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Abstrat: IDITs was originally pro-posed in [Broe et al., 2003℄ as arepresentation language for deisionproblems involving quantitative mea-sures of time. IDITs is suggested as arepresentation language, whih atersfor aspets of time. However, the tem-poral semantis of elements in IDITspresented in [Broe et al., 2003℄ areawed. In this report, we suggest anew set of ordering semantis anda de�nition of wellde�nedness thatbuilds on this new ordering. Further-more, a method to hek an IDIT forwellde�nedness is given, and the rep-resentation language of IDITs is en-haned to ater for more aspets oftime, inluding varying orderings ofdeisions.[Broe et al., 2003℄ also neglets topresent a method for solving dei-sion problems modelled as IDITs,but do suggest a sketh for suh amethod. In the latter part of this re-port, we explore the boundaries ofthis sketh and identify a subset ofIDITs that an be solved using thisapproah. Our method sueeds inhandling ontinuous variables as par-ents of disrete deisions through ex-ploitation of onstraints indued bythe nature of time.
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Chapter 1
Introdution
Inuene diagrams involving time (heneforth referred to as IDITs) is a frameworkfor representing deision problems that involve quantitative measures of time. Itis the result of an analysis of deision problems, frameworks traditionally used formodelling deision problems, and how these frameworks ope with aspets of time,arried out in [Broe et al., 2003℄. The onlusion of this analysis is that none of theanalyzed frameworks, viz. deision trees, inuene diagrams, and valuation networks,are suitable for modelling deision problems involving time. This is beause theseater only for qualitative aspets of time, suh as ordering of deisions and obser-vations, and some deision problems revolve around quantitative aspets of time,suh as deadlines or entities who hange as time progresses. Consequently, IDITswas developed as an alternative.Frameworks that are traditionally used for modelling deision problems, suh as in-uene diagrams, deision trees, and valuation networks, have a set of semantisassoiated with them that allows humans to read and understand modelled deisionproblems in an unambiguous manner. Furthermore, they inlude a syntax whih, inonjuntion with the semantis, renders deision problems solvable on a omputer.That is, a strategy, whih maximizes the expeted utility of a deision taker, an beomputed from a model of the deision problem.IDITs is meant to be an extension of the inuene diagrams framework, origi-nally proposed in [Howard and Matheson, 1984℄, and is a ompat and unambiguousframework, whih portrays deision problems involving time in a fashion that shouldbe easy to grasp for modellers experiened in modelling deision problems usinginuene diagrams. The extension is a true extensions, in the sense that an IDIT,1



2 Chapter 1. Introdutionmodelling a deision problem that does not involve time, is an inuene diagram,whih an be reasoned about using the set of semantis traditionally assoiatedwith inuene diagrams. Unfortunately, [Broe et al., 2003℄ fails to provide a learsemantial interpretation of modelled deision problems. Spei�ally, a temporal or-dering of events and deisions in the problem is awed. Furthermore, a method forsolving IDITs modelling deision problems, whih do involve time, is not given, as[Broe et al., 2003℄ settles on a sketh of suh a method.The sketh, although brief, brings to light the diÆulty in solving a deision problemmodelled as an IDIT: Deision problems are represented as deision graphs, in whihpoints in time are represented as ontinuous variables. Time variables' impat onother variables and poliies, whih are both disrete, are not easily evaluated. Inthis report we, atually, give an example of an IDIT, modelling a deision probleminvolving time, whih annot be solved exatly using known algebrai manipulations.The basi problem of integrating ontinuous and disrete variables in the samedeision graph, and more spei�ally inuene diagrams, has been given alot of attention in the researh ommunity. An approah to using ontinuousvariables in inuene diagrams, alled Gaussian inuene diagrams, are givenin [Shahter and Kenley, 1989℄. A Gaussian inuene diagram onsists of ontinuousvariables only, where hane variables follow Gaussian distributions, potentially on-ditioned on other variables in the diagram. A more universally appliable approahis given in [Poland and Shahter, 1993℄, whih desribes a method for letting ontin-uous hane variables in Bayesian networks follow a distribution whih is a mixtureof Gaussian distributions. [Madsen and Jensen, 2003℄ gives a solution method forinuene diagrams involving a mixture of ontinuous Gaussian distributed variablesand disrete variables, with the strutural onstraint that no disrete variable an bea hild of a ontinuous variable. Finally, [Lerner et al., 2001℄ introdues a tehniquefor mixing disrete and ontinuous variables in a Bayesian network, using softmaxfuntions (traditionally applied in reasoning using neural networks) as onditionalprobability distributions for disrete hane variables given ontinuous parents. Theinferene method they propose is exat up to the auray of numerial integrationsperformed during evaluation. Thus, an approximation.The basi problem involved in applying these tehniques for solving IDITs, is thatall of them assumes ontinuous variables follow Gaussian distributions, or mixturesthereof. Suh variables have a stritly positive density for all real numbers, whihdoes not suit the nature of a progression of time variables, whih should be guar-anteed to have probability 0 for on�gurations where their values derease. In other



3words, the probability distributions of time variables should ensure that time neverregresses. Furthermore, none of the tehniques listed allow ontinuous parents of dis-rete deisions, and none of them give a full desription of how to allow ontinuousparents of disrete hane variables in inuene diagrams.The problems arising from employing ontinuous variables an be irumventedthrough disretizing the variables prior to solving the inuene diagram. One suhtehnique is given in [Kozlov and Koller, 1997℄. Another approah, whih irum-vents the problem of using non-Gaussian distributed ontinuous variables, is to applysampling methods, suh as those presented in [Charnes and Shenoy, 2003℄. Unfortu-nately, this latter approah do not solve the problem of having ontinuous parentsof disrete deisions. A solution method for IDITs, whih utilizes sampling, an befound in [Broe and Jeppesen, 2003℄.In this report, we omplete the representation language of IDITs into a framework.We examine IDITs in depth, whih reveals a number of problems inherent in itsoriginal formulation. We then reformulate IDITs in a form that does not su�er fromthese problems. Following this, a set of unambiguous semantis for temporal order-ings is eshed out, and the language is enhaned to provide additional possibilitiesfor modelling time aspets of deision problems. Building on the new temporal order-ing, we furthermore de�ne what it means for an IDIT to be wellde�ned and providea method for heking this. Following this is the last result, whih is an examinationof the boundaries of the solution sketh given in [Broe et al., 2003℄, resulting in amethod that solves a subset of IDITs using approximations in the form of Taylor'sseries and Newton's method. The solution method avoids disretizing the ontinuousvariables in the framework and does not require sampling, at the expense of onlysolving a subset of IDITs.OverviewThe report is divided intro four hapters, of whih this is the �rst, and an appendix.Chapter 2 presents the IDITs representation language in its original form and de-sribes a set of enhanements as well as the abovementioned semantial orretions.In Chapter 3 we desribe what it means to solve a deision problem and graduallyadapt the general disussion into the full solution method. Finally, in Chapter 4 aonlusion of the report is given.Following the main part of the report, Appendix A ontains a brief summary of theentire report.



4 Chapter 1. IntrodutionNotationThe topis disussed in the report are of a somewhat abstrat nature, as we aredealing with mathematial models on several layers of abstration. Consequently,the report an be heavy on notation and onepts in plaes, so we have provided alist of notation and an index of onepts in the bak of the report. Furthermore, thereport has been printed using extra line spaing to allow for mathematial expressionsto be interleaved in the text with little visual impat.Some general onventions are not desribed in the list of notation, and we list themhere instead: All sets are printed using a bold font, suh as S, all deision problemsand IDITs are printed using a aligraphi font, like I, all variables are printed usingnormal font, suh as X, and all states of variables are presented in lower ase letters,e.g. x and ~d. Whenever we refer to a set of unnamed variables of an unspei�ed type,we denote it Z, and sets of unnamed disrete variables are denoted D. Deisionvariables are generally denoted by D, hane variables as C, and variables of anunspei�ed type as X or Y . All notation are oasionally subjet to subsripts orsupersripts.



Chapter 2
Inuene Diagrams InvolvingTime
In this hapter we introdue IDITs, whih is a representation language onstrutedfor representing deision problems involving quantitative measures of time. The rep-resentation language is based on that of inuene diagrams, and most of the se-mantis is similar. It was originally proposed in [Broe et al., 2003℄. We introdue itinformally and desribe it formally in its original form in Setion 2.1. For furtherelaborations on the original representation language and the motivation behind it,see [Broe et al., 2003℄. In Setion 2.2 some alterations, whih address minor short-omings of the original representation language, are desribed and inorporated inthe formalization of IDITs. Setion 2.3 introdues a temporal ordering relation forthe elements in an IDIT, and a de�nition of what a wellde�ned IDIT is.2.1 The Original Representation LanguageAn IDIT is a model of a deision problem and its assoiation to a deision taker.The model is a direted ayli graph, whose nodes represent deision and hanevariables as well as loal utility funtions. In this report we refer to nodes represent-ing variables as variables and nodes representing loal utility funtions as utilities,when this introdue no ambiguity. For a formal introdution to the basis of graphsand explanation of graph onepts used in this report, see [Broe et al., 2003℄.5



6 Chapter 2. Inuene Diagrams Involving TimeIntrodution to IDITsThe representation language is designed to deal with deisions that span periodsof time. For instane, a farmer's deision on whether to harvest his �elds using athorough method, a quik method, or not at all would span a period of time rangingfrom an instant to several days. Given that deisions an span periods of time, andassuming further that no two deisions an take plae simultaneously, it is lear,that a deision should have assoiated with it a point in time, where it initiates,and its duration. Colletively, we an enode this information by, for eah deision,D, of a deision problem involving time, attahing two variables: The initiationtime of the deision, denoted init(D), and the end time of the deision, denotedend(D). The period a deision, D, spans is, thus, the variable end(D) � init(D).[Broe et al., 2003℄ further introdues an assumption alled no-delay , whih basiallystates that when a deision ends the next deision initiates immediately. That is,for two deisions, Di and Di+1, where Di+1 is the deision presented to the deisiontaker after having deided on Di, it holds that init(Di+1) equals end(Di). In otherwords, there is no unexplained delay between the two deisions. If we assume thatthe �rst deision of some deision problem is taken at some prede�ned point intime, e.g. 0, we an, due to the no-delay assumption, omit variables representinginitiation times when desribing the deision problem.Some deisions might be worth postponing for the deision taker. The farmer, forexample, might postpone his deision on whether to harvest, while some laboratoryexamines samples of his rops to estimate its quality. Representing aspets like thisis aomplished by introduing some deisions regarding possible waiting periods.In the example the farmer would be faed with two deisions: The harvest deisionand a deision on whether to wait for some period before deiding on the harvestdeision and, if so, for how long. Suh a deision is alled a wait deision. As theexat length of the waiting period might be louded in unertainty, the wait deisiondeomposes into the deision itself and the resulting waiting time. [Broe et al., 2003℄assumes that the deision itself only a�ets the atual waiting time and no otheraspets of the IDIT. As suh, the hoie taken have no e�et in itself, but onlythrough the inherent atual waiting period resulting from it. Therefore, it is alleda non-intervening hoie.Even though we deal with deisions that an be postponed, it is important tostress that we assume that no deision an be onstrained to be taken at onlyselet moments in time. Aording to our pereption of modelled deision proesses,deisions do not just appear or disappear. Some hoie is always open for taking,no matter when the deision is initiated. In some ases, this hoie might simplybe to do nothing, but that is still a hoie. Furthermore, as IDITs are supposed tomodel deision proesses, we disregard irumstanes and events whih have timespans, i.e. initiation and end times are not modelled for these. This is elaborated on



2.1 The Original Representation Language 7later in this setion. With these preliminaries on the nature of deision problemsinvolving time dealt with, we look deeper into the onstituents of IDITs.Chane variables are exhaustive groupings of mutually exlusive irumstanes orevents that lie outside the deision taker's diret ontrol, and deision variables,sometimes simply alled deisions, are exhaustive groupings of mutually exlusiveations that are diretly ontrollable by the deision taker. Loal utility funtionsare assumed to be an additive deomposition of some total utility funtion, whih isa real-valued funtion over the on�gurations of the variables in the diagram, whihreets the deision taker's preferenes. When speifying the utility funtion, thisdeomposition property is usually exploited, and only the loal utilities are de�ned.The hane variables are furthermore partitioned into time variables, whih haveontinuous state spaes, and the remaining hane variables, referred to as ordinaryhane variables, whih all have �nite and disrete state spaes. Likewise, deisionvariables are divided into wait deisions, whih have ontinuous state spaes, andthe remaining deision variables, ordinary deisions, whih have �nite and disretestate spaes. A time variable symbolizes the end time of exatly one deision,and a wait deision symbolizes a period of waiting time. For a variable, X, itsstate spae is denoted as sp(X). For a set of variables, S, the Cartesian produt�fsp(X)jX 2 Sg is denoted as the state spae of S, written sp(S). If a variable,X, is known to be in some state, x, we say that it is instantiated and write X = x.In an IDIT, ordinary hane variables are depited as irles, ordinary deisions asretangles, utilities as diamonds, time variables as double bordered semiirles, andwait deisions as double bordered retangles. A time variable is only allowed to bein the diagram if it is diretly assoiated with a deision, and a deision is at mostallowed to have one time variable diretly assoiated with it. A formal lari�ationof what it means for a time variable to be diretly assoiated with a deision isgiven in the end of this setion. For now, we rely on the reader's intuition.In order to minimize the number of ars in the diagram, a time variable and theassoiated deision are drawn as an entity onsisting of a retangle and a semiirle.We present an example of a deision problem involving time and an IDIT modellingit, before disussing �ner aspets of the representation language.Example 1The example, whih is inspired by a somewhat similar example in [Broe et al., 2003℄, revolvesaround the previously introdued farmer and his rops. Whenever a variable is introduedin the example its name is shown in parenthesis following the desription of its meaning, like(This).At the outset of the deision problem the farmer, who we refer to as Frank, is faing har-vesting season. His rops are of some quality (Q1), whih is hard to evaluate preisely. Theonly hint Frank has got is the amount of weed in the �eld (We1). However, he an order atest (Te) of his rops' quality by an external laboratory, whih has speialized in this sort of



8 Chapter 2. Inuene Diagrams Involving Timetask. The test takes ten days and osts $1000 to perform. No matter if Frank takes the test,his next deision is onerned with whether he should spray (Spr) his �eld against weed.He an hoose to deide on this straight away, based solely on his subjetive estimate of thestate of his rops ahieved from the information on the amount of weed in the �eld, or hean postpone the deision, until a test result (Re) is ready.Depending on whether he sprays or not, the deision on spraying an take some time, andeven after he has ompleted any spraying, government imposed health regulations prohibithim from harvesting in a period of seven days after this has taken plae. Thus, dependingon his hoie on spraying, he must deide whether to wait for a while before deiding onharvesting (Ha). Another fator that might inuene that hoie is the result of the test ofhis rops. If he deided to spray without waiting for the test result, and he is fored to waitfor seven days in addition to the period of, say, one day used on spraying, he ould deideto wait an additional two days to view the test result before deiding whether to harvest.Of ourse, Frank has the option of taking a diret look at the urrent level of weed in his�elds (We2), whih an give him some indiation of the urrent quality of the rops (Q2),but his estimate will be more preise if he knows the result of the test of the quality beforespraying.Besides the estimated quality of the rops at harvesting time, Frank aesses further infor-mation in the form of the weather foreast (Wf ). If it turns out to be raining for a good dealof the forthoming days, even the quik harvesting method might take drastially longer toomplete than expeted, and furthermore, the value of the rops would diminish if it getswet.Considering further that every other farmer in the area is trying to beat Frank to the �nish-ing line and get their rops onto the market, while it is still a sought after ommodity, Frankmust, throughout all of his deisions, bear in mind that the value of his rops, no matter thequality, is inversely proportional to the point in time he an deliver it.The struture of Frank's deision problem is modelled by the IDIT portrayed in Figure 2.1.Time is measured in days.Stritly speaking, the diagram in the �gure is not a proper IDIT as desribedin [Broe et al., 2003℄ beause of the dashed arrow from the time variable next to the de-ision Spr to Ha and the dashed arrow from the time variable next to the deision Ha 0 toHa both being present. We return to this issue in Setion 2.2.The nodes that have not been introdued this far inlude the three utilities CTe , CSpr , andRCr , whih represent the ost of any test being arried out, the ost assoiated with anyspraying, and the eventual revenue of the harvested rops, respetively. Furthermore, twowait deisions, Spr 0 and Ha 0, symbolize the time periods Frank waits before deiding onSpr and Ha, respetively. The hane variable Gw represents the global weather situation,around the time Frank hooses whether to harvest. It a�ets the loal weather during theharvesting period (W ) and the previously introdued weather foreast. The double-borderedsemiirles attahed to deisions Spr 0, Spr , Ha 0, and Ha represents end(Spr 0) = init(Spr),end(Spr) = init(Ha 0), end(Ha 0) = init(Ha), and end(Ha), respetively. init(Te), end(Te),



2.1 The Original Representation Language 9

CSprCTe
RCrTe Spr 0 Spr Ha 0 Ha

We1 We2Q1 Q2

GwWf W
Re t � 10
Figure 2.1: An IDIT of the farmer's problem.and init(Spr 0) are all assumed to have the value 0, and end(Te) = init(Spr 0) is, therefore,not shown expliitly in the diagram. Throughout this report we refer bak to this exampleand the variables and relationships introdued.Semantis of IDITsAs stated previously, the time variables symbolize points in time and are eahrequired to be assoiated with a deision. The semantis of the unique time variableassoiated with a deision is the point in time the deision has been implementedand any ations inherent in the hoie hosen has been performed. If no timevariable is assoiated with a deision, it is assumed to be taken instantaneously,and it is alled an instant deision. Te in Example 1, for instane, is an instantdeision, as it an be arried out in an instant, no matter if the hoie is to ordera test or to do nothing. Conversely, Ha is not an instant deision, even thoughit an be ompleted in an instant as well, by hoosing not to harvest. Deisionswith assoiated time variables we all deisions involving time. Wait deisions arerequired to be deisions involving time due to their semantis.Ars in an IDIT an be labelled, either dashed or solid, and represent eitherinformational preedene, probabilisti dependenies, or funtional dependenies.We go through the allowed possibilities one by one below.A solid ar going into a deision variable represents informational preedene. Thatis, the state of the variable the ar emanates from is known immediately before



10 Chapter 2. Inuene Diagrams Involving Timedeiding upon the deision represented by the deision variable. These kinds of arsare alled informational ars and are allowed to have guards assoiated with them.A guard is a boolean funtion shown as a label on the ar, like it is the ase on thear from Re to Spr in Example 1. The guarded ar signi�es that the variable the aremanates from, alled the guarded variable, is only observed when deiding uponthe deision it goes into, if this deision is initiated at a point in time where theguard evaluates to true. As an example, Re in Example 1 is observed immediatelybefore deiding upon Spr , only if init(Spr ) takes on a value greater than or equalto 10, mirroring the fat that the test takes ten days to omplete.The t referred to by a guard on an ar going into a deision, D, is always init(D),and not any other points in time the observed variable happens to be probabilis-tially dependent on. This reets the philosophial view that the time dependentobservation or non-observation of a variable is solely a result of the point in timethe observation is attempted. Other dependenies regarding observation might bethought of. One is to allow observation to hinge on on�gurations of other variablesin the modelled deision problem. This lies outside the sope of this report, though,and the motivation for onstruting the IDIT representation language in the �rstplae. Adapting IDITs to are for these kinds of relationships might be a topi offuture researh. [Nielsen and Jensen, 2000℄ presents tehniques for representing thisin settings that do not involve time.No-forgetting is assumed, whih means that observed variables and deisions deidedupon are remembered when deiding upon subsequent deisions. For instane, thestate of We1 in Example 1, observed when the farmer deides on Te, is rememberedwhen deiding upon eah of Spr 0, Spr , Ha 0, and Ha 0. If no-forgetting was notassumed, a modeller of a deision problem would have to expliitly draw arsfrom an observed variable, to every deision where it might be relevant, and thedeision taker would remember it. Both requirements are not easily seen to beful�lled: Knowing the state of a variable might allow a deision taker to hoose abetter hoie at a deision, whih seemingly have nothing to do with that variable,and if some deision problem spans several years the set of variables rememberedorretly by the deision taker annot be taken for granted. Some representationlanguages do not assume no-forgetting, e.g. LIMIDs[Lauritzen and Nilsson, 2001℄,but through expliitly assuming no-forgetting, the issues elaborated on above areavoided. In addition to no-forgetting, it is assumed that the value of time variablesrepresenting end times of deisions, whih have been deided upon, are rememberedat subsequent deisions.



2.1 The Original Representation Language 11Guarded variables are subjet to a speial kind of no-forgetting, alled extendedno-forgetting . Basially, every guarded ar going into a deision is \inherited" byfollowing deisions. This means that, even if a variable is not observed at a deision,it might beome observed before one of the next deisions are initiated and, thus,be reated on. For example, Re in Example 1 would not be observed when deidingupon Spr if the initiation time of Spr is, say, 0. However, if Frank deides to spraywith some hemial that takes four days to use and subsequently waits for thespei�ed period of seven days before deiding upon harvesting, then Re will beobserved immediately before deiding upon harvesting. This reets the fat thatthe test result would be in Franks possession at day 11, where he initiates hisdeision on harvesting. Further elaboration on this topi is presented in Setion 2.2.A dashed ar going into a deision, D, from some variable, X, signi�es that thestate spae of D is a funtion over the state spae of X. In other words, the set ofavailable hoies at D is restrited by the value taken on by X. X is said to be in thedomain of the restrition funtion, rD, of D, written X 2 dom(rD). For instane, inExample 1, the set of available hoies at Ha is restrited by the hoie taken at Sprand the points in time represented by end(Spr ) and end(Ha 0): Choosing to spraywith some hemial and not waiting for the presribed period of seven days renderthe hoies for harvesting impossible. As the onept of restrition relies on statesof the world, whih are rendering ertain hoies impossible, it is required that norestriting variable an be unobserved. It would make little sense to be preventedfrom doing something, with no knowledge of why this is so. In graphial terms, noinformational ars are allowed to be both guarded and dashed.Turning our attention from informational ars, a solid ar going into a hanevariable represents that the variable is probabilistially dependent on the variablethe ar emanates from. If the parent variable is a time variable, the semantisassoiated with this is that the probability distribution of the hane variable variesover time. The probability distribution that is to be applied is then the one orre-sponding to the point in time represented by the parent time variable. Therefore,two time variables are not allowed to be parents of the same hane variable. We2in Example 1 is an example of a variable whose probability distribution varies overtime. Only observed variables are allowed to follow probability distributions thatvary over time. The reason for this is the semantis just desribed: The probabilitydistribution that is to be applied orresponds to a point in time. If the variable isnot observed, the point in time it is realized annot be established uniquely, and theprobability distribution that is to be applied an, onsequently, not be identi�ed.



12 Chapter 2. Inuene Diagrams Involving TimeThe joint distribution of suh an unknown point in time and the hane variablean be enoded by the marginal distribution for the hane variable, though.At this point we return to the issue of events spanning periods of time, whih wedeemed prohibited in the beginning of this setion. If an ordinary hane variableontains some state, whih represents an event that spans a period of time, itwould be possible to attah an initiation and end time to this variable. Theywould represent the point in time the event starts and the point in time it expires.However, as a hane variable is supposed to inlude states, whih are mutuallyexlusive and exhaustive, some of the other states of the variable must representthe possibility of the event not happening. That begs the question of how we aresupposed to determine an initiation time or, indeed, an end time of something thatdoes not happen? In other words, the semantis of the initiation and end time ofthe hane variable seem to be de�ned for selet states of the variable only.This problem is not relevant for deision variables. To see why, we need to examinethe nature of the two kinds of variables. Deision variables ontain hoies of whihone must be seleted by the deision taker. It makes no sense to enquire what thestate of a deision variable is, at points in time prior to it being presented to thedeision taker. Enquiring the state of a deision, at some point in time after thedeision has been taken, is irrelevant as it remains �xed one it has been taken.Chane variables seen as representations of states of the world, an, on the otherhand, always be enquired. Even if some event would happen in a given time interval,the variable takes on spei� values in points in time outside of this interval.Therefore, initiation and end times of hane variables are assoiated with somesemantial unertainty. Far more meaningful to deal with the point in time thevariable is observed and its state at this point. That is, oneive a hane variableas a snapshot of the state of the world, at the point in time it is observed. Forinstane, a hane variable representing the deposit on a bank aount allows forno obvious initiation time nor end time. When we ask the state of suh a hanevariable, we are implying that what we really want to know, is the state of somevariable, whih represents the deposit on the aount at some spei� point in time,for instane the deposit on the aount at January 1st. Therefore, in IDITs thereis no initiation time nor end time of variables, but hane variables are allowed tobe probabilisti dependent on a time variable if they are observed at a deisioninitiated at the point in time represented by that time variable.The natural semantial interpretation of a guarded ar going into an ordinaryhane variable, C, from some variable, X, would be that C is only probabilisti



2.1 The Original Representation Language 13dependent on X if C is observed at points in time, at whih the guard evaluates totrue. In ontrast to the semantis of guards on informational ars, however, thisinformation represents no strutural signi�ane to the deision proess modelledby the IDIT, and the information is already found in the probability distribution ofC. Using guarded ars, in this ase, is merely a visualization of a spei� attributeof the probability distribution of C, namely that for some values of the parent timevariable the state of C is independent of the state of X. Other attributes of theprobability distribution, inluding independenies arising from instantiation of othervariables than the time variable, seem to be equally relevant, but are not shown ininuene diagrams, whih IDITs are sought to be ompatible with. Therefore, arsinto ordinary hane variables and utility funtions are not allowed to be guarded.Ars into hane variables are allowed to be dashed, however, if the variable is a timevariable. In that ase, the ar indiates a probabilisti relationship of deterministinature. An example ould be an ar from a hane variable Temperature to atime variable, end(D), representing the time some deision, D, involving hemialreations �nishes. If the temperature is low , the time taken arrying out D wouldtake, say, two hours more than it would, had it been high. To signify this preditablerelationship, the ar from Temperature to end(D) should be dashed. A similararrangement for ars going into ordinary hane variables ould be envisioned, butthis onits with urrent standards in inuene diagrams to whih IDITs have beendesigned to be ompatible. Therefore, dashed ars into ordinary hane variablesare prohibited. This topi is further disussed in Setion 2.2.Ars into utilities indiate funtional dependenies. That is, the loal utility funtionrepresented by a utility node is a funtion over the state spae of all variables thatare parents of the utility. These ars are only allowed to be solid and non-guarded.Guarded ars are not allowed for the same reason as they are not allowed into hanevariables, namely that it onits with the representation of inuene diagrams,and that the information is already stored in the utility funtion itself. The samereasoning applies for not allowing dashed ars. Of the parent variables of a utility,only one is allowed to be a time variable. If one suh variable exists, it signi�es thatthe utility takes on a di�erent struture for eah point in time, and that the atualstruture is determined by the point in time represented by this time variable. RCrin Example 1 is dependent on the point in time Ha ends, for instane, in that thevalue of some �xed amount of rops of some �xed quality takes on di�erent valuesdependent on the time it is sold.In the graph there must exist a direted path inluding all deision and time



14 Chapter 2. Inuene Diagrams Involving Timevariables. This path indiates the temporal ordering of these, in the sense that if atime or deision variable, X, is prior to a time or deision variable, Y , on this path,then the point in time represented by X, or init(X) if X is a deision, is beforeor equal to the point in time represented by Y , or init(Y ) if Y is a deision. Thediagram must be onstruted, suh that any pair of time variables are separated byat least one deision on this path. This is due to the previously introdued no-delayassumption.The semantis assoiated with ars desribed above share a ommon denominator:All ars onvey inter-variable strutural aspets of deision problems. These kindsof aspets are alled qualitative aspets. In ontrast, we �nd that intra-variableaspets, suh as state spaes, are not evident from the pitorial representationof the diagram. In addition to the graphial struture of an IDIT, we, therefore,de�ne one or more realizations for it. A realization enapsulates some of thesenon-strutural | also alled quantitative | aspets of a deision problem andonsists of probability distributions for hane variables, loal utility funtions, andrestrition funtions. Additional terms for qualitative and quantitative aspets areglobal and loal aspets, respetively. Inuene diagrams learly divides qualitativeand quantitative information into diagrams and realizations, and IDITs, whih wasdesigned to be ompatible with inuene diagrams, attempts to retain this division.A number of further restritions apply to the topology of the IDIT, and we gothrough these after having set up a formal notation, as this allows us to disussIDITs with greater preision. Realizations are also subjet to restritions that areeasier understood using formal notation, and a thorough desription of these is,therefore, postponed for now.
Formalization of IDITsAs desribed above, an IDIT, I, is de�ned to be a direted ayli labelled graph,(W I ;LI ;EI), where W I onsists of hane variables, deision variables, and loalutility funtions, LI is a set of labels, and EI is a set of ars. The set of all hanevariables in I is denoted as V IC , the set of all deision variables as V ID, the set ofall time variables as V IT , the set of all wait deisions as V IW , and the set of all loalutility funtions as V IU . We have that V IT � V IC and V IW � V ID. Furthermore, theset of all variables, V IC [V ID, is denoted as V I , the set of ordinary hane variables,V IC n V IT , as V IOC , and the set of ordinary deision variables, V ID n V IW , as V IOD.



2.1 The Original Representation Language 15Thus, V IT [ V IOC [ V IW [ V IOD [ V IU =W I ;where the sets on the left-hand side of the equality sign are pairwise disjoint. If theIDIT, I, is obvious from the ontext we omit its name from the notation, e.g. simplywrite V D instead of V ID.The set of labels, LI , onsists of boolean funtions having the real numbers as theirdomain. That is, LI � ff jf : R ! ftrue; falsegg. The set of ars, EI , is partitionedinto two disjoint sets: A set of solid ars, EIs , and a set of dashed ars, EId . As forsets of variables, we omit the name I from the notation, when it is obvious from theontext. An ar (X;Y; f) in E is to be interpreted as an ar emanating from nodeX going to node Y labelled with the funtion f . Ars labelled with the onstantfuntion true are drawn with no label for sake of larity. Ars labelled with theonstant funtion false are semantially equivalent to the absene of an ar, andare, therefore, not drawn in the diagram.The plaement of ars labelled with non-onstant funtions is restrited to informa-tional ars. That is, if (X;Y; f) is in E, and f(t1) 6= f(t2) for two distint t1 and t2in R, then Y must be in V D. Additionally, dashed ars are only allowed going intodeision or time variables. Thus, if (X;Y; f) is in Ed, then Y must be in V D [ V T .The set of all parents of a node, X, i.e. the nodes from whih an ar that goes intoX emanates, we denote as pa(X), and the set of hildren, i.e. the nodes from whihan ar emanating at X goes into, as h(X). The set of all parents onneted to anode, X, with dashed ars we denote pad(X).The previously mentioned temporal order of deisions and time variables is extendedto an ordering relation, whih imposes a partial order on all variables, denoted �.For any pair of time or deision variables, X and Y , X is temporally prior to Y ,written X � Y , if and only if there is a path from X to Y . As stated previously,the ordering of time and deision variables indued from the diagram is requiredto be a total ordering. This de�ned ordering su�ers from some aws, all assoiatedwith guarded ars. For instane, when guards are not ful�lled, and ars onsequentlyare pereived as not being present, we might experiene a situation, where there is,in e�et, no direted path between two deisions, and the ordering, thus, fails toemerge. We look further into these problems in Setion 2.3. For now, we disregardthese aspets and further state that for any ordinary hane variable, X, and somedeision or time variable, Y , X � Y if and only if (X;Y; f) is in E, for some f inL, or there exists some deision or time variable, Z, suh that X � Z and Z � Y .Furthermore, if an ordinary hane variable, X, is not a parent of any deision or



16 Chapter 2. Inuene Diagrams Involving Timetime variable, then Y � X, for any time or deision variable, Y . This re�nement issubjet to further disussion in Setion 2.3 as well.Some strutural onstraints need to be ful�lled for a graph to qualify as an IDIT:� No node is allowed to have more than one time variable as parent, i.e.jpa(X) \ V T j � 1, for all X inW . This restrition reets that no variable orutility an be observed or realized at more than one point in time.� A node has no hildren, if and only if it represents a utility. That is, h(U) = ?i� U 2 V U . This requirement is similar to what is usually required of nodesin inuene diagrams and seeks to prevent barren nodes and hildren of utilitynodes, the latter having no lear semantial interpretation. Barren nodes arevariables that inuene no other part of the deision problem. They are some-times inluded in models of deision problems in order to render the problemeasier understood by people with preoneived notions of the mehanis under-lying the problem. They are, when all is said and done, irrelevant to a solutionmethod, suh as the one presented in this report, though.� There should exist a path, (X1; : : : ;Xn), in the diagram, suh thatV D [ V T � fX1; : : : ;Xng. This path ensures that the temporal ordering, �,is a total ordering over all time and deision variables, but as mentioned above,this is subjet of further disussion in Setion 2.3.� Eah time variable must be a hild of some deision variable. That is, if T 2 V Tthen jpa(T ) \ V Dj � 1. This strutural requirement stems from the no-delayassumption introdued earlier in this setion. If more deisions are parents ofthe same time variable, the maximal one, with respet to �, is the deisionwhose end time is represented by the time variable. The time variable is saidto be diretly assoiated with this deision. The remaining parent deisions areonditionals for the probability distribution of this end time variable.� A wait deision must have exatly one hild variable, and that variable mustbe a time variable, i.e. if D 2 V W , then h(D) = fTg and T 2 V T . Thisrequirement is meant to restrit the possible impat, on the variables in therest of the diagram, of what is pereived as a non-intervening deision.� There must be a dashed ar between any two time variables, whih are on-seutive in the order obtained from applying � to the set of time variables.That is, for any Ti; Tj 2 V T , where Ti � Tj , and there is no Tk 2 V T , suh



2.1 The Original Representation Language 17that Ti � Tk � Tj, the ar (Ti; Tj ; true) must be in Ed. This requirementis meant to reet that a time variable annot take on a value that is lowerthan the one the time variable before it did, or, in other words, that the timemodelled always progresses and never regresses. Of ourse the struture onlyommuniates that restritions between time variables are in plae. The atualrestritions, ensuring this progression of time, must be de�ned in the probabil-ity distributions of the variables. We all an ar from a time variable to a timevariable a temporal ar.� An ordinary hane variable is only allowed to have a time variable as parent,if it is observed when deiding upon a deision, whih initiates at the point intime represented by this time variable. Formally, if C 2 V OC , and there existssome T 2 pa(C), where T 2 V T , then there exists some D in h(C), whereD 2 V D and init(D) = T . The need for a unique \trigger point" for ordinaryhane variables to be dependent on time, desribed previously, is the reasonfor this requirement.� An ar is not allowed to be both dashed and guarded. Formally, if (X;Y; f)is in Ed, then f(ti) = f(tj), for all ti and tj in R. The reasoning for this isthe understanding that a variable, whih an restrit a deision, annot beunobserved or observed after the deision has been taken, sine this ould leadto paradoxes, as desribed above.Given this formal syntax of IDITs and the above list of strutural requirements thekeen-eyed reader might protest that the IDIT pitured in Figure 2.1 is not reallyan IDIT. For instane, there are no temporal ars, and there is no path through alltime and deision variables. This is due to it being shown in its ompressed form, asopposed to the blown-up version the formal syntax desribes. The ompressed formof an IDIT is a result of exploitation of two observations, namely that eah timevariable should have a deision as parent, and that the temporal ar from one timevariable to the next is always present. By pitorially attahing all time variables tothe deisions whose end times they represent no information is lost, as if the timevariable was to be \ripped" from its parent deision, there would, in every ase,be an ar from the deision to the time variable. Additionally, as the ars betweenonseutive time variables are required to always be present, onsistently and on-ventionally omitting them results in no information loss. Furthermore, the ouplingof a time variable to the deision whose end time it represents, emphasizes the strongoneptual bond between these.
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Spr 0 Spr Ha 0(a)

Spr 0 SprHa 0(b)Figure 2.2: a) Compressed form of an IDIT. b) Blown-up version of the same IDIT.Figures 2.2(a) and 2.2(b) show two versions of a part of the IDIT in Figure 2.1.The one in Figure 2.2(a) orresponds to the ompat form, whereas the one in Fig-ure 2.2(b) shows what the blown-up version would look like. The �gures shouldonvey the di�erene in larity of the two shemes.As mentioned earlier, eah IDIT allows for one or more realizations. A realizationfor an IDIT, I, is a four tuple, (�I ;	I ;�I ;�I), where the elements of �I areprobability distributions, the elements of 	I are loal utility funtions, the elementsof �I are density funtions, and the elements of �I are restrition funtions. Morepreisely, for eah node, X, inW I� a onditional probability distribution P (Xjpa(X)) is in �I i� X 2 V IOC ,� a loal utility funtion uX : sp(pa(X)) ,! R, where ,! denotes a partialfuntion, is in 	I i� X 2 V IU ,� a density funtion fX : sp(pa(X))� R ! [0;1[, where R1�1 f(~; x)dx = 1, forall ~ in sp(pa(X)), is in �I i� X 2 V IT , or� a restrition funtion rX : sp(pad(X)) ,! 2sp(X) n f?g is in �I i� X 2 V ID.As for other sets, we omit the name of the IDIT in the notation if it is obviousfrom the ontext. It is worth notiing that, when speifying a realization for anIDIT, some on�gurations of parent variables for some deision or utility might beimpossible. Consequently, the restrition or utility funtion value orresponding tothese on�gurations an be diÆult to speify by a modeller, and we, therefore,allow these funtions to be partial.The intuition behind a density funtion for a time variable, T , is that it, for



2.2 Alterations of the Original Framework 19any on�guration of pa(T ), is a density funtion for T over the real numbers. Arestrition funtion for a deision, D, for any on�guration of pa(D), yields thepossible hoies when deiding upon D. Even though the guards on ars an ontainnumerial attributes they are not seen as part of a realization, as their semanti isof a strutural nature.For a realization to make any sense, a restrition funtions is required to neverresult in the empty set. That is, when deiding upon a deision, no matter theon�guration of the parent variables, some hoie is always possible. Furthermore,density funtions are required to take on the value 0 for points in time, whihpreede the point represented by the unique parent time variable. That is, timeprogresses and never regresses.
2.2 Alterations of the Original FrameworkSome aspets of IDITs, as introdued in Setion 2.1, are not fully desirable,and in this setion we, therefore, propose a set of alterations to the originalrepresentation language and its interpretation. The motivation for eah alterationis presented along with the alteration proposal itself. As the original requirementson IDITs are modi�ed, or new requirements are added, we state it in learlymarked Requirement's. Eah requirement assumes the existene of a labelledgraph, I = (W I ;LI ;EI), as desribed in Setion 2.1. Similarly, when we introdueonepts, whih are referened in the remainder of the report, we do so in learlymarked De�nition's.None of the alterations presented in this setion are required for IDITs to be afuntioning representation language, but they are inluded as they inrease theexpressive powers or derease the level of inonsisteny in it. Alterations thatatually �xes aws in the semantis of the originally proposed representationlanguage are presented in Setion 2.3.Presene of Dashed ArsThe �rst alteration we propose is dropping the onvention of drawing ars into timevariables dashed, if the parent variable has a funtional inuene on the time variable.



20 Chapter 2. Inuene Diagrams Involving TimeThe reason for doing this is two-fold: First, the dashed ars impose restritions on theprobability distributions for time variables stored in the realization. The distintionbetween qualitative and quantitative aspets is thus blurred, and an IDIT and itsrealization are tied loser together than neessary. Seond, to ensure onsistenyars into ordinary hane variables that represent deterministi relationships wouldalso have to be dashed. But that would onit with the onventional semantis ofinuene diagrams, leaving IDITs inompatible. Hene, we allow only dashed arsto go into deisions.Requirement 1Ars whih are dashed or labelled with a non-onstant funtion may only go into adeision node. That is, if (X;Y; f) is inEId , or f(ti) 6= f(tj) for distint real numbers,ti and tj, then Y is in V ID.Realization Time Variables for UtilitiesThe seond alteration stems from the observation that utilities, whih take onvalues depending on the spei� points in time they are realized, an in IDITsonly be modelled if the moment of realization oinides with the end time of somedeision. This might not always be the ase, as an be seen by onsidering some�nanial utility, payed by a mailed hek, whih is not ashed until some time afterthe deision, whih triggered the utility, ended. We remedy this, by allowing utilitynodes to have assoiated their \own" time, in e�et imposing an unertainty onthe value of utilities. We all these points in time realization times of the utilitiesand draw them in IDITs as semiirles attahed to the utility nodes they areassoiated with. Semantially, they orrespond to groupings of points in time wherea utility might be realized, just like end time variables represent groupings of pointsin time where deisions end. We distinguish between the two kinds of variablesby spei�ally referring to a variable representing the point in time a utility isrealized as a realization time variable, or simply realization time, though. Like timevariables, realization times must have probability distributions spei�ed for them,and these an be parameterized by other variables. This is shown in the IDIT bydrawing solid ars from the a�eting variables to the realization time. See Figure 2.3for a depition of a utility dependent on time, U , with its own realization timenode, real(U). real(U) is a�eted by both end(D) and C1, while U is a funtion overreal(U) and C2.If the realization time of some utility always oinides with the end time of some



2.2 Alterations of the Original Framework 21D
UC1 C2

Figure 2.3: A utility with its own realization time.deision, we leave out the semiirle and simply draw an ar from the end time ofthe deision to the utility, as desribed in Setion 2.1. If the utility does not dependon time at all, we onnet no time variable to it as parent.We denote the set of all realization time variables in an IDIT, I, as V IR or, if theIDIT is obvious from the ontext, simply as V R.As the point in time a utility, U , is realized, is modelled as a variable, real(U), it isnatural to enquire, whether variables and other utilities an depend on it, i.e. if othernodes than U are allowed to be a desendent of real(U). In this report we hoosenot to allow this. First of all, we do not allow some deision to be a desendant ofreal(U), as it, depending on the assoiated realizations, might introdue antinomieswith regards to time. These antinomies arise, if both a time variable representingan end time of a deision, D2, and a time variable representing the realization timeof U are loated along paths from one deision, D1, to another, D3, as shown inFigure 2.4. In that ase we annot uniquely determine, whih of the variables thatshould at as initiation time of D3, and even if we, onsistently, always hooseeither the former or latter, some on�gurations of real(U) and end(D2) would yieldD3 either initiating before D2 ends, or real(U) representing a point in time afterD3 is initiated, but still known immediately before it initiates. Both senarios areantinomi. Furthermore, if we were to hoose the variable representing the pointfarthest in time on a ase by ase basis, we would, in situations where real(U)is interpreted as init(D3), violate the no-delay assumption, as there would be anunaounted for delay in the deision proess from ending D2 to initiating D3.Allowing some ordinary hane variable, C, to be a hild of a realization time,real(U), is also prohibited, as this would, owing to the disussion in Setion 2.1,require C to be observed. However, if C is observed, then some deision node mustbe a hild of C and, onsequently, a desendant of real(U), whih is undesirable due
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D1 D2

U D3
Figure 2.4: An unattrative onsequene of allowing deisions as desendants of utilityrealization times. The zig-zags on the ars signal that there might be some interme-diate nodes on the path between the node the ar emanates from and the node it goesinto.to the reasons given above.Finally, we might envision some utility node, U 0, other than U , being a hildof real(U). Semantially, this would mean that both U and U 0 are realized atthe point in time symbolized by real(U). But why attah real(U) to U and notU 0, then? Indeed, we ould ahieve a more balaned representation, of suh ashared realization time, by tearing real(U) from U and representing it as a fulldouble irle onneted as a parent to both U and U 0. This is not onsistentwith the approah used for representing end times of deisions in the rest of thediagram, though, and although the semantis of the two kinds of variables aredi�erent, we feel that the oneptual bond between a utility and its realizationtime is as relevant as that found between a deision and its end time. There-fore, we ontinue to draw realization times attahed to utility nodes as semiirles,and simply abstain from onneting other utilities as hildren of the realization time.
Requirement 2Realization time variables are only allowed to have one hild, whih must be autility node. They are required to have one and only one time variable as par-ent. Formally, if real(U) is in V IR then h(real(U)) � V IU , jh(real(U))j = 1, andjpa(real(U)) \ V IT j = 1.



2.2 Alterations of the Original Framework 23Time Variables as Parents of DeisionsThe third alteration to the struture of IDITs is that we, heneforth, allow deisionsto have more than one time variable as parent. IDITs, as they were desribedin Setion 2.1, prohibit all variables from having more than one time variable asparent, as this ould lead to onfusion on whih time variable that represents theinitiation time or instantiation time of the deision or hane variable, respetively.The restrition is of a pedagogial nature when applied to ars going into deisionvariables, though, as the requirement on a direted path through all deision andtime variables ensures that the initiation time of a deision an be dedued fromthe diagram, even if more time variables are parents of the deision.Having several time variables as parents of one deision would, when no-forgettingis assumed, be useless if they were all onneted with solid ars. In Figure 2.1,however, the variable Ha is a hild of both end(Spr ) and end(Ha 0). The reasonwhy it is attrative to have several time variables as parents of one deision, evenif the extra ars, due to no-forgetting, seems redundant, thus beomes lear: Somerestrition funtions might vary aording to the streth in time between twodeisions. Even though the states of the time variables end(Ha 0) and end(Spr ) areremembered at deision Ha, the restriting e�et an only be onveyed to a readerby drawing the dashed ars. Consequently, from now on we allow deisions to havemore than one time variable as parent, even if a set of parent time variables, withmore than one onneted with a solid ar, is redundant information.Requirement 3No hane or utility node an have more than one time variable as parent. That is,if X is in V IC [ V IU , then jpa(X) \ (V IT [ V IR)j � 1.Inheritane of Guarded ArsWhile on the subjet of informational ars we omment on the nature of guardedars, whih gives rise to the fourth alteration of IDITs. Guarded ars, as explainedin Setion 2.1, are inherited by deisions following the deisions the ars go into.This is the sane approah if an ar is guarded with a boolean funtion, whih yieldsfalse for initial points in time, but from some point in time starts yielding true,like it is the ase in Example 1, where the result of a test is unavailable initially, butbeomes available later on. By allowing ars to be inherited by later deisions, the



24 Chapter 2. Inuene Diagrams Involving Timeguard is evaluated one for eah deision, and the guarded variable, thus, gets morehanes of being observed. However, applying the same reasoning, if the guard is ofan inverse nature, i.e. it evaluates to true for early points in time but false for laterones, simply inheriting the ar would mean that, somehow, the guarded variablebeomes unobserved as time progresses. Even if the phenomenon represented bythe guarded variable beomes physially unobservable, we might assume that, ifit was observable previously, its state an be remembered. Therefore, we alter thesemantis of guarded ars: We still interpret a guarded ar into a deision, D, tomean that the guarded variable, X, is observed immediately before deiding on D,provided that the guard evaluates to true at init(D). However, for any deision, Di,that is a desendant of D, we de�ne X to be observed immediately before, Di, ifeither the guard evaluates to true at init(Di), or it evaluated to true for init(Dj),where Dj is D or some anestor of Di and desendant of D. In other words, onesome variable is observed, it stays observed, even if the irumstanes allowing forthe observation expires.
Varying Ordering of DeisionsA further alteration to the struture of the representation language onerns therequirement on the graph to be ayli. We now abandon the requirement for theIDIT to be a direted ayli graph and allow the graph to ontain yles underspeial irumstanes. This alteration auses problems for the previously introduedtemporal ordering of variables, �, as this was heavily based on the ayli property ofIDITs. But, as were also mentioned, this ordering is subjet to some other aws, andwe, therefore, disregard it for the moment and return to the matter in Setion 2.3.Allowing yles is attrative as it allows for spei�ation of sets of deisions thatare not neessarily taken in a predetermined order, but aording to the point intime they, as a group, are initiated. An example should larify this: The IDIT inFigure 2.5 ontains two deisions, D2 and D3, whih are taken either in the order D2then D3 or in the order D3 then D2. The determining fator is what time the waitdeision D1 ends: If end(D1) is less than 10, then D3 is taken prior to D2, whereasif end(D1) is greater than or equal to 10, then D2 is taken prior to D3. This is seenfrom the guards on the ars forming the yle (D2;D3;D2). When the deision takeris done taking D1, the guards on ars going into the next deision, whih in thisase is either D1 or D2, are evaluated, and ars with guards that evaluate to false
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C1 C2U

t � 10t < 10t < 5
Figure 2.5: An example of two deisions that are not taken in a prede�ned order.are onsidered to be non-existent, as desribed in Setion 2.1. No matter what pointin time end(D1) represents, exatly one of the guards on the two ars evaluates totrue. The yle is thus \broken", and the ordering of D2 and D3 is evident from theresulting diagram.Two key observations regarding this arrangement should be noted, though. First,none of the deisions involved in the yle is a deision involving time. If one of thedeisions, say D2, had been a deision involving time, it would not be lear whatpoint in time, end(D1) or end(D2), the guard t � 10 refers to: If D3 initiates beforeD2, then t would refer to end(D1), and if D3 initiates after D2, then it would refer toend(D2). But as we do not know whether D3 initiates before D2, until the guards onthe ars are evaluated, the guards annot be evaluated, and a seemingly inextriablyproblem thus arises. The seond key observation is that the guards on the two arsare mutually exlusive and exhaustive, thereby guaranteeing that the yle is brokenbefore any of its onstituent deisions are deided on.Three approahes to yles, whih honour these two observations, are� either to disallow yles and thereby varying deision orderings,� to allow yles involving instant deisions only, or� instead of using t, use some other notation, suh as end(D):t, to signify whattime variable eah guard is referring to.
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D1

D2
D3

C D4 Uend(D1 ):t�10end(D 1):t<
10 ? � 12

Figure 2.6: Problems arising from using more elaborate notation.The �rst approah we dismiss as it limits funtionality, and the seond approah wetreated in the previous paragraphs. The third, however, seems to be the most pow-erful approah, as it puts little restrition on the onstruts whih an be modelled.However, we take it that the approah would severely damage larity of IDITs andat the same time ripple some of the exibility of the language. This last point anbe seen by studying a modi�ed version of the IDIT pitured in Figure 2.5, usingthe more elaborate guards suggested as approah number three. The new IDIT ispitured in Figure 2.6. Clearly, no ambiguities arise, when determining whether theguards on the ars onneting D2 and D3 evaluate to true, but the guard on thear between C and D4 is problemati. The variable that should replae the questionmark is either end(D2):t or end(D3):t, depending on whih of the two deisions, D2or D3, that is taken �rst. However, we do not know, whih it is, until D1 has om-pleted, and ertainly not when we draw the diagram in the �rst plae. The problemould be remedied by using init(D4), but this variable is not drawn expliitly inthe diagram, and we believe that referring to it in guards would, therefore, lead toonfusion on behalf of the reader.Another problem, related to using more elaborate notation on guards, is the proessof determining, whether a yle is guaranteed to be broken before any of its on-stituent deisions are deided on. Assume for a moment that, in Figure 2.6, the guardfrom D2 to D3 was spei�ed as end(D0):t � 10, and that D0 is some deision priorto D1. Whether the yle would be broken, when D1 ends, is now less lear than itwas before. If the two time variables, end(D0) and end(D1), were related, suh that,



2.2 Alterations of the Original Framework 27in addition to the previously mentioned requirement on time not regressing, we hadthat end(D0) < 10) end(D1) < 10;for instane, the yle would be guaranteed to be broken. But this would not beevident from the diagram. Taking the thought experiment even further we mightimagine yles enompassing a sizeable number of deisions, in whih the guardswould refer to lots of variables, and onsequently, few modellers would be ableto distinguish a legal yle from an illegal one. It might be possible to automatethe proess of heking whether a yle is guaranteed to be broken, even if theguards in it refer to several time variables. However, this would all for analysis andomparisons of density funtions and is outside the sope of this report.Conluding on this disussion we settle on allowing yles involving instant deisionsonly and shun the elaborate notation mentioned in the previous paragraph. At thispoint we also briey touh upon the subjet of probabilisti guards. That is, guardswhih evaluates to true with some probability, and not deterministially, given itsparameters, e.g. t � A;A � N(6; 2). Suh guards would have to be prohibited fromappearing in yles, as the yles ould not be guaranteed to be broken at any pointin time. We do not touh upon probabilisti guards in the remainder of this report.Requirement 4A yle must onsist only of instant deisions and ordinary hane variables. That is,if there is a path from a variableX toX, thenX 2 V IOD[V IOC , and h(X)\V IT = ?.De�nition of IDITsIn onlusion we de�ne the IDIT and its realizations. A number of requirements areleft untouhed from Setion 2.1, and we list them here for onveniene.Requirement 5There must be a temporal ar between any two time variables following eah otherin the temporal order. That is, there exists a path, (T1; : : : ; Tn), through all timevariables, V IT = fT1; : : : ; Tng, indiating the temporal ordering of these.Note that temporal ars, whih an be dedued from the rest of the diagram, arenot shown in the ompat form of IDITs shown in most �gures in this report.



28 Chapter 2. Inuene Diagrams Involving TimeRequirement 6There must be a direted path through all deision and time variables. That is, theremust exist a path, (X1; : : : ;Xn), in I suh that V IT [ V ID � fX1; : : : ;Xng.Requirements 4 and 6 guarantee a total ordering of non-instant deisions withrespet to time variables.Requirement 7A node has no hildren if and only if it is a utility node, i.e. for any node X inW Iwe have that pa(X) = ? i� X is in V IU .Requirement 7, thus, handles barren node removal as desribed in Setion 2.1.Requirement 8Eah time variable must be a hild of at least one deision. That is, if T is in V IT ,then jpa(T ) \ V IDj � 1.The reason that eah time variable needs a deision as parent is that their semantialinterpretation is to be end times of deisions. Hene, it makes no sense to talk abouttime variables with no assoiation to a deision.Requirement 9Eah wait deision has only one hild, and that hild is a time variable. More formally,we have that if D is in V IW , then h(D) = fTg, where T is in V IT .As stated in Setion 2.1, this is beause we pereive a wait deision as a non-intervening deision, whih an only a�et other parts of the deision problemthrough the atual time spent waiting.Requirement 10An ordinary hane variable is only allowed to have a time variable as parent ifit is observed immediately before a deision, whih initiates at the point in timerepresented by the time variable. In other words, if there is a T in pa(C) \ V IT , forsome C in V IOC , then there is a D in h(C) \ V ID suh that init(D) = T .The reasoning for this was elaborated on in Setion 2.1.Given these requirements, we de�ne IDITs, as they are used in the rest of the report.



2.3 Temporal Ordering in IDITs 29De�nition 2.1Let I = (W I ;LI ;EI) be a direted labelled graph, whose nodes, W I , onsist ofordinary hane variables, V IOC , ordinary deisions, V IOD, wait deisions, V IW , timevariables, V IT , realization time variables, V IR, and utility funtions, V IU . Further-more, let the set of labels, LI , onsist of boolean funtions over the real numbers, i.e.LI � ff jf : R ! [true; false℄g, and the set of edges, EI , be partitioned into a setof solid edges, EIs , and a set of dashed edges, EId . If I onforms to Requirements 1to 10, then I is an IDIT.Additionally, the realizations we will deal with are de�ned as following.De�nition 2.2Let I be an IDIT. Then the four tuple, (�I ;	I ;�I ;�I), where the elements of�I are probability distributions, the elements of 	I are loal utility funtions, theelements of�I are density funtions, and the elements of �I are restrition funtions,is a realization of I if for eah node, X, inW I� a onditional probability distribution P (Xjpa(X)) is in �I i� X 2 V IOC ,� a loal utility funtion uX : sp(pa(X)) ,! R is in 	I i� X 2 V IU ,� a density funtion fX : sp(pa(X))� R ! [0;1[, where R1�1 f(~; x)dx = 1, forall ~ in sp(pa(X)), is in �I i� X 2 V IT [ V IR, and� a restrition funtion rX : sp(pad(X)) ,! 2sp(X) n f?g is in �I i� X 2 V ID.As an be seen, the only di�erene, between De�nition 2.2 and the one desribed inSetion 2.1, is the allowane for realization time variables, to whih density funtionsare assoiated.2.3 Temporal Ordering in IDITsIn Setion 2.1, when the temporal ordering relation, �, was introdued, we brieyommented that it su�ers from some aws in onjuntion with guards on ars. Wefurther allowed yles in IDITs in Setion 2.2 resulting in even more strains on�. In this setion we explain in detail, why the original ordering relation is notsuÆient for reading IDITs, and propose a new ordering relation for nodes in IDITs.Furthermore, we de�ne what it means for an IDIT to be wellde�ned and provide a



30 Chapter 2. Inuene Diagrams Involving Time
D1 D2 D3C1C2

t > 5t < 5Figure 2.7: An example of problems related to the �-relation.method for heking this.Why � failsWe start of with highlighting the aws of �. In the example IDIT pitured in Fig-ure 2.7 they are prevalent. Aording to �, the deision problem modelled by thisdiagram seems to make little sense: If we try to list the variables aording to �, weget the total orderingD1 � end(D1) � C1 � D2 � end(D2) � C2 � D3;whih onits with the intuitive notion obtained from the diagram that C1 anonly be observed at points in time after 5, whereas C2 an only be observed priorto this. Furthermore, if taking D1 ends at, say, time 2, we seem to enounter asituation where whih deision is next is unde�ned. On the one hand there is adireted path from D2 to D3, whih, aording to �, means that deision D2 shouldbe taken prior to deision D3. On the other hand the semantis of a guarded ar,whose guard evaluates to false, is equivalent to a non-existing ar. Thus, as we,from the direted path with no intermediate time or deision variables from end(D1)to D2, an dedue that init(D2) is equivalent to end(D1), we know that the guardt > 5 is not ful�lled, and onsequently, the very same direted path, whih allowedus to reah this onlusion, eases to exist. Choosing D3 as the next deision insteadis not a solution, even though the path from D1 to D3 ontinues to be there whenthe guard t < 5 is evaluated. This is beause of there still being a direted pathfrom D2 to D3, stating that D2 should be taken before D3. However, if we assumethat D1 has been taken and instantiate end(D1) to some value, we an disregardthem and onlude that, even though the direted path from D1 to D2 is broken,beause there is a direted path from D2 to D3, D2 must be the �rst deision in



2.3 Temporal Ordering in IDITs 31
D1 D2 D3C1C2

t > 5t < 5Figure 2.8: An example of problems related to the �-relation | further eluidatedusing temporal ars.the remaining part of the diagram. Thus, D2 must be following D1 in the temporalorder. In other words, in any new deision problem, arising from deiding on D1and instantiating end(D1), we an easily identify the �rst deision presented to thedeision taker, viz. D2.If the diagram in Figure 2.7 was shown in the blown-up version, with all temporalars in plae, as in Figure 2.8, we would immediately see that end(D1) � end(D2).In onjuntion with the relationships end(D2) � D3, D1 � end(D1), andD2 � end(D2), this would allow for only two orderings:D1 � end(D1) � D2 � end(D2) � D3and D1 � D2 � end(D1) � end(D2) � D3:As the seond of these orderings learly violates the no-delay assumption, the onlyordering, whih ful�lls the assumptions, is the �rst one. Notie that no additionalinformation is portrayed by the diagram, though, as the only other possibility ofplaing temporal ars, i.e. an ar from end(D2) to end(D1), is not allowed, as itwould result in a yle involving time variables.This exerise seems quite elaborate and yet the onlusion so vague: the de�nitionof � learly states that D2 follows D1 in the ordering obtained by �, if and only ifthere is a direted path from D1 to D2, whih eases to be the ase, if we instantiateend(D1) to some value less than 5. If we add temporal ars to the diagram theordering seems muh learer, although no new information is onveyed. Thus, itmust be the ordering relation, whih is not wellde�ned. Furthermore, and worse,aording to �, we have that C1 preedes both D2 and D3 in the temporal ordering,but when end(D1) is instantiated to a value less than 5 that onlusion seemsdubious, as the guard learly states that C1 is observable, only when the time haspassed 5, whih is not the ase when the deision following D1 is initiated. This



32 Chapter 2. Inuene Diagrams Involving Timeproblem of observable variables annot be remedied simply through instantiatingvariables or disregarding parts of the IDIT. Consequently, we must de�ne a newand weaker ordering relation, �0, whih imposes only a partial ordering on deisionvariables, to aommodate for yles.In addition to these problems, extended no-forgetting su�ers from a semantialoversight, whih has reeted on �. The omission is onneted to the situation inwhih an ordinary hane variable, C, is a parent of a time variable, T , but notany deisions prior to T . Semantially, this means that the state of C a�ets thepoint in time represented by T . An example of this is the weather variable, W ,whih a�ets the time it takes to harvest, modelled as an impat on end(Ha). Insuh ases, it is reasonable to assume that the impating variable is observed, as itdiretly a�ets the time it takes to take a deision. Rarely are we in a situation, inwhih the ompletion of some task have a time span whih is notieably more orless than usual, with no explanation as to why this is so.When we add the assumption that ordinary hane variables a�eting a timevariable are observed, a logial step is to work this assumption into the extendedno-forgetting assumption. That is, in addition to remembering variables observedat deisions, we also remember variables having an impat on time variables. Thenew ordering relation should onform to this, by expliitly letting hane variablesa�eting a time variable, be prior to this in the temporal ordering.
A New Ordering RelationFollowing the disussion above we de�ne a deision, D, to be prior to anothervariable, X, in the temporal ordering of variables in an IDIT, I, written D �0I X,if there is a direted path, from D to X in I, omprising no guarded ars. Thereasoning behind this is similar to the one applied in inuene diagrams. An exampleof this is the deision D1, whih is prior to end(D1), C1, and C2 in the IDIT inFigure 2.7. It is, however, not prior to D2 nor D3 by virtue of this rule alone, asthe paths from D1 to both of them omprise guarded ars. Seond, we de�ne a timevariable, Ti, to be prior to a time variable, Tj , if there is a direted path, P , fromTi to Tj. This is justi�ed if there is a path onsisting only of temporal ars from Tito Tj. Requirement 5 guarantees the existene of suh a path from either Ti to Tjor from Tj to Ti. Requirement 4 and the existene of P tell us that it must be theformer, and onluding that Ti �0I Tj is, thus, justi�ed. For instane, we onluded



2.3 Temporal Ordering in IDITs 33a little earlier that the time variable end(D1) in the IDIT in Figure 2.7 had to beprior to the time variable end(D2) using a similar argument.A deision, D, whih is a desendant of a time variable, T , is de�ned to be followingT in the temporal ordering. This is justi�ed, as the point in time represented by Tmust either be init(D), if no other time variables exists on paths from T to D, orsome point in time prior to init(D), otherwise. As an example, this, in addition totransitive losure introdued later, is the rule whih allows us to onlude that D2is following D1 in the IDIT in Figure 2.7. We furthermore de�ne an ordinary hanevariable, C, to be following a time variable, T , if C is a parent of a deision, D, suhthat init(D) = T , and C is not prior to T . As the ar from C to D an be seen asbeing guarded, either by a genuine guard, if suh a guard is shown in the diagram,or the trivial guard, t = t, its observation depends on the value of T , and hene, itannot be prior to T in the temporal ordering. The additional requirement on C notbeing prior to T in the temporal ordering is pratially redundant, as that wouldimply C is being observed at some deision, D0, initiating before the point in timerepresented by T . In that ase, C would also be a parent of D0, and the ar fromC to D would, onsequently, be redundant due to no-forgetting. An example of arelationship suh as this, is the variable Re in Example 1, whih follows end(Spr 0),in the temporal ordering.Additionally, we de�ne an ordinary hane variable, C, to be prior to a deisionvariable, D, if C is a parent of D onneted with an unguarded ar. In this aseC is always observed prior to deiding on D, and we may then safely assumethat C �0 D. Had the ar between the two been guarded, we annot onlude thesame, and the ordering of the two variables is thus unknown. This is reeted inFigure 2.7, where the positions of the two variables C1 and C2 in the temporal orderis unde�ned prior to instantiating end(D1). The ounterpart of this rule is that ahane variable, C, is prior to a time variable, T , if C is a parent of T . An exampleof this is the variable W in Figure 2.1, whih is prior to the time variable end(Ha).Analogous to orderings of variables in inuene diagrams, we de�ne an ordinaryhane variable, C, that is not a parent of a deision variable, D, or any deisionwhih might be prior to D in the temporal ordering, to be following D. This ruleonly di�ers from the one used in inuene diagrams, by the spei� hek for Cbeing a parent of some deision whih might prior to D. In inuene diagrams it issuÆient to hek whether C is prior to D, but in the IDIT in Figure 2.7 this wouldlead us to onlude that C1 is prior to D3 in the temporal ordering, whih is notneessarily the ase. An example of this rule is the variable C1 in Figure 2.5, whih



34 Chapter 2. Inuene Diagrams Involving Time
D1 D4

D2
D3 C Ut>5 t�5 t>5Figure 2.9: Example showing the need for one of the �0-rules.is not a parent of any deision, and therefore, follows them all in the temporalordering. Notie that C2, in the same IDIT, does not fall into this ategory, as it is aparent of D2, and thus might be observed prior to D2. It is, however, following D1.Similarly, we de�ne a time variable, T , whih is not prior to a deision, D, to befollowing D in the temporal ordering. The reason for this, is that, as T does notrepresent a point in time prior to initiation of D, it must be a point in time afterthis. An example of the need for this rule, is the IDIT in Figure 2.9. Here theordering of D2 and end(D4), i.e. D2 �0I end(D4), is determined by this rule.Finally, we extend �0I to its transitive losure, i.e. X �0I Y and Y �0I Z impliesX �0I Z, whih seems a natural onvention, as we are dealing with events in theever progressing ow of time.De�nition 2.3The partial temporal ordering of elements in an IDIT, I, is the transitive losure ofthe ordering relation, �0I , having the following harateristis:� if there is a direted path, omprising no guarded ars, from a deision variable,D, to some other variable, X, in I, then D �0I X,� if there is a direted path from a time variable, T , to a time or deision variable,X, in I, then T �0I X,� if an ordinary hane variable, C, is an unguarded parent of a time or deisionvariable, X, in I, then C �0I X,



2.3 Temporal Ordering in IDITs 35D1 D2 D3t < 5t � 5 t � 10t < 10Figure 2.10: An example of an IDIT that is not wellde�ned, as no unique �rst deisionan be identi�ed.� if an ordinary hane variable, C, is not a parent of a deision, D, or any otherdeision D0, where D 6�0I D0, in I, then D �0I C,� if a time variable, T , is not prior to a deision, D, in I, then D �0I T , and� if an ordinary hane variable, C, is a parent of a deision,D, in I, and T �0I Dfor some time variable, T , then T �0I C.The extended notation applying subsripts, used in the above de�nition, is aban-doned when the IDIT is obvious from the ontext.Applied to the diagram of Figure 2.7 this new relation yields the following orderingof deision and time variables:D1 �0 end(D1) �0 D2 �0 end(D2) �0 D3:The ordering relationships of C1 and C2 are unde�ned exept for both of themfollowing end(D1) and C2 following end(D2), mirroring that C1 and C2 are notneessarily observed before any deision. Returning briey to yles we see thatthe ordering relationships of variables in the IDIT pitured in Figure 2.5 are thetransitive losure of the relationshipsD1 �0 end(D1); end(D1) �0 D2; end(D1) �0 D3; D2 �0 C1; and D3 �0 C2:No total temporal ordering of all variables an be obtained from these relationships,but if some deision, whih is prior to all other deisions aording to �0, an beidenti�ed, we an, given instantiations of it and its end time and through evaluationof guards, identify the next deision and the set of variables, observed immediatelybefore that next deision initiates. Some diagrams, suh as the one presented inFigure 2.10, do not have this quality, and we, therefore, say that suh diagrams arenot wellde�ned .



36 Chapter 2. Inuene Diagrams Involving TimeWellde�ned IDITsBefore we de�ne this notion of wellde�nedness, preisely, we introdue some auxiliaryonepts and results. These are referened extensively throughout the rest of thereport. We start with simple and intuitive onepts arising from applying �0 to setsof variables.De�nition 2.4Let Z be a set of variables in an IDIT, I. A variable, X, in Z is then said to be the�rst variable of Z, if X �0I Y , for all other variables Y in Z.As examples of this de�nition, the deision D1 is the �rst variable of the set ofdeision variables in the IDIT in Figure 2.5, and the deision D3 is the �rst variableof the set fD3; C2g in the same IDIT. Notie that the de�nition says nothing aboutthe existene of a �rst variable. In fat, this annot be guaranteed, as is evident fromthe set of ordinary hane variables in the IDIT in Figure 2.5. In the report, we treatthe onept of �rst variables rather asually and refer to them in an intuitive manner,e.g. \the �rst time variable" and \the �rst deision following X" to mean \the �rstvariable of the set of time variables" and \the �rst variable of the set onsistingof deisions, whih followX in the temporal ordering obtained from �0", respetively.De�nition 2.5Let Z be a set of variables in an IDIT, I. A variable, X, in Z is then said to be thelast variable of Z, if Y �0I X, for all other variables Y in Z.An example of a last variable is end(D1) in Figure 2.5, whih is the last variablein the set of time variables. Similar to the onept of �rst variable, there is noguarantee of existene, and we refer to last variables in an intuitive manner in theremaining part of the report.De�nition 2.6Let I be an IDIT and X and X 0 be two variables in I. A variable, Y , is then saidto be an intermediate variable between X and X 0, if X �0I Y and Y �0I X 0.An example of this de�nition is end(D1) in Figure 2.5, whih is an intermediatevariable between D1 and C2. As for �rst and last variables, the existene of inter-mediate variables between two variables annot be guaranteed, and we use rather



2.3 Temporal Ordering in IDITs 37asual language in referring to these.In addition to these de�nitions building on �0, we introdue the onept of instan-tiations:De�nition 2.7Let I be an IDIT and X a variable in I. Then an IDIT in whih X is known to bein some state, x 2 sp(X), is alled an instantiation of I on X to the value x. Wewrite this as I[X 7! x℄.Examples of instantiations of the IDIT, I, in Figure 2.5, assuming that the statespae of D1 is fd1;:d1g and the state spae of C2 is f2;:2g, are I[D1 7! d1℄ andI[C2 7! :2℄, whereas I[D1 7! x℄ and I[Y 7! y℄ are not. I[D1 7! x℄ is not an instan-tiation as x is not a state of D1, and I[Y 7! y℄ is not an instantiation as Y is not avariable in I.The extra information on the state of a variable an ause graphial representationsof the IDIT to hange: When an IDIT is instantiated on a time variable, T , all guardson ars going into intermediate deisions, between T and the �rst time variable fol-lowing T , an be evaluated with t being the value T is instantiated to. Ars withguards, whih evaluate to true, an then be exhanged for ars with no label. Anar with a guard, whih evaluates to false, on the other hand, must be removed.However, owing to the disussion of inheritane of guarded ars in Setion 2.2, newars, with the same guard, must be added from the guarded variable to deisionsfollowing the �rst time variable following T .Likewise, in an instantiation on a variable, X, whih is in the domain of some re-strition funtion for a deision, D, to the value x, the restrition funtion for D,rD : sp(pad(D))! 2sp(D);an be exhanged for the funtionr0D : sp(pad(D) n fXg)! 2sp(D);where r0D(~) = rD(~; x), for all ~ in sp(pad(D) n fXg), after whih the dashed arfrom X to D is rendered solid.Instantiations of the IDIT, I, in Figure 2.7, I[end(X) 7! 2℄ and I[end(X) 7! 12℄, areshown in Figures 2.11 and 2.12, respetively. Note that, as an instantiation is an IDITwith added information, it is reasonable to talk of instantiations of instantiations. Fornotational onveniene we write I[fX1;X2; : : : ;Xng 7! (x1; x2 : : : ; xn)℄, or I[S 7! ~x℄,
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D1 D2 D3C1C2 t > 5t < 5Figure 2.11: An instantiation of the IDIT in Figure 2.7 orresponding to end(X)being 2.
D1 D2 D3C1C2 t < 5Figure 2.12: An instantiation of the IDIT in Figure 2.7 orresponding to end(X)being 12.where S is fX1;X2; : : : ;Xng, to denote the instantiationI[X1 7! x1℄[X2 7! x2℄ � � � [Xn 7! xn℄:Also for notational onveniene, we use the term IDIT to mean an IDIT with zeroor more instantiated variables, unless otherwise expliitly stated.Not all instantiations are sensible, though. For instane, an instantiation whih in-lude a deision, but not the time variable stating when the deision initiates, wouldonstitute a paradoxial situation. We de�ne the sensible instantiations:De�nition 2.8Let I[Z 7! ~℄ be an instantiation of an IDIT, I, on a set of variables, Z, to thevalues ~z. Then I[Z 7! ~z℄ is said to be a temporally allowable instantiation if,� for all pairs of time variables, Ti = ti and Tj = tj, in Z, where Ti �0 Tj , wehave that ti � tj, and� there exists no non-instantiated time variable, T , in I[Z 7! ~z℄ and X in Z,suh that X 6�0I[Z 7!~z℄ T .



2.3 Temporal Ordering in IDITs 39In words, we require that the values of time variables do not violate the requirementon time progression, and we do not allow a variable to be observed or deided upon,unless all time variables, whih preedes it in the temporal ordering, have been in-stantiated. A temporal allowable instantiation on all variables in an IDIT, whihdo not violate the restrition funtion of any deision, we all a deision senario.For notational onveniene we regard an IDIT with no instantiated variables as atemporally allowable instantiation.At this point, we introdue a short hand notation, whih renders methods intro-dued in the remainder of this report more elegantly expressed. For an IDIT, I,whih ontains both instantiated and non-instantiated time variables, we denote theset of intermediate deision variables between the last instantiated time variable andthe �rst non-instantiated time variable as IDI . The intuition behind this is thateah deision in IDI initiates at the point in time the deision problem modelled byI starts, and are, thus, part of that part of the deision problem, whih is urrent.For instane, in the IDIT, I, in Figure 2.12, whih models a deision problem inwhih D1 has ended at time 12, IDI onsists of D2, meaning that D2 is the onlydeision initiating at time 12. In an IDIT, I, whih only ontains instantiated timevariables, IDI is de�ned to be the set of deisions following the last time variable.If I ontains only non-instantiated time variables, IDI is the set of deisions priorto the �rst time variable. For instane, IDI onsists of D1 in Figure 2.5. Finally, inIDITs ontaining no time variables, IDI equals V D, orresponding to all deisionsbeing taken in the same instant.These de�nitions and notational onventions aside, we note some useful aspets of�0. First and foremost, it is learly the ase that in any IDIT, whih onforms to Re-quirement 5, a total ordering of all time variables an be identi�ed. Furthermore, asthis ordering is indued from temporal ars, whih, by de�nition, annot be guarded,no amount of instantiation of variables an alter it.Another useful result is that in any IDIT, I, for any deision variable, D, and timevariable, T , we an determine, whether D �0I T , or T �0I D. This result is immedi-ately obtained from Requirements 4 and 6, whih allow only the ordering of instantdeisions to vary, and as time variables are disallowed in yles, even the orderingof the instant deisions relative to time variables are �xed. Again, no amount ofinstantiation an hange these ordering relations.Building on these notions, we de�ne a wellde�ned IDIT:De�nition 2.9Let I be an IDIT. The we say that I is struturally wellde�ned, or simply wellde�ned,



40 Chapter 2. Inuene Diagrams Involving Timeif, for any temporally allowable instantiation, I 0, for eah deision, D, in IDI0 andvariable, X, in V I nD, either D �0 X or X �0 D.Intuitively, for all temporally allowable instantiations, the ordering of all deisions,whih are prior to the �rst non-instantiated time variable, is a total ordering, andthe set of variables observed at eah of those deisions an be uniquely determined.This de�nition tells us that no matter what points in time time variables represent,as long as they onstitute an temporally allowable instantiation, the next deisionto deide upon an always be identi�ed.
Cheking Wellde�nednessDe�nition 2.9 annot be applied mehanially to verify that a spei� IDIT is wellde-�ned, though. That would all for a hek of all temporally allowable instantiations,of whih there, even for IDITs ontaining only a single time variable, is an in�nitenumber. Instead we onstrut an operational method for examining whether an IDITis wellde�ned. Before presenting the method, formally, we reveal the workings of it,by applying De�nition 2.9 to the example IDIT, I, in Figure 2.5, using intuitionrather than strit adherene to the wording of the de�nition.The approah, we take, is to exploit that even if there is an in�nite number of al-lowable instantiations of a given IDIT, there is only a �nite number of di�erentstrutures derivable from it. That is, even if we an instantiate variables in an in-�nite number of ways, these instantiations an be grouped into sets with similarstrutures.Looking at I in Figure 2.5, we see that there is a maximum of eight di�erent stru-tures of variables that onforms to the restritions laid down by I. These are por-trayed in Figure 2.13. By applying the rules of �0, it an easily be seen that someof these strutures do not ful�ll the requirement on a lear ordering of deisions andunique set of observed variables. Therefore, we need to be sure that no temporallyallowable instantiations result in one of those strutures.To get any further, we observe that the struture, whih orresponds to a temporallyallowable instantiation, is a funtion of the instantiated time variables only, as thestruture is uniquely determined by the evaluation of guards, whih in turn are fun-tions over time variables, only. Therefore, we need only fous on the values of timevariables in temporally allowable instantiations. As a result of this observations, we



2.3 Temporal Ordering in IDITs 41an divide the temporally allowable instantiations into groups, orresponding to howmany time variables they enompass. In the ase of the IDIT I, we thus group thetemporal allowable instantiations into two sets: One where end(D1) is instantiatedand one where it is not. Next we need to subdivide these sets into groups based ontheir struture.The group of instantiations, where no time variables are instantiated, an only re-sult in one struture of the deision variables and observed variables prior to the�rst non-instantiated time variable, viz. end(D1), as guards are funtions over timevariables only. The set of deisions prior to end(D1) onsists of a single variable, D1,and the ordering of its elements is, trivially, total. Likewise, as no variables are par-ents of D1, the set of observed variables an be unambiguously determined. Thus, alltemporally allowable instantiations not involving end(D1) ful�lls the requirementsof De�nition 2.9.When we move on to heking the temporally allowable instantiations inludingend(D1), we an exploit the work we just ompleted on the instantiations that didnot inlude end(D1): As the ordering of deision variables with respet to time vari-ables are total in I, none of the deision variables prior to end(D1) an be involvedin the strutural hanges arising from instantiation of end(D1). Thus, the deisionsprior to end(D1) do not need to be heked when we examine whether a temporallyallowable instantiation involving end(D1) ful�lls the requirements in De�nition 2.9.As we attempt to subdivide the group of temporally allowable instantiations involv-ing end(D1), aording to their struture, we enounter a potential problem. Wementioned that only time variables a�et this division, so the problem eventuallyboils down to splitting the state spae of end(D1) aording to its e�et on theguards t < 5, t < 10, and 10 � t. In this spei� example this an be aomplishedquite easy through identifying the ritial points 5 and 10, and then splitting thestate spae of end(D1) aordingly. However, for some guards, suh as \t is a prime",this straightforward splitting is undeidable. Therefore and in the rest of the report,we assume that all guards are of the formg(t) =_i t 2 Ii;where the Ii's are intervals of the real line.As we have identi�ed three intervals ℄�1; 5[, [5; 10[, and [10;1[ in whih the stru-tural hanges resulting from instantiating end(D1) are the same, we an split thetemporally allowable instantiations inluding end(D1) into three groups. Instanti-ations in all groups agree on the struture of deisions prior to end(D1), and the
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Figure 2.13: The possible strutures of variables in the IDIT in Figure 2.5.instantiations in eah individual group agree on the struture of the remaining partof the IDIT. We an visualize this proess as a tree, whih is illustrated in Fig-ure 2.14. As an be seen from the resulting strutures in the three leaves, eah ofthe three groups of temporal allowable instantiations ful�lls the requirements forwellde�nedness, and we an onlude that I is wellde�ned. In the remainder of thereport, we will refer to trees, onstruted by a proess suh as this, as split trees.The method we have just desribed an be generalized to one that an be appliedfor heking IDITs inluding an arbitrary number of time variables. Suh a method,for heking whether an IDIT, I, is wellde�ned, is presented below and we elaborateon the details, whih set it apart from the one just given, afterwards. The methodtakes as parameter a starting point in time, t, whih for most problems would be 0,but ould be set to minus in�nity or any number for that matter. The starting pointrepresents, when the deision problem modelled by the IDIT is initiated, that is, theminimum value the �rst time variable an possibly take on.Method 2.10 (Input: IDIT I, and point in time t)1. Identify IDI2. Evaluate whether the instantiation that is I ful�lls the requirements for wellde�ned-ness, through heking if a total ordering of all deisions in IDI an be obtained from�0I , and if all ars into deisions in IDI are without guards. If this is not the ase,



2.3 Temporal Ordering in IDITs 43
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t < 5
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Figure 2.14: The tree onstruted by the method for heking wellde�nedness of theIDIT in Figure 2.5.



44 Chapter 2. Inuene Diagrams Involving Timestop and report failure. If the test is a suess, and no non-instantiated time variablesremains in I, stop and report suess. Otherwise, let T be the �rst non-instantiatedtime variable in I, and ontinue.3. Let G be the set of guards on ars in I going into the deisions in IDI[T 7!t℄.4. Partition the points in time from t to in�nity into a minimal set of subsets,fT 1; : : : ;T ng, suh that eah guard in G evaluate to the same value for all pointsin time in eah T i. That is, for all T i and all f in G, f(ta) equals f(tb), for any twopoints, ta and tb, in T i.5. For eah subset, T i, onstrut the IDIT I[T 7! ti℄, where ti is the least element of T i,and reursively hek whether I[T 7! ti℄ is wellde�ned for the point in time ti. If oneor more of these instantiations is not wellde�ned, then I is not wellde�ned, otherwiseit is wellde�ned and suess is reported.There are two main di�erenes between Method 2.10 and the one illustrated bythe example: Most obvious, Method 2.10 is reursive. Seond, it does not generategroups of instantiations, but a sort of generalized representative of eah of thesegroups.That Method 2.10 is reursive is due to it handling more than one time variable.When we split the group of instantiations in the example, we did so aording tohow the �rst time variable, end(D1), a�eted the guards on ars into deisions priorto the �rst time variable following end(D1), whih did not exist. At the same timewe reasoned why the struture of deisions prior to end(D1) was left untouhed byinstantiating D1, and therefore why we ould disregard this part of the IDIT whenheking instantiations inluding end(D1). When we are dealing with a seond timevariable, T2, we an employ this reasoning again and onsider only the e�et of T2on the part of the IDIT that follows it.This apparently suggests an iterative method, in whih parts of the IDIT betweentwo time variables are heked one after the other. However, the value a timevariable, T , is instantiated to an a�et the struture of variables following thetime variable following T . This is beause guards that do not evaluate to true areinherited by subsequent deisions and their sets of observed variables, thus, dependon more points in time than just their initiation time. Consequently, we need toemploy a reursive strategy.We an ontend ourself with not onstruting groups of instantiations, but ratherrepresentatives of suh groups, due to three observations. First, when we split agroup of temporally allowable instantiations on some time variable T , we knowthat the instantiations in the group all agree on the struture of the deisions prior



2.3 Temporal Ordering in IDITs 45to T , and it, thus, does not matter if we hose a single representative for this.Seond, onsider the group of temporally allowable instantiations orrespondingto one of the subgroups of instantiations | say, those where T is instantiatedto a value in [t1; t2℄ [ � � � [ [tn�1; tn℄, where i < j implies ti � tj : No matterwhat value in this interval we hoose to instantiate T to, the ordering of deisionsprior to the �rst time variable following T will be the same. Likewise, for thesets of observed variables. Finally, when T is instantiated to some value t0, thepossible values of instantiated time variables, following T in the temporal order ina temporally allowable instantiation, are limited to those in [t0;1[. Therefore, byhoosing to instantiate T to the lowest possible value, t1, the set of possible valuesof following time variables enompass the possible values had we hosen any othert0 in [t1; t2℄ [ � � � [ [tn�1; tn℄. Thus, by hoosing the lowest possible value for a splitvariable, it suÆes to use a representative from a group of instantiations.Although we use the \lowest possible value", or equivalently, the minimal elementof a set, as instantiation value in this method, some intervals, suh as ℄4; 5[ have nominimal element. In suh a ase, we hoose to use the abstrat \value" ℄4, meaningthe number whih is less than any number in [4;1[ exept for 4 whih it is greaterthan, as instantiation value. That this \value" do not have the properties of realnumbers, suh as the ability to be a part of a sum or multipliation, does not hinderus from using it in this ase, as all we are using it for, is omparisons.This setion onludes our desription of IDITs and the semantis used in thisreport. We have desribed the representation language both in its original form andwith some alterations that enhanes the language. In the remainder of the reportwhen we refer to IDITs, we are referring to the representation language de�ned inSetion 2.2, and when we use temporal orderings of nodes, we are referring to thesemantis introdued in this setion.
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Chapter 3
Solutions to IDITs
So far no method for solving deision problems modelled with the IDIT represen-tation language has existed. In this hapter we desribe a method, whih solves asubset of these, and apply it in an example. The hapter is divided into three se-tions. Setion 3.1 is a general disussion of what a solution to a deision problemis. Setion 3.2 is a desription of what it means to solve an IDIT in partiular, andSetion 3.3 presents the method we have devised for solving IDITs, as well as theexample of this.3.1 Solutions to Deision ProblemsThe purpose of the representation language IDITs is primarily to be a standard, inwhih deision problems involving time an be modelled ompatly and unambigu-ously, and for whih the models an easily be interpreted by human beings. In short:Supplying a means for disussing and ommuniating deision problems in a soundmanner. Furthermore, the representation language has a syntax and semantis, whihallow models to be fed to a omputer. One a deision problem has been modelledby an IDIT, it is, therefore, possible to have methods that, given the model, anreason about the problem. One method, whih is strongly desirable, is an automatedsolution method. Solution, in this ase, meaning a presription for whih hoiesa deision taker should hoose at the various deisions, given previous observationsand hoies, in order to maximize his expeted utility. We formalize this notion usingterms and onepts traditionally used in desribing solutions to deision problems.47



48 Chapter 3. Solutions to IDITsThe formalization given in this setion is written in general and abstrat terms, inorder to allow the reader to fous on what the essene of a solution is, instead ofdetails pertaining to solutions of IDITs. In Setion 3.2 we transform the oneptsand terms into IDIT spei� equivalents, whih take advantage of the informationon strutural onstraints that an IDIT ontains.As the term \deision problem" is unspei�ed at this point, we briey list whatwe onsider the bare essentials of a deision problem in this general disussion. Adeision problem, P, ontains a set of hane variables, V PC , and a set of deisionvariables, V PD, olletively denoted V P . We allow eah variable to be ontinuous ordisrete. In addition to the variables, P must speify a probability distribution forthe hane variables given the deisions, i.e. P (V PC jV PD), and a utility funtion overthe state spae of all variables, uP : sp(V P) ! R. The semantis of these oneptsare similar to the ones spei� to IDITs given in Setion 2.1. Notie that a deisionproblem, in this ontext, ontains no information on when a variable an be observedduring the deision proess, or whether it an be observed at all. Furthermore, itsays nothing about the ordering of deisions, or assumptions on no-forgetting andno-delay. It is merely a desription of what possible states of the world this problemis de�ned over, whih parts are under diret ontrol by the deision taker, how likelythe remaining parts are, and how valuable eah on�guration of variables is to thedeision taker. An example of a deision problem ould, thus, be the farming prob-lem, desribed in Example 1, stripped of any ordering information.Before de�ning what a solution to a deision problem is, we introdue its onstituentelements.De�nition 3.1Let D be a deision variable in a deision problem, P, and P a subset of V P n fDg.Then a funtion ÆD : sp(P )! sp(D) is alled a poliy for D given P .Intuitively, we may think of a poliy, ÆD : sp(P ) ! sp(D), as a funtion, whihgiven a on�guration over a set of variables observed or deided upon in the past, P ,yields a hoie from the deision D. An example of a poliy for the deision variableTe in Example 1 given We1 ould be a funtion, whih yields the hoie order test,if We1 is muh, and do not order test if We1 is little. Another example of a poliyfor Te, ould be a funtion whih yields do not order test if Ha is quik and We2is little, and order test for all other on�gurations of the two variables. This latterexample would have no value for a deision taker, though, as both variables annotbe observed when deiding upon Te. The latter poliy is rendered invalid by the



3.1 Solutions to Deision Problems 49ordering onstraints given in the IDIT. Generally, we say that under an ordering, /,over the variables in a deision problem, P, a poliy, ÆD : sp(P )! sp(D), is valid iffor any variable X in V P , we have that X is in P if and only if P /D. In Example 1the poliy just desribed is, thus, not valid under the ordering �0.In order to identify valid poliies for a deision problem, P, we assume that a on-�guration, ~, over the variables in V P uniquely determines the ordering of thesevariables. That is, we an de�ne a funtion, oP : sp(V P) ! OP , where OP is theset of all possible ordering of the variables in V P , yielding the ordering of variablesgiven a on�guration over these. In IDITs, for instane, the ordering of variables anbe found from the on�guration of time variables.Next, we de�ne the formal equivalent of the previously mentioned presription.De�nition 3.2Let P be a deision problem and / some ordering over the variables in V P . Then aset [D2V PDfÆD : sp(fX 2 V P jX / Dg)! sp(D)g;is a strategy for P under the ordering /. We denote this SP/ .A strategy for a deision problem under some ordering is, thus, a set of valid poliies:One for eah deision and the set of past variables for this deision. Given a deisionproblem, P, we all a set, [/2OP SP/ ;a strategy for P. The poliies in a strategy SP whih are valid under some ordering,/, we also denote SP/ . In the report, we denote the set of all strategies for a deisionproblem, P, as �P .In order to desribe the impat of poliies and strategies on the expeted utilityof a deision problem, we introdue poliy-indued probability distributions. Thisonept is of a similar nature to the probabilities of future deisions presented in[Nilsson and Jensen, 1999℄.De�nition 3.3Let ÆD be a poliy for a deision variable, D, given a set of past variables, P , in adeision problem, P. Then the probability distribution, PÆD(DjP ), de�ned asPÆD(dj~p) = ( 1 if ÆD(~p) = d0 otherwise;



50 Chapter 3. Solutions to IDITswhere d is in sp(D) and ~p is in sp(P ), is the ÆD-indued probability distribution.The ÆD-indued probability distribution, thus, represents the probability of the de-ision D, given the set of variables P , if D is deided upon by a deision taker whofollows ÆD.We extend the onept of poliy-indued probability distributions to strategy-indued probability distributions under some ordering.De�nition 3.4Let SP/ be a strategy under some ordering, /, for a deision problem, P, with prob-ability distribution P (V PC jV PD). The probability distribution,PSP/ (V P) = P (V C jV D) YÆD:sp(P )!sp(D)2SP/ PÆ(DjP );is then alled the SP/ -indued probability distribution.Thus, a strategy-indued probability distribution under some ordering is a jointdistribution over hane and deision variables reeting the probability of these,given that the deisions are deided upon by a deision taker, whih follows thatstrategy and that the ordering of variables is the one the strategy is spei�ed over.In the beginning of this setion, we briey stated that a solution to a deision problemwas a presription for hoies at all deisions given previous hoies and observations.With the onepts introdued above we an de�ne this preisely.In the de�nition below, and heneforth, we use a #-notation on real-valued funtions.For the funtion f : sp(Z = C [D) ! R, where the variables in C are ontinuousand the variables in D are disrete, the expression f(Z)#Z� , where Z� is a subsetof Z, denotes the funtion f� : sp(Z�)! R wheref�(~z) = X~d2sp(DnZ�) Zsp(CnZ�) f(~d;~; ~z)d~;for all ~z in sp(Z�). We say that f� is the projetion of f down-to Z�. If Z� is theempty set, then f(Z)#Z� is a onstant.De�nition 3.5Let P be a deision problem. Then an optimal strategy for P isarg maxS2�P �PSPoP (V P )(V P) � uP(V P)�#? :



3.2 Solutions to IDITs 51
The quantity, that is sought maximized, is denoted the expeted utility of P underthe ordering oP(V P) given S. As an o�shoot of this de�nition, we de�ne an optimalpoliy to be a poliy, whih is part of an optimal strategy. Given a deision problemwe also designate an optimal strategy as a solution to the deision problem. Theproess, in whih a solution to a deision problem is obtained, we all solving thedeision problem, and a method for doing this we all a solution method .
3.2 Solutions to IDITsThe onepts introdued in the previous setion were given in order to present asmooth transition from the rather asual, but intuitive, initial de�nition of what itmeans to solve a deision problem, to the mathematial ogent de�nition presentedin De�nition 3.5. However, as the de�nitions given are abstrat and general, theyalso fail to take advantage of the additional information ontained in an IDIT ofa deision problem. An IDIT ontains information on informational preedene,ordering onstraints on deisions, probabilisti independenies among variables, aswell as a deomposition of the total utility funtion. In this setion we exploit someof this information and present a set of IDIT spei� de�nitions, whih render theeventual task of solving the deision problem easier.Required PoliiesThe de�nition of a solution given in Setion 3.1 reets that a presription forhoies given previous hoies and observations, at the fae of it, would need to takeinto aount all orderings of variables. However, if a deision problem is modelled asan IDIT, the set of possible orderings are drastially redued, as non-guarded arsin the diagram allow us to determine ordering restritions between variables.For instane, in Example 1, a poliy for the deision Spr given the set of variablesfend(Spr 0);Wf g would not make any sense. Both as the variable Wf annot beobserved before Spr is deided upon, and as knowing end(Spr 0) would, beause ofno-forgetting, imply that the variables Spr 0, Te, and We1 are also known. The sets



52 Chapter 3. Solutions to IDITsfend(Spr 0);Spr 0;Te;We1g and fend(Spr 0);Spr 0;Te ;We1;Reg are the only possiblesets of known variables when deiding upon Spr . Whether or not Re is observed,depends solely on the value of end(Spr 0). Consequently, we de�ne a required poliyfor an IDIT:De�nition 3.6Let ÆD be a poliy for a deision, D, in an IDIT, I. Then we all ÆD a required poliyfor I if there is a temporally allowable instantiation, I[X 7! ~x℄, suh that ÆD is validunder �0I[X 7!~x℄.In other words, only if there exists some genuine situation, in whih a poliy isneeded, do we require it to be spei�ed in a strategy for the IDIT.Identifying required poliies is not always easy, though, as guarded information arsan be inherited by subsequent deisions and the truth values of some guards mightimply spei� truth values of others, as noted in Setion 2.3. However, these stru-tural hanges are all funtions of time variables, and in order to see whether a poliyis required, it, therefore, suÆes to onsider instantiations of time variables only.Thus, the set of required poliies onstituting a strategy, S, for an IDIT, I, is[~t2sp(V IT ) [D2V DfÆD : sp(P I;D;~t)! sp(D)g;where P I;D;~t = fX 2 V I jX �0I[V IT 7!~t℄ Dg:In what follows, we use the short hand notation SoI(~t) to mean SI/ , where / is someordering onsistent with �0I[V IT 7!~t℄.Clearly, the sets of poliies in SoI(~ti) and SoI(~tj), where ~ti 6= ~tj, for some strategy S,would for many on�gurations, ~ti and ~tj, be the same. For instane, a strategy, S,for the IDIT in Figure 2.5 would onsists of the poliiesÆD1 : sp(?)! sp(D1);ÆD2 : sp(fD1; end(D1);D3; C2g)! sp(D2); andÆD3 : sp(fD1; end(D1)g)! sp(D3);



3.2 Solutions to IDITs 53for any of the on�gurations of time variables where end(D1) is less than 5. In orderto utilize these similarities, we need to group the instantiations of time variables intosets of instantiations, whih share a similar struture. Suh a grouping is performedby Method 2.10, and in the next setion we show how it an be used in the ontextof �nding an optimal strategy for an IDIT.As for deision problems in general, an optimal strategy for an IDIT is a strat-egy, whih maximizes the expeted utility. However, we an express this more on-isely by using the fatorization of probability distributions and utility funtionsstored in a realization. That is, an optimal strategy for an IDIT, I, with realization(�I ;	I ;�I ;�I ; ), isarg maxS2�I0B� Y�2�I � Y�2�I � YÆ2SoI(V IT )PÆ0� X 2	I  1A1CA#? :In the report, we regard two strategies for an IDIT, whih yield the same expetedutility, as equivalent.
Legal PoliiesPoliies, whih are de�ned over sets of variables that, due to observability, an neveronstitute sets of past variables, are not the only poliies that we an dismiss: Assumea deision, D, has a restrition funtion, rD, whih given some on�guration, ~p,over the variables P , prevents a hoie, d, to be taken when deiding upon D. Apoliy whih advises the deision taker to take hoie d, when observing that thevariables P is instantiated as ~p, is onsequently awed, as the advie annot befollowed. Therefore, we de�ne a legal poliy. In this de�nition, we use the #-operatoron on�gurations over variables. For a on�guration, ~z, over the variables Z, wedenote by ~z#Z0 , where Z 0 is a subset of Z, the on�guration over the variables in Z 0obtained from ~z by dropping oordinates of variables in Z nZ 0.De�nition 3.7Let ÆD be a poliy for a deision, D, with restrition funtion rD, given a set ofpast variables, P , in an IDIT, I. If, for all on�gurations, ~p, over P , ÆD(~p) is inrD(~p#dom(rD)), then we say that ÆD is a legal poliy.



54 Chapter 3. Solutions to IDITsC1 D1D2Figure 3.1: Not all poliies for D1 and D2 make sense.A strategy for an IDIT, whih onsists of only legal poliies, are said to be legal aswell. Thus, when searhing for an optimal strategy, S, for an IDIT, we must takeare not to inlude any poliies, whih are not legal, in it. By onsidering this priorto searhing for optimal strategies the searh spae is redued, and the searh is,potentially, more e�etive.Not only an we fous our attention on legal poliies, several of these poliies an bedisregarded as well. Consider the IDIT in Figure 3.1, where the state spaes of C1 isf1;:1g, the state spae of D1 is fd1;:d1g, and the state spae of D2 is fd2;:d2g.The restrition funtion for D1 is de�ned asrD1(1) = fd1;:d1gand rD1(:1) = fd1g:In this ase, two poliies for D1, ÆD1 and Æ0D1 , whereÆD1(1; d1) = Æ0D1(1; d1);ÆD1(1;:d1) = Æ0D1(1;:d1); andÆD1(:1; d1) = Æ0D1(:1; d1);but ÆD1(:1;:d1) 6= Æ0D1(:1;:d1);are equivalent advisers for a deision taker, as the only ase, in whih they di�er, isone that annot our.These restritions, arising from distinguishing between poliies that are legal andthose that are not, are utilized in the next setion, where we use an adaptation ofMethod 2.10 to solve an IDIT.



3.2 Solutions to IDITs 55Representing PoliiesHaving de�ned exatly what a solution to an IDIT is, we need to address afundamental problem before proposing a method for �nding it, namely how tohandle poliies over ontinuous variables. That is, whether suh poliies an have�nite representations. If it is not possible to do this, no solution method would ever�nish outputting a solution and no deision taker would be able to use it.Evidently, any strategy for an IDIT must ontain a �nite number of poliies, as thereis only a �nite number of deisions and a �nite number of ombinations of variables,whih an be past variables for deisions. Thus, we need only onern ourselveswith representing individual poliies in a �nite manner. In solutions for inuenediagrams, poliies have traditionally been stored as tables, with an entry for eahon�guration of the past variables, stating the poliy value of this on�guration.In IDITs, however, we need to deal with ontinuous variables, in the form of timevariables and wait deisions, and the table approah an, therefore, not be applieddiretly.Two approahes for representing poliies de�ned over ontinuous variables exists,though. Either the poliy an be stored as a �nite mathematial expression, orthe ontinuous variables in the domain an be disretized aording to their e�eton the poliy. Unfortunately, none of the approahes is ideal in all situations. Theproblem inherent in the former is that it might not always be possible to onstrutan expression, whih an be evaluated within a reasonable time frame. The problemassoiated with the latter is that the ontinuous variables in the domain of somepoliies might require an in�nite number of disretization intervals, for the poliiesto be represented in suÆient detail. However, in most ases we may settle for asatisfying solution. That is, storing a poliy, whih is not an optimal poliy, butwhih an be represented using disretization or as a relatively simple funtion, andwhih yields an expeted utility not substantially lower than the one o�ered byan optimal poliy. When dealing with points in time, it is quite reasonable to useapproximations: Initiating a deision at some exat point in time is rarely possibleand it might be hard to justify that a utility should yield radially di�erent valuesfor points in time lose to one another.However, not all ontinuous domains an easily be disretized. Example 1 providesan example of the requirement on in�nite disretization intervals. If we ignoreonepts suh as winter and life span of rops, and assume that, no matter whenthe farmer arrives at the Ha deision, he would gain maximum expeted utility by



56 Chapter 3. Solutions to IDITsharvesting, no matter the state of the rops and the weather, we need an in�nitenumber of disretization intervals for the poliy ÆHa : For eah possible pair ofstates, tSpr 0 and tHa0 , of end(Spr 0) and end(Ha 0), respetively, we need to storeeither a hoie quik or thorough or the hoie no harvesting, depending uponwhether the time span between the points in time tSpr 0 and tHa0 is more thanseven. No �nite disretization intervals for end(Spr 0) and end(Ha 0) an apturethis. In this ase, we an irumvent the problem by speifying the poliy over adisretization of the di�erene of the two variables in addition to disretizations ofthe variables themselves. A variable, suh as the di�erene between the value of twotime variables, whih is de�ned as a deterministi funtion of other variables, weall a derived variable.In this example the need for letting the poliy vary aording to a derived variablearose from the restrition funtion for the deision. In fat, the problem wesolved, through using derived variables, would also be present when speifyingthe restrition funtion, as part of the realization, in the �rst plae. In general, ifa restrition funtion for a deision is not onstant, we an onstrut a deriveddisrete variable, whih take on values orresponding to this funtion, and thereby,we an onlude that all poliies, whih di�ers due to a restrition funtion, an berepresented through this sheme. However, handling the derived variable in solutionmethods might not be as straightforward.In this report we make some assumptions that renders the possibility of twoontinuous variables in the domain of a poliy impossible. Therefore, we an restritourselves to poliies de�ned over one ontinuous variable. These we represent astables over the disrete variables in their domain, and with eah ell ontaining a�nite list of mutually exlusive and exhaustive intervals of the states in the statespae of the ontinuous variable, and a orresponding hoie from the deision.For wait deisions, we store eah hoie as a simple funtion of the value, t, of theontinuous variable, suh as k � t, where k is some onstant.Of ourse, even as we restrit our attention to poliies varying over one ontinuousvariable only, we still annot be sure that we an onstrut a �nite list of intervals,as there might be an in�nite number of intervals over whih the poliy di�ers, foreven this single variable. A solution is to divide the state spae of the ontinuousvariable into subsets, whih do not neessarily onstitute intervals, but this begsthe question as to whether these subsets an be desribed in a �nite manner. Weleave these problems, as fortunately, the workings of the solution method we presentguarantee a �nite number of intervals.



3.3 Solving IDITs 57
3.3 Solving IDITsIn this setion we present a method for solving IDITs, whih is an extension ofMethod 2.10. We introdue the method through an example, before presenting themethod in full.Introduing the ProblemThe method, we present in this setion, builds on the struture of the method ofsolving deision trees, the method for solving asymmetri inuene diagrams pre-sented in [Nielsen and Jensen, 2000℄, and the method for solving valuation networksgiven in [Demirer and Shenoy, 2001℄. The method presented here di�ers radially insome areas, though, most having to do with the ontinuous nature of time variables.As the method is a hybrid of elimination of variables and message passing in a splittree, it is not obvious why it identi�es in an optimal strategy. To better understandthe problems assoiated with elimination, whih is spei� to IDITs, we present arather elaborate example, whih should help the reader obtain some intuition on thestruture of the method and why it works, allowing him to fous on the details ofthe method presented later in this setion.The example involves a number of general observations. To better ommuniatethese, we employ a hange in typography when they arise and return to the stan-dard example typography again afterwards.Example 2The IDIT, we want to solve, is the IDIT, I, presented in Figure 3.2. It is a slightly alteredversion of the IDIT we used as example in presenting Method 2.10. The hanges, whihare the addition of the node C0 and the ars onneting it to D1, D2, and D3, have beenintrodued in order to render this example more interesting. We assume that all non-timevariables are binary and denote the states of a variable, X , as x and :x.The realization of I, we work with, onsists of the probability distributions given inTables 3.1(a) through 3.2(a), the restrition funtion given in Table 3.2(b), the utilityfuntion given in Table 3.3, and the density funtion for end(D1), whih is �2, with 5degrees of freedom if D1 is d1, and 10 degrees of freedom if D1 is :d1. A plot of the densityfuntions for end(D1) is shown in Figure 3.3.The realization is hosen somewhat arbitrarily, and no spei� semantis are given for thevariables. A pair of relationships warrants emphasizing, though: First, the utility funtion,
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D1 D2 D3

C1 C2
C0

U
t � 10t < 10t < 5

Figure 3.2: The IDIT we want to �nd an optimal strategy for.d1 :d10 0:2 0:7:0 0:8 0:3(a) d2 :d21 0:05 0:4:1 0:95 0:6(b)Table 3.1: (a): The probability distribution P (C0jD1). (b): The probability distributionP (C1jD2). d3 :d32 1 0:1:2 0 0:9(a) 0 fd2;:d2g:0 fd2g(b)Table 3.2: (a): The probability distribution P (C2jD3). (b): The restrition funtionrD2 : sp(C0)! 2sp(D2) n f?g. 1 :12 40 20:2 0 30Table 3.3: The utility funtion U .
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tFigure 3.3: The density funtions for end(D1). The fair line is 5 degrees of freedom,and the dark one is 10 degrees of freedomU , is strutured so that knowing the state of C2, when deiding upon D2, is desirable.Seond, the hoie of d1 in D1 yields a faster deision, whih in turn, renders the observationof C2 prior to deiding on D2 more likely. However, this would, most likely, also render thehoie :d2 impossible and, onsequently, the top utility of 40 unlikely. Thus, no andidate,for an optimal strategy, seems an obvious hoie, and this exerise is, therefore, not trivial.Solving IWhen identifying an optimal strategy, we start by limiting ourselves to the set ofstrategies, whih suit the information onstraints in the IDIT. As we mentioned inSetion 3.2, the trees onstruted by the method in Setion 2.3 allow us to identifywhih poliies are required for a strategy for a deision problem modelled as anIDIT. This is done through reating groups of instantiations of the IDIT, whihshare the same struture. In order to apture the onstraints imposed by restritionfuntions we need to expand on the method, suh that it onstruts trees, in whihthe groups of instantiations, not only share a ommon struture, but also share thesame state spaes of variables.It turns out that integrating splitting of deision senarios, aording to state spaesof variables, into the proess desribed in Method 2.10 is quite straightforward:Reall that Method 2.10 works its way through time variables in the order ditatedby �0. Whenever a time variable, T , is enountered, the proess splits the urrentgroup of deision senarios, aording to the value of T , and reursively invokesitself on the resulting groups. As mentioned, we need to split the groups of deision



60 Chapter 3. Solutions to IDITssenarios, aording to the state spaes of deisions in them, as well. Thus, we mustadjust Method 2.10 so that whenever it enounters a variable, whih a�ets the statespaes of subsequent deisions, it splits the group of deision senarios aordinglyand reurses. Fortunately, the group of deision senarios of a wellde�ned IDIT,handled in eah invoation of the method, are guaranteed to have the same orderingof deisions and observed variables prior to the �rst non-instantiated time variable,T 0. Therefore, if some of these variables are in the domain of some restritionfuntion, we an split the urrent group of deision senarios aording to how thesevariables a�et the state spae of the deisions, before handling T 0. In summary,there is little di�erene in how a variable in the domain of a restrition funtion anda time variable should be handled. Consequently, we refer to both kinds of variablesas split variables.
Example 2For the IDIT I we an identify two split variables: The time variable end(D1) and thevariables in the domain of rD2 , i.e. C0. We observe the ordering of split variables to beend(D1) �0 C0. Thus, we must start by splitting on end(D1). This task was performed inSetion 2.3, and the resulting tree, with the addition of C0, is displayed in Figure 3.4. Next,we split the deision senarios on C0 resulting in the tree shown in Figure 3.5. For ease ofreferene we have labelled the IDITs in the individual nodes, suh that IDIT Ixy is the IDITfound as the y'th hild of the x'th hild of the root, and IDIT Ix is the x'th hild of theroot. Although the leaf nodes pairwise seem to ontain similar IDITs, the state spaes of D2di�er: In the ones, where C0 is instantiated to 0, the state spae of D2 onsists of d2 and:d2, and in the ones, where C0 is instantiated to :0, the state spae of D2 onsists only ofd2.We end up with six groups of deision senarios ontaining deisions with similar statespaesand similar ordering of variables:f~z 2 sp(V I)j~z#fend(D1)g 2 [0; 5[ and ~z#fC0g = 0g = I11;f~z 2 sp(V I)j~z#fend(D1)g 2 [0; 5[ and ~z#fC0g = :0g = I12;f~z 2 sp(V I)j~z#fend(D1)g 2 [5; 10[ and ~z#fC0g = 0g = I21;f~z 2 sp(V I)j~z#fend(D1)g 2 [5; 10[ and ~z#fC0g = :0g = I22;f~z 2 sp(V I)j~z#fend(D1)g 2 [0;1[ and ~z#fC0g = 0g = I31; andf~z 2 sp(V I)j~z#fend(D1)g 2 [10;1[ and ~z#fC0g = :0g = I32;where the orderings are �0I11 , �0I12 , �0I21 , �0I22 , �0I31 , and �0I32 , respetively. In the rest ofthis example, we let ÆS;IjkDi denote the poliy for Di under the ordering of variables �0Ijk inthe strategy S.
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Figure 3.4: The tree onstruted from I by splitting on end(D1).
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Figure 3.5: The tree onstruted from I by splitting �rst on end(D1) and then C0.



3.3 Solving IDITs 63We turn out attention to the expression for an optimal strategy, S0, for I:S0 =arg maxS2�I0B� Y�2�I � Y�2�I � YÆ2SoI (V IT ) PÆ0� X 2	I  1A1CA#?=arg maxS2�I Z 1�1 XxC02sp(C0) XxC12sp(C1) XxC22sp(C2) XxD12sp(D1) XxD22sp(D2) XxD32sp(D3)f(xend(D1)jxD1 )P (x0 jxD1)P (x1 jxD2)P (x2 jxD3)� PÆS;I[end(D1)7!xend(D1)℄D1 (xD1 jxC0 ; xC1 ; xC2 ; xD2 ; xD3 ; xend(D1))� PÆS;I[end(D1)7!xend(D1)℄D2 (xD2 jxC0 ; xC1 ; xC2 ; xD1 ; xD3 ; xend(D1))� PÆS;I[end(D1)7!xend(D1)℄D3 (xD3 jxC0 ; xC1 ; xC2 ; xD1 ; xD2 ; xend(D1))� U(xC1 ; xC2)dxend(D1):As the ordering of D1 and end(D1) relative to every other variable is the same in all sixgroups of deision senarios identi�ed above, we may rewrite the expression above toS0 =arg maxS2�I XxD12sp(D1)PSÆD1 (xD1 ) Z 1�1 f(xend(D1)jxD1) XxC02sp(C0)P (x0 jxD1)XxC12sp(C1) XxC22sp(C2) XxD22sp(D2) XxD32sp(D3)P (x1 jxD2)P (x2 jxD3)� PÆS;I[end(D1)7!xend(D1)℄D2 (xD2 jxC0 ; xC1 ; xC2 ; xD1 ; xD3 ; xend(D1))� PÆS;I[end(D1)7!xend(D1)℄D3 (xD3 jxC0 ; xC1 ; xC2 ; xD1 ; xD2 ; xend(D1))� U(xC1 ; xC2)dxend(D1):We hose to split this sum into six parts, eah orresponding to one of the groupings ofdeision senarios identi�ed above, by splitting the integration interval and unfolding the



64 Chapter 3. Solutions to IDITssum over states of C0.S0 =arg maxS2�I XxD12sp(D1)PSÆD1 (xD1) Z 5�1 f(xend(D1)jxD1)�P (0jxD1)XxC12sp(C1) XxC22sp(C2) XxD22sp(D2) XxD32sp(D3)P (x1 jxD2 )P (x2 jxD3)� PÆS;I11D2 (xD2 j0; xC2 ; xD1 ; xD3 ; xend(D1))PÆS;I11D3 (xD3 j0; xD1 ; xend(D1))� U(xC1 ; xC2)�+�P (:0jxD1 ) XxC12sp(C1) XxC22sp(C2)XxD22sp(D2) XxD32sp(D3)P (x1 jxD2 )P (x2 jxD3)� PÆS;I12D2 (xD2 j:0; xC2 ; xD1 ; xD3 ; xend(D1))PÆS;I12D3 (xD3 j:0; xD1 ; xend(D1))� U(xC1 ; xC2)�dxend(D1)+... ...+ Z 110 f(xend(D1)jxD1 )�P (0jxD1 )XxC12sp(C1) XxC22sp(C2) XxD22sp(D2) XxD32sp(D3)P (x1 jxD2 )P (x2 jxD3)� PÆS;I31D2 (xD2 j0; xD1 ; xend(D1))PÆS;I31D3 (xD3 j0; xD1 ; xD2 ; xend(D1))� U(xC1 ; xC2)�+�P (:0jxD1 ) XxC12sp(C1) XxC22sp(C2)XxD22sp(D2) XxD32sp(D3)P (x1 jxD2 )P (x2 jxD3)� PÆS;I32D2 (xD2 j:0; xD1 ; xend(D1))PÆS;I32D3 (xD3 j:0; xD1 ; xD2 ; xend(D1))� U(xC1 ; xC2)�dxend(D1)!: (3.1)At this point the struture of the expression, we need to maximize, is similar to that of thesplit tree in Figure 3.5. We have not used any speial properties of the involved funtions,whih suggests that a splitting of the expeted utility of any IDIT, an be onstruted in asimilar fashion.



3.3 Solving IDITs 65d2 :d22 21 28:2 28:5 18Table 3.4: The utility funtion U�.At this point we need to alulate the sums in the six subexpressions, of whihXxC12sp(C1) XxC22sp(C2) XxD22sp(D2) XxD32sp(D3)P (x1 jxD2)P (x2 jxD3)� PÆS;I11D2 (xD2 j0; xC2 ; xD1 ; xD3 ; xend(D1))PÆS;I11D3 (xD3 j0; xD1 ; xend(D1))� U(xC1 ; xC2) (3.2)is one, before we an move on to summing over C0 and D1 and integrating over end(D1).This is no oinidene. If we study the IDITs in the leaves of the split tree in Figure 3.5,C0, D1, and end(D1) are all either instantiated or prior to an instantiated variable in theordering �0I . Variables whih are neither instantiated nor prior to an instantiated variablein an IDIT, I, we all free variables . We fous on the subexpression in (3.2), where the freevariables, thus, are C1, C2, D2, and D3. By rearranging sums we getXxD32sp(D3)PÆS;I11D3 (xD3 j0; xD1 ; xend(D1)) XxC22sp(C2)P (x2 jxD3)� XxD22sp(D2)PÆS;I11D2 (xD2 j0; xC2 ; xD1 ; xD3 ; xend(D1)) XxC12sp(C1)P (x1 jxD2 )U(xC1 ; xC2):(3.3)Thus we must sum over variables in the order C1, D2, C2, and then D3. This ordering isonsistent with the inverse of �0I11 .Elimination of VariablesWe evaluate the the sub expressionXxC12sp(C1)P (xC1 jxD2)U(xC1 ; xC2)right away, and get a utility funtion, U�, de�ned over C2 and D2. U� is shown in Table 3.4.This we refer to as marginalizing out C1 or, equivalently, eliminating C1 from I11.Replaing XxC12sp(C1)P (xC1 jxD2)U(xC1 ; xC2)



66 Chapter 3. Solutions to IDITswith U�(xC2 ; xD2) we getXxD32sp(D3)PÆS;I11D3 (xD3 j0; xD1 ; xend(D1)) XxC22sp(C2)P (x2 jxD3)� XxD22sp(D2)PÆS;I11D2 (xD2 j0; xC2 ; xD1 ; xD3 ; xend(D1))U�(xC2 ; xD2):To �nd a poliy PÆS;I11D2 whih maximizes this expression for all states of D1, all states ofend(D1) in [�1; 5[, and C0 being 0, we an fous on the last part of the expression:XxD22sp(D2)PÆS;I11D2 (xD2 jD1; end(D1); 0; xC2 ; xD3)U�(xC2 ; xD2): (3.4)This is equivalent to the expressionU�(xC2 ; ÆS;I11D2 (D1; end(D1); 0; xC2 ; xD3));so, in order to maximize it, we an writemaxd2sp(D2)U�(xC2 ; d);whih yield a value of 28 if xC2 is 2 and 28:5 otherwise. The orresponding states of D2 anbe found by arg maxd2sp(D2)U�(xC2 ; d);yielding the hoie :d2 in ase that C2 is 2, and d2 otherwise. Hene, we have identi�ed apoliy whih maximizes (3.4):ÆS;I11D2 (D1; end(D1); C0; C2; D3) = ( d2 if C2 = :2:d2 if C2 = 2:No matter how the remaining parts of (3.3) may evaluate, this poliy must be part of anoptimal strategy. This is beause it is onditioned on end(D1) being less than 5 and C0being 0 and, thus, only a�ets the part of Equation (3.1) that onstitutes (3.4), whih itmaximizes.By substituting the expression in (3.4) with a utility funtion over C2, whih yields the value28 if C2 is 2 and 28:5 if C2 is :2, we an disregard D2 in (3.3), heneforth. We refer to thisas marginalizing D2 out, or eliminating D2 from I11. Note that the proess of marginalizingout a deision is, thus, di�erent from that of marginalizing out a hane variable. In theformer we maximize over states and in the latter we sum. Furthermore, in the former wenote, for eah on�guration of past variables, the state whih yields the maximum utility.Continuing eliminating free variables in I11 in the same manner, we must marginalize out,�rst C2, and then D3. We skip the details, whih are similar to those for marginalizing out



3.3 Solving IDITs 67C1 and D2, and simply state that the resulting optimal poliy isÆS;I11D3 (D1; end(D1); C0) = :d3;meaning that as long as end(D1) is less than 5 and C0 is 0 we should always hoose :d3 atD3. The expeted utility of this is 28:45, whih an easily be veri�ed.The proess just desribed orresponds to traditional elimination of variables in an inuenediagram. Atually, it orresponds exatly to eliminating variables from I11 interpreted as aninuene diagram. We an perform similar proesses on the IDITs in the remaining leavesof the split tree. The resulting expression isS0 =arg maxS2�I XxD12sp(D1)PSÆD1 (xD1 ) � Z 5�1 f(xend(D1)jxD1)�P (0jxD1) � 28:5�+ �P (:0jxD1) � 27:75�dxend(D1)�+ Z 105 f(xend(D1)jxD1)�P (0jxD1 ) � 28:2�+ �P (:0jxD1) � 26:5�dxend(D1)�+ Z 110 f(xend(D1)jxD1)�P (0jxD1 ) � 28:2�+ �P (:0jxD1) � 26:5�dxend(D1)!:We say that the maximum expeted utilities of the IDITs in the leaves of the split tree, havebeen absorbed into the IDITs in the internal nodes of the tree. Notie that the maximumexpeted utilities absorbed from the leaves orresponding to end(D1) being greater than 5,are the same. This is beause, in both ases, no information is obtained by the deision takerbetween deiding upon D2 and D3, and the ordering of the two, therefore, does not a�etthe resulting utility.



68 Chapter 3. Solutions to IDITsNext, we eliminate C0, whih results in the following expressionS0 =arg maxS2�I=PSÆD1 (d1) Z 50 f(xend(D1)jd1)27:89dxend(D1)+Z 105 f(xend(D1)jd1)27:8dxend(D1)+Z 110 f(xend(D1)jd1)27:8dxend(D1)!+PSÆD1 (:d1) Z 50 f(xend(D1)j(:d1)28:24dxend(D1)+Z 105 f(xend(D1)j(:d1)27:925dxend(D1)+Z 110 f(xend(D1)j(:d1)27:925dxend(D1)!: (3.5)Aording to the temporal order, �0, we should next eliminate end(D1). Studying theexpression in Equation (3.5), however, reveals that this is no easy task. Even though wean move the onstants outside the integrals, we are still left with evaluating integrals overthe density funtion of end(D1). As end(D1) follows a �2-distribution, of whih no knownlosed form expression, presently, exists[Nist, 2003℄, this is impossible.

As we are really not that interested in the atual maximum expeted utility of I,but rather a strategy whih maximizes this, we an employ approximation tehniquesinstead. One suh tehnique is sampling, in whih we, for eah possible poliy, ÆD1 ,



3.3 Solving IDITs 69sample the value ofPÆD1 (d1) Z 50 f(xend(D1)jd1)27:89dxend(D1)+Z 105 f(xend(D1)jd1)27:8dxend(D1)+Z 110 f(xend(D1)jd1)27:8dxend(D1)!+PÆD1 (:d1) Z 50 f(xend(D1)j(:d1)28:24dxend(D1)+Z 105 f(xend(D1)j(:d1)27:925dxend(D1)+Z 110 f(xend(D1)j(:d1)27:925dxend(D1)!;a �xed number of times. Then we alulate the average of the samples taken foreah poliy and hoose the poliy with the maximum average as the optimal one. Aproblem arising from applying this tehnique is that it assumes a �xed on�gurationof past variables. If there would happen to be some time variable, T , in the past ofD1, we would, theoretially, need to sample for an in�nite number of on�gurationsof past variables, whih is a perpetual task. This ould be remedied by disretizingT , but the hoie of disretization intervals of T is not obvious. Furthermore, thetehnique an be time and spae onsuming, as the number of samples in someases would need to be high in order to obtain a satisfying degree of on�denein the result. [Charnes and Shenoy, 2003℄ present a method that utilizes samplingfor inuene diagrams, whih ould allow disretization of time variables to be of�ne granularity, while leaving the alulation of expeted utility omputationallyfeasible. [Broe and Jeppesen, 2003℄ presents a solution method for IDITs utilizingsampling.A more rude approah is to only allow integrable density funtions for timevariables. Furthermore, we would have to require that the resulting funtionsfrom integrating over these would be integrable too. Similarly, all kinds of utilityfuntions, whih ould arise during elimination of variables, should be integrable.Clearly, this approah limits the number of deision problems that an be spei�edand solved using IDITs severely.A more exible take on this last approah is to approximate all ontinuous funtionsby polynomials, as these are in�nitely integrable, and sums and produts of poly-nomials are polynomials as well. The proess of onverting an arbitrary ontinuousfuntion to a polynomial an be time onsuming, though, and some funtions



70 Chapter 3. Solutions to IDITswould need to be approximated by polynomials of a very high degree, implyingrequirements on time and spae for a solution method. However, approximationusing polynomials has some advantages as well, most having to do with avoidane ofdisretization issues. When we approximate using polynomials we need to be awareof the nature of these when the variable in their domain goes to in�nity or minusin�nity. In most ases the value of the polynomial will go to either in�nity or minusin�nity as well. Therefore, we must limit the areas of integration. For most deisionproblems the span of time is assumed to start at some onstant, suh as 0, and thelower limit is therefore not a problem.Example 2In order to round o� this example, we hoose to approximate the density funtions forend(D1) by polynomials, and limit the areas of integration to the values in [0; 40℄. Theresulting expression isS0 =arg maxS2�IPSÆD1 (d1) � (0:58 � 27:89 + 0:34 � 27:8 + 0:07 � 27:8)+PSÆD1 (:d1) � (0:11 � 28:24+ 0:45 � 27:925+ 0:42 � 27:925)= arg SmaxS2�I PÆD1 (d1) � 27:57 + PSÆD1 (:d1) � 27:40:Thus, the optimal poliy for D1, is to hoose d1, although the expeted utility of hoosing:d1 is roughly the same.Preliminaries for the Solution MethodThe purpose of the example just given was to introdue the main struture of thesolution method, and to hint at why it identi�es an optimal strategy when invokedon an IDIT. However, several problems arising from eliminating variables in IDITshave not been touhed upon during the example. We do so, as they beome relevantin the presentation of the method below, and hope that the reader, through theexample, has obtained the breath of view neessary to fous on these details insteadof the overall struture of the method. The solution method desribed here solvesonly a subset of IDITs. Throughout the desription below we need to introdue aset of assumptions. Whenever this need arises we emphasize the assumption in aparagraph by itself and omment on the restritions it implies. Before we presentthe method, some preliminaries need to be laid down, though.



3.3 Solving IDITs 71As the elaborate example, onerning solution of the IDIT in Figure 3.2, showed,we have to handle situations in whih a utility funtion over a time variable is onlypieewise ontinuous. We introdue a set of formal notation and some onepts forhandling suh funtions. We start by de�ning a partition of the real numbers as a�nite subset of the real numbers, I = fa1; : : : ; an+1g, where i < j implies ai < aj ,and say that it generates a series of n+ 2 intervals,℄�1; a1[; [a1; a2[; : : : ; [an; an+1[; [an+1;1[:We refer to an interval, [ai; ai+1[, as the i'th interval of I. The series of intervalsgenerated by the empty set onsists of a single interval, ℄�1;1[. We use the notationI<x to denote the number of elements in I whih are smaller than or equal to x.For example, we have that the partition I = f2; 7g generates the intervals ℄�1; 2[,[2; 7[, and [7;1[, and that I<4 is 1 and I<7 is 2. We thus have the relationship: If xis in [ai; ai+1[ then I<x is i.Let If 0 = fa1; : : : ; an+1g be a partition and (f0 : R ! R; : : : ; fn+1 : R ! R) a seriesof ontinuous funtions. Then the funtion f 0 : R ! R, where
f 0(x) = 8>>>>>>><>>>>>>>:

f0(x) if x 2℄�1; a1[f1(x) if x 2 [a1; a2[... ...fn(x) if x 2 [an; an+1[;fn+1(x) if x 2 [an+1;1[;is the pieewise ontinuous funtion over the partition If 0 of the funtions(f0; : : : ; fn+1). We use subsripts on f 0 to aess the funtions in (f0; : : : ; fn+1),i.e. f 0i denotes the funtion fi. As an example, we have plotted part of thepieewise ontinuous funtion, f , over the partition If = f2; 7g of the funtions(0:5x + 2; 10=x;�0:15x2 + 15) in Figure 3.6Notie that we have hosen to have all intervals of the form [a; b[, instead of, say,℄a; b℄. That is, the utting point on the real line is always inluded in the intervalontaining the higher numbers. This is a notational onvenient onvention and inall intents and purposes does not a�et the reasoning presented, as the intervals areused only as boundaries of integral domains. Considered from a di�erent perspetive,we an also argue that, as time variables are ontinuous, the probability of a deisionsenario, in whih a time variable takes on a spei� point in time is zero, and thus,it does not matter whih group of deision senarios it is inluded in.
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Figure 3.6: A pieewise ontinuous funtion.During the solution proess we need to alulate sums of pieewise ontinuous fun-tions. Addition of pieewise ontinuous funtions are somewhat umbersome. Oneneeds to take into aount that they might not be de�ned over the same intervals:Let f and f 0 be pieewise ontinuous funtions over the partitions If and If 0 , respe-tively. Then the sum f + f 0 is the pieewise ontinuous funtion over the partitionIf+f 0 = If [ If 0 = fa1; : : : ; an+1g; of the funtions(f + f 0)i = fI<aif + f 0I<aif 0 ;for all i in f1; : : : ; n + 1g, and (f + f 0)0 = f0 + f 00. Notie that if we regard anyontinuous funtion, f, as being pieewise ontinuous over the partition ? and f0being f, then the above de�nition orresponds to the standard de�nition of the sumof two ontinuous funtions. Furthermore, a sum of a pieewise ontinuous funtion,f , and a ontinuous funtion, f, results in a pieewise ontinuous funtion, f + f,over the same de�ning intervals as f , with eah (f+f)i being f+fi. The produt ofpieewise ontinuous funtions are de�ned analogous to the sum, exept that multi-pliation of individual funtions are applied instead of addition. Thus, we may in allmatters regard ontinuous funtions as pieewise ontinuous funtion, and therefore,do not distinguish between them during manipulation of utilities.Given a pieewise ontinuous funtion, f , we, furthermore, de�ne the short hand no-



3.3 Solving IDITs 73tation f#[a;b[ to mean the produt f � g, where g is the pieewise ontinuous funtionover the partition Ig = fa; bg of (g0 = 0; g1 = 1; g2 = 0). Intuitively, f#[a;b[ takes onthe value of f in the interval [a; b[ and the value 0 everywhere else. We denote it asthe projetion of f down-to the interval [a; b[.The main idea of the solution method is to approximate ontinuous funtions bypolynomials, as manipulations of these, suh as addition, multipliation, and di�er-entiation, an be arried out mehanially. We work with polynomials over one ortwo variables. A polynomial, p, of degree n over one variable, x, is de�ned asp(x) = nXi=0 C[p℄ixi;where C[p℄0; : : : ; C[p℄n are real numbers, whih we all oeÆients. TheC[funtion-name℄-notation we use throughout the report when dealing with poly-nomials. Similarly, a polynomial, p, of degree (n;m) over two variables, x and y, isde�ned as p(x; y) = nXi=0 mXi=0 C[p℄ijxiyj ;where C[p℄00; : : : ; C[p℄nm are real numbers.As stated in Chapter 1, we employ approximation in the form of Taylor's series. Wede�ne these formally, and refer the interested reader to [Apostol, 1974℄ for furtherinformation on them.
De�nition 3.8Let f be a funtion, whih is in�nitely di�erentiable over the interval [a; b℄. Then theTaylor's series of f on [a; b℄ about a point, , in [a; b℄ is the polynomial1Xi=0 f (i)()i! (x� )i;where f (i)() is the i'th derivative of f at .



74 Chapter 3. Solutions to IDITsThe point  is usually alled the point of expansion of the series.As we annot deal with in�nite polynomials, we utilize that we an rewrite1Xi=0 f (i)()i! (x� )i = nXi=0 f (i)()i! (x� )i + 1Xj=n+1 f (j)()j! (x� )j= nXi=0 f (i)()i! (x� )i + rn(x):It an be shown [Apostol, 1974℄ that limn!1 rn(x) = 0, if there exists some onstant,k, suh that jf (n)(x)j � kn, for all x in the interval [a; b℄. Therefore, when dealingwith utility and density funtions, for whih this is true, we an hose a Taylor'sseries of a �nite degree as an approximation to the original funtion. Throughoutthe remainder of the report we assume all Taylor's series are of a �xed degree, N .This disussion imposes the following assumption on the given utility and densityfuntions, as well as probability distributions dependent on time variables:Assumption 1Any density funtion for a time variable, utility funtion over a time variable, orprobability distribution with a time variable in its domain, f : sp(Z)�R ! R, mustbe di�erentiable an arbitrary number of times with respet to the time variable.Furthermore, for eah on�guration ~z of the variables in Z, there must exist someonstant, k, suh that jf(~z)(n)(x)j � kn, for all x in R.This assumption is rather strit, but due to an additional assumption, introduedbelow, we an loosen it a bit.Of ourse, an approximation, f 0, of a density funtion, f , rarely is a density funtionitself, i.e. R1�1 f 0(t)dt do not neessarily evaluate to 1. The approximation an betransformed into a density funtion by dividing eah oeÆient of f 0 by R1�1 f 0(t)dt,though. Suh an operation we refer to as normalizing f 0. Similarly, the Taylor seriesof a probability distribution, P (CjD; T ) for a given on�guration, ~d, of the variablesin D, P 0(1j~d; T ); : : : ; P 0(nj~d; T ), do not neessarily sum to 1 for eah t in sp(T ).This an be solved by adding 1� Xi2sp(C)P (1j~d; T )to one of the series, suh as P 0(1j~d; T ).The value of N we assume to be set by the user of our method, but some dynami
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tFigure 3.7: The Taylor's series (fair line) of a density funtion (dark line) for a�2-distributed variable.adjustment method ould be inorporated in the method some time in the future.We do not touh upon this again in this report. We use Tf ([a; b℄; ) to denote theTaylor's series of f on [a; b℄ about . In Figure 3.7 the density funtion of a variablefollowing a �2-distribution with 6 degrees of freedom as well as a Taylor's series, onthe real line of degree 10 about 8, of this are shown.Spei�ally atering for pieewise ontinuous funtions, furthermore, allows us toapproximate utility funtions and probability distributions using Taylor's series pieeby piee. Obviously, this is useful if the funtion is spei�ed piee by piee, but it analso result in faster approximation, as lower values of N an be used with little lossin preision. As an example of this, we present two approximations of the funtionf(t) = ett6 sin t over the interval [0; 20℄ in Figures 3.8 and 3.9. The �rst approximationis based on the �rst 40 derivatives of f , whereas the seond uses only the �rst 10, butuses them four times. In both ases 40 evaluations of derivatives in a point need tobe evaluated, but whereas the �rst approah needs alulation of 40 derivatives theseond method needs only 10. It is, thus, faster to approximate the funtion piee bypiee. Of ourse there is a limit to the gains in approximation speed, as N annot beless than 0. Furthermore, the atual speed gain or penalty of pieewise approximationin the solution method itself is not obvious. We do not present a full time-omplexityanalysis of our solution method, but do evaluate omplexity of the more intriguingsteps, to hint at the omplexity of the issue. Unfortunately, we annot allow densityfuntions to be approximated pieewise, whih is further elaborated on below.For notational onveniene, we introdue the notation Tf , where f is a pieewise



76 Chapter 3. Solutions to IDITs

–100

–80

–60

–40

–20

0

20

40

60

80

100

y

2 4 6 8 10 12 14 16 18 20
t

Figure 3.8: A Taylor's series (fair line) of the funtion ett6 sin t (dark line) over theinterval [0; 20℄ with N being 40.ontinuous funtion over the partition If of the funtions (f0; : : : ; fn+1), to mean thepieewise ontinuous funtion over the partition If of the funtions (f�0 ; : : : ; f�n+1),where f�i = Tfi �[ti; ti+1[; ti+1 � ti2 � ;for i in f1; : : : ; ng, f�0 = Tf0 (℄1; t1[; t1 � 1) ;and f�n+1 = Tfn+1 ([tn+1;1[; tn+1) :As we approximate all utility funtions by polynomials of a �nite degree, the ap-proximations will invariably start to monotonially derease or inrease after somepoint in time. In Example 2 we needed to integrate over utility funtions from zeroto in�nity, and this will also be neessary in the method presented below. This an-not be performed when utility funtions derease or inrease as desribed, and we,therefore, assume that the IDITs we solve have a time limit, te, before whih thedeision taker wants the deision proess ompleted at all osts. That is, all utilityfuntions dependent on time, either diretly or indiretly, yields 0 for points in timeafter te, no matter the on�guration of other variables in the IDIT. By \indiretly",we mean that a utility is d-onneted to the time variable given the set of observedvariables and deisions prior to the time variable in the temporal ordering.This assumption is not as restritive as it appears. First of all, if a deision taker
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Figure 3.9: A pieewise Taylor's series (fair line) of the funtion ett6 sin t (dark line)over the intervals [0; 5[, [5; 10[, [10; 15[, and [15; 20℄ with N being 10.is a human being there is a very natural limit after whih the utility should be ofno onern to him. Seond, if an IDIT ontains no wait deisions, the probabilityof deision senarios where the last time variable takes on a high value, will get in-reasingly smaller, and thus, the ontribution of these to the expeted utility of anydeision is negligible. If an IDIT does ontain a wait deision, and we annot applythis argument, we rely on most naturally ourring utilities dependent on time beinghighest for initial points in time and steadily deresing afterwards. That is, manydeision takers prefer a payo� today rather than tomorrow. In suh ases, there mustome some point in time, t�e, after whih eah utility for eah on�guration of othervariables either is so low that the di�erenes from one on�guration to the otherbeomes negligable, or it is onstant. In both senarios, the part of the deisionproblem that sueeds t�e an be disregarded with little impat on the result.Assumption 2A time limit to the deision proess, te, must be �xed before an IDIT an be solved.All utilities dependent on time variables, must yield the value 0 for all points in timeafter te. Likewise, utilities indiretly dependent on time, suh as utilities dependenton an ordinary hane variable whih in turn depends on a time variable, shouldyield 0 for points in time after te.Given this assumption and a utility funtion or density funtion, f , in an IDIT, wemay approximate f#[0;te[, instead of f , when identifying Taylor series. Thus, the



78 Chapter 3. Solutions to IDITsdegree of approximation, N , are losely bound to the value of te. When te is raised,either N or the aeptable inauray stemming from approximation would needto be raised as well. Furthermore, Assumption 2 and the observation that utilityfuntions an be approximated piee by piee, allow us to loosen the wording ofAssumption 1 to only require density funtions, utility funtions, and probabilitydistributions to be di�erentiable an arbitrary number of times over the interval[0; te[, as opposed to the real line. Furthermore, we an allow utility funtions andprobability distributions to ful�ll this requirement on a piee by piee basis.Sine we assume all utility funtions are 0 outside the interval [0; te[, for any givenon�guration of other variables, we must also assume that eah utility does nottake on negative values in the interval [0; te[. If this was not assumed, we wouldhave senarios in whih the points in time outside this interval yield more attrativeutilities than some of those inside it. However, by adding a large onstant tosuh utilities beforehand, we an disregard this problem. Furthermore, as utilitiesgenerally are required to be unique up to any given positive linear transformation,whih adding a onstant is, this is not a limitation.With this notation and understanding of approximation methods used, we an moveon to the atual algorithm.
Solution MethodThe method we propose for solving IDITs is inspired by the method for solvingasymmetri inuene diagrams presented in [Nielsen and Jensen, 2000℄. Throughoutthe desription, we use lower ase greek letters to denote funtions whih are notneessarily part of the original spei�ation of the IDIT, but possibly results ofprevious alulations. Method 3.9 is the method that solves its input IDIT, I, andreturns an optimal strategy, S. It is really a shell for the solution method itself, andtakes are of initialization of the IDIT in preparation to the atual solving proess.Method 3.10, whih is the main part of the solution method, takes as argumentan IDIT, I, with a realization, (�;	;�;�), a starting point in time, ts, and anend point in time te, and it produes a set of poliies for free deisions in I, S,as well as two sets of funtions, �0 and 	0, whih are results of manipulationsof the funtions given in (�;	;�;�). The method reursively invokes itself andalso, oasionally, alls Method 3.11, whih takes are of the atual elimination ofvariables. All methods are explained immediately after they have been presented.



3.3 Solving IDITs 79Method 3.9Input: IDIT I, realization (�;	;�;�), and end point in time te.Output: Optimal strategy, S.1. For eah utility, u : sp(D)� sp(T )! R, where D is some subset of V OD [V OC andT is a time variable, in 	, approximate the funtion  : sp(D)� sp(T )! R as (~d) = Tu(~d)#[0;te[ ;for all ~d in sp(D). Replae u with  .2. For eah probability distribution with a time variable in its domain, P (CjD; T ),where D is some subset of V OD [ V OC , in �, onstrut the probability distribu-tion P �(CjD; T ) as P �(j~d) = TP (j~d)#[0;te[ ;for all  in sp(C) and ~d in sp(D). Then let P �(0j~d), for some arbitrary 0 in sp(C),be given as P �(0j~d) +0�1� X2sp(C)P �(j~d)1A ;and replae P (CjD; T ) with P �(CjD; T ).3. For eah density funtion, f : sp(D) � sp(T ) ! R, where D is some subset ofV OD [ V OC and T is a time variable, in �, onstrut the funtion � : sp(D) �sp(T )! R as �(~d) =  Tf(~d)#[0;te[R te0 Tf(~d)#[0;te[dt!#[0;te[ ;for all ~d in D.Replae f with �.4. Run Method 3.10 on I, (�;	;�;�), 0, and te. Denote the result (�0;	0;S). The set�0 should ontain a onstant, 1, and 	 should ontain only a onstant representingthe maximum expeted utility of I.5. Return S.The workings of Method 3.9 should be pretty straightforward to understand.In Step 1 eah utility funtion is �rst projeted down-to the interval [0; te[ inaordane with Assumption 2, and then a Taylor's series is onstruted for eahpiee of the funtion. When a funtion is pieewise ontinuous it might be the asethat the funtions of adjaent intervals are essentially the same. In that ase, wean speed up the solution method by joining these intervals into one. Examiningwhether two funtions are the same, an be diÆult when the initial funtions are



80 Chapter 3. Solutions to IDITsgiven, but one they have been onverted to polynomials, it an be done by N + 1omparisons. Although we, attempting to be lear and onise, do not write thisoperation spei�ally, it an be inserted after most of the operations desribed laterin this setion. We do not touh upon it again in this report.In Step 2 eah probability distribution with a time variable in its domain isapproximated and projeted down-to the interval [0; te[. In aordane with the dis-ussion above, the resulting set of funtions are then normalized to be a probabilitydistribution.Step 3 approximates the density funtions, whih are not allowed to be pieewisefrom the start. After a new funtion has been projeted down-to the interval [0; te[and approximated, it is normalized to be a density funtion. This ompletes theinitialization steps of Method 3.9.In Step 4 the method alls Method 3.10, whih as mentioned is the main part ofthe solution method. Due to the reursive alls performed by that method, theresult returned to Method 3.9 is a triple of sets. The �rst set ontains probabilitydistributions of ordinary hane variables, whih have not been eliminated fromthe IDIT, the seond ontains utility funtions over variables that have not beeneliminated, and the last ontains a set of poliies that should onstitute an optimalstrategy. Obviously, the �rst set should ontain a funtion over the empty set, i.e. aonstant, whih should be 1, and similarly the seond set should ontain a onstant,indiating the maximum expeted utility of the IDIT. We end the solving proessby returning the optimal strategy in Step 5.Method 3.10Input: IDIT I, realization (�;	;�;�), points in time ts and te.Output: Sets of probability distributions, �0, and utility funtions, 	0, over thevariables in I, whih are not free, and an optimal strategy, S, for free deisionsin I, given the variables that are not free.1. Examine whether non-instantiated split variables are in I. If so, let X denote the �rstof these. If not, let S be the empty set and skip to Step 4.2. If X is not a time variable, skip to Step 3. Else,i Let G be the set of guards on ars in I into the deisions in IDI[X 7!ts℄. If X isfurthermore in the domains of some restrition funtions, rD1 ; : : : ; rDk , then letR be the set of boolean funtions over X determining its impat on state spaesof D1; : : : ; Dk, k[i=1frDi(~; x)j~ 2 sp(dom(rDi ))g;otherwise, let R be ?.



3.3 Solving IDITs 81ii Partition the points in time from ts to te into a set of intervals, [ts =t1; t2[; : : : ; [tn; tn+1 = te[, ontaining points in time having similar impat onguards in G and restrition funtions in R. That is, for any interval, [ti; ti+1[,any guard, g, in G, any restrition funtion, r0, in R, and any two points, tj andtk, in [ti; ti+1[, we have that g(tj) = g(tk) and r0(tj) = r0(tk).iii Let FX be the set of free variables in I[X 7! ts℄, and �FX the subset of �ontaining probability distributions having some variable in FX in their domain.Furthermore, let 	FX and �FX be de�ned in similar ways. Let �� be the set� n�FX , and 	� and �� be de�ned similarly.iv For eah interval, [ti; ti+1[, do the followinga Construt the IDIT I[X 7! ti℄, and the updated set of restrition funtionsarising from this instantiation, �X=ti .b Reursively invoke Method 3.10 on I[X 7! ti℄ and the realization(�FX ;	FX ;�FX ;�X=ti) with the starting point in time being ti and theending point being te.Denote the resulting triples as (�1;	1;S1); : : : ; (�n;	n;Sn).v For eah utility  in eah 	i, where X is not in dom( ) and  is not in 	jfor all j in f1; : : : ; ng, ondition  on the value of X being in [ti; ti+1[. That is,remove  from 	i and replae it with the funtion  0 : dom( ) � sp(X) ! R,where, for eah ~z in dom( ), I 0(~z) = fti; ti+1g and  0(~z)1 =  (~z).Then replae eah utility  in eah 	i, where X is in dom( ), with  #[ti;ti+1[.vi Let � = �� [ n[i=1�i; S = n[i=1Si; and 	 =	� [ n[i=1	i:3. i Let FX be the set of free variables in I[X 7! x℄, where x is some state in thestate spae ofX , and�FX be the subset of� ontaining probability distributionshaving a variable in FX in their domain. Furthermore, let 	FX and �FX bede�ned in similar ways. Let �� be the set � n�FX , and 	� and �� be de�nedsimilarly.ii For eah state, x, in sp(X), do the following:a Construt the IDIT I[X 7! x℄, and the updated set of realization funtionsarising from this instantiation, �X=x.b Reursively invoke Method 3.10 on I[X 7! x℄ and the realization(�FX ;	FX ;�FX ;�X=x) with the starting point in time being ts and theending point te.Denote the resulting triples as (�1;	1;S1); : : : ; (�n;	n;Sn).



82 Chapter 3. Solutions to IDITsiii For eah utility  in 	i, where X is not in dom( ) and  is not in 	j for all jin f1; : : : ; ng, ondition  on X being x. That is, remove  from 	i and replaeit with the funtion  0 : dom( ) � sp(X)! R, where  0(~z; x0) =  (~z) if x0 is xand 0 otherwise, for all ~z in dom( ) and x0 in sp(X).iv Let � = �� [ n[i=1�i; S = n[i=1Si; and 	 = 	� [ n[i=1	i:4. Eliminate all free variables from the funtions in �, 	, and � using Method 3.11 withsome elimination order onsistent with the inverse of �0I , the starting point ts, andthe ending point te. Denote the result (�0;	0;S0).5. Return (�0;	0;S [ S0).Method 3.10 basially branhes into three ases depending upon the nature of the�rst split variable, X, in I. If no X an be identi�ed, it means that the ordering ofvariables and state spaes of deisions are the same for all deision senarios in I.In that ase we an immediately proeed to Step 4 where all free variables in I areeliminated using Method 3.11.If, on the other hand, a split variable X an be identi�ed we must split the groupof deision senarios orresponding to I on X. This step is represented by Steps 2and 3, orresponding to X being a time variable or not. The proess in both stepsare similar, but minor details are di�erent due to X being either a time variable, andthus, ontinuous, or an ordinary deision or hane variable, and hene, disrete. Webriey note that X annot be a wait deision, as these are not allowed to inueneanything but their own end time, and onsequently annot be in a restrition funtionof any deision.As the proesses in Steps 2 and 3 are similar, we omment only on the one in Step 2,as this is the most omplex one and ontains the same problems as the one in Step 3.Initially, in parts i and ii, the state spae of X is divided into intervals, aordingto its e�et on I. This is similar to the approah given in Method 2.10, and wetherefore do not go into it in detail. What is worth notiing, though, is that thispartitioning do not need to be of a spei� granularity. That is, any partitioning,whih ful�lls the requirement on a similar e�et on guards and restrition funtions,will do. Furthermore, this approah fores us to assume that no restrition funtionis a funtion over more than one time variable, as the intervals annot easily bedetermined otherwise.



3.3 Solving IDITs 83Assumption 3No deision variable an have two time variables in the domain of its restritionfuntion.Obviously, this assumption exludes the example IDIT given in Example 1 and sim-ilar IDITs from being solved.In the ase where X is not a time variable, we assume that it is disrete and split onits individual states instead of intervals. This is a reasonable assumption as the onlynon-time variables that are ontinuous is wait deisions, and as these are prohibitedfrom restriting other deisions and do not appear in guards, they annot be splitvariables.Next, as the set of variables, whih is in an instantiation of I on X, is the same forall values in the state spae of X, we an selet any value we like when determiningthis set. We hose, ts, and identi�es the set of free variables in I[X ! ts℄. Theseare the subset of free variables in I that annot be eliminated in this invoationof Method 3.10, sine their ordering or state spae is dependent on the value of X.Therefore, we onstrut the subproblems orresponding to eah interval and reur-sively solve these.The results of all subproblems should replae the original funtions in the realization.However, some of the utility funtions are not obtained from all of the reursive alls.These are therefore onditioned on X being in the orresponding interval. This hap-pens in v. This step ontains two impliit assumptions: First, that no time variabledi�erent from X is in the domains of utility funtions absorbed from the subprob-lems, and seond, that no two probability distributions over the same domain, butyielding di�erent probabilities, are absorbed from the subproblems. In order to arguefor the seond of these assumption, it is suÆient to realize that:� the only parts of Methods 3.10 and Methods 3.11 that produe new probabilitydistributions or manipulate existing ones are the elimination proedures for or-dinary hane variables, ordinary deisions, and time variables in Method 3.11� these are ommutative, in the sense that it does not matter whih order vari-ables are eliminated from them,� the sets of variables that is eliminated in eah subproblem is the same, and� eah subproblem is invoked on the same set of probability distributions.



84 Chapter 3. Solutions to IDITsThat is, eah invoation starts from the same situation, applies the same set ofoperations, whih an be applied in any order without a�eting the result, and on-sequently, ends up in the same situation.In order to be sure that no utility funtion absorbed from a reursive all is de�nedover a time variable di�erent from X, we need another assumption:Assumption 4For any two time variables, T and T 0, where T �0 T 0, and any node, X, that is adesendant of T 0, we have that T is d-separated from X, given the hane variablesin h(T ).This is the most limiting assumption we must introdue for the proposed solutionmethod to work. It is not only needed at this point, but at several points in theelimination proedures in Method 3.11. To give the reader a better understandingof the impliations of this assumption, we present a few examples of IDITs that donot ful�ll it in Figure 3.10.The IDIT in (a) does not ful�ll Assumption 4 as the utility U is both a desendantof end(D2), a hild of end(D1), and hene, d-onneted to end(D1) given end(D2).In the slightly hanged situation, modelled in the IDIT in (b), the utility U , whihis still a desendant of end(D2), is not a hild of end(D1). It is, however, still d-onneted to end(D1) through real(U). That both of these situations do not make alot of sense an easily be argued for: As the realization time of U in both ases |end(D1) and real(U), respetively | an be a point in time prior to deiding uponD3, it goes against ommon sense to have the resulting hoie of D3 inuening U .The situation modelled in the IDIT in (), on the other hand, annot be said to besenseless. We have a variable, C3, whih a�ets two hane variables dependent ontime, C1 and C2. Several situation where suh a setup is inluded an be thought of.For instane, C3 ould represent a global physial irumstane, suh as humidity ortemperature, and C1 and C2 ould be observations of the same phenomenon, suh asnumber of athletes still partiipating in an amateur marathon rae, at two di�erentpoints in time, end(D1) and end(D3). Sadly, as C2 is d-onneted to end(D1) throughC3 and a desendant of end(D2) as well, this IDIT does not ful�ll Assumption 4.Having desribed Assumption 4, we argue why it allows us to onlude that notime variable di�erent from X is in the domains of utility funtions absorbed fromonly some of the subproblems: Assume the opposite, namely that a utility,  , withsome time variable T di�erent from X in its domain, is returned from some of thesubproblems only. First of all, we note that T must be prior to X in the temporal
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D1 D2 D3 D4CU(a)
D1 D2 D3 D4CU(b)
D1 D2 D3UC1 C2C3()Figure 3.10: IDITs suh as these we do not attempt to solve.



86 Chapter 3. Solutions to IDITsordering, as it would have been eliminated in the subproblems otherwise. The reasonwhy  is only returned from some subproblems, must be beause of the asymmetridi�erenes arising from X. That is,  must be the result of elimination of somedeision D, where D's set of observed variables or D's state spae is dependent onthe value of X. If T is in the domain of  , then there must exist some node, Y , whihT is d-onneted to given the hane variables among its hildren, and whih is adesendant of D. Furthermore, as D is eliminated in the subproblems, it must befollowing X in the temporal ordering and, thus, be a desendant of X. Consequently,Y is a desendant of X, thereby violating Assumption 4.Returning to the desription of Method 3.10, we reah Step 4, where all free variablesin I are eliminated from the funtions in �, 	, and �, with respet to the points intime ts and te. The elimination of eah variable is handled by Method 3.11, whihneeds an elimination order, onsistent with the inverse of �0. That is, if X �0 Y ,then Y should be eliminated prior to X, whereas if both X 6�0 Y and Y 6�0 X,then the elimination ordering of the two is without signi�ane. We onjeture thatany method for onstruting these elimination orderings an be used, inluding thestandard juntion tree based method used for solving inuene diagrams, as desribedin [Jensen, 2001℄. For simpliity, we may simply assume that the exat eliminationsequene is hosen at random.After all free variables have been eliminated from the funtions in �, 	, and �, wereturn what remains of them and the alulated optimal poliies along with optimalpoliies alulated in any reursive steps to the alling method. If I is the originalIDIT, the free variables enompass all variables in I and the resulting funtionsshould, therefore, be only onstants. It should be noted that no density funtionsare returned to the alling method. This is beause� no new density funtions are produed by any of the elimination proedures inMethod 3.11, and� all density funtions given to Method 3.10 as input are density funtions forfree time variables in I, whih are all eliminated in Step 4.We proeed to presenting Method 3.11.Method 3.11Input: IDIT, I, set of probability distributions, �, set of density funtions, �, setof utility funtions, 	, points in time, t and te, and elimination order (X1; : : : ; Xn).Output:



3.3 Solving IDITs 871. For eah variable X in the ordering (X1; : : : ; Xn), eliminate X from (�;	;S) usingthe appropriate elimination tehnique, from those desribed below.2. Return the transformed sets (�;	;S).The basi struture of Method 3.11 is a loop where the variables to be eliminatedare treated one after the other in the given order of elimination. Eah elimination isperformed by swithing on the type of the variable to be eliminated and its parentsin I, and then applying the orresponding transformation on involved funtions. Asthis struture is fairly basi, we fous on explaining the transformation in details,whih onstitute the larger part of the rest of the report.All throughout the desriptions below, whenever we write \for a on�guration ~dover the variables D", we assume that the state spae of eah deision, D, hasbeen updated aording to the value of the restrition funtion, given the values ofremaining variables in D. This assumption are not needed for the solution to befound, but prevents alulation of funtion values that are irrelevant for a solution.Case 1The �rst ase we onsider is the elimination of a time or realization time variable,T , whih is a hild of another time variable, a wait deision, or both. This is by farthe most omplex ase. Although this parent variable an be a wait deision, for thesake of larity, we hoose to denote it T 0 as if it was a time variable. If T is a hildof both a wait deision, W , and a time variable, T 00, we denote by T 0 the ontinuousvariable T 00 +W . In order to do alulations in the ase desribed here we make anadditional assumption, whih onsists of three nearly idential requirements:Assumption 5The density funtion, f , for a time variable, T , given another time variable,T 0, is, for all on�gurations, ~d, of other variables in its domain, spei�ed as adensity funtion over the span in time from T 0 to T . That is, the density funtion,fT�T 0 , for the ontinuous variable T � T 0 given ~d, is f(tjt0; ~d), for all real numbers, tand t0. Furthermore, fT�T 0(t�t0; ~d) is 0 for all points in time, t and t0, where t�t0 � 0.The density funtion, f , for a time variable, T , given a wait deision, W , is,for all on�gurations, ~d, of other variables in its domain, spei�ed as a densityfuntion over the span in time from W to T . That is, the density funtion, fT�W ,



88 Chapter 3. Solutions to IDITsfor the ontinuous variable T � W given ~d, is f(tjw; ~d), for all real numbers, tand w. Furthermore, fT�T 0(t�w; ~d) is 0 for all points in time, t and t0, where t�t0 � 0.Likewise, the density funtion, f , for a time variable, T , given another time variable,T 0, and a wait deision, W , is, for all on�gurations, ~d, of other variables in its do-main, spei�ed as a density funtion over the span in time from T 0+W to T . That is,the density funtion, fT�(T 0+W ), for the ontinuous variable T � (T 0+W ) given ~d, isf(tjt0; w; ~d), for all real numbers, t, t0, and w. Furthermore, fT�(T 0+W )(t� (t0+w); ~d)is 0 for all real numbers, t, t0, and w, where t� (t0 + w) � 0.Observing the requirement on time not regressing, the guiding lines given in thisassumption represent a very natural way of speifying probability distributions fortime variables given their predeessors. At least this author annot ome up withany ounter examples.When eliminating time variables, we utilize that all variables in the domain of theirdensity funtion are prior to the time variable in the temporal ordering. This is notneessarily the ase of realization time variables, as these have no spei�ed orderingrelative to their parent hane variables. However, by re�ning the temporal orderingto plae a realization time variable after eah of its parent variables, allow us toapply the same reasoning for these as time variables.When T is to be eliminated the only funtions in �, 	, and � having T in their do-main must be the density funtion for T � T 0, �T�T 0 , a set of utility funtions,whih ombine additively into,  T , and possibly some probability distributions,P (Z1jZ2; T ). The reason why there annot exist more density funtions with Tin its domain is that no new density funtions are produed by any of the elimina-tion proedures, and time variables following T in the temporal ordering must havebeen eliminated at this point.As stated previously, the elimination ordering must respet the inverse of �0. Thatmeans that all ordinary hane variables, whih are desendants of T must havebeen eliminated at this point. Therefore, if T is in the domain of a probability dis-tribution, P (Z1jZ2; T ), a variable, X, in Z1 is not a desendant of T . Furthermore,no variables among T 's desendants an be onsidered instantiated at this point.Consequently, T must be d-separated from X given its parents, and we may simplyreplae P (Z1jZ2; T ) in � with P (Z1jZ2) equaling P (Z1jZ2; ti) for some random tiin [ts; te[, suh as ts.



3.3 Solving IDITs 89What remains is to replae �T�T 0 : sp(D1) � sp(T � T 0) ! R and : sp(D2)� sp(T )! R with a new utility funtion,  0 : sp(D1 [D2 =D) �sp(T 0) ! R. Before we onstrut  0 we explain why the sets D1 and D2 an beonsidered to be subsets of V OC [ V OD. First, none of the elimination steps inMethod 3.11 onstrut new density funtions, and �T�T 0 , therefore, an be de�nedover the time variables T and T 0 only. Seond, none of the elimination steps on-struts utility funtions over two time variables and due to Assumption 4 suh util-ities annot exist in the diagram from the start, so  annot be de�ned over othertime variables than T .As when eliminating variables in inuene diagrams, we need to onstrut,  0, foreah on�guration, ~d, of variables inD. These funtions should eah be the expetedvalue of  given T 0 and ~d2 = ~d#D2 . As eah  (~d2) might be pieewise ontinuous,we need to de�ne eah  0(~d) as a pieewise ontinuous funtion also. Sine �T�T 0is ontinuous over the interval [0; te℄ we do not need to take this into aount whenidentifying the intervals for eah  0(~d), and we an, therefore, simply let I 0(~d) equalI (~d2) for eah ~d in D. Notie that if we had let density funtions be pieewise on-tinuous over the interval [0; te[, the partition I 0(~d) ould not have been determinedthis way. This is beause a density funtion is de�ned over the variable T �T 0 ratherthan T itself. Therefore, the resulting partition of the resulting utility funtion forT 0, would be a funtion of T 0, leaving us with alulating an in�nite number of par-titions.We let  0(~d)i be 0, for eah i in f0; : : : ; I<t 0(~d) � 1g. That is, the expeted utility ofany value of T 0 less than t, is not needed in future omputations and is, therefore,simply set to 0. The remaining parts of  0(~d) is found as following: For eah i infI<t 0(~d); : : : ; jI 0(~d)jg we let  0(~d)i be de�ned as 0(~d)i(t0) = Z 1�1 �T�T 0(~d1)(t� t0) (~d2)(t)dt;where ~d1 is ~d#D1 , for all real numbers t0. By utilizing that �T�T 0(~d1)(t� t0) is 0 for allpoints in time, t, less than t0, that te is an upper limit after whih all utilities yield0, that  (~d2) is de�ned pieewise, and that all funtions are polynomials of degree



90 Chapter 3. Solutions to IDITsN , we get 0(~d)i(t0) = Z 1�1 �T�T 0(~d1)(t� t0) (~d2)(t)dt= Z tet0 NXj=0C[�T�T 0(~d1)℄j(t� t0)j (~d2)(t)dt= NXj=0C[�T�T 0(~d1)℄j Z ti+1t0 (t� t0)j NXl=0 C[ (~d2)i℄ltldt++ jI 0(~d)j�1Xk=i+1 Z tk+1tk (t� t0)j NXm=0C[ (~d2)k℄mtmdt!= NXj=0C[�T�T 0(~d1)℄j NXl=0 C[ (~d2)i℄l Z ti+1t0 (t� t0)jtldt++ jI 0(~d)j�1Xk=i+1 NXm=0C[ (~d2)k℄m Z tk+1tk (t� t0)jtmdt!:



3.3 Solving IDITs 91Using the Binomial Theorem[Edwards and Penney, 1998℄, we an replae (t � t0)xwith Pxy=0 �xy�(�1)x�yt0x�yty, and we get 0(~d)i(t0) = NXj=0C[�T�T 0(~d1)℄j NXl=0 C[ (~d2)i℄l Z ti+1t0 (t� t0)jtldt+ (3.6)+ jI 0(~d)j�1Xk=i+1 NXm=0C[ (~d2)k℄m Z tk+1tk (t� t0)jtmdt!= NXj=0C[�T�T 0(~d1)℄j NXl=0 C[ (~d2)i℄l Z ti+1t0 jXn=0�jn�(�1)j�nt0j�ntjtldt+ jI 0(~d)j�1Xk=i+1 NXm=0C[ (~d2)k℄m Z tk+1tk jXn=0�jn�(�1)j�nt0j�ntjtmdt!= NXj=0C[�T�T 0(~d1)℄j jXn=0�jn�(�1)j�n NXl=0 C[ (~d2)i℄lt0j�n Z ti+1t0 tj+ldt+ jI 0(~d)j�1Xk=i+1 NXm=0C[ (~d2)k℄mt0j�n Z tk+1tk tj+mdt!= NXj=0C[�T�T 0(~d1)℄j jXn=0�jn�(�1)j�n NXl=0 C[ (~d2)i℄l tj+l+1i+1 � t0j+l+1j + l + 1 t0j�n+ jI 0(~d)j�1Xk=i+1 NXm=0C[ (~d2)k℄m tj+m+1k+1 � tj+m+1kj +m+ 1 t0j�n! (3.7)As this is a polynomial of degree 2N , we need to approximate it by a polynomial ofa degree N , before removing  and �T 0T from 	 and �, respetively, and inserting 0 in 	.It is worth notiing that if the numbers �xy� have been evaluated before hand, theevaluation time of the expression in (3.7) is O(N3jI j1), where jI j is the maximumnumber of intervals a utility funtion is split into due to initial spei�ationand split variables. Considering that the expression only yield one of the neededpolynomials,  i, we end up with a total evaluation time of O(N3jI j2), prior toapproximation down-to a polynomial of degree N . Thus, for suÆiently largeapproximations of degree n, the omplexity of this operation ben�ts from a divisionof the domain into intervals and approximations to a lesser degree over eah of them.



92 Chapter 3. Solutions to IDITsCase 2The ase where we are eliminating a time variable, T , whih have no time variablenor wait deision as parent, is roughly similar to Case 2. The only di�erene is thatthe utility funtion,  0, resulting from eliminating T is not a funtion over anothertime variable or wait deision. We show how to derive  0, given a density funtion,�T : sp(D1) � sp(T ) ! R, and a utility funtion  : sp(D2) � sp(T ) ! R. Forthe same reasons as when eliminating a time variable with another time variable asparent, D = D1 [D2 must be a subset of V OC [ V OD, and we derive  0 for eahon�guration, ~d, over D: 0(~d) = Z 1�1 �T (~d1)(t) (~d2)(t)dt;where ~d1 denotes ~d#D1 and ~d2 denotes ~d#D2 . Using the same triks as in the deriva-tions above, we get 0(~d) = NXi=0 C[�T (~d1)℄i jI (~d2)j�1Xj=1 Z tj+1tj NXk=0C[ (~d2)j ℄kti+kdt= NXi=0 C[�T (~d1)℄i jI (~d2)j�1Xj=1 NXk=0C[ (~d2)j ℄k Z tj+1tj ti+kdt= NXi=0 C[�T (~d1)℄i jI (~d2)j�1Xj=1 NXk=0C[ (~d2)j ℄k ti+k+1j+1 � ti+k+1ji+ k + 1 :Similar to the situation above, we need to approximate this result before insertingit in 	. The evaluation of this thus takes time O(N2jIj).Case 3When eliminating a wait deision, W , with a time variable, T , as parent, we needonly onsider one funtion, viz. the utility  : sp(D)� sp(W + T )! R in 	. Thisis beause W only ourred in one funtion from the start, fT 0�(W+T ), for sometime variable, T 0. When T 0 was eliminated only a utility over W + T was produedwhile fT 0�(W+T ) was removed. For the same reasons as given for elimination of timevariables, D must be a subset of V OC [ V OD.As we eliminate W from  we need to identify a strategy that, given a on�guration
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Figure 3.11: An example utility funtion for a wait deision.~d over the variables in D, and a point in time, t, represented by T , yields the hoiefrom [t; te℄ that maximizes  . If we study the example utility funtion,  (~d), plottedin Figure 3.11, we an see how these hoies must be desribed:� If t is less than 2, where  (~d) is at a global maximum, the best advie is towait until time 2. In other words, the optimal hoie is to wait for 2 � t timeunits.� If t is more than 2, but still less than 3, the best advie is not to wait. Thatis, the optimal hoie is to wait for 0 time units.� In the time span from 3 to 15, the best advie is again to wait. The optimalhoie is thus to wait for 15� t time units.� In the remaining time of the interval from 0 to 18, the optimal hoie is againto wait for 0 time units.Thus, an optimal poliy, ÆW , would be de�ned as following:ÆW (~d)(t) = 8>>>><>>>>: 2� t if t < 20 if 2 � t < 315� t if 3 � t < 150 if 15 � t < 18



94 Chapter 3. Solutions to IDITsWe arrive at this onlusion through a simple proedure. One we have establishedthat the points 0, 2, 3, 15, and 18 are the plaes on the real line the poliy shouldhange, we an apply a simple set of rules to eah interval between them to determinethe poliy. However, some utility funtions might be pieewise ontinuous, and wehave to take that into aount. Furthermore, we need a method of �nding extremaof the utility funtion, whih redues to �nding roots in its derivative. We �nd rootsof a funtion, f , by the appliation of Newton's method, whih given an initial guessof a root, x1, alulates a new root andidate, x2, using the formulax2 = x1 � f(x1)f 0(x1) ;where f 0 is the �rst derivative of f . The proess ontinues iteratively until the di�er-ene xn+1�xn is smaller than some �xed threshold value. Newton's method an undersome irumstanes fail to loate a root, even though suh one exists, and in that asehuman intervention might be neessary, or another approximation method may beused. For more information on Newton's method, see [Edwards and Penney, 1998℄.The iterative proedure for loating an optimal poliy for a given on�guration, ~d,is as following: Initially, we di�erentiate eah piee of the utility funtion  (~d) withregards to t. We loate roots of the resulting funtions in their respetive intervals.This is done using Newton's method. We denote the roots r1; : : : ; rn. Next we denoteP = I (~d) [ fr1; : : : ; rng as the set of points of interest, and setr = argmaxt2P  (~d)(t):Then we set the poliy for all points in time, t0, prior to r to r � t0.In the iterative step we identify whih of the points larger than r that gives rise tothe highest value of  (~d). If several of these points exists we hoose the minimumone. Let this be r0. Then we onstrut the funtion f(t) =  (~d)(t) �  (~d)(r0) and�nd its root, r�, in the interval ℄r; r0[, if suh a thing exists.If no root exists,  (~d) is either larger than  (~d)(r0) over the interval [r; r0[ or lessthan or equal to  (~d)(r0) over [r; r0[. In the �rst ase we set the poliy for this intervalto 0. In the seond ase we set it to r0 � t.If a root exists, we are in a situation suh as the one presented in the example above,and we an set the poliy for [r; r�[ to 0 and the poliy for [r�; r0[ to r0 � t.Next we set r0 to be r and iterate. When we run out of andidates for maximums inP we stop the iteration.



3.3 Solving IDITs 95This method does not take into aount restritions on the state spae of W . Thealterations needed for this would, depending on how simple these restritions are,imply a more thorough examination of the utility funtion. We hose not to fouson this here and simply assume:Assumption 6No ars into wait deisions may be dashed.Having this assumption as a basi part of the representation language of IDITs isatually not that rekless. Whenever we are in a situation where we are told thatwe \annot wait for that long", or that we \need to wait for at least" some spei�amount of time, the impliit understanding of this is \or else...". In other words, arestrition on a wait deision ould be modellable as an sudden derease or inreasein some utility onneted to the time variable following the wait deision. Therefore,we do not see Assumption 6 as a limitation on the number of deision problemsthat an be solved.The remaining bit of work is to onstrut a new utility funtion,  0, oversp(fTg [D). For eah on�guration, ~d, over D, where ÆW (~d) is the optimal poliyjust found, we let  0(~d) be given as following: For all intervals where ÆW (~d) is notgiven as 0, but as k � t, for some k in [t; te[, we let  0(~d) be the funtion de�ned asf(t) =  (~d)(r). For all intervals where ÆW (~d) is 0, we let  0(~d) be  (~d).
Case 4The ase where a wait deision,W , with no time variable as parent is to be eliminatedis quite simple. As for wait deisions with time variables as parents, we an assumethat only a utility funtion,  : sp(D) � sp(W ) ! R, has W in its domain. Weneed to �nd an optimal poliy for W | a proess whih, for eah on�guration ~dover the variables in D, enompass loating the value, m~d, of W orresponding tothe global maximum of  (~d) over [0; te[. This proess was desribed as part of theexplanation of how to eliminate wait deisions with time variables as parents, so wedo not repeat it here.One these global maxima have been identi�ed, we an replae  with an utility, 0 : sp(D)! R, de�ned as  0(~d) =  (~d;m~d);



96 Chapter 3. Solutions to IDITsfor all ~d in sp(D). Furthermore, we onstrut the optimal poliyÆW : sp(D)! [0; te[, as ÆW (~d) =m~d;for all ~d in sp(D).Case 5When an ordinary deision, D, is eliminated we need to manipulate a set of proba-bility distributions, �D, having D in their domain, and a set of utilities, 	D, witha similar property. No density funtions an have D in their domain at this point,beause suh a density funtion would be de�ned over a time variable following Din the temporal ordering, whih should have been eliminated at this point.Like for time variables, we start by removing D from any probability distributionP (Z1jZ2;D), as D must be d-separated from any variable in Z1. Following this, webranh into two ases: First ase, is when no time variable is in the domain of anyof the utility funtions in 	D. The seond ase is when only one time variable is inthe domains of the utility funtions in 	D. We an never be in the ase that twotime variables, T and T 0, are both in the domains of funtions in 	D, and that thesum of these funtions is not onstant over either T or T 0. To see this, we need aonjeture:Conjeture 1Let T be a time variables in an IDIT, d-onneted to some variable X given its the hanevariables amongst its hildren. Then T is d-onneted to any node that is a hild of X .We assume without loss of generality that T �0 T 0, and that  T is an utility funtionwith T in its domain. This means that there is some node, X, whih is a desendantof D and, aording to Conjeture 1, d-onneted to T given the hane variablesamongst its hildren. Furthermore, as both T and T 0 is in the domain of a utilityin 	D, they annot have been eliminated at this point, whih indiates that D isfollowing both of them in the temporal ordering. This in turn tells us that D isa desendant of T 0, that X is a desendant of T 0, and Assumption 4 is, therefore,violated.We onsider �rst the ase in whih no time variable is in the domain of utilityfuntions in 	D. This is similar to the proedure used for eliminating deision vari-ables in inuene diagrams and is, therefore, not presented in great detail. We let : sp(D [ fDg)! R be the sum of utilities in 	D. Then for eah on�guration, ~d,



3.3 Solving IDITs 97of variables in D, we let the poliy for D beÆD(~d) = arg maxd2sp(D) (~d; d);and the maximum expeted utility,  0 : sp(D)! R, be de�ned as 0(~d) =  (~d; ÆD(~d)):Finally, we replae the utilities in 	D in 	 with  0 and store ÆD in S.If a time variable, T , is in the domains of the funtions in 	D, we sum all utilitiesin 	D into one,  : sp(D [ fDg) � sp(T ) ! R. We onstrut the optimal poliy,ÆD, for D as following: For eah on�guration, ~d, of D, we onstrut the funtions (~d; di)� (~d; dj), for eah pair of distint states, di and dj, in rD(~d#dom(rD)), whererD is the restrition funtion for D in �. We then use Newton's method on thesefuntions and loate their roots. These points, along with disontinuities, I (~d), in (~d), are the points in time where our poliy may hange. We denote them P  (~d).As identi�ation of these points is the main purpose of onstruting the  (~d; di) � (~d; dj)-funtions, we may hose to only onstrut one of the funtions  (~d; di) � (~d; dj) and  (~d; dj)�  (~d; di) for eah pair of states, di and dj .Finally, for eah interval [ti; ti+1[ generated by P  (~d) we letÆD(~d)(t) = arg maxd2rD(~d) (~d; d)� ti+1 � ti2 � ;for all t in [ti; ti+1[.The utility funtion,  0 : sp(D) � sp(T ) ! R, whih is to replae the funtions in	D in 	, we derive for eah on�guration, ~d, of D as following: First, we let I 0(~d)be P  (~d). Then for eah interval [ti; ti+1[ generated by I 0(~d) we let 0(~d) =  (~d; ÆD(~d; ti)):Case 6Elimination of an ordinary hane variable, C, involves manipulation of funtionsin � and 	. No density funtion, �, in �, for a time variable, T , an have C inits domain, as that would imply that C �0 T , and hene, that T should have beeneliminated at this point. We all the sets of funtions with C in their domain �C



98 Chapter 3. Solutions to IDITsand 	C , respetively.Eah funtion in 	C an have only one time variable in its domain, as that is thease from the start, and no elimination proedure produes utility funtions over twotime variables. At this point we divide the desription into three ases, dependingon whether no, one, or more time variables are in the domains of funtions in �C .No Time Variables in Domains of Funtions in �CFirst, we replae the funtions in �C in � with the funtion, �0 : sp(D1) ! [0; 1℄,where D1 is the set of variables in domains of funtions �C exept C, de�ned as�0(~d1) = X2sp(C) Y�2�C �(; ~d#dom(�)1 );for eah on�guration, ~d1, over the variables inD1. Seond, we replae eah funtion, , in 	C in 	 with the expeted value of  ,  0. If  does not have a time variablein its domain, we let  0 be  0 : sp(D =D1 [ dom( ) n fCg)! R, de�ned as 0(~d) = P2sp(C)Q�2�C �(; ~d#dom(�)) (; ~d#dom( ))P2sp(C)Q�2�C �(; ~d#dom(�)) ;for eah on�guration, ~d, over the variables in D.If  has a time variable, T , in its domain, we let  0 be 0 : sp(D =D1 [ dom( ) n fC; Tg) � sp(T )! R, de�ned as 0(~d) = P2sp(C)Q�2�C �(; ~d#dom(�)) (; ~d#dom( ))P2sp(C)Q�2�C �(; ~d#dom(�)) ;for eah on�guration, ~d, over the variables in D. The main di�erene between thisexpression and the one before is that the resulting  0(~d)'s are polynomials.We have divided up the sum of utilities, and alulated eah expeted utility in-dividually, whih is not the standard solution tehnique for inuene diagrams. Inthese the utilities in 	C are additively ombined and then the expeted value of thisombination is onstruted. The two approahes an easily be shown to yield thesame result, though. To see why we have hosen this approah, study the IDIT inFigure 3.12. If we add up the resulting utilities when eliminating C, we end up witha utility over two time variables, whih the rest of the solution method depends on



3.3 Solving IDITs 99D1 D2U1 U2CFigure 3.12: IDITs where we have to be areful not to sum the loal utility funtions.never happens.
One Time Variable in Domains of Funtions in �CWhen there is one or more time variables, T , in the domain of the funtions in �C ,we need a di�erent approah and some additional results. We �rst assume that onlyone time variable, T , is in T :We replae the funtions in �C in � with the funtion, �0 : sp(D1)� sp(T )! [0; 1℄,where D1 is the set of variables in domains of funtions �C exept C and T , de�nedas �0(~d1) = X2sp(C) Y�2�C �(; ~d#dom(�)1 );for eah on�guration, ~d1, over the variables in D1. This is a polynomial, whih anbe of degree j�C jN , sine eah probability distribution might be a polynomial ofdegree N . As we work with polynomials of a �xed degree only, we approximate ��by a Taylor's series. That is, we replae the funtions in �C in � with the funtion�0 : sp(D1)� sp(T )! [0; 1℄ de�ned as�0(~d1) = T��(~d1);for eah on�guration, ~d1, over the variables in D1.Seond, we replae eah funtion,  , in 	C in 	 with the expeted value of ,  0. If  does not have a time variable in its domain, we let  � be  � :sp(D =D1 [ dom( ) n fCg)� sp(T )! R, de�ned as �(~d) = P2sp(C)Q�2�C �(; ~d#dom(�)) (; ~d#dom( ))P2sp(C)Q�2�C �(; ~d#dom(�)) ;



100 Chapter 3. Solutions to IDITsfor eah on�guration, ~d, over the variables in D. Eah  �(~d) is not a polynomial,so we need to approximate it. Consequently, we replae  in 	 with the funtion 0 : sp(D)� sp(T )! R de�ned as 0(~d) = T �(~d);for eah on�guration, ~d, over the variables in D.If  has a time variable, T 0, in its domain, and T 0 is the same variable as T , thenwe let  � be  � : sp(D =D1 [ dom( ) n fCg)� sp(T )! R, de�ned as �(~d) = P2sp(C)Q�2�C �(; ~d#dom(�)) (; ~d#dom( ))P2sp(C)Q�2�C �(; ~d#dom(�)) ;for eah on�guration, ~d, over the variables in D. As above, eah  �(~d) is not apolynomial, so we replae  in 	 with  0 : sp(D)� sp(T )! R de�ned as 0(~d) = T �(~d);for eah on�guration, ~d, over the variables in D.If  has a time variable, T 0, di�erent from T , in its domain, we annot apply theabove operations diretly, as we need to be sure we do not onstrut a utility withtwo time variables in its domain. We refer to the disussion in the next paragraphon why a utility annot be non-onstant over more than one time variable, T �, andsimply state that the resulting utility must be onstant over at least one of thevariables. We, therefore, let  � be  � : sp(D =D1 [ dom( ) n fCg)� sp(T �)! R,de�ned as  �(~d) = P2sp(C)Q�2�C �(; ~d#dom(�)) (; ~d#dom( )P2sp(C)Q�2�C �(; ~d#dom(�)) ;for eah on�guration, ~d, over the variables in D. As twie before, eah  �(~d) is notneessarily a polynomial, so we replae  in	 with  0 : sp(D)�sp(T 0)! R de�nedas  0(~d) = T �(~d);for eah on�guration, ~d, over the variables in D.



3.3 Solving IDITs 101More than one Time Variable in the Domains of Funtions in �CWhen there is more time variables, T , in the domains of the funtions in �C , wereplae the funtions in �C in � with the funtion, �0 : sp(D1)� sp(T )! [0; 1℄,where D1 is the set of variables in domains of funtions �C exept C and those inT , de�ned as �0(~d1) = X2sp(C) Y�2�C �(; ~d#dom(�)1 );for eah on�guration, ~d1, over the variables in D1. This is not a polynomial, buta sum over a produt of polynomials. We denote it as a ompound expression. Wedo not evaluate it to a polynomial at this point but simply store �0 in � insteadof the funtions in �C . Any appliable enoding sheme, suh as a list of ordinaryhane variables, C, followed by a list of polynomials, PL, an be used to representa funtion suh as XX2C Yp2PL p;and we do not make any assumptions on this representation. We must, however, takeare that this unevaluated funtion do not interfere with the workings of the otherparts of the solution method. The only parts of the solution method that manipulatesprobability distributions in ways other than dropping variables from their domains,is the two ases desribed above. As both of these are onditioned on there notbeing two time variables in domains of funtions in �C , we an be sure that theseprobability distributions do not get handled by anything other than this part of thesolution method.We then examine eah utility,  : sp(D2) � sp(C) � sp(T ) ! R, in 	C . When weonstrut the expeted utility,  � : sp(D =D1 [D2)� sp(T [ fTg)! R, as �(~d) = P2sp(C)Q�2�C �(; ~d#dom(�)) (; ~d#dom( ))P2sp(C)Q�2�C �(; ~d#dom(�)) ;for eah on�guration, ~d, over the variables in D, we end up with a non-polynomialover several time variables, T [ fTg. However, it will always be the ase that  � isonstant over all time variables, exept possibly for one. To see this, let T 6 denotethe set of time variables in T [ fTg for whih  � is not onstant. Furthermore, letTm denote the variable in T 6 farthest in the temporal ordering. As Tm has not beeneliminated it is learly the ase that Tm �0I C.  � is not onstant over Tm and



102 Chapter 3. Solutions to IDITstherefore it must have some node, X, amongst the desendants of C, as desendant.Then let T 0 be some other time variable in T 6, whih would have to be prior to Tmin the temporal ordering. As  � is not onstant over T 0 and all hane variables thatare hildren of T 0 is known when Tm is known, we onlude that T 0 is d-onneted toC given the hane variables amongst its hildren, and, aording to Conjeture 1,thus to X. This is a violation of Assumption 4, and T 0 an therefore not exist. Hene, �, varies only over one variable.We then let  0 : sp(D =D1 [D2)� sp(Tm)! R, be given as �(~d) = P2sp(C)Q�2�C �(; ~d#dom(�)) (; ~d#dom( ))P2sp(C)Q�2�C �(; ~d#dom(�)) ;for eah on�guration, ~d, over the variables inD. If this is not a polynomial of degreeN , we approximate it and replae  in 	 with the approximation. Otherwise, wereplae it with  0.The only open question remaining, is regarding the point in the method where aompound expression, �, is removed from	: Whenever a time variable is eliminated,and onsequently removed from the domain of �, we hek if there are still two timevariables in the domain of �, and if not, we evaluate �, and store the result in �.Strutural Corretness of the Solution MethodIn the paragraphs above, we have given several arguments as to why the eliminationproedures and short uts we have applied are sound. We still need to argue why theoverall struture of the solution method produes an optimal strategy for a givenIDIT I. As a formal proof of this would be rather elaborate and would not di�ermuh from the one given in [Nielsen and Jensen, 2000℄, we hose only to present asketh.To prove that the struture of the method onstruts an optimal strategy, giventhat the elimination proedures are orret, we apply a onversion of IDITs todeision trees, and utilize that the averaging-out-and-folding-bak algorithm isknown to produe an optimal strategy for deision problems modelled as deisiontrees [Jensen, 2001℄.We need to argue that our solution method an onstrut a split tree where eahvariable in I is treated as a split variable: Eah ordinary deision or hane variablein I, whih are not in the domain of a restrition funtion, an be used as a split



3.3 Solving IDITs 103variable. This an be seen from Step 3 in Method 3.10, whih does not require ofthe variables it splits on, that the resulting subproblems are of a di�erent struture.Hene, we may split on all ordinary deision and hane variables in this step, if weso desire.As already mentioned above, when splitting on a time variable, the partitioningof the numbers in the interval [ts; te[, need not be of a spei� granularity, as longas the requirement on similarity of deision senarios in the resulting subproblemsis ful�lled. Therefore, we an disretize eah time variable to any given level ofpreision and still apply out method. Similarly, by disretizing wait deisions wean let Step 3 in Method 3.10 split on the states of these as well.Thus, by disretizing ontinuous variables, to an arbitrarily �ne level of granularity,we end up with the general struture of the averaging-out-and-folding-bak algo-rithm.Future WorkClearly, this solution method su�ers from some aws, all due to the assumptionsintrodued. The subset of IDITs we an solve are limited, most notieable beauseof Assumption 4, whih, among other things, prohibits an unobserved variable toinuene time dependent variables not dependent on the same time variable. Asalready mentioned this exludes a great deal of deision senarios, and a topi offuture researh would be to alter the parts of the solution method that dependson it. Furthermore, an area where improvements are needed, is in the handling ofrestrition funtions. The method, as presented, does not allow wait deisions tobe restrited, and ordinary deisions annot be restrited by more than one timevariable.Apart from ompleting the solution method, it would be interesting to analyze theomplexity of the method in terms of N , te, jI j, and the number of nodes in anIDIT. The result of suh an analysis ould perhaps be used for deiding an optimalvalue of N and optimal number of approximation intervals for eah utility andprobability distribution, given an IDIT and a value for te.Apart from ompleting the solution method, a topi of interest is implementationof a modelling and solving tool for IDITs. This tool ould warn the user when anIDIT violating the assumptions is onstruted.
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Chapter 4
Conlusion
As this report forms the doumentation of a period of study as well as a means ofommuniating the result, this onlusion onsists of two parts. First, some onlud-ing remarks on the sienti� status and value of the results given in the report, andseond, a brief aount on the knowledge that has been obtained by this author inthe proess.The starting point for this report is a representation language for representing dei-sion problems involving quantitative aspets of time. This representation languagesu�ers from some serious aws and some minor quirks, whih we orreted in Chap-ter 2. The most damaging aw was the lak of a lear temporal ordering of elementsin IDITs. Through an analysis we have highlighted the aws in the existing ordering,and from this analysis, we have reated a new temporal order operator, whih takesasymmetry arising from quantitative time into aount. Building on this work, wehave managed to onstrut a de�nition of what IDITs that make sense, that is, whihan be onsidered wellde�ned. A method for heking IDITs for being wellde�nedhas also been onstruted.The temporal ordering operator is inspired by the ordering operator used in asym-metri inuene diagrams [Nielsen and Jensen, 2000℄, but takes on a quite di�erentform, due to guarded ars into deisions being inherited by subsequent deisions.Similarly, the onept of instantiation, used in other representation languages, hasbeen adapted to ater for this as well.In addition to these results, we have also presented a solution method whih solves asubset of IDITs. Even onsidering the limitations on the IDITs whih an be solved,the solution method is interesting as it avoids disretizing ontinuous variables and105



106 Chapter 4. Conlusiondoes so without utilizing sampling. Continuous variables have so far not been inte-grated into inuene diagrams with unequivoal suess. The problem of speifyingpoliies for deisions over ontinuous variables has so far eluded solution. In our ase,we have exploited the restritions and nature of time, and hene, have solved it inthis spei� ase.Seen from a personal learning perspetive, this projet has been rih on hallenges.The problems onneted to identifying a temporal ordering relation have mostly beendealt with using reetion and pondering while studying orderings of inuene dia-grams in detail. Before deiding upon an approah for solving IDITs, several otherapproahes, inluding sampling and disretization, was studied to a point where ahoie ould be made on a solid foundation. As most of the methods for dealing withontinuous variables that exist are based heavily on properties of Gaussian distribu-tions, few ideas from these soures have been appliable, whereas the struture ofsolutions to asymmetri inuene diagrams have been an inspiration to the strutureof the solution method presented in this report.
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Notationinit(D) the time variable that represents the initiation time of the deision D p6end(D) the time variable that represents the end time of the deision D p6sp(X) the state spae of the variable X p7S1 � S2 the Cartesian produt of the sets S1 and S2 p7X = x the knowledge that the variable X is in the state x p7dom(f) the domain of the funtion f p11W I the set of all nodes in the IDIT I p14LI the set of all labels in the IDIT I p14EI the set of all edges in the IDIT I p14V IC the set of all hane variables in the IDIT I p14V ID the set of all deisions in the IDIT I p14V IT the set of all time variables in the IDIT I p14V IW the set of all wait deisions in the IDIT I p14V IU the set of all loal utility funtions in the IDIT I p14V I the set of all variables in the IDIT I p14V IOC the set of all ordinary hane variables in the IDIT I p14V IOD the set of all ordinary deisions in the IDIT I p14EIs the set of all solid edges in the IDIT I p15EId the set of all dashed edges in the IDIT I p15pa(X) the set of parent variables for the node X p15h(X) the set of hild nodes for the node X p15pad(X) the set of parent variables onneted with dashed edges for the node X p15� the ordering relation used in [Broe et al., 2003℄ p15�I the set of probability distributions in a realization for the IDIT I p18	I the set of loal utility funtions in a realization for the IDIT I p18�I the set of density funtions in a realization for the IDIT I p18�I the set of restrition funtions in a realization for the IDIT I p18,! a partial funtion p18real(U) the realization time variable of the utility U p20V IR the set of all realization time variables in the IDIT I p21�0I the temporal ordering relation of elements in the IDIT I p32I[X 7! x℄ the instantiation of the IDIT I in whih X is known to be x p37



IDI the set of deisions in an IDIT I initiating at the point in timethe deision problem modelled by I starts p39OP The set of possible orderings of variables in the deision problem P p49oP(~z) the ordering of variables in the deision problem, P, when thevariables are instantiated as ~z p49SP/ the poliies in the strategy S, whih are valid under the ordering / p49�P the set of strategies for a deision problem P p49PÆD(DjP ) the ÆD-indued probability distribution for the poliy ÆD p49f(S)#S0 the real-valued funtion over S0 obtained from the funtion f bysumming and/or integrating over all variables in S n S0 p50PSP/ (V P) the S-indued probability distribution for the strategy Sfor the deision problem P p50P I;D;~t the set of past time variablesfor the deision D in the IDIT I[V IT 7! ~t℄ p52SoI(~t) SI/ , where / is some ordering onsistent with �0I[V IT 7!~t℄ p52~x#S the on�guration over the variables in S obtained from ~xby dropping oordinates not orresponding to a variable in S p53ÆS;ID the poliy for D in S under the ordering �0I p60I<x the number of elements in the partition I less than or equal to x p71If the partition the funtion f is de�ned over p71fi the funtion de�ned over the i'th interval generated by If p71f#[a;b[ the funtion that takes on the value of f on points in [a; b[and 0 everywhere else p73C[f ℄i the oeÆient orresponding to xi in the polynomial f p73N the degree of Taylor's series in the solution method p74Tf the pieewise approximation of the funtion f p75Tf ([a; b℄; ) the Taylor's series of f on [a; b℄ about  p75te a point in time after whih all utilities in an IDIT should yield 0 p77jI j the maximum number of intervals a utility funtion is splitinto due to initial spei�ation and split variables p91
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Appendix A
Summary
This report deal with a representation language for deision problems involving quan-titative aspets of time alled inuene diagrams involving time, or simply IDITs.For some time there has existed a number of frameworks for representing and solv-ing deision problems, inluding inuene diagrams, valuation networks, and dei-sion trees. None of them ope very well with quantitative measures of time, whihwas unovered in [Broe et al., 2003℄. Consequently, a new framework was needed.[Broe et al., 2003℄ suggests a representation language, alled IDITs, whih is sup-posed to be a ompat and unambiguous language ompatible with inuene dia-grams, in the sense that an IDIT of a deision problem involving no aspets of quan-titative time should be interpretable as an inuene diagram with no modi�ation.[Broe et al., 2003℄ neglets to turn the representation language into a full framework,meaning that both a set of unambiguous semantis and a solution method is laking.In this report both of these missing results are developed.Chapter 2 ontain a desription of IDITs. In short, these are direted ayli graphswhose nodes represent hane and deision variables and loal utilities. Ars in thegraph represent either probabilisti dependenies, informational onstraints, or fun-tional dependenies. This far IDITs resemble inuene diagrams. However, IDITsallow for a subset of the hane variables to represent points in time where dei-sions end, and thereby to be ontinuous. Furthermore, deisions an be ontinuous ifthey denote deisions on lengths of waiting periods enountered during the proessdesribed by the deision problem. Asymmetry arising from quantitative time areinluded in the diagram by the means of guarded informational ars and restritionfuntions for deisions. 115



We enhane IDITs by furthermore allowing utilities to depend on points in timenot neessarily representing an end time of a deision in the deision problem. Ad-ditionally, we allow the ordering of deisions, whih do not span a period of time,to vary aording to the time previous deisions have ended, and modify the rulesfor inheriting guards in the diagram, to better reet the nature of time dependentobservation. A temporal ordering relation whih takes into aount the asymmetryof IDITs is then presented, and a de�nition of wellde�nedness is derived from thisrelation. We furthermore onstrut a method that heks whether an IDIT is wellde-�ned.At this point we have ompleted IDITs as a representation language and an, thus, inChapter 3, onstrut a solution method on a solid foundation. Our approah to on-struting a solution method, takes outset in an introdution to solutions to deisionproblems in general, and is then outlined through an elaborate example before beingpresented in full. The struture of our solution method follows the struture of solu-tion methods for solving asymmetri deision problems in [Nielsen and Jensen, 2000℄and [Demirer and Shenoy, 2001℄, but the details are di�erent. We hose to approxi-mate ontinuous funtions in IDITs by Taylor's series and use algebrai manipula-tions of these in order to eliminate variables from the IDIT. Spei�ally, we are, dueto asymmetry, required to ater for pieewise ontinuous funtions, whih furtherallow us to approximate ontinuous utility funtions with greater preision using thesame resoures.The resulting solution method is not universally appliable, as it builds on a seriesof assumptions on the nature of the given IDIT. It an be argued for that mostof these assumptions are ful�lled by the vast majority of IDITs. However, one ofthem is a real limitations. Future researh should seek to eliminate the need for thisassumption.


