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1Introduction

Researh is to see what everybody else has seen, and to think what nobody elsehas thought.� Albert Szent-GyörgiDeision support systems take an inreasingly important role in appliationstoday. Lately fous has turned to data mining as a new big industrial tool to usein a wide area of appliations. Data mining is the proess of searhing throughdata looking for meaningful harateristis and trends. It uses statistial analysisand mahine learning tehniques, suh as neural networks and deision trees,to �nd the relationships in the data that ordinary interation with the databasewould not �nd. This allows identi�ation of undeteted relationships betweenitems suh as assoiations between produts, sequenes of events that lead tolater events, and new information.Data mining has its appliations within siene and researh as well as inthe industry and in business appliations. It suits perfetly within appliationareas where there is a huge amount of fators eah potentially apable of af-feting the appliation area. The medial researh soieties whih deal with ahuge amount of data suh as DNA-pro�les, symptoms, blood-types et., havebeen using data mining with suess. In addition data mining has also reeivedattention in ommerial domains. The following is an often referred example ofa suessful appliation of data mining performed by an Amerian supermarkethain. It illustrates how the proess of examining raw data, drawing mature on-lusions and as a onsequene, deploying the result an result in an improvedunderstanding of a business. Moreover, the resulting knowledge inreased pro�tfor the supermarket. Page 1 of 90



�For example, one Midwest groery hain used the data mining apa-ity of Orale software to analyze loal buying patterns. They disov-ered that when men bought diapers on Thursdays and Saturdays, theyalso tended to buy beer... The retailer onluded that they purhasedthe beer to have it available for the upoming weekend. The groeryhain ould use this newly disovered information in various ways toinrease revenue. For example, they ould move the beer display loserto the diaper display.� [52℄In addition the authors of this report have partiipated in an industrial datamining projet reently [37℄. In this projet a thorough analysis of a textile om-pany's data yielded a new desription of how the dealers in the ompany behavewhih an be used to explain why some end their areer or to target ampaignsfor hiring better dealers.In general, the need for data mining is a result of a growing amount ofdata stored within even the smallest ompanies. In many ases there is a lot ofhidden information in that data whih an be used to predit events in the futureor to make a detailed desription of the present. Clustering and lassi�ationtehniques are developed for the purpose of dealing with many of the tasks thatappear in data mining projets.In lassi�ation eah reord in the database is assumed to belong to a prede-�ned lass whih is determined by one of the attributes, namely the lass label.A preditive model is produed by analyzing eah reord in a database wherethe lass label is known. When the model is ompleted it an be used to pre-dit or lassify yet unseen reords. Classi�ation is also referred to as supervisedlearning [28℄. On the other hand data lustering aims to desribe the group-struture whih is underlying in a given data set. As opposed to lassi�ation,lustering generates a model without onsulting a lass label whih explains whyit is referred to as unsupervised learning. Generally, lustering is divided into twogroups, partitional and probabilisti lustering. Partitional lustering yields a de-sription by dividing the data into a partition whereas in probabilisti lusteringwe onstrut a probabilisti model of the data.One of the ritial tasks in data mining is data lustering [37℄. In this partof data mining several fators potentially in�uene the results, for instane thenumber of lusters k, and the prodution of a meaningful desription of thestruture whih is hidden in the data. In addition an important fator is the sizeof the data. It is most ritial if databases onsist of a huge amount of features.In many ases some of the features are not informative for the purpose of learningfrom the data and an be onsidered as noise and we say that they are irrelevant.Suh features have a negative impat on learning in that they introdue distortionrendering the results less aurate. In addition the omplexity of any learnedmodel inreases in the number of features, thus inluding irrelevant features willmake the learned model harder to omprehend and inrease the ost of indution.Moreover, if a part of the data base an be disovered, whih an be left outPage 2 of 90



Chapter 1: Introdutionwithout doing any harm to the learned model, this ombined with the modeldesription, an be regarded as valuable information.Therefore in this projet we fous only on the problem of reduing the numberof features. This problem is usually referred to as feature subset seletion (FSS).FSS is the proess of identifying the most e�etive subset of the original featuresin a data set for a partiular purpose and it is a entral problem in data analy-sis [17, 34℄. It an be performed both supervised and unsupervised. SupervisedFSS is applied in lassi�ation where the lass label is known and �nding theoptimal subset an be onsidered a searh problem where a given subset an betested against the lass labels. Similarly, unsupervised FSS is performed in datalustering. In unsupervised FSS a test against a lass label does not exist and soother tehniques must be developed in order to evaluate a given subset.In the �eld of unsupervised FSS there has not been performed a great dealof researh urrently [14, 34℄. There is however a growing need for reduing thedimensionality of data for lustering whih further motivates this projet.We are in this projet onerned with the problem of unsupervised FSS asthe identi�ation of irrelevant features for data lustering. Therefore we wishto identify the harateristis whih must aount for irrelevant features andpropose a method whih an e�etively disard irrelevant features resulting in amore omprehensible model without doing any harm to the learned model.
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2ClusteringThe notion of �nding 'natural groups' tends to imply that the algorithm shouldpassively onform like a wet teeshirt.� Mihael R. AnderbergMany problems whih arise in data mining an be solved by using data lus-tering [3, 13, 29℄. In general data lustering is regarded as an important wayof summarizing data in an understandable manner [18℄. Despite its widespreaduse there exists di�erent de�nitions, interpretations and expetations of whihthe term lustering gives rise to [33, 42, 47℄. Therefore in order to ontinue ourdisussion of data lustering we de�ne the onept of data lustering. First, weoutline the assumptions on whih any lustering tehnique is based. Then weintrodue 2 di�erent lustering tehniques: a partitional lustering algorithm anda model-based lustering algorithm.2.1 ClusteringClustering is a proess of disovering groups in data [34℄. It yields a desriptionof the group struture whih is hidden in the data when the group membershipsare unknown [54℄. The disovery proess aims to disover lasses in the datawhih are natural for the data set. It is lear that it only makes sense to identifygroups if some groups exists. Therefore, lustering is based on the assumptionthat the data is generated by an underlying model whih is responsible for suhgroups. Spei�ally, the purpose of lustering is to gain more information aboutthis model. Figure 2.1 depits a mehanism whih is often used to explain theunderlying model. It onsists of a seletor, a number of physial proesses andthe data set.The assumption is that eah instane in the data set is generated by thismehanism. For eah instane the seletor selets one and only one of the phys-ial proesses. The physial proess then generates eah attribute value of thePage 5 of 90



2.1 Clustering
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Figure 2.1: The underlying model: Eah instane in the data set is generated bya physial proess, seleted by a seletor whih remains unknown for us.instane, based on an unknown probability distribution. In the end, all the in-stanes generated by one physial proess are assumed to belong to the sameluster. The lusters and the physial proesses remain unknown or hidden, i.e.it is unknown whih physial proess is responsible for generating a spei� in-stane and how it has been generated (its assoiated probability distribution).More spei�ally, luster analysis is based on the following assumptions:1. Clustering is applied to a data set D ontaining n instanes, suh thatD = fx1 : : :xng. Eah instane xi is a vetor, of p values xi1 : : : xip. Inaddition we let xi be an instantiation x of the p-dimensional vetor ofrandom variables X = fX1; : : : ;Xpg.2. Eah instane xi 2 D is a member of one and only one of the underlyinghidden lusters C = f1; : : : kg. The luster membership is representedby the label li assigned to eah xi. Sine this luster membership is un-known (hidden luster membership) we refer to C as the hidden lustermembership variable or simply the luster variable.3. D is generated by an underlying model onsisting of k physial proesseswhih, together with the seletor are represented by a joint probabilitydistribution.We denote the joint probability distribution for the seletor P (), the probabil-ity for eah physial proess to be seleted, and the joint probability distributionfor eah physial proess as P (x1; : : : xpj) or simply P (xj), the probability ofgenerating a ase x given the luster membership C.In addition it is worth to mention that the instanes in D an be of anytype, i.e. ategorial, real valued or even a mix of those kinds. However we wantto make the following onstrain: In this projet we will only allow the type ofinstanes in D to be ategorial.In general, lustering an be regarded as an optimization problem. Given adata set D, a feature subset and the number of lusters k must be seletedwhih results in an optimal lustering model.Page 6 of 90



Chapter 2: ClusteringThe resulting model, must be optimal with respet to some measurementfuntion whih assigns a sore to eah possible model. This measurement isbased on an intuitive understanding of heterogeneity and homogeneity whihis referred to as the lustering riterion. If this riterion is translated into amathematial formula whih measures the homogeneity within eah luster, thelustering problem is left as a searh for the model that yields the most homoge-neous lusters. There exist two lassial models of the lusters, partitional andprobabilisti.A partitional data lustering (also alled partitioning) algorithm partitions adataset into k lusters suh that instanes in the same luster are more similarthan instanes in other lusters. The proess is required to be exhaustive, i.e.all instanes in D are assigned to a luster while eah luster is required to benon-empty and mutually exlusive. That is, eah luster must ontain at leastone instane and eah instane is assigned to one and only one luster.The probabilisti models however, desribe the lusters by modeling themehanism that generated the data. These methods are regarded as more ad-vaned than the partitional algorithms due to their well-founded base in statistis[13, 47, 54℄. After identifying a number of lusters it reovers the probability dis-tributions p() and P (xj) of the underlying model.In unsupervised learning the number of lusters is usually unknown. As thisfator an have a large impat on the result we assume it to be known for alldata sets used in the remainder of the report. Finding k is out of sope for thisprojet.In the following we introdue the two lustering methods we are going touse in this projet, a partitional tehnique, alled the k-modes algorithm and amodel-based tehnique alled the Naive Bayes (NB) Model.2.2 The k-modes AlgorithmThe k-modes algorithm was introdued by Huang [31℄ as a variation of the wellknown k-means algorithm [46℄. k-modes runs on ategorial data and maintainsthe e�ieny that k-means exhibits on large data sets.The k-modes algorithm iterates through the data set and assigns eah in-stane to the luster that ontains more similar instanes than the other lustersand keeps repeating this untill onvergene has been obtained, i.e. the result ofiteration i is equal to the result of iteration i� 1. The assignments make use ofthe lustering riterion whih varies for di�erent lustering methods.2.2.1 De�nitionsWe run the k-modes algorithm on a data set D of n instanes. Eah instanex 2 D is a vetor of p nominal values x1 : : : xp. The k-modes algorithmpartitions D into k lusters 1 : : : k, by assigning eah instane to the lusterPage 7 of 90



2.2 The k-modes Algorithmwith the most similar ases, or more orret, the least dissimilar ases. To measurethe similarity between ases we use a dissimilarity measure. Let d(x;y) be thedissimilarity between a pair of ases x and y. Then the dissimilarity returned byd is the total number of mismathes of the orresponding attribute ategories ofthe two ases [31℄. We haved(x;y) = pXj=1 Æ(xj ; yj) (2.1)where Æ(xj ; yj) = � 0 (xj = yj)1 (xj 6= yj) (2.2)The dissimilarity measure is also known as the Hamming distane [6℄.Eah luster is represented by a prototype, or a mode. A mode is a nominalvetor of size p that minimizes:Xx2l d(x; ql) (2.3)for eah ase x 2 l, and l is a luster represented by ql.A mode q is both initiated and updated using a frequeny based method. Foreah attribute xj in the subset of the data set assigned to luster l we searhfor the most frequently ourring state. The state of q at index j will thus bebe updated to represent to most frequently ourring state in l.2.2.2 The AlgorithmThe essene of the k-modes algorithm is the searh for a partitioning whih isoptimal with respet to a ertain ost funtion. The ost funtion is the sum ofHamming distanes from eah instane to the mode of the luster to whih it isassigned.The ost funtion whih must be minimized is:E = kXl=1 Xx2l d(x; ql); (2.4)where ql is the luster mode of luster l and x 2 l is the set of ases assignedto luster l. The k-modes algorithm onsists of the following steps:1. Selet k initial modes, one for eah luster.Page 8 of 90



Chapter 2: Clustering2. Use Equation 2.1 to assign eah instane to the luster with the most simi-lar mode. Eah time an instane has been alloated to a luster, realulatethe luster mode using Equation 2.3.3. After all instanes have been alloated to lusters, retest the dissimilarityof instanes against the urrent modes. If an instane is found suh thatits nearest mode belongs to another luster rather than its urrent one,realloate the instane to that luster and update the modes for bothlusters.4. Repeat 3 until onvergene has been reahed, i.e. no instane has beenreassigned after a full yle test of the whole data set.Like the k-means algorithm, the k-modes algorithm is likely to produe loallyoptimal solutions that are dependent on the initial modes and the order of objetsin the data set [55℄. Therefore it is appropriate to run the k-modes algorithmseveral times with di�erent initial modes and pik the best result with respetto the ost funtion [31℄. To pik the initial modes totally at random might notbe appropriate sine there might be a risk that one or more luster modes willbe assigned values suh that no, or very few instanes will be assigned to it.Therefore we have hosen to modify Step 1 and 2 in the above algorithm inorder to obtain initial modes that are lose to the data:1. Assign eah instane in the data set to one of the k lusters hosen atrandom, ensuring that eah mode will be assigned at least one instane.2. When all instanes are assigned to a luster, alulate the k luster modesusing Equation 2.3. If two modes are idential, restart from step 1.2.3 Model-Based ClusteringAs already mentioned there are two main approahes to lustering, namely par-titional and probabilisti lustering. The latter an provide eah ase with aprobability distribution with the probability of eah luster. The latter approahis sometimes alled a soft (or frational) assignment as opposed to the hardassignments performed by partitioning.2.3.1 Finite Mixture ModelsAs mentioned model-based lustering is an attempt to model the proess whihhas generated the data. Thus a model ontains the probability distribution mod-eling the seletor and a separate probability distribution for eah luster. Thefat that the number of lusters is assumed to be �nite and the model is a mixof models, one for eah luster, has led to the name �nite mixture models. ThePage 9 of 90



2.3 Model-Based Clusteringaim of a �nite mixture model is to model the joint probability mass funtionp (xj�) whih is most likely to have generated the data D. We have:p(xj�) = kXi=1 p(ij�) p(xji; �i)= kXi=1 �i p(xji; �i) (2.5)where �i = p(ij�) is the marginal probability of eah luster suh thatPi �i =1, p(xji; �i) is the probability distribution whih is modeling ases in the i'thluster, and � are the parameters of the model where � = f�1; : : : ; �k; �1; : : : ; �kg.
X. .

C c kC {c , . . . }c1 2=

1 2 pX X .Figure 2.2: The NB Model. The variables X1 : : : Xp are independent given theluster variable.In model-based lustering a model struture and the probability distributionsassoiated with eah luster is learned from a data base. However it is ommonthat one would stik to a �xed struture beforehand. A widely used �xed strutureof �nite mixture models is the NB model. The NB model is a model where anassumption of onditional independene among eah pair of the variables inX = fX1; : : : Xpg given the luster random variable C is made. Under thisassumption p(xji; �i) an be alulated asp(xji; �i) = pYl=1 p(xlj�li); (2.6)where p(xlj�li) is the probability distribution over the values for the variable Xland �li is the set of parameters. Figure 2.2 depits an NB model, where C is theluster membership variable and eah Xl 2X are the variables in the data base.In order to assign a ase x to a luster i we need the probability of theluster membership given x, namely the luster membership probabilities. Weuse Bayes rule to get Page 10 of 90



Chapter 2: Clustering p(ijx; �) = �i p(xji; �i)Pkj=1 �j p(xjj ; �j)= �iQpl=1 p(xlj�li)Pkj=1 �jQpl=1 p(xlj�lj) (2.7)whih an be used to assign eah ase x 2 D the most likely luster, or toperform a soft assignment where eah ase x is assigned frationally to the setof lusters aording to the distribution p(ijx; �).2.3.2 Learning a Naive Bayes Model from DataIn order to learn a model from a set of data D = fx1 : : :xng we searh forthe parameters whih maximize the likelihood of the training data, L(Dj�). Themost likely � is usually denoted �̂ and this approah to �nding the parameters �is alled the maximum likelihood riterion (ML):�̂ = argmax� L(Dj�) = argmax� Yx2D p(xj�): (2.8)Let nlji denote the number of ases in the database whih belong to the ithluster and for whih the lth variable is in state j. Similarly, let �lji denote theprobability that, for a given ase in luster i, the lth variable is in state j. Themaximum likelihood riterion is known to be:�̂lji = nljini ; (2.9)where ni =Pj nlji . Similarly, the marginal probabilities of the ith luster �i arefound as: �i = nin : (2.10)This approah is an analysis of the frequenies of ourrenes in the data only. Insome ases, when one wants to inorporate prior knowledge about the probabilitydistributions one may want to use the maximum a posteriori (MAP) estimate.Let p(�) denote our prior knowledge about the parameters, then we have:�̂MAP = argmax� p(�jD) = argmax� L(Dj�) p(�)L(D)= argmax� L(Dj�) p(�) (2.11)Let �lji denote the prior knowledge we have for ases in the ith luster withvariable l in state j, where �i =Pj �lji . The MAP estimate is then:�lji = �lji + nlji�i + ni ; ni =Xj nlji ; �lji ; �i � 0; (2.12)Page 11 of 90



2.3 Model-Based Clusteringand similar for the marginal luster probability for the ith luster whih is foundas: �i = �i + ni�+ n ; � =Xj �j; �i; � � 0: (2.13)2.3.3 Learning a Naive Bayes Model for ClusteringThe above approah an be used to learn an NB model from data. However, inlustering the luster membership is unknown. This onstitutes a problem sinethe luster membership variable is assumed to be known in the above approahwhen the values for � are estimated. Therefore lustering an be regarded as aspeial ase of learning a model from data with missing values. Therefore weneed an algorithm whih is able to deal with missing values. One well knownalgorithm for learning parameters of a probabilisti model from a data set withmissing values is the Expetation - Maximization algorithm, or simply the EMalgorithm [11℄. It onsists of two steps, namely the expetation (E) step andthe maximization (M) step. In the E step eah ase in the database x 2 D isassigned the posterior probability of its luster membership (luster membershipdistribution) using Equation 2.7. In the M step these probabilities are onsideredas real data and the parameters � of the model are learned using ML estimatesor MAP estimates. After eah iteration the algorithm measures the performaneof the parameters. The performane of the parameters � on a data set D is givenas the likelihood of the data given the parameters, L(Dj�):Performane(�) = L(Dj�) = Yx2D p(xj�)= Yx2D kXi=1 �i pYl=1 p(xlj�li): (2.14)It is sometimes onvenient to use the logarithm of the likelihood (log likelihood)to measure the performane of a model:Performane(�) = Xx2D log " kXi=1 �i pYl=1 p(xlj�li)# : (2.15)The E step and the M step are repeated until a ertain stopping riterion is met.As with the k-modes and k-means algorithms the stopping riterion is whenthe model has reahed onvergene, i.e. when the parameters � have not beenhanged during the last iteration of the E step and the M step. Sometimes it isonvenient to have a more fuzzy understanding of the term onvergene, in suhases one would hoose a a threshold  as stopping riterion. If the improvementin performane, measured by the log likelihood of the model, in the last iterationof the E and M step is less than , onvergene has been reahed, and thealgorithm is terminated. In this work we will stik to a threshold  = 10�6.Page 12 of 90



Chapter 2: Clustering2.3.4 Implementing the Expetation StepThe E step performs a frational ompletion of the database where eah ase isassigned frationally to lusters. For this purpose we need p(ijx; �) 8 i. Thanksto the onditional independenies in the NB model (Equation 2.6) we an useEquation 2.7 for this purpose. Here we introdue an example.Table 2.1 and 2.2 show an example of 2 omponents assoiated with luster1 and 2 respetively.1 x1 x2 x3p(xi = 1) 0.3 0.2 0.9p(xi = 2) 0.7 0.8 0.1Table 2.1: The probability distribu-tions for omponent 1 onditioned onluster 1.
2 x1 x2 x3p(xi = 1) 0.5 0.4 0.7p(xi = 2) 0.5 0.6 0.3Table 2.2: The probability distribu-tions for omponent 2 onditioned onluster 2.First we assume that we have the prior probabilities for p(1) = 0:4 and p(2) =0:6 we then have for a given ase X = [1; 2; 2℄:p(1jX = [1; 2; 2℄; �1) = 0:4 � (0:3 � 0:8 � 0:1)0:4 � (0:3 � 0:8 � 0:1) + 0:6 � (0:5 � 0:6 � 0:3) = 0:16p(2jX = [1; 2; 2℄; �2) = 0:6 � (0:5 � 0:6 � 0:3)0:4 � (0:3 � 0:8 � 0:1) + 0:6 � (0:5 � 0:6 � 0:3) = 0:84In the E step all ases in the database we assign the luster membership dis-tribution as desribed here. In the above example all ases with the on�gurationX =[1; 2; 2℄ are assigned the probabilities 0.16 and 0.84 for luster 1 and 2respetively.2.3.5 Implementing the Maximization StepIn the maximization step we assume the luster membership distributions ob-tained in the previous E step are real data and realulate the parameters of themodel given these distributions. This is done using the ML estimate or the MAPestimate. In our ase we use the MAP estimate, and sine we have no reason toprefer some parameter values above others we onsider all to be equally likely apriori. That is, we use a uniform prior probability distribution.What needs to be done is to update the parameters � of the model. That is,the probability distributions within eah omponent p(xji; �i) and the marginalprobabilities p(i). This is done using Equations 2.12 and 2.13 with one minorhange. Sine the E step has assigned frational luster membership probabilitiesto eah ase instead of hard assignments the frequeny analysis an not bePage 13 of 90



2.4 Summaryperformed by ounting ases. Instead the probabilities are summed to obtain ni =Px2D p(ijx; �) and nlji = Px2D p(xl = j; ij�lji ) when applying Equations2.12 and 2.13. In fat, ounting frequenies of hard assignments an be regardedas a speial ase of the above two sums where the probabilities are 0 or 1.Let us assume we have a database of the same dimensionality as in theprevious example (any other equality is pure oinidene) in whih the lustermembership probabilities have been attahed to eah ase in the previous E step.x1 x2 x3 p(1jx) p(2jx)1 2 1 0.6 0.41 1 2 0.3 0.72 2 1 0.2 0.82 2 2 0.9 0.11 2 1 0.6 0.4Table 2.3: Data instanes with attahed luster membership probabilities.We onsider the 5 ases in Table 2.3 and estimate the marginal probabilities forp() using Equation 2.13. We use the MAP estimate and onsider the databasewith the new frational luster assignments as real data. Sine, with the frationalassignments we an not ount the number of ases assigned to eah luster ni, wesum the frational probabilities, i.e. we let ni =Px2D p(ijx; �) when applyingEquation 2.13. If we apply the MAP estimate with uniform priors we get:p(1) = 1 + (0:6 + 0:3 + 0:2 + 0:9 + 0:6)2 + 5 = 0:514p(2) = 1 + (0:4 + 0:7 + 0:8 + 0:9 + 0:4)2 + 5 = 0:496To update the parameters �lji we iterate through eah on�guration of eah of theomponents. We apply Equation 2.12 and like before we use the frational lustermembership assignments as real data. Therefore we let nlji = Px2D p(xl =j; ij�lji ) when estimating p(X = x1j1; �1). For x1 = 1 we get: 1+0:6+0:3+0:62+2:6 =0:54 while for x1 = 2 we get: 1+0:2+0:92+2:6 = 0:46.One question whih remains is how to �nd some appropriate starting parame-ters for learning a model. An approah whih has shown its worth is one proposedby Thiesson et al. [66℄. The idea in this method is to estimate the parametersin a single-omponent model from the data using the MAP estimate and usethis omponent to generate k omponents by perturbing the parameters of thesingle-omponent model. In other words, the parameters of the single omponentmodel are hanged slightly at random in order to generate k unique omponents.2.4 SummaryIn this hapter we have desribed the onepts of data lustering whih form abase for the proposed FSS methods. The assumptions on whih all data lusteringPage 14 of 90



Chapter 2: Clusteringtehniques are based, have been outlined to give a basi understanding of datalustering.In the remainder of the report we will be using 2 lustering tehniques: NBmodel and k-modes. The methods have been hosen sine they are both ableto deal with ategorial data whih is the only type of data used in this projet.In addition the methods are part of 2 fundamentally di�erent types of luster-ing. The NB model belongs to the group of model based lustering tehniqueswhereas k-modes belongs to the group of partitional lustering tehniques.One of the unknown fators in unsupervised learning is the number of lusters.As this issue is out of sope for this projet we will assume the number of lustersk to be known.
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3Feature Subset
SelectionIt is probably the hoie of variables that has the greatest in�uene on the ulti-mate results of a luster analysis.� Mihael R. AnderbergIn general, feature subset seletion (FSS) is motivated by a wish to redue thedimensionality of large data sets sine data analysis using indution algorithmsan be both highly time and spae onsuming. Moreover, models of large datasets tend to be harder to omprehend than models learned on smaller data sets.In ase FSS an be performed e�etively dereasing the number of features inthe data base, the problem would be left omputationally more feasible for theindution algorithms while the learned model would be more omprehensible. Butwhat may also be onsidered important is that a lear distintion between rele-vant and irrelevant features is also valuable information as part of a summarizingdesription of a data set.Critis of FSS would state that a model learned from the whole data setwill always perform equally well as a model learned from relevant features only,leaving any e�ort spent on FSS wasted. This is sometimes alled the assumptionof monotoniity, i.e. the performane of a theoretially ideal learning algorithmis not damaged by the presene of noise [63℄. However, empirial tests in [67℄show that the inlusion of noise in some ases derease the performane of theindued model.In this hapter we ontinue the disussion of FSS. First we present FSS as asearh problem and outline the di�erenes between FSS performed in supervisedand unsupervised learning. Then we desribe the main ideas of �lter and wrapperapproahes and disuss these in relation to related work. After a disussion thishapter ends with several new proposals for measuring the relevane of a featurefor use in unsupervised FSS. Page 17 of 90



3.1 Feature Subset Seletion as a Searh Problem3.1 Feature Subset Seletion as a Searh ProblemThe problem of seleting the optimal feature subset an be regarded as a searhor optimization problem (e.g [10, 14, 23, 32, 39, 43, 27, 71℄) where eah subsetof features is regarded a point in the searh spae. Any searh method requires astarting point in the searh spae, a searh strategy, an evaluation funtion anda stopping riterion [65℄. An exhaustive searh for the optimal feature subset isexponentially omplex i.e. in a database of p features there exists 2p possiblesubsets. In suh a searh spae any realisti approah must rely on a heuristisearh strategy.A rough lassi�ation of searh strategies for solving optimization problemsould be to distinguish between omplete and heuristi searh. The underlyingidea in omplete searh strategies is the systemati examination of all the so-lutions of the searh spae (e.g., depth-�rst, breadth-�rst, branh and bound,et.). Unfortunately, omplete searh is usually impratial as most optimizationproblems involve large searh spaes that make this approah omputationallyprohibitive. Moreover, aording to [68℄, the majority of the most hallengingoptimization problems that ome from the methodologial development of newtehniques in omputer sienes as well as from real-world senarios turn outto belong to the ategory of NP-hard problems [24℄. These fats together withthe lak of �exibility of those searh strategies that are based on lassial teh-niques of operational researh and numerial analysis justify the use of heuristisearh strategies [51, 53, 60℄. Unlike omplete searh strategies, heuristi searhstrategies do not examine the whole searh spae of the problem being optimizedbut only those parts that are onsidered promising aording to ertain heuristiriteria. Although heuristi searh strategies neither ensure that the �nal solu-tion is a global optimum of the optimization problem at hand nor failitate itsmathematial modeling, they provide the user with a �nal solution that is near aglobal optimum in aeptable runtime. In other words, heuristi searh strategiesprovide the user with a trade-o� between e�etiveness and e�ieny, whih isa question of apital importane when problem optimization is approahed froman engineering perspetive.Heuristi searh strategies an be further divided into deterministi and non-deterministi or stohasti. In deterministi heuristi searh strategies (e.g., for-ward, bakward, stepwise, hill-limbing, threshold aepting, et.), the same �nalsolution for a given optimization problem is always ahieved under the same on-ditions. In other words, a deterministi heuristi searh strategy maps every initialsolution of the optimization problem to a single �nal one. On the other hand,non-deterministi heuristi searh is motivated by trying to avoid getting stukin a loal optimum of the optimization problem at hand, usually by means of ran-domness [72℄. Due to its stohasti nature, di�erent runs of a non-deterministiheuristi searh strategy might lead us to ahieve di�erent �nal solutions fora given optimization problem under the same onditions. While some of thestohasti heuristi searh strategies store only one solution of the optimizationPage 18 of 90



Chapter 3: Feature Subset Seletionproblem at hand at eah iteration (e.g., simulated annealing [40, 49℄), otherapproahes exist. Some of these other approahes are grouped under the de-nomination of evolutionary algorithms. Some examples of lassial evolutionaryalgorithms are geneti algorithms [25, 30℄, evolutionary programming [21, 22℄,and evolution strategies [59, 62℄. See [5, 20, 25, 44℄ for reviews of these andsome other.3.2 Feature Subset Seletion OverviewIn the domain of FSS there are 2 main areas of interest: supervised and unsuper-vised FSS. Supervised FSS has for some time been the topi of muh researhwhereas unsupervised FSS has only reently reeived attention due to the grow-ing interest in the �eld of data mining. In this setion we will give an overviewof the 2 areas with spei� fous on unsupervised FSS as it is the fous of thisprojet.3.2.1 Supervised Feature Subset SeletionThe vast majority of researh in FSS has been performed in the supervisedlearning paradigm paying little attention to the unsupervised learning paradigm[14, 65℄. The main objetive of FSS applied to supervised learning is to inreasethe lassi�ation auray of the learned model by removing noise. Knowing thelass label of eah instane makes evaluation of any feature subset possible. Itis ommon to use a model's ability to predit the lass label of yet unseen asesto measure the performane of a feature subset, e.g. John et al. [36℄ who useross-validation. In other methods the presene of the lass label has inspired theuse of dependeny based methods, where the dependeny between eah featureand the lass label is measured in order to leave out irrelevant features (e.g.[27℄).3.2.2 Unsupervised Feature Subset SeletionApplying FSS to unsupervised learning is a hallenging task of data analysis.Using the same proedure as for supervised learning is impossible due to theunknown lass label. There exist no standard de�nition of relevane within unsu-pervised FSS and it will therefore be learly stated in this report. For instane, asimple evaluation funtion proposed by Fisher [18℄ has been adapted by Talavera[65℄ for use in unsupervised FSS and named the feature dependeny measure(FDM). FDM is a funtion that desribes the average inrease in the ability toguess the value of a feature given a seond feature. This measure is based onthe assumption that, in the absene of a lass label, we an deem as irrelevantthose features that exhibit low dependenies with the rest of the features. TheFDM is de�ned as: Page 19 of 90



3.3 Filters and WrappersPiPj wPjk hP (Xk = xjk jXi = xij)2 � P (Xk = xjk)2ijfijXi 6= Xkgj (3.1)Equation 3.1 takes into aount the inrease in preditiveness of one featuregiven another feature. The leftmost fator (w) is a weight whih provide highervalues to the most preditable values of a feature and is de�ned as:w = P (Xi = xij) : (3.2)The proposal has been tested using a naive �lter model approah whih alulatesthe feature dependeny measure for eah individual feature and then seletingthe highest soring features using a �xed prede�ned threshold whih an di�erfor eah ase. Some other approahes an be found in the literature (e.g. [57℄).Contrarily to supervised learning no standard uni�ed performane riterionexist in the unsupervised learning paradigm [57℄. Variables suh as the numberof lusters k, the performane of a lustering result and the quality of the dataan have an impat on the results. This means that the term "optimal FSS"di�ers in the interpretation of the data analyst and as suh makes omparisonsdi�ult.3.3 Filters and WrappersJohn et al. [36℄ introdue the notion of �lters and wrappers whih onstitutestwo di�erent ways of performing FSS. In this setion we will outline both methodsand present a disussion of their performane.3.3.1 The Filter ApproahFigure 3.1 illustrates the �lter approah. First the algorithm is passed a set of fea-tures. Then the irrelevant features are �ltered out, based on the analyst's notionof relevane, and at last a subset of relevant features is passed to the learningalgorithm. Therefore the main property whih haraterizes a �lter approah isthe independene of a learning algorithm.
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featuresFigure 3.1: The �lter model. Features are �ltered out before the model is learnedby the indution algorithm.Seleting features, using a �lter approah, is highly dependent on the un-derstanding of relevane, i.e. it is neessary to have a measure of relevane forPage 20 of 90



Chapter 3: Feature Subset Seletionfeatures. Suh a measure depends on the mahine learner's understanding ofrelevant features. Several works have proposed ways to measure relevane basedon di�erent de�nitions of relevane. John et al. [36℄ disuss 4 di�erent de�nitionsof relevane in the ontext of lassi�ation and show that the performane ofthe �lter approah is highly dependent on the de�nition of a relevant feature.There are several advantages for �lter methods within lustering whih isnot a onern in lassi�ation. Sine �ltering is performed independently of theindution algorithm �lters are independent of the performane of the learningalgorithm and the suess of an indued model. For instane, �lters are inde-pendent of whether the optimal number of lusters k for a data set has beenfound.Several proposals, suh as Peña et al. [57℄ and Talavera [65℄, use a �lterapproah based on ranking eah feature aording to a sore measure in orderto be able to selet a subset ontaining the most salient features (for Talavera'sproposal see Setion 3.2.2). Both proposals are based on unsupervised learning.Peña et al. [57℄ propose a �lter method using onditional Gaussian networks[45℄ in whih they sore a feature's relevane as the average likelihood ratio teststatistis for exluding an edge between the measured feature and any otherfeature in the graphial Gaussian model [70℄. The relevane measure for eahfeature Xi is written as: pXj=1;j 6=i �n log �1� r2ijjrest�p� 1 (3.3)where p is the number of features in the database, n is then number of ases inthe database and r2ijjrest is the sample partial orrelation of the features Xi andXj adjusted for the remaining variables. The relevane measure allows to rankthe features in a dereasing order with respet to relevane. The authors proposea heuristi whih automatially deides on a relevane threshold. The relevanethreshold is alulated as the rejetion region boundary for an edge exlusion testin a graphial Gaussian model for the likelihood ratio test statisti. The featuresinluded in the learning are then those features whih have a higher relevanesore than the threshold.3.3.2 The Wrapper ApproahJohn et al. [36℄ argue that it is a disadvantage that �lters are independent ofthe indution algorithm and propose the wrapper approah to replae �lters. Ina wrapper the FSS algorithm is wrapped around the learning algorithm. Usinga heuristi searh strategy the wrapper searhes through the spae of featuresubsets using the learning algorithm as a part of measuring the sore of eahfeature subset. Eah feature subset is evaluated by measuring the performanePage 21 of 90



3.4 Sore Measuresof the learned model. Figure 3.2 illustrates the wrapper approah. First a subsetof features is seleted aording to some heuristi while seondly the subsetis evaluated using the performane of the indution algorithm on the featuresubset. Generally, subsets of features are evaluated through several iterations ofthis seond phase. Eah iteration requires a new model to be learned.
Induction algorithm

Input
features

Induction
Feature subset search

Feature subset evaluation

algorithm

Figure 3.2: The wrapper model. FSS is performed as a �wrapper� around theindution algorithm.The lak of a standard uni�ed performane measure for unsupervised learningis a problem sine the performane of the wrapper is highly dependent of theunderstanding of a suessful luster model. Another problem for wrappers forlustering is that the performane of the model depends on the number of lustersk whih is unknown in most ases. Some works try to ope with this problem byonsidering �nding k and the optimal features subset as one single optimizationproblem where the number of lusters and features are variables in the searh.For instane, Dy et al. [14℄ propose to wrap FSS around the EM algorithm withorder identi�ation allowing to �nd the number of lusters, k, in the data. Thisapproah solves 2 problems: It dereases the dimensionality of the database byremoving irrelevant features and it �nds the number of lusters whih yields theoptimal model with respet to a sore riterion.When omparing the two paradigms, �lter and wrapper methods, one an notavoid the fat that the wrapper approah is muh more time onsuming than the�lter approah. On the other hand wrappers tend to yield more preise modelsthan models obtained by �lter methods [36℄.3.4 Sore MeasuresBefore we move on to a disussion of a good relevane measure for unsupervisedFSS, we want to disuss what we understand by good performane of a lusteringmodel. The lak of a lass label and a uni�ed performane riterion has givenrise to several proposals of how performane must be understood in lustering.This will yield a proposal of several new relevane measures to measure featuresrelative to the rest of a data set whih an be used for unsupervised FSS in aPage 22 of 90



Chapter 3: Feature Subset Seletion�lter method.3.4.1 Performane in ClusteringIn general, a suessful lustering is one that gives a desription of any underlyinggroup struture in the data if suh exist. If we assume lusters exist, good lustersare lusters that are lear and easy to distinguish from the rest of the data. Fisher[18℄ is aware of this fat and he introdues two properties that an be measured,the intra-luster similarity and the inter-luster dissimilarity. They are measuredby two posterior probabilities:� The intra-luster similarity: P (Xi = xijjk), where Xi is a variable, xij isthe jth value of Xi and k is a luster. If this probability is high, the valueof Xi = xij is said to be preditable for the luster members, and if itholds for many variables in the luster k the luster is said to be ohesive.� The inter-luster dissimilarity: P (kjXi = xij). The higher this probability,the fewer lusters other than k share the value Xi = xij whih is thensaid to be preditive. If this probability is high for many of the variableswithin a luster k, we say that k is distint. [18, 65℄Dividing a data set into a good set of lusters should maximize these probabil-ities for a number of variables. Doing this, lusters formed on behalf of dependentfeatures are rewarded. If a luster k has a variable X1 with high disriminatingpower the luster will sore a high P (X1 = x11jk) and P (kjX1 = x11) sinemost of the values of X1 will be x11 within the luster and few values of X1will have the value x11 in other lusters. If X1 is highly dependent on anothervariable, e.g. X2, then most members of k will have the same value for X2, sayx21. Hene both x11 and x21 ontribute with both preditability and preditive-ness making k more ohesive and more distint. Thus in general, variables thatare highly dependent on other variables ontribute to ahieve lusters that areboth ohesive and distint [65℄.3.4.2 RelevaneOne of the main problems in unsupervised FSS is to de�ne relevane. In severalprevious proposals the de�nition has been based on a soring riterion in whihthe sore of eah feature has been evaluated with respet to some measure. Usinga prede�ned threshold eah feature is then either deemed relevant or irrelevant.We expet that if we know the performane of a feature subset Si whihonsists of i relevant features, then adding one irrelevant feature to the fea-ture subset, suh that we have Si+1, will not inrease, or even derease theperformane of the lustering. We an evaluate the proposed sore measures byevaluating the performane of the subset of features whih were deemed relevantby the �lter method and ompare with subsets inluding irrelevant features. ThePage 23 of 90



3.4 Sore Measuresessene of this test is that if the performane of the set of features Si is notworse than the performane of the whole set of features X, then the rest of thefeatures, i.e. X n Si an be deemed irrelevant for lustering.John et al. [41℄ disuss relevane in the ontext of supervised FSS but thede�nition an also be of interest for unsupervised FSS. They distinguish betweenstrong and weak relevane and suggest the following de�nitions:� A feature X is strongly relevant if removal of X alone will result in per-formane deterioration of an optimal Bayes lassi�er.� A feature X is weakly relevant if it is not strongly relevant and there existsa subset, S, suh that the performane of a Bayes lassi�er on S is worsethan the performane on S [ fXg.� A feature is irrelevant if it is not strongly or weakly relevant.As it is, this de�nition of relevane only works for wrapper approahes insupervised learning. However, we an transform this notion to �lters if we knowwhat haraterizes features that would inrease the performane of the lassi�er.Moreover, we an aept this de�nition of relevant features for lustering too. Itonly requires an agreement of what performane means in lustering. Thereforewe use the above disussion of how to measure performane in lustering (thatgood lusters are both ohesive and distint) in order to propose a measure ofrelevane for features. In allegory with the underlying model we say that fordata instanes x 2 D only a subset of the variables are relevant. We regardas relevant those variables whih are a�eted by the hidden luster membershipvariable in the joint probability distribution p(XjC). However, the luster variableC, its number of states and impats on the observed variables is unknown inlustering. What is known is that in the probability distribution p(XjC) theluster membership of a data instane has a di�erent impat on some of thefeatures. This an be modeled in a probabilisti model in the following way: We letthe luster membership be represented by the luster variable, whih has in�ueneon the state of eah variable in the model. In the ase that there are featureswhih are not in�uened by the luster membership these an be regarded asrandom variables, not onneted to the hidden luster membership variable.Figure 3.3 depits an example of a model in whih 4 features are in�uened bythe luster membership while the 5th is a free random variable.Elidan et al. [16℄ desribe the impats of hidden variables in probabilistimodels and the interation between observed variables and hidden variables.They argue that if a probabilisti model is learned with hidden variables, i.e. avariable whih has in�uene to some of the nodes has been left out of the learning,the model will ontain semi-liques. Therefore semi-liques an be regarded asan indiation of the presene (or absene) of a hidden variable.The explanation for this is that if a model is indued from a data set on-taining hidden variables, it will disover dependenies among the variables whihPage 24 of 90



Chapter 3: Feature Subset Seletion
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Figure 3.4: Without the luster ran-dom variable the relevant variablesform semi-liques.depend on the hidden variable. Logially this is aused by the dependeny prop-erties among the variables in the data set. Variables whih depend on a hiddenvariable (i.e. its hildren) are d-onneted if there is no evidene on the hiddenvariable, while the parent variables of the hidden variable are d-onneted toits hildren under the same onditions [35℄. Thus there is a dependeny amongvariables whih are in�uened by the hidden luster membership variable. Figure3.4 depits a model learned using the PC algorithm [64℄ and a data set generatedby the model in Figure 3.3 from whih the lass label has been removed. We anuse this as an illustrative example. The variables whih were in�uened by thelass variable have onnetions to at least half of the rest of the variables andare said to be part of a semi-lique.Sine the luster membership variable is hidden, we an use the argumenta-tion that when hidden variables reside in a model the model will ontain semi-liques. But rather than restoring the model ontaining the hidden variable weuse the above reasoning to argue whih features are relevant. If we assume wehave a database ontaining variables whih depend on the luster membershipand variables whih are free random variables without any dependenies we anexpet the features whih depend on the luster variable to have many stronginterdependenies. We use this in our de�nition of relevant features. Sine afeature whih is in�uened by its luster membership is likely to be part of asemi-lique we all a feature relevant when it is dependent of at least one otherfeature. Therefore, in this projet we de�ne relevane using dependenies. Afeature without any dependenies is de�ned as irrelevant, whereas a subset ofdependent features are de�ned as either relevant or irrelevant aording to thestrength of the dependenies among them. Measuring the strength of depen-denies an be done either by assigning a value to onnetions between pairs ofPage 25 of 90



3.4 Sore Measuresfeatures or by soring eah feature based on the dependenies that exist for thatfeature. We propose to use the latter approah.3.4.3 RedundanyUntill now we have disussed the notion of relevane limited to a de�nition of rel-evant and irrelevant features. Another type of feature whih must be dealt with isredundant features whih also have a remarkable di�erent way to be looked uponin lassi�ation and in lustering. It is not trivial to handle redundant featuresas it an be di�ult to deem suh features as either relevant or irrelevant. Thissetion is meant to open a disussion on the importane of handling redundantfeatures in the ontext of feature subset seletion.Merriam-Webster's [2℄ ditionary de�ne redundane as: �exeeding what isneessary or normal�. In the ontext of feature subset seletion this an be ap-plied to de�ne a redundant feature as a feature that ontributes with unneessaryinformation. This ould be information whih is already inluded in the lusteringby another feature. That is why, in lassi�ation, features are �ltered out if theinformation they ontribute with about the lass membership for eah ase is al-ready present in the database. For instane, the information a feature ontributeswith an be redundant in terms of a opy of it or if it has a high dependeny toone of the features already in the data set. As already mentioned in the previoussetion, in lustering the most homogeneous lusters are obtained from featureswhih have dependenies among eah other. Therefore, it an be said that indata lustering, we seek out redundany. We do however dare to open a disus-sion about redundany of features in data lustering. We say that a feature Xi isredundant in data lustering with respet to a data set D if Xi is relevant but itdoes not however ontribute with homogeneity in models learned from D. Thatmeans that Xi has many strong dependenies to rest of the features in D andmodels learned from D nXi are equally ohesive as models learned from D.The term redundant an also aording to Merriam and Websters mean:�serving as a dupliate for preventing failure�. Consider a senario in whih adata base onsist of 1000 features whereof 990 are redundant and the last 10are relevant features. Clustering using all 1000 features give well de�ned ohesivelusters although perhaps hard to desribe. In the event that redundant featuresare removed we will remove 989 feature leaving 11 left for lustering. By removingthese features we also remove the weight given to these features leaving 990features orrespond to 1 feature equally important to eah of 10 other features.In a wrapper approah a feature an be onsidered irrelevant if it does notinrease the ohesiveness of the resulting lusters (measured with respet to thelustering riterion). The impat of redundant features in the above mentionedsenario is that the luster membership of a signi�antly large amount of aseshange rendering the lustering results di�erent although not more ohesive.Suh features would aording to a wrapper approah be deemed irrelevantalthough their presene have an impat on the �nal results.Page 26 of 90



Chapter 3: Feature Subset SeletionIn this projet we deal only with detetion of irrelevant features but even soredundany an have an impat on the results and the performane of the resultsof the proposals.3.4.4 Proposal OverviewIn this report we propose to use a ranking sheme where eah individual featureis assigned a sore aording to a measure of dependene with respet to therest of the feature set. The main idea is that we assume that relevane anbe expressed by the interdependenies in the feature set. Deteting whether 2features in the feature set are dependent an be done in several di�erent ways.We propose 3 di�erent methods for determining dependeny (referred to asdependeny measures):1. �2 analysis.2. Preditive auray.3. Information gain.The �2 analysis is an obvious hoie for testing dependeny between twofeatures. Among the many advantages by using this method is that a thresh-old, for distinguishing relevant from irrelevant features, is already de�ned in thesigni�ane level, and that its statisti has a well known distribution. The se-ond measure represents the idea of measuring the hange in preditive auraybetween pairs of features. This method is inspired by Talavera [65℄. Inspired byDash et al. [10℄ we also propose, as a third dependeny measure, to use infor-mation gain, whih is a measure of entropy to desribe the dependenies amongfeatures. A naive approah is to measure the entropy of a single feature and theredution in entropy based on adding a seond feature in order to desribe theirdependenies.Eah of the 3 methods have their strengths and weaknesses. In this report wewill test all 3 methods in order to test whih will perform best for the proposalthat will be presented.3.4.5 �2 AnalysisThe �2 distribution is a density distribution that is used in many hypothesis tests.The most ommon use of the �2 distribution is to test independene hypotheses.Although this test is by no means the only test based on the �2 distribution, ithas ome to be known as the �2 test. The �2 distribution has one parameter,its degrees of freedom (df).When using �2 in order to test dependenies it is neessary to set up a hy-pothesis that an be either kept or rejeted. Setting up and testing hypothesesPage 27 of 90



3.4 Sore Measuresis an essential part of statistial inferene. In eah problem onsidered, the ques-tion of interest is simpli�ed into two ompeting hypotheses between whih wehave a hoie: the null hypothesis, denoted H0, against an alternative hypoth-esis, denoted H1. These two ompeting hypotheses are not however treated onan equal basis. The null hypothesis is given priority, meaning that in order to beonvined that H1 holds we have to rejet H0, whereas H0 holds if we annotrejet its existene. Thus the outome of a hypothesis test is 'rejet H0' or 'donot rejet H0'. In this partiular ase H0 states that 'variable Xi is independentof variable Xj'.In order to test the hypothesis using �2 it is neessary to extrat the twoattributes from the original data set and reate a ontingeny table for them. Aontingeny table is a table of frequenies. A two-dimensional ontingeny tableis formed by lassifying subjets by two variables. One variable determines therow ategories, the other variable de�nes the olumn ategories. Eah ell willthen ontain the frequeny of ourrene in the data set where the variables arein the states given by the row and olumn ategory for the ell. For this to bepossible both attributes are required to be ategorial.The parameter, degree of freedom, of the �2 distribution, originally proposedby Fisher [19℄, is the number of ells in the ontingeny table whih an bemanipulated without hanging the marginal totals. A standard approximation ofthis proposal is: df = (rows� 1) � (olumns� 1) (3.4)A ontingeny table over the ourrene of values of the two variables is alled aontingeny table of observed values. In order to alulate the �2 test statisti itis neessary to alulate the ontingeny table of expeted values. The expetedvalues for a ontingeny table of observed values is alulated as:Eij = (Pk ellik) (Pk ellkj)n (3.5)where n represents the total number of instanes in the data set.The test statisti is a quantity alulated from the ontingeny tables ofobserved and expeted values. Its value is used to deide whether or not the nullhypothesis should be rejeted in our hypothesis test using a threshold denotedas the ritial value. The �2 test statistis is then alulated as:�2 =Xi Xj (Oij �Eij)2Eij (3.6)The ritial value for a hypothesis test is a threshold to whih the value ofthe test statisti in a sample is ompared to determine whether or not the nullPage 28 of 90



Chapter 3: Feature Subset Seletion

Figure 3.5: The �2 distribution, showing the impat of di�erent degrees of free-dom.hypothesis is rejeted. The ritial value for any hypothesis test depends on thesigni�ane level at whih the test is arried out. The signi�ane level of astatistial hypothesis test is a �xed probability of wrongly rejeting H0. We wantto make the signi�ane level as small as possible in order to protet the nullhypothesis and to prevent the result from inadvertently making false laims. Thesigni�ane level is usually denoted by � and hosen to be 0.05. This means thatif the value of the �2 test statistis is within the tail 5% of the area of the �2distribution then H0 is rejeted.As an be seen from the Figure 3.5, the impat from the degree of freedomis the interval in whih the hypothesis an be rejeted. The higher the degree offreedom, the higher we allow the values of the �2 statisti to take and still keepthe hypothesis of independene.The outome of a �2 test as a dependeny measure an be the p-value.The p-value is the probability of getting a value of the test statisti as extremeas or more extreme than that observed by hane alone, if H0 holds. It is theprobability of wrongly rejeting the null hypothesis and is alulated through theumulative distribution funtion of the �2 distribution.CDF (x) =  �DF2 ; x2 �� �DF2 � (3.7)where � is gamma funtion and  is the inomplete gamma funtion. For furtherdetails see [4, 15, 61℄.The p-value is ompared with the signi�ane level and, if it is smaller, theresult is signi�ant. That is, if the null hypothesis were to be rejeted at � =Page 29 of 90



3.4 Sore Measures0.05, this would be reported as 'p < 0.05'. Small p-values suggest that the nullhypothesis is unlikely to be true. The smaller it is, the more onvining is therejetion of the null hypothesis. It indiates the strength of evidene for say,rejeting the null hypothesis H0, rather than simply onluding 'rejet H0' or 'donot rejet H0'.�2 as a Dependeny MeasureUsing �2 as a dependeny measure makes a lot of sense given the de�nitionof relevane. The p-value of a �2 test indiates the strength of a dependenybetween two attributes and an therefore be adapted as a dependeny measure.The p-value is high for weak dependenies and low for strong dependenies andtherefore a simple approah to applying it as a dependeny measure is to subtratit from 1 whih is the upper bound for the p-value of a �2 test.DM�2(Xi;Xj) = 1� p_val(Xi;Xj) (3.8)where p_val is the p-value of a �2 test for H0 stating that Xi is independentof Xj .3.4.6 Preditive AurayThe idea of using preditive auray is the idea of omparing the probabilitythat the value of one single attribute an be predited with the probability that itan be predited given the state of another attribute. Let X be a feature in thedata set with the marginal probability distribution p(x). p(x) an be estimatedusing ML estimation. Knowing this distribution the value of X an be preditedwith some auray. The simplest way to predit the value of X when p(x) isknown is to always guess that X is in its most likely state xmost_likely 2 X. Theauray of guessing the state xi 2 X for a given data instane is referred to asthe preditive auray of p(x), denoted PA(p(x)).The idea of using preditive auray as a dependeny measure among thepair of attributes Xi and Xj is to ompare the preditive auray of themarginal probability p(xi) with the preditive auray of the onditional proba-bility p(xijxj), namely PA(p(xijxj)). If Xi is dependent of Xj there should bean inrease in the hane that the state of Xi an be guessed knowing the stateof Xj ompared to using only p(xi) when guessing the state of Xi.To express this more formally, we let the preditive auray of a probabilitydistribution p(xi), namely PA(p(xi)), be the probability that the state of Xian be guessed by guessing on the state with the highest probability.PA(p(xi)) = maxj p(xj) (3.9)Page 30 of 90



Chapter 3: Feature Subset SeletionIn the onditional ase p(xijxj) we express PA(p(xijxj)) as the probability thatwe an orretly guess the state of Xi for a given ase when knowing the state ofXj. In order to do this we ompute the onditional probability table for p(xijxj)and use it as a map in whih to look up the probability of Xi in a ertain stategiven the state of Xj . Similar to PA(p(xi)) we guess on the most probable stateof Xi given the onditional probability table.Preditive Auray as a Dependeny MeasureTo measure the dependeny between a pair of features using preditive auraywe simply measure the hange in preditive auray between PA(p(xi)) andPA(p(xijxj)). We want a sore to be near to 1 if Xj has in�uene on Xi and alower value if Xi is not in�uened by Xj . This is done using the formula below.DMPA(xi; xj) = 1� PA(p(xi))PA(p(xijxj)) (3.10)This equation is the base of the proposed dependeny measure using predi-tive auray. However this measure is not symmetri in that DMPA(xi; xj) 6=DMPA(xj ; xi). This onstitutes a problem sine we want our three relevanemeasures to be symmetri. A simple solution to this problem is using the follow-ing equation derived from Equation 3.10.DMPA(xi; xj) = 1� PA(p(xi))PA(p(xijxj)) + PA(p(xj))PA(p(xj jxi))2 (3.11)3.4.7 Information GainInformation gain (or mutual information (MI)) is an entropy based measureknown from lassi�ation by deision trees to rank the attributes aording toimportane [50℄. Here we larify how entropy and information gain an be usedas a measure of dependeny for attributes in unsupervised learning. We denotethe entropy of an attribute X, H(X).H(X) = � Xxi2X p(xi) log2 p(xi) (3.12)where p(xi) is the probability of X being in the state xi. The value H(X) is areal number between 0 and the binary logarithm of the number of states of X,whih measures the purity of the data. The entropy is 0 if the probability thatX is in a given state is 1 and the entropy is the binary logarithm of the numberof states in X if and only if the probability of X being in a given state is thesame for all states xi. Page 31 of 90



3.5 Soring the Relevane of FeaturesMI is a measure of the di�erene between the marginal and the onditionalase. In other words, MI is the redution in entropy for an attribute Xi ausedby partitioning the examples aording to another partiular attribute Xj . Wemeasure the MI ahieved from attribute Xj as the hange in entropy betweenH(Xi) and H(XijXj), the onditional entropy of Xi given Xj . For any �xedvalue xj of Xj , we obtain the onditional probability p(Xijxj) and alulateH(Xijxj). H(Xijxj) = � Xxi2Xi p(xijxj) log2 p(xijxj) (3.13)We obtain the onditional entropyH(XijXj) by weighting the entropiesH(Xijxj)with the prior probabilities p(xj). Conditional entropy is de�ned as:H(XijXj) = Xxj2Xj p(xj)H(Xijxj) (3.14)Then information gain is given asMI(Xi;Xj) = H(Xi) � H(XijXj) (3.15)Note that Xj might as well be a vetor of attributes makingMI(Xi;Xj) a mea-sure of di�erene in data purity within attribute Xi and in eah set of attributesonditioned by Xj .If the value of MI(Xi;Xj) is signi�antly high it indiates that the purity ofXi inreases when the state of Xi is known. In other words, it indiates that Xjan be used to improve the predition of Xi.Information Gain as a Dependeny MeasureResults of performing information gain on two attributes give an indiation of thedependeny between them and the strength of suh a dependeny. This resultan be diretly applied as a dependeny measure for the proposals in this report.DMMI(Xi;Xj) = MI(Xi;Xj) (3.16)3.5 Soring the Relevane of FeaturesIn this setion we aim to show how the dependeny measures an be used to sorea single feature with respet to its dependenies to the rest of the feature set(referred to as a sore method). We say that a feature is relevant if it is dependenton another feature. This is expressed formally in the following de�nition:Xi 2 Relevant, 9XjjXidepends onXjPage 32 of 90



Chapter 3: Feature Subset SeletionThat is, if for a variable Xi, we are able to identify a variable Xj , whih dependson Xi, then both Xi and Xj are relevant for the purpose of indution.In this proposal we distinguish between relevant and most relevant. We main-tain our de�nition of relevane and use it to develop a sore method whih anbe applied to sore a single feature. Given suh a method we are able to identifyboth features with high relevane and features with low relevane. Additionallywe are able to rank eah feature and selet only the most relevant based on athreshold whih will be desribed later. We propose 2 methods for soring therelevane of a feature.
Rmax(Xi) = maxDM(Xi;Xj) (3.17)Ravg(Xi) = Pj DM(Xi;Xj)p : (3.18)Where p is the number of features in the data set and DM is one of the abovedependeny measures DMhi, DMPA or DMMI . In the remainder of the reportwe will refer to a sore measure as a measure that uses either of the 2 soremethods with any of the 3 dependeny measures. The result of alulating thesore of a given feature using a sore measure is denoted a relevane sore. Intotal that leaves 6 relevane sores available for testing.Using a maximum soring method on the dependeny means that the soreof a given feature will be the strongest dependeny of the feature. Using suha soring sheme assumes that random dependenies are weak and that fea-tures with many dependenies have a higher probability of having very strongdependenies. The main property of this approah is that it will reward strongdependenies rather than many dependenies, meaning that a feature an bedependent of only one other feature and still have a higher sore than a featurewith many dependent features.The seond sore measure is an average over dependenies to all features. Thesoring method sums up the values of the feature dependeny measure betweenthe tested feature and all the rest of the features. The average is over the totalamount of features in the data set.3.6 ThresholdingThe urrent proposals assign sores to eah feature in the data set. In order todo unsupervised FSS it is neessary to set a threshold that is able to e�etivelyut away all irrelevant features based on their sores.Page 33 of 90



3.6 Thresholding3.6.1 Learning Curve Sampling MethodHere we propose a new sheme based on the learning-urve sampling methodproposed by Meek et al. [48℄.Given a set of features X, let S1; S2; ::; Sp �X denote the feature subsets,onstrained by the relevane ranking, that are to be examined in the proessof �nding the appropriate threshold. We require that Si � Si+1, meaning thatthe subsets are nested. A given subset Si ontains the i features in X with thehighest relevane sore. The subsets Si and Si+1 di�er only in a single feature.UtilityThe main idea is to keep adding features (i.e. moving from Si to Si+1) as longas the bene�t is greater than the ost. At stage i there are 2 hoies available.Either stop and output the urrent feature subset or add a new feature andexamine the new feature subset. In order to evaluate a feature subset properlyone has to onsider both bene�t and ost. At step i of inrementation we expressthe utility of subset Si as:Utility(Si) = Benefit(Si)� Cost(Si) (3.19)In order to alulate the utility at eah stage we need to de�ne the funtions forbene�t and ost. The bene�t of Si an be de�ned as the sum of the relevanesores for eah feature j in Si.Benefit(Si) = iXj=1Rj (3.20)De�ning the bene�t in this way will have several onsequenes that should beonsidered. The bene�t of adding a feature to the subset is evaluated with respetto the relevane of the feature itself and not with respet to the relevane ofthe new subset. The impats are that a given feature is likely to be overratedrendering the sheme onservative in the seletion. In addition redundany isnot deteted sine several features that ontribute with approximately the sameinformation will all have the same relevane.The ost aording to [48℄ is de�ned as the running time used to obtain theurrent bene�t. We fous on interpretability and knowledge gain, therefore theost inreases with the addition of attributes as this redues the interpretability ofthe indued model. Therefore the ost is proportional to the number of featuresin the urrent subset and an be de�ned as:Cost(Si) = i � � (3.21)where � is the relative importane of the number of attributes to the bene�t.The value of � should be assessed by the end-user sine it is problem dependent.Page 34 of 90



Chapter 3: Feature Subset SeletionStopping CriterionAs mentioned in the previous setion at stage i we an either hoose to stop andoutput the urrent subset, or ontinue to stage i + 1. Meek et al. [48℄ proposeto hek the utility at stage i against the expeted utility at stage i + 1. Weadapt this method to this thresholding sheme and de�ne our stopping riterionas follows. We stop and output the feature subset at stage i if:Utility(Si+1) � Utility(Si) (3.22)Using the previous de�nitions of both utility, ost and bene�t Equation 3.22 anbe rewritten as:Benefit(Si+1)� Cost(Si+1) � Benefit(Si)� Cost(Si)Benefit(Si+1)�Benefit(Si) � Cost(Si+1)� Cost(Si) (3.23)From Equation 3.21 we see that:Benefit(Si+1)�Benefit(Si) � �((i + 1)� i) (3.24)Therefore the stopping riterion an be rede�ned as:Benefit(Si+1)�Benefit(Si)((i + 1)� i) � � (3.25)In this equation � is hosen to re�et how many attributes the user is willingto add in order to inrease the relative bene�t a ertain amount. Formally wean state that � is the ratio of inrease in the relative bene�t to the number ofattributes added from Si to Si+1. If the stopping riterion is met we go bak tostage i and output the subset, otherwise we ontinue to stage i+ 1.Figure 3.6 shows an example of an output of a �lter method inluding bothrelevant and irrelevant features. The y-axis denotes the bene�t at stage i andthe x-axis denotes the �rst i features, given the relevane ranking, in the urrentsubset. The graphial illustration indiates how to de�ne �.Although the strategy is myopi, it is optimal in the ase where it is guaranteedthat the bene�t-inrease will derease and the ost inreases as a onsequene ofinrementing the feature subset. In this senario it makes sense to stop when theratio of these two quantities falls below �. In this proposal the ranking ensuresthat the shape of the urve is onave, leaving the strategy to be optimal.Page 35 of 90



3.6 Thresholding
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0Figure 3.6: Example, plotting bene�t on the y-axis. Relevane at stage i + 1 isthe inreasing bene�t between stage i and i+1. The impat of � shown as theoe�ient for the line for whih maximizing the vertial distane h de�nes thestopping riterion.3.6.2 Hypothesis TestingIn a seond approah for setting a threshold we want to propose the use ofhypothesis tests [15℄. As desribed in Setion 3.4.5 a hypothesis test is an ap-proah for testing whether to keep or rejet a laim, namely the null-hypothesisdenoted H0. If we regard feature seletion as a hypothesis test we hoose asnull hypothesis the laim: �feature X is irrelevant�, then we an rejet H0 if theevidene against it is su�iently strong for a given relevane measure, or we ankeep it in ase the evidene against it is not su�iently strong. The alternativehypothesis H1, whih is favored if H0 is rejeted is the laim that �feature X isrelevant�. However the onlusion of a hypothesis test is merely to keep or rejetH0.Setting up a Hypothesis TestThe ore in a hypothesis test is a test statisti. An obvious hoie for a teststatisti is one of the proposed sore measures. Before we an use this teststatisti to draw onlusions about H0 we need to know the density distributionfor eah of the proposed sore measures under the null hypothesis. That is, weneed to know what sores we an expet for an irrelevant feature in a given dataset. For instane, if the sores for an irrelevant feature are normal distributed thisPage 36 of 90



Chapter 3: Feature Subset Seletionknowledge ould be a mean and a standard deviation. The hypothesis test is thento test how strongly we an believe the sore of a ertain feature to be amongthe irrelevant ones. The problem here is that we do not know the distribution ofany of the proposed relevane measures. The exat distribution for those soresan be found (in theory) by sampling in�nitely many examples for whih H0 istrue relative to a given feature set. In pratie we an �nd an approximation tothe distribution for eah of the relevane measures under H0 by sampling a highnumber of irrelevant features.Setting a ThresholdTo test whether H0 holds for a given feature we alulate its test statisti andrejet H0 if it exeeds a ertain threshold, namely the ritial value. The ritialvalue is derived from the density distribution together with a deision of howhigh a risk with whih we an aept to wrongly rejet H0 if it is true. Thisthreshold is set up with the help of the signi�ane level. In theory the hoieof a signi�ane level is up to the user of the hypothesis test as it re�ets thehane of making a wrong deision. Therefore we denote the signi�ane level �whih, like in the learning urve approah, may impat the amount of featureswhih will be deemed irrelevant. However, a standard value for the signi�anelevel is 0.05 (5%) whih we will use in our tests. From the signi�ane levelwe �nd the set of values of the test statisti for whih the null hypothesis isrejeted in a hypothesis test. In our ase this is set to the 5% highest values ofthe test statisti for the sampled irrelevant features under H0. The onlusionof our hypothesis test is that we rejet H0 if for a given ase the result of thetest statisti is in this set. Therefore the ritial value for a hypothesis test isthe lowest possible value in this set. Knowing this we an aept or rejet H0for any given feature X.Approximating the Density DistributionTo make the approximation of the density distribution of the test statisti wesample relevane sores for irrelevant features. Eah sample sore is generatedby soring a randomly generated feature Xrandom relative to the original featureset X, i.e. R(Xrandom). Eah randomly generated feature is sampled by �llingin eah value at random, maintaining the same number of states. We produe10000 samples and sort them in inreasing order. The sample set of 10000 asesis a set of values of the test statisti for whih H0 is true.We want to avoid any bias introdued by the di�erent number of states in thetested feature and the randomly generated features whih were used to produethe sample set. Therefore if we want to use a hypothesis test to test whether afeature X is relevant and the number of states in (or the ardinality of) X is q,we approximate the distribution of the test statisti using only features with theardinality q. Page 37 of 90



3.7 SummaryUnlike with the learning urve sampling method approah, the advantage ofthis approah is that there is a lear interpretation of the value �, namely therisk of making a wrong deision about H0. Moreover, with this approah one andistinguish between relevant and irrelevant features without having to presentan ordering of the features.3.7 SummaryIn this hapter we outline the idea of FSS both in supervised and unsupervisedlearning. We give a de�nition of relevane in the domain of unsupervised FSSwhih is based on the dependene between a feature and the luster randomvariable. The luster random variable is unknown but under the assumption that afeature is dependent on this it is likely to be dependent on other relevant features.Therefore the main idea is that a feature annot be disarded as irrelevant if itis dependent on at least one other feature.We propose 3 dependeny measures in order to measure the dependenybetween 2 features:� �2 analysis.� Preditive auray.� Mutual InformationThe sore of a single features an then be obtained in several ways. In thisprojet we propose to measure the dependeny of a feature with eah of theother features in the data set. From the result we propose 2 soring methods,maximum and average:Rmax(Xi) = maxDM(Xi;Xj)Ravg(Xi) = Pj DM(Xi;Xj)pwhere p is the number of features in the data set.In order to perform unsupervised FSS it is neessary to deide on a thresholdon whih features with a low relevane an be disarded as irrelevant. We propose2 approahes to setting a threshold. The learning urve sampling method basedon a ranking of the features and a ost versus bene�t approah, and a hypothesistest based on 10000 randomly generated features used in a test statistis similarto that of �2.
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4ResultsWe know very little, and yet it is astonishing that we know so muh, and stillmore astonishing that so little knowledge an give us so muh power.� Bertrand RussellIn this hapter we will present the results of applying the proposals to severaldata sets. First we will present a desription of 3 syntheti data sets and 4 real-world data sets whih will be the base for testing the methods. In Setion 4.2 wethen present the results of applying the proposed sore measures to the desribeddata. By showing the performane on a large variety of data sets we aim to showthat the proposals perform well and to show the limitations that exist for thisapproah to unsupervised FSS.Thereafter we will explain how the lustering tehniques desribed in Chapter2 have been applied in order to validate the results of the �lter methods. Last wepresent the results of validating the �lter results. Disussions on the results leadsto further extensions of the methods proposed and Chapter 5 gives a desriptionof a hybrid approah to unsupervised FSS in whih the results in this hapterhave been applied.4.1 Data DesriptionIn this setion we will desribe the 7 data sets that will be used to test andevaluate the unsupervised FSS methods proposed in this report. The data setsonsist of 3 syntheti data bases and 4 real-world data sets. We �rst present thesyntheti data sets and then the real-world data sets.4.1.1 Sampling of Bayesian NetworksThe �rst two syntheti data sets are based on a Bayesian Network (BN) reatedby Peña et al. [56℄. The BN an be seen in Figure 4.1 and ontains a lusterPage 39 of 90



4.1 Data Desription
Figure 4.1: Original BN, allnodes are onsidered relevantfor indution. Figure 4.2: Original BN with10 added nodes. The 10 addi-tions are unonneted and on-sidered irrelevant for indutionpurposes.random variable with 3 states and 10 nodes of eah 3 states with varying inter-onnetivity and all hildren of the luster random variable. All 10 features inthe model are relevant. We add 10 irrelevant, and therefore unonneted nodesto the network as shown in Figure 4.2. The 10 unonneted nodes also ontain3 states and eah instane has been randomly generated from a spei�ed proba-bility distribution, hosen at random. However inluding the onstraint that theprobability distributions for eah of the randomly generated features never ex-eed 80% nor go below 20% for any state. From the model shown in Figure 4.2we sample 10000 ases that will be used as the �rst syntheti test data denotedSYN10.A seond syntheti data set has been derived using the same base BN model,but now adding 20 unonneted nodes using the same tehnique as for SYN10.Using this BN we have again sampled 10000 ases. We denote this data setSYN20. For both SYN10 and SYN20 we have removed the luster random variable.The reason for reating an additional data set with the same properties, exeptin the number of irrelevant features, is to show how the sore measures will reatto an addition of irrelevant features.As mentioned in both syntheti data sets the lass random variable has 3states and so we luster the data set using k = 3.4.1.2 WaveformThe last soure of arti�ial data is a well known data base from the UCI reposi-tory of Mahine Learning databases [7℄, whih will be referred to as WAVE. Thedata onsist of 40 features whereof the last 19 are noise. The data representsontinuous values based on 3 generated waves over separate series of the �rst21 features. Sine we only onsider ategorial data the data set has been dis-retized into 3 ategories. The disretization tehnique used is a basi methodwhih divides the value of eah feature into 3 equally sized bins and plaes allinstanes in their orresponding value interval [12℄.We know that there exist 3 lusters in the data, eah representing a ombi-nation of 2 waves. The �rst 4 and the last 4 of the 21 relevant features havePage 40 of 90



Chapter 4: Resultsbeen disovered as being less signi�ant than the others, thus in some papers[8, 65℄ these features are onsidered irrelevant. Table 4.1 gives an overview ofrelevant and irrelevant features in the WAVE data set.0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2425 26 27 28 29 30 31 32 33 34 35 36 37 38 39Table 4.1: Overview of the WAVE data set. Relevant features are marked in boldfont.4.1.3 The Insurane Company CaseThis data set is the �rst of the real-world data sets in our evaluation. It ontains5822 ustomer reords kept by an insurane ompany that sells mobile homepoliies. It is known as the COIL data set. Eah reord onsists of 85 features,ontaining soiodemographi data and produt ownership.An 86th feature ontains the lass random variable desribing those who buya mobile home insurane poliy and those who do not. The data set was part ofa data mining ompetition referred to as �the CoIL Challenge 2000� [69℄. Fromthe doumentation of the results of the ompetition we gain some insight inwhat others before has gained from this data set and we an ompare the resultsof this projet to the desriptions.One of the entries in the data desription ompetition performs statistialanalysis on the data using �2 in order to test dependeny with the lass randomvariable. From the statistial analysis they found 21 features within the 95%on�dene level. These are shown in Table 4.2. The approah is within thedomain of supervised learning whih makes omparison di�ult to perform.46 58 67 4 41 42 36 17 43 33 29 30 24 31 38 15 0 64 9 11 28Table 4.2: The 21 features that proved the best subset aording to a �2 testperformed by Kim et al. [38℄. The features are ranked from best to worst.4.1.4 LeukemiaThe last real-world data set has been hosen for its extreme struture whihperhaps will be able to test some of the limitations of the methods that wepropose. The data set onsists of 7129 features and 72 ases and will be referredto as LEUKEMIA. Eah ase represents a patient su�ering from leukemia and thefeatures desribe gene expression level for eah of the patients. The data was�rst introdued by Golub et al. [26℄. It is well known in data mining ommunitiesand has been thoroughly analyzed in the past. From [26℄ we know that there are2 lusters partitioning patients with respet to the type of leukemia that theyare su�ering from (AML and ALL). In the artile by Golub et al. they build aPage 41 of 90



4.2 Filter Resultspreditive model using only 50 of the 7129 features based on supervised FSS ina �lter approah. The resulting model obtained aurately lassi�ed 36 out of 38patients in the test set as either type AML or ALL (the last two were lassi�ed asunertain). This indiates a very high amount of irrelevant or redundant featureswhih should be deteted using the methods proposed in this projet.As variations of this data set 2 additional data sets have been derived usingthe two types of leukemia. First we have transformed the data into a new database where eah feature represents a patient and eah instane represents a gene.Then we split the data into 2 separate data sets, one for eah of the two typesof leukemia. The �rst data set, denoted AML, ontains 25 features (patients) allsu�ering from leukemia of type AML and 7129 ases (genes). The seond dataset, denoted ALL, ontains the remaining 47 features and also 7129 ases. Dueto the fat that the tables are separated given the respetive type of leukemiawe expet all features to be relevant (an irrelevant feature indiates that thispatient has little genetially in ommon with the rest of the patients despitesu�ering from the same illness). In the LEUKEMIA data set there are 2 lusters(2 types of leukemia) whereas in the AML and ALL data sets there are 3 lusters(overexpressed, underexpressed and neutral genes).4.2 Filter ResultsBased on the proposals presented in Chapter 3 and the data desription in Setion4.1 this setion presents the results of applying the proposed relevane sores inthe �lter method to the 7 data sets. The order of appearane orresponds to theorder of the data desriptions.All graphs shown in this setion have been normalized between 0 and 1 onboth x-axis and y-axis for the purpose of applying the learning urve thresholdingsheme (see Setion 3.6.1). The normalization tehnique used is not unimpor-tant as it an have an impat on the shape of the urve. For this projet a simplenormalization tehnique alled linear saling has been used. The method pro-dues a linear relationship between instane values and normalized values. andall information is preserved and an be restored from the normalized results [58℄.Equation 4.1 shows how to ompute a normalized value for eah instane valueof an attribute.xnormi = xi �min(x1; : : : ; xn)max(x1; : : : ; xn)�min(x1; : : : ; xn) (4.1)where xnormi represents the normalized value that the attribute X takes in theith ase of the database, xi being the original value of that ase.When applying the learning urve thresholding sheme we have hosen 2values for �, 0.3 and 0.7. For hypothesis testing we use the standard signi�anelevel, 0.05. Page 42 of 90
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Figure 4.3: Filter results for SYN10. The top row of �gures show the 3 �ltermethods using max sores whereas the bottom row show average sores. The�rst olumn desribes �2, the middle MI and the right PA. Notie that thedi�erene between the two rows is insigni�ant.4.2.1 The BN Sampled DataFigure 4.3 depits the results of the learning urve approah applying all 6 soremeasures, using both maximum and average sores, to SYN10. The top row showsthe results using the maximum sore for eah feature whereas the bottom rowshows the average sores. It is lear to see that for this data set the distintionbetween max and average sores is surprisingly small and insigni�ant. MI andPA expetedly show very similar results and the distintion between relevant andirrelevant is lear for both measures even without the use of any thresholdingsheme. Aording to PA and MI the ut point is at 0.45 features whih represents10 features. Sine we onstruted the data with 10 nodes diretly onneted tothe luster random variable this is what we expeted. Examining the resultsfor �2 we surprisingly observe only very weak distintion between relevant andirrelevant features.An explanation for the weak distintion may be in the fat that generallythe p-values for irrelevant features are only a fration higher than for relevantfeatures. In this ase we should expet the rankings to be orret in whih ase �2would still be appliable for ranking the features but not diretly for unsupervisedFSS.The rankings of the features an be seen in Table 4.3 on the following pageand 4.4 using learning urve thresholds and hypothesis testing respetively. Allsore measures rank the truly relevant features orretly even though �2 identi�esonly few irrelevant features given learning urve thresholding using � = 0:7.Notie also that the disadvantage of the maximum sore method is learly shownfor �2 in that all features have been deemed relevant given this sore measure.Page 43 of 90



4.2 Filter ResultsMethod � = 0:7 � = 0:3 IrrelevantMI (avg) 16 11 13 17 14 19 10 18 12 15 5 1 0 6 8 3 7 4 9 2MI (max) 13 16 11 17 14 10 12 18 15 19 5 0 7 3 1 8 6 4 9 2PA (avg) 13 16 10 19 18 14 12 17 11 15 1 6 7 4 5 2 8 0 3 9PA (max) 16 13 10 14 12 19 18 15 17 11 1 6 4 7 5 2 3 8 0 9�2 (avg) 12 19 15 18 10 16 11 14 13 17 3 7 4 9 25 1 0 6 8�2 (max) 12 19 15 18 10 16 11 14 13 175 1 0 6 8 3 7 4 9 2Table 4.3: Ranking order (best to worst) of the features in the SYN10 data set.Relevane based on the learning urve thresholding sheme using both � = 0:3and � = 0:7. The truly relevant are marked in bold font.It is interesting to notie the signi�ant di�erenes in the rankings that thesore measures produe and how the graphs an exhibit suh strong similarity de-spite the dissimilarity in the rankings. Clustering validation on these rankings willshow whether it is just the dependeny among relevant features in this data setthat are so lose that the ordering of relevant features beome insigni�ant andeasily altered depending on the method used, or whether one or more methodsdo not rank the features orretly with respet to lustering. From the graphs inFigure 4.3 it an be seen that the line is almost straight from 0 and up to thelast relevant features. This indiates that the sore of the features are lose toequal and leads us to believe that this explains the di�erenes in the ordering.Method Relevant IrrelevantMI (avg) 16 11 13 17 14 19 10 18 12 15 5 1 0 6 8 3 7 4 9 2MI (max) 13 16 11 17 14 10 12 18 15 19 5 0 7 3 1 8 6 4 9 2PA (avg) 13 16 10 19 18 14 12 17 11 15 1 6 7 4 5 2 8 0 3 9PA (max) 16 13 10 14 12 19 18 15 17 11 1 6 4 7 5 2 3 8 0 9�2 (avg) 12 19 15 18 10 16 11 14 13 175 1 0 6 8 3 7 4 9 2�2 (max) 12 19 15 18 10 16 11 14 13 175 1 0 6 8 3 7 4 9 2Table 4.4: Ranking order (best to worst) of the features in the SYN10 data set.Relevane based on the hypothesis test thresholding sheme using signi�anelevel �= 0.05. The truly relevant are marked in bold font.To the SYN10 data set we have also applied the hypothesis test with � = 0:05.Figure 4.4 depits the distributions for eah of the 6 sore measures derived fromsampling 10000 irrelevant features and soring them relative to the original data.The dashed line denotes the ritial values for eah method. In order for thismethod to be reliable the urve needs to �atten out before the ritial value.The more �at the urve is the more likely are we to believe in our deision torejet H0. From the urves it an be seen that the �2 square measure ombinedwith the maximum relevane sore is not very reliable. This an be explained byPage 44 of 90



Chapter 4: Results
0.65 0.7 0.75 0.8 1.050.85 0.9 0.95 1

400

0.6

700

600

500

300

200

100

0
0.0006 0.0008 0.001 0.0012 0.0014 0.0020.0016 0.0018 0.0022 0.0024

250

0.00040.0002

400

350

300

200

150

100

50

0

450

0 0.005 0.01 0.0350.015 0.02 0.025 0.03

200

400

350

300

250

150

100

50

0

0.80.70.60.50.40.30.2

150

350

300

250

200

100

50

0

400

0.0001 0.0002 0.0003 0.00070.0004 0.0005 0.0006

200

350

300

250

150

100

50

0

800

0 0.002 0.004 0.0120.006 0.008 0.01

400

700

600

500

300

200

100

0Figure 4.4: The distributions of eah of the sore measures applied to randomfeatures sored against the SYN10 data set. The dashed lines show the ritialvalues. The olumns from left to right are for �2, MI and PA respetively whilethe top row is for maximum sore measures and the bottom row is the averagesore measures.the fat that many of the randomly generated features had at least one strongdependeny with one of the features in the original data set, aording to the�2 dependeny measure. It is worth to mention that the 6 graphs in Figure4.4 are generated from the exat same sample of randomly generated features.Therefore the di�erene in the urves allows us to onlude that at least the�2 dependeny measure ombined with the maximum relevane sore method isnot very reliable. On the other hand the urves have a tendeny to be �atter forthe average approah for all three dependeny measures with PA exhibiting themost �at shape.The fat that all the features have the same number of states allows us touse the ordering when performing the �ltering. Therefore, in stead of omparingeah feature to the ritial value derived from the sample sets, we bene�t fromthe ranking and delare the features whih has sored less than the ritial valueirrelevant. From Table 4.4 it an be seen that with PA and MI eah with bothaverage and maximum sores has suessfully �ltered out all the irrelevant fea-tures. The �2 method however has delared all the 20 features relevant and hasnot been able to detet any irrelevant features despite half of the features aretruly irrelevant aording to the true struture of the model whih has generatedthe data. The performane of the methods used in the hypothesis test orre-sponds to the result of the learning urve where both the PA and MI measuresare signi�antly better than the �2 measures in �ltering out irrelevant features.Figure 4.5 on the next page shows the results of applying the 6 measures to theSYN20 data set. As with the �rst graphs the top row represents the results usingmaximum sores whereas the bottom row represents the results using averagesores. For these results we again observe a lear distintion between relevantand irrelevant features. Aording to MI and PA in Tables 4.5 and 4.6 only thePage 45 of 90



4.2 Filter Results
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Figure 4.5: Filter results for SYN20. The top row of �gures show the 3 soremethods using max sores whereas the bottom row show average sores. The�rst olumn desribes �2, the middle MI and the right PA. Notie again that thedi�erenes are insigni�ant.10 truly relevant features are deteted as relevant. This orresponds very wellwith the results of the smaller data set, whih seems to indiate that the amountof irrelevant features does not have an impat on the distintiveness betweenrelevant and irrelevant features even by averaging sores over all features.Method � = 0:7 � = 0:3 IrrelevantMI (avg) 26 23 27 21 20 24 25 28 22 29 14 15 8 3 7 1 12 2 11 189 0 19 5 6 4 16 10 13 17MI (max) 26 23 21 27 29 24 20 28 22 25 7 15 1 5 12 14 3 0 4 2 118 16 6 17 18 9 19 10 13PA (avg) 26 23 20 24 22 29 25 28 27 21 19 5 14 1 18 13 010 8 11 17 16 15 9PA (max) 23 26 20 28 29 24 22 21 27 25 11 16 17 14 15 4 9 2 5 619 3 1 12 18 8 7 13 0 10�2 (avg) 29 26 20 22 23 27 21 24 7 25 12 131 5 28 15 18 3 2 11 17 14 0 416 6 8 19 9 10�2 (max) 29 26 20 22 23 27 21 24 7 25 121 5 28 15 18 3 2 11 17 14 0 4 166 8 19 9 10 13Table 4.5: Ranking order (best to worst) of the features in the SYN20 data set.Relevane based on the learning urve thresholding sheme. The truly relevantare marked in bold font.By examining the rankings as shown in Tables 4.5 and 4.6 it an be seen thatthey ontain the same harateristis as the �rst data set. The truly relevantfeatures have been deteted using both MI and PA whereas �2 ranks the trulyPage 46 of 90
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4.2 Filter ResultsMethod Relevant IrrelevantMI (avg) 26 23 27 21 20 24 25 28 22 29 14 15 8 3 7 1 12 2 11 189 0 19 5 6 4 16 10 13 17MI (max) 26 23 21 27 29 24 20 28 22 25 7 15 1 5 12 14 3 0 4 2 118 16 6 17 18 9 19 10 13PA (avg) 26 23 20 24 22 29 25 28 27 21 19 5 14 1 18 13 010 8 11 17 16 15 9PA (max) 23 26 20 28 29 24 22 21 27 25 11 16 17 14 15 4 9 2 5 619 3 1 12 18 8 7 13 0 10�2 (avg) 29 26 20 22 23 27 21 24 7 25 121 5 28 15 18 3 2 11 17 14 0 4 1316 6 8 19 9 10�2 (max) 29 26 20 22 23 27 21 24 7 25 121 5 28 15 18 3 2 11 17 14 0 4 166 8 19 9 10 13Table 4.6: Ranking order (best to worst) of the features in the SYN20 data set.Relevane based on the hypothesis test thresholding sheme using signi�anelevel �= 0.05. The truly relevant are marked in bold font.
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Figure 4.7: Filter results for the WAVE data set using average sores. The leftmostdesribes �2, the middle MI and the right PA.more suseptible to noise performs poorly given maximum sores. Therefore wehave hosen only to show average results for the remaining data sets. In thisdata set though we an see a signi�ant di�erene in the urves representingPA and MI. MI indiates a more lear distintion between relevant and irrelevantfeatures whereas PA maintain that several more features ontribute although therate of ontribution is questionably small.From previous analysis and knowledge on the onstrution of the data weknow that the features 21-39 are noise and an be onsidered irrelevant features(see Table 4.1). In addition analysis has shown the features 0-3 and 17-20 main-tain only little relevane. In Tables 4.7 and 4.8 it is lear that all features thatare onsidered noise have been ranked last regardless of the method used. Theonly exeption to this is feature 0 whih has been ranked very low. All 3 soremeasures agree on this property.Closer examination shows that PA and MI rankings are surprisingly similaronsidering the di�erenes in the graphs. Both agree on a ranking where thefeatures 0, 1, 19 and 20 also rank lower than any of the known relevant. ThisPage 48 of 90



Chapter 4: Resultsorresponds with what we know about the data already. The features 2, 3, 17 and18 although also deemed irrelevant by previous analysis are still minor relevantand the struture of the data states that these 4 features are the most relevantof the minor relevant features. Applying the thresholds we obtain very similarresults where only the features 0 and 20 of the truly relevant have been detetedas irrelevant. Further omparisons with previous analysis is not appliable due tothe disretization that has been performed prior to applying the 3 sore measureson the data.Aording to �2 no features are deemed irrelevant although the ranking maththe results given by PA and MI and previous analysis of the data.� = 0:7 � = 0:3 IrrelevantMI 6 14 7 13 15 5 4 16 12 1 29 24 34 39 33 21 25 22 28 20(avg) 8 3 17 11 9 2 18 10 19 32 37 0 36 26 27 30 35 38 23 31PA 6 14 7 13 15 5 12 16 4 8 24 33 29 39 37 32 27 22 28 0 34(avg) 3 17 11 18 9 2 10 19 1 36 35 20 25 21 26 38 30 31 23�2 6 12 18 14 19 5 8 3 1 17 15 11 27 30(avg) 16 13 9 10 4 7 2 29 24 21 39 32 35 3825 34 33 28 20 22 37 26 0 36 31 23Table 4.7: Ranking order (best to worst) of the features in the WAVE data set.Learning urve thresholding sheme used. Truly relevant features based on pre-vious analysis have been marked with bold font.Relevant IrrelevantMI 6 14 7 13 15 5 4 16 12 29 24 34 39 33 21 25 22 28 20 32 37(avg) 8 3 17 11 9 2 18 10 19 1 0 36 26 27 30 35 38 23 31PA 6 14 7 13 15 5 12 16 4 8 3 17 11 22 28 0 34(avg) 18 9 2 10 19 1 24 33 29 39 37 32 27 36 35 20 25 21 26 38 30 31 23�2 6 12 18 14 19 5 8 3 1 17 15 11 16 13 9(avg) 10 4 7 2 29 24 21 39 32 25 34 33 2820 22 37 26 0 36 27 30 35 38 31 23Table 4.8: Ranking order (best to worst) of the features in the WAVE data set. Hy-pothesis test thresholding sheme used. Truly relevant features based on previousanalysis have been marked with bold font.Table 4.8 shows the result of applying the hypothesis test to the WAVE dataset using PA, MI and �2 average sores with signi�ane level 0.05. Furthermorethe distributions for the 3 tested sore measures are in Appendix A. Again weallow ourselves to bene�t from the ranking when distinguishing between relevantand irrelevant features instead of omparing eah feature to the ritial value.MI has delared 19 features relevant all features whih are relevant aording toour data set while only two of the features, namely 0 and 20, whih are relevantaording to previous analysis have been delared irrelevant. PA has delared 25of the original 40 features relevant with the same two relevant features left out.At last, the hypothesis test with �2 has not deemed any of the features irrelevant.Page 49 of 90
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Figure 4.8: Filter results for the COIL data set using average sores. The leftmostdesribes �2, the middle MI and the right PA.Despite that the true distintion for this data set was made on a version of thedata whih was not disretized both MI and PA has performed niely on thisdata set. It is lear that disretization of a data set an have a large impat onthe models whih an be learned from the data as well as the features whih arerelevant for lustering.4.2.3 The CoIL ChallengeWe have shown that the proposed sore measures work on 3 onstruted arti�ialdata sets whih proves that the methods work in theory. We ompare the resultsthat we obtain using these 3 methods with the results obtained by [38℄. Figure 4.8shows the graphs for the 3 methods using average sores.Method � = 0:7 � = 0:3 IrrelevantMI 0 4 29 30 35 34 17 42 24 18 9 43 64 53 72 75 74 45 66 48 44 69(avg) 11 41 27 15 12 33 36 38 14 22 23 46 67 63 82 62 47 52 50 61 56 6816 21 28 31 6 37 25 26 2 8 32 1 54 55 65 60 84 73 71 77 57 8320 13 39 10 19 5 3 7 58 40 79 51 81 78 70 76 49 59 80PA 27 33 38 30 29 24 17 0 36 18 22 3 58 1 54 53 75 51 74 72 45 44 62(avg) 35 34 14 41 12 32 9 37 11 16 25 79 40 48 63 82 66 69 55 56 47 524 23 26 21 7 42 6 31 15 8 13 67 43 60 50 61 83 84 73 77 68 7028 10 2 39 5 19 20 64 46 71 57 65 81 76 59 49 78 80�2 58 4 0 17 30 42 29 27 20 16 35(avg) 34 6 18 38 24 31 8 66 37 36 32 437 15 41 2 21 3 13 9 14 23 25 1233 22 19 28 26 5 84 51 54 72 1163 46 10 64 79 39 65 40 1 45 6175 77 83 69 68 56 67 50 44 47 7871 76 74 57 48 62 53 52 82 81 8073 55 70 59 49 60Table 4.9: Ranking order (best to worst) of the features in the COIL data set.Relevant aording to [38℄ are marked in bold font.Tables 4.9 and 4.11 show the features divided into relevant and irrelevantfeatures using learning urve thresholding and hypothesis testing respetively.Table 4.9 additionally show the ranking of the features aording to the sorePage 50 of 90



Chapter 4: Resultsmeasure. A notieable di�erene in the 2 thresholding shemes is that �2 doesnot provide results that the learning urve is apable of deteting as irrelevant,whereas hypothesis testing detets several irrelevant features given the samesores.The CoIL data set is the only data set with varying ardinalities of the fea-tures. In fat this data set has features with ardinalities from 2 to 10 and asingle feature with the ardinality 40. Therefore, for this data set we have pro-dued 3 sample sets (one for eah sore measure used) for eah of the di�erentardinalities in order to estimate the ritial values. That makes a total of 30sample sets. Table 4.10 depits the di�erent ardinalities and the orrespondingritial values derived from the sample sets. Moreover the distributions for eahsore measure are depited in Appendix A.Cardinality Features Threshold (�2/MI/PA)2 61 65 66 76 77 78 80 83 84 0.569588 / 0.001542 / 0.0080923 56 57 59 64 68 71 81 0.567715 / 0.002704 / 0.0120204 43 47 50 69 70 73 74 82 0.566007 / 0.003849 / 0.0151395 45 48 63 0.564513 / 0.004980 / 0.0177506 2 3 7 19 51 52 53 55 60 62 72 75 79 0.563525 / 0.006094 / 0.0201167 40 44 46 67 0.564060 / 0.007193 / 0.0220488 10 42 54 0.562444 / 0.008278 / 0.0241659 1 5 20 28 32 58 0.562407 / 0.009349 / 0.02574010 6 4 8 9 11 12 13 14 15 16 17 1821 22 23 24 25 26 27 29 30 31 0.559556 / 0.010394 / 0.02736033 34 35 36 37 38 39 4140 0 0.558365 / 0.039715 / 0.076679Table 4.10: Cardinalities and ritial values for �2, MI and PA sores. The ritialvalue is in�uened by the ardinality of the tested feature.The result of applying the hypothesis test to the CoIL data is shown in Table4.11. The relevant and irrelevant features in the table distinguishes between thefeatures for whih the null hypothesis was rejeted and the features for whih thenull hypothesis was kept respetively. Note that due to the di�erent number ofstates for the features of this data set an ordering of the features with respet tothe relevane sores makes little sene in this approah. Therefore the featuresin Table 4.11 are ordered numerially.If we look loser at these results we see that a hypothesis test with the MIsore has delared none of the features irrelevant whih our benhmark for theCoIL data set has delared relevant. This is aeptable sine we want to beonservative when leaving out features. However, it must be possible to disardmore than 13 out of 85 features. The approah an be made less onservativeby inreasing �.The PA based hypothesis test disards 45 of the original 85 features renderingit the least onservative of the 3 approahes. Unfortunately 4 of the featureswhih has been deemed irrelevant by this approah are among the features whihPage 51 of 90



4.2 Filter ResultsMethod Relevant IrrelevantMI 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 49 50 52 55 57 59 60(avg) 18 19 20 21 22 23 24 25 26 27 28 29 30 31 62 70 73 76 80 8132 33 34 35 36 37 38 39 40 41 42 43 44 4546 47 48 51 53 54 56 58 61 63 64 65 66 6768 69 71 72 74 75 77 78 79 82 83 84PA 0 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 1 5 20 39 43 44 45 46 47 48(avg) 19 21 22 23 24 25 26 27 28 29 30 31 32 33 49 50 51 52 53 54 55 56 5734 35 36 37 38 41 42 64 58 59 60 61 62 63 65 66 6768 69 70 71 72 73 74 75 7677 78 79 80 81 82 83 84�2 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 44 45 47 48 49 50 51 52(avg) 18 19 20 21 22 23 24 25 26 27 28 29 30 31 53 54 55 56 57 59 60 61 6232 33 34 35 36 37 38 39 40 41 42 43 46 51 67 68 69 70 71 73 74 7554 58 63 64 65 66 72 79 84 76 77 78 80 81 82 83Table 4.11: Result of applying the hypothesis test to the CoIL data set withsigni�ane level 0.05 and sampling 10000 ases. Relevant features aording to[38℄ are marked in bold font.has been reorded relevant by our benhmark for this data set. The fat that ourbenhmark is based on supervised learning makes a fair omparison unappliableand the mismathes are not onsidered as errors.At last �2 has deemed 42 out of the 84 features irrelevant. This time one ofthe features whih is delared irrelevant is one of the relevant aording to ourbenhmark for this data set. A validation of the �lter results obtained in thissetion ompared to the respetive lustering models whih an be learned fromthese feature subsets will be presented shortly.4.2.4 LeukemiaThe data sets, LEUKEMIA, AML and ALL are partiular interesting for severalreasons. The LEUKEMIA data set is well known in the data mining ommunityand thoroughly analyzed in the past. Its extreme number of features an prove tobe a hallenge for any FSS method. Also indiations show that very few featuresare atually relevant whih further hallenges the methods by inluding a largeamount of noise. The AML and ALL data sets are interesting in that the patientsall su�er from the same type of illness and their gene expression pro�les shouldbe similar and therefore also there should be very few or no irrelevant features.Figure 4.9 on the next page shows the results of applying the sore methodsto the ALL and AML data set. The top row shows the 3 sore measures appliedto AML and the bottom row shows them applied to ALL. As before all results areshown using average sores. Expetedly the methods indiate that there are noirrelevant features in the data set. Aording to the rankings shown in Table 4.12and 4.13 for the AML data MI and PA agree to some extent on the ordering ofthe features. Note how the �rst 5 features and the last 5 features are almost thePage 52 of 90



Chapter 4: Results
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Figure 4.9: Filter results for the AML and ALL data transformed from the originalleukemia data set. The top row makes out the AML data set whereas the bottomrow makes out the ALL data set. The �rst olumn desribes �2, the middle MIand the right PA. In both ases it is not surprising to see that all patients arerelevant due to the fat that their gene expression pro�les should bear similarities.same for both MI and PA although not ordered ompletely identially. For �2the ordering is trivial sine all features have reeived the same sore.Method � = 0:7 � = 0:3 IrrelevantMI (avg) 3 12 0 11 6 4 9 14 8 21 5 19 7 2 23 15 17 2210 1 16 18 20 13 24PA (avg) 6 11 3 12 9 0 19 2 20 8 10 4 15 21 18 1 16 22 13 17 2423 7 5 14�2 (avg) 0 24 23 22 21 20 19 18 17 16 15 14 1312 11 10 9 8 7 6 5 4 3 2 1Table 4.12: Ranking order (best to worst) of the features in the AML data set.Relevane based on the learning urve thresholding sheme. Sine we do notexpet any irrelevant features all are marked in bold font.Method Relevant IrrelevantMI (avg) 3 12 0 11 6 4 9 14 8 21 5 19 7 2 2310 1 16 18 20 13 24 15 17 22PA (avg) 6 11 3 12 9 0 19 2 20 8 10 4 15 2123 7 5 14 18 1 16 22 13 17 24�2 (avg) 0 24 23 22 21 20 19 18 17 16 15 14 1312 11 10 9 8 7 6 5 4 3 2 1Table 4.13: Ranking order (best to worst) of the features in the AML data set.Relevane based on the hypothesis test thresholding sheme. Sine we do notexpet any irrelevant features all are marked in bold font.Page 53 of 90



4.2 Filter ResultsSimilar tables for the ALL data set an be seen in Tables 4.14 and 4.15. In thesetables though the similarity among PA and MI is less striking. The explanationfor this ould be found in the lustering results in that the results ould indiatea less lear ordering of the features due to additional dependenies.Method � = 0:7 � = 0:3 IrrelevantMI (avg) 12 45 4 18 14 25 43 29 15 46 36 44 27 28 2 26 3717 24 9 10 34 41 42 35 23a 13 39 11 7 16 4032 1 21 30 5 33 31 20 22 3 19 0 38 6 8PA (avg) 41 45 46 25 17 24 12 9 15 18 35 6 3 0 11 38 33 2810 29 34 4 14 36 26 37 1 30 39 44 13 8 2 40 19 1643 5 22 20 31 7 42 21 27 32 23�2 (avg) 0 46 45 44 43 42 41 40 39 38 37 36 3534 33 32 31 30 29 28 27 26 25 24 23 2221 20 19 18 17 16 15 14 13 12 11 10 98 7 6 5 4 3 2 1Table 4.14: Ranking order (best to worst) of the features in the ALL data set.Relevane based on learning urve thresholding sheme. Sine we do not expetany irrelevant features all are marked in bold font.Method Relevant IrrelevantMI (avg) 12 45 4 18 14 25 43 29 15 46 36 44 37 1724 9 10 34 41 42 35 23 13 39 11 32 1 21 30 533 31 20 22 3 19 0 38 6 8 27 28 2 26 7 16 40PA (avg) 41 45 46 25 17 24 12 9 15 18 35 6 3 10 29 344 14 36 26 37 1 30 39 44 13 43 5 22 20 31 742 21 27 32 23 0 11 38 33 28 8 2 40 19 16�2 (avg) 0 46 45 44 43 42 41 40 39 38 37 36 3534 33 32 31 30 29 28 27 26 25 24 23 2221 20 19 18 17 16 15 14 13 12 11 10 98 7 6 5 4 3 2 1Table 4.15: Ranking order (best to worst) of the features in the ALL data set.Relevane based on hypothesis test thresholding sheme. Sine we do not expetany irrelevant features all are marked in bold font.We know from previous analysis that a large portion of the features in theLEUKEMIA data set are irrelevant. In Figure 4.10 on the faing page it an beseen that the methods do not indiate any irrelevant features. This is most likelyaused by the large amount of features and the lak of ases whih stronglyinrease the possibility of random dependenies among irrelevant features. In fatloser examination revealed that all features inlude strong dependenies withat least 100 other features. This fat renders any relevane measuring amongthese features di�ult. This is also the ase for the proposed soring methodsin this report. It is worth mentioning that PA performs signi�antly better thanboth MI and �2 by exhibiting a onave shaped graph whereas the other two arealmost straight. Page 54 of 90
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Figure 4.10: Filter results for the leukemia data set in full ontaining 7129 featuresand 72 ases. Notie that PA performs signi�antly di�erent from both MI and�2. Considering previous analysis we an say that PA performs signi�antly betterthan the 2 other methods.
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4.3 Validation of the Filter Resultsombined with the hypothesis test. �2 has deteted no irrelevant features whenombined with the learning urve. However, ombined with a hypothesis test ithas delared 472 out of the 7129 features leaving it less onservative than the MImethods. To summarize on this it is lear that PA has proven a quite onviningperformane. This, together with the previous results has indiated that it hasa higher di�erene in the sores for features with weak dependenies and thefeatures with strong dependenies. Figure 4.11 depits the distributions for therelevane measures for irrelevant features sored against the LEUKEMIA data set.It is interesting that for this data set PA shows a less peaked distribution thanboth �2 and MI. Despite this PA has �ltered out signi�antly more features thanthe other two measures.4.3 Validation of the Filter ResultsIn the previous setion we shown that the two �lter methods were apable of�ltering out irrelevant features. Their performane was measured by omparingthe obtained results to knowledge we were able to gain about the data from anexternal soure. In a seond step of validation, we wish to measure eah soremeasures ability to distinguish between features whih ontribute to homoge-neous lusters and whether they are apable of ranking the features with respetto their relevane. In order to do this we apply the 2 lustering methods de-sribed in Chapter 2 on the feature subsets that were delared relevant by eah�lter method. We evaluate the resulting models by measuring their homogeneityand ompare it with the homogeneity of a model learned from the whole dataset. This task however is far from trivial in that fair omparison between lusterresults based on di�erent sized feature subsets an prove to be a hallenge. Herewe aim to explain how the evaluation is performed and how the homogeneityof lustering with di�erent subsets of features an be measured suh that theresults are omparable.4.3.1 The Test StrategyOur tests are designed to test our methods ability to selet relevant features andtheir ability to orretly identify the order of relevant features. In a �rst stepwe learn models from eah subset of relevant features aording to our �ltermethods and measure their ability to generate homogeneous results. In a seondstep we wish to validate the relevane ranking of the features produed by the�lter methods. Therefore we learn a model from the most relevant feature, andmeasure its performane. Then we learn a model from the two most relevantfeatures and measure the performane of this seond model. Thus we ontinuelustering with the most relevant features adding 1 feature for eah iteration.More spei�ally, we have an ordered set of features X = fX1;X2; : : : ;Xpg,ordered with respet to the relevane measure R, suh that R(X1) � R(X2) �Page 56 of 90



Chapter 4: Results: : : � R(Xp), i.e. the most relevant features �rst. From X we produe pfeature subsets suh that S1 = fX1g; S2 = fX1;X2g; : : : ; Sp = X with eahSi � Si+1. Given a performane measure P , whih measures the homogeneityof our lusters aording to our lustering riterion, we will verify that P (Si) �P (Si+1). If this is true we have indies that the ordering produed by R is valid.4.3.2 Validation Using k-modesTo test whether our relevane measures an suessfully be used for FSS as a pre-proessing step for the k-modes algorithm, we want to measure the performaneof a model learned by a feature subset Si of the i most relevant features withrespet to our lustering riterion P . Ideally, we wish to measure the partitioningin terms of the ohesiveness and distintiveness of the lusters obtained by ak-mode partitioning with a subset of the original features. A widely used mea-sure when evaluating the performane of a k-means partitioning is the averagedistane to luster entroids and the same applies for the k-modes algorithm.However, sine we may assume that the number of instanes in the data setis onstant for all evaluations of feature subsets, the sum of distanes to theluster entroid is equally good. Therefore we use Equation 2.4 to evaluate thegoodness of a partitioning.We want to be able to ompare the relevany of the feature subsets Si and Sjfor i 6= j with respet to our lustering riterion (the performane funtion P ). Ifwe apply Equation 2.4 on models learned from the two subsets and ompare theresults we would favor the smaller subset and so we need a more fair omparison,and we need the performane funtion P to be independent of the amountof features used for learning. Therefore we learn the models using the spei�subsets Si and Sj and evaluate the performane based on the full set of featuresSp. This means that we use the luster assignments (or labels l) of eah instanexi 2 D we got when k-modes was run on Si and Sj respetively, and assignthe labels to eah instane in D. We then apply Equation 2.4 on D with thepartitionings obtained by models learned from Si and Sj respetively. This way wemeasure the ability of the features in Si to partition the data base D and ahievehomogeneous results. This way the performane funtion P yields omparableresults.4.3.3 Validation Using NB ModelsTo validate a probabilisti model, like the NB model, it is ommon to use thelog-likelihood of the data given the learned model, i.e. Equation 2.15. However,like with the k-modes algorithm, it is unfair to ompare the performane ofdi�erent models ontaining di�erent subsets of features. We wish to distinguishbetween the use of the performane measure that was used when the modelwas tested for onvergene during learning and the performane measure whih,Page 57 of 90



4.4 Experimental Evaluation of the Sore Measureswhen applied on a learned model, yields results omparable to models trained ona di�erent feature subset.To obtain a omparison that is similar to that of the k-modes we measurethe performane of the whole data set after indution. In the ase of the NBmodel the features that were not inluded in the learning proess are inludedin one last maximization step in order to alulate their parameters using theurrent frational partitioning of the data base. Based on the omplete datawe now apply the log-likelihood estimate to measure the performane. In otherwords, the indution of a NB model on a feature subset Si yields a set of labelsl of frational luster membership assignments, one for eah ase in the database Si. If we assign those labels to eah ase in D, run one iteration of themaximization step we have a model inluding all features in D but whih is onlylearned from the feature subset Si. On this data base we an apply Equation2.15 and measure the performane of the features subset Si in a omparablemanner.4.4 Experimental Evaluation of the Sore MeasuresIn this setion we present the results of applying the two lustering algorithms,the k-modes and NB to our data bases. For eah sore measure we measure theperformane of the models whih are learned from the relevant features only.The models are evaluated aording to our lustering riteria, namely the totaldistane to the luster modes for k-modes models and the log-likelihood for theNB models. Both measures are alulated as desribed above in order to obtainomparable results (the results are omparable within eah data base only). Fur-thermore, we run both the algorithms multiple times, eah time with di�erentstarting riteria and report only the best possible obtained result measured withthe performane funtion P whih takes the entire data set into aount. Thatis, we are looking for the best model whih an be learned from Si, that whenits lustermembership assignments are used on the data set D result in homoge-neous lusters. In this projet we have hosen to hoose from 5 models. Furthermore we pik the starting riteria for eah iteration in a deterministi mannersuh that the same set of starting riteria are evaluated when eah feature isadded.The results of measuring the performane of k-modes models learned the fea-tures whih are relevant aording to the �lter methods are shown in Table 4.17.The measurements are in total distane to luster modes measured with Equa-tion 2.1 and the number of lusters k is held onstantly at the value mentionedin Setion 4.1. The rightmost olumn shows the performane of models learnedfrom the entire set of features for eah data set. The results must be omparedwith the amount of features whih have been disarded. For instane, when therelevant features aording to the �2 dependeny measure performs equally wellas the whole data set with a hypothesis test, it must be taken into aount thatPage 58 of 90



Chapter 4: Resultsall features in SYN20 are relevant aording to this method. If we pay attentionto the results obtained with the CoIL data where PA together with the learningurve approah was able to disard 45 features with � = 0:7 and 37 featureswith alpha = 0:3. Note that for both feature subsets, the homogeneity of theresulting model is a fration better than the model learned by the entire data set.The same applies for MI ombined with the learning urve approah where 40and 48 features are �ltered out with a small inrease in the luster homogeneity.This may indiate that the k-modes algorithm in some ases performs worsewhen noisy features are inluded in the training data.Learning urve Hypothesis test All FeaturesData Method � = 0:7 � = 0:3 � = 0:05SYN10 MI 85016 85016 85027PA 85016 85016 85027 76661�2 76702 76661 76661SYN20 MI 105346 105346 105346PA 105346 105346 105346 110883�2 110883 110883 110883WAVE MI 109133 109040 109040PA 105890 105890 105922 104986�2 105447 104986 104986CoIL MI 118703 118703 118569PA 119086 118733 118557 118995�2 118995 118995 118557AML MI 70491 70201 70201PA 71713 70201 70201 70201�2 70201 70201 70201ALL MI 125245 124322 124322PA 125321 124322 124322 124322�2 124322 124322 124322LEUKEMIA MI 191126 191126 191126PA 191126 191126 191126 191126�2 191126 191126 191126Table 4.17: The performane of the k-modes partitioning models learned fromthe features whih are relevant aording to the �lter methods measured inEquation 2.1 to luster modes.Table 4.18 shows the results of learning NB models from the features whihare relevant aording to the �lter methods. The values are log-likelihoods ofthe data given the learned NB model. The rightmost olumn ontains the per-formane of models learned from the entire data set D. It is worth to notiethat exept for the LEUKEMIA data set models learned from any of the featuresubsets do not perform better than the entire data set. This is, as opposed tothe k-modes algorithm, an indiation of more stability under the presene ofnoisy features. Also note that for the 3 arti�ial data sets all the relevant featuresubsets perform equally well as the entire data set. Again we point out PAs per-formane on the CoIL data set. In the ase where PA together with the learningPage 59 of 90



4.4 Experimental Evaluation of the Sore Measuresurve approah �ltered out 45 features the performane only degrades 5 pointsout of -313942, an insigni�ant perentage. The same aounts for the rest ofthe feature sets. Learning urve Hypothesis test All FeaturesData Method � = 0:7 � = 0:3 � = 0:05SYN10 MI -174924 -174924 -174924PA -174924 -174924 -174924 -174924�2 -174924 -174924 -174924SYN20 MI -242394 -242394 -242394PA -242394 -242394 -242394 -242393�2 -242393 -242393 -242393WAVE MI -200439 -200439 -200439PA -200439 -200439 -200439 -200439�2 -200439 -200439 -200439CoIL MI -313965 -313965 -315817PA -313947 -313947 -316809 -313942�2 -313942 -313942 -315810AML MI -171972 -171940 -171940PA -172138 -171940 -171940 -171940�2 -171940 -171940 -171940ALL MI -305395 -305304 -305304PA -305407 -305304 -305304 -305304�2 -305304 -305304 -305304LEUKEMIA MI -421303 -420990 -420990PA -419768 -419768 -421262 -419768�2 -419768 -419768 -421022Table 4.18: The performane of NB models learned from the features whih arerelevant aording to the �lter methods measured in log-likelihood.These tests have shown that the �lters proposed previously are apable of�ltering out features whih do not ontribute to the lustering with respetto more homogeneous lusters. Moreover, we have seen that for the k-modesalgorithm the noisy features are likely to onfuse the result rendering the resultingmodel less homogeneous than a model learned from a subset of features, whihare relevant for the lustering.4.4.1 Relevane Ranking ValidationIn this setion we aim to validate the rankings of the features based on therelevane sores. In the ase of the arti�ial data sets the ranking should besu�ient to be onvined of their apability sine we know whih features aretruly relevant. We do however perform validation of the relevane ranking for thepurpose of showing the reliability of the validation tehniques. In addition thissetion will show the results of validating the real-world data sets. The resultsin most ases lead to a disussion of the performane of the unsupervised FSSmethods and reliability of the lustering methods.Page 60 of 90



Chapter 4: Results
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Figure 4.12: The luster results on the SYN10 and SYN20 data sets using the�lter ranking. Graphs show both the �lter outputs, the k-modes and NB modelsresults. The top row shows the results of SYN10 whereas the bottom row showsresults of SYN20. The leftmost desribes �2, the middle MI and the right PA.The graphs shown in this setion are normalized between 0 and 1 in both thex-axis and y-axis using Equation 4.1. The y-axis for the lustering tehniquesrepresent the sore for the urrent feature subset Si whereas the x-axis representthe features ordered aording to their ranking (best to worst).Syntheti Data Rank ValidationThe luster results of SYN10 and SYN20 an be seen in Figure 4.12. The mostnotieable part of the results is the signi�ant instability in the results of k-modes.However a trend is visible and ombined with the results of the NB model theresults strongly indiate the the rankings are orret.All subsets have been lustered with k-modes 5 times and the best result hasbeen seleted. The results indiate that more iterations are neessary in order toget more stable results. In omparison the NB model perform muh more stableand the results support our previous statement that the sore measures areonservative. Clustering with the NB model indiates that less than 10 featuresare neessary for lustering.Waveform Rank ValidationFigure 4.13 shows the results of the �lters applied to the WAVE data set. In thisase though the graphs have been overlaid with results of lustering using thefeature subsets spei�ed by the rankings. The validation of PA and MI using NBmodels provide nie graphs that are very similar indiating that the NB modelsagree with the rankings produed by the 2 methods. It an be seen from thePage 61 of 90



4.4 Experimental Evaluation of the Sore Measures
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Figure 4.13: The luster results on the WAVE data set using the �lter ranking.Graphs show both the �lter outputs, the k-modes and the NB model results.Again the leftmost desribes �2, the middle MI and the right PA.
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Figure 4.14: Validation of the �lter results on the WAVE data set. Graphs showboth the �lter outputs, the k-modes and the NB model results using reverseorder ranking. Again the leftmost desribes �2, the middle MI and the right PA.graphs that the auray of the model inrease only slightly after 30% of thefeatures.The results of the lustering methods using our rankings indiate that therankings are orret. The features that ontribute with the most information forthe lustering have been ranked �rst. We annot however, be ertain that anyrandom ranking of the features would not produe the same output. None the lessfor omparison Figure 4.14 shows the same results as before, although this timethe features are in reverse order aording to the relevane sores proposed. Thelustering results learly show the impat the ordering has on the lustering. Inthe ase of MI and PA the NB model learly shows only very small improvementsof the lustering from 1 feature and up to the total amount of irrelevant features.The CoIL Challenge Rank ValidationIn Figure 4.15 the luster results for the COIL data set an be seen. The resultsindiate sensible rankings and in all ases no more than half the features aresu�ient for lustering. In many ases signi�antly fewer features seem neessary.Another interesting aspet of the graphs is that for all methods the �lter isthe most onservative, in the middle is k-modes and the most risky results areobtained using the NB model. By risky we refer to the fat that the featuresubset that aording to the NB model is su�ient for lustering inludes only aminimum of features and is more likely to exlude relevant features than analysisPage 62 of 90



Chapter 4: Results
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Figure 4.15: Cluster results on the COIL data set using the �lter rankings. Graphsshow both the �lter outputs and the k-modes and the NB model results. Theleftmost desribes �2, the middle MI and the right PA.
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Figure 4.16: Cluster results on the AML and ALL data sets using �lter ranking.Graphs show both the �lter outputs, the k-modes and the NB model results.The top row illustrates the AML data set whereas the bottom row illustrates theALL data set. The leftmost desribes �2, the middle MI and the right PA.performed using only the �lter or k-modes.Leukemia Rank ValidationEah of the 3 leukemia data sets have been analyzed using the 3 proposed �ltermethods. Reall that the results found was that the AML and ALL data sets, notsurprisingly, did not ontain any irrelevant features. Using the same �lters it wasalso di�ult to distinguish relevant from irrelevant in the LEUKEMIA data set.What we expet to see in this setion is veri�ation that the AML and ALL datasets do not ontain irrelevant features, and that the ranking of the LEUKEMIAdata set makes sense.Figure 4.16 presents the lustering results for the AML and ALL data sets.Again it is lear to notie that k-modes is more onservative than the NB modeland that the NB model provides more stable results. Comparing with the resultsof the �lter approah a signi�ant di�erene beomes apparent. Aording toPage 63 of 90
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Figure 4.17: Cluster results on the LEUKEMIA data sets using �lter ranking.Graphs show both the �lter outputs, the k-modes and the NB model results.The top row illustrates the LEUKEMIA data set in full whereas the bottom rowillustrates the same data set in whih we have zoomed in to 100 features. Theleftmost desribes �2, the middle MI and the right PA.the �lter all features are relevant for lustering, but this is based on an analysisof eah feature separately. Figure 4.16 gives a good indiation of the di�erenebetween soring a subset as the umulative sore of eah feature and soringa subset as a whole. The lusterings learly indiate that less than half thefeatures are neessary to obtain a good lustering result. Eah feature in it selfprovides relevant information to lustering, but most of them provide the sameinformation and therefore very few of them are su�ient. This fat is not takeninto onsideration in the proposed sore measures and must be onsidered aweakness in the approah.The results of validating the LEUKEMIA data set an be seen in Figure 4.17.The top row shows the lustering results of all 7129 feature subsets. It is learthat aording to the graphs very few features an in fat provide a lusteringresult approximately as aurate as a result based on the full feature set. Thisorresponds well with previous analysis in the domain of lassi�ation.The �gures show both results of k-modes and the NB model and given theamount of features present it is di�ult to separate the results. The bottom rowgives a more detailed view into the �rst 100 whih seem to indiate that lessthan 50 features should be su�ient to build a good model. Unfortunately the�lter approah seems unable to detet this property although PA ombined withthe hypothesis test redues the amount of features to 453. However aordingto the 2 lustering tehniques the redution is still very onservative.Another interesting issue in Figure 4.17 is the fat that the sores tend tobe more unstable ompared to the results of the other data sets. The reasonould be in the preision of the used data types whih do not perform well forPage 64 of 90



Chapter 4: Resultsextremely low values. The values used in order to ompute the log-likelihoodof a NB model will be a multipliation of 7129 probabilities whih representsextremely low values. The results however orrespond well with expetation andan serve as approximations of the orret results.4.5 SummaryIn this hapter we have shown the proposed �lter approah able to produegood results for various data sets. A summarization of these are shown in Table4.19 whih illustrates the amount of relevant features that have been deemedirrelevant (false negatives) and vie versa (false positives). The fat that theamount of false positives exeeds the amount of false negatives indiate that theapproahes are onservative. Learning urve Hypothesis testData Method fp fn fp fnSYN10 MI 0 0 0 0PA 0 0 0 0�2 5 0 10 0SYN20 MI 0 0 0 0PA 0 0 0 0�2 19 0 20 0WAVE MI 0 3 0 2PA 0 2 0 2�2 13 0 19 0CoIL MI 27 4 51 0PA 24 5 22 4�2 64 0 34 1AML MI 0 3 0 0PA 0 7 0 0�2 0 0 0 0ALL MI 0 9 0 0PA 0 12 0 0�2 0 0 0 0Table 4.19: Summarization of the results of the proposed �lter approah. The ellvalues desribe both false positives (fp) speifying an irrelevant deemed relevant,and false negatives (fn) speifying relevant features deemed irrelevant. The latterbeing the most important to avoid.For the real-world data sets it is di�ult to determine truly relevant features.Based on previous analysis a set of truly relevant features have been seletedalthough the analysis usually have been made using supervised FSS and thereforeannot be ompared to unsupervised FSS. This explains the false negatives thatare visible in Table 4.19. In addition the WAVE data set ontains false negativeswhih is due to the small degree of relevane that is present for these features.For the LEUKEMIA data set no results are shown in that the set of trulyrelevant features are unknown. However we an refer to Table 4.16 for details onPage 65 of 90



4.5 Summarythis data set. The transformed data sets, AML and ALL ontain only truly relevantfeatures based on an intuitive understanding of the data.
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5A Hybrid
ApproachWe all agree that your theory is razy, but is it razy enough?� Niels BohrIt is a known fat that wrapper approahes produe more reliable results whenused for FSS beause they rely on the learning method to evaluate the homogene-ity of the model obtained by a given feature set. However, wrapper approahesare slow. As opposed to wrapper approahes, the �lter approah is faster thanwrappers but their independene of the evaluated model leaves them to rely onsafe onservative approahes like the �lters disussed in the previous hapter.It is lear that a perfet method for performing FSS has the reliability ofthe wrapper and the speed of the �lter. Therefore, in this hapter we proposea method that takes advantage of both the auray of the wrapper and theomputational speed of a �lter.In the �rst part of the hapter we will give a desription of the proposedhybrid. Then we will show that the hybrid approah an perform as auratelyas a wrapper with a onsiderable redution in omputational ost ompared toordinary wrappers. The results presented are based on the same data sets thathas been used throughout Chapter 4.5.1 The MethodWhen performing FSS, the size of the searh spae is 2p where p is the numberof features. Therefore muh researh within FSS fous on optimizing the searhstrategy within this searh spae. In any kind of problem involving searh, the goalis to minimize the amount of points in the searh spae whih has to be evaluated.This task is espeially ritial for wrapper approahes for FSS where a model hasPage 67 of 90



5.1 The Methodto be learned for eah feature subset. Moreover, learning of a model is a searhtask in itself whih involves muh unertainty whih must be dealt with in orderto assign a fair validation to a feature subset. For instane, evaluation of eahfeature subset requires multiple models to be learned if the learning algorithmhas a probability of being trapped in a loal maximum. The omputational ostof the indution algorithm renders many advaned heuristi searh tehniquesimpossible. Espeially approahes that rely on geneti algorithms have to learna huge amount of models on their way to an aepted feature subset.The evaluation task is muh less ritial for �lter approahes. However, the�lter approahes proposed in this report sores eah feature alone and indepen-dently of the �nal task. That is, the sore methods we have proposed rewardsfeatures whih are likely to ontribute to ohesive lusters but the evaluation isof eah feature alone instead of evaluating an entire feature subset whih maybe more fair to the features. Soring single features for relevane favors seletingfeatures that onvey the same information instead of seleting features that addindependent information. Therefore, the result of evaluating eah feature alonemay lead to over-rating the features whih lead to a too onservative approahompared to what an be obtained with a wrapper.Here we aim to �nd an approah whih is somewhere in between the twoextremes, in order to ombine the omputational e�ieny of the �lter and theauray of the wrapper. For this purpose we apply a wrapper approah on theremaining feature subset returned by the proposed �lter approah to signi�antlyredue the searh spae. That is, we apply the sore measures presented inChapter 3 and use the obtained rankings for the subset of relevant features asthe order in whih the features should be added to the pool of features thatare being used for model learning and evaluation. We refer to this method as ahybrid approah in that it bene�ts from advantages of both �lter and wrapperapproahes.5.1.1 The Searh ProblemLet S = fS1; S2; : : : ; Sfg denote an ordered set of feature subsets, onstrainedby the relevane ranking, that ontain the remaining f features after the �lterapproah has been applied using the relevane measure. We require that eah Siontains the i most relevant features aording to our relevane measure, andthat Si � Si+1, meaning that the subsets are nested. Furthermore, we assumethat the performane of the feature subsets is monotoni i.e. the performaneof the best model whih an be learned from Si is lower than or equal to theperformane of the best model learned from Si+1. The validation of the orderingsin the previous hapter indiate that this is true for NB but not for k-modes. Wethen use a wrapper approah to perform a searh in a searh spae of featuresubsets based on the features in S.Page 68 of 90



Chapter 5: A Hybrid Approah5.1.2 ThresholdingIn this proposal we wish to apply a simple searh strategy in whih eah result isompared to the result obtained from Sf . Prior to the omparison we deide on amargin �, stating how muh performane degrading an be aepted. Spei�ally,we searh for a subset with a fration � of the performane obtained with Sfsaled against the performane whih an be obtained with S1. To do this weneed a performane measure P . Let P (Si) be a funtion that learns an NB modelfrom Si and returns the log-likelihood of that model measured with respet tothe entire data set D (see Setion 4.3.3). We then bene�t from Equation 4.1and obtain Pnorm(Si) = P (S(l+r)=2) � P (S1)P (Sf ) � P (S1) : (5.1)The feature subset Si we are searhing for is the one with a Pnorm(Si) losestto �, but yet always above.Unless stated otherwise the margin set in this projet will be a degrading of3%. In this ase � is set to 0.97. The reason for using linear saling in this searhriterion is simply to let � be salable between multiple data sets.5.1.3 Binary Searh FSSTo �nd the feature subset whih satis�es the above riterion we need a searhstrategy, and we are even allowed to bene�t from the ranking in S. One possibilitywe have onsidered is to apply a learning urve strategy like the one proposedfor the �lter approah. Applying the learning urve thresholding sheme wouldin this ase require using a standard sequential forward searh tehnique whihwould require a number of learned models proportional to p, whih is aeptablein a searh spae of size 2p. We have also onsidered the possibility of applying ahypothesis test. In suh a strategy we ould use the measure P as test statistiand in a forward searh strategy onstrained by the order in S, sample a numberof sores when randomly generated features are added to a subset Si. Suha method would not be appliable in a wrapper approah due to the extremeamount of lustering models that are required to be evaluated. For instane,using a sample size of 10000 features would in a worst ase senario require10000 indutions for eah of the features in Sf .We propose to use a simpler and omputationally less heavy searh strategy.Taking advantage of the asending order in S we an apply binary searh strategyfor the best feature subset [9℄. The binary searh strategy used works by �rstevaluating a lustering model using the feature subset Sf . Using this result wean, as a seond step, evaluate a lustering model using only half of Sf , namelySf=2. We searh for the feature subset with a P (Si) as lose to � as possibleyet always above the threshold. If the model learned using Sf=2 performs tooPage 69 of 90



5.2 ResultsBinary Searh FSSParameters: A threshold �, an ordered set of feature subsetsS with the �rst element at index l and the last element at r.Sf ontains the f features whih have not been �ltered out bythe �lter approah.Returns: The index of the feature subset whih performs afration 1� � worse than the entire feature subset Sf .BSFSS(�; S; l; r) {if (l = r)return lif � Pnorm(S(l+r)=2) > ��return BSFSS(�; S; l; (r + l)=2)else return BSFSS(�; S; (r + l)=2 + 1; r)}Figure 5.1: The Binary Searh FSS algorithm (BSFSS) applied for unsupervisedFSS in our hybrid approah. It takes as argument an ordered set of feature subsetswhih is based on the feature rankings returned by one of the sore measuresin the previous hapter. The number of evaluated models with this approah isproportional to log2 p.poorly we evaluate a new model at 75% of S (S3f=4), and if Sf=2 performsbetter than the threshold, we evaluate a new model at 25% of S, the featuresubset Sf=4. The number of feature subsets to be evaluated using this approahis proportional to log2 p. We all this strategy Binary Searh FSS and the detailsare depited in Figure 5.1.5.2 ResultsAs mentioned the hybrid approah has been tested on the same data sets as usedfor testing and evaluating the �lter approah. The rankings of the features foreah data set have already been shown, as well as the performane of the lus-tering models for eah evaluated subset of features. Table 5.1 gives an overviewof the results ompared to both �lter methods.It is lear for all results that the hybrid approah is able to remove a signi�antamount of features that the �lter ould not deem irrelevant. This orrespondswell with the fat that the �lter is onservative. The thresholding sheme usedis very naive and applying another sheme ould prove to disard even morefeatures. Espeially when examining the ALL graph on Figure 4.16 it seems that8 to 12 features is a onservative hoie and good results ould be obtainedPage 70 of 90



Chapter 5: A Hybrid Approah Filter HybridData Method Learning urve Hyp. test Learning urve Hyp. testSYN10 MI 10 10 6 6PA 10 10 6 6�2 15 20 7 7SYN20 MI 10 10 6 6PA 10 10 6 6�2 29 30 7 7WAVE MI 18 19 13 13PA 19 26 13 13�2 34 40 10 10CoIL MI 44 72 13 16PA 40 39 24 16�2 85 54 21 25AML MI 22 25 10 10PA 18 25 8 9�2 25 25 17 17ALL MI 38 47 12 13PA 35 47 8 8�2 47 47 12 12LEUKEMIA MI 6975 6809 66 66PA 3809 459 26 13�2 7129 6657 182 182Table 5.1: Overview of the relevant features found using the �lter and the hybridapproah.using only the 5 best features in the data set. However 8 to 12 features is ahighly signi�ant redution ompared to the �lter approah.An interesting part of the results is to examine the features that have not beendeteted as irrelevant by the �lter but disarded by the hybrid. Finding similarharateristis among these features ould help to improve future proposals fora �lter approah.In Figure 5.2 we have inluded the BN for the syntheti data inluding onlyrelevant features. The 4 �gures show the probability distribution of eah featureinside eah luster and in total. In the �gure eah feature is denoted PatientXwhere X is the number of the feature. The aim is to give an explanation ofthe features whih aording to the �lter approah was onsidered relevant butaording to the hybrid was deemed irrelevant. The syntheti data represent thesimplest model and has thus been hosen for this purpose.Aording to the �lter approah for SYN10 both MI and PA sore feature 12and 15 among the least relevant whih aording to the hybrid are irrelevant.Examining Figure 5.2 for the probability distributions inside eah luster for thesefeatures we notie a striking similarity with other relevant features. For Patient3orresponding to feature 12 in the SYN10 data set, Patient4 have a probabilitydistribution inside eah luster whih is almost idential. This ould lead usto believe that the 2 features are redundant. The same applies for Patient6Page 71 of 90



5.2 Results

Figure 5.2: BN's of the relevant features in the �rst syntheti data, reated usingHugin [1℄ to show the probability distribution of individual features inside eahluster. Top left shows the original BN without any �xed states. The other 3show the probability distribution of all features with the lass random variable�xed to one of 3 states.orresponding to feature 15 in the SYN10 data set and Patient10.5.2.1 Extensions to the CoIL data resultsApplying hypothesis testing on the COIL data set we obtain a feature subsetthat is not ranked sine the features have di�erent ardinalities (see Setion4.2.3). For the hybrid approah we require a ranking of the relevant featuresregardless of the thresholding sheme used. Therefore in this setion we showthe performane of relevant features aording to the hypothesis testing for theCOIL data set.In Figure 5.3 the lustering results of the relevant features aording to thehypothesis testing is shown. The features are ranked given their sore measure.The �gure shows the lustering results for all feature subsets onstrained by therankings. The hybrid only onsiders log2 p of these subsets but in order to beonvined that the ranking is valid the �gure shows the performane Pnorm forall feature subsets. The �gure veri�es the results in Table 5.1 in that it is learthat �2 drops signi�antly in performane several features before both PA andMI. Page 72 of 90



Chapter 5: A Hybrid Approah
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Figure 5.3: Illustration of the graphs for the CoIL data inluding only relevantfeatures based on the hypothesis test. The graphs support the results of thehybrid for this data set.5.3 SummaryIn this hapter we have proposed a hybrid approah that takes advantage ofboth the auray of the wrapper and the omputational ost of the �lter. Notsurprisingly the method redue the amount of features signi�antly ompared tothe �lter approah proposed in Chapter 3.The results obtained are less onservative and e�etively redue irrelevantfeatures from a given data set. Regarding omputational ost we know that thewrapper is the most expensive given the amount of indutions needed to perform.In this proposal we have redued the amount of indutions needed to log2 p.Most of the redutions performed by the hybrid lowers the dimensionalitybeyond what is know to be relevant. That is, some of the relevant features forsyntheti data are also disarded as irrelevant. In this hapter we have ontinuedthe disussion regarding redundant features whih we believe to be the auseof this behavior. We onsider redundany an important issue to handle in theontext of unsupervised FSS regardless of whether the approah is wrapper or�lter.
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6Future WorkA great frustration in life is disovering that sometimes those who say somethingan't be done turn out to be right.� Donald SimanekThis masters thesis has been developed given a limited amount of time whihalso limits the degree to whih we an aomplish the tasks at hand. The foushas been on broad researh in the area of unsupervised FSS and several proposalshave been made. The proposals outline potentially interesting fats that ouldbe bene�ial in further researh. In this setion we raise questions in onnetionto the work done and pose new problems that have yet to be solved.6.1 The Filter ApproahIn this domain 3 sore measures have been developed for soring eah featurein a data base and ranking them. FSS has been performed based on 2 proposedthresholding tehniques. However, several problems have been raised during thedevelopment of the methods.All 3 proposed sore measures are based on a myopi strategy in whih thesore of eah feature is based on individual performane independently of itsmembership to any feature subsets. A better approah ould be propose a soremeasure whih is able to evaluate a subset of features in order to measure theirombined sore. Given the urrent approah the sore of eah feature is inde-pendent other features, whih is highly likely to overrate a feature resulting inonservative FSS. It has been our experiene that features that are part of asemi-lique are very relevant whihi leads us to suggest a sore measure thatrewards features for being part of a semi-lique. One way of viewing the problemis as a searh in a onnetivity graph. In the proposals of this report the onne-tivity graph is assumed to be omplete. Another approah was to searh for anoptimal onnnetivity graph in whih only true edges are present. This an beaomplished using the proposed sore measures to sore the edges.Page 75 of 90



6.2 The Hybrid ApproahIt has been disovered during the tests that some features although rele-vant aording to the �lter approah, prove to ontribute with very little newinformation for lustering purposes.It is our opinion that a disussion of redundane in data lustering is needed.Therefore work ould be done in the near future aiming at a disussion anda de�nition of redundane in data lustering. We suggest researh that wouldindiate how to handle redundant features.6.2 The Hybrid ApproahThe hybrid extends the �lter approah by applying a wrapper on the output of the�lter. The searh spae however is onstrained given the ranking of the features.We take advantage of previous analysis using the �lter in order to further reduethe amount of indutions to log2 p. The wrapper performs an online searhstrategy in whih we deide after eah indution whether or not to ontinue.The thresholding sheme used in this proposal is naive although in most asesit performs satisfatory. However referring to the validation of the ALL data setwe an observe that the threshold is still onservative. The validation revealsthe full shape of all indutions and serves as indiations of where the thresholdshould be. Aording to the validation of the ALL data set the threshold shouldbe around 4 features whih is the end of a steep limb on the graph and whereit �attens to a very slow inrease given the rest of the features. The task ofdeveloping a thresholding sheme however is not trivial in that several propertiesmust be onsidered.� The threshold must support an online strategy.� Performane annot be assumed to derease in the number of features.� Unless no features are irrelevant, indution on the full data set is prohibited.The urrent approah requires indution on the full feature subset that is outputfrom the �lter approah. In most ases this will not be the full data set but still theindution an be expensive. One an also argue that applying post proessingon this feature subset ould make further indutions obsolete. Therefore it isdesirable to perform indutions only on feature subsets that do not exeed thesize of the resulting feature subset.As the required number of indutions have been greatly redued it beomesappliable to perform as searh for the optimal model in whih the assumptionthat the number of lusters k is unknown. Future researh ould explore thisarea and perform empirial tests.
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7ConclusionIt's never too late to give up.� Ronny ErisonIn Chapter 1 we motivated and limited this projet to be within the �eld of datalustering whih we onsider a ritial task in data mining. In addition to thisbroad area, we have limited our work to be onerned with unsupervised featuresubset seletion (FSS), whih we onsider the proess of identifying irrelevantfeatures whih an be left out without doing any harm to the resulting model.The most ritial part of our approah is how we wish to haraterize featureswhih are relevant for data lustering. In this report we argue that relevantfeatures must depend on the luster random variable and hene, they must be d-onneted given no evidene on the luster variable. In the absene of the lusterrandom variable we de�ne a relevant feature as a feature that is dependent onat least one other feature. For the purpose of measuring dependene betweenpairs of features we have applied 3 dependeny measures:� �2 analysis.� Preditive auray.� Mutual InformationIn order to further measure the relevane of features we apply relevane mea-sures based on pairwise dependenies among features in the data set in orderto measure, ompare and rank the features with respet to relevane. For thispurpose 2 relevane measures were proposed:Rmax(Xi) = maxDM(Xi;Xj)Ravg(Xi) = PjDM(Xi;Xj)pBased on the above relevane measures we have proposed and tested the fol-lowing methods to identify irrelevant features. First we propose a �lter approahPage 77 of 90



whih works by ranking the features aording to their relevane sore and se-leting only the most relevant features by setting a threshold. The threshold isset using a learning urve sampling method using a ost versus bene�t approah.In a seond approah for performing FSS with the proposed relevane mea-sures we propose a �lter method based on a hypothesis test known from statistis.The hypothesis test uses the relevane measures as a test statisti obtained bysoring a sample set of randomly generated features against the database. Afeature is delared relevant if its test statisti provides su�ient evidene againsta hypothesis of independene.Lastly, a veri�ation that the sore measures are truly apable of rankingthe features with the most informative features �rst, has motivated a hybridapproah. The hybrid approah an be seen as a wrapper that takes advantageof the rankings provided by the proposed relevane measures. The use of thisranking signi�antly redues the number of feature subsets in the searh spaethis approah has to inspet. For the purpose of indution we have used theNaive-Bayes model. Additionally we propose to redue the number of inspetedfeature subsets by disarding those features that have been deemed irrelevant bya �lter approah.Experimental evaluation has been performed on the 3 proposed FSS meth-ods using 3 syntheti and 4 real-world data sets. The relevane measures weretested in their ability to orretly identify the irrelevant features. By omparingthe obtained results with the knowledge we have about the data the relevanemeasures showed apable of ranking the truly relevant features �rst. Table 7.1gives an overview of the performane of eah of the proposed methods for alldata sets.The hybrid approah is in most ases able to make signi�ant additionalredutions whih orresponds to our belief that the �lter approah is onserva-tive. This is espeially notieable for the 3 leukemia data sets (AML, ALL andLEUKEMIA). Considering the knowledge we have on the arti�ial data sets therankings produed, orretly rank all relevant features �rst. With regards to theWAVE data set the rankings also re�et orret ranking within relevant features.All rankings are supported by validation performed using the Naive-Bayes andk-modes lustering tehniques.Most remarkable are the results of the PA relevane measure. In ase of thehigh dimensional LEUKEMIA database it is, together with the hypothesis test,able to disard 3320 features. If the hybrid is applied on the remaining featuresubset, only 13 features remain. A model learned on this small feature subsetvalidates that the removal of the 7116 features in�its almost no harm to thelearned model.
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Appendix : Conlusion

Filter HybridData Method Learning urve Hyp. test Learning urve Hyp. testSYN10 MI 10 10 6 6PA 10 10 6 6�2 15 20 7 7SYN20 MI 10 10 6 6PA 10 10 6 6�2 29 30 7 7WAVE MI 18 19 13 13PA 19 26 13 13�2 34 40 10 10CoIL MI 44 72 13 16PA 40 39 24 16�2 85 54 21 25AML MI 22 25 10 10PA 18 25 8 9�2 25 25 17 17ALL MI 38 47 12 13PA 35 47 8 8�2 47 47 12 12LEUKEMIA MI 6975 6809 66 66PA 3809 459 26 13�2 7129 6657 182 182Table 7.1: Overview of the relevant features found using the �lter and the hybridapproah.
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AHypothesis
DistributionsHere we present the graphs for the hypothesis tests performed on the data sets:WAVE, ALL, AML and COIL. On all �gures the dashed lines show the ritial values.On all the �gures the graphs are from left to right, �2, MI and PA respetively.

0.2 0.3 0.4 0.5 0.90.6 0.7 0.8

200

350

300

250

150

100

50

0
0.0002 0.0003 0.0004 0.0005 0.0006 0.00120.0007 0.0008 0.0009 0.001 0.0011

250

500

450

400

350

300

200

150

100

50

0
0 0.002 0.004 0.006 0.0160.008 0.01 0.012 0.014

800

1600

1400

1200

1000

600

400

200

0Figure A.1: The distiributions of eah of the sore measures applied to randomfeatures sored against the ALL data set.
0.2 0.3 0.4 0.5 0.90.6 0.7 0.8

200

350

300

250

150

100

50

0
0.0002 0.0003 0.0004 0.0005 0.0006 0.0010.0007 0.0008 0.0009 0.0011 0.0012

250

0.0001

500

450

400

350

300

200

150

100

50

0
0.0160.0140.0120.010.0080.0060.0040.002

800

0

1400

1200

1000

600

400

200

0Figure A.2: The distiributions of eah of the sore measures applied to randomfeatures sored against the AML data sets.
Page 81 of 90



0.70.650.60.550.50.450.40.35

200

0.30.25

300

250

150

100

50

0
0.0003 0.0004 0.0005 0.0006 0.0007 0.00130.0008 0.0009 0.001 0.0011 0.0012

250

500

450

400

350

300

200

150

100

50

0

400

450

0.005 0.01 0.030.015 0.02 0.025

200

350

300

250

150

100

50

0Figure A.3: The distiributions of eah of the sore measures applied to randomfeatures sored against the WAVE data set.

0.2 0.25 0.3 0.35 0.4 0.60.45 0.5 0.55 0.65 0.7

250

0.15

500

450

400

350

300

200

150

100

50

0

500

0.0008 0.001 0.0012 0.00180.0014 0.0016 0.002 0.0022

200

450

400

350

300

250

150

100

50

0
0 0.002 0.004 0.0120.006 0.008 0.01

150

300

250

200

100

50

0

0.25 0.3 0.35 0.4 0.45 0.60.5 0.55 0.65 0.7

250

0.2

450

400

350

300

200

150

100

50

0
0.00320.0030.00280.00260.00240.00220.0020.0018

200

400

350

300

250

150

100

50

0
0.020.0180.0160.0140.0120.010.0080.006

200

0.0040.0020

250

150

100

50

0

0.25 0.3 0.35 0.4 0.45 0.70.5 0.55 0.6 0.65

250

0.2

400

350

300

200

150

100

50

0
0.003 0.0032 0.0034 0.0036 0.00420.0038 0.004 0.0044 0.0046

200

0.0028

400

350

300

250

150

100

50

0
0.0220.020.0180.0160.0140.0120.010.008

200

0.0060.0040.002

250

150

100

50

0Figure A.4: The distiributions of eah of the sore measures applied to randomfeatures sored against the COiL data set. The rows are from above, ardinality2, ardinality 3 and for ardinality 4.
Page 82 of 90



Appendix A: Hypothesis Distributions
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