





Faculty of Engineering and Science

Aalborg University

TITLE:
Unsupervised Feature Subset Se-
lection.

SEMESTER PERIOD:
DATG,
January 20th - June 13th, 2003

PROJECT GROUP:
E4-206

GROUP MEMBERS:
N|C0|a_] S¢ndberg-Madsen, nicolaj@flaeskesteg.dk
Casper Thomsen, casper©flaeskesteg.dk

SUPERVISOR:
JOSG M Peﬁa, jmpQ@cs.auc.dk

NUMBER OF COPIES: 6
NUMBER OF PAGES: 81
PAGES IN APPENDIX: 3
TOTAL NUMBER OF PAGES: 90

FRONTPAGE ILLUSTRATION BY:

Department of Computer Science

SYNOPSIS:

This master thesis has been developed in
the domain of Decision Support Systems
and it covers the sparsely researched area
of unsupervised feature subset selection
for data clustering. In the report we dis-
cuss what characterizes features that are
relevant for data clustering and we pro-
pose new relevance score measures which
are capable of producing a ranking of the
features with respect to their relevance.
The relevance scores, combined with a
threshold, can be used in a filter approach
where the uninformative features are dis-
carded. The report proposes two meth-
ods for setting a threshold and the score
measures are tested empirically on 3 syn-
thetic data sets and 4 real world data sets.
In a second step we propose to use the
relevance rankings in a hybrid approach
to performing unsupervised feature sub-
set selection. This method allows us to
perform unsupervised feature subset se-
lection with less model inductions than
ordinary wrapper approaches. Empirical
tests show both the filter and hybrid ap-
proaches to perform satisfactory.

M | rja m S¢nd berg' M adsen , mirjam@soendberg-madsen.dk






Preface

This report has been written as documentation of the second part of a master
thesis at the Department of Computer Science at Aalborg University, Denmark.
The report has been written during the period from the 20th of January to the
13th of July, 2003. The project will be evaluated on the 27th of July, 2003.

The inspiration for the project comes from a data mining project developed
during the first part of this masters thesis. An article covering the central parts of
the project has been submitted to the Fourteenth European Conference on Ma-
chine Learning and the Seventh European Conference on Principles and Practice
of Knowledge Discovery in Databases (ECML/PKDD 2003).

In the report we follow some general conventions which the reader should be
familiar with before proceeding. The references in the report are marked with
a number corresponding to the numbers in the literature list like [3]. Certain
phrases are abbreviated. Abbreviations appear in parenthesis after the full phrase,
for example “... feature subset selection (FSS) ...". [talics are used to mark
the introduction of a new technical term and the term can be expected to be
explained short after.

We would like to thank our supervisor Jose M. Pefia for his great help, valuable
comments and enriching discussions that have given the project more than we
could hope for. In addition we would like to thank Thorsten Ottesen and Dennis
Kristensen for practical and implementation specific help without which some
results would have been impossible to obtain in the short time available. We are
also grateful for the contribution provided by Mirjam Sgndberg-Madsen who is
responsible for the design of the front page.

Nicolaj Sgndberg-Madsen Casper Thomsen
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Introduction

Research is to see what everybody else has seen, and to think what nobody else
has thought.
— Albert Szent-Gyorgi

Decision support systems take an increasingly important role in applications
today. Lately focus has turned to data mining as a new big industrial tool to use
in a wide area of applications. Data mining is the process of searching through
data looking for meaningful characteristics and trends. It uses statistical analysis
and machine learning techniques, such as neural networks and decision trees,
to find the relationships in the data that ordinary interaction with the database
would not find. This allows identification of undetected relationships between
items such as associations between products, sequences of events that lead to
later events, and new information.

Data mining has its applications within science and research as well as in
the industry and in business applications. It suits perfectly within application
areas where there is a huge amount of factors each potentially capable of af-
fecting the application area. The medical research societies which deal with a
huge amount of data such as DNA-profiles, symptoms, blood-types etc., have
been using data mining with success. In addition data mining has also received
attention in commercial domains. The following is an often referred example of
a successful application of data mining performed by an American supermarket
chain. It illustrates how the process of examining raw data, drawing mature con-
clusions and as a consequence, deploying the result can result in an improved
understanding of a business. Moreover, the resulting knowledge increased profit
for the supermarket.
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“For example, one Midwest grocery chain used the data mining capac-
ity of Oracle software to analyze local buying patterns. They discov-
ered that when men bought diapers on Thursdays and Saturdays, they
also tended to buy beer... The retailer concluded that they purchased
the beer to have it available for the upcoming weekend. The grocery
chain could use this newly discovered information in various ways to
increase revenue. For example, they could move the beer display closer
to the diaper display.” [52]

In addition the authors of this report have participated in an industrial data
mining project recently [37]. In this project a thorough analysis of a textile com-
pany’s data yielded a new description of how the dealers in the company behave
which can be used to explain why some end their career or to target campaigns
for hiring better dealers.

In general, the need for data mining is a result of a growing amount of
data stored within even the smallest companies. In many cases there is a lot of
hidden information in that data which can be used to predict events in the future
or to make a detailed description of the present. Clustering and classification
techniques are developed for the purpose of dealing with many of the tasks that
appear in data mining projects.

In classification each record in the database is assumed to belong to a prede-
fined class which is determined by one of the attributes, namely the class label.
A predictive model is produced by analyzing each record in a database where
the class label is known. When the model is completed it can be used to pre-
dict or classify yet unseen records. Classification is also referred to as supervised
learning [28]. On the other hand data clustering aims to describe the group-
structure which is underlying in a given data set. As opposed to classification,
clustering generates a model without consulting a class label which explains why
it is referred to as unsupervised learning. Generally, clustering is divided into two
groups, partitional and probabilistic clustering. Partitional clustering yields a de-
scription by dividing the data into a partition whereas in probabilistic clustering
we construct a probabilistic model of the data.

One of the critical tasks in data mining is data clustering [37]. In this part
of data mining several factors potentially influence the results, for instance the
number of clusters k, and the production of a meaningful description of the
structure which is hidden in the data. In addition an important factor is the size
of the data. It is most critical if databases consist of a huge amount of features.
In many cases some of the features are not informative for the purpose of learning
from the data and can be considered as noise and we say that they are irrelevant.
Such features have a negative impact on learning in that they introduce distortion
rendering the results less accurate. In addition the complexity of any learned
model increases in the number of features, thus including irrelevant features will
make the learned model harder to comprehend and increase the cost of induction.
Moreover, if a part of the data base can be discovered, which can be left out
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Chapter 1: Introduction

without doing any harm to the learned model, this combined with the model
description, can be regarded as valuable information.

Therefore in this project we focus only on the problem of reducing the number
of features. This problem is usually referred to as feature subset selection (FSS).
FSS is the process of identifying the most effective subset of the original features
in a data set for a particular purpose and it is a central problem in data analy-
sis [17, 34]. It can be performed both supervised and unsupervised. Supervised
FSS is applied in classification where the class label is known and finding the
optimal subset can be considered a search problem where a given subset can be
tested against the class labels. Similarly, unsupervised FSS is performed in data
clustering. In unsupervised FSS a test against a class label does not exist and so
other techniques must be developed in order to evaluate a given subset.

In the field of unsupervised FSS there has not been performed a great deal
of research currently [14, 34]. There is however a growing need for reducing the
dimensionality of data for clustering which further motivates this project.

We are in this project concerned with the problem of unsupervised FSS as
the identification of irrelevant features for data clustering. Therefore we wish
to identify the characteristics which must account for irrelevant features and
propose a method which can effectively discard irrelevant features resulting in a
more comprehensible model without doing any harm to the learned model.
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Clustering

The notion of finding 'natural groups’ tends to imply that the algorithm should
passively conform like a wet teeshirt.
— Michael R. Anderberg

Many problems which arise in data mining can be solved by using data clus-
tering [3, 13, 29]. In general data clustering is regarded as an important way
of summarizing data in an understandable manner [18]. Despite its widespread
use there exists different definitions, interpretations and expectations of which
the term clustering gives rise to [33, 42, 47]. Therefore in order to continue our
discussion of data clustering we define the concept of data clustering. First, we
outline the assumptions on which any clustering technique is based. Then we
introduce 2 different clustering techniques: a partitional clustering algorithm and
a model-based clustering algorithm.

2.1 Clustering

Clustering is a process of discovering groups in data [34]. It yields a description
of the group structure which is hidden in the data when the group memberships
are unknown [54]. The discovery process aims to discover classes in the data
which are natural for the data set. It is clear that it only makes sense to identify
groups if some groups exists. Therefore, clustering is based on the assumption
that the data is generated by an underlying model which is responsible for such
groups. Specifically, the purpose of clustering is to gain more information about
this model. Figure 2.1 depicts a mechanism which is often used to explain the
underlying model. It consists of a selector, a number of physical processes and
the data set.

The assumption is that each instance in the data set is generated by this
mechanism. For each instance the selector selects one and only one of the phys-
ical processes. The physical process then generates each attribute value of the
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2.1 Clustering
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Figure 2.1: The underlying model: Each instance in the data set is generated by
a physical process, selected by a selector which remains unknown for us.

instance, based on an unknown probability distribution. In the end, all the in-
stances generated by one physical process are assumed to belong to the same
cluster. The clusters and the physical processes remain unknown or hidden, i.e.
it is unknown which physical process is responsible for generating a specific in-
stance and how it has been generated (its associated probability distribution).
More specifically, cluster analysis is based on the following assumptions:

1. Clustering is applied to a data set D containing n instances, such that
D = {z;...x,}. Each instance x; is a vector, of p values z;; ... 2. In
addition we let x; be an instantiation @ of the p-dimensional vector of
random variables X = {X;,..., X, }.

2. Each instance x; € D is a member of one and only one of the underlying
hidden clusters C' = {ci,...c;}. The cluster membership is represented
by the label /; assigned to each a;. Since this cluster membership is un-
known (hidden cluster membership) we refer to C' as the hidden cluster
membership variable or simply the cluster variable.

3. D is generated by an underlying model consisting of k physical processes
which, together with the selector are represented by a joint probability
distribution.

We denote the joint probability distribution for the selector P(c), the probabil-
ity for each physical process to be selected, and the joint probability distribution
for each physical process as P(x1,...xp|c) or simply P(x|c), the probability of
generating a case x given the cluster membership C.

In addition it is worth to mention that the instances in D can be of any
type, i.e. categorical, real valued or even a mix of those kinds. However we want
to make the following constrain: In this project we will only allow the type of
instances in D to be categorical.

In general, clustering can be regarded as an optimization problem. Given a
data set D, a feature subset and the number of clusters £ must be selected
which results in an optimal clustering model.
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Chapter 2: Clustering

The resulting model, must be optimal with respect to some measurement
function which assigns a score to each possible model. This measurement is
based on an intuitive understanding of heterogeneity and homogeneity which
is referred to as the clustering criterion. If this criterion is translated into a
mathematical formula which measures the homogeneity within each cluster, the
clustering problem is left as a search for the model that yields the most homoge-
neous clusters. There exist two classical models of the clusters, partitional and
probabilistic.

A partitional data clustering (also called partitioning) algorithm partitions a
dataset into k clusters such that instances in the same cluster are more similar
than instances in other clusters. The process is required to be exhaustive, i.e.
all instances in D are assigned to a cluster while each cluster is required to be
non-empty and mutually exclusive. That is, each cluster must contain at least
one instance and each instance is assigned to one and only one cluster.

The probabilistic models however, describe the clusters by modeling the
mechanism that generated the data. These methods are regarded as more ad-
vanced than the partitional algorithms due to their well-founded base in statistics
[13, 47, 54]. After identifying a number of clusters it recovers the probability dis-
tributions p(c) and P(x|c) of the underlying model.

In unsupervised learning the number of clusters is usually unknown. As this
factor can have a large impact on the result we assume it to be known for all
data sets used in the remainder of the report. Finding k& is out of scope for this
project.

In the following we introduce the two clustering methods we are going to
use in this project, a partitional technique, called the k-modes algorithm and a
model-based technique called the Naive Bayes (NB) Model.

2.2 The k-modes Algorithm

The k-modes algorithm was introduced by Huang [31] as a variation of the well
known k-means algorithm [46]. k-modes runs on categorical data and maintains
the efficiency that k-means exhibits on large data sets.

The k-modes algorithm iterates through the data set and assigns each in-
stance to the cluster that contains more similar instances than the other clusters
and keeps repeating this untill convergence has been obtained, i.e. the result of
iteration 4 is equal to the result of iteration 7 — 1. The assignments make use of
the clustering criterion which varies for different clustering methods.

2.2.1 Definitions

We run the k-modes algorithm on a data set D of n instances. Each instance
x € D is a vector of p nominal values z;...z,. The k-modes algorithm
partitions D into k clusters ¢; ... cg, by assigning each instance to the cluster
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2.2 The k-modes Algorithm

with the most similar cases, or more correct, the least dissimilar cases. To measure
the similarity between cases we use a dissimilarity measure. Let d(x,y) be the
dissimilarity between a pair of cases  and y. Then the dissimilarity returned by
d is the total number of mismatches of the corresponding attribute categories of
the two cases [31]. We have

d(z,y) =Y 6(z),y)) (2.1)
j=1
where
5(zj,yj) = { ; EZ ;Zﬁ (22)

The dissimilarity measure is also known as the Hamming distance [6].
Each cluster is represented by a prototype, or a mode. A mode is a nominal
vector of size p that minimizes:

Y dz,a) (2:3)

reo

for each case & € ¢, and ¢; is a cluster represented by g;.

A mode q is both initiated and updated using a frequency based method. For
each attribute x; in the subset of the data set assigned to cluster ¢; we search
for the most frequently occurring state. The state of ¢ at index j will thus be
be updated to represent to most frequently occurring state in ¢;.

2.2.2 The Algorithm

The essence of the k-modes algorithm is the search for a partitioning which is
optimal with respect to a certain cost function. The cost function is the sum of
Hamming distances from each instance to the mode of the cluster to which it is
assigned.

The cost function which must be minimized is:

k
B = zz > dz,qp), (2.4)
=1 Lecc

where q; is the cluster mode of cluster ¢; and @ € ¢; is the set of cases assigned
to cluster ¢;. The k-modes algorithm consists of the following steps:

1. Select & initial modes, one for each cluster.
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Chapter 2: Clustering

2. Use Equation 2.1 to assign each instance to the cluster with the most simi-
lar mode. Each time an instance has been allocated to a cluster, recalculate
the cluster mode using Equation 2.3.

3. After all instances have been allocated to clusters, retest the dissimilarity
of instances against the current modes. If an instance is found such that
its nearest mode belongs to another cluster rather than its current one,
reallocate the instance to that cluster and update the modes for both
clusters.

4. Repeat 3 until convergence has been reached, i.e. no instance has been
reassigned after a full cycle test of the whole data set.

Like the k-means algorithm, the k-modes algorithm is likely to produce locally
optimal solutions that are dependent on the initial modes and the order of objects
in the data set [55]. Therefore it is appropriate to run the k-modes algorithm
several times with different initial modes and pick the best result with respect
to the cost function [31]. To pick the initial modes totally at random might not
be appropriate since there might be a risk that one or more cluster modes will
be assigned values such that no, or very few instances will be assigned to it.
Therefore we have chosen to modify Step 1 and 2 in the above algorithm in
order to obtain initial modes that are close to the data:

1. Assign each instance in the data set to one of the k clusters chosen at
random, ensuring that each mode will be assigned at least one instance.

2. When all instances are assigned to a cluster, calculate the & cluster modes
using Equation 2.3. If two modes are identical, restart from step 1.

2.3 Model-Based Clustering

As already mentioned there are two main approaches to clustering, namely par-
titional and probabilistic clustering. The latter can provide each case with a
probability distribution with the probability of each cluster. The latter approach
is sometimes called a soft (or fractional) assignment as opposed to the hard
assignments performed by partitioning.

2.3.1 Finite Mixture Models

As mentioned model-based clustering is an attempt to model the process which
has generated the data. Thus a model contains the probability distribution mod-
eling the selector and a separate probability distribution for each cluster. The
fact that the number of clusters is assumed to be finite and the model is a mix
of models, one for each cluster, has led to the name finite mixture models. The
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2.3 Model-Based Clustering

aim of a finite mixture model is to model the joint probability mass function
p (x|0) which is most likely to have generated the data D. We have:

k
pl0) = Y p(cilf) plxlc,b;)
i=1

k
= > m pllci,0;) (2.5)
i=1

where 7m; = p(c;|0) is the marginal probability of each cluster such that ). m; =
1, p(x|ci, 0;) is the probability distribution which is modeling cases in the i'th
cluster, and @ are the parameters of the model where = {m1, ..., 7, 01,...,0k}.

..Cy}

Figure 2.2: The NB Model. The variables X ... X, are independent given the
cluster variable.

In model-based clustering a model structure and the probability distributions
associated with each cluster is learned from a data base. However it is common
that one would stick to a fixed structure beforehand. A widely used fixed structure
of finite mixture models is the NB model. The NB model is a model where an
assumption of conditional independence among each pair of the variables in
X = {Xi,...X,} given the cluster random variable C' is made. Under this
assumption p(x|c;, 0;) can be calculated as

p

p(xlci,0;) = [ ] p(wil6), (2.6)
=1

where p(x|0!) is the probability distribution over the values for the variable X
and 9% is the set of parameters. Figure 2.2 depicts an NB model, where C is the
cluster membership variable and each X; € X are the variables in the data base.

In order to assign a case x to a cluster ¢; we need the probability of the
cluster membership given x, namely the cluster membership probabilities. We
use Bayes rule to get
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Chapter 2: Clustering

mi p(x|ci, b;)
iy p(ele;,05)

mi 11, p(a]6})
b m T, p(l6))
which can be used to assign each case & € D the most likely cluster, or to

perform a soft assignment where each case @« is assigned fractionally to the set
of clusters according to the distribution p(c;|x, 0).

pleilz,0) =

(2.7)

2.3.2 Learning a Naive Bayes Model from Data

In order to learn a model from a set of data D = {x;...x,} we search for
the parameters which maximize the likelihood of the training data, L(D|#). The
most likely @ is usually denoted 6 and this approach to finding the parameters 6
is called the maximum likelihood criterion (ML):

0 = argmazy L(D|0) = argmaze H p(x|0). (2.8)
xreD

Let néj denote the number of cases in the database which belong to the ith

cluster and for which the Ith variable is in state j. Similarly, let Hﬁj denote the
probability that, for a given case in cluster 7, the [th variable is in state j. The
maximum likelihood criterion is known to be:
lj
Al n.:
0] = —, (2.9)
n;
where n; = Zj ni] Similarly, the marginal probabilities of the ith cluster m; are
found as:
n;

(2.10)

m =
n

This approach is an analysis of the frequencies of occurrences in the data only. In
some cases, when one wants to incorporate prior knowledge about the probability
distributions one may want to use the maximum a posteriori (MAP) estimate.
Let p(@) denote our prior knowledge about the parameters, then we have:
i _ _ p(0)
map = argmazgp(0|D) = argmaxg L(D|0)——
L(D)
= argmazy L(D|0) p(0) (2.11)
Let aéj denote the prior knowledge we have for cases in the ith cluster with

variable [ in state j, where o; = Zj aéj. The MAP estimate is then:

14 alj—l—nlj li li
] i . A J. J .
0; = 7% T, n; = gj n'; o, o >0, (2.12)
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2.3 Model-Based Clustering

and similar for the marginal cluster probability for the ith cluster which is found
as:
o + Ny
= ﬁ; o= Zaj; a;, a > 0. (2.13)
j

2.3.3 Learning a Naive Bayes Model for Clustering

The above approach can be used to learn an NB model from data. However, in
clustering the cluster membership is unknown. This constitutes a problem since
the cluster membership variable is assumed to be known in the above approach
when the values for @ are estimated. Therefore clustering can be regarded as a
special case of learning a model from data with missing values. Therefore we
need an algorithm which is able to deal with missing values. One well known
algorithm for learning parameters of a probabilistic model from a data set with
missing values is the Expectation - Maximization algorithm, or simply the EM
algorithm [11]. It consists of two steps, namely the expectation (E) step and
the maximization (M) step. In the E step each case in the database € D is
assigned the posterior probability of its cluster membership (cluster membership
distribution) using Equation 2.7. In the M step these probabilities are considered
as real data and the parameters 6 of the model are learned using ML estimates
or MAP estimates. After each iteration the algorithm measures the performance
of the parameters. The performance of the parameters 6 on a data set D is given
as the likelihood of the data given the parameters, L(D|6):

Performance(#) = L(D|0) = H p(x|0)
xeD

k p
= II > =[] p(wil6). (2.14)
=1

xreDh i=1

It is sometimes convenient to use the logarithm of the likelihood (/og likelihood)
to measure the performance of a model:

k p
Performance(f) = Z log [Z % H p(xl|9§)] . (2.15)

xreh 1=1 =1

The E step and the M step are repeated until a certain stopping criterion is met.
As with the k-modes and k-means algorithms the stopping criterion is when
the model has reached convergence, i.e. when the parameters 6 have not been
changed during the last iteration of the E step and the M step. Sometimes it is
convenient to have a more fuzzy understanding of the term convergence, in such
cases one would choose a a threshold  as stopping criterion. If the improvement
in performance, measured by the log likelihood of the model, in the last iteration
of the E and M step is less than -y, convergence has been reached, and the
algorithm is terminated. In this work we will stick to a threshold v = 1076,
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Chapter 2: Clustering

2.3.4 Implementing the Expectation Step

The E step performs a fractional completion of the database where each case is
assigned fractionally to clusters. For this purpose we need p(c;|x, @) Vi. Thanks
to the conditional independencies in the NB model (Equation 2.6) we can use
Equation 2.7 for this purpose. Here we introduce an example.

Table 2.1 and 2.2 show an example of 2 components associated with cluster
c1 and ¢y respectively.

C1 I 9 I3 Co I €9 I3
p(z;=1)[03]02]09 p(z;=1) [ 0504 |07
p(z;=2)0.7]08]0.1 p(z;=2) 1051|0603

Table 2.1: The probability distribu-  Table 2.2: The probability distribu-
tions for component 1 conditioned on  tions for component 2 conditioned on
cluster cl. cluster ¢2.

First we assume that we have the prior probabilities for p(c1) = 0.4 and p(c2) =
0.6 we then have for a given case X = [1,2,2]:

0.4 % (0.3%0.80.1)

X =[1,2,2],0,) =
plelX =[122.00) = 03508+ 0.1) £ 0.6 + (0.5 % 0.6 £ 03)

=0.16

0.6 x (0.5 0.6 x 0.3)
X =11.2.2].05) = =0.84
pleelX =[1,2,2].02) = G 03708+ 0.1) £ 06+ (05506 +03)

In the E step all cases in the database we assign the cluster membership dis-
tribution as described here. In the above example all cases with the configuration
X =[1,2,2] are assigned the probabilities 0.16 and 0.84 for cluster ¢; and ¢
respectively.

2.3.5 Implementing the Maximization Step

In the maximization step we assume the cluster membership distributions ob-
tained in the previous E step are real data and recalculate the parameters of the
model given these distributions. This is done using the ML estimate or the MAP
estimate. In our case we use the MAP estimate, and since we have no reason to
prefer some parameter values above others we consider all to be equally likely a
priori. That is, we use a uniform prior probability distribution.

What needs to be done is to update the parameters 6 of the model. That is,
the probability distributions within each component p(x|¢;, 0;) and the marginal
probabilities p(c;). This is done using Equations 2.12 and 2.13 with one minor
change. Since the E step has assigned fractional cluster membership probabilities
to each case instead of hard assignments the frequency analysis can not be
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2.4 Summary

performed by counting cases. Instead the probabilities are summed to obtain n; =
Y xepPlcilz,0) and n? =Y xepP(@ = 7, ci|9§]) when applying Equations
2.12 and 2.13. In fact, counting frequencies of hard assignments can be regarded
as a special case of the above two sums where the probabilities are 0 or 1.

Let us assume we have a database of the same dimensionality as in the
previous example (any other equality is pure coincidence) in which the cluster
membership probabilities have been attached to each case in the previous E step.

|21 | @2 | @3 || plar]z) | plea|x) |

1 2 1 0.6 0.4
1 1 2 0.3 0.7
2 2 1 0.2 0.8
2 2 2 0.9 0.1
1 2 1 0.6 0.4

Table 2.3: Data instances with attached cluster membership probabilities.

We consider the 5 cases in Table 2.3 and estimate the marginal probabilities for
p(c) using Equation 2.13. We use the MAP estimate and consider the database
with the new fractional cluster assignments as real data. Since, with the fractional
assignments we can not count the number of cases assigned to each cluster n;, we
sum the fractional probabilities, i.e. we let n; = > ..., p(ci|z, §) when applying
Equation 2.13. If we apply the MAP estimate with uniform priors we get:

14 (0.6 + 0.3 + 0.2 + 0.9 + 0.6)

p(c1) 715
14+ (0.4+07+0.8+0.9+0.4
ple2) = 04+ 2++ = +09+04) _ 0.496

To update the parameters 9? we iterate through each configuration of each of the
components. We apply Equation 2.12 and like before we use the fractional cluster
membership assignments as real data. Therefore we let n? = Y zepplz =
I ci|0§J) when estimating p(X = x1]|c1,01). For 1 = 1 we get: Ho'gi% =
0.54 while for ; = 2 we get: W = 0.46.

One question which remains is how to find some appropriate starting parame-
ters for learning a model. An approach which has shown its worth is one proposed
by Thiesson et al. [66]. The idea in this method is to estimate the parameters
in a single-component model from the data using the MAP estimate and use
this component to generate k components by perturbing the parameters of the
single-component model. In other words, the parameters of the single component

model are changed slightly at random in order to generate k unique components.

2.4 Summary

In this chapter we have described the concepts of data clustering which form a
base for the proposed FSS methods. The assumptions on which all data clustering

Page 14 of 90



Chapter 2: Clustering

techniques are based, have been outlined to give a basic understanding of data
clustering.

In the remainder of the report we will be using 2 clustering techniques: NB
model and k-modes. The methods have been chosen since they are both able
to deal with categorical data which is the only type of data used in this project.
In addition the methods are part of 2 fundamentally different types of cluster-
ing. The NB model belongs to the group of model based clustering techniques
whereas k-modes belongs to the group of partitional clustering techniques.

One of the unknown factors in unsupervised learning is the number of clusters.
As this issue is out of scope for this project we will assume the number of clusters
k to be known.
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Feature Subset
Selection

It is probably the choice of variables that has the greatest influence on the ulti-
mate results of a cluster analysis.
— Michael R. Anderberg

In general, feature subset selection (FSS) is motivated by a wish to reduce the
dimensionality of large data sets since data analysis using induction algorithms
can be both highly time and space consuming. Moreover, models of large data
sets tend to be harder to comprehend than models learned on smaller data sets.
In case FSS can be performed effectively decreasing the number of features in
the data base, the problem would be left computationally more feasible for the
induction algorithms while the learned model would be more comprehensible. But
what may also be considered important is that a clear distinction between rele-
vant and irrelevant features is also valuable information as part of a summarizing
description of a data set.

Critics of FSS would state that a model learned from the whole data set
will always perform equally well as a model learned from relevant features only,
leaving any effort spent on FSS wasted. This is sometimes called the assumption
of monotonicity, i.e. the performance of a theoretically ideal learning algorithm
is not damaged by the presence of noise [63]. However, empirical tests in [67]
show that the inclusion of noise in some cases decrease the performance of the
induced model.

In this chapter we continue the discussion of FSS. First we present FSS as a
search problem and outline the differences between FSS performed in supervised
and unsupervised learning. Then we describe the main ideas of filter and wrapper
approaches and discuss these in relation to related work. After a discussion this
chapter ends with several new proposals for measuring the relevance of a feature
for use in unsupervised FSS.
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3.1 Feature Subset Selection as a Search Problem

The problem of selecting the optimal feature subset can be regarded as a search
or optimization problem (e.g [10, 14, 23, 32, 39, 43, 27, 71]) where each subset
of features is regarded a point in the search space. Any search method requires a
starting point in the search space, a search strategy, an evaluation function and
a stopping criterion [65]. An exhaustive search for the optimal feature subset is
exponentially complex i.e. in a database of p features there exists 2P possible
subsets. In such a search space any realistic approach must rely on a heuristic
search strategy.

A rough classification of search strategies for solving optimization problems
could be to distinguish between complete and heuristic search. The underlying
idea in complete search strategies is the systematic examination of all the so-
lutions of the search space (e.g., depth-first, breadth-first, branch and bound,
etc.). Unfortunately, complete search is usually impractical as most optimization
problems involve large search spaces that make this approach computationally
prohibitive. Moreover, according to [68], the majority of the most challenging
optimization problems that come from the methodological development of new
techniques in computer sciences as well as from real-world scenarios turn out
to belong to the category of NP-hard problems [24]. These facts together with
the lack of flexibility of those search strategies that are based on classical tech-
niques of operational research and numerical analysis justify the use of heuristic
search strategies [51, 53, 60]. Unlike complete search strategies, heuristic search
strategies do not examine the whole search space of the problem being optimized
but only those parts that are considered promising according to certain heuristic
criteria. Although heuristic search strategies neither ensure that the final solu-
tion is a global optimum of the optimization problem at hand nor facilitate its
mathematical modeling, they provide the user with a final solution that is near a
global optimum in acceptable runtime. In other words, heuristic search strategies
provide the user with a trade-off between effectiveness and efficiency, which is
a question of capital importance when problem optimization is approached from
an engineering perspective.

Heuristic search strategies can be further divided into deterministic and non-
deterministic or stochastic. In deterministic heuristic search strategies (e.g., for-
ward, backward, stepwise, hill-climbing, threshold accepting, etc.), the same final
solution for a given optimization problem is always achieved under the same con-
ditions. In other words, a deterministic heuristic search strategy maps every initial
solution of the optimization problem to a single final one. On the other hand,
non-deterministic heuristic search is motivated by trying to avoid getting stuck
in a local optimum of the optimization problem at hand, usually by means of ran-
domness [72]. Due to its stochastic nature, different runs of a non-deterministic
heuristic search strategy might lead us to achieve different final solutions for
a given optimization problem under the same conditions. While some of the
stochastic heuristic search strategies store only one solution of the optimization
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problem at hand at each iteration (e.g., simulated annealing [40, 49]), other
approaches exist. Some of these other approaches are grouped under the de-
nomination of evolutionary algorithms. Some examples of classical evolutionary
algorithms are genetic algorithms [25, 30], evolutionary programming [21, 22],
and evolution strategies [59, 62]. See [5, 20, 25, 44| for reviews of these and
some other.

3.2 Feature Subset Selection Overview

In the domain of FSS there are 2 main areas of interest: supervised and unsuper-
vised FSS. Supervised FSS has for some time been the topic of much research
whereas unsupervised FSS has only recently received attention due to the grow-
ing interest in the field of data mining. In this section we will give an overview
of the 2 areas with specific focus on unsupervised FSS as it is the focus of this
project.

3.2.1 Supervised Feature Subset Selection

The vast majority of research in FSS has been performed in the supervised
learning paradigm paying little attention to the unsupervised learning paradigm
[14, 65]. The main objective of FSS applied to supervised learning is to increase
the classification accuracy of the learned model by removing noise. Knowing the
class label of each instance makes evaluation of any feature subset possible. It
is common to use a model’s ability to predict the class label of yet unseen cases
to measure the performance of a feature subset, e.g. John et al. [36] who use
cross-validation. In other methods the presence of the class label has inspired the
use of dependency based methods, where the dependency between each feature
and the class label is measured in order to leave out irrelevant features (e.g.

[27]).

3.2.2 Unsupervised Feature Subset Selection

Applying FSS to unsupervised learning is a challenging task of data analysis.
Using the same procedure as for supervised learning is impossible due to the
unknown class label. There exist no standard definition of relevance within unsu-
pervised FSS and it will therefore be clearly stated in this report. For instance, a
simple evaluation function proposed by Fisher [18] has been adapted by Talavera
[65] for use in unsupervised FSS and named the feature dependency measure
(FDM). FDM is a function that describes the average increase in the ability to
guess the value of a feature given a second feature. This measure is based on
the assumption that, in the absence of a class label, we can deem as irrelevant
those features that exhibit low dependencies with the rest of the features. The
FDM is defined as:
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3wy, [P (X =, |Xi = 2)” = P (X = 2;,)°]
(1% # X

Equation 3.1 takes into account the increase in predictiveness of one feature
given another feature. The leftmost factor (w) is a weight which provide higher
values to the most predictable values of a feature and is defined as:

(3.1)

The proposal has been tested using a naive filter model approach which calculates
the feature dependency measure for each individual feature and then selecting
the highest scoring features using a fixed predefined threshold which can differ
for each case. Some other approaches can be found in the literature (e.g. [57]).

Contrarily to supervised learning no standard unified performance criterion
exist in the unsupervised learning paradigm [57]. Variables such as the number
of clusters k, the performance of a clustering result and the quality of the data
can have an impact on the results. This means that the term "optimal FSS"

differs in the interpretation of the data analyst and as such makes comparisons
difficult.

3.3 Filters and Wrappers

John et al. [36] introduce the notion of filters and wrappers which constitutes
two different ways of performing FSS. In this section we will outline both methods
and present a discussion of their performance.

3.3.1 The Filter Approach

Figure 3.1 illustrates the filter approach. First the algorithm is passed a set of fea-
tures. Then the irrelevant features are filtered out, based on the analyst’s notion
of relevance, and at last a subset of relevant features is passed to the learning
algorithm. Therefore the main property which characterizes a filter approach is
the independence of a learning algorithm.

Input Feature Induction
features subset selection Algorithm

Figure 3.1: The filter model. Features are filtered out before the model is learned
by the induction algorithm.

Selecting features, using a filter approach, is highly dependent on the un-
derstanding of relevance, i.e. it is necessary to have a measure of relevance for
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features. Such a measure depends on the machine learner’'s understanding of
relevant features. Several works have proposed ways to measure relevance based
on different definitions of relevance. John et al. [36] discuss 4 different definitions
of relevance in the context of classification and show that the performance of
the filter approach is highly dependent on the definition of a relevant feature.

There are several advantages for filter methods within clustering which is
not a concern in classification. Since filtering is performed independently of the
induction algorithm filters are independent of the performance of the learning
algorithm and the success of an induced model. For instance, filters are inde-
pendent of whether the optimal number of clusters k for a data set has been
found.

Several proposals, such as Pefia et al. [57] and Talavera [65], use a filter
approach based on ranking each feature according to a score measure in order
to be able to select a subset containing the most salient features (for Talavera’s
proposal see Section 3.2.2). Both proposals are based on unsupervised learning.

Pefia et al. [57] propose a filter method using conditional Gaussian networks
[45] in which they score a feature’s relevance as the average likelihood ratio test
statistics for excluding an edge between the measured feature and any other
feature in the graphical Gaussian model [70]. The relevance measure for each
feature X is written as:

2
L —n log (1 - Tij|rest>
p—1

(3.3)
j=Li#i

where p is the number of features in the database, n is then number of cases in
the database and T?j\rest is the sample partial correlation of the features X; and
X adjusted for the remaining variables. The relevance measure allows to rank
the features in a decreasing order with respect to relevance. The authors propose
a heuristic which automatically decides on a relevance threshold. The relevance
threshold is calculated as the rejection region boundary for an edge exclusion test
in a graphical Gaussian model for the likelihood ratio test statistic. The features
included in the learning are then those features which have a higher relevance

score than the threshold.

3.3.2 The Wrapper Approach

John et al. [36] argue that it is a disadvantage that filters are independent of
the induction algorithm and propose the wrapper approach to replace filters. In
a wrapper the FSS algorithm is wrapped around the learning algorithm. Using
a heuristic search strategy the wrapper searches through the space of feature
subsets using the learning algorithm as a part of measuring the score of each
feature subset. Each feature subset is evaluated by measuring the performance
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of the learned model. Figure 3.2 illustrates the wrapper approach. First a subset
of features is selected according to some heuristic while secondly the subset
is evaluated using the performance of the induction algorithm on the feature
subset. Generally, subsets of features are evaluated through several iterations of
this second phase. Each iteration requires a new model to be learned.

Input Induction
features Feature subset search algorithm

{

Feature subset evaluation

Induction algorithm

Figure 3.2: The wrapper model. FSS is performed as a “wrapper” around the
induction algorithm.

The lack of a standard unified performance measure for unsupervised learning
is a problem since the performance of the wrapper is highly dependent of the
understanding of a successful cluster model. Another problem for wrappers for
clustering is that the performance of the model depends on the number of clusters
k which is unknown in most cases. Some works try to cope with this problem by
considering finding k£ and the optimal features subset as one single optimization
problem where the number of clusters and features are variables in the search.
For instance, Dy et al. [14] propose to wrap FSS around the EM algorithm with
order identification allowing to find the number of clusters, k, in the data. This
approach solves 2 problems: It decreases the dimensionality of the database by
removing irrelevant features and it finds the number of clusters which yields the
optimal model with respect to a score criterion.

When comparing the two paradigms, filter and wrapper methods, one can not
avoid the fact that the wrapper approach is much more time consuming than the
filter approach. On the other hand wrappers tend to yield more precise models
than models obtained by filter methods [36].

3.4 Score Measures

Before we move on to a discussion of a good relevance measure for unsupervised
FSS, we want to discuss what we understand by good performance of a clustering
model. The lack of a class label and a unified performance criterion has given
rise to several proposals of how performance must be understood in clustering.
This will yield a proposal of several new relevance measures to measure features
relative to the rest of a data set which can be used for unsupervised FSS in a
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filter method.

3.4.1 Performance in Clustering

In general, a successful clustering is one that gives a description of any underlying
group structure in the data if such exist. If we assume clusters exist, good clusters
are clusters that are clear and easy to distinguish from the rest of the data. Fisher
[18] is aware of this fact and he introduces two properties that can be measured,
the intra-cluster similarity and the inter-cluster dissimilarity. They are measured
by two posterior probabilities:

e The intra-cluster similarity: P(X; = z;;|ci), where X; is a variable, z;; is
the jth value of X; and ¢y is a cluster. If this probability is high, the value
of X; = x;; is said to be predictable for the cluster members, and if it
holds for many variables in the cluster ¢, the cluster is said to be cohesive.

e The inter-cluster dissimilarity: P(ci|X; = x;;). The higher this probability,
the fewer clusters other than ¢, share the value X; = z;; which is then
said to be predictive. If this probability is high for many of the variables
within a cluster ¢, we say that ¢ is distinct. [18, 65]

Dividing a data set into a good set of clusters should maximize these probabil-
ities for a number of variables. Doing this, clusters formed on behalf of dependent
features are rewarded. If a cluster ¢; has a variable X; with high discriminating
power the cluster will score a high P(X; = z11|c;) and P(cg| X1 = z11) since
most of the values of X; will be z;; within the cluster and few values of X
will have the value x11 in other clusters. If X7 is highly dependent on another
variable, e.g. X2, then most members of ¢, will have the same value for X, say
Z91. Hence both z11 and 91 contribute with both predictability and predictive-
ness making ¢ more cohesive and more distinct. Thus in general, variables that
are highly dependent on other variables contribute to achieve clusters that are
both cohesive and distinct [65].

3.4.2 Relevance

One of the main problems in unsupervised FSS is to define relevance. In several
previous proposals the definition has been based on a scoring criterion in which
the score of each feature has been evaluated with respect to some measure. Using
a predefined threshold each feature is then either deemed relevant or irrelevant.

We expect that if we know the performance of a feature subset S; which
consists of 7 relevant features, then adding one irrelevant feature to the fea-
ture subset, such that we have S;11, will not increase, or even decrease the
performance of the clustering. We can evaluate the proposed score measures by
evaluating the performance of the subset of features which were deemed relevant
by the filter method and compare with subsets including irrelevant features. The
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essence of this test is that if the performance of the set of features S; is not
worse than the performance of the whole set of features X, then the rest of the
features, i.e. X \ S; can be deemed irrelevant for clustering.

John et al. [41] discuss relevance in the context of supervised FSS but the
definition can also be of interest for unsupervised FSS. They distinguish between
strong and weak relevance and suggest the following definitions:

e A feature X is strongly relevant if removal of X alone will result in per-
formance deterioration of an optimal Bayes classifier.

e A feature X is weakly relevant if it is not strongly relevant and there exists
a subset, S, such that the performance of a Bayes classifier on S is worse
than the performance on S U {X}.

e A feature is irrelevant if it is not strongly or weakly relevant.

As it is, this definition of relevance only works for wrapper approaches in
supervised learning. However, we can transform this notion to filters if we know
what characterizes features that would increase the performance of the classifier.
Moreover, we can accept this definition of relevant features for clustering too. It
only requires an agreement of what performance means in clustering. Therefore
we use the above discussion of how to measure performance in clustering (that
good clusters are both cohesive and distinct) in order to propose a measure of
relevance for features. In allegory with the underlying model we say that for
data instances @ € D only a subset of the variables are relevant. We regard
as relevant those variables which are affected by the hidden cluster membership
variable in the joint probability distribution p(X|C'). However, the cluster variable
C, its number of states and impacts on the observed variables is unknown in
clustering. What is known is that in the probability distribution p(X|C) the
cluster membership of a data instance has a different impact on some of the
features. This can be modeled in a probabilistic model in the following way: We let
the cluster membership be represented by the cluster variable, which has influence
on the state of each variable in the model. In the case that there are features
which are not influenced by the cluster membership these can be regarded as
random variables, not connected to the hidden cluster membership variable.
Figure 3.3 depicts an example of a model in which 4 features are influenced by
the cluster membership while the 5th is a free random variable.

Elidan et al. [16] describe the impacts of hidden variables in probabilistic
models and the interaction between observed variables and hidden variables.
They argue that if a probabilistic model is learned with hidden variables, i.e. a
variable which has influence to some of the nodes has been left out of the learning,
the model will contain semi-cliques. Therefore semi-cliques can be regarded as
an indication of the presence (or absence) of a hidden variable.

The explanation for this is that if a model is induced from a data set con-
taining hidden variables, it will discover dependencies among the variables which
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o

Figure 3.3: The cluster random vari-  Figure 3.4: Without the cluster ran-
able has influence only on the relevant ~ dom variable the relevant variables
features. form semi-cliques.

depend on the hidden variable. Logically this is caused by the dependency prop-
erties among the variables in the data set. Variables which depend on a hidden
variable (i.e. its children) are d-connected if there is no evidence on the hidden
variable, while the parent variables of the hidden variable are d-connected to
its children under the same conditions [35]. Thus there is a dependency among
variables which are influenced by the hidden cluster membership variable. Figure
3.4 depicts a model learned using the PC algorithm [64] and a data set generated
by the model in Figure 3.3 from which the class label has been removed. We can
use this as an illustrative example. The variables which were influenced by the
class variable have connections to at least half of the rest of the variables and
are said to be part of a semi-clique.

Since the cluster membership variable is hidden, we can use the argumenta-
tion that when hidden variables reside in a model the model will contain semi-
cliques. But rather than restoring the model containing the hidden variable we
use the above reasoning to argue which features are relevant. If we assume we
have a database containing variables which depend on the cluster membership
and variables which are free random variables without any dependencies we can
expect the features which depend on the cluster variable to have many strong
interdependencies. We use this in our definition of relevant features. Since a
feature which is influenced by its cluster membership is likely to be part of a
semi-clique we call a feature relevant when it is dependent of at least one other
feature. Therefore, in this project we define relevance using dependencies. A
feature without any dependencies is defined as irrelevant, whereas a subset of
dependent features are defined as either relevant or irrelevant according to the
strength of the dependencies among them. Measuring the strength of depen-
dencies can be done either by assigning a value to connections between pairs of
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features or by scoring each feature based on the dependencies that exist for that
feature. We propose to use the latter approach.

3.4.3 Redundancy

Untill now we have discussed the notion of relevance limited to a definition of rel-
evant and irrelevant features. Another type of feature which must be dealt with is
redundant features which also have a remarkable different way to be looked upon
in classification and in clustering. It is not trivial to handle redundant features
as it can be difficult to deem such features as either relevant or irrelevant. This
section is meant to open a discussion on the importance of handling redundant
features in the context of feature subset selection.

Merriam-Webster's [2] dictionary define redundance as: “exceeding what is
necessary or normal”. In the context of feature subset selection this can be ap-
plied to define a redundant feature as a feature that contributes with unnecessary
information. This could be information which is already included in the clustering
by another feature. That is why, in classification, features are filtered out if the
information they contribute with about the class membership for each case is al-
ready present in the database. For instance, the information a feature contributes
with can be redundant in terms of a copy of it or if it has a high dependency to
one of the features already in the data set. As already mentioned in the previous
section, in clustering the most homogeneous clusters are obtained from features
which have dependencies among each other. Therefore, it can be said that in
data clustering, we seek out redundancy. We do however dare to open a discus-
sion about redundancy of features in data clustering. We say that a feature Xj is
redundant in data clustering with respect to a data set D if Xj is relevant but it
does not however contribute with homogeneity in models learned from D. That
means that X; has many strong dependencies to rest of the features in D and
models learned from D \ X; are equally cohesive as models learned from D.

The term redundant can also according to Merriam and Websters mean:
“serving as a duplicate for preventing failure”. Consider a scenario in which a
data base consist of 1000 features whereof 990 are redundant and the last 10
are relevant features. Clustering using all 1000 features give well defined cohesive
clusters although perhaps hard to describe. In the event that redundant features
are removed we will remove 989 feature leaving 11 left for clustering. By removing
these features we also remove the weight given to these features leaving 990
features correspond to 1 feature equally important to each of 10 other features.

In a wrapper approach a feature can be considered irrelevant if it does not
increase the cohesiveness of the resulting clusters (measured with respect to the
clustering criterion). The impact of redundant features in the above mentioned
scenario is that the cluster membership of a significantly large amount of cases
change rendering the clustering results different although not more cohesive.
Such features would according to a wrapper approach be deemed irrelevant
although their presence have an impact on the final results.
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In this project we deal only with detection of irrelevant features but even so
redundancy can have an impact on the results and the performance of the results
of the proposals.

3.4.4 Proposal Overview

In this report we propose to use a ranking scheme where each individual feature
is assigned a score according to a measure of dependence with respect to the
rest of the feature set. The main idea is that we assume that relevance can
be expressed by the interdependencies in the feature set. Detecting whether 2
features in the feature set are dependent can be done in several different ways.
We propose 3 different methods for determining dependency (referred to as
dependency measures):

1. x? analysis.
2. Predictive accuracy.

3. Information gain.

The 2 analysis is an obvious choice for testing dependency between two
features. Among the many advantages by using this method is that a thresh-
old, for distinguishing relevant from irrelevant features, is already defined in the
significance level, and that its statistic has a well known distribution. The sec-
ond measure represents the idea of measuring the change in predictive accuracy
between pairs of features. This method is inspired by Talavera [65]. Inspired by
Dash et al. [10] we also propose, as a third dependency measure, to use infor-
mation gain, which is a measure of entropy to describe the dependencies among
features. A naive approach is to measure the entropy of a single feature and the
reduction in entropy based on adding a second feature in order to describe their
dependencies.

Each of the 3 methods have their strengths and weaknesses. In this report we
will test all 3 methods in order to test which will perform best for the proposal
that will be presented.

3.4.5 2 Analysis

The x? distribution is a density distribution that is used in many hypothesis tests.
The most common use of the x? distribution is to test independence hypotheses.
Although this test is by no means the only test based on the x? distribution, it
has come to be known as the x? test. The x? distribution has one parameter,
its degrees of freedom (df).

When using x? in order to test dependencies it is necessary to set up a hy-
pothesis that can be either kept or rejected. Setting up and testing hypotheses
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is an essential part of statistical inference. In each problem considered, the ques-
tion of interest is simplified into two competing hypotheses between which we
have a choice: the null hypothesis, denoted HO, against an alternative hypoth-
esis, denoted H1. These two competing hypotheses are not however treated on
an equal basis. The null hypothesis is given priority, meaning that in order to be
convinced that H1 holds we have to reject HO, whereas HO holds if we cannot
reject its existence. Thus the outcome of a hypothesis test is "reject HO" or "do
not reject HO'". In this particular case HO states that 'variable X is independent
of variable X;'.

In order to test the hypothesis using x? it is necessary to extract the two
attributes from the original data set and create a contingency table for them. A
contingency table is a table of frequencies. A two-dimensional contingency table
is formed by classifying subjects by two variables. One variable determines the
row categories, the other variable defines the column categories. Each cell will
then contain the frequency of occurrence in the data set where the variables are
in the states given by the row and column category for the cell. For this to be
possible both attributes are required to be categorical.

The parameter, degree of freedom, of the x? distribution, originally proposed
by Fisher [19], is the number of cells in the contingency table which can be
manipulated without changing the marginal totals. A standard approximation of
this proposal is:

df = (rows — 1) x (columns — 1) (3.4)

A contingency table over the occurrence of values of the two variables is called a
contingency table of observed values. In order to calculate the x? test statistic it
is necessary to calculate the contingency table of expected values. The expected
values for a contingency table of observed values is calculated as:

(Dop cellir) (32 celly;)

n

Eij = (3.5)
where n represents the total number of instances in the data set.

The test statistic is a quantity calculated from the contingency tables of
observed and expected values. Its value is used to decide whether or not the null
hypothesis should be rejected in our hypothesis test using a threshold denoted
as the critical value. The x? test statistics is then calculated as:

2

&= Z Z (Oij l;fij) (3.6)
i

The critical value for a hypothesis test is a threshold to which the value of
the test statistic in a sample is compared to determine whether or not the null
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Figure 3.5: The x? distribution, showing the impact of different degrees of free-
dom.

hypothesis is rejected. The critical value for any hypothesis test depends on the
significance level at which the test is carried out. The significance level of a
statistical hypothesis test is a fixed probability of wrongly rejecting HO. We want
to make the significance level as small as possible in order to protect the null
hypothesis and to prevent the result from inadvertently making false claims. The
significance level is usually denoted by « and chosen to be 0.05. This means that
if the value of the x? test statistics is within the tail 5% of the area of the 2
distribution then HO is rejected.

As can be seen from the Figure 3.5, the impact from the degree of freedom
is the interval in which the hypothesis can be rejected. The higher the degree of
freedom, the higher we allow the values of the x? statistic to take and still keep
the hypothesis of independence.

The outcome of a x? test as a dependency measure can be the p-value.
The p-value is the probability of getting a value of the test statistic as extreme
as or more extreme than that observed by chance alone, if HO holds. It is the
probability of wrongly rejecting the null hypothesis and is calculated through the
cumulative distribution function of the x? distribution.

DF
711((707;) (3.7)

CDF(z) =

~ [N]8

where I" is gamma function and «y is the incomplete gamma function. For further
details see [4, 15, 61].

The p-value is compared with the significance level and, if it is smaller, the
result is significant. That is, if the null hypothesis were to be rejected at a@ =
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0.05, this would be reported as 'p < 0.05". Small p-values suggest that the null
hypothesis is unlikely to be true. The smaller it is, the more convincing is the
rejection of the null hypothesis. It indicates the strength of evidence for say,
rejecting the null hypothesis HO, rather than simply concluding 'reject HO' or "do
not reject HO'.

x? as a Dependency Measure

Using x? as a dependency measure makes a lot of sense given the definition
of relevance. The p-value of a x? test indicates the strength of a dependency
between two attributes and can therefore be adapted as a dependency measure.
The p-value is high for weak dependencies and low for strong dependencies and
therefore a simple approach to applying it as a dependency measure is to subtract
it from 1 which is the upper bound for the p-value of a x? test.

DM, »(X;, Xj) =1 —p_val(X;, Xj) (3.8)

where p_wal is the p-value of a x? test for HO stating that X; is independent
of Xj.

3.4.6 Predictive Accuracy

The idea of using predictive accuracy is the idea of comparing the probability
that the value of one single attribute can be predicted with the probability that it
can be predicted given the state of another attribute. Let X be a feature in the
data set with the marginal probability distribution p(x). p(z) can be estimated
using ML estimation. Knowing this distribution the value of X can be predicted
with some accuracy. The simplest way to predict the value of X when p(z) is
known is to always guess that X is in its most likely state Z,,05t iikery € X. The
accuracy of guessing the state z; € X for a given data instance is referred to as
the predictive accuracy of p(x), denoted PA(p(x)).

The idea of using predictive accuracy as a dependency measure among the
pair of attributes X; and X, is to compare the predictive accuracy of the
marginal probability p(z;) with the predictive accuracy of the conditional proba-
bility p(x;|x;), namely PA(p(x;|z;)). If X; is dependent of X there should be
an increase in the chance that the state of X; can be guessed knowing the state
of X; compared to using only p(x;) when guessing the state of X;.

To express this more formally, we let the predictive accuracy of a probability
distribution p(z;), namely PA(p(z;)), be the probability that the state of X;
can be guessed by guessing on the state with the highest probability.

PA(p(xi)) = maw; p(z;) (3.9)
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In the conditional case p(z;|z;) we express PA(p(x;|x;)) as the probability that
we can correctly guess the state of X; for a given case when knowing the state of
X;. In order to do this we compute the conditional probability table for p(z;|z;)
and use it as a map in which to look up the probability of X; in a certain state
given the state of X;. Similar to PA(p(x;)) we guess on the most probable state
of X; given the conditional probability table.

Predictive Accuracy as a Dependency Measure

To measure the dependency between a pair of features using predictive accuracy
we simply measure the change in predictive accuracy between PA(p(z;)) and
PA(p(x;|z;)). We want a score to be near to 1 if X has influence on X; and a
lower value if X; is not influenced by X;. This is done using the formula below.

PA(p(;))

DMpatwie) =1 = 5a0 e

(3.10)
This equation is the base of the proposed dependency measure using predic-
tive accuracy. However this measure is not symmetric in that DMpa(z;, ;) #
DMpa(xj,z;). This constitutes a problem since we want our three relevance
measures to be symmetric. A simple solution to this problem is using the follow-
ing equation derived from Equation 3.10.

PA(p(z;)) PA(p(z;))
PA(p(zilz;)) ' PA(p(zjlz;))

2

(3.11)

DMpA(xi,xj) =1-

3.4.7 Information Gain

Information gain (or mutual information (MI)) is an entropy based measure
known from classification by decision trees to rank the attributes according to
importance [50]. Here we clarify how entropy and information gain can be used
as a measure of dependency for attributes in unsupervised learning. We denote
the entropy of an attribute X, H(X).

H(X) ==Y plzi) logs p(x) (3.12)
T, eX

where p(z;) is the probability of X being in the state ;. The value H(X) is a
real number between 0 and the binary logarithm of the number of states of X,
which measures the purity of the data. The entropy is 0 if the probability that
X is in a given state is 1 and the entropy is the binary logarithm of the number
of states in X if and only if the probability of X being in a given state is the
same for all states x;.
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MI is a measure of the difference between the marginal and the conditional
case. In other words, Ml is the reduction in entropy for an attribute X; caused
by partitioning the examples according to another particular attribute X;. We
measure the MI achieved from attribute X; as the change in entropy between
H(X;) and H(X;|X;), the conditional entropy of X; given X;. For any fixed
value z; of X;, we obtain the conditional probability p(X;|z;) and calculate
H(Xila;).

H(Xilz;) =~ > plaiz;) loga plzilzs) (3.13)
z, €X;
We obtain the conditional entropy H (X;|X;) by weighting the entropies H (X;|x;)
with the prior probabilities p(x;). Conditional entropy is defined as:

H(Xi|X;) = Y plaj)H(Xi|z)) (3.14)
z;€X;
Then information gain is given as
MI(X;, X;) = H(X:) — H(X;|X,) (3.15)

Note that X; might as well be a vector of attributes making MI(X;, X;) a mea-
sure of difference in data purity within attribute X; and in each set of attributes
conditioned by X;.

If the value of M I(X;, X;) is significantly high it indicates that the purity of
X; increases when the state of X; is known. In other words, it indicates that X
can be used to improve the prediction of Xj.

Information Gain as a Dependency Measure

Results of performing information gain on two attributes give an indication of the
dependency between them and the strength of such a dependency. This result
can be directly applied as a dependency measure for the proposals in this report.

DMy(Xi, X;) = MI(X;, X;) (3.16)

3.5 Scoring the Relevance of Features

In this section we aim to show how the dependency measures can be used to score
a single feature with respect to its dependencies to the rest of the feature set
(referred to as a score method). We say that a feature is relevant if it is dependent
on another feature. This is expressed formally in the following definition:

X; € Relevant < 3X;| X;depends on X
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That is, if for a variable X;, we are able to identify a variable X, which depends
on X;, then both X; and X are relevant for the purpose of induction.

In this proposal we distinguish between relevant and most relevant. We main-
tain our definition of relevance and use it to develop a score method which can
be applied to score a single feature. Given such a method we are able to identify
both features with high relevance and features with low relevance. Additionally
we are able to rank each feature and select only the most relevant based on a
threshold which will be described later. We propose 2 methods for scoring the
relevance of a feature.

Rpas(Xi) = mazDM(X;, X;) (3.17)
Ravg(X;) = ZjDM;X“Xj). (3.18)

Where p is the number of features in the data set and DM is one of the above
dependency measures DM,;, DMp s or DM ;. In the remainder of the report
we will refer to a score measure as a measure that uses either of the 2 score
methods with any of the 3 dependency measures. The result of calculating the
score of a given feature using a score measure is denoted a relevance score. In
total that leaves 6 relevance scores available for testing.

Using a maximum scoring method on the dependency means that the score
of a given feature will be the strongest dependency of the feature. Using such
a scoring scheme assumes that random dependencies are weak and that fea-
tures with many dependencies have a higher probability of having very strong
dependencies. The main property of this approach is that it will reward strong
dependencies rather than many dependencies, meaning that a feature can be
dependent of only one other feature and still have a higher score than a feature
with many dependent features.

The second score measure is an average over dependencies to all features. The
scoring method sums up the values of the feature dependency measure between
the tested feature and all the rest of the features. The average is over the total
amount of features in the data set.

3.6 Thresholding

The current proposals assign scores to each feature in the data set. In order to
do unsupervised FSS it is necessary to set a threshold that is able to effectively
cut away all irrelevant features based on their scores.
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3.6.1 Learning Curve Sampling Method

Here we propose a new scheme based on the learning-curve sampling method
proposed by Meek et al. [48].

Given a set of features X, let S1, 52, ..,.5, C X denote the feature subsets,
constrained by the relevance ranking, that are to be examined in the process
of finding the appropriate threshold. We require that S; C S;11, meaning that
the subsets are nested. A given subset S; contains the 7 features in X with the
highest relevance score. The subsets S; and S, differ only in a single feature.

Utility

The main idea is to keep adding features (i.e. moving from S; to Sj;1) as long
as the benefit is greater than the cost. At stage i there are 2 choices available.
Either stop and output the current feature subset or add a new feature and
examine the new feature subset. In order to evaluate a feature subset properly
one has to consider both benefit and cost. At step i of incrementation we express
the utility of subset S; as:

Utility(S;) = Benefit(S;) — Cost(S;) (3.19)

In order to calculate the utility at each stage we need to define the functions for
benefit and cost. The benefit of S; can be defined as the sum of the relevance
scores for each feature j in S;.

Benefit(S;) = Y _R; (3.20)
j=1

Defining the benefit in this way will have several consequences that should be
considered. The benefit of adding a feature to the subset is evaluated with respect
to the relevance of the feature itself and not with respect to the relevance of
the new subset. The impacts are that a given feature is likely to be overrated
rendering the scheme conservative in the selection. In addition redundancy is
not detected since several features that contribute with approximately the same
information will all have the same relevance.

The cost according to [48] is defined as the running time used to obtain the
current benefit. We focus on interpretability and knowledge gain, therefore the
cost increases with the addition of attributes as this reduces the interpretability of
the induced model. Therefore the cost is proportional to the number of features
in the current subset and can be defined as:

Cost(S;) =i*a (3.21)

where « is the relative importance of the number of attributes to the benefit.
The value of a should be assessed by the end-user since it is problem dependent.
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Stopping Criterion

As mentioned in the previous section at stage 7 we can either choose to stop and
output the current subset, or continue to stage 7 + 1. Meek et al. [48] propose
to check the utility at stage ¢ against the expected utility at stage i + 1. We
adapt this method to this thresholding scheme and define our stopping criterion
as follows. We stop and output the feature subset at stage i if:

Utility(SH_l) S Utility(Si) (3.22)

Using the previous definitions of both utility, cost and benefit Equation 3.22 can
be rewritten as:

Benefit(S;y1) — Cost(S;+1) < Benefit(S;) — Cost(S;)
Benefit(S;+1) — Benefit(S;) < Cost(S;y+1) — Cost(S;)  (3.23)
From Equation 3.21 we see that:
Benefit(S;y1) — Benefit(S;) < a((i +1) —1) (3.24)

Therefore the stopping criterion can be redefined as:

Benefit(Siy1) — Benefit(S;)
G+ = .

In this equation « is chosen to reflect how many attributes the user is willing
to add in order to increase the relative benefit a certain amount. Formally we
can state that « is the ratio of increase in the relative benefit to the number of
attributes added from S; to Sj;1. If the stopping criterion is met we go back to
stage i and output the subset, otherwise we continue to stage 7 + 1.

Figure 3.6 shows an example of an output of a filter method including both
relevant and irrelevant features. The y-axis denotes the benefit at stage 7 and
the x-axis denotes the first 7 features, given the relevance ranking, in the current
subset. The graphical illustration indicates how to define «.

Although the strategy is myopic, it is optimal in the case where it is guaranteed
that the benefit-increase will decrease and the cost increases as a consequence of
incrementing the feature subset. In this scenario it makes sense to stop when the
ratio of these two quantities falls below «. In this proposal the ranking ensures
that the shape of the curve is concave, leaving the strategy to be optimal.
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Z - i+1

Benefit
T

o * number of features

i i+1

Features

Figure 3.6: Example, plotting benefit on the y-axis. Relevance at stage i + 1 is
the increasing benefit between stage ¢ and ¢ 4+ 1. The impact of « shown as the
coefficient for the line for which maximizing the vertical distance h defines the
stopping criterion.

3.6.2 Hypothesis Testing

In a second approach for setting a threshold we want to propose the use of
hypothesis tests [15]. As described in Section 3.4.5 a hypothesis test is an ap-
proach for testing whether to keep or reject a claim, namely the null-hypothesis
denoted HO. If we regard feature selection as a hypothesis test we choose as
null hypothesis the claim: “feature X is irrelevant”, then we can reject HO if the
evidence against it is sufficiently strong for a given relevance measure, or we can
keep it in case the evidence against it is not sufficiently strong. The alternative
hypothesis H1, which is favored if HO is rejected is the claim that “feature X is
relevant”. However the conclusion of a hypothesis test is merely to keep or reject
HO.

Setting up a Hypothesis Test

The core in a hypothesis test is a test statistic. An obvious choice for a test
statistic is one of the proposed score measures. Before we can use this test
statistic to draw conclusions about HO we need to know the density distribution
for each of the proposed score measures under the null hypothesis. That is, we
need to know what scores we can expect for an irrelevant feature in a given data
set. For instance, if the scores for an irrelevant feature are normal distributed this
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knowledge could be a mean and a standard deviation. The hypothesis test is then
to test how strongly we can believe the score of a certain feature to be among
the irrelevant ones. The problem here is that we do not know the distribution of
any of the proposed relevance measures. The exact distribution for those scores
can be found (in theory) by sampling infinitely many examples for which HO is
true relative to a given feature set. In practice we can find an approximation to
the distribution for each of the relevance measures under HO by sampling a high
number of irrelevant features.

Setting a Threshold

To test whether HO holds for a given feature we calculate its test statistic and
reject HO if it exceeds a certain threshold, namely the critical value. The critical
value is derived from the density distribution together with a decision of how
high a risk with which we can accept to wrongly reject HO if it is true. This
threshold is set up with the help of the significance level. In theory the choice
of a significance level is up to the user of the hypothesis test as it reflects the
chance of making a wrong decision. Therefore we denote the significance level «
which, like in the learning curve approach, may impact the amount of features
which will be deemed irrelevant. However, a standard value for the significance
level is 0.05 (5%) which we will use in our tests. From the significance level
we find the set of values of the test statistic for which the null hypothesis is
rejected in a hypothesis test. In our case this is set to the 5% highest values of
the test statistic for the sampled irrelevant features under HO. The conclusion
of our hypothesis test is that we reject HO if for a given case the result of the
test statistic is in this set. Therefore the critical value for a hypothesis test is
the lowest possible value in this set. Knowing this we can accept or reject HO
for any given feature X.

Approximating the Density Distribution

To make the approximation of the density distribution of the test statistic we
sample relevance scores for irrelevant features. Each sample score is generated
by scoring a randomly generated feature X,.q,q40m relative to the original feature
set X, i.e. R(X,qndom)- Each randomly generated feature is sampled by filling
in each value at random, maintaining the same number of states. We produce
10000 samples and sort them in increasing order. The sample set of 10000 cases
is a set of values of the test statistic for which HO is true.

We want to avoid any bias introduced by the different number of states in the
tested feature and the randomly generated features which were used to produce
the sample set. Therefore if we want to use a hypothesis test to test whether a
feature X is relevant and the number of states in (or the cardinality of) X is q,
we approximate the distribution of the test statistic using only features with the
cardinality q.

Page 37 of 90



3.7 Summary

Unlike with the learning curve sampling method approach, the advantage of
this approach is that there is a clear interpretation of the value a, namely the
risk of making a wrong decision about HO. Moreover, with this approach one can
distinguish between relevant and irrelevant features without having to present
an ordering of the features.

3.7 Summary

In this chapter we outline the idea of FSS both in supervised and unsupervised
learning. We give a definition of relevance in the domain of unsupervised FSS
which is based on the dependence between a feature and the cluster random
variable. The cluster random variable is unknown but under the assumption that a
feature is dependent on this it is likely to be dependent on other relevant features.
Therefore the main idea is that a feature cannot be discarded as irrelevant if it
is dependent on at least one other feature.

We propose 3 dependency measures in order to measure the dependency
between 2 features:

e x? analysis.
e Predictive accuracy.

e Mutual Information

The score of a single features can then be obtained in several ways. In this
project we propose to measure the dependency of a feature with each of the
other features in the data set. From the result we propose 2 scoring methods,
maximum and average:

Rmax(Xi) = maxDM(Xia Xj)
>, DM(X;, X;)

Ravg (Xz) - D

where p is the number of features in the data set.

In order to perform unsupervised FSS it is necessary to decide on a threshold
on which features with a low relevance can be discarded as irrelevant. We propose
2 approaches to setting a threshold. The learning curve sampling method based
on a ranking of the features and a cost versus benefit approach, and a hypothesis
test based on 10000 randomly generated features used in a test statistics similar
to that of x2.
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Results

We know very little, and yet it is astonishing that we know so much, and still
more astonishing that so little knowledge can give us so much power.
— Bertrand Russell

In this chapter we will present the results of applying the proposals to several
data sets. First we will present a description of 3 synthetic data sets and 4 real-
world data sets which will be the base for testing the methods. In Section 4.2 we
then present the results of applying the proposed score measures to the described
data. By showing the performance on a large variety of data sets we aim to show
that the proposals perform well and to show the limitations that exist for this
approach to unsupervised FSS.

Thereafter we will explain how the clustering techniques described in Chapter
2 have been applied in order to validate the results of the filter methods. Last we
present the results of validating the filter results. Discussions on the results leads
to further extensions of the methods proposed and Chapter 5 gives a description
of a hybrid approach to unsupervised FSS in which the results in this chapter
have been applied.

4.1 Data Description

In this section we will describe the 7 data sets that will be used to test and
evaluate the unsupervised FSS methods proposed in this report. The data sets
consist of 3 synthetic data bases and 4 real-world data sets. We first present the
synthetic data sets and then the real-world data sets.

4.1.1 Sampling of Bayesian Networks

The first two synthetic data sets are based on a Bayesian Network (BN) created
by Pefia et al. [56]. The BN can be seen in Figure 4.1 and contains a cluster
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o O 0 0 0
Qo Q9 9 0

Figure 4.2: Original BN with
10 added nodes. The 10 addi-
tions are unconnected and con-
sidered irrelevant for induction
purposes.

Figure 4.1: Original BN, all
nodes are considered relevant
for induction.

random variable with 3 states and 10 nodes of each 3 states with varying inter-
connectivity and all children of the cluster random variable. All 10 features in
the model are relevant. We add 10 irrelevant, and therefore unconnected nodes
to the network as shown in Figure 4.2. The 10 unconnected nodes also contain
3 states and each instance has been randomly generated from a specified proba-
bility distribution, chosen at random. However including the constraint that the
probability distributions for each of the randomly generated features never ex-
ceed 80% nor go below 20% for any state. From the model shown in Figure 4.2
we sample 10000 cases that will be used as the first synthetic test data denoted
SYN10.

A second synthetic data set has been derived using the same base BN model,
but now adding 20 unconnected nodes using the same technique as for SYN10.
Using this BN we have again sampled 10000 cases. We denote this data set
SYN20. For both SYN10 and SYN20 we have removed the cluster random variable.
The reason for creating an additional data set with the same properties, except
in the number of irrelevant features, is to show how the score measures will react
to an addition of irrelevant features.

As mentioned in both synthetic data sets the class random variable has 3
states and so we cluster the data set using k& = 3.

4.1.2 Waveform

The last source of artificial data is a well known data base from the UCI reposi-
tory of Machine Learning databases [7], which will be referred to as WAVE. The
data consist of 40 features whereof the last 19 are noise. The data represents
continuous values based on 3 generated waves over separate series of the first
21 features. Since we only consider categorical data the data set has been dis-
cretized into 3 categories. The discretization technique used is a basic method
which divides the value of each feature into 3 equally sized bins and places all
instances in their corresponding value interval [12].

We know that there exist 3 clusters in the data, each representing a combi-
nation of 2 waves. The first 4 and the last 4 of the 21 relevant features have
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been discovered as being less significant than the others, thus in some papers
[8, 65] these features are considered irrelevant. Table 4.1 gives an overview of
relevant and irrelevant features in the WAVE data set.

01234567891011121314151617 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Table 4.1: Overview of the WAVE data set. Relevant features are marked in bold
font.

4.1.3 The Insurance Company Case

This data set is the first of the real-world data sets in our evaluation. It contains
5822 customer records kept by an insurance company that sells mobile home
policies. It is known as the COIL data set. Each record consists of 85 features,
containing sociodemographic data and product ownership.

An 86th feature contains the class random variable describing those who buy
a mobile home insurance policy and those who do not. The data set was part of
a data mining competition referred to as “the ColL Challenge 2000” [69]. From
the documentation of the results of the competition we gain some insight in
what others before has gained from this data set and we can compare the results
of this project to the descriptions.

One of the entries in the data description competition performs statistical
analysis on the data using x? in order to test dependency with the class random
variable. From the statistical analysis they found 21 features within the 95%
confidence level. These are shown in Table 4.2. The approach is within the
domain of supervised learning which makes comparison difficult to perform.

| 46 58 67 4 41 42 36 17 43 33 29 30 24 31 33 15 0 64 9 11 28 |

Table 4.2: The 21 features that proved the best subset according to a x? test
performed by Kim et al. [38]. The features are ranked from best to worst.

4.1.4 Leukemia

The last real-world data set has been chosen for its extreme structure which
perhaps will be able to test some of the limitations of the methods that we
propose. The data set consists of 7129 features and 72 cases and will be referred
to as LEUKEMIA. Each case represents a patient suffering from leukemia and the
features describe gene expression level for each of the patients. The data was
first introduced by Golub et al. [26]. It is well known in data mining communities
and has been thoroughly analyzed in the past. From [26] we know that there are
2 clusters partitioning patients with respect to the type of leukemia that they
are suffering from (AML and ALL). In the article by Golub et al. they build a

Page 41 of 90



4.2 Filter Results

predictive model using only 50 of the 7129 features based on supervised FSS in
a filter approach. The resulting model obtained accurately classified 36 out of 38
patients in the test set as either type AML or ALL (the last two were classified as
uncertain). This indicates a very high amount of irrelevant or redundant features
which should be detected using the methods proposed in this project.

As variations of this data set 2 additional data sets have been derived using
the two types of leukemia. First we have transformed the data into a new data
base where each feature represents a patient and each instance represents a gene.
Then we split the data into 2 separate data sets, one for each of the two types
of leukemia. The first data set, denoted AML, contains 25 features (patients) all
suffering from leukemia of type AML and 7129 cases (genes). The second data
set, denoted ALL, contains the remaining 47 features and also 7129 cases. Due
to the fact that the tables are separated given the respective type of leukemia
we expect all features to be relevant (an irrelevant feature indicates that this
patient has little genetically in common with the rest of the patients despite
suffering from the same illness). In the LEUKEMIA data set there are 2 clusters
(2 types of leukemia) whereas in the AML and ALL data sets there are 3 clusters
(overexpressed, underexpressed and neutral genes).

4.2 Filter Results

Based on the proposals presented in Chapter 3 and the data description in Section
4.1 this section presents the results of applying the proposed relevance scores in
the filter method to the 7 data sets. The order of appearance corresponds to the
order of the data descriptions.

All graphs shown in this section have been normalized between 0 and 1 on
both x-axis and y-axis for the purpose of applying the learning curve thresholding
scheme (see Section 3.6.1). The normalization technique used is not unimpor-
tant as it can have an impact on the shape of the curve. For this project a simple
normalization technique called linear scaling has been used. The method pro-
duces a linear relationship between instance values and normalized values. and
all information is preserved and can be restored from the normalized results [58].
Equation 4.1 shows how to compute a normalized value for each instance value
of an attribute.

x; —min(Ty, ..., Ty)

(4.1)

Tnorm; = p
maz(ry,...,Ty) —min(xy,...,Ty)
where Z,,,m, represents the normalized value that the attribute X takes in the
ith case of the database, x; being the original value of that case.
When applying the learning curve thresholding scheme we have chosen 2
values for «, 0.3 and 0.7. For hypothesis testing we use the standard significance
level, 0.05.
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::::::::::::::::::::::::

Figure 4.3: Filter results for SYN10. The top row of figures show the 3 filter
methods using max scores whereas the bottom row show average scores. The
first column describes x?, the middle Ml and the right PA. Notice that the
difference between the two rows is insignificant.

4.2.1 The BN Sampled Data

Figure 4.3 depicts the results of the learning curve approach applying all 6 score
measures, using both maximum and average scores, to SYN10. The top row shows
the results using the maximum score for each feature whereas the bottom row
shows the average scores. It is clear to see that for this data set the distinction
between max and average scores is surprisingly small and insignificant. M| and
PA expectedly show very similar results and the distinction between relevant and
irrelevant is clear for both measures even without the use of any thresholding
scheme. According to PA and Ml the cut point is at 0.45 features which represents
10 features. Since we constructed the data with 10 nodes directly connected to
the cluster random variable this is what we expected. Examining the results
for x? we surprisingly observe only very weak distinction between relevant and
irrelevant features.

An explanation for the weak distinction may be in the fact that generally
the p-values for irrelevant features are only a fraction higher than for relevant
features. In this case we should expect the rankings to be correct in which case x?
would still be applicable for ranking the features but not directly for unsupervised
FSS.

The rankings of the features can be seen in Table 4.3 on the following page
and 4.4 using learning curve thresholds and hypothesis testing respectively. All
score measures rank the truly relevant features correctly even though x? identifies
only few irrelevant features given learning curve thresholding using o = 0.7.
Notice also that the disadvantage of the maximum score method is clearly shown
for x? in that all features have been deemed relevant given this score measure.
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| Method | a=0.7 | =03 | Irrelevant |
MI (avg) 16 11 1317 14 19 10 18 12 15 5106837492
Ml(max) 1316 11 17 14 10 12 18 15 19 5073186492
PA (avg) 1316101918 14 1217 11 15 1674528039
PA (max) | 16 1310 14 12 19 18 15 17 11 1647523809
’(avg) | 12191518101611 141317 | 37492

51068
x> (max) | 1219 15 18 10 16 11 14 13 17

5106837492

Table 4.3: Ranking order (best to worst) of the features in the SYN10 data set.
Relevance based on the learning curve thresholding scheme using both o = 0.3
and a = 0.7. The truly relevant are marked in bold font.

It is interesting to notice the significant differences in the rankings that the
score measures produce and how the graphs can exhibit such strong similarity de-
spite the dissimilarity in the rankings. Clustering validation on these rankings will
show whether it is just the dependency among relevant features in this data set
that are so close that the ordering of relevant features become insignificant and
easily altered depending on the method used, or whether one or more methods
do not rank the features correctly with respect to clustering. From the graphs in
Figure 4.3 it can be seen that the line is almost straight from 0 and up to the
last relevant features. This indicates that the score of the features are close to
equal and leads us to believe that this explains the differences in the ordering.

| Method | Relevant | Irrelevant |

MI (avg) 16111317141910181215 | 5106837492
Ml (max) | 131611 17141012181519 | 5073186492
PA (avg) | 13161019181412171115 | 1674528039
PA (max) | 16131014121918151711 | 1647523809
x> (avg) 12191518 10 16 11 14 13 17
5106837492
x® (max) | 12119 15 18 10 16 11 14 13 17
5106837492

Table 4.4: Ranking order (best to worst) of the features in the SYN10 data set.
Relevance based on the hypothesis test thresholding scheme using significance
level = 0.05. The truly relevant are marked in bold font.

To the SYN10 data set we have also applied the hypothesis test with o = 0.05.
Figure 4.4 depicts the distributions for each of the 6 score measures derived from
sampling 10000 irrelevant features and scoring them relative to the original data.
The dashed line denotes the critical values for each method. In order for this
method to be reliable the curve needs to flatten out before the critical value.
The more flat the curve is the more likely are we to believe in our decision to
reject HO. From the curves it can be seen that the y? square measure combined
with the maximum relevance score is not very reliable. This can be explained by
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Figure 4.4: The distributions of each of the score measures applied to random
features scored against the SYN10 data set. The dashed lines show the critical
values. The columns from left to right are for x?, Ml and PA respectively while
the top row is for maximum score measures and the bottom row is the average
score measures.

the fact that many of the randomly generated features had at least one strong
dependency with one of the features in the original data set, according to the
x? dependency measure. It is worth to mention that the 6 graphs in Figure
4.4 are generated from the exact same sample of randomly generated features.
Therefore the difference in the curves allows us to conclude that at least the
x? dependency measure combined with the maximum relevance score method is
not very reliable. On the other hand the curves have a tendency to be flatter for
the average approach for all three dependency measures with PA exhibiting the
most flat shape.

The fact that all the features have the same number of states allows us to
use the ordering when performing the filtering. Therefore, in stead of comparing
each feature to the critical value derived from the sample sets, we benefit from
the ranking and declare the features which has scored less than the critical value
irrelevant. From Table 4.4 it can be seen that with PA and MI each with both
average and maximum scores has successfully filtered out all the irrelevant fea-
tures. The x? method however has declared all the 20 features relevant and has
not been able to detect any irrelevant features despite half of the features are
truly irrelevant according to the true structure of the model which has generated
the data. The performance of the methods used in the hypothesis test corre-
sponds to the result of the learning curve where both the PA and MI measures
are significantly better than the 2 measures in filtering out irrelevant features.

Figure 4.5 on the next page shows the results of applying the 6 measures to the
SYN20 data set. As with the first graphs the top row represents the results using
maximum scores whereas the bottom row represents the results using average
scores. For these results we again observe a clear distinction between relevant
and irrelevant features. According to Ml and PA in Tables 4.5 and 4.6 only the
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Figure 4.5: Filter results for SYN20. The top row of figures show the 3 score
methods using max scores whereas the bottom row show average scores. The
first column describes x?, the middle Ml and the right PA. Notice again that the
differences are insignificant.

10 truly relevant features are detected as relevant. This corresponds very well
with the results of the smaller data set, which seems to indicate that the amount
of irrelevant features does not have an impact on the distinctiveness between
relevant and irrelevant features even by averaging scores over all features.

| Method | a=0.7 | @ =0.3 [ Irrelevant |

MI (avg) 26 23 27 21 20 24 25 28 22 29 141583711221118
901956416 10 13 17

Ml(max) 26 23 21 27 29 24 20 28 22 25 7151512143042 11
816617 18919 10 13

PA (avg) 26 23 20 24 22 29 25 28 27 21 19514118130
108111716159

PA (max) 23 26 20 28 29 24 22 21 27 25 1116171415490256

1931121887 13010

x> (avg) | 2026 20222327 212472512 | 13

15281518321117 1404
166 819 9 10

x> (max) | 20 26 20 22 23 27 21 24 7 25 12

152815183211171404 16

681991013

Table 4.5: Ranking order (best to worst) of the features in the SYN20 data set.
Relevance based on the learning curve thresholding scheme. The truly relevant
are marked in bold font.

By examining the rankings as shown in Tables 4.5 and 4.6 it can be seen that
they contain the same characteristics as the first data set. The truly relevant
features have been detected using both MI and PA whereas x? ranks the truly
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Figure 4.6: The distributions of each of the score measures applied to random
features scored against the SYN20 data set. The dashed lines show the critical
values. The columns from left to right are for x?, Ml and PA respectively while
the top row is for maximum score measures and the bottom row is the average
score measures.

relevant features highest although the scores make the thresholding techniques
unable to distinguish relevant from irrelevant. The reason for the inaccuracy that
is exhibited by x? must be explained by the similarity of the values that features
are given whether or not they are dependent. Seemingly this method is more
susceptible to noise than the other two.

The hypothesis thresholding scheme was also applied to the SYN20 data set.
Again all the features have the same number of states and the ordering was
used, instead of comparing each feature to the critical value. The results of
performing the hypothesis test on SYN20 are shown in Table 4.6. Again it can
be seen that with PA and MI each with both average and maximum scores all
the true irrelevant features have been filtered out. With the significance level
0.05, the x? method however has declared all the 30 features relevant. Again
these results corresponds very much to the results obtained by the learning curve
results. Figure 4.6 depicts the distributions of the score measures when sampling
irrelevant features.

Including more irrelevant features increases the chance of random depen-
dencies among irrelevant features which can lead to an irrelevant feature being
deemed relevant. In this section we have shown our method capable of handling a
number of irrelevant features without consequences for the final features subset.

4.2.2 The Waveform Data

The last of the artificial data sets is the WAVE data set which includes both
irrelevant and partially relevant features. In Figure 4.7 the results of applying the
3 average score measures are shown. Previous results indicate that using average
or maximum score measures does not have an impact on PA or MI, but x? being
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Method | Relevant | Irrelevant |

MI (avg) | 26 23 27 21 20 24 25 28 22 29 141583711221118
9019564 1610 13 17
MI (max) | 26 23 21 27 29 24 20 28 22 25 715151214304 211
8166171891910 13
PA (avg) | 26 23 20 24 22 29 25 28 27 21 19514118130

108111716159

PA (max) | 23 26 20 28 29 24 22 21 27 25 111617 141549256
1931121887 13010

x> (avg) | 29 26 20 22 23 27 21 24 7 25 12
15281518321117 140413
16 68199 10
Y% (max) | 29 26 20 22 23 27 21 24 7 25 12
15281518321117 1404 16
6819091013

Table 4.6: Ranking order (best to worst) of the features in the SYN20 data set.
Relevance based on the hypothesis test thresholding scheme using significance
level = 0.05. The truly relevant are marked in bold font.
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Figure 4.7: Filter results for the WAVE data set using average scores. The leftmost
describes XQ, the middle MI and the right PA.

more susceptible to noise performs poorly given maximum scores. Therefore we
have chosen only to show average results for the remaining data sets. In this
data set though we can see a significant difference in the curves representing
PA and MI. Ml indicates a more clear distinction between relevant and irrelevant
features whereas PA maintain that several more features contribute although the
rate of contribution is questionably small.

From previous analysis and knowledge on the construction of the data we
know that the features 21-39 are noise and can be considered irrelevant features
(see Table 4.1). In addition analysis has shown the features 0-3 and 17-20 main-
tain only little relevance. In Tables 4.7 and 4.8 it is clear that all features that
are considered noise have been ranked last regardless of the method used. The
only exception to this is feature 0 which has been ranked very low. All 3 score
measures agree on this property.

Closer examination shows that PA and MI rankings are surprisingly similar
considering the differences in the graphs. Both agree on a ranking where the
features 0, 1, 19 and 20 also rank lower than any of the known relevant. This
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corresponds with what we know about the data already. The features 2, 3, 17 and
18 although also deemed irrelevant by previous analysis are still minor relevant
and the structure of the data states that these 4 features are the most relevant
of the minor relevant features. Applying the thresholds we obtain very similar
results where only the features 0 and 20 of the truly relevant have been detected
as irrelevant. Further comparisons with previous analysis is not applicable due to
the discretization that has been performed prior to applying the 3 score measures

on the data.

According to x? no features are deemed irrelevant although the ranking match

the results given by PA and MI and previous analysis of the data.

| a=0."7

| a=0.3 [ Irrelevant

Ml | 6147131554 16 12 1 29 24 34 39 33 21 25 22 28 20
(avg) | 831711921810 19 3237 0 36 26 27 30 35 38 23 31
PA |614713155121648 24 33 29 30 37 32 27 22 28 0 34
(avg) | 31711189210191 36 35 20 25 21 26 38 30 31 23
% 612181419583 117 15 11 | 27 30
(avg) | 16 13910 4 7 229 24 21 39 32 | 3538

25 34 33 28 20 22 37 26 0 36 3123

Table 4.7: Ranking order (best to worst) of the features in the WAVE data set.
Learning curve thresholding scheme used. Truly relevant features based on pre-

vious analysis have been marked with bold font.

| | Relevant | Irrelevant |
M1 614713155416 12 29 24 34 39 33 21 25 22 28 20 32 37
(avg) | 831711921810191 0 36 26 27 30 35 38 23 31
PA 6147131551216483 1711 22280 34
(avg) | 189210 19 1 24 33 29 39 37 32 27 36 35 20 25 21 26 38 30 31 23
X2 612181419583117151116139
(avg) | 104 7229 24 21 39 32 25 34 33 28

20 22 37 26 0 36 27 30 35 38 31 23

Table 4.8: Ranking order (best to worst) of the features in the WAVE data set. Hy-
pothesis test thresholding scheme used. Truly relevant features based on previous

analysis have been marked with bold font.

Table 4.8 shows the result of applying the hypothesis test to the WAVE data
set using PA, Ml and x? average scores with significance level 0.05. Furthermore
the distributions for the 3 tested score measures are in Appendix A. Again we
allow ourselves to benefit from the ranking when distinguishing between relevant
and irrelevant features instead of comparing each feature to the critical value.
MI has declared 19 features relevant all features which are relevant according to
our data set while only two of the features, namely 0 and 20, which are relevant
according to previous analysis have been declared irrelevant. PA has declared 25
of the original 40 features relevant with the same two relevant features left out.
At last, the hypothesis test with x? has not deemed any of the features irrelevant.
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Figure 4.8: Filter results for the COIL data set using average scores. The leftmost
describes XQ, the middle MI and the right PA.

Despite that the true distinction for this data set was made on a version of the
data which was not discretized both MI and PA has performed nicely on this
data set. It is clear that discretization of a data set can have a large impact on
the models which can be learned from the data as well as the features which are
relevant for clustering.

4.2.3 The ColL Challenge

We have shown that the proposed score measures work on 3 constructed artificial
data sets which proves that the methods work in theory. We compare the results
that we obtain using these 3 methods with the results obtained by [38]. Figure 4.8
shows the graphs for the 3 methods using average scores.

| Method | a=0.7 | a=0.3 | Irrelevant

Ml 0429 303534174224 189 43 64 53 72 75 74 45 66 48 44 69

(avg) 11 41 27 15 12 33 36 38 14 22 23 46 67 63 82 62 47 52 50 61 56 68
1621 28 31 6 37 25 26 2 8 32 154 55 65 60 84 73 71 77 57 83
201339101953 7584079 51 81 78 70 76 49 59 80

PA 27 33 38 30 29 24 17 0 36 18 22 358 154537551 747245 4462

(avg) 35341441 12329371116 25 79 40 48 63 82 66 69 55 56 47 52
423262174263115813 67 43 60 50 61 83 84 73 77 68 70
28 10239519 20 64 46 71 57 65 81 76 59 49 78 80

X2 58 4 0 17 30 42 29 27 20 16 35

(avg) 34 6 18 38 24 31 8 66 37 36 32 43
715412213139 14232512
332219282658451547211
63 46 10 64 79 39 65 40 1 45 61
75 77 83 69 68 56 67 50 44 47 78
71 76 74 57 48 62 53 52 82 81 80
73 55 70 59 49 60

Table 4.9: Ranking order (best to worst) of the features in the COIL data set.
Relevant according to [38] are marked in bold font.

Tables 4.9 and 4.11 show the features divided into relevant and irrelevant
features using learning curve thresholding and hypothesis testing respectively.
Table 4.9 additionally show the ranking of the features according to the score
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measure. A noticeable difference in the 2 thresholding schemes is that y? does
not provide results that the learning curve is capable of detecting as irrelevant,
whereas hypothesis testing detects several irrelevant features given the same
scores.

The CoIL data set is the only data set with varying cardinalities of the fea-
tures. In fact this data set has features with cardinalities from 2 to 10 and a
single feature with the cardinality 40. Therefore, for this data set we have pro-
duced 3 sample sets (one for each score measure used) for each of the different
cardinalities in order to estimate the critical values. That makes a total of 30
sample sets. Table 4.10 depicts the different cardinalities and the corresponding
critical values derived from the sample sets. Moreover the distributions for each
score measure are depicted in Appendix A.

| Cardinality | Features | Threshold (x*/MI/PA) |
2 61 65 66 76 77 78 80 83 84 0.569588 / 0.001542 / 0.008092
3 56 57 59 64 68 71 81 0.567715 / 0.002704 / 0.012020
4 43 47 50 69 70 73 74 82 0.566007 / 0.003849 / 0.015139
5 45 48 63 0.564513 / 0.004980 / 0.017750
6 237195152535560 62727579 | 0.563525 / 0.006094 / 0.020116
7 40 44 46 67 0.564060 / 0.007193 / 0.022048
8 10 42 54 0.562444 / 0.008278 / 0.024165
9 1520 28 32 58 0.562407 / 0.009349 / 0.025740
10 648911121314151617 18
21 22 23 24 25 26 27 29 30 31 0.559556 / 0.010394 / 0.027360
33 34 35 36 37 38 39 41
40 0 0.558365 / 0.039715 / 0.076679

Table 4.10: Cardinalities and critical values for XQ, MI and PA scores. The critical
value is influenced by the cardinality of the tested feature.

The result of applying the hypothesis test to the CoIL data is shown in Table
4.11. The relevant and irrelevant features in the table distinguishes between the
features for which the null hypothesis was rejected and the features for which the
null hypothesis was kept respectively. Note that due to the different number of
states for the features of this data set an ordering of the features with respect to
the relevance scores makes little sence in this approach. Therefore the features
in Table 4.11 are ordered numerically.

If we look closer at these results we see that a hypothesis test with the Ml
score has declared none of the features irrelevant which our benchmark for the
CoIL data set has declared relevant. This is acceptable since we want to be
conservative when leaving out features. However, it must be possible to discard
more than 13 out of 85 features. The approach can be made less conservative
by increasing «.

The PA based hypothesis test discards 45 of the original 85 features rendering
it the least conservative of the 3 approaches. Unfortunately 4 of the features
which has been deemed irrelevant by this approach are among the features which
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Method | Relevant | Irrelevant |

Ml 012345678910111213141516 17 | 49 50 52 55 57 59 60
(avg) 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | 62 70 73 76 80 81

32 33 34 35 36 37 38 39 40 41 42 43 44 45
46 47 48 51 53 54 56 58 61 63 64 65 66 67
68 69 71 72 74 75 77 78 79 82 83 84

PA 02346789101112131415161718 | 1520 39 43 44 45 46 47 48
(avg) 19 21 22 23 24 25 26 27 28 29 30 31 32 33 | 49 50 51 52 53 54 55 56 57
34 35 36 37 38 41 42 64 58 59 60 61 62 63 65 66 67

68 69 70 71 72 73 74 75 76
77 78 79 80 81 82 83 84
X’ 0234567891011 1213 14151617 144 45 47 48 49 50 51 52
(avg) 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | 53 54 55 56 57 59 60 61 62
3233 343536 37 38 394041 42434651 | 67 6869 7071737475
54 58 63 64 65 66 72 79 84 76 77 78 80 81 82 83

Table 4.11: Result of applying the hypothesis test to the CoIL data set with
significance level 0.05 and sampling 10000 cases. Relevant features according to
[38] are marked in bold font.

has been recorded relevant by our benchmark for this data set. The fact that our
benchmark is based on supervised learning makes a fair comparison unapplicable
and the mismatches are not considered as errors.

At last x? has deemed 42 out of the 84 features irrelevant. This time one of
the features which is declared irrelevant is one of the relevant according to our
benchmark for this data set. A validation of the filter results obtained in this
section compared to the respective clustering models which can be learned from
these feature subsets will be presented shortly.

4.2.4 Leukemia

The data sets, LEUKEMIA, AML and ALL are particular interesting for several
reasons. The LEUKEMIA data set is well known in the data mining community
and thoroughly analyzed in the past. Its extreme number of features can prove to
be a challenge for any FSS method. Also indications show that very few features
are actually relevant which further challenges the methods by including a large
amount of noise. The AML and ALL data sets are interesting in that the patients
all suffer from the same type of illness and their gene expression profiles should
be similar and therefore also there should be very few or no irrelevant features.

Figure 4.9 on the next page shows the results of applying the score methods
to the ALL and AML data set. The top row shows the 3 score measures applied
to AML and the bottom row shows them applied to ALL. As before all results are
shown using average scores. Expectedly the methods indicate that there are no
irrelevant features in the data set. According to the rankings shown in Table 4.12
and 4.13 for the AML data MI and PA agree to some extent on the ordering of
the features. Note how the first 5 features and the last 5 features are almost the
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Figure 4.9: Filter results for the AML and ALL data transformed from the original
leukemia data set. The top row makes out the AML data set whereas the bottom
row makes out the ALL data set. The first column describes XQ, the middle Ml
and the right PA. In both cases it is not surprising to see that all patients are
relevant due to the fact that their gene expression profiles should bear similarities.

same for both MI and PA although not ordered completely identically. For x?
the ordering is trivial since all features have received the same score.

| Method | a=0.7 | a=0.3 | Irrelevant |
Ml (avg) | 312011649148215197223 15 17 22
10116 18 20 13 24
PA (avg) | 61131290192208 1041521 18116 22 13 17 24
237514
X? (avg) | 02423222120 19 18 17 16 15 14 13
121110987654321

Table 4.12: Ranking order (best to worst) of the features in the AML data set.
Relevance based on the learning curve thresholding scheme. Since we do not
expect any irrelevant features all are marked in bold font.

| Method [ Relevant | Irrelevant |

Ml (avg) | 312011649148215197 223

10116 18 20 13 24 15 17 22

PA (avg) | 61131290192208104 1521
23751418116221317 24

x? (avg) | 024 2322212019 18 17 16 15 14 13

121110987654321

Table 4.13: Ranking order (best to worst) of the features in the AML data set.
Relevance based on the hypothesis test thresholding scheme. Since we do not
expect any irrelevant features all are marked in bold font.
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Similar tables for the ALL data set can be seen in Tables 4.14 and 4.15. In these
tables though the similarity among PA and MI is less striking. The explanation
for this could be found in the clustering results in that the results could indicate
a less clear ordering of the features due to additional dependencies.

| Method | a=0.7 | a=0.3 | Irrelevant |
MI (avg) | 12 45 4 18 14 25 43 20 15 46 36 44 27 28 2 26 37
17 24 9 10 34 41 42 35 23a13 3911 7 16 40
3212130533312022319038638
PA (avg) | 414546 25172412915183563 011 38 33 28

10 29 34 4 14 36 26 37 1 30 39 44 13 82401916
43 52220 31 7 42 21 27 32 23

x” (avg) | 046 45 44 43 42 41 40 39 38 37 36 35
34 33 32 31 30 29 28 27 26 25 24 23 22
2120191817 16 1514 131211109
87654321

Table 4.14: Ranking order (best to worst) of the features in the ALL data set.
Relevance based on learning curve thresholding scheme. Since we do not expect
any irrelevant features all are marked in bold font.

| Method Relevant | Irrelevant |

MI (avg) | 12 45 4 18 14 25 43 29 15 46 36 44 37 17
24910344142352313391132121305
333120223190386 827282267 16 40
PA (avg) | 41 45 46 25 17 24 12 9 15 18 35 6 3 10 29 34
4143626371303944134352220317
422127322301138332882401916
x” (avg) | 046 45 44 43 42 41 40 39 38 37 36 35
34 33 32 31 30 29 28 27 26 25 24 23 22
2120191817 16 15 14 131211 10 9
87654321

Table 4.15: Ranking order (best to worst) of the features in the ALL data set.
Relevance based on hypothesis test thresholding scheme. Since we do not expect
any irrelevant features all are marked in bold font.

We know from previous analysis that a large portion of the features in the
LEUKEMIA data set are irrelevant. In Figure 4.10 on the facing page it can be
seen that the methods do not indicate any irrelevant features. This is most likely
caused by the large amount of features and the lack of cases which strongly
increase the possibility of random dependencies among irrelevant features. In fact
closer examination revealed that all features include strong dependencies with
at least 100 other features. This fact renders any relevance measuring among
these features difficult. This is also the case for the proposed scoring methods
in this report. It is worth mentioning that PA performs significantly better than
both Ml and x? by exhibiting a concave shaped graph whereas the other two are
almost straight.
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Figure 4.10: Filter results for the leukemia data set in full containing 7129 features
and 72 cases. Notice that PA performs significantly different from both MI and
x?2. Considering previous analysis we can say that PA performs significantly better
than the 2 other methods.

Figure 4.11: The distributions of each of the score measures applied to random
features scored against the LEUKEMIA data set. The dashed lines show the critical
values. The figures from left to right are for x2, Ml and PA respectively.

The ordering of the last data set is not shown due to the large amount of
features. It is however interesting to see whether the rankings that the methods
have produced can prove to be correct. Section 4.4.1 on page 60 will show the
results of validating the rankings of all results shown in this section.

Relevant
Method | Learning curve (o = 0.3) | Learning curve (= 0.7) [ Hypothesis test
MI (avg) | 7129 6975 6803
PA (avg) | 7106 3803 253
xZ (avg) | 7129 7129 6657

Table 4.16: A summarizing table on the results obtained by the filtering methods
performed on the LEUKEMIA data set. The numbers shown are the number of
relevant features according to each method.

Table 4.16 shows the number of relevant features returned by each of the
3 score measures combined with both the learning curve approach and the hy-
pothesis test. The PA measure has declared most features irrelevant for both
the learning curve approach and the hypothesis test approach. With the learning
curve approach it has deemed 3326 features irrelevant while with the hypoth-
esis test it has successfully found 6676 irrelevant genes rendering it the least
conservative approach. With Ml only 157 was declared irrelevant together with
the learning curve approach while 326 features were declared irrelevant when
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combined with the hypothesis test. x? has detected no irrelevant features when
combined with the learning curve. However, combined with a hypothesis test it
has declared 472 out of the 7129 features leaving it less conservative than the Ml
methods. To summarize on this it is clear that PA has proven a quite convincing
performance. This, together with the previous results has indicated that it has
a higher difference in the scores for features with weak dependencies and the
features with strong dependencies. Figure 4.11 depicts the distributions for the
relevance measures for irrelevant features scored against the LEUKEMIA data set.
It is interesting that for this data set PA shows a less peaked distribution than
both x? and MI. Despite this PA has filtered out significantly more features than
the other two measures.

4.3 Validation of the Filter Results

In the previous section we shown that the two filter methods were capable of
filtering out irrelevant features. Their performance was measured by comparing
the obtained results to knowledge we were able to gain about the data from an
external source. In a second step of validation, we wish to measure each score
measures ability to distinguish between features which contribute to homoge-
neous clusters and whether they are capable of ranking the features with respect
to their relevance. In order to do this we apply the 2 clustering methods de-
scribed in Chapter 2 on the feature subsets that were declared relevant by each
filter method. We evaluate the resulting models by measuring their homogeneity
and compare it with the homogeneity of a model learned from the whole data
set. This task however is far from trivial in that fair comparison between cluster
results based on different sized feature subsets can prove to be a challenge. Here
we aim to explain how the evaluation is performed and how the homogeneity
of clustering with different subsets of features can be measured such that the
results are comparable.

4.3.1 The Test Strategy

Our tests are designed to test our methods ability to select relevant features and
their ability to correctly identify the order of relevant features. In a first step
we learn models from each subset of relevant features according to our filter
methods and measure their ability to generate homogeneous results. In a second
step we wish to validate the relevance ranking of the features produced by the
filter methods. Therefore we learn a model from the most relevant feature, and
measure its performance. Then we learn a model from the two most relevant
features and measure the performance of this second model. Thus we continue
clustering with the most relevant features adding 1 feature for each iteration.
More specifically, we have an ordered set of features X = {X;, Xo,..., X},
ordered with respect to the relevance measure R, such that R(X;) > R(X2) >
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> R(X,), i.e. the most relevant features first. From X we produce p
feature subsets such that S1 = {X}, S, = {X1, X5}, ..., S, = X with each
S; C Si+1. Given a performance measure P, which measures the homogeneity
of our clusters according to our clustering criterion, we will verify that P(S;) <
P(S;+1). If this is true we have indices that the ordering produced by R is valid.

4.3.2 Validation Using k-modes

To test whether our relevance measures can successfully be used for FSS as a pre-
processing step for the k-modes algorithm, we want to measure the performance
of a model learned by a feature subset S; of the i most relevant features with
respect to our clustering criterion P. ldeally, we wish to measure the partitioning
in terms of the cohesiveness and distinctiveness of the clusters obtained by a
k-mode partitioning with a subset of the original features. A widely used mea-
sure when evaluating the performance of a k-means partitioning is the average
distance to cluster centroids and the same applies for the k-modes algorithm.
However, since we may assume that the number of instances in the data set
is constant for all evaluations of feature subsets, the sum of distances to the
cluster centroid is equally good. Therefore we use Equation 2.4 to evaluate the
goodness of a partitioning.

We want to be able to compare the relevancy of the feature subsets S; and .S;
for i # j with respect to our clustering criterion (the performance function P). If
we apply Equation 2.4 on models learned from the two subsets and compare the
results we would favor the smaller subset and so we need a more fair comparison,
and we need the performance function P to be independent of the amount
of features used for learning. Therefore we learn the models using the specific
subsets S; and S; and evaluate the performance based on the full set of features
Sp. This means that we use the cluster assignments (or labels [) of each instance
z; € D we got when k-modes was run on S; and S respectively, and assign
the labels to each instance in D. We then apply Equation 2.4 on D with the
partitionings obtained by models learned from S; and S respectively. This way we
measure the ability of the features in S; to partition the data base D and achieve
homogeneous results. This way the performance function P yields comparable
results.

4.3.3 Validation Using NB Models

To validate a probabilistic model, like the NB model, it is common to use the
log-likelihood of the data given the learned model, i.e. Equation 2.15. However,
like with the k-modes algorithm, it is unfair to compare the performance of
different models containing different subsets of features. We wish to distinguish
between the use of the performance measure that was used when the model
was tested for convergence during learning and the performance measure which,
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when applied on a learned model, yields results comparable to models trained on
a different feature subset.

To obtain a comparison that is similar to that of the k-modes we measure
the performance of the whole data set after induction. In the case of the NB
model the features that were not included in the learning process are included
in one last maximization step in order to calculate their parameters using the
current fractional partitioning of the data base. Based on the complete data
we now apply the log-likelihood estimate to measure the performance. In other
words, the induction of a NB model on a feature subset S; yields a set of labels
[ of fractional cluster membership assignments, one for each case in the data
base S;. If we assign those labels to each case in D, run one iteration of the
maximization step we have a model including all features in D but which is only
learned from the feature subset S;. On this data base we can apply Equation
2.15 and measure the performance of the features subset S; in a comparable
manner.

4.4 Experimental Evaluation of the Score Measures

In this section we present the results of applying the two clustering algorithms,
the k-modes and NB to our data bases. For each score measure we measure the
performance of the models which are learned from the relevant features only.
The models are evaluated according to our clustering criteria, namely the total
distance to the cluster modes for k-modes models and the log-likelihood for the
NB models. Both measures are calculated as described above in order to obtain
comparable results (the results are comparable within each data base only). Fur-
thermore, we run both the algorithms multiple times, each time with different
starting criteria and report only the best possible obtained result measured with
the performance function P which takes the entire data set into account. That
is, we are looking for the best model which can be learned from S;, that when
its clustermembership assignments are used on the data set D result in homoge-
neous clusters. In this project we have chosen to choose from 5 models. Further
more we pick the starting criteria for each iteration in a deterministic manner
such that the same set of starting criteria are evaluated when each feature is
added.

The results of measuring the performance of k-modes models learned the fea-
tures which are relevant according to the filter methods are shown in Table 4.17.
The measurements are in total distance to cluster modes measured with Equa-
tion 2.1 and the number of clusters k is held constantly at the value mentioned
in Section 4.1. The rightmost column shows the performance of models learned
from the entire set of features for each data set. The results must be compared
with the amount of features which have been discarded. For instance, when the
relevant features according to the x? dependency measure performs equally well
as the whole data set with a hypothesis test, it must be taken into account that

Page 58 of 90



Chapter 4: Results

all features in SYN20 are relevant according to this method. If we pay attention
to the results obtained with the CoIL data where PA together with the learning
curve approach was able to discard 45 features with & = 0.7 and 37 features
with alpha = 0.3. Note that for both feature subsets, the homogeneity of the
resulting model is a fraction better than the model learned by the entire data set.
The same applies for M|l combined with the learning curve approach where 40
and 48 features are filtered out with a small increase in the cluster homogeneity.
This may indicate that the k-modes algorithm in some cases performs worse
when noisy features are included in the training data.

Learning curve Hypothesis test | All Features
Data Method | =07 [ =03 a=0.05
SYN10 Ml 85016 85016 85027
PA 85016 85016 85027 76661
X’ 76702 76661 76661
SYN20 Ml 105346 | 105346 105346
PA 105346 | 105346 105346 110883
x° 110883 | 110883 110883
WAVE Ml 109133 | 109040 109040
PA 105890 | 105890 105922 104986
X’ 105447 | 104986 104986
CoIL Ml 118703 | 118703 118569
PA 119086 | 118733 118557 118995
x° 118995 | 118995 118557
AML Ml 70491 70201 70201
PA 71713 70201 70201 70201
X’ 70201 70201 70201
ALL Ml 125245 | 124322 124322
PA 125321 124322 124322 124322
P 124322 124322 124322
LEUKEMIA | MI 191126 191126 191126
PA 191126 191126 191126 191126
x° 191126 | 191126 191126

Table 4.17: The performance of the k-modes partitioning models learned from
the features which are relevant according to the filter methods measured in
Equation 2.1 to cluster modes.

Table 4.18 shows the results of learning NB models from the features which
are relevant according to the filter methods. The values are log-likelihoods of
the data given the learned NB model. The rightmost column contains the per-
formance of models learned from the entire data set D. It is worth to notice
that except for the LEUKEMIA data set models learned from any of the feature
subsets do not perform better than the entire data set. This is, as opposed to
the k-modes algorithm, an indication of more stability under the presence of
noisy features. Also note that for the 3 artificial data sets all the relevant feature
subsets perform equally well as the entire data set. Again we point out PAs per-
formance on the CoIL data set. In the case where PA together with the learning
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curve approach filtered out 45 features the performance only degrades 5 points
out of -313942, an insignificant percentage. The same accounts for the rest of
the feature sets.

Learning curve Hypothesis test | All Features
Data Method | @ =07 [ a=03 a=0.05
SYN10 MI -174924 | -174924 -174924
PA -174924 | -174924 -174924 -174924
X’ -174924 | -174924 -174924
SYN20 MI -242394 | -242394 -242394
PA -242394 | -242394 -242394 -242393
X’ -242393 | -242393 -242393
WAVE Ml -200439 | -200439 -200439
PA -200439 | -200439 -200439 -200439
X’ -200439 | -200439 -200439
CoIL MI -313965 | -313965 -315817
PA -313947 | -313947 -316809 -313942
X’ -313942 | -313942 -315810
AML M -171972 | -171940 -171940
PA -172138 | -171940 -171940 -171940
X’ -171940 | -171940 -171940
ALL Ml -305395 | -305304 -305304
PA -305407 | -305304 -305304 -305304
X’ -305304 | -305304 -305304
LEUKEMIA | MI -421303 | -420990 -420990
PA -419768 | -419768 -421262 -419768
X’ -419768 | -419768 -421022

Table 4.18: The performance of NB models learned from the features which are
relevant according to the filter methods measured in log-likelihood.

These tests have shown that the filters proposed previously are capable of
filtering out features which do not contribute to the clustering with respect
to more homogeneous clusters. Moreover, we have seen that for the k-modes
algorithm the noisy features are likely to confuse the result rendering the resulting
model less homogeneous than a model learned from a subset of features, which
are relevant for the clustering.

4.4.1 Relevance Ranking Validation

In this section we aim to validate the rankings of the features based on the
relevance scores. In the case of the artificial data sets the ranking should be
sufficient to be convinced of their capability since we know which features are
truly relevant. We do however perform validation of the relevance ranking for the
purpose of showing the reliability of the validation techniques. In addition this
section will show the results of validating the real-world data sets. The results
in most cases lead to a discussion of the performance of the unsupervised FSS
methods and reliability of the clustering methods.
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Figure 4.12: The cluster results on the SYN10 and SYN20 data sets using the
filter ranking. Graphs show both the filter outputs, the k-modes and NB models
results. The top row shows the results of SYN10 whereas the bottom row shows
results of SYN20. The leftmost describes x?, the middle Ml and the right PA.

The graphs shown in this section are normalized between 0 and 1 in both the
x-axis and y-axis using Equation 4.1. The y-axis for the clustering techniques
represent the score for the current feature subset S; whereas the x-axis represent
the features ordered according to their ranking (best to worst).

Synthetic Data Rank Validation

The cluster results of SYN10 and SYN20 can be seen in Figure 4.12. The most
noticeable part of the results is the significant instability in the results of k-modes.
However a trend is visible and combined with the results of the NB model the
results strongly indicate the the rankings are correct.

All subsets have been clustered with k-modes 5 times and the best result has
been selected. The results indicate that more iterations are necessary in order to
get more stable results. In comparison the NB model perform much more stable
and the results support our previous statement that the score measures are
conservative. Clustering with the NB model indicates that less than 10 features
are necessary for clustering.

Waveform Rank Validation

Figure 4.13 shows the results of the filters applied to the WAVE data set. In this
case though the graphs have been overlaid with results of clustering using the
feature subsets specified by the rankings. The validation of PA and Ml using NB
models provide nice graphs that are very similar indicating that the NB models
agree with the rankings produced by the 2 methods. It can be seen from the
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Figure 4.13: The cluster results on the WAVE data set using the filter ranking.
Graphs show both the filter outputs, the k-modes and the NB model results.
Again the leftmost describes x?, the middle MI and the right PA.
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Figure 4.14: Validation of the filter results on the WAVE data set. Graphs show
both the filter outputs, the k-modes and the NB model results using reverse
order ranking. Again the leftmost describes x?, the middle MI and the right PA.

graphs that the accuracy of the model increase only slightly after 30% of the
features.

The results of the clustering methods using our rankings indicate that the
rankings are correct. The features that contribute with the most information for
the clustering have been ranked first. We cannot however, be certain that any
random ranking of the features would not produce the same output. None the less
for comparison Figure 4.14 shows the same results as before, although this time
the features are in reverse order according to the relevance scores proposed. The
clustering results clearly show the impact the ordering has on the clustering. In
the case of Ml and PA the NB model clearly shows only very small improvements
of the clustering from 1 feature and up to the total amount of irrelevant features.

The ColL Challenge Rank Validation

In Figure 4.15 the cluster results for the COIL data set can be seen. The results
indicate sensible rankings and in all cases no more than half the features are
sufficient for clustering. In many cases significantly fewer features seem necessary.

Another interesting aspect of the graphs is that for all methods the filter is
the most conservative, in the middle is k-modes and the most risky results are
obtained using the NB model. By risky we refer to the fact that the feature
subset that according to the NB model is sufficient for clustering includes only a
minimum of features and is more likely to exclude relevant features than analysis
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Figure 4.15: Cluster results on the COIL data set using the filter rankings. Graphs
show both the filter outputs and the k-modes and the NB model results. The
leftmost describes x?, the middle MI and the right PA.
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Figure 4.16: Cluster results on the AML and ALL data sets using filter ranking.
Graphs show both the filter outputs, the k-modes and the NB model results.
The top row illustrates the AML data set whereas the bottom row illustrates the
ALL data set. The leftmost describes X21 the middle MI and the right PA.

performed using only the filter or k-modes.

Leukemia Rank Validation

Each of the 3 leukemia data sets have been analyzed using the 3 proposed filter
methods. Recall that the results found was that the AML and ALL data sets, not
surprisingly, did not contain any irrelevant features. Using the same filters it was
also difficult to distinguish relevant from irrelevant in the LEUKEMIA data set.
What we expect to see in this section is verification that the AML and ALL data
sets do not contain irrelevant features, and that the ranking of the LEUKEMIA
data set makes sense.

Figure 4.16 presents the clustering results for the AML and ALL data sets.
Again it is clear to notice that k-modes is more conservative than the NB model
and that the NB model provides more stable results. Comparing with the results
of the filter approach a significant difference becomes apparent. According to
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Figure 4.17: Cluster results on the LEUKEMIA data sets using filter ranking.
Graphs show both the filter outputs, the k-modes and the NB model results.
The top row illustrates the LEUKEMIA data set in full whereas the bottom row
illustrates the same data set in which we have zoomed in to 100 features. The
leftmost describes x?, the middle MI and the right PA.

the filter all features are relevant for clustering, but this is based on an analysis
of each feature separately. Figure 4.16 gives a good indication of the difference
between scoring a subset as the cumulative score of each feature and scoring
a subset as a whole. The clusterings clearly indicate that less than half the
features are necessary to obtain a good clustering result. Each feature in it self
provides relevant information to clustering, but most of them provide the same
information and therefore very few of them are sufficient. This fact is not taken
into consideration in the proposed score measures and must be considered a
weakness in the approach.

The results of validating the LEUKEMIA data set can be seen in Figure 4.17.
The top row shows the clustering results of all 7129 feature subsets. It is clear
that according to the graphs very few features can in fact provide a clustering
result approximately as accurate as a result based on the full feature set. This
corresponds well with previous analysis in the domain of classification.

The figures show both results of k-modes and the NB model and given the
amount of features present it is difficult to separate the results. The bottom row
gives a more detailed view into the first 100 which seem to indicate that less
than 50 features should be sufficient to build a good model. Unfortunately the
filter approach seems unable to detect this property although PA combined with
the hypothesis test reduces the amount of features to 453. However according
to the 2 clustering techniques the reduction is still very conservative.

Another interesting issue in Figure 4.17 is the fact that the scores tend to
be more unstable compared to the results of the other data sets. The reason
could be in the precision of the used data types which do not perform well for
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extremely low values. The values used in order to compute the log-likelihood
of a NB model will be a multiplication of 7129 probabilities which represents
extremely low values. The results however correspond well with expectation and
can serve as approximations of the correct results.

4.5 Summary

In this chapter we have shown the proposed filter approach able to produce
good results for various data sets. A summarization of these are shown in Table
4.19 which illustrates the amount of relevant features that have been deemed
irrelevant (false negatives) and vice versa (false positives). The fact that the
amount of false positives exceeds the amount of false negatives indicate that the
approaches are conservative.

Learning curve | Hypothesis test
Data Method | fp | fn fp | fn
SYN10 | MI 0 0 0 0
PA 0 0 0 0
X’ 5 0 10 0
SYN20 | MI 0 0 0 0
PA 0 0 0 0
X’ 19 0 20 0
WAVE Ml 0 3 0 2
PA 0 2 0 2
X’ 13 0 19 0
CoIL M 27 4 51 0
PA 24 5 22 4
X’ 64 0 34 1
AML Ml 0 3 0 0
PA 0 7 0 0
X’ 0 0 0 0
ALL Ml 0 9 0 0
PA 0 12 0 0
X’ 0 0 0 0

Table 4.19: Summarization of the results of the proposed filter approach. The cell
values describe both false positives (fp) specifying an irrelevant deemed relevant,
and false negatives (fn) specifying relevant features deemed irrelevant. The latter
being the most important to avoid.

For the real-world data sets it is difficult to determine truly relevant features.
Based on previous analysis a set of truly relevant features have been selected
although the analysis usually have been made using supervised FSS and therefore
cannot be compared to unsupervised FSS. This explains the false negatives that
are visible in Table 4.19. In addition the WAVE data set contains false negatives
which is due to the small degree of relevance that is present for these features.

For the LEUKEMIA data set no results are shown in that the set of truly
relevant features are unknown. However we can refer to Table 4.16 for details on
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this data set. The transformed data sets, AML and ALL contain only truly relevant
features based on an intuitive understanding of the data.
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Approach

We all agree that your theory is crazy, but is it crazy enough?
— Niels Bohr

It is a known fact that wrapper approaches produce more reliable results when
used for FSS because they rely on the learning method to evaluate the homogene-
ity of the model obtained by a given feature set. However, wrapper approaches
are slow. As opposed to wrapper approaches, the filter approach is faster than
wrappers but their independence of the evaluated model leaves them to rely on
safe conservative approaches like the filters discussed in the previous chapter.

It is clear that a perfect method for performing FSS has the reliability of
the wrapper and the speed of the filter. Therefore, in this chapter we propose
a method that takes advantage of both the accuracy of the wrapper and the
computational speed of a filter.

In the first part of the chapter we will give a description of the proposed
hybrid. Then we will show that the hybrid approach can perform as accurately
as a wrapper with a considerable reduction in computational cost compared to
ordinary wrappers. The results presented are based on the same data sets that
has been used throughout Chapter 4.

5.1 The Method

When performing FSS, the size of the search space is 2P where p is the number
of features. Therefore much research within FSS focus on optimizing the search
strategy within this search space. In any kind of problem involving search, the goal
is to minimize the amount of points in the search space which has to be evaluated.
This task is especially critical for wrapper approaches for FSS where a model has
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to be learned for each feature subset. Moreover, learning of a model is a search
task in itself which involves much uncertainty which must be dealt with in order
to assign a fair validation to a feature subset. For instance, evaluation of each
feature subset requires multiple models to be learned if the learning algorithm
has a probability of being trapped in a local maximum. The computational cost
of the induction algorithm renders many advanced heuristic search techniques
impossible. Especially approaches that rely on genetic algorithms have to learn
a huge amount of models on their way to an accepted feature subset.

The evaluation task is much less critical for filter approaches. However, the
filter approaches proposed in this report scores each feature alone and indepen-
dently of the final task. That is, the score methods we have proposed rewards
features which are likely to contribute to cohesive clusters but the evaluation is
of each feature alone instead of evaluating an entire feature subset which may
be more fair to the features. Scoring single features for relevance favors selecting
features that convey the same information instead of selecting features that add
independent information. Therefore, the result of evaluating each feature alone
may lead to over-rating the features which lead to a too conservative approach
compared to what can be obtained with a wrapper.

Here we aim to find an approach which is somewhere in between the two
extremes, in order to combine the computational efficiency of the filter and the
accuracy of the wrapper. For this purpose we apply a wrapper approach on the
remaining feature subset returned by the proposed filter approach to significantly
reduce the search space. That is, we apply the score measures presented in
Chapter 3 and use the obtained rankings for the subset of relevant features as
the order in which the features should be added to the pool of features that
are being used for model learning and evaluation. We refer to this method as a
hybrid approach in that it benefits from advantages of both filter and wrapper
approaches.

5.1.1 The Search Problem

Let S = {S1,S52,...,S5f} denote an ordered set of feature subsets, constrained
by the relevance ranking, that contain the remaining f features after the filter
approach has been applied using the relevance measure. We require that each S;
contains the i most relevant features according to our relevance measure, and
that S; C S;11, meaning that the subsets are nested. Furthermore, we assume
that the performance of the feature subsets is monotonic i.e. the performance
of the best model which can be learned from S; is lower than or equal to the
performance of the best model learned from S;1 1. The validation of the orderings
in the previous chapter indicate that this is true for NB but not for k-modes. We
then use a wrapper approach to perform a search in a search space of feature
subsets based on the features in S.
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5.1.2 Thresholding

In this proposal we wish to apply a simple search strategy in which each result is
compared to the result obtained from S. Prior to the comparison we decide on a
margin o, stating how much performance degrading can be accepted. Specifically,
we search for a subset with a fraction « of the performance obtained with S
scaled against the performance which can be obtained with S;. To do this we
need a performance measure P. Let P(S;) be a function that learns an NB model
from S; and returns the log-likelihood of that model measured with respect to
the entire data set D (see Section 4.3.3). We then benefit from Equation 4.1
and obtain

L PSuin2) — P(S1)
Pnorm(Sz) = P(Sf) — P(Sl) . (51)

The feature subset S; we are searching for is the one with a P4, (S;) closest
to «, but yet always above.

Unless stated otherwise the margin set in this project will be a degrading of
3%. In this case « is set to 0.97. The reason for using linear scaling in this search
criterion is simply to let « be scalable between multiple data sets.

5.1.3 Binary Search FSS

To find the feature subset which satisfies the above criterion we need a search
strategy, and we are even allowed to benefit from the ranking in S. One possibility
we have considered is to apply a learning curve strategy like the one proposed
for the filter approach. Applying the learning curve thresholding scheme would
in this case require using a standard sequential forward search technique which
would require a number of learned models proportional to p, which is acceptable
in a search space of size 2P. We have also considered the possibility of applying a
hypothesis test. In such a strategy we could use the measure P as test statistic
and in a forward search strategy constrained by the order in S, sample a number
of scores when randomly generated features are added to a subset S;. Such
a method would not be applicable in a wrapper approach due to the extreme
amount of clustering models that are required to be evaluated. For instance,
using a sample size of 10000 features would in a worst case scenario require
10000 inductions for each of the features in Sy.

We propose to use a simpler and computationally less heavy search strategy.
Taking advantage of the ascending order in S we can apply binary search strategy
for the best feature subset [9]. The binary search strategy used works by first
evaluating a clustering model using the feature subset Sy. Using this result we
can, as a second step, evaluate a clustering model using only half of S, namely
Sy/2- We search for the feature subset with a P(S;) as close to « as possible
yet always above the threshold. If the model learned using S/, performs too
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Binary Search FSS

Parameters: A threshold o, an ordered set of feature subsets
S with the first element at index [ and the last element at 7.
Sy contains the f features which have not been filtered out by
the filter approach.

Returns: The index of the feature subset which performs a
fraction 1 — « worse than the entire feature subset Sy.
BSFSS(a, S,1,r) {
if (I =r)
return [
if (Pnorm(S(Hr)/Z) > 0‘)
return BSFSS(«, S,1, (r +1)/2)
else
return BSFSS(«, S, (r+1)/2 +1,r)

}

Figure 5.1: The Binary Search FSS algorithm (BSFSS) applied for unsupervised
FSS in our hybrid approach. It takes as argument an ordered set of feature subsets
which is based on the feature rankings returned by one of the score measures
in the previous chapter. The number of evaluated models with this approach is
proportional to logs p.

poorly we evaluate a new model at 75% of S (Ssy/4), and if Sy, performs
better than the threshold, we evaluate a new model at 25% of S, the feature
subset Sy 4. The number of feature subsets to be evaluated using this approach
is proportional to logs p. We call this strategy Binary Search FSS and the details
are depicted in Figure 5.1.

5.2 Results

As mentioned the hybrid approach has been tested on the same data sets as used
for testing and evaluating the filter approach. The rankings of the features for
each data set have already been shown, as well as the performance of the clus-
tering models for each evaluated subset of features. Table 5.1 gives an overview
of the results compared to both filter methods.

It is clear for all results that the hybrid approach is able to remove a significant
amount of features that the filter could not deem irrelevant. This corresponds
well with the fact that the filter is conservative. The thresholding scheme used
is very naive and applying another scheme could prove to discard even more
features. Especially when examining the ALL graph on Figure 4.16 it seems that
8 to 12 features is a conservative choice and good results could be obtained
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Filter Hybrid
Data Method | Learning curve | Hyp. test | Learning curve | Hyp. test
SYN10 MI 10 10 6 6
PA 10 10 6 6
X’ 15 20 7 7
SYN20 MI 10 10 6 6
PA 10 10 6 6
v 29 30 7 7
WAVE MI 18 19 13 13
PA 19 26 13 13
v 3% 70 10 10
CoIL MI 44 72 13 16
PA 40 39 24 16
% 85 54 71 25
AML MI 22 25 10 10
PA 18 25 8 9
" 25 25 17 17
ALL MI 38 47 12 13
PA 35 47 8 8
Ve 47 a7 % W
LEUKEMIA | MI 6975 6809 66 66
PA 3809 459 26 13
% 7129 6657 182 182

Table 5.1: Overview of the relevant features found using the filter and the hybrid
approach.

using only the 5 best features in the data set. However 8 to 12 features is a
highly significant reduction compared to the filter approach.

An interesting part of the results is to examine the features that have not been
detected as irrelevant by the filter but discarded by the hybrid. Finding similar
characteristics among these features could help to improve future proposals for
a filter approach.

In Figure 5.2 we have included the BN for the synthetic data including only
relevant features. The 4 figures show the probability distribution of each feature
inside each cluster and in total. In the figure each feature is denoted PatientX
where X is the number of the feature. The aim is to give an explanation of
the features which according to the filter approach was considered relevant but
according to the hybrid was deemed irrelevant. The synthetic data represent the
simplest model and has thus been chosen for this purpose.

According to the filter approach for SYN10 both MI and PA score feature 12
and 15 among the least relevant which according to the hybrid are irrelevant.
Examining Figure 5.2 for the probability distributions inside each cluster for these
features we notice a striking similarity with other relevant features. For Patient3
corresponding to feature 12 in the SYN10 data set, Patient4 have a probability
distribution inside each cluster which is almost identical. This could lead us
to believe that the 2 features are redundant. The same applies for Patient6
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Figure 5.2: BN's of the relevant features in the first synthetic data, created using
Hugin [1] to show the probability distribution of individual features inside each
cluster. Top left shows the original BN without any fixed states. The other 3
show the probability distribution of all features with the class random variable
fixed to one of 3 states.

corresponding to feature 15 in the SYN10 data set and Patient10.

5.2.1 Extensions to the ColL data results

Applying hypothesis testing on the COIL data set we obtain a feature subset
that is not ranked since the features have different cardinalities (see Section
4.2.3). For the hybrid approach we require a ranking of the relevant features
regardless of the thresholding scheme used. Therefore in this section we show
the performance of relevant features according to the hypothesis testing for the
COIL data set.

In Figure 5.3 the clustering results of the relevant features according to the
hypothesis testing is shown. The features are ranked given their score measure.
The figure shows the clustering results for all feature subsets constrained by the
rankings. The hybrid only considers logs p of these subsets but in order to be
convinced that the ranking is valid the figure shows the performance P, for
all feature subsets. The figure verifies the results in Table 5.1 in that it is clear
that x? drops significantly in performance several features before both PA and
MI.
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Figure 5.3: Illustration of the graphs for the CoIL data including only relevant
features based on the hypothesis test. The graphs support the results of the
hybrid for this data set.

5.3 Summary

In this chapter we have proposed a hybrid approach that takes advantage of
both the accuracy of the wrapper and the computational cost of the filter. Not
surprisingly the method reduce the amount of features significantly compared to
the filter approach proposed in Chapter 3.

The results obtained are less conservative and effectively reduce irrelevant
features from a given data set. Regarding computational cost we know that the
wrapper is the most expensive given the amount of inductions needed to perform.
In this proposal we have reduced the amount of inductions needed to logs p.

Most of the reductions performed by the hybrid lowers the dimensionality
beyond what is know to be relevant. That is, some of the relevant features for
synthetic data are also discarded as irrelevant. In this chapter we have continued
the discussion regarding redundant features which we believe to be the cause
of this behavior. We consider redundancy an important issue to handle in the
context of unsupervised FSS regardless of whether the approach is wrapper or
filter.
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Future Work

A great frustration in life is discovering that sometimes those who say something
can't be done turn out to be right.
— Donald Simanek

This masters thesis has been developed given a limited amount of time which
also limits the degree to which we can accomplish the tasks at hand. The focus
has been on broad research in the area of unsupervised FSS and several proposals
have been made. The proposals outline potentially interesting facts that could
be beneficial in further research. In this section we raise questions in connection
to the work done and pose new problems that have yet to be solved.

6.1 The Filter Approach

In this domain 3 score measures have been developed for scoring each feature
in a data base and ranking them. FSS has been performed based on 2 proposed
thresholding techniques. However, several problems have been raised during the
development of the methods.

All 3 proposed score measures are based on a myopic strategy in which the
score of each feature is based on individual performance independently of its
membership to any feature subsets. A better approach could be propose a score
measure which is able to evaluate a subset of features in order to measure their
combined score. Given the current approach the score of each feature is inde-
pendent other features, which is highly likely to overrate a feature resulting in
conservative FSS. It has been our experience that features that are part of a
semi-clique are very relevant whichi leads us to suggest a score measure that
rewards features for being part of a semi-clique. One way of viewing the problem
is as a search in a connectivity graph. In the proposals of this report the connec-
tivity graph is assumed to be complete. Another approach was to search for an
optimal connnectivity graph in which only true edges are present. This can be
accomplished using the proposed score measures to score the edges.

Page 75 of 90



6.2 The Hybrid Approach

It has been discovered during the tests that some features although rele-
vant according to the filter approach, prove to contribute with very little new
information for clustering purposes.

It is our opinion that a discussion of redundance in data clustering is needed.
Therefore work could be done in the near future aiming at a discussion and
a definition of redundance in data clustering. We suggest research that would
indicate how to handle redundant features.

6.2 The Hybrid Approach

The hybrid extends the filter approach by applying a wrapper on the output of the
filter. The search space however is constrained given the ranking of the features.
We take advantage of previous analysis using the filter in order to further reduce
the amount of inductions to logs p. The wrapper performs an online search
strategy in which we decide after each induction whether or not to continue.

The thresholding scheme used in this proposal is naive although in most cases
it performs satisfactory. However referring to the validation of the ALL data set
we can observe that the threshold is still conservative. The validation reveals
the full shape of all inductions and serves as indications of where the threshold
should be. According to the validation of the ALL data set the threshold should
be around 4 features which is the end of a steep climb on the graph and where
it flattens to a very slow increase given the rest of the features. The task of
developing a thresholding scheme however is not trivial in that several properties
must be considered.

e The threshold must support an online strategy.
e Performance cannot be assumed to decrease in the number of features.

e Unless no features are irrelevant, induction on the full data set is prohibited.

The current approach requires induction on the full feature subset that is output
from the filter approach. In most cases this will not be the full data set but still the
induction can be expensive. One can also argue that applying post processing
on this feature subset could make further inductions obsolete. Therefore it is
desirable to perform inductions only on feature subsets that do not exceed the
size of the resulting feature subset.

As the required number of inductions have been greatly reduced it becomes
applicable to perform as search for the optimal model in which the assumption
that the number of clusters & is unknown. Future research could explore this
area and perform empirical tests.
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Conclusion

It's never too late to give up.
— Ronny Ericson

In Chapter 1 we motivated and limited this project to be within the field of data
clustering which we consider a critical task in data mining. In addition to this
broad area, we have limited our work to be concerned with unsupervised feature
subset selection (FSS), which we consider the process of identifying irrelevant
features which can be left out without doing any harm to the resulting model.

The most critical part of our approach is how we wish to characterize features
which are relevant for data clustering. In this report we argue that relevant
features must depend on the cluster random variable and hence, they must be d-
connected given no evidence on the cluster variable. In the absence of the cluster
random variable we define a relevant feature as a feature that is dependent on
at least one other feature. For the purpose of measuring dependence between
pairs of features we have applied 3 dependency measures:

e x? analysis.
e Predictive accuracy.

e Mutual Information

In order to further measure the relevance of features we apply relevance mea-
sures based on pairwise dependencies among features in the data set in order
to measure, compare and rank the features with respect to relevance. For this
purpose 2 relevance measures were proposed:

Rpax(Xi) = maxDM(X;, X;)
>, DM(X;, X;)
p

Based on the above relevance measures we have proposed and tested the fol-
lowing methods to identify irrelevant features. First we propose a filter approach

Ravg (Xz) =
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which works by ranking the features according to their relevance score and se-
lecting only the most relevant features by setting a threshold. The threshold is
set using a learning curve sampling method using a cost versus benefit approach.

In a second approach for performing FSS with the proposed relevance mea-
sures we propose a filter method based on a hypothesis test known from statistics.
The hypothesis test uses the relevance measures as a test statistic obtained by
scoring a sample set of randomly generated features against the database. A
feature is declared relevant if its test statistic provides sufficient evidence against
a hypothesis of independence.

Lastly, a verification that the score measures are truly capable of ranking
the features with the most informative features first, has motivated a hybrid
approach. The hybrid approach can be seen as a wrapper that takes advantage
of the rankings provided by the proposed relevance measures. The use of this
ranking significantly reduces the number of feature subsets in the search space
this approach has to inspect. For the purpose of induction we have used the
Naive-Bayes model. Additionally we propose to reduce the number of inspected
feature subsets by discarding those features that have been deemed irrelevant by
a filter approach.

Experimental evaluation has been performed on the 3 proposed FSS meth-
ods using 3 synthetic and 4 real-world data sets. The relevance measures were
tested in their ability to correctly identify the irrelevant features. By comparing
the obtained results with the knowledge we have about the data the relevance
measures showed capable of ranking the truly relevant features first. Table 7.1
gives an overview of the performance of each of the proposed methods for all
data sets.

The hybrid approach is in most cases able to make significant additional
reductions which corresponds to our belief that the filter approach is conserva-
tive. This is especially noticeable for the 3 leukemia data sets (AML, ALL and
LEUKEMIA). Considering the knowledge we have on the artificial data sets the
rankings produced, correctly rank all relevant features first. With regards to the
WAVE data set the rankings also reflect correct ranking within relevant features.
All rankings are supported by validation performed using the Naive-Bayes and
k-modes clustering techniques.

Most remarkable are the results of the PA relevance measure. In case of the
high dimensional LEUKEMIA database it is, together with the hypothesis test,
able to discard 3320 features. If the hybrid is applied on the remaining feature
subset, only 13 features remain. A model learned on this small feature subset
validates that the removal of the 7116 features inflicts almost no harm to the
learned model.
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Appendix : Conclusion

Filter Hybrid
Data Method | Learning curve | Hyp. test | Learning curve | Hyp. test
SYN10 Ml 10 10 6 6
PA 10 10 6 6
X’ 15 20 7 7
SYN20 Ml 10 10 6 6
PA 10 10 6 6
P 29 30 7 7
WAVE Ml 18 19 13 13
PA 19 26 13 13
% 34 40 10 10
CoIL MI 44 72 13 16
PA 40 39 24 16
x° 85 54 21 25
AML Ml 22 25 10 10
PA 18 25 8 9
% 25 25 17 17
ALL Ml 38 47 12 13
PA 35 47 8 8
% 47 47 12 12
LEUKEMIA | MI 6975 6809 66 66
PA 3809 459 26 13
X’ 7129 6657 182 182

Table 7.1: Overview of the relevant features found using the filter and the hybrid
approach.
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Hypothesis
Distributions

Here we present the graphs for the hypothesis tests performed on the data sets:
WAVE, ALL, AML and COIL. On all figures the dashed lines show the critical values.
On all the figures the graphs are from left to right, x?, Ml and PA respectively.
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Figure A.1: The distiributions of each of the score measures applied to random
features scored against the ALL data set.
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Figure A.2: The distiributions of each of the score measures applied to random
features scored against the AML data sets.
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Figure A.3: The distiributions of each of the score measures applied to random
features scored against the WAVE data set.
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Figure A.4: The distiributions of each of the score measures applied to random
features scored against the COiL data set. The rows are from above, cardinality
2, cardinality 3 and for cardinality 4.
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Appendix A: Hypothesis Distributions

0,005 0.0052 0.0054 0.0056 0.0058 0.006 0.0062 0.0064 0.0065 0.0068 0.0 0 0005 001 0015 002 0025 o

0. 85 0.009 0.0095 001 00105 o011 00

0. S 0037 00375 0088 0085 0039 00395 004 00405 0041 00 108 oo 005 006 007 008 009 o

Figure A.5: The distiributions of each of the score measures applied to random
features scored against the COiL data set. The rows are from above, cardinality
5, 6,7, 8,9, 10 and for cardinality 40.
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