Compositionality & Abstraction
in verification of
Probabilistic Transition Systems

Antoinette Ahiable and Tu Hoang Anh
Kim G. Larsen(Supervisor)

Aalborg University
Faculty of Engineering & Science
Department of Computer Science

UN
(<] 7
&> L

L
pA BQ

(8

Qo +
eNM IS

é

A1

Compositionality & Abstraction

in verification of
Probabilistic Transition Systems

Semester Period:
Spring 2003
February 3, 2003 - June 11, 2003

Project Group:
SSE4, B1-215

Authors:

Antoinette Ahiable, atnets@Qcs.auc.dk
Tu Hoang Anh, tuhoang@cs.auc.dk

Supervisor:

Kim G. Larsen, kgl@Qcs.auc.dk

Number Of Pages: 103

Total Number of Copies: 6

Abstract

In this thesis, we present techniques adapted to probabilistic transition systems
in order to avoid or reduce the state space explored in verification. By using
compositional abstraction, abstracts of components of a concurrent system can
be used for model checking. We use probabilistic simulation preorder to establish
a good abstract. We further present a minimization algorithm for probabilistic
transition systems, which generates a minimized structure, with respect to sim-
ulation equivalence. Finally, we introduce the Quotient technique for our PTS
model with the concept of using the minimization algorithm to minimize the size
of the transformed specifications. However, it is realized that this situation never
arises, as the transformed specification is the minimal structure possible given
our constraints and assumptions. We propose at the end, the application of the
simplification heuristic on components of the system, before applying the Quoti-
enting technique rather than afterwards. We implement the quotient technique
as part of our tool, CAPS and demonstrate the algorithms proposed in this thesis.

Preface

This report is the thesis in our final semester of the International Masters Program
in Software Systems Engineering of the Faculty of Engineering & Sciences, in
the Computer Science Department at Aalborg University, Denmark, during the
period February 3, 2003 to June 11, 2003, under the Distributed Systems and

Semantics group.

This Master thesis is a joint project by the authors and is the result of work done
over the last year of our program.

We will like to sincerely thank our supervisor Kim G. Larsen for everything! It
says it all.

Antoinette Ahiable Tu Hoang Anh

Contents

1 Introduction

1.1 Formal Verification L.
1.1.1 Model Checking
1.1.2 State Explosion L.
1.2 Probabilistic Models o000
1.2.1 Markovian Modelso
1.2.2 Probabilistic Model Classifications
1.3 Specificationso
1.4 Topics of Thesis
1.4.1 Related Work oo
1.4.2 Outline of thesis
2 Preliminaries
2.1 Probability Theory
2.2 Probabilistic Transition Systems
2.2.1 Probabilistic Executions
2.2.2 Parallel Compositions
2.3 Specification Formalism
2.3.1 Logic-based Specification
2.3.2 Model-based Specification
2.4 Equivalences and Preorders

© © o 0w N

10
12
12
12
13

3 Computing The Simulation Preorder 25
3.1 Introduction 25
3.2 Networks and Flow 26
3.3 Maximum Flow Problem 26
3.4 Probabilistic Simulation and Maximum Flow 28
General Methods for Compositionality & Abstraction 32
4.1 Compositional Abstraction 32
4.2 Partitioning Lo 34
4.3 The Quotient Method 37

4.3.1 Special Subclasses L. 40
Methods for Finite State 42
5.1 Minimizationo 42

5.1.1 Definitions and Theorems 42

5.1.2 The Minimizing Algorithm 45
5.2 The Quotient Technique 47

5.2.1 The Model, Satisfaction Formalism, Parallel Composition 48

5.2.2 The Quotient Structure 49

5.2.3 General Quotient Structure Algorithm 51
Minimization for PTSs 57
6.1 Probabilistic Transition Systems o7

6.1.1 The Size of a PTS structure 58
6.2 The Probabilistic Minimizing Algorithm 62
6.3 Generating a Reduced PTS 62

CONTENTS CONTENTS 5

7 The Quotient Technique for PTS 65

7.1
7.2
7.3
7.4

The Model o 65
The Logic and its bPTS Representation 66
Quotient Structure 67
Algorithm for Computing the Quotient 68
7.4.1 An Informal Approach 68
7.4.2 A Formal Approach 70

8 The Application of the Quotient Technique with Minimization 73

8.1 Quotient and then Minimize 73
8.2 Minimize and then Quotient 76

9 Implementation 78
9.1 Data Structure 78
9.2 Modules Description L 81
9.2.1 Maximum Flow Problem, Ford-Fulkerson Algorithm 81

9.2.2 Computing Probabilistic Simulation 82

9.2.3 Compositional and Abstraction Checking 83

9.2.4 Quotient Checking 83

9.3 Input File and Output Screen 83
9.3.1 InputFile 83

9.3.2 Output Screen 86

10 Experimental Result 88
10.1 Compositional and Abstract Test Cases 88
10.2 Quotient Test Cases 93

11 Conclusion 96
11.1 Conclusion o 96
11.2 Further Worko 98

CONTENTS CONTENTS 6

chapter 1.
Chapter

Introduction

1.1 Formal Verification

Formal verification methods are strong tools in the development of high quality
products. In the design of complex systems, more time and effort is spent on
verification than on construction. Techniques are sought to reduce and ease the
verification efforts while increasing their coverage.

Formal methods offer a large potential to obtain an early integration of veri-
fication in the design process, to provide more effective verification techniques
and to reduce the verification time. As according to J.-P Katoen in ([33]), for-
mal methods are one of the "highly recommended” verification techniques for
software development of safety-critical systems according to e.g., the best prac-
tises standards by the IEA (International Electrotechnical Commission) and the
standards by the ESA (European Space Agency).

Formal methods provide a precise notion between systems and their specifica-
tions, so that it can be decided without ambiguity whether or not a system
meets its specification. They, however have their advantages and disadvantages.
Comparatively, model checking is automatic and faster than theorem provers.
A major problem, though, in applying model checking even to moderate-size
systems is the potential combinatorial explosion of the state space arising from
parallel composition of components.

When I use a model checker, it runs and runs forever and never comes back
... when I use a static analysis tool it comes back immediately and says I don’t
know - Patrick Cousot

1.1.1 Model Checking

One of the acclaimed approaches of verifying finite state systems is that of model
checking. Tt is a verification technique that explores all possible system states in
a brute force manner. Once a system can be accurately represented by a model,
a specification can be verified within this model and conclusions drawn about the
system as to whether the specification holds to be true or otherwise within the
system. This technique has been applied to many types of systems from finite
state representations, through real time ones to probabilistic systems. However,
the main disadvantage of the model checking technique is the explosion in the
state space during its brute force exploration.

1.1.2 State Explosion

The size of the a parallel system of even moderate-sized systems grows exponen-
tially. In order to avoid this inherent problem of model checkers, several methods
have been sought that avoid the exhaustive state space exploration.

Some of these methods are based on a symbolic representation of the system using
Binary Decision Diagrams ([14], [40]), which has proved to be very successful for
various types of verification problems for parallel systems. Other methods are
based on the concept of partial order reduction ([43], [24]) which is based on the
observation that the interleaved execution of independent actions allows one to
investigate only a representative fragment of the state space.

The concept of compositionality, where the motivation is to reason about the
behavior of a large system based on knowledge of its components has also influ-
enced some of the methods. In those cases where a global investigation can be
avoided efficiency is gained. In ([42]), compositional reasoning has proven to be
a successful technique in the verification of concurrent systems and embedded
software, ([10]). Another very significant alternative is by abstractions. This
method seeks to use abstractions of the model under consideration, which are
smaller than the originals in model checking, hopefully decreasing the time in-
volved and minimizing memory used. Model abstraction reduces the number of
states necessary to perform formal verification and thus reduces the state space
to be explored in formal verification tools such as COSPAN.

Another approach, which was first proposed by Larsen ([38]) and further extended
by Andersen([10]), Bodentien et al ([9]), introduced a very promising heuristic
model checking technique for finite state systems called the Quotient Technique.
The idea behind it, is to factor out components of a parallel system, one at a time,
into the specification, and by continuously, applying simplification heuristics,
minimize the resulting structure. By transforming the specification accordingly,

1 Introduction - Formal Verification 8

one is able to draw conclusions about the model and the specification. This
technique has also been applied in real time systems ([35]). In this thesis, we
explore this technique with finite state systems and extend it to our probabilistic
model. Our aim is to establish the basis for using the Quotient Technique in
probabilistic transition systems and also to experimentally verify if there are
indeed optimal results using this technique.

1.2 Probabilistic Models

Due to the fact that a system can not always be guaranteed to work correctly,
there is the need for a way of describing the unreliability of a system. This is
especially important in safety critical systems such as flight control systems and
medical systems. This has led to more models being considered with probabilities
incorporated. Probabilistic models are important for the quantitative design
and analysis of safety critical systems. They are also useful for the analysis of
quantitative behavior in a wide variety of systems e.g. through the computation
of performance measures.

1.2.1 Markovian Models

The idea of incorporating probabilities into the modelled system has lead to
various developments. In recent years, many researchers have focused on rea-
soning about probabilistic transition systems. A lot of work has been done
to extend those models and methods which have been successful for the non-
probabilistic case to probabilistic systems. The basic concept of all these models
however, is that of a transition system which has been extended appropriately
with probabilities. They can be classified though, with respect to their treatment
of non-determinism. This has been according to either Markov chains where non-
determinism is completely replaced by probabilistic choices or Markov decision
processes, in which both non-determinism and probabilities are present. The
models based on Markov chains are suitable to formalize the behavior of sequen-
tial randomized algorithms or processes of probabilistic calculi with synchronous
parallel composition. On the other hand Markov decision processes based models
are suitable for distributed randomized algorithms or processes of asynchronous
probabilistic calculus. In our work, we choose to use Markov Decision Processes
also known as Probabilistic Transition Systems, simply PTS, as our main model.

There are different variants of probabilistic systems and we present these in Sec-
tion 1.2.2.

1 Introduction - Probabilistic Models 9

1.2.2 Probabilistic Model Classifications

We present work in the field of probabilistic transition systems. Probabilistic
transition systems provide a framework that allows us to express that a failure can
only occur with a certain probability, and as a tool it can be used to verify that a
system, with some probability, behaves according to its specification.(i.e. there is
a 0.0002% possibility that a medical monitor will shut down without a warning).
There are three main classifications: Reactive, Generative and Stratified models.

Reactive Model

This model consists of states and labelled transitions associated with probabili-
ties. For each state, the sum of probabilities on outgoing transitions must be 1
for transitions with the same label.

Larsen and Skou ([39]) define a reactive probabilistic transition system as follows:

Definition 1 A reactive probabilistic transition system is a structure P = (Pr, Act,),
where Pr is a set of processes(or states), Act is the set of actions that the process
may perform, and w is a transition probability function w : Pr X Act x Pr — [0, 1]

such that for each P € Pr and a € Act:

Z 7(P,a,P'y=1 or Z 7(P,a,P') =0
P'cPr P'ecPr

indicating the possible next states and their probabilities after P has performed
action a.

In Figure 1.1 is an example of a reactive process.

Generative Model

This model consists also of states and labelled transitions with probabilities, but
with the sum of probabilities of all outgoing transitions equal to 1. Jou and
Smolka ([32]) have formally defined the Generative model as follows:

Definition 2 A generative probabilistic transition system is a triple (Pr,%,),
where Pr is a set of processes; Y. is the set of all atomic actions and 0 is a special
symbol not in ¥ called the zero action; p : (Pr x (X U0 x Pr) — [0,1] is a
total function called the probabilistic transition function satisfying the following
restriction: VP € Pr,

Y u(Pa,Q) =1

a€XU0,Q€EPT

Figure 1.2 is an example of a generative process.

1 Introduction - Probabilistic Models 10

Figure 1.1: An example of a reactive process

Figure 1.2: An example of a generative process

Stratified Model

Stratified models consists of states and two kinds of transitions, probabilistic
and action based. In the case of probabilistic transitions, the sum of probabilities
must be 1, and for the action transitions the restriction is that there must be only
one outgoing action transition from a state. van Glabbeek et al ([23]) have a well
documented paper on these models. They show that the generative model is an
abstraction of the stratified model, and that the reactive model is an abstraction
of the generative model.

1 Introduction - Probabilistic Models 11

1.3 Specifications

The specification or property to be verified in a model, is usually stated in some
logic as a formula. This in the non-probabilistic case could be a Linear Tree
Logic (LTL, [18]) or Computational Tree Logic (CTL, [19]) or some temporal
logic. More suited to your model of a probabilistic model, is the Probabilis-
tic Computational Tree Logic (PCTL, [12], [25]) which can express quantitative
bounds on the probability of system evolutions. We give the syntax and seman-
tics of this logic in Section 2.3. However, there is an alternative to this logic
representation of formulas of the specification in model checking.

There are two main approaches for specifying properties in model checking: logic-
based (eg CTL, [19]) and automaton-based(eg w — automata, [34]) or transition
system based. In the latter case, specification formalism satisfiability will nor-
mally be given by some suitable behavioral equivalence or preorder between the
implementation and specification.

We are interested in a restricted class of reachability properties, and hence inter-
ested in particular sequences of execution that lead to certain final conditions.
These properties allow to specify that the probability of reaching a particular
final condition ¢ from any reachable state satisfying a given initial condition ¢;
is smaller (or greater) than a given probability p.

1.4 Topics of Thesis

1.4.1 Related Work

In this section, we first mention some of the existing work in area of methods and
techniques to avoid the state space exploration during model checking.

Minimization

The main idea, in Minimization, is to reduce the size of the model used in model
checking by algorithms, so that the reduced(and smaller) structure is used in
place of the original. By this the state space to be explored, is reduced before
model checking. However, the minimization is carried out with respect to the
specification in question and by preserving the relations that hold on the models.
Orna Grumberg’s ([16]) minimization technique is applied to Kripke structures
by upholding the simulation preorder.

1 Introduction - Specifications 12

Compositional Abstractions

In our previous work, ([1]), we described a procedure in which, a system made
up of components interacting together, will have each component being replaced
by a good abstraction, based on the probabilistic simulation preorder. These
component-based abstractions then replace the originals in the model checking
procedure. The implementation is a tool, CAPS, which, checks if two probabilistic
transition systems (a model and its abstract) simulate each other, and hence the
abstract is used in place of the original.

The Quotient Technique

A new approach towards compositional verification of concurrent systems is the
Quotient Technique where components are gradually removed from the concur-
rent system while transforming the specification accordingly. The intermediate
specification is kept small using heuristics for minimization. This technique has
been used for state/event systems, ([10]) and also , some version of probabilistic
systems ([46]).

1.4.2 Outline of thesis

This thesis is organized as such: The next chapter we introduce some basic defi-
nitions and theorems in Probability Theory, focus on the Probabilistic Transition
Systems, which is our main working model, describe the formalism for our spec-
ifications, and state what equivalences and preorders we use in this work.
Chapter 3 is dedicated to Networks and Maximum Flows and how this is used in
computing the probabilistic simulation preorder. This chapter is basically work
down in our last report.

In Chapter 4, we discuss some general methods for compositionality and abstrac-
tions. In Chapter 5, we discuss the Minimization Method and The Quotient
Technique for finite states and in Chapter 6 and 7, we focus on these two meth-
ods, and propose algorithms adapted to our probabilistic model, respectively.
Chapter 8 discusses the application of these methods in the verification process.
Chapter 9, describes the implementation of these methods in our existing tool,
CAPS. Some tests are used in Chapter 10 to draw some experimental results, and
Chapter 11, draws conclusions on the work done in this thesis with some future
directions.

1 Introduction - Topics of Thesis 13

Chapter 2
Chapter

Preliminaries

2.1 Probability Theory

In this section we give some basic definitions associated with the term probability
that we find useful in this work.

A sample space S lists all the possible outcomes of a random phenomenon. In
general the event (E) is a subset of a sample space, or in other words, an event
is any collection of outcomes.

The probability function 7 is a function from the sample space S to a number
between 0 and 1.

m:S —[0,1]
For each event A in an experiment of a sample space S, m(A) is the probability
that A will occur. The probability value, w(A), assigned to an outcome (event)

must satisfy the three axioms below in order to satisfy the mathematical notion
of probability.

Axiom 1 : For any event A, n(A) > 0.
Axiom 2 : 7(S) =1.
Axiom 3 : For an infinite sequence of disjoint events Ay, Ao, . ..
W(G A;) = iﬂ'(Ai).
i=1 i=1

14

Definition 3 A probability distribution or probability on a sample space S is a
specification of the numbers w(A) which satisfies Azioms 1,2, and 3.

Consequently, for any event A, 0 < 7(A) < 1.

Generally, if the occurrence of an event A does not influence the occurrence of
another event B, it is said that the two events A and B are independent. If events
A and B are independent, then 7(A and B) = 7(A) - 7(B).

2.2 Probabilistic Transition Systems

In this thesis, systems are described in terms of Markov Decision Processes ([29]),
also called Probabilistic Transition Systems (PTS). This model is a labelled tran-
sition system with both non-determinism and probabilistic choices present. The
choice of this model is partly due to the fact that it is closed under parallel com-
position (which facilitates modelling and compositional reasoning) but primarily
because PTSs are amenable to abstraction. This is a key factor for the techniques
proposed in this work.

We give a formal definition as such:

Definition 4 A Probabilistic Transition System PTS is a tuple (S, —, V)
where

e S is a non-empty finite set of states

e —C S x Act x Dist(S), is a finite transition relation where Act is a finite
set of actions, Dist(S) is a distribution over states S,

o V:S — 247 s g labelling function.

Note should be taken of the action-labelled transitions. In the cases where an
action is implicit and the same through out a system we leave it out of the repre-
sentation.

We use s —— 7 to denote (s,a,) €— and s A= to denote that (s, a,7) ¢—
for all 7. A Rooted PTS is a PTS with a predefined initial state, (S, —,V so).
Figure 2.1 is an example of a PTS with an initial state s.

2 Preliminaries - Probabilistic Transition Systems 15

Figure 2.1: A Probabilistic Transition System

2.2.1 Probabilistic Executions

Each action « leads to a distribution m € Dist(S) over successor states. We refer
to s = 7 as a transition. Finite processes have finite number of states and the
transition relation is acyclic. A PTS is a Fully Probabilistic Transition System
(FPTS) if whenever s < 7 and s < p then m = p.

Let T = (S, —, V). A simple path starting from sy € S in T is a finite sequence of
S-states, 0 = $¢8182...8,, Where for each 0 < i < n there exists m; € Distr(S) such
that s; — m; and m;(s;41) > 0. Let (i) denote the state in the i-th position. Let
|o| be the length of 0. Let first(c) = o(1) and last(c) = o(|o|). Let paths(T)
denote the set of all probabilistic paths of T and s-paths(T) denote the sets of
simple paths in T starting from any s € S. A state t is reachable from other
state s in T if there is o € s-paths(T) with s = first(o) and t = last(o). Let
reach(T,s) denote the set of all states reachable from s in T.

For any rooted FPTS(F, s), the probability measure Pps on the o-algebra in-
duced by (F, s) is the unique probability measure defined such that Pp (o) =
7o(51)-m1(82)...mp_1(8n) if (s = s,) else 0. In particular, Pg (o) is the probability
of ¢ in F starting from s.

Any given PTS T defines a set of probabilistic executions, each one obtained
by iteratively scheduling one of the possible post-state distributions from each
pre-state, starting from a given state s € S. This is the unique path leading
from the start state to s.

Definition 5 A probabilistic path of T is a FPTS, F = (s—path(T), =, folast)
where ¢ —p p implies last(q) —r 7 with p(ps) = w(s) for all s € S. If in
addition, for all ¢ € s — path(T) such that |q| < i,last(q) —r implies that
q —r, then the rooted FPTS (F, so) is said to be a probabilistic execution fragment
of length i of T starting from sy € S. If i = oo,then(F,sy) is said to be a
probabilistic execution of T starting from sq € S.

2 Preliminaries - Probabilistic Transition Systems 16

Given a simple path o € s-paths(T) define o' € s-paths(F)(F being a probabilis-
tic path of T) such that |o"| = |o| and for all 0 < i < |o], o1 (i) = o(1)...0(3).
Let f € PF where PF is the set of propositional formulas closed under A and —
. Define ¥y = {0 € s-paths(T)| last(c) = § and Y0 < i < |o]. o(i) = = f},
i.e. Xy is the set of all minimal paths in T that end in final condition . The
minimum(infimum) and maximum (supremum) probabilities of reaching a final
condition f € PF from an initial condition i € PF in a rooted PTS(T, s,) are
defined respectively by:

P;ffﬁo (i,f) £ inf {PF,q(E}) | s € reach(T, sy), s =1, and (F, q) € execs(T, s)}

P (if) 2 sup {PF,Q(E}) | s € reach(T, sy), s =1, and (F, q) € execs(T, s)}

where execs(T, s) be the set of all probabilistic executions starting from s.

Figure 2.2 presents a probabilistic execution F of an exam PTS T. The probability
to eventually pass the course(p holds) after 3 attempts (¢ < 3) is calculated as

follows:
P, = 2562} Prps =0.75+0.25-1(0.754+0.25- 1 - 0.75) = 0.9843

(sfsp, 1)

(sfsfsp, 2)

(sfs, 1)

(sf, 0)

0.25 ‘

(sfsf, 1) (sfsfs, 2)
0.25

(sfsfsf, 2)

Figure 2.2: Probabilistic Execution of PTS

2.2.2 Parallel Compositions

Given two PTSs Ty = (S1,—1,V) and Ty = (Sy, —2, V') over the same set of
atomic propositions, we investigate the parallel composition of these two and
hence extrapolate to the composition of several models together.

2 Preliminaries - Probabilistic Transition Systems 17

First, lets consider an asynchronous interleaving of the individual processes(]).
The parallel composition is a product composition of the states. This product
structure gets huge quickly with the number of processes involved. Formally T}

| Ty = (Sl X SQ, —, V(Sl, 52)) where
° (Sl X SQ) = {(Si,Sk)|Si €S| Ns, € 52}
L] V(Sl, SQ) = V(Sl) U V(SQ)
e — defined by the following rules:
— If 5y 5, m then (s, 55) = 75> where
!

m(sh); sh = sy
nf2(33,83)={0_() 4
) 2 2

— If 55 5 my then (s, 55) — 73" where

. I
7.‘.;1 (5’1, 3’2) — {3.2(32% 3,1 S1
3 S 7£ S1

Figure 2.3 presents the examination models, that a student takes two courses.
The probability to pass both is examined on the parallel composition, depicted
in figure 6.4.

Figure 2.3: Two PTS exams 17, T5

As can be seen from the figure of the parallel composition, the distribution from
each parallel state (s, s2) to another state (s1,ps) is based on the distribution
of the component state making the transition, that is (sg) — (p2), just as is
defined under the rules for the parallel composition. Following the Figure 6.4
logically from the start points (si, $3), a student taking the 2 courses can only

2 Preliminaries - Probabilistic Transition Systems 18

Figure 2.4: Parallel Composition of two processes, T1||T3

fail or pass one at a time. The first alphabet represents the first course and the
second represents the second course. So one can start the exams (s1, s3), take the
second course and fail it (s1, Fy). From this point, one might decide to try the
first course. If this is also failed you end up in (Fy, F3) or fortunately in (Py, F3)
if it is passed. At this point if the number of trials of the failed course ¢y is still
less than 3, one can start from (P, s3) and then hope to end up at (P, P).

From the above example, an interesting specification to explore could be if the
probability of passing at least one of the courses taken is greater than say, 0.5.
However, to carry out this exploration, one might need to consider all the execu-
tion paths incident to this parallel composition.

Secondly, we consider the synchronous parallel composition(||). Formally T; ||T; =
(Sl X SQ, —, V(Sl, 52)) where

o (S1 X S3) ={(s4,51)|s: € S1 A s €Ss}
o V(S1,52) =V (S1)NV(S,y)
e — defined by the following rules:
— If (51 =1 7) A (59 5 B) then (s, 55) = (7 x B)(s!, s5) where

TR Dn) = {0; (ifs1 =1 Asy %)then(sl, 52) 72 '

2 Preliminaries - Probabilistic Transition Systems 19

2.3 Specification Formalism

The two main approaches for specifying properties are described in this section.
We state the syntax and semantics of the Probabilistic Computational Tree Logic
(PCTL, [25]) and also describe a model-based specification formalism.

2.3.1 Logic-based Specification

In specifying the property to be verified in the model, the formula for the property
is often stated in some logic. Branching time logics such as Computational Tree
Logic(CTL) [Clarke & Emerson] allow quantification over the possible futures
which leads to a formula stating eg. the existence or non-existence of an execution
with a certain property. CTL distinguishes between state and path formulas.
The states formulas subsume the propositional connectives and basic temporal
operators of the form ” a path quantifier followed by a single temporal modality”
where the path quantifiers are V and 3 that range over all paths. We omit the
syntax and semantics of CTL.

[Hansson & Jonsson| considered systems modelled by discrete markov chains and
introduced the logics of Probabilistic Computational Tree Logic (PCTL), that can
express quantitative bounds on the probability of system evolutions. This logic
can thus be used to reason about the reliability and performance of systems. It is
obtained by adding to the branching time logic CTL, the probabilistic operator
[]5p such that the formula [¢]5, is true at a given point of the system evolution,
if starting from that point, the probability that a future evolution satisfies ¢
is at least (most) p. PCTL allows one to express quantitative properties of
probabilistic processes such as ’ the system terminates with probability of at
least 0.75". Tt also distinguishes between state and path formulas. PCTL contains
atomic propositions and operators:next-step X and until U. The operators are
used in connection with an interval of probabilities.

[Bianco & Alfaro] extend the logics of PCTL to systems in which nondeterminism
and probabilistic behavior co-exist. Due to the presence of nondeterminism, it is
not possible, in general, to talk about the probability with which a formula is sat-
isfied but only about the lower and upper bounds of such probability. Therefore,
the formula [p]5, is true at a given point of the system evolution if the system
evolution starting from that point satisfies ¢ with a probability bounded from
below(above) by p.

The logic we could be work with, is essentially this Probabilistic Computational
Tree Logic PCTL over PTSs. However in our verification process, where we only
seek to establish the properties that are of the type of probabilistic reachability,
these formulas only specify a quantification over path: a path or all paths. This

2 Preliminaries - Specification Formalism 20

is a fragment of PCTL as some of the assumptions we specify do not hold on all
PCTL. Below we present the syntax and semantics of this PCTL over PTSs.

Syntax : We distinguish between two classes of formula: the class of state formu-
las(whose truth values are evaluated on the states, state) and the class of sequence
formulas(whose truth values are evaluated on infinite sequence of states,path).
The classes state and path are defined as follow:

P C state
o, p € state = ¢ A p, ¢ € state
¢ € path = A¢p, E¢, [¢]|5p € state
¢ € state = ¢ € path
¢, € state —> 0o, 0P, ¢ Up € path

where p € [0,1] and 3 is either > or >.

Semantics : For a formula ¢ € state, indicate with s |= ¢ its satisfaction on state
s € S, and for ¢ € path indicate with o |= ¢ its satisfaction on the infinite state
sequence path o. The semantics of the logical connectives and of the temporal
operators are defined in the usual way; the semantics of A, E, []5, are defined as
follows:

s = A¢ iff Vo € s-path. o = ¢

s k= B¢ iff 3o € spath. o = ¢
5 I [0lsy iff infimum({o € s-pathlo k= 6})s,
5 I [8ley iff supremum({o € s-pathlo = 6})<,

If s = [¢]>p, it means that regardless of the choices made in a nondeterministic
state, the probability that the future evolution satisfies ¢ is at least p (and also
for s = [¢]<p). A formula ¢ € state is satisfied by a rooted PTS S, written S |= ¢

if s, = ¢.

2 Preliminaries - Specification Formalism 21

2.3.2 Model-based Specification

We use a transition system based specification in this thesis.Our representation
of the specification is a model, which can be explicitly translated into the Prob-
abilistic Modal Logic of Larsen et al [|. We are interested in a restricted class
of reachability properties, and hence interested in particular sequences of execu-
tion that lead to certain final states. These properties allow us to specify that
the probability of reaching a particular final condition ¢ from any reachable
state satisfying a given initial condition ¢; is smaller (or greater) than a given
probability p. To minimize the complexity of the sequences possible, we later in
Chapter ??, introduce a model (Blocking PTS) which is a type of a PTS which
well describes the reachable properties we work with.

2.4 Equivalences and Preorders

Simulation(C) and bisimulation relations (~) have been widely considered([31]
[41]) to compare the stepwise behavior of states in transition systems. Bisimula-
tion relations are equivalences(these are reflexive, symmetric and transitive) such
that two bisimular states exhibit identical stepwise behavior. On the contrary,
simulation relations are preorders (these are reflexive and transitive) on the state
space such that if s C §' (s’ simulates s) state s can mimic all stepwise behavior
of s; the converse, that is s’ C s, is not guaranteed, so state s’ may perform steps
that can not be matched by s. Thus if s T s', then every successor of s has a
corresponding, related successor of s', but the reverse does not necessarily hold.
Simulation can be lifted to the entire transition systems by comparing (accord-
ing to C) their initial states. Simulation relations are often used for verification
purposes to show that one system correctly implements another, more abstract
system.

Bisimulation relations possess the strong preserwvation property whereas simu-
lation has weak preservation. Strong preservation means if s ~ s’, then for all
formulas ¢, it follows s = ¢ if f s' = ¢. This property holds, for instance, for
CTL and strong bisimulation ([13]). The use of simulation relies on the preser-
vation of certain classes of formulas, not for all formulas (such as for ~). For
instance, if s C s’ then all safety formulas ¢, it follows that s’ = ¢ implies s | ¢.
However, the converse s £ ¢, cannot be used to deduce that ¢ does not hold in
the simulated state s; hence the name weak preservation.

Simulation relations are the basis for abstraction techniques where the basic idea
is to replace the large system to be verified by a small abstract model and to
model check the abstract system. ([4])

2 Preliminaries - Equivalences and Preorders 22

In this section, we state the definitions for the bisimulation and simulation rela-
tions for a labelled transition system and then extend them to the probabilistic
case.

Given a labelled transition system (LTS) as a tuple (S, A, —) where S is a set of
states, A is a set of actions and —C S x A x S the transition relation, we define
R C S x S as a binary relation over S and R™' = {(s',s)|(s, s} € R} for the
inverse of R.

Definition 6 Let (S, A, —) be a LTS and let R C S x S be a relation. Then:
1. R is a simulation if for every (si,s0) € R and a € A, whenever s, — s},
then there is a sb such that sy, — sb and (s}, s, € R).
2. R is a bismulation if both R and R™' are simulations.

For any LTS there is a maximal simulation(a preorder), < and bisimulation(an
equivalence), ~. The following states a connection between < and ~.

Theorem 1 Let (S, A,—) be a LTS, with s, sq,s3 € S. Then:

1. If s1 ~ s9 and sy < s3, then s; < s3.

2. If s1 < so and sy ~ s3, then s; < s3.
Extending the notion of simulation to two LTSs, T} = (Si, A;, —1) and Ty =
(Sa, Ay, —9), we say T} < Ty if their initial states s; < ss.

With this background, we extend this equivalence and preorder to the case of
Probabilistic Transition Systems. We examine the concept of Probabilistic Sim-
ulation between two PTS models and its associated states and distributions.

Definition 7 Let S; and S, be finite sets, such that R C Sy x So, and u, €
7(S1), p2 € m(S2). A weight function for py, pa with respect to R is a function
§:S1 x Sy — [0,1] which satisfies

1. For all (s1 € S1) : Es,e5,0(81, 52) = p1(s1)
2. For all (sg € S3) : X5,e5,0(81, S2) = H2(s2)
3. If §(s1, 82) > 0 then (s1,82) € R

2 Preliminaries - Equivalences and Preorders 23

R an equivalence relation, is a bisimulation if and only if for all (s, s:) € R:
whenever (s, s2) € R and s; = i1 then there exists a transition s =, to and a
weight function for (pq, 1o) with respect to R. Intuitively the weight function 0,
show how to split the probability distributions p; and s on sy, so € S, see Figure
2.5, so that the relation is preserved. For simulation, the requirement that R is
an equivalence relation is dropped (if and not if and only if). We write u; Cr po
if there exists a weight function between pi, 1o with respect to R. Also s; Cr so
if whenever s; — (1 then sg N to With pqy Cr pa.

Figure 2.5: Weight Function, s Cp t

Definition 8 A simulation between a rooted PTS Ty = (Sy, —1, V1, s4) and Ty =
(Sa, —>o, Vo, 82) is a subset R of S1 x Sy such that

1. (si,s3) €R

2. whenever (s1,52) € R and s, = i1 then there exists a transition s, =, Jho
and a weight function & for (ui, pe) with respect to R i.e. 1 Cr pro.

We say s is simulated by so(denoted by s1 T s9) iff there exists a simulation that
contains (s1, s2). Consequently, Ty T Ty if the above conditions hold.

2 Preliminaries - Equivalences and Preorders 24

—
Chapter

Computing The Simulation Preorder

3.1 Introduction

In using abstractions in verification, we need to establish what a good abstract
is. As stated previously, we use the simulation preorder to guarantee this. In this
chapter, we describe how to establish that two PTSs probabilistically simulate
each other. We introduce a mathematical problem and use its solution to compute
the simulation preorder relation.

By the definition of simulation over PTSs (Definition 8), finding the relation
R =5 x 5" is the key point of determining whether one PTS simulate the other.
The basic algorithm for computing the simulation relation ([16]) is as follows:

R:=S5 xS,
While there exists (s, s') € R with siZs" do

R := R\{(s,s")}
Return R.

Figure 3.1: The Basic Schema for computing the Simulation Preorder.

In PTSs though, the task of checking s Cp s’ (simulation by state), extends to
checking u Cg i (simulation by distribution) as in the definition. In checking
i Cg 1/, a network-based technique is used. The algorithm for computing the
simulation relation between two PTSs, basically tests if a weight function, for
distributions u, u' with respect to a given relation R, exists. The problem of
finding a weight function is reduced to a maximum flow problem in networks.

In the next section we introduce the concept of networks and flows in them, an
how the value of flow is computed in these networks.

25

3.2 Networks and Flow

A network is a tuple N = (N, E, 1, T,¢) where (N, E) is a finite directed graph
(i.e Nis a set of nodes, E C N x N a set of edges) with two specified nodes | (the
source:s) and T (the sink:t) and a capacity c. cis a function which assigns to each
edge e = (u,v) € E a non-negative number c(e). c(e) : E — Rx,.

A flow function f for N is a function which assigns to edge e a real number
f(e) such that 0 < f(e) < c(e) for all edges e.

Let in(v) be the set of incoming edges to node v and out(v)the set of outgoing
edges from node v. Then for each node v € N \ {1, T}:

Yo fle=) fle)

ecin(v) e€out(v)
Definition 9 Flow. A flow is a function f : E — R satisfying the following

(1) Capacity Constraint: f(u, v) < c(u, v), ¥(u, v)
(2) Skew Symmetry: f(u, v) = - f(u, v) ,V(u, v) € E
(3) Flow Conservation: S,en f(u, v) = 0 ; Vu € N - {s,t}

The value of a flow f is |f| = Z,enf(s,v).

The excess of a node (v) is

excess(v) = Eecin(w) f(€) - Lecout(w) f(€)

The mazimum flow in N is the suprenum (maximum) of the value of flow in
the network where f is a flow function in N

3.3 Maximum Flow Problem

Given a network (N, E, 1, T, c), find a flow of maximum value from source(L)
to sink(T) i.e. determine a flow f for which |f| is maximum.

Finding this maximum flow in a network is achieved by adjusting the flow and
capacities on the edges until they are stable. From the definition of the flow
function, we assign flows to the edges based on their capacities. We present this
on the edges as capacity/ flow, Figure 3.2. The flows into a node(except for the
source and sink nodes) must be equal to the flows out of it. Consequently, the
excess of nodes is 0.

3 Computing The Simulation Preorder - Networks and Flow 26

Figure 3.2: A Network with Maximum Flow of 1

Residual Networks

Let N be a network with a flow f. For any (u,v) € E, the residual capacity of
(u,v) is ¢f(u,v) = ¢(u,v) — f(u,v). The residual graph of G = (N, E) induced
by f is

Gy = (NvEf)
where
Er={(u,v) € N | ¢s(u,v) > 0}

The flow f also gives rise to the residual flow network Ny = (G, ¢y, s,t) where
ér(u,v) = cf(u,v) for (u,v) € Ey and 0 otherwise(i.e. for (u,v) € E — Ey).

Given a graph G = (N, E) and a flow f. An augmenting path m is a simple
path from s to ¢ in the residual graph, Gy, induced by flow f. Every edge in
G s has positive capacity. The maximum amount of net flow that can flow along
edges of 7 is called the residual capacity of

cr(m) = min{cs(u,v) | (u,v) is on 7w}
For every edge e = (u,v) in G there are up to two edges e’ and " in G

1. If cap(e) < f(e), € = (u,v) € Gy,r(e') = cap(e) — f(e)
2. If f(e) >0, ¢" = (v,u) € Gy, r(e") = fle)
3. If c(e) = f(e), €' = (v,u) € Gy, r(e") = c(e)

Lemma Fix F= (G, ¢, s, t), with flow f, and augmenting path 7 in G , define

3 Computing The Simulation Preorder - Maximum Flow Problem 27

fle)+cp ifeem
fr(u,v) =< fle) —cp; ife’ €

0; otherwise

The generic algorithms for calculating maximum flow are based on general graphs.
Some examples are the Ford-Fulkerson Algorithm, Dinic’s Algorithm, and the
First-In First-Out(F1FO) Preorder Push Algorithm. Modifications have been
made to adapt these algorithms to bipartite graphs, which is more useful in our
case. When the probabilistic simulation problem is reduced to the maximum flow
problem, a network A" = ((N, E), L, T,c) is established. G = (N, E) is actually
a bipartite graph, written G = (X UY, F). We implement an improved version
of the Ford-Fulkerson Algorithm for bipartite graphs. This improved algorithm
performs at O(p*) where p = max {| X |,| Y |}.

The Ford-Fulkerson Algorithm

Given a network (G, s,t), with source and sink nodes, s and ¢ respectively,

1. Initialize flow f to 0

2. While there exists an augmenting path 7 in G
Do augment flow f along 7

3. Return f

Given the graph G with special nodes s and t as source and sink nodes, respec-
tively, the algorithm starts with zero flows f(e) = 0 for all edges e. It then
constructs the residual network G . In this residual network, it checks whether
t can be reached from s. If there is an augmenting path, then this is possible. If
not it stops else flow is adjusted along the augmenting path and it iterates. The
value of flow obtained when there is no augmenting path, has been found to be
the Maximum Flow of the network.

3.4 Probabilistic Simulation and Maximum Flow

We now show how the problem of computing the probabilistic simulation(y Cp
1'), is reduced to that of The Maximum Flow Problem.

3 Computing The Simulation Preorder - Probabilistic Simulation and Maximu28
Flow

For each transition s = ju, let C'hild, (1) C S is a set of states, whose elements
are distributed by p, for instance, in Figure 3.4 C'hildy, o (1) = (51, S2, 53). Given
the preorder relation R C S x S, s = p and s 3, p/, where p € Dist(S),
i € Dist(S"). Choose L, T such that L = s, T = s'. We derive a network A/
(N,E, 1, T,c) or N(u, i/, R) such that

N = {L, TYU{Child, o(11) U Childy o (')}

E = {(s,5) : (s,8") € R}U{(L,s) : s € Childso(p)} U{(s',T) : ¢ €
Childy o (1)}

c(L,s) = p(s),e(s,T)=p(s),c(s,t') =1
Lemma: The following are equivalent

1. There exists a weight function 0 for (p, ') with respect to R

2. The maximum flow in N (u, ¢/, R) is 1.

The algorithm that computes the maximum flow in the probabilistic simulation
induced network N, is given in Figure 3.3.

Input : A nonempty, finite set S, distribution u, ' € Distr(S)and R C S x S
Output : If 4 Cp y' € then ”Yes”

else "No”

Method :

Construct the network N (u, i', R);
Compute the maximum flow F in N (p, i/, R);

If F <1 then return then ”No”
else ”Yes”

Figure 3.3: The Test for u Cp 4.

As an example consider the PTSs in Figure 3.4. In order to check whether p’ sim-
ulates p, with relation R = {(s1,t1), (s2,%1), (S2,t2), (s3,12), ...} we can establish
a network for each state, as shown in Figure 3.2.

Example: Applying the algorithm for computing the probabilistic simulation
relation R for two given PTSs, T and 7" in Figure 3.4. We start with the relation
R containing the pairs:

3 Computing The Simulation Preorder - Probabilistic Simulation and Maximu2f
Flow

- (SﬂatO)a (307t3)7 (837t2)7 (857t3)7

- (si,t;), where (i =1,2,4,6,...,9) and (j =0,...,4)

Ve \ >~ \0.5
0257 025 05)
\ N
N 0.25% S
N -
\ 27028

! -~ 05
H@\

@ 5/ d.\45

Figure 3.4: An example of a PTS

Intuitively, there are some pairs which are not in the initial R, such as (ss, o)
because the action set over (s5) ¢ the action set over(ty), ({v} € {a}).

The pair (s, t3), (s3,t2) are also removed from the set R during the investigation.
For (sg,t3), Distr(so, &) = { sy, sy, o} and Distr(ts, o) = {4, }, and as u L pu,
then sq [ZR t3. For (s3,t3) the computed maximum flow is 0.85, which implies
s3 Zgr ta. Although the pair (sg,tp) is still in R in the initial investigation as
Distr(sg,) = { sy, thsq, it} and Distr(ty,) = {'} , it is later removed, because
after the pair (s3,1s) is removed from R, its maximum flow of (u, ') is adjusted
and is less than 1. Finally, we get the relation R containing the pairs:

- (857 t3)7

- (si,t;), where (i =1,2,4,6,...,9) and (j =0, ...,4)

Putting it all together, we now present the algorithm that computes the proba-
bilistic simulation relation between two given PTSs.

3 Computing The Simulation Preorder - Probabilistic Simulation and Maximu3f
Flow

Initialization:

R:={(s,s") € S xS :acts(s) C act(s')}

For all (s,s") € R and s — p do Simsap)(s') := Stepsa(s’))
Iteration:

Repeat: ;
Ryyg =R;R:=0
For all (s,s') € Ryq do
e sim = true;
e For all s — u do

Repeat:
choose some i’ € Sims q,,)(5');

If 4 Cp p' then remove p' from Simsa,) (5');
until Sims q,)(s') =0 or pu Cg s
If Sims.a,(s") = 0 then sim := false;
e If —sim then R:= RU{(s,s")};

until R,y = R;

Output: Return R.

Figure 3.5: Basis algorithm for computing the Simulation Preorder.

3 Computing The Simulation Preorder - Probabilistic Simulation and Maximuht
Flow

| 4
Chapter

General Methods for Compositionality &
Abstraction

Frege’s Principle of compositionality: The meaning of the whole is a function of
the meaning of the parts.

Abstraction is one of the most useful ways to fight the state explosion problem.
They should however preserve the properties of interest such that properties
that hold for the abstract system should hold for the concrete model. Model
abstraction reduces the number of states necessary to perform formal verification
while maintaining the functionality of the original model with respect to the
specification to be verified . As a result model abstraction enables large designs to
be formally verified. The resulting abstract models can replace the original model
for formal verification provided that each of the abstractions is homomorphic to
the corresponding part of the original model that it replaces with respect to the
specification to be verified([34])

Model Checks M = ¢, can be abstracted by simplifying the model M ([17]), the
property, ¢ ([26]), or the satisfaction relation, = .

Model partitioning takes a portion of a model and replaces it with an abstract
model. E.g. if a portion of a model does not affect (i.e. is independent from)
the rest of the model with respect to the properties to be verified, it may be
advantageous to abstract that portion of the model away.

4.1 Compositional Abstraction

In this section we describe work that uses the concepts of compositionality and
abstraction to break down and localize abstraction to the individual processes

32

of a system that synchronize for the total behavior of the system. In our pre-
vious work, we used this approach to help minimize the state space explored
during model checking and also developed a tool called CAPS (acronymed from
Compositional Abstraction by Probabilistic Simulation).

Given the model checking problem:
Ci|Cof| G| [|Cn = € (4.1)

where C, (5, Cs, ..., C,, are components of an asynchronous parallel system. We
replace this equation with

Ar[|As|| Al Nl Ak = € (4.2)

where

Ay --- A are abstract components satisfying
Cy||...||Cs, E Ay
Ciy+1]]--ICi, E Az

Cir_y41[.-[[Cn T Ay
This result was upheld provided that C satisfied the following properties :

(Precongruence) C C A = C||RC A|R
(Property Preservation) (AF(ACCEA) —= CEE

We used the probabilistic simulation preorder [44],[29] as the relation which must
hold between the original component and the abstraction. We chose the prob-
abilistic extension of the simulation preorder, and not an equivalence relation
such as bisimulation, because it permits a smaller model being obtained or in
the worst case an equal model. Bisimulation forces a strict equivalence which
will often not be of much help in an abstraction. This method of abstraction to
minimize the model can only be used in the model checking, if the probabilistic
simulation preorder has been established. If for all the components of a model,
an abstraction can be found for each component, in such a way that each com-
ponent is probabilistically simulated by its abstraction, we can then substitute
these abstractions for the components and proceed with model checking. Conse-
quently, we avoid the explicit construction and exploration of the state space of
the original model with significant savings on time and space.

4 General Methods for Compositionality & Abstraction - Compositional 33
Abstraction

4.2 Partitioning

Model partitioning techniques reduce the state space by grouping several states
into the same abstract state (i.e. partition) and by removing parts of the model
not related to the specification to be verified. The abstractions considered are
usually obtained by successive refinement , starting from an initial coarse parti-
tioning of the state space, derived from the property under study. If the analysis
of this abstract PTS allows to conclude that the property is satisfied by the con-
crete PTS, the verification process is finished. Otherwise a partition refinement
step is performed in order to obtain more precise information. The process is
iterated up to success or until all classes of the partition are stable. If the latter
occurs, it can conclude that the property is false and extract a counter-example
path, ([20]). In Section 2.2.1, we described how the maximum and minimum
probabilities of reaching a final condition(¢; or state) from an initial condition
(¢; or state) are obtained. This section is based on work done by Pedro D’Argenio
et al ([20]) and their approach in obtaining good abstractions by partitioning.

Lets denote the sets of states satisfying ¢; and ¢; by I and F' respectively. If
s € F then F™™/(f)(s) = F**P(f)(s) = 1, that is the state s is in (satisfies) the
final condition. If s € F then

FmI(f)(s) = mingsm) Yoges m(s') - f(s) and
Fr(f)(s) = maz(som e m(s') - ()

In (]20]), the equations are transformed into a linear optimization problem which
is solved by linear programming.

A partition is induced by an equivalent relation. We now define an equivalence
relation based on simulation.

Definition 10 Let (S, —, V) be a probabilistic transition system. Let C' C SxS
be a relation on states defining a discrimination criterion. R is a C'- probabilistic
simulation if, whenever sRt,

1. (s,t) € C, and

2. ifs — m, and t —> p and there exist § € Distr(S x S) such that for all
s,t €S,
(a) 7(s) = (s, 5)
(b) p(t) =6(S,1), and
(c) sRt whenever §(s,t) > 0.

4 General Methods for Compositionality & Abstraction - Partitioning 34

We say that ¢t C-simulates s, notation s <¢ t if there is a C-simulation R such
that sRt.

Our interest is to check when a PTS reaches a goal ¢, starting from any state
satisfying some initial condition ¢. Let Cy, 4. be the discriminating condition
defined by

(5,1) € Cppy = (sEdp &t ¢p) and (s = ¢ &t ¢).

Our main purpose is to answer the question whether the probability of eventually
reaching the final condition f from any state satisfying a given initial condition i
is smaller than a given value p € [0,1]. C' is an equivalence relation. The next

theorem states that if a PTS T, satisfies this property, and another PTS T is
C-simulate by T,, then T also satisfies the property.

Theorem 2 Let (T}, s}) and (T, s3) be two rooted PTSs, such that none of them
has a sink node and let Cy, 4, be the discriminating condition as defined. Then

1. (Th, 55) =c (T, s5) implies P;f’sé(@,d)f) < PQTZ?S%(@,@) and

2. P;fij; (¢i P5) > P;;J;z(@ﬁf)-

1
0 0

A PTS can be abstracted by partitioning its state space, and any such partition
will induce an abstract PTS which should simulate the original (concrete) one.
See Theorem 4. Consequently, the abstract model will satisfy the same reacha-
bility properties as the original model. The minimum and maximum properties
is preserved by the abstract system, and establish its limits (bounds).

Theorem 3 Let A= {Ay, -, A} be a partitioning of the finite set of states S
of a PTS T, then the following holds:

1. A; CS
2. AiﬂAj =0 (i #7)
3. Ui:l...k{Ai} =5

Definition 11 Let T be a PTS and A = {A;,--- , A} be a partitioning of the
states of T. Then the partitioned PTS T/A = (A, — 4, fa) where

1. A is its finite set of states,

2. — 4 transitions: A = TI iff there exists s € A with s = 7 and TI(A") =

ZS’EA’ W(S,)

4 General Methods for Compositionality & Abstraction - Partitioning 35

3. fA = /\seAf(s) .

For a rooted PTS (T, sg), the partitioned PTS (T, s¢)/A = (T/A, A;) provided
so € A; € A. This means that the partition that contains the initial state of the
PTS T, becomes the initial state (partition) of the partitioned PTS.

Theorem 4 For a PTS T and its partitioned self (T'/A), T T T/A.

As an example, consider a coin being tossed to play out the throw of a die. Refer
to Figure 4.1. To throw a ”"two”, the toss sequence of the coin will be a head,
tail and finally a head. An interesting property to verify in this model will be
finding out the probability of throwing a particular number, say a "siz”. i.e.
the probability of reaching a ”siz” in three successive coin tosses, (the sequence
Tail, Tail, Head). By PCTL logic, we obtain the minimum and maximum prob-
abilities for the final condition f € PF (propositional formulas) from an initial
condition i € PF, as a siz from coin (sq, the initial state), for the die will be
obtained as

znf M oA sup 9 o).
P (80, "siz”); PO (80, "siz”);

————

\ =P
V<) N\ e o

N
< 05N4le o
e

\\

\\\ 0.5 N "000
5 _——"T]eoe

N 0.5

Figure 4.1: A fair coin toss as a die thrown

We obtain a coarse partition on the state of the die (D), based on the reachability
property of interest, obtaining a ”"siz”. In Figure 4.3, we present an intuitive
abstraction which is an illustration of the partitioned PTS, where the states are
infact independent partitions. This is a significant reduction in the states, from
13 to 6 states, to be exponentially explored. We first show which states is put in
one partition, by enclosing these in the dotted square box.

4 General Methods for Compositionality & Abstraction - Partitioning 36

N
N T Ple e }
05" N ..
AN 0.5 /‘ RN \
e ~ |
o 05 ~ale o] |
N | e o |
SN Lo oo __ —___ 1
N 0.5 . o
AN
05 \\ _ ////y' o e
S 0.5
- /
\\\‘\“///
Figure 4.2: Partitioning the dice model
1
0;@
(o —
\\ 0_5//
0.5 s
\\
\
\\ 0.5 \4®\r "000
0.5 g sas
e 0.5
S~ 7

Figure 4.3: An abstraction of the coin toss
4.3 The Quotient Method

In this section we discuss the quotient technique, first introduced by Kim G.
Larsen in his PhD thesis [38], which is a promising technique for avoiding the state
explosion problem in model checking. It has been studied within the last decade
and has been proven to be successful for finite-state systems and real-time systems
[3, 35]. Our aim is to extend the method for probabilistic systems. Consider the
following model checking problem involving a system with n processes in parallel:

Al TAR F @ (4.3)

4 General Methods for Compositionality & Abstraction - The Quotient MethdT

where parameters of components, parallel composition (][), specification formal-
ism and the satisfaction relation in (4.3) may be instantiated as follows:

1. Component Type

e Finite State System F'S = (S, —), where S is a finite set of states and
—C S x Act x S is a transition relation.

e Timed Automata TA = (L, ly, E, Label, C, clocks, guards, inv), where
L is a finite set of locations with an initial location lg; F C L x L is a
set of edges; Label : L — 247 a function that assigns to each location,
a set of Label(l) of atomic propositions; C' is a finite set of clocks;
clocks : E — 2°¢ a function that assigns a set of clocks, clocks(e) to
each edge; guard : E — ¥(C) a function that labels each edge, with a
clock constraint guard(e) and inv : L — ¥(C') a function that assigns
to each location an invariant.

e Probabilistic Transition System PTS = (S, —, V), where S is a finite
set of states, =C S x Act x Dist(S), is a finite transition relation,
where Dist(S) is distribution over states S,

2. Parallel Composition
e Interleaving
P p Q=Q
PIQ=PQ " PlQ—P|Q’

e Synchronization

PP Q—Q

(0]
PllQ—P'[|Q
e Mixed Synchronization
PP Q—=q -
(0] (0]
PllQ=PlQ ~ PlQ—P||Q

PP Q—Q
PlllQ—=P'|||Q’

where P,Q, P',@Q' can be one kind of the components in (1); (|),(||) and
(|]]) respectively present an interleaving, a synchronous and a mixed syn-
chronous parallel composition.

4 General Methods for Compositionality & Abstraction - The Quotient Meth@8

3. Specification Formalism

e Logic, where the specification formalism is presented in terms of a
logic, such as Hennessy Milner Logic, CTL, TCTL, PCTL, normally
denoted by ¢, ¢, ...

e Model, where the specification is presented by a model, such as Fi-
nite State, Timed Automata, Markov Chain or Labelled Transition
Systems, normally denoted by A, P, T.

4. Satisfactionality Relation (I-)

e For the logic, it is a logic satisfaction, denoted by ().

e For the model, it could be a simulation preorder (<, >), probabilistic
simulation preorder (CZ,) or a bisimulation equivalance (~).

In the model checking equation, (4.3), we wish to verify that the parallel compo-
sition of those systems satisfies ¢ without having to construct the complete state
space of Ay][...][A,. We will avoid this complete construction by removing the
component A; one by one from the parallel system, while simultaneously trans-
forming the formula accordingly. Thus, when factoring out the component A,
we will transform the formula ¢ into the quotient formula ¢/A,, such that:

(A]]...]TAn) F ¢ if and only if (Ay][...][An-1) F ¢/An

However, while repeatedly applying quotienting, another problem arises: the
state explosion now occurs in the size of the quotient formula. Therefore the idea
behind the Quotient Technique is that each quotienting should be followed by a
simplification heuristic, such as minimization method, which will be discussed in
the next chapter. We consequently obtain a combined process of quotienting and
minimizing as:

(Av][-.1TAn) F @ if and only if (A][...][An—1) F (¢/An)*

By repeatedly applying quotient and simplifying the problem we finally achieve
the following clause:

(A]]..1TAn) F @ if and only if ® - ((((9/An)*)/An_1)*/ ... [A1)?

where ® is the unit with respect to parallel composition.

In our thesis, we are interested in applying the quotient method for a model
specification such as finite-state or PTS specification rather than a logical speci-
fication. For this reason, we henceforth investigate the quotient technique for the
following concrete model checking equation:

4 General Methods for Compositionality & Abstraction - The Quotient Methd9

Al][A, F B
where,

e Components A;, B are FSs, and the satisfaction relation (I-) is simulation
preorder (<, >) in case of finite-state systems or,

e Components A;, B are PTSs, and the satisfaction relation (F) is probabilis-
tic simulation preorder (C,) in case of probabilistic systems.

We now restate that the purpose of the quotient technique is to try to avoid
the state-explosion problem in parallel systems by factoring out components,
one at a time while simultaneously transforming the specification accordingly for
the whole system and thereafter applying simplification heuristic repeatedly for
each quotienting. In this thesis we discuss the quotient technique for finite-state
systems by adapting the equation solving method proposed by Larsen and Xinxin
[47] and extend the methods for the probabilistic labelled transition systems.

4.3.1 Special Subclasses

In this project we focus on applying the quotient technique for special subclasses
of model checking. The aim is to answer the question when a parallel composition
simulates (>,) oris simulated (=X, C) by a model specification without having
to construct the complete state space by using the quotient technique in finite-
state systems and probabilistic systems. Consider the concrete model checking
(inequation):

AN[1[A, = B

where < is either (=, J) or (X, E).
Let X,, = B, by applying the quotient technique we might obtain the following
set of equivalent equations:

A4, =X,
iff A1-| [] |-An—1 > Xn/An = Xn—l

iff Ay NXQ/AQ =X,

4 General Methods for Compositionality & Abstraction - The Quotient Methotl

iff ® <1 Xy /A = X,

where ® is the unit with respect to parallel composition.

Now clearly, if for each ¢ € 1..n the quotient (X;/A;) = X; ; is the small-
est/largest, respectively for (>,) and (X, L), with respect to (probabilistic)
simulation preorder, we have succeeded in ”quotient” solving the problem. More
precisely, we give the following:

Corollary 1 Given component A and specification B, the existence of quotients
is a construct B/A such that for all X the following holds:

Al[X =B iff X =1 B/A

Intuitively, the main problem now is that given a model specification B and a
component A we wish to find the largest/smallest X such that A][X < B. In the
next sections we discuss the quotient technique applied to finite-state systems.
The quotient technique for probabilistic systems is discussed in Chapter 7

4 General Methods for Compositionality & Abstraction - The Quotient Methotl

Chapter O
Chapter

Methods for Finite State

In this chapter, we examine two main methods for finite states and in subsequent
chapters extend them to the probabilistic transition system.

5.1 Minimization

In this section, we introduce Orna Grumbergs work on Simulation based Mini-
mization ([16]). By this, we aim at being able to reduce (minimize) the structure
of a model, as an individual component or as a result of some parallel composition.

In her paper, Grumberg presents a minimization algorithm which receives a
Kripke structure, M and returns the smallest structure which is simulation equiv-
alent to M. The reduced structure is obtained is based on simulation equivalence.
Although bisimulation equivalence has the advantage of preserving more expres-
sive logics, it requires the abstract structure to be too similar to the original thus
allowing less powerful reductions.

5.1.1 Definitions and Theorems

Definition 12 Kripke Structure M over atomic proposition(AP), is a four
tuple M = (S, so, R, L) where

- S is a finite set of states;

- s9 € S is the initial state;

- R C S xS is the transition relation that must be total i.e., for every state s € S
there is a state s' € S such that R(s,s') and

42

- L:S — 247 s a function that labels each state with the set of atomic proposi-
tions true in that state.

Definition 13 The size |M| of a Kripke structure M is a pair (|S|,|R]). We say
that |M| < M| if S| < |S'] or || = |5 and |R| < |R]

In Figure 5.1, |[M*| < |M]| because although |S*| = |S|, |R*| < |R].

Figure 5.1: An example of a Kripke structure

Definition 14 Given two structures M = (S, so, R, L) and M' = (S', sj, R, L")
over AP, a relation H C S x S" is a simulation relation over M x M' iff the
following holds

. (80730)
V(s,s") € H L(s) = L’(") and
Vt (s,t) € R— 3[(s',t') € R A (t,t') € H]|.

We say that M’ simulates M (M < M’), see Figure 5.2, if there exists a simulation
relation H over M x M'.

Definition 15 Given two Kripke structures M, M', we say that M is simulation
equivalent to M' iff M < M' and M' < M.

A simulation relation H over M x M' is maximal iff for all simulation relations
H' over M x M', H C H.

Let M be a Kripke structure. The maxzimal simulation relation over M x M
always exists and is denoted by Hjy;.

5 Methods for Finite State - Minimization 43

Figure 5.2: Simulation of two Kripke structures

Definition 16 Two states si,s2 € M are simulation equivalent iff (s1,s9) €
HM and (82,51) € HM

Definition 17 A state sy is a little brother of a state sy iff there exists a state
s3 such that:

- (s3,52) € R and (s3,s1) € R

- (s1,82) € Hyr and (s9,51) ¢ Hyy
Definition 18 A Kripke Structure is reduced if:

1. There are no simulation equivalent states in M
2. There are no states sy, Sy such that sy is a little brother of s,
3. All states in M are reachable from sg

Theorem 5 Let M be a non-reduced Kripke structure, then there exists a reduced
Kripke structure M’ such that M, M' are simulation equivalent and |M'| < |M]|.

5 Methods for Finite State - Minimization 44

5.1.2 The Minimizing Algorithm

The algorithm receives a Kripke structure M, and computes a reduced Kripke
structure M’ which is simulation equivalent to M and |M'| < |M]|.

The algorithm consists of three steps. First, a quotient structure is constructed
to eliminate equivalent states. The resulting model is simulation equivalent to M
but may not be reduced. The next step disconnects little brothers and the final
step removes all unreachable states.

We state the Minimizing Algorithm, Figure 5.3 and then expand on each phase
of it.

STEP 1 Compute the V — quotient structure M, of M and the maximal simu-
lation relation Hj; over M, x M,

STEP 2 R, = Rq - {(81,82)|383 . (31,83) € Rq A (82,83) € HM}

STEP 3 Remove all unreachable states

Figure 5.3: The Minimizing Algorithm.

STEP1
In order to compute a simulation equivalent structure that contains no
equivalent states, we compute the V — quotient structure with respect to
the simulation equivalence relation.

Definition 19 The V — quotient structure M, =< Sy, Ry, Soq, Lg > of M
15 defined as follows:

— Sy s the set of the equivalent classes of the simulation equivalence.
— Rq = {(041,042)|VS1 € oq, ds, € 0[2.(51, 82) € R}
— S0q = [Soq]

~ Ly(ls) = L(s).

where [s] is the equivalence class which includes s.

The transitions in M, are V—transitions, in which there is a transition
between two equivalence classes iff every state of the one has a successor in
the other.

The output from this step is a structure with no equivalent states.

5 Methods for Finite State - Minimization 45

STEP2
The algorithm(See Figure 5.4) in this step iteratively disconnects little
brothers in the output from STEP 1.

change := true
while (change = true) do
Compute the maximal simulation relation H,

change := false

if there are sy, s9, s3 € S such that s; is a little brother of s, and s3 is the
father of both s; and s9
then change := true R = R\ {(s3, 1)}

endif

end

Figure 5.4: The Disconnecting Algorithm.

The output from this step has the same number of states as the input but
less transitions.

STEP3
This step removes all unreachable states from the initial state, from the
structure.

An example of the algorithm is illustrated in Figure 5.5. At the first step of the
algorithm, the maximal simulation relation on M (Side 1 of the Figure), and the
equivalent classes are:

H,, | Equivalent Classes

11, 2), | {{1},
11, 3), | {11},
(4,5), | {4},
(6,5), | {5},
(3, 2)
(8,7)

) {27 3}7
)) {77 8}7
(9, 10), (10, 9)} | {9, 10}}.

The equivalent classes, now are the states of the V — structure, Part 2. The
maximal simulation relation H), of this new structure is now { ({11},{2, 3}),

({4}, {5}), ({6}, {5 }) }-

5 Methods for Finite State - Minimization 46

7, 8} {9, 10}

Figure 5.5: An example of the Minimization Algorithm

The next step of the algorithm disconnects all little brothers. {11} is a little
brother of {2, 3} with {1} as their father. Hence we remove the edge ({1}, {11}).
The next and last step, outputs a reduced structure by removing all unreachable
states such as ({11}, {4}, and {6})

5.2 The Quotient Technique

In this section we discuss the quotient method for finite-state systems in the
specific case of parallel synchronization composition (||) and simulation preorder
satisfaction formalism (<). For each quotient step, we adapt the equation solving

5 Methods for Finite State - The Quotient Technique 47

method, proposed by Larsen and Xinxin [47], in order to find the largest quotient,
with respect to (<).

5.2.1 The Model, Satisfaction Formalism, Parallel Com-
position

Definition 20 A finite-state system is a tuple F'S = (S, so,—), where S is a
finite set of states, sy is the initial state and —C S x Act x S is a transition
relation.

Example 1 Consider the deterministic finite-state A and B in Figure 5.6. The
common set of actions is Act = {a, b, c,d}. Normally, a finite-state (i.e the finite-
state A) is presented as a term over actions. Example: a.(¢. NIL+d.NIL)+b.Nil
s the term corresponding to the left finite-state system of Figure 5.6. Often we
shall omit trailing occurrences of NIL and simply write a.(c + d) + b.

A B
qo po
a b a
ql q2 p1
C d c
P,
q3 q4

Figure 5.6: Two finite-state systems

Definition 21 A relation R C S x S is a simulation preorder if for all a € Act,
the following holds: whenever (p,q) € R

o ifp 59 then g% ¢ for some q s.t (p',q') €R
we write q simulates p, p =< q if (p,q) € R for some simulation preorder R

Obviously, there is a simulation relation R in Example 1, where
R ={(po,0), (p1, q1), (P2: 43)}-

5 Methods for Finite State - The Quotient Technique 48

Definition 22 Given two finite-states S; = (Si, 50}, —1), Sz = (S2, 502, —2).
Then the parallel composition is a finite-state system S = (S, sq, =), where
si||s2 € S whenever s; € Sy and sy, € Sy, 8o = So'[|s0?, and the — is given
by the following rule:

81%181I 82%282/
8
s1llsa—>s1"||s2!

Figure 5.7 shows the parallel composition of the two finite-state systems A and
B in Example 1.

AllB
Po

P1q;

p2 q3

Figure 5.7: The synch parallel composition

5.2.2 The Quotient Structure

Given two finite-state systems A and C' and a ”finite-state” specification B we
aim at constructing a specification B//A, called the quotient such that

A||C < Bif and only if C < B//A

The bi-implication indicates that we are factoring parts of the parallel system
into the specification. The quotient construction is defined as follows:

Definition 23 Let A and B be finite-state systems, where A = (S, so', —1)
and B = (Sy, 502, —2). The quotient B//A is the finite-state system (S; x Sy U
{T}, 50, —), where Va € Act. T % T, such that — satisfies the following rules:

o if A% then B//A S T.
o if A% and B%, then B//A S B'/ /A’

5 Methods for Finite State - The Quotient Technique 49

The next theorem proves that (//) is indeed a quotient.

Theorem 6 Whenever A € A, B € B and for all finite-state X the following
holds:

AllIX < B+— X <B//A
Proof: We first prove the implication (+—):
AX 2B X < BJ/A (1)

Let R = {(4|X, B) | X < B//A}
Clearly, ”+—" is solved if only if R is a simulation relation.
For all (A||X, B) € R, assume A||X &V

then A % A’ and X & X' with Y = 4’| X".
But X < B//Aand X & X'

then B % B’ with B//A % B'//A' hence X' < B'//A’.
Therefore, for all (A|| X, B) € R, we have:

AlX &5 A'||X', B2 B then (A'|| X', B') € R with X' < B'//A'".

Secondly proving the implication (—):
AllX =B — X < B//A(2)
Let R = {(X,B//A) | A||X < B}. Clearly, ”—" is solved if only if R is a

simulation relation.

For all (X, B//A) € R, assume B//A % Y, from Definition 23:

e If Y = T, then A %, since A||X < B then X % X'. Therefore both
B//A % T and X % X', definitely (X', T) € R with A'|| X' < B’

o IfY =DB'//A then (A% A", BS B,
but A||X < B then X % X', then A||X & A'|| X’ with A'||X' < B'.

Therefore, for all (X, B//A) € R, we have:
X % X', B//JA% B'//A then (X', B'//A") € R with A'|X' < B,

From (1) and (2), we have proved the Theorem 6.
X

Figure 5.8 illustrates the quotient structure of the two finite-state systems A and
B in Example 1.

5 Methods for Finite State - The Quotient Technique 50

A I (B/IA) < B

Po
a b a
q1 q2 pl
C, d c
P,
Q3 qA

Figure 5.8: The synch parallel composition

5.2.3 General Quotient Structure Algorithm

In the previous section, we discussed the method for constructing the quotient
structure in the case of parallel synchronization. However, in this section, we give
an algorithm that computes the quotient structure for deterministic and acyclic
systems, for all the cases of parallel composition, i.e. interleaving , synchroniza-
tion and mixed synchronization. In this case, the idea of solving a set of equations
([47]) is extended to set of inequations with the two main problems being:

1. Solutions are not always guaranteed to exist, for instance:
a.Nil][X < b.Nil

2. It is necessary to consider sets of inequations rather than just single in-
equations. For instance:

a.Nil][X < a.b.Nil + b.a.Nil
implies that the solution must satisfy the following inequation as well

Nil][X < b.Nil

Figure 5.9 shows the main part of the algorithm, that generates a quotient struc-
ture X from the initial inequation A][X < B. The idea is that the algorithm
starts with the initial set of inequation E = {A]|[X < B}. Thereafter, it iter-
atively checks all actions a, where A = A’ and B % B, if X & X’ such that
A|[X =< B by calling the function TransOK (a, E). If there exists such an ac-
tion a, the algorithm creates a new set of inequation by performing the function
Derive(a, E). A new set of inequation E’ is derived from E by simultaneously

5 Methods for Finite State - The Quotient Technique 51

transforming A, X and B with the same action a for all inequations in the set E.
Finally, the algorithm returns a structure from the derived inequation, which is
exactly the structure of the quotient X. Figure 5.10, 5.12, 5.11, 5.13 respectively
show the pseudo-code of the functions TransOK (a, E), Derive(a, E), Close(E)
and Consistent(E).

Function Solve(E: Inequation System): {N, U, Undef : Node}
If Consistent (E) then
Create New Node N;

If E = O then Return N = U;

Else for (Va e ")
If TransOK(a, E) then
E’:= Derive (a, E);
E'":= Close(E")
N’ := Solve(E");
If (N # Undef) then, Add a-edge N % N’

Else Return Undef;

Endfunction

Figure 5.9: The main function for computing the Quotient

5 Methods for Finite State - The Quotient Technique 52

Function: TransOK (a, E)

Purpose: This boolean subfunction checks for each inequation: A|[X < B € E,
if X is allowed to perform an action a such that A|[X < B. The function returns
true if all the inequations in E satisfy the above requirement.

Function TransOK (a, E) : boolean
Flag := true;
While (3'A][X < B’ € E) and (Flag= true) do

in case of:

1. interleaving :

e if B and A % A’ then Flag := false
2. synchronization :

e if B % and A% A’ then Flag := false
3. Mixed-Synch :

e for Va € Acts/Actp
if B 4% then Flag := false

e for Va € Act, N Actp
if B 4% and A % A’ then Flag := false

Endwhile
Return Flag ;

Endfunction

Figure 5.10: Function TransOK(a,E)

5 Methods for Finite State - The Quotient Technique 53

Function: Derive(a, E)
Purpose: This function returns an new inequation set. The new inequation is
derived from E with action a.

Function Derive (a, E)

E'={0};

for (VA|I[X X B €F)
If (A][aX' < B % A'][X' < B’') then
Add (A"[X" < B, E');

Return £’ ;

Endfunction

Figure 5.11: Function Derive(a,E)

Function: Close(FE)

Purpose: Add all inequations which can be derived, without involving X, from F
to the same inequation set, F, i.e. if (A][X < B) € F,suchthat A % A", B % B'
then add (A"|[X < B’) to E.

Function Close(E)

flag := true;
while (3'A|[X < B' € E) and (flag= true) do
flag = false;

for (Va €)’) do
if (3a.A"|[X <a.B' € E) then
Add(A"|[X < B',E)

flag := true;
endif
endwhile
return FE;
EndFunction

Figure 5.12: Function Close(E)

5 Methods for Finite State - The Quotient Technique 54

Function: Consistent(E)

Purpose: This function checks for each inequations "A|[X < B’ € E, with all
actions a € Act, if AJ[X % A'][X' then B % B'. The function returns true if
all the inequations all satisfy the above condition.

Function Consistent (E): Boolean
flag:= true;

While (3'A][X < B’ € E) and (flag= true) do

for (Va € Act)
If A][X % A'][X" and (B -)then flag:= false;

Endwhile

Return flag ;

Figure 5.13: Function Consistent(E)

We now consider an example as in the case of mixed synchronization (|||), see
Figure 5.14.

Example: Let), = {a, b} be the set of actions in finite-state A, and), = {b, c}
the set of actions allowed in finite-state X, with), = {a,b, ¢} for B.

The algorithm starts with an initial inequation in the set of inequation F =
{a.b.Nil|]||X =< a.b.c.Nil} and performs the Close(F) function to close the in-
equations in E. The algorithm is recursive and runs on itself till the inequation
set is empty or can no more be derived. Recall that X can only perform actions
{b, c}. In the first investigation, action c is not allowed by the inequations in the
set, Ey, therefore Ey can only be transformed by b to F;. In the next investiga-
tion by action b, it is easy to see that E5 is an empty set of inequations so that
the algorithm returns the universal state at that stages. However, it continues
checking F;, which can perform both actions b and c.

Along the derivation of the next set of inequations, the algorithm systematically
builds the quotient structure. Finally, the algorithm returns this structure as X,
which is based on the derived inequation systems, see X in Figure 5.14.

5 Methods for Finite State - The Quotient Technique 55

abo|x < abco

i Close(E)
EO

a.b.0 ||| XS a.b.cO0 11

b.o|| X < b.c.O (1.2)

b
X4b>X'
E, Y
ol X< ¢o (21

E ° c
2 X2y X XX g

- oI X< 0 @

Figure 5.14: An example of Mixed Synchronous Parallel Composition

In Figure 5.15, we can check the quotient X, which is found in Figure 5.14, is
the solution of A|||X < B.

A If X < B

po Uo pO

a b a

Ul

p p
1 b c 1

b u, Uy b

D .

P, u, Usg P,

C
Ps

Figure 5.15: An example of Mixed Synchronous Parallel Composition

5 Methods for Finite State - The Quotient Technique 56

Crapier O
Chapter

Minimization for PT'Ss

In this chapter we adapt the Minimization Algorithm to the Probabilistic Tran-
sition System (PTS) and aim at generating a reduced PTS structure by this
process. The input is a PTS and the output is a single PTS, with no equivalent
classes and hopefully smaller than the input.

The minimization achieved here is intended to be used as heuristic in the Quo-
tienting Technique to further reduce the size of the structure of the transformed
specification.

6.1 Probabilistic Transition Systems

From Definition 4 which gives a concise definition of a PTS, we begin by first
examining the differences between a PTS and a Kripke structure. We, however,
use as input, a Rooted Probabilistic Transition Systems (RPTSs), which is a PTS
with a specified initial state, so. Hence the tuple (S, so, =, V).

Given a Kripke structure M = (S, so, R, L) and a rooted PTS T = (S, s, —, V),
the differences are

- T has a finite set of states as M.

- the transition function of

-M:RCSxS,

- T: -C S x Act x Dist(S), is a finite transition relation, where Act is a
finite set of actions and Dist(S) is a finite distribution over the states

S.

- both have the same labelling function.

o7

The main challenge in considering PTSs is their transition function, which is
from states, by actions and onto distributions over states. Care must be taken in
making transitions when minimizing the structure.

6.1.1 The Size of a PTS structure

Let us now consider what the size of a PTS should be. We consider size in terms
of the number of states, actions, and distributions.

Theorem 7 For every transition out of a state by a unique action, there is one
and only one associated distribution. There are never more distributions than
states in a given PTS.

Definition 24 Let |T| denote the size of a PTST = (S,—r1,V). Then |T| is the
pair (|S|,| == |) where |S| is the number of states in T and |—r| is the number
of transition (induced distributions) in T.

Definition 25 Let |T| be the size of a PTS T. We say that |T| < |T'| if either
of the following holds:

1. 1S| < |5 or

2. S| = 15[A |=r| < [=7
where |—r| is the number of transitions in T, from each state.

As an example, the PTSs in Figure 6.1 below illustrate the first case where the
size of the PTS is determined by the number of states. Hence |T'| < |T”| because
S| < |9

In the next example, the PTSs in Figure 6.2 illustrate the second case where the
size of the PTS is determined by the number of distributions. Hence |T"| < |T"|
because |S| = |S'| and |—r| < | =7 |.

We now define what simulation equivalence means for a PTS structure and also
for a state in a PTS.

Definition 26 A simulation between two rooted PTSs T = (S,—,V,sy) and
T* = (S*, =%, V*, s5) is a subset R of S x S* such that

1. (so,55) € R

6 Minimization for PTSs - Probabilistic Transition Systems 58

“«(5 Os O O O

Figure 6.1: The Size of a PTS by number states

OO O O O O

Figure 6.2: The Size of a PTS by number of distributions

2. whenever (s,5*) € R and s > 11 then there exists a transition s* —* u* and
a weight function § for (p, u*) with respect to R i.e. p Cr p*.

We say s is simulated by s*(denoted by s T s*) iff there exists a simulation that
contains (s,s*). We say that s and s* are simulation equivalent (denoted by
s = s*)if (s C s*) and (s* C s). Consequently, T T T* if the above conditions
hold, and T = T* if the initial states are equivalent, i.e. sy = sj.

In Figure 6.3, the simulation relation will include the pairs (s, s7), (s7, 1) and
the trivial pairs. We can then conclude that s; = s7.

In constructing an equivalent class, all equivalent states belong to the same class,
such that it is the set of states defined by the equivalence relation on them. The
class that contains the initial state, sy, becomes the initial equivalent class of the
PTS. If there are no equivalent states, each state is then a unique class and every
equivalent class contains a single state.

6 Minimization for PTSs - Probabilistic Transition Systems 59

SO
a
13

13,71 T 13
S, S % S
a a
12" 127" N\ 112
CS O (5 S

13,

CS e

Figure 6.3: Simulation equivalence in a PTS

We now examine, the issue of a ”little brother” in the case of a PTS, over states
and distributions, which we denote by L. Here too, we assume a priority, first on
distributions and then by state.

Definition 27 1. Distribution-wise: m L mo if ds3, da, such that s3 LN
T, 83 —> Ty , with m Cg mo;m Lp ™.

2. State-wise: s L sq if sz, 3w, Ja, such that s3 —, 7(s1), 83 —>, T(s2) ,
with s1 C So; 89 [Z 51.

We illustrate this with an example, where we disconnect an edge, between states
because a distribution (Figure 6.4) or a state (Figure 6.5) is a little brother of
another.

From the ”distribution”-little brother elimination of Figure 6.4, it can be seen
that T = T* (because T'C T* and T* C T') whereas for the ” state”-little brother
elimination of Figure 6.5 only T = T* (and in general not 7* C T'). Theorem
8 clearly states this observation. Disconnecting little brothers by distribution,
guarantees this equivalence, although it might not be the smallest reduced struc-
ture. However disconnecting by states does not guarantee this equivalence. In
general, T T T* but T* Z T. In the example in Figure 6.5, this can be observed
in the pairs (t1,2o%), (t2,22F) € R and (t,F,%5) € R but not (2%,).

6 Minimization for PTSs - Probabilistic Transition Systems 60

té tZCS t oL O

Figure 6.4: Disconnecting Little Brother by distribution
Ts

a
LEtL, a

4
4

)
N

N LET ;\
AN @ Lt @ praj ™
SR 00

Figure 6.5: Disconnecting Little Brother by state

Definition 28 A PTS T is reduced if:

1. There are no simulation equivalent states in T

2. There are no distributions m, 7y such that m is a "little brother” of .
This is the main priority. ”Little brother” of states may be allowed.

3. All states in T are reachable from the initial state(class).

Theorem 8 For any PTS T there exists a reduced PTS T* such that T T T*
and T* T T by removing all "little-brother distributions”.

6 Minimization for PTSs - Probabilistic Transition Systems 61

6.2 The Probabilistic Minimizing Algorithm

There are three steps as in the original algorithm. Consideration must be given
to:
1. Building the V— quotient, by constructing the simulation classes.

2. Identifying little brothers in terms of distributions and states, and discon-
necting them.

3. Removing unreachable states in T

6.3 Generating a Reduced PTS

STEP 1: Building the V— Quotient.

Building the V— quotient, by constructing the probabilistic simulation classes.

Constructing the Equivalent Classes

: build the maximal simulation relation, H,; : S x S’ over T to find the equivalent
states. If (s1,82) € Hy and (s9,$1) € Hyy then sy, s are simulation equivalent,
denoted, s; = s3. Hence sq, sy will belong to the same class. If the set of
equivalent states is null and empty, that is, there are no equivalent states, then
each class contains a single state.

Definition 29 The V— quotient PTS, T, =< S;, —4, Vy, S0q > s defined as

Sy is the set of equivalent classes of the simulation equivalence

—q={(a1, N)|Vs € ;. 37,5 5 TV, TM(a2) =30, 7(5)}

Va([s]) = V(s)

Soq = [SOQ]

At the end of this step, the output structure must have no equivalent states, since
this PTS, contains the distinct and independent equivalent classes, which are the
states of the PTS. Figure 6.6

6 Minimization for PTSs - The Probabilistic Minimizing Algorithm 62

L

ry
~
N

!

Figure 6.6: Constructing the V—Quotient PTS

STEP 2: Disconnecting Little Brothers

We need to clarify the difference between a transition and a distribution.

A transition is from a state by an action over a distribution to some states. Hence
in our diagrams, this is denoted by the lines from the state plus the dotted lines
to states. Distributions are denoted by the dotted lines.

(a) Distribution-wise (disconnect the transition)
If 3s, Ja, such that s — 7,5 —> 79, with 7 T mo; Ty IZ 7y, such that m L 79,
then remove the transition s —s 7.

(b) State-wise (disconnect distribution and add up probability to big brother)
If Js;, with s3 — mp(S1), S3 LN my(s2), and s1 C s9;59 [Z sy, such that s; L so,
then remove 7(s1) and put 7(sy) as m,(s2) where z = p+g.

From our example, we eliminate little brother distributions from Figure 6.7(a).

6 Minimization for PTSs - Generating a Reduced PTS 63

Figure 6.7: Disconnecting Little Brothers in a PTS

STEP 3

Remove all unreachable states, these are the states that are unreachable from
[S0]-

The resulting PTS from these three steps is a reduced PTS. See Figure 6.8

Sa
/
[a
12 Q S

S

Figure 6.8: The Reduced PTS

And indeed this reduced structure simulates the original in Figure 6.6.

6 Minimization for PTSs - Generating a Reduced PTS 64

—
Chapter

The Quotient Technique for PTS

The quotient technique has been successfully applied for finite-state [3] and real-
time state systems [35]. In this chapter we shall investigate the quotient technique
for the probabilistic labelled transition system, where the specification formalism
is a specific blocking PTS (bPTS). The idea of using the bPTS specification is
that, we consider compositions of deterministic acyclic probabilistic models (T')
and a model for specification such as Ti||...||7, 3 B, where the bPTS B is able
to present p — calculus ((e.g. < a >>02>q5 tt). We wish to verify whether
the parallel composition is at least the blocking PTS without having to construct
the complete parallel system.

7.1 The Model

In this section, we define a specific model of PTS called the blocking Probabilistic
Transition System(bPTS), which we use as a model for specifying our specifica-
tions. A state s is identified as a blocking state if it either is a sink state or an
universal state. The definition of bPTS is consequently defined as follows:

Definition 30 A PTS T = (S U{NIL},—,V) is a blocking PTS if for all
s €8S, a € Act there exists at most one transition s = T where 7 is a blocking

distribution over a pair of states s' € S and NIL in the sense that w(s') +
m(NIL) = 1. And for all a € Act, NIL .

Figure 7.1 illustrates a blocking PTS.

65

Figure 7.1: An example of blocking PTS
7.2 The Logic and its bPTS Representation

The blocking PTS model is defined to present a fragment of PCTL such as ”after
a request for a number of tasks, there is at least a 50 percent probability that the
first task is done and after that with at least a 30 percent probability the second
task is carried out”. The bPTS in Figure 7.2 presents the following property

example: < a >>02 >05<c>>1 U

M
7N\

/N
0.25 7 \0.75
/ N
/ \
)
|
|
|

c
3
1

©

Figure 7.2: The bPTS presentation of a property

7 The Quotient Technique for PTS - The Logic and its bPTS Representation 66

7.3 Quotient Structure

Before we consider the quotient structure, let us examine some implications of
our specification and its representation, the bPTS.

Given

AIX 2B (7.1)

where A is deterministic, acyclic and B is blocking and we require X to be the
smallest structure possible such that the equation holds.

First of all, we need to check if Equation 7.1 has any solutions at all. Is there an
X, for which Equation 7.1 holds?

We begin by defining a universal state (U) which allows transitions by all actions
a € Act, from it by a distribution to the same universal state. That is:

U % m, where m,(U) = 1 and m,(s) = 0 whenever s # U.

Let {U :Va € Act,U % U}. Then U I C for all PTS C.

It suffices to check whether A J B, in order to establish that Equation 7.1 has
solutions. Example, there does not exist an X, for which the equation

NIL|X Ja.NIL

holds true.
The L—Construct

Definition 31 Let X, and X5 be blocking PTSs. Then X U X5 is a blocking
PTS given by

a
m Z'lei>7T1,X27L>
a

. a,
o if Xy — mp, Xy />

. a, a
Prymy ZfX1 — 7T1,X2 —r To.

X, UX, %

where Py, (X1 U X)) = max{m (X]), m(X5)} and

primy(NIL) = 1 —maz{m (X7),m(X5)}.

7 The Quotient Technique for PTS - Quotient Structure 67

X, X, XX,
a a a
X/ “1-x, Xy NL-Xx, max (X ;, X)’ “-max (X, X,)
¥ P ¥ P ¥ 4
X', NIL X', NIL X, Lx, NIL

Figure 7.3: Properties of the bPTS

Lemma 1 Whenever X; and X5 are blocking PTSs, then X; LU Xy 3 X, and
X UX, JX,.

Moreover if for a blocking PTSY,Y 3 X; and Y 3 X,, then Y J X; U Xs.
Figure 7.3 illustrates X, X5 and X; U Xs.

Lemma 2]fAlHXl g B andA2||X2 g B then A1||(X1|_|X2) g B and A2||(X1|_|
Xy) 3 B.

7.4 Algorithm for Computing the Quotient

In constructing the Quotient structure such that the Equation 7.1 holds, we will
have to consider first, the structure of the PTS, with regards to the states and
transitions to these states, which we represent by X, and secondly the proba-
bilities of the distributions over the states, represented by xz. We describe an
informal approach to obtaining the quotient structure before giving an algorithm
to obtain it, formally.

7.4.1 An Informal Approach

Let us consider Equation 7.1, A||X J B, where A and B are given PTSs.
Now consider an a— transition of B. Obviously, in order for Equation 7.1 to
have solutions, A should also have a unique a—transition. Below we display the
a—derivative in Figure 7.4

For each i check whether

7 The Quotient Technique for PTS - Algorithm for Computing the Quotient 68

a a
Mo 9,
/;/ \\ // \\\
q, e //qz N O p / {I.\-p
’ /
7 / N / \\
s / N ,
}/ | Ry » é
A B'
Al 2 Ak nil

Figure 7.4: A unique a-derivative
A; OB

Let I = {i|A; 3 B'}.
For each i = I, construct X/ such that A;||X; J B’
Let

X' = |_|ieI X;

because then A;|| X’ 3 B’ for all i € I,
The probability of the Distribution (z)

The goal is to find the (smallest) probability = for the structure X satisfying
A;||X" 3 B' for all i@ € I. The problem is reduced to that of finding flow in
the induced network, such that Equation 7.1 holds. Figure 7.5 illustrates the
network.

To find the minimal x such that the maximum flow in the network of Figure 7.5
is 1,

pSSU'ZQi

el

p
— <
Sa
€1

And since 0 < x < 1, the minimum value for z is

p

T

i€l

X

7 The Quotient Technique for PTS - Algorithm for Computing the Quotient 69

X2, q, B4 A|||X
- 1
T B Tl p
— S~
a 7 \\\ a B
HSX nl‘\:\\\\&&l % 0;))
~N T //
\\ ///1-p
s BN|L
1-x N

Figure 7.5: Preservation of weight function

7.4.2 A Formal Approach

Definition 32 Let A be a deterministic and acyclic PTS and let B be a blocking
PTS then
true; 1fAJB

Solvable(A, B) =
olvable() {false; otherwise

Lemma 3 Let A be a deterministic and acyclic PTS and let B be a blocking PTS
then Solvable(A, B) = true iff for some blocking PTS C, it holds that A||C' 3 B.

Proof

—

1
Then A 3 B but A||[U 3 A where U —+— — — > U, for all a € Act. Clearly
U 3 C for all PTSs C and U is a blocking PTS.

R —
Then A||C' O B for some PTS C. But then A||U 3 B (as U 3 C) But A||U = A,
so A JB.

e

Purpose: Given a deterministic, acyclic PTS A and a blocking PTS B, BUILD
constructs a blocking PTS X, that will solve A||X 3 B or BUILD returns "no
solution found”. We present a pseudo-code for the algorithm in Figure 7.4.2 and
then subsequently explain it according to the line numbers.

Line 1 verifies if a solution for the Equation 7.1 can be found. The algorithm
constructs the derivatives of X from Line 3.

7 The Quotient Technique for PTS - Algorithm for Computing the Quotient 70

BUILD(A, B)
1. If not SOLVABLE(A, B)
2. then return "no solution found”
3. Else
4. For (Va €)’) do

5. If B /> then X 5
6. Else
7. For each (i € I)
8. X/:= BUILD(A;, B;)
9. X' i= Uier X
10. Endif
11. Endif
12. Return X;
13. End

Figure 7.6: The BUILD Algorithm

In Line 6, B %, A %, otherwise Solvable(A, B) would have returned false in

Line 1. We consider the unique a—derivatives of A and B as shown in Figure
7.4. We let I = {i|A; 3 B'} and assume I = {1,...,j} C{1,...,k}.

X' in Line 9 is constructed as such, because for all i, 4;||X’ 3 B’ and Lemma 3.

In Line 9, the algorithm returns X as shown in the Figure 7.7
Theorem 9 Let X be the result of BUILD(A, B). Then A||X J B.

The proof is by induction on the depth of A.

Base: Let depth of A =0, that is A = NIL.
But then as SOLVABLE(A, B) = true, = B = NIL because A J B.
Then obviously X = NIL, and

7 The Quotient Technique for PTS - Algorithm for Computing the Quotient 71

// \\
PN
va /. \ _ P
7%/ \
// * |ql

nil
Figure 7.7: The Quotient Structure X

NIL|NIL 3 NIL.

Induction Step

Let B = (p)(B') + (1 — p)(NIL) as in Figure 7.4

By construction of X where x = <£—, as obtained previously and illus-

>
icl
trated in Figure 7.5
By the induction hypothesis and Lemma 3, A;|| X' 3 B’

The maximum flow between A||X and B relative to action a can be ini-
tialized as in Figure 7.5

It is clear that the maximum flow is 1, hence the a — transition of B is
matched.

e

Hence by applying the algorithm recursively, the quotient structure X for our
equation, emerges.

7 The Quotient Technique for PTS - Algorithm for Computing the Quotient 72

ehapter O
Chapter

The Application of the Quotient
Technique with Minimization

Having introduced separately the concepts of the Quotient Technique and Mini-
mization, for PTSs, we now combine them, to see their application in the verifi-
cation process.

8.1 Quotient and then Minimize

As already seen, the transformed specification also has the tendency to increase
quickly in size. In this chapter, we explore using the minimization algorithm for
PTSs as a simplification heuristic for this specification. From the basic equation

Aq||As||As]| -+ - ||An 3 B using the Quotient Technique,

Ay||As]|Asl] -+ - [|Ap—1 3 (B//A,)™ where m is a minimization operator

Let (B//A,) = X, and let (X,,)™ = X,,, then

A1||A2||A3|| T ||An—1 J (Xn)

Al As|[As]] - -+ [|Ap—2 T (Xp//Ap—1)™

Al As[As]] - - [|An—2 3 (Xy—1) where (X, //Ap)™ = (Xp-1)

73

The quotient structure (B//A;) should be noted as a single deterministic blocking
PTS X,,.

In applying the algorithm to minimize this structure, we need to identify the
equivalent classes in X,,.

Let us consider a fragment of a blocking PTS. Given the two blocking PTSs in
Figure 8.1, we will like to consider simulation equivalence between the two states
so and ty3. Can we establish that sq C t5 and ¢y T sq, thereby conclude that
So = to.

a

p . U3 7N 203
S, é @ S, t, é @ t,

Figure 8.1: Simulation of two Blocking PTS

Using maximum flow in the network established, Figure 8.2, sq C t4 iff p < g¢.
Also ty C sq iff ¢ < p. In this case, the latter is true. Obviously though, is the
fact that both statements can not be true at the same time, unless p = q.

Figure 8.2: Flow Simulation of two Blocking PTS

This unassuming observation has very extensive implications. The first being
that, we cannot obtain equivalence classes in the resulting blocking PTS of our
quotienting. Hence every state is, and remains in a class of its own, which are
all independent, without any intersections between them. Recall this is the first
important step in the minimization algorithm.

The next step of the minimization step, involves the disconnection of distributions
and states by the ”little brother” phenomenon. Let us take a look at a typical
X, Figure 8.3. Due to its deterministic nature, and the restrictive nature of our

8 The Application of the Quotient Technique with Minimization - Quotient and
then Minimize

reachability properties, elimination of distributions by the little brother scenario,
does not arise. In some cases, elimination of states can be possible, but as earlier
stated, it is only by, distributions, that we guarantee an equivalence.

o}

1/4,7~3/4

b

i
S:)

Figure 8.3: An X: Deterministic Blocking PTS

Although these observations are not very encouraging, the valid and most impor-
tant conclusion we can draw is that, the resulting quotient structure obtained is
indeed the smallest blocking PTS possible, with respect to simulation equivalence.

Theorem 10 For a deterministic acyclic PTS A and a NIL-blocking PTS B such
that A||X 3 B, the quotient structure X 1 B//A is the (3)-smallest component
C, such that A||C J B.

The transformed specification is kept minimal and hence quotienting with bPTSs
avoids the state explosion of the transformed specification, usually involved with
the Quotienting Technique. Hence, with respect to our specification to be verified,
represented with the blocking PTS, we do not need a simplification heuristic for
the resulting transformed specification by the Quotienting Technique.

8 The Application of the Quotient Technique with Minimization - Quotient aivd
then Minimize

8.2 Minimize and then Quotient

However, we can still reduce the state space explored by looking at the model
under consideration. This is our proposal. Given

Al Ay || Ag]--- 1|4, 2 B (8.1)

Apply the Minimization Algorithm loosely to the individual components (or to
clusters of components) in the model be fore starting with the Quotient Tech-
nique. The equation now becomes

(A)™[[(A2)™[[(Az)™] - -~ [|(An)™ I B
Ar|[As||As]| -+ ||A, 3 B where A, = (4,)™

By this the state space is reduced, even before quotienting. The transformed
specification is thereby kept even smaller.

Let us explore this proposal with an example. Let the PTS in Figure 8.4 be an
individual process (or the result of the parallel composition of some processes) in
the model checking equation 8.1.

b
3/4
1/4)

1/ bS ‘OS

gbs
1/2/ 12

sé bs, b,

Figure 8.4: A deterministic acyclic PTS

Some minimization can be achieved in such models, by identifying some equiv-
alent states. The states sq, sy are equivalent and belong to one class. Also, the
states sg, s7, sg will consequently belong to one class. Just at the first step of the
algorithm, we can generate a V-structure as Figure 8.5

By considering this proposal, it is feasible to have space reductions by minimizing
the components and plugging the reduced structures in place in the equation.

8 The Application of the Quotient Technique with Minimization - Minimize ai@
then Quotient

S
a b : b
.3/4 :
1/4: 3/ ? v3/4
é AOSs A 1/4; AO s
127 % \1/4 S, é °
7N _ 3147 N\1/4 S
S it 1= N ’ S 4
}Sl \ b s .
L _S_zQ\ Ss — : a) S,
a a
1/2/ 112 N

0
a b
v, ¥
_ , b ACSs
347" N1/4 s,
¥ “a
a
X (s,
1

Figure 8.5: The V-structure PTS

8 The Application of the Quotient Technique with Minimization - Minimize afd
then Quotient

ehaprer 9
Chapter

Implementation

The implementation is carried out in Visual C++, running in the Microsoft
Windows environment. Some of the reasons for choosing Visual C++ on this
project are its efficient libraries, tendency to increase productivity and easy to use
design tools. Also one of our interest was to use the wizards for generating a fast
user-friendly graphical application. We have decided to give our implementation a
nice name CAPS (Compositionality and Abstraction by Probabilistic Simlation)
There are two main functionalities in CAPS.

1. Checking a right abstract(hopefully smaller) against a single PTS with re-
spect to (C). The considered algorithm involves application of the well-
known Maximum Flow Problem. This functionality is called Compositional
and Abstraction Checking.

2. Checking a right abstract in specific case of blocking PTS against a parallel
deterministic and acyclic PTSs system, with respect to (3), without having
to construct the complete state space of the system by using the promising
Quotient technique. This functionality is called Quotient Checking.

In the implementation, we have created crucial data structures such as PTSs and
relation simulation structures, which are discussed in the next section. In Section
9.2 we examine the main modules of CAPS. In the rest of this chapter we give
an instruction of a user’s guide.

9.1 Data Structure

A complex PTS may need a huge space of memory, hence an efficient data struc-
ture for its storage is required. There are some compact structures such as in

78

RAPTURE [48] and PRISM [49], that are successful for presenting a PTS.
However, we propose an acceptable data structure that defines our problem. The
structure is set up to be able to store a number of states, a number of actions and
a matrix whose elements hold a number of out going transitions s — p and links
to a substructure, where Distr(s,«) is established, see Figure 9.1. In addition,
the simulation R C S x S’ is presented by an adjacency matrix relation[S][S’],
that is,

1 ifsCp&s

relationR[s|[s'] = { 0 otherwise

whether s € S and s’ € 9.

struct PTSs {

int nstates;
int nactions;

Transition trans[State][Action];
}; PTSs pts;
struct Transition {

int nOut;
float Distribution|TransitionOut][State];

}s
Figure 9.1: Data Structure of a PTS

For instance, we use a variable pts with respect to the above data structure to
present a PTS T in Figure 9.2. The number of states and the number of actions
respectively are stored in pts.nstates = 7 and pts.actions = 3. Obviously, in order
to present the number of out-going transitions from state s, with action «, we
have pts.trans[so][@].nOut = 2, and to reach the transition sy — u, we can ask for
pts.trans[sg|[a].Distribution[u][S]= (0.25, 0.25, 0.5), where S is the set of states
of the PTS T.

9 Implementation - Data Structure 79

Figure 9.2: An example of a PTS

9 Implementation - Data Structure

80

9.2 Modules Description

9.2.1 Maximum Flow Problem, Ford-Fulkerson Algorithm

As discussed the Ford-Fulkerson algorithm in Section 4.2, the complexity is
O(n+m)nm, where n is the number of nodes and m is the number of edges in the
graph G(N,E). In general, m = n? and the complexity is O(n*+n?). However,
when the probabilistic simulation problem is reduced to the maximum flow prob-
lem, a network N' = ((N, E), L, T, ¢) is obtained, where G = (N,E) is actually a
bipartite graph, written as G = (X UY, E). Therefore, to improve the complexity
we implement an improved algorithm of Ford-Fulkerson for bipartite graph. The
complexity of the improved algorithm is O(p®), where p = max {| X |,| Y |}.

MaximumFlow (/\)
Purpose: The function computes the maximum flow value
Input: A network N = (X UY),E, L, T,c)
Output: The maximum value of flow in the network A

Subroutine: ResidualGraph(Nz), AugmentingPath(7)

This function performs the main task of the Ford-Fulkerson algorithm on the
network N. The function iteratively performs the two following steps: First, it
generates a residual network Nz by calling up the function ResidualGraph(N%),
secondly it tries to find an augmenting path on graph G = (X UY") of Nz, where
an augmenting path of a bipartite graph is the set of alternating nodes x € X
and y € Y. If there exists an augmenting path 7 the algorithm jumps to the
function AugmentingPath(w), where the flow value is increased. The iteration
ends when there is no augmenting path found.

ResidualGraph(/N7R)

Purpose: Automatically generating a residual network of a given network A
Input: Network N with current flow F
Output: A residual network Nz

This function tries to establish a residual network N of a given network A" where
the residual capacity of each edge e € E is assigned by c¢(e) - flow(e).

9 Implementation - Modules Description 81

AugmentingPath(r)

Purpose: The value of flow is increased by this function
Input: The augmenting path 7
Output: Flow F

In this function, the value of flow in N, is increased by adding the current flow
cy to the flow along the path of the augmenting path 7, where ¢; is minimum
residual capacity on the augmenting path =.

9.2.2 Computing Probabilistic Simulation

The algorithm for computing probabilistic simulation is shown in Section 4.1, its

purpose is to establish the simulation relation set R of two given PTSs. The
algorithm executes in polynomial time. The main functions are stated as follows:

SimulationPreorder(PTS, PTS")

Purpose: This function computes the probabilistic simulation relation R of
two given PTSs

Input: Two PTSs T = (S,—,V), T = (5',—=", V')

Output: Probabilistic simulation R C S x S’

Subroutine: ConverttoMaxFlow(pu, 1'),

In this function, the main algorithm is implemented. All pairs (s,s') € S x S’
are examined to eventually return the simulation set R. In order to check for
s Cg s, this function considers all transitions s — p, and searches in Distr(s', o)
for a distribution p', then checks whether y© CTg p/ by calling the function
ConverttoMaxFlow (i, u1'). If there is no corresponding p' then (s, s') is removed
from R by assigning RJ[s][s'] to false.

ConverttoMaxFlow (u, 1)

Purpose: This function converts probabilistic distributions x4 and ' to a net-
work NV = (N, E, 1, T,c) and answers the question of u Cp 1.

Input: Distributions g, p’

Output: YES or NO

Subroutine: MaximumFlow(N\).

9 Implementation - Modules Description 82

9.2.3 Compositional and Abstraction Checking

Let us now consider the function which applies the basic functions discussed
above in order to check for a right abstraction.

isSimulated(R C S x 5')

Purpose: This function check whether an abstract PTS 7" simulates the orig-
inal PTS Tor not

Input: The simulation relation R C S x S’

Output: YES or NO

This function examine simulation R, if the pair of the two initial states (s, so’) €
R then T T T", otherwise T' [Z T".

9.2.4 Quotient Checking

In order to construct the quotient of a blocking PTS B and a PTS T', we also use
function SimulationPreorder(T,T") in order to compute a simulation relation
R. By doing that, and by generating the probability of the blocking PTS B, the
function will return the construct of quotient B//A, which is a blocking PTS. In
fact the structure of the quotient is the same as the structure of the specification
blocking PTS B.

QuotientBuild(B: blockingPTS, A: PTS)

Purpose: This function build the structure of the quotient B//A
Input: The two PTS B and A
Output: The quotient B//A

Subroutine: SimulationPreorder(T,T")

9.3 Input File and Output Screen

9.3.1 Input File

An input file is a description of PTSs which are to be checked in CAPS. The
format of an input file is shown in Figure 9.3 as an example. Particularly, the
values of the distribution matrix present number of distributions that a state s

9 Implementation - Input File and Output Screen 83

can transform with an action . Each PTS begins with a negative order number,
starting from 0.

9 Implementation - Input File and Output Screen 84

0 // the first PTS
6 2 // number of states and number of actions

2 0 // The distribution matrix
00
00
01
00
00
00

0 0 // state 0 and action 0
00.250.25 0.5 0 0 0 // Distribution 1 of state 0 and action 0
0.50000.500 // Distribution 2 of state 0 and action 0

31 // state 3 and action 1
000000.50.5 // Distribution 1 of state 3 and action 1
-1 // anew PTS.

53

100

000

010

101

000

00

0030700

21

000 0.650.35

30

00010

32

00.60 04000

Figure 9.3: An input file to CAPS

9 Implementation - Input File and Output Screen

85

9.3.2 Output Screen

The output screen for Compositional and Abstraction Checking is shown in Fig-
ure 9.4. The right frame is a Functional frame, where we can choose to perform
either functinality of doing Quotient or Compositional and Abstraction checking
in CAPS. The Main frame states two given PTS, the first is the original PTS T
and the second is the abstract PTS T pstract- Below this is the Result frame. It
shows the simulation relation R and states whether T is simulated by T 4psiraer OT
not.

oumledt.sam =loi x|

Dl e &%

Caps Plodule T
&[0 9 =it O Moal gtate

a:[0.3], flaction
Quntient do[0.a. fdisieiuen of fate 5 with schon a; -3 4

(=0 EGa=N&d=0 > 03 (F=1 + 0¥ @@= = 04:("=3
[ia=0) &f{a=0d&id=1) 162 =4

-
Qis=T&ka=1)&{d=0 > Q5 E=1) + 05a'=5) + LIS (=4,
Miz=5&ia=N&{d=0 = 1 (s'=5;
=5 &a=M&d=1) = Q45 (3'=1) + RIGi(s'=T),
[Jiz=sy&ia=1) &{d=0 > 025 (2 =d) + Dlife'=8) + 085 (=8,
Endmoduie

Bdadile T Abstract
L [005] et O
2 [0.3}
d: [0l
[ft=) &ia=l) &(d=0)
b= deamT)&id=0
[fe=3) de(a=0) &od =0
ie=3) &ia=) &(d=0)

Endmoduls

3 (t=1) + 07 =,
D65 (U=31 # 0.35:(0=4);
Lift=9

DE:(t'=1) + D4:(I'=10,

P
L

The Birnuletion Felstion B

(0.3, (3.3 (2.3
* lronal peirs
TLC T _Absiract

L | x| J
Ready

A

Figure 9.4: The interface of the output result for Compositional and Abstraction
Checking

9 Implementation - Input File and Output Screen 86

The output screen for Quotient Checking is shown in Figure 9.5. In the right
frame, you can either perform step by step factoring out individual PTS compo-
nent to the specification B by pressing on the button ”>>" or run through the
whole parallel system by pressing on the button ”>”. The main frame shows the
quotient structure of the blocking PTS B//T; and the PTS T;.

[Lunitledr-sim —ioj =
D@ D0 |& T |

= T3||T4 2 BITLIT2
CAPS Modkals BITIFTE
g [0 4] mil 0, Moesd siate
a [02) fzction
Ouatient d . [0.1]), fidngtribwiten of #ate & vath Bebion & ¢ &> d
— ie=M&fa=0&(d=0) > 05005 (=1} + 04005 (s'=3},
Ofa=thdta=1) &{d=0) - 1 ('=3),
Endmindule
Module T_3
1[0 &) oot G,
= & [0.3).
d 0.1
Qit=0&la=0&{d=0) -> OG- (I'=1) +« D&M (1'=1,
[1te 1% & (@ 1) & {d =) = Lol =3,
Ot=T5&(a=1)&{d=0) -> O5:(I'=4 + L5 (I'=5),
Endrrndils
-
ol | LI-J
Papachy

Figure 9.5: The interface of the output result for the Quotient Checking

9 Implementation - Input File and Output Screen 87

Chapter 10

Experimental Result

In this chapter, we discuss the results obtained by our implementation acronymed
CAPS. For the Compositional and Abstract Checking, several tests are experi-
mented, including some examples we have discussed in this thesis such as the
parallel exams, the die performance. For the Quotient Checking, we did not use
any concrete example, however we use suitable test cases created by the tester,
which exposed some of the error of the implementation and showed the effective-
ness of the quotient technique. Empirical measurement of time and space usage
can always be verified later.

10.1 Compositional and Abstract Test Cases

Test 1: The die

The idea of this test case is extended from the test case Dice Programs of PRISM
[49]. This case study considers two PTS, one is the original PTS T and one is
the abstraction Tapsiracr- Figure 10.1 models a die using only fair coins. Starting
at the root state sy, one repeatedly tosses a coin. Every time heads appears, one
takes the upper branch and when tails appears, the lower branch. This continues
until the value of the die is decided. There is only one action in this test case
therefore we omit any symbol of action on all transitions out from each state. The
abstract is constructed by applying partitioning technique for a specific reacha-
bility property, in this case eventually the value of the dice is six.

88

\
\
\
\
:/
1
yAS
@
°

o
\\U‘I
N\,
| i
O /\O
U‘I// N4
, \
o
/\\-m
L]

~
o
oy

/

e
7

\

2 /

A\ &
‘\
LN
e

LR X}
LE X]

’ i
€ VAW
4 \,
d

a1

‘,

LI

)

e

o
o
/
/
\
o
4l

/
/
/
/
/
o
a1
s/
\;
5\
é)

!
]
|
|
\

\

(KX]
’5/@ eee

Figure 10.1: The die with an abstract

10 Experimental Result - Compositional and Abstract Test Cases

89

The result obtained by CAPS is shown in Figure 10.2:

Modale T
£ [00.13) inat 0, focal state
a:[e1]; HMaction
d: 0.1} fdistribation of state s with action a; # --a>» 4
Ois=N&@E=N&d=0 > 05 (=1 + 05:(s'"=0,
D= &a=N&{d=0 > 05:(s=% + 05/ {s'=6),
D=0&G@G=N&(d=0) > 05 (=3 + 05 (s'=4);
ie=N&fa=0 &{d=0) > 05:(s'=7 + 05 (z'=T,
Qis=d) &a=D&(d=0) -> 05 (=8 + 05 (=0,
Nis=5&a=0&d=0) > 05:(s'=100 + 05:(s'=11).
DGE=0&fa=N0&d=0 > 05 (=13 + 05. (=10,

Endmodule

Module T_Abstract
Lo [0 6] it O,
a: (0.1,
d:[0.1],
Q=00&a=0&d=0 --> 05 (=1 + 05.(4'=23).
Oit=D&GE=-0&id=0 > 05:('=3 + 05:('=4,
Nt=N&GEa=0&d=0 --> 1 (I'=2;
Q= &a=0y&d=0) --> 05:(t'=1} + 0.5:(t'=5),
Q= &@a=0)&d=0) -> 1 (I'=d4);

Endmodule

The Sunulation Relation R
(00. @) (@5 @O (LD (LD Q8
(2o 2D, Q. (248, GDh. kD 3D
(33, (34, @0 Gl (4. &3 (48,
(5,00, (51, (5D, (53, (54, (60, (61)
(6.2, (6.3, (64),
+ trovnal pamrs

TI_:,HT;-_h_-.-im-n

Figure 10.2: The output screen of the Dice example
Obviously, the pair of the two initial states (sg, s;) € R. Therefore we conclude
that T' E TAbstract-

10 Experimental Result - Compositional and Abstract Test Cases 90

Test 2: The parallel exams

In this test case, we recall the example of the parallel exams in section 2.2.2. As-
sume a student is going to attend the exams of his two courses. We are interested
in asking that whether this student passes both of these courses with probabil-
ity at least 0.8 with in three trials. Instead of checking a complex probabilistic
system 1" we may examine the question in an abstract of T', which is definitely
smaller. The Figure 10.3 models a complete parallel exams system and a simple
abstract.

7
[N

Figure 10.3: Composition of two PTS exams and an abstract

10 Experimental Result - Compositional and Abstract Test Cases 91

The result obtained by CAPS is shown in Figure 10.4:

Madule T

s 0 [0..9] init 0; ifocal state
a [0.1]. ffaction
d:[0.7];

Qis=M&fa=0ad=0
Q=D &E=0&d=1)
Mie=1)&(a=05&(d=0)
Dis=D &(a=0&(d=0)
Q=D &@E=Dad=1)
[(s=3 &(a=0)&(d="0)
Jis=N&a=0&(d=1)
D=4 &(am0&(d=0)
(=6 &(a=0)&(d=0)
Nis=7) &(a=0) & (d=0)
Qis=8&fa=0 &(d=0)

Endmodule

Module T_Abstract

1o [003] ot 0

a [0.1],

d[0.1]s

Qit=0) &(a=0) &d=0)

AR | ST OO, S (! R R |
VoW WY N W W Ly Yy

W

0.75 (' =1}
025.(5=3)
0.75:(s' =5}
L:gs'=0,
025 (s'=T
L' =0);
075 (s =4d)
0.75:{s'=5)
I:e'=1).
Lo(s'=0),
1. (' =4} ;

FS
+

Maistribostion of state ¢ with actiona; 5 —a> 4
o

0.25:(s'=13);
075 (5 =4},

+ 0.25:(s=6),

-

075 (=5

+ 0.25.(s=T,

035 (s'=8).

075 (M=1) + 025:(t=2);

T C._T_abhstract
=g - sHmac

Qa=Hé&a=0&@d=0 —> L:(¥=1),
Nit=&@=0&d=0 > Li('=0};
Erndmodule
The Zimulstion Felstion B,

(0m, 01, 2, (Lm, (L1, (L3, (30,
(2.1, (4.3, (3,00, (31}, (3.5, (4,03, 4,13,
@2, (6@, (61 (6D, (7.8, (7.0, (7.2,
(B, (81 (8.5,
+ trvsal pairs

Figure 10.4: The output screen of the parallel exams
Obviously, the pair of the two initial states (sp,ty) € R. Therefore we conclude

that T C TAbstract-

10 Experimental Result - Compositional and Abstract Test Cases

92

10.2 Quotient Test Cases

Test 3:

The test case is shown in Figure 10.6. Consider two PTSs 77 and T, and the
blocking PTS B, we wish to know that if the parallel system Ti||T, 3 B without
having to construct the complete parallel system. By applying the quotient algo-
rithm and runing the test with CAPS, we have obtained the result in Figure 77.
Obviously, in the end of the quotient process, all the components T;’s are removed
from the parallel system and the specification B is simultaneously transformed
with respect to (J), see Figure 10.6, 10.7 and 10.8 . Therefore we conclude that

Ti||T: 2 B
T, I T, -
) ©
a a
AT To
70\ / | N
d N\ // | \\
/// \\\ // | N 1/4
116, v 3 14, 12
&) o =) o
b b b bl
nl//\ / T\[Z / \\2\ Has \
;o\ /N /N /
A /o0 SN N 14 /
1/3, \\2/3 1/4/1/ \\3/4 1/4/1/ 1/2\ N 1/6 //
/ \ \ > /
& é = () ®)
CJ dJ dJ d d
‘W3 754// N TEA//\ Ko ‘ H2 4
11 / \\ AN / \\ 1 1
|
EVAR TR TE v/ a2 v
/

Y

¥

S &0

Figure 10.5: Two PTSs in parallel with an abstract blocking PTS

o8]

10 Experimental Result - Quotient Test Cases

93

In this figure, the algorithm prepares to construct the quotient B//T;. However
the simulation relation of B and T7 is first computed.

[Jis=0) &ia=10) & {d=0)
Die=1)&a=1) &{d=10)
[J(e=3 &ia=3) &{d=0)

Erctmndule

Modade T_1
[1) ik 0
sl [0.4];
a0
(=0 &(a=0 &(d=00)
[t 1) & fam1) & (d=
=T &fa=1) &(d=00
[b=y e cam2) & (b= O
Q=8 &ia=3 &id=0)
Eritmouile

Modale B
w0 6] mit 0, focal stale
a [04]); iPse b
d:[0 15

WoW W N W

.3
--m
=

TNT,2B

025 {3'=1})
0166 : (0"=13)
1oo(e =5,

067 (8= 1}
0333t =4)
0 (I'=6
1l =gy,
D333 =)

fiisnbihon of slate = wath actiop a;, § =4 d
+ 075 .(s' =T},

+ DEM (p'=d4);

0167 . (V=1p + D66 (1'=3,

o D667 (1 =5x,

0TS '=T,

+ D33R0V =10) + D3M ('=11).

The Sorulstven Belation B

& trrusal franre
| 8T,

. (LI (38,

Figure 10.6: The initial output screen

10 Experimental Result - Quotient Test Cases

94

The quotient B//T, has been constructed in this figure. Morever, T; is also
removed from the parallel system. The algorithm is ready for next step.

T, =BT,
Ifedaile BTl
s [0.6) inst B, fieal stale
a:[0.4} Hactson
d-[b.1], ffdesimbubion of fate 5 with aclson &, 5 -a> d

[Jis= &a=&{d=0) --> LI (=1} + L6246 (5'=1),
Dee=1&@a=1&(d=0} --> LM (5=3) + 0356:(s=4),
Jieg=BE&fa=&(d=0 --» L (g=5;

Endmodule

Madule T
Lo[0.9) it 0,
a:{0.4);
do[0.1],
(=0 &a=0 =0 = 05 {d=0 + 05 (=3,
[it=D&fa=)&id=l) > 025:01'=3F + 05:(V=d) + 0I5 (I'=5).
Q=3 &a=&d=0 -> 05 (=6 + L5 ('=T);
Qit=4) E(a=T&d=0 -=> |-(U=8;
Endraodule

The Strmulation Felation R
(0,03, (L2 {13, (3.4,

+ lrmved paurs

BITL =T,

Figure 10.7: The output screen of constructin B//T}

Finally, we obtained the quotient ((B//T1)//Ts), that means the quotient process
is perfomred successfully. We conclude that T1||7, 3 B

Module BAT 14T
& - [0..6] imit 0; Mocal state
a [0 4], faction
d:[0..03. fdistribution of state 2 with action a; 2 &> d
Nz=0) &fp=0) &{d=0) = 07506 (z'=13 + 0M8). (=5,
Nis=&efa=1 &dd=00 --> DEESY (2'=0 <+ 01147 . (¢'=4},
Na=3 &= &@=0 - Lig@=5;

Enilrmoduile

spmur, <> T T,2B

Figure 10.8: The output screen of constructing (B//T1)//T>

10 Experimental Result - Quotient Test Cases 95

Chapter 11

Conclusion

11.1 Conclusion

The aims of this thesis was to avoid the state explosion problem in probabilistic
models by using simulation based abstractions. This led to the development of
the tool CAPS which was based on establishing good abstracts for components
in an asynchronous parallel composition of a model. The main bottleneck of
this tool was that it is very user-dependent, requiring the user to input both the
model and the abstraction.

The remainder of this thesis started with the aim of seeking to eliminate this
drawback by automatically generating these abstractions. This goal however
evolved and this report is the result.

In our previous work, we only examined an interleaving (asynchronous) parallel
composition. We avoided the state space explosion by seeking abstracts of compo-
nents and then constructing the parallel composition with these abstracts. It was
therefore interesting to consider and study the avoidance of this parallel compo-
sition by rather quotienting. We develop further the theories of The Quotienting
Technique, for PTSs, and extend a Minimization Algorithm to probabilistic tran-
sition systems. This led to transforming our specifications from logic-based to an
appropriate transition-based specification. Usually, the transformed specification
grows in size and requires a simplification heuristic to keep the size under con-
trol. The Minimization algorithm for PTSs was intended to be the simplification
heuristic. However, we realized that, after quotienting, any structure obtained
was already minimal and could therefore not be reduced or minimized further.
This led us to propose that instead of minimizing (the transformed specification)
after quotienting, we rather minimize the components of the system (or clusters
of the components), before starting with the Quotienting technique.

Categorically, we conclude on the building blocks of this thesis.

96

Probabilistic Transition Systems

We have examined the probabilistic labelled transition system as our main mod-
elling system. We have further considered its parallel composition in terms of
the synchronous, asynchronous and the interleaving mixed sort parallel composi-
tion. We have extended all our abstraction methods to it and described ways to
generate reduced PTSs structures. These methods are based on the Probabilistic
Simulation preorder and equivalence relation. We also described a specification
model based on PTSs called the Blocking Probabilistic Transitions System which
is a structural version of Probabilistic Modal Logic.

Compositional Abstraction

We have described a basis for which components of an asynchronous parallel
composition can be abstracted individually or together with other components.
The abstraction of the components are then used in place of the original concrete
components. We further explored ways of computing the simulation preorder
between two PTSs and used algorithms for computing the maximum flow in
networks to establish the preorder and conclude if the two PTS simulate each
other.

The Quotient Technique

We started by exploring the Quotienting Technique for finite state systems and
the use of linear inequation solving to generate the quotient structure. We then
extended this to our probabilistic transition system. We developed a specification
formalism for this technique, the blocking PTS, which explicitly portrayed our
reachability properties. We have also considered various parallel compositionali-
ties and developed algorithms to generate their quotient structures.

By this approach, our our whole model checking problem is reduced to that of
generating the quotienting structure, which offers us a means of abstraction.

Minimization

We have discussed an algorithm which allows us to systematically generate a
reduced PTS structure. This can be used to minimize a parallel composition as

11 Conclusion - Conclusion 97

input and output a smaller reduced structure with respect to simulation equiva-
lence. We had hoped to use this algorithm to simplify and minimize the trans-
formed specification in the quotienting technique. However, alternatively we pro-
pose to use this algorithm on components before quotienting and not afterwards.
This will also help to keep the size of the transformed specification in check.

The Implementation

We first developed a tool as an implementation the algorithms that we proposed
for the methods of compositionality and abstraction based on the Simulation Pre-
order, acronymed CAPS (Compositional Abstraction for Probabilistic Systems).
We further extended this tool by implementing the algorithms for the Quotient-
ing Technique, for our specification. We realized that the quotient structure had
infact, exactly the same structure as the blocking PTS of the specification. Hence
the main issue, was computing the exact probabilities of the distributions of the
quotient structure. Although, we did not gather any empirical evidence to sup-
port a hypothesis that the methodologies discussed, show a significant saving on
time and space in the verification of these models, an intuitive argument should
exhibit this fact.

11.2 Further Work

There is still the consideration of automatically generating abstracts of com-
ponents of a model as was originally considered. Although this will be more
user-friendlier and more effective, it is not easy to solve in general. We have
suggested solutions in our specific case to obtaining abstractions for components
in model checking.

In quotienting, we considered the interesting properties of reachability with the
specific model of blocking PTSs. A possible extension will be to consider a
broader spectrum of properties, where safety as well as liveness properties are
verified.

As by our minimization, an extension could consider bisimulation based mini-
mization which is strongly preserving.

11 Conclusion - Further Work 98

Appendix

Please note the meanings of these symbols when reading this thesis.
C: simulation relation

=<: simulation preorder

simulation equivalence

><: a general relation between a model and another model as specification. Could
be C.

11 : generalization of the parallel composition

//: quotienting operator

< is usually for size, as in less than or equal to. Sometimes also for the simulation
relation.

The Greek letters should be read within the context they are stated.
(e, B,7,0, i, p, ™) usually denote a distribution over states.

(av, B) sometimes denote actions in the Act set.

a, b, c usually represent actions.

(0, aig, . ..) denote equivalence classes.

(1, ¢) usually represent specification properties.

99

Bibliography

[1] Ahiable A., Hoang T., Compositional Abstraction by Probabilistic Simula-
tion

2] Ravindra K. Ahuja, James B. Orlin, Clifford Stein and Robert E. Tarjan,
Improved Algorithms for Bipartite Network Flow

(3] Henrik R. Andersen, Partial Model Checking

[4] C. Baier, J. Katoen, H. Hermanns, B. Haverkort, Simulation for Continous-
Time Markov Chains

[5] Christel Baier, Bettina Engelen, and Mila Majster-Cederbaum, Deciding
Bisimilarity and Similarity for Probabilistic Processes

(6] Christel Baier, On Algorithmic Verification Methods for Probabilistic Sys-
tems

(7] Christel Baier, Polynomial Time Algorithms for Testing Probabilistic Bisim-
ulation and Simulation

(8] Christel Baier, Edmund N. Clarke, Vasiliki Hartonas-Garmhausen, Marta
Kuwiatkowska and Mark Ryan, Symbolic Model Checking for Probabilistic
Processes

9] Bodentien N. O., Poulsen L. O., The quotient verification technique applied
to State/Event Systems

[10] Bodentien N. O., Vestergaard J., Friis J., Kristoffersen K. J., Larsen K.
G., Verification of Large State/Event Systems by Quotienting

[11] Anders Borjesson, Kim G. Larsen and Arne Skou, Generality in Design and
Compositional Verification in TAV

100

[12] A. Bianco and L. de Alfaro, Model Checking of Probabilistic and Nondeter-
mistic Systems

[13] M. Brown, E. Clarke, O. Grumberg, Characterizing finite Kripke Structures
in Propositional Temporal Logic

[14] R. E. Bryant, Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers.

[15] Doron Bustan, Orna Grumberqg and David E. Long, Model Checking and
Abstraction

[16] D. Bustan, O. Grumberg, Simulation Based Minimization. In the 17th Inter-
national Conference on Automated Deduction (CADE’00), Pittsburgh, June
2000.

[17] Edmund N. Clarke, Orna Grumberg and David E. Long, Model Checking
and Abstraction

[18] E. M. Clarke, E. A. Emerson and A. P. Sistla, Automatic Verification of
Finite-State Concurrent Systems using Temporal Logics Specification: A
practical Approach.

[19] E. M. Clarke, E. A. Emerson , Design and Synthesis of synchronization
skeletons using branching time temporal logic.

[20] Pedro R. D’Argenio, Bertrand Jeannet, Henrik E. Jensen and Kim G.
Larsen, Reachability Analysis of Probabilistic Systems by Successive Re-
finements

[21] Pedro R. D’Argenio, Bertrand Jeannet, Henrik E. Jensen and Kim G.
Larsen, Reduction and Refinement Strategies for Probabilistic Analysis

[22] Rob J. van Glabeek, Scott A. Smolka and Bernhard Steffen, Reactive, Gen-
erative, and Stratefied Models of Probabilistic Processes

[23] van Glabbeek R. J., Smolka S. A., Steffen B., Tofts C. M. N., Reactive,
Generative, Stratified Models of Probabilistic Processes

[24] Godefroid P., Partial-Order methods for the Verification of Concurrent Sys-
tems: An Approach to the State Explosion Problem

[25] Hans Hansson and Bengt Jonsson, A Logic About Reasoning about Time
and Reliability

[26] A. Harding, M. Ryan, P. -Y. Schobbens, Approximating ATL* in ATL

[27] Y. Hsieh, S. P. Levitan , Model Abstraction for Formal Verification

BIBLIOGRAPHY BIBLIOGRAPHY 101

[28] M. Huth , Possibilistic and Probabilistic Abstraction-Based Model Checking

[29] Bengt Jonsson and Kim G. Larsen, Specification and Refinement of Proba-
bilistic Processes

[30] Bengt Jonsson, Wang Yi and Kim G. Larsen, Probabilistic Extensions of
Process Algebra

[31] B. Jonsson, Simulation between Specifications of Distributed Systems

[32] Jou C., Smolka S. A., Equivalences, congruences, and a complete axiomati-
zations for probabilistic processes.

[33] Joost-Pieter Katoen, Concepts, Algorithms and Model Checking
[34] R. P. Kurshan , Formal Verification of Coordinating Processes

[35] Francois Laroussinie, Kim G. Larsen, Compositional Model Cheking of Real
Time Systems

[36] Kim G. Larsen and Arne Skou, Bisimulation through Testing

[37] Kim G. Larsen and Bent Thomsen, Partial Specifications and Compositional
Verification

[38] Kim G. Larsen, Context-Dependent Bisimulation Between Processes. PhD
thesis, University of Edinburgh, Mayfield Road, Edinburgh, Scotland, 1986.

[39] Kim G. Larsen, Arne Skou Compositional Verification of Probabilistic Pro-
cesses

[40] K. L. McMillan, Symbolic Model Checking: An approach to the State Ex-
plosion Problem.

[41] R. Milner, Communication and Concurrency

[42] Lind-Nielsen J., Andersen H. R, Behrmann G., Hulgaard H., Kristoffersen
K. J., Larsen K. G., Verification of Large State/Event Systems using Com-
positionality and Dependency Analysis.

[43] Peled D., All from One, One from All: On Model Checking Using Represen-
tatives

[44] R. Segala and N. A. Lynch, Probabilistic Simulation for Probabilistic Pro-
cesses

[45] R. Segala, Modelling and Verification of Randomized Distributed Real-Time
Systems

BIBLIOGRAPHY BIBLIOGRAPHY 102

[46] Vestergaard J., The Quotienting Technique for Probabilistic Systems

[47] Liu Xinzin, Kim G. Larsen, Equation Solving Using Modal Transition Sys-
tems

[48] http://www.irisa.fr/prive/bjeannet/prob/prob.html

[49] http://www.cs.bham.ac.uk/ dxp/prism/

BIBLIOGRAPHY BIBLIOGRAPHY 103

