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1Introduction

Resear
h is to see what everybody else has seen, and to think what nobody elsehas thought.� Albert Szent-GyörgiDe
ision support systems take an in
reasingly important role in appli
ationstoday. Lately fo
us has turned to data mining as a new big industrial tool to usein a wide area of appli
ations. Data mining is the pro
ess of sear
hing throughdata looking for meaningful 
hara
teristi
s and trends. It uses statisti
al analysisand ma
hine learning te
hniques, su
h as neural networks and de
ision trees,to �nd the relationships in the data that ordinary intera
tion with the databasewould not �nd. This allows identi�
ation of undete
ted relationships betweenitems su
h as asso
iations between produ
ts, sequen
es of events that lead tolater events, and new information.Data mining has its appli
ations within s
ien
e and resear
h as well as inthe industry and in business appli
ations. It suits perfe
tly within appli
ationareas where there is a huge amount of fa
tors ea
h potentially 
apable of af-fe
ting the appli
ation area. The medi
al resear
h so
ieties whi
h deal with ahuge amount of data su
h as DNA-pro�les, symptoms, blood-types et
., havebeen using data mining with su

ess. In addition data mining has also re
eivedattention in 
ommer
ial domains. The following is an often referred example ofa su

essful appli
ation of data mining performed by an Ameri
an supermarket
hain. It illustrates how the pro
ess of examining raw data, drawing mature 
on-
lusions and as a 
onsequen
e, deploying the result 
an result in an improvedunderstanding of a business. Moreover, the resulting knowledge in
reased pro�tfor the supermarket. Page 1 of 90



�For example, one Midwest gro
ery 
hain used the data mining 
apa
-ity of Ora
le software to analyze lo
al buying patterns. They dis
ov-ered that when men bought diapers on Thursdays and Saturdays, theyalso tended to buy beer... The retailer 
on
luded that they pur
hasedthe beer to have it available for the up
oming weekend. The gro
ery
hain 
ould use this newly dis
overed information in various ways toin
rease revenue. For example, they 
ould move the beer display 
loserto the diaper display.� [52℄In addition the authors of this report have parti
ipated in an industrial datamining proje
t re
ently [37℄. In this proje
t a thorough analysis of a textile 
om-pany's data yielded a new des
ription of how the dealers in the 
ompany behavewhi
h 
an be used to explain why some end their 
areer or to target 
ampaignsfor hiring better dealers.In general, the need for data mining is a result of a growing amount ofdata stored within even the smallest 
ompanies. In many 
ases there is a lot ofhidden information in that data whi
h 
an be used to predi
t events in the futureor to make a detailed des
ription of the present. Clustering and 
lassi�
ationte
hniques are developed for the purpose of dealing with many of the tasks thatappear in data mining proje
ts.In 
lassi�
ation ea
h re
ord in the database is assumed to belong to a prede-�ned 
lass whi
h is determined by one of the attributes, namely the 
lass label.A predi
tive model is produ
ed by analyzing ea
h re
ord in a database wherethe 
lass label is known. When the model is 
ompleted it 
an be used to pre-di
t or 
lassify yet unseen re
ords. Classi�
ation is also referred to as supervisedlearning [28℄. On the other hand data 
lustering aims to des
ribe the group-stru
ture whi
h is underlying in a given data set. As opposed to 
lassi�
ation,
lustering generates a model without 
onsulting a 
lass label whi
h explains whyit is referred to as unsupervised learning. Generally, 
lustering is divided into twogroups, partitional and probabilisti
 
lustering. Partitional 
lustering yields a de-s
ription by dividing the data into a partition whereas in probabilisti
 
lusteringwe 
onstru
t a probabilisti
 model of the data.One of the 
riti
al tasks in data mining is data 
lustering [37℄. In this partof data mining several fa
tors potentially in�uen
e the results, for instan
e thenumber of 
lusters k, and the produ
tion of a meaningful des
ription of thestru
ture whi
h is hidden in the data. In addition an important fa
tor is the sizeof the data. It is most 
riti
al if databases 
onsist of a huge amount of features.In many 
ases some of the features are not informative for the purpose of learningfrom the data and 
an be 
onsidered as noise and we say that they are irrelevant.Su
h features have a negative impa
t on learning in that they introdu
e distortionrendering the results less a

urate. In addition the 
omplexity of any learnedmodel in
reases in the number of features, thus in
luding irrelevant features willmake the learned model harder to 
omprehend and in
rease the 
ost of indu
tion.Moreover, if a part of the data base 
an be dis
overed, whi
h 
an be left outPage 2 of 90



Chapter 1: Introdu
tionwithout doing any harm to the learned model, this 
ombined with the modeldes
ription, 
an be regarded as valuable information.Therefore in this proje
t we fo
us only on the problem of redu
ing the numberof features. This problem is usually referred to as feature subset sele
tion (FSS).FSS is the pro
ess of identifying the most e�e
tive subset of the original featuresin a data set for a parti
ular purpose and it is a 
entral problem in data analy-sis [17, 34℄. It 
an be performed both supervised and unsupervised. SupervisedFSS is applied in 
lassi�
ation where the 
lass label is known and �nding theoptimal subset 
an be 
onsidered a sear
h problem where a given subset 
an betested against the 
lass labels. Similarly, unsupervised FSS is performed in data
lustering. In unsupervised FSS a test against a 
lass label does not exist and soother te
hniques must be developed in order to evaluate a given subset.In the �eld of unsupervised FSS there has not been performed a great dealof resear
h 
urrently [14, 34℄. There is however a growing need for redu
ing thedimensionality of data for 
lustering whi
h further motivates this proje
t.We are in this proje
t 
on
erned with the problem of unsupervised FSS asthe identi�
ation of irrelevant features for data 
lustering. Therefore we wishto identify the 
hara
teristi
s whi
h must a

ount for irrelevant features andpropose a method whi
h 
an e�e
tively dis
ard irrelevant features resulting in amore 
omprehensible model without doing any harm to the learned model.

Page 3 of 90





2ClusteringThe notion of �nding 'natural groups' tends to imply that the algorithm shouldpassively 
onform like a wet teeshirt.� Mi
hael R. AnderbergMany problems whi
h arise in data mining 
an be solved by using data 
lus-tering [3, 13, 29℄. In general data 
lustering is regarded as an important wayof summarizing data in an understandable manner [18℄. Despite its widespreaduse there exists di�erent de�nitions, interpretations and expe
tations of whi
hthe term 
lustering gives rise to [33, 42, 47℄. Therefore in order to 
ontinue ourdis
ussion of data 
lustering we de�ne the 
on
ept of data 
lustering. First, weoutline the assumptions on whi
h any 
lustering te
hnique is based. Then weintrodu
e 2 di�erent 
lustering te
hniques: a partitional 
lustering algorithm anda model-based 
lustering algorithm.2.1 ClusteringClustering is a pro
ess of dis
overing groups in data [34℄. It yields a des
riptionof the group stru
ture whi
h is hidden in the data when the group membershipsare unknown [54℄. The dis
overy pro
ess aims to dis
over 
lasses in the datawhi
h are natural for the data set. It is 
lear that it only makes sense to identifygroups if some groups exists. Therefore, 
lustering is based on the assumptionthat the data is generated by an underlying model whi
h is responsible for su
hgroups. Spe
i�
ally, the purpose of 
lustering is to gain more information aboutthis model. Figure 2.1 depi
ts a me
hanism whi
h is often used to explain theunderlying model. It 
onsists of a sele
tor, a number of physi
al pro
esses andthe data set.The assumption is that ea
h instan
e in the data set is generated by thisme
hanism. For ea
h instan
e the sele
tor sele
ts one and only one of the phys-i
al pro
esses. The physi
al pro
ess then generates ea
h attribute value of thePage 5 of 90



2.1 Clustering
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Figure 2.1: The underlying model: Ea
h instan
e in the data set is generated bya physi
al pro
ess, sele
ted by a sele
tor whi
h remains unknown for us.instan
e, based on an unknown probability distribution. In the end, all the in-stan
es generated by one physi
al pro
ess are assumed to belong to the same
luster. The 
lusters and the physi
al pro
esses remain unknown or hidden, i.e.it is unknown whi
h physi
al pro
ess is responsible for generating a spe
i�
 in-stan
e and how it has been generated (its asso
iated probability distribution).More spe
i�
ally, 
luster analysis is based on the following assumptions:1. Clustering is applied to a data set D 
ontaining n instan
es, su
h thatD = fx1 : : :xng. Ea
h instan
e xi is a ve
tor, of p values xi1 : : : xip. Inaddition we let xi be an instantiation x of the p-dimensional ve
tor ofrandom variables X = fX1; : : : ;Xpg.2. Ea
h instan
e xi 2 D is a member of one and only one of the underlyinghidden 
lusters C = f
1; : : : 
kg. The 
luster membership is representedby the label li assigned to ea
h xi. Sin
e this 
luster membership is un-known (hidden 
luster membership) we refer to C as the hidden 
lustermembership variable or simply the 
luster variable.3. D is generated by an underlying model 
onsisting of k physi
al pro
esseswhi
h, together with the sele
tor are represented by a joint probabilitydistribution.We denote the joint probability distribution for the sele
tor P (
), the probabil-ity for ea
h physi
al pro
ess to be sele
ted, and the joint probability distributionfor ea
h physi
al pro
ess as P (x1; : : : xpj
) or simply P (xj
), the probability ofgenerating a 
ase x given the 
luster membership C.In addition it is worth to mention that the instan
es in D 
an be of anytype, i.e. 
ategori
al, real valued or even a mix of those kinds. However we wantto make the following 
onstrain: In this proje
t we will only allow the type ofinstan
es in D to be 
ategori
al.In general, 
lustering 
an be regarded as an optimization problem. Given adata set D, a feature subset and the number of 
lusters k must be sele
tedwhi
h results in an optimal 
lustering model.Page 6 of 90



Chapter 2: ClusteringThe resulting model, must be optimal with respe
t to some measurementfun
tion whi
h assigns a s
ore to ea
h possible model. This measurement isbased on an intuitive understanding of heterogeneity and homogeneity whi
his referred to as the 
lustering 
riterion. If this 
riterion is translated into amathemati
al formula whi
h measures the homogeneity within ea
h 
luster, the
lustering problem is left as a sear
h for the model that yields the most homoge-neous 
lusters. There exist two 
lassi
al models of the 
lusters, partitional andprobabilisti
.A partitional data 
lustering (also 
alled partitioning) algorithm partitions adataset into k 
lusters su
h that instan
es in the same 
luster are more similarthan instan
es in other 
lusters. The pro
ess is required to be exhaustive, i.e.all instan
es in D are assigned to a 
luster while ea
h 
luster is required to benon-empty and mutually ex
lusive. That is, ea
h 
luster must 
ontain at leastone instan
e and ea
h instan
e is assigned to one and only one 
luster.The probabilisti
 models however, des
ribe the 
lusters by modeling theme
hanism that generated the data. These methods are regarded as more ad-van
ed than the partitional algorithms due to their well-founded base in statisti
s[13, 47, 54℄. After identifying a number of 
lusters it re
overs the probability dis-tributions p(
) and P (xj
) of the underlying model.In unsupervised learning the number of 
lusters is usually unknown. As thisfa
tor 
an have a large impa
t on the result we assume it to be known for alldata sets used in the remainder of the report. Finding k is out of s
ope for thisproje
t.In the following we introdu
e the two 
lustering methods we are going touse in this proje
t, a partitional te
hnique, 
alled the k-modes algorithm and amodel-based te
hnique 
alled the Naive Bayes (NB) Model.2.2 The k-modes AlgorithmThe k-modes algorithm was introdu
ed by Huang [31℄ as a variation of the wellknown k-means algorithm [46℄. k-modes runs on 
ategori
al data and maintainsthe e�
ien
y that k-means exhibits on large data sets.The k-modes algorithm iterates through the data set and assigns ea
h in-stan
e to the 
luster that 
ontains more similar instan
es than the other 
lustersand keeps repeating this untill 
onvergen
e has been obtained, i.e. the result ofiteration i is equal to the result of iteration i� 1. The assignments make use ofthe 
lustering 
riterion whi
h varies for di�erent 
lustering methods.2.2.1 De�nitionsWe run the k-modes algorithm on a data set D of n instan
es. Ea
h instan
ex 2 D is a ve
tor of p nominal values x1 : : : xp. The k-modes algorithmpartitions D into k 
lusters 
1 : : : 
k, by assigning ea
h instan
e to the 
lusterPage 7 of 90



2.2 The k-modes Algorithmwith the most similar 
ases, or more 
orre
t, the least dissimilar 
ases. To measurethe similarity between 
ases we use a dissimilarity measure. Let d(x;y) be thedissimilarity between a pair of 
ases x and y. Then the dissimilarity returned byd is the total number of mismat
hes of the 
orresponding attribute 
ategories ofthe two 
ases [31℄. We haved(x;y) = pXj=1 Æ(xj ; yj) (2.1)where Æ(xj ; yj) = � 0 (xj = yj)1 (xj 6= yj) (2.2)The dissimilarity measure is also known as the Hamming distan
e [6℄.Ea
h 
luster is represented by a prototype, or a mode. A mode is a nominalve
tor of size p that minimizes:Xx2
l d(x; ql) (2.3)for ea
h 
ase x 2 
l, and 
l is a 
luster represented by ql.A mode q is both initiated and updated using a frequen
y based method. Forea
h attribute xj in the subset of the data set assigned to 
luster 
l we sear
hfor the most frequently o

urring state. The state of q at index j will thus bebe updated to represent to most frequently o

urring state in 
l.2.2.2 The AlgorithmThe essen
e of the k-modes algorithm is the sear
h for a partitioning whi
h isoptimal with respe
t to a 
ertain 
ost fun
tion. The 
ost fun
tion is the sum ofHamming distan
es from ea
h instan
e to the mode of the 
luster to whi
h it isassigned.The 
ost fun
tion whi
h must be minimized is:E = kXl=1 Xx2
l d(x; ql); (2.4)where ql is the 
luster mode of 
luster 
l and x 2 
l is the set of 
ases assignedto 
luster 
l. The k-modes algorithm 
onsists of the following steps:1. Sele
t k initial modes, one for ea
h 
luster.Page 8 of 90



Chapter 2: Clustering2. Use Equation 2.1 to assign ea
h instan
e to the 
luster with the most simi-lar mode. Ea
h time an instan
e has been allo
ated to a 
luster, re
al
ulatethe 
luster mode using Equation 2.3.3. After all instan
es have been allo
ated to 
lusters, retest the dissimilarityof instan
es against the 
urrent modes. If an instan
e is found su
h thatits nearest mode belongs to another 
luster rather than its 
urrent one,reallo
ate the instan
e to that 
luster and update the modes for both
lusters.4. Repeat 3 until 
onvergen
e has been rea
hed, i.e. no instan
e has beenreassigned after a full 
y
le test of the whole data set.Like the k-means algorithm, the k-modes algorithm is likely to produ
e lo
allyoptimal solutions that are dependent on the initial modes and the order of obje
tsin the data set [55℄. Therefore it is appropriate to run the k-modes algorithmseveral times with di�erent initial modes and pi
k the best result with respe
tto the 
ost fun
tion [31℄. To pi
k the initial modes totally at random might notbe appropriate sin
e there might be a risk that one or more 
luster modes willbe assigned values su
h that no, or very few instan
es will be assigned to it.Therefore we have 
hosen to modify Step 1 and 2 in the above algorithm inorder to obtain initial modes that are 
lose to the data:1. Assign ea
h instan
e in the data set to one of the k 
lusters 
hosen atrandom, ensuring that ea
h mode will be assigned at least one instan
e.2. When all instan
es are assigned to a 
luster, 
al
ulate the k 
luster modesusing Equation 2.3. If two modes are identi
al, restart from step 1.2.3 Model-Based ClusteringAs already mentioned there are two main approa
hes to 
lustering, namely par-titional and probabilisti
 
lustering. The latter 
an provide ea
h 
ase with aprobability distribution with the probability of ea
h 
luster. The latter approa
his sometimes 
alled a soft (or fra
tional) assignment as opposed to the hardassignments performed by partitioning.2.3.1 Finite Mixture ModelsAs mentioned model-based 
lustering is an attempt to model the pro
ess whi
hhas generated the data. Thus a model 
ontains the probability distribution mod-eling the sele
tor and a separate probability distribution for ea
h 
luster. Thefa
t that the number of 
lusters is assumed to be �nite and the model is a mixof models, one for ea
h 
luster, has led to the name �nite mixture models. ThePage 9 of 90



2.3 Model-Based Clusteringaim of a �nite mixture model is to model the joint probability mass fun
tionp (xj�) whi
h is most likely to have generated the data D. We have:p(xj�) = kXi=1 p(
ij�) p(xj
i; �i)= kXi=1 �i p(xj
i; �i) (2.5)where �i = p(
ij�) is the marginal probability of ea
h 
luster su
h thatPi �i =1, p(xj
i; �i) is the probability distribution whi
h is modeling 
ases in the i'th
luster, and � are the parameters of the model where � = f�1; : : : ; �k; �1; : : : ; �kg.
X. .

C c kC {c , . . . }c1 2=

1 2 pX X .Figure 2.2: The NB Model. The variables X1 : : : Xp are independent given the
luster variable.In model-based 
lustering a model stru
ture and the probability distributionsasso
iated with ea
h 
luster is learned from a data base. However it is 
ommonthat one would sti
k to a �xed stru
ture beforehand. A widely used �xed stru
tureof �nite mixture models is the NB model. The NB model is a model where anassumption of 
onditional independen
e among ea
h pair of the variables inX = fX1; : : : Xpg given the 
luster random variable C is made. Under thisassumption p(xj
i; �i) 
an be 
al
ulated asp(xj
i; �i) = pYl=1 p(xlj�li); (2.6)where p(xlj�li) is the probability distribution over the values for the variable Xland �li is the set of parameters. Figure 2.2 depi
ts an NB model, where C is the
luster membership variable and ea
h Xl 2X are the variables in the data base.In order to assign a 
ase x to a 
luster 
i we need the probability of the
luster membership given x, namely the 
luster membership probabilities. Weuse Bayes rule to get Page 10 of 90



Chapter 2: Clustering p(
ijx; �) = �i p(xj
i; �i)Pkj=1 �j p(xj
j ; �j)= �iQpl=1 p(xlj�li)Pkj=1 �jQpl=1 p(xlj�lj) (2.7)whi
h 
an be used to assign ea
h 
ase x 2 D the most likely 
luster, or toperform a soft assignment where ea
h 
ase x is assigned fra
tionally to the setof 
lusters a

ording to the distribution p(
ijx; �).2.3.2 Learning a Naive Bayes Model from DataIn order to learn a model from a set of data D = fx1 : : :xng we sear
h forthe parameters whi
h maximize the likelihood of the training data, L(Dj�). Themost likely � is usually denoted �̂ and this approa
h to �nding the parameters �is 
alled the maximum likelihood 
riterion (ML):�̂ = argmax� L(Dj�) = argmax� Yx2D p(xj�): (2.8)Let nlji denote the number of 
ases in the database whi
h belong to the ith
luster and for whi
h the lth variable is in state j. Similarly, let �lji denote theprobability that, for a given 
ase in 
luster i, the lth variable is in state j. Themaximum likelihood 
riterion is known to be:�̂lji = nljini ; (2.9)where ni =Pj nlji . Similarly, the marginal probabilities of the ith 
luster �i arefound as: �i = nin : (2.10)This approa
h is an analysis of the frequen
ies of o

urren
es in the data only. Insome 
ases, when one wants to in
orporate prior knowledge about the probabilitydistributions one may want to use the maximum a posteriori (MAP) estimate.Let p(�) denote our prior knowledge about the parameters, then we have:�̂MAP = argmax� p(�jD) = argmax� L(Dj�) p(�)L(D)= argmax� L(Dj�) p(�) (2.11)Let �lji denote the prior knowledge we have for 
ases in the ith 
luster withvariable l in state j, where �i =Pj �lji . The MAP estimate is then:�lji = �lji + nlji�i + ni ; ni =Xj nlji ; �lji ; �i � 0; (2.12)Page 11 of 90



2.3 Model-Based Clusteringand similar for the marginal 
luster probability for the ith 
luster whi
h is foundas: �i = �i + ni�+ n ; � =Xj �j; �i; � � 0: (2.13)2.3.3 Learning a Naive Bayes Model for ClusteringThe above approa
h 
an be used to learn an NB model from data. However, in
lustering the 
luster membership is unknown. This 
onstitutes a problem sin
ethe 
luster membership variable is assumed to be known in the above approa
hwhen the values for � are estimated. Therefore 
lustering 
an be regarded as aspe
ial 
ase of learning a model from data with missing values. Therefore weneed an algorithm whi
h is able to deal with missing values. One well knownalgorithm for learning parameters of a probabilisti
 model from a data set withmissing values is the Expe
tation - Maximization algorithm, or simply the EMalgorithm [11℄. It 
onsists of two steps, namely the expe
tation (E) step andthe maximization (M) step. In the E step ea
h 
ase in the database x 2 D isassigned the posterior probability of its 
luster membership (
luster membershipdistribution) using Equation 2.7. In the M step these probabilities are 
onsideredas real data and the parameters � of the model are learned using ML estimatesor MAP estimates. After ea
h iteration the algorithm measures the performan
eof the parameters. The performan
e of the parameters � on a data set D is givenas the likelihood of the data given the parameters, L(Dj�):Performan
e(�) = L(Dj�) = Yx2D p(xj�)= Yx2D kXi=1 �i pYl=1 p(xlj�li): (2.14)It is sometimes 
onvenient to use the logarithm of the likelihood (log likelihood)to measure the performan
e of a model:Performan
e(�) = Xx2D log " kXi=1 �i pYl=1 p(xlj�li)# : (2.15)The E step and the M step are repeated until a 
ertain stopping 
riterion is met.As with the k-modes and k-means algorithms the stopping 
riterion is whenthe model has rea
hed 
onvergen
e, i.e. when the parameters � have not been
hanged during the last iteration of the E step and the M step. Sometimes it is
onvenient to have a more fuzzy understanding of the term 
onvergen
e, in su
h
ases one would 
hoose a a threshold 
 as stopping 
riterion. If the improvementin performan
e, measured by the log likelihood of the model, in the last iterationof the E and M step is less than 
, 
onvergen
e has been rea
hed, and thealgorithm is terminated. In this work we will sti
k to a threshold 
 = 10�6.Page 12 of 90



Chapter 2: Clustering2.3.4 Implementing the Expe
tation StepThe E step performs a fra
tional 
ompletion of the database where ea
h 
ase isassigned fra
tionally to 
lusters. For this purpose we need p(
ijx; �) 8 i. Thanksto the 
onditional independen
ies in the NB model (Equation 2.6) we 
an useEquation 2.7 for this purpose. Here we introdu
e an example.Table 2.1 and 2.2 show an example of 2 
omponents asso
iated with 
luster
1 and 
2 respe
tively.
1 x1 x2 x3p(xi = 1) 0.3 0.2 0.9p(xi = 2) 0.7 0.8 0.1Table 2.1: The probability distribu-tions for 
omponent 1 
onditioned on
luster 
1.

2 x1 x2 x3p(xi = 1) 0.5 0.4 0.7p(xi = 2) 0.5 0.6 0.3Table 2.2: The probability distribu-tions for 
omponent 2 
onditioned on
luster 
2.First we assume that we have the prior probabilities for p(
1) = 0:4 and p(
2) =0:6 we then have for a given 
ase X = [1; 2; 2℄:p(
1jX = [1; 2; 2℄; �1) = 0:4 � (0:3 � 0:8 � 0:1)0:4 � (0:3 � 0:8 � 0:1) + 0:6 � (0:5 � 0:6 � 0:3) = 0:16p(
2jX = [1; 2; 2℄; �2) = 0:6 � (0:5 � 0:6 � 0:3)0:4 � (0:3 � 0:8 � 0:1) + 0:6 � (0:5 � 0:6 � 0:3) = 0:84In the E step all 
ases in the database we assign the 
luster membership dis-tribution as des
ribed here. In the above example all 
ases with the 
on�gurationX =[1; 2; 2℄ are assigned the probabilities 0.16 and 0.84 for 
luster 
1 and 
2respe
tively.2.3.5 Implementing the Maximization StepIn the maximization step we assume the 
luster membership distributions ob-tained in the previous E step are real data and re
al
ulate the parameters of themodel given these distributions. This is done using the ML estimate or the MAPestimate. In our 
ase we use the MAP estimate, and sin
e we have no reason toprefer some parameter values above others we 
onsider all to be equally likely apriori. That is, we use a uniform prior probability distribution.What needs to be done is to update the parameters � of the model. That is,the probability distributions within ea
h 
omponent p(xj
i; �i) and the marginalprobabilities p(
i). This is done using Equations 2.12 and 2.13 with one minor
hange. Sin
e the E step has assigned fra
tional 
luster membership probabilitiesto ea
h 
ase instead of hard assignments the frequen
y analysis 
an not bePage 13 of 90



2.4 Summaryperformed by 
ounting 
ases. Instead the probabilities are summed to obtain ni =Px2D p(
ijx; �) and nlji = Px2D p(xl = j; 
ij�lji ) when applying Equations2.12 and 2.13. In fa
t, 
ounting frequen
ies of hard assignments 
an be regardedas a spe
ial 
ase of the above two sums where the probabilities are 0 or 1.Let us assume we have a database of the same dimensionality as in theprevious example (any other equality is pure 
oin
iden
e) in whi
h the 
lustermembership probabilities have been atta
hed to ea
h 
ase in the previous E step.x1 x2 x3 p(
1jx) p(
2jx)1 2 1 0.6 0.41 1 2 0.3 0.72 2 1 0.2 0.82 2 2 0.9 0.11 2 1 0.6 0.4Table 2.3: Data instan
es with atta
hed 
luster membership probabilities.We 
onsider the 5 
ases in Table 2.3 and estimate the marginal probabilities forp(
) using Equation 2.13. We use the MAP estimate and 
onsider the databasewith the new fra
tional 
luster assignments as real data. Sin
e, with the fra
tionalassignments we 
an not 
ount the number of 
ases assigned to ea
h 
luster ni, wesum the fra
tional probabilities, i.e. we let ni =Px2D p(
ijx; �) when applyingEquation 2.13. If we apply the MAP estimate with uniform priors we get:p(
1) = 1 + (0:6 + 0:3 + 0:2 + 0:9 + 0:6)2 + 5 = 0:514p(
2) = 1 + (0:4 + 0:7 + 0:8 + 0:9 + 0:4)2 + 5 = 0:496To update the parameters �lji we iterate through ea
h 
on�guration of ea
h of the
omponents. We apply Equation 2.12 and like before we use the fra
tional 
lustermembership assignments as real data. Therefore we let nlji = Px2D p(xl =j; 
ij�lji ) when estimating p(X = x1j
1; �1). For x1 = 1 we get: 1+0:6+0:3+0:62+2:6 =0:54 while for x1 = 2 we get: 1+0:2+0:92+2:6 = 0:46.One question whi
h remains is how to �nd some appropriate starting parame-ters for learning a model. An approa
h whi
h has shown its worth is one proposedby Thiesson et al. [66℄. The idea in this method is to estimate the parametersin a single-
omponent model from the data using the MAP estimate and usethis 
omponent to generate k 
omponents by perturbing the parameters of thesingle-
omponent model. In other words, the parameters of the single 
omponentmodel are 
hanged slightly at random in order to generate k unique 
omponents.2.4 SummaryIn this 
hapter we have des
ribed the 
on
epts of data 
lustering whi
h form abase for the proposed FSS methods. The assumptions on whi
h all data 
lusteringPage 14 of 90



Chapter 2: Clusteringte
hniques are based, have been outlined to give a basi
 understanding of data
lustering.In the remainder of the report we will be using 2 
lustering te
hniques: NBmodel and k-modes. The methods have been 
hosen sin
e they are both ableto deal with 
ategori
al data whi
h is the only type of data used in this proje
t.In addition the methods are part of 2 fundamentally di�erent types of 
luster-ing. The NB model belongs to the group of model based 
lustering te
hniqueswhereas k-modes belongs to the group of partitional 
lustering te
hniques.One of the unknown fa
tors in unsupervised learning is the number of 
lusters.As this issue is out of s
ope for this proje
t we will assume the number of 
lustersk to be known.
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3Feature Subset
SelectionIt is probably the 
hoi
e of variables that has the greatest in�uen
e on the ulti-mate results of a 
luster analysis.� Mi
hael R. AnderbergIn general, feature subset sele
tion (FSS) is motivated by a wish to redu
e thedimensionality of large data sets sin
e data analysis using indu
tion algorithms
an be both highly time and spa
e 
onsuming. Moreover, models of large datasets tend to be harder to 
omprehend than models learned on smaller data sets.In 
ase FSS 
an be performed e�e
tively de
reasing the number of features inthe data base, the problem would be left 
omputationally more feasible for theindu
tion algorithms while the learned model would be more 
omprehensible. Butwhat may also be 
onsidered important is that a 
lear distin
tion between rele-vant and irrelevant features is also valuable information as part of a summarizingdes
ription of a data set.Criti
s of FSS would state that a model learned from the whole data setwill always perform equally well as a model learned from relevant features only,leaving any e�ort spent on FSS wasted. This is sometimes 
alled the assumptionof monotoni
ity, i.e. the performan
e of a theoreti
ally ideal learning algorithmis not damaged by the presen
e of noise [63℄. However, empiri
al tests in [67℄show that the in
lusion of noise in some 
ases de
rease the performan
e of theindu
ed model.In this 
hapter we 
ontinue the dis
ussion of FSS. First we present FSS as asear
h problem and outline the di�eren
es between FSS performed in supervisedand unsupervised learning. Then we des
ribe the main ideas of �lter and wrapperapproa
hes and dis
uss these in relation to related work. After a dis
ussion this
hapter ends with several new proposals for measuring the relevan
e of a featurefor use in unsupervised FSS. Page 17 of 90



3.1 Feature Subset Sele
tion as a Sear
h Problem3.1 Feature Subset Sele
tion as a Sear
h ProblemThe problem of sele
ting the optimal feature subset 
an be regarded as a sear
hor optimization problem (e.g [10, 14, 23, 32, 39, 43, 27, 71℄) where ea
h subsetof features is regarded a point in the sear
h spa
e. Any sear
h method requires astarting point in the sear
h spa
e, a sear
h strategy, an evaluation fun
tion anda stopping 
riterion [65℄. An exhaustive sear
h for the optimal feature subset isexponentially 
omplex i.e. in a database of p features there exists 2p possiblesubsets. In su
h a sear
h spa
e any realisti
 approa
h must rely on a heuristi
sear
h strategy.A rough 
lassi�
ation of sear
h strategies for solving optimization problems
ould be to distinguish between 
omplete and heuristi
 sear
h. The underlyingidea in 
omplete sear
h strategies is the systemati
 examination of all the so-lutions of the sear
h spa
e (e.g., depth-�rst, breadth-�rst, bran
h and bound,et
.). Unfortunately, 
omplete sear
h is usually impra
ti
al as most optimizationproblems involve large sear
h spa
es that make this approa
h 
omputationallyprohibitive. Moreover, a

ording to [68℄, the majority of the most 
hallengingoptimization problems that 
ome from the methodologi
al development of newte
hniques in 
omputer s
ien
es as well as from real-world s
enarios turn outto belong to the 
ategory of NP-hard problems [24℄. These fa
ts together withthe la
k of �exibility of those sear
h strategies that are based on 
lassi
al te
h-niques of operational resear
h and numeri
al analysis justify the use of heuristi
sear
h strategies [51, 53, 60℄. Unlike 
omplete sear
h strategies, heuristi
 sear
hstrategies do not examine the whole sear
h spa
e of the problem being optimizedbut only those parts that are 
onsidered promising a

ording to 
ertain heuristi

riteria. Although heuristi
 sear
h strategies neither ensure that the �nal solu-tion is a global optimum of the optimization problem at hand nor fa
ilitate itsmathemati
al modeling, they provide the user with a �nal solution that is near aglobal optimum in a

eptable runtime. In other words, heuristi
 sear
h strategiesprovide the user with a trade-o� between e�e
tiveness and e�
ien
y, whi
h isa question of 
apital importan
e when problem optimization is approa
hed froman engineering perspe
tive.Heuristi
 sear
h strategies 
an be further divided into deterministi
 and non-deterministi
 or sto
hasti
. In deterministi
 heuristi
 sear
h strategies (e.g., for-ward, ba
kward, stepwise, hill-
limbing, threshold a

epting, et
.), the same �nalsolution for a given optimization problem is always a
hieved under the same 
on-ditions. In other words, a deterministi
 heuristi
 sear
h strategy maps every initialsolution of the optimization problem to a single �nal one. On the other hand,non-deterministi
 heuristi
 sear
h is motivated by trying to avoid getting stu
kin a lo
al optimum of the optimization problem at hand, usually by means of ran-domness [72℄. Due to its sto
hasti
 nature, di�erent runs of a non-deterministi
heuristi
 sear
h strategy might lead us to a
hieve di�erent �nal solutions fora given optimization problem under the same 
onditions. While some of thesto
hasti
 heuristi
 sear
h strategies store only one solution of the optimizationPage 18 of 90



Chapter 3: Feature Subset Sele
tionproblem at hand at ea
h iteration (e.g., simulated annealing [40, 49℄), otherapproa
hes exist. Some of these other approa
hes are grouped under the de-nomination of evolutionary algorithms. Some examples of 
lassi
al evolutionaryalgorithms are geneti
 algorithms [25, 30℄, evolutionary programming [21, 22℄,and evolution strategies [59, 62℄. See [5, 20, 25, 44℄ for reviews of these andsome other.3.2 Feature Subset Sele
tion OverviewIn the domain of FSS there are 2 main areas of interest: supervised and unsuper-vised FSS. Supervised FSS has for some time been the topi
 of mu
h resear
hwhereas unsupervised FSS has only re
ently re
eived attention due to the grow-ing interest in the �eld of data mining. In this se
tion we will give an overviewof the 2 areas with spe
i�
 fo
us on unsupervised FSS as it is the fo
us of thisproje
t.3.2.1 Supervised Feature Subset Sele
tionThe vast majority of resear
h in FSS has been performed in the supervisedlearning paradigm paying little attention to the unsupervised learning paradigm[14, 65℄. The main obje
tive of FSS applied to supervised learning is to in
reasethe 
lassi�
ation a

ura
y of the learned model by removing noise. Knowing the
lass label of ea
h instan
e makes evaluation of any feature subset possible. Itis 
ommon to use a model's ability to predi
t the 
lass label of yet unseen 
asesto measure the performan
e of a feature subset, e.g. John et al. [36℄ who use
ross-validation. In other methods the presen
e of the 
lass label has inspired theuse of dependen
y based methods, where the dependen
y between ea
h featureand the 
lass label is measured in order to leave out irrelevant features (e.g.[27℄).3.2.2 Unsupervised Feature Subset Sele
tionApplying FSS to unsupervised learning is a 
hallenging task of data analysis.Using the same pro
edure as for supervised learning is impossible due to theunknown 
lass label. There exist no standard de�nition of relevan
e within unsu-pervised FSS and it will therefore be 
learly stated in this report. For instan
e, asimple evaluation fun
tion proposed by Fisher [18℄ has been adapted by Talavera[65℄ for use in unsupervised FSS and named the feature dependen
y measure(FDM). FDM is a fun
tion that des
ribes the average in
rease in the ability toguess the value of a feature given a se
ond feature. This measure is based onthe assumption that, in the absen
e of a 
lass label, we 
an deem as irrelevantthose features that exhibit low dependen
ies with the rest of the features. TheFDM is de�ned as: Page 19 of 90



3.3 Filters and WrappersPiPj wPjk hP (Xk = xjk jXi = xij)2 � P (Xk = xjk)2ijfijXi 6= Xkgj (3.1)Equation 3.1 takes into a

ount the in
rease in predi
tiveness of one featuregiven another feature. The leftmost fa
tor (w) is a weight whi
h provide highervalues to the most predi
table values of a feature and is de�ned as:w = P (Xi = xij) : (3.2)The proposal has been tested using a naive �lter model approa
h whi
h 
al
ulatesthe feature dependen
y measure for ea
h individual feature and then sele
tingthe highest s
oring features using a �xed prede�ned threshold whi
h 
an di�erfor ea
h 
ase. Some other approa
hes 
an be found in the literature (e.g. [57℄).Contrarily to supervised learning no standard uni�ed performan
e 
riterionexist in the unsupervised learning paradigm [57℄. Variables su
h as the numberof 
lusters k, the performan
e of a 
lustering result and the quality of the data
an have an impa
t on the results. This means that the term "optimal FSS"di�ers in the interpretation of the data analyst and as su
h makes 
omparisonsdi�
ult.3.3 Filters and WrappersJohn et al. [36℄ introdu
e the notion of �lters and wrappers whi
h 
onstitutestwo di�erent ways of performing FSS. In this se
tion we will outline both methodsand present a dis
ussion of their performan
e.3.3.1 The Filter Approa
hFigure 3.1 illustrates the �lter approa
h. First the algorithm is passed a set of fea-tures. Then the irrelevant features are �ltered out, based on the analyst's notionof relevan
e, and at last a subset of relevant features is passed to the learningalgorithm. Therefore the main property whi
h 
hara
terizes a �lter approa
h isthe independen
e of a learning algorithm.
Feature

subset selection
Induction
Algorithm

Input
featuresFigure 3.1: The �lter model. Features are �ltered out before the model is learnedby the indu
tion algorithm.Sele
ting features, using a �lter approa
h, is highly dependent on the un-derstanding of relevan
e, i.e. it is ne
essary to have a measure of relevan
e forPage 20 of 90



Chapter 3: Feature Subset Sele
tionfeatures. Su
h a measure depends on the ma
hine learner's understanding ofrelevant features. Several works have proposed ways to measure relevan
e basedon di�erent de�nitions of relevan
e. John et al. [36℄ dis
uss 4 di�erent de�nitionsof relevan
e in the 
ontext of 
lassi�
ation and show that the performan
e ofthe �lter approa
h is highly dependent on the de�nition of a relevant feature.There are several advantages for �lter methods within 
lustering whi
h isnot a 
on
ern in 
lassi�
ation. Sin
e �ltering is performed independently of theindu
tion algorithm �lters are independent of the performan
e of the learningalgorithm and the su

ess of an indu
ed model. For instan
e, �lters are inde-pendent of whether the optimal number of 
lusters k for a data set has beenfound.Several proposals, su
h as Peña et al. [57℄ and Talavera [65℄, use a �lterapproa
h based on ranking ea
h feature a

ording to a s
ore measure in orderto be able to sele
t a subset 
ontaining the most salient features (for Talavera'sproposal see Se
tion 3.2.2). Both proposals are based on unsupervised learning.Peña et al. [57℄ propose a �lter method using 
onditional Gaussian networks[45℄ in whi
h they s
ore a feature's relevan
e as the average likelihood ratio teststatisti
s for ex
luding an edge between the measured feature and any otherfeature in the graphi
al Gaussian model [70℄. The relevan
e measure for ea
hfeature Xi is written as: pXj=1;j 6=i �n log �1� r2ijjrest�p� 1 (3.3)where p is the number of features in the database, n is then number of 
ases inthe database and r2ijjrest is the sample partial 
orrelation of the features Xi andXj adjusted for the remaining variables. The relevan
e measure allows to rankthe features in a de
reasing order with respe
t to relevan
e. The authors proposea heuristi
 whi
h automati
ally de
ides on a relevan
e threshold. The relevan
ethreshold is 
al
ulated as the reje
tion region boundary for an edge ex
lusion testin a graphi
al Gaussian model for the likelihood ratio test statisti
. The featuresin
luded in the learning are then those features whi
h have a higher relevan
es
ore than the threshold.3.3.2 The Wrapper Approa
hJohn et al. [36℄ argue that it is a disadvantage that �lters are independent ofthe indu
tion algorithm and propose the wrapper approa
h to repla
e �lters. Ina wrapper the FSS algorithm is wrapped around the learning algorithm. Usinga heuristi
 sear
h strategy the wrapper sear
hes through the spa
e of featuresubsets using the learning algorithm as a part of measuring the s
ore of ea
hfeature subset. Ea
h feature subset is evaluated by measuring the performan
ePage 21 of 90



3.4 S
ore Measuresof the learned model. Figure 3.2 illustrates the wrapper approa
h. First a subsetof features is sele
ted a

ording to some heuristi
 while se
ondly the subsetis evaluated using the performan
e of the indu
tion algorithm on the featuresubset. Generally, subsets of features are evaluated through several iterations ofthis se
ond phase. Ea
h iteration requires a new model to be learned.
Induction algorithm

Input
features

Induction
Feature subset search

Feature subset evaluation

algorithm

Figure 3.2: The wrapper model. FSS is performed as a �wrapper� around theindu
tion algorithm.The la
k of a standard uni�ed performan
e measure for unsupervised learningis a problem sin
e the performan
e of the wrapper is highly dependent of theunderstanding of a su

essful 
luster model. Another problem for wrappers for
lustering is that the performan
e of the model depends on the number of 
lustersk whi
h is unknown in most 
ases. Some works try to 
ope with this problem by
onsidering �nding k and the optimal features subset as one single optimizationproblem where the number of 
lusters and features are variables in the sear
h.For instan
e, Dy et al. [14℄ propose to wrap FSS around the EM algorithm withorder identi�
ation allowing to �nd the number of 
lusters, k, in the data. Thisapproa
h solves 2 problems: It de
reases the dimensionality of the database byremoving irrelevant features and it �nds the number of 
lusters whi
h yields theoptimal model with respe
t to a s
ore 
riterion.When 
omparing the two paradigms, �lter and wrapper methods, one 
an notavoid the fa
t that the wrapper approa
h is mu
h more time 
onsuming than the�lter approa
h. On the other hand wrappers tend to yield more pre
ise modelsthan models obtained by �lter methods [36℄.3.4 S
ore MeasuresBefore we move on to a dis
ussion of a good relevan
e measure for unsupervisedFSS, we want to dis
uss what we understand by good performan
e of a 
lusteringmodel. The la
k of a 
lass label and a uni�ed performan
e 
riterion has givenrise to several proposals of how performan
e must be understood in 
lustering.This will yield a proposal of several new relevan
e measures to measure featuresrelative to the rest of a data set whi
h 
an be used for unsupervised FSS in aPage 22 of 90



Chapter 3: Feature Subset Sele
tion�lter method.3.4.1 Performan
e in ClusteringIn general, a su

essful 
lustering is one that gives a des
ription of any underlyinggroup stru
ture in the data if su
h exist. If we assume 
lusters exist, good 
lustersare 
lusters that are 
lear and easy to distinguish from the rest of the data. Fisher[18℄ is aware of this fa
t and he introdu
es two properties that 
an be measured,the intra-
luster similarity and the inter-
luster dissimilarity. They are measuredby two posterior probabilities:� The intra-
luster similarity: P (Xi = xijj
k), where Xi is a variable, xij isthe jth value of Xi and 
k is a 
luster. If this probability is high, the valueof Xi = xij is said to be predi
table for the 
luster members, and if itholds for many variables in the 
luster 
k the 
luster is said to be 
ohesive.� The inter-
luster dissimilarity: P (
kjXi = xij). The higher this probability,the fewer 
lusters other than 
k share the value Xi = xij whi
h is thensaid to be predi
tive. If this probability is high for many of the variableswithin a 
luster 
k, we say that 
k is distin
t. [18, 65℄Dividing a data set into a good set of 
lusters should maximize these probabil-ities for a number of variables. Doing this, 
lusters formed on behalf of dependentfeatures are rewarded. If a 
luster 
k has a variable X1 with high dis
riminatingpower the 
luster will s
ore a high P (X1 = x11j
k) and P (
kjX1 = x11) sin
emost of the values of X1 will be x11 within the 
luster and few values of X1will have the value x11 in other 
lusters. If X1 is highly dependent on anothervariable, e.g. X2, then most members of 
k will have the same value for X2, sayx21. Hen
e both x11 and x21 
ontribute with both predi
tability and predi
tive-ness making 
k more 
ohesive and more distin
t. Thus in general, variables thatare highly dependent on other variables 
ontribute to a
hieve 
lusters that areboth 
ohesive and distin
t [65℄.3.4.2 Relevan
eOne of the main problems in unsupervised FSS is to de�ne relevan
e. In severalprevious proposals the de�nition has been based on a s
oring 
riterion in whi
hthe s
ore of ea
h feature has been evaluated with respe
t to some measure. Usinga prede�ned threshold ea
h feature is then either deemed relevant or irrelevant.We expe
t that if we know the performan
e of a feature subset Si whi
h
onsists of i relevant features, then adding one irrelevant feature to the fea-ture subset, su
h that we have Si+1, will not in
rease, or even de
rease theperforman
e of the 
lustering. We 
an evaluate the proposed s
ore measures byevaluating the performan
e of the subset of features whi
h were deemed relevantby the �lter method and 
ompare with subsets in
luding irrelevant features. ThePage 23 of 90



3.4 S
ore Measuresessen
e of this test is that if the performan
e of the set of features Si is notworse than the performan
e of the whole set of features X, then the rest of thefeatures, i.e. X n Si 
an be deemed irrelevant for 
lustering.John et al. [41℄ dis
uss relevan
e in the 
ontext of supervised FSS but thede�nition 
an also be of interest for unsupervised FSS. They distinguish betweenstrong and weak relevan
e and suggest the following de�nitions:� A feature X is strongly relevant if removal of X alone will result in per-forman
e deterioration of an optimal Bayes 
lassi�er.� A feature X is weakly relevant if it is not strongly relevant and there existsa subset, S, su
h that the performan
e of a Bayes 
lassi�er on S is worsethan the performan
e on S [ fXg.� A feature is irrelevant if it is not strongly or weakly relevant.As it is, this de�nition of relevan
e only works for wrapper approa
hes insupervised learning. However, we 
an transform this notion to �lters if we knowwhat 
hara
terizes features that would in
rease the performan
e of the 
lassi�er.Moreover, we 
an a

ept this de�nition of relevant features for 
lustering too. Itonly requires an agreement of what performan
e means in 
lustering. Thereforewe use the above dis
ussion of how to measure performan
e in 
lustering (thatgood 
lusters are both 
ohesive and distin
t) in order to propose a measure ofrelevan
e for features. In allegory with the underlying model we say that fordata instan
es x 2 D only a subset of the variables are relevant. We regardas relevant those variables whi
h are a�e
ted by the hidden 
luster membershipvariable in the joint probability distribution p(XjC). However, the 
luster variableC, its number of states and impa
ts on the observed variables is unknown in
lustering. What is known is that in the probability distribution p(XjC) the
luster membership of a data instan
e has a di�erent impa
t on some of thefeatures. This 
an be modeled in a probabilisti
 model in the following way: We letthe 
luster membership be represented by the 
luster variable, whi
h has in�uen
eon the state of ea
h variable in the model. In the 
ase that there are featureswhi
h are not in�uen
ed by the 
luster membership these 
an be regarded asrandom variables, not 
onne
ted to the hidden 
luster membership variable.Figure 3.3 depi
ts an example of a model in whi
h 4 features are in�uen
ed bythe 
luster membership while the 5th is a free random variable.Elidan et al. [16℄ des
ribe the impa
ts of hidden variables in probabilisti
models and the intera
tion between observed variables and hidden variables.They argue that if a probabilisti
 model is learned with hidden variables, i.e. avariable whi
h has in�uen
e to some of the nodes has been left out of the learning,the model will 
ontain semi-
liques. Therefore semi-
liques 
an be regarded asan indi
ation of the presen
e (or absen
e) of a hidden variable.The explanation for this is that if a model is indu
ed from a data set 
on-taining hidden variables, it will dis
over dependen
ies among the variables whi
hPage 24 of 90
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Figure 3.3: The 
luster random vari-able has in�uen
e only on the relevantfeatures.
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Figure 3.4: Without the 
luster ran-dom variable the relevant variablesform semi-
liques.depend on the hidden variable. Logi
ally this is 
aused by the dependen
y prop-erties among the variables in the data set. Variables whi
h depend on a hiddenvariable (i.e. its 
hildren) are d-
onne
ted if there is no eviden
e on the hiddenvariable, while the parent variables of the hidden variable are d-
onne
ted toits 
hildren under the same 
onditions [35℄. Thus there is a dependen
y amongvariables whi
h are in�uen
ed by the hidden 
luster membership variable. Figure3.4 depi
ts a model learned using the PC algorithm [64℄ and a data set generatedby the model in Figure 3.3 from whi
h the 
lass label has been removed. We 
anuse this as an illustrative example. The variables whi
h were in�uen
ed by the
lass variable have 
onne
tions to at least half of the rest of the variables andare said to be part of a semi-
lique.Sin
e the 
luster membership variable is hidden, we 
an use the argumenta-tion that when hidden variables reside in a model the model will 
ontain semi-
liques. But rather than restoring the model 
ontaining the hidden variable weuse the above reasoning to argue whi
h features are relevant. If we assume wehave a database 
ontaining variables whi
h depend on the 
luster membershipand variables whi
h are free random variables without any dependen
ies we 
anexpe
t the features whi
h depend on the 
luster variable to have many stronginterdependen
ies. We use this in our de�nition of relevant features. Sin
e afeature whi
h is in�uen
ed by its 
luster membership is likely to be part of asemi-
lique we 
all a feature relevant when it is dependent of at least one otherfeature. Therefore, in this proje
t we de�ne relevan
e using dependen
ies. Afeature without any dependen
ies is de�ned as irrelevant, whereas a subset ofdependent features are de�ned as either relevant or irrelevant a

ording to thestrength of the dependen
ies among them. Measuring the strength of depen-den
ies 
an be done either by assigning a value to 
onne
tions between pairs ofPage 25 of 90



3.4 S
ore Measuresfeatures or by s
oring ea
h feature based on the dependen
ies that exist for thatfeature. We propose to use the latter approa
h.3.4.3 Redundan
yUntill now we have dis
ussed the notion of relevan
e limited to a de�nition of rel-evant and irrelevant features. Another type of feature whi
h must be dealt with isredundant features whi
h also have a remarkable di�erent way to be looked uponin 
lassi�
ation and in 
lustering. It is not trivial to handle redundant featuresas it 
an be di�
ult to deem su
h features as either relevant or irrelevant. Thisse
tion is meant to open a dis
ussion on the importan
e of handling redundantfeatures in the 
ontext of feature subset sele
tion.Merriam-Webster's [2℄ di
tionary de�ne redundan
e as: �ex
eeding what isne
essary or normal�. In the 
ontext of feature subset sele
tion this 
an be ap-plied to de�ne a redundant feature as a feature that 
ontributes with unne
essaryinformation. This 
ould be information whi
h is already in
luded in the 
lusteringby another feature. That is why, in 
lassi�
ation, features are �ltered out if theinformation they 
ontribute with about the 
lass membership for ea
h 
ase is al-ready present in the database. For instan
e, the information a feature 
ontributeswith 
an be redundant in terms of a 
opy of it or if it has a high dependen
y toone of the features already in the data set. As already mentioned in the previousse
tion, in 
lustering the most homogeneous 
lusters are obtained from featureswhi
h have dependen
ies among ea
h other. Therefore, it 
an be said that indata 
lustering, we seek out redundan
y. We do however dare to open a dis
us-sion about redundan
y of features in data 
lustering. We say that a feature Xi isredundant in data 
lustering with respe
t to a data set D if Xi is relevant but itdoes not however 
ontribute with homogeneity in models learned from D. Thatmeans that Xi has many strong dependen
ies to rest of the features in D andmodels learned from D nXi are equally 
ohesive as models learned from D.The term redundant 
an also a

ording to Merriam and Websters mean:�serving as a dupli
ate for preventing failure�. Consider a s
enario in whi
h adata base 
onsist of 1000 features whereof 990 are redundant and the last 10are relevant features. Clustering using all 1000 features give well de�ned 
ohesive
lusters although perhaps hard to des
ribe. In the event that redundant featuresare removed we will remove 989 feature leaving 11 left for 
lustering. By removingthese features we also remove the weight given to these features leaving 990features 
orrespond to 1 feature equally important to ea
h of 10 other features.In a wrapper approa
h a feature 
an be 
onsidered irrelevant if it does notin
rease the 
ohesiveness of the resulting 
lusters (measured with respe
t to the
lustering 
riterion). The impa
t of redundant features in the above mentioneds
enario is that the 
luster membership of a signi�
antly large amount of 
ases
hange rendering the 
lustering results di�erent although not more 
ohesive.Su
h features would a

ording to a wrapper approa
h be deemed irrelevantalthough their presen
e have an impa
t on the �nal results.Page 26 of 90



Chapter 3: Feature Subset Sele
tionIn this proje
t we deal only with dete
tion of irrelevant features but even soredundan
y 
an have an impa
t on the results and the performan
e of the resultsof the proposals.3.4.4 Proposal OverviewIn this report we propose to use a ranking s
heme where ea
h individual featureis assigned a s
ore a

ording to a measure of dependen
e with respe
t to therest of the feature set. The main idea is that we assume that relevan
e 
anbe expressed by the interdependen
ies in the feature set. Dete
ting whether 2features in the feature set are dependent 
an be done in several di�erent ways.We propose 3 di�erent methods for determining dependen
y (referred to asdependen
y measures):1. �2 analysis.2. Predi
tive a

ura
y.3. Information gain.The �2 analysis is an obvious 
hoi
e for testing dependen
y between twofeatures. Among the many advantages by using this method is that a thresh-old, for distinguishing relevant from irrelevant features, is already de�ned in thesigni�
an
e level, and that its statisti
 has a well known distribution. The se
-ond measure represents the idea of measuring the 
hange in predi
tive a

ura
ybetween pairs of features. This method is inspired by Talavera [65℄. Inspired byDash et al. [10℄ we also propose, as a third dependen
y measure, to use infor-mation gain, whi
h is a measure of entropy to des
ribe the dependen
ies amongfeatures. A naive approa
h is to measure the entropy of a single feature and theredu
tion in entropy based on adding a se
ond feature in order to des
ribe theirdependen
ies.Ea
h of the 3 methods have their strengths and weaknesses. In this report wewill test all 3 methods in order to test whi
h will perform best for the proposalthat will be presented.3.4.5 �2 AnalysisThe �2 distribution is a density distribution that is used in many hypothesis tests.The most 
ommon use of the �2 distribution is to test independen
e hypotheses.Although this test is by no means the only test based on the �2 distribution, ithas 
ome to be known as the �2 test. The �2 distribution has one parameter,its degrees of freedom (df).When using �2 in order to test dependen
ies it is ne
essary to set up a hy-pothesis that 
an be either kept or reje
ted. Setting up and testing hypothesesPage 27 of 90



3.4 S
ore Measuresis an essential part of statisti
al inferen
e. In ea
h problem 
onsidered, the ques-tion of interest is simpli�ed into two 
ompeting hypotheses between whi
h wehave a 
hoi
e: the null hypothesis, denoted H0, against an alternative hypoth-esis, denoted H1. These two 
ompeting hypotheses are not however treated onan equal basis. The null hypothesis is given priority, meaning that in order to be
onvin
ed that H1 holds we have to reje
t H0, whereas H0 holds if we 
annotreje
t its existen
e. Thus the out
ome of a hypothesis test is 'reje
t H0' or 'donot reje
t H0'. In this parti
ular 
ase H0 states that 'variable Xi is independentof variable Xj'.In order to test the hypothesis using �2 it is ne
essary to extra
t the twoattributes from the original data set and 
reate a 
ontingen
y table for them. A
ontingen
y table is a table of frequen
ies. A two-dimensional 
ontingen
y tableis formed by 
lassifying subje
ts by two variables. One variable determines therow 
ategories, the other variable de�nes the 
olumn 
ategories. Ea
h 
ell willthen 
ontain the frequen
y of o

urren
e in the data set where the variables arein the states given by the row and 
olumn 
ategory for the 
ell. For this to bepossible both attributes are required to be 
ategori
al.The parameter, degree of freedom, of the �2 distribution, originally proposedby Fisher [19℄, is the number of 
ells in the 
ontingen
y table whi
h 
an bemanipulated without 
hanging the marginal totals. A standard approximation ofthis proposal is: df = (rows� 1) � (
olumns� 1) (3.4)A 
ontingen
y table over the o

urren
e of values of the two variables is 
alled a
ontingen
y table of observed values. In order to 
al
ulate the �2 test statisti
 itis ne
essary to 
al
ulate the 
ontingen
y table of expe
ted values. The expe
tedvalues for a 
ontingen
y table of observed values is 
al
ulated as:Eij = (Pk 
ellik) (Pk 
ellkj)n (3.5)where n represents the total number of instan
es in the data set.The test statisti
 is a quantity 
al
ulated from the 
ontingen
y tables ofobserved and expe
ted values. Its value is used to de
ide whether or not the nullhypothesis should be reje
ted in our hypothesis test using a threshold denotedas the 
riti
al value. The �2 test statisti
s is then 
al
ulated as:�2 =Xi Xj (Oij �Eij)2Eij (3.6)The 
riti
al value for a hypothesis test is a threshold to whi
h the value ofthe test statisti
 in a sample is 
ompared to determine whether or not the nullPage 28 of 90
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Figure 3.5: The �2 distribution, showing the impa
t of di�erent degrees of free-dom.hypothesis is reje
ted. The 
riti
al value for any hypothesis test depends on thesigni�
an
e level at whi
h the test is 
arried out. The signi�
an
e level of astatisti
al hypothesis test is a �xed probability of wrongly reje
ting H0. We wantto make the signi�
an
e level as small as possible in order to prote
t the nullhypothesis and to prevent the result from inadvertently making false 
laims. Thesigni�
an
e level is usually denoted by � and 
hosen to be 0.05. This means thatif the value of the �2 test statisti
s is within the tail 5% of the area of the �2distribution then H0 is reje
ted.As 
an be seen from the Figure 3.5, the impa
t from the degree of freedomis the interval in whi
h the hypothesis 
an be reje
ted. The higher the degree offreedom, the higher we allow the values of the �2 statisti
 to take and still keepthe hypothesis of independen
e.The out
ome of a �2 test as a dependen
y measure 
an be the p-value.The p-value is the probability of getting a value of the test statisti
 as extremeas or more extreme than that observed by 
han
e alone, if H0 holds. It is theprobability of wrongly reje
ting the null hypothesis and is 
al
ulated through the
umulative distribution fun
tion of the �2 distribution.CDF (x) = 
 �DF2 ; x2 �� �DF2 � (3.7)where � is gamma fun
tion and 
 is the in
omplete gamma fun
tion. For furtherdetails see [4, 15, 61℄.The p-value is 
ompared with the signi�
an
e level and, if it is smaller, theresult is signi�
ant. That is, if the null hypothesis were to be reje
ted at � =Page 29 of 90



3.4 S
ore Measures0.05, this would be reported as 'p < 0.05'. Small p-values suggest that the nullhypothesis is unlikely to be true. The smaller it is, the more 
onvin
ing is thereje
tion of the null hypothesis. It indi
ates the strength of eviden
e for say,reje
ting the null hypothesis H0, rather than simply 
on
luding 'reje
t H0' or 'donot reje
t H0'.�2 as a Dependen
y MeasureUsing �2 as a dependen
y measure makes a lot of sense given the de�nitionof relevan
e. The p-value of a �2 test indi
ates the strength of a dependen
ybetween two attributes and 
an therefore be adapted as a dependen
y measure.The p-value is high for weak dependen
ies and low for strong dependen
ies andtherefore a simple approa
h to applying it as a dependen
y measure is to subtra
tit from 1 whi
h is the upper bound for the p-value of a �2 test.DM�2(Xi;Xj) = 1� p_val(Xi;Xj) (3.8)where p_val is the p-value of a �2 test for H0 stating that Xi is independentof Xj .3.4.6 Predi
tive A

ura
yThe idea of using predi
tive a

ura
y is the idea of 
omparing the probabilitythat the value of one single attribute 
an be predi
ted with the probability that it
an be predi
ted given the state of another attribute. Let X be a feature in thedata set with the marginal probability distribution p(x). p(x) 
an be estimatedusing ML estimation. Knowing this distribution the value of X 
an be predi
tedwith some a

ura
y. The simplest way to predi
t the value of X when p(x) isknown is to always guess that X is in its most likely state xmost_likely 2 X. Thea

ura
y of guessing the state xi 2 X for a given data instan
e is referred to asthe predi
tive a

ura
y of p(x), denoted PA(p(x)).The idea of using predi
tive a

ura
y as a dependen
y measure among thepair of attributes Xi and Xj is to 
ompare the predi
tive a

ura
y of themarginal probability p(xi) with the predi
tive a

ura
y of the 
onditional proba-bility p(xijxj), namely PA(p(xijxj)). If Xi is dependent of Xj there should bean in
rease in the 
han
e that the state of Xi 
an be guessed knowing the stateof Xj 
ompared to using only p(xi) when guessing the state of Xi.To express this more formally, we let the predi
tive a

ura
y of a probabilitydistribution p(xi), namely PA(p(xi)), be the probability that the state of Xi
an be guessed by guessing on the state with the highest probability.PA(p(xi)) = maxj p(xj) (3.9)Page 30 of 90



Chapter 3: Feature Subset Sele
tionIn the 
onditional 
ase p(xijxj) we express PA(p(xijxj)) as the probability thatwe 
an 
orre
tly guess the state of Xi for a given 
ase when knowing the state ofXj. In order to do this we 
ompute the 
onditional probability table for p(xijxj)and use it as a map in whi
h to look up the probability of Xi in a 
ertain stategiven the state of Xj . Similar to PA(p(xi)) we guess on the most probable stateof Xi given the 
onditional probability table.Predi
tive A

ura
y as a Dependen
y MeasureTo measure the dependen
y between a pair of features using predi
tive a

ura
ywe simply measure the 
hange in predi
tive a

ura
y between PA(p(xi)) andPA(p(xijxj)). We want a s
ore to be near to 1 if Xj has in�uen
e on Xi and alower value if Xi is not in�uen
ed by Xj . This is done using the formula below.DMPA(xi; xj) = 1� PA(p(xi))PA(p(xijxj)) (3.10)This equation is the base of the proposed dependen
y measure using predi
-tive a

ura
y. However this measure is not symmetri
 in that DMPA(xi; xj) 6=DMPA(xj ; xi). This 
onstitutes a problem sin
e we want our three relevan
emeasures to be symmetri
. A simple solution to this problem is using the follow-ing equation derived from Equation 3.10.DMPA(xi; xj) = 1� PA(p(xi))PA(p(xijxj)) + PA(p(xj))PA(p(xj jxi))2 (3.11)3.4.7 Information GainInformation gain (or mutual information (MI)) is an entropy based measureknown from 
lassi�
ation by de
ision trees to rank the attributes a

ording toimportan
e [50℄. Here we 
larify how entropy and information gain 
an be usedas a measure of dependen
y for attributes in unsupervised learning. We denotethe entropy of an attribute X, H(X).H(X) = � Xxi2X p(xi) log2 p(xi) (3.12)where p(xi) is the probability of X being in the state xi. The value H(X) is areal number between 0 and the binary logarithm of the number of states of X,whi
h measures the purity of the data. The entropy is 0 if the probability thatX is in a given state is 1 and the entropy is the binary logarithm of the numberof states in X if and only if the probability of X being in a given state is thesame for all states xi. Page 31 of 90



3.5 S
oring the Relevan
e of FeaturesMI is a measure of the di�eren
e between the marginal and the 
onditional
ase. In other words, MI is the redu
tion in entropy for an attribute Xi 
ausedby partitioning the examples a

ording to another parti
ular attribute Xj . Wemeasure the MI a
hieved from attribute Xj as the 
hange in entropy betweenH(Xi) and H(XijXj), the 
onditional entropy of Xi given Xj . For any �xedvalue xj of Xj , we obtain the 
onditional probability p(Xijxj) and 
al
ulateH(Xijxj). H(Xijxj) = � Xxi2Xi p(xijxj) log2 p(xijxj) (3.13)We obtain the 
onditional entropyH(XijXj) by weighting the entropiesH(Xijxj)with the prior probabilities p(xj). Conditional entropy is de�ned as:H(XijXj) = Xxj2Xj p(xj)H(Xijxj) (3.14)Then information gain is given asMI(Xi;Xj) = H(Xi) � H(XijXj) (3.15)Note that Xj might as well be a ve
tor of attributes makingMI(Xi;Xj) a mea-sure of di�eren
e in data purity within attribute Xi and in ea
h set of attributes
onditioned by Xj .If the value of MI(Xi;Xj) is signi�
antly high it indi
ates that the purity ofXi in
reases when the state of Xi is known. In other words, it indi
ates that Xj
an be used to improve the predi
tion of Xi.Information Gain as a Dependen
y MeasureResults of performing information gain on two attributes give an indi
ation of thedependen
y between them and the strength of su
h a dependen
y. This result
an be dire
tly applied as a dependen
y measure for the proposals in this report.DMMI(Xi;Xj) = MI(Xi;Xj) (3.16)3.5 S
oring the Relevan
e of FeaturesIn this se
tion we aim to show how the dependen
y measures 
an be used to s
orea single feature with respe
t to its dependen
ies to the rest of the feature set(referred to as a s
ore method). We say that a feature is relevant if it is dependenton another feature. This is expressed formally in the following de�nition:Xi 2 Relevant, 9XjjXidepends onXjPage 32 of 90



Chapter 3: Feature Subset Sele
tionThat is, if for a variable Xi, we are able to identify a variable Xj , whi
h dependson Xi, then both Xi and Xj are relevant for the purpose of indu
tion.In this proposal we distinguish between relevant and most relevant. We main-tain our de�nition of relevan
e and use it to develop a s
ore method whi
h 
anbe applied to s
ore a single feature. Given su
h a method we are able to identifyboth features with high relevan
e and features with low relevan
e. Additionallywe are able to rank ea
h feature and sele
t only the most relevant based on athreshold whi
h will be des
ribed later. We propose 2 methods for s
oring therelevan
e of a feature.
Rmax(Xi) = maxDM(Xi;Xj) (3.17)Ravg(Xi) = Pj DM(Xi;Xj)p : (3.18)Where p is the number of features in the data set and DM is one of the abovedependen
y measures DM
hi, DMPA or DMMI . In the remainder of the reportwe will refer to a s
ore measure as a measure that uses either of the 2 s
oremethods with any of the 3 dependen
y measures. The result of 
al
ulating thes
ore of a given feature using a s
ore measure is denoted a relevan
e s
ore. Intotal that leaves 6 relevan
e s
ores available for testing.Using a maximum s
oring method on the dependen
y means that the s
oreof a given feature will be the strongest dependen
y of the feature. Using su
ha s
oring s
heme assumes that random dependen
ies are weak and that fea-tures with many dependen
ies have a higher probability of having very strongdependen
ies. The main property of this approa
h is that it will reward strongdependen
ies rather than many dependen
ies, meaning that a feature 
an bedependent of only one other feature and still have a higher s
ore than a featurewith many dependent features.The se
ond s
ore measure is an average over dependen
ies to all features. Thes
oring method sums up the values of the feature dependen
y measure betweenthe tested feature and all the rest of the features. The average is over the totalamount of features in the data set.3.6 ThresholdingThe 
urrent proposals assign s
ores to ea
h feature in the data set. In order todo unsupervised FSS it is ne
essary to set a threshold that is able to e�e
tively
ut away all irrelevant features based on their s
ores.Page 33 of 90



3.6 Thresholding3.6.1 Learning Curve Sampling MethodHere we propose a new s
heme based on the learning-
urve sampling methodproposed by Meek et al. [48℄.Given a set of features X, let S1; S2; ::; Sp �X denote the feature subsets,
onstrained by the relevan
e ranking, that are to be examined in the pro
essof �nding the appropriate threshold. We require that Si � Si+1, meaning thatthe subsets are nested. A given subset Si 
ontains the i features in X with thehighest relevan
e s
ore. The subsets Si and Si+1 di�er only in a single feature.UtilityThe main idea is to keep adding features (i.e. moving from Si to Si+1) as longas the bene�t is greater than the 
ost. At stage i there are 2 
hoi
es available.Either stop and output the 
urrent feature subset or add a new feature andexamine the new feature subset. In order to evaluate a feature subset properlyone has to 
onsider both bene�t and 
ost. At step i of in
rementation we expressthe utility of subset Si as:Utility(Si) = Benefit(Si)� Cost(Si) (3.19)In order to 
al
ulate the utility at ea
h stage we need to de�ne the fun
tions forbene�t and 
ost. The bene�t of Si 
an be de�ned as the sum of the relevan
es
ores for ea
h feature j in Si.Benefit(Si) = iXj=1Rj (3.20)De�ning the bene�t in this way will have several 
onsequen
es that should be
onsidered. The bene�t of adding a feature to the subset is evaluated with respe
tto the relevan
e of the feature itself and not with respe
t to the relevan
e ofthe new subset. The impa
ts are that a given feature is likely to be overratedrendering the s
heme 
onservative in the sele
tion. In addition redundan
y isnot dete
ted sin
e several features that 
ontribute with approximately the sameinformation will all have the same relevan
e.The 
ost a

ording to [48℄ is de�ned as the running time used to obtain the
urrent bene�t. We fo
us on interpretability and knowledge gain, therefore the
ost in
reases with the addition of attributes as this redu
es the interpretability ofthe indu
ed model. Therefore the 
ost is proportional to the number of featuresin the 
urrent subset and 
an be de�ned as:Cost(Si) = i � � (3.21)where � is the relative importan
e of the number of attributes to the bene�t.The value of � should be assessed by the end-user sin
e it is problem dependent.Page 34 of 90



Chapter 3: Feature Subset Sele
tionStopping CriterionAs mentioned in the previous se
tion at stage i we 
an either 
hoose to stop andoutput the 
urrent subset, or 
ontinue to stage i + 1. Meek et al. [48℄ proposeto 
he
k the utility at stage i against the expe
ted utility at stage i + 1. Weadapt this method to this thresholding s
heme and de�ne our stopping 
riterionas follows. We stop and output the feature subset at stage i if:Utility(Si+1) � Utility(Si) (3.22)Using the previous de�nitions of both utility, 
ost and bene�t Equation 3.22 
anbe rewritten as:Benefit(Si+1)� Cost(Si+1) � Benefit(Si)� Cost(Si)Benefit(Si+1)�Benefit(Si) � Cost(Si+1)� Cost(Si) (3.23)From Equation 3.21 we see that:Benefit(Si+1)�Benefit(Si) � �((i + 1)� i) (3.24)Therefore the stopping 
riterion 
an be rede�ned as:Benefit(Si+1)�Benefit(Si)((i + 1)� i) � � (3.25)In this equation � is 
hosen to re�e
t how many attributes the user is willingto add in order to in
rease the relative bene�t a 
ertain amount. Formally we
an state that � is the ratio of in
rease in the relative bene�t to the number ofattributes added from Si to Si+1. If the stopping 
riterion is met we go ba
k tostage i and output the subset, otherwise we 
ontinue to stage i+ 1.Figure 3.6 shows an example of an output of a �lter method in
luding bothrelevant and irrelevant features. The y-axis denotes the bene�t at stage i andthe x-axis denotes the �rst i features, given the relevan
e ranking, in the 
urrentsubset. The graphi
al illustration indi
ates how to de�ne �.Although the strategy is myopi
, it is optimal in the 
ase where it is guaranteedthat the bene�t-in
rease will de
rease and the 
ost in
reases as a 
onsequen
e ofin
rementing the feature subset. In this s
enario it makes sense to stop when theratio of these two quantities falls below �. In this proposal the ranking ensuresthat the shape of the 
urve is 
on
ave, leaving the strategy to be optimal.Page 35 of 90
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0Figure 3.6: Example, plotting bene�t on the y-axis. Relevan
e at stage i + 1 isthe in
reasing bene�t between stage i and i+1. The impa
t of � shown as the
oe�
ient for the line for whi
h maximizing the verti
al distan
e h de�nes thestopping 
riterion.3.6.2 Hypothesis TestingIn a se
ond approa
h for setting a threshold we want to propose the use ofhypothesis tests [15℄. As des
ribed in Se
tion 3.4.5 a hypothesis test is an ap-proa
h for testing whether to keep or reje
t a 
laim, namely the null-hypothesisdenoted H0. If we regard feature sele
tion as a hypothesis test we 
hoose asnull hypothesis the 
laim: �feature X is irrelevant�, then we 
an reje
t H0 if theeviden
e against it is su�
iently strong for a given relevan
e measure, or we 
ankeep it in 
ase the eviden
e against it is not su�
iently strong. The alternativehypothesis H1, whi
h is favored if H0 is reje
ted is the 
laim that �feature X isrelevant�. However the 
on
lusion of a hypothesis test is merely to keep or reje
tH0.Setting up a Hypothesis TestThe 
ore in a hypothesis test is a test statisti
. An obvious 
hoi
e for a teststatisti
 is one of the proposed s
ore measures. Before we 
an use this teststatisti
 to draw 
on
lusions about H0 we need to know the density distributionfor ea
h of the proposed s
ore measures under the null hypothesis. That is, weneed to know what s
ores we 
an expe
t for an irrelevant feature in a given dataset. For instan
e, if the s
ores for an irrelevant feature are normal distributed thisPage 36 of 90



Chapter 3: Feature Subset Sele
tionknowledge 
ould be a mean and a standard deviation. The hypothesis test is thento test how strongly we 
an believe the s
ore of a 
ertain feature to be amongthe irrelevant ones. The problem here is that we do not know the distribution ofany of the proposed relevan
e measures. The exa
t distribution for those s
ores
an be found (in theory) by sampling in�nitely many examples for whi
h H0 istrue relative to a given feature set. In pra
ti
e we 
an �nd an approximation tothe distribution for ea
h of the relevan
e measures under H0 by sampling a highnumber of irrelevant features.Setting a ThresholdTo test whether H0 holds for a given feature we 
al
ulate its test statisti
 andreje
t H0 if it ex
eeds a 
ertain threshold, namely the 
riti
al value. The 
riti
alvalue is derived from the density distribution together with a de
ision of howhigh a risk with whi
h we 
an a

ept to wrongly reje
t H0 if it is true. Thisthreshold is set up with the help of the signi�
an
e level. In theory the 
hoi
eof a signi�
an
e level is up to the user of the hypothesis test as it re�e
ts the
han
e of making a wrong de
ision. Therefore we denote the signi�
an
e level �whi
h, like in the learning 
urve approa
h, may impa
t the amount of featureswhi
h will be deemed irrelevant. However, a standard value for the signi�
an
elevel is 0.05 (5%) whi
h we will use in our tests. From the signi�
an
e levelwe �nd the set of values of the test statisti
 for whi
h the null hypothesis isreje
ted in a hypothesis test. In our 
ase this is set to the 5% highest values ofthe test statisti
 for the sampled irrelevant features under H0. The 
on
lusionof our hypothesis test is that we reje
t H0 if for a given 
ase the result of thetest statisti
 is in this set. Therefore the 
riti
al value for a hypothesis test isthe lowest possible value in this set. Knowing this we 
an a

ept or reje
t H0for any given feature X.Approximating the Density DistributionTo make the approximation of the density distribution of the test statisti
 wesample relevan
e s
ores for irrelevant features. Ea
h sample s
ore is generatedby s
oring a randomly generated feature Xrandom relative to the original featureset X, i.e. R(Xrandom). Ea
h randomly generated feature is sampled by �llingin ea
h value at random, maintaining the same number of states. We produ
e10000 samples and sort them in in
reasing order. The sample set of 10000 
asesis a set of values of the test statisti
 for whi
h H0 is true.We want to avoid any bias introdu
ed by the di�erent number of states in thetested feature and the randomly generated features whi
h were used to produ
ethe sample set. Therefore if we want to use a hypothesis test to test whether afeature X is relevant and the number of states in (or the 
ardinality of) X is q,we approximate the distribution of the test statisti
 using only features with the
ardinality q. Page 37 of 90



3.7 SummaryUnlike with the learning 
urve sampling method approa
h, the advantage ofthis approa
h is that there is a 
lear interpretation of the value �, namely therisk of making a wrong de
ision about H0. Moreover, with this approa
h one 
andistinguish between relevant and irrelevant features without having to presentan ordering of the features.3.7 SummaryIn this 
hapter we outline the idea of FSS both in supervised and unsupervisedlearning. We give a de�nition of relevan
e in the domain of unsupervised FSSwhi
h is based on the dependen
e between a feature and the 
luster randomvariable. The 
luster random variable is unknown but under the assumption that afeature is dependent on this it is likely to be dependent on other relevant features.Therefore the main idea is that a feature 
annot be dis
arded as irrelevant if itis dependent on at least one other feature.We propose 3 dependen
y measures in order to measure the dependen
ybetween 2 features:� �2 analysis.� Predi
tive a

ura
y.� Mutual InformationThe s
ore of a single features 
an then be obtained in several ways. In thisproje
t we propose to measure the dependen
y of a feature with ea
h of theother features in the data set. From the result we propose 2 s
oring methods,maximum and average:Rmax(Xi) = maxDM(Xi;Xj)Ravg(Xi) = Pj DM(Xi;Xj)pwhere p is the number of features in the data set.In order to perform unsupervised FSS it is ne
essary to de
ide on a thresholdon whi
h features with a low relevan
e 
an be dis
arded as irrelevant. We propose2 approa
hes to setting a threshold. The learning 
urve sampling method basedon a ranking of the features and a 
ost versus bene�t approa
h, and a hypothesistest based on 10000 randomly generated features used in a test statisti
s similarto that of �2.
Page 38 of 90



4ResultsWe know very little, and yet it is astonishing that we know so mu
h, and stillmore astonishing that so little knowledge 
an give us so mu
h power.� Bertrand RussellIn this 
hapter we will present the results of applying the proposals to severaldata sets. First we will present a des
ription of 3 syntheti
 data sets and 4 real-world data sets whi
h will be the base for testing the methods. In Se
tion 4.2 wethen present the results of applying the proposed s
ore measures to the des
ribeddata. By showing the performan
e on a large variety of data sets we aim to showthat the proposals perform well and to show the limitations that exist for thisapproa
h to unsupervised FSS.Thereafter we will explain how the 
lustering te
hniques des
ribed in Chapter2 have been applied in order to validate the results of the �lter methods. Last wepresent the results of validating the �lter results. Dis
ussions on the results leadsto further extensions of the methods proposed and Chapter 5 gives a des
riptionof a hybrid approa
h to unsupervised FSS in whi
h the results in this 
hapterhave been applied.4.1 Data Des
riptionIn this se
tion we will des
ribe the 7 data sets that will be used to test andevaluate the unsupervised FSS methods proposed in this report. The data sets
onsist of 3 syntheti
 data bases and 4 real-world data sets. We �rst present thesyntheti
 data sets and then the real-world data sets.4.1.1 Sampling of Bayesian NetworksThe �rst two syntheti
 data sets are based on a Bayesian Network (BN) 
reatedby Peña et al. [56℄. The BN 
an be seen in Figure 4.1 and 
ontains a 
lusterPage 39 of 90



4.1 Data Des
ription
Figure 4.1: Original BN, allnodes are 
onsidered relevantfor indu
tion. Figure 4.2: Original BN with10 added nodes. The 10 addi-tions are un
onne
ted and 
on-sidered irrelevant for indu
tionpurposes.random variable with 3 states and 10 nodes of ea
h 3 states with varying inter-
onne
tivity and all 
hildren of the 
luster random variable. All 10 features inthe model are relevant. We add 10 irrelevant, and therefore un
onne
ted nodesto the network as shown in Figure 4.2. The 10 un
onne
ted nodes also 
ontain3 states and ea
h instan
e has been randomly generated from a spe
i�ed proba-bility distribution, 
hosen at random. However in
luding the 
onstraint that theprobability distributions for ea
h of the randomly generated features never ex-
eed 80% nor go below 20% for any state. From the model shown in Figure 4.2we sample 10000 
ases that will be used as the �rst syntheti
 test data denotedSYN10.A se
ond syntheti
 data set has been derived using the same base BN model,but now adding 20 un
onne
ted nodes using the same te
hnique as for SYN10.Using this BN we have again sampled 10000 
ases. We denote this data setSYN20. For both SYN10 and SYN20 we have removed the 
luster random variable.The reason for 
reating an additional data set with the same properties, ex
eptin the number of irrelevant features, is to show how the s
ore measures will rea
tto an addition of irrelevant features.As mentioned in both syntheti
 data sets the 
lass random variable has 3states and so we 
luster the data set using k = 3.4.1.2 WaveformThe last sour
e of arti�
ial data is a well known data base from the UCI reposi-tory of Ma
hine Learning databases [7℄, whi
h will be referred to as WAVE. Thedata 
onsist of 40 features whereof the last 19 are noise. The data represents
ontinuous values based on 3 generated waves over separate series of the �rst21 features. Sin
e we only 
onsider 
ategori
al data the data set has been dis-
retized into 3 
ategories. The dis
retization te
hnique used is a basi
 methodwhi
h divides the value of ea
h feature into 3 equally sized bins and pla
es allinstan
es in their 
orresponding value interval [12℄.We know that there exist 3 
lusters in the data, ea
h representing a 
ombi-nation of 2 waves. The �rst 4 and the last 4 of the 21 relevant features havePage 40 of 90



Chapter 4: Resultsbeen dis
overed as being less signi�
ant than the others, thus in some papers[8, 65℄ these features are 
onsidered irrelevant. Table 4.1 gives an overview ofrelevant and irrelevant features in the WAVE data set.0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2425 26 27 28 29 30 31 32 33 34 35 36 37 38 39Table 4.1: Overview of the WAVE data set. Relevant features are marked in boldfont.4.1.3 The Insuran
e Company CaseThis data set is the �rst of the real-world data sets in our evaluation. It 
ontains5822 
ustomer re
ords kept by an insuran
e 
ompany that sells mobile homepoli
ies. It is known as the COIL data set. Ea
h re
ord 
onsists of 85 features,
ontaining so
iodemographi
 data and produ
t ownership.An 86th feature 
ontains the 
lass random variable des
ribing those who buya mobile home insuran
e poli
y and those who do not. The data set was part ofa data mining 
ompetition referred to as �the CoIL Challenge 2000� [69℄. Fromthe do
umentation of the results of the 
ompetition we gain some insight inwhat others before has gained from this data set and we 
an 
ompare the resultsof this proje
t to the des
riptions.One of the entries in the data des
ription 
ompetition performs statisti
alanalysis on the data using �2 in order to test dependen
y with the 
lass randomvariable. From the statisti
al analysis they found 21 features within the 95%
on�den
e level. These are shown in Table 4.2. The approa
h is within thedomain of supervised learning whi
h makes 
omparison di�
ult to perform.46 58 67 4 41 42 36 17 43 33 29 30 24 31 38 15 0 64 9 11 28Table 4.2: The 21 features that proved the best subset a

ording to a �2 testperformed by Kim et al. [38℄. The features are ranked from best to worst.4.1.4 LeukemiaThe last real-world data set has been 
hosen for its extreme stru
ture whi
hperhaps will be able to test some of the limitations of the methods that wepropose. The data set 
onsists of 7129 features and 72 
ases and will be referredto as LEUKEMIA. Ea
h 
ase represents a patient su�ering from leukemia and thefeatures des
ribe gene expression level for ea
h of the patients. The data was�rst introdu
ed by Golub et al. [26℄. It is well known in data mining 
ommunitiesand has been thoroughly analyzed in the past. From [26℄ we know that there are2 
lusters partitioning patients with respe
t to the type of leukemia that theyare su�ering from (AML and ALL). In the arti
le by Golub et al. they build aPage 41 of 90



4.2 Filter Resultspredi
tive model using only 50 of the 7129 features based on supervised FSS ina �lter approa
h. The resulting model obtained a

urately 
lassi�ed 36 out of 38patients in the test set as either type AML or ALL (the last two were 
lassi�ed asun
ertain). This indi
ates a very high amount of irrelevant or redundant featureswhi
h should be dete
ted using the methods proposed in this proje
t.As variations of this data set 2 additional data sets have been derived usingthe two types of leukemia. First we have transformed the data into a new database where ea
h feature represents a patient and ea
h instan
e represents a gene.Then we split the data into 2 separate data sets, one for ea
h of the two typesof leukemia. The �rst data set, denoted AML, 
ontains 25 features (patients) allsu�ering from leukemia of type AML and 7129 
ases (genes). The se
ond dataset, denoted ALL, 
ontains the remaining 47 features and also 7129 
ases. Dueto the fa
t that the tables are separated given the respe
tive type of leukemiawe expe
t all features to be relevant (an irrelevant feature indi
ates that thispatient has little geneti
ally in 
ommon with the rest of the patients despitesu�ering from the same illness). In the LEUKEMIA data set there are 2 
lusters(2 types of leukemia) whereas in the AML and ALL data sets there are 3 
lusters(overexpressed, underexpressed and neutral genes).4.2 Filter ResultsBased on the proposals presented in Chapter 3 and the data des
ription in Se
tion4.1 this se
tion presents the results of applying the proposed relevan
e s
ores inthe �lter method to the 7 data sets. The order of appearan
e 
orresponds to theorder of the data des
riptions.All graphs shown in this se
tion have been normalized between 0 and 1 onboth x-axis and y-axis for the purpose of applying the learning 
urve thresholdings
heme (see Se
tion 3.6.1). The normalization te
hnique used is not unimpor-tant as it 
an have an impa
t on the shape of the 
urve. For this proje
t a simplenormalization te
hnique 
alled linear s
aling has been used. The method pro-du
es a linear relationship between instan
e values and normalized values. andall information is preserved and 
an be restored from the normalized results [58℄.Equation 4.1 shows how to 
ompute a normalized value for ea
h instan
e valueof an attribute.xnormi = xi �min(x1; : : : ; xn)max(x1; : : : ; xn)�min(x1; : : : ; xn) (4.1)where xnormi represents the normalized value that the attribute X takes in theith 
ase of the database, xi being the original value of that 
ase.When applying the learning 
urve thresholding s
heme we have 
hosen 2values for �, 0.3 and 0.7. For hypothesis testing we use the standard signi�
an
elevel, 0.05. Page 42 of 90
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Figure 4.3: Filter results for SYN10. The top row of �gures show the 3 �ltermethods using max s
ores whereas the bottom row show average s
ores. The�rst 
olumn des
ribes �2, the middle MI and the right PA. Noti
e that thedi�eren
e between the two rows is insigni�
ant.4.2.1 The BN Sampled DataFigure 4.3 depi
ts the results of the learning 
urve approa
h applying all 6 s
oremeasures, using both maximum and average s
ores, to SYN10. The top row showsthe results using the maximum s
ore for ea
h feature whereas the bottom rowshows the average s
ores. It is 
lear to see that for this data set the distin
tionbetween max and average s
ores is surprisingly small and insigni�
ant. MI andPA expe
tedly show very similar results and the distin
tion between relevant andirrelevant is 
lear for both measures even without the use of any thresholdings
heme. A

ording to PA and MI the 
ut point is at 0.45 features whi
h represents10 features. Sin
e we 
onstru
ted the data with 10 nodes dire
tly 
onne
ted tothe 
luster random variable this is what we expe
ted. Examining the resultsfor �2 we surprisingly observe only very weak distin
tion between relevant andirrelevant features.An explanation for the weak distin
tion may be in the fa
t that generallythe p-values for irrelevant features are only a fra
tion higher than for relevantfeatures. In this 
ase we should expe
t the rankings to be 
orre
t in whi
h 
ase �2would still be appli
able for ranking the features but not dire
tly for unsupervisedFSS.The rankings of the features 
an be seen in Table 4.3 on the following pageand 4.4 using learning 
urve thresholds and hypothesis testing respe
tively. Alls
ore measures rank the truly relevant features 
orre
tly even though �2 identi�esonly few irrelevant features given learning 
urve thresholding using � = 0:7.Noti
e also that the disadvantage of the maximum s
ore method is 
learly shownfor �2 in that all features have been deemed relevant given this s
ore measure.Page 43 of 90



4.2 Filter ResultsMethod � = 0:7 � = 0:3 IrrelevantMI (avg) 16 11 13 17 14 19 10 18 12 15 5 1 0 6 8 3 7 4 9 2MI (max) 13 16 11 17 14 10 12 18 15 19 5 0 7 3 1 8 6 4 9 2PA (avg) 13 16 10 19 18 14 12 17 11 15 1 6 7 4 5 2 8 0 3 9PA (max) 16 13 10 14 12 19 18 15 17 11 1 6 4 7 5 2 3 8 0 9�2 (avg) 12 19 15 18 10 16 11 14 13 17 3 7 4 9 25 1 0 6 8�2 (max) 12 19 15 18 10 16 11 14 13 175 1 0 6 8 3 7 4 9 2Table 4.3: Ranking order (best to worst) of the features in the SYN10 data set.Relevan
e based on the learning 
urve thresholding s
heme using both � = 0:3and � = 0:7. The truly relevant are marked in bold font.It is interesting to noti
e the signi�
ant di�eren
es in the rankings that thes
ore measures produ
e and how the graphs 
an exhibit su
h strong similarity de-spite the dissimilarity in the rankings. Clustering validation on these rankings willshow whether it is just the dependen
y among relevant features in this data setthat are so 
lose that the ordering of relevant features be
ome insigni�
ant andeasily altered depending on the method used, or whether one or more methodsdo not rank the features 
orre
tly with respe
t to 
lustering. From the graphs inFigure 4.3 it 
an be seen that the line is almost straight from 0 and up to thelast relevant features. This indi
ates that the s
ore of the features are 
lose toequal and leads us to believe that this explains the di�eren
es in the ordering.Method Relevant IrrelevantMI (avg) 16 11 13 17 14 19 10 18 12 15 5 1 0 6 8 3 7 4 9 2MI (max) 13 16 11 17 14 10 12 18 15 19 5 0 7 3 1 8 6 4 9 2PA (avg) 13 16 10 19 18 14 12 17 11 15 1 6 7 4 5 2 8 0 3 9PA (max) 16 13 10 14 12 19 18 15 17 11 1 6 4 7 5 2 3 8 0 9�2 (avg) 12 19 15 18 10 16 11 14 13 175 1 0 6 8 3 7 4 9 2�2 (max) 12 19 15 18 10 16 11 14 13 175 1 0 6 8 3 7 4 9 2Table 4.4: Ranking order (best to worst) of the features in the SYN10 data set.Relevan
e based on the hypothesis test thresholding s
heme using signi�
an
elevel �= 0.05. The truly relevant are marked in bold font.To the SYN10 data set we have also applied the hypothesis test with � = 0:05.Figure 4.4 depi
ts the distributions for ea
h of the 6 s
ore measures derived fromsampling 10000 irrelevant features and s
oring them relative to the original data.The dashed line denotes the 
riti
al values for ea
h method. In order for thismethod to be reliable the 
urve needs to �atten out before the 
riti
al value.The more �at the 
urve is the more likely are we to believe in our de
ision toreje
t H0. From the 
urves it 
an be seen that the �2 square measure 
ombinedwith the maximum relevan
e s
ore is not very reliable. This 
an be explained byPage 44 of 90
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0Figure 4.4: The distributions of ea
h of the s
ore measures applied to randomfeatures s
ored against the SYN10 data set. The dashed lines show the 
riti
alvalues. The 
olumns from left to right are for �2, MI and PA respe
tively whilethe top row is for maximum s
ore measures and the bottom row is the averages
ore measures.the fa
t that many of the randomly generated features had at least one strongdependen
y with one of the features in the original data set, a

ording to the�2 dependen
y measure. It is worth to mention that the 6 graphs in Figure4.4 are generated from the exa
t same sample of randomly generated features.Therefore the di�eren
e in the 
urves allows us to 
on
lude that at least the�2 dependen
y measure 
ombined with the maximum relevan
e s
ore method isnot very reliable. On the other hand the 
urves have a tenden
y to be �atter forthe average approa
h for all three dependen
y measures with PA exhibiting themost �at shape.The fa
t that all the features have the same number of states allows us touse the ordering when performing the �ltering. Therefore, in stead of 
omparingea
h feature to the 
riti
al value derived from the sample sets, we bene�t fromthe ranking and de
lare the features whi
h has s
ored less than the 
riti
al valueirrelevant. From Table 4.4 it 
an be seen that with PA and MI ea
h with bothaverage and maximum s
ores has su

essfully �ltered out all the irrelevant fea-tures. The �2 method however has de
lared all the 20 features relevant and hasnot been able to dete
t any irrelevant features despite half of the features aretruly irrelevant a

ording to the true stru
ture of the model whi
h has generatedthe data. The performan
e of the methods used in the hypothesis test 
orre-sponds to the result of the learning 
urve where both the PA and MI measuresare signi�
antly better than the �2 measures in �ltering out irrelevant features.Figure 4.5 on the next page shows the results of applying the 6 measures to theSYN20 data set. As with the �rst graphs the top row represents the results usingmaximum s
ores whereas the bottom row represents the results using averages
ores. For these results we again observe a 
lear distin
tion between relevantand irrelevant features. A

ording to MI and PA in Tables 4.5 and 4.6 only thePage 45 of 90
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Figure 4.5: Filter results for SYN20. The top row of �gures show the 3 s
oremethods using max s
ores whereas the bottom row show average s
ores. The�rst 
olumn des
ribes �2, the middle MI and the right PA. Noti
e again that thedi�eren
es are insigni�
ant.10 truly relevant features are dete
ted as relevant. This 
orresponds very wellwith the results of the smaller data set, whi
h seems to indi
ate that the amountof irrelevant features does not have an impa
t on the distin
tiveness betweenrelevant and irrelevant features even by averaging s
ores over all features.Method � = 0:7 � = 0:3 IrrelevantMI (avg) 26 23 27 21 20 24 25 28 22 29 14 15 8 3 7 1 12 2 11 189 0 19 5 6 4 16 10 13 17MI (max) 26 23 21 27 29 24 20 28 22 25 7 15 1 5 12 14 3 0 4 2 118 16 6 17 18 9 19 10 13PA (avg) 26 23 20 24 22 29 25 28 27 21 19 5 14 1 18 13 010 8 11 17 16 15 9PA (max) 23 26 20 28 29 24 22 21 27 25 11 16 17 14 15 4 9 2 5 619 3 1 12 18 8 7 13 0 10�2 (avg) 29 26 20 22 23 27 21 24 7 25 12 131 5 28 15 18 3 2 11 17 14 0 416 6 8 19 9 10�2 (max) 29 26 20 22 23 27 21 24 7 25 121 5 28 15 18 3 2 11 17 14 0 4 166 8 19 9 10 13Table 4.5: Ranking order (best to worst) of the features in the SYN20 data set.Relevan
e based on the learning 
urve thresholding s
heme. The truly relevantare marked in bold font.By examining the rankings as shown in Tables 4.5 and 4.6 it 
an be seen thatthey 
ontain the same 
hara
teristi
s as the �rst data set. The truly relevantfeatures have been dete
ted using both MI and PA whereas �2 ranks the trulyPage 46 of 90
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0Figure 4.6: The distributions of ea
h of the s
ore measures applied to randomfeatures s
ored against the SYN20 data set. The dashed lines show the 
riti
alvalues. The 
olumns from left to right are for �2, MI and PA respe
tively whilethe top row is for maximum s
ore measures and the bottom row is the averages
ore measures.relevant features highest although the s
ores make the thresholding te
hniquesunable to distinguish relevant from irrelevant. The reason for the ina

ura
y thatis exhibited by �2 must be explained by the similarity of the values that featuresare given whether or not they are dependent. Seemingly this method is moresus
eptible to noise than the other two.The hypothesis thresholding s
heme was also applied to the SYN20 data set.Again all the features have the same number of states and the ordering wasused, instead of 
omparing ea
h feature to the 
riti
al value. The results ofperforming the hypothesis test on SYN20 are shown in Table 4.6. Again it 
anbe seen that with PA and MI ea
h with both average and maximum s
ores allthe true irrelevant features have been �ltered out. With the signi�
an
e level0.05, the �2 method however has de
lared all the 30 features relevant. Againthese results 
orresponds very mu
h to the results obtained by the learning 
urveresults. Figure 4.6 depi
ts the distributions of the s
ore measures when samplingirrelevant features.In
luding more irrelevant features in
reases the 
han
e of random depen-den
ies among irrelevant features whi
h 
an lead to an irrelevant feature beingdeemed relevant. In this se
tion we have shown our method 
apable of handling anumber of irrelevant features without 
onsequen
es for the �nal features subset.4.2.2 The Waveform DataThe last of the arti�
ial data sets is the WAVE data set whi
h in
ludes bothirrelevant and partially relevant features. In Figure 4.7 the results of applying the3 average s
ore measures are shown. Previous results indi
ate that using averageor maximum s
ore measures does not have an impa
t on PA or MI, but �2 beingPage 47 of 90



4.2 Filter ResultsMethod Relevant IrrelevantMI (avg) 26 23 27 21 20 24 25 28 22 29 14 15 8 3 7 1 12 2 11 189 0 19 5 6 4 16 10 13 17MI (max) 26 23 21 27 29 24 20 28 22 25 7 15 1 5 12 14 3 0 4 2 118 16 6 17 18 9 19 10 13PA (avg) 26 23 20 24 22 29 25 28 27 21 19 5 14 1 18 13 010 8 11 17 16 15 9PA (max) 23 26 20 28 29 24 22 21 27 25 11 16 17 14 15 4 9 2 5 619 3 1 12 18 8 7 13 0 10�2 (avg) 29 26 20 22 23 27 21 24 7 25 121 5 28 15 18 3 2 11 17 14 0 4 1316 6 8 19 9 10�2 (max) 29 26 20 22 23 27 21 24 7 25 121 5 28 15 18 3 2 11 17 14 0 4 166 8 19 9 10 13Table 4.6: Ranking order (best to worst) of the features in the SYN20 data set.Relevan
e based on the hypothesis test thresholding s
heme using signi�
an
elevel �= 0.05. The truly relevant are marked in bold font.
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Figure 4.7: Filter results for the WAVE data set using average s
ores. The leftmostdes
ribes �2, the middle MI and the right PA.more sus
eptible to noise performs poorly given maximum s
ores. Therefore wehave 
hosen only to show average results for the remaining data sets. In thisdata set though we 
an see a signi�
ant di�eren
e in the 
urves representingPA and MI. MI indi
ates a more 
lear distin
tion between relevant and irrelevantfeatures whereas PA maintain that several more features 
ontribute although therate of 
ontribution is questionably small.From previous analysis and knowledge on the 
onstru
tion of the data weknow that the features 21-39 are noise and 
an be 
onsidered irrelevant features(see Table 4.1). In addition analysis has shown the features 0-3 and 17-20 main-tain only little relevan
e. In Tables 4.7 and 4.8 it is 
lear that all features thatare 
onsidered noise have been ranked last regardless of the method used. Theonly ex
eption to this is feature 0 whi
h has been ranked very low. All 3 s
oremeasures agree on this property.Closer examination shows that PA and MI rankings are surprisingly similar
onsidering the di�eren
es in the graphs. Both agree on a ranking where thefeatures 0, 1, 19 and 20 also rank lower than any of the known relevant. ThisPage 48 of 90



Chapter 4: Results
orresponds with what we know about the data already. The features 2, 3, 17 and18 although also deemed irrelevant by previous analysis are still minor relevantand the stru
ture of the data states that these 4 features are the most relevantof the minor relevant features. Applying the thresholds we obtain very similarresults where only the features 0 and 20 of the truly relevant have been dete
tedas irrelevant. Further 
omparisons with previous analysis is not appli
able due tothe dis
retization that has been performed prior to applying the 3 s
ore measureson the data.A

ording to �2 no features are deemed irrelevant although the ranking mat
hthe results given by PA and MI and previous analysis of the data.� = 0:7 � = 0:3 IrrelevantMI 6 14 7 13 15 5 4 16 12 1 29 24 34 39 33 21 25 22 28 20(avg) 8 3 17 11 9 2 18 10 19 32 37 0 36 26 27 30 35 38 23 31PA 6 14 7 13 15 5 12 16 4 8 24 33 29 39 37 32 27 22 28 0 34(avg) 3 17 11 18 9 2 10 19 1 36 35 20 25 21 26 38 30 31 23�2 6 12 18 14 19 5 8 3 1 17 15 11 27 30(avg) 16 13 9 10 4 7 2 29 24 21 39 32 35 3825 34 33 28 20 22 37 26 0 36 31 23Table 4.7: Ranking order (best to worst) of the features in the WAVE data set.Learning 
urve thresholding s
heme used. Truly relevant features based on pre-vious analysis have been marked with bold font.Relevant IrrelevantMI 6 14 7 13 15 5 4 16 12 29 24 34 39 33 21 25 22 28 20 32 37(avg) 8 3 17 11 9 2 18 10 19 1 0 36 26 27 30 35 38 23 31PA 6 14 7 13 15 5 12 16 4 8 3 17 11 22 28 0 34(avg) 18 9 2 10 19 1 24 33 29 39 37 32 27 36 35 20 25 21 26 38 30 31 23�2 6 12 18 14 19 5 8 3 1 17 15 11 16 13 9(avg) 10 4 7 2 29 24 21 39 32 25 34 33 2820 22 37 26 0 36 27 30 35 38 31 23Table 4.8: Ranking order (best to worst) of the features in the WAVE data set. Hy-pothesis test thresholding s
heme used. Truly relevant features based on previousanalysis have been marked with bold font.Table 4.8 shows the result of applying the hypothesis test to the WAVE dataset using PA, MI and �2 average s
ores with signi�
an
e level 0.05. Furthermorethe distributions for the 3 tested s
ore measures are in Appendix A. Again weallow ourselves to bene�t from the ranking when distinguishing between relevantand irrelevant features instead of 
omparing ea
h feature to the 
riti
al value.MI has de
lared 19 features relevant all features whi
h are relevant a

ording toour data set while only two of the features, namely 0 and 20, whi
h are relevanta

ording to previous analysis have been de
lared irrelevant. PA has de
lared 25of the original 40 features relevant with the same two relevant features left out.At last, the hypothesis test with �2 has not deemed any of the features irrelevant.Page 49 of 90
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Figure 4.8: Filter results for the COIL data set using average s
ores. The leftmostdes
ribes �2, the middle MI and the right PA.Despite that the true distin
tion for this data set was made on a version of thedata whi
h was not dis
retized both MI and PA has performed ni
ely on thisdata set. It is 
lear that dis
retization of a data set 
an have a large impa
t onthe models whi
h 
an be learned from the data as well as the features whi
h arerelevant for 
lustering.4.2.3 The CoIL ChallengeWe have shown that the proposed s
ore measures work on 3 
onstru
ted arti�
ialdata sets whi
h proves that the methods work in theory. We 
ompare the resultsthat we obtain using these 3 methods with the results obtained by [38℄. Figure 4.8shows the graphs for the 3 methods using average s
ores.Method � = 0:7 � = 0:3 IrrelevantMI 0 4 29 30 35 34 17 42 24 18 9 43 64 53 72 75 74 45 66 48 44 69(avg) 11 41 27 15 12 33 36 38 14 22 23 46 67 63 82 62 47 52 50 61 56 6816 21 28 31 6 37 25 26 2 8 32 1 54 55 65 60 84 73 71 77 57 8320 13 39 10 19 5 3 7 58 40 79 51 81 78 70 76 49 59 80PA 27 33 38 30 29 24 17 0 36 18 22 3 58 1 54 53 75 51 74 72 45 44 62(avg) 35 34 14 41 12 32 9 37 11 16 25 79 40 48 63 82 66 69 55 56 47 524 23 26 21 7 42 6 31 15 8 13 67 43 60 50 61 83 84 73 77 68 7028 10 2 39 5 19 20 64 46 71 57 65 81 76 59 49 78 80�2 58 4 0 17 30 42 29 27 20 16 35(avg) 34 6 18 38 24 31 8 66 37 36 32 437 15 41 2 21 3 13 9 14 23 25 1233 22 19 28 26 5 84 51 54 72 1163 46 10 64 79 39 65 40 1 45 6175 77 83 69 68 56 67 50 44 47 7871 76 74 57 48 62 53 52 82 81 8073 55 70 59 49 60Table 4.9: Ranking order (best to worst) of the features in the COIL data set.Relevant a

ording to [38℄ are marked in bold font.Tables 4.9 and 4.11 show the features divided into relevant and irrelevantfeatures using learning 
urve thresholding and hypothesis testing respe
tively.Table 4.9 additionally show the ranking of the features a

ording to the s
orePage 50 of 90



Chapter 4: Resultsmeasure. A noti
eable di�eren
e in the 2 thresholding s
hemes is that �2 doesnot provide results that the learning 
urve is 
apable of dete
ting as irrelevant,whereas hypothesis testing dete
ts several irrelevant features given the sames
ores.The CoIL data set is the only data set with varying 
ardinalities of the fea-tures. In fa
t this data set has features with 
ardinalities from 2 to 10 and asingle feature with the 
ardinality 40. Therefore, for this data set we have pro-du
ed 3 sample sets (one for ea
h s
ore measure used) for ea
h of the di�erent
ardinalities in order to estimate the 
riti
al values. That makes a total of 30sample sets. Table 4.10 depi
ts the di�erent 
ardinalities and the 
orresponding
riti
al values derived from the sample sets. Moreover the distributions for ea
hs
ore measure are depi
ted in Appendix A.Cardinality Features Threshold (�2/MI/PA)2 61 65 66 76 77 78 80 83 84 0.569588 / 0.001542 / 0.0080923 56 57 59 64 68 71 81 0.567715 / 0.002704 / 0.0120204 43 47 50 69 70 73 74 82 0.566007 / 0.003849 / 0.0151395 45 48 63 0.564513 / 0.004980 / 0.0177506 2 3 7 19 51 52 53 55 60 62 72 75 79 0.563525 / 0.006094 / 0.0201167 40 44 46 67 0.564060 / 0.007193 / 0.0220488 10 42 54 0.562444 / 0.008278 / 0.0241659 1 5 20 28 32 58 0.562407 / 0.009349 / 0.02574010 6 4 8 9 11 12 13 14 15 16 17 1821 22 23 24 25 26 27 29 30 31 0.559556 / 0.010394 / 0.02736033 34 35 36 37 38 39 4140 0 0.558365 / 0.039715 / 0.076679Table 4.10: Cardinalities and 
riti
al values for �2, MI and PA s
ores. The 
riti
alvalue is in�uen
ed by the 
ardinality of the tested feature.The result of applying the hypothesis test to the CoIL data is shown in Table4.11. The relevant and irrelevant features in the table distinguishes between thefeatures for whi
h the null hypothesis was reje
ted and the features for whi
h thenull hypothesis was kept respe
tively. Note that due to the di�erent number ofstates for the features of this data set an ordering of the features with respe
t tothe relevan
e s
ores makes little sen
e in this approa
h. Therefore the featuresin Table 4.11 are ordered numeri
ally.If we look 
loser at these results we see that a hypothesis test with the MIs
ore has de
lared none of the features irrelevant whi
h our ben
hmark for theCoIL data set has de
lared relevant. This is a

eptable sin
e we want to be
onservative when leaving out features. However, it must be possible to dis
ardmore than 13 out of 85 features. The approa
h 
an be made less 
onservativeby in
reasing �.The PA based hypothesis test dis
ards 45 of the original 85 features renderingit the least 
onservative of the 3 approa
hes. Unfortunately 4 of the featureswhi
h has been deemed irrelevant by this approa
h are among the features whi
hPage 51 of 90



4.2 Filter ResultsMethod Relevant IrrelevantMI 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 49 50 52 55 57 59 60(avg) 18 19 20 21 22 23 24 25 26 27 28 29 30 31 62 70 73 76 80 8132 33 34 35 36 37 38 39 40 41 42 43 44 4546 47 48 51 53 54 56 58 61 63 64 65 66 6768 69 71 72 74 75 77 78 79 82 83 84PA 0 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 1 5 20 39 43 44 45 46 47 48(avg) 19 21 22 23 24 25 26 27 28 29 30 31 32 33 49 50 51 52 53 54 55 56 5734 35 36 37 38 41 42 64 58 59 60 61 62 63 65 66 6768 69 70 71 72 73 74 75 7677 78 79 80 81 82 83 84�2 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 44 45 47 48 49 50 51 52(avg) 18 19 20 21 22 23 24 25 26 27 28 29 30 31 53 54 55 56 57 59 60 61 6232 33 34 35 36 37 38 39 40 41 42 43 46 51 67 68 69 70 71 73 74 7554 58 63 64 65 66 72 79 84 76 77 78 80 81 82 83Table 4.11: Result of applying the hypothesis test to the CoIL data set withsigni�
an
e level 0.05 and sampling 10000 
ases. Relevant features a

ording to[38℄ are marked in bold font.has been re
orded relevant by our ben
hmark for this data set. The fa
t that ourben
hmark is based on supervised learning makes a fair 
omparison unappli
ableand the mismat
hes are not 
onsidered as errors.At last �2 has deemed 42 out of the 84 features irrelevant. This time one ofthe features whi
h is de
lared irrelevant is one of the relevant a

ording to ourben
hmark for this data set. A validation of the �lter results obtained in thisse
tion 
ompared to the respe
tive 
lustering models whi
h 
an be learned fromthese feature subsets will be presented shortly.4.2.4 LeukemiaThe data sets, LEUKEMIA, AML and ALL are parti
ular interesting for severalreasons. The LEUKEMIA data set is well known in the data mining 
ommunityand thoroughly analyzed in the past. Its extreme number of features 
an prove tobe a 
hallenge for any FSS method. Also indi
ations show that very few featuresare a
tually relevant whi
h further 
hallenges the methods by in
luding a largeamount of noise. The AML and ALL data sets are interesting in that the patientsall su�er from the same type of illness and their gene expression pro�les shouldbe similar and therefore also there should be very few or no irrelevant features.Figure 4.9 on the next page shows the results of applying the s
ore methodsto the ALL and AML data set. The top row shows the 3 s
ore measures appliedto AML and the bottom row shows them applied to ALL. As before all results areshown using average s
ores. Expe
tedly the methods indi
ate that there are noirrelevant features in the data set. A

ording to the rankings shown in Table 4.12and 4.13 for the AML data MI and PA agree to some extent on the ordering ofthe features. Note how the �rst 5 features and the last 5 features are almost thePage 52 of 90
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Figure 4.9: Filter results for the AML and ALL data transformed from the originalleukemia data set. The top row makes out the AML data set whereas the bottomrow makes out the ALL data set. The �rst 
olumn des
ribes �2, the middle MIand the right PA. In both 
ases it is not surprising to see that all patients arerelevant due to the fa
t that their gene expression pro�les should bear similarities.same for both MI and PA although not ordered 
ompletely identi
ally. For �2the ordering is trivial sin
e all features have re
eived the same s
ore.Method � = 0:7 � = 0:3 IrrelevantMI (avg) 3 12 0 11 6 4 9 14 8 21 5 19 7 2 23 15 17 2210 1 16 18 20 13 24PA (avg) 6 11 3 12 9 0 19 2 20 8 10 4 15 21 18 1 16 22 13 17 2423 7 5 14�2 (avg) 0 24 23 22 21 20 19 18 17 16 15 14 1312 11 10 9 8 7 6 5 4 3 2 1Table 4.12: Ranking order (best to worst) of the features in the AML data set.Relevan
e based on the learning 
urve thresholding s
heme. Sin
e we do notexpe
t any irrelevant features all are marked in bold font.Method Relevant IrrelevantMI (avg) 3 12 0 11 6 4 9 14 8 21 5 19 7 2 2310 1 16 18 20 13 24 15 17 22PA (avg) 6 11 3 12 9 0 19 2 20 8 10 4 15 2123 7 5 14 18 1 16 22 13 17 24�2 (avg) 0 24 23 22 21 20 19 18 17 16 15 14 1312 11 10 9 8 7 6 5 4 3 2 1Table 4.13: Ranking order (best to worst) of the features in the AML data set.Relevan
e based on the hypothesis test thresholding s
heme. Sin
e we do notexpe
t any irrelevant features all are marked in bold font.Page 53 of 90



4.2 Filter ResultsSimilar tables for the ALL data set 
an be seen in Tables 4.14 and 4.15. In thesetables though the similarity among PA and MI is less striking. The explanationfor this 
ould be found in the 
lustering results in that the results 
ould indi
atea less 
lear ordering of the features due to additional dependen
ies.Method � = 0:7 � = 0:3 IrrelevantMI (avg) 12 45 4 18 14 25 43 29 15 46 36 44 27 28 2 26 3717 24 9 10 34 41 42 35 23a 13 39 11 7 16 4032 1 21 30 5 33 31 20 22 3 19 0 38 6 8PA (avg) 41 45 46 25 17 24 12 9 15 18 35 6 3 0 11 38 33 2810 29 34 4 14 36 26 37 1 30 39 44 13 8 2 40 19 1643 5 22 20 31 7 42 21 27 32 23�2 (avg) 0 46 45 44 43 42 41 40 39 38 37 36 3534 33 32 31 30 29 28 27 26 25 24 23 2221 20 19 18 17 16 15 14 13 12 11 10 98 7 6 5 4 3 2 1Table 4.14: Ranking order (best to worst) of the features in the ALL data set.Relevan
e based on learning 
urve thresholding s
heme. Sin
e we do not expe
tany irrelevant features all are marked in bold font.Method Relevant IrrelevantMI (avg) 12 45 4 18 14 25 43 29 15 46 36 44 37 1724 9 10 34 41 42 35 23 13 39 11 32 1 21 30 533 31 20 22 3 19 0 38 6 8 27 28 2 26 7 16 40PA (avg) 41 45 46 25 17 24 12 9 15 18 35 6 3 10 29 344 14 36 26 37 1 30 39 44 13 43 5 22 20 31 742 21 27 32 23 0 11 38 33 28 8 2 40 19 16�2 (avg) 0 46 45 44 43 42 41 40 39 38 37 36 3534 33 32 31 30 29 28 27 26 25 24 23 2221 20 19 18 17 16 15 14 13 12 11 10 98 7 6 5 4 3 2 1Table 4.15: Ranking order (best to worst) of the features in the ALL data set.Relevan
e based on hypothesis test thresholding s
heme. Sin
e we do not expe
tany irrelevant features all are marked in bold font.We know from previous analysis that a large portion of the features in theLEUKEMIA data set are irrelevant. In Figure 4.10 on the fa
ing page it 
an beseen that the methods do not indi
ate any irrelevant features. This is most likely
aused by the large amount of features and the la
k of 
ases whi
h stronglyin
rease the possibility of random dependen
ies among irrelevant features. In fa
t
loser examination revealed that all features in
lude strong dependen
ies withat least 100 other features. This fa
t renders any relevan
e measuring amongthese features di�
ult. This is also the 
ase for the proposed s
oring methodsin this report. It is worth mentioning that PA performs signi�
antly better thanboth MI and �2 by exhibiting a 
on
ave shaped graph whereas the other two arealmost straight. Page 54 of 90
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Figure 4.10: Filter results for the leukemia data set in full 
ontaining 7129 featuresand 72 
ases. Noti
e that PA performs signi�
antly di�erent from both MI and�2. Considering previous analysis we 
an say that PA performs signi�
antly betterthan the 2 other methods.
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0Figure 4.11: The distributions of ea
h of the s
ore measures applied to randomfeatures s
ored against the LEUKEMIA data set. The dashed lines show the 
riti
alvalues. The �gures from left to right are for �2, MI and PA respe
tively.The ordering of the last data set is not shown due to the large amount offeatures. It is however interesting to see whether the rankings that the methodshave produ
ed 
an prove to be 
orre
t. Se
tion 4.4.1 on page 60 will show theresults of validating the rankings of all results shown in this se
tion.RelevantMethod Learning 
urve (� = 0:3) Learning 
urve (� = 0:7) Hypothesis testMI (avg) 7129 6975 6803PA (avg) 7106 3803 453�2 (avg) 7129 7129 6657Table 4.16: A summarizing table on the results obtained by the �ltering methodsperformed on the LEUKEMIA data set. The numbers shown are the number ofrelevant features a

ording to ea
h method.Table 4.16 shows the number of relevant features returned by ea
h of the3 s
ore measures 
ombined with both the learning 
urve approa
h and the hy-pothesis test. The PA measure has de
lared most features irrelevant for boththe learning 
urve approa
h and the hypothesis test approa
h. With the learning
urve approa
h it has deemed 3326 features irrelevant while with the hypoth-esis test it has su

essfully found 6676 irrelevant genes rendering it the least
onservative approa
h. With MI only 157 was de
lared irrelevant together withthe learning 
urve approa
h while 326 features were de
lared irrelevant whenPage 55 of 90



4.3 Validation of the Filter Results
ombined with the hypothesis test. �2 has dete
ted no irrelevant features when
ombined with the learning 
urve. However, 
ombined with a hypothesis test ithas de
lared 472 out of the 7129 features leaving it less 
onservative than the MImethods. To summarize on this it is 
lear that PA has proven a quite 
onvin
ingperforman
e. This, together with the previous results has indi
ated that it hasa higher di�eren
e in the s
ores for features with weak dependen
ies and thefeatures with strong dependen
ies. Figure 4.11 depi
ts the distributions for therelevan
e measures for irrelevant features s
ored against the LEUKEMIA data set.It is interesting that for this data set PA shows a less peaked distribution thanboth �2 and MI. Despite this PA has �ltered out signi�
antly more features thanthe other two measures.4.3 Validation of the Filter ResultsIn the previous se
tion we shown that the two �lter methods were 
apable of�ltering out irrelevant features. Their performan
e was measured by 
omparingthe obtained results to knowledge we were able to gain about the data from anexternal sour
e. In a se
ond step of validation, we wish to measure ea
h s
oremeasures ability to distinguish between features whi
h 
ontribute to homoge-neous 
lusters and whether they are 
apable of ranking the features with respe
tto their relevan
e. In order to do this we apply the 2 
lustering methods de-s
ribed in Chapter 2 on the feature subsets that were de
lared relevant by ea
h�lter method. We evaluate the resulting models by measuring their homogeneityand 
ompare it with the homogeneity of a model learned from the whole dataset. This task however is far from trivial in that fair 
omparison between 
lusterresults based on di�erent sized feature subsets 
an prove to be a 
hallenge. Herewe aim to explain how the evaluation is performed and how the homogeneityof 
lustering with di�erent subsets of features 
an be measured su
h that theresults are 
omparable.4.3.1 The Test StrategyOur tests are designed to test our methods ability to sele
t relevant features andtheir ability to 
orre
tly identify the order of relevant features. In a �rst stepwe learn models from ea
h subset of relevant features a

ording to our �ltermethods and measure their ability to generate homogeneous results. In a se
ondstep we wish to validate the relevan
e ranking of the features produ
ed by the�lter methods. Therefore we learn a model from the most relevant feature, andmeasure its performan
e. Then we learn a model from the two most relevantfeatures and measure the performan
e of this se
ond model. Thus we 
ontinue
lustering with the most relevant features adding 1 feature for ea
h iteration.More spe
i�
ally, we have an ordered set of features X = fX1;X2; : : : ;Xpg,ordered with respe
t to the relevan
e measure R, su
h that R(X1) � R(X2) �Page 56 of 90



Chapter 4: Results: : : � R(Xp), i.e. the most relevant features �rst. From X we produ
e pfeature subsets su
h that S1 = fX1g; S2 = fX1;X2g; : : : ; Sp = X with ea
hSi � Si+1. Given a performan
e measure P , whi
h measures the homogeneityof our 
lusters a

ording to our 
lustering 
riterion, we will verify that P (Si) �P (Si+1). If this is true we have indi
es that the ordering produ
ed by R is valid.4.3.2 Validation Using k-modesTo test whether our relevan
e measures 
an su

essfully be used for FSS as a pre-pro
essing step for the k-modes algorithm, we want to measure the performan
eof a model learned by a feature subset Si of the i most relevant features withrespe
t to our 
lustering 
riterion P . Ideally, we wish to measure the partitioningin terms of the 
ohesiveness and distin
tiveness of the 
lusters obtained by ak-mode partitioning with a subset of the original features. A widely used mea-sure when evaluating the performan
e of a k-means partitioning is the averagedistan
e to 
luster 
entroids and the same applies for the k-modes algorithm.However, sin
e we may assume that the number of instan
es in the data setis 
onstant for all evaluations of feature subsets, the sum of distan
es to the
luster 
entroid is equally good. Therefore we use Equation 2.4 to evaluate thegoodness of a partitioning.We want to be able to 
ompare the relevan
y of the feature subsets Si and Sjfor i 6= j with respe
t to our 
lustering 
riterion (the performan
e fun
tion P ). Ifwe apply Equation 2.4 on models learned from the two subsets and 
ompare theresults we would favor the smaller subset and so we need a more fair 
omparison,and we need the performan
e fun
tion P to be independent of the amountof features used for learning. Therefore we learn the models using the spe
i�
subsets Si and Sj and evaluate the performan
e based on the full set of featuresSp. This means that we use the 
luster assignments (or labels l) of ea
h instan
exi 2 D we got when k-modes was run on Si and Sj respe
tively, and assignthe labels to ea
h instan
e in D. We then apply Equation 2.4 on D with thepartitionings obtained by models learned from Si and Sj respe
tively. This way wemeasure the ability of the features in Si to partition the data base D and a
hievehomogeneous results. This way the performan
e fun
tion P yields 
omparableresults.4.3.3 Validation Using NB ModelsTo validate a probabilisti
 model, like the NB model, it is 
ommon to use thelog-likelihood of the data given the learned model, i.e. Equation 2.15. However,like with the k-modes algorithm, it is unfair to 
ompare the performan
e ofdi�erent models 
ontaining di�erent subsets of features. We wish to distinguishbetween the use of the performan
e measure that was used when the modelwas tested for 
onvergen
e during learning and the performan
e measure whi
h,Page 57 of 90



4.4 Experimental Evaluation of the S
ore Measureswhen applied on a learned model, yields results 
omparable to models trained ona di�erent feature subset.To obtain a 
omparison that is similar to that of the k-modes we measurethe performan
e of the whole data set after indu
tion. In the 
ase of the NBmodel the features that were not in
luded in the learning pro
ess are in
ludedin one last maximization step in order to 
al
ulate their parameters using the
urrent fra
tional partitioning of the data base. Based on the 
omplete datawe now apply the log-likelihood estimate to measure the performan
e. In otherwords, the indu
tion of a NB model on a feature subset Si yields a set of labelsl of fra
tional 
luster membership assignments, one for ea
h 
ase in the database Si. If we assign those labels to ea
h 
ase in D, run one iteration of themaximization step we have a model in
luding all features in D but whi
h is onlylearned from the feature subset Si. On this data base we 
an apply Equation2.15 and measure the performan
e of the features subset Si in a 
omparablemanner.4.4 Experimental Evaluation of the S
ore MeasuresIn this se
tion we present the results of applying the two 
lustering algorithms,the k-modes and NB to our data bases. For ea
h s
ore measure we measure theperforman
e of the models whi
h are learned from the relevant features only.The models are evaluated a

ording to our 
lustering 
riteria, namely the totaldistan
e to the 
luster modes for k-modes models and the log-likelihood for theNB models. Both measures are 
al
ulated as des
ribed above in order to obtain
omparable results (the results are 
omparable within ea
h data base only). Fur-thermore, we run both the algorithms multiple times, ea
h time with di�erentstarting 
riteria and report only the best possible obtained result measured withthe performan
e fun
tion P whi
h takes the entire data set into a

ount. Thatis, we are looking for the best model whi
h 
an be learned from Si, that whenits 
lustermembership assignments are used on the data set D result in homoge-neous 
lusters. In this proje
t we have 
hosen to 
hoose from 5 models. Furthermore we pi
k the starting 
riteria for ea
h iteration in a deterministi
 mannersu
h that the same set of starting 
riteria are evaluated when ea
h feature isadded.The results of measuring the performan
e of k-modes models learned the fea-tures whi
h are relevant a

ording to the �lter methods are shown in Table 4.17.The measurements are in total distan
e to 
luster modes measured with Equa-tion 2.1 and the number of 
lusters k is held 
onstantly at the value mentionedin Se
tion 4.1. The rightmost 
olumn shows the performan
e of models learnedfrom the entire set of features for ea
h data set. The results must be 
omparedwith the amount of features whi
h have been dis
arded. For instan
e, when therelevant features a

ording to the �2 dependen
y measure performs equally wellas the whole data set with a hypothesis test, it must be taken into a

ount thatPage 58 of 90



Chapter 4: Resultsall features in SYN20 are relevant a

ording to this method. If we pay attentionto the results obtained with the CoIL data where PA together with the learning
urve approa
h was able to dis
ard 45 features with � = 0:7 and 37 featureswith alpha = 0:3. Note that for both feature subsets, the homogeneity of theresulting model is a fra
tion better than the model learned by the entire data set.The same applies for MI 
ombined with the learning 
urve approa
h where 40and 48 features are �ltered out with a small in
rease in the 
luster homogeneity.This may indi
ate that the k-modes algorithm in some 
ases performs worsewhen noisy features are in
luded in the training data.Learning 
urve Hypothesis test All FeaturesData Method � = 0:7 � = 0:3 � = 0:05SYN10 MI 85016 85016 85027PA 85016 85016 85027 76661�2 76702 76661 76661SYN20 MI 105346 105346 105346PA 105346 105346 105346 110883�2 110883 110883 110883WAVE MI 109133 109040 109040PA 105890 105890 105922 104986�2 105447 104986 104986CoIL MI 118703 118703 118569PA 119086 118733 118557 118995�2 118995 118995 118557AML MI 70491 70201 70201PA 71713 70201 70201 70201�2 70201 70201 70201ALL MI 125245 124322 124322PA 125321 124322 124322 124322�2 124322 124322 124322LEUKEMIA MI 191126 191126 191126PA 191126 191126 191126 191126�2 191126 191126 191126Table 4.17: The performan
e of the k-modes partitioning models learned fromthe features whi
h are relevant a

ording to the �lter methods measured inEquation 2.1 to 
luster modes.Table 4.18 shows the results of learning NB models from the features whi
hare relevant a

ording to the �lter methods. The values are log-likelihoods ofthe data given the learned NB model. The rightmost 
olumn 
ontains the per-forman
e of models learned from the entire data set D. It is worth to noti
ethat ex
ept for the LEUKEMIA data set models learned from any of the featuresubsets do not perform better than the entire data set. This is, as opposed tothe k-modes algorithm, an indi
ation of more stability under the presen
e ofnoisy features. Also note that for the 3 arti�
ial data sets all the relevant featuresubsets perform equally well as the entire data set. Again we point out PAs per-forman
e on the CoIL data set. In the 
ase where PA together with the learningPage 59 of 90



4.4 Experimental Evaluation of the S
ore Measures
urve approa
h �ltered out 45 features the performan
e only degrades 5 pointsout of -313942, an insigni�
ant per
entage. The same a

ounts for the rest ofthe feature sets. Learning 
urve Hypothesis test All FeaturesData Method � = 0:7 � = 0:3 � = 0:05SYN10 MI -174924 -174924 -174924PA -174924 -174924 -174924 -174924�2 -174924 -174924 -174924SYN20 MI -242394 -242394 -242394PA -242394 -242394 -242394 -242393�2 -242393 -242393 -242393WAVE MI -200439 -200439 -200439PA -200439 -200439 -200439 -200439�2 -200439 -200439 -200439CoIL MI -313965 -313965 -315817PA -313947 -313947 -316809 -313942�2 -313942 -313942 -315810AML MI -171972 -171940 -171940PA -172138 -171940 -171940 -171940�2 -171940 -171940 -171940ALL MI -305395 -305304 -305304PA -305407 -305304 -305304 -305304�2 -305304 -305304 -305304LEUKEMIA MI -421303 -420990 -420990PA -419768 -419768 -421262 -419768�2 -419768 -419768 -421022Table 4.18: The performan
e of NB models learned from the features whi
h arerelevant a

ording to the �lter methods measured in log-likelihood.These tests have shown that the �lters proposed previously are 
apable of�ltering out features whi
h do not 
ontribute to the 
lustering with respe
tto more homogeneous 
lusters. Moreover, we have seen that for the k-modesalgorithm the noisy features are likely to 
onfuse the result rendering the resultingmodel less homogeneous than a model learned from a subset of features, whi
hare relevant for the 
lustering.4.4.1 Relevan
e Ranking ValidationIn this se
tion we aim to validate the rankings of the features based on therelevan
e s
ores. In the 
ase of the arti�
ial data sets the ranking should besu�
ient to be 
onvin
ed of their 
apability sin
e we know whi
h features aretruly relevant. We do however perform validation of the relevan
e ranking for thepurpose of showing the reliability of the validation te
hniques. In addition thisse
tion will show the results of validating the real-world data sets. The resultsin most 
ases lead to a dis
ussion of the performan
e of the unsupervised FSSmethods and reliability of the 
lustering methods.Page 60 of 90



Chapter 4: Results
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

S
co

re

Features
(a)

EM
k-modes

Chi^2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

S
co

re

Features
(b)

EM
k-modes

MI

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

S
co

re

Features
(c)

EM
k-modes

PA

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

S
co

re

Features
(a)

EM
k-modes

Chi^2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

S
co

re

Features
(b)

EM
k-modes

MI

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

S
co

re

Features
(c)

EM
k-modes

PA

Figure 4.12: The 
luster results on the SYN10 and SYN20 data sets using the�lter ranking. Graphs show both the �lter outputs, the k-modes and NB modelsresults. The top row shows the results of SYN10 whereas the bottom row showsresults of SYN20. The leftmost des
ribes �2, the middle MI and the right PA.The graphs shown in this se
tion are normalized between 0 and 1 in both thex-axis and y-axis using Equation 4.1. The y-axis for the 
lustering te
hniquesrepresent the s
ore for the 
urrent feature subset Si whereas the x-axis representthe features ordered a

ording to their ranking (best to worst).Syntheti
 Data Rank ValidationThe 
luster results of SYN10 and SYN20 
an be seen in Figure 4.12. The mostnoti
eable part of the results is the signi�
ant instability in the results of k-modes.However a trend is visible and 
ombined with the results of the NB model theresults strongly indi
ate the the rankings are 
orre
t.All subsets have been 
lustered with k-modes 5 times and the best result hasbeen sele
ted. The results indi
ate that more iterations are ne
essary in order toget more stable results. In 
omparison the NB model perform mu
h more stableand the results support our previous statement that the s
ore measures are
onservative. Clustering with the NB model indi
ates that less than 10 featuresare ne
essary for 
lustering.Waveform Rank ValidationFigure 4.13 shows the results of the �lters applied to the WAVE data set. In this
ase though the graphs have been overlaid with results of 
lustering using thefeature subsets spe
i�ed by the rankings. The validation of PA and MI using NBmodels provide ni
e graphs that are very similar indi
ating that the NB modelsagree with the rankings produ
ed by the 2 methods. It 
an be seen from thePage 61 of 90
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ore Measures
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Figure 4.13: The 
luster results on the WAVE data set using the �lter ranking.Graphs show both the �lter outputs, the k-modes and the NB model results.Again the leftmost des
ribes �2, the middle MI and the right PA.
0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
co

re

Features
(a)

EM
k-modes

Chi

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
co

re

Features
(b)

EM
k-modes

MI

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
co

re

Features
(c)

EM
k-modes

PA

Figure 4.14: Validation of the �lter results on the WAVE data set. Graphs showboth the �lter outputs, the k-modes and the NB model results using reverseorder ranking. Again the leftmost des
ribes �2, the middle MI and the right PA.graphs that the a

ura
y of the model in
rease only slightly after 30% of thefeatures.The results of the 
lustering methods using our rankings indi
ate that therankings are 
orre
t. The features that 
ontribute with the most information forthe 
lustering have been ranked �rst. We 
annot however, be 
ertain that anyrandom ranking of the features would not produ
e the same output. None the lessfor 
omparison Figure 4.14 shows the same results as before, although this timethe features are in reverse order a

ording to the relevan
e s
ores proposed. The
lustering results 
learly show the impa
t the ordering has on the 
lustering. Inthe 
ase of MI and PA the NB model 
learly shows only very small improvementsof the 
lustering from 1 feature and up to the total amount of irrelevant features.The CoIL Challenge Rank ValidationIn Figure 4.15 the 
luster results for the COIL data set 
an be seen. The resultsindi
ate sensible rankings and in all 
ases no more than half the features aresu�
ient for 
lustering. In many 
ases signi�
antly fewer features seem ne
essary.Another interesting aspe
t of the graphs is that for all methods the �lter isthe most 
onservative, in the middle is k-modes and the most risky results areobtained using the NB model. By risky we refer to the fa
t that the featuresubset that a

ording to the NB model is su�
ient for 
lustering in
ludes only aminimum of features and is more likely to ex
lude relevant features than analysisPage 62 of 90
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Figure 4.15: Cluster results on the COIL data set using the �lter rankings. Graphsshow both the �lter outputs and the k-modes and the NB model results. Theleftmost des
ribes �2, the middle MI and the right PA.
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Figure 4.16: Cluster results on the AML and ALL data sets using �lter ranking.Graphs show both the �lter outputs, the k-modes and the NB model results.The top row illustrates the AML data set whereas the bottom row illustrates theALL data set. The leftmost des
ribes �2, the middle MI and the right PA.performed using only the �lter or k-modes.Leukemia Rank ValidationEa
h of the 3 leukemia data sets have been analyzed using the 3 proposed �ltermethods. Re
all that the results found was that the AML and ALL data sets, notsurprisingly, did not 
ontain any irrelevant features. Using the same �lters it wasalso di�
ult to distinguish relevant from irrelevant in the LEUKEMIA data set.What we expe
t to see in this se
tion is veri�
ation that the AML and ALL datasets do not 
ontain irrelevant features, and that the ranking of the LEUKEMIAdata set makes sense.Figure 4.16 presents the 
lustering results for the AML and ALL data sets.Again it is 
lear to noti
e that k-modes is more 
onservative than the NB modeland that the NB model provides more stable results. Comparing with the resultsof the �lter approa
h a signi�
ant di�eren
e be
omes apparent. A

ording toPage 63 of 90



4.4 Experimental Evaluation of the S
ore Measures
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Figure 4.17: Cluster results on the LEUKEMIA data sets using �lter ranking.Graphs show both the �lter outputs, the k-modes and the NB model results.The top row illustrates the LEUKEMIA data set in full whereas the bottom rowillustrates the same data set in whi
h we have zoomed in to 100 features. Theleftmost des
ribes �2, the middle MI and the right PA.the �lter all features are relevant for 
lustering, but this is based on an analysisof ea
h feature separately. Figure 4.16 gives a good indi
ation of the di�eren
ebetween s
oring a subset as the 
umulative s
ore of ea
h feature and s
oringa subset as a whole. The 
lusterings 
learly indi
ate that less than half thefeatures are ne
essary to obtain a good 
lustering result. Ea
h feature in it selfprovides relevant information to 
lustering, but most of them provide the sameinformation and therefore very few of them are su�
ient. This fa
t is not takeninto 
onsideration in the proposed s
ore measures and must be 
onsidered aweakness in the approa
h.The results of validating the LEUKEMIA data set 
an be seen in Figure 4.17.The top row shows the 
lustering results of all 7129 feature subsets. It is 
learthat a

ording to the graphs very few features 
an in fa
t provide a 
lusteringresult approximately as a

urate as a result based on the full feature set. This
orresponds well with previous analysis in the domain of 
lassi�
ation.The �gures show both results of k-modes and the NB model and given theamount of features present it is di�
ult to separate the results. The bottom rowgives a more detailed view into the �rst 100 whi
h seem to indi
ate that lessthan 50 features should be su�
ient to build a good model. Unfortunately the�lter approa
h seems unable to dete
t this property although PA 
ombined withthe hypothesis test redu
es the amount of features to 453. However a

ordingto the 2 
lustering te
hniques the redu
tion is still very 
onservative.Another interesting issue in Figure 4.17 is the fa
t that the s
ores tend tobe more unstable 
ompared to the results of the other data sets. The reason
ould be in the pre
ision of the used data types whi
h do not perform well forPage 64 of 90



Chapter 4: Resultsextremely low values. The values used in order to 
ompute the log-likelihoodof a NB model will be a multipli
ation of 7129 probabilities whi
h representsextremely low values. The results however 
orrespond well with expe
tation and
an serve as approximations of the 
orre
t results.4.5 SummaryIn this 
hapter we have shown the proposed �lter approa
h able to produ
egood results for various data sets. A summarization of these are shown in Table4.19 whi
h illustrates the amount of relevant features that have been deemedirrelevant (false negatives) and vi
e versa (false positives). The fa
t that theamount of false positives ex
eeds the amount of false negatives indi
ate that theapproa
hes are 
onservative. Learning 
urve Hypothesis testData Method fp fn fp fnSYN10 MI 0 0 0 0PA 0 0 0 0�2 5 0 10 0SYN20 MI 0 0 0 0PA 0 0 0 0�2 19 0 20 0WAVE MI 0 3 0 2PA 0 2 0 2�2 13 0 19 0CoIL MI 27 4 51 0PA 24 5 22 4�2 64 0 34 1AML MI 0 3 0 0PA 0 7 0 0�2 0 0 0 0ALL MI 0 9 0 0PA 0 12 0 0�2 0 0 0 0Table 4.19: Summarization of the results of the proposed �lter approa
h. The 
ellvalues des
ribe both false positives (fp) spe
ifying an irrelevant deemed relevant,and false negatives (fn) spe
ifying relevant features deemed irrelevant. The latterbeing the most important to avoid.For the real-world data sets it is di�
ult to determine truly relevant features.Based on previous analysis a set of truly relevant features have been sele
tedalthough the analysis usually have been made using supervised FSS and therefore
annot be 
ompared to unsupervised FSS. This explains the false negatives thatare visible in Table 4.19. In addition the WAVE data set 
ontains false negativeswhi
h is due to the small degree of relevan
e that is present for these features.For the LEUKEMIA data set no results are shown in that the set of trulyrelevant features are unknown. However we 
an refer to Table 4.16 for details onPage 65 of 90



4.5 Summarythis data set. The transformed data sets, AML and ALL 
ontain only truly relevantfeatures based on an intuitive understanding of the data.
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5A Hybrid
ApproachWe all agree that your theory is 
razy, but is it 
razy enough?� Niels BohrIt is a known fa
t that wrapper approa
hes produ
e more reliable results whenused for FSS be
ause they rely on the learning method to evaluate the homogene-ity of the model obtained by a given feature set. However, wrapper approa
hesare slow. As opposed to wrapper approa
hes, the �lter approa
h is faster thanwrappers but their independen
e of the evaluated model leaves them to rely onsafe 
onservative approa
hes like the �lters dis
ussed in the previous 
hapter.It is 
lear that a perfe
t method for performing FSS has the reliability ofthe wrapper and the speed of the �lter. Therefore, in this 
hapter we proposea method that takes advantage of both the a

ura
y of the wrapper and the
omputational speed of a �lter.In the �rst part of the 
hapter we will give a des
ription of the proposedhybrid. Then we will show that the hybrid approa
h 
an perform as a

uratelyas a wrapper with a 
onsiderable redu
tion in 
omputational 
ost 
ompared toordinary wrappers. The results presented are based on the same data sets thathas been used throughout Chapter 4.5.1 The MethodWhen performing FSS, the size of the sear
h spa
e is 2p where p is the numberof features. Therefore mu
h resear
h within FSS fo
us on optimizing the sear
hstrategy within this sear
h spa
e. In any kind of problem involving sear
h, the goalis to minimize the amount of points in the sear
h spa
e whi
h has to be evaluated.This task is espe
ially 
riti
al for wrapper approa
hes for FSS where a model hasPage 67 of 90



5.1 The Methodto be learned for ea
h feature subset. Moreover, learning of a model is a sear
htask in itself whi
h involves mu
h un
ertainty whi
h must be dealt with in orderto assign a fair validation to a feature subset. For instan
e, evaluation of ea
hfeature subset requires multiple models to be learned if the learning algorithmhas a probability of being trapped in a lo
al maximum. The 
omputational 
ostof the indu
tion algorithm renders many advan
ed heuristi
 sear
h te
hniquesimpossible. Espe
ially approa
hes that rely on geneti
 algorithms have to learna huge amount of models on their way to an a

epted feature subset.The evaluation task is mu
h less 
riti
al for �lter approa
hes. However, the�lter approa
hes proposed in this report s
ores ea
h feature alone and indepen-dently of the �nal task. That is, the s
ore methods we have proposed rewardsfeatures whi
h are likely to 
ontribute to 
ohesive 
lusters but the evaluation isof ea
h feature alone instead of evaluating an entire feature subset whi
h maybe more fair to the features. S
oring single features for relevan
e favors sele
tingfeatures that 
onvey the same information instead of sele
ting features that addindependent information. Therefore, the result of evaluating ea
h feature alonemay lead to over-rating the features whi
h lead to a too 
onservative approa
h
ompared to what 
an be obtained with a wrapper.Here we aim to �nd an approa
h whi
h is somewhere in between the twoextremes, in order to 
ombine the 
omputational e�
ien
y of the �lter and thea

ura
y of the wrapper. For this purpose we apply a wrapper approa
h on theremaining feature subset returned by the proposed �lter approa
h to signi�
antlyredu
e the sear
h spa
e. That is, we apply the s
ore measures presented inChapter 3 and use the obtained rankings for the subset of relevant features asthe order in whi
h the features should be added to the pool of features thatare being used for model learning and evaluation. We refer to this method as ahybrid approa
h in that it bene�ts from advantages of both �lter and wrapperapproa
hes.5.1.1 The Sear
h ProblemLet S = fS1; S2; : : : ; Sfg denote an ordered set of feature subsets, 
onstrainedby the relevan
e ranking, that 
ontain the remaining f features after the �lterapproa
h has been applied using the relevan
e measure. We require that ea
h Si
ontains the i most relevant features a

ording to our relevan
e measure, andthat Si � Si+1, meaning that the subsets are nested. Furthermore, we assumethat the performan
e of the feature subsets is monotoni
 i.e. the performan
eof the best model whi
h 
an be learned from Si is lower than or equal to theperforman
e of the best model learned from Si+1. The validation of the orderingsin the previous 
hapter indi
ate that this is true for NB but not for k-modes. Wethen use a wrapper approa
h to perform a sear
h in a sear
h spa
e of featuresubsets based on the features in S.Page 68 of 90



Chapter 5: A Hybrid Approa
h5.1.2 ThresholdingIn this proposal we wish to apply a simple sear
h strategy in whi
h ea
h result is
ompared to the result obtained from Sf . Prior to the 
omparison we de
ide on amargin �, stating how mu
h performan
e degrading 
an be a

epted. Spe
i�
ally,we sear
h for a subset with a fra
tion � of the performan
e obtained with Sfs
aled against the performan
e whi
h 
an be obtained with S1. To do this weneed a performan
e measure P . Let P (Si) be a fun
tion that learns an NB modelfrom Si and returns the log-likelihood of that model measured with respe
t tothe entire data set D (see Se
tion 4.3.3). We then bene�t from Equation 4.1and obtain Pnorm(Si) = P (S(l+r)=2) � P (S1)P (Sf ) � P (S1) : (5.1)The feature subset Si we are sear
hing for is the one with a Pnorm(Si) 
losestto �, but yet always above.Unless stated otherwise the margin set in this proje
t will be a degrading of3%. In this 
ase � is set to 0.97. The reason for using linear s
aling in this sear
h
riterion is simply to let � be s
alable between multiple data sets.5.1.3 Binary Sear
h FSSTo �nd the feature subset whi
h satis�es the above 
riterion we need a sear
hstrategy, and we are even allowed to bene�t from the ranking in S. One possibilitywe have 
onsidered is to apply a learning 
urve strategy like the one proposedfor the �lter approa
h. Applying the learning 
urve thresholding s
heme wouldin this 
ase require using a standard sequential forward sear
h te
hnique whi
hwould require a number of learned models proportional to p, whi
h is a

eptablein a sear
h spa
e of size 2p. We have also 
onsidered the possibility of applying ahypothesis test. In su
h a strategy we 
ould use the measure P as test statisti
and in a forward sear
h strategy 
onstrained by the order in S, sample a numberof s
ores when randomly generated features are added to a subset Si. Su
ha method would not be appli
able in a wrapper approa
h due to the extremeamount of 
lustering models that are required to be evaluated. For instan
e,using a sample size of 10000 features would in a worst 
ase s
enario require10000 indu
tions for ea
h of the features in Sf .We propose to use a simpler and 
omputationally less heavy sear
h strategy.Taking advantage of the as
ending order in S we 
an apply binary sear
h strategyfor the best feature subset [9℄. The binary sear
h strategy used works by �rstevaluating a 
lustering model using the feature subset Sf . Using this result we
an, as a se
ond step, evaluate a 
lustering model using only half of Sf , namelySf=2. We sear
h for the feature subset with a P (Si) as 
lose to � as possibleyet always above the threshold. If the model learned using Sf=2 performs tooPage 69 of 90



5.2 ResultsBinary Sear
h FSSParameters: A threshold �, an ordered set of feature subsetsS with the �rst element at index l and the last element at r.Sf 
ontains the f features whi
h have not been �ltered out bythe �lter approa
h.Returns: The index of the feature subset whi
h performs afra
tion 1� � worse than the entire feature subset Sf .BSFSS(�; S; l; r) {if (l = r)return lif � Pnorm(S(l+r)=2) > ��return BSFSS(�; S; l; (r + l)=2)else return BSFSS(�; S; (r + l)=2 + 1; r)}Figure 5.1: The Binary Sear
h FSS algorithm (BSFSS) applied for unsupervisedFSS in our hybrid approa
h. It takes as argument an ordered set of feature subsetswhi
h is based on the feature rankings returned by one of the s
ore measuresin the previous 
hapter. The number of evaluated models with this approa
h isproportional to log2 p.poorly we evaluate a new model at 75% of S (S3f=4), and if Sf=2 performsbetter than the threshold, we evaluate a new model at 25% of S, the featuresubset Sf=4. The number of feature subsets to be evaluated using this approa
his proportional to log2 p. We 
all this strategy Binary Sear
h FSS and the detailsare depi
ted in Figure 5.1.5.2 ResultsAs mentioned the hybrid approa
h has been tested on the same data sets as usedfor testing and evaluating the �lter approa
h. The rankings of the features forea
h data set have already been shown, as well as the performan
e of the 
lus-tering models for ea
h evaluated subset of features. Table 5.1 gives an overviewof the results 
ompared to both �lter methods.It is 
lear for all results that the hybrid approa
h is able to remove a signi�
antamount of features that the �lter 
ould not deem irrelevant. This 
orrespondswell with the fa
t that the �lter is 
onservative. The thresholding s
heme usedis very naive and applying another s
heme 
ould prove to dis
ard even morefeatures. Espe
ially when examining the ALL graph on Figure 4.16 it seems that8 to 12 features is a 
onservative 
hoi
e and good results 
ould be obtainedPage 70 of 90



Chapter 5: A Hybrid Approa
h Filter HybridData Method Learning 
urve Hyp. test Learning 
urve Hyp. testSYN10 MI 10 10 6 6PA 10 10 6 6�2 15 20 7 7SYN20 MI 10 10 6 6PA 10 10 6 6�2 29 30 7 7WAVE MI 18 19 13 13PA 19 26 13 13�2 34 40 10 10CoIL MI 44 72 13 16PA 40 39 24 16�2 85 54 21 25AML MI 22 25 10 10PA 18 25 8 9�2 25 25 17 17ALL MI 38 47 12 13PA 35 47 8 8�2 47 47 12 12LEUKEMIA MI 6975 6809 66 66PA 3809 459 26 13�2 7129 6657 182 182Table 5.1: Overview of the relevant features found using the �lter and the hybridapproa
h.using only the 5 best features in the data set. However 8 to 12 features is ahighly signi�
ant redu
tion 
ompared to the �lter approa
h.An interesting part of the results is to examine the features that have not beendete
ted as irrelevant by the �lter but dis
arded by the hybrid. Finding similar
hara
teristi
s among these features 
ould help to improve future proposals fora �lter approa
h.In Figure 5.2 we have in
luded the BN for the syntheti
 data in
luding onlyrelevant features. The 4 �gures show the probability distribution of ea
h featureinside ea
h 
luster and in total. In the �gure ea
h feature is denoted PatientXwhere X is the number of the feature. The aim is to give an explanation ofthe features whi
h a

ording to the �lter approa
h was 
onsidered relevant buta

ording to the hybrid was deemed irrelevant. The syntheti
 data represent thesimplest model and has thus been 
hosen for this purpose.A

ording to the �lter approa
h for SYN10 both MI and PA s
ore feature 12and 15 among the least relevant whi
h a

ording to the hybrid are irrelevant.Examining Figure 5.2 for the probability distributions inside ea
h 
luster for thesefeatures we noti
e a striking similarity with other relevant features. For Patient3
orresponding to feature 12 in the SYN10 data set, Patient4 have a probabilitydistribution inside ea
h 
luster whi
h is almost identi
al. This 
ould lead usto believe that the 2 features are redundant. The same applies for Patient6Page 71 of 90



5.2 Results

Figure 5.2: BN's of the relevant features in the �rst syntheti
 data, 
reated usingHugin [1℄ to show the probability distribution of individual features inside ea
h
luster. Top left shows the original BN without any �xed states. The other 3show the probability distribution of all features with the 
lass random variable�xed to one of 3 states.
orresponding to feature 15 in the SYN10 data set and Patient10.5.2.1 Extensions to the CoIL data resultsApplying hypothesis testing on the COIL data set we obtain a feature subsetthat is not ranked sin
e the features have di�erent 
ardinalities (see Se
tion4.2.3). For the hybrid approa
h we require a ranking of the relevant featuresregardless of the thresholding s
heme used. Therefore in this se
tion we showthe performan
e of relevant features a

ording to the hypothesis testing for theCOIL data set.In Figure 5.3 the 
lustering results of the relevant features a

ording to thehypothesis testing is shown. The features are ranked given their s
ore measure.The �gure shows the 
lustering results for all feature subsets 
onstrained by therankings. The hybrid only 
onsiders log2 p of these subsets but in order to be
onvin
ed that the ranking is valid the �gure shows the performan
e Pnorm forall feature subsets. The �gure veri�es the results in Table 5.1 in that it is 
learthat �2 drops signi�
antly in performan
e several features before both PA andMI. Page 72 of 90



Chapter 5: A Hybrid Approa
h
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Figure 5.3: Illustration of the graphs for the CoIL data in
luding only relevantfeatures based on the hypothesis test. The graphs support the results of thehybrid for this data set.5.3 SummaryIn this 
hapter we have proposed a hybrid approa
h that takes advantage ofboth the a

ura
y of the wrapper and the 
omputational 
ost of the �lter. Notsurprisingly the method redu
e the amount of features signi�
antly 
ompared tothe �lter approa
h proposed in Chapter 3.The results obtained are less 
onservative and e�e
tively redu
e irrelevantfeatures from a given data set. Regarding 
omputational 
ost we know that thewrapper is the most expensive given the amount of indu
tions needed to perform.In this proposal we have redu
ed the amount of indu
tions needed to log2 p.Most of the redu
tions performed by the hybrid lowers the dimensionalitybeyond what is know to be relevant. That is, some of the relevant features forsyntheti
 data are also dis
arded as irrelevant. In this 
hapter we have 
ontinuedthe dis
ussion regarding redundant features whi
h we believe to be the 
auseof this behavior. We 
onsider redundan
y an important issue to handle in the
ontext of unsupervised FSS regardless of whether the approa
h is wrapper or�lter.
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6Future WorkA great frustration in life is dis
overing that sometimes those who say something
an't be done turn out to be right.� Donald SimanekThis masters thesis has been developed given a limited amount of time whi
halso limits the degree to whi
h we 
an a

omplish the tasks at hand. The fo
ushas been on broad resear
h in the area of unsupervised FSS and several proposalshave been made. The proposals outline potentially interesting fa
ts that 
ouldbe bene�
ial in further resear
h. In this se
tion we raise questions in 
onne
tionto the work done and pose new problems that have yet to be solved.6.1 The Filter Approa
hIn this domain 3 s
ore measures have been developed for s
oring ea
h featurein a data base and ranking them. FSS has been performed based on 2 proposedthresholding te
hniques. However, several problems have been raised during thedevelopment of the methods.All 3 proposed s
ore measures are based on a myopi
 strategy in whi
h thes
ore of ea
h feature is based on individual performan
e independently of itsmembership to any feature subsets. A better approa
h 
ould be propose a s
oremeasure whi
h is able to evaluate a subset of features in order to measure their
ombined s
ore. Given the 
urrent approa
h the s
ore of ea
h feature is inde-pendent other features, whi
h is highly likely to overrate a feature resulting in
onservative FSS. It has been our experien
e that features that are part of asemi-
lique are very relevant whi
hi leads us to suggest a s
ore measure thatrewards features for being part of a semi-
lique. One way of viewing the problemis as a sear
h in a 
onne
tivity graph. In the proposals of this report the 
onne
-tivity graph is assumed to be 
omplete. Another approa
h was to sear
h for anoptimal 
onnne
tivity graph in whi
h only true edges are present. This 
an bea

omplished using the proposed s
ore measures to s
ore the edges.Page 75 of 90



6.2 The Hybrid Approa
hIt has been dis
overed during the tests that some features although rele-vant a

ording to the �lter approa
h, prove to 
ontribute with very little newinformation for 
lustering purposes.It is our opinion that a dis
ussion of redundan
e in data 
lustering is needed.Therefore work 
ould be done in the near future aiming at a dis
ussion anda de�nition of redundan
e in data 
lustering. We suggest resear
h that wouldindi
ate how to handle redundant features.6.2 The Hybrid Approa
hThe hybrid extends the �lter approa
h by applying a wrapper on the output of the�lter. The sear
h spa
e however is 
onstrained given the ranking of the features.We take advantage of previous analysis using the �lter in order to further redu
ethe amount of indu
tions to log2 p. The wrapper performs an online sear
hstrategy in whi
h we de
ide after ea
h indu
tion whether or not to 
ontinue.The thresholding s
heme used in this proposal is naive although in most 
asesit performs satisfa
tory. However referring to the validation of the ALL data setwe 
an observe that the threshold is still 
onservative. The validation revealsthe full shape of all indu
tions and serves as indi
ations of where the thresholdshould be. A

ording to the validation of the ALL data set the threshold shouldbe around 4 features whi
h is the end of a steep 
limb on the graph and whereit �attens to a very slow in
rease given the rest of the features. The task ofdeveloping a thresholding s
heme however is not trivial in that several propertiesmust be 
onsidered.� The threshold must support an online strategy.� Performan
e 
annot be assumed to de
rease in the number of features.� Unless no features are irrelevant, indu
tion on the full data set is prohibited.The 
urrent approa
h requires indu
tion on the full feature subset that is outputfrom the �lter approa
h. In most 
ases this will not be the full data set but still theindu
tion 
an be expensive. One 
an also argue that applying post pro
essingon this feature subset 
ould make further indu
tions obsolete. Therefore it isdesirable to perform indu
tions only on feature subsets that do not ex
eed thesize of the resulting feature subset.As the required number of indu
tions have been greatly redu
ed it be
omesappli
able to perform as sear
h for the optimal model in whi
h the assumptionthat the number of 
lusters k is unknown. Future resear
h 
ould explore thisarea and perform empiri
al tests.
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7ConclusionIt's never too late to give up.� Ronny Eri
sonIn Chapter 1 we motivated and limited this proje
t to be within the �eld of data
lustering whi
h we 
onsider a 
riti
al task in data mining. In addition to thisbroad area, we have limited our work to be 
on
erned with unsupervised featuresubset sele
tion (FSS), whi
h we 
onsider the pro
ess of identifying irrelevantfeatures whi
h 
an be left out without doing any harm to the resulting model.The most 
riti
al part of our approa
h is how we wish to 
hara
terize featureswhi
h are relevant for data 
lustering. In this report we argue that relevantfeatures must depend on the 
luster random variable and hen
e, they must be d-
onne
ted given no eviden
e on the 
luster variable. In the absen
e of the 
lusterrandom variable we de�ne a relevant feature as a feature that is dependent onat least one other feature. For the purpose of measuring dependen
e betweenpairs of features we have applied 3 dependen
y measures:� �2 analysis.� Predi
tive a

ura
y.� Mutual InformationIn order to further measure the relevan
e of features we apply relevan
e mea-sures based on pairwise dependen
ies among features in the data set in orderto measure, 
ompare and rank the features with respe
t to relevan
e. For thispurpose 2 relevan
e measures were proposed:Rmax(Xi) = maxDM(Xi;Xj)Ravg(Xi) = PjDM(Xi;Xj)pBased on the above relevan
e measures we have proposed and tested the fol-lowing methods to identify irrelevant features. First we propose a �lter approa
hPage 77 of 90



whi
h works by ranking the features a

ording to their relevan
e s
ore and se-le
ting only the most relevant features by setting a threshold. The threshold isset using a learning 
urve sampling method using a 
ost versus bene�t approa
h.In a se
ond approa
h for performing FSS with the proposed relevan
e mea-sures we propose a �lter method based on a hypothesis test known from statisti
s.The hypothesis test uses the relevan
e measures as a test statisti
 obtained bys
oring a sample set of randomly generated features against the database. Afeature is de
lared relevant if its test statisti
 provides su�
ient eviden
e againsta hypothesis of independen
e.Lastly, a veri�
ation that the s
ore measures are truly 
apable of rankingthe features with the most informative features �rst, has motivated a hybridapproa
h. The hybrid approa
h 
an be seen as a wrapper that takes advantageof the rankings provided by the proposed relevan
e measures. The use of thisranking signi�
antly redu
es the number of feature subsets in the sear
h spa
ethis approa
h has to inspe
t. For the purpose of indu
tion we have used theNaive-Bayes model. Additionally we propose to redu
e the number of inspe
tedfeature subsets by dis
arding those features that have been deemed irrelevant bya �lter approa
h.Experimental evaluation has been performed on the 3 proposed FSS meth-ods using 3 syntheti
 and 4 real-world data sets. The relevan
e measures weretested in their ability to 
orre
tly identify the irrelevant features. By 
omparingthe obtained results with the knowledge we have about the data the relevan
emeasures showed 
apable of ranking the truly relevant features �rst. Table 7.1gives an overview of the performan
e of ea
h of the proposed methods for alldata sets.The hybrid approa
h is in most 
ases able to make signi�
ant additionalredu
tions whi
h 
orresponds to our belief that the �lter approa
h is 
onserva-tive. This is espe
ially noti
eable for the 3 leukemia data sets (AML, ALL andLEUKEMIA). Considering the knowledge we have on the arti�
ial data sets therankings produ
ed, 
orre
tly rank all relevant features �rst. With regards to theWAVE data set the rankings also re�e
t 
orre
t ranking within relevant features.All rankings are supported by validation performed using the Naive-Bayes andk-modes 
lustering te
hniques.Most remarkable are the results of the PA relevan
e measure. In 
ase of thehigh dimensional LEUKEMIA database it is, together with the hypothesis test,able to dis
ard 3320 features. If the hybrid is applied on the remaining featuresubset, only 13 features remain. A model learned on this small feature subsetvalidates that the removal of the 7116 features in�i
ts almost no harm to thelearned model.
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Appendix : Con
lusion

Filter HybridData Method Learning 
urve Hyp. test Learning 
urve Hyp. testSYN10 MI 10 10 6 6PA 10 10 6 6�2 15 20 7 7SYN20 MI 10 10 6 6PA 10 10 6 6�2 29 30 7 7WAVE MI 18 19 13 13PA 19 26 13 13�2 34 40 10 10CoIL MI 44 72 13 16PA 40 39 24 16�2 85 54 21 25AML MI 22 25 10 10PA 18 25 8 9�2 25 25 17 17ALL MI 38 47 12 13PA 35 47 8 8�2 47 47 12 12LEUKEMIA MI 6975 6809 66 66PA 3809 459 26 13�2 7129 6657 182 182Table 7.1: Overview of the relevant features found using the �lter and the hybridapproa
h.
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AHypothesis
DistributionsHere we present the graphs for the hypothesis tests performed on the data sets:WAVE, ALL, AML and COIL. On all �gures the dashed lines show the 
riti
al values.On all the �gures the graphs are from left to right, �2, MI and PA respe
tively.
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