
Cooperation AmongAutonomous Adaptive Agents II
Group E4-119, DAT6/F10Sb Aalborg Universitet

Department of Computer Science

10th June 2003

ii

AALBORG UNIVERSITY
Department of Computer Science
Title:
Cooperation Among
Autonomous Adaptive Agents

Semester:
Spring 2003, DAT6/F10S

Project Period:
1st of Feb. 2003 to 11th of June 2003

Project Group:
E4-119

Group Members:
Michael Vengø Rydtoft
rydtoft@cs.auc.dk

Henrik Skriver Rasmussen
henriksr@cs.auc.dk

Supervisor:
Tomas Kocka
kocka@cs.auc.dk

Publications:
4 + 1 online

Number of Pages:
114

Abstract:

This report documents the work and findings
on using Strongly Typed Genetic Programming
to evolve cooperative behavior of autonomous
agents.
We devise and implement a method for main-
taining diversity allowing our multiobjective co-
evolution to proceed without converging prema-
turely. A problem with noise is alleviated through
the introduction of a modification to Competi-
tive Fitness Sharing. In order to efficiently track
progress in our co-evolutionary runs we conceive
and utilize an objective measure of evolutionary
progress.
The project has two primary goals. The first goal is
to investigate whether cooperating agents can pro-
duce better results than non-cooperating agents
solving the same problem. Tests in our extended
pursuit environment with varying degrees of com-
munication are performed. Results show that
predators able to communicate evolve much bet-
ter and more robust solutions against difficult prey
than predators unable to communicate.
The second primary goal is to design and evaluate
a method to avoid the phenomenon of disengage-
ment which can occur in competitive co-evolution.
Our method - named the Interleaved Approach -
is compared with approaches found in literature
and determined to be superior in the used envi-
ronment. The Interleaved Approach is also com-
pared with the regular co-evolutionary approach
as well as single evolution. The Interleaved Ap-
proach outperforms both approaches.

This report may be published and reproduced in any way and form provided the authors

are acknowledged and recognized.

iv

Preface

This report is written by project group E4-119 on DAT6/F10S at the Department of
Computer Science at Aalborg University during the spring semester of 2003.

Chapters, sections, subsections, figures and tables are numbered sequentially. Ap-
pendices are numbered alphabetically.

All references to literature in this report is referenced as: "Author Surname [43]",
and all cross-references are of the form: "figure 5.2" or "section 5.2".

Acknowledgments

We would like to thank our supervisor Tomas Kocka for his great interest and in-
volvement in this project.

We acknowledge the software package AToolBox as property of Kasper Kau
(kasper@kau.dk) and thank him for its use in the building of the VisualGP applica-
tion.

We acknowledge Sean Luke as the author of the open source ECJ system and the
license agreement under which we use the ECJ system.

Henrik Skriver Rasmussen Michael Vengø Rydtoft

v

vi

Contents

1 Evolutionary Algorithms 1

1.1 Greedy Algorithms . 1

1.2 Genetic Algorithms and Genetic Programming 2

1.3 Theory Behind Genetic Algorithms . 3

1.4 Selection Methods . 5

1.5 Breeding Methods . 6

1.6 Tree Generation Methods . 7

1.7 Common Evolutionary Problems . 8

1.7.1 Convergence . 8

1.7.2 Maintaining Diversity . 10

1.8 Co-evolution: Problems and Solutions 12

1.8.1 Fitness Sharing and Competitive Fitness Sharing 13

1.8.2 Shared Sampling and the Teacher Set 14

1.8.3 Hall of Fame . 15

1.8.4 Lack of Objective Fitness . 17

1.8.5 Combining HoF and MOEA . 17

2 Previous Work 19

2.1 The Simple Pursuit Environment . 19

2.2 Reducing Tree Sizes . 20

2.3 The Extended Pursuit Environment 20

3 Optimizing Evolution Flow 23

3.1 Analyzing Co-evolutionary Data . 23

3.1.1 Statistical Data and Graphs . 24

vii

CONTENTS

3.1.2 An Objective Measure of Progress 29

3.2 Adjusting Selection Pressure . 29

3.2.1 Original SPEA2 Approach . 29

3.2.2 Modified SPEA2 Approach . 30

3.3 Techniques For Maintaining Diversity 33

3.3.1 Fitness Uniform Selection Strategy 33

3.3.2 The Patchwork Model . 34

3.3.3 FOCUS . 35

3.3.4 Discussion of Techniques . 36

3.4 FOCUS Tests . 37

3.4.1 Test Using FOCUS . 37

3.4.2 Test Using Modified FOCUS 39

3.5 Handling Noise . 44

3.5.1 Solution Approaches . 46

3.5.2 Tests Using the Competitive Fitness Dampener 47

4 Communication in the Extended Pursuit Environment 51

4.1 The Burrowing Prey . 51

4.2 Test Using No Communication . 54

4.3 Test Using Modified Visual Communication 55

4.3.1 Redesign of Visual Communication Functions 55

4.3.2 Tests and Results . 57

4.4 Test Using Visual and Aural Communication 58

4.4.1 1st Approach with Communication 59

4.4.2 2nd Approach with Communication 60

4.4.3 3rd Approach with Communication 61

4.4.4 Additional Communication and Discussion 62

5 Co-evolutionary Disengagement and the Interleaved Approach 65

5.1 Disengagement Countermeasures . 65

5.1.1 Interleaved Competitive Co-evolution 66

5.1.2 The Phantom Parasite . 67

5.1.3 Moderating Opponent Virulence 68

viii

CONTENTS

5.2 A Comparison on Disengagement Countermeasures 68

5.2.1 Verifying Existence of Disengagement 69

5.2.2 Test With the Phantom Parasite 70

5.2.3 Test With the Moderate Virulence 71

5.2.4 Discussion of Tests . 73

5.3 A Comparison on Evolutionary Paradigms 75

5.3.1 Single Evolution in the Extended Pursuit Environment 76

5.3.2 Stepwise Co-evolution Test . 76

5.4 Interleaved Co-evolution and the Counting Ones Problem 79

5.4.1 Haploid-Diploid Tests . 80

5.4.2 Haploid-Triploid Tests . 84

6 Conclusion 87

A VisualGP 91

B ECJ 93

B.1 Contents and Structure of ECJ 9 . 93

B.2 Supported Features . 93

B.3 Packages . 94

C Interleaved Approach Flow 97

D Functions and Terminals in the Extended Environment 99

D.1 Predator Functions and Terminals . 99

D.2 Prey Functions and Terminals . 100

E Modified Function and Terminal Set 103

E.1 Modified Predator Functions and Terminals 103

E.2 Modified Prey Functions . 104

F Evolved Strategies 105

F.1 Strategies Evolved Using CFD . 105

F.2 Strategies Evolved using CellOfNearestRight() 106

ix

CONTENTS

x

Chapter 1

Evolutionary Algorithms

This chapter presents different approaches to evolutionary algorithms. Evolution-
ary algorithms are related to the family of greedy algorithms. Greedy algorithms
are introduced in section 1.1. Section 1.2 presents varieties of evolutionary algo-
rithms. Sections 1.4 and 1.5 introduce different methods for selection and breeding
respectively. Section 1.6 introduces methods for tree generation and section 1.7 de-
scribes various problems commonly occurring when evolutionary algorithms are
employed. Finally section 1.8 describes topics related specifically to co-evolution.

Evolutionary Algorithms seek to utilize the Darwinian concept of natural selection.
This concept can be observed in nature where biological structures which are more
adept at coping with their environment survive and reproduce at higher rates than
less adept structures. Evolutionary algorithms use this concept to guide their search
through very large search spaces. Basically they work by creating a set of individu-
als which offer potential solutions to a problem and measuring the degree to which
these individuals are successful at solving the problem. This degree of success is
referred to as fitness. The fitness is used as basis for selecting a subset of the indi-
viduals which are subsequently altered or "bred" to produce new individuals with
new solutions. Thus the search is performed bymoving to new solutions within the
search space in the directions in which improvement is expected. This loop repeats
until either a sufficiently fit solution has been produced or a predefined maximum
number of iterations has been reached. The basic evolutionary loop can be seen in
figure 1.1.

1.1 Greedy Algorithms

The general idea behind a greedy algorithm is to myopically always select the solu-
tion with the highest immediate gain. In EAs greediness can manifest itself through
the concept of selection pressure - i.e. how high is the pressure to select the (cur-
rently) best individuals for the mating pool. In a maximally greedy EA the mating
pool would always be filled solely with copies of the very best individual.

To further illustrate the idea of greediness we present a simple greedy algorithm

1

CHAPTER 1. EVOLUTIONARY ALGORITHMS

individual(s)
Reproduction of

individual(s)
Selection of

fitness assignment
Evaluation and

Figure 1.1: Basic evolutionary loop.

to solve the problem of finding a dominating set for a graph. A dominating set in
graph F is a set of vertices in F which have all the other vertices in F as neighbors.

A greedy algorithm for finding a dominating in graph F set is:� Initialize set S to be the empty set.� Select the unmarked vertex in F with highest degree (i.e. most neighbors),
mark it and add it to S.� If S constitutes a dominating set terminate. Else repeat from step 2.

Note that this algorithm is not guaranteed to find the smallest possible dominating
set.

1.2 Genetic Algorithms and Genetic Programming

Genetic Algorithms

In Genetic Algorithms (GAs) individuals are represented by fixed-length bit strings
which encode the solution offered by each individual. When evaluated the bit
string is interpreted in a predefined manner and fitness is assigned based on the
capability of the individual. As the bit strings are generated pseudo-randomly,
measures must be taken to ensure that the interpreter is generic enough to accept
any kind of input. For instance three bits may be reserved to represent an integer
between zero (binarily encoded 000) and six (binarily encoded 110) inclusive. The
interpreter should be able to cope with instances in which the three bits are set to
111 corresponding to the integer 7. A potential drawback of using GAs is that de-
signing the binary encoding of the behavior of individuals can be a comprehensive
task.

Genetic Programming

One problem associatedwith Genetic Algorithms is the fixed length of the bit strings
used to encode solutions. In Genetic Programming (GP) solutions are represented
by variable length symbolic expressions or parse trees of varying shape and size.

2

1.3. THEORY BEHIND GENETIC ALGORITHMS

This effectively extends the search space of possible solutions since often an infi-
nite number of parse trees can be generated as potential solutions to a problem. In
practice a maximum tree depth is usually defined in order to avoid too large solu-
tions. A GP parse tree specifies a solution expressed in a particular language. This
language is the union of a function set F and a terminal set T . The leaves of the
parse tree consist of members from T whereas the inner nodes are members fromF . In other words, what distinguishes F and T is that members of F have children
whereas members of T do not.
When constructing parse tress we have to make sure that the trees are syntactically
correct. For instance passing a boolean data type on to an arithmetic function used
to compute the sum of two integers causes problems. This problem is similar to the
problem in GAs in which all possible bit strings must be interpretable. One way
to make sure all generated trees are syntactically correct is to use STGP which is
introduced in section 1.2. Another way is to require that F and T satisfy a property
of closure (see Koza [30]). This property can be expressed using F and T .
The Closure Property:
Any function in F shall be able to accept as its argument any value and data type that may
possibly be returned by any function in F , and any value and data type that may possibly
be assumed by any terminal in T .
To ensure closure all functions are adapted to accept all possible data types. For
instance an arithmetic function can interpret the boolean values "true" and "false"
as respectively 1 and 0. Likewise, protected versions of some standard operators
may be defined. A common example is protected division which allows division
by zero.

Strongly Typed Genetic Programming

Strongly Typed Genetic Programming (STGP) is an extension of GP which effec-
tively eliminates the before-mentioned closure constraint. This is done by requiring
that each function specifies precisely the data types of its arguments and returned
values. Having such a specification for each function STGP ensures that all gen-
erated parse trees or symbolic expressions satisfy the constraint that all arguments
passed to functions are of the correct type.

Imposing such structural requirements reduces the search space of possible solu-
tions. Montana [40] describes a problem with a terminal set of size two and a func-
tion set of size ten. With a maximum tree depth of five the size of the search space
for this problem is 1011 using STGP while the size of the search space for the same
problem using GP is 1038. This significant reduction makes the problemmore man-
ageable using STGP.

1.3 Theory Behind Genetic Algorithms

Holland’s Schema Theorem in Holland [22] mathematically characterizes the evo-
lution over time of a GA population. As the name suggests the theorem is based on
the concept of schemas. While a GA on the surface processes binary strings Hol-
land states that it implicitly processes schemaswhich represent similarities between
the binary strings. A schema is defined as a string of length L which is the same

3

CHAPTER 1. EVOLUTIONARY ALGORITHMS

length as the strings in the population. Each position in the schema consists of a
symbol from the alphabet 0,1,*, where * represents a "don’t care" character which
is essentially a wildcard. A schema thus represents the set of binary strings whose
corresponding bit-positions are of identical value to the 0 and 1 bits in the schema.
Depending of the number of "don’t care" characters in a schema it can represent up
to 2L binary strings where L is the string length. This number corresponds to the
entire search space for the given problem. Schemas have two properties, namely
their order and their defining length. The order of a schema is the number of fixed
bit positions in a schema and the defining length is the distance between the outer-
most fixed bit positions in the schema.

The Building Block Hypothesis
Building blocks are a subclass of schemas and are defined as low-order, short defining-
length, highly fit schemas, where the fitness of a schema is defined as the aver-
age fitness of the solutions it represents. A given solution can thus contain sev-
eral building blocks. Building blocks can be seen as templates of solution parts.
When combining such solution parts they form the total of a GA’s solution to a
given problem. The building blocks are interesting because of the following ob-
servation. The selection process chooses solutions with above average fitness for
breeding. Therefore solutions which are members of highly fit schemas are selected
more frequently than solutions which are members of less fit schemas. Further-
more, the crossover operator less frequently disrupts schemas with shorter defin-
ing length and the mutation operator less frequently destroys low-order schemas.
The property of the crossover operator becomes obvious when comparing the two
building blocks ****10 and 01**10*11 where the latter is less likely to be transferred
undisrupted to a new individual than the former due to its longer defining length.
Likewise with the mutation operator it is clear when comparing the two building
blocks 1***01 and 1101*1 that it is less likely that the latter will survive mutation
undisrupted due to its higher order. Therefore, the highly fit, short defining-length,
low-order schemas named building blocks will gain and grow from the breeding
process from generation to generation. This is known as the Building Block Hypothe-
sis. GAs can thus be said to process such useful schemas or building blocks instead
of strings. Holland [22] estimates that while a GA processes n strings each gen-
eration, it processes n3 building blocks. He calls this implicit parallelism. This is
naturally a very desired property in a search method.

The Schema Theorem
The Schema Theorem (see equation 1.1) states that building blocks grow exponen-
tially over time while below average schemas decreases at a similar rate (Holland
[22]). The Schema Theorem calculates an estimation of the instances of the schema
s in the next population m(s, t+1) in terms of m(s, t), where m is the number of
instances of s and t is the generation. The number m is expressed as the prod-
uct of the expected number of selections of s and the survival probabilities. The
survival probabilities are the probabilities with which the selected schemas remain
unchanged during the processes of single-point crossover and mutation. The GA
assigns a probability of selection to each string directly proportional to its fitness.

The schema s can therefore be expected to be selected m(s, t) � (f(s)f) times, where f
is the average population fitness and f(s) is the average fitness of those strings in the
population that are elements of the schema s. P is the probability that single-point
crossover will be applied on the individual and is used to calculate the probability

4

1.4. SELECTION METHODS

that single-point crossover will destroy the schema. Pm is the probability that an
arbitrary bit of an arbitrary solution will by mutated and o(s) is the number of de-
fined bits in the given schema. Finally d(s) is the distance between the leftmost and
rightmost defined bit in s and l is the length of the strings in the population. The
expression is an inequality due to the fact that a schema destroyed as a consequence
of single-point crossover may be joined with a similar schema and through this join
regain its original form.m(s; t+ 1) � m(s; t) � f(s)f � (1� p d(s)l � 1) � (1� pm)o(s) (1.1)

The Schema Theorem can be roughly interpreted as saying that the more fit schemas
will tend to grow in influence, especially schemas with a small number of defined
bits, i.e. a high number of *, and especially when these defined bits are near each
other within the bit string. However, the Schema Theorem is accused of being sim-
plistic in its estimations and its description of the behavior of a GA (see Mahfoud
[38]). The values f(s) and f do not stay constant through evolution as assumed
since fitnesses tends to shift significantly. Furthermore, the Schema Theorem only
takes into consideration schema losses and not schema gains as a consequence of
the genetic operators even though crossover and mutation can construct schemas.
Despite the simplifications the Schema Theorem describes interesting aspects of the
behavior of GAs, e.g. that higher mutation probabilities increasingly disrupt higher
order schemas while higher crossover probabilities increasingly disrupt schemas
with higher defining length.

The literature on the subject of analyzing and describing the behavior of both GAs
and GP is vast and much work is still being done within the area. Since the goals of
this report is not of pronounced theoretical character we will not go into the most
recent theories but only state that theory is a longway from being able to completely
express the behavior of GAs and GP although it provides valuable insight.

1.4 Selection Methods

In order for evolution to occur individuals from one generation are chosen to serve
as "parents" of individuals in the next generation. In general the individuals which
best serve as parents for the next generation are those with good genetic structures.
In spite of this it is not always beneficial to simply select the very best from a gen-
eration. Consult section 1.7 for elaboration on this issue. Several selection methods
with varying degree of selection pressure have been proposed. This section will de-
scribe the most commonly used. All these selection methods favor individuals with
higher fitness and therefore have the property and purpose to increase the average
fitness of a population.

Fitness Proportionate Selection
For each individual i from a population of size S the probability of selection Pi is
directly proportional to its fitness Fi. Pi can be calculated asPi = FiPSj=1 Fj (1.2)

5

CHAPTER 1. EVOLUTIONARY ALGORITHMS

Rank Based Selection
When using Rank Based Selection, selection is based on the rank of the fitness rather
than its numerical value. The best individual is awarded rank N where N is the
size of the population. Denoting the rank of individual i as Ri the probability Pi of
selecting the individual is: Pi = 2 � RiN(N + 1) (1.3)

Rank selection reduces the potentially dominating effects of having a single super
individual with a numerically high fitness. In the event of a group of individuals
with closely clustered fitness values Rank Based Selection exaggerates the differ-
ence favoring the individuals with higher fitness.

Tournament Selection
In Tournament Selection a group of predetermined size1 is chosen randomly from
the population and the one with the better numerical fitness is selected. Tourna-
ment Selection is not as sensitive to the fitness values as other selection methods
besides Rank Based Selection since it is the ranking of the individuals which deter-
mines the outcome of the selection. Note that when using this method the worst
individual from a generation has no chance of being selected. Tournament Selection
is the selection method we will use in our work. Increasing the Tournament Size
also has the effect of increasing the selection pressure. This makes the Tournament
Size an attractive and easily adjustable parameter.

1.5 Breeding Methods

The evolutionary step in which the selected individuals are altered and introduced
into the next generation is known as breeding. The most common breeding meth-
ods are explained below.

Crossover
The Crossover operator creates variance in the population by producing two new
individuals from two old. Crossover can be nicely illustrated using GP parse trees.
For each of the two trees one random node is selected and the subtrees below these
nodes are swapped to produce two new individuals. Figure 1.2 illustrates this.
Some crossover variants use more than one crossover point per tree. The crossover
operator is often used more frequently than the other operators during an evolu-
tionary run. Note that when STGP is employed the nodes at the crossover points
must have the same return types. GAs differ from other search methods mainly by
their assumption that individuals considered to be good are so because they con-
tain some important good parts and the more good parts an individual contains
the better it is. Crossover is a way to migrate possibly good parts to new individ-
uals. It is assumed that applying crossover on two average individuals, containing
only a few good parts each, will produce one more fit individual and one less fit
individual. To be successful it is required that the good parts are to some extent
independent and local in the individual and that the parts positively influence the

1This size is referred to as Tournament Size.

6

1.6. TREE GENERATION METHODS

fitness. I.e. the good parts are containedwithin limited subtreeswhich aremigrated
completely with the crossover operator and these subtrees influence the new more
fit individual to score better fitness due to its additional functionality.

−

2 2

+

1 2Crossover

Crossover point

Crossover point

+

5+

1 2

−

2 2

+

5

Figure 1.2: Crossover - note that the root node can be selected as crossover point.

Mutation
Mutation creates variance by mutating one part of an individual into something
new. Using the GP parse tree as an example a mutation point is selected. The
subtree emerging from this point is replaced by a new randomly generated sub-
tree. This is illustrated in figure 1.3. Like with the crossover operator variants exist
which use multiple mutation points. When using STGP the new randomly gener-
ated subtree will have same return value as the subtree it replaces. Note that the
mutation operator has the property that it can introduce new genetic material into
the population during evolution. It can thus be used as a simple means of main-
taining diversity in the population.

Mutation

Mutation point

3 5

++

5+

1 2

Figure 1.3: Mutation - the terminal ’3’ is inserted as new subtree.

Elitism
Elitism is a method (see Mahfoud [38]) which ensures that the best individual or
individuals in the current population survive from generation to generation. Basic
elitism copies the best individual(s) from the current population to the next pop-
ulation without altering them. In principle any standard selection method can be
made elitist.

1.6 Tree Generation Methods

The initial generation of individuals in an EA population is randomly generated.
As we are using STGP we will in this section briefly describe the FULL and GROW
methods. These are two common approaches used to generate trees. These two
methods are often both used when creating an initial population. The combination
of using both, each of them used to create 50% of the initial trees, is so popular that

7

CHAPTER 1. EVOLUTIONARY ALGORITHMS

it has its own name. It is referred to as the Ramped Half-and-Half and is used in
our work.

FULL
The FULL method generates trees for which the length of every non-backtracking
path from the root node to any leaf is equal to some specified maximum depth. It
does this by continuously selectingmembers from the function setF as nodes in the
tree. When the maximum depth for a path is reached a member from the terminal
set T is selected. The shape of the trees generated when using the FULL method
is affected by the number of arguments taken by functions in F . If the majority
of functions have many arguments the generated trees are very wide. The FULL
method is not influenced by the relative sizes of the sets F and T .
GROW
The GROW method generates trees of varying shape and size. As with the FULL
method a maximum depth is specified and no non-backtracking path from the root
node to a leaf exceeds this depth. The path may, however, be shorter. Pseudocode
for the GROW algorithm can be seen in table 1.1. As opposed to the FULL method
the GROW method is influenced by the relative sizes of the sets F and T . If the
set F has significantly more members than T the algorithm behaves similarly to
the FULL algorithm. This happens because nodes are selected from the union of
the two sets and function nodes will have a high chance of being selected until the
maximum depth is reached. If the terminal set T has many more members thanF an abundance of short trees are generated as the chance of terminating branches
early will be high. In some implementations a minimum depth is also specified.
Thus terminal trees which are almost always useless and very small trees can be
avoided.

1.7 Common Evolutionary Problems

In evolutionary algorithms the fitness of a population increases over time as the
search is guided by a biased selection of more fit individuals. Choosing the right
selection pressure is imperative in ensuring progress in the evolution. At the same
time the genetic diversity of the population should be maintained in order to avoid
stagnation in local optima. This section will discuss these two problems as well as
possible solutions.

1.7.1 Convergence

One of the forces of an EA is its ability to guide the search for the optimal solution
as opposed to a brute force search. The search is guided using selection biased by
fitness. Individuals with high fitness scores will thus be selected more often for
breeding and future generations will contain an increasing amount of such indi-
viduals. Additionally these individuals will be selected frequently for crossover
with themselves so that many crossovers will be incestuous. The population will at
some point contain so many copies or slight variations of these individuals that the
population is said to have converged to some solution. In figure 1.4 individuals are
depicted on a curve illustrating the fitness landscape. The guided search is taking

8

1.7. COMMON EVOLUTIONARY PROBLEMS

GROW AlgorithmS = functions F [terminals Tdmax = maximum depth
grow(depth dmax) {
if (d = dmax) {
return random terminal 2 T
}

else {

get random element s 2 S
if (s 2 T)
return s;

}

else {

for (each argument a of s) {

a = grow(d+1);

}

return s;

}

}

}

Table 1.1: The GROW algorithm

place on several peaks where a number of individuals are climbing the peaks to
reach the top. Once all individuals are located on the top of the highest explored
peak the evolution has converged. The ability to converge ensures that a solution
will be found at some point in the evolution and is thus a desired property. How-
ever, if the evolution converges to a (globally suboptimal) local optimum, which is
the case if the evolution converges to the leftmost inhabited peak in figure 1.4, the
evolutionary run has converged prematurely. The problem with premature con-
vergence is to escape from this area of the search space and start exploring another
one because all the individuals are almost identical and some breedingmethods are
rendered useless.

One major cause of converging prematurely is the concept of elitism which is also
an important factor if convergence is to be ensured. Elitism occurs when the so-
lutions with the highest fitness scores are copied directly into the next generation
without modifications. Therefore elitism ensures that a globally optimal solution is
saved once it has been found. However, also suboptimal solutions are saved if they
are currently the best scoring solutions and the population will as described tend
to converge towards these solutions.

Since it is very difficult to escape from a local optimum after having converged pre-
maturely other measures are taken to prevent this phenomenon. The tournament
size can be decreased when using tournament selection and the degree of elitism
can be decreased. These are two of the factors which can help to decrease the selec-
tion pressure which again can help avoiding premature convergence. However, if

9

CHAPTER 1. EVOLUTIONARY ALGORITHMS

the selection pressure is too low the evolution may converge never or very late. If
premature convergence has occurred mutation can guide the search in new direc-
tions. Often the evolutionwill re-converge and the situation is status quo, Koza [30].
If crossover is applied on two identical solutions with different crossover points the
results can be very different from the parents. Another and more comprehensive
method for avoiding premature convergence is to maintain diversity amongst the
solutions in the population. The evolutionary search can proceed in many direc-
tions and avoid being locked at one place. This situation is illustrated in figure
1.4 where several peaks are being explored simultaneously. The following section
introduces several methods for maintaining diversity.

= Individual

Fitness Values

Search Space

Figure 1.4: Individuals from a population climbing several peaks. If the individ-
uals are climbing only the middle peak the population will converge prematurely.
When diversity is maintained several peaks can be climbed simultaneously.

1.7.2 Maintaining Diversity

By diversity of a GP population wemean the extent of structural uniqueness among
the parse trees of the individuals in the population. Keller [27] states that diversity
drops during the runtime of an evolutionary algorithm as clusters of individuals
build up because of fitness based selection mechanisms. If diversity is lost too soon
the evolutionary search may converge to a local optimum. Generally speaking a
tradeoff exists between exploration of new solutions and exploitation of already
discovered material. Naturally the maintenance of diversity is most important for
complex search spaces with multiple local optima. Several methods exist which
assist in maintaining diversity. We will introduce some of these below. Sharing
and newer crowding methods are so-called niching methods which promote the
formation and maintenance of stable subpopulations in EAs (see Mahfoud [37]).

Crowding
Initial crowding techniques were introduced by De Jong [26] as a generalization of
a similar method called pre-selection. Crowding inserts new elements in a popu-
lation by replacing similar elements in the population with them. To make such a
replacement an individual is compared to a random subpopulation of m individu-
als where m is known as the crowding factor. The individual from this subset with

10

1.7. COMMON EVOLUTIONARY PROBLEMS

the highest similarity is chosen as replacement. Over time this method tends to
spread individuals over the more prominent peaks of the search space. As evolu-
tion progresses an increasing amount of individuals are similar to each other and
the replacement of individuals with similar individuals tends to maintain diver-
sity creating room for distinct subspecies within the population. Today De Jong’s
method is not considered a niching method as it is apparently incapable of con-
sistently maintaining more than two peaks of even a simple multimodal function.
In 1995 Mahfoud [38] presented a modified version of the crowding method called
deterministic crowding which has better niching properties.

Sharing
Sharing methods are characterized as methods which require similar population
individuals to share fitnesses. To induce such sharing a sharing algorithm typically
alters the fitness of an individual based on its proximity to other population mem-
bers. Specifically the shared fitness f’ of individual i can be calculated as follows:

f 0(i) = f(i)PSj=1 sh(d(i; j)) (1.4)

In the equation f designates the old fitness, S the population size and sh the sharing
function which is a function of the distance d between individual i and j. sh returns 1
if the individuals are within some specified threshold of each other and 0 otherwise.

The idea behind the sharing approach is to avoid situations in which many or all
individuals inhabit the same peak of the fitness landscape in which they are eval-
uated. Note that the smaller and thus possibly more local a peak in fitness is the
fewer individuals it can "accommodate". A variation of this method is used in our
work. Please consult section 1.8.1.

Island Approaches
In an island approach the population is split into several smaller subpopulations
which are evolved independently from each other. Island approaches were orig-
inally conceived to enable distribution of the often computationally taxing search
problem to several computers or CPUs. The approach has the attractive side effect
that it can help to maintain diversity as the population is split. The subpopulations
are typically not completely isolated. Usually a limited number of individuals are
allowed to migrate from one population to another according to some predefined
migration topology. Figure 1.5 which is borrowed from Holm [23] shows some
commonly used migration topologies.

The assumption is that each subpopulation will investigate its own part of the
search space converging to some local optimum in that area. If migration is per-
formed on individuals of high fitness the population as a whole should converge
to the best optimum of all explored optima. If migration is not used excessively
the islands will help to prevent the entire population from converging quickly to
suboptimal solutions.

11

CHAPTER 1. EVOLUTIONARY ALGORITHMS

4

2

8

5

7

5

3

2

4

1 1

87

1

7

4

3

6

9

321

3

9

6

9

Figure 1.5: Island migration topologies. The nodes represent islands and the di-
rected edges migration paths. The left topology has a ring structure whereas the
right resembles a toroidal mesh.

1.8 Co-evolution: Problems and Solutions

The type of co-evolution employed in our work – in which the fitness landscapes
of two or more populations of different species are coupled – is referred to as com-
petitive co-evolution. The term co-evolution (non-competitive) is used for evolu-
tions in which one or more populations of individuals from the same species are
evolved and evaluated by competing amongst each other. Many of the same types
of problems occur in competitive and non-competitive co-evolution. This section
explains several general theories, methods and techniques from the literature used
to alleviate such problems. Additionally we present our own proposals for possible
solutions to some of the problems.

When competitive co-evolution is employed all competing populations are evolved
in a parallel manner and the different populations are evaluated using members
from the competing populations. Competitive co-evolution has been successfully
applied to diverse problems, see for instance Sims [52], Floreano [13] andReynolds[44].
Competitive co-evolution has been applied to the pursuit environment by Haynes
[16] with discouraging results and by Cliff [6] where competitive co-evolution suc-
ceeded in producing good pursuers and good evaders. In Cliff [6] neural networks
were used as opposed to Haynes who used genetic programming.

When individuals from one population are evaluated, i.e. when their fitness is be-
ing measured, against individuals from the opposing populations they are referred
to as students and the individuals they are measured against are referred to as teach-
ers. This terminology will be used throughout the remainder of this report.

Several problems commonly occur when competitive co-evolution is employed.
One such problem concerns the way fitness is assigned. As members of one pop-
ulation is used as teachers for another population some members of the teaching
population will only be beaten by few members of the student population. If these
students beat few other teachers they will normally receive poor fitness compared
to students which beat many teachers. Thus they will likely become extinct over
time. However, these few student population members possess some useful trait

12

1.8. CO-EVOLUTION: PROBLEMS AND SOLUTIONS

which enable them to beat the teachers few others can beat and they are thus worth
preserving. Section 1.8.1 contains a fitness sharing method which deals with this
problem. Another problem is the sheer number of evaluations necessary if each
student is to be evaluated by each possible teacher. For two populations each of
a thousand individuals one million evaluations are needed for all possible student
teacher pairs. Section 1.8.2 describes a solution to this problem called Shared Sam-
pling which locates a good subset of individuals to be used as teachers. This set is
called the Teacher Set. Section 1.8.3 describes the concept of Hall of Fame which is
used to avoid oscillatory patterns in the evolution where solutions to certain prob-
lems are forgotten and later rediscovered. The evaluation of individuals can also
be problematic. Section 1.8.4 describes the Lack of Objective Fitness problem. Finally
section 1.8.5 describes how the HoF concept can be combined with Multi Objective
Evolutionary Algorithms.

1.8.1 Fitness Sharing and Competitive Fitness Sharing

The following simple fitness assignment method could be used to assign fitness to
a student individual when it is being evaluated against a number of teacher indi-
viduals: A fitness value is assigned when an evaluation has occurred and all fitness
values an individual attains against the teachers is summed to produce one overall
fitness. If fitness is assigned as just described where fitness is based on the sum
of scores across all the evaluations a problem arises. An individual which beats a
high percentage of its opponents will using the simple fitness assignment receive a
higher fitness than an individual which only beats few opponents. Intuitively this
seems like a good property. However, there may exist an individual which is only
able to beat one particular opponent which no other individual can beat. In this
fitness model this individual will receive a low fitness and risk extinction due to
selective pressure. This individual contains genetic material which should not be
lost since it may be useful in later generations. A fitness assignment method which
increases the survival chance of rare but important individuals is needed.

Fitness Sharing (see section 1.7.2) is a fitness assignment method which takes into
account similarities among individuals. An individual is penalized for having a
common fitness by dividing its fitness with the sum of its similarities with each
other individual in the population. A variant of this method called Competitive
Fitness Sharing was proposed in Rosin [46]. When using Competitive Fitness Shar-
ing each teacher is viewed as a separate resource of fitness to be shared among those
students which can beat it. The fitness assigned to a certain student agent beating
a teacher j in the set of teachers X is

Pj2X 1Nj , where Nj is the total number of
students in the population beating teacher j.

This method rewards students which are able to beat teachers only few other stu-
dents can beat even though they may not be able to beat many teachers. This is
as mentioned desirable because the genome of such students is likely to contain
important and rare substructures. Without the reward these individuals and their
important substructures have a higher chance of becoming extinct before being able
to pass the useful substructures on to new individuals. Thus competitive fitness
sharing helps ensure the survival of important but rarely represented students. Ad-
ditionally it helps to maintain diversity in the population. Rosin [46] concludes that

13

CHAPTER 1. EVOLUTIONARY ALGORITHMS

the method substantially improves performance on their suite of simple test prob-
lems2.

1.8.2 Shared Sampling and the Teacher Set

When using co-evolution and competitive co-evolution it is not apparent which
teacher individuals students from a population should be evaluated against. In
single species evolution individuals are often evaluated against the same single op-
ponent. This opponent may be the environment itself or a non-evolving agent. The
latter was the case in our simple pursuit environment (detailed in Rydtoft and Ras-
mussen [43]) where all predators were evaluated against the hard-coded randomly
moving prey. In co-evolutionwhere individuals are all of the same species andmea-
sured by evaluation against each other one could evaluate every individual against
every individual of the same generation or - even better - against every individ-
ual from the same generation and every past generation. For a population size of
X individuals the first approach requires X2 evaluations per generation while the
second approach requiresX2 �Y where Y is the number of generation elapsed so far.
Such numbers of evaluations are intractable for most problems. Only for very small
population sizes or very few generations of evolution would the computational ef-
fort required be tolerable. In competitive co-evolution where two populations of
different species compete the same problem exists.

Instead of testing all members of a student population against all members of the
newest teacher population the computation time can be reduced drastically by only
testing the student population against a limited sample of the teacher population.
Shared Sampling is a method for choosing such a limited sample set of teacher in-
dividuals. Shared Sampling as described in Rosin [47] uses information available
from the previous generation about the individuals who are to be teachers to ob-
tain a more challenging teacher set than if they were picked randomly. The set of
teachers produced by Shared Sampling is named the Teacher Set3.

Shared Sampling chooses teachers which challenge as many segments of the stu-
dent population as possible in an attempt to create the ideal teaching set. Note that
the individuals which are used to decide this are members of the opponent Teacher
Set which the population being sampled from is evaluated against. In this section
OppTeacher refers to individuals from the opposing Teacher Set. The ideal teach-
ing set is a set of individuals that work together by having, for each opponent, at
least one individual in the set capable of beating that opponent. Shared sampling
attempts to create this set by use of the Competitive Fitness Sharing also used for
selection. The algorithm for selecting the Teacher Set is shown in table 1.2. Note
that the Shared Sampling proposed in Rosin [47] is intended for a single species
environment and the algorithm shown is adapted to our environment.

The algorithm works by selecting new members which have maximal competitive
shared fitness within the population until the desired Teacher Set size is reached.
Thus any newmember is chosen to be one which competes well against OppTeach-
ers which other members of the Teacher Set compete poorly against.

2These problems consisted of using competitive co-evolution strategies for the simple games Tic Tac
Toe, Nim and Go.
3It is also often referred to as the Sample Set.

14

1.8. CO-EVOLUTION: PROBLEMS AND SOLUTIONS

Teacher Set = ;
For (all OppTeachers i) {

beat[i] = 0

}

While (Teacher Set not full) {

For (all possible teachers) {

set teachers samp_fit = 0

For (all OppTeachers which j beat) {

samp_fit[j] += 11+beat , beat is OppTeacher’s beat value.
}

}

Add possible teacher j with highest samp_fit to Sample-Set

For (all OppTeachers i which j beat) {

beat[i]++

}

} End of While loop

Table 1.2: The Shared Sampling algorithm

Each OppTeacher has a Beat variable which is used to register the number of indi-
viduals in the Teacher Set which beat the OppTeacher. NumOfPossibleTeachers is
the number of individuals from which we sample and which are not present in the
Teacher Set. Each possible teacher j has a samp_fit[j] given by equation 1.5 where k
is the k-th OppTeacher in its list of individuals it can beat.samp_fit[j℄ = 11 + beat[k℄ (1.5)

1.8.3 Hall of Fame

A possible difficulty of co-evolutionary approaches is caused by intransitive supe-
riority (see Watson [55]). Basically intransitive superiority means that the facts that
agent A beats agent B and agent B beats agent C do not imply that agent A will be
able to beat agent C. An example of clear transitivity is equality for numbers while
an example of clear intransitivity is the beat relation used in the game "Rock, Pa-
per and Scissors" in which rock beats scissors, scissors beat paper and paper beats
rock. In addition to lacking transitivity the rock-paper-scissor game contains a dom-
inance loop. Except for such well understood and simple relationships transitivity
or lack thereof can be very hard to detect. It is hypothesized to cause cycles in the
evolution causing the evolutionary algorithm to visit parts of its search space more
than once because each single step yields an apparent improvement when viewed
myopically. The following simple example shows how such a cycle can occur: Con-
sider two populations of separate species speA and speB each containing a single

15

CHAPTER 1. EVOLUTIONARY ALGORITHMS

individual A and B. Each individual is evaluated against the other. The following
sequence of events creates a cycle in the search space for each species even though
each single step yields an improvement for the individual causing it.

1 A beats B
2 B evolves into B’
3 B’ beats A
4 A evolves into A’
5 A’ beats B’
6 B’ evolves into B
7 B beats A’
8 A’ evolves into A
9 A beats B

To prevent the emergence of such circular dominance relationsmade possible by in-
transitive relationship among the species one could evaluate each individual against
all of its previous opponents. Evaluating individuals against previous opponents
has the effect that the individuals not only must evolve new solutions. At the same
time they must also retain their ability to beat old opponents. This prevents indi-
viduals from being overfitted to the current generation of opponents. In the above
example this would mean that e.g. individual A’ created in line 4 would not seem
as an improvement over A as they would both be evaluated against individual B
and B’. This would result in equal fitness for A’ and A as they would both win one
match and lose the other. An individual A” would be recognized as superior to
both A and A’ if it is able to beat both B and B’. Using the myopic approach of only
evaluating individuals using their current opponents would make distinguishing
the performance of A’ and A” impossible. As described in section 1.8.2 concerning
Shared Sampling the amount of evaluations necessary to evaluate each individual
against all previous opponents may well be intractable except for very simple prob-
lems.

The concept of Hall of Fame (HoF) described in Rosin [47] is used to compensate for
the necessity to save all individuals from previous generations for testing purposes
so that progress is ensured and to prevent useful genetic material from getting lost.
The HoF concept can be considered as an extended kind of elitism over time which
saves the best genetic material during the entire evolutionary run. Instead of saving
all individuals in each generation the best individual is added to the Hall of Fame
as a future evaluation source. All students in a generation are then tested against a
sample of the current teachers4 and all or a sample of the teachers from the HoF.

In Rosin [47] it is investigated whether sampling randomly from the HoF or up-
dating fitness for the individuals in the HoF and picking the most fit individuals
is the most beneficial method for choosing teachers. The fitness of the HoF teacher
individuals is updated by playing the individuals against the new generation of
individuals from the same population as the HoF. This is possible in their exper-
iment since both populations are of the same species. Rosin concludes that the
computational effort required to maintain the fitness is much greater than the bene-
fit obtained over the random sampling. In our opinion, updating the fitness of HoF
members by pitting them against new individuals is a very bad idea since the pur-
pose of theHoF is to retain genetic materialwhich at a specific point in the evolution
was successful. Even though old individuals are saved they will most likely receive

4E.g. the Teacher Set.

16

1.8. CO-EVOLUTION: PROBLEMS AND SOLUTIONS

poor fitness against the new opponents compared to younger individuals and thus
they are not likely to be picked when using the performance based approach.

1.8.4 Lack of Objective Fitness

A general problem presents itself when evolved individuals from a co-evolutionary
run are to be analyzed. The individuals from one population A receive fitness rel-
ative to the individuals from the other population B against whom they are eval-
uated. For instance if an individual from population A beats many individuals
from population B it receives high fitness and is likely to survive evolution and
reproduce at a high rate. But the fitness obtained by this individual is directly
linked to the performance of the individuals of the opposing population. If they
are all of low performance a seemingly adept individual from the other population
may in fact prove to be of low quality. Thus any numerical fitness awarded to an
individual participating in co-evolution provides no objective information regard-
ing the capabilities of the individual as its fitness is intertwined with the fitnesses
of the individuals from the competing population. We call a such fitness subjec-
tive. This means that comparing the subjective fitnesses of two individuals of the
same species from two different co-evolutionary runs yields no information about
which individual is better. To compare them an external objectivemetric which they
can both be compared against individually could be used, e.g. their performance
against some optimal opponent. The individual which according to this external
metric performs best can then be seen as the better of the two. Such an external
objective measure is often not available. Due to this dilemma it can be very difficult
to measure or analyze the output of a co-evolutionary run and reach a conclusion
about its quality by inspecting the fitness levels of the evolved individuals.

1.8.5 Combining HoF and MOEA

When combining the concept of Hall of Fame (HoF) with Multi Objective Evolu-
tionary Algorithms (MOEA) an issue arises concerning which individuals should
be picked for the HoF in each generation. It is no longer possible to pick the individ-
ual with the highest fitness unambiguously since no such individual exists. Instead
a number of Pareto optimal individuals are available. Very early in the evolution-
ary run the HoF would reach its size limit if all individuals from each generation’s
Pareto front were added to the HoF. If the Pareto front contains many individuals
then the inclusion of the entire front is also likely to result in unacceptable compu-
tational overhead.

With our extended pursuit environment this problem is greatly simplified as one
of our objectives - the performance objective - clearly outweighs the size objective.
Thus we will simply select for the HoF the individual with best performance fit-
ness.

17

CHAPTER 1. EVOLUTIONARY ALGORITHMS

18

Chapter 2

Previous Work

This section serves to briefly describe our previous work performed during the
DAT5/F9S semester fall 2002 and detailed in Rydtoft and Rasmussen [43]. The
work described in this chapter forms the foundation of the work detailed in the
remainder of this report.

2.1 The Simple Pursuit Environment

The simple pursuit environment described in Haynes [20] was chosen for our ini-
tial experiments because we deemed it a simple and yet interesting environment
and because previous work in the environment provided a source for comparison.
The first tests performed with the environment showed that we were able to evolve
strategies similar in performance to those evolved by Haynes using the same Func-
tion and Terminal sets. Our strategy and that of Haynes were both able to capture
the randomly moving prey approximately 2% of all matches. Our strategywas gen-
erally better at getting the predators close to the prey but as Haynes’ strategy it suf-
fered from a phenomenon which caused the predators to block each other’s paths
often leading to deadlocks. We subsequently performed a test in which the preda-
tors were able to share positions within the grid world so they would not be able
to block each other. The best strategy evolved using this setting fared even worse
as the predators had no way of detecting whether they had surrounded the prey
and merely moved as close as possible disregarding whether they were standing
on the same square as another predator. This caused them to end up in positions
where all predators were next to the prey but not all directions were covered. In
our last test we included a very simple form of communication allowing the preda-
tors to see each other if they were standing at the same square. The best strategy
evolved using this setting had an impressive capture rate of 99%. Annoyingly the
tree containing it consisted of 452 nodes making it utterly incomprehensible for us.

19

CHAPTER 2. PREVIOUS WORK

2.2 Reducing Tree Sizes

Ageneral problemwhen evolving strategies in the simple pursuit environment was
that the trees representing the strategies were unnecessarily largemaking it difficult
to understand the strategies by examining the trees. This phenomenon - referred to
as bloat - is very common and several ways of reducing it are documented in the
literature (see for instance Koza [31], Blickle [3], Zhang [58] and Zitzler [61]). After
examining various approaches we decided to use a multi-objective evolutionary
algorithm known as SPEA2. We used our original performance related objective as
well as an objective promoting small trees. Using the multi-objective approach we
were - after reducing elitism by lowering the tournament size used by tournament
selection - able to evolve a strategy with a capture rate of 100% represented by a
tree consisting of merely 75 nodes. The strategy allowed the predators to capture
the prey well within the 100 turn limit. A histogram showing the turns on which
captures were achieved for 1000 test matches can be seen in figure 2.1.

Figure 2.1: Histogram showing the turns on which captures were achieved for
1000 test matches.

2.3 The Extended Pursuit Environment

Because we were able to evolve a flawless strategy for the predators in the simple
environment using very simple communication the necessity to extend the envi-
ronment became apparent. Specifically we wanted an environment in which the

20

2.3. THE EXTENDED PURSUIT ENVIRONMENT

prey could be co-evolved along with the predators to produce a greater challenge.
Haynes had already performed experiments with co-evolving prey agents in the
simple environment with disappointing results (see Haynes [16]) so we decided to
design a new extended environment with a larger grid world, different movement
and maneuverability rules, new capture definition and new functions and termi-
nals for both predators and prey. In addition numerous features were implemented
to support the often problematic competitive co-evolution of two species. These
features included Competitive Shared Fitness, Hall of Fame and Shared Sampling.
The very first tests performed within the extended environment made apparent
the existence of a disengagement problem which occurred when one of the two
species became too dominant. The disengagement problem caused the evolution
of the dominated species to halt as it was impossible to detect which members of
the dominated species were most fit for survival as all members scored very low
fitness against the superior opponent species. Effects of the problem can be seen in
figure 2.2 in which the prey never counter advancements achieved in the predator
population in generation 36. To avoid the problem of disengagement a novel ap-
proach of interleaved competitive co-evolution was devised in which the evolution
of a dominating species would be halted until it lost its dominance. Further pre-
liminary tests within the extended environment uncovered interesting strategies as
well as a problem of lack of diversity. The solution to the diversity problemwas left
for the spring semester 2003 and is detailed in section 3.4.

Figure 2.2: Predator dominance occurring at generation 36.

21

CHAPTER 2. PREVIOUS WORK

22

Chapter 3

Optimizing Evolution Flow

In this chapter we document the continued work concerned with adjusting and
tuning our co-evolution to achieve satisfactory results. Additionally we describe
some of the different statistical data we gather during an evolutionary run and how
it is analyzed. This description is provided in section 3.1.

The primary problem identified in the previous semester is the lack of diversity
which will be solved. The selection pressure is at first thought to be a major con-
tributor to the lack of diversity. Test results support this suspicion and indicate that
the selection pressure is too high causing various unwanted phenomena. A dif-
ferent selection strategy is proposed and tested in section 3.2. This selection strat-
egy yields better results although not alleviating the problem with loss of diversity.
However, the strategy allows for a much needed low selection pressure which is
lower than previously attainable. In section 3.3 various techniques for maintaining
diversity are presented and discussed with the intentions of applying one of these.
The FOCUS method (De Jong [8]) is implemented and tested in section 3.4. Re-
sults using a modified version of the FOCUS approach are very satisfactory and the
objective to maintain diversity is achieved. During our work we discover an addi-
tional problem related to noise in the extended pursuit environment. This problem
and our solution is described in section 3.5.

3.1 Analyzing Co-evolutionary Data

The task of analyzing data from a co-evolutionary run is recognized (Cartlidge [5],
Ficici [12]) as being complicated for several reasons. When analyzing a competi-
tive co-evolutionary run it is difficult to tell whether the run is leading to increased
learning, noisy oscillations or endless cycling through mediocre strategies - just to
mention a few examples. In Ficici [12] and Cliff [6] the problem of analyzing and
measuring the quality of an evolved agent behavior is also pointed out. The agent
strategy can only be described in subjective and qualitative terms and no objective
measures exist which can be used to characterize or judge the agent. This is also
the case for the agents in our extended pursuit environment. However, several rel-
evant properties can be deduced from statistical data generated from the run and

23

CHAPTER 3. OPTIMIZING EVOLUTION FLOW

used e.g. as progress indicators. This section describes the various data generated
from co-evolutionary runs in the extended pursuit environment along with how it
is processed, evaluated and analyzed. The section lists the most important and use-
ful generated data and gives examples of how particular types of data have been
used to solve problems in the environment and in the evolution process. The inter-
pretation of data and which information it provides is also explained. In subsection
3.1.2 an objective measure of progress in the co-evolution is introduced.

3.1.1 Statistical Data and Graphs

After each generation in a co-evolutionary run various statistical data is stored for
analysis purposes. The data listed below is themost important data and its meaning
and use will be explained in this section.� Average tree size� Node statistics� HoF individuals� Individuals in the Pareto Front� Distribution of individuals with regards to performance and size� Capture locations, capture turn and number of captures
Average Tree size

After each generation the average tree size for each population is stored and used
to generate graphs of the type shown in figure 3.1. The tree sizes are not directly
correlated to the complexity of the strategies of the individuals. Especially not if
no measures are taken towards avoiding bloat. Since a size objective is also sought
optimized in our co-evolution we can, however, deduce some information from the
average tree sizes. Often the average tree sizes in conjunction with other statistics
can give indications about the co-evolutionary run or the average tree sizes can
be used to support or confirm deductions or conclusions. Although the average
tree size alone will often not indicate evolutionary progress it is valuable. If for
instance the average tree sizes decrease to very low values it is most likely that
the co-evolution will not produce satisfactory results and that the selection process
should be examined. In another scenario in which the average tree size for the
predators has been stable for some time but then increases, the increase can indicate
that the predators are exploring new search areas and that the strategies of the prey
are forcing them to evolve more advanced solutions. However, the average tree
size should always be used in context with other statistical data.

The graphs in 3.1 illustrate the development of the average tree sizes for a given
run where the prey population is paused most of the time. The average tree size
increases for both population during the beginning of the run. After generation
100 the prey population remains paused most of the time and thus does not grow
or shrink very much in average tree size. In general the average tree size for the
predator population fluctuates quite a lot. The relatively steady increase in size

24

3.1. ANALYZING CO-EVOLUTIONARY DATA

Figure 3.1: Graph illustrating the development of the average tree size for both the
predator and prey population.

of the predators starting around 70 can be the cause of the prey being unpaused
around generation 105. This can be an indication that the predator population has
evolved strategies which the prey population now needs to evolve counter strate-
gies against. The prey population seems to adjust fast to this change and is paused
again shortly after. These speculations only serve to demonstrate how the graph
can be used for analysis.

Node Statistics

For each generation and each population a histogram of node usage is stored. This
data is used to produce graphs similar to the one shown in figure 3.2.

These graphs are useful when e.g. new communication functions are introduced
and it is important to see the development of their use. The graphs also make
it evident to us that certain functions which are practically bred out are later re-
introduced during co-evolutionary runs. This property was assumed to be present
in our co-evolution but these statistics confirm it. If a sudden increase occurs in the
usage of a particular function, which has so far seldomly been used, it is a strong
indication that the population has evolved strategies which take advantage of this
function. The increase can therefore be related to co-evolutionary progress if at
the same time that particular population is more successful. When examining the
graphs in figure 3.2 it is evident that the two depicted functions are initially inserted
equally many times when the solutions are randomly generated. The function in-
corporating the shout functionality is then for some reason less attractive to use
and its frequency drops. Often when one of the depicted functions drops in usage
the usage of the other increases. For these two functions this is not surprising as
the functionality of the IfThenElse actually encompasses a subset of the functional-
ity of the IfThenElseShout. Combined with other statistics the node statistics often

25

CHAPTER 3. OPTIMIZING EVOLUTION FLOW

Figure 3.2: Graph depicting the occurrence in percent of the two nodes IfThenElse
and IfThenElseShout (introduced in section 4.4) during 500 generations. The oc-
currence percentage for each generation is relative to the total amount of nodes
used in the predators in that particular generation.

proves useful.

HoF individuals

When an individual is inserted into the Hall of Fame its entire solution tree along
with characteristics such as tree size, number of successful matches and all of its
fitness values are stored. The actual solution trees can for instance be used to test
individuals from later generations against individuals from other co-evolutionary
runs or to verify co-evolutionary progress. Often the HoF individuals serve as good
solution candidates and can be considered part of the final results from the co-
evolution. When examining a co-evolutionary run the number of successes for the
individuals inserted into HoF in the latest generations gives an indication of how
well the population is doing. If the HoF predators have a high number of captures it
means that the population has strategies capable of beating a fairly high percentage
of the prey strategies. However, a high number of captures is not always a correct
indication of the quality of the predators. It also depends on the quality of the
opposing prey strategies. If these are very poor a high number of captures is not an
immediate indication of good predator strategies.

Individuals in the Pareto Front

In each generation information about the individuals in both Pareto fronts are stored
along with the sizes of the Pareto fronts. Since we will be optimizing as much as
three objectives1 several individuals will be present in the Pareto front but not all
of these are of interest with respect to the final solutions. For instance, individuals
which are optimal with regards to size, i.e. trees consisting of only one node, are
not of interest. Examining the individuals in the Pareto fronts often give an overall

1The third is introduced in section 3.4.

26

3.1. ANALYZING CO-EVOLUTIONARY DATA

indication of the entire population since these individuals represent the most opti-
mal solutions for each objective and also influence the breeding process and thus
the further evolution. The development in the Pareto front can also be informative.
If the size and make-up of the Pareto front stagnates/stabilizes over a period so has
the evolution. The movement of the Pareto front also shows in which direction the
evolution is proceeding, e.g. if the evolution is searching larger solutions.

Distribution of individuals with regards to performance and size

Since three objectives will be sought optimized the Pareto front will form a 3-
dimensional surface in a coordinate space with the three objectives as axes. It is
therefore more complicated to observe the movement of the Pareto front than when
only two objectives were used. The third objective - which will be a measure of the
diversity of a solution - is not in any way related to how interesting and advanced
the actual solutions are. It serves to guarantee a satisfactory evolutionary flow and
is therefore often excludedwhen depicting the Pareto front. This reduces the Pareto
front to a 2-dimensional graph which is more easily perceived.

The same kind of graph can be made for the entire population. This produces an
interesting distribution of the individuals with regards to performance fitness and
size which can be used to examine the evolution. For instance it can be used to
see if the population is diverse or in general contains too many small solutions. If
additional information about which individuals are selected for breeding is embed-
ded into the graph it can be used to verify that the selection pressure is adequate
and verify whether desired individuals are selected. An example of a such graph
can be seen in figure 3.3. Notice that individuals which may not seem to be in the
Pareto front in this particular graph may be selected because they are optimized
with respect to the diversity objective.

Figure 3.3: Graph depicting the distribution of prey individuals with regards to
performance fitness and size from a given generation. The grey dots represent
individuals which are selected for breeding.

27

CHAPTER 3. OPTIMIZING EVOLUTION FLOW

Capture locations, capture turn and number of captures

For each generation the locations in the grid world where prey are caught are stored
in a map. By examining this map it becomes obvious where captures occur and also
if and how the strategies of both predators and prey change during an evolutionary
run. The capture locations are also useful to detect potential exploitations of the
design of the environment. During several tests the predators learn to drive the
prey towards the walls in the grid world and thus trap and capture it. This became
evident after studying the capture locations and effectively caused the introduction
of functions for the prey to detect and avoid walls.

The turns in which prey are caught is also stored and used to produce the aver-
age, minimum and maximum value of this number for one generation. The total
number of captures and evasions for each generation is also stored. If for instance
the average turn in which capture occur is low and the number of captures is high
this can indicate that the prey are too easy to catch and that the parameters for the
evolution may need to be tuned.

An example capture location map can be seen in figure 3.4. The range of captures
is mapped into a 256 color greyscale with highest number of captures represented
by the color black and no captures by white. The shown map is from an early
generation in which the prey have only been unpaused for a few generations. The
cross-hair like appearance is due to a high number of simple prey strategies which
cause the prey to simply move in a fixed direction. Predators have evolved to line
up with the prey either vertically or horizontally and approach it once lined up
correctly. Prey with simple evasive abilities are almost exclusively caught when
close to walls. Especially the corners seem hazardous at this point.

Figure 3.4: Map showing capture locations for an early generation. The higher
number of captures at a grid location the darker its color.

28

3.2. ADJUSTING SELECTION PRESSURE

3.1.2 An Objective Measure of Progress

One of our high priority tasks listed in the "Future Works" section of Rydtoft and
Rasmussen [43] is the development of a general method for analyzing progress and
results in competitive co-evolutionary runs.

We have devised an objective measure allowing the progress of one population
during a competitive co-evolutionary run to be monitored by comparing it with the
opposing population. Specifically, for each population member A being inserted
into the HoF we pit this member against all members of the opposing HoF and the
number of successes for A is stored. As new members are inserted into the oppo-
nent HoF they are also pitted against A and its number of successes is updated.
If new HoF members beat more members from the opposing HoF than old HoF
members our population is improving. Depicting the information in a graph with
HoF individuals along the x-axis and their respective successes along the y-axis it
is easy to see whether or not the evolution is progressing satisfactorily (i.e. if im-
provements are occurring). The slope of any part of the resulting graph can be seen
as a rough indication of the speed with which improvements or possibly degrad-
ing occurs at that particular point in the evolution. Note that this method can only
be used to monitor the progress within a single co-evolutionary run. Comparisons
between two runs cannot be performed using this method alone. A graph depict-
ing this information can be seen in e.g. figure 4.4 on page 57. Such graphs will be
referred to as "HoF improvement graphs".

3.2 Adjusting Selection Pressure

In this section we investigate if the lack of diversity we are experiencing is caused
or amplified by too high selection pressure. By examining test results it becomes
evident that the selection pressure is too high which results in an unsatisfactory se-
lection of individuals and in fluctuations in the capture rates of the predators. To
alleviate this problem a different selection strategy is proposed and tested which
produces a lower selection pressure resulting in a more satisfying co-evolutionary
flow. The proposed approach is a modification of the original SPEA2 algorithm.
The modification selects individuals from the entire population for breeding as
opposed to the original approach which only selects individuals from the SPEA2
archive.

3.2.1 Original SPEA2 Approach

In figure 3.5 the capture rate for predators in a typical run is depicted. In this evo-
lutionary run selection is performed only from the SPEA2 archive and the Tourna-
ment Size is 2. Populations are of size 700 and each SPEA2 archive is of size 70.

Examining the graph in figure 3.5 is can be seen during the early generations 10 to
50 that the capture rates do not increase at a steady pace as expected but fluctuate
instead. This fluctuation is even more evident in the later generations 140 to 200
where the capture rates sometimes change almost 30% from one generation to the

29

CHAPTER 3. OPTIMIZING EVOLUTION FLOW

Figure 3.5: Capture rate for predators. Selection is only performed from the SPEA2
archive and the Tournament Size is 2.

next. Although small fluctuations can be unavoidable they are - to the extent seen
in this run - unwanted since they may prevent the evolution from investigating
potential solution areas. We believe that one reason for the fluctuations is a too
high selection pressure.

This belief is strengthened when examining how individuals are selected for breed-
ing and how this affects the population and thus the search as a whole. In genera-
tion 36, in the evolutionary run described above, 340 out of 700 predator individuals
are below 20 nodes in size. The other part of the population has slightly better per-
formance fitness and is larger in size. In the following generation the number of
individuals which are below 20 nodes in size has increased with 48% from 340 to
505 individuals. Even though the predators far from dominate the prey their cur-
rent solutions are being minimized with respect to size and fewer larger solutions
are being explored. In figure 3.6 the average tree size is shown for the predator
individuals. It is evident that the selection pressure forces down this average to a
very low level which the evolution does not manage to leave within the 200 gener-
ations. Furthermore, these constantly small tree sizes are indications that the before
mentioned selection towards small trees is not an isolated event but one which oc-
curs repeatedly. This unfortunate selection happens because the small individuals
are much better in the size objective than the larger individuals and the difference
in performance fitness is not sufficiently large to get the larger individuals selected.
Thus, due to the high selection pressure and size objective we select the smaller in-
dividuals too aggressively. This effectively slows down and disturbs the evolution.

3.2.2 Modified SPEA2 Approach

In order to lower the selection pressure in an attempt to avoid the fluctuations and
to escape the small tree sizes, we propose selecting from the entire population in-

30

3.2. ADJUSTING SELECTION PRESSURE

Figure 3.6: Average tree sizes for predators from the test performed with selection
from the SPEA2 archive and Tournament Size 2.

stead of only from the SPEA2 archive. Currently we are using a Tournament Size
of 2 which is the lowest possible setting for this parameter. To further lower the
selection pressure we must select from a more varied pool of individuals. This
should enable us to reach a lower selection pressure which can be further adjusted
by altering the Tournament Size.

Identical tests are performed with various Tournament Sizes to examine the effect
of selecting from the entire population and to identify an appropriate Tournament
Size.

In figure 3.7 the capture rates for predators are shown from a performed test where
the Tournament Size is 4 and selection is performed from the entire population.
When compared to the corresponding graph in figure 3.5, the capture rates in figure
3.7 do not fluctuate to the same extent. The capture rates increase at a slower but
more steady and constant pace as opposed to the captures rates in the test in which
selection is only performed from the SPEA2 archive.

In figure 3.8 the distribution of predators with regards to performance fitness and
size shows that the selected predators are now spread out over a much larger part
of the Pareto front compared to the test in section 3.2.1. Furthermore, it is worth
noticing that the majority of the population is no longer the smallest predators and
that these no longer obtain nearly as good performance fitness scores as the larger
predators. This also effectively increases the average tree sizes enabling the search
to explore larger solutions when necessary. The average tree sizes for the predator
population is shown in figure 3.9.

Based on test results it is found that a more appropriate selection pressure is ap-
plied in our environment when selecting individuals from the entire population for
breeding. This more appropriate selection pressure does not cause major fluctu-

31

CHAPTER 3. OPTIMIZING EVOLUTION FLOW

Figure 3.7: Capture rate for predators. Selection is performed from the entire pop-
ulation and the Tournament Size is 4.

Figure 3.8: Distribution of non-selected and selected predators with regards to
performance fitness and size. The predators are from generation 150.

ations in the capture rates and it does not lead to selecting small solutions to the
same extent as with the original SPEA2 selection strategy. We will therefore con-
tinue to use this selection strategy. However, the results are not nearly satisfactory
with respect to the diversity of the individuals. This is even more evident for the
prey population. The following section will describe this problem in greater detail

32

3.3. TECHNIQUES FOR MAINTAINING DIVERSITY

Figure 3.9: Average tree sizes for predators. Selection is performed from the entire
population and the Tournament Size is 4.

and solutions are proposed.

3.3 Techniques For Maintaining Diversity

In Rydtoft and Rasmussen [43] we show that lack of diversity is present in our per-
formed tests and we believe this problem to be a major reason that the learning
cycles stop taking place in our co-evolutionary runs. In this chapter we document
our effort for maintaining diversity in order to ensure a continuation in the learning
cycles and hence to evolve more interesting strategies. In section 3.3 three differ-
ent approaches for maintaining diversity are presented and discussed. The FOCUS
approach presented in section 3.3.3 is chosen over the two other approaches – Fit-
ness Uniform Selection Strategy and The Patchwork Model presented in 3.3.1 and
3.3.2 respectively. In section 3.4 tests are performed with an original and a modi-
fied version of the FOCUS approach and results document that the objective with
regards to maintaining diversity has been obtained satisfactorily. Better strategies
than previously witnessed are evolved.

3.3.1 Fitness Uniform Selection Strategy

Fitness Uniform Selection Strategy (FUSS) is proposed in Hutter [25]. FUSS gen-
erates selection pressure towards sparsely populated fitness regions but not neces-
sarily towards higher fitness regions as opposed to other more standard selection
schemes. In this section FUSS and its properties are presented and discussed with

33

CHAPTER 3. OPTIMIZING EVOLUTION FLOW

the intent of using FUSS to solve the problem of maintaining diversity in the ex-
tended pursuit environment.

FUSS is based on the insight that a single sufficiently fit individual is usually appro-
priate as solution to a problem rather than having an entire population converged
to some solution. This property is sought achieved by automatically creating a
selection pressure towards sparsely populated fitness regions, which results in uni-
formly distributed fitness values. Furthermore, according to Hutter [25], FUSS has
the effect of preserving the genetic diversity better than standard selection schemes
such as Fitness Proportionate, Ranking and Tournament Selection which all favor
individuals of better fitness. This is because the standard selection schemes use a
distribution over individuals whereas FUSS uses a distribution over fitness values
as bias when selecting.

FUSS is defined as follows: A fitness value f is randomly selected in the interval
[fmin, fmax], where fmin, fmax is the lowest and highest fitness values in the cur-
rent population. Then the individual i in the population with a fitness value nearest
to f is selected and a copy of this individual is added to the population, possibly
after recombination and/or mutation. Population size is adjusted by deleting indi-
viduals from regions of high density. As such the FUSS algorithm is steady state
rather than generational.

Since FUSS does not converge towards some fitness value the problem of prema-
ture convergence is avoided. However FUSS does apply selection pressure towards
the higher fitness values. When the number of fit individuals is low the selection
pressure towards higher fitness regions is increased and as the number of fit indi-
viduals grows the selection pressure is reduced accordingly. Since FUSS also favors
low fitness individuals from sparsely populated areas, which as such are of no in-
terest for the search, time may be wasted searching the wrong end of the fitness
scale. This seemingly apparent slowdown is according to Hutter not necessarily
a negative factor since it may later help in obtaining high fitness levels which are
difficult to reach.

The problem of takeover of the highest fitness level is known from other selection
schemes. In these the concept of "takeover time" specifies how long a discovered lo-
cally or globally optimal solution needs to spread out and dominate the population
making it almost impossible to continue the search in other areas. This problem
will not occur with FUSS since the fraction of very fit individuals in the population
is always small and thus the average fitness is always lower than the best fitness.

3.3.2 The Patchwork Model

This section presents the Patchwork model which was first proposed in Krink [32].
According to Krink the Patchwork model allows better control of population di-
versity and of the selection pressure applied to the evolution. A major difference
between the Patchwork model and more traditional EAs is the representation of in-
dividuals which will be described below. Furthermore, the structure used to model
the population is different from previously encountered approaches.

The model used to contain the population is a combination of the island and the
diffusion model with some slight modifications. As with the diffusion model a grid

34

3.3. TECHNIQUES FOR MAINTAINING DIVERSITY

interconnection topology is used where each grid cell holds one individual. This
allows for parallel processing as each individual or grid cell can be assigned its
own processor. However, in the Patchwork model each grid cell can contain several
individuals as opposed to the diffusion model. Each grid cell can then be seen as a
subpopulation and the Patchwork model can then be considered as a special case
of the island model. Individuals can interact with each other within grid cells, e.g.
mate depending on their desire. Like in the island model, individuals are able to
migrate from one grid cell to another according to certain rules. This migration can
result in grid cells without individuals - i.e. empty subpopulations - which is not
allowed in the island model. Another difference between the Patchwork model and
the two other approaches is the population size which may vary in the Patchwork
model but is constant in the two other approaches.

In the Patchwork model individuals are modeled using a technique very similar to
that of multi-agent systems, where a system is represented by autonomously inter-
acting mobile agents. The individuals in the Patchwork model can be described as
autonomous mobile agents which live in a virtual ecological niche where they inter-
act with their environment through sensors and motors, making decisions based on
collected local information. The idea to model the evolution of autonomous agents
in an ecological niche has been introduced in ALife and ecology where one gen-
eral approach is called SWARM (see Minar [39]). Each individual in the Patchwork
approach consists of two parts, namely its genome and its motivation network. The
genome is a set of three chromosomes, namely a solution chromosome, a chromo-
some of standard deviation and a chromosome of parameters. The solution chro-
mosome represents the solution of the individual and is used to calculate its fitness.
The second chromosome is related to the mutation of the individual and the third
chromosome plays and important role in the motivation network of the individual.
Based on local information gathered from sensors the motivation network of an in-
dividual decides which action to take, e.g. migrate, mate etc. The individuals with
the highest fitness are preferred over those with lower fitness if conflicts associated
with actions occur. We will not go into details with the functionality of the motiva-
tion network but merely state that applying the Patchwork model would require a
substantial amount of implementation work.

3.3.3 FOCUS

The FOCUS algorithm described in De Jong [8] seeks to promote diversity using
a multi-objective algorithm by introducing an objective which actively promotes
diversity. Each individual is thus awarded fitness in this objective based on the
degree to which it differs from other individuals in its population. This degree
of difference is measured by - for each individual i in the population - measuring
the structural difference between this individual and any other individual from the
same generation. All of these pairwise comparisons are summed to produce one
overall measure of diversity for the individual. The structural difference between
two individuals i and j is measured by comparing their trees on a node-to-node
basis. For each node in j not present at the same location in i the diversity measure
is increased by one. After the comparison the measure is normalized through di-
vision with the node size of the smaller of the two trees. Thus for this objective a
value of zero is the worst possible and infinity better than the possible best.

35

CHAPTER 3. OPTIMIZING EVOLUTION FLOW

The FOCUS algorithm has a very strict selection criterion. Basically the mating pool
is filled only with non-dominated individuals and in cases where multiple copies
of the same non-dominated individual exist only one instance is allowed into the
mating pool. This uniqueness criterion is according to De Jong introduced because
the standard Pareto dominance criterion in this context may cause a proliferation
of individuals occupying the same point of the trade-off surface. As a result of the
strict selection the mating pool is typically very small and the search very greedy.
The diversity objective, however, manages to ensure sufficient diversity in all test
runs in De Jong’s article. A flow chart for the FOCUS algorithm can be seen in
figure 3.10.

Evaluate new individuals

n individuals

Initialize population with

Update

diversity measure

dominated individuals

Remove all

10% mutation

90% crossover

from non−dominated individuals

Breed new generation

Figure 3.10: Flow of the FOCUS algorithm.

3.3.4 Discussion of Techniques

FUSS is described as a steady state algorithm in which no individual is ever deleted
and pressure is generated towards sparsely populated regions of the search space.
The FUSS scheme in its current form seems ill suited for a generational STGP im-
plementation relying on SPEA2 multi-objective optimization. To use it we would
have to rethink our evolution approach from the beginning and possibly have to
solve the bloat problem again. An alternative approach would be to construct a
FUSS variant suitable for our type of evolution. We prefer an approach more im-
mediately applicable and therefore eliminate FUSS from consideration as a means
to counter loss of diversity in our co-evolutionary model.

The remaining two approaches discussed in the preceding sections both seem at-
tractive to us. Having consulted literature in which they are presented (in De Jong
[8] and Krink [32]) we can find no obvious problems indicating that they should not
work in our case. Implementing the Patchwork model will take some effort. As the
ECJ system which we use (see Appendix B) does not support the approach numer-
ous core classes will have to be modified or extended. For instance the breeding
pipeline architecture of ECJ will need much attention as it not designed with local
selection in mind. Implementing FOCUSwill, however, be very easy. An additional
feature of FOCUS which captivates us is that - unlike the Patchwork model - it is

36

3.4. FOCUS TESTS

designed explicitly to actively maintain diversity. The Patchwork model can help
to increase diversity but it does not do so in a direct principled way (see Wiegand
[57]). In our opinion the diversity maintaining properties of the Patchwork model
are closer to being a positive side-effect. Thus a diversity loss can still take place
in this model. The chance of this occurring is much smaller due to the fact that ge-
netic material very slowly diffuses around within the population. However, there
is nothing in the Patchwork which prevents a single best individual or the genetic
material of that individual to slowly spread out. These arguments serve as reason
for us to use an implementation of the FOCUS algorithm to promote and maintain
diversity.

3.4 FOCUS Tests

As concluded in section 3.3.4we will attempt to use the FOCUS algorithm asmeans
of maintaining diversity. This section details two tests performed using FOCUS.
Briefly the tests consist of the following:� Test Using FOCUS

Test using an exact implementation of De Jongs FOCUS algorithm.� Test Using Modified FOCUS
Test using a modification of FOCUS with lower selection pressure and alter-
nate diversity measure.

3.4.1 Test Using FOCUS

In this test we employ the FOCUS method as it is described in De Jong [8]. That is,
we initialize each population with 500 randomly generated individuals. These indi-
viduals are evaluated against a sample from the opposing population. In addition
to being assigned performance and size fitness the individuals are assigned diver-
sity fitness using the structural diversity measure described in the article. We also
employ their version of the Pareto dominance relation and thus remove all individ-
uals which are dominated as well as copies of non-dominated individuals. We use
the lowest possible tournament size for Tournament Selection as the selection will
be from a small mating pool consisting of only unique non-dominated individuals.
The test is run for 100 generations. The function and terminal sets used for this and
the following test are those shown in appendix D.

The results obtained are less than satisfactory. Capture and evasion rates for each
generation can be seen in figure 3.11. In generation 15 the predators achieve a mas-
sive improvement with a capture rate of approximately 42.3% unpausing the prey
population. The improvement is quickly lost and from this point nothing signifi-
cant is evolved.

Rapid fluctuations can be observed in the average tree size of the predator popu-
lation (see figure 3.12). In many cases the average tree size is below 2 signifying a
population primarily consisting of individuals with a single terminal as their tree.
After generation 1 the predator mating pool of unique non-dominated individuals

37

CHAPTER 3. OPTIMIZING EVOLUTION FLOW

Figure 3.11: Capture rates for predator population and evasion rates for prey pop-
ulation.

Figure 3.12: Average tree sizes for predator and prey population.

consists of three specimens. Their respective sizes are 1, 4 and 36 nodes. Selecting
from this set, crossover will often be performed using at least one very small tree.
This drastically reduces the average tree size. In the following generation only trees
of sizes less than 10 nodes are present in the mating pool. Breeding from a such set
produces a generation of very small and similar individuals all performing poorly.
The later increases in average tree size occur when a large individual finds its way
into the mating pool. A general problem throughout the evolution is that the mat-

38

3.4. FOCUS TESTS

ing pool always consists of at most 5 individuals of which a couple always have
tree sizes of at most four nodes. Performing crossover with these small individu-
als splits the trees of the larger individuals and produce two offspring of reduced
size and functionality. The evolution thus gets stuck in a part of the search space
consisting of small individuals.

We had expected the diversity measure would prevent the evolution from being
stuck as described above as individuals with larger trees should survive merely as
a result of the diversity objective. Unfortunately small individuals usually achieve
relatively nice diversity scores in a population consisting of individuals of mixed
sizes. This is related to the fact that when diversity is calculated the diversity mea-
sure is divided with the size of the smaller of the two trees being compared. When
one of the two trees is e.g. an individual with a tree consisting of a single terminal
node, the diversity measure will always be divided by one. Only in generations in
which a large part of the population consists of very small individuals the larger
individuals will beat them with regards to diversity. This results in a subsequent
generation with larger average tree sizes in which the small individuals will again
obtain good diversity scores.

In conclusion, not only has the FOCUS approach failed to maintain diversity in
our populations. It has additionally prevented the evolution of even the simplest
strategy in either population. The best predator and prey individuals resulting from
this run are clearly inferior to anything evolved earlier.

3.4.2 Test Using Modified FOCUS

It is interesting that the FOCUS approach performs so well on the Even 3-5 Parity
problems it is applied to in De Jong [8] and yet shows none of the alleged proper-
ties2 when used in our environment. One major difference between the two prob-
lem domains is that we use competitive co-evolution and thus have a relative mea-
sure of performance fitness while they use a basic evolutionary approach with an
absolute fitness function. Furthermore our fitness function can be affected by noise
as a predator or prey individual may beat its opponent as a result of a favorable
starting position rather than a superior strategy. The fitness function for the sim-
ple Even Parity problems contain no such noise. We believe the complexity of our
performance fitness both with regards to its relative nature and noise makes it nec-
essary to reduce the degree of elitism. Another potential problem is that with the
current measure of diversity individuals with smaller trees obtain good scores in
two of the three objectives in generations with individuals of varied sizes.

To remedy the above-mentioned problems we suggest a variation of our combined
SPEA2-FOCUS approach which allows for a lower degree of elitism to accommo-
date noisy environments while maintaining diversity and guiding the search suffi-
ciently.

Instead of constructing our mating pool from a set of unique non-dominated indi-
viduals or even the SPEA2 archivewewill continue to breed from the entire popula-
tion as described in section 3.2. Raising the tournament size will make it possible to
increase selection pressure while keeping it low will allow for a slower less greedy

2Maintaining diversity and guiding the search sufficiently in spite of an enormous degree of elitism.

39

CHAPTER 3. OPTIMIZING EVOLUTION FLOW

search. We alter the diversity measure from the structural approach to an objective-
based approach in which individuals are punished for having "common" size and
performance fitness. Specifically we will define a bounding box around each indi-
vidual and take the number of individuals within this bounding box as a measure
of its lack of diversity. The Bounding Box Diversity which is to be maximized will
for individual i thus be defined as the population size subtracted by the number
of individuals within i’s bounding box. To define a bounding box we will use a
bounding box threshold with regards to size and a threshold with regards to per-
formance. See figure 3.13 for a illustration of the Bounding Box Diversity. To avoid
differentiating unnecessarily among individuals of similar diversity their diversity
scores are mapped into a specified number of bins using a squashing function3. We
will be using 10 bins.

A

B

Performance Fitness

T
re

e
S

iz
e

Figure 3.13: Individuals A and B are the outlined individuals in the center of the
two bounding boxes. Individual B has better diversity than individual A.

To preserve good solutions once discovered we copy the individuals contained
within the archive into the new population. An overview of the settings for this
test can be seen in table 3.1.

The results from this test are very satisfying. First of all a high degree of diversity is
maintained throughout the run. Figure 3.14 shows a plot of all predator individuals
from the last generation. The individuals are spread nicely across the entire Pareto
front.

The capture and evasion rates for the two populations can be seen in figure 3.15.
The predator population rapidly increases in overall performance in two distinct
parts of the evolution. The first part is approximately in the first 25 generations
of the run and the second part from generation 70 to 92. The prey population is
unpaused in generation 26 but paused again briefly in generation 43 and again later
in generation 57. After being unpaused in generation 74 the prey are not paused
again. Learning cycles in the prey population are not as evident as the learning

3The need for doing this became apparent in a test not detailed in this report. Briefly, if the diversity
scores are not mapped into bins the Pareto front will be filled with a large amount of individuals with
almost identical strategies, which have a small tradeoff between diversity and one of the other remaining
objectives. In one particular bad case an abundance of size one individuals were inserted which differed
slightly in performance and diversity.

40

3.4. FOCUS TESTS

Parameter Value

Number of Predators 4

Population Size 700

Archive Size 70

Objectives Performance Fitness, Tree Size, Bounding Box Diversity

Generations 200

Turns 300

Total Fitness Pool (both) Teacher Set Size � Opponent Population Size � 1200
Teacher Set Size 50

HoF Sampling Size 50

Selection Method Tournament Selection

Tournament Size 4

Breeding Methods Crossover, Mutation

Crossover Probability 95%

Mutation Probability 5%

Table 3.1: Test settings for the modified FOCUS test. Altered parameters are
in boldface. Some were altered (compared to the last tests from our previous
semester) to speed up the test. Due to the lowered selection pressure the num-
ber of generations is increased to 200.

Figure 3.14: Distribution of predators with respect to performance and size.

cycles in the predator population. The prey does however manage to learn to evade
both most predators and walls. The strategy of the best prey agent prefers to make
the prey stay away from the walls. When pursued the prey will generally turn
away from a wall before getting too close while still attempting to evade pursuing

41

CHAPTER 3. OPTIMIZING EVOLUTION FLOW

Figure 3.15: Capture and evasion rates per generation.

predators. It is generally very successful at doing both. Its strategy tree can be seen
below:

1 (ITE (LessThan (Md (60, 23)
2 (57, 39))
3 (Md CellOfNearestWall
4 (CellOfNearest South)))
5 North
6 (ITE (LessThan (Md CellOfNearestWall
7 (CellOfNearest North))
9 (Md (CellOfNearest West)
10 CellOfNearestWall))
11 East
12 (ITE (LessThan 17 (Md CellOfNearestWall
13 (CellOfNearest East)))
14 West
15 South)))

It is interesting to observe that the strategy never references the position of the prey
itself but only considers comparisons between the distance to the nearest predator
and the nearest wall.

The best predator is generally able to beat the best prey4. It does this by approach-
ing the prey from different directions and eventually coaxing the prey to approach
the border where it will get stuck. Note that when tested against inferior predator
packs the prey never gets stuck against a border. The predator strategy is very inter-
esting since the predators do not actively seek to surround to prey. Rather predators
will sometimes based on their relative distance to the prey and nearest peer choose

4Pitting them against each other in 100 matches produced 92 captures.

42

3.4. FOCUS TESTS

to move away from the prey or perpendicular to a direct line drawn from itself to
the prey. When the prey later changes direction the predators which have "moved
astray" will often find themselves on the other side of the prey relative to the preda-
tors which chose to follow the prey as closely as possible. This somewhat arbitrary
way of surrounding the prey is interesting to observe. The strategy seems very dif-
ferent from most heuristics we ourselves would think of. We are excited that the
predators have learned that a locally suboptimal decision for a single predator can
later in the pursuit lead to a global optimum (i.e. capture). This may be the first
step towards evolving explicit surrounding techniques. Observing the best preda-
tor strategy it is apparent that it is very dependent on having a high number of
turns to capture the prey. To investigate this further we tried pitting them against
each other in matches of varying length. The result can be seen in figure 3.16.

Figure 3.16: Capture rate for best predator vs. best prey using varied number of
turns.

The predator strategy needs at least 225 turns to be effective. This is because the
dispersion of the predators as a result of predators "moving astray" as described
above takes some time to occur and once occurred additional turns are needed in
order to approach the prey correctly. A strategy like this would never have evolved
would the turn limit have been stricter. The strategy for the best predator can be
seen below:

1 (ITE (LessThan (Md (CellOfSelf North)
2 (CellOfPrey West))
3 (Md (CellOfPrey East)
4 (CellOfSelf (ITE (LessThan (Md (CellOfPrey North)
5 (CellOfNearest East))
6 (Md (CellOfPrey North)
7 (CellOfSelf Decelerate)))
8 South
9 West))))

10 (ITE (LessThan (Md (CellOfSelf North)
11 (CellOfPrey East))

43

CHAPTER 3. OPTIMIZING EVOLUTION FLOW

12 (Md (CellOfPrey North)
13 (CellOfSelf Continue)))
14 North
15 East)
16 (ITE (LessThan (Md (CellOfPrey North)
17 (CellOfSelf South))
18 (Md (CellOfPrey West)
19 (CellOfSelf Continue)))
20 South
21 West))

Based on the results presented in this sectionwe conclude that theModified FOCUS
approach allows the maintenance of diversity in our co-evolutionary runs. It will
be used throughout the remainder of this report.

3.5 Handling Noise

Introducing diversity maintaining properties into the evolutionary model enables
the evolution of better solutions than seen before. A general problem is, however,
that in all runs performed the best evolved prey are still inferior to the best evolved
predators. As one of our primary goals is to obtain more sophisticated predator
strategies utilizing advanced communication we do need better prey in order to
measure the effects of introducing advanced communication. Examining the distri-
bution of prey individuals across multiple generations yields one hint as to why the
prey are failing to evolve as well as the predators. Figures 3.17 and 3.18 show the
distribution of prey individuals for two consecutive generations5 of a typical test
run.

Figure 3.17: Distribution of prey individuals for generation 70.

5Specifically generation 70 and 71.

44

3.5. HANDLING NOISE

Figure 3.18: Distribution of prey individuals for generation 71.

The entire population in each figure is made up of the union of grey and black
markers. The grey markers represent individuals which are selected for the mat-
ing pool whereas black markers represent individuals which are not selected. In
3.17 there are four noteworthy individuals with a performance fitness of approxi-
mately 130000 as well as a couple of individuals with a performance fitness of more
than 230000. In the subsequent generation the small crowd of individuals with per-
formance fitness around 130000 have disappeared even though they are members
of the SPEA2-archive and thus copied directly to the new generation. One reason
for this happening could be that the individuals depicted in figure 3.18 face a very
different teacher set than those in figure 3.17 and therefore achieve very different
performance fitness. However, we do not believe this is the case. After discover-
ing the phenomenon we have observed that it usually happens many times each
evolutionary run. In fact we have seen it happen when the opposing population
is paused and its teacher set thus static. Another - in our opinion more likely -
reason for the phenomenon is noise in our environment combined with the use of
Competitive Fitness Sharing. The noise in our environment is due to the fact that
the randomly assigned starting positions of the predator agents for each match6

can affect whether or not the predators manage to capture the prey. Thus when a
predator pack meets a prey individual with equal level of skill during evolution
chance in the form of the randomly assigned starting positions dictates which of
the two opponents wins the match. Even worse is it when an inferior prey by luck
beats a very good predator that no other prey individuals can beat. Because of the
Competitive Fitness Sharing this prey agent will receive an enormous amount of
performance fitness for this single match. The four individuals in figure 3.17 have
obtained their high fitness this way.

6The prey always starts in the middle of the grid world and is not assigned a position randomly.

45

CHAPTER 3. OPTIMIZING EVOLUTION FLOW

3.5.1 Solution Approaches

It seems likely that the combination of a noisy environment and use of Competitive
Fitness Sharing is prone to problems like the one described above. The higher the
selection pressure being used is the more damaging mis-classifications due to noise
can be. Even with our very low selection pressure (see section 3.2) we are experi-
encing problems. We will propose two ways of removing or greatly reducing the
problem.

The first approach is simply to remove or reduce the noise in the environment. In
our case noise can be reduced by for each match running the match multiple times
and using a majority function to determine whether the prey or the predator pack
is the winner. This is similar to what we did in the simple environment where all
predator packs were evaluated against the randomly moving prey 10-15 times. Un-
fortunately reducing or removing noise is not always possible and even if possible
some cost is usually associated with obtaining the extra degree of precision. In our
case we would need to reduce the size of the Teacher Set to make possible the extra
matches without unacceptable computational overhead.

The second approach is to reduce the effect of the Competitive Fitness Sharing with-
out eliminating it completely. Thus we hope to still benefit from the positive conse-
quences of using Competitive Fitness Sharing while reducing the problems caused
by false classifications. Specifically we propose the use of a parameter which will
smoothen the bonus awarded to individuals beating opponents which no or few
other individuals can beat. We call this parameter the Competitive Fitness Damp-
ener or CFD. Normally the fitness assigned to a student beating a teacher j while
using Competitive Fitness Sharing is computed as

Pj2X 1Nj , where X is the set of
teachers and Nj is the total number of students in the population beating teacher j.
Including the CFD parameter the equation becomes:Xj2X � 1Nj�CFD (3.1)

The CFD parameter is a floating point value in the range]0;1]. Setting the value
infinitely small corresponds to having no Competitive Fitness at all while setting it
to 1 eliminates the effect of the CFD. The CFD could be used to exaggerate the effect
of Competitive Fitness Sharing by setting it to a value above 1. The effect of using
the parameter can be seen in figure 3.19. The y-axis displays the fitness awarded
to each opponent beating the individual holding the fitness. Thus for each line the
"Beat N" value represents that the opponent yielding the fitness depicted in the y-
axis is beaten by a total of N individuals. As the CFD parameter approaches 0 the
average difference in fitness for opponents beaten by different numbers of individu-
als is reduced. Thus false classifications of matches versus superior opponents will
not boost fitness as excessively as when using pure Competitive Fitness Sharing.

46

3.5. HANDLING NOISE

Figure 3.19: Effect on fitness from using various values of CFD.

3.5.2 Tests Using the Competitive Fitness Dampener

Tests are performed with three different values of the CFD. The values are 0.1, 0.25
and 0.5. With a CFD of 0.5 the flow of evolution is very similar to when the CFD is
not being used. Examining figure 3.19 this is not surprising as the fitnesses assigned
when using CFD 0.5 are quite similar to those assigned when using CFD 1.0 which
is equivalent to no CFD. We observe that when lowering the value of the CFD,
progress in the evolution is generally slowed down but the noise is also reduced.
With a CFD value of 0.1 progress is slowed significantly down. With this value
we believe that we loose too much of the positive effects of Competitive Fitness
Sharing. With a CFD value of 0.25 progress is also slowed but the reduction in noise
makes up for the slowdown. Using the 0.25 CFD we no longer witness the false
classification problem described above. Furthermore the Pareto front and general
distribution of prey individuals with regards to performance and size indicate that
the evolution is progressing better when using the 0.25 CFD. Figure 3.20 shows the
distribution of prey individuals before introduction of the CFD while figure 3.21
shows the distribution in a run using the 0.25 CFD.

The final strategies evolved using the 0.25 CFD are better than the best strategies
described in section 3.4 when directly compared against each other. We have com-
pared them in table 3.2. The individuals described in section 3.4 are referred to
as "No CFD". Examining traces from the newly evolved individuals their strategies
seem like refined versions of the strategies of the individuals from section 3.4. How-
ever, the new predator strategy does not have the tendency to arbitrarily spread out
its predators which was evident in the older predator strategy. The tree for the new
predator and prey are 73 and 118 nodes. The strategies can be seen in appendix F.1.

47

CHAPTER 3. OPTIMIZING EVOLUTION FLOW

Figure 3.20: Distribution of prey Performance and Size before introduction of the
CFD.

Figure 3.21: Distribution of prey Performance and Size after introduction of a 0.25
valued CFD.

48

3.5. HANDLING NOISE

CFD Prey No CFD Prey

CFD Predator 94% 98%

No CFD Predator 85% 92%

Table 3.2: Certainty in percent with which predator beats prey.

Note that while the newly evolved agents are better than the agents found ear-
lier when compared directly against each other we cannot immediately infer that
the new agents are universally better. In Rydtoft and Rasmussen [43] we showed
by example that intransitive relationships can occur in our environment. Thus the
mere fact that a pair consisting of a predator pack and a prey agent seem supe-
rior to another pair when directly compared does not prove that it is the case. In
order to determine if some predator/prey pair is better than some other pair we
need firstly to define precisely what we mean by better. Secondly we need a way
to measure individuals according to this defined better-than relation. For predators
we define the best possible strategy as the strategy which allows the predators to
capture all prey strategies which can be created7. Let us call the set of all possible
prey strategies P . The best possible prey can be defined in a similar manner. De-
termining whether one predator strategy A is better than predator strategy B can
then be done by comparing the number of members from P which A can beat with
the number of members from P which B can beat. But what happens if A beats
less prey than B but the prey that A beat are far more interesting and difficult? One
might be tempted to say that a strategy which beats so seemingly interesting and
difficult strategies is better than a strategy which beats many but poor strategies.
Without an external objective measure it is utterly impossible to determine objec-
tively if one pair of strategies is "better" than another pair. That being said our
subjective measurement in table 3.2 as well as the flow of evolution in figure 3.21
lead us to conclude that the predator pack and prey individual evolved using the
0.25 CFD is more promising and "better" than what we have seen before.

7A purely theoretical measure since an intractable number of prey strategies can be created.

49

CHAPTER 3. OPTIMIZING EVOLUTION FLOW

50

Chapter 4

Communication in the
Extended Pursuit Environment

In chapter 3 we implemented and discussed features which promote diversity and
reduce negative effects of noise in our co-evolutionary environment. We are now
satisfied with the flow of our co-evolutionary runs. The issue regarding balance
between our competing populations has remained unresolved. The predator popu-
lation has in every run gained superiority and even though evolved prey strategies
are very capable they are no match for the best individuals from the co-evolved
predator population. In this chapter we introduce a change in our environment
making it more difficult for the predators to capture the prey. This change is de-
scribed in section 4.1. Subsequently tests are performed with varying degrees of
communication. In section 4.2 a test is performed in which the predators have no
means to detect each other - i.e. no communication. A new means of visual com-
munication is provided for the predators in section 4.3 and new very interesting
strategies are evolved. Section 4.4 describes the introduction of aural communica-
tion. No interesting strategies with aural communication are evolved even though
multiple approaches are attempted.

4.1 The Burrowing Prey

As described in section 3.5 the introduction of the Competitive Fitness Dampener
has improved our evolution flow with regards to the prey population and allowed
us to produce more interesting strategies than previously. However, the preda-
tor population is still consistently outperforming the prey population and the im-
provements in the evolution-flow for the prey merely resulted in the evolution of
an even better predator strategy. As described in section 3.5 a greater challenge for
the predators is needed before the benefits of introducing advanced communica-
tion may be measured. We provide this increased challenge by making a change in
the rules of our pursuit game.

As stated earlier in Rydtoft and Rasmussen [43] we like to model our environ-

51

CHAPTER 4. COMMUNICATION IN THE EXTENDED PURSUIT ENVIRONMENT

ment to closely resemble nature. In nature many species with natural enemies have
evolved countermeasures increasing their chance of survival when being pursued
by predators. Some prey species are very nimble and agile and highly maneuver-
able. Our prey species already has this characteristic. Other prey species may have
very high stamina and thus be able to run for an extended duration of time tiring
the pursuing predators which have only a limited reserve of energy. This is for in-
stance the case in the predator/prey relationship between the African cheetah and
gazelle. Another common prey ability is the ability to dig holes for hiding. Some
prey species live in burrows underground and will rarely stray far from their bur-
row. As with high-stamina prey species this means that if the predators do not
capture the prey very quickly they will loose their opportunity. We will provide a
such advantage for our prey species. We will call prey using it "burrowing prey".

The burrowing prey will be realized by defining a rule which states that once a
predator has moved sufficiently close to the prey a timer will start. This timer will
decrement by one each turn and if it reaches zero before the prey has been captured
it means that the prey has reached its burrow and is safe. Thus we will need to
define two parameters. The first will specify the Manhattan distance between a
predator and the prey which will make the prey feel threatened and seek shelter
(i.e. which will start the timer). This parameter will be referred to as the "Burrow
Distance". The other parameter specifies the number of turns the predators have to
capture the prey before it reaches its burrow. This parameter is called the "Burrow
Time".

Test of Burrowing Prey

Parameter Value

Number of Predators 4

Population Size 700

Archive Size 70

Objectives Perf. Fitness, Tree Size, Bounding Box Diversity

Generations 550

Turns 300

Total Fitness Pool (both) Teacher Set Size � Opponent Population Size � 1200
Teacher Set Size 50

HoF Sampling Size 50

Selection Method Tournament Selection

Tournament Size 4

Breeding Methods Crossover, Mutation

Crossover Probability 90%

OneNode Mutation Probability 5%

SubTree Mutation Probability 5%

Dominance Threshold 80%

Competitive Fitness Dampener 0.25

Burrow Time 30

Burrow Distance 8

Table 4.1: Test settings for first test with burrowing prey.

52

4.1. THE BURROWING PREY

The following test shows the burrowing prey species is much harder to catch than
non-burrowing prey. Several tests have been performed and parameters have been
tuned to accommodate the flow changes resulting from the introduction of the bur-
rowing prey. The function and terminal sets used are those shown in appendix D.
The parameters for the most successful test can be seen in table 4.1. We introduce
a new mutation type - the one node mutation - which mutates a single node to an-
other node adhering to the same STGP constraints. This type of mutation is very
useful if for instance we need to swap a single West Tack with a North Tack. As
the prey species is now more difficult to beat we increase the Dominance Thresh-
old to 80%. Having it at the usual 70% makes it too difficult for the predators to
evolve sufficiently to unpause the prey (i.e. be dominated by the prey population
by no more than 70%), resulting in runs in which the prey population is paused
in the vast majority of the generations. Note that the two new parameters "Bur-
row Time" and "Burrow Distance" have also been included with values of 30 and
8 respectively, meaning that once a predator gets within a Manhattan Distance of
8 squares from the prey the predator pack will need to capture the prey within the
next 30 turns. The number of generations has been increased to 550. This is partly
because the - otherwise beneficial - Competitive Fitness Dampener has a tendency
to slightly slow the evolution and partly because the introduction of the burrow-
ing prey makes each generation take much less computational time. This occurs
because most matches are settled before the 300 turn limit as the prey is either cap-
tured or burrows itself.

Figure 4.1: Performance improvement of predator HoF members. Trend line
added due to noise.

We have measured the improvement of the predator population using the objective
measure introduced in section 3.1.2. The results can be seen in figure 4.1. A steady
improvement can be observed from generation 175 to approximately 230. After a

53

CHAPTER 4. COMMUNICATION IN THE EXTENDED PURSUIT ENVIRONMENT

brief decline spanning 30 generations progress occurs again but at much slower
rate. After generation 375 no significant changes occur. The best predator evolved
is able to beat the best prey only 14% of the times they are matched against each
other while it beats roughly 20% of the HoF prey. This is testament to the great
increase in difficulty induced through the use of burrowing prey. The 14% can be
comparedwith previous capture rates for evolved predators in table 3.2. Using bur-
rowing prey we can now introduce advanced means of visual and aural predator
communication.

4.2 Test Using No Communication

This section describes the first in a series of tests intended to collectively document
benefits of introducing different means of communication. The predators used in
the test in section 4.1 used the CellOfNearest() function. This function returns the
cell of the predator closest to the calling predator and thus constitutes a form of
visual communication. Before introducing advanced forms of communication we
will make a test using predators without any form of pack communication. Thus
the predators used in this test will be able to see the prey but will not be aware of
each other. The test will use the same parameters as the test in section 4.1. Likewise
the populations will use the same function and terminal sets with the exception that
the predator population will not have access to the CellOfNearest() function.

The improvement graph for the predator HoF can be seen in figure 4.2. Improve-
ment occurs earlier that in the test in section 4.1. This is likely due to the reduced
search space of possible solutions resulting from the exclusion of the CellOfNear-
est() function. After generation 325 the trend line flattens and no further improve-
ment can be identified. The best HoF predators from this test actually beat more
HoF prey than those from section 4.1. However, this is likely caused by the inser-
tion of a higher number of inferior prey into the HoF in this test.

The best predator beats the best prey in only 1% of the test matches. We have com-
pared the best predator and prey from this test with the best found in section 4.1.
The result is shown in table 4.2. The predators evolved while using the CellOfNear-
est() predator function are better but only slightly. This comparison is good indi-
cation of the weakness of the visual communication offered by the CellOfNearest()
function. The next section will elaborate on this issue and provide details of a mod-
ification to the visual communication.

CellOfNearest Prey No Communication Prey

CellOfNearest Predator 14 % 5%

No Communication Predator 0% 1%

Table 4.2: Certainty in percent with which predator beats prey.

54

4.3. TEST USING MODIFIED VISUAL COMMUNICATION

Figure 4.2: Performance improvement of predator HoF members. Trend line
added due to noise.

4.3 Test Using Modified Visual Communication

This section describes a redesign of the visual communication in the extended pur-
suit environment and test results from evolutionary runs applying the related com-
munication functions. The functions intended as a basis for visual communica-
tion are reevaluated and found to be unsatisfactory. A redesign is motivated and
the modifications are described. Test results from evolutionary runs using visual
communication show great increase in predator performance and in their ability to
capture burrowing prey.

4.3.1 Redesign of Visual Communication Functions

In Rydtoft and Rasmussen [43] table 5.4 page 60 the four functions intended to be
used for visual communication are listed. The names of the functions are CellOfN-
earest(), CellOfFarthest(), CellOfNearestRight() and CellOfNearestLeft(). The exact
functionality of each of the functions can be found in the table referenced above.
The essential functionality of all of these functions is to convey information about
other predators’ positions in the grid world to the predator using the functions.
Although the functions do convey this information we have discovered that ref-
erencing with these functions makes it very difficult for predators to coordinate
movement relative to each other. The weakness of the design was discovered while
constructing heuristic predator strategies to be used during the fall semester exam
presentation. Furthermore the comparison of the tests in section 4.1 and 4.2 shows

55

CHAPTER 4. COMMUNICATION IN THE EXTENDED PURSUIT ENVIRONMENT

that the advantage of using CellOfNearest() as opposed to no pack communication
is modest. When a predator uses the CellOfNearest() function the cell of the nearest
predator is returned no matter in which direction the nearest predator is. After one
single move this function might return a cell located in the directly opposite direc-
tion of the previous cell. This makes it difficult for the predator using the function
tomove relative to a fixed point. The CellOfNearestRight() and CellOfNearestLeft()
functions have the same problem. The problem becomes apparent when a predator
changes direction. Since e.g. the CellOfNearestLeft() returns the cell of the nearest
predator to the left of the calling predator this may also change rapidly when the
calling predator turns itself. These unwanted properties of the functions make it
impossible for the predators to reference each other and move accordingly in a con-
sistent manner. Therefore the functions are partly removed and partly redesigned
to better facilitate visual communication amongst the predators.

The Modified CellOfNearestRight

Apart from the CellOfNearestRight() which is altered the other visual communi-
cation functions1 are discarded. The CellOfNearestRight() (CONR) is redesigned
to make referencing easier for the predators regardless of their direction. The new
CONR function extends an imaginary line from the calling predator through the
position of the prey. This line is independent of the direction in which the predator
is currently facing. CONR then calculates the Manhattan distances from the prey to
all predators located to the right of this line and returns the cell of the predator with
the shortest distance to the prey. The function allows predators to reference each
other in a counter-clockwise manner while moving and changing direction. A sit-
uation in the grid world can be seen in figure 4.3 where the functionality of CONR
is illustrated. The CONR has the advantage that it incorporates the position of the
prey which allows the predators to place themselves and move relative to both the
prey and the other predators in an easy manner.

P 3

2

1

4

Figure 4.3: Figure illustrating the new CellOfNearestRight() function. Predator
1 is using the function and receives the cell of predator 2 which is located to the
right of the line drawn from predator 1 through the prey. The cell of predator 2 is
returned because its Manhattan distance to the prey is less than that of predator 3.
If no predator is present to the right of the imaginary line no cell is returned.

1CellOfNearest(), CellOfFarthest(), CellOfNearestLeft().

56

4.3. TEST USING MODIFIED VISUAL COMMUNICATION

4.3.2 Tests and Results

A test is performed in which predators are allowed use of the CellOfNearestRight()
function. The test settings used are exactly the same as those listed in table 4.1. As it
is evident from this table the co-evolution is continued for 550 generation. In figure
4.4 the improvement of the predators inserted into the HoF is depicted. The graph
indicates a slow improvement until approximately generation 320 where a more
steep increase takes place.

Figure 4.4: The figure depicts the capture percentage of predators in the HoF. The
predators are using the CellOfNearestRight() function.

The best predator and prey strategies evolved during the run can be seen in ap-
pendix F.2. They are pitted against each other 100 times and against the individuals
evolved in sections 4.1 and 4.2. The results are listed in table 4.3 and show that
not only can the best newly evolved predator pack capture old prey nearly 100% of
the time but the new prey is also able to evade old predator strategies almost flaw-
lessly. This shows that introducing beneficial functionality for the predators has
helped both populations to co-evolve to a new level of performance. Both the new
prey and the new predator strategies are superior to the strategies evolved earlier.

CellOfNearest Prey No Communication Prey CONR Prey

CellOfNearest Predator 14% 5% 1%

No Communication Predator 0 % 1% 0%

CONR Predator 99% 100% 65%

Table 4.3: Certainty in percent with which predators beat prey.

57

CHAPTER 4. COMMUNICATION IN THE EXTENDED PURSUIT ENVIRONMENT

When examining the matches between the evolved CONR predator and co-evolved
burrowing prey several interesting situations occur. Some of these will now be
described.

It is evident from viewing the matches that predators use the CellOfNearestRight()
to move and maneuver around the prey and coordinate in a much higher degree
than previously seen. Previously evolved predators which start in the same quad-
rant of the map, e.g. to the south-west of the prey, would often all move either
north or east to get aligned with the prey. The newly evolved predator strategy
makes the predators fan out from such a starting position and approach the prey
from several directions. Attempts to completely surround the prey have not been
seen to be successful, however three out of four directions have been covered by
predators forcing the prey to escape the only possible way out. The good predator
strategies utilize the ability to accelerate and move two squares per turn.

Comparing predator strategies from earlier generations around 380 with the latest
from 550 reveals interesting differences which indicate that evolution has been tak-
ing place. The younger predator strategies have learned to accelerate and rush the
prey from several directions with some success. However, when predators rush to-
wards the prey they do not slow down or stop when close to the prey. Instead they
rush towards the prey merely to see it sidestep and the predator continues past it
and then slows down. In the latest strategy the same pattern is still observed but the
predators no longer rush past the prey. They decelerate so that they are precisely
alignedwith the prey after it changes direction and continue the chase, i.e they have
learned to master their speed advantage and speed up and slow down at the right
times which is very impressive. Both the early and the later predators rush towards
the prey in very alike manners. The predators take turns in rushing the prey from
different directions and if failing to catch it other predators are already rushing to-
wards it. Although the predators do coordinate their attacks, members from earlier
predator packs sometimes singlehandedly chase the prey before their teammates
get close enough to assist in the capture. This is of course far from optimal since it
lowers the chance of capture because the prey burrows. The later generation preda-
tors have to a high degree learned to wait until most of their team members are
close before starting to rush the prey. A strategy which have been observed several
times to be successful. This complex behavior is also testament to the usefulness of
the CellOfNearest() function.

The prey initially stays in its starting position until a predator gets too close which
the prey then reacts upon. This strategy has an upside and a downside to it. The
downside is that since the prey stays in the middle until approached predators have
an easier job surrounding it than theywould have surrounding a roaming prey. The
upside is that since the prey never starts to move until a predator gets close enough
to activate its burrow timer the prey will never reach a wall and thus never get
caught against a wall.

4.4 Test Using Visual and Aural Communication

Each test performed in the section uses parameters and functions/terminals iden-
tical to those of the test performed in section 4.3, with the exception that these tests

58

4.4. TEST USING VISUAL AND AURAL COMMUNICATION

use additional functions for aural communication (messaging).

4.4.1 1st Approach with Communication

To enable aural communication among the predators we use the Shout(Msgm) and
IsLastMessageOfType(Msg m) functions as described in Rydtoft and Rasmussen
[43]. Basically the Shout() function registers its argument message as the last mes-
sage shouted, each time overwriting the previous message, and the boolean Is-
LastMessageOfType() returns true if its argument message matches the last mes-
sage shouted. This approach is depicted in figure 4.5.

Predator Pack

Shout(m) IsLastMessageOfType(m)
m

message

4321

Figure 4.5: 1st communication approach.

We allow the test to continue for 900 generations to accommodate the increased
search space resulting from the added functions. The improvement graph for the
predator population can be seen in figure 4.6. Although improvement can be seen
much noise is present in the graph. The final solutions evolved in this test are not
impressive. They possess little of the ingenuity seen in solutions evolved previously
in e.g. the test in section 4.3. It is surprising that this small increase in function set
size has such detrimental effects on the evolution flow. The best evolved predator
strategies do not make organized use of their messaging capabilities and addition-
ally do not make as advanced use of the CellOfNearestRight() function as previous
solutions.

Examining the late generationHoF predators it can be seen that they use the Shout()
function often but rarely use the IsLastMessageOfType(). The abundance of shout-
ing is likely related to the STGP constraints related to the function. The Shout func-
tion has a child of type Msg2 and another child which must be of type Tack. The
Shout() function returns this Tack itself when evaluated. The actual storing of the
shouted message is simply implemented as a side-effect to the evaluation of the
Shout node. Thus Shout() functions can be placed almost anywhere in a tree and
even connected in series. Once introduced they can be difficult to get rid of through
evolution. This problem should be resolved by enforcing stricter constraints on the
shouting.

Another problem with this communication approach is the ability of the crossover
operator to destroy communication functionality in the higher parts of a tree by in-
troducing new subtrees. If for instance a predator has learned to shout the message

2This child is the actual message argument to the Shout function. I.e. the message being shouted.

59

CHAPTER 4. COMMUNICATION IN THE EXTENDED PURSUIT ENVIRONMENT

Figure 4.6: Predator HoF Improvement for the first communication approach.

Bwhen it is closer than 20 squares to the prey and its tree gets a new branch which
makes it always shout message B then the previous functionality is destroyed. An
additional problem is that with only one message being stored at any time it is in-
feasible that one predator will be able to have its message "heard" by all the other
predators in the pack. If this is to be possible each of the remaining predators will
have to wait shouting until the next turn to avoid disrupting the stored message.

4.4.2 2nd Approach with Communication

To reduce excessive shouting we remove the existing Shout() function and intro-
duce a new version with tighter constraints. The new function is called IfThenElse-
Shout() (ITES) and behaves similarly to our ordinary IfThenElse(). The ordinary
IfThenElse() evaluates a boolean child and based on the value of the boolean eval-
uates the subtree rooted at one of its remaining two children. In the new ITES
version the first of these children will have a message attached which is shouted
prior to evaluating the subtree rooted at that child3. Thus the semantics of the ITES
are:

If (Boolean b == true) <shout message m> <eval child 1>
If (Boolean b == false) <eval child 2>

With this new function we reduce the shouting as messages can only occur at places
in the tree which can hold an IfThenElseShout(). Additionally we make sure that
the shouting occurs just after the evaluation of a boolean, i.e. after a decision has
been made. We hope this will make the shouting of messages depend on their

3Technically the message is a child in itself which is evaluated just before the subtree rooted at the
other child.

60

4.4. TEST USING VISUAL AND AURAL COMMUNICATION

attached decisions.

We attempt to remove the ability of later shouts to destroy the meaning of earlier
shouts. Thus for each predator only the first shout will count. We hope this will pre-
vent situations in which crossovers will include disturbances by introducing new
shouts closer to the leaves of the tree. Likewise we will store separately the mes-
sages for all predators so if for instance predator 1 shoutsA and predator 2 shouts B
predator 3 will still be able to detect that anAmessage was shouted. In predator 1’s
subsequent turn it will overwrite its message so each predator will have only one
message stored at any one time. If a predator chooses not the shout during its turn
its previous message will be erased. In order to better fit with the new semantics
the IsLastMsgOfType() function will be renamed to WasMsgShouted(). The new
message approach can be seen in figure 4.7.

km n

Predator Pack

ITES(m) WasMsgShouted(n)

messages

1 2 3 4

Figure 4.7: 2nd communication approach.

The predator HoF improvement graph for this run is similar to that of the previ-
ous run and has been omitted for the sake of brevity. Examining the statistics of
the test run we can see that letting the first shouted message in a predator be the
only one stored - while solving the problem with overwriting the meaning of the
first message - creates new problems. A majority of the initial good predator solu-
tions which spread within the population all shout the message A regardless what
happens. The shouting of this message happens very early in the predators’ tree
and subsequent shoutings are all disregarded. As the evolution proceeds we reach
a point in which nearly all predators inserted into the HoF have this characteris-
tic. It seems to be very difficult to alter the early parts of the trees containing the
first message. Any potentially useful communication functions developing further
down the trees of these predators have no meaning whatsoever and it is evident
that the best evolved predators do not utilize their ability to communicate.

4.4.3 3rd Approach with Communication

The design of the communication functions utilizing messaging is altered once
more. To avoid the problems described above each predator in a pack will be al-
lowed to shout all the possible messages as many times as desired. When a mes-
sageA is shouted and afterward a message C is shouted both are remembered. The
number of times a predator shouts the same message has no impact. Each type of
message will only be registered once. When a predator has its turn it can check if
any of the other predators shouted a given message and act upon this. Thus if a

61

CHAPTER 4. COMMUNICATION IN THE EXTENDED PURSUIT ENVIRONMENT

predator checks for the presence of message B it will receive an acknowledgment
if any of its brethren shouted this message during their last turn. When a predator
performs this check messages which were shouted by this predator in its previous
turn are not considered. However, if the predator shouts a message A in the top of
its tree and deeper in the tree checks if anyone shouted A, then its own shouted A
counts. The IfThenElseShout() is still used as shouting function as in the previous
setting.

Predator Pack

ITES(m) WasMsgShouted(n)

k

m m
n n

o

messages

1 2 3 4

Figure 4.8: 3rd communication approach.

The HoF improvement graph for this run can be seen in figure 4.9. Notice that we
have allowed this run to continue for 1200 generations. After generation 800 sig-
nificant progress occurs and the resulting predator strategies are fairly competent.
Many late generation predator strategies have the property that when one preda-
tor gets sufficiently close to the prey all predators will accelerate and attempt to
capture the prey before it burrows. At first we thought this functionality to be due
to communication but examining the strategies reveals that it is in fact clever use
of the CellOfNearestRight() function which allows the predators to do this. Late
generation predators make no organized use of the WasMsgShouted() function.

4.4.4 Additional Communication and Discussion

In addition to the aural communication attempts described in the three preceding
sections other attempts have been made to promote the use of aural communica-
tion. We will not go into much detail with these attempts and their results but
merely mention them briefly.

The Invisible Prey

In this attempt the prey is invisible until the predators get within a specified dis-
tance of it. This distance is longer than the BurrowDistancewhich allows the preda-
tors to see the prey without activating its burrow timer. The intuition is that preda-
tors should shout a message alerting the other predators of the position of the prey
once it is discovered. The function LastPositionOfMsg(msg) allows the predators
to extract the last position from which the argument message is shouted.

Evolved predators do not utilize messaging. In the best strategies evolved a preda-

62

4.4. TEST USING VISUAL AND AURAL COMMUNICATION

Figure 4.9: Predator HoF Improvement for the third communication approach.

tor will accelerate and attempt to capture the prey by itself once it detects its posi-
tion.

Non-accelerating Predators

The acceleration ability is removed from the predators. The intuition behind this
approach is that predators without the ability to accelerate will have greater need
for surrounding the prey and will need the aural communication to do this. The
learning curve for this approach seems too steep. The prey population consistently
evades the predators and no advanced predator strategies are evolved.

Two-stage Addition of Functionality

In this attempt the evolution is performed in two stages. In the first stage the func-
tion set used in the test in section 4.3 is used. Once the predators have mastered
the use of the CellOfNearestRight() function as well as the ability to accelerate and
decelerate the messaging functionality is made available and introduced through
mutation. The intuition behind this approach is that the messaging functionality
is only needed at a very late stage in the evolution and that we will benefit from
first introducing it once all other functions are being used appropriately. Also in
this approach the predators fail to make organized use of the aural communication
functionality.

Discussion

None of the attempted messaging approaches have been able to spur the evolu-
tion of communicating predators. We believe that there are multiple reason that
we repeatedly fail to evolve predators utilizing aural communication. According
to the Building Block Hypothesis GA/GP evolution relies on successful combina-
tion of small highly fit sub-solutions. These sub-solutions furthermore need to be

63

CHAPTER 4. COMMUNICATION IN THE EXTENDED PURSUIT ENVIRONMENT

local meaning that they should keep their functionality when inserted into a new
solution. With the messaging each communication event has two parts; the sending
and receiving of messages. Often these parts are placed at different points in a tree
and often only one of these parts will be transferred to a new tree. Probabilistically
speaking there is a high chance that once evolved, messaging constructs relying on
functionality from two separated parts of the tree will be destroyed by the genetic
operators. Another reason that messaging fails to evolve can be the power of the
CellOfNearestRight() function. In the test in section 4.4.3 we saw that clever use of
the CellOfNearestRight() function can provide functionality of a type we had orig-
inally anticipated would be evolved through messaging. The CellOfNearestRight()
is much easier to include in a small building block and does not rely on function-
ality from other parts of the solution. That the CellOfNearestRight() can be used
the way described in section 4.4.3 means that the actual value of the messaging
communication is less than anticipated. This combined with the fact that evolving
messaging functionality is very complex compared to evolving the functionality
made possible by the CellOfNearestRight() means that the chance of utilizing mes-
saging is very small. The potential benefits to be harvested from simple message
passing are too few to allow them to be evolved. The more difficult it is to use new
functions and the less real advantage the functions offer the less likely it is that the
functionality offered by the functions will be evolved and utilized.

Even though we have failed to evolve predators utilizing aural communication the
results in section 4.3 confirm that predators using visual communication to coordi-
nate their task are much more successful than non-communicating predators. This
result confirms our hypothesis that cooperating agents can produce better results
than non-cooperating agents solving the same problem. This result is of course not
true if the problem to be solved is of a nature which inherently cannot benefit from
teamwork.

64

Chapter 5

Co-evolutionary
Disengagement and the
Interleaved Approach

In this chapter the only two solution approaches to the disengagement problem
that we have been able to find in literature are compared with our own Interleaved
Competitive Co-evolution Approach. Additionally comparisons with an approach
using no disengagement countermeasures are performed. After this comparisons
are made between Interleaved Co-evolution, Regular Co-evolution and Stepwise
Co-evolution. The comparisons are based on tests performed in the extended pur-
suit environment. Lastly the performance of the Interleaved Approach in an envi-
ronment widely different from the extended pursuit environment are performed.

The chapter is structured as follows. In section 5.1 the phenomenon of disengage-
ment is explained in general and within the extended pursuit environment. In
5.1.1, 5.1.2 and 5.1.3 we explain our own approach intended to overcome disen-
gagement as well as the two approaches found in literature. Both of the latter so-
lution approaches are implemented in the extended pursuit environment and tests
are performed to compare all three approaches as well as the approach without
countermeasures. These tests are documented in section 5.2. Section 5.3 describes
the comparison between Interleaved Co-evolution and the two other mentioned
co-evolutionary paradigms. Finally section 5.4 documents the test of Interleaved
Co-evolution in a new environment.

5.1 Disengagement Countermeasures

The dynamics of competitive co-evolution are complicated and not all the phe-
nomena which may hinder or misguide the evolution have been discovered. One
phenomenon which has been found and documented is the disengagement phe-
nomenon which is reported in e.g. Watson [55], Werfel [56], Cartlidge [5] and
Rosin [45]. When two opposing populations are evolved against each other the

65

CHAPTER 5. CO-EVOLUTIONARY DISENGAGEMENT AND THE INTERLEAVED
APPROACH

individuals from both populations are evaluated against all or a selected subset
of the opposing population. Based on the outcome of the evaluations individuals
are selected for breeding. Individuals which are considered of great value due to
their evaluation results are thus selected and assumed beneficial for the further co-
evolution of both populations. This fundamental assumption about the dynamics
of the co-evolutionary approach is true if both populations are equally matched and
thus guide each other to increasingly better solutions. This desired phenomenon is
commonly referred to as the "arms race". The ability to differ amongst individuals
in a population is therefore essential in order to be able to select good individu-
als, but not always guaranteed. If one population evolves solutions which none of
the opposing individuals are able to counter a situation arises in which the dom-
inated individuals all score identically poor fitnesses. This makes it impossible to
guarantee the selection of the best individuals for breeding which again leads to
the disappearance of the fitness gradient driving the evolution resulting in a pe-
riod of degrading genetic drift. When this happens the populations are said to be
disengaged from each other. Disengagement is particularly likely to occur in en-
vironments where one population at some point has an advantage over the other
population. For instance in the pursuit environment the prey task of evasion will
initially be easier to accomplish than the predator task of capture.

The disengagement phenomenon was first encountered during initial tests in the
extended pursuit environment and is documented in Rydtoft and Rasmussen [43]
in section 5.7.2 along with a proposed solution to the problem. The disengagement
was evident early during evolution where the predators evolved a strategy which
no prey seemed to be able to counter. A test in section 5.2.1 shows that the disen-
gagement phenomenon is still present in our environment.

5.1.1 Interleaved Competitive Co-evolution

The Interleaved Competitive Co-evolution Approach was proposed in Rydtoft and
Rasmussen [43] section 5.7.2. The flow of a co-evolutionary run using the Inter-
leaved Approach can be seen in appendix C. The basic idea of the approach is to
prevent further evolution of a population which is beginning to dominate its op-
ponent population. This is done by maintaining the dominating population at its
current generation while further evolving the dominated population. We usually
refer to this as "pausing" the dominating population. The dominating population
is paused until the dominated population has evolved sufficiently and is no longer
disengaged. This means that for a period of time we will be evolving only one pop-
ulation against a static fitness landscape. Thus our approach actually makes the
evolution a mixture of single and co-evolution. The criterion we use to determine
when a population should be paused is the so-called "dominance threshold". Preda-
tor dominance is measured by for each generation counting the number of played
matches which end with a capture and dividing with the total number of played
matches. Prey domination is derived in the same way. Note that when added to-
gether these two values sum to 1. If for instance the prey dominance exceeds the
dominance threshold the prey population is paused. The population is paused un-
til the prey dominance no longer exceeds the dominance threshold. Dominance
threshold values are always between 0.5 and 1.0 exclusive. We have experimented
with alternative criteria for pausing. Most of these are related to the performance

66

5.1. DISENGAGEMENT COUNTERMEASURES

of the very best individual in each population1. None of the alternative approaches
have so far resulted in equally good results as when using the described criterion.
A nice property of the described criterion is that both populations will never be
paused simultaneously. This is not guaranteed with several of the alternatives we
have explored.

One may question why this pausing approach is helpful. After all, once a popula-
tion is dominant it should have no means of evolving further as improvements will
not be noticeable in the fitness which is already at a maximum. However, while
the dominating population does not evolve much new functionality it will still be
able to quickly adjust to any progress made by the dominated population thus ob-
scuring the progress and preventing the individuals which have progressed from
spreading within the dominated population.

The test performed in section 4.3 has parameters identical to the comparison tests
performed in section 5.2 and will serve as a representative test utilizing our Inter-
leaved Approach.

5.1.2 The Phantom Parasite

To avoid disengagement Rosin [45] proposes the adding of a so-called "phantom
parasite" to each Teacher Set of the competing populations. When disengagement
begins to occur and one of the species is dominating the other, the purpose of
the phantom parasites is to ensure that some non-optimal individuals survive in
the dominating species to act as "pedagogical stepping stones" for the dominated
species. This should in turn allow the dominated species to continue evolving in a
directionwhichwill allow them to beat first the pedagogical stepping stone teachers
and later the dominating "optimal" teachers. The phantom parasites encompass no
solution themselves (i.e. GP trees or GA binary strings) and no actual competitions
are run between them and the opposing students. Instead they are used in con-
junction with competitive fitness sharing to allow the survival of the pedagogical
stepping stone teachers described above. Each generation, after computing compe-
tition outcomes against current teachers, the outcome against a phantom parasite is
defined in the following way:� Students which lose to some current teacher defeat the phantom parasite.� Students which defeat all current teachers lose to the phantom parasite.
Used in conjunction with Competitive Fitness Sharing and possibly Shared Sam-
pling for the next generation Teacher Set this should ensure the survival of some
non-optimal teachers to be used to guide the evolution of the dominated popula-
tion. Note that this approach automatically assumes that the imperfect stepping
stone teachers will in fact guide the evolution towards eventual defeat of the "opti-
mal" teachers. In our opinion this is a quite unsubstantiated assumption as there is
no guarantee that the "optimal" and non-optimal teachers require similar strategies

1Disengagement is often initiated by having one or a few superior individuals spread through the
population.

67

CHAPTER 5. CO-EVOLUTIONARY DISENGAGEMENT AND THE INTERLEAVED
APPROACH

to defeat. Especially when diversity maintenance or niching schemes are being uti-
lized many local and widely different optima may be investigated simultaneously.
In a worst case scenario the non-optimal teachers could in fact drive the evolution
away from a solution able to beat the "optimal" teachers.

5.1.3 Moderating Opponent Virulence

Inspired by the differences in virulence among natural parasite strains Cartlidge
[5] proposes to moderate the virulence of Teacher individuals2 in order to prevent
disengagement. The virulence is adjusted as depicted in figure 5.1. Effectively this
means that moderately virulent students (which in the subsequent generation will
function as teachers for the opposing population) which beat some specified per-
centage below 100 of their teachers (Cartlidge uses 75%) are awarded maximum
fitness whereas maximally virulent students beating 100% of their teachers receive
less. Cartlidge uses the counting ones problem and the problem of constructing
minimum length sorting networks to demonstrate that moderating virulence can
prevent disengagement.

a) Maximum

S
tu

de
nt

 F
itn

es
s

b) Moderate

S
tu

de
nt

 F
itn

es
s

Number of teachers beat Number of teachers beat

Figure 5.1: Fitness functions encouraging respectively maximal and moderate vir-
ulence.

This approach is very similar to Rosin’s phantom parasite approach as both ap-
proaches punish individuals for being too good and actually guide the evolution
towards the suboptimal moderately virulent solutions. We generally dislike the
notion of discarding "too good" solutions and prefer our own pausing approach
in which the good solutions are kept but not evolved further until the competing
population has been allowed to catch up.

5.2 AComparison onDisengagement Countermeasures

This section describes tests using the different countermeasures against disengage-
ment which have just been described. As stated the test in section 4.3 will be used
as documentation of our own Interleaved Approach and no new test will be per-
formed using this approach.

2Referred to as parasites in the article.

68

5.2. A COMPARISON ON DISENGAGEMENT COUNTERMEASURES

5.2.1 Verifying Existence of Disengagement

The following test is performed to verify that disengagement occurs in the extended
pursuit environment when no countermeasures are taken to prevent it. Test settings
for this test are identical to the those specified in table 4.13 except that no pausing
is performed.

Both populations are co-evolved for 550 generations. The predator HoF improve-
ment graph from this test can be seen in figure 5.2. It is evident from viewing
this graph that the predators are not able to evolve sufficiently advanced strategies
which can capture a significantly large amount of the preyHoFmembers. The small
incline during the first 200 generations indicates that the predators are slowly im-
proving. This improvement stops at approximately generation 280 where the prey
population has evolved strategies which very few of the predators can counter.
Predators inserted after this point can not capture as many of the HoF prey as some
of the previous HoF predators. This may well be an indication of genetic drift.
When examining the corresponding improvement graph for the prey population it
is clear that the prey population not at any point has problems with the evolved
predator strategies. The prey inserted into the HoF during the beginning of the run
very quickly learn to evade all of the Teacher Set predators and the graph shows no
signs of changing. The graph has been omitted for the sake of brevity.

The graph in figure 5.2 is particularly interesting when it is compared to the cor-
responding graph in figure 4.4 section 4.3. The only difference between these two
tests is that the Interleaved Approach (i.e. pausing) is employed in the test from
section 4.3. The trend lines look almost the same until generation 300 where the test
using pausing starts to improve due to the paused prey population while the non
pausing test continues without change. The effect of pausing versus not pausing
is very clear when comparing the two graphs. The fact that the prey population is
paused while the predators start making rapid progress in approximately genera-
tion 325 in figure 4.4 indicates that the pausing is helping the predators to catch up
with the superior prey population.

A comparison of the best individual evolved in the test described in this section and
section 4.3 is shown in table 5.1. Both individuals from section 4.3 - the Interleaved
individuals - outperform those evolved without pausing in the test in this section
(i.e. regular).

Interleaved Prey Regular Prey

Interleaved Predator 65% 90%

Regular Predator 9% 46%

Table 5.1: Certainty in percent with which predator beats prey. The Interleaved
Predator is earlier referred to as the CONR Predator.

Based on the results attained in this section we conclude that the Interleaved Ap-
proach produces more advanced strategies than when pausing is not employed in
the extended pursuit environment. This again shows that the disengagement phe-
nomenon is present in the extended pursuit environment. It will be interesting to

3I.e. the test with the modified CellOfNearestRight() function.

69

CHAPTER 5. CO-EVOLUTIONARY DISENGAGEMENT AND THE INTERLEAVED
APPROACH

Figure 5.2: Capture percentage of predators in the HoF. The predators and prey
are co-evolved without disengagement countermeasures.

see if and how the disengagement countermeasures found in literature will affect
the co-evolution in our environment.

5.2.2 Test With the Phantom Parasite

The phantom parasite idea is very simple and nicely described in Rosin’s article.
As such it is also very easily implemented in our co-evolutionary system. We have
performed a test in which it is used as countermeasure against disengagement. As
with the test without disengagement countermeasures the parameters and func-
tion/terminal sets are identical to those used in the test in section 4.3.

The HoF predator improvement graph from this test can be seen in figure 5.3. Com-
pared with the graph in figure 5.2 showing the test without disengagement coun-
termeasures this graph looks much better. Although progress is for the most part
slow it is fairly steady. Within the last 50 generations of the graph there seems to
be signs of a small decline in performance. It is difficult to say if this is a begin-
ning case of genetic drift as we have no data beyond generation 550. We choose to
terminate the evolution at the same place as in the tests in sections 4.3 and 5.2 to
allow for a fair comparison. The best predator and prey from this run are definitely
better than those evolved without disengagement countermeasures. We have com-
pared them with the best individuals from the other two tests as well as the test
using moderated virulence. This comparison and a discussion of it can be found in
section 5.2.4.

70

5.2. A COMPARISON ON DISENGAGEMENT COUNTERMEASURES

Figure 5.3: Performance improvement of predator HoF members. This co-
evolutionary run uses the Phantom Parasite approach.

5.2.3 Test With the Moderate Virulence

Cartlidge [5] offers no exact specification or generally applicable description of how
the moderate virulence approach should be implemented. Therefore the manner
in which the moderate virulence approach is implemented in the extended pursuit
environment is described. We invite the reader to examine the work of Cartlidge [5]
and judge whether our implementation agrees with the description to a satisfactory
degree.

Our implementation
In each generation an individual is evaluated against a constant number of oppo-
nent teachers. The fitness assigned to the individual depends on how many teach-
ers the individual beats and on the virulence factor. Thus the Competitive Fitness
Sharing is not applied together with the moderate virulence approach4. The viru-
lence factor of an individual is a function of the number of teachers the individual
can beat. It is calculated using the expression in equation 5.1 and the mapping be-
tween the "beat" percentage of an individual and the virulence factor is depicted in
figure 5.4. The fitness assigned to an individual is multiplied by its virulence factor.
The virulence factor is calculated in such a manner that individuals beating 75% of
their opponents are assigned maximum fitness.V iruleneFator = �4225 � x2 + 83 � x; x�[0; 100℄ (5.1)

The x in equation 5.1 is the beat percentage of the given individual and ranges from
0 to 100.

4Combining Competitive Fitness Sharing with Cartlidge’s approach is non-trivial, and we wish to
employ an implementation as close to his approach as possible.

71

CHAPTER 5. CO-EVOLUTIONARY DISENGAGEMENT AND THE INTERLEAVED
APPROACH

Figure 5.4: The graph shows the mapping of beat percentage values to their corre-
sponding virulence factor values.

As with the other tests the parameters and function sets for this test are identical
with those used in section 4.3. The improvement graph for the HoF predators from
this test can be seen in figure 5.5. It is very unlike previous graphs of the same
type and show large and rapid increases and decreases. The very rapid increase
in performance in the beginning of the run is likely due to the decreased virulence
of the otherwise taxing initial prey population. Due to the virulence factor the se-
lected prey from early generations are very poor since even mediocre prey have
a good chance of evading all early predators. The initial predator improvement
changes at approximately generation 75 and the predators begin degrading. Exam-
ining statistics we can see that the predators selected for the HoF in generation 71
to 116 capture below 75% of the prey teachers. This means that no predators are
present in the population at this time capable of beating the virulently optimal 75%
of prey teachers. During this period degrading occurs. We thus believe that in this
period disengagement occurs and the predator population is drifting.

After generation 120we experience slightly more regular improvement for the preda-
tors. In general the predators reach very high capture percentage and far higher
than previously attained in other tests. However, this positive statistical indication
is not reflected in the evolved predator strategies which are generally poor when
compared with the other approaches.

The average improvement graph for both the prey and predator HoF is depicted in
figure 5.6. The prey improvement graph is like its counterpart from this test very
uncommon and therefore included. Normally the prey improvement graph will
increase very rapidly to around or above 90% andwill remain there for the duration
of the run. As can be seen in figure 5.6 this is not the case in this test. The prey are
learning at a much slower rate, especially late in the run, and occasionally even
degenerate. This occurs around generation 150, 210, 275 and 390 and is believed to
happen for the same reason as for the predators.

72

5.2. A COMPARISON ON DISENGAGEMENT COUNTERMEASURES

Figure 5.5: Performance improvement of predator HoF members. This co-
evolutionary run uses the Moderate Virulence approach.

Figure 5.6: Average performance improvement of both prey and predator HoF
members. This co-evolutionary run uses the Moderate Virulence approach. The
average is found using the moving average method with a span of 20 values.

5.2.4 Discussion of Tests

For each of the four tests performed we have chosen the best predator and prey.
To compare the quality of the evolved solutions we have matched each possible
predator/prey pair against each other. The results of these tests are shown in table
5.2. Several interesting facts have become evident during these matches. Strategies

73

CHAPTER 5. CO-EVOLUTIONARY DISENGAGEMENT AND THE INTERLEAVED
APPROACH

Regular Prey Interleaved Prey Phantom Prey Virulence Prey

Regular Predator 46% 9% 38% 1%

Interleaved Predator 90% 65% 61% 37%

Phantom Predator 79% 27% 22% 12%

Virulence Predator 4% 0% 0% 76%

Table 5.2: Certainty in percent with which predator beats prey. The Interleaved
Predator is earlier referred to as CONR Predator. The Phantom prey and predator
individuals are evolved with the Phantom Parasite approach and the Virulence
prey and predator individuals are evolved with Moderate Virulence approach.

evolved using the regular approach - i.e. using no disengagement countermeasures
- perform poorly and fail to evolve very interesting behavior. As already noted
this is due to the presence of disengagement leading to evolutionary drift for the
predator population and the lack of a proper "arms race" between the competing
populations which in turn renders both populations without means to evolve.

Employing the Phantom Parasite approach enables an evolution flow with more
improvement possible for both populations. The evolved strategies are much bet-
ter than those evolved using no countermeasures. The predators make use of their
ability to accelerate albeit to a lesser degree than those evolved using our Inter-
leaved approach. Sometimes the predators will spread out and approach the prey
from two sides. In all honesty the capabilities of the Phantom Parasite approach are
a surprise to us. As discussed in section 5.1.3we generally dislike approacheswhich
may explicitly guide the evolutionary search towards sub-optimality. However, the
Phantom Parasite approach has proved to us that locally suboptimal decisions may
lead to a high degree of global optimality. Combining this with the fact that our
problem is widely different from the simple Tick Tack Toe and Nim problems it is
tested on in Rosin [45] we believe it to be an approach with general applicability.

The Moderate Virulence approach produces an evolution flow much different from
what we have previously seen and the results are equally arcane. The moderately
virulent best predator is extremely specialized towards the best moderately virulent
prey and catches it with higher success than any of our other strategies. Unfortu-
nately it is overfitted to a point where it is incapable of capturing any of the other
prey strategies. Even the poorly evolved regular prey escapes this predator with
96% certainty. Interestingly the moderately virulent prey is very capable against
anything but its predator counterpart and has very nice statistics against our other
predators. Examining traces reveals that the moderately virulent prey always be-
gins its matches by running north towards the northern wall. Many of our other
evolved burrowing prey learn that the areas close to walls should be avoided and
like to stay close to the center of the grid world. This in fact makes it easier for the
predators to approach these prey from more than one side but the prey have the
advantage of being in the open with no wall to hinder their escape. Other predator
strategies than the virulence predator seem to be adapted to prey strategies which
avoid walls and have to some extent forgotten how to beat prey which have not
learned to respect the danger of walls. If more occurrences of prey strategies sim-
ilar to the moderately virulent prey had been present in the late generation prey
Teacher Sets of the other tests we firmly believe the other predator strategies would

74

5.3. A COMPARISON ON EVOLUTIONARY PARADIGMS

have easily re-adapted to this kind of strategy too.

A potential problemwith the Moderate Virulence approach in the extended pursuit
environment regards the prey population which during the initial generations of
the run are dominating the predator population. A very high percentage of the
prey easily manage to evade almost all of the predators and only the very poorest
strategies are caught. Thus in early generations these very poor prey strategies are
most likely to score the best fitness values since they do not evade close to 100% of
the opposing predators and are the closest to being "moderately" virulent. This is
in our opinion not a desirable property of the approach. It may be the reason that
the prey evolution is driven in a direction making the final prey strategies - while
not very sophisticated - widely different from the other prey strategies. Note also
that this problem is likely to persist in all environments, with similar degrees of
disengagement as ours5, if the Moderate Virulence approach is used on them.

The strategies evolved using our own Interleaved Approach perform very nicely
when matched against the other strategies. Especially the Interleaved predator
shows great prowess and is the predator pack with highest success rate against
three of the four prey strategies. This shows the high degree of generality incor-
porated in the predator strategy evolved using the Interleaved Approach. Only
the virulent prey strategy is beaten more efficiently by its own co-evolved predator
pack. In conclusion we are very satisfied with the performance of our Interleaved
Approach. We have shown the strategies evolved using it to be vastly superior
to the regular approach with no disengagement countermeasures and also in this
setting better than the Phantom Parasite and Moderate Virulence approach.

5.3 A Comparison on Evolutionary Paradigms

In this section single evolution is described and modeled within the extended pur-
suit environment. In single evolution only one population is evolved against a static
teacher set. Following, tests are performed to compare the performance of single
evolution and the quality of its solutions with that of the Interleaved Approach de-
scribed in section 5.1.1 and the regular co-evolutionary approach. The interleaved
and regular tests with which we compare the stepwise test results can be found
in section 4.3.2 and section 5.2.1 respectively. The motivation for performing these
tests is to examine the difference between these three approaches and determine if
single evolution can produce results of quality similar to those evolved using the
Interleaved Approach. Furthermore, in much of the literature cited in this paper it
is generally assumed or implied that co-evolution is more efficient than single evo-
lution and that co-evolution can even produce superior solutions which can not be
produced through single evolution. No tests to support these assumptions are pro-
vided in any of the cited literature or - to our knowledge - elsewhere. A description
of single evolution and how it is implemented in the extended pursuit environment
can be found in section 5.3.1. In section 5.3.2we present the test and the comparison
of the test results from the three different approaches.

5E.g. environments in which one population from the outset of evolution has a great advantage over
the other population.

75

CHAPTER 5. CO-EVOLUTIONARY DISENGAGEMENT AND THE INTERLEAVED
APPROACH

5.3.1 Single Evolution in the Extended Pursuit Environment

In single evolution students are evolved against a static teacher set. In the ex-
tended pursuit environment where both populations are co-evolved, modeling an
approach similar to the single evolutionary approach is done in the following man-
ner. Each population takes turns evolving while the other population is paused.
When the evolving population reaches a specific level of dominance the evolution
is stopped and the other population starts to evolve. This means that a population
is always evolved against a static opponent and two populations are never evolved
at the same time as is the case with the other evolutionary approaches. This means
that in the extended pursuit environment the predators are evolved against a static
teacher set of prey, and as opposed to regular co-evolution the prey will not be able
to adapt while the predators are evolving. This modified approach is named Step-
wise Evolution to reflect that it is actually a series of single evolutions performed in
steps. The dynamics of this approach are different from the two other approaches
and it will be interesting to see the results and the effect of this evolution type. Fig-
ure 5.7 illustrates the three different paradigms with regards to how populations
are evolved and when they may be paused. The Interleaved Approach can be seen
as a combination of the two other approaches.

Pop. 1

Pop. 2

Pop. 1

Pop. 2

Pop. 1

Pop. 2

Generations

(Stepwise)

Interleaved
Co−evolution

Single
Evolution

Regular
Co−evolution

Figure 5.7: The figure illustrates the relation among the three different evolution-
ary paradigms wrt. the pausing of the two populations. The horizontal line repre-
sents a time line measured in generations. A solid line indicates that the popula-
tion is being evolved and a break in the line means that the population is paused.
The Single Evolution approach is also referred to as Stepwise Evolution in this
report.

5.3.2 Stepwise Co-evolution Test

A test is performed with the same parameters and function sets as those used in
section 4.3 and with the following modifications. The prey population is initially
paused and when they do become unpaused the predator population is paused.
The prey population is unpaused when the predator population dominates more
than 20% which causes the predator population to be paused. The prey population

76

5.3. A COMPARISON ON EVOLUTIONARY PARADIGMS

is paused again when it dominates more than 80%6 and the cycle continues. The
Stepwise Evolution test is executed for 1700 generations which is approximately
twice the number of generations that the populations in the interleaved and regu-
lar co-evolutionary tests were evolved for. Comparisons are performedwith results
gathered after 850 and 1700 generations. This is because the interleaved test was
run for 550 generations. Out of these 550 generations the predator population was
evolved for 550 generations and the prey population for 282 summing to 832 gener-
ations or approximately 850 generations. We suspect stepwise evolution to be slow
and the extended 1700 generation test is performed to determine if stepwise evolu-
tion can produce better solutions than the other approaches when alloted twice the
number of generations.

When examining the HoF improvement graphs shown in figure 5.8 from the step-
wise test it appears that the predator improvement is indeed slower than the In-
terleaved Approach but slightly faster than the regular co-evolution. The figure
depicts the HoF improvement graphs for both the prey (upper) and the predator
(lower) population. After generation 800 the predators have barely reached 20%
captures. This number can be compared to the corresponding number from gener-
ation 550 from the Interleaved Approach. The predator HoF improvement graphs
from the interleaved test and the regular test can be seen in figure 4.4 page 57 and
figure 5.2 page 70 respectively. The predators from the Interleaved Approach had
reached 48% captures in average which is considerably higher. It is also interesting
to see that the prey improvement does increase almost at same pace as the other
approaches but that it does not remain constantly above 90% as often seen in other
tests. This could indicate either that the predators have evolved difficult solutions
or that the evolution flow is slower or not as consistent as in the other tests. Since
the predators have not evolved particularly advanced strategies as it is explained
in the following paragraph, we believe it to be because the evolution flow becomes
more erratic when a population evolves against a fixed teacher set for an extended
duration after which the teacher set suddenly changes. Allowing the stepwise evo-
lution to continue for twice as long as the two other approaches changes little with
respect to the improvement graphs. A small increase in improvement can be seen
for the predators while the prey are mostly paused. The solutions produced after
extending the test are slightly better than those from the middle of the run. To-
wards the end of the test predators inserted into the HoF have captured 40 out 100
teacher prey in average while the prey inserted into the HoF manages to evade all
100 teacher predators. This testaments that the best prey have no problems find-
ing solutions which can evade all predators which in turn indicates less advanced
predators.

To examine the quality of the solutions produced from the Stepwise Evolution the
best solutions from the two HoFs are matched against those from the Interleaved
and the Regular approach. The results from these matches can be seen in table 5.3
which presents the percentage with which the given predator captured the prey
based on 100 matches. Two predators and two prey are selected from the Stepwise
test. Those which are labeled Stepwise are the HoF individuals which correspond
- with regards to evolution time - to the individuals from the other approaches.

6In tests with a 50% threshold the predators were never paused. Several values are tested and the
chosen values result in the most satisfactory evolution flow. These threshold values are also the same as
those in the Interleaved test in section 4.3.

77

CHAPTER 5. CO-EVOLUTIONARY DISENGAGEMENT AND THE INTERLEAVED
APPROACH

Figure 5.8: The HoF improvement graphs from the Stepwise Co-evolution test.
The top line is the improvement graph for the HoF prey and the bottom line which
is shown with a trend line is that of the HoF predators.

The Stepwise predator and prey are from generation 832 to match the number of
generations from the interleaved run. Out of these 832 generations the predators
were evolved for 573 generations and the prey for 260 generations. The individuals
which are labeled Extended Stepwise are evolved for twice as long as those in the
interleaved test.

Regular Prey Interleaved Prey Stepwise Prey Extended Stepwise Prey

Regular Predator 46% 9% 32% 5%

Interleaved Predator 90% 65% 60% 44%

Stepwise Predator 39% 0% 52% 0%

Extended Stepwise Predator 51% 0% 3% 28%

Table 5.3: Certainty in percentage with which the predators beat the prey.

As can be seen from table 5.3 all of the predators are fairly good at capturing the
prey evolved with the regular approach. Notice that allowing the stepwise ap-
proach to evolve for twice as long does only produce a predator which is able to
increase the capture percentage of the regular prey by 12%, from 39% to the 51%
which is still far from the predator produced with the Interleaved approach. None
of the stepwise predators are able to capture the interleaved prey but they perform
somewhat better against their own prey from their respective generations. This
indicates that the stepwise predators are somewhat over-fitted towards the prey

78

5.4. INTERLEAVED CO-EVOLUTION AND THE COUNTING ONES PROBLEM

strategies they are evolved against. The extended stepwise prey strategy is able
to evade the interleaved predator more than the interleaved prey which indicates
a fairly advanced strategy. It should be kept in mind though that this prey is the
result of a test twice as long as the interleaved test. If the interleaved predators
were allowed to evolve for the same number of generations we are confident that a
solution would be evolved which could produce a higher capture percentage. The
stepwise predators have learned to accelerate and use this feature to capture prey
but they do not use the CellOfNearestRight() function in the same manner as the
interleaved predator.

One motivation for the comparison is to determine if there is truth to the claim that
co-evolution is superior to and more efficient than single evolution. Our tests show
that the regular approach is able to produce solutions which are slightly better than
those produced with the stepwise approach in the same number of generations.
Furthermore, it seems that the predators from the regular approach exhibit more
generality than the stepwise predators because they are able to capture prey from
all of the other approaches. The regular co-evolutionary approach has not proved
to be significantly superior to the stepwise approach in our tests. However, keep
in mind that the test using regular co-evolution experienced the phenomenon of
disengagement which affects the evolution in a negative manner. Provided that
disengagement was not present in this environment we believe that the regular
approach would produce better and more general solutions.

The Interleaved Approach produces overall better solutions in the same number of
generations as the regular co-evolutionary approach and the stepwise evolutionary
approach. Additionally it outperforms the stepwise evolutionary approach even
when the stepwise test is run for twice the number of generations. The Interleaved
Approach can therefore be seen as a more efficient approach in this environment.

5.4 Interleaved Co-evolution and the Counting Ones

Problem

In the preceding sections we have shown the InterleavedCo-evolutionaryApproach
to outperform the Phantom Parasite and Moderate Virulence Approach when em-
ployed in the extended pursuit environment as means to avoid disengagement. We
have also compared the InterleavedApproachwith other co-evolutionary paradigms
- i.e. Regular and Stepwise co-evolution - and shown that the InterleavedApproach
enables the evolution of better solutions in the extended pursuit environment. We
have thus gathered extensive results testamenting to the usefulness of the Inter-
leaved Approach but all results have been gathered through co-evolution in the
extended pursuit environment. In this section we will investigate the generality
of the Interleaved Approach by applying it to a co-evolutionary problem which is
widely different from the extended pursuit environment. By choosing a problem
different from the extended pursuit environment we hope to show that the Inter-
leaved Approach has general applicability. The chosen problem is known as the
Counting Ones problem and is used by Cartlidge [5] as benchmarking problem for
the by now familiar Moderate Virulence Approach. The Counting Ones problem
differs from the extended pursuit environment in several important aspects. Most

79

CHAPTER 5. CO-EVOLUTIONARY DISENGAGEMENT AND THE INTERLEAVED
APPROACH

importantly no noise is present in the Counting Ones problem. Furthermore the
use of Competitive Fitness Sharing is not necessary due to the simple betterThan
relation inherent in the problem. For any N individuals in the Counting Ones prob-
lem a linear ordering of the individuals with respect to performance can always be
produced. Thus no intransitive superiority relations exist in this problem which in
turn eliminates the need for a Hall of Fame. An attractive property of the Counting
Ones problem is the fact that the level of disengagement between the competing
populations is easily adjustable from a level where no disengagement is present to
levels of extreme disengagement.

Basically the Counting Ones problem contains two co-evolving populations each
containing individuals made up by bit strings of length 100. The individuals com-
pete against individuals from the opposing population. The winning individual in
a competition is the individual with most high bits in its bit string (i.e. bits with
value one). Disengagement is introduced by allowing the individuals from one
of the populations to have multiple bit strings which are combined using bitwise
OR. An individual with only one bit string is known as a haploid whereas individ-
uals with two bit string are known as diploids and individuals with three bit strings
triploids. A haploid will on average possess high bits in 50% of its loci while diploids
and triploids will possess high bits in 75% and 87.5% of their loci respectively. Thus
diploids and triploids will hold an inherent advantage over their haploid oppo-
nents. When two individuals are pitted against each other the winner will receive
fitness. The fitness awarded for winning is constant. In case of a tie each individual
is awarded fitness corresponding to half a win. At the beginning of the co-evolution
all individuals are created with all bits low (i.e. zero).

The same basic parameters as those employed by Cartlidge [5] have been employed
in our tests. They are summarized in table 5.4. As evident from the table breeding
is exclusively performed using an a-sexual bit flipping mutation which with a 5%
probability swaps the value of the bit it is applied to. Note that while Cartlidge
employed GAs in his work we are still using STGP. GAs are the natural choice
for a problem involving bit strings but the fact that we have a working and tested
co-evolutionary STGP implementation containing an implementation of the Inter-
leaved Approach means that we can save time by implementing Counting Ones as
an STGP problem. The resulting individuals each contain a tree with a root function
node and 10 intermediate function nodes eachwith 10 children. Each child contains
one bit in the case of a haploid individual or two or three bits, as well as function-
ality for performing the bitwise OR, in the case of diploid or triploid individuals.
With this setup the STGP constraints guarantee that each individual has the correct
number of loci.

5.4.1 Haploid-Diploid Tests

The following tests pit a haploid population against a diploid population. As doc-
umentation of test results we will plot the absolute (objective) fitness of all individ-
uals from both populations onto a graph in a manner similar to what was done in
Cartlidge [5]. The objective fitness of an individual is the percentage of its loci con-
taining high bits. As mentioned earlier the diploid population has a higher chance
of evolving good solutions since they have higher chance of having high bits in

80

5.4. INTERLEAVED CO-EVOLUTION AND THE COUNTING ONES PROBLEM

Parameter Value

Population Size 25

Bit String Length (# of loci) 100

Objective Majority function on number of high bits

Generations 600

Selection Method Tournament Selection

Tournament Size 5

Breeding Method Bit flipping

Bit Flip Probability 5%

Dominance Threshold 60% for diploid test and 55% for triploid test

Table 5.4: Test settings for Counting Ones tests.

many of their loci. Thus we expect disengagement to occur if countermeasures are
not taken. A test is performed to verify this assumption. The upper graph in figure
5.9 shows the results of this test. When no countermeasures are taken the diploid
population quickly dominates the haploids. As soon as disengagement occurs se-
lection pressure is removed. All haploids score fitness zero and all diploids score
maximal fitness. Having lost their fitness gradient the populations are pushed to-
wards their expected average fitnesses which are 50% for the haploids and 75% for
the diploids. Random fluctuations cause a brief re-engagement around generation
350. Shortly hereafter the populations disengage again and remain disengaged for
the remainder of the run.

The lower graph in figure 5.9 shows that introducing the Interleaved Approach
with a dominance threshold of 60% alleviates the disengagement problem. Figure
5.9 can be directly compared with figure 3 page 3 in Cartlidge [5]. Due to the con-
sistent engagement both populations evolve better solutions than in the test with
no countermeasures. The blocky appearance of especially the diploid population
graph is due to the fact that the diploids are paused for extended periods of time.
In generations 426-465 the haploid population has evolved sufficiently fit strategies
to allow it to be paused continuosly for several generations. This can bemore easily
seen on the pausing graph below. The pausing of the haploids shows that the ex-
tended pausing of the diploid population has benefitted the haploids to an extend
which allows them to briefly become dominating in an environment where they
are otherwise clearly outmatched by design. The fact that none of the populations
evolve individuals with an objective fitness of 100 can be attributed to the 5% mu-
tation bias. As individuals get better it gets progressively more difficult to increase
in performance due to the fact that most mutations will flip high bits to low bits.

Note that the dominance threshold for this test is reported as 60% in table 5.4. This is
a low valuewhich is necessary as it is imperative to quickly pause the strong diploid
population when it slightly outperforms the haploid population. Also it is very
important to keep the diploids paused until the haploids have comfortably caught
up with them. We initially performed a test with a dominance threshold of 75%.
The results from this test can be seen in figure 5.10. In the beginning of the run the
co-evolution is proceeding nicely but at approximately generation 125 the diploid
population is unpaused prematurely. This combined with a series of unfortunate
mutations in the haploid population leads to disengagement near generation 200.

81

CHAPTER 5. CO-EVOLUTIONARY DISENGAGEMENT AND THE INTERLEAVED
APPROACH

Figure 5.9: Haploid - Diploid tests. Lower test uses the Interleaved Approach with
a dominance threshold of 60%. Haploids are grey and diploids black. The small
graph in the bottom shows when the two populations are paused. When the grey
line peaks the haploid population is paused. When the black line peaks the diploid
population is paused.

82

5.4. INTERLEAVED CO-EVOLUTION AND THE COUNTING ONES PROBLEM

Figure 5.10: Haploid - Diploid test using the Interleaved Approach with a too high
dominance threshold of 75%. Haploids are grey and diploids black. The small
graph in the bottom shows when the two populations are paused. When the grey
line peaks the haploid population is paused. When the black line peaks the diploid
population is paused.

83

CHAPTER 5. CO-EVOLUTIONARY DISENGAGEMENT AND THE INTERLEAVED
APPROACH

5.4.2 Haploid-Triploid Tests

The following tests pit a haploid population against a triploid population. The
added level of difficulty due to the greater asymmetry between the populations
means that the dominance threshold is lowered to 55%. Test results without and
with the Interleaved Approach can be seen in figure 5.11. Figure 5.11 can be di-
rectly compared with figure 4 page 4 in Cartlidge [5]. The upper graph showing
results of the run using no disengagement countermeasures shows that disengage-
ment occurs quickly and definitively after a few generations. The populations do
not re-engage after the initial disengagement. The lower graph shows that even in
this very asymmetric environment the Interleaved Approach enables engaged co-
evolution and the haploid population evolves solutions even better than those in
the Haploid-Diploid test.

The results in this section show that the Interleaved Approach can be used to avoid
disengagement in the Counting Ones problem. We have now successfully applied
the Interleaved Approach to two very different environments. Based on this fact
we conclude that the Interleaved Approach has general applicability.

84

5.4. INTERLEAVED CO-EVOLUTION AND THE COUNTING ONES PROBLEM

Figure 5.11: Haploid - Triploid tests. Lower test uses the Interleaved Approach
with a dominance threshold of 55%. Haploids are grey and diploids black. The
small graph in the bottom shows when the two populations are paused. When the
grey line peaks the haploid population is paused. When the black line peaks the
triploid population is paused.

85

CHAPTER 5. CO-EVOLUTIONARY DISENGAGEMENT AND THE INTERLEAVED
APPROACH

86

Chapter 6

Conclusion

In this report we have used Strongly Typed Genetic Programming to evolve coop-
erative behavior of autonomous agents. Besides solving common problems such as
lowering SPEA2 selection pressure, redesigning prey behavior for a greater preda-
tor challenge and reducing the effect of noise through the introduction of our Com-
petitive Fitness Dampener we have attained four main achievements.

Experimental Achievements� The evolution of an interesting strategy for homogeneous predator agents
with which the predators utilize visual communication to coordinate the pur-
suit of taxing burrowing prey. The evolved predators are able to catch very
capable prey agents with good success rates.� The development of a diversity maintaining objective which successfully al-
lows our co-evolutionary runs to continue without premature convergence.

Theoretical Achievements� The devising and implementation of an objective measure capable of measur-
ing progress or lack thereof during co-evolutionary runs.� The development of a disengagement countermeasure shown to be more po-
tent than two existing countermeasureswhen used in conjunction with the ex-
tended pursuit environment. Furthermore the testing of the countermeasure
on a problem of completely different nature gives credence to our statement
that the countermeasure has general applicability.

In the following we elaborate in more detail upon our main achievements in this
project.

Evolution of Cooperation Among Predators

A powerful and advanced means of visual communication is introduced in section
4.3. Both predators and prey evolved when using this function are very capable.
The predators master their abilities to accelerate and decelerate and through their

87

CHAPTER 6. CONCLUSION

communication coordinate their attacks so the prey is approached by accelerating
predators from at least two sides at once. The prey evolves into being very nim-
ble and uses its high degree of maneuverability to sidestep approaching predators.
The best evolved predator strategy is able to catch the best evolved prey with 65%
certainty. Predators evolved with no communications skill cannot catch this prey
at all and predators using simple visual communication catch it in only 1% of the
matches. Introduction of aural (messaging) communication yields no improvement
in the predator strategies. A discussion of why our predators do not benefit from
the messaging functionality can be found in section 4.4.4.

Naturally we had hoped for interesting strategies using aural communication but
we nevertheless feel that we have shown the benefits of cooperation through our
visual communication. Based on our results we have shown that cooperating au-
tonomous agents surely can produce better results than non-cooperating autonomous
agents solving the same task. Naturally this fact will not be true if the task is of a
type which inherently cannot benefit from teamwork.

Development of Diversity Measure

A heavily modified version of De Jong’s [8] FOCUS algorithm is used as means of
diversity maintenance. The main idea of the FOCUS algorithm is to introduce an
objective which promotes diversity by rewarding individuals with high diversity.
Our version uses a lower selection pressure than De Jong’s, and instead of using a
measure of diversity based on the structure of the GP trees our diversity measure is
based on differences in the performance and size objective of individuals.

Results documented in section 3.15 show that using our version actively maintains
the diversity of our populations and avoids any problems with premature conver-
gence. Even in our longest co-evolutionary runs have we not experienced lack of
diversity when using our diversity measure.

Development of Objective Measure for Monitoring Progress

Analyses of competitive co-evolutionary runs are often a demanding task due to
the lack of an objective measure of the performance of evolved individuals. The
method described in section 3.1.2 provides an objective measure of progress and
flow of the competitive co-evolution and has been found valuable in the analysis
of the results from our experiments. Information about progress and deterioration
in the strategies of evolved individuals is updated continuously when applying
the objective measure to a co-evolutionary run. Note that the measure can only be
used to track progress or lack thereof within one co-evolutionary run. It cannot be
used to compare results from different runs. The method is especially useful for
lengthy runs which can be monitored and terminated if detrimental effects due to
inaccurate parameters prevent progress.

Development and Investigation of a Disengagement Countermeasure

Our disengagement countermeasure - the InterleavedApproach - consistently helps
to avoid disengagement when applied in the extended pursuit environment. See
e.g. section 4.3 for results testamenting its effects. Comparison tests are performed
with the only two disengagement countermeasures we can find in literature. These
two countermeasures are the Moderate Virulence in Cartlidge [5] and Phantom Par-
asite in Rosin [45]. The results from these tests show that the Interleaved Approach

88

CHAPTER 6. CONCLUSION

enables the evolution of the best and most general strategies of the three when uti-
lized in the extended pursuit environment.

In section 5.3 the Interleaved Approach is compared with regular competitive co-
evolution and a stepwise single evolution variant which evolves the competing
populations in turns. While regular co-evolution slightly outperforms stepwise
evolution both approaches are shown be inferior to the Interleaved Approach with
respect to the quality of evolved predator and prey solutions.

To test the general applicability of the Interleaved Approach it is applied to the
Counting Ones benchmark problem used to test the Moderate Virulence Approach
in Cartlidge [5]. Test results show that the Interleaved Approach produces re-
sults of similar quality as the Moderate Virulence Approach in this environment.
The fact that the Interleaved Approach performs so well in two very different co-
evolutionary environments is indication that the Interleaved Approach has general
applicability.

89

CHAPTER 6. CONCLUSION

90

Appendix A

VisualGP

VisualGP is a small application which we have implemented to aid in visualizing
predator and prey strategies. It takes as input trace files consisting of movement
information from a match pitting a predator pack against a prey. The 300 or fewer
turns are replayed continually one turn at a time. The user can adjust the playback
speed, stop playback, pause playback or advance playback a single frame at a time.
VisualGP has an interface similar to that of a VCR and has proven to be a valuable
tool in examining agent behavior. Especially for cases in which the strategies of the
agent are difficult to interpret. Figure A.1 shows a screenshot from VisualGP.

Figure A.1: A screenshot from VisualGP.

91

CHAPTER A. VISUALGP

92

Appendix B

ECJ

The ECJ system by Sean Luke1 is a Java-based evolutionary computation and ge-
netic programming system. This chapter introduces the relevant parts of the ECJ
system pertaining to the experiments in this report. Supported features and char-
acteristics are listed and explained. Descriptions of the more special modules, e.g.
used forMulti-Objective Evolutionary Algorithms and Co-Evolution are given sub-
sequently. These modules are packages within the ECJ system and will thus be
referred to as packages.

B.1 Contents and Structure of ECJ 9

The ECJ provides functionality and tools for a wide range of tasks within the field
of EA and GP. A user is to implement only problem specific issues and various
interfaces in order to utilize the system. Specifying which breeders, selection meth-
ods, evaluators, population size etc. are to be used is done in parameter files. This
enables easy switches between different settings between evolutionary runs.

The topmost class in the evolutionary system is Evolve which handles checkpoint-
ing, random number generators, logging facilities and the parameter database.
Evolve is the entry point and contains an EvolutionState object which holds the
state of the evolutionary run at all times. Evolve contains the objects for initializing
populations, evaluating individuals, breeding new individuals and so forth. These
functionalities are embedded in the packages described in section B.2.

B.2 Supported Features

ECJ supports the following features:
Evolutionary Computation Features:

1http://www.cs.umd.edu/users/seanl/

93

CHAPTER B. ECJ� Genetic Algorithms/Programming style, Steady State and Generational evo-
lution, with or without Elitism.� Many selection operators. See section B.3.� Multiple subpopulations and species. A population can consist of several
subpopulations each of different species.� Reading saved populations from files. Enables re-evaluation or further evo-
lution of a population.� Packages for STGP, co-evolution, and multi-objective optimization. See sec-
tions B.3 and B.3.

Genetic Programming Features:� Supports Strongly Typed Genetic Programming. See section B.3.� Ephemeral Random Constants. Defined in Koza I [30].� Multiple tree forests. One individual can contain more than one tree of nodes.� Six tree-creation algorithms. See section B.3.� Extensive set of GP Breeding operators. See section B.3.
B.3 Packages

The Genetic Programming Package

The genetic programming package contains classes which implement tree-style ge-
netic programming. The package supports STGP, ADF, ADM, ERC, and a large
collection of Koza-I and Koza-II-style breeding and initialization methods.

The Select Package

The select package contains objects which implement selection methods. Most pop-
ular is the Tournament Selection and a special variant named the SPEA2TournamentSelection
used in this particular multi-objective EA and which is also used in the extended
environment. Other selection methods are Best Selection, Greedy Selection and Fit-
ness Proportionate Selection. A feature made possible by the pipeline design is the
Multi Selection method which enables the use of more than one selection method
in a evolutionary run.

The Breed Package

The breed package holds objects for breeding new individuals using the pipeline
design specified within ECJ. All standard Koza breeders are included plus several
additional. A special SPEA2 breeder is applied in the extended environment.

The Build Package

94

B.3. PACKAGES

The build package holds objects which perform tree creation. Apart from the stan-
dard Koza tree creation algorithms the package includes Probability Tree Creation
1 and 2, RandomBranch and Uniform2. The PTC1 and 2 allow tree creation with
various selection probabilities for each function and terminal.

The Koza Package

This package holds objects which define some of the algorithms used in Koza I
[30] and Koza II [31] for breeding and tree creation. The three pipelines used for
breeding Crossover, Mutation and Reproduction are versions of the genetic pro-
gramming pipelines which perform sub-tree crossover, single point mutation and
reproduction respectively. The tree creation is performed by the node builders Full-
Builder, GrowBuilder and HalfBuilder which use the Koza I algorithms Full, Grow
and Ramped Half-and-Half respectively. Additionally support for Koza-style node
selection and Koza fitness is included.

The Coevolve Package

The competitive co-evolution provides very limited support primarily in the form
of Java interfaces for this type of task. Several evaluation topologies are provided
but are intended for single species environments.

The MOEA Package

This package provides basic multi-objective evolution and support for SPEA2 in the
form of special breeder, evaluator, multi-fitness and tournament selection method
objects.

2See http://www.cs.umd.edu/projects/plus/ec/ecj/docs/overview.html for more information

95

CHAPTER B. ECJ

96

Appendix C

Interleaved Approach Flow

Figure C.1 shows the evolution flow in the extended pursuit environment when the
Interleaved Approach is applied.

Store all individuals from the Pareto

8

9

6

7

Evaluate current prey population

Prey Teacher set = Ø

Sample prey from current

and add these to Prey Teacher set.
Insert best prey into Prey HoF.

Update Prey HoF by evaluating
newly added prey against entire

Predator HoF. Update beat information
for old prey in HoF.

Sample best prey from

10

Is Yes

No

No

Is predator capture

Is prey evasion

No

Yes

2

optimal prey and predator sets.

End of co−evolutionary run.

picked from generation 0.

a teacher set consisting of prey randomly

Evaluate predator generation 0 against

10 B

10 A

and add these to Prey Teacher set.

newly added predator against entire

Sample predators from current

3
Insert best predator into Predator HoF.
and add these to Predator Teacher set.

12

population using Random Sampling

Prey HoF using Random Sampling

population using Random Sampling

Prey HoF. Update beat information for
old predators in HoF.

Predator HoF using Random Sampling

and add these to Predator Teacher set.

rate > X % ?

rate > Y % ?

Update Predator HoF by evaluating

against Predator Teacher set.

Breed new

prey population.

Yes

Breed new

predator population.

Breed new generation of

prey and predators.
11

11 B

11 A

13

Steps 4 to 8

Sample best predators from

4

5

max

Predator Teacher set = Ø

against Prey Teacher set.

Start co−evolutionary run.

1
Prey HoF = Ø

Initialize predator and prey populations.
Predator HoF = Ø

Predator Teacher set = Ø

Prey Teacher set = Ø

12

3

9

Evaluate current predator population

Steps 3 to 9

stagnation?
orreached

generations
number of

Figure C.1: The figure depicts the interleaved evolution flow as applied in the
extended pursuit environment.

97

CHAPTER C. INTERLEAVED APPROACH FLOW

98

Appendix D

Functions and Terminals in the
Extended Environment

This appendix serves as a reference of the predator and prey terminal and function
sets.

D.1 Predator Functions and Terminals

The function set F for predator agents can be seen in table D.1.
Function Name Argument(s) Return Type Description
IfThenElse() Boolean, PredTack,

PredTack
PredTack Based on the Boolean argument the Then

or the Else branch is executed.

LessThan() Length, Length Boolean Compares two length values. Returns
True if the first length argument is smaller
than the second. Returns False otherwise.

MD() Cell, Cell Length Calculates the Manhattan distance be-
tween the two argument cells.

CellOfSelf() PredTack Cell Returns the position of the predator call-
ing the function. If the PredTack argu-
ment is North the position just north of
the Predator is returned.

MyLastCell() Cell Returns the cell where the calling preda-
tor was located in the previous turn.

CellOfNearest() PredTack Cell Returns the cell of the nearest predator.

CellOfPrey() PreyTack Cell Returns the position of the prey if it is
visible. Otherwise returns a value which
will make the calling function aware of
the fact that a cell has been requested
which cannot be revealed.

Table D.1: Predator functions for the extended pursuit environment.

99

CHAPTER D. FUNCTIONS AND TERMINALS IN THE EXTENDED ENVIRONMENT

The terminal set T for predator agents can be seen in table D.2.
Terminal Name Possible Values

Boolean True, False

Cell (x,y) 2 integer [0;90]
Length x 2 integer [0;30]
PredTack North, South, East, West, Continue, Accelerate, Decelerate

PreyTack North, South, East, West, Continue

Table D.2: Predator terminal nodes in the extended pursuit environment. The in-
teger ranges pertaining to the Cell and Length data types are consequences of the
grid size of 90 by 90 squares. Because of the way the function MD() calculates the
distance between a prey and a predator the Length will never exceed 188. How-
ever, when length terminals are inserted in trees as constants they will not exceed
30. Note that the continue value corresponds to the stay value in the Simple Pur-
suit environment.

D.2 Prey Functions and Terminals

The function set F for prey agents can be seen in table D.3.
Function Name Argument(s) Return Type Description

IfThenElse() Boolean, PreyTack,
PreyTack

PreyTack Based on the Boolean argument the Then
or the Else branch is executed.

LessThan() Length, Length Boolean Compares two length values. Returns
True if the first length argument is smaller
than the second. Returns False otherwise.

MD() Cell, Cell Length Calculates the Manhattan distance be-
tween the two argument cells.

CellOfSelf() PreyTack Cell Returns the cell of the prey. If the Prey-
Tack argument is North the position just
north of the prey is returned.

CellOfNearest() PredTack Cell Returns the cell of the nearest predator.
The PredTack has the same effect as the
PreyTack in the CellOfSelf function.

CellOfNearestWall() Cell Returns the cell of the nearest wall.

Table D.3: Prey functions for the extended pursuit environment.

The terminal set T for prey agents can be seen in table D.4.
100

D.2. PREY FUNCTIONS AND TERMINALS

Terminal name Possible Values

Boolean True, False

Cell (x,y) 2 integer [0;90]
Length x 2 integer [0;30]
PreyTack North, South, East, West, Continue

PredTack North, South, East, West, Accelerate, Decelerate, Continue

Table D.4: Prey terminals for the extended pursuit environment.

101

CHAPTER D. FUNCTIONS AND TERMINALS IN THE EXTENDED ENVIRONMENT

102

Appendix E

Modified Function and
Terminal Set

The modified terminal set T for predator agents can be seen in table E.2. The vari-
ous functions are introduced in different approaches described in the report.

E.1 Modified Predator Functions and Terminals

The modified function set F for predator agents can be seen in table E.1.
Function Name Argument(s) Return Type Description

CellOfNearestRight() PredTack Cell Returns the cell of the predator which is
both to the right of a line drawn from the
calling predator to the prey and closest to
the prey.

IfThenElseShout() Boolean. PredTack,
PredTack, Msg

PredTack Same functionality as the regular
IfThenElse except that the argument msg
is shouted if the boolean argument is
true.

WasMsgShouted() Msg Boolean Returns true if the argument msg was
shouted.

LastPositionOfMsg() Msg Cell Returns the cell of the predator which last
shouted the argument msg.

Shout() Msg Shouts the argument msg.

IsLastMsgOfType() Msg Boolean Returns true if the last msg shouted by
any predator is the same as the argument
msg.

Table E.1: Modified predator functions for the extended pursuit environment.

The modified terminal set F for predator agents can be seen in table E.2.
103

CHAPTER E. MODIFIED FUNCTION AND TERMINAL SET

Terminal Name Possible Values

Boolean True, False

Cell (x,y) 2 integer [0;90]
Length x 2 integer [0;30]
PredTack North, South, East, West, Continue, Accelerate, Decelerate

PreyTack North, South, East, West, Continue

Msg a 2 char [A;J]
Table E.2: Predator terminal nodes in the extended pursuit environment. The in-
teger ranges pertaining to the Cell and Length data types are consequences of the
grid size of 90 by 90 squares. Because of the way the function MD() calculates the
distance between a prey and a predator the Length will never exceed 188. How-
ever, when length terminals are inserted in trees as constants they will not exceed
30. Note that the continue value corresponds to the stay value in the Simple Pur-
suit environment.

E.2 Modified Prey Functions

The modified function set F for the prey agent can be seen in table E.3. Most
of the functions are repetitions from the function set of the predator. The prey
has no need for the messaging functions and it has different functions used to
locate predators. The CellOfNearestVerticalWall() and CellOfNearestHorizontal-
Wall() functions make it possible for the prey to detect the walls of the grid world.
If the prey cannot detect walls and is standing next to e.g. the southern wall while
being approached by a predator from the north it will likely attempt to move south
and be bounced back without realizing it. The cell returned from both these two
functions is aligned with the prey and next the wall.

Function Name Argument(s) Return Type Description

CellOfNearestVerticalWall() Cell Returns the cell of the nearest vertical
wall.

CellOfNearestHorizontalWall() Cell Returns the cell of the nearest horizontal
wall.

CellOf2ndNearest() PredTack Cell Returns the cell of the second nearest
predator. The PredTack has the same
effect as the PreyTack in the CellOfSelf
function.

Table E.3: Modified prey functions for the extended pursuit environment.

104

Appendix F

Evolved Strategies

F.1 Strategies Evolved Using CFD

The best predator evolved using the CFD has the following strategy which is of size
73.

(ITE (LessThan (Md (CellOfSelf West)
(CellOfPrey North))

(Md (CellOfSelf North)
(CellOfPrey West)))

(ITE (LessThan (Md (CellOfSelf Decelerate)
(CellOfPrey East))

(Md (MyLastCell (ITE (LessThan 25 (Md (45,64)
(CellOfPrey East)))

East
South))

(CellOfPrey North)))
West
(ITE (LessThan (Md (CellOfSelf West)

(CellOfPrey East))
(Md (CellOfPrey North)

(CellOfNearest South)))
West
South))

(ITE (LessThan (Md (CellOfSelf North)
(CellOfPrey West))

(Md (CellOfSelf (ITE false
East
(ITE (LessThan 25 (Md (CellOfSelf West)

(CellOfPrey North)))
East
South)))

(CellOfPrey West)))
North
East))

The best prey evolved using the CFD has the following strategywhich is of size 118.

(ITE (LessThan
(Md (CellOfSelf West)

(CellOfNearest South))
(Md (CellOfSelf (ITE (LessThan

(Md (CellOfSelf North)
(CellOfSelf South))

(Md (CellOfSelf West)
(CellOfNearest South)))

105

CHAPTER F. EVOLVED STRATEGIES

(ITE (LessThan
(Md (CellOfSelf (ITE (LessThan

(Md (CellOfSelf North)
(CellOfSelf South))

(Md (CellOfSelf West)
(CellOfNearest South)))

(ITE (LessThan
(Md (CellOf2ndNearest Decelerate)

(77,29))
(Md (42,12)

(CellOfNearest East)))
West
East)

West))
(77,29))

(Md (42,12)
(CellOfNearest East)))

West
East)

West))
(CellOfNearest Continue)))

(ITE (LessThan
(Md (CellOfSelf (ITE (LessThan

(Md (6,48)
(CellOfNearest Decelerate))

(Md (CellOfSelf West)
(CellOfNearest South)))

East
West))

(CellOfNearest Accelerate))
(Md (CellOfSelf South)

(CellOfNearest West)))
East
West)

(ITE (LessThan
(Md (CellOfSelf West)

(CellOfNearest East))
(Md (CellOfNearestWall Accelerate)

(89,71)))
(ITE (LessThan

(Md (CellOfSelf South)
(CellOfNearest South))

7)
(ITE (LessThan

(Md (17,89)
(CellOfNearest Accelerate))

(Md (38,74)
(76,33)))

North
West)

South)
North))

F.2 Strategies Evolved using CellOfNearestRight()

Best evolved predator strategy using CellOfNearestRight().

(ITE (LessThan
(Md (CellOfSelf West)

(CellOfPrey Continue))
(Md (CellOfSelf West)

(CellOfPrey West)))
West (IfThenElse (LessThan
(Md (CellOfSelf North) (CellOfPrey Continue))
(Md (CellOfSelf (IfThenElse (LessThan (Md

(CellOfSelf West) (CellOfPrey West)) (Md
(CellOfPrey North) CellOfNearestRight)) (IfThenElse
false Accelerate (IfThenElse (LessThan (Md
(55,37) (CellOfSelf East)) 15) Continue Accelerate))

106

F.2. STRATEGIES EVOLVED USING CELLOFNEARESTRIGHT()

East)) (CellOfPrey Continue))) North (IfThenElse
(LessThan 18 (Md (CellOfPrey West) (CellOfPrey

North))) East (IfThenElse (LessThan (Md (CellOfSelf
(IfThenElse (LessThan 20 14) (IfThenElse

false Decelerate (IfThenElse false (IfThenElse
(LessThan (Md CellOfNearestRight (CellOfSelf

North)) 26) South East) South)) Accelerate))
(CellOfPrey Continue)) (Md (CellOfSelf West)
(CellOfPrey Continue))) (IfThenElse (LessThan
(Md (CellOfPrey West) (CellOfSelf South))
(Md (MyLastCell East) (CellOfSelf (IfThenElse

true Continue West)))) (IfThenElse (LessThan
(Md (CellOfSelf West) (CellOfSelf (IfThenElse

true South South))) (Md (CellOfPrey West)
(CellOfSelf South))) North West) (IfThenElse
(LessThan (Md (CellOfSelf (IfThenElse (LessThan

(Md (CellOfSelf (IfThenElse true North West))
(CellOfPrey Continue)) 19) North East)) (CellOfPrey

Continue)) (Md (CellOfPrey West) (CellOfSelf
East))) Accelerate Accelerate)) (IfThenElse

false (IfThenElse (LessThan (Md (CellOfPrey
West) CellOfNearestRight) (Md CellOfNearestRight
(75,79))) North South) (IfThenElse (LessThan
(Md (MyLastCell East) (CellOfPrey Continue))
(Md (CellOfSelf South) (CellOfPrey East)))
East South))))))

Best evolved prey strategy against predators using CellOfNearestRight().

(IfThenElse (LessThan (Md (CellOfNearest
South) (CellOfNearest West)) (Md (CellOfSelf
(IfThenElse (LessThan 5 (Md (CellOfSelf (IfThenElse

(LessThan 5 2) (IfThenElse true (IfThenElse
(LessThan 25 29) North Continue) (IfThenElse
true South North)) South)) (CellOfNearest
West))) (IfThenElse false North Continue)
(IfThenElse false (IfThenElse (LessThan 5

(Md CellOfNearestVerticalWall (CellOfNearest
West))) North (IfThenElse (LessThan 13 22)

West (IfThenElse false West (IfThenElse (LessThan
5 (Md (CellOfNearest Accelerate) (CellOf2ndNearest
West))) North West)))) South))) (CellOfNearest

West))) (IfThenElse (LessThan 5 (Md (CellOfSelf
West) (CellOfNearest West))) (IfThenElse
false West (IfThenElse false North Continue))
(IfThenElse (LessThan 5 (Md (CellOfSelf East)

(CellOfNearest West))) (IfThenElse (LessThan
5 2) North (IfThenElse true East North))
(IfThenElse false Continue South))) (IfThenElse

(LessThan 9 16) (IfThenElse false West (IfThenElse
(LessThan 5 (Md (CellOfSelf North) (CellOf2ndNearest

West))) North West)) South))

107

CHAPTER F. EVOLVED STRATEGIES

108

Bibliography

[1] B. Jagannathan Benda, M. and R. Dodhiawala. Optimal cooperation of knowl-
edge sources. In Technical Report BCS-G2010-28, Boeing AI Center, Boeing
Computer Services, Bellevue, WA, 1986.

[2] Stefan Bleuler, Martin Brack, Lothar Thiele, and Eckart Zitzler. Multi-
objective genetic programming: Reducing bloat using SPEA2. In Pro-
ceedings of the 2001 Congress on Evolutionary Computation CEC2001, pages
536–543, COEX, World Trade Center, 159 Samseong-dong, Gangnam-gu,
Seoul, Korea, 27-30 2001. IEEE Press. ISBN 0-7803-6658-1. URL cite-
seer.nj.nec.com/bleuler01multiobjective.html.

[3] Tobias Blickle. Evolving compact solutions in genetic programming: A case
study. In Hans-Michael Voigt, Werner Ebeling, Ingo Rechenberg, and Hans-
Paul Schwefel, editors, Parallel Problem Solving FromNature IV. Proceedings of the
International Conference on Evolutionary Computation, volume 1141, pages 564–
573, Berlin, Germany, 22-26 1996. Springer-Verlag. ISBN 3-540-61723-X. URL
citeseer.nj.nec.com/blickle96evolving.html.

[4] E. Cantú-Paz. A survey of parallel genetic algorithms, 1997. URL
citeseer.nj.nec.com/article/cantu-paz97survey.html.

[5] John Cartlidge and Seth Bullock. Learning lessons from the common cold:
How reducing parasite virulence improves coevolutionary optimization. URL
citeseer.nj.nec.com/550008.html.

[6] Dave Cliff and Geoffrey F. Miller. Co-evolution of pursuit and evasion II: Sim-
ulation methods and results. In Pattie Maes, Maja J. Mataric, Jean-Arcady
Meyer, Jordan B. Pollack, and Stewart W. Wilson, editors, From animals to
animats 4, pages 506–515, Cambridge, MA, 1996. MIT Press. URL cite-
seer.nj.nec.com/cliff95coevolution.html.

[7] Edwin D. de Jong. Multi-agent coordination by communication of evaluations.
InModelling Autonomous Agents in aMulti-AgentWorld, pages 63–78, 1997. URL
citeseer.nj.nec.com/dejong97multiagent.html.

[8] Edwin D. De Jong, Richard A. Watson, and Jordan B. Pollack. Reducing
bloat and promoting diversity using multi-objective methods. In L. Spec-
tor, E. Goodman, A. Wu, W.B. Langdon, H.-M. Voigt, M. Gen, S. Sen,
M. Dorigo, S. Pezeshk, M. Garzon, and E. Burke, editors, Proceedings of

109

BIBLIOGRAPHY

the Genetic and Evolutionary Computation Conference, GECCO-2001, pages 11–
18, San Francisco, CA, 2001. Morgan Kaufmann Publishers. URL cite-
seer.nj.nec.com/dejong01reducing.html.

[9] Kenneth A. De Jong and Jayshree Sarma. Generation gaps revis-
ited. In L. Darrell Whitley, editor, Foundations of Genetic Algorithms 2,
pages 19–28. Morgan Kaufmann, San Mateo, CA, 1993. URL cite-
seer.nj.nec.com/dejong92generation.html.

[10] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: Nsga-ii, 2000. URL
citeseer.nj.nec.com/deb00fast.html.

[11] G. Dworman. Games computers play: simulating characteristic func-
tion game playing agents with classifier systems, 1994. URL cite-
seer.nj.nec.com/dworman94games.html.

[12] S. Ficici and J. Pollack. Coevolving communicative behavior in a linear
pursuer-evader game. URL citeseer.nj.nec.com/115449.html.

[13] D. Floreano, S. Nolfi, and F. Mondada. Competitive co-
evolutionary robotics: From theory to practice, 1998. URL cite-
seer.nj.nec.com/floreano98competitive.html.

[14] Dario Floreano and Stefano Nolfi. God save the red queen! competition in
co-evolutionary robotics. In John R. Koza, Kalyanmoy Deb, Marco Dorigo,
David B. Fogel, Max Garzon, Hitoshi Iba, and Rick L. Riolo, editors, Genetic
Programming 1997: Proceedings of the Second Annual Conference, pages 398–406,
Stanford University, CA, USA, 13-16 1997. Morgan Kaufmann. URL cite-
seer.nj.nec.com/964.html.

[15] Claudia V. Goldman and Jeffrey S. Rosenschein. Emergent coordina-
tion through the use of cooperative state-changing rules. In Proceed-
ings of the Twelfth International Workshop on Distributed Artificial Intelligence,
pages 171–185, Hidden Valley, Pennsylvania, May 1993. URL cite-
seer.nj.nec.com/article/goldman94emergent.html.

[16] Thomas Haynes and Sandip Sen. Evolving behavioral strategies in predators
and prey. In Sandip Sen, editor, IJCAI-95Workshop on Adaptation and Learning in
Multiagent Systems, pages 32–37, Montreal, Quebec, Canada, 20-25 1995. Mor-
gan Kaufmann. URL citeseer.nj.nec.com/haynes96evolving.html.

[17] Thomas Haynes and Sandip Sen. Cooperation of the fittest. In John R.
Koza, editor, Late Breaking Papers at the Genetic Programming 1996 Conference
Stanford University July 28-31, 1996, pages 47–55, Stanford University, CA,
USA, 28–31 1996. Stanford Bookstore. ISBN 0-18-201031-7. URL cite-
seer.nj.nec.com/haynes96cooperation.html.

[18] Thomas Haynes and Sandip Sen. Crossover operators for evolving A
team. In John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fo-
gel, Max Garzon, Hitoshi Iba, and Rick L. Riolo, editors, Genetic Program-
ming 1997: Proceedings of the Second Annual Conference, pages 162–167, Stan-
ford University, CA, USA, 13-16 1997. Morgan Kaufmann. URL cite-
seer.nj.nec.com/haynes97crossover.html.

110

BIBLIOGRAPHY

[19] Thomas Haynes, Roger Wainwright, and Sandip Sen. Evolving cooperation
strategies. In Victor Lesser, editor, Proceedings of the First International Conference
on Multi–Agent Systems, page 450, San Francisco, CA, 1995. MIT Press. URL
citeseer.nj.nec.com/haynes94evolving.html.

[20] Thomas Haynes, Roger Wainwright, Sandip Sen, and Dale Schoene-
feld. Strongly typed genetic programming in evolving cooperation strate-
gies. In L. Eshelman, editor, Genetic Algorithms: Proceedings of the
Sixth International Conference (ICGA95), pages 271–278, Pittsburgh, PA,
USA, 15-19 1995. Morgan Kaufmann. ISBN 1-55860-370-0. URL cite-
seer.nj.nec.com/haynes95strongly.html.

[21] Thomas D. Haynes and Roger L. Wainwright. A simulation of adaptive agents
in hostile environment. In K. M. George, Janice H. Carroll, Ed Deaton, Dave
Oppenheim, and Jim Hightower, editors, Proceedings of the 1995 ACM Sympo-
sium on Applied Computing, pages 318–323, Nashville, USA, 1995. ACM Press.
URL citeseer.nj.nec.com/haynes95simulation.html.

[22] J.H. Holland. Adaption in Natural and Artificial Systems. MIT Press, Cambridge,
Massachuseus, 1975/1992.

[23] Jørn Holm and Jens Dalgaard Nielsen. Genetic programming - applied to a
real time game domain, 2001.

[24] Jeffrey Horn, Nicholas Nafpliotis, and David E. Goldberg. A Niched Pareto
Genetic Algorithm for Multiobjective Optimization. In Proceedings of the First
IEEE Conference on Evolutionary Computation, IEEE World Congress on Computa-
tional Intelligence, volume 1, pages 82–87, Piscataway, New Jersey, 1994. IEEE
Service Center. URL citeseer.nj.nec.com/horn94niched.html.

[25] Marcus Hutter. Fitness uniform selection to preserve genetic di-
versity. (IDSIA-01-01):13 pages, January 2001. URL cite-
seer.nj.nec.com/hutter01fitness.html.

[26] K. A. De Jong. An analysis of the behavior of a class of genetic adaptive sys-
tems, 1975.

[27] R. Keller and W. Banzhaf. Explicit maintenance of ge-
netic diversity on genospaces, 1994. URL cite-
seer.nj.nec.com/keller94explicit.html.

[28] Kenneth E. Kinnear, Jr. Generality and difficulty in genetic programming:
Evolving a sort. In Stephanie Forrest, editor, Proceedings of the 5th Interna-
tional Conference on Genetic Algorithms, ICGA-93, pages 287–294, University of
Illinois at Urbana-Champaign, 17-21 1993. Morgan Kaufmann. URL cite-
seer.nj.nec.com/kinnear93generality.html.

[29] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Ei-
ichi Osawa. RoboCup: The robot world cup initiative. In W. Lewis
Johnson and Barbara Hayes-Roth, editors, Proceedings of the First Interna-
tional Conference on Autonomous Agents (Agents’97), pages 340–347, New
York, 5–8, 1997. ACM Press. ISBN 0-89791-877-0. URL cite-
seer.nj.nec.com/kitano95robocup.html.

111

BIBLIOGRAPHY

[30] John R. Koza. Genetic Programming - On the Programming of Computers by Means
of Natural Selection. The MIT Press - ISBN 0-262-11170-5, 1992.

[31] John R. Koza. Genetic Programming II - Automatic Discovery of Reusable Programs.
The MIT Press - ISBN 0-262-11189-6, 1994.

[32] Thiemo Krink, Brian H. Mayoh, and Zbigniew Michalewicz. A PATCHWORK
model for evolutionary algorithms with structured and variable size popula-
tions. In Wolfgang Banzhaf, Jason Daida, Agoston E. Eiben, Max H. Garzon,
Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors, Proceedings of the
Genetic and Evolutionary Computation Conference, volume 2, pages 1321–1328,
Orlando, Florida, USA, 13-17 1999. Morgan Kaufmann. ISBN 1-55860-611-4.
URL citeseer.nj.nec.com/krink99patchwork.html.

[33] Thiemo Krink and Rasmus K. Ursem. Parameter control using the agent
based patchwork model. In Proceedings of the 2000 Congress on Evolution-
ary Computation CEC00, pages –83, La Jolla Marriott Hotel La Jolla, Cal-
ifornia, USA, 6-9 2000. IEEE Press. ISBN 0-7803-6375-2. URL cite-
seer.nj.nec.com/krink00parameter.html.

[34] Michael L. Littman. Markov games as a framework for multi-agent reinforce-
ment learning. In Proceedings of the 11th International Conference on Machine
Learning (ML-94), pages 157–163, New Brunswick, NJ, 1994. Morgan Kauf-
mann. URL citeseer.nj.nec.com/littman94markov.html.

[35] Sean Luke. Two fast tree-creation algorithms for genetic programming. IEEE
Transactions on Evolutionary Computation, 4(3):274–283, 2000. URL cite-
seer.nj.nec.com/luke00two.html.

[36] Sean Luke and Lee Spector. Evolving teamwork and coordination with genetic
programming. In John R. Koza, David E. Goldberg, David B. Fogel, and Rick L.
Riolo, editors, Genetic Programming 1996: Proceedings of the First Annual Con-
ference, pages 150–156, Stanford University, CA, USA, 28–31 1996. MIT Press.
URL citeseer.nj.nec.com/luke96evolving.html.

[37] Samir W. Mahfoud. A comparison of parallel and sequential niching methods.
In Larry Eshelman, editor, Proceedings of the Sixth International Conference on Ge-
netic Algorithms, pages 136–143, San Francisco, CA, 1995. Morgan Kaufmann.
URL citeseer.nj.nec.com/mahfoud95comparison.html.

[38] Samir W. Mahfoud. Niching methods for genetic algorithms. PhD thesis, Urbana,
IL, USA, 1995. URL citeseer.nj.nec.com/mahfoud95niching.html.

[39] N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The swarm simula-
tion system, a toolkit for building multi-agent simulations, 1996. URL cite-
seer.nj.nec.com/minar96swarm.html.

[40] David J. Montana. Strongly typed genetic programming. Technical Report
#7866, 10 Moulton Street, Cambridge, MA 02138, USA, 7 1993. URL cite-
seer.nj.nec.com/montana93strongly.html.

[41] Jason Noble and Richard A. Watson. Pareto coevolution: Using performance
against coevolved opponents in a game as dimensions for pareto selection.
In Lee Spector, Erik D. Goodman, Annie Wu, W. B. Langdon, Hans-Michael

112

BIBLIOGRAPHY

Voigt, Mitsuo Gen, Sandip Sen, Marco Dorigo, Shahram Pezeshk, Max H. Gar-
zon, and Edmund Burke, editors, Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001), pages 493–500, San Francisco, Califor-
nia, USA, 7-11 2001. Morgan Kaufmann. ISBN 1-55860-774-9. URL cite-
seer.nj.nec.com/noble01pareto.html.

[42] Peter Nordin and Wolfgang Banzhaf. Complexity compression and evo-
lution. In L. Eshelman, editor, Genetic Algorithms: Proceedings of the
Sixth International Conference (ICGA95), pages 310–317, Pittsburgh, PA,
USA, 15-19 1995. Morgan Kaufmann. ISBN 1-55860-370-0. URL cite-
seer.nj.nec.com/nordin95complexity.html.

[43] Michael V. Rydtoft & Henrik S. Rasmussen. Cooperation Among Autonomous
Adaptive agents. Technical report, 2003.

[44] Craig W. Reynolds. Competition, coevolution and the game of tag, 1994.

[45] Christopher D. Rosin. Coevolutionary search among adver-
saries. PhD thesis, San Diego, CA, 1997. URL cite-
seer.nj.nec.com/rosin97coevolutionary.html.

[46] Christopher D. Rosin and Richard K. Belew. Methods for competitive
co-evolution: Finding opponents worth beating. In Larry Eshelman, ed-
itor, Proceedings of the Sixth International Conference on Genetic Algorithms,
pages 373–380, San Francisco, CA, 1995. Morgan Kaufmann. URL cite-
seer.nj.nec.com/rosin95methods.html.

[47] Christopher D. Rosin and Richard K. Belew. New methods for competi-
tive coevolution. Evolutionary Computation, 5(1):1–29, 1997. URL cite-
seer.nj.nec.com/rosin96new.html.

[48] Günter Rudolph. Evolutionary search under partially ordered finite sets.
In M. F. Sebaaly, editor, Proceedings of the International NAISO Congress
on Information Science Innovations (ISI 2001), pages 818–822, Dubai, U.
A. E., 2001. ICSC Academic Press. ISBN 3–906454–25–8. URL cite-
seer.nj.nec.com/rudolph99evolutionary.html.

[49] Jayshree Sarma and Kenneth De Jong. An analysis of the effects of neigh-
borhood size and shape on local selection algorithms. In H. Voigt, W. Ebel-
ing, and I. Rechenberg, editors, Parallel Problem Solving from Nature – PPSN
IV (Berlin, 1996), pages 236–244, Berlin, 1996. Springer. URL cite-
seer.nj.nec.com/128357.html.

[50] Franciszek Seredynski. Coevolutionary game-theoretic multi-agent systems.
In International Syposium on Methodologies for Intelligent Systems, pages 356–365,
1996. URL citeseer.nj.nec.com/189007.html.

[51] R. Shipman, M. Shackleton, M. Ebner, and R. Watson. Neutral search
spaces for artificial evolution: a lesson from life, 2000. URL cite-
seer.nj.nec.com/shipman00neutral.html.

[52] Karl Sims. Evolving 3D Morphology and Behavior by Competition. pages
28–39, 1994.

113

BIBLIOGRAPHY

[53] Terence Soule and James A. Foster. Effects of code growth and
parsimony pressure on populations in genetic programming. Evo-
lutionary Computation, 6(4):293–309, Winter 1998. URL cite-
seer.nj.nec.com/soule98effects.html.

[54] N Srinivas and K Deb. Multi-objective function optimazation using non-
dominated sorting genetic algorithms. In Evolutionary Computation, pages 221–
248, 1995.

[55] R. A. Watson and J. B. Pollack. Coevolutionary dynamics in a minimal sub-
strate. In Lee Spector, Erik D. Goodman, Annie Wu, W. B. Langdon, Hans-
Michael Voigt, Mitsuo Gen, Sandip Sen, Marco Dorigo, Shahram Pezeshk,
Max H. Garzon, , and Edmund Burke, editors, Proceedings of the 2001 Genetic
and Evolutionary Computation Conference. MorganKaufmann, 2001. URL cite-
seer.nj.nec.com/watson01coevolutionary.html.

[56] J. Werfel, M. Mitchell, and J. P. Crutchfield. Resource sharing and coevolu-
tion in evolving cellular automata. IEEE-EC, 4(4):388, November 2000. URL
citeseer.nj.nec.com/werfel99resource.html.

[57] R. PaulWiegand. Applying Diffusion to a Cooperative CoevolutionaryModel,
1999. URL http://www.tesseract.org/paul/papers/ppsn99-dcga-
rpw.pdf.

[58] Byoung-Tak Zhang and Heinz Mühlenbein. Balancing accuracy and parsi-
mony in genetic programming. Evolutionary Computation, 3(1):17–38, 1995.
URL citeseer.nj.nec.com/zhang95balancing.html.

[59] Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of Multiob-
jective Evolutionary Algorithms on Test Functions of Different Difficulty. In
Annie S. Wu, editor, Proceedings of the 1999 Genetic and Evolutionary Computa-
tion Conference. Workshop Program, pages 121–122, Orlando, Florida, 1999. URL
citeseer.nj.nec.com/zitzler00comparison.html.

[60] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: Im-
proving the Strength Pareto Evolutionary Algorithm. Technical Report
103, Gloriastrasse 35, CH-8092 Zurich, Switzerland, 2001. URL cite-
seer.nj.nec.com/zitzler02spea.html.

[61] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: Im-
proving the Strength Pareto Evolutionary Algorithm. Technical Report
103, Gloriastrasse 35, CH-8092 Zurich, Switzerland, 2001. URL cite-
seer.nj.nec.com/article/zitzler01spea.html.

[62] Eckart Zitzler and Lothar Thiele. Multiobjective Evolutionary Algorithms:
A Comparative Case Study and the Strength Pareto Approach. IEEE
Transactions on Evolutionary Computation, 3(4):257–271, 1999. URL cite-
seer.nj.nec.com/zitzler99multiobjective.html.

114

