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Abstra
tIn this thesis, we present te
hniques adapted to probabilisti
 transition systemsin order to avoid or redu
e the state spa
e explored in veri�
ation. By using
ompositional abstra
tion, abstra
ts of 
omponents of a 
on
urrent system 
anbe used for model 
he
king. We use probabilisti
 simulation preorder to establisha good abstra
t. We further present a minimization algorithm for probabilisti
transition systems, whi
h generates a minimized stru
ture, with respe
t to sim-ulation equivalen
e. Finally, we introdu
e the Quotient te
hnique for our PTSmodel with the 
on
ept of using the minimization algorithm to minimize the sizeof the transformed spe
i�
ations. However, it is realized that this situation neverarises, as the transformed spe
i�
ation is the minimal stru
ture possible givenour 
onstraints and assumptions. We propose at the end, the appli
ation of thesimpli�
ation heuristi
 on 
omponents of the system, before applying the Quoti-enting te
hnique rather than afterwards. We implement the quotient te
hniqueas part of our tool, CAPS and demonstrate the algorithms proposed in this thesis.
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Chapter 1Introdu
tion
1.1 Formal Veri�
ationFormal veri�
ation methods are strong tools in the development of high qualityprodu
ts. In the design of 
omplex systems, more time and e�ort is spent onveri�
ation than on 
onstru
tion. Te
hniques are sought to redu
e and ease theveri�
ation e�orts while in
reasing their 
overage.Formal methods o�er a large potential to obtain an early integration of veri-�
ation in the design pro
ess, to provide more e�e
tive veri�
ation te
hniquesand to redu
e the veri�
ation time. As a

ording to J.-P Katoen in ([33℄), for-mal methods are one of the "highly re
ommended" veri�
ation te
hniques forsoftware development of safety-
riti
al systems a

ording to e.g., the best pra
-tises standards by the IEA (International Ele
trote
hni
al Commission) and thestandards by the ESA (European Spa
e Agen
y).Formal methods provide a pre
ise notion between systems and their spe
i�
a-tions, so that it 
an be de
ided without ambiguity whether or not a systemmeets its spe
i�
ation. They, however have their advantages and disadvantages.Comparatively, model 
he
king is automati
 and faster than theorem provers.A major problem, though, in applying model 
he
king even to moderate-sizesystems is the potential 
ombinatorial explosion of the state spa
e arising fromparallel 
omposition of 
omponents.When I use a model 
he
ker, it runs and runs forever and never 
omes ba
k. . . when I use a stati
 analysis tool it 
omes ba
k immediately and says I don'tknow - Patri
k Cousot
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1.1.1 Model Che
kingOne of the a

laimed approa
hes of verifying �nite state systems is that of model
he
king. It is a veri�
ation te
hnique that explores all possible system states ina brute for
e manner. On
e a system 
an be a

urately represented by a model,a spe
i�
ation 
an be veri�ed within this model and 
on
lusions drawn about thesystem as to whether the spe
i�
ation holds to be true or otherwise within thesystem. This te
hnique has been applied to many types of systems from �nitestate representations, through real time ones to probabilisti
 systems. However,the main disadvantage of the model 
he
king te
hnique is the explosion in thestate spa
e during its brute for
e exploration.1.1.2 State ExplosionThe size of the a parallel system of even moderate-sized systems grows exponen-tially. In order to avoid this inherent problem of model 
he
kers, several methodshave been sought that avoid the exhaustive state spa
e exploration.Some of these methods are based on a symboli
 representation of the system usingBinary De
ision Diagrams ([14℄, [40℄), whi
h has proved to be very su

essful forvarious types of veri�
ation problems for parallel systems. Other methods arebased on the 
on
ept of partial order redu
tion ([43℄, [24℄) whi
h is based on theobservation that the interleaved exe
ution of independent a
tions allows one toinvestigate only a representative fragment of the state spa
e.The 
on
ept of 
ompositionality, where the motivation is to reason about thebehavior of a large system based on knowledge of its 
omponents has also in
u-en
ed some of the methods. In those 
ases where a global investigation 
an beavoided eÆ
ien
y is gained. In ([42℄), 
ompositional reasoning has proven to bea su

essful te
hnique in the veri�
ation of 
on
urrent systems and embeddedsoftware, ([10℄). Another very signi�
ant alternative is by abstra
tions. Thismethod seeks to use abstra
tions of the model under 
onsideration, whi
h aresmaller than the originals in model 
he
king, hopefully de
reasing the time in-volved and minimizing memory used. Model abstra
tion redu
es the number ofstates ne
essary to perform formal veri�
ation and thus redu
es the state spa
eto be explored in formal veri�
ation tools su
h as COSPAN.Another approa
h, whi
h was �rst proposed by Larsen ([38℄) and further extendedby Andersen([10℄), Bodentien et al ([9℄), introdu
ed a very promising heuristi
model 
he
king te
hnique for �nite state systems 
alled the Quotient Te
hnique.The idea behind it, is to fa
tor out 
omponents of a parallel system, one at a time,into the spe
i�
ation, and by 
ontinuously, applying simpli�
ation heuristi
s,minimize the resulting stru
ture. By transforming the spe
i�
ation a

ordingly,1 Introdu
tion - Formal Veri�
ation 8



one is able to draw 
on
lusions about the model and the spe
i�
ation. Thiste
hnique has also been applied in real time systems ([35℄). In this thesis, weexplore this te
hnique with �nite state systems and extend it to our probabilisti
model. Our aim is to establish the basis for using the Quotient Te
hnique inprobabilisti
 transition systems and also to experimentally verify if there areindeed optimal results using this te
hnique.1.2 Probabilisti
 ModelsDue to the fa
t that a system 
an not always be guaranteed to work 
orre
tly,there is the need for a way of des
ribing the unreliability of a system. This isespe
ially important in safety 
riti
al systems su
h as 
ight 
ontrol systems andmedi
al systems. This has led to more models being 
onsidered with probabilitiesin
orporated. Probabilisti
 models are important for the quantitative designand analysis of safety 
riti
al systems. They are also useful for the analysis ofquantitative behavior in a wide variety of systems e.g. through the 
omputationof performan
e measures.1.2.1 Markovian ModelsThe idea of in
orporating probabilities into the modelled system has lead tovarious developments. In re
ent years, many resear
hers have fo
used on rea-soning about probabilisti
 transition systems. A lot of work has been doneto extend those models and methods whi
h have been su

essful for the non-probabilisti
 
ase to probabilisti
 systems. The basi
 
on
ept of all these modelshowever, is that of a transition system whi
h has been extended appropriatelywith probabilities. They 
an be 
lassi�ed though, with respe
t to their treatmentof non-determinism. This has been a

ording to either Markov 
hains where non-determinism is 
ompletely repla
ed by probabilisti
 
hoi
es or Markov de
isionpro
esses, in whi
h both non-determinism and probabilities are present. Themodels based on Markov 
hains are suitable to formalize the behavior of sequen-tial randomized algorithms or pro
esses of probabilisti
 
al
uli with syn
hronousparallel 
omposition. On the other hand Markov de
ision pro
esses based modelsare suitable for distributed randomized algorithms or pro
esses of asyn
hronousprobabilisti
 
al
ulus. In our work, we 
hoose to use Markov De
ision Pro
essesalso known as Probabilisti
 Transition Systems, simply PTS, as our main model.There are di�erent variants of probabilisti
 systems and we present these in Se
-tion 1.2.2.1 Introdu
tion - Probabilisti
 Models 9



1.2.2 Probabilisti
 Model Classi�
ationsWe present work in the �eld of probabilisti
 transition systems. Probabilisti
transition systems provide a framework that allows us to express that a failure 
anonly o

ur with a 
ertain probability, and as a tool it 
an be used to verify that asystem, with some probability, behaves a

ording to its spe
i�
ation.(i.e. there isa 0.0002% possibility that a medi
al monitor will shut down without a warning).There are three main 
lassi�
ations: Rea
tive, Generative and Strati�ed models.Rea
tive ModelThis model 
onsists of states and labelled transitions asso
iated with probabili-ties. For ea
h state, the sum of probabilities on outgoing transitions must be 1for transitions with the same label.Larsen and Skou ([39℄) de�ne a rea
tive probabilisti
 transition system as follows:De�nition 1 A rea
tive probabilisti
 transition system is a stru
ture P = (Pr; A
t; �),where Pr is a set of pro
esses(or states), A
t is the set of a
tions that the pro
essmay perform, and � is a transition probability fun
tion � : Pr�A
t�Pr! [0; 1℄su
h that for ea
h P 2 Pr and a 2 A
t:XP 02Pr �(P; a; P 0) = 1 or XP 02Pr �(P; a; P 0) = 0indi
ating the possible next states and their probabilities after P has performeda
tion a.In Figure 1.1 is an example of a rea
tive pro
ess.Generative ModelThis model 
onsists also of states and labelled transitions with probabilities, butwith the sum of probabilities of all outgoing transitions equal to 1. Jou andSmolka ([32℄) have formally de�ned the Generative model as follows:De�nition 2 A generative probabilisti
 transition system is a triple hPr;�; �i,where Pr is a set of pro
esses; � is the set of all atomi
 a
tions and 0 is a spe
ialsymbol not in � 
alled the zero a
tion; � : (Pr � (� [ 0 � Pr) ! [0; 1℄ is atotal fun
tion 
alled the probabilisti
 transition fun
tion satisfying the followingrestri
tion: 8P 2 Pr, Xa2�[0;Q2Pr�(P; a;Q) = 1Figure 1.2 is an example of a generative pro
ess.1 Introdu
tion - Probabilisti
 Models 10
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Figure 1.2: An example of a generative pro
essStrati�ed ModelStrati�ed models 
onsists of states and two kinds of transitions, probabilisti
and a
tion based. In the 
ase of probabilisti
 transitions, the sum of probabilitiesmust be 1, and for the a
tion transitions the restri
tion is that there must be onlyone outgoing a
tion transition from a state. van Glabbeek et al ([23℄) have a welldo
umented paper on these models. They show that the generative model is anabstra
tion of the strati�ed model, and that the rea
tive model is an abstra
tionof the generative model.
1 Introdu
tion - Probabilisti
 Models 11



1.3 Spe
i�
ationsThe spe
i�
ation or property to be veri�ed in a model, is usually stated in somelogi
 as a formula. This in the non-probabilisti
 
ase 
ould be a Linear TreeLogi
 (LTL, [18℄) or Computational Tree Logi
 (CTL, [19℄) or some temporallogi
. More suited to your model of a probabilisti
 model, is the Probabilis-ti
 Computational Tree Logi
 (PCTL, [12℄, [25℄) whi
h 
an express quantitativebounds on the probability of system evolutions. We give the syntax and seman-ti
s of this logi
 in Se
tion 2.3. However, there is an alternative to this logi
representation of formulas of the spe
i�
ation in model 
he
king.There are two main approa
hes for spe
ifying properties in model 
he
king: logi
-based (eg CTL, [19℄) and automaton-based(eg ! � automata, [34℄) or transitionsystem based. In the latter 
ase, spe
i�
ation formalism satis�ability will nor-mally be given by some suitable behavioral equivalen
e or preorder between theimplementation and spe
i�
ation.We are interested in a restri
ted 
lass of rea
hability properties, and hen
e inter-ested in parti
ular sequen
es of exe
ution that lead to 
ertain �nal 
onditions.These properties allow to spe
ify that the probability of rea
hing a parti
ular�nal 
ondition �f from any rea
hable state satisfying a given initial 
ondition �iis smaller (or greater) than a given probability p.1.4 Topi
s of Thesis1.4.1 Related WorkIn this se
tion, we �rst mention some of the existing work in area of methods andte
hniques to avoid the state spa
e exploration during model 
he
king.MinimizationThe main idea, in Minimization, is to redu
e the size of the model used in model
he
king by algorithms, so that the redu
ed(and smaller) stru
ture is used inpla
e of the original. By this the state spa
e to be explored, is redu
ed beforemodel 
he
king. However, the minimization is 
arried out with respe
t to thespe
i�
ation in question and by preserving the relations that hold on the models.Orna Grumberg's ([16℄) minimization te
hnique is applied to Kripke stru
turesby upholding the simulation preorder.1 Introdu
tion - Spe
i�
ations 12



Compositional Abstra
tionsIn our previous work, ([1℄), we des
ribed a pro
edure in whi
h, a system madeup of 
omponents intera
ting together, will have ea
h 
omponent being repla
edby a good abstra
tion, based on the probabilisti
 simulation preorder. These
omponent-based abstra
tions then repla
e the originals in the model 
he
kingpro
edure. The implementation is a tool, CAPS, whi
h, 
he
ks if two probabilisti
transition systems (a model and its abstra
t) simulate ea
h other, and hen
e theabstra
t is used in pla
e of the original.The Quotient Te
hniqueA new approa
h towards 
ompositional veri�
ation of 
on
urrent systems is theQuotient Te
hnique where 
omponents are gradually removed from the 
on
ur-rent system while transforming the spe
i�
ation a

ordingly. The intermediatespe
i�
ation is kept small using heuristi
s for minimization. This te
hnique hasbeen used for state/event systems, ([10℄) and also , some version of probabilisti
systems ([46℄).1.4.2 Outline of thesisThis thesis is organized as su
h: The next 
hapter we introdu
e some basi
 de�-nitions and theorems in Probability Theory, fo
us on the Probabilisti
 TransitionSystems, whi
h is our main working model, des
ribe the formalism for our spe
-i�
ations, and state what equivalen
es and preorders we use in this work.Chapter 3 is dedi
ated to Networks and Maximum Flows and how this is used in
omputing the probabilisti
 simulation preorder. This 
hapter is basi
ally workdown in our last report.In Chapter 4, we dis
uss some general methods for 
ompositionality and abstra
-tions. In Chapter 5, we dis
uss the Minimization Method and The QuotientTe
hnique for �nite states and in Chapter 6 and 7, we fo
us on these two meth-ods, and propose algorithms adapted to our probabilisti
 model, respe
tively.Chapter 8 dis
usses the appli
ation of these methods in the veri�
ation pro
ess.Chapter 9, des
ribes the implementation of these methods in our existing tool,CAPS. Some tests are used in Chapter 10 to draw some experimental results, andChapter 11, draws 
on
lusions on the work done in this thesis with some futuredire
tions.
1 Introdu
tion - Topi
s of Thesis 13



Chapter 2Preliminaries
2.1 Probability TheoryIn this se
tion we give some basi
 de�nitions asso
iated with the term probabilitythat we �nd useful in this work.A sample spa
e S lists all the possible out
omes of a random phenomenon. Ingeneral the event (E) is a subset of a sample spa
e, or in other words, an eventis any 
olle
tion of out
omes.The probability fun
tion � is a fun
tion from the sample spa
e S to a numberbetween 0 and 1. � : S ! [0; 1℄For ea
h event A in an experiment of a sample spa
e S, �(A) is the probabilitythat A will o

ur. The probability value, �(A), assigned to an out
ome (event)must satisfy the three axioms below in order to satisfy the mathemati
al notionof probability.Axiom 1 : For any event A, �(A) � 0.Axiom 2 : �(S) = 1.Axiom 3 : For an in�nite sequen
e of disjoint events A1; A2; : : :�( 1[i=1Ai) = 1Xi=1 �(Ai):14



De�nition 3 A probability distribution or probability on a sample spa
e S is aspe
i�
ation of the numbers �(A) whi
h satis�es Axioms 1,2, and 3.Consequently, for any event A, 0 � �(A) � 1.Generally, if the o

urren
e of an event A does not in
uen
e the o

urren
e ofanother event B, it is said that the two events A and B are independent. If eventsA and B are independent, then �(A and B) = �(A) � �(B).2.2 Probabilisti
 Transition SystemsIn this thesis, systems are des
ribed in terms of Markov De
ision Pro
esses ([29℄),also 
alled Probabilisti
 Transition Systems (PTS). This model is a labelled tran-sition system with both non-determinism and probabilisti
 
hoi
es present. The
hoi
e of this model is partly due to the fa
t that it is 
losed under parallel 
om-position (whi
h fa
ilitates modelling and 
ompositional reasoning) but primarilybe
ause PTSs are amenable to abstra
tion. This is a key fa
tor for the te
hniquesproposed in this work.We give a formal de�nition as su
h:De�nition 4 A Probabilisti
 Transition System PTS is a tuple (S, �!, V )where� S is a non-empty �nite set of states� !� S � A
t � Dist(S), is a �nite transition relation where A
t is a �niteset of a
tions, Dist(S) is a distribution over states S,� V : S ! 2AP is a labelling fun
tion.Note should be taken of the a
tion-labelled transitions. In the 
ases where ana
tion is impli
it and the same through out a system we leave it out of the repre-sentation.We use s a�! � to denote (s; a; �) 2�! and s a6�! to denote that (s; a; �) 62�!for all �. A Rooted PTS is a PTS with a prede�ned initial state, (S;�!; V; s0).Figure 2.1 is an example of a PTS with an initial state s.
2 Preliminaries - Probabilisti
 Transition Systems 15
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Figure 2.1: A Probabilisti
 Transition System2.2.1 Probabilisti
 Exe
utionsEa
h a
tion � leads to a distribution � 2 Dist(S) over su

essor states. We referto s ��! � as a transition. Finite pro
esses have �nite number of states and thetransition relation is a
y
li
. A PTS is a Fully Probabilisti
 T ransition System(FPTS) if whenever s ��! � and s ��! � then � = �.Let T = (S;!; V ). A simple path starting from s0 2 S in T is a �nite sequen
e ofS-states, � = s0s1s2:::sn, where for ea
h 0 � i < n there exists �i 2 Distr(S) su
hthat si ! �i and �i(si+1) > 0. Let �(i) denote the state in the i-th position. Letj�j be the length of �. Let first(�) = �(1) and last(�) = �(j�j). Let paths(T)denote the set of all probabilisti
 paths of T and s-paths(T) denote the sets ofsimple paths in T starting from any s 2 S. A state t is rea
hable from otherstate s in T if there is � 2 s-paths(T) with s = first(�) and t = last(�). Letrea
h(T,s) denote the set of all states rea
hable from s in T.For any rooted FPTS(F, s), the probability measure PF;s on the �-algebra in-du
ed by (F, s) is the unique probability measure de�ned su
h that PF;s(�) =�0(s1)��1(s2)�:::�n�1(sn) if (s = so) else 0. In parti
ular, PF;s(�) is the probabilityof � in F starting from s.Any given PTS T de�nes a set of probabilisti
 exe
utions, ea
h one obtainedby iteratively s
heduling one of the possible post-state distributions from ea
hpre-state, starting from a given state s0 2 S. This is the unique path leadingfrom the start state to s.De�nition 5 A probabilisti
 path of T is a FPTS, F = (s�path(T );!F ; fÆlast)where q !F � implies last(q) !T � with �(ps) = �(s) for all s 2 S. If inaddition, for all q 2 s � path(T ) su
h that jqj < i; last(q) !T implies thatq !F , then the rooted FPTS (F; s0) is said to be a probabilisti
 exe
ution fragmentof length i of T starting from s0 2 S. If i = 1; then(F; s0) is said to be aprobabilisti
 exe
ution of T starting from s0 2 S.2 Preliminaries - Probabilisti
 Transition Systems 16



Given a simple path � 2 s-paths(T) de�ne �" 2 s-paths(F)(F being a probabilis-ti
 path of T) su
h that j�"j = j�j and for all 0 < i � j�j, �"(i) = �(1):::�(i).Let f 2 PF where PF is the set of propositional formulas 
losed under ^ and :. De�ne �f M= f� 2 s-paths(T)j last(�) j= f and 80 < i < j�j. �(i) j= : fg,i.e. �f is the set of all minimal paths in T that end in �nal 
ondition f. Theminimum(in�mum) and maximum (supremum) probabilities of rea
hing a �nal
ondition f 2 PF from an initial 
ondition i 2 PF in a rooted PTS(T, s0) arede�ned respe
tively by:PinfT;s0 (i,f) M= inf fPF;q(�"f ) j s 2 rea
h(T, s0), s j= i, and (F, q) 2 exe
s(T, s)gPsupT;s0 (i,f) M= sup fPF;q(�"f ) j s 2 rea
h(T, s0), s j= i, and (F, q) 2 exe
s(T, s)gwhere exe
s(T; s) be the set of all probabilisti
 exe
utions starting from s.Figure 2.2 presents a probabilisti
 exe
ution F of an exam PTS T. The probabilityto eventually pass the 
ourse(p holds) after 3 attempts (
 < 3) is 
al
ulated asfollows:PF;p M= �Æ2�"f PF;Æ = 0:75 + 0:25 � 1(0:75 + 0:25 � 1 � 0:75) = 0:9843
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Figure 2.2: Probabilisti
 Exe
ution of PTS2.2.2 Parallel CompositionsGiven two PTSs T1 = (S1;!1; V ) and T2 = (S2;!2; V ) over the same set ofatomi
 propositions, we investigate the parallel 
omposition of these two andhen
e extrapolate to the 
omposition of several models together.2 Preliminaries - Probabilisti
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First, lets 
onsider an asyn
hronous interleaving of the individual pro
esses(j).The parallel 
omposition is a produ
t 
omposition of the states. This produ
tstru
ture gets huge qui
kly with the number of pro
esses involved. Formally T1j T2 = (S1 � S2;!; V (S1; S2)) where� (S1 � S2) = f(si; sk)jsi 2 S1 ^ sk 2 S2g� V (S1; S2) = V (S1) [ V (S2)� ! de�ned by the following rules:{ If s1 �!1 �1 then (s1; s2) �! �s21 where�s21 (s01; s02) = (�1(s01); s02 = s20; s02 6= s2{ If s2 �!2 �2 then (s1; s2) �! �s12 where�s12 (s01; s02) = (�2(s02); s01 = s10; s01 6= s1Figure 2.3 presents the examination models, that a student takes two 
ourses.The probability to pass both is examined on the parallel 
omposition, depi
tedin �gure 6.4.
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Figure 2.3: Two PTS exams T1, T2As 
an be seen from the �gure of the parallel 
omposition, the distribution fromea
h parallel state (s1; s2) to another state (s1; p2) is based on the distributionof the 
omponent state making the transition, that is (s2) ! (p2), just as isde�ned under the rules for the parallel 
omposition. Following the Figure 6.4logi
ally from the start points (s1; s2), a student taking the 2 
ourses 
an only2 Preliminaries - Probabilisti
 Transition Systems 18
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Figure 2.4: Parallel Composition of two pro
esses, T1kT2fail or pass one at a time. The �rst alphabet represents the �rst 
ourse and these
ond represents the se
ond 
ourse. So one 
an start the exams (s1; s2), take these
ond 
ourse and fail it (s1; F2). From this point, one might de
ide to try the�rst 
ourse. If this is also failed you end up in (F1; F2) or fortunately in (P1; F2)if it is passed. At this point if the number of trials of the failed 
ourse 
2 is stillless than 3, one 
an start from (P1; s2) and then hope to end up at (P1; P2).From the above example, an interesting spe
i�
ation to explore 
ould be if theprobability of passing at least one of the 
ourses taken is greater than say, 0:5.However, to 
arry out this exploration, one might need to 
onsider all the exe
u-tion paths in
ident to this parallel 
omposition.Se
ondly, we 
onsider the syn
hronous parallel 
omposition(jj). Formally T1kT2 =(S1 � S2;!; V (S1; S2)) where� (S1 � S2) = f(si; sk)jsi 2 S1 ^ sk 2 S2g� V (S1; S2) = V (S1) \ V (S2)� ! de�ned by the following rules:{ If (s1 �!1 �) ^ (s2 �!2 �) then (s1; s2) �! (� � �)(s01; s02) where(� � �)(s01; s02) = (�(s01) � �(s02)0; (ifs1 �!1 ^s2 �6!)then(s1; s2) �6! :2 Preliminaries - Probabilisti
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2.3 Spe
i�
ation FormalismThe two main approa
hes for spe
ifying properties are des
ribed in this se
tion.We state the syntax and semanti
s of the Probabilisti
 Computational Tree Logi
(PCTL, [25℄) and also des
ribe a model-based spe
i�
ation formalism.2.3.1 Logi
-based Spe
i�
ationIn spe
ifying the property to be veri�ed in the model, the formula for the propertyis often stated in some logi
. Bran
hing time logi
s su
h as Computational TreeLogi
(CTL) [Clarke & Emerson℄ allow quanti�
ation over the possible futureswhi
h leads to a formula stating eg. the existen
e or non-existen
e of an exe
utionwith a 
ertain property. CTL distinguishes between state and path formulas.The states formulas subsume the propositional 
onne
tives and basi
 temporaloperators of the form " a path quanti�er followed by a single temporal modality"where the path quanti�ers are 8 and 9 that range over all paths. We omit thesyntax and semanti
s of CTL.[Hansson & Jonsson℄ 
onsidered systems modelled by dis
rete markov 
hains andintrodu
ed the logi
s of Probabilisti
 Computational Tree Logi
 (PCTL), that 
anexpress quantitative bounds on the probability of system evolutions. This logi

an thus be used to reason about the reliability and performan
e of systems. It isobtained by adding to the bran
hing time logi
 CTL, the probabilisti
 operator[℄wp su
h that the formula ['℄wp is true at a given point of the system evolution,if starting from that point, the probability that a future evolution satis�es 'is at least (most) p. PCTL allows one to express quantitative properties ofprobabilisti
 pro
esses su
h as ' the system terminates with probability of atleast 0.75'. It also distinguishes between state and path formulas. PCTL 
ontainsatomi
 propositions and operators:next-step X and until U . The operators areused in 
onne
tion with an interval of probabilities.[Bian
o & Alfaro℄ extend the logi
s of PCTL to systems in whi
h nondeterminismand probabilisti
 behavior 
o-exist. Due to the presen
e of nondeterminism, it isnot possible, in general, to talk about the probability with whi
h a formula is sat-is�ed but only about the lower and upper bounds of su
h probability. Therefore,the formula ['℄wp is true at a given point of the system evolution if the systemevolution starting from that point satis�es ' with a probability bounded frombelow(above) by p.The logi
 we 
ould be work with, is essentially this Probabilisti
 ComputationalTree Logi
 PCTL over PTSs. However in our veri�
ation pro
ess, where we onlyseek to establish the properties that are of the type of probabilisti
 rea
hability,these formulas only spe
ify a quanti�
ation over path: a path or all paths. This2 Preliminaries - Spe
i�
ation Formalism 20



is a fragment of PCTL as some of the assumptions we spe
ify do not hold on allPCTL. Below we present the syntax and semanti
s of this PCTL over PTSs.Syntax : We distinguish between two 
lasses of formula: the 
lass of state formu-las(whose truth values are evaluated on the states, state) and the 
lass of sequen
eformulas(whose truth values are evaluated on in�nite sequen
e of states,path).The 
lasses state and path are de�ned as follow:P � state�; ' 2 state =) � ^ ';:� 2 state� 2 path =) A�;E�; [�℄wp 2 state� 2 state =) � 2 path�; ' 2 state =) 2�; ��; � U' 2 pathwhere p 2 [0,1℄ and w is either � or >.Semanti
s : For a formula � 2 state, indi
ate with s j= � its satisfa
tion on states 2 S, and for � 2 path indi
ate with � j= � its satisfa
tion on the in�nite statesequen
e path �. The semanti
s of the logi
al 
onne
tives and of the temporaloperators are de�ned in the usual way; the semanti
s of A, E, [℄wp are de�ned asfollows: s j= A� i� 8� 2 s-path. � j= �s j= E� i� 9� 2 s-path. � j= �s j= [�℄�p i� infimum(f� 2 s-pathj� j= �g)�ps j= [�℄�p i� supremum(f� 2 s-pathj� j= �g)�pIf s j= [�℄�p, it means that regardless of the 
hoi
es made in a nondeterministi
state, the probability that the future evolution satis�es � is at least p (and alsofor s j= [�℄�p). A formula � 2 state is satis�ed by a rooted PTS S, written S j= �if so j= �.
2 Preliminaries - Spe
i�
ation Formalism 21



2.3.2 Model-based Spe
i�
ationWe use a transition system based spe
i�
ation in this thesis.Our representationof the spe
i�
ation is a model, whi
h 
an be expli
itly translated into the Prob-abilisti
 Modal Logi
 of Larsen et al [℄. We are interested in a restri
ted 
lassof rea
hability properties, and hen
e interested in parti
ular sequen
es of exe
u-tion that lead to 
ertain �nal states. These properties allow us to spe
ify thatthe probability of rea
hing a parti
ular �nal 
ondition �f from any rea
hablestate satisfying a given initial 
ondition �i is smaller (or greater) than a givenprobability p. To minimize the 
omplexity of the sequen
es possible, we later inChapter ??, introdu
e a model (Blo
king PTS) whi
h is a type of a PTS whi
hwell des
ribes the rea
hable properties we work with.2.4 Equivalen
es and PreordersSimulation(v) and bisimulation relations (�) have been widely 
onsidered([31℄[41℄) to 
ompare the stepwise behavior of states in transition systems. Bisimula-tion relations are equivalen
es(these are re
exive, symmetri
 and transitive) su
hthat two bisimular states exhibit identi
al stepwise behavior. On the 
ontrary,simulation relations are preorders (these are re
exive and transitive) on the statespa
e su
h that if s v s0 (s0 simulates s) state s0 
an mimi
 all stepwise behaviorof s; the 
onverse, that is s0 v s, is not guaranteed, so state s0 may perform stepsthat 
an not be mat
hed by s. Thus if s v s0, then every su

essor of s has a
orresponding, related su

essor of s0, but the reverse does not ne
essarily hold.Simulation 
an be lifted to the entire transition systems by 
omparing (a

ord-ing to v) their initial states. Simulation relations are often used for veri�
ationpurposes to show that one system 
orre
tly implements another, more abstra
tsystem.Bisimulation relations possess the strong preservation property whereas simu-lation has weak preservation. Strong preservation means if s � s0, then for allformulas �, it follows s j= � iff s0 j= �. This property holds, for instan
e, forCTL and strong bisimulation ([13℄). The use of simulation relies on the preser-vation of 
ertain 
lasses of formulas, not for all formulas (su
h as for �). Forinstan
e, if s v s0 then all safety formulas �, it follows that s0 j= � implies s j= �.However, the 
onverse s 6j= �, 
annot be used to dedu
e that � does not hold inthe simulated state s; hen
e the name weak preservation.Simulation relations are the basis for abstra
tion te
hniques where the basi
 ideais to repla
e the large system to be veri�ed by a small abstra
t model and tomodel 
he
k the abstra
t system. ([4℄)2 Preliminaries - Equivalen
es and Preorders 22



In this se
tion, we state the de�nitions for the bisimulation and simulation rela-tions for a labelled transition system and then extend them to the probabilisti

ase.Given a labelled transition system (LTS) as a tuple (S, A,!) where S is a set ofstates, A is a set of a
tions and !� S �A� S the transition relation, we de�neR � S � S as a binary relation over S and R�1 = fhs0; sijhs; s0i 2 Rg for theinverse of R.De�nition 6 Let hS;A;!i be a LTS and let R � S � S be a relation. Then:1. R is a simulation if for every hs1; s2i 2 R and a 2 A, whenever s1 a�! s01,then there is a s02 su
h that s2 a�! s02 and hs01; s02 2 Ri.2. R is a bismulation if both R and R�1 are simulations.For any LTS there is a maximal simulation(a preorder), � and bisimulation(anequivalen
e), �. The following states a 
onne
tion between � and �.Theorem 1 Let hS;A;�!i be a LTS, with s1; s2; s3 2 S. Then:1. If s1 � s2 and s2 � s3, then s1 � s3.2. If s1 � s2 and s2 � s3, then s1 � s3.Extending the notion of simulation to two LTSs, T1 = hS1; A1;�!1i and T2 =hS2; A2;�!2i, we say T1 � T2 if their initial states s1 � s2.With this ba
kground, we extend this equivalen
e and preorder to the 
ase ofProbabilisti
 Transition Systems. We examine the 
on
ept of Probabilisti
 Sim-ulation between two PTS models and its asso
iated states and distributions.De�nition 7 Let S1 and S2 be �nite sets, su
h that R � S1 � S2, and �1 2�(S1), �2 2 �(S2). A weight fun
tion for �1; �2 with respe
t to R is a fun
tionÆ : S1 � S2 ! [0,1℄ whi
h satis�es1. For all (s1 2 S1) : �s22S2Æ(s1; s2) = �1(s1)2. For all (s2 2 S2) : �s12S1Æ(s1; s2) = �2(s2)3. If Æ(s1; s2) > 0 then (s1; s2) 2 R2 Preliminaries - Equivalen
es and Preorders 23



R an equivalen
e relation, is a bisimulation if and only if for all (s1; s2) 2 R:whenever (s1; s2) 2 R and s1 �!1 �1 then there exists a transition s2 �!2 �2 and aweight fun
tion for (�1; �2) with respe
t to R. Intuitively the weight fun
tion Æ,show how to split the probability distributions �1 and �2 on s1, s2 2 S, see Figure2.5, so that the relation is preserved. For simulation, the requirement that R isan equivalen
e relation is dropped (if and not if and only if). We write �1 vR �2if there exists a weight fun
tion between �1; �2 with respe
t to R. Also s1 vR s2if whenever s1 ��! �1 then s2 ��! �2 with �1 vR �2:
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Figure 2.5: Weight Fun
tion, s vR tDe�nition 8 A simulation between a rooted PTS T1 = (S1;!1; V1; s10) and T2 =(S2;!2; V2; s20) is a subset R of S1 � S2 su
h that1. (s10; s20) 2 R2. whenever (s1; s2) 2 R and s1 �!1 �1 then there exists a transition s2 �!2 �2and a weight fun
tion Æ for (�1; �2) with respe
t to R i.e. �1 vR �2.We say s1 is simulated by s2(denoted by s1 v s2) i� there exists a simulation that
ontains (s1; s2): Consequently, T1 v T2 if the above 
onditions hold.
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Chapter 3Computing The Simulation Preorder
3.1 Introdu
tionIn using abstra
tions in veri�
ation, we need to establish what a good abstra
tis. As stated previously, we use the simulation preorder to guarantee this. In this
hapter, we des
ribe how to establish that two PTSs probabilisti
ally simulateea
h other. We introdu
e a mathemati
al problem and use its solution to 
omputethe simulation preorder relation.By the de�nition of simulation over PTSs (De�nition 8), �nding the relationR = S � S 0 is the key point of determining whether one PTS simulate the other.The basi
 algorithm for 
omputing the simulation relation ( [16℄) is as follows:R := S � S;While there exists (s; s0) 2 R with s6vRs0 doR := Rnf(s; s0)gReturn R.Figure 3.1: The Basi
 S
hema for 
omputing the Simulation Preorder.In PTSs though, the task of 
he
king s vR s0 (simulation by state), extends to
he
king � vR �0 (simulation by distribution) as in the de�nition. In 
he
king� vR �0, a network-based te
hnique is used. The algorithm for 
omputing thesimulation relation between two PTSs, basi
ally tests if a weight fun
tion, fordistributions �; �0 with respe
t to a given relation R, exists. The problem of�nding a weight fun
tion is redu
ed to a maximum 
ow problem in networks.In the next se
tion we introdu
e the 
on
ept of networks and 
ows in them, anhow the value of 
ow is 
omputed in these networks.25



3.2 Networks and FlowA network is a tuple N = (N;E;?;>; 
) where (N;E) is a �nite dire
ted graph(i.e N is a set of nodes, E � N � N a set of edges) with two spe
i�ed nodes ?(thesour
e:s) and >(the sink:t) and a 
apa
ity 
. 
 is a fun
tion whi
h assigns to ea
hedge e = (u; v) 2 E a non-negative number 
(e). 
(e) : E ! R�0.A flow fun
tion f for N is a fun
tion whi
h assigns to edge e a real numberf(e) su
h that 0 � f(e) � 
(e) for all edges e.Let in(v) be the set of in
oming edges to node v and out(v)the set of outgoingedges from node v. Then for ea
h node v 2 N n f?;>g:Xe2in(v) f(e) = Xe2out(v) f(e)De�nition 9 Flow. A 
ow is a fun
tion f : E ! R satisfying the following(1) Capa
ity Constraint: f(u, v) � 
(u, v) , 8(u, v)(2) Skew Symmetry: f(u, v) = - f(u, v) , 8(u, v) 2 E(3) Flow Conservation: �v2N f(u, v) = 0 ; 8u 2 N - fs; tgThe value of a 
ow f is jf j = �v2Nf(s; v).The ex
ess of a node (v) isex
ess(v) = �e2in(v)f(e) - �e2out(v)f(e)The maximum flow in N is the suprenum (maximum) of the value of 
ow inthe network where f is a 
ow fun
tion in N .3.3 Maximum Flow ProblemGiven a network (N;E;?;>; 
), �nd a 
ow of maximum value from sour
e(?)to sink(>) i.e. determine a 
ow f for whi
h jf j is maximum.Finding this maximum 
ow in a network is a
hieved by adjusting the 
ow and
apa
ities on the edges until they are stable. From the de�nition of the 
owfun
tion, we assign 
ows to the edges based on their 
apa
ities. We present thison the edges as 
apa
ity=flow, Figure 3.2. The 
ows into a node(ex
ept for thesour
e and sink nodes) must be equal to the 
ows out of it. Consequently, theex
ess of nodes is 0.3 Computing The Simulation Preorder - Networks and Flow 26
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Figure 3.2: A Network with Maximum Flow of 1Residual NetworksLet N be a network with a 
ow f . For any (u; v) 2 E, the residual 
apa
ity of(u; v) is 
f(u; v) = 
(u; v)� f(u; v). The residual graph of G = (N;E) indu
edby f is Gf = (N;Ef)where Ef = f(u; v) 2 N j 
f (u; v) > 0gThe 
ow f also gives rise to the residual 
ow network N f = (G; �
f ; s; t) where�
f(u; v) = 
f (u; v) for (u; v) 2 Ef and 0 otherwise(i.e. for (u; v) 2 E � Ef).Given a graph G = (N;E) and a flow f . An augmenting path � is a simplepath from s to t in the residual graph, Gf , indu
ed by flow f . Every edge inGf has positive 
apa
ity. The maximum amount of net 
ow that 
an 
ow alongedges of � is 
alled the residual 
apa
ity of �:
f(�) = minf
f (u; v) j (u; v) is on �gFor every edge e = (u; v) in G there are up to two edges e0 and e00 in Gf1. If 
ap(e) < f(e), e0 = (u; v) 2 Gf ; r(e0) = 
ap(e)� f(e)2. If f(e) > 0, e00 = (v; u) 2 Gf ; r(e00) = f(e)3. If 
(e) = f(e), e00 = (v; u) 2 Gf ; r(e00) = 
(e)Lemma Fix F= (G; 
; s; t), with 
ow f , and augmenting path � in Gf , de�ne3 Computing The Simulation Preorder - Maximum Flow Problem 27



f�(u; v) = 8><>:f(e) + 
f ; ife0 2 �f(e)� 
f ; ife00 2 �0; otherwiseThe generi
 algorithms for 
al
ulating maximum 
ow are based on general graphs.Some examples are the Ford-Fulkerson Algorithm, Dini
's Algorithm, and theFirst-In First-Out(FIFO) Preorder Push Algorithm. Modi�
ations have beenmade to adapt these algorithms to bipartite graphs, whi
h is more useful in our
ase. When the probabilisti
 simulation problem is redu
ed to the maximum 
owproblem, a network N = ((N;E);?;>; 
) is established. G = (N;E) is a
tuallya bipartite graph, written G = (X [ Y;E). We implement an improved versionof the Ford-Fulkerson Algorithm for bipartite graphs. This improved algorithmperforms at O(p4) where p = max fj X j; j Y jg.The Ford-Fulkerson AlgorithmGiven a network (G; s; t), with sour
e and sink nodes, s and t respe
tively,1. Initialize 
ow f to 02. While there exists an augmenting path � in GfDo augment 
ow f along �3. Return fGiven the graph G with spe
ial nodes s and t as sour
e and sink nodes, respe
-tively, the algorithm starts with zero 
ows f(e) = 0 for all edges e. It then
onstru
ts the residual network Gf . In this residual network, it 
he
ks whethert 
an be rea
hed from s. If there is an augmenting path, then this is possible. Ifnot it stops else flow is adjusted along the augmenting path and it iterates. Thevalue of flow obtained when there is no augmenting path, has been found to bethe Maximum Flow of the network.3.4 Probabilisti
 Simulation andMaximum FlowWe now show how the problem of 
omputing the probabilisti
 simulation(� vR�0), is redu
ed to that of The Maximum Flow Problem.3 Computing The Simulation Preorder - Probabilisti
 Simulation and MaximumFlow 28



For ea
h transition s �! �, let Childs;�(�) � S is a set of states, whose elementsare distributed by �, for instan
e, in Figure 3.4 Childs0;�(�) = (s1; s2; s3). Giventhe preorder relation R � S � S 0, s �! � and s0 �!0 �0, where � 2 Dist(S),�0 2 Dist(S 0). Choose ?;> su
h that ? = s;> = s0. We derive a network N(N;E;?;>; 
) or N (�; �0; R) su
h thatN = f?;>g [ fChilds;�(�) [ Childs0;�(�0)gE = f(s; s0) : (s; s0) 2 Rg [ f(?; s) : s 2 Childs;�(�)g [ f(s0;>) : s0 2Childs0;�(�0)g
(?; s) = �(s); 
(s0;>) = �0(s); 
(s; t0) = 1Lemma: The following are equivalent1. There exists a weight fun
tion Æ for (�; �0) with respe
t to R2. The maximum 
ow in N (�; �0; R) is 1.The algorithm that 
omputes the maximum 
ow in the probabilisti
 simulationindu
ed network N , is given in Figure 3.3.Input : A nonempty, �nite set S, distribution �; �0 2 Distr(S)and R � S � SOutput : If � vR �0 2 then "Yes"else "No"Method :Constru
t the network N (�; �0; R);Compute the maximum 
ow F in N (�; �0; R);If F < 1 then return then "No"else "Yes" Figure 3.3: The Test for � vR �0.As an example 
onsider the PTSs in Figure 3.4. In order to 
he
k whether �0 sim-ulates �, with relation R = f(s1; t1); (s2; t1); (s2; t2); (s3; t2); :::g we 
an establisha network for ea
h state, as shown in Figure 3.2.Example: Applying the algorithm for 
omputing the probabilisti
 simulationrelation R for two given PTSs, T and T 0 in Figure 3.4. We start with the relationR 
ontaining the pairs:3 Computing The Simulation Preorder - Probabilisti
 Simulation and MaximumFlow 29



- (s0; t0), (s0; t3), (s3; t2), (s5; t3),- (si; tj), where (i = 1; 2; 4; 6; :::; 9) and (j = 0; :::; 4)
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Figure 3.4: An example of a PTSIntuitively, there are some pairs whi
h are not in the initial R, su
h as (s5; t0)be
ause the a
tion set over (s5) 6� the a
tion set over(t0), (f
g 62 f�g).The pair (s0; t3), (s3; t2) are also removed from the set R during the investigation.For (s0; t3), Distr(s0; �) = f�s0; �s4; �g andDistr(t3; �) = f�t3g, and as � 6vR �t3then s0 6vR t3. For (s3; t2) the 
omputed maximum 
ow is 0.85, whi
h impliess3 6vR t2. Although the pair (s0; t0) is still in R in the initial investigation asDistr(s0; �) = f�s0; �s4; �g and Distr(t0; �) = f�0g , it is later removed, be
auseafter the pair (s3; t2) is removed from R, its maximum 
ow of (�; �0) is adjustedand is less than 1. Finally, we get the relation R 
ontaining the pairs:- (s5; t3),- (si; tj), where (i = 1; 2; 4; 6; :::; 9) and (j = 0; :::; 4)Putting it all together, we now present the algorithm that 
omputes the proba-bilisti
 simulation relation between two given PTSs.3 Computing The Simulation Preorder - Probabilisti
 Simulation and MaximumFlow 30



Initialization:R := f(s; s0) 2 S � S : a
ts(s) � a
t(s0)gFor all (s; s0) 2 R and s! � do Sim(s;�;�)(s0) := Steps�(s0))Iteration:Repeat: ;Rold := R;R := 0For all (s; s0) 2 Rold do� sim := true;� For all s! � doRepeat:
hoose some �0 2 Sim(s;�;�)(s0);If � vR �0 then remove �0 from Sim(s;�;�)(s0);until Sim(s;�;�)(s0) = 0 or � vR �0;If Sim(s;�;�)(s0) = 0 then sim := false;� If :sim then R := R [ f(s; s0)g;until Rold = R;Output: Return R.Figure 3.5: Basis algorithm for 
omputing the Simulation Preorder.
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Chapter 4General Methods for Compositionality &Abstra
tion
Frege's Prin
iple of 
ompositionality: The meaning of the whole is a fun
tion ofthe meaning of the parts.Abstra
tion is one of the most useful ways to �ght the state explosion problem.They should however preserve the properties of interest su
h that propertiesthat hold for the abstra
t system should hold for the 
on
rete model. Modelabstra
tion redu
es the number of states ne
essary to perform formal veri�
ationwhile maintaining the fun
tionality of the original model with respe
t to thespe
i�
ation to be veri�ed . As a result model abstra
tion enables large designs tobe formally veri�ed. The resulting abstra
t models 
an repla
e the original modelfor formal veri�
ation provided that ea
h of the abstra
tions is homomorphi
 tothe 
orresponding part of the original model that it repla
es with respe
t to thespe
i�
ation to be veri�ed([34℄)Model Che
ks M j= �, 
an be abstra
ted by simplifying the model M ([17℄), theproperty, � ([26℄), or the satisfa
tion relation, j= .Model partitioning takes a portion of a model and repla
es it with an abstra
tmodel. E.g. if a portion of a model does not a�e
t (i.e. is independent from)the rest of the model with respe
t to the properties to be veri�ed, it may beadvantageous to abstra
t that portion of the model away.4.1 Compositional Abstra
tionIn this se
tion we des
ribe work that uses the 
on
epts of 
ompositionality andabstra
tion to break down and lo
alize abstra
tion to the individual pro
esses32



of a system that syn
hronize for the total behavior of the system. In our pre-vious work, we used this approa
h to help minimize the state spa
e exploredduring model 
he
king and also developed a tool 
alled CAPS (a
ronymed fromCompositional Abstra
tion by Probabilisti
 Simulation).Given the model 
he
king problem:C1kC2kC3k:::kCn j= � (4.1)where C1; C2; C3; :::; Cn are 
omponents of an asyn
hronous parallel system. Werepla
e this equation with A1kA2kA3k:::kAk j= � (4.2)where A1 � � �Ak are abstra
t 
omponents satisfyingC1k:::kCi1 v A1Ci1+1k:::kCi2 v A2...Cik�1+1k:::kCn v AkThis result was upheld provided that v satis�ed the following properties :(Pre
ongruen
e) C v A =) CkR v AkR(Property Preservation) (A j= � ^ C v A) =) C j= �We used the probabilisti
 simulation preorder [44℄,[29℄ as the relation whi
h musthold between the original 
omponent and the abstra
tion. We 
hose the prob-abilisti
 extension of the simulation preorder, and not an equivalen
e relationsu
h as bisimulation, be
ause it permits a smaller model being obtained or inthe worst 
ase an equal model. Bisimulation for
es a stri
t equivalen
e whi
hwill often not be of mu
h help in an abstra
tion. This method of abstra
tion tominimize the model 
an only be used in the model 
he
king, if the probabilisti
simulation preorder has been established. If for all the 
omponents of a model,an abstra
tion 
an be found for ea
h 
omponent, in su
h a way that ea
h 
om-ponent is probabilisti
ally simulated by its abstra
tion, we 
an then substitutethese abstra
tions for the 
omponents and pro
eed with model 
he
king. Conse-quently, we avoid the expli
it 
onstru
tion and exploration of the state spa
e ofthe original model with signi�
ant savings on time and spa
e.4 General Methods for Compositionality & Abstra
tion - CompositionalAbstra
tion 33



4.2 PartitioningModel partitioning te
hniques redu
e the state spa
e by grouping several statesinto the same abstra
t state (i.e. partition) and by removing parts of the modelnot related to the spe
i�
ation to be veri�ed. The abstra
tions 
onsidered areusually obtained by su

essive re�nement , starting from an initial 
oarse parti-tioning of the state spa
e, derived from the property under study. If the analysisof this abstra
t PTS allows to 
on
lude that the property is satis�ed by the 
on-
rete PTS, the veri�
ation pro
ess is �nished. Otherwise a partition re�nementstep is performed in order to obtain more pre
ise information. The pro
ess isiterated up to su

ess or until all 
lasses of the partition are stable. If the lattero

urs, it 
an 
on
lude that the property is false and extra
t a 
ounter-examplepath, ([20℄). In Se
tion 2.2.1, we des
ribed how the maximum and minimumprobabilities of rea
hing a �nal 
ondition(�f or state) from an initial 
ondition(�i or state) are obtained. This se
tion is based on work done by Pedro D'Argenioet al ([20℄) and their approa
h in obtaining good abstra
tions by partitioning.Lets denote the sets of states satisfying �i and �f by I and F respe
tively. Ifs 2 F then F inf(f)(s) = F sup(f)(s) = 1, that is the state s is in (satis�es) the�nal 
ondition. If s 62 F thenF inf(f)(s) = min(s!�)Ps02S �(s0) � f(s0) andF sup(f)(s) = max(s!�)Ps02S �(s0) � f(s0)In ([20℄), the equations are transformed into a linear optimization problem whi
his solved by linear programming.A partition is indu
ed by an equivalent relation. We now de�ne an equivalen
erelation based on simulation.De�nition 10 Let (S;�!; V ) be a probabilisti
 transition system. Let C � S�Sbe a relation on states de�ning a dis
rimination 
riterion. R is a C- probabilisti
simulation if, whenever sRt,1. (s; t) 2 C, and2. ifs �! �, and t �! � and there exist Æ 2 Distr(S � S) su
h that for alls; t 2 S,(a) �(s) = Æ(s; S)(b) �(t) = Æ(S; t), and(
) sRt whenever Æ(s; t) > 0:4 General Methods for Compositionality & Abstra
tion - Partitioning 34



We say that t C-simulates s, notation s �C t if there is a C-simulation R su
hthat sRt.Our interest is to 
he
k when a PTS rea
hes a goal �f starting from any statesatisfying some initial 
ondition i. Let C�i;�f be the dis
riminating 
onditionde�ned by(s; t) 2 C�i;�f =) (s j= �f , t j= �f ) and (s j= �i , t j= �i).Our main purpose is to answer the question whether the probability of eventuallyrea
hing the �nal 
ondition f from any state satisfying a given initial 
ondition iis smaller than a given value p 2 [0; 1℄. C is an equivalen
e relation. The nexttheorem states that if a PTS T� satis�es this property, and another PTS T isC-simulate by T�, then T also satis�es the property.Theorem 2 Let (T1; s10) and (T2; s20) be two rooted PTSs, su
h that none of themhas a sink node and let C�i;�f be the dis
riminating 
ondition as de�ned. Then1. (T1; s10) �C (T2; s20) implies PsupT1;s10(�i; �f) � PsupT2;s20(�i; �f) and2. PinfT1;s10(�i; �f) � PinfT2;s20(�i; �f).A PTS 
an be abstra
ted by partitioning its state spa
e, and any su
h partitionwill indu
e an abstra
t PTS whi
h should simulate the original (
on
rete) one.See Theorem 4. Consequently, the abstra
t model will satisfy the same rea
ha-bility properties as the original model. The minimum and maximum propertiesis preserved by the abstra
t system, and establish its limits (bounds).Theorem 3 Let A = fA1; � � � ; Akg be a partitioning of the �nite set of states Sof a PTS T, then the following holds:1. Ai � S2. AiTAj = � (i 6= j)3. Si=1:::kfAig = SDe�nition 11 Let T be a PTS and A = fAi; � � � ; Akg be a partitioning of thestates of T. Then the partitioned PTS T=A = (A;!A; fA) where1. A is its �nite set of states,2. !A transitions: A a! � i� there exists s 2 A with s a! � and �(A0) =Ps02A0 �(s0)4 General Methods for Compositionality & Abstra
tion - Partitioning 35



3. fA = Vs2A f(s) .For a rooted PTS (T; s0), the partitioned PTS (T; s0)=A = (T=A;Ai) provideds0 2 Ai 2 A. This means that the partition that 
ontains the initial state of thePTS T , be
omes the initial state (partition) of the partitioned PTS.Theorem 4 For a PTS T and its partitioned self (T=A), T v T=A.As an example, 
onsider a 
oin being tossed to play out the throw of a die. Referto Figure 4.1. To throw a "two", the toss sequen
e of the 
oin will be a head,tail and �nally a head. An interesting property to verify in this model will be�nding out the probability of throwing a parti
ular number, say a "six". i.e.the probability of rea
hing a "six" in three su

essive 
oin tosses, (the sequen
eTail; Tail; Head). By PCTL logi
, we obtain the minimum and maximum prob-abilities for the �nal 
ondition f 2 PF (propositional formulas) from an initial
ondition i 2 PF, as a six from 
oin (s0, the initial state), for the die will beobtained as PinfD;s0 (s0, "six"); PsupD;s0 (s0, "six");
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Figure 4.1: A fair 
oin toss as a die thrownWe obtain a 
oarse partition on the state of the die (D), based on the rea
habilityproperty of interest, obtaining a "six". In Figure 4.3, we present an intuitiveabstra
tion whi
h is an illustration of the partitioned PTS, where the states areinfa
t independent partitions. This is a signi�
ant redu
tion in the states, from13 to 6 states, to be exponentially explored. We �rst show whi
h states is put inone partition, by en
losing these in the dotted square box.4 General Methods for Compositionality & Abstra
tion - Partitioning 36
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Figure 4.2: Partitioning the di
e model
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Figure 4.3: An abstra
tion of the 
oin toss4.3 The Quotient MethodIn this se
tion we dis
uss the quotient te
hnique, �rst introdu
ed by Kim G.Larsen in his PhD thesis [38℄, whi
h is a promising te
hnique for avoiding the stateexplosion problem in model 
he
king. It has been studied within the last de
adeand has been proven to be su

essful for �nite-state systems and real-time systems[3, 35℄. Our aim is to extend the method for probabilisti
 systems. Consider thefollowing model 
he
king problem involving a system with n pro
esses in parallel:A1ed:::edAn ` ' (4.3)4 General Methods for Compositionality & Abstra
tion - The Quotient Method37



where parameters of 
omponents, parallel 
omposition (ed), spe
i�
ation formal-ism and the satisfa
tion relation in (4.3) may be instantiated as follows:1. Component Type� Finite State System FS = (S;!), where S is a �nite set of states and!� S � A
t� S is a transition relation.� Timed Automata TA = (L; l0; E; Label; C; 
lo
ks; guards; inv), whereL is a �nite set of lo
ations with an initial lo
ation l0; E � L� L is aset of edges; Label : L! 2AP a fun
tion that assigns to ea
h lo
ation,a set of Label(l) of atomi
 propositions; C is a �nite set of 
lo
ks;
lo
ks : E ! 2
, a fun
tion that assigns a set of 
lo
ks, 
lo
ks(e) toea
h edge; guard : E ! 	(C) a fun
tion that labels ea
h edge, with a
lo
k 
onstraint guard(e) and inv : L! 	(C) a fun
tion that assignsto ea
h lo
ation an invariant.� Probabilisti
 Transition System PTS = (S;!; V ), where S is a �niteset of states, !� S � A
t � Dist(S), is a �nite transition relation,where Dist(S) is distribution over states S,2. Parallel Composition� Interleaving P ��!P 0P jQ ��!P 0jQ , Q ��!Q0P jQ ��!P jQ0� Syn
hronization P ��!P 0 Q ��!Q0PkQ ��!P 0kQ0� Mixed Syn
hronizationP ��!P 0P jjjQ ��!P 0jjjQ , Q ��!Q0P jjjQ ��!P jjjQ0 andP ��!P 0 Q ��!Q0P jjjQ ��!P 0jjjQ0where P;Q; P 0; Q0 
an be one kind of the 
omponents in (1); (j); (k) and(jjj) respe
tively present an interleaving, a syn
hronous and a mixed syn-
hronous parallel 
omposition.4 General Methods for Compositionality & Abstra
tion - The Quotient Method38



3. Spe
i�
ation Formalism� Logi
, where the spe
i�
ation formalism is presented in terms of alogi
, su
h as Hennessy Milner Logi
, CTL, TCTL, PCTL, normallydenoted by �; '; : : :� Model, where the spe
i�
ation is presented by a model, su
h as Fi-nite State, Timed Automata, Markov Chain or Labelled TransitionSystems, normally denoted by A; P; T:4. Satisfa
tionality Relation (`)� For the logi
, it is a logi
 satisfa
tion, denoted by (j=).� For the model, it 
ould be a simulation preorder (�; �), probabilisti
simulation preorder (v; w) or a bisimulation equivalan
e (�).In the model 
he
king equation, (4.3), we wish to verify that the parallel 
ompo-sition of those systems satis�es ' without having to 
onstru
t the 
omplete statespa
e of A1ed:::edAn. We will avoid this 
omplete 
onstru
tion by removing the
omponent Ai one by one from the parallel system, while simultaneously trans-forming the formula a

ordingly. Thus, when fa
toring out the 
omponent Anwe will transform the formula ' into the quotient formula '=An su
h that:(A1ed:::edAn) ` ' if and only if (A1ed:::edAn�1) ` '=AnHowever, while repeatedly applying quotienting, another problem arises: thestate explosion now o

urs in the size of the quotient formula. Therefore the ideabehind the Quotient Te
hnique is that ea
h quotienting should be followed by asimpli�
ation heuristi
, su
h as minimization method, whi
h will be dis
ussed inthe next 
hapter. We 
onsequently obtain a 
ombined pro
ess of quotienting andminimizing as:(A1ed:::edAn) ` ' if and only if (A1ed:::edAn�1) ` ('=An)sBy repeatedly applying quotient and simplifying the problem we �nally a
hievethe following 
lause:(A1ed:::edAn) ` ' if and only if ~ ` (((('=An)s)=An�1)s= : : : =A1)swhere ~ is the unit with respe
t to parallel 
omposition.In our thesis, we are interested in applying the quotient method for a modelspe
i�
ation su
h as �nite-state or PTS spe
i�
ation rather than a logi
al spe
i-�
ation. For this reason, we hen
eforth investigate the quotient te
hnique for thefollowing 
on
rete model 
he
king equation:4 General Methods for Compositionality & Abstra
tion - The Quotient Method39



A1ed:::edAn ` Bwhere,� Components Ai; B are FSs, and the satisfa
tion relation (`) is simulationpreorder (�; �) in 
ase of �nite-state systems or,� Components Ai; B are PTSs, and the satisfa
tion relation (`) is probabilis-ti
 simulation preorder (v; w) in 
ase of probabilisti
 systems.We now restate that the purpose of the quotient te
hnique is to try to avoidthe state-explosion problem in parallel systems by fa
toring out 
omponents,one at a time while simultaneously transforming the spe
i�
ation a

ordingly forthe whole system and thereafter applying simpli�
ation heuristi
 repeatedly forea
h quotienting. In this thesis we dis
uss the quotient te
hnique for �nite-statesystems by adapting the equation solving method proposed by Larsen and Xinxin[47℄ and extend the methods for the probabilisti
 labelled transition systems.4.3.1 Spe
ial Sub
lassesIn this proje
t we fo
us on applying the quotient te
hnique for spe
ial sub
lassesof model 
he
king. The aim is to answer the question when a parallel 
ompositionsimulates (�; w) or is simulated (�; v) by a model spe
i�
ation without havingto 
onstru
t the 
omplete state spa
e by using the quotient te
hnique in �nite-state systems and probabilisti
 systems. Consider the 
on
rete model 
he
king(inequation): A1ed:::edAn ./ Bwhere ./ is either (�; w) or (�; v).Let Xn = B, by applying the quotient te
hnique we might obtain the followingset of equivalent equations:A1ed:::edAn ./ Xni� A1ed:::edAn�1 ./ Xn=An = Xn�1...i� A1 ./ X2=A2 = X14 General Methods for Compositionality & Abstra
tion - The Quotient Method40



i� ~ ./ X1=A1 = X0where ~ is the unit with respe
t to parallel 
omposition.Now 
learly, if for ea
h i 2 1::n the quotient (Xi=Ai) = Xi�1 is the small-est/largest, respe
tively for (�; w) and (�; v), with respe
t to (probabilisti
)simulation preorder, we have su

eeded in "quotient" solving the problem. Morepre
isely, we give the following:Corollary 1 Given 
omponent A and spe
i�
ation B, the existen
e of quotientsis a 
onstru
t B=A su
h that for all X the following holds:AedX ./ B i� X ./ B=AIntuitively, the main problem now is that given a model spe
i�
ation B and a
omponent A we wish to �nd the largest/smallest X su
h that AedX ./ B. In thenext se
tions we dis
uss the quotient te
hnique applied to �nite-state systems.The quotient te
hnique for probabilisti
 systems is dis
ussed in Chapter 7

4 General Methods for Compositionality & Abstra
tion - The Quotient Method41



Chapter 5Methods for Finite State
In this 
hapter, we examine two main methods for �nite states and in subsequent
hapters extend them to the probabilisti
 transition system.5.1 MinimizationIn this se
tion, we introdu
e Orna Grumbergs work on Simulation based Mini-mization ([16℄). By this, we aim at being able to redu
e (minimize) the stru
tureof a model, as an individual 
omponent or as a result of some parallel 
omposition.In her paper, Grumberg presents a minimization algorithm whi
h re
eives aKripke stru
ture,M and returns the smallest stru
ture whi
h is simulation equiv-alent toM . The redu
ed stru
ture is obtained is based on simulation equivalen
e.Although bisimulation equivalen
e has the advantage of preserving more expres-sive logi
s, it requires the abstra
t stru
ture to be too similar to the original thusallowing less powerful redu
tions.5.1.1 De�nitions and TheoremsDe�nition 12 Kripke Stru
ture M over atomi
 proposition(AP), is a fourtuple M = (S; s0; R; L) where- S is a �nite set of states;- s0 2 S is the initial state;- R � S�S is the transition relation that must be total i.e., for every state s 2 Sthere is a state s0 2 S su
h that R(s; s0) and42



- L : S ! 2AP is a fun
tion that labels ea
h state with the set of atomi
 proposi-tions true in that state.De�nition 13 The size jM j of a Kripke stru
ture M is a pair (jSj; jRj). We saythat jM j � jM 0j if jSj � jS 0j or jSj = jS 0j and jRj � jR0jIn Figure 5.1, jM?j � jM j be
ause although jS?j = jSj , jR?j � jRj.
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Figure 5.1: An example of a Kripke stru
tureDe�nition 14 Given two stru
tures M = (S; s0; R; L) and M 0 = (S 0; s00; R0; L0)over AP , a relation H � S � S 0 is a simulation relation over M �M 0 i� thefollowing holds1. (s0; s00) 2 H2. 8(s; s0) 2 H;L(s) = L0(s0) and8t[(s; t) 2 R! 9t0[(s0; t0) 2 R0 ^ (t; t0) 2 H℄℄:We say thatM 0 simulatesM (M �M 0), see Figure 5.2, if there exists a simulationrelation H over M �M 0:De�nition 15 Given two Kripke stru
turesM ,M 0, we say thatM is simulationequivalent to M 0 i� M �M 0 and M 0 �M:A simulation relation H over M �M 0 is maximal i� for all simulation relationsH 0 over M �M 0, H 0 � H:Let M be a Kripke stru
ture. The maximal simulation relation over M �Malways exists and is denoted by HM :5 Methods for Finite State - Minimization 43
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Figure 5.2: Simulation of two Kripke stru
turesDe�nition 16 Two states s1; s2 2 M are simulation equivalent i� (s1; s2) 2HM and (s2; s1) 2 HM .De�nition 17 A state s1 is a little brother of a state s2 i� there exists a states3 su
h that:- (s3; s2) 2 R and (s3; s1) 2 R- (s1; s2) 2 HM and (s2; s1) =2 HMDe�nition 18 A Kripke Stru
ture is redu
ed if:1. There are no simulation equivalent states in M2. There are no states s1; s2 su
h that s1 is a little brother of s23. All states in M are rea
hable from s0Theorem 5 LetM be a non-redu
ed Kripke stru
ture, then there exists a redu
edKripke stru
ture M 0 su
h that M , M 0 are simulation equivalent and jM 0j < jM j:
5 Methods for Finite State - Minimization 44



5.1.2 The Minimizing AlgorithmThe algorithm re
eives a Kripke stru
ture M , and 
omputes a redu
ed Kripkestru
ture M 0 whi
h is simulation equivalent to M and jM 0j � jM j:The algorithm 
onsists of three steps. First, a quotient stru
ture is 
onstru
tedto eliminate equivalent states. The resulting model is simulation equivalent toMbut may not be redu
ed. The next step dis
onne
ts little brothers and the �nalstep removes all unrea
hable states.We state the Minimizing Algorithm, Figure 5.3 and then expand on ea
h phaseof it.STEP 1 Compute the 8 � quotient stru
ture Mq of M and the maximal simu-lation relation HM over Mq �MqSTEP 2 R0 = Rq � f(s1; s2)j9s3 : (s1; s3) 2 Rq ^ (s2; s3) 2 HMgSTEP 3 Remove all unrea
hable statesFigure 5.3: The Minimizing Algorithm.STEP1In order to 
ompute a simulation equivalent stru
ture that 
ontains noequivalent states, we 
ompute the 8 � quotient stru
ture with respe
t tothe simulation equivalen
e relation.De�nition 19 The 8 � quotient stru
ture Mq =< Sq; Rq; s0q; Lq > of Mis de�ned as follows:� Sq is the set of the equivalent 
lasses of the simulation equivalen
e.� Rq = f(�1; �2)j8s1 2 �1; 9s2 2 �2:(s1; s2) 2 Rg� s0q = [s0q℄� Lq([s℄) = L(s):where [s℄ is the equivalen
e 
lass whi
h in
ludes s:The transitions in Mq are 8�transitions, in whi
h there is a transitionbetween two equivalen
e 
lasses i� every state of the one has a su

essor inthe other.The output from this step is a stru
ture with no equivalent states.5 Methods for Finite State - Minimization 45



STEP2The algorithm(See Figure 5.4) in this step iteratively dis
onne
ts littlebrothers in the output from STEP 1.
hange := truewhile (
hange = true) doCompute the maximal simulation relation HM
hange := falseif there are s1; s2; s3 2 S su
h that s1 is a little brother of s2 and s3 is thefather of both s1 and s2then 
hange := true R = R n f(s3; s1)gendifend Figure 5.4: The Dis
onne
ting Algorithm.The output from this step has the same number of states as the input butless transitions.STEP3This step removes all unrea
hable states from the initial state, from thestru
ture.An example of the algorithm is illustrated in Figure 5.5. At the �rst step of thealgorithm, the maximal simulation relation on M (Side 1 of the Figure), and theequivalent 
lasses are: HM Equivalent Classesf(11, 2), ff1g,(11, 3), f11g,(4, 5), f4g,(6, 5), f5g,(2, 3), (3, 2), f2, 3g,(7, 8), (8, 7), f7, 8g,(9, 10), (10, 9)g f9, 10gg.The equivalent 
lasses, now are the states of the 8 � stru
ture, Part 2. Themaximal simulation relation HM of this new stru
ture is now f (f11g,f2, 3g),(f4g, f5g), (f6g, f5 g) g.5 Methods for Finite State - Minimization 46
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Figure 5.5: An example of the Minimization AlgorithmThe next step of the algorithm dis
onne
ts all little brothers. f11g is a littlebrother of f2, 3g with f1g as their father. Hen
e we remove the edge (f1g, f11g).The next and last step, outputs a redu
ed stru
ture by removing all unrea
hablestates su
h as (f11g, f4g, and f6g)5.2 The Quotient Te
hniqueIn this se
tion we dis
uss the quotient method for �nite-state systems in thespe
i�
 
ase of parallel syn
hronization 
omposition (k) and simulation preordersatisfa
tion formalism (�). For ea
h quotient step, we adapt the equation solving5 Methods for Finite State - The Quotient Te
hnique 47



method, proposed by Larsen and Xinxin [47℄, in order to �nd the largest quotient,with respe
t to (�).5.2.1 The Model, Satisfa
tion Formalism, Parallel Com-positionDe�nition 20 A �nite-state system is a tuple FS = (S; s0;!), where S is a�nite set of states, s0 is the initial state and !� S � A
t � S is a transitionrelation.Example 1 Consider the deterministi
 �nite-state A and B in Figure 5.6. The
ommon set of a
tions is A
t = fa; b; 
; dg. Normally, a �nite-state (i.e the �nite-state A) is presented as a term over a
tions. Example: a:(
:NIL+d:NIL)+b:Nilis the term 
orresponding to the left �nite-state system of Figure 5.6. Often weshall omit trailing o

urren
es of NIL and simply write a:(
+ d) + b:
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Figure 5.6: Two �nite-state systemsDe�nition 21 A relation R � S � S is a simulation preorder if for all a 2 A
t,the following holds: whenever (p; q) 2 R� if p a�! p0 then q a�! q0 for some q0 s.t (p0; q0) 2 Rwe write q simulates p, p � q if (p; q) 2 R for some simulation preorder RObviously, there is a simulation relation R in Example 1, whereR = f(p0; q0); (p1; q1); (p2; q3)g.5 Methods for Finite State - The Quotient Te
hnique 48



De�nition 22 Given two �nite-states S1 = (S1; s01;!1), S2 = (S2; s02;!2).Then the parallel 
omposition is a �nite-state system S = (S; s0;!), wheres1ks2 2 S whenever s1 2 S1 and s2 2 S2, s0 = s01ks02, and the ! is givenby the following rule: s1 ��!1s10 s2 ��!2s20s1ks2 ��!s10ks20Figure 5.7 shows the parallel 
omposition of the two �nite-state systems A andB in Example 1.
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Figure 5.7: The syn
h parallel 
omposition5.2.2 The Quotient Stru
tureGiven two �nite-state systems A and C and a "�nite-state" spe
i�
ation B weaim at 
onstru
ting a spe
i�
ation B==A, 
alled the quotient su
h thatAjjC � B if and only if C � B==AThe bi-impli
ation indi
ates that we are fa
toring parts of the parallel systeminto the spe
i�
ation. The quotient 
onstru
tion is de�ned as follows:De�nition 23 Let A and B be �nite-state systems, where A = (S1; s01;!1)and B = (S2; s02;!2). The quotient B ==A is the �nite-state system (S1 � S2 [f>g; s0;!), where 8� 2 A
t:> ��! >, su
h that ! satis�es the following rules:� if A ��!1 then B==A ��! >.� if A ��!1 and B ��!2 then B==A ��! B0==A0.5 Methods for Finite State - The Quotient Te
hnique 49



The next theorem proves that (==) is indeed a quotient.Theorem 6 Whenever A 2 A , B 2 B and for all �nite-state X the followingholds: AjjX � B  ! X � B==AProof: We �rst prove the impli
ation ( �):AjjX � B  � X � B==A (1)Let R = f(AkX;B) j X � B==AgClearly, " �" is solved if only if R is a simulation relation.For all (AkX;B) 2 R, assume AkX ��! Ythen A ��! A0 and X ��! X 0 with Y = A0kX 0.But X � B==A and X ��! X 0then B ��! B0 with B==A ��! B0==A0 hen
e X 0 � B0==A0.Therefore, for all (AkX;B) 2 R, we have:AkX ��! A0kX 0, B ��! B0 then (A0kX 0; B0) 2 R with X 0 � B0==A0.Se
ondly proving the impli
ation (�!):AjjX � B �! X � B==A (2)Let R = f(X;B==A) j AkX � Bg. Clearly, "�!" is solved if only if R is asimulation relation.For all (X;B==A) 2 R, assume B==A ��! Y , from De�nition 23:� If Y = >, then A 6 ��!, sin
e AjjX � B then X ��! X 0. Therefore bothB==A ��! T and X ��! X 0, de�nitely (X 0;>) 2 R with A0kX 0 � B0.� If Y = B0==A0, then (A ��! A0, B ��! B0),but AkX � B then X ��! X 0, then AjjX ��! A0kX 0 with A0kX 0 � B0.Therefore, for all (X;B==A) 2 R, we have:X ��! X 0, B==A ��! B0==A0 then (X 0; B0==A0) 2 R with A0kX 0 � B0.From (1) and (2), we have proved the Theorem 6.zFigure 5.8 illustrates the quotient stru
ture of the two �nite-state systems A andB in Example 1.5 Methods for Finite State - The Quotient Te
hnique 50
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Figure 5.8: The syn
h parallel 
omposition5.2.3 General Quotient Stru
ture AlgorithmIn the previous se
tion, we dis
ussed the method for 
onstru
ting the quotientstru
ture in the 
ase of parallel syn
hronization. However, in this se
tion, we givean algorithm that 
omputes the quotient stru
ture for deterministi
 and a
y
li
systems, for all the 
ases of parallel 
omposition, i.e. interleaving , syn
hroniza-tion and mixed syn
hronization. In this 
ase, the idea of solving a set of equations([47℄) is extended to set of inequations with the two main problems being:1. Solutions are not always guaranteed to exist, for instan
e:a:NiledX � b:Nil2. It is ne
essary to 
onsider sets of inequations rather than just single in-equations. For instan
e:a:NiledX � a:b:Nil + b:a:Nilimplies that the solution must satisfy the following inequation as wellNiledX � b:NilFigure 5.9 shows the main part of the algorithm, that generates a quotient stru
-ture X from the initial inequation AedX � B. The idea is that the algorithmstarts with the initial set of inequation E = fAedX � Bg. Thereafter, it iter-atively 
he
ks all a
tions a, where A a�! A0 and B a�! B0, if X a�! X 0 su
h thatAedX � B by 
alling the fun
tion TransOK(a; E). If there exists su
h an a
-tion a, the algorithm 
reates a new set of inequation by performing the fun
tionDerive(a; E). A new set of inequation E 0 is derived from E by simultaneously5 Methods for Finite State - The Quotient Te
hnique 51



transforming A;X and B with the same a
tion a for all inequations in the set E.Finally, the algorithm returns a stru
ture from the derived inequation, whi
h isexa
tly the stru
ture of the quotient X. Figure 5.10, 5.12, 5.11, 5.13 respe
tivelyshow the pseudo-
ode of the fun
tions TransOK(a; E), Derive(a; E), Close(E)and Consistent(E).Fun
tion Solve(E: Inequation System): fN, [, Undef : NodegIf Consistent (E) thenCreate New Node N;If E = � then Return N = [;Else for (8a 2P )If TransOK(a, E) thenE 0:= Derive (a, E);E 0:= Close(E 0)N 0 := Solve(E 0);If (N 6= Undef) then, Add a-edge N a! N 0Else Return Undef ;Endfun
tionFigure 5.9: The main fun
tion for 
omputing the Quotient

5 Methods for Finite State - The Quotient Te
hnique 52



Fun
tion: TransOK (a; E)Purpose: This boolean subfun
tion 
he
ks for ea
h inequation: AedX � B 2 E,if X is allowed to perform an a
tion a su
h that AedX � B. The fun
tion returnstrue if all the inequations in E satisfy the above requirement.Fun
tion TransOK (a; E) : booleanF lag := true;While (9 0AedX � B0 2 E) and (F lag= true) doin 
ase of:1. interleaving :� if B a9 and A a9 A0 then F lag := false2. syn
hronization :� if B a9 and A a! A0 then F lag := false3. Mixed-Syn
h :� for 8a 2 A
tA=A
tBif B a9 then F lag := false� for 8a 2 A
tA \ A
tBif B a9 and A a! A0 then F lag := falseEndwhileReturn F lag ;Endfun
tion Figure 5.10: Fun
tion TransOK(a,E)

5 Methods for Finite State - The Quotient Te
hnique 53



Fun
tion: Derive(a; E)Purpose: This fun
tion returns an new inequation set. The new inequation isderived from E with a
tion a.Fun
tion Derive (a; E)E 0 = f�g;for ( 80AedX � B0 2 E )If (AedaX 0 � B a�! A0edX 0 � B0) thenAdd (A0edX 0 � B0; E 0);Return E 0 ;Endfun
tion Figure 5.11: Fun
tion Derive(a,E)Fun
tion: Close(E)Purpose: Add all inequations whi
h 
an be derived, without involvingX, fromEto the same inequation set, E, i.e. if (AedX � B) 2 E, su
h that A a�! A0; B a�! B0then add (A0edX � B0) to E.Fun
tion Close(E)flag := true;while (9 0AedX � B0 2 E) and (flag= true) doflag := false;for ( 8a 2P) doif (9 a:A0edX � a:B0 2 E) thenAdd(A0edX � B0; E)flag := true;endifendwhilereturn E;EndFun
tion Figure 5.12: Fun
tion Close(E)5 Methods for Finite State - The Quotient Te
hnique 54



Fun
tion: Consistent(E)Purpose: This fun
tion 
he
ks for ea
h inequations 0AedX � B0 2 E, with alla
tions a 2 A
t, if AedX a�! A0edX 0 then B a! B0. The fun
tion returns true ifall the inequations all satisfy the above 
ondition.Fun
tion Consistent (E): Booleanflag:= true;While (9 0AedX � B0 2 E) and (flag= true) dofor ( 8a 2 A
t )If AedX a�! A0edX 0 and (B a9)then flag:= false;EndwhileReturn flag ; Figure 5.13: Fun
tion Consistent(E)We now 
onsider an example as in the 
ase of mixed syn
hronization (jk), seeFigure 5.14.Example: LetP1 = fa; bg be the set of a
tions in �nite-stateA, andP2 = fb; 
gthe set of a
tions allowed in �nite-state X, with P3 = fa; b; 
g for B.The algorithm starts with an initial inequation in the set of inequation E =fa:b:NiljjjX � a:b:
:Nilg and performs the Close(E) fun
tion to 
lose the in-equations in E. The algorithm is re
ursive and runs on itself till the inequationset is empty or 
an no more be derived. Re
all that X 
an only perform a
tionsfb; 
g. In the �rst investigation, a
tion 
 is not allowed by the inequations in theset E0, therefore E0 
an only be transformed by b to E1. In the next investiga-tion by a
tion b, it is easy to see that E2 is an empty set of inequations so thatthe algorithm returns the universal state at that stages. However, it 
ontinues
he
king E1, whi
h 
an perform both a
tions b and 
.Along the derivation of the next set of inequations, the algorithm systemati
allybuilds the quotient stru
ture. Finally, the algorithm returns this stru
ture as X,whi
h is based on the derived inequation systems, see X in Figure 5.14.
5 Methods for Finite State - The Quotient Te
hnique 55
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Figure 5.14: An example of Mixed Syn
hronous Parallel CompositionIn Figure 5.15, we 
an 
he
k the quotient X, whi
h is found in Figure 5.14, isthe solution of AjkX � B.
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Chapter 6Minimization for PTSs
In this 
hapter we adapt the Minimization Algorithm to the Probabilisti
 Tran-sition System (PTS) and aim at generating a redu
ed PTS stru
ture by thispro
ess. The input is a PTS and the output is a single PTS, with no equivalent
lasses and hopefully smaller than the input.The minimization a
hieved here is intended to be used as heuristi
 in the Quo-tienting Te
hnique to further redu
e the size of the stru
ture of the transformedspe
i�
ation.6.1 Probabilisti
 Transition SystemsFrom De�nition 4 whi
h gives a 
on
ise de�nition of a PTS, we begin by �rstexamining the di�eren
es between a PTS and a Kripke stru
ture. We, however,use as input, a Rooted Probabilisti
 Transition Systems (RPTSs), whi
h is a PTSwith a spe
i�ed initial state, s0. Hen
e the tuple (S; s0;!; V ):Given a Kripke stru
ture M = (S; s0; R; L) and a rooted PTS T = (S; s0;!; V ),the di�eren
es are- T has a �nite set of states as M.- the transition fun
tion of- M: R � S � S,- T: !� S � A
t�Dist(S), is a �nite transition relation, where A
t is a�nite set of a
tions and Dist(S) is a �nite distribution over the statesS.- both have the same labelling fun
tion.57



The main 
hallenge in 
onsidering PTSs is their transition fun
tion, whi
h isfrom states, by a
tions and onto distributions over states. Care must be taken inmaking transitions when minimizing the stru
ture.6.1.1 The Size of a PTS stru
tureLet us now 
onsider what the size of a PTS should be. We 
onsider size in termsof the number of states, a
tions, and distributions.Theorem 7 For every transition out of a state by a unique a
tion, there is oneand only one asso
iated distribution. There are never more distributions thanstates in a given PTS.De�nition 24 Let jT j denote the size of a PTS T = (S;!T ; V ). Then jT j is thepair (jSj; j !T j) where jSj is the number of states in T and j!T j is the numberof transition (indu
ed distributions) in T.De�nition 25 Let jT j be the size of a PTS T. We say that jT j � jT 0j if eitherof the following holds:1. jSj � jS 0j or2. jSj = jS 0j ^ j!T j � j!0T jwhere j!T j is the number of transitions in T, from ea
h state.As an example, the PTSs in Figure 6.1 below illustrate the �rst 
ase where thesize of the PTS is determined by the number of states. Hen
e jT j � jT 0j be
ausejSj � jS 0j.In the next example, the PTSs in Figure 6.2 illustrate the se
ond 
ase where thesize of the PTS is determined by the number of distributions. Hen
e jT 0j � jT 00jbe
ause jSj = jS 0j and j!T j � j !0T j.We now de�ne what simulation equivalen
e means for a PTS stru
ture and alsofor a state in a PTS.De�nition 26 A simulation between two rooted PTSs T = (S;!; V; s0) andT ? = (S?;!?; V ?; s?0) is a subset R of S � S? su
h that1. (s0; s?0) 2 R6 Minimization for PTSs - Probabilisti
 Transition Systems 58
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Figure 6.2: The Size of a PTS by number of distributions2. whenever (s; s?) 2 R and s �! � then there exists a transition s? �!? �? anda weight fun
tion Æ for (�; �?) with respe
t to R i.e. � vR �?.We say s is simulated by s?(denoted by s v s?) i� there exists a simulation that
ontains (s; s?): We say that s and s? are simulation equivalent (denoted bys � s?)if (s v s?) and (s? v s). Consequently, T v T ? if the above 
onditionshold, and T � T ? if the initial states are equivalent, i.e. s0 � s?0.In Figure 6.3, the simulation relation will in
lude the pairs (s1; s7); (s7; s1) andthe trivial pairs. We 
an then 
on
lude that s1 � s7.In 
onstru
ting an equivalent 
lass, all equivalent states belong to the same 
lass,su
h that it is the set of states de�ned by the equivalen
e relation on them. The
lass that 
ontains the initial state, s0, be
omes the initial equivalent 
lass of thePTS. If there are no equivalent states, ea
h state is then a unique 
lass and everyequivalent 
lass 
ontains a single state.6 Minimization for PTSs - Probabilisti
 Transition Systems 59
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Figure 6.3: Simulation equivalen
e in a PTSWe now examine, the issue of a "little brother" in the 
ase of a PTS, over statesand distributions, whi
h we denote by x. Here too, we assume a priority, �rst ondistributions and then by state.De�nition 27 1. Distribution-wise: �1 x �2 if 9s3, 9a, su
h that s3 a�!�1; s3 a�! �2 , with �1 vR �2; �2 6vR �1.2. State-wise: s1 x s2 if 9s3, 9�, 9a, su
h that s3 a�!p �(s1); s3 a�!q �(s2) ,with s1 v s2; s2 6v s1.We illustrate this with an example, where we dis
onne
t an edge, between statesbe
ause a distribution (Figure 6.4) or a state (Figure 6.5) is a little brother ofanother.From the "distribution"-little brother elimination of Figure 6.4, it 
an be seenthat T � T ? (be
ause T v T ? and T ? v T ) whereas for the "state"-little brotherelimination of Figure 6.5 only T v T ? (and in general not T ? v T ). Theorem8 
learly states this observation. Dis
onne
ting little brothers by distribution,guarantees this equivalen
e, although it might not be the smallest redu
ed stru
-ture. However dis
onne
ting by states does not guarantee this equivalen
e. Ingeneral, T v T� but T� 6v T . In the example in Figure 6.5, this 
an be observedin the pairs (t1; t2�); (t2; t2�) 2 R and (t2�; t2) 2 R but not (t2�; t1).6 Minimization for PTSs - Probabilisti
 Transition Systems 60
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Figure 6.5: Dis
onne
ting Little Brother by stateDe�nition 28 A PTS T is redu
ed if:1. There are no simulation equivalent states in T2. There are no distributions �1; �2 su
h that �1 is a "little brother" of �2.This is the main priority. "Little brother" of states may be allowed.3. All states in T are rea
hable from the initial state(
lass).Theorem 8 For any PTS T there exists a redu
ed PTS T � su
h that T v T �and T � v T by removing all "little-brother distributions".6 Minimization for PTSs - Probabilisti
 Transition Systems 61



6.2 The Probabilisti
 Minimizing AlgorithmThere are three steps as in the original algorithm. Consideration must be givento:1. Building the 8� quotient, by 
onstru
ting the simulation 
lasses.2. Identifying little brothers in terms of distributions and states, and dis
on-ne
ting them.3. Removing unrea
hable states in T .6.3 Generating a Redu
ed PTSSTEP 1: Building the 8� Quotient.Building the 8� quotient, by 
onstru
ting the probabilisti
 simulation 
lasses.Constru
ting the Equivalent Classes: build the maximal simulation relation, HM : S�S 0 over T to �nd the equivalentstates. If (s1; s2) 2 HM and (s2; s1) 2 HM then s1; s2 are simulation equivalent,denoted, s1 � s2. Hen
e s1; s2 will belong to the same 
lass. If the set ofequivalent states is null and empty, that is, there are no equivalent states, thenea
h 
lass 
ontains a single state.De�nition 29 The 8� quotient PTS, Tq =< Sq;�!q; Vq; s0q > is de�ned as- Sq is the set of equivalent 
lasses of the simulation equivalen
e- �!q= f(�1;�)j8s 2 �1:9�; s a�! �:8�2;�(�2) =Ps02�2 �(s0)g- Vq([s℄) = V (s)- s0q = [s0q℄At the end of this step, the output stru
ture must have no equivalent states, sin
ethis PTS, 
ontains the distin
t and independent equivalent 
lasses, whi
h are thestates of the PTS. Figure 6.6
6 Minimization for PTSs - The Probabilisti
 Minimizing Algorithm 62
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Figure 6.6: Constru
ting the 8�Quotient PTSSTEP 2: Dis
onne
ting Little BrothersWe need to 
larify the di�eren
e between a transition and a distribution.A transition is from a state by an a
tion over a distribution to some states. Hen
ein our diagrams, this is denoted by the lines from the state plus the dotted linesto states. Distributions are denoted by the dotted lines.(a) Distribution-wise (dis
onne
t the transition)If 9s, 9a, su
h that s a�! �1; s a�! �2, with �1 v �2; �2 6v �1, su
h that �1 x �2,then remove the transition s a�! �1:(b) State-wise (dis
onne
t distribution and add up probability to big brother)If 9s3, with s3 a�! �p(s1); s3 a�! �q(s2), and s1 v s2; s2 6v s1, su
h that s1 x s2,then remove �(s1) and put �(s2) as �x(s2) where x = p+ q.From our example, we eliminate little brother distributions from Figure 6.7(a).6 Minimization for PTSs - Generating a Redu
ed PTS 63
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onne
ting Little Brothers in a PTSSTEP 3Remove all unrea
hable states, these are the states that are unrea
hable from[s0℄.The resulting PTS from these three steps is a redu
ed PTS. See Figure 6.8
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ed PTSAnd indeed this redu
ed stru
ture simulates the original in Figure 6.6.
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Chapter 7The Quotient Te
hnique for PTS
The quotient te
hnique has been su

essfully applied for �nite-state [3℄ and real-time state systems [35℄. In this 
hapter we shall investigate the quotient te
hniquefor the probabilisti
 labelled transition system, where the spe
i�
ation formalismis a spe
i�
 blo
king PTS (bPTS). The idea of using the bPTS spe
i�
ation isthat, we 
onsider 
ompositions of deterministi
 a
y
li
 probabilisti
 models (T )and a model for spe
i�
ation su
h as T1k:::kTn w B, where the bPTS B is ableto present �� 
al
ulus ( e.g. < a >�0:2< b >�0:5 tt). We wish to verify whetherthe parallel 
omposition is at least the blo
king PTS without having to 
onstru
tthe 
omplete parallel system.7.1 The ModelIn this se
tion, we de�ne a spe
i�
 model of PTS 
alled the blo
king Probabilisti
Transition System( bPTS), whi
h we use as a model for spe
ifying our spe
i�
a-tions. A state s is identi�ed as a blo
king state if it either is a sink state or anuniversal state. The de�nition of bPTS is 
onsequently de�ned as follows:De�nition 30 A PTS T = (S [ fNILg;!; V ) is a blo
king PTS if for alls 2 S, � 2 A
t there exists at most one transition s ��! � where � is a blo
kingdistribution over a pair of states s0 2 S and NIL in the sense that �(s0) +�(NIL) = 1. And for all a 2 A
t;NIL 6 a�!.Figure 7.1 illustrates a blo
king PTS.

65



s
3


s
2


s
1


x


1-x

a


s
3

1


b
Figure 7.1: An example of blo
king PTS7.2 The Logi
 and its bPTS RepresentationThe blo
king PTS model is de�ned to present a fragment of PCTL su
h as "aftera request for a number of tasks, there is at least a 50 per
ent probability that the�rst task is done and after that with at least a 30 per
ent probability the se
ondtask is 
arried out". The bPTS in Figure 7.2 presents the following propertyexample: < a >�0:2 < b >�0:5< 
 >�1 tt
s
0


s
1
 s
2


s
3
 s
4


a


b


0.5
 0.5


s
5


c


1


0


1


3


0.25
 0.75


Figure 7.2: The bPTS presentation of a property
7 The Quotient Te
hnique for PTS - The Logi
 and its bPTS Representation 66



7.3 Quotient Stru
tureBefore we 
onsider the quotient stru
ture, let us examine some impli
ations ofour spe
i�
ation and its representation, the bPTS.Given AjjX w B (7.1)where A is deterministi
, a
y
li
 and B is blo
king and we require X to be thesmallest stru
ture possible su
h that the equation holds.First of all, we need to 
he
k if Equation 7.1 has any solutions at all. Is there anX, for whi
h Equation 7.1 holds?We begin by de�ning a universal state (U) whi
h allows transitions by all a
tionsa 2 A
t, from it by a distribution to the same universal state. That is:U a�! �u where �u(U) = 1 and �u(s) = 0 whenever s 6= U .Let fU : 8a 2 A
t; U a�! Ug. Then U w C for all PTS C.It suÆ
es to 
he
k whether A w B, in order to establish that Equation 7.1 hassolutions. Example, there does not exist an X, for whi
h the equationNILkX w a:NILholds true.The t�Constru
tDe�nition 31 Let X1 and X2 be blo
king PTSs. Then X1 t X2 is a blo
kingPTS given by X1 tX2 a�! 8>><>>:�1 ifX1 a! �1; X2 a6!�2 ifX2 a! �2; X1 a6!��1�2 ifX1 a! �1; X2 a! �2:where ��1�2(X 01 tX 02) = maxf�1(X 01); �2(X 02)g and��1�2(NIL) = 1�maxf�1(X 01); �2(X 02)g.
7 The Quotient Te
hnique for PTS - Quotient Stru
ture 67
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Figure 7.3: Properties of the bPTSLemma 1 Whenever X1 and X2 are blo
king PTSs, then X1 t X2 w X1 andX1 tX2 w X2.Moreover if for a blo
king PTS Y , Y w X1 and Y w X2, then Y w X1 tX2.Figure 7.3 illustrates X1, X2 and X1 tX2.Lemma 2 If A1jjX1 w B and A2jjX2 w B then A1jj(X1tX2) w B and A2jj(X1tX2) w B.7.4 Algorithm for Computing the QuotientIn 
onstru
ting the Quotient stru
ture su
h that the Equation 7.1 holds, we willhave to 
onsider �rst, the stru
ture of the PTS, with regards to the states andtransitions to these states, whi
h we represent by X, and se
ondly the proba-bilities of the distributions over the states, represented by x. We des
ribe aninformal approa
h to obtaining the quotient stru
ture before giving an algorithmto obtain it, formally.7.4.1 An Informal Approa
hLet us 
onsider Equation 7.1, AkX w B, where A and B are given PTSs.Now 
onsider an a� transition of B. Obviously, in order for Equation 7.1 tohave solutions, A should also have a unique a�transition. Below we display thea�derivative in Figure 7.4For ea
h i 
he
k whether7 The Quotient Te
hnique for PTS - Algorithm for Computing the Quotient 68
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Figure 7.4: A unique a-derivativeAi w B0Let I = fijAi w B0g.For ea
h i = I, 
onstru
t X 0i su
h that AijjXi w B0Let X 0 = Fi2I X 0ibe
ause then AijjX 0 w B0 for all i 2 I,=) AijjX 0 w AijjXi w B0.The probability of the Distribution (x)The goal is to �nd the (smallest) probability x for the stru
ture X satisfyingAijjX 0 w B0 for all i 2 I. The problem is redu
ed to that of �nding 
ow inthe indu
ed network, su
h that Equation 7.1 holds. Figure 7.5 illustrates thenetwork.To �nd the minimal x su
h that the maximum 
ow in the network of Figure 7.5is 1, p � x �Xi2I qi=) pXi2I qi � xAnd sin
e 0 � x � 1, the minimum value for x isx = pXi2I qi7 The Quotient Te
hnique for PTS - Algorithm for Computing the Quotient 69
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Figure 7.5: Preservation of weight fun
tion7.4.2 A Formal Approa
hDe�nition 32 Let A be a deterministi
 and a
y
li
 PTS and let B be a blo
kingPTS then Solvable(A;B) = (true; ifA w Bfalse; otherwiseLemma 3 Let A be a deterministi
 and a
y
li
 PTS and let B be a blo
king PTSthen Solvable(A;B) = true i� for some blo
king PTS C, it holds that AjjC w B.Proof=)Then A w B but AjjU w A where U a�! 1��� > U , for all a 2 A
t. ClearlyU w C for all PTSs C and U is a blo
king PTS.(=Then AjjC w B for some PTS C. But then AjjU w B (as U w C) But AjjU = A,so A w B. zPurpose: Given a deterministi
, a
y
li
 PTS A and a blo
king PTS B, BUILD
onstru
ts a blo
king PTS X, that will solve AjjX w B or BUILD returns "nosolution found". We present a pseudo-
ode for the algorithm in Figure 7.4.2 andthen subsequently explain it a

ording to the line numbers.Line 1 veri�es if a solution for the Equation 7.1 
an be found. The algorithm
onstru
ts the derivatives of X from Line 3.7 The Quotient Te
hnique for PTS - Algorithm for Computing the Quotient 70



BUILD(A, B)1. If not SOLV ABLE(A;B)2. then return "no solution found"3. Else4. For ( 8a 2P) do5. If B a6! then X a6!6. Else7. For ea
h (i 2 I)8. X 0i:= BUILD(Ai; Bi)9. X 0 := ti2IX 0i10. Endif11. Endif12. Return X;13. End Figure 7.6: The BUILD AlgorithmIn Line 6, B a�!; A a�!, otherwise Solvable(A;B) would have returned false inLine 1. We 
onsider the unique a�derivatives of A and B as shown in Figure7.4. We let I = fijAi w B0g and assume I = f1; : : : ; jg � f1; : : : ; kg.X 0 in Line 9 is 
onstru
ted as su
h, be
ause for all i, AikX 0 w B0 and Lemma 3.In Line 9, the algorithm returns X as shown in the Figure 7.7Theorem 9 Let X be the result of BUILD(A;B). Then AjjX w B.The proof is by indu
tion on the depth of A.Base: Let depth of A = 0, that is A = NIL.But then as SOLV ABLE(A;B) = true; =) B = NIL be
ause A w B.Then obviously X = NIL, and7 The Quotient Te
hnique for PTS - Algorithm for Computing the Quotient 71
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Figure 7.7: The Quotient Stru
ture XNILjjNIL w NIL.Indu
tion StepLet B a! (p)(B0) + (1� p)(NIL) as in Figure 7.4By 
onstru
tion of X where x = pXi2I qi , as obtained previously and illus-trated in Figure 7.5By the indu
tion hypothesis and Lemma 3, AijjX 0 w B0The maximum 
ow between AjjX and B relative to a
tion a 
an be ini-tialized as in Figure 7.5It is 
lear that the maximum 
ow is 1, hen
e the a � transition of B ismat
hed. zHen
e by applying the algorithm re
ursively, the quotient stru
ture X for ourequation, emerges.
7 The Quotient Te
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Chapter 8The Appli
ation of the QuotientTe
hnique with Minimization
Having introdu
ed separately the 
on
epts of the Quotient Te
hnique and Mini-mization, for PTSs, we now 
ombine them, to see their appli
ation in the veri�-
ation pro
ess.8.1 Quotient and then MinimizeAs already seen, the transformed spe
i�
ation also has the tenden
y to in
reasequi
kly in size. In this 
hapter, we explore using the minimization algorithm forPTSs as a simpli�
ation heuristi
 for this spe
i�
ation. From the basi
 equationA1jjA2jjA3jj � � � jjAn w B using the Quotient Te
hnique,A1jjA2jjA3jj � � � jjAn�1 w (B==An)m where m is a minimization operatorLet (B==An) = Xn and let (Xn)m = Xn , thenA1jjA2jjA3jj � � � jjAn�1 w (Xn)A1jjA2jjA3jj � � � jjAn�2 w (Xn==An�1)mA1jjA2jjA3jj � � � jjAn�2 w (Xn�1) where (Xn==An�1)m = (Xn�1)...
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The quotient stru
ture (B==An) should be noted as a single deterministi
 blo
kingPTS Xn.In applying the algorithm to minimize this stru
ture, we need to identify theequivalent 
lasses in Xn.Let us 
onsider a fragment of a blo
king PTS. Given the two blo
king PTSs inFigure 8.1, we will like to 
onsider simulation equivalen
e between the two statess0 and t0. Can we establish that s0 v t0 and t0 v s0, thereby 
on
lude thats0 � t0.
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Figure 8.1: Simulation of two Blo
king PTSUsing maximum 
ow in the network established, Figure 8.2, s0 v t0 i� p � q.Also t0 v s0 i� q � p. In this 
ase, the latter is true. Obviously though, is thefa
t that both statements 
an not be true at the same time, unless p = q.
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Figure 8.2: Flow Simulation of two Blo
king PTSThis unassuming observation has very extensive impli
ations. The �rst beingthat, we 
annot obtain equivalen
e 
lasses in the resulting blo
king PTS of ourquotienting. Hen
e every state is, and remains in a 
lass of its own, whi
h areall independent, without any interse
tions between them. Re
all this is the �rstimportant step in the minimization algorithm.The next step of the minimization step, involves the dis
onne
tion of distributionsand states by the "little brother" phenomenon. Let us take a look at a typi
alX, Figure 8.3. Due to its deterministi
 nature, and the restri
tive nature of our8 The Appli
ation of the Quotient Te
hnique with Minimization - Quotient andthen Minimize 74



rea
hability properties, elimination of distributions by the little brother s
enario,does not arise. In some 
ases, elimination of states 
an be possible, but as earlierstated, it is only by, distributions, that we guarantee an equivalen
e.
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Figure 8.3: An X: Deterministi
 Blo
king PTSAlthough these observations are not very en
ouraging, the valid and most impor-tant 
on
lusion we 
an draw is that, the resulting quotient stru
ture obtained isindeed the smallest blo
king PTS possible, with respe
t to simulation equivalen
e.Theorem 10 For a deterministi
 a
y
li
 PTS A and a NIL-blo
king PTS B su
hthat AjjX w B, the quotient stru
ture X w B==A is the (w)-smallest 
omponentC, su
h that AjjC w B.The transformed spe
i�
ation is kept minimal and hen
e quotienting with bPTSsavoids the state explosion of the transformed spe
i�
ation, usually involved withthe Quotienting Te
hnique. Hen
e, with respe
t to our spe
i�
ation to be veri�ed,represented with the blo
king PTS, we do not need a simpli�
ation heuristi
 forthe resulting transformed spe
i�
ation by the Quotienting Te
hnique.8 The Appli
ation of the Quotient Te
hnique with Minimization - Quotient andthen Minimize 75



8.2 Minimize and then QuotientHowever, we 
an still redu
e the state spa
e explored by looking at the modelunder 
onsideration. This is our proposal. GivenA1jjA2jjA3jj � � � jjAn w B (8.1)Apply the Minimization Algorithm loosely to the individual 
omponents (or to
lusters of 
omponents) in the model before starting with the Quotient Te
h-nique. The equation now be
omes(A1)mjj(A2)mjj(A3)mjj � � � jj(An)m w BA 1 jjA 2 jjA 3 jj � � � jjA n w B where A n = (An)mBy this the state spa
e is redu
ed, even before quotienting. The transformedspe
i�
ation is thereby kept even smaller.Let us explore this proposal with an example. Let the PTS in Figure 8.4 be anindividual pro
ess (or the result of the parallel 
omposition of some pro
esses) inthe model 
he
king equation 8.1.
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Figure 8.4: A deterministi
 a
y
li
 PTSSome minimization 
an be a
hieved in su
h models, by identifying some equiv-alent states. The states s1; s2 are equivalent and belong to one 
lass. Also, thestates s6; s7; s8 will 
onsequently belong to one 
lass. Just at the �rst step of thealgorithm, we 
an generate a 8-stru
ture as Figure 8.5By 
onsidering this proposal, it is feasible to have spa
e redu
tions by minimizingthe 
omponents and plugging the redu
ed stru
tures in pla
e in the equation.8 The Appli
ation of the Quotient Te
hnique with Minimization - Minimize andthen Quotient 76
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ture PTS
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Chapter 9Implementation
The implementation is 
arried out in Visual C++, running in the Mi
rosoftWindows environment. Some of the reasons for 
hoosing Visual C++ on thisproje
t are its eÆ
ient libraries, tenden
y to in
rease produ
tivity and easy to usedesign tools. Also one of our interest was to use the wizards for generating a fastuser-friendly graphi
al appli
ation. We have de
ided to give our implementation ani
e name CAPS (Compositionality and Abstra
tion by Probabilisti
 Simlation)There are two main fun
tionalities in CAPS.1. Che
king a right abstra
t(hopefully smaller) against a single PTS with re-spe
t to (v). The 
onsidered algorithm involves appli
ation of the well-known Maximum Flow Problem. This fun
tionality is 
alled Compositionaland Abstra
tion Che
king.2. Che
king a right abstra
t in spe
i�
 
ase of blo
king PTS against a paralleldeterministi
 and a
y
li
 PTSs system, with respe
t to (w), without havingto 
onstru
t the 
omplete state spa
e of the system by using the promisingQuotient te
hnique. This fun
tionality is 
alled Quotient Che
king.In the implementation, we have 
reated 
ru
ial data stru
tures su
h as PTSs andrelation simulation stru
tures, whi
h are dis
ussed in the next se
tion. In Se
tion9.2 we examine the main modules of CAPS. In the rest of this 
hapter we givean instru
tion of a user's guide.9.1 Data Stru
tureA 
omplex PTS may need a huge spa
e of memory, hen
e an eÆ
ient data stru
-ture for its storage is required. There are some 
ompa
t stru
tures su
h as in78



RAPTURE [48℄ and PRISM [49℄, that are su

essful for presenting a PTS.However, we propose an a

eptable data stru
ture that de�nes our problem. Thestru
ture is set up to be able to store a number of states, a number of a
tions anda matrix whose elements hold a number of out going transitions s �! � and linksto a substru
ture, where Distr(s; �) is established, see Figure 9.1. In addition,the simulation R � S � S 0 is presented by an adja
en
y matrix relation[S℄[S 0℄,that is, relationR[s℄[s0℄ = � 1 if s vR s00 otherwisewhether s 2 S and s0 2 S 0.stru
t PTSs fint nstates;int na
tions;Transition trans[State℄[A
tion℄;g; PTSs pts;stru
t Transition fint nOut;
oat Distribution[TransitionOut℄[State℄;g; Figure 9.1: Data Stru
ture of a PTSFor instan
e, we use a variable pts with respe
t to the above data stru
ture topresent a PTS T in Figure 9.2. The number of states and the number of a
tionsrespe
tively are stored in pts.nstates = 7 and pts.a
tions = 3. Obviously, in orderto present the number of out-going transitions from state s0 with a
tion �, wehave pts.trans[s0℄[�℄.nOut = 2, and to rea
h the transition s0 �! �, we 
an ask forpts.trans[s0℄[�℄.Distribution[�℄[S℄= (0.25, 0.25, 0.5), where S is the set of statesof the PTS T.
9 Implementation - Data Stru
ture 79
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Figure 9.2: An example of a PTS
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9.2 Modules Des
ription9.2.1 Maximum Flow Problem, Ford-Fulkerson AlgorithmAs dis
ussed the Ford-Fulkerson algorithm in Se
tion 4.2, the 
omplexity isO(n+m)nm, where n is the number of nodes and m is the number of edges in thegraph G(N,E). In general, m = n2 and the 
omplexity is O(n4+n5). However,when the probabilisti
 simulation problem is redu
ed to the maximum 
ow prob-lem, a network N = ((N;E);?;>; 
) is obtained, where G = (N,E) is a
tually abipartite graph, written as G = (X[Y;E). Therefore, to improve the 
omplexitywe implement an improved algorithm of Ford-Fulkerson for bipartite graph. The
omplexity of the improved algorithm is O(p5), where p = max fj X j; j Y jg.MaximumFlow(N )Purpose: The fun
tion 
omputes the maximum 
ow valueInput: A network N = ((X [ Y ); E;?;>; 
)Output: The maximum value of 
ow in the network NSubroutine: ResidualGraph(NR), AugmentingPath(�)This fun
tion performs the main task of the Ford-Fulkerson algorithm on thenetwork N . The fun
tion iteratively performs the two following steps: First, itgenerates a residual network NR by 
alling up the fun
tion ResidualGraph(NR),se
ondly it tries to �nd an augmenting path on graph G = (X [Y ) of NR, wherean augmenting path of a bipartite graph is the set of alternating nodes x 2 Xand y 2 Y . If there exists an augmenting path � the algorithm jumps to thefun
tion AugmentingPath(�), where the 
ow value is in
reased. The iterationends when there is no augmenting path found.ResidualGraph(NR)Purpose: Automati
ally generating a residual network of a given network NInput: Network N with 
urrent 
ow FOutput: A residual network NRThis fun
tion tries to establish a residual network NR of a given network N wherethe residual 
apa
ity of ea
h edge e 2 E is assigned by 
(e) - flow(e).
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AugmentingPath(�)Purpose: The value of 
ow is in
reased by this fun
tionInput: The augmenting path �Output: Flow FIn this fun
tion, the value of 
ow in N , is in
reased by adding the 
urrent 
ow
f to the 
ow along the path of the augmenting path �, where 
f is minimumresidual 
apa
ity on the augmenting path �.9.2.2 Computing Probabilisti
 SimulationThe algorithm for 
omputing probabilisti
 simulation is shown in Se
tion 4.1, itspurpose is to establish the simulation relation set R of two given PTSs. Thealgorithm exe
utes in polynomial time. The main fun
tions are stated as follows:SimulationPreorder(PTS, PTS 0)Purpose: This fun
tion 
omputes the probabilisti
 simulation relation R oftwo given PTSsInput: Two PTSs T = (S;!; V ), T 0 = (S 0;!0; V 0)Output: Probabilisti
 simulation R � S � S 0Subroutine: ConverttoMaxFlow(�; �0),In this fun
tion, the main algorithm is implemented. All pairs (s; s0) 2 S � S 0are examined to eventually return the simulation set R. In order to 
he
k fors vR s0, this fun
tion 
onsiders all transitions s �! �, and sear
hes in Distr(s0; �)for a distribution �0, then 
he
ks whether � vR �0 by 
alling the fun
tionConverttoMaxFlow(�; �0). If there is no 
orresponding �0 then (s; s0) is removedfrom R by assigning R[s℄[s0℄ to false.ConverttoMaxFlow(�; �0)Purpose: This fun
tion 
onverts probabilisti
 distributions � and �0 to a net-work N = (N;E;?;>; 
) and answers the question of � vR �0.Input: Distributions �, �0Output: YES or NOSubroutine: MaximumFlow(N ).9 Implementation - Modules Des
ription 82



9.2.3 Compositional and Abstra
tion Che
kingLet us now 
onsider the fun
tion whi
h applies the basi
 fun
tions dis
ussedabove in order to 
he
k for a right abstra
tion.isSimulated(R � S � S 0)Purpose: This fun
tion 
he
k whether an abstra
t PTS T 0 simulates the orig-inal PTS Tor notInput: The simulation relation R � S � S 0Output: YES or NOThis fun
tion examine simulation R, if the pair of the two initial states (s0; s00) 2R then T v T 0, otherwise T 6v T 0.9.2.4 Quotient Che
kingIn order to 
onstru
t the quotient of a blo
king PTS B and a PTS T , we also usefun
tion SimulationPreorder(T; T 0) in order to 
ompute a simulation relationR. By doing that, and by generating the probability of the blo
king PTS B, thefun
tion will return the 
onstru
t of quotient B==A, whi
h is a blo
king PTS. Infa
t the stru
ture of the quotient is the same as the stru
ture of the spe
i�
ationblo
king PTS B.QuotientBuild(B: blo
kingPTS, A: PTS)Purpose: This fun
tion build the stru
ture of the quotient B==AInput: The two PTS B and AOutput: The quotient B==ASubroutine: SimulationPreorder(T; T 0)9.3 Input File and Output S
reen9.3.1 Input FileAn input �le is a des
ription of PTSs whi
h are to be 
he
ked in CAPS. Theformat of an input �le is shown in Figure 9.3 as an example. Parti
ularly, thevalues of the distribution matrix present number of distributions that a state s9 Implementation - Input File and Output S
reen 83




an transform with an a
tion �. Ea
h PTS begins with a negative order number,starting from 0.

9 Implementation - Input File and Output S
reen 84



0 // the �rst PTS6 2 // number of states and number of a
tions2 0 // The distribution matrix0 00 00 10 00 00 00 0 // state 0 and a
tion 00 0.25 0.25 0.5 0 0 0 // Distribution 1 of state 0 and a
tion 00.5 0 0 0 0.5 0 0 // Distribution 2 of state 0 and a
tion 03 1 // state 3 and a
tion 10 0 0 0 0 0.5 0.5 // Distribution 1 of state 3 and a
tion 1-1 // a new PTS.5 31 0 00 0 00 1 01 0 10 0 00 00 0.3 0.7 0 02 10 0 0 0.65 0.353 00 0 0 1 03 20 0.60 0.40 0 0 Figure 9.3: An input �le to CAPS
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9.3.2 Output S
reenThe output s
reen for Compositional and Abstra
tion Che
king is shown in Fig-ure 9.4. The right frame is a Fun
tional frame, where we 
an 
hoose to performeither fun
tinality of doing Quotient or Compositional and Abstra
tion 
he
kingin CAPS. The Main frame states two given PTS, the �rst is the original PTS Tand the se
ond is the abstra
t PTS TAbstra
t. Below this is the Result frame. Itshows the simulation relation R and states whether T is simulated by TAbstra
t ornot.
T


T_Abstract


Figure 9.4: The interfa
e of the output result for Compositional and Abstra
tionChe
king
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The output s
reen for Quotient Che
king is shown in Figure 9.5. In the rightframe, you 
an either perform step by step fa
toring out individual PTS 
ompo-nent to the spe
i�
ation B by pressing on the button ">>" or run through thewhole parallel system by pressing on the button ">". The main frame shows thequotient stru
ture of the blo
king PTS B==Ti and the PTS Ti.
T3||T4       B//T1//T2


Figure 9.5: The interfa
e of the output result for the Quotient Che
king
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Chapter 10Experimental Result
In this 
hapter, we dis
uss the results obtained by our implementation a
ronymedCAPS. For the Compositional and Abstra
t Che
king, several tests are experi-mented, in
luding some examples we have dis
ussed in this thesis su
h as theparallel exams, the die performan
e. For the Quotient Che
king, we did not useany 
on
rete example, however we use suitable test 
ases 
reated by the tester,whi
h exposed some of the error of the implementation and showed the e�e
tive-ness of the quotient te
hnique. Empiri
al measurement of time and spa
e usage
an always be veri�ed later.10.1 Compositional and Abstra
t Test CasesTest 1: The dieThe idea of this test 
ase is extended from the test 
ase Di
e Programs of PRISM[49℄. This 
ase study 
onsiders two PTS, one is the original PTS T and one isthe abstra
tion TAbstra
t. Figure 10.1 models a die using only fair 
oins. Startingat the root state s0, one repeatedly tosses a 
oin. Every time heads appears, onetakes the upper bran
h and when tails appears, the lower bran
h. This 
ontinuesuntil the value of the die is de
ided. There is only one a
tion in this test 
asetherefore we omit any symbol of a
tion on all transitions out from ea
h state. Theabstra
t is 
onstru
ted by applying partitioning te
hnique for a spe
i�
 rea
ha-bility property, in this 
ase eventually the value of the di
e is six.
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Figure 10.1: The die with an abstra
t
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The result obtained by CAPS is shown in Figure 10.2:

Figure 10.2: The output s
reen of the Di
e exampleObviously, the pair of the two initial states (s0; s1) 2 R. Therefore we 
on
ludethat T v TAbstra
t.
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Test 2: The parallel examsIn this test 
ase, we re
all the example of the parallel exams in se
tion 2.2.2. As-sume a student is going to attend the exams of his two 
ourses. We are interestedin asking that whether this student passes both of these 
ourses with probabil-ity at least 0.8 with in three trials. Instead of 
he
king a 
omplex probabilisti
system T we may examine the question in an abstra
t of T , whi
h is de�nitelysmaller. The Figure 10.3 models a 
omplete parallel exams system and a simpleabstra
t.
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Figure 10.3: Composition of two PTS exams and an abstra
t
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The result obtained by CAPS is shown in Figure 10.4:

Figure 10.4: The output s
reen of the parallel examsObviously, the pair of the two initial states (s0; t0) 2 R. Therefore we 
on
ludethat T v TAbstra
t.
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10.2 Quotient Test CasesTest 3:The test 
ase is shown in Figure 10.6. Consider two PTSs T1 and T2 and theblo
king PTS B, we wish to know that if the parallel system T1kT2 w B withouthaving to 
onstru
t the 
omplete parallel system. By applying the quotient algo-rithm and runing the test with CAPS, we have obtained the result in Figure ??.Obviously, in the end of the quotient pro
ess, all the 
omponents Ti's are removedfrom the parallel system and the spe
i�
ation B is simultaneously transformedwith respe
t to (w), see Figure 10.6, 10.7 and 10.8 . Therefore we 
on
lude thatT1kT2 w B
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In this �gure, the algorithm prepares to 
onstru
t the quotient B==T1. Howeverthe simulation relation of B and T1 is �rst 
omputed.
T
1
||T
2
      B


B       T
1
 Figure 10.6: The initial output s
reen
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The quotient B==T1 has been 
onstru
ted in this �gure. Morever, T1 is alsoremoved from the parallel system. The algorithm is ready for next step.

B//T1       T
2


T
2
      B//T
1


Figure 10.7: The output s
reen of 
onstru
tin B==T1Finally, we obtained the quotient ((B==T1)==T2), that means the quotient pro
essis perfomred su

essfully. We 
on
lude that T1kT2 w B
T
1
||T
2
      B
*      B//T1//T
2
 <-->


Figure 10.8: The output s
reen of 
onstru
ting (B==T1)==T2
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Chapter 11Con
lusion
11.1 Con
lusionThe aims of this thesis was to avoid the state explosion problem in probabilisti
models by using simulation based abstra
tions. This led to the development ofthe tool CAPS whi
h was based on establishing good abstra
ts for 
omponentsin an asyn
hronous parallel 
omposition of a model. The main bottlene
k ofthis tool was that it is very user-dependent, requiring the user to input both themodel and the abstra
tion.The remainder of this thesis started with the aim of seeking to eliminate thisdrawba
k by automati
ally generating these abstra
tions. This goal howeverevolved and this report is the result.In our previous work, we only examined an interleaving (asyn
hronous) parallel
omposition. We avoided the state spa
e explosion by seeking abstra
ts of 
ompo-nents and then 
onstru
ting the parallel 
omposition with these abstra
ts. It wastherefore interesting to 
onsider and study the avoidan
e of this parallel 
ompo-sition by rather quotienting. We develop further the theories of The QuotientingTe
hnique, for PTSs, and extend a Minimization Algorithm to probabilisti
 tran-sition systems. This led to transforming our spe
i�
ations from logi
-based to anappropriate transition-based spe
i�
ation. Usually, the transformed spe
i�
ationgrows in size and requires a simpli�
ation heuristi
 to keep the size under 
on-trol. The Minimization algorithm for PTSs was intended to be the simpli�
ationheuristi
. However, we realized that, after quotienting, any stru
ture obtainedwas already minimal and 
ould therefore not be redu
ed or minimized further.This led us to propose that instead of minimizing (the transformed spe
i�
ation)after quotienting, we rather minimize the 
omponents of the system (or 
lustersof the 
omponents), before starting with the Quotienting te
hnique.Categori
ally, we 
on
lude on the building blo
ks of this thesis.96



Probabilisti
 Transition SystemsWe have examined the probabilisti
 labelled transition system as our main mod-elling system. We have further 
onsidered its parallel 
omposition in terms ofthe syn
hronous, asyn
hronous and the interleaving mixed sort parallel 
omposi-tion. We have extended all our abstra
tion methods to it and des
ribed ways togenerate redu
ed PTSs stru
tures. These methods are based on the Probabilisti
Simulation preorder and equivalen
e relation. We also des
ribed a spe
i�
ationmodel based on PTSs 
alled the Blo
king Probabilisti
 Transitions System whi
his a stru
tural version of Probabilisti
 Modal Logi
.Compositional Abstra
tionWe have des
ribed a basis for whi
h 
omponents of an asyn
hronous parallel
omposition 
an be abstra
ted individually or together with other 
omponents.The abstra
tion of the 
omponents are then used in pla
e of the original 
on
rete
omponents. We further explored ways of 
omputing the simulation preorderbetween two PTSs and used algorithms for 
omputing the maximum 
ow innetworks to establish the preorder and 
on
lude if the two PTS simulate ea
hother.The Quotient Te
hniqueWe started by exploring the Quotienting Te
hnique for �nite state systems andthe use of linear inequation solving to generate the quotient stru
ture. We thenextended this to our probabilisti
 transition system. We developed a spe
i�
ationformalism for this te
hnique, the blo
king PTS, whi
h expli
itly portrayed ourrea
hability properties. We have also 
onsidered various parallel 
ompositionali-ties and developed algorithms to generate their quotient stru
tures.By this approa
h, our our whole model 
he
king problem is redu
ed to that ofgenerating the quotienting stru
ture, whi
h o�ers us a means of abstra
tion.MinimizationWe have dis
ussed an algorithm whi
h allows us to systemati
ally generate aredu
ed PTS stru
ture. This 
an be used to minimize a parallel 
omposition as11 Con
lusion - Con
lusion 97



input and output a smaller redu
ed stru
ture with respe
t to simulation equiva-len
e. We had hoped to use this algorithm to simplify and minimize the trans-formed spe
i�
ation in the quotienting te
hnique. However, alternatively we pro-pose to use this algorithm on 
omponents before quotienting and not afterwards.This will also help to keep the size of the transformed spe
i�
ation in 
he
k.The ImplementationWe �rst developed a tool as an implementation the algorithms that we proposedfor the methods of 
ompositionality and abstra
tion based on the Simulation Pre-order, a
ronymed CAPS (Compositional Abstra
tion for Probabilisti
 Systems).We further extended this tool by implementing the algorithms for the Quotient-ing Te
hnique, for our spe
i�
ation. We realized that the quotient stru
ture hadinfa
t, exa
tly the same stru
ture as the blo
king PTS of the spe
i�
ation. Hen
ethe main issue, was 
omputing the exa
t probabilities of the distributions of thequotient stru
ture. Although, we did not gather any empiri
al eviden
e to sup-port a hypothesis that the methodologies dis
ussed, show a signi�
ant saving ontime and spa
e in the veri�
ation of these models, an intuitive argument shouldexhibit this fa
t.11.2 Further WorkThere is still the 
onsideration of automati
ally generating abstra
ts of 
om-ponents of a model as was originally 
onsidered. Although this will be moreuser-friendlier and more e�e
tive, it is not easy to solve in general. We havesuggested solutions in our spe
i�
 
ase to obtaining abstra
tions for 
omponentsin model 
he
king.In quotienting, we 
onsidered the interesting properties of rea
hability with thespe
i�
 model of blo
king PTSs. A possible extension will be to 
onsider abroader spe
trum of properties, where safety as well as liveness properties areveri�ed.As by our minimization, an extension 
ould 
onsider bisimulation based mini-mization whi
h is strongly preserving.
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Appendix
Please note the meanings of these symbols when reading this thesis.v: simulation relation�: simulation preorder�: simulation equivalen
e./: a general relation between a model and another model as spe
i�
ation. Couldbe v.ed : generalization of the parallel 
omposition==: quotienting operator� is usually for size, as in less than or equal to. Sometimes also for the simulationrelation.The Greek letters should be read within the 
ontext they are stated.(�; �; 
; Æ; �; �; �) usually denote a distribution over states.(�; �) sometimes denote a
tions in the A
t set.a; b; 
 usually represent a
tions.(�1; �2; : : :) denote equivalen
e 
lasses.( ; �) usually represent spe
i�
ation properties.
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