S; s0; R; L) where- S is a �nite set of states;- s0 2 S is the initial state;- R � S�S is the transition relation that must be total i.e., for every state s 2 Sthere is a state s0 2 S suh that R(s; s0) and42

- L : S ! 2AP is a funtion that labels eah state with the set of atomi proposi-tions true in that state.De�nition 13 The size jM j of a Kripke struture M is a pair (jSj; jRj). We saythat jM j � jM 0j if jSj � jS 0j or jSj = jS 0j and jRj � jR0jIn Figure 5.1, jM?j � jM j beause although jS?j = jSj , jR?j � jRj.
s0

s1 s2

s3 s4

M
a

b

cb

b

s*0

s*1 s*2

s*3 s*4

M*
a

b

cb

b

Figure 5.1: An example of a Kripke strutureDe�nition 14 Given two strutures M = (S; s0; R; L) and M 0 = (S 0; s00; R0; L0)over AP , a relation H � S � S 0 is a simulation relation over M �M 0 i� thefollowing holds1. (s0; s00) 2 H2. 8(s; s0) 2 H;L(s) = L0(s0) and8t[(s; t) 2 R! 9t0[(s0; t0) 2 R0 ^ (t; t0) 2 H℄℄:We say thatM 0 simulatesM (M �M 0), see Figure 5.2, if there exists a simulationrelation H over M �M 0:De�nition 15 Given two Kripke struturesM ,M 0, we say thatM is simulationequivalent to M 0 i� M �M 0 and M 0 �M:A simulation relation H over M �M 0 is maximal i� for all simulation relationsH 0 over M �M 0, H 0 � H:Let M be a Kripke struture. The maximal simulation relation over M �Malways exists and is denoted by HM :5 Methods for Finite State - Minimization 43

s0

s1 s2

s3

a

b

c

b

M
s*0

s*1

s*2

a

c

b

M*

M M*Figure 5.2: Simulation of two Kripke struturesDe�nition 16 Two states s1; s2 2 M are simulation equivalent i� (s1; s2) 2HM and (s2; s1) 2 HM .De�nition 17 A state s1 is a little brother of a state s2 i� there exists a states3 suh that:- (s3; s2) 2 R and (s3; s1) 2 R- (s1; s2) 2 HM and (s2; s1) =2 HMDe�nition 18 A Kripke Struture is redued if:1. There are no simulation equivalent states in M2. There are no states s1; s2 suh that s1 is a little brother of s23. All states in M are reahable from s0Theorem 5 LetM be a non-redued Kripke struture, then there exists a reduedKripke struture M 0 suh that M , M 0 are simulation equivalent and jM 0j < jM j:
5 Methods for Finite State - Minimization 44

5.1.2 The Minimizing AlgorithmThe algorithm reeives a Kripke struture M , and omputes a redued Kripkestruture M 0 whih is simulation equivalent to M and jM 0j � jM j:The algorithm onsists of three steps. First, a quotient struture is onstrutedto eliminate equivalent states. The resulting model is simulation equivalent toMbut may not be redued. The next step disonnets little brothers and the �nalstep removes all unreahable states.We state the Minimizing Algorithm, Figure 5.3 and then expand on eah phaseof it.STEP 1 Compute the 8 � quotient struture Mq of M and the maximal simu-lation relation HM over Mq �MqSTEP 2 R0 = Rq � f(s1; s2)j9s3 : (s1; s3) 2 Rq ^ (s2; s3) 2 HMgSTEP 3 Remove all unreahable statesFigure 5.3: The Minimizing Algorithm.STEP1In order to ompute a simulation equivalent struture that ontains noequivalent states, we ompute the 8 � quotient struture with respet tothe simulation equivalene relation.De�nition 19 The 8 � quotient struture Mq =< Sq; Rq; s0q; Lq > of Mis de�ned as follows:� Sq is the set of the equivalent lasses of the simulation equivalene.� Rq = f(�1; �2)j8s1 2 �1; 9s2 2 �2:(s1; s2) 2 Rg� s0q = [s0q℄� Lq([s℄) = L(s):where [s℄ is the equivalene lass whih inludes s:The transitions in Mq are 8�transitions, in whih there is a transitionbetween two equivalene lasses i� every state of the one has a suessor inthe other.The output from this step is a struture with no equivalent states.5 Methods for Finite State - Minimization 45

STEP2The algorithm(See Figure 5.4) in this step iteratively disonnets littlebrothers in the output from STEP 1.hange := truewhile (hange = true) doCompute the maximal simulation relation HMhange := falseif there are s1; s2; s3 2 S suh that s1 is a little brother of s2 and s3 is thefather of both s1 and s2then hange := true R = R n f(s3; s1)gendifend Figure 5.4: The Disonneting Algorithm.The output from this step has the same number of states as the input butless transitions.STEP3This step removes all unreahable states from the initial state, from thestruture.An example of the algorithm is illustrated in Figure 5.5. At the �rst step of thealgorithm, the maximal simulation relation on M (Side 1 of the Figure), and theequivalent lasses are: HM Equivalent Classesf(11, 2), ff1g,(11, 3), f11g,(4, 5), f4g,(6, 5), f5g,(2, 3), (3, 2), f2, 3g,(7, 8), (8, 7), f7, 8g,(9, 10), (10, 9)g f9, 10gg.The equivalent lasses, now are the states of the 8 � struture, Part 2. Themaximal simulation relation HM of this new struture is now f (f11g,f2, 3g),(f4g, f5g), (f6g, f5 g) g.5 Methods for Finite State - Minimization 46

M
1

2 3

4 5

a

b

cc

bb

c

d d e e

6

7 8 9 10

11

{1}

{2, 3}

{4} {5}

a

cc

bb

c

d e

{6}

{7, 8} {9, 10}

{11}

{1}

{2, 3}

{4} {5}

a

cc

bb

c

d e

{6}

{7, 8} {9, 10}

{11}

{7, 8}

{1}

{2, 3}

{5}

a

c

b

d e {9, 10}

1 2

34

Figure 5.5: An example of the Minimization AlgorithmThe next step of the algorithm disonnets all little brothers. f11g is a littlebrother of f2, 3g with f1g as their father. Hene we remove the edge (f1g, f11g).The next and last step, outputs a redued struture by removing all unreahablestates suh as (f11g, f4g, and f6g)5.2 The Quotient TehniqueIn this setion we disuss the quotient method for �nite-state systems in thespei� ase of parallel synhronization omposition (k) and simulation preordersatisfation formalism (�). For eah quotient step, we adapt the equation solving5 Methods for Finite State - The Quotient Tehnique 47

method, proposed by Larsen and Xinxin [47℄, in order to �nd the largest quotient,with respet to (�).5.2.1 The Model, Satisfation Formalism, Parallel Com-positionDe�nition 20 A �nite-state system is a tuple FS = (S; s0;!), where S is a�nite set of states, s0 is the initial state and !� S � At � S is a transitionrelation.Example 1 Consider the deterministi �nite-state A and B in Figure 5.6. Theommon set of ations is At = fa; b; ; dg. Normally, a �nite-state (i.e the �nite-state A) is presented as a term over ations. Example: a:(:NIL+d:NIL)+b:Nilis the term orresponding to the left �nite-state system of Figure 5.6. Often weshall omit trailing ourrenes of NIL and simply write a:(+ d) + b:
a

cc d

a b

A B
q0

q1 q2

q3 q4

p0

p1

p2Figure 5.6: Two �nite-state systemsDe�nition 21 A relation R � S � S is a simulation preorder if for all a 2 At,the following holds: whenever (p; q) 2 R� if p a�! p0 then q a�! q0 for some q0 s.t (p0; q0) 2 Rwe write q simulates p, p � q if (p; q) 2 R for some simulation preorder RObviously, there is a simulation relation R in Example 1, whereR = f(p0; q0); (p1; q1); (p2; q3)g.5 Methods for Finite State - The Quotient Tehnique 48

De�nition 22 Given two �nite-states S1 = (S1; s01;!1), S2 = (S2; s02;!2).Then the parallel omposition is a �nite-state system S = (S; s0;!), wheres1ks2 2 S whenever s1 2 S1 and s2 2 S2, s0 = s01ks02, and the ! is givenby the following rule: s1 ��!1s10 s2 ��!2s20s1ks2 ��!s10ks20Figure 5.7 shows the parallel omposition of the two �nite-state systems A andB in Example 1.
a

c

A||B
q0

q1

q3

p0

p1

p2Figure 5.7: The synh parallel omposition5.2.2 The Quotient StrutureGiven two �nite-state systems A and C and a "�nite-state" spei�ation B weaim at onstruting a spei�ation B==A, alled the quotient suh thatAjjC � B if and only if C � B==AThe bi-impliation indiates that we are fatoring parts of the parallel systeminto the spei�ation. The quotient onstrution is de�ned as follows:De�nition 23 Let A and B be �nite-state systems, where A = (S1; s01;!1)and B = (S2; s02;!2). The quotient B ==A is the �nite-state system (S1 � S2 [f>g; s0;!), where 8� 2 At:> ��! >, suh that ! satis�es the following rules:� if A ��!1 then B==A ��! >.� if A ��!1 and B ��!2 then B==A ��! B0==A0.5 Methods for Finite State - The Quotient Tehnique 49

The next theorem proves that (==) is indeed a quotient.Theorem 6 Whenever A 2 A , B 2 B and for all �nite-state X the followingholds: AjjX � B ! X � B==AProof: We �rst prove the impliation (�):AjjX � B � X � B==A (1)Let R = f(AkX;B) j X � B==AgClearly, " �" is solved if only if R is a simulation relation.For all (AkX;B) 2 R, assume AkX ��! Ythen A ��! A0 and X ��! X 0 with Y = A0kX 0.But X � B==A and X ��! X 0then B ��! B0 with B==A ��! B0==A0 hene X 0 � B0==A0.Therefore, for all (AkX;B) 2 R, we have:AkX ��! A0kX 0, B ��! B0 then (A0kX 0; B0) 2 R with X 0 � B0==A0.Seondly proving the impliation (�!):AjjX � B �! X � B==A (2)Let R = f(X;B==A) j AkX � Bg. Clearly, "�!" is solved if only if R is asimulation relation.For all (X;B==A) 2 R, assume B==A ��! Y , from De�nition 23:� If Y = >, then A 6 ��!, sine AjjX � B then X ��! X 0. Therefore bothB==A ��! T and X ��! X 0, de�nitely (X 0;>) 2 R with A0kX 0 � B0.� If Y = B0==A0, then (A ��! A0, B ��! B0),but AkX � B then X ��! X 0, then AjjX ��! A0kX 0 with A0kX 0 � B0.Therefore, for all (X;B==A) 2 R, we have:X ��! X 0, B==A ��! B0==A0 then (X 0; B0==A0) 2 R with A0kX 0 � B0.From (1) and (2), we have proved the Theorem 6.zFigure 5.8 illustrates the quotient struture of the two �nite-state systems A andB in Example 1.5 Methods for Finite State - The Quotient Tehnique 50

c

b

c

a,b,c,d

u1

u0

u2 u3

u5

u6

a

u7

a d
a

cc d

a b

A B
q0

q1 q2

q3 q4

p0

p1

p2

|| (B//A)

u4

Figure 5.8: The synh parallel omposition5.2.3 General Quotient Struture AlgorithmIn the previous setion, we disussed the method for onstruting the quotientstruture in the ase of parallel synhronization. However, in this setion, we givean algorithm that omputes the quotient struture for deterministi and aylisystems, for all the ases of parallel omposition, i.e. interleaving , synhroniza-tion and mixed synhronization. In this ase, the idea of solving a set of equations([47℄) is extended to set of inequations with the two main problems being:1. Solutions are not always guaranteed to exist, for instane:a:NiledX � b:Nil2. It is neessary to onsider sets of inequations rather than just single in-equations. For instane:a:NiledX � a:b:Nil + b:a:Nilimplies that the solution must satisfy the following inequation as wellNiledX � b:NilFigure 5.9 shows the main part of the algorithm, that generates a quotient stru-ture X from the initial inequation AedX � B. The idea is that the algorithmstarts with the initial set of inequation E = fAedX � Bg. Thereafter, it iter-atively heks all ations a, where A a�! A0 and B a�! B0, if X a�! X 0 suh thatAedX � B by alling the funtion TransOK(a; E). If there exists suh an a-tion a, the algorithm reates a new set of inequation by performing the funtionDerive(a; E). A new set of inequation E 0 is derived from E by simultaneously5 Methods for Finite State - The Quotient Tehnique 51

transforming A;X and B with the same ation a for all inequations in the set E.Finally, the algorithm returns a struture from the derived inequation, whih isexatly the struture of the quotient X. Figure 5.10, 5.12, 5.11, 5.13 respetivelyshow the pseudo-ode of the funtions TransOK(a; E), Derive(a; E), Close(E)and Consistent(E).Funtion Solve(E: Inequation System): fN, [, Undef : NodegIf Consistent (E) thenCreate New Node N;If E = � then Return N = [;Else for (8a 2P)If TransOK(a, E) thenE 0:= Derive (a, E);E 0:= Close(E 0)N 0 := Solve(E 0);If (N 6= Undef) then, Add a-edge N a! N 0Else Return Undef ;EndfuntionFigure 5.9: The main funtion for omputing the Quotient

5 Methods for Finite State - The Quotient Tehnique 52

Funtion: TransOK (a; E)Purpose: This boolean subfuntion heks for eah inequation: AedX � B 2 E,if X is allowed to perform an ation a suh that AedX � B. The funtion returnstrue if all the inequations in E satisfy the above requirement.Funtion TransOK (a; E) : booleanF lag := true;While (9 0AedX � B0 2 E) and (F lag= true) doin ase of:1. interleaving :� if B a9 and A a9 A0 then F lag := false2. synhronization :� if B a9 and A a! A0 then F lag := false3. Mixed-Synh :� for 8a 2 AtA=AtBif B a9 then F lag := false� for 8a 2 AtA \ AtBif B a9 and A a! A0 then F lag := falseEndwhileReturn F lag ;Endfuntion Figure 5.10: Funtion TransOK(a,E)

5 Methods for Finite State - The Quotient Tehnique 53

Funtion: Derive(a; E)Purpose: This funtion returns an new inequation set. The new inequation isderived from E with ation a.Funtion Derive (a; E)E 0 = f�g;for (80AedX � B0 2 E)If (AedaX 0 � B a�! A0edX 0 � B0) thenAdd (A0edX 0 � B0; E 0);Return E 0 ;Endfuntion Figure 5.11: Funtion Derive(a,E)Funtion: Close(E)Purpose: Add all inequations whih an be derived, without involvingX, fromEto the same inequation set, E, i.e. if (AedX � B) 2 E, suh that A a�! A0; B a�! B0then add (A0edX � B0) to E.Funtion Close(E)flag := true;while (9 0AedX � B0 2 E) and (flag= true) doflag := false;for (8a 2P) doif (9 a:A0edX � a:B0 2 E) thenAdd(A0edX � B0; E)flag := true;endifendwhilereturn E;EndFuntion Figure 5.12: Funtion Close(E)5 Methods for Finite State - The Quotient Tehnique 54

Funtion: Consistent(E)Purpose: This funtion heks for eah inequations 0AedX � B0 2 E, with allations a 2 At, if AedX a�! A0edX 0 then B a! B0. The funtion returns true ifall the inequations all satisfy the above ondition.Funtion Consistent (E): Booleanflag:= true;While (9 0AedX � B0 2 E) and (flag= true) dofor (8a 2 At)If AedX a�! A0edX 0 and (B a9)then flag:= false;EndwhileReturn flag ; Figure 5.13: Funtion Consistent(E)We now onsider an example as in the ase of mixed synhronization (jk), seeFigure 5.14.Example: LetP1 = fa; bg be the set of ations in �nite-stateA, andP2 = fb; gthe set of ations allowed in �nite-state X, with P3 = fa; b; g for B.The algorithm starts with an initial inequation in the set of inequation E =fa:b:NiljjjX � a:b::Nilg and performs the Close(E) funtion to lose the in-equations in E. The algorithm is reursive and runs on itself till the inequationset is empty or an no more be derived. Reall that X an only perform ationsfb; g. In the �rst investigation, ation is not allowed by the inequations in theset E0, therefore E0 an only be transformed by b to E1. In the next investiga-tion by ation b, it is easy to see that E2 is an empty set of inequations so thatthe algorithm returns the universal state at that stages. However, it ontinuesheking E1, whih an perform both ations b and .Along the derivation of the next set of inequations, the algorithm systematiallybuilds the quotient struture. Finally, the algorithm returns this struture as X,whih is based on the derived inequation systems, see X in Figure 5.14.
5 Methods for Finite State - The Quotient Tehnique 55

a.b.0 ||| X a.b.c.0 (1.1)

b.0 ||| X b.c.0 (1.2)

Close(E)

E

0 ||| X' c.0 (2.1)

0 ||| X'' 0 (3.1)--

-- --

b

b c

cb

a.b.0 ||| X a.b.c.0 (*)

b

b

b

c

c

X' X''b

X'' X'''b

X' X''C

X'' X'''C

X X'b

x

E1

E2 E3

E4 E5

E0

N1

N0

N2 N3

N4 N5

Figure 5.14: An example of Mixed Synhronous Parallel CompositionIn Figure 5.15, we an hek the quotient X, whih is found in Figure 5.14, isthe solution of AjkX � B.
a

b

B

p0

p1

p2

a

b

A

p0

p1

p2

c

p3

||| X

b

b

b

c

c

u1

u0

u2 u3

u4
u5

Figure 5.15: An example of Mixed Synhronous Parallel Composition5 Methods for Finite State - The Quotient Tehnique 56

Chapter 6Minimization for PTSs
In this hapter we adapt the Minimization Algorithm to the Probabilisti Tran-sition System (PTS) and aim at generating a redued PTS struture by thisproess. The input is a PTS and the output is a single PTS, with no equivalentlasses and hopefully smaller than the input.The minimization ahieved here is intended to be used as heuristi in the Quo-tienting Tehnique to further redue the size of the struture of the transformedspei�ation.6.1 Probabilisti Transition SystemsFrom De�nition 4 whih gives a onise de�nition of a PTS, we begin by �rstexamining the di�erenes between a PTS and a Kripke struture. We, however,use as input, a Rooted Probabilisti Transition Systems (RPTSs), whih is a PTSwith a spei�ed initial state, s0. Hene the tuple (S; s0;!; V):Given a Kripke struture M = (S; s0; R; L) and a rooted PTS T = (S; s0;!; V),the di�erenes are- T has a �nite set of states as M.- the transition funtion of- M: R � S � S,- T: !� S � At�Dist(S), is a �nite transition relation, where At is a�nite set of ations and Dist(S) is a �nite distribution over the statesS.- both have the same labelling funtion.57

The main hallenge in onsidering PTSs is their transition funtion, whih isfrom states, by ations and onto distributions over states. Care must be taken inmaking transitions when minimizing the struture.6.1.1 The Size of a PTS strutureLet us now onsider what the size of a PTS should be. We onsider size in termsof the number of states, ations, and distributions.Theorem 7 For every transition out of a state by a unique ation, there is oneand only one assoiated distribution. There are never more distributions thanstates in a given PTS.De�nition 24 Let jT j denote the size of a PTS T = (S;!T ; V). Then jT j is thepair (jSj; j !T j) where jSj is the number of states in T and j!T j is the numberof transition (indued distributions) in T.De�nition 25 Let jT j be the size of a PTS T. We say that jT j � jT 0j if eitherof the following holds:1. jSj � jS 0j or2. jSj = jS 0j ^ j!T j � j!0T jwhere j!T j is the number of transitions in T, from eah state.As an example, the PTSs in Figure 6.1 below illustrate the �rst ase where thesize of the PTS is determined by the number of states. Hene jT j � jT 0j beausejSj � jS 0j.In the next example, the PTSs in Figure 6.2 illustrate the seond ase where thesize of the PTS is determined by the number of distributions. Hene jT 0j � jT 00jbeause jSj = jS 0j and j!T j � j !0T j.We now de�ne what simulation equivalene means for a PTS struture and alsofor a state in a PTS.De�nition 26 A simulation between two rooted PTSs T = (S;!; V; s0) andT ? = (S?;!?; V ?; s?0) is a subset R of S � S? suh that1. (s0; s?0) 2 R6 Minimization for PTSs - Probabilisti Transition Systems 58

t0

a

T

a

t1 t2 t3

T
s0

s1 s2

a

Figure 6.1: The Size of a PTS by number states
t0

a

T

a

t1 t2 t3

t0

t1 t3

T

t2

20 1

a aa

Figure 6.2: The Size of a PTS by number of distributions2. whenever (s; s?) 2 R and s �! � then there exists a transition s? �!? �? anda weight funtion Æ for (�; �?) with respet to R i.e. � vR �?.We say s is simulated by s?(denoted by s v s?) i� there exists a simulation thatontains (s; s?): We say that s and s? are simulation equivalent (denoted bys � s?)if (s v s?) and (s? v s). Consequently, T v T ? if the above onditionshold, and T � T ? if the initial states are equivalent, i.e. s0 � s?0.In Figure 6.3, the simulation relation will inlude the pairs (s1; s7); (s7; s1) andthe trivial pairs. We an then onlude that s1 � s7.In onstruting an equivalent lass, all equivalent states belong to the same lass,suh that it is the set of states de�ned by the equivalene relation on them. Thelass that ontains the initial state, s0, beomes the initial equivalent lass of thePTS. If there are no equivalent states, eah state is then a unique lass and everyequivalent lass ontains a single state.6 Minimization for PTSs - Probabilisti Transition Systems 59

s0

a

s2

1/3 1/3

s1

a

s7

1/2 1/2

a

1/3 2/3

a

1/2 1/2

s3

s4
s5 s6

s8
s9

1/3

Figure 6.3: Simulation equivalene in a PTSWe now examine, the issue of a "little brother" in the ase of a PTS, over statesand distributions, whih we denote by x. Here too, we assume a priority, �rst ondistributions and then by state.De�nition 27 1. Distribution-wise: �1 x �2 if 9s3, 9a, suh that s3 a�!�1; s3 a�! �2 , with �1 vR �2; �2 6vR �1.2. State-wise: s1 x s2 if 9s3, 9�, 9a, suh that s3 a�!p �(s1); s3 a�!q �(s2) ,with s1 v s2; s2 6v s1.We illustrate this with an example, where we disonnet an edge, between statesbeause a distribution (Figure 6.4) or a state (Figure 6.5) is a little brother ofanother.From the "distribution"-little brother elimination of Figure 6.4, it an be seenthat T � T ? (beause T v T ? and T ? v T) whereas for the "state"-little brotherelimination of Figure 6.5 only T v T ? (and in general not T ? v T). Theorem8 learly states this observation. Disonneting little brothers by distribution,guarantees this equivalene, although it might not be the smallest redued stru-ture. However disonneting by states does not guarantee this equivalene. Ingeneral, T v T� but T� 6v T . In the example in Figure 6.5, this an be observedin the pairs (t1; t2�); (t2; t2�) 2 R and (t2�; t2) 2 R but not (t2�; t1).6 Minimization for PTSs - Probabilisti Transition Systems 60

R

R

t0

t2

a

T

t3

a

1/2 1/2

t1

1

t0

t1 t2

a

T*

t3

1/2 1/2

Figure 6.4: Disonneting Little Brother by distribution
t2 t1

t1 t2

T

t1 t2

t0

t2

a

T

t3

p q r

t1

t0

t1 t2

a

t3

rp + q

Figure 6.5: Disonneting Little Brother by stateDe�nition 28 A PTS T is redued if:1. There are no simulation equivalent states in T2. There are no distributions �1; �2 suh that �1 is a "little brother" of �2.This is the main priority. "Little brother" of states may be allowed.3. All states in T are reahable from the initial state(lass).Theorem 8 For any PTS T there exists a redued PTS T � suh that T v T �and T � v T by removing all "little-brother distributions".6 Minimization for PTSs - Probabilisti Transition Systems 61

6.2 The Probabilisti Minimizing AlgorithmThere are three steps as in the original algorithm. Consideration must be givento:1. Building the 8� quotient, by onstruting the simulation lasses.2. Identifying little brothers in terms of distributions and states, and dison-neting them.3. Removing unreahable states in T .6.3 Generating a Redued PTSSTEP 1: Building the 8� Quotient.Building the 8� quotient, by onstruting the probabilisti simulation lasses.Construting the Equivalent Classes: build the maximal simulation relation, HM : S�S 0 over T to �nd the equivalentstates. If (s1; s2) 2 HM and (s2; s1) 2 HM then s1; s2 are simulation equivalent,denoted, s1 � s2. Hene s1; s2 will belong to the same lass. If the set ofequivalent states is null and empty, that is, there are no equivalent states, theneah lass ontains a single state.De�nition 29 The 8� quotient PTS, Tq =< Sq;�!q; Vq; s0q > is de�ned as- Sq is the set of equivalent lasses of the simulation equivalene- �!q= f(�1;�)j8s 2 �1:9�; s a�! �:8�2;�(�2) =Ps02�2 �(s0)g- Vq([s℄) = V (s)- s0q = [s0q℄At the end of this step, the output struture must have no equivalent states, sinethis PTS, ontains the distint and independent equivalent lasses, whih are thestates of the PTS. Figure 6.6
6 Minimization for PTSs - The Probabilisti Minimizing Algorithm 62

s0

a

T

s2

1/2 1/2

s1

a

s4

1/2 1/2

s3

1

2

s5

3

1/2

1/2

s1 s3 s5

s0
s2 s4

a a a

1/2

1/2

1/2 1/2

1/2

sa

s1 s3

s5

a
a a

Figure 6.6: Construting the 8�Quotient PTSSTEP 2: Disonneting Little BrothersWe need to larify the di�erene between a transition and a distribution.A transition is from a state by an ation over a distribution to some states. Henein our diagrams, this is denoted by the lines from the state plus the dotted linesto states. Distributions are denoted by the dotted lines.(a) Distribution-wise (disonnet the transition)If 9s, 9a, suh that s a�! �1; s a�! �2, with �1 v �2; �2 6v �1, suh that �1 x �2,then remove the transition s a�! �1:(b) State-wise (disonnet distribution and add up probability to big brother)If 9s3, with s3 a�! �p(s1); s3 a�! �q(s2), and s1 v s2; s2 6v s1, suh that s1 x s2,then remove �(s1) and put �(s2) as �x(s2) where x = p+ q.From our example, we eliminate little brother distributions from Figure 6.7(a).6 Minimization for PTSs - Generating a Redued PTS 63

(a)

sa

s1 s3

s5

a
a a

sb

sa

1/2

1/2

a

(b)

Figure 6.7: Disonneting Little Brothers in a PTSSTEP 3Remove all unreahable states, these are the states that are unreahable from[s0℄.The resulting PTS from these three steps is a redued PTS. See Figure 6.8
sb

sa

1/2

1/2

a

Figure 6.8: The Redued PTSAnd indeed this redued struture simulates the original in Figure 6.6.
6 Minimization for PTSs - Generating a Redued PTS 64

Chapter 7The Quotient Tehnique for PTS
The quotient tehnique has been suessfully applied for �nite-state [3℄ and real-time state systems [35℄. In this hapter we shall investigate the quotient tehniquefor the probabilisti labelled transition system, where the spei�ation formalismis a spei� bloking PTS (bPTS). The idea of using the bPTS spei�ation isthat, we onsider ompositions of deterministi ayli probabilisti models (T)and a model for spei�ation suh as T1k:::kTn w B, where the bPTS B is ableto present �� alulus (e.g. < a >�0:2< b >�0:5 tt). We wish to verify whetherthe parallel omposition is at least the bloking PTS without having to onstrutthe omplete parallel system.7.1 The ModelIn this setion, we de�ne a spei� model of PTS alled the bloking ProbabilistiTransition System(bPTS), whih we use as a model for speifying our spei�a-tions. A state s is identi�ed as a bloking state if it either is a sink state or anuniversal state. The de�nition of bPTS is onsequently de�ned as follows:De�nition 30 A PTS T = (S [fNILg;!; V) is a bloking PTS if for alls 2 S, � 2 At there exists at most one transition s ��! � where � is a blokingdistribution over a pair of states s0 2 S and NIL in the sense that �(s0) +�(NIL) = 1. And for all a 2 At;NIL 6 a�!.Figure 7.1 illustrates a bloking PTS.

65

s3

s2

s1

x

1-x
a

s3
1

bFigure 7.1: An example of bloking PTS7.2 The Logi and its bPTS RepresentationThe bloking PTS model is de�ned to present a fragment of PCTL suh as "aftera request for a number of tasks, there is at least a 50 perent probability that the�rst task is done and after that with at least a 30 perent probability the seondtask is arried out". The bPTS in Figure 7.2 presents the following propertyexample: < a >�0:2 < b >�0:5< >�1 tt
s0

s1 s2

s3 s4

a

b

0.5 0.5

s5

c

1

0

1

3

0.25 0.75

Figure 7.2: The bPTS presentation of a property
7 The Quotient Tehnique for PTS - The Logi and its bPTS Representation 66

7.3 Quotient StrutureBefore we onsider the quotient struture, let us examine some impliations ofour spei�ation and its representation, the bPTS.Given AjjX w B (7.1)where A is deterministi, ayli and B is bloking and we require X to be thesmallest struture possible suh that the equation holds.First of all, we need to hek if Equation 7.1 has any solutions at all. Is there anX, for whih Equation 7.1 holds?We begin by de�ning a universal state (U) whih allows transitions by all ationsa 2 At, from it by a distribution to the same universal state. That is:U a�! �u where �u(U) = 1 and �u(s) = 0 whenever s 6= U .Let fU : 8a 2 At; U a�! Ug. Then U w C for all PTS C.It suÆes to hek whether A w B, in order to establish that Equation 7.1 hassolutions. Example, there does not exist an X, for whih the equationNILkX w a:NILholds true.The t�ConstrutDe�nition 31 Let X1 and X2 be bloking PTSs. Then X1 t X2 is a blokingPTS given by X1 tX2 a�! 8>><>>:�1 ifX1 a! �1; X2 a6!�2 ifX2 a! �2; X1 a6!��1�2 ifX1 a! �1; X2 a! �2:where ��1�2(X 01 tX 02) = maxf�1(X 01); �2(X 02)g and��1�2(NIL) = 1�maxf�1(X 01); �2(X 02)g.
7 The Quotient Tehnique for PTS - Quotient Struture 67

X1

a

X'1 NIL

x1 1 - x1

X2

a

X'2 NIL

x2 1 - x2

a

NIL

max (x 1, x2)

X'2X'1

X2X1

1 - max (x 1, x2)

Figure 7.3: Properties of the bPTSLemma 1 Whenever X1 and X2 are bloking PTSs, then X1 t X2 w X1 andX1 tX2 w X2.Moreover if for a bloking PTS Y , Y w X1 and Y w X2, then Y w X1 tX2.Figure 7.3 illustrates X1, X2 and X1 tX2.Lemma 2 If A1jjX1 w B and A2jjX2 w B then A1jj(X1tX2) w B and A2jj(X1tX2) w B.7.4 Algorithm for Computing the QuotientIn onstruting the Quotient struture suh that the Equation 7.1 holds, we willhave to onsider �rst, the struture of the PTS, with regards to the states andtransitions to these states, whih we represent by X, and seondly the proba-bilities of the distributions over the states, represented by x. We desribe aninformal approah to obtaining the quotient struture before giving an algorithmto obtain it, formally.7.4.1 An Informal ApproahLet us onsider Equation 7.1, AkX w B, where A and B are given PTSs.Now onsider an a� transition of B. Obviously, in order for Equation 7.1 tohave solutions, A should also have a unique a�transition. Below we display thea�derivative in Figure 7.4For eah i hek whether7 The Quotient Tehnique for PTS - Algorithm for Computing the Quotient 68

a

q1

A

A1

q2 qk

A2 Ak

0

a

p 1-p

B

B' Bnil

0

Figure 7.4: A unique a-derivativeAi w B0Let I = fijAi w B0g.For eah i = I, onstrut X 0i suh that AijjXi w B0Let X 0 = Fi2I X 0ibeause then AijjX 0 w B0 for all i 2 I,=) AijjX 0 w AijjXi w B0.The probability of the Distribution (x)The goal is to �nd the (smallest) probability x for the struture X satisfyingAijjX 0 w B0 for all i 2 I. The problem is redued to that of �nding ow inthe indued network, suh that Equation 7.1 holds. Figure 7.5 illustrates thenetwork.To �nd the minimal x suh that the maximum ow in the network of Figure 7.5is 1, p � x �Xi2I qi=) pXi2I qi � xAnd sine 0 � x � 1, the minimum value for x isx = pXi2I qi7 The Quotient Tehnique for PTS - Algorithm for Computing the Quotient 69

AI||X'

AI||X'

A1k||XNIL

B'

BNIL

BA||X

x. I qi

1-x

p

1-p

aa
| |

x.(1- I qi)

Figure 7.5: Preservation of weight funtion7.4.2 A Formal ApproahDe�nition 32 Let A be a deterministi and ayli PTS and let B be a blokingPTS then Solvable(A;B) = (true; ifA w Bfalse; otherwiseLemma 3 Let A be a deterministi and ayli PTS and let B be a bloking PTSthen Solvable(A;B) = true i� for some bloking PTS C, it holds that AjjC w B.Proof=)Then A w B but AjjU w A where U a�! 1��� > U , for all a 2 At. ClearlyU w C for all PTSs C and U is a bloking PTS.(=Then AjjC w B for some PTS C. But then AjjU w B (as U w C) But AjjU = A,so A w B. zPurpose: Given a deterministi, ayli PTS A and a bloking PTS B, BUILDonstruts a bloking PTS X, that will solve AjjX w B or BUILD returns "nosolution found". We present a pseudo-ode for the algorithm in Figure 7.4.2 andthen subsequently explain it aording to the line numbers.Line 1 veri�es if a solution for the Equation 7.1 an be found. The algorithmonstruts the derivatives of X from Line 3.7 The Quotient Tehnique for PTS - Algorithm for Computing the Quotient 70

BUILD(A, B)1. If not SOLV ABLE(A;B)2. then return "no solution found"3. Else4. For (8a 2P) do5. If B a6! then X a6!6. Else7. For eah (i 2 I)8. X 0i:= BUILD(Ai; Bi)9. X 0 := ti2IX 0i10. Endif11. Endif12. Return X;13. End Figure 7.6: The BUILD AlgorithmIn Line 6, B a�!; A a�!, otherwise Solvable(A;B) would have returned false inLine 1. We onsider the unique a�derivatives of A and B as shown in Figure7.4. We let I = fijAi w B0g and assume I = f1; : : : ; jg � f1; : : : ; kg.X 0 in Line 9 is onstruted as suh, beause for all i, AikX 0 w B0 and Lemma 3.In Line 9, the algorithm returns X as shown in the Figure 7.7Theorem 9 Let X be the result of BUILD(A;B). Then AjjX w B.The proof is by indution on the depth of A.Base: Let depth of A = 0, that is A = NIL.But then as SOLV ABLE(A;B) = true; =) B = NIL beause A w B.Then obviously X = NIL, and7 The Quotient Tehnique for PTS - Algorithm for Computing the Quotient 71

a

X

X' Xnil

0

 I qi

p

 I qi

p1 -

Figure 7.7: The Quotient Struture XNILjjNIL w NIL.Indution StepLet B a! (p)(B0) + (1� p)(NIL) as in Figure 7.4By onstrution of X where x = pXi2I qi , as obtained previously and illus-trated in Figure 7.5By the indution hypothesis and Lemma 3, AijjX 0 w B0The maximum ow between AjjX and B relative to ation a an be ini-tialized as in Figure 7.5It is lear that the maximum ow is 1, hene the a � transition of B ismathed. zHene by applying the algorithm reursively, the quotient struture X for ourequation, emerges.
7 The Quotient Tehnique for PTS - Algorithm for Computing the Quotient 72

Chapter 8The Appliation of the QuotientTehnique with Minimization
Having introdued separately the onepts of the Quotient Tehnique and Mini-mization, for PTSs, we now ombine them, to see their appliation in the veri�-ation proess.8.1 Quotient and then MinimizeAs already seen, the transformed spei�ation also has the tendeny to inreasequikly in size. In this hapter, we explore using the minimization algorithm forPTSs as a simpli�ation heuristi for this spei�ation. From the basi equationA1jjA2jjA3jj � � � jjAn w B using the Quotient Tehnique,A1jjA2jjA3jj � � � jjAn�1 w (B==An)m where m is a minimization operatorLet (B==An) = Xn and let (Xn)m = Xn , thenA1jjA2jjA3jj � � � jjAn�1 w (Xn)A1jjA2jjA3jj � � � jjAn�2 w (Xn==An�1)mA1jjA2jjA3jj � � � jjAn�2 w (Xn�1) where (Xn==An�1)m = (Xn�1)...

73

The quotient struture (B==An) should be noted as a single deterministi blokingPTS Xn.In applying the algorithm to minimize this struture, we need to identify theequivalent lasses in Xn.Let us onsider a fragment of a bloking PTS. Given the two bloking PTSs inFigure 8.1, we will like to onsider simulation equivalene between the two statess0 and t0. Can we establish that s0 v t0 and t0 v s0, thereby onlude thats0 � t0.
S0

S1 S2

a

1/2 1/2

t0

t1 t2

a

1/3 2/3

Figure 8.1: Simulation of two Bloking PTSUsing maximum ow in the network established, Figure 8.2, s0 v t0 i� p � q.Also t0 v s0 i� q � p. In this ase, the latter is true. Obviously though, is thefat that both statements an not be true at the same time, unless p = q.
S0

S1

S2

a

1 - p =1/2

p = 1/2 t0

t1

t2

a
q = 1/3

1 - q = 2/3

Figure 8.2: Flow Simulation of two Bloking PTSThis unassuming observation has very extensive impliations. The �rst beingthat, we annot obtain equivalene lasses in the resulting bloking PTS of ourquotienting. Hene every state is, and remains in a lass of its own, whih areall independent, without any intersetions between them. Reall this is the �rstimportant step in the minimization algorithm.The next step of the minimization step, involves the disonnetion of distributionsand states by the "little brother" phenomenon. Let us take a look at a typialX, Figure 8.3. Due to its deterministi nature, and the restritive nature of our8 The Appliation of the Quotient Tehnique with Minimization - Quotient andthen Minimize 74

reahability properties, elimination of distributions by the little brother senario,does not arise. In some ases, elimination of states an be possible, but as earlierstated, it is only by, distributions, that we guarantee an equivalene.
S0

S1 S2

a

1/2 1/2

S3

S6

a

1/4 3/4

S5

S7

b

1

b

1/3 2/3

S4

Figure 8.3: An X: Deterministi Bloking PTSAlthough these observations are not very enouraging, the valid and most impor-tant onlusion we an draw is that, the resulting quotient struture obtained isindeed the smallest bloking PTS possible, with respet to simulation equivalene.Theorem 10 For a deterministi ayli PTS A and a NIL-bloking PTS B suhthat AjjX w B, the quotient struture X w B==A is the (w)-smallest omponentC, suh that AjjC w B.The transformed spei�ation is kept minimal and hene quotienting with bPTSsavoids the state explosion of the transformed spei�ation, usually involved withthe Quotienting Tehnique. Hene, with respet to our spei�ation to be veri�ed,represented with the bloking PTS, we do not need a simpli�ation heuristi forthe resulting transformed spei�ation by the Quotienting Tehnique.8 The Appliation of the Quotient Tehnique with Minimization - Quotient andthen Minimize 75

8.2 Minimize and then QuotientHowever, we an still redue the state spae explored by looking at the modelunder onsideration. This is our proposal. GivenA1jjA2jjA3jj � � � jjAn w B (8.1)Apply the Minimization Algorithm loosely to the individual omponents (or tolusters of omponents) in the model before starting with the Quotient Teh-nique. The equation now beomes(A1)mjj(A2)mjj(A3)mjj � � � jj(An)m w BA 1 jjA 2 jjA 3 jj � � � jjA n w B where A n = (An)mBy this the state spae is redued, even before quotienting. The transformedspei�ation is thereby kept even smaller.Let us explore this proposal with an example. Let the PTS in Figure 8.4 be anindividual proess (or the result of the parallel omposition of some proesses) inthe model heking equation 8.1.
S0

S1
S2

a

1/2

1/2

S3

S4

S5

S6 S7 S8

b

a
a

1/2 1

1/4
1/4

1/4
3/4

Figure 8.4: A deterministi ayli PTSSome minimization an be ahieved in suh models, by identifying some equiv-alent states. The states s1; s2 are equivalent and belong to one lass. Also, thestates s6; s7; s8 will onsequently belong to one lass. Just at the �rst step of thealgorithm, we an generate a 8-struture as Figure 8.5By onsidering this proposal, it is feasible to have spae redutions by minimizingthe omponents and plugging the redued strutures in plae in the equation.8 The Appliation of the Quotient Tehnique with Minimization - Minimize andthen Quotient 76

S0

Sa

a

3/4

S3

S4

S5

Sb

b

a a

1/4

1/4
3/4

11

S0

S1
S2

a

1/2

1/2

S3

S4

S5

S6 S7 S8

b

a
a

1/2 1

1/4
1/4

1/4
3/4

S0

Sa

a

3/4

S3

S4

S5

Sb

b

a

1/4

1/4
3/4

1

Figure 8.5: The 8-struture PTS
8 The Appliation of the Quotient Tehnique with Minimization - Minimize andthen Quotient 77

Chapter 9Implementation
The implementation is arried out in Visual C++, running in the MirosoftWindows environment. Some of the reasons for hoosing Visual C++ on thisprojet are its eÆient libraries, tendeny to inrease produtivity and easy to usedesign tools. Also one of our interest was to use the wizards for generating a fastuser-friendly graphial appliation. We have deided to give our implementation anie name CAPS (Compositionality and Abstration by Probabilisti Simlation)There are two main funtionalities in CAPS.1. Cheking a right abstrat(hopefully smaller) against a single PTS with re-spet to (v). The onsidered algorithm involves appliation of the well-known Maximum Flow Problem. This funtionality is alled Compositionaland Abstration Cheking.2. Cheking a right abstrat in spei� ase of bloking PTS against a paralleldeterministi and ayli PTSs system, with respet to (w), without havingto onstrut the omplete state spae of the system by using the promisingQuotient tehnique. This funtionality is alled Quotient Cheking.In the implementation, we have reated ruial data strutures suh as PTSs andrelation simulation strutures, whih are disussed in the next setion. In Setion9.2 we examine the main modules of CAPS. In the rest of this hapter we givean instrution of a user's guide.9.1 Data StrutureA omplex PTS may need a huge spae of memory, hene an eÆient data stru-ture for its storage is required. There are some ompat strutures suh as in78

RAPTURE [48℄ and PRISM [49℄, that are suessful for presenting a PTS.However, we propose an aeptable data struture that de�nes our problem. Thestruture is set up to be able to store a number of states, a number of ations anda matrix whose elements hold a number of out going transitions s �! � and linksto a substruture, where Distr(s; �) is established, see Figure 9.1. In addition,the simulation R � S � S 0 is presented by an adjaeny matrix relation[S℄[S 0℄,that is, relationR[s℄[s0℄ = � 1 if s vR s00 otherwisewhether s 2 S and s0 2 S 0.strut PTSs fint nstates;int nations;Transition trans[State℄[Ation℄;g; PTSs pts;strut Transition fint nOut;oat Distribution[TransitionOut℄[State℄;g; Figure 9.1: Data Struture of a PTSFor instane, we use a variable pts with respet to the above data struture topresent a PTS T in Figure 9.2. The number of states and the number of ationsrespetively are stored in pts.nstates = 7 and pts.ations = 3. Obviously, in orderto present the number of out-going transitions from state s0 with ation �, wehave pts.trans[s0℄[�℄.nOut = 2, and to reah the transition s0 �! �, we an ask forpts.trans[s0℄[�℄.Distribution[�℄[S℄= (0.25, 0.25, 0.5), where S is the set of statesof the PTS T.
9 Implementation - Data Struture 79

s0

s1 s2 s3 s4

s5 s6

0.25 0.5
0.25

0.5

0.5

0.50.5

Figure 9.2: An example of a PTS

9 Implementation - Data Struture 80

9.2 Modules Desription9.2.1 Maximum Flow Problem, Ford-Fulkerson AlgorithmAs disussed the Ford-Fulkerson algorithm in Setion 4.2, the omplexity isO(n+m)nm, where n is the number of nodes and m is the number of edges in thegraph G(N,E). In general, m = n2 and the omplexity is O(n4+n5). However,when the probabilisti simulation problem is redued to the maximum ow prob-lem, a network N = ((N;E);?;>;) is obtained, where G = (N,E) is atually abipartite graph, written as G = (X[Y;E). Therefore, to improve the omplexitywe implement an improved algorithm of Ford-Fulkerson for bipartite graph. Theomplexity of the improved algorithm is O(p5), where p = max fj X j; j Y jg.MaximumFlow(N)Purpose: The funtion omputes the maximum ow valueInput: A network N = ((X [Y); E;?;>;)Output: The maximum value of ow in the network NSubroutine: ResidualGraph(NR), AugmentingPath(�)This funtion performs the main task of the Ford-Fulkerson algorithm on thenetwork N . The funtion iteratively performs the two following steps: First, itgenerates a residual network NR by alling up the funtion ResidualGraph(NR),seondly it tries to �nd an augmenting path on graph G = (X [Y) of NR, wherean augmenting path of a bipartite graph is the set of alternating nodes x 2 Xand y 2 Y . If there exists an augmenting path � the algorithm jumps to thefuntion AugmentingPath(�), where the ow value is inreased. The iterationends when there is no augmenting path found.ResidualGraph(NR)Purpose: Automatially generating a residual network of a given network NInput: Network N with urrent ow FOutput: A residual network NRThis funtion tries to establish a residual network NR of a given network N wherethe residual apaity of eah edge e 2 E is assigned by (e) - flow(e).
9 Implementation - Modules Desription 81

AugmentingPath(�)Purpose: The value of ow is inreased by this funtionInput: The augmenting path �Output: Flow FIn this funtion, the value of ow in N , is inreased by adding the urrent owf to the ow along the path of the augmenting path �, where f is minimumresidual apaity on the augmenting path �.9.2.2 Computing Probabilisti SimulationThe algorithm for omputing probabilisti simulation is shown in Setion 4.1, itspurpose is to establish the simulation relation set R of two given PTSs. Thealgorithm exeutes in polynomial time. The main funtions are stated as follows:SimulationPreorder(PTS, PTS 0)Purpose: This funtion omputes the probabilisti simulation relation R oftwo given PTSsInput: Two PTSs T = (S;!; V), T 0 = (S 0;!0; V 0)Output: Probabilisti simulation R � S � S 0Subroutine: ConverttoMaxFlow(�; �0),In this funtion, the main algorithm is implemented. All pairs (s; s0) 2 S � S 0are examined to eventually return the simulation set R. In order to hek fors vR s0, this funtion onsiders all transitions s �! �, and searhes in Distr(s0; �)for a distribution �0, then heks whether � vR �0 by alling the funtionConverttoMaxFlow(�; �0). If there is no orresponding �0 then (s; s0) is removedfrom R by assigning R[s℄[s0℄ to false.ConverttoMaxFlow(�; �0)Purpose: This funtion onverts probabilisti distributions � and �0 to a net-work N = (N;E;?;>;) and answers the question of � vR �0.Input: Distributions �, �0Output: YES or NOSubroutine: MaximumFlow(N).9 Implementation - Modules Desription 82

9.2.3 Compositional and Abstration ChekingLet us now onsider the funtion whih applies the basi funtions disussedabove in order to hek for a right abstration.isSimulated(R � S � S 0)Purpose: This funtion hek whether an abstrat PTS T 0 simulates the orig-inal PTS Tor notInput: The simulation relation R � S � S 0Output: YES or NOThis funtion examine simulation R, if the pair of the two initial states (s0; s00) 2R then T v T 0, otherwise T 6v T 0.9.2.4 Quotient ChekingIn order to onstrut the quotient of a bloking PTS B and a PTS T , we also usefuntion SimulationPreorder(T; T 0) in order to ompute a simulation relationR. By doing that, and by generating the probability of the bloking PTS B, thefuntion will return the onstrut of quotient B==A, whih is a bloking PTS. Infat the struture of the quotient is the same as the struture of the spei�ationbloking PTS B.QuotientBuild(B: blokingPTS, A: PTS)Purpose: This funtion build the struture of the quotient B==AInput: The two PTS B and AOutput: The quotient B==ASubroutine: SimulationPreorder(T; T 0)9.3 Input File and Output Sreen9.3.1 Input FileAn input �le is a desription of PTSs whih are to be heked in CAPS. Theformat of an input �le is shown in Figure 9.3 as an example. Partiularly, thevalues of the distribution matrix present number of distributions that a state s9 Implementation - Input File and Output Sreen 83

an transform with an ation �. Eah PTS begins with a negative order number,starting from 0.

9 Implementation - Input File and Output Sreen 84

0 // the �rst PTS6 2 // number of states and number of ations2 0 // The distribution matrix0 00 00 10 00 00 00 0 // state 0 and ation 00 0.25 0.25 0.5 0 0 0 // Distribution 1 of state 0 and ation 00.5 0 0 0 0.5 0 0 // Distribution 2 of state 0 and ation 03 1 // state 3 and ation 10 0 0 0 0 0.5 0.5 // Distribution 1 of state 3 and ation 1-1 // a new PTS.5 31 0 00 0 00 1 01 0 10 0 00 00 0.3 0.7 0 02 10 0 0 0.65 0.353 00 0 0 1 03 20 0.60 0.40 0 0 Figure 9.3: An input �le to CAPS
9 Implementation - Input File and Output Sreen 85

9.3.2 Output SreenThe output sreen for Compositional and Abstration Cheking is shown in Fig-ure 9.4. The right frame is a Funtional frame, where we an hoose to performeither funtinality of doing Quotient or Compositional and Abstration hekingin CAPS. The Main frame states two given PTS, the �rst is the original PTS Tand the seond is the abstrat PTS TAbstrat. Below this is the Result frame. Itshows the simulation relation R and states whether T is simulated by TAbstrat ornot.
T

T_Abstract

Figure 9.4: The interfae of the output result for Compositional and AbstrationCheking
9 Implementation - Input File and Output Sreen 86

The output sreen for Quotient Cheking is shown in Figure 9.5. In the rightframe, you an either perform step by step fatoring out individual PTS ompo-nent to the spei�ation B by pressing on the button ">>" or run through thewhole parallel system by pressing on the button ">". The main frame shows thequotient struture of the bloking PTS B==Ti and the PTS Ti.
T3||T4 B//T1//T2

Figure 9.5: The interfae of the output result for the Quotient Cheking

9 Implementation - Input File and Output Sreen 87

Chapter 10Experimental Result
In this hapter, we disuss the results obtained by our implementation aronymedCAPS. For the Compositional and Abstrat Cheking, several tests are experi-mented, inluding some examples we have disussed in this thesis suh as theparallel exams, the die performane. For the Quotient Cheking, we did not useany onrete example, however we use suitable test ases reated by the tester,whih exposed some of the error of the implementation and showed the e�etive-ness of the quotient tehnique. Empirial measurement of time and spae usagean always be veri�ed later.10.1 Compositional and Abstrat Test CasesTest 1: The dieThe idea of this test ase is extended from the test ase Die Programs of PRISM[49℄. This ase study onsiders two PTS, one is the original PTS T and one isthe abstration TAbstrat. Figure 10.1 models a die using only fair oins. Startingat the root state s0, one repeatedly tosses a oin. Every time heads appears, onetakes the upper branh and when tails appears, the lower branh. This ontinuesuntil the value of the die is deided. There is only one ation in this test asetherefore we omit any symbol of ation on all transitions out from eah state. Theabstrat is onstruted by applying partitioning tehnique for a spei� reaha-bility property, in this ase eventually the value of the die is six.

88

s1

s2

s3

s4

s7

s9

s5

s6

s0

s8

s10

s11

s12

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

t0

t1

t2

t3

t4

t5

0.5

0.5
0.5

0.5 0.5

0.5

1
1

Figure 10.1: The die with an abstrat

10 Experimental Result - Compositional and Abstrat Test Cases 89

The result obtained by CAPS is shown in Figure 10.2:

Figure 10.2: The output sreen of the Die exampleObviously, the pair of the two initial states (s0; s1) 2 R. Therefore we onludethat T v TAbstrat.

10 Experimental Result - Compositional and Abstrat Test Cases 90

Test 2: The parallel examsIn this test ase, we reall the example of the parallel exams in setion 2.2.2. As-sume a student is going to attend the exams of his two ourses. We are interestedin asking that whether this student passes both of these ourses with probabil-ity at least 0.8 with in three trials. Instead of heking a omplex probabilistisystem T we may examine the question in an abstrat of T , whih is de�nitelysmaller. The Figure 10.3 models a omplete parallel exams system and a simpleabstrat.
0.75

c ++1

11

1 1

0.25 0.750.25

0.750.250.75 0.25 0.75 0.25

0.75

0.25

1

s0

s1 s3
s4

s7 s8

t0

t1 t2

s5 s6

s2

0.75 0.25

1

1

Figure 10.3: Composition of two PTS exams and an abstrat

10 Experimental Result - Compositional and Abstrat Test Cases 91

The result obtained by CAPS is shown in Figure 10.4:

Figure 10.4: The output sreen of the parallel examsObviously, the pair of the two initial states (s0; t0) 2 R. Therefore we onludethat T v TAbstrat.
10 Experimental Result - Compositional and Abstrat Test Cases 92

10.2 Quotient Test CasesTest 3:The test ase is shown in Figure 10.6. Consider two PTSs T1 and T2 and thebloking PTS B, we wish to know that if the parallel system T1kT2 w B withouthaving to onstrut the omplete parallel system. By applying the quotient algo-rithm and runing the test with CAPS, we have obtained the result in Figure ??.Obviously, in the end of the quotient proess, all the omponents Ti's are removedfrom the parallel system and the spei�ation B is simultaneously transformedwith respet to (w), see Figure 10.6, 10.7 and 10.8 . Therefore we onlude thatT1kT2 w B
s0

s1

a

b b

1/6 1/6 2/3

a

d

1/4

1

3/4

1

0

2

0

2

T1 T2 B||

1/3 2/3

c

1

3

d

4

1/3 1/3

b

1

1/6 5/6

1/3

1/4 3/4

s2 s3

s4 s5 s6 s7

s8

s9 s10 s11

s0

s1

a

b

1/4
1/4

1/2

0

2

d

4

1/2 1/2

1/4

s2 s3

s4 s5

s7 s8

s6

d

1
2

1/2
1/4

s9

t0

t1 t2

t3 t4

t5

Figure 10.5: Two PTSs in parallel with an abstrat bloking PTS
10 Experimental Result - Quotient Test Cases 93

In this �gure, the algorithm prepares to onstrut the quotient B==T1. Howeverthe simulation relation of B and T1 is �rst omputed.
T1||T2 B

B T1 Figure 10.6: The initial output sreen

10 Experimental Result - Quotient Test Cases 94

The quotient B==T1 has been onstruted in this �gure. Morever, T1 is alsoremoved from the parallel system. The algorithm is ready for next step.

B//T1 T2

T2 B//T1

Figure 10.7: The output sreen of onstrutin B==T1Finally, we obtained the quotient ((B==T1)==T2), that means the quotient proessis perfomred suessfully. We onlude that T1kT2 w B
T1||T2 B* B//T1//T2 <-->

Figure 10.8: The output sreen of onstruting (B==T1)==T2
10 Experimental Result - Quotient Test Cases 95

Chapter 11Conlusion
11.1 ConlusionThe aims of this thesis was to avoid the state explosion problem in probabilistimodels by using simulation based abstrations. This led to the development ofthe tool CAPS whih was based on establishing good abstrats for omponentsin an asynhronous parallel omposition of a model. The main bottlenek ofthis tool was that it is very user-dependent, requiring the user to input both themodel and the abstration.The remainder of this thesis started with the aim of seeking to eliminate thisdrawbak by automatially generating these abstrations. This goal howeverevolved and this report is the result.In our previous work, we only examined an interleaving (asynhronous) parallelomposition. We avoided the state spae explosion by seeking abstrats of ompo-nents and then onstruting the parallel omposition with these abstrats. It wastherefore interesting to onsider and study the avoidane of this parallel ompo-sition by rather quotienting. We develop further the theories of The QuotientingTehnique, for PTSs, and extend a Minimization Algorithm to probabilisti tran-sition systems. This led to transforming our spei�ations from logi-based to anappropriate transition-based spei�ation. Usually, the transformed spei�ationgrows in size and requires a simpli�ation heuristi to keep the size under on-trol. The Minimization algorithm for PTSs was intended to be the simpli�ationheuristi. However, we realized that, after quotienting, any struture obtainedwas already minimal and ould therefore not be redued or minimized further.This led us to propose that instead of minimizing (the transformed spei�ation)after quotienting, we rather minimize the omponents of the system (or lustersof the omponents), before starting with the Quotienting tehnique.Categorially, we onlude on the building bloks of this thesis.96

Probabilisti Transition SystemsWe have examined the probabilisti labelled transition system as our main mod-elling system. We have further onsidered its parallel omposition in terms ofthe synhronous, asynhronous and the interleaving mixed sort parallel omposi-tion. We have extended all our abstration methods to it and desribed ways togenerate redued PTSs strutures. These methods are based on the ProbabilistiSimulation preorder and equivalene relation. We also desribed a spei�ationmodel based on PTSs alled the Bloking Probabilisti Transitions System whihis a strutural version of Probabilisti Modal Logi.Compositional AbstrationWe have desribed a basis for whih omponents of an asynhronous parallelomposition an be abstrated individually or together with other omponents.The abstration of the omponents are then used in plae of the original onreteomponents. We further explored ways of omputing the simulation preorderbetween two PTSs and used algorithms for omputing the maximum ow innetworks to establish the preorder and onlude if the two PTS simulate eahother.The Quotient TehniqueWe started by exploring the Quotienting Tehnique for �nite state systems andthe use of linear inequation solving to generate the quotient struture. We thenextended this to our probabilisti transition system. We developed a spei�ationformalism for this tehnique, the bloking PTS, whih expliitly portrayed ourreahability properties. We have also onsidered various parallel ompositionali-ties and developed algorithms to generate their quotient strutures.By this approah, our our whole model heking problem is redued to that ofgenerating the quotienting struture, whih o�ers us a means of abstration.MinimizationWe have disussed an algorithm whih allows us to systematially generate aredued PTS struture. This an be used to minimize a parallel omposition as11 Conlusion - Conlusion 97

input and output a smaller redued struture with respet to simulation equiva-lene. We had hoped to use this algorithm to simplify and minimize the trans-formed spei�ation in the quotienting tehnique. However, alternatively we pro-pose to use this algorithm on omponents before quotienting and not afterwards.This will also help to keep the size of the transformed spei�ation in hek.The ImplementationWe �rst developed a tool as an implementation the algorithms that we proposedfor the methods of ompositionality and abstration based on the Simulation Pre-order, aronymed CAPS (Compositional Abstration for Probabilisti Systems).We further extended this tool by implementing the algorithms for the Quotient-ing Tehnique, for our spei�ation. We realized that the quotient struture hadinfat, exatly the same struture as the bloking PTS of the spei�ation. Henethe main issue, was omputing the exat probabilities of the distributions of thequotient struture. Although, we did not gather any empirial evidene to sup-port a hypothesis that the methodologies disussed, show a signi�ant saving ontime and spae in the veri�ation of these models, an intuitive argument shouldexhibit this fat.11.2 Further WorkThere is still the onsideration of automatially generating abstrats of om-ponents of a model as was originally onsidered. Although this will be moreuser-friendlier and more e�etive, it is not easy to solve in general. We havesuggested solutions in our spei� ase to obtaining abstrations for omponentsin model heking.In quotienting, we onsidered the interesting properties of reahability with thespei� model of bloking PTSs. A possible extension will be to onsider abroader spetrum of properties, where safety as well as liveness properties areveri�ed.As by our minimization, an extension ould onsider bisimulation based mini-mization whih is strongly preserving.
11 Conlusion - Further Work 98

Appendix
Please note the meanings of these symbols when reading this thesis.v: simulation relation�: simulation preorder�: simulation equivalene./: a general relation between a model and another model as spei�ation. Couldbe v.ed : generalization of the parallel omposition==: quotienting operator� is usually for size, as in less than or equal to. Sometimes also for the simulationrelation.The Greek letters should be read within the ontext they are stated.(�; �; ; Æ; �; �; �) usually denote a distribution over states.(�; �) sometimes denote ations in the At set.a; b; usually represent ations.(�1; �2; : : :) denote equivalene lasses.(; �) usually represent spei�ation properties.

99

Bibliography
[1℄ Ahiable A., Hoang T., Compositional Abstration by Probabilisti Simula-tion[2℄ Ravindra K. Ahuja, James B. Orlin, Cli�ord Stein and Robert E. Tarjan,Improved Algorithms for Bipartite Network Flow[3℄ Henrik R. Andersen, Partial Model Cheking[4℄ C. Baier, J. Katoen, H. Hermanns, B. Haverkort, Simulation for Continous-Time Markov Chains[5℄ Christel Baier, Bettina Engelen, and Mila Majster-Cederbaum, DeidingBisimilarity and Similarity for Probabilisti Proesses[6℄ Christel Baier, On Algorithmi Veri�ation Methods for Probabilisti Sys-tems[7℄ Christel Baier, Polynomial Time Algorithms for Testing Probabilisti Bisim-ulation and Simulation[8℄ Christel Baier, Edmund N. Clarke, Vasiliki Hartonas-Garmhausen, MartaKwiatkowska and Mark Ryan, Symboli Model Cheking for ProbabilistiProesses[9℄ Bodentien N. O., Poulsen L. O., The quotient veri�ation tehnique appliedto State/Event Systems[10℄ Bodentien N. O., Vestergaard J., Friis J., Kristo�ersen K. J., Larsen K.G., Veri�ation of Large State/Event Systems by Quotienting[11℄ Anders Borjesson, Kim G. Larsen and Arne Skou, Generality in Design andCompositional Veri�ation in TAV100

[12℄ A. Biano and L. de Alfaro, Model Cheking of Probabilisti and Nondeter-misti Systems[13℄ M. Brown, E. Clarke, O. Grumberg, Charaterizing �nite Kripke Struturesin Propositional Temporal Logi[14℄ R. E. Bryant, Graph-based algorithms for boolean funtion manipulation.IEEE Transations on Computers.[15℄ Doron Bustan, Orna Grumberg and David E. Long, Model Cheking andAbstration[16℄ D. Bustan, O. Grumberg, Simulation Based Minimization. In the 17th Inter-national Conferene on Automated Dedution (CADE'00), Pittsburgh, June2000.[17℄ Edmund N. Clarke, Orna Grumberg and David E. Long, Model Chekingand Abstration[18℄ E. M. Clarke, E. A. Emerson and A. P. Sistla, Automati Veri�ation ofFinite-State Conurrent Systems using Temporal Logis Spei�ation: Apratial Approah.[19℄ E. M. Clarke, E. A. Emerson , Design and Synthesis of synhronizationskeletons using branhing time temporal logi.[20℄ Pedro R. D'Argenio, Bertrand Jeannet, Henrik E. Jensen and Kim G.Larsen, Reahability Analysis of Probabilisti Systems by Suessive Re-�nements[21℄ Pedro R. D'Argenio, Bertrand Jeannet, Henrik E. Jensen and Kim G.Larsen, Redution and Re�nement Strategies for Probabilisti Analysis[22℄ Rob J. van Glabeek, Sott A. Smolka and Bernhard Ste�en, Reative, Gen-erative, and Strate�ed Models of Probabilisti Proesses[23℄ van Glabbeek R. J., Smolka S. A., Ste�en B., Tofts C. M. N., Reative,Generative, Strati�ed Models of Probabilisti Proesses[24℄ Godefroid P., Partial-Order methods for the Veri�ation of Conurrent Sys-tems: An Approah to the State Explosion Problem[25℄ Hans Hansson and Bengt Jonsson, A Logi About Reasoning about Timeand Reliability[26℄ A. Harding, M. Ryan, P. -Y. Shobbens, Approximating ATL* in ATL[27℄ Y. Hsieh, S. P. Levitan , Model Abstration for Formal Veri�ationBIBLIOGRAPHY BIBLIOGRAPHY 101

[28℄ M. Huth , Possibilisti and Probabilisti Abstration-Based Model Cheking[29℄ Bengt Jonsson and Kim G. Larsen, Spei�ation and Re�nement of Proba-bilisti Proesses[30℄ Bengt Jonsson, Wang Yi and Kim G. Larsen, Probabilisti Extensions ofProess Algebra[31℄ B. Jonsson, Simulation between Spei�ations of Distributed Systems[32℄ Jou C., Smolka S. A., Equivalenes, ongruenes, and a omplete axiomati-zations for probabilisti proesses.[33℄ Joost-Pieter Katoen, Conepts, Algorithms and Model Cheking[34℄ R. P. Kurshan , Formal Veri�ation of Coordinating Proesses[35℄ Franois Laroussinie, Kim G. Larsen, Compositional Model Cheking of RealTime Systems[36℄ Kim G. Larsen and Arne Skou, Bisimulation through Testing[37℄ Kim G. Larsen and Bent Thomsen, Partial Spei�ations and CompositionalVeri�ation[38℄ Kim G. Larsen, Context-Dependent Bisimulation Between Proesses. PhDthesis, University of Edinburgh, May�eld Road, Edinburgh, Sotland, 1986.[39℄ Kim G. Larsen, Arne Skou Compositional Veri�ation of Probabilisti Pro-esses[40℄ K. L. MMillan, Symboli Model Cheking: An approah to the State Ex-plosion Problem.[41℄ R. Milner, Communiation and Conurreny[42℄ Lind-Nielsen J., Andersen H. R, Behrmann G., Hulgaard H., Kristo�ersenK. J., Larsen K. G., Veri�ation of Large State/Event Systems using Com-positionality and Dependeny Analysis.[43℄ Peled D., All from One, One from All: On Model Cheking Using Represen-tatives[44℄ R. Segala and N. A. Lynh, Probabilisti Simulation for Probabilisti Pro-esses[45℄ R. Segala, Modelling and Veri�ation of Randomized Distributed Real-TimeSystemsBIBLIOGRAPHY BIBLIOGRAPHY 102

[46℄ Vestergaard J.,The Quotienting Tehnique for Probabilisti Systems[47℄ Liu Xinxin, Kim G. Larsen, Equation Solving Using Modal Transition Sys-tems[48℄ http://www.irisa.fr/prive/bjeannet/prob/prob.html[49℄ http://www.s.bham.a.uk/ dxp/prism/

BIBLIOGRAPHY BIBLIOGRAPHY 103

