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Abstrat: In this Master thesis westudy deision analysis, in whih timeon a quantitative level is an aspet.This study has, in addition to thestudies of [Broe et al., 2003℄, resultedin a series of requirements for frame-works modelling deision problemsinvolving time, DPITs. We present aframework for modelling and solvingDPITs, whih ful�lls all of these re-quirements.The framework, inuene diagramsinvolving time, IDITs, was originallyproposed in [Broe et al., 2003℄. Inthis thesis it is extended to handleadditional aspets of time, amongstthese are loal utility funtions real-ized later than the end-time of thelast deision. Furthermore, we devisea method for solving IDITs with re-spet to �nding an optimal strat-egy. We solve an IDIT by resolvingall asymmetries introdued by time.This leads to a number of symmetrisub-problems, whih we solve usinga method based on strong juntiontrees with lazy propagation.We illustrate the solution method us-ing two examples in order to demon-strate how the framework is used.Furthermore, we disuss the bene�tsand drawbaks of having one frame-work handling all issues of time asopposed to multiple smaller frame-works.
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Chapter 1Introdution
Deision analysis is a researh area fousing on how to take deisions, in unertainsurroundings, and do this in a manner, whih is optimal for the deision taker. Tryingto formalize deision analysis has resulted in a range of di�erent frameworks eahhaving their pros and ons.[von Neumann and Morgenstern, 1944℄ and [Rai�a, 1968℄ proposed to struture adeision problem in a so-alled deision tree. A deision tree models the hoies andirumstanes as internal nodes in a tree and the outomes as the leaves. The treegives a good intuition of a deision problem, but it is exponential in size, whereforeother more ompat frameworks have been proposed. As opposed to deision trees,in whih the states of eah variable are nodes in the tree, the more ompat frame-works groups these states in variables. [Howard and Matheson, 1981℄ proposed inu-ene diagrams, whih is, basially, a Bayesian network, as desribed in [Pearl, 1988℄,[Lauritzen, 1996℄, and [Jensen, 2001℄, augmented with deision and utility nodes.Other frameworks have been proposed as well, amongst these are valuation net-works, desribed in [Shenoy, 1992℄. Both inuene diagrams and valuation networksare based on multiple levels, suh that the reader an abstrat from ertain detailson di�erent levels of the framework.Even though deision analysis has been researhed for several deades, surpris-ingly little researh has been done on the e�ets of time in deision problems.The three frameworks desribed above are all apable of representing a qualita-tive aspet of time, whih spei�es in whih order deisions and observations aretaken. However, the quantitative aspet of time has gotten little attention. Thequantitative aspet of time is a representation of time, whih is diretly quanti-�ed in the deision problem, that is, the point in time when something happensan have an e�et on what happens. For instane, time may inuene the pos-sible hoies for a Friday night in town. If the football math begins at eighto'lok the hoie of going to the stadium and seeing the game is not possible atten o'lok. [Horvitz and Rutledge, 1991℄ and [Horvitz and Seiver, 1997℄ disussedhow time may inuene the utility funtions of a deision problem, whih is in1



2 Chapter 1. Introdutionfat a quantitative aspet. In [Broe et al., 2003℄ the lass of deision problems in-volving time was analyzed and a framework, for modelling these, was proposed.The analysis showed how deision problems involving time, ombine two well stud-ied aspets of deision problems, these being asymmetri problems and ontinu-ous variables. [Bielza and Shenoy, 1999℄ and [Nielsen and Jensen, 2002℄ both disussthe e�et of modelling asymmetri deision problems. The e�ets of having on-tinuous variables in Bayesian networks have gotten some attention, for instane,in the form of hybrid networks, [Lauritzen, 1996℄. [Shahter and Kenley, 1989℄and [Madsen and Jensen, 2003℄ examined ontinuous variables in inuene diagrams,but, as for similar work, the ontinuous variables are restrited in di�erent manners,for instane, by not allowing ontinuous variables as parents of disrete variables.[Lerner et al., 2001℄ showed one approah of removing this restrition for Bayesiannetworks.One aspet of deision problems is the model, another is �nding a strategyfor taking the optimal hoies of the deision problem. For eah of the frame-works, desribed above, solution methods have been proposed. For solving inu-ene diagrams [Howard and Matheson, 1981℄ proposed a method turning the inu-ene diagram into a deision tree, whih ould be solved using the method from[von Neumann and Morgenstern, 1944℄. [Shahter, 1986℄ and [Jensen et al., 1994℄also proposed solution methods for inuene diagrams. The solution method pro-posed by [Nielsen and Jensen, 2002℄ for asymmetri inuene diagrams splits theasymmetri inuene diagram in symmetri sub-problems, whih are then solvedusing lazy propagation as desribed in [Madsen and Jensen, 1999℄. A similar ap-proah for splitting the problem is used in [Demirer and Shenoy, 2001℄ for a frame-work based on valuation networks and sequential deision diagrams. Furthermore,[Nielsen and Jensen, 2002℄ argues for the symmetri sub-problems being wellde�nedbased on [Nielsen and Jensen, 1999℄.The reason why time is an interesting aspet in relation to deision problems is thatwe aim at modelling the real world, and time is of importane, on some level, inalmost everything we do. So being apable of modelling time as a fator of a deisionproblem yields models loser to reality. For example, modelling the deision of buy-ing stoks should be done reeting the time at whih they are bought, as the pointin time when they are bought inuenes the prie, and later the earnings. Time notonly inuenes the irumstanes, but deisions and utilities as well. Chapter 3 givesan in-depth analysis of the inuene of time.1.1 Problem Spei�ationRepresenting and solving deision problems involving time is the main fous of thisthesis. By further analysis of deision problems involving time we want to �nd im-portant elements, whih were not dislosed in [Broe et al., 2003℄. The results of thisanalysis should end with an extended representation language for deision problemsinvolving time, yielding it more suitable for modelling. Besides being more expres-



1.2 Outline of the Thesis 3sive, we seek to devise a method for solving inuene diagrams involving time of anygiven model of a deision problem involving time. Therefore, we desribe a solutionmethod whih, given a model of a deision problem involving time, returns an opti-mal strategy for taking the deisions. Finally, we disuss the framework with respetto its usability.1.2 Outline of the ThesisThis thesis onsists of seven hapters, whih an be divided into three main parts.Chapters 2 and 3 disuss the preliminaries of the framework being onstruted.Chapter 2 gives an introdution to the notation used in this thesis, while speifyinggraph and probability related onepts. In it we also disuss how this thesis buildson [Broe et al., 2003℄, and where the main di�erenes between the two works lie.Chapter 3 disusses the problem domain of deision problems involving time, intro-dues the onepts relating to these problems, and sets up a series of requirementsfor frameworks modelling deision problems involving time.The seond part of the thesis is foused on the development of the framework formodelling and solving deision problems involving time. Chapter 4 de�nes the rep-resentation language for modelling deision problems involving time, whih is alledinuene diagrams involving time. The representation language is �rst desribed byits semantis, whih is followed by de�nitions of its syntatial spei�ations. Finally,we argue for the representation language being wellde�ned. Chapter 5 desribes ageneral solution method for solving inuene diagrams involving time. The haptergives an overview of the solution, and then spei�es the details of eah step involvedin the method.The �nal part onludes on the thesis by illustrating the use of inuene diagramsinvolving time, and by disussing the pros and ons of a spei� framework for mod-elling deision problems involving time. Chapter 6 introdues two examples, whihare solved using the solution method proposed in Chapter 5. Furthermore, alter-natives to the approximation method, we utilize, are disussed. In Chapter 7 weonlude on the thesis, by a disussion of the works of the thesis, and summarize theresults ahieved. Finally, we propose whih aspets should be onsidered as futureresearh.
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Chapter 2Preliminaries
In this hapter we desribe the theory on whih this thesis is built. The theory isdivided into three setions, where Setion 2.1 desribes graph theory, and introduesthe notation used in this thesis. Setion 2.2 introdues the probability theory usedand desribes some of the theoretial aspets of utilities. Finally, Setion 2.3 desribesthe representation language onstruted in [Broe et al., 2003℄, and disusses how thisthesis di�ers from the earlier work.2.1 Graph TheoryAs the modelling of deision problems is done using graphial models, graph theoryis essential to any framework for modelling deision problems. We introdue the keyaspets of graph theory used in this thesis.An element is a generi term, whih is used to over any mathematial instane,for example, a variable or a graph. An unordered olletion of distint elements isreferred to as a set . To separate a set from its elements we denote sets by boldapitalized letters, whereas elements are non bold, for instane, X ould be the setonsisting of X; Y and Z, also written as X = fX; Y; Zg. In this thesis, unless expliitlystated, no sets are multisets, that is, sets do not inlude multiple instanes of anelement. We use traditional set operations when manipulating sets, suh as [ fortaking the union of two sets and \ to denote the intersetion of two sets.A graph, G, is a pair of sets, (V;E), where V is a set of nodes, and E is a subset ofV �V, whih we all edges. The edges of a graph an be direted or undireted . Ifboth (V;V0) and (V 0; V), also denoted as fV;V0g, are in E the edge is undireted. Ifonly one of these is in E, it is a direted edge, whih we usually refer to as an ar.If all edges of a graph are direted we all the graph a direted graph, and if not weall it an undireted graph.Labelled graphs are graphs in whih the edges are labelled . We de�ne a labelled graph5



6 Chapter 2. Preliminariesby a triple, (V;L;E), where V is a set of nodes, L a set of labels, and E a subset ofV�V� L.A node, V, in a graph, (V;E), is said to be the parent of a node, V 0, if the ar (V;V0)is in E, and we say V 0 is a hild of V.We denote the set of parents of some node, V, bypa(V), and the set of hildren of V as h(V). If two nodes, V and V 0, are onnetedby an edge fV;V0g they are referred to as neighbours. The set of neighbours of somenode, V, is denoted ne(V).In a graph, (V;E), a path, P, is an ordered sequene of nodes, V1; V2; : : : ; Vn, in V,where there exists an edge fVi; Vi+1g for 1 � i � n - 1. A direted path is a pathonsisting of only direted ars. If there is a direted path, V;V0; : : : ; V 00, we say V 00is a desendent of V and V is an anestor of V 00. We denote the set of anestors ofsome node, V, by an(V), and the set of desendents of V by de(V). Furthermore, adireted path, V;V0; : : : ; V 00, and an ar, (V 00; V), is referred to as a yle. If a graphdoes not have any yles it is said to be ayli.A graph (V 0;E 0) is a subgraph if there exists a graph (V;E), where V 0 is a subsetof V, and (V;V0) is in E 0, if and only if it is in E and both V and V 0 are in V 0. Agraph, (V;E) is said to be omplete, if, for all nodes, V, in V, the set of neighboursequals V n fVg. A maximal omplete subgraph is alled a lique.2.2 Probability TheoryIn this setion we introdue the probability theory used in this thesis. In the mod-elling of deision problems the hoies are taken under unertainty. This unertaintyis formalized using probability alulus.2.2.1 Disrete VariablesA disrete hane variable is a �nite set of mutually exlusive and exhaustive states,eah of whih is assoiated with a probability of being in that state. The semantisof hane variables in relation to deision problems are disussed in Chapter 3. Con-ventionally, we denote variables with apitalized letters, and its state by low aseletters. For instane, V ould be a variable with the states fv1; v2; : : : ; vng. We allthe set of states of a variable the state spae of the variable, whih we denote sp(V).The unertainty of a state of a hane variable, V, is represented by a probabilitydistribution P : sp(V) 7! [0; 1℄, where it holds that:Xv2sp(V)P(v) = 1:We all a probability distribution over only one variable a marginal probability dis-tribution.The joint probability distribution of a set of hane variables, V, is a funtion



2.2 Probability Theory 7PV : sp(V) 7! [0; 1℄ for whih it holds that:X�!v 2sp(V)P(�!v ) = 1;where �!v is a on�guration of the hane variables in V. Given a joint probabilitydistribution for a set of variables, V, we an derive the joint probability distribution,P, for any subset, V 0, of V by marginalizing out the variables of V nV 0, that is:P(V 0) = XVnV 0 P(V):The state of a variable is always dependent on some ontext. For instane, the stateof a variable, V, representing the seond hand in a poker game is dependent on the�rst hand, represented by the variable, V 0. The probability distribution of a hanevariable, V, we say is onditionally dependent on V 0, written P(VjV0). Generally,a onditional probability distribution for some set of variables, V, given a set ofvariables, V 0, is a probability distribution of V for eah on�guration �!v 0 of V 0. Theonditional probability distribution P(VjV 0) an by found using the fundamentalrule: P(VjV 0) = P(V;V 0)P(V 0) :From the fundamental rule Bayes rule an be dedued:P(VjV 0) = P(V 0jV) � P(V)P(V 0)2.2.2 Continuous VariablesIn the previous setion we desribed hane variables for whih the state spae is �-nite, however, not all variables have a �nite state spae. Continuous hane variablesare hane variables with an in�nite state spae. Unlike disrete hane variables,ontinuous hane variables do not have a probability assoiated with eah state. In-stead, we assoiate a density funtion, whih reets the probability distribution ofthe ontinuous variable. That is, the probability distribution of a ontinuous hanevariable being in the interval ℄a;b℄ is a funtion fV : R 7! R+ [ f0g for whih it holdsthat: Z1-1 fV(x)dx = 1;and zero for all x not in ℄a;b℄.We de�ne the probability of an interval in the ontinuous hane variable as a umu-lative probability distribution, that is, the probability of a hane variable, V, beingat most a is: PV(a) = Za-1 fV(x)dx:



8 Chapter 2. PreliminariesIn this thesis all ontinuous hane variables are assoiated to a �2-distribution,whih is given by: fV(x) = 8<:e-x2 �xk2-12k2 ��(k2 ) for x > 00 for x � 0where � is a gamma-distribution as desribed in [Grimmett and Stirzaker, 1992℄, andk is a measure of degrees of freedom. To illustrate the behaviour of a �2-distribution,Figure 2.1 shows it for one with three degrees of freedom.
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Figure 2.1: A �2-distribution with three degrees of freedom.We later argue for the hoie of using �2-distributions.2.2.3 Utility TheoryIn the domain of deision analysis, a value, or utility, denoted by u, is assoiatedto eah on�guration of a set of variables, V. This value reets how preferable theon�guration is in relation to other on�gurations over the set of variables. Someof these variables may be hane variables, that is, there is an unertainty of thestate of the variable. When the value is diretly assoiated with a hane variable,it is possible to �nd the expeted value or expeted utility of this hane node givena on�guration of the rest of the variables in the set.The expeted utility is the sum of the values weighed in aordane to the unertainty



2.3 Previous Work 9of the on�guration, that is, the expeted utility, EU, of a hane variable, V, withthe states v1; v2; : : : ; vn, whih has a value ui(vi;�!x ) for 1 � i � n, given a set ofvariables X whih has a on�guration �!x is:EU(V) = nXi=1 P(vi) � ui(vi;�!x );for all on�gurations of X.2.3 Previous WorkIn this setion we disuss the works of [Broe et al., 2003℄, whih is the foundationfor this thesis, and relate [Broe et al., 2003℄ to the work presented in this thesis.[Broe et al., 2003℄ took outset in the identi�ation of a lass of deision problems,whih involve time. The main di�erene in these problems as opposed to traditionaldeision problems is that time not only inuenes the struture of the deision prob-lem, but also the numerial part. That is, where traditional deision problems have aqualitative aspet of time, inuening the order in whih deisions are taken, deisionproblems involving time have a quantitative aspet too. Therefore, besides inuen-ing the order, time an inuene the unertainty of a state of a hane variables orthe value of a utility.After an analysis of traditional frameworks for modelling deision problems, theirapabilities of modelling deision problems involving time were analyzed. This re-sulted in a series of requirements for frameworks modelling deision problems in-volving time, and the onlusion that the traditional frameworks were not apableof modelling deision problems involving time in a satisfatory manner.Instead, a new framework, inuene diagrams involving time, abbreviated as IDITs,was onstruted. IDITs are based on the framework of inuene diagrams, whihhas been extended to handle the time issues required by deision problems involv-ing time. The framework represented the quantitative aspet of time by introduingvariables, representing time. Two variables were introdued, one modelling the pos-sibility of ontrolling time, and one modelling the unertainty involving time. Fur-thermore, inuene diagrams involving time were made to represent time inueningutility funtions and hane variables, and aspets of time involving the restritionsof deisions and the possibility of observations. [Broe et al., 2003℄ onstruted therepresentation language of IDITs and proposed a sketh of how a possible solutionould be found.In this thesis we extend the representation language of [Broe et al., 2003℄, suh that ithandles some of the aspets of time, whih were not inluded. And we larify how theframework of IDITs atually handles time inuening utility funtions and hanevariables. The representation language of [Broe et al., 2003℄ was restrited in thesense that it does not allow time to inuene the order in whih deisions are taken,



10 Chapter 2. Preliminariesbut only to restrit the possible options of the deisions. Likewise the possibilityof having time not assoiated to deision, is not inluded in [Broe et al., 2003℄. Itis however an interesting aspet of time as the payo� of a deision is sometimespostponed into the future, for instane, when selling stoks the atual payo� omesthe next day. These lari�ations and extensions yield a more expressive framework,whih should be expressible through the syntax and semantis of the representationlanguage.Furthermore, we speify what a wellde�ned IDIT is, and how we ensure that thisproperty is ful�lled. This property ensures that a unique deision an be identi�ed asthe next deision to be taken, and is, therefore, an essential matter when modellingdeision problems involving time, and when solving them.The solution sketh of [Broe et al., 2003℄ did not inlude a general desription of howto solve deision problems involving time, and this matter is solved in this thesis. Wedesribe how to solve an IDIT, and disuss the usefulness of the proposed solutionmethod. Having spei�ed a solution method makes it possible to implement andtest the framework, whih is a neessity if the framework should be usable, besidesas a means of ommuniation. Finally, we disuss how the representation languagebene�ts as a means of ommuniating a deision problem involving time, and disussthe bene�ts and diÆulties of using the framework.



Chapter 3Deision Problems InvolvingTime
The purpose of this hapter is to reapture the ideas and parts of deision problemsinvolving time, abbreviated as DPITs, as presented in [Broe et al., 2003℄. DPITs arethe foundation on whih the rest of this thesis builds.DPITs onstitute a lass of deision problems, in whih time inuenes the deisiontaking. Unlike deision problems, time quanti�ed and plays a entral part of theunertainty of observations, the order of events, and of preferenes in DPITs. DPITsshare the fat that the onept of time diretly inuenes the parts of the problem,whether by inreasing the unertainty of an observation, yielding it impossible tomake an observation, or waiting until a ertain point in time before taking somedeision. For instane, it may not be possible to observe the severity of an earthquakeright away and by waiting a period of time before dispathing help, the help an bespeialized and thereby save a lot of lives, however, the delay may ause many peopleto die.The onept of time also introdues an unertainty in itself. Ations, whih may beexeuted with ease now, may be impossible to perform ten minutes from now, andunforeseen events may hange the amount of time it takes to perform even a simpletask.In Setion 3.1 we speify what a deision problem involving time, abbreviated as aDPIT, is based on and present the parts it onsists of. In Setion 3.2 we presentthe properties of DPITs, and in Setion 3.3 we list requirements for a framework tomodel DPITs, and a justi�ation for these.
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12 Chapter 3. Deision Problems Involving Time3.1 Parts of Deision Problems Involving TimeA DPIT desribes a olletion of irumstanes and hoies and the assoiation ofthese to the deision taker . It also enompasses information of the unertainty ofthe irumstanes given the hoies, the temporal order of irumstanes and hoies,the preferenes of the deision taker, and the time related to this information.In the following setions we elaborate on these parts.3.1.1 The Deision TakerA deision taker is an entity, whih enounters a series of hoies, from whih hehooses a subset, based on his preferenes. He is always thought of as an entity, thatis, if the deision taker represents a group of people, it is assumed that this group,with ertainty, bases its hoies on the same set of preferenes.3.1.2 Variables in a Deision Problem Involving TimeA deision problem onsists of a set of variables, a utility funtion, and relationshipsbetween the variables. There are two types of variables, hane and deision vari-ables. The set of hane variables is denoted as VC and the set of deision variablesas VD. A hane variable is omprised of a set of mutually exlusive and exhaustiveirumstanes, while a deision variable is omprised of a set of mutually exlusiveand exhaustive hoies. This in turn means that the irumstanes of a hane vari-able and the hoies of a deision variable eah are oneptually related.A hoie is related to the deision taker as something over whih he has diret on-trol. A irumstane on the other hand is something over whih the deision takeran only have an indiret ontrol.If a variable, V, is known to be in one of its states, v, we all v its true state, and wesay that V is instantiated as being in v.We say that the deision taker an hoose a hoie or take a deision. Chane vari-ables an be observed meaning that the deision taker knows their true state.The set of hane variables for a DPIT onsists of two disjoint subsets, one is a setof disrete hane variables, VDC, and the other a set of time variables, VT, thatis, VC = VDC [VT. The set of time variables, VT, onsists of two disjoint subsets,one being the set of end-times for deisions, denoted as VeT, and the other the set offree time variables, denoted VF, that is, VT = VeT [ VF. A time variable, T, in VeTis always assoiated with some deision variable, D, and, onventionally, we writethe deision, to whih the time variables is assoiated, as subsript, in this ase TeD.We say that TeD represents both the end-time of D and the initiation-time of thenext deision to onsider after taking D. The impliations of this are disussed later.When it is apparent from the ontext what type of hane variable is referred to, we



3.1 Parts of Deision Problems Involving Time 13use the term hane variable, otherwise we use their full name.The set of deision variables, for a DPIT, also onsists of two disjoint subsets, one be-ing a set of disrete deision variables, VDD, and the other a set of wait deision vari-ables, VW. That is, the set of deision variables VD is de�ned as VD = VDD [VW.Wait deision variables are ontinuous deision variables. A wait deision is alwaysa deision of how long to wait before taking the next deision, and we say that thewait deision is referening a deision following it in the temporal order. When it isapparent from the ontext what type of deision variable we are talking about, weuse the term deision variable, otherwise we use their full name.Some hoies may imply that a timed ation is to be exeuted. The exeution of atimed ation takes some amount of time, thus time passes when exeuting the timedation. A deision variable onsisting of one or more hoies implying timed ationsis alled a deision variable involving time. A deision variable, whih does not implythe exeution of a timed ation, is alled an instant deision, and when a hoie foran instant deision is exeuted, we all that hoie an ation. As ations do notimpose the passing of time, the initiation-time and end-time of an instant deisionis represented by the exat same point in time.A deision variable involving time has a time variable assoiated with it, pinpointinghow long the hosen timed ation takes. As the hoie indiates how long it takesto perform the timed ation, the time variable represents an element of unertaintyin the exeution of a timed ation. The amount of time it is assumed to take forthe timed ation to be exeuted is known as the time span of the timed ation. Theatual time it takes is the di�erene in time between the initiation-time and theend-time of the deision at hand.Furthermore, time variables represent the global time of the DPIT. That is, timeaummulates through the DPIT for eah observed time variable.3.1.3 The Utility FuntionChoies are taken on the basis of some set of preferenes. These preferenes anformally be desribed by a utility funtion. Before it makes sense to onsider anyDPIT the preferenes of the deision taker should be lari�ed, and a method for doingthis is to de�ne a utility funtion for that DPIT. A utility funtion is a mapping ofeah on�guration of the variables of the deision problem to a real number reetinghow preferable the on�guration is. A utility funtion an be additively deomposedto a set of loal utility funtions. That is, a utility funtion, U, of some DPIT, an bede�ned as U =Pni=1 ui, where ui is a loal utility funtion. The set of loal utilityfuntions is denoted as VU. Eah loal utility funtion maps the state spaes of aproper subset of the variables in the DPIT to R, while U maps the state spaes ofall variables in the DPIT to R.The spei�ations of a loal utility funtion is, in priniple, di�erent for everybody,as it depends on the subjetive preferenes of the individual, that is, the preferenes



14 Chapter 3. Deision Problems Involving Timeof the deision taker. Therefore, a utility funtion an be any funtion, as long as itis unambiguous, and there is a surjetion between the ombinations of states of thevariables inuening the utility funtion, and the number of possible outputs of theutility funtion.
3.1.4 Relationships Between VariablesThe hane and deision variables of a DPIT are related through the unertainty ofthe states of hane variables given deision variables. The joint onditional prob-ability distribution for the hane variables in a DPIT given the deision variablesis P(VCjVD). The joint onditional probability destribution an be deomposed toa set of onditional probability distributions, one for eah hane variable using thehain rule for inuene diagrams.Eah hoie is hosen based on a set of observations and the relevant past of thatdeision variable. The relevant past of some deision variable, D, is representedthrough the observation funtion, obs�!t (D). obs�!t (D) is the set onsisting of thedeision itself, the set of variables observed beforeD is taken at time t, and obs�!t (D 0)where D 0 is the deision taken immediately before D.Other relations between variables inlude how the e�ets of time may restrit thestate spae of a deision variable. This type of relationship is a restrition, whihis represented by a restrition funtion. A restrition funtion on a deision, D, isa funtion, whih maps the state spaes of a set of variables inuening D to somesubset of the state spae for D. That is, a funtion,  : sp(V) 7! sp(D), where Vis the set of variables restriting D. The set of restrition funtions for a DPIT isdenoted as Qt. The subtyped t denotes that Qt is de�ned for every point in time, t.A restrition funtion between variables an also refer to a hane variable only beingobservable within a spei� time frame. For instane, if some test is performed andthe result of the test is available to the deision taker after ten hours. The deisiontaker annot use the information given by the best result, if he takes a deision afteronly �ve hours of the test has been performed. The test result is still available afterten hours, but it simply has no inuene on the deision it was meant for, as thedeision has already been taken.We onstrain deision variables to inlude at least one hoie for any given point intime. This hoie should still be oneptually related to the other hoie, in suh amanner that the extra hoie makes sense. In other words, the deision taker mustalways be able to hoose at least one hoie for every deision variable.



3.2 Properties of Deision Problems Involving Time 153.2 Properties of Deision Problems Involving TimeDPITs have some properties as a onsequene of time in these problems. This setiondesribes these properties.3.2.1 The No-Delay AssumptionA time variable assoiated with a deision represents both the end-time of this de-ision variable and the initiation-time of the next deision variable, we all this theno-delay assumption. The no-delay assumption states that between two deisionstime is �xed. This assumption ensures that observing hane variables is instan-taneous, that is, hane variables are only observed immediately before a deisionvariable at the point in time spei�ed as the initiation time for that deision.3.2.2 Temporal Order of VariablesThe order in whih deisions are taken in a DPIT, onstitutes a temporal orderingof these and all other variables. For instane, a deision on whether or not to harvestrops on a �eld should not preede the deision of whether or not to sow the rops.Not all ases of the orderings of deisions are as apparent as just illustrated though,therefore an ordering of the deisions is spei�ed for a DPIT. This ordering ordersthe deisions and time variables, suh that, the hoie of one deision or possibly theend-time of this deision makes it possible to unambiguously identify whih deisionis to be taken next. DPITs allow two or more deisions to be unordered initiallywith respet to eah other, if, before taking any of the unordered deisions, a uniqueorder an be found.Furthermore, deisions are ordered in relation to the time variables, suh that, theend-time of a deision is only known after the deision. We extend this to say thatthe end-time of a deision is known before taking the next deision in the DPIT. Ob-served hane variables, whih inuene some deision, D, are plaed immediatelybefore D in the temporal ordering, unless they have already been plaed somewhere,that is, they inuene another deision, whih is plaed before D.DPITs do not have a total ordering of variables. However, as observations and dei-sions are taken, an ordering emerges. Instead of the total ordering there is a partialordering, denoted as !, of deision and hane variables. This ordering orders thedeisions and time variables in relation to eah other, and the disrete hane vari-ables aordingly, but the disrete hane variables are not ordered with respet tothemselves.When a variable, V, is said to be before another variable, V 0, in the temporal orderof a DPIT, V is either observed or taken before V 0, depending on whether V is ahane or deision variable. And if V is said to be after V 0, V is observed or takenafter V 0. When we write V! V 0, it means that V is before V 0 in the temporal order



16 Chapter 3. Deision Problems Involving Timeof the DPIT. If we want to be more spei� and express that V is immediately beforeV 0, we say so expliitly. For any two variables, V1 and V2, in VD [VeT, there existsan ordering, this is a transitive ordering, that is, if V1!W and W! V2, where Wis some other variable in VD [VeT, then it follows that V1! V2.Furthermore, there exists a total ordering of all time variables, as a onsequene oftime variables representing a global time aspet. This means that for every two timevariables, T and T 0, in VT are ordered suh that either T! T 0 or T 0 ! T.Furthermore, if a time variable is a free time varaible, all disrete hane variablesinuene this time variable are said to be prior to the time variable and are thereforebefore the time variable in the temporal order.The order of deision variables in a DPIT an be de�ned through the obs�!t funtionfor all deision variables in a DPIT, so some deision variable, D, is before someother deision variable, D 0, i� obs�!t (D) � obs�!t (D 0). Through this ordering the�rst deision variable of a DPIT an be found, and we de�ne the initiation-time ofthis deision variable to be zero.� There is one deision, D, and a relation, obs�!t (D) � obs�!t (D 0), for allD 0 2 VD n fDg. We refer to D as the �rst deision variable of the DPIT. Fur-thermore, there are no time variable inuening D, yielding the initiation-timeof D as zero.Let D and D 0 be deision variables, suh that D ! D 0, and let TeD and TeD 0 bethe time variables assoiated with D and D 0, respetively. Then the following bulletsomprise what an be dedued from having the temporal order of hane and deisionvariables in a DPIT.TeD represents the end-time of D, and D is immediately before TeD in the temporalorder.� There is no variable, V, in VD [VT, suh that D! V! TeD.The end-time of D is less than or equal to the initiation-time of D 0. If D is imme-diately before D 0, then, beause of the no-delay assumption, the end-time of D isequal to the initiation-time of D 0. That is, the timed ation imposed by taking Dmust end before D 0 is initiated. And, onsequently, TeD 0 is greater than or equal toTeD.� For all tD, tD 0 , and tD 00 in R, where TeD = tD, the initiation-time of D 0 istD 0 , and TeD 0 = tD 00 , it follows that, tD � tD 0 � tD 00 . Furthermore, if D isimmediately before D 0, then tD = tD 0 .If D 0 is a wait deision variable, then there is always a time variable, TeD 0. If D isimmediately before D 0, then TeD 0 always represents a point in time, whih is later



3.2 Properties of Deision Problems Involving Time 17than or equal to TeD plus the amount of time the deision taker has hosen to wait inD 0, this we refer to as the delay of D 0. In short the point in time D 0 ends is alwaysthe same as or later than the initiation-time in addition to the delay period hosenat D.� If there exists a wait deision variable, D 0, then D 0 ! TeD 0 and, for all ti, d,and tD in R, where the initiation-time of D 0 is ti, D 0 = d, and TeD 0 = tD, itfollows that ti + d � tD.When TeD, is immediately before D 0 in the temporal order, TeD represents theinitiation-time of D 0. This also holds if there are a number of deision variables andno other time variable between TeD and D 0, TeD then represents the initiation-timeand end-time of all intermediate deision variables, and these intermediate deisionvariables represent instant deisions. That is, the point in time represented by TeDalso represents the initiation-time of D 0.� If TeD! D 0 and there is no time variable, T 0, suh that TeD! T 0 ! D 0, then,for all t and tD in R, where TeD = t and the initiation-time of D 0 is tD, itfollows that t = tD.A result of the no-delay assumption and the fat that free time variables exist isthat a time variable, T, does not have to be inuened by the hoie hosen at somedeision variable, D, but if this is the ase, then no new deision variables may beonsidered in the DPIT, as the no-delay assumption would be violated.� If, for two time variables, T1 and T2, where T1! T2, there is no deision variable,D, suh that T1 is assoiated with D, then there are no deision variable D 0,suh that T2! D 0, and T1 and T2 are onsidered free time variables.This rule allows for several time variables to inuene eah other while not beinginuened by or inuening any deision variables. This means that utility funtionsmay be inuened by time, but not by the deision taker himself. This represents aphenomenon we all a post-realized utility funtion.As mentioned, the temporal order of a DPIT inludes not only ordering time vari-ables and deisions, it also inludes the order of observing hane variables, whihonstitutes a partial temporal order. Meaning that there is no prede�ned order ofobserving hane variables, when taking deisions. The only rule is that, aordingto the no-delay assumption, the observation of hane variables is instantaneous.Chane variables, whih are only observable in some spei� time interval, have aspeial role in the temporal order. Suh hane variables an be observed only withinthis spei� time span.



18 Chapter 3. Deision Problems Involving Time3.2.3 Deision SenariosA deision senario for a DPIT is a list of irumstanes and hoies, whih has autility attahed to it. Eah irumstane and hoie in a deision senario representsa state of one variable in the DPIT, and a deision senario respets the temporalorder of the DPIT. For eah variable, represented in a deision senario, we workunder the assumption that the deision taker has information of the past and futureof that variable. The future of a deision variable, D, is all deisions, whih are tobe taken after D.A deision senario is a on�guration of a subset of variables in a DPIT. The max-imum number of deision senarios of a DPIT equals the Cartesian produt of thestate spae of all variables. Therefore, in any DPIT there are an in�nite number ofon�gurations, beause of the ontinuous variables.3.3 Representing Deision Problems Involving TimeAs a onsequene of introduing time, DPITs annot be modelled by traditionalframeworks for modelling deision problems, as they do not present these models ina ompat nor a omplete manner. [Broe et al., 2003℄ showed that traditional frame-works tend to lutter with ars when a DPIT is attempted at being modelled, and theresulting models do not orretly model the ontinuity of time. Furthermore, DPITsare asymmetri, as a onsequene of restritions of deisions at given points in time,whih needs speial frameworks, suh as those presented in [Bielza and Shenoy, 1999℄and [Nielsen and Jensen, 2002℄, while still representing time orretly.There is a possibility that some, or all, variables may be inuened by time, orinuene time themselves. In order to use a framework as a means of modellingDPITs, these aspets must be expressible in the framework. Therefore a series of re-quirements was proposed in [Broe et al., 2003℄, whih, when respeted, handles theseaspets.The requirements proposed below are presented as rules for onstruting a frameworkfor representing and ommuniating DPITs.3.3.1 Requirements for FrameworksThe requirements presented here originate from [Broe et al., 2003℄, in whih theywere onoted through an analysis of frameworks. This analysis resulted in thedisovery of problems with traditional frameworks when attempting to use themfor modelling a DPIT. The requirements only reet what should be expressible tomodel the aspet of time, but a framework for DPITs should be apable of modellingany deision problem, that is, it should not lose any expressive power in the e�ortof modelling DPITs.



3.3 Representing Deision Problems Involving Time 19This desription of the requirements is presented by �rst showing that there in fatis a problem, then the requirement for solving the problem is presented, and �nallythe requirement is explained more thoroughly.When onsidering DPITs it is apparent that a means of representing the passing oftime, and time itself, is needed. There should be both an element of time, whih isontrollable by the deision taker, and one, whih has an element of unertainty toit, in order to handle, for instane, unforeseen delays in performing a timed ation.This need leads to Requirement 1.Requirement 1It should be possible to model time and wait deision variables. That is, the variablesin VW [VT, should be expressible in the framework.The introdution of these types of variables introdues the risk of having a framework,whih is hard to interpret, as additional types of variables have to be represented.This is aeptable though, as this requirement yields a framework apable of repre-senting time expliitly. This requirement also makes ertain that time is representedby ontinuous variables, as variables in VW [VT are ontinuous.As time often has an e�et on what hoies a person is presented with, a frame-work for modelling DPITs has to be apable of representing deision variables, forwhih the state spae varies aording to the point in time at whih they are taken.Requirement 2 introdues suh possibilities.Requirement 2It should be possible to model deision variables, for whih the state spae variesover other variables, and aurately portray the dependenies involved. That is, thedomains of restrition funtions in Qt should be expressible in the framework.A restrition funtion is a funtion, Qt : sp(obs�!t (D) n fDg)� R 7! sp(D), where Dis the deision variable, whih is being restrited, and R represents time.As desribed above, time variables are ontinuous hane variables. The time spanof a timed ation an be a�eted by other irumstanes, for instane, the weatheran have an impat on how long harvesting some �eld takes. This alls for the needto represent variables, whih alter the end-time of deisions.Requirement 3It should be possible to model variables a�eting the end-time of a deision. Thatis, for every variable, T, in VeT, the domain of the density funtion for T, obtainedfrom P(VCjVD), should be expressible in the framework.This requirement states that the state spae of a time variable may be restrited andthis should be expressible in the framework. Therefore, time variables an be ondi-tionally dependent on other variables, shown at least through the density funtionof the time variable.



20 Chapter 3. Deision Problems Involving TimeIn order to keep the model of a DPIT unambiguous, the next deision to be takenand the observations for this deision must be identi�able. Furthermore, it shouldbe possible to always know what the deision taker bases his hoies on, that is, fordi�erent points in time di�erent variables may be observed.Requirement 4It should be possible to model the time dependent observation funtion. That is, forall deisions, D, in VD, obs�!t (D) should be expressible in the framework.This requirement ensures that for all deisions, D in VD, and all points in time, t,there exists a funtion, obs�!t (D), giving the set of variables, whih are observed forany D at the point in time t.Having time inuene disrete hane variables is an aspet, whih the frameworkshould be apable of modelling. That is, to have the possibility of having probabilitydistributions hange over time.Requirement 5It should be possible to model time variables having an impat on disrete hanevariables. That is, the existene of a onditional probability distribution, P(CjX),for some hane variable, C, in VDC, for whih some time variable, T, is in theonditioning set, X, should be expressible in the framework.This requirement introdues the onept of having disrete hane variables have atime variable in their onditioning set. This way time not only inuenes what thedeision taker an ontrol, but also the irumstanes of the DPIT, over whih hehas no diret ontrol.It is often not easy to omprise the preferenes of a deision taker into one meaningfulexpression, whih an be alulated through a single utility funtion. By introduingthe onept of loal utility funtions, the preferenes an be represented in a manner,whih is more easily understood. Di�erent points in time an also inuene thepreferenes of the deision taker, this should also be expressible in the loal utilityfuntions, thereby giving the framework more expressive power.Requirement 6It should be possible to model variables determining the value of loal utilityfuntions. That is, the domain of all loal utilities, ui, obtained from VU, wherei = f1; 2; : : : ; ng, should be expressible in the framework.The loal utility funtions should be expressible, and should eah enompass di�erentparts of the whole DPIT. This yields models more easily read and interpreted, andgives a set of loal utility funtions, whih an be realized at di�erent points in time.In addition to these six requirements for modelling time, [Broe et al., 2003℄ presentedthree requirements, whih were the main requirements fousing on the presentability



3.4 Summary 21of the models modelled using the framework. These are: unambiguity, ompatness,and easily read by humans. These requirements impose guidelines for frameworks,representing DPITs. The representation language should present DPITs in a manner,whih does not onfuse the reader by having redundant elements, whih an bemisinterpreted. The representation language should onsist solely of the elementsneessary for giving the deision taker the orret interpretation of the DPIT athand and the representation language should be presented in a manner, whih isintuitive for a human when examining the model.We have, furthermore, found two requirements, whih ensure that a framework formodelling DPITs also an model post-realized utility funtions and deisions, forwhih the order of taking them hanges due to the point in time they are to betaken. In many real world deision problems the payo� of taking a taision is notneessarily realized right after taking the last deision of the deision problem. Forexample, the total ost of a loan is not eessarily known when taking the loan, asthe iterest rates utuates. Requirement 7 ensures this is modellable.Requirement 7It should be possible to model time variables, whih are not assoiated to deisionvariables, but have an e�et on some loal utility funtion. That is, having a timevariable, T, in the domain of some loal utility funtion, U, should be expressible inthe framework.As it is not always the ase that deisions are taken in the same order, a frameworkfor modelling DPITs should make it possible to have time inuene the order ofdeisions.Requirement 8It should be possible to have time variables a�et the temporal ordering of twodeisions. That is, D ! D 0 at some points in time and D 0 ! D at all other pointsin time, should be expressible in the framework.As we further require that we at any point in time know what deision is next, thisshould also be ensured in the framework.3.4 SummaryThrough this hapter we have de�ned the onept of a DPIT. We have done this byintroduing the parts of a DPIT, and disussing whih properties DPITs have. Fi-nally, we have presented guidelines for how an every day problem an be expressed interms of a DPIT, and we have set up requirements, whih help formulate a frameworkfor representing DPITs.



22 Chapter 3. Deision Problems Involving Time



Chapter 4Representing InueneDiagrams Involving Time
In Chapter 3 a speial lass of deision problems, whih annot be modelled using theframeworks normally used for modelling deision problems was introdued. ModellingDPITs requires that the representation language an model both the asymmetriesand the ontinuous elements of DPITs. In [Broe et al., 2003℄, a framework, IDITs,whih was tailored to represent these, was presented. In this hapter we reapturethe �ndings of [Broe et al., 2003℄ and extend the existing representation language tohandle the additional requirements.We give an informal desription of IDITs in Setion 4.1, in whih we present both thequalitative and the quantitative levels in an informal manner and present examplesfor lari�ation. In Setion 4.2 we present the formal desription of the aforemen-tioned levels, and present de�nitions of the essential elements in this representationlanguage.
4.1 Informal Desription of Inuene Diagrams Involv-ing TimeIn this setion we give an informal introdution to IDITs, whih is the frameworkfor representing DPITs. We only disuss the representation language of the frame-work and postpone the solution method to Chapter 5. We give semantis wheneverelements are introdued, and disuss how a DPIT is modelled using an IDIT. Whenreferening elements diretly related to DPITs, we do not speify the semantis again,instead we refer the reader to Chapter 3 for these.23



24 Chapter 4. Representing Inuene Diagrams Involving Time4.1.1 Desription of the Parts of Inuene Diagrams Involving TimeIDITs were introdued to represent DPITs in a manner, whih is ompat, unam-biguous, and easy to read for humans.The framework is, as the name implies, based on inuene dia-grams [Howard and Matheson, 1981℄ and uses muh of the same terminology.The representation language is divided into a qualitative and a quantitative part .The qualitative part is a direted labelled graph desribing global informationregarding relations between variables and utility funtions, and the quantitativepart desribes loal information relating to eah variable or loal utility funtion.We desribe eah part in turn beginning with the qualitative part.The qualitative part of an IDIT is a direted labelled graph onsisting of nodes,representing variables and loal utility funtions, and ars, representing relationshipsbetween these. The qualitative level of IDITs gives the reader an overview of theDPIT without inluding numerial information for the variables, yielding it easy toommuniate. The nodes in an IDIT are divided into �ve sets in aordane to thetype of variable or funtion they represent. The �ve sets of nodes are: hane nodes,time nodes, deision nodes, wait deision nodes, and utility nodes.A deision node represents a deision variable from the DPIT. Graphially a deisionnode is drawn as a retangle. It an have a time node attahed to it, representingthat it is a deision variable involving time, or not, if it represents an instant deision.A wait deision node represents a wait deision. A wait deision node is drawn asa double retangle with a double semiirle attahed. A wait deision node alwayshas a double semiirle attahed to it and always has the deision it is refereningas a diret hild of the attahed time node. Sometimes we refer to deision and waitdeision nodes simply as deisions.A hane node represents a hane variable, and is illustrated by a irular node. Ifa hane node represents a hane variable dependent on time, there is an ar froma time node to the hane node.A time node represents either the end-time of the deision it is attahed to, or thepoint in time some utility funtion is realized. A time node, representing the end-timeof a deision, is represented, graphially, in an IDIT by a double semiirle attahedto a deision node. A free time variable is represented by a double irle.Loal utility funtions are represented in IDITs by utility nodes. A utility node isdrawn as a diamond shaped node. If a loal utility funtion is dependent on timethere is an ar from a time node to the utility node.Conventionally, we use a two letter abbreviation of the variable or funtion name asa unique identi�er of a node. When disussing IDITs we usually do not distinguishbetween a node and the variable it represents, but if a distintion is needed, we referto the node by the abbreviation.The nodes in an IDIT are onneted by ars, whih, depending on the node the aremanates from, or is going into, have di�erent semantis. We distinguish between�ve ategories of ars, whih are: informational ars, dependene ars, funtional



4.1 Informal Desription of Inuene Diagrams Involving Time 25ars, guarded ars, and restrition ars.Informational ars are ars going into a deision or wait deision node and are drawnas solid ars. An informational ar represents two related onepts. It represents apreedene of the nodes it onnets, that is, the node from whih an informationalar emanates preedes the deision to whih it goes in the temporal ordering. It alsorepresents that the deision taker has knowledge about the variable, from whih thear emanates, before taking the deision. Having knowledge about a variable, meansto either have observed it as being in a spei� state, if it is a hane or time variable,or to have deided upon it when it is a deision variable. Like in inuene diagrams,IDITs operate under the no-forgetting assumption, [Howard and Matheson, 1981℄.The no-forgetting assumption spei�es that the true states of variables taken or ob-served before taking the urrent deision are remembered, suh that ars from thosevariables are omitted.An ar going into a hane node, indiates a probabilisti dependene between thehane node and the node, from whih the ar emanates. We all these ars depen-dene ars. The hane variable, the ar goes to, is onditionally dependent on thevariable, from whih the ar emanates. The absene of a dependene ar indiatesthat the hane variable is onditionally independent of the variable given its par-ents.A funtional ar is an ar going to a utility node. A funtional ar spei�es that theloal utility funtion has the variable, from whih the ar emanates, as one of its ar-guments. If the node is a time node, the ar spei�es that the utility node representsa time dependent utility node.A guarded ar is an informational ar assoiated with a boolean funtion. A guardedar represents that the node, the ar emanates from, is only observed or deidedupon in the time spans satisfying the funtion. The boolean funtion is referred toas a guard , and the guarded ar is drawn as a labelled ar in the IDIT. Guardsare restrited to those involving time, meaning that a guard must referene a timevariable in order to be evaluated. Instead of expliitly stating whih time variable isreferened, it is by de�nition given as the time variable representing the initiationtime of the deision to whih the guarded ar goes. As long as the guard on an aris satis�ed the ar has the same semantis as an informational ar. We do not allowguards on dependene ars.A restrition ar indiates that the true state of the variable, the ar emanates from,restrits the state spae of the variable, the ar is going into. Restrition ars anonly go to deisions, as restritions on hane variables are emulated by setting theprobability of the illegal states to zero. A restrition ar represents both an infor-mational ar and the restrition of the deision, the ar goes to. Restrition ars aredrawn as dashed ars.For IDITs we assume that hane and deision nodes may not be barren nodes. Thatis, all hane and deision nodes have at least one hild. [Shahter, 1986℄ arguesthat the removal of barren nodes is permitted. Furthermore, as it semantiallydoes not make sense to have one variable or utility funtion being realized at two



26 Chapter 4. Representing Inuene Diagrams Involving Timedi�erent points in time, IDITs do not allow a node to be the hild of more thanone time node. Finally, we do not allow utility nodes as parents of other nodes.The past of a node, V, is the set of nodes whih are before V in the temporalordering. For DPITs we spei�ed the set of observed variables, obs�!t (D), for somedeision, D, and the set of prior variables, prior(T), for some free time variable,T. For IDITs the sets are de�ned as follows: obs�!t (D) = fV j(V;D) 2 E; V 2 VCg;prior(T) = fV j(V;T) 2 E; V 62 obs�!t (D) for any D 2 VD; V 2 VC and T 2 VFg.That is, the set of variables in obs�!t (D), is the set of hane variables, whih havean informational ar going to D. If there is a guard on the informational ar, thevariable, it emanates from, is in obs�!t (D) only if the guard is evaluated to true,given the on�guration of the last observed time variable. The set of variables inprior(T) is the set of variables, whih have a dependene ar going to T, and whihare not in the set of observed variables for any deision.As opposed to inuene diagrams IDITs are allowed to inlude yles, if guards ensurethe yles are broken, given any on�guration of the past of the node the guardedar goes to. Thus, when solving the IDIT, it results in an ayli graph. That is, if ayle exists there needs to be two guards in the yle, whih are mutually exlusive.The ars in IDITs further onstitute the partial ordering of all nodes ensuring thereis a path ontaining all time and deision nodes. If a yle between two deisionnodes exists, the order of these an only be dedued when a on�guration of thepast is given.In order to larify the graphial representation of an IDIT, we have hosen to rede�nethe semantis of guarded ars, from the de�nition presented in [Broe et al., 2003℄.In [Broe et al., 2003℄, guarded ars were inherited throughout the IDIT until theguard was satis�ed, or a new ar was introdued, suh as the ar, (C;Dn; true), inthe graph of Figure 4.1. This de�nition is, however, not intuitive as the guard, g,may never be true as a onsequene of time only progressing. For instane, if g ist � 4, and the point in time at D1 is taken is �ve, the guard would never beometrue for any of the following deisions.Instead, we require there being an expliit ar in the IDIT if it should be observedat a later point, in the ase where a guard on an ar has been evaluated to false.C1 D1 Di Dn� � �g
Figure 4.1: A guarded ar, g, from a hane node, C1, whih is rendered obsolete asa new ar is introdued from C1.



4.1 Informal Desription of Inuene Diagrams Involving Time 27The model of Figure 4.1 is still legal, but it means something di�erent. Now, even ifg is satis�ed somewhere in between D1 and Dn, C1 is not observed when taking Di.To illustrate the elements of an IDIT, we present Example 1, in whih we disuss aDPIT we all the Searh and Resue Problem.Example 1In this example we desribe a DPIT, whih revolves around the searh and resue (SAR)mission, taking plae whenever a person is reported missing in a spei� area. In this example,this area is known as Lost Dale. The deision taker of this problem is the SAR diretor ofLost Dale.The area around Lost Dale is a mixture of forest and mountains, where people oasionallylose themselves in the valley. Whenever a person is reported missing, the SAR diretorassesses the situation at hand. Based on, amongst other things, the person missing, resueteams are dispathed to �nd the missing person. After some time it is possible to get a heatsignature of the entire area, giving an indiation of where the missing person is. If a missingperson is found, the SAR diretor reeives a reward based on the suess of the mission andthe ondition of the person, that is, if the person is alive or dead.The SAR diretor has three deisions in this deision problem, namely Mobilization (Mo),When to begin searhing (Ws), and Searh (Se). As many people visit Lost Dale and it oftenhappens that somebody gets lost for a ouple of hours, a SAR mission is �rst initiated 12hours after the atual report of the missing person has been �led.Lost Dale does not itself have SAR teams, but an issue some from neighbouring towns.The assembly of SAR teams therefore takes time, and the SAR diretor therefore has thepossibility of mobilizing the teams before the initial 12 hours have passed.Mobilization is a deision of whih teams, if any, should be mobilized when a person isreported missing. The possible hoies of the deision are none, SAR dogs, heliopters, andboth. both being the ombination of sending for heliopters and dogs. SAR dogs are apableof searhing the forest, whereas a heliopter annot see through the thik foliage, but it isbetter at searhing the mountains. The hoie ofMobilization inuenes when the searh anbegin as it takes time to assemble the teams. It takes at least 12 hours to get a heliopter toLost Dale, and 18 hours to get dogs. When both SAR dogs and heliopters are needed twoadditional hours are used to get a joint strategy, thus the assembly of both takes 20 hours.When to begin searhing is a wait deision, whih postpones the atual searh deision untilthe SAR teams are assembled. As it is a wait deision it has a ontinuous state spae.Searh is the deision in whih the SAR diretor hooses in what part of Lost Dale toonentrate the searh. As Lost Dale is part forest and part mountains the state spae of thedeision is nowhere, forest, mountains, and both, where both is a ombination of searhingboth the forest and the mountains. nowhere, is the only hoie available until the point in timethe teams have been mobilized. Searhing through the forest using the dogs takes 36 hours,whereas it is not possible to do a searh of the forest using only heliopters. Searhing themountains with heliopters takes 18 hours, while it takes 80 hours searhing the mountainsusing only the dogs.At the hoie of whih team to mobilize the pro�le of the person missing is observed. TheSAR diretor lassi�es missing persons into three ategories, whih are modelled in a hanevariable, Missing person (Mp), these ategories are: the lost girl ategory, the average maleategory, and the eager danger seeking male ategory. These are also the names of the statesof the variable. Missing person inuenes a hane variable, Loation of the missing person(Lp).



28 Chapter 4. Representing Inuene Diagrams Involving TimeLoation of the missing person is the atual loation of the person. The states of the hanevariable are forest, and mountains. This hane variable inuenes three other hane vari-ables, namely Survivability (Su), Found (Fo), and Heat signature (Hs).Survivability represents the hane of the missing person being alive or dead when found.This hane variable is also inuened by the weather and the amount of time the searhtakes. The states of the hane variable are alive, and dead. The reward for the SAR diretoris dependent on the state of this variable.How well the searh has gone is modelled in Found, that is, if the missing person is foundor remains lost. Besides Loation of the missing person, the hosen area for the searh, andthe time the searh ends, inuenes this hane variable. The two states of this variable arefound and lost. The reward for the SAR diretor is also dependent on this variable.The possible heat signature is modelled through the hane variable Heat signature. If theSAR diretor waits 48 hours before taking the deision on where to searh, he has a heatsignature of Lost Dale, indiating the loation of the missing person.In Lost Dale the Sun normally shines at least six days of the week, and as it has never rainedor snowed two days in a row, it is assumed that it rains or snows at most one day eah week.Weather (We) is the hane variable, whih models if it will rain or snow one day during thesearh, or if it will stay sunny. It has three states: sunshine, rain, and snow. If it rains thesearh will be delayed by eight hours, and if it snows the searh will be paused for 24 hours.There are three loal utility funtions in this deision problem, namely, Cost of mobilization(Cm), Cost of searh (Cs), andGovernmental support (Gs).Governmental support representsa monetary support whih the SAR diretor reeives to over the expenses of a SAR mission.The government rewards the SAR diretor $50,000 for �nding the missing person and a bonusof $50,000 if the missing person is alive when found. Cost of searh is dependent on time inthe sense that the ost inreases as long as the searh ontinues. If the person is not foundwithin a week after the person is reported missing, it is assumed that the person will notbe found, as this gives enough time to both get the heat signature and searh through theentire area. At this point the ative searh is disontinued, and the only trae of it is a �leat the SAR diretor's oÆe.The desribed DPIT is modelled using an IDIT, and the resulting IDIT is depited in Fig-ure 4.2. 2Looking at the SAR problem, we see how an IDIT represents a DPIT. The IDITstarts at the �rst deision node, whih is Mo. Before taking the deision the dei-sion taker observes who the missing person is. This is illustrated in Figure 4.2 bythe informational ar from Mp to Mo. Furthermore, it should be noted that Morepresents an instant deision shown by the lak of an attahed time node. The ostassoiated to mobilizing is depited by the utility node Cm, having a funtional arinto it from Mo.The deision following Mobilization is the wait deision Ws, whih has a time nodeattahed in aordane to the rules of wait deisions. The node and the attahedsemiirle should be thought of as two separate nodes, where there exists a solid arfrom the deision node to the time node. The ontration of these are due to easeof reading, as the IDIT otherwise would lutter with ars. Ws, and the time nodeattahed to it, illustrates how IDITs on the qualitative level handle Requirement 1for frameworks modelling DPITs.
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Figure 4.2: An IDIT modelling the SAR problem.Continuing through the IDIT of the SAR problem the next deision node is Se,whih is restrited by the hoie taken in Mobilization and the end-time of When tobegin searhing, as shown by two the restrition ars. These restrition ars depithow IDITs handle Requirement 2 on the qualitative level.Before taking the deision, the deision taker observes Weather and if the initiation-time is greater than or equal to 48 hours, Heat signature is also observed. The lattershows an example of a guarded ar, whih is how IDITs satisfy Requirement 4.Cs, whih represents the ost of searhing, is inuened by the hoie of Mobilizationand the end-time of Searh. This is illustrated by having funtional ars from bothMo and the time node attahed to Se going to Cs. The node is an example of autility funtion dependent on time, and shows how IDITs handles Requirement 6,on the qualitative level.The end-time of Searh is inuened by the hoie taken in Searh, the end-time ofWhen to begin searhing, and Weather. The fat that the end-time is inuened byWeather an be seen diretly in the IDIT by the dependene ar emanating fromWegoing into the time node. This illustrates how IDITs handle Requirement 3. That theend-time of Se is inuened by the end-time of Ws annot be seen in the graphialrepresentation. This is a deliberate hoie to avoid the diagram luttering with ars.The remaining hane variables are never observed or observed too late to have animpat on taking deisions. Lp represents an ordinary hane variable and the argoing into Lp represents onditional dependene. Su and Fo both represent hanevariables dependent on time, whih is illustrated by the dependene ars emanating



30 Chapter 4. Representing Inuene Diagrams Involving Timefrom the time node attahed to Se. This illustrates how IDITs handle Requirement 5.Besides the dependene ar from the time node both have other dependene ars go-ing into them, illustrating the rest of their onditioning sets.The SAR problem does not inlude any ourrenes of post-realized utility funtionsor yles. To illustrate how these are handled by IDITs we present an example weall the software release problem. We have split the example in two, one in whihwe disuss yles, and one in whih we disuss post-realized utility funtions. Theexamples are presented in Example 2Example 2This DPIT takes outset in a software development projet. We fous on two di�erent partsof the proess. The �rst part we look at onerns the transition from the analysis phase tothe design phase, and the seond part onerns what might happen after the software hasbeen released. The two examples have been simpli�ed for ease of understanding.Consider a software development senario in whih the analysis is about to be onluded.The two deisions following this are one onerning prototyping and one onerning design.With an objet-oriented approah, the order in whih these phases is taken should notmatter [Mathiassen et al., 2001℄. The fator, whih determines whih phase to begin, ould bethe amount of time the analysis has taken. That is, the end-time for the analysis determinesin what sequene the prototyping and the design phases are taken.This gives three deisions for the �rst part of this example. These are Analysis (An), Proto-typing (Pr), and Design (De).To keep this simple, all deision variables have a binary state spae. The hoies for Analysisare ursory analysis and thorough analysis. Choosing a ursory analysis results in the phasetaking two months, while hoosing a thorough analysis results in four months of work. Werefrain from determining the state spae of Prototyping and Design, as these have no impaton the fous of this example.These harateristis introdue a yle in the IDIT. In order to make it a valid yle, theremust be guards on all ars in the yle, and these guards must be mutually exlusive, suhthat any on�guration of the last time variable before the yle, breaks the yle. Figure 4.3depits the resulting IDIT.
An Pr

De. . . . . .t<90t � 90
Figure 4.3: A yle between the deisions Pr and De.



4.1 Informal Desription of Inuene Diagrams Involving Time 31In Figure 4.3 � � � denotes the sets of variables observed or deided upon before Analysis andafter either of Prototyping and Design, respetively.Being able to model yles gives the framework more expressive power. And it opens thepossibility of having IDITs more orretly portray how we handle problems we are faedwith in our every day life, problems similar to the one just desribed, where we know wehave more than one thing to do, and time helps us deide in whih order we do things.The seond part of this software development senario onerns the release part of the pro-ess. The projet manager has one deision to onsider in this part of the software develop-ment proess. This deision is Release (Re), and the states of Release are now, postpone twoweeks, and omplete missing bits. If the software manager hooses to postpone two weeks,the time is used to either omplete some missing tests or orret errors found during testingof the software.There is one hane variable, Faults found after installation (Fi), whih has the states 2, 10,and 25. Where eah state indiates the number of errors and rashes after 100 exeutions ofthe software. This hane variable is inuened by the end-time of Release and a number ofvariables not present in this simpli�ed DPIT.After the software has been released the ustomer tests it, and if he experienes rashes ofthe software, or �nds other faults in it, he sends bak a desription of these unfortunateourrenes to the software ompany. The software ompany is then obligated to orretthis as best it an. The software ompany has no diret inuene over whether the ustomer�nds any aws, or how long it takes before the ustomer ontats the software ompany withthese. The amount of aws has an impat on some extra expenses, whih goes to wages andompensation to the ustomer, as he is fored to wait even longer before he an put his muhneeded piee of software to work. This amount of extra expenses is represented as a loalutility funtion, whih is realized at a point in time, whih is later than the last deision inthe DPIT.To represent that some time passes after the software has been released, a free time variable,T 0, is present. This represents the time period between atually releasing the software, thatis, the end-time of Release, and the point in time the loal utility funtion is realized.The loal utility funtion for this example is named Extra expenses, and represents theamount of money the software ompany spends on orreting possible errors in the software.Extra expenses represents a post-realized utility funtion.Figure 4.4 depits the IDIT for the seond part of this example.
Re Fi T 0 Ee. . .Figure 4.4: An IDIT modelling the seond part of the software development problem.In Figure 4.4 � � � denotes the set of variables observed or deided upon before onsideringRelease.



32 Chapter 4. Representing Inuene Diagrams Involving TimeIt should be noted that there may be multiple yles and post-realized utility funtions inan IDIT, but, as per the de�nition of post-realized utility funtions, no deisions may bepresent after the �rst ourrene of a post-realized utility funtion. 2The quantitative part of IDITs represents the loal information relating to the in-dividual variable or utility funtion. The state spae of eah variable is an exampleof the information hidden in the quantitative level of IDITs. Other than this thequantitative level onsists of four sets, these being: a set of probability distributionsfor the hane variables; a set of loal utility funtions; a set of density funtions forthe time variables; and a set of restrition funtions.For eah hane variable in the DPIT the set of probability distributions ontains aonditional probability distribution for the hane variable given its parents.The set of utility funtions onsists of all loal utility funtions. A loal utility fun-tion maps eah on�guration of its parents into a real number representing thepreferenes of the deision taker.For eah time variable, T, in the IDIT, the set of density funtions inlude a densityfuntion desribing the onditional probability distribution of T given its parents asthe onditioning set. The unertainty of the time variable is shown by the degrees offreedom the density funtion has.The set of restrition funtions onsists of all restritive funtions in the DPIT. Suhfuntions are either related to the guards on ars or the restrition of the statespae of some deision as a onsequene of the on�guration of the time variablerepresenting its initiation-time.To give an impression of the quantitative level of an IDIT, we desribe the quanti-tative part of the SAR problem in Example 3.Example 3In Example 1 the qualitative level of the SAR problem was desribed. The example alsodisussed the state spae of the variables in the DPIT, whih in fat is a part of the DPITbelonging to the quantitative level. We, however, hoose to present the states of the variablesin Example 1, to give the reader a better idea of how the DPIT is modelled, and to give thereader a more intuitive approah to the SAR problem.IDITs represent the SAR problem on the quantitative level by four sets of funtions. IDITsspeify a onditional probability distribution for eah hane variable given its onditioningset and a density funtion for eah time variable. The onditioning set an be dedued fromthe qualitative level, as the set of parents of the hane node. One way of representing theseprobability distributions is by a set of tables, where eah table represents the onditionalprobability distribution for one hane variable.The marginal probability distribution forMissing person is given in Table 4.1(a). Loation ofmissing person has a onditional probability distribution with a onditioning set onsistingof Missing person, and is presented in Table 4.1(b).The onditional probability distribution for Heat signature given Loation of missing personis shown in Table 4.2(a) and Table 4.2(b) shows the marginal probability distribution forWeather.
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lg am em0.3 0.5 0.2(a)

Mplg am emfo 0.8 0.55 0.2Lp mo 0.2 0.45 0.8(b)Table 4.1: (a): The marginal probability distribution for Missing person.(b): The on-ditional probability distribution for Loation of missing person given Missing person.Lpfo mofo 0.8 0.1Hs mo 0.2 0.9(a) su ra sn0.7 0.2 0.1(b)Table 4.2: (a): The onditional probability distribution for Heat signature given Lo-ation of person.(b): The marginal probability distribution for Weather.The onditional probability distributions of the two hane variables, whih are dependenton time, are desribed in the quantitative part of IDITs by two funtions whih takes apoint in time, and a set of parameters, whih is found using the disrete variables of theonditioning set, as their arguments, and returns the probability of the variable given theonditioning set.Survivability has a onditioning set onsisting of the disrete variables Loation ofmissing person and Weather and the time variable TeSe. The funtion desribingP(Su = aljWe; Lp; TeSe) is: s(t; ) = (1 - )t;and P(Su = dejWe; Lp; TeSe) is 1 - s(t; ), where  is a parameter given by the disretevariables, and t the time given by TeSe. The values of , is found in Table 4.3(a).Thus, the probability of survival is dropping towards zero as time passes. For instane, thehane of surviving 48 hours given the missing person is in the mountains and it stays sunny,is s(48; 0:02) = 0:38. This funtion is depited in Figure 4.5.Found has a onditioning set onsisting of the disrete variables Loation of missing personand Searh and the time variable TeSe. The probability of found is desribed by a funtion,f , whih is given as: f (; t) = t;where  is given by Table 4.3(b), and t is the point in time represented by TeSe.The two onditional probability distributions for Survivability and Found are examples ofhow IDITs represent hane variables being dependent on time, that is, how IDITs satisfy
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Lpfo mosu 0.005 0.02We ra 0.01 0.05sn 0.05 0.08(a) Lpfo mofo 0.03 0Se mo 0 0.05bo 0.03 0.05(b)Table 4.3: (a): The table of parameters for Survivability given Weather, and Loationof missing person. (b): The table of parameters for Found given Searh, and Loationof missing person.
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Figure 4.5: The time dependent probability funtion for P(Su = sujWe; Lp; TeSe).



4.1 Informal Desription of Inuene Diagrams Involving Time 35Requirement 5 on the quantitative level.The idea is to speify a funtion, whih takes a set of arguments onsisting of parametersfound using the on�guration of disrete parents and the point in time it is realized andmapping this to a single value, whih is the probability of this exat on�guration. In theases suh as the ones illustrated here, both variables have binary state spaes, whih makesthe summation of probabilities to one a simple task, as one state has the probability p andthe other automatially has the probability 1 - p. In ases with larger state spaes it isneessary to have a di�erent table for eah state, and the probability of eah state is givenby: f(C = Ci; t)PC f(C; t) :When mobilizing for a SAR mission, the SAR diretor pays expenses aording to the hoietaken at Mobilization. If he has hosen not to mobilize anything he pays nothing. The mobi-lization of SAR dogs osts $2,000, and the mobilization of heliopters osts $8,000. The ostof mobilizing both dogs and heliopters is the sum of those two, thus $10,000.The loal utility funtion for Cost of Mobilization is given in Table 4.4no do he bo$0 $2,000 $8,000 $10,000Table 4.4: The loal utility funtion for Cost of mobilization.The ost of searhing depends on what type of searhing is initiated. Dogs ost $100 per hourduring the searh plus $1,000 at the beginning of the searh period. Heliopters ost $500per hour of the searh mission. The ost of searhing with both dogs and heliopter ostsan additional $500 per day to over expenses for ommuniations between the two searhparties.The loal utility funtion for Cost of searh is a time dependent utility funtion, realized asthree linear funtions one for eah state of Mobilization. The three funtions are: for dogsthe funtion is u1(t) = 1; 000 + 100t; for heliopters the funtion is u2(t) = 500t; and forboth the funtion is u3(t) = 1; 000(500=24 + 100 + 500)t, and are illustrated in Figure 4.6As an be seen from Figure 4.2 the time node, TeWs, is only inuened by the hoie atWhen to begin searhing. The density funtion should express: zero probability states forthe interval of the time variable, [0 : ws[, where ws is the point in time hosen at Ws; alarge inrease in probability immediately after the number of hours hosen in Ws, and thenthe probability goes towards zero after a few hours. These restritions to the probabilitydistribution of TeWs are a result of the semantis and representation of time variables. Ifthe hoie at When to begin searhing is 18 hours, the density funtion of TeWs ould be asdepited in Figure 4.7, with 1:50 degree of freedom.The density funtion of the time variable, TeSe, assoiated with Searh is inuened by TeWs,Searh, Mobilization, and Weather. The hoies of Mobilization, Searh and the true stateof Weather implies whih arguments are to be supplied to the density funtion. Table 4.5illustrates these arguments. The arguments are on the form (a; b), where a is the degree offreedom, and b is the displaement on the x-axis. The displaement of some time variable,TeD, is determined by the end-time of the time variable in pa(TeD). In Table 4.5 entries of theform (0; 0) indiate invalid on�gurations.
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Figure 4.6: The time dependent utility funtion for Cost of searh.
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Figure 4.7: The density funtion for TeWs.



4.1 Informal Desription of Inuene Diagrams Involving Time 37Sefo mo boMo Mo Modo he bo do he bo do he bosu (5.5,36) (0,0) (0,0) (6.5,80) (3,18) (6.5,80) (8,116) (0,0) (5.5,36)We ra (7,44) (0,0) (0,0) (8.5,88) (3.5,26) (8.5,88) (13,124) (0,0) (7,44)sn (11,60) (0,0) (0,0) (11,104) (4,42) (11,104) (20,144) (0,0) (11,60)Table 4.5: The table of arguments for TeSe given Weather, Mobilization, and Searh.The funtion for TeSe, given a mobilization of both dogs and heliopters; the end-time ofwaiting being 21 hours; and having deided to searh both forest and mountains gives,dependent on the weather, one of the three density funtions illustrated in Figure 4.8.
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Figure 4.8: Three funtions for TeSe for di�erent states of weather.This is an example of how IDITs express the unertainty of time, in a manner satisfyingRequirements 1, 3, and 5 for time variables on the quantitative level.A onstraint the SAR diretor must take into onsideration, when deiding what to do, isthe one whih is imposed by his hoie for Mobilization setting a onstraint on when thesearhing an begin, as the SAR teams have to reah Lost Dale �rst. The extent of thisonstraint is desribed in Example 1.Finally, if the SAR diretor wants to have a heat signature, before hoosing where to searh,he has to wait until the 48th hour, before taking the searh deision.In the SAR problem there is only one deision whih has a restrited state spae. Further-more, there is a guard on one ar. The set of restrition funtions therefore onsists of thesefuntions.The state spae of Searh is restrited by the end-time of When to begin searhing and the



38 Chapter 4. Representing Inuene Diagrams Involving Timehoie of Mobilization. This yields the following restrition funtion:fSe = 8>>>>>>>><>>>>>>>>:
Mo = do, and TeWs < 18! fnogMo = do, and TeWs � 18! fno, fo, mo, bogMo = he, and TeWs < 12! fnogMo = he, and TeWs � 12! fmogMo = bo, and TeWs < 20! fnogMo = bo, and TeWs � 20! fno, fo, mo, bo gThe guard on the ar between Hs and Se results in the following restrition funtion:fSe = ÆTeWs < 48! Hs 62 obs�!t (Se)TeWs � 48! Hs 2 obs�!t (Se)The restrition funtions for Searh illustrate how IDITs handle Requirement 2 for frame-works modelling DPITs. 2We refrain from presenting the tables, density funtions, and utility funtions for thesoftware release problem, as the information they provide is not essential in under-standing how yles and post-realized utility funtions are represented in IDITs.4.2 Formal Desription of Inuene Diagrams InvolvingTimeIn this setion we give a formal de�nition of both the qualitative and the quantitativelevels of IDITs.We begin by desribing the qualitative level, in whih we present a formal de�nitionfor the syntatial parts of an IDIT. In order to put this into a \real world" ontext,we illustrate this using the SAR problem. Following the disussion of the qualitativelevel, we give a de�nition of the quantitative level of IDITs, whih is followed bydisussions of the elements presented in this de�nition.4.2.1 The Qualitative Level of Inuene Diagrams Involving TimeThe qualitative level of an IDIT onsists of a labelled direted graph, whih mustfollow a set of syntatial rules for the orrelation of the elements of the graph. Toput this formally we refer to De�nition 4.1. The rules are disussed informally afterthe formal desription.De�nition 4.1 (Qualitative Level of an IDIT)Let I = (V;L;E) be a labelled direted graph, with nodes V, labels L, and ars E.The nodes an be partitioned in six disjoint subsets: VDC, VeT, VF, VDD, VW, and



4.2 Formal Desription of Inuene Diagrams Involving Time 39VU, where they hold nodes representing disrete hane variables, time variablesrepresenting end-times of deisions, free time variables, disrete deision variables,wait deision variables, and loal utility funtions, respetively. Furthermore, the setVDD [VW onstitutes the set of deisions, VD; the set VeT [VF onstitutes the setof time variables, VT; and the set VDC [VT onstitutes the set of hane variables,VC. The set of labels onsists of funtions, f : R 7! ftrue; falseg. Furthermore, theedges an be partitioned in two disjoint sets: Eg and Ed. Ed is the set of restritionars, and are a subset of V�V. And Eg represents the set of the remaining ars, andare a subset of V �V� L. Then I is an IDIT, modelling some DPIT, if it satis�esthat:1. for all V in V, jpa(V)\VTj is zero or one,2. for all V in VD [VC, h(V) 6= ?,3. for all V in VU h(V) = ?,4. there is a direted path, P, in I, suh that VD [VT is a subset of the nodesof P for every possible on�guration of the variables in VT,5. for all V and V 0 in VT, there is a path from V to V 0, if not, then there is apath from V 0 to V,6. for all TeD in VeT there exists a D in VD, suh that TeD is in h(D),7. for all D in VW, h(D) equals fTeDg, where TeD is in VeT, and (D;TeD; true) is inEg, and there exists a deision D 0 2 VDD, suh that (TeD;D 0; true) is in Eg.8. for all T in VF there does not exist a D, suh that D is in de(T),9. for all (V;D) in Ed, D is in VD, and10. for all T 2 VT, there exists a T 0 2 VT, for whih it holds that T 0 2 pa(T), orVT n fTg� de(T).In order to keep IDITs simple all ars, besides restrition ars, are assoiated to alabel. Conventionally, we label all unguarded ars with the label true.To ease the reading of the graphial representation of an IDIT, we do not print thelabel the unguarded ars. To separate the unguarded ars from the ars of Ed, wedraw the ars of Ed as dashed ars.The rules of De�nition 4.1 ensure that the direted labelled graph follows the syntaxof IDITs. (1) ensures that two time nodes annot be parent of the same node, and (2)removes the possibility of barren nodes. (3) spei�es that utility nodes annot havehildren. (4) seures that there exists at least one path through all time and deisionvariables, and (5) says that two time variables are ordered by a path between thesetwo nodes. (6) ensures that all time variables representing end-times of deisions areassoiated to a deision, (7) says that wait deisions always have an end-time, and



40 Chapter 4. Representing Inuene Diagrams Involving Timethat there exists a deision following the wait deision and (8) ensures that free timevariables are only found after the last deision, whih is a onsequene of the no-delay assumption. (9) says that restrition ars are only allowed into deision nodes.(10) ensures that time variables form a path, when also respeting (1).Besides these rules the IDIT must follow the semantis of ars and nodes as disussedin Setion 4.1 and the requirements presented in Chapter 3.To illustrate the qualitative level of an IDIT, the SAR-problem of Example 1 ispresented formally.Example 4The graphial representation of the SAR problem an be seen in Figure 4.2. Formally, theSAR-problem is spei�ed as below:V = fMo; Se;Wsg[ fMp; Lp;Hs; Fo; Su;We; TeWs; TeSeg [ fCm;Cs;Gsg.L = ftrue; t � 48g.E = f(Mp; Lp; true), (Mp;Mo; true), (Lp;Hs; true), (Lp; Fo; true), (Lp; Su; true),(Mo;Cm; true), (Mo;Cs; true), (Mo;Ws; true), (Mo; Se), (Mo; Se; true),(Hs; Se; t � 48), (TeWs; Se), (TeWs; Se; true), (Su;Gs; true), (Fo;Gs; true),(Se; Fo; true), (TeSe; Cs; true), (TeSe; Fo; true), (TeSe; Su; true), (We; Se; true),(We;TeSe; true), (We; Su; true), (Se; TeSe; true),(TeWs; TeSe; true), (Ws; TeWs; true)g.The SAR-problem satis�es all the rules of the qualitative level of an IDIT. (1), (2), (3),(9), and (10), are obviously satis�ed, and (4) is ful�lled by the path (Mo;Ws; TeWs; Se; TeSe),and so is (5). (6) is satis�ed by the ars (Ws; TeWs; true), and (Se; TeSe; true), and (8) isnot appliable in the SAR-problem as there are no post-realized utility funtions. The ars(Ws; TeWs; true), (TeWs; Se), and (TeWs; Se; true) satisfy (7). 2De�nition of a Temporal OrderingIn Chapter 3 we disussed the temporal ordering, !, of a DPIT. This temporalordering is reeted in the qualitative level of an IDIT and sets the order in whihan IDIT is read.De�nition 4.2 de�nes the temporal ordering of the variables given time, ��!t , for anIDIT. The temporal ordering is a total ordering of time and deision variables anda partial ordering of the set of all variables, as it does not order the disrete hanevariables. We assume that, to eah deision variable, D, there is a time variable, TeD,assoiated.After de�ning the temporal order, we disuss an operational approah for �nding it.De�nition 4.2 (Temporal Ordering, ��!t )Let I = (V;L;E) be an IDIT; �!t some on�guration of the variables in VeT [ VF;D1, D2, . . . , Dn an ordered sequene of nodes in VDD [ VW, where Di is takenimmediately before taking Di+1; Ii the subset of VDC, whih is observed before Di;and In+1 the subset of VDC, whih is never observed, or observed too late to have an



4.2 Formal Desription of Inuene Diagrams Involving Time 41inuene on any deision or time variable. Then the temporal order of I is de�nedas: I1 ��!t D1 ��!t TeD1 ��!t � � � In ��!t Dn ��!t TeDnprior(T1) ��!t T1 � � �prior(Tn) ��!t Tn ��!t In+1;where TeDi are time nodes representing end-times for deisions and Ti are free timenodes.The temporal order as shown in the de�nition is found by identifying the �rst deisionof the IDIT; identifying its set of observed variables and its assoiated time node, ifit has any; and then ordering these aordingly. For any time node found, it mustbe on�gured to some state, as to resolve any possible guards a�eting the set ofobserved variables for the next deision. For all time nodes, the on�guration of thelast time node must be remembered and taken into onsideration. Then the orderednodes are removed and the operation is repeated until no more deisions exist. If,after this, there are more time nodes, the �rst of these is identi�ed in a similarmanner as used in identifying the �rst deision node. The prior of the time nodeis identi�ed and the nodes are ordered aordingly. The ordered nodes are removedand the proess ontinues until no more time nodes exist. Then the remaining nodesare plaed in the set we have hosen to all In+1.De�nition 4.2 relies on there being a deision, whih is before all others. Theorem 4.3ensures that this deision exists and shows how it is found.Theorem 4.3 (First Deision)In an IDIT, I, there exists a deision, D, suh that D ��!t D 0 for all D 0 in VD n fDg.This is the deision, D, whih for any �!t #? has no other deisions as anestor.Proof: Assume that suh a �rst deision is not unique. Then two or more �rstdeisions would exist, and, as IDITs require, there is a path between them, either,one would be before all others, ontraditing there being multiple �rst deisions, or,there is a yle between them. If suh a yle exists there needs to be guards onthe ars of the yle, suh that a on�guration of the time nodes would render thediagram ayli. As guards are only allowed to referene time variables before theyle, and time variables are assoiated to deisions, some deision must be beforethe two �rst deisions, ontraditing that they are the �rst deisions. Furthermore, ifa free time variable exists, then that time variable must be after the last deision, andtherefore also after any deision in a yle. This proves that only one �rst deisionexists, and it an be uniquely identi�ed.It should be lear that De�nition 4.2 does not imply there only being one temporalordering for an IDIT. In fat several temporal orderings an exist, depending onthe di�erent on�gurations of time variables. This indiates that an in�nite numberof orderings exists on the quantitative level, however, as IDITs require that there



42 Chapter 4. Representing Inuene Diagrams Involving Timeneeds to be a �nite number of variables, thus also a �nite number of guards, someon�gurations yield equivalent temporal orderings. Later we desribe how to �ndthe number of temporal orderings neessary to have a wellde�ned IDIT, both for thequalitative and the quantitative level.The temporal orderings of an IDIT are de�ned through the semantis of the arsand nodes on the qualitative level, and the semantis of a set of restrition funtionsfound on the quantitative level, that is, restritions imposed by guards and restritionars. A temporal ordering is built suh that it follows the manner of reading anIDIT. This means that, when reading an IDIT, if some variable, V, is read beforeanother variable, V 0, V omes before V 0 in the temporal order, denoted as V ��!t V 0.If V is read immediately before reading V 0, then there is no node, V 00, suh thatV ��!t V 00 ��!t V 0.We have de�ned a temporal ordering, through how the IDIT is read. This leads to�nding one temporal ordering for an IDIT. In the following setion we desribe howto dedue any order of an IDIT given any on�guration of the time variables byusing a struture we have named a preliminary temporal ordering .Preliminary Temporal OrderingThe preliminary temporal ordering is a partial ordering of all nodes in an IDIT.It is the ordering, whih is found without onsidering a on�guration of the timenodes of the IDIT. This means that, when all temporal orderings are to be found,the preliminary temporal ordering is used, instead of going through the ordering ofall nodes for every unique on�guration of time variables. This results in the needto only go through the nodes of whih the initial ordering is unertain, as these areexpliitly identi�ed. Furthermore, this information is used when solving an IDIT, asis desribed in Chapter 5.A partial temporal ordering of all variables an be dedued diretly from the qual-itative level of any IDIT. This orders all variables, whih an be ordered, that is, ifan unguarded path between two deisions exists, then the two deisions are orderedwith respet to eah other. Furthermore, eah deision, D, is ordered with respet tothe set of hane variables observed before taking D and the possible time variableassoiated to D. We all this ordering a preliminary temporal ordering, denoted as <,as it does not neessarily impose a total ordering of deisions, suh as the temporalordering, but an be dedued from the qualitative level alone.As the preliminary temporal ordering is dedued from the qualitative level of theIDIT, guarded ars are not evaluated. Therefore, multiple instanes of a guardedvariable exists in the ordering. For instane, if a hane variable, C, has a guardedar to a deision, D, then C is both before and after D in the preliminary tempo-ral ordering. This should be interpreted as a preliminary unertainty on when C isobserved rather than C atually being observed twie.The preliminary temporal ordering is dedued from the IDIT by identifying the �rst



4.2 Formal Desription of Inuene Diagrams Involving Time 43deision, whih an be unambiguously identi�ed, as stated by Theorem 4.3. We �ndthe �rst deision by exploiting that its set of anestors interseted with deisionvariables is the empty set.In order not to onfuse an observed variable with a guarded hane variable, weonstrut, for eah deision, a set onsisting of the guarded hane variables. We allthis the set of guarded observed variables.When the �rst deision is identi�ed the set of observed variables for this deisionand the time variable assoiated with it, are ordered with respet to the deision.That is, ID < D < TeD, where ID is the set of observed variables. Notie that thereannot be any guarded ars among the ars between ID and D as there is no timevariable, whih an be referened.Whenever a deision is ordered in the preliminary temporal ordering, the deisionor deisions immediately following this deision, are identi�ed. One manner of doingthis is by omparing the past of all unordered deisions. The deision, whih hasonly the set of already ordered deisions in its set of anestors, is the next deision.If two deisions both satisfy this requirement, the two deisions are not ordered withrespet to eah other. Whenever there are more than two deisions, whih have thesame set of anestors, multiple yles exist. For eah deision found this way the setof observed variables is identi�ed and so is the time variable, whih is assoiatedwith it.Cyles are allowed in IDITs, if guards seure that they are broken whenever the timevariables before yles are on�gured. As a result of this, multiple yles an exist,suh that multiple deisions an have equivalent sets of anestors, but there stillexists an ordering of a subset of these deisions. Figure 4.9 illustrates the deisionsof an IDIT in whih four deisions, D2, D3, D4, and D5 have equivalent sets ofanestors, as the deisions are also treated as anestors of themselves.
D1 D3D2 D4D5:b1

b1
b1b2 :b2 R

Figure 4.9: Part of an IDIT with yles.As an be dedued from Figure 4.9 the four deisions D2;D3;D4, and D5 have equiv-alent sets of anestors, when not onsidering the guards on the ars. Considering theguards, we see that, in the preliminary temporal ordering, D3 should be before bothD4 and D5, and D1 should be before all others. R is the set of nodes, whih are



44 Chapter 4. Representing Inuene Diagrams Involving Timeobserved or taken later than those spei�ally represented in the �gure.Whenever two or more deisions have an equivalent set of anestors, the set of an-estors from unguarded ars is used to order the variables. The set of anestors fromunguarded ars for some variable, V, is the set of variables, from whih there existsa path onsisting of unguarded ars going to V, for instane, D3 and D1 are in theanestor set from unguarded ars for D4, but D5 is not.If the sets of anestors are still equivalent the deisions are entered in the prelimi-nary temporal ordering in an unordered fashion. Eah of the unordered deisions areordered with respet to its set of observed variables and to a possible time variableassoiated with it.In ases where the sets of anestors from unguarded ars di�er for one or more de-isions, at least one of the sets of anestors from unguarded ars inlude one of theother deisions being ordered. The preliminary temporal ordering, in suh ases, isthat a deision, whih are in the set of anestors from unguarded ars, is plaed be-fore the other deision. For instane, in the ase shown in Figure 4.9 the preliminarytemporal ordering, < is:D1 < TeD < fD2; (D3 < fD4;D5g)g < R:One manner of reading an IDIT is to read it aording to the preliminary temporalordering. That is, to identify the �rst deision, then to establish, whih hane vari-ables are observed before taking this deision. When the �rst deision is found thenext deision an be found in a manner similar to the one desribed above. Guardedars should be read as possible informational ars, as the existene of the ar annotbe established, based only on the qualitative level. However, it gives the reader ofthe IDIT a sense of when the hane variable an be observed.The preliminary temporal ordering, <, is related to the temporal ordering, ��!t ,suh that, if two deision or time variables, V and V 0, are ordered as V < V 0, thenV ��!t V 0.Deduing the preliminary temporal ordering for the SAR problem yields the followingordering:Mp <Mo < Ws < TeWs < fHs;Weg < Se < TeSe < fLp; Su; Fo;HsgAfter having de�ned the qualitative level of IDITs, we now de�ne the quantitativelevel of IDITs.4.2.2 The Quantitative Level of Inuene Diagrams Involving TimeThe quantitative level of an IDIT is de�ned as a realization, given in De�nition 4.4.After presenting the de�nition we informally disuss the impliation of eah synta-tial rule of the realization of an IDIT. Finally, the elements of suh a realization aredisussed. De�nition 4.4 de�nes an ideal realization, and as suh does not disussthe problems imposed by the rules.We use pad(D) to denote the set of parents for some deision, D, from dashed ars.



4.2 Formal Desription of Inuene Diagrams Involving Time 45De�nition 4.4 (Realization of an IDIT)Let I = fV;L;Eg be the qualitative part of an IDIT modelling some DPIT. Then arealization of I onsists of four sets of funtions: �, whih is the set of onditionalprobability distributions for hane variables in I; 	, whih is the set of loal utilityfuntions for I; �, whih is the set of density funtions for time variables in I; and�, whih is the set of restrition funtions assoiated with I. Suh that,1. If C 2 VC is in I, then there exists a onditional probability distribution forC, P(Cjpa(C)), in �.2. If V 2 VU is in I, then there exists a loal utility funtion for V, : sp(pa(V)) 7! R , in 	.3. TeD is in VeT, D is in VDD, and there does not exist a time node, TeD 0, in VeT,suh that TeD is in h(TeD 0), i� a density funtion, fTeD(pa(TeD)), is in �, suhthat fTeD(�! ; t) is zero for all on�gurations, �! , of pa(TeD) and all times, t, inR, where t is less than zero,4. TeD is in VeT, D is in VDD, and there exists a time node, TeD 0, in VeT, suhthat TeD is in h(TeD 0), i� a density funtion, fTeD(pa(TeD)), is in �, suh thatfTeD(�! ; t 0; t) is zero for all on�gurations, �! , of pa(TeD) n fTeD 0g and all times,t and t 0, in R, where t � t 0,5. TeD is in VeT, D is in VW, and there does not exist a time node, TeD 0, in VeT, suhthat TeD is in h(TeD 0), i� a density funtion, fTeD(pa(TeD)), is in �, suh thatfTeD(�! ; d; t) is zero for all on�gurations, �! , of pa(TeD) n fDg and all times, tand d, in R, where t � d,6. TeD is in VeT, D is in VW, and there exists a time node, TeD 0, in VeT, suhthat TeD is in h(TeD 0), i� a density funtion, fTeD(pa(TeD)), is in �, suh thatfTeD(�! ; d; t 0; t) is zero for all on�gurations, �! , of pa(TeD) n fD;TeD 0g and alltimes, t, d, and t 0, in R, where t � t 0 + d,7. Ti is in VF, and T 0 is in VT, suh that Ti is in h(T 0), i� a density funtionfTeD(�! ; t 0; t) is zero for all on�gurations, �! , of pa(TeD) n fTeD 0g and all times,t and t 0, in R, where t � t 0,8. If D is in VD, TeD 0 is in VeT, and there is an ar, (V;D), in Ed, then there is arestrition funtion for D, fD : sp(pad(D))! sp(D), in �, and9. If (V;D; g) is in Eg, then TeD 0 is in VeT, suh that (TeD 0;D; true) is in Eg, and gis de�ned as g : sp(TeD 0) 7! ftrue; falseg is in �.Rule (1) determines that all hane variables in a realization of an IDIT have aonditional probability distribution attahed. And the onditional probability dis-tribution of eah hane variable is in �. Rule (2) handles 	, whih is the set ofloal utility funtions. It says that for eah loal utility in an IDIT there exists a



46 Chapter 4. Representing Inuene Diagrams Involving Timeutility funtion for eah on�guration of parents of the loal utility. These utilityfuntions are all in 	. Rules (3), (4), (5), and (6) are related. The two �rst of thesehandle time variables assoiated with deisions, and the two last handle time vari-ables assoiated with wait deisions. They all say that all time variables, T, in VeThave a density funtion assoiated with it, and the point in time represented by theindividual time variable is inuened by the hoie of the deision it is assoiatedwith, and the point in time represented by the time variable it has as a parent. The�rst time variable is, of ourse, only inuened by the deision it is assoiated with,in this respet. All the density funtions are plaed in �. The rules also determinethat time may not be negative and time always progresses through an IDIT. Rule (7)says the same as the four previous rules, only for free time variables. That is, the freetime variables may not be negative and time progresses. And the density funtionassoiated to eah free time variable takes the parents and a possible previous timevariable as parameter. These density funtions are also in �. Rule(8) says that forany restrition ar in an IDIT, there exists a restrition funtion, whih determinesthe state spae of the restrited deision, given the state spae of the restritingvariable. As per our de�nition, only deision variables may be restrited, and onlythe e�et of time may restrit these. All restrition funtions related to restritionars are in �. Rule (9) says that for eah guarded ar into a deision, there existsa time variable representing the initiation-time of that deision. The point in timethis time variable represents determines if the guard is evaluated to true or false.This information is also in �.We disuss, for eah set of funtions, whih limitations are imposed in this thesisand what the onsequenes of this are.�: This set onsists of the onditional probability distributions for hane vari-ables in an IDIT. For a disrete hane variable, C, whih only has other dis-rete variables in its onditioning set, the onditional probability distributionassoiated to it is P(Cjpa(C)), whih is similar to the onditional probabilitydistributions of hane variables in inuene diagrams.When C has a time variable in its onditioning set, the onditional probabilitydistribution annot be de�ned by assoiating a spei� probability for eahstate, given all on�gurations of the parents, as there are an in�nite numberof suh on�gurations. Instead the onditional probability distribution is de-�ned by assoiating to eah state of C, given its disrete parents, a funtionover time, desribed by f : R 7! [0; 1℄. f is based on the on�guration of dis-rete parents of C. The introdution of funtions to desribe the probabilitydistributions does not alter the requirement that the probability distributionsums to one, for all on�gurations of parents. One manner of ensuring this isby normalizing the funtion. That is, a funtion of a state i is given as:fC=i(t) = f(xi; t)Pnj=1 f(xj; t) ;where xi is a parameter for C = i given a on�guration of the disrete parents



4.2 Formal Desription of Inuene Diagrams Involving Time 47of C, when C has n states. In ases where C is binary, the probabilities an befound as f for one state and 1 - f for the other.In order to ease the development of a solution method, we further limit thefuntions to be those whih are di�erentiable and integratable, as these arenie properties to have ful�lled for ontinuous funtions.	: The set of loal utility funtions onsists of a utility funtion for eah utilitynode in the IDIT. The funtion maps eah on�guration of the parents of theutility node to a real value. When a loal utility funtion is dependent on time amethod similar to the one used for hane variables dependent on time is used,that is, the disrete parents are used to look up some parameter for a funtionover time. Suh a funtion reets the preferenes of the deision taker, likefor loal utility funtions, whih are not dependent on time, and the axiomsof utilities, as desribed in [Pearl, 1988℄ should also be followed. Finally, thesefuntion should be de�ned for all positive reals, suh that they are de�ned forall points in time.�: The unertainty assoiated with time variables is represented through den-sity funtions. We have hosen to have time variables be represented by �2-distributions. This hoie is based on the semantis of time variables, namelythat they portray an unforeseen delay in the end-time of some timed ation,and, a �2-distribution most aurately portrays the intuitive oneption of thissemantis. This is beause the output of suh a distribution is a funtion, forwhih the density of the funtion is onentrated on the �rst part of the domain.When ombining this with the semantis of a time variable, this is interpretedas: there is a high probability that the timed ation being delayed is delayedwith a short amount of time, and a very low probability of the delay beinghigher than some set time, dependent on the spei� parameters for the �2-distribution of the time variable at hand. Time variables, whih are dependenton disrete variables are assoiated to a table, from whih the parameters forthe �2-distribution is found, based on a on�guration of the parents. When atime variable, T, is dependent on another time variable, T 0, P(TjT0), we assumethat this an be rewritten to P(T)+t 0, where T 0 = t 0, that is, P(Tjt 0) � P(T)+t 0.Even though we have hosen to represent the probability distributions of timevariables using the �2-distributions another hoie of density funtion wouldnot hange the framework, onsiderably.�: This de�nes the set of restrition funtions. If the deision being restrited is await deision, then the state spae is altered, so that points in time in spei�intervals are invalid hoies for that deision. If, on the other hand, the deisionis a disrete deision, then ertain states are restrited, that is, they are invalid.This set also handles the funtions for determining if some guard evaluates totrue or false.



48 Chapter 4. Representing Inuene Diagrams Involving TimeThe quantitative level of an IDIT is spei�ed by using tables and funtions as inExample 3.The temporal ordering, as de�ned in De�nition 4.2, is based on IDITs, in whihall asymmetries have been resolved through on�gurations of the time variables. Toresolve these asymmetries we onvert the IDIT to a number of symmetri IDITs andthrough these we determine a temporal ordering.4.2.3 Symmetri Inuene Diagrams Involving TimeFrom the qualitative level of an IDIT a preliminary temporal ordering was dedued.To dedue the temporal ordering of an IDIT the quantitative level is also needed.Two deisions, whih are not ordered in the preliminary temporal ordering, shouldbe ordered in the temporal ordering. Likewise, the time of observation of guardedhane variables should be pinpointed. To �nd the ordering of, for instane, two suhdeisions, the time variable, to whih their ordering refers, is identi�ed. The statespae of the time variable is divided into the values yielding one ordering and thevalues whih yield the other ordering. Generally, we say that a time variable splitsthe IDIT into a set of new IDITs, in whih the asymmetries imposed by the timevariable are resolved. We sometimes refer to the time variable as a split variable. AnIDIT, in whih all split variables have been split upon, resulting in the resolution ofall asymmetries, is alled a symmetri IDIT , and, if only some of the asymmetrieshave been resolved, we all it a partially symmetri IDIT . As symmetri IDITs arespeial ases of partially symmetri IDITs, we only de�ne partially symmetri IDITs.Partially symmetri IDITs are de�ned in De�nition 4.5.When splitting the IDIT into a set of symmetri or partially symmetri IDITs,the sets of ars are altered. Consider an IDIT, for whih, at some point, a timevariable, Tn, indues a split. If the IDIT is split on Tn it means that there is a pathbetween Tn and at least one deision, D. The set of guarded ars going into D fromvariables, Vi 2 V, now beome informational ars if their guard is satis�ed. The setof restrition ars going into D are also onverted, suh that the state spae of D isresolved to a spei� state spae. All other ars remain the same. Furthermore, theset of restrition funtions alters to aommodate the hanges in the set of ars.In De�nition 4.5 we use EdTn to denote the set of dashed ars in the partially sym-metri IDIT resulting from a split on Tn. And EgTn is the set of labelled ars in thepartially symmetri IDIT resulting from a split on Tn. If some index, Tn-1, does notrefer to any time variable, it simply means the initial IDIT, and if some index, Tn+1,does not refer to any time variable, it simply means the rest of the IDIT.De�nition 4.5 (Partially Symmetri IDIT)Let I = (V;L;E) be an IDIT, and Tn some split variable.Then EgTn = f(V;Di; l)jl(Tn-1) = true;Di ��!t Tn+1; (V;Di; l) 2 EgTn-1g[f(V;Di; l)jTn+1 ��!t Dig and EdTn = EdTn-1 n f(V;Di)jTn+1 ��!t Dig. Then



4.2 Formal Desription of Inuene Diagrams Involving Time 49I 0 = (V;L;E 0) is the partially symmetri IDIT resulting of a split on Tn,where E 0 = EgTn [ EdTn.Besides this qualitative de�nition of a partially symmetri IDIT, the set of rules,whih de�ne an IDIT, must also be followed when onstruting a partially symmetriIDIT. A symmetri IDIT is a partially symmetri IDIT in whih Ed is empty andthe label on all ars in Eg is true.For the realization of a partially symmetri IDIT, we have that the set of restri-tion funtions is hanged, while everything else remains the same. That is, theset of restritions resulting from a split on Tn is denoted as �Tn and is de�ned as�Tn = f(Di)jTn+1Dig.A symmetri IDIT has some properties, whih neither partially symmetri IDITs norIDITs have. In a symmetri IDIT there exists a total ordering of deision and timevariables, and a partial ordering of all deision and hane variables. Furthermore,for eah disrete hane variable it an be dedued before whih deision, if ever, it isobserved. From the variables of a symmetri IDIT the temporal ordering, as de�nedin De�nition 4.2, an be dedued.Partially symmetri IDITs have the property that all variables before the time vari-able introduing the next split, an be ordered aording to the temporal ordering.Thus, in the temporal ordering, of partially symmetri IDITs, the set of time vari-ables, whih onstitutes fT1; : : : ; Tng, is the variables before the split variable, Tn.The part of the partially symmetri IDIT following the split variable an only beordered aording to a preliminary temporal ordering, thus, some variables mightnot be ordered. It should be notied that this fat also holds for IDITs, whih havenot been split, as variables before the �rst split variable are ordered in aordaneto the temporal ordering.Due to the restrition of only allowing asymmetries arising from time variables, onlytime variables an be split variables. A time variable splits an IDIT, or a partiallysymmetri IDIT, whenever a guard or restrition funtion is referring it. We postponethe details of the proess of �nding the parts, into whih an IDIT is split, untilChapter 5.The splitting of an IDIT an be illustrated by onstruting a tree struture, alleda split tree, whih reveals the asymmetries imposing a split on its branhes and theresulting partially symmetri and symmetri IDITs as its nodes. The root of the treeis the original IDIT, all internal nodes are partially symmetri IDITs, and all leafnodes are symmetri IDITs. For instane, splitting the IDIT of Setion 4.1.1, withrespet to TeWs, results in the split tree of Figure 4.10.A time variable splits an IDIT if two di�erent on�gurations of the variable eitherause a guard to hange its value, or a deision to hange its state spae. For in-stane, the instantiation of TeWs in Example 1 will, aording to the interval it isinstantiated to, impose a di�erent state spae for Searh, and hange whether or notHeat signature an be observed before taking Searh.
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Figure 4.10: A split tree resulting from a split on TeWs.



4.2 Formal Desription of Inuene Diagrams Involving Time 51The split tree should be read suh that, if TeWs splits to a point in time, whih iseither 48 hours or later, then the temporal order of the IDIT follows how the IDITin the lower leaf is read. Otherwise the temporal order follows how the IDIT in oneof the other leaves is read. The restritions to the state spae of Searh an only beseen in the quantitative level of the IDIT, but the fat that there are leaves withsimilar symmetri IDITs in them indiates that some deision variable after the lastsplit variable has a restrited state spae.In partially symmetri and symmetri IDITs, restrition ars referening time vari-ables, whih have already been split upon, are exhanged with informational ars.This we do as all information regarding the restrition has been removed, beausethe time variable referred by the restrition funtion is known to be in a spei�interval. This interval is based on the restrition funtions themselves. The same istrue for guarded ars. That is, if a guard is evaluated to true beause of a split, thear is present as an informational ar in the resulting partially symmetri or sym-metri IDIT. If, on the other hand, the guard evaluates to false, the ar is removed.As an example of this onsider Figure 4.10. When omparing the labels on the edgesbetween the root and the leaves of the split tree, we see that only in the lower rightleaf is the former guarded ar present.The temporal ordering of a symmetri IDIT an be found by the same tehnique forthe preliminary temporal ordering. That is, we �nd the �rst deision, D, and thehane variables observed before taking it, ID, and struture those as ID ��!t D. Thisis followed by the time variable assoiated with D. Then all variables, whih havebeen ordered, are removed from onsideration, and the proess is repeated, until allvariables are ordered.The di�erene in the temporal ordering between the qualitative level and the quan-titative level lies in the number of possible orderings. The number of temporal or-derings in the qualitative level is only a�eted by the number of guards in the IDIT.As long as there is at least one time variable in the IDIT, there is an in�nite amountof temporal orderings on the quantitative level of the IDIT.We say that the set of temporal orderings on the qualitative level onstitutes therequired set of temporal orderings for an IDIT, while the set of temporal orderingson the quantitative level onstitutes the set of possible temporal orderings.4.2.4 Wellde�ned Inuene Diagrams Involving TimeWhen modelling or solving IDITs it is important that the IDIT is wellde�ned. Bywellde�ned we mean that the next deision to be taken an be uniquely and unam-biguously identi�ed. This requirement is satis�ed as a on�guration of time variablesuntil some time variable, Tn, resolves all asymmetries between Tn and Tn+1 in thepreliminary temporal ordering, where Tn+1 is the time variable immediately afterTn. Thus, the next deision an be found.That wellde�ned IDITs are only a matter of �nding the next deision is a onse-



52 Chapter 4. Representing Inuene Diagrams Involving Timequene of Rule (4) in De�nition 4.1. For further disussion of wellde�ned inuenediagrams, whih are related to this, we refer to [Nielsen and Jensen, 1999℄.4.3 SummaryIn this hapter we have introdued a framework for modelling DPITs. The syntaxof the framework has been de�ned and semantis of the onepts have been given.Furthermore, heuristis for reading and understanding an inuene diagram involvingtime, both on the graphial level and the numerial level, have been given. This isdone through the temporal and the preliminary temporal ordering. We have alsoargued for IDITs being wellde�ned.



Chapter 5Solving Inuene DiagramsInvolving Time
In Chapter 4 we presented a representation language, IDIT, for modelling DPITs. Inthis hapter we present a solution method for solving IDITs. The solution methodproposed solves IDITs with respet to �nding the hoie, whih is preferred by thedeision taker, for eah deision, assuming all future hoies are taken in this man-ner, too.First, we present an outline of the solution method, giving an overview of the keyparts of the solution. Following the overview, eah part of the solution method isdisussed in detail, and the diÆulties of eah part are identi�ed, and, �nally, in Se-tion 5.6 the full solution method is presented. We end this hapter by, in Setion 5.7,disussing sampling and the tehnique we have hosen.5.1 Overview of the Solution MethodWe begin with a preliminary disussion of the solution method for IDITs. It is pre-liminary as it does not inlude how to solve the individual steps of the solutionmethod, but rather gives an overview of the steps in the solution method.The solution method follows the solution sketh of [Broe et al., 2003℄. However,where the sketh only showed how to solve a single spei� example of a DPIT,the method in this setion is a general solution method, suh that it an be used tosolve all IDITs.A solution method of an IDIT is basially the task of determining a poliy for eahdeision in the IDIT. A poliy, Æ��!tD , for a deision, D, given the past with respetto the temporal ordering, ��!t , is some hoie of D based on its past. The past of adeision is the set of variables, whih are before the deision in the temporal ordering,that is, past(D)��!t = fV jV 2 VD [VC and V ��!t Dg. De�nition 5.1 de�nes a poliy:53



54 Chapter 5. Solving Inuene Diagrams Involving TimeDe�nition 5.1 (Poliy, Æ��!t )Let D be a deision in an IDIT and past(D)��!t be the past of D, then a poliy,Æ��!tD , for D is the funtion:Æ��!tD : sp(past(D)��!t ) 7! sp(D):If past(D)��!t inludes ontinuous variables an in�nite number of poliies exists forD. In order to deal with this, a poliy of a deision, whih has a ontinuous variablein its past, is taken based on a grouping of the states of ontinuous variables. Wedisuss this in detail later.A strategy, �, of an IDIT is a set ontaining a poliy for eah deision in the IDIT,that is:De�nition 5.2 (Strategy, �)Let VD be a set of deisions, and eah D in VD has a poliy, Æ��!tD , then a strategy,� is: � = fÆ��!tD j8D 2 VDg:We say a poliy is an optimal poliy if it maximizes the expeted utility of thedeision. A strategy ontaining only optimal poliies is an optimal strategy , whihwe denote �̂.The aim of a solution method is to �nd an optimal strategy for taking the deisionsin an IDIT.5.1.1 Outline of the Solution MethodThe solution method for IDITs is strutured on two levels. A global level, whih de-omposes the IDIT into symmetri IDITs, and merges these when a result is found,to get the solution for the IDIT. When the IDIT is deomposed to manageable piees,eah piee is solved using a loal solution method.The global level of the solution method is inspired by the solution methodsfor asymmetri deision problems, suh as the ones in [Nielsen and Jensen, 2002℄,and [Demirer and Shenoy, 2001℄, and the loal level is inspired by lazy evaluation,[Madsen and Jensen, 1999℄. The idea is to deompose an IDIT, whih inludes asym-metries, into a number of symmetri IDITs. The symmetri IDITs are then solvedindividually and the results of the deompositions are merged to give the result ofthe original IDIT.The outline of the parts of a solution method for IDITs, and what eah part does,is as follows:Splitting an IDIT: In order to �nd an elimination sequene for an IDIT the tem-poral ordering of the variables has to be found. As there is no unique temporalordering for an IDIT, we split the IDIT into symmetri IDITs. The splitting is



5.2 Splitting an Inuene Diagram Involving Time 55done by �nding the �rst variable imposing a split, based on a preliminary tem-poral ordering, whih an be dedued from the original IDIT. By instantiatingall variables, whih lead to asymmetries, and splitting the IDIT aording tothese guards and restrition funtions, all asymmetries are resolved in the re-sulting partially symmetri IDITs. This is ontinued until all asymmetries areresolved, thus a symmetri IDIT is onstruted. This splitting of the IDIT isthe �rst part of solving an IDIT. The splitting of an IDIT follows the approahdesribed in Chapter 4.Struture of eliminations: When a temporal ordering of the variableshas been dedued, a method should struture the elimination of variables.Several approahes are appliable to do this. The goal of all approahes isto onstrut an elimination order from the temporal ordering, suh that theelimination an be exeuted as eÆiently as possible.Elimination of variables: Having found an elimination order, the elimi-nation ommenes. The elimination of variables is done for one node at a time,by following the priniples of expeted utility. In this manner an optimal poliyfor eah deision an be found, and when all deisions have been eliminatedthe optimal strategy for the IDIT is found.Merging of symmetri IDITs The splitting is done reursively, and whenevera symmetri IDIT is found, an elimination order for this symmetri IDIT isdedued. Then the variables before the last split variable, with respet to theelimination order, are eliminated, and optimal poliies for the deision variablesafter this split are found. When the split variable is to be eliminated the resultsfrom eah branh indued by the split variable is used to eliminate the splitvariable. That is, when an intermediate node in the split tree has reeivedresults from all its hildren, these results are merged, making the intermediatenode a new leaf node. In this manner the optimal poliies for all deisions arefound.The following setions elaborate further on eah of the four steps presented above.5.2 Splitting an Inuene Diagram Involving TimeIn Chapter 4 we desribed the temporal ordering of a symmetri IDIT, whih is away of resolving the asymmetries of the IDIT. This priniple is also neessary inorder to solve the IDITs as we need an order in whih we an eliminate the variablesto �nd an optimal strategy, [Jensen et al., 1994℄. The e�ets of splitting an IDIT arethree-fold in the solution method, as it divides the problem into sub-problems; itresolves the asymmetries within the IDIT, suh that tehniques inspired by thoseused for inuene diagrams an be used; and a total ordering of deision and timevariables emerges.



56 Chapter 5. Solving Inuene Diagrams Involving TimeThe strategy for splitting the IDIT follows the strategy for �nding the temporalordering. First, a preliminary temporal ordering is found using the qualitative levelof the IDIT. Then a �rst time variable is found using the preliminary temporalordering, and the set of splits this variable imposes is found. Then the IDIT is spliton the time variable. By performing these operations in a reursive manner, we�nd a set of symmetri IDITs. The temporal ordering for eah symmetri IDIT isestablished, so a struture of elimination an be onstruted for eah. By mergingthe result of eah symmetri IDIT, resulting from a split, a solution for the IDIT isfound. The spei�s of how the struture of elimination and the merging is performedfollows in the setions below.Finding the Preliminary Temporal OrderingTo initiate the onstrution of the preliminary temporal ordering, the �rst deisionin the IDIT must be identi�ed. There is always one suh deision, as proven in Chap-ter 4. It an be identi�ed as the deision, for whih the set of anestors intersetedwith the set of deision variables is the empty set. That is, the �rst deision, D 0, ofan IDIT is the deision for whih it holds that an(D 0) \VD = ?.As there annot be any guards before the �rst deision the set of observed variablesfor this deision onsists of only unguarded variables. The preliminary temporalordering of an IDIT with a �rst deision, D, for whih the set of observed variablesis ID, therefore has a preliminary temporal ordering, ID < D.If a deision is a deision involving time, the time variable assoiated with the deisionis immediately after the deision variable in the preliminary temporal ordering, thatis, if there exists a deision variable, D, and an assoiated time variable, TeD, thenD < TeD.Having identi�ed the �rst deision, the set of observed variables for this deision,and, possibly, a time variable, all remaining variables should now be ordered in asimilar manner. We order these variables by repeatedly identifying the next deisionin the preliminary temporal ordering. As long as no deision, already plaed in thepreliminary temporal ordering, has a time variable assoiated with it, the next de-ision an be identi�ed. The next deision is the one, for whih the set of anestorsinterseted with the set of deision variables equals all the previous deisions in thepreliminary temporal ordering. That is, if the next deision is Di and P is the set ofdeisions already ordered, then an(Di) \VD = P.Until the �rst time variable in the IDIT is plaed in the preliminary temporal or-dering, the deision variables before this time variable, and the observed variablesfor eah of the deisions are ordered in this fashion. In the speial ase of IDITs,in whih there does not exist a time variable, the temporal ordering yields an ordersimilar to the one for inuene diagrams as desribed in [Jensen et al., 1994℄.Deisions, whih are after the �rst time variable in the preliminary temporal ordering,



5.2 Splitting an Inuene Diagram Involving Time 57an have a set of observed variables, whih di�ers aording to the point in time theyare taken. This is a result of guards on guarded ars being evaluated to either trueor false. The order of taking two or more deisions may also hange due to di�erenton�gurations of time variables.Assuming that the part of an IDIT before the �rst time variable has been orderedaording to the above spei�ations, and the deision variable following this timevariable has been uniquely identi�ed, then the set of observed variables for thisdeision an be found as previously, exept for the hane variables, whih have aguarded ar going to the deision. That is, we have an IDIT as the one illustratedin Figure 5.1.Figure 5.1 depits an IDIT in whih: D1 is the �rst deision involving time; R0 is thepart of the IDIT before D1; D2 is the deision following immediately after D1 in thepreliminary temporal ordering; ID2 [ IgD2 is the set of hane variables between thetwo deisions, where ID2 is the set of hane variables always observed, and IgD2 isthe set of guarded observed variables; and R1 is the set of variables after D2, whihmay inlude a time variable assoiated with D2, and R1 also inludes IgD2 , as de�nedpreviously. An ar emanating from a set of nodes going into a node in the �gurerepresents that eah element in the set has an ar going to that node, this is the asefor the relation between R0 and D1, whereas an ar from a node into a set of nodesrepresents a preliminary temporal preedene, suh as the relation between D2 andR1. R1IgD2R0 ID2 D2D1 Figure 5.1: Part of an IDIT.In the preliminary temporal ordering the two sets of observed variables, ID2 andIgD2 , are before D2, and the set of guarded observed variables, IgD2 , is also in the setof hane variables never observed, or observed too late to have an impat on anydeision, that is, we have a preliminary temporal ordering dedued as:: : : < ID2 [ IgD2 < D2 < : : : < IgD2.We an generalize this and say that, for any deision, D, in an IDIT, the preliminarytemporal ordering, <, with respet to D, is dedued as ID[IgD < D < TeD < : : : < IgD,where ID is the set of observed variables, and IgD is the set of guarded observedvariables, for D and TeD is the possible time variable assoiated with D.



58 Chapter 5. Solving Inuene Diagrams Involving TimeHaving spei�ed the preliminary temporal ordering for any single deision, a possibleassoiated time variable, and the set of observed variables for this deision, only thespei�ation of how to �nd the ordering of multiple deisions after the �rst timevariable remains.From the de�nition of the qualitative part of an IDIT it is known that there is a paththrough all time and deision variables, this is spei�ed in Rule (4) for the qualitativepart of an IDIT. This path is used to �nd the next deision for some deision,assuming that all deisions before the urrent one is ordered in the preliminarytemporal ordering. The deision read after the urrent deision, is the deision forwhih the set of anestors is minimal, ompared to the set of anestors for all otherdeisions not yet onsidered. Using this de�nition it is known that, if the presentdeision, D, is not the last deision in the IDIT, then there exists a deision, D 0,whih has D in its set of anestors, as there must be a path between the two deisionsaording to the de�nition. If there are multiple deisions after the present one, theminimal set of anestors is the set, whih is a proper subset of all others. In aseswhere multiple yles exist, suh as was illustrated in Figure 4.9 the set of anestorsfrom unguarded ars are used to order the deisions involved in the yles.Algorithm 5.1 spei�es how a preliminary temporal ordering is found based on thequalitative level of an IDIT, I.PreliminaryTemporalOrdering(I = (V;L;E))1: Find deisions, D, with minimal sets of anestors.2: if D ontains one element, D then3: Find the set of observed variables, ID and guarded observed variables, IgD forD4: Insert ID [ IgD < D < TeD in PTO5: Call PreliminaryTemporalOrdering(I 0 = (V n fDg [ ID [ fTeDg;L;E)6: else if D is ? then7: Insert V in PTO8: return PTO9: else10: Find the set of observed variables, ID and guarded observed variables, IgD foreah D 2 D11: Compare sets of anestors from unguarded ars for eah pair, D, D 0.12: if an(D) � an(D 0) then13: Insert ID [ IgD < D < TeD < ID 0 [ IgD 0 < D 0 < TeD 0 in PTO14: else15: Insert (ID [ IgD < D < TeD); (ID 0 [ IgD 0 < D 0 < TeD 0) in PTO16: Call PreliminaryTemporalOrdering(I 0 = (V nDSD2D ID [ fTeDg;L;E).Algorithm 5.1: The algorithm for onstruting the preliminary temporal ordering ofany IDIT, I.



5.2 Splitting an Inuene Diagram Involving Time 595.2.1 Split TreesThe method for onstruting the split tree for some IDIT is to �rst �nd the prelimi-nary temporal ordering, <, of the variables. The method then onstruts the root ofthe tree, whih is the original IDIT. The �rst possible split variable an be found inthe preliminary temporal ordering as the �rst time variable. The method splits ona time variable, if one or more deisions, whih are before the next time variable inthe preliminary temporal ordering, have a set of guarded observed variables, are notordered in relations to other deisions, or have a restrition funtion.For eah guard or restrition the point in time assoiated with it is used toonstrut a minimal set of time intervals, suh that no information is lost inan instantiation of the intervals. For instane, in Example 1, the SAR problem,when instantiating TeWs, the guard between Hs and Se, whih is true if t � 48,and the restrition of the state spae of Searh are used to �nd the intervals:[0; 12[; [12; 18[; [18; 20[; [20; 48[; and [48; 168[.For eah interval found in this manner, a new node is onstruted and a branh on-neting the urrent node to the new node is added. The partially symmetri IDITin this node is an IDIT, in whih the guards between the split variable and the nexttime variable are hanged to true, if the guard evaluates to true, or removed if theguard evaluates to false. The evaluation of the guards is a result of the time variablebeing in the interval determined by the split. As the intervals of the split are on-struted from the guards, no interval an exist in whih it annot be determined ifthe guard is true or false. Furthermore, the restrition funtion is evaluated and theresult of this evaluation is set to be the state spae of the deision.The algorithm for onstruting a split tree is given in Algorithm 5.2. Before thealgorithm begins it is assumed that an initiation method has onstruted the root ofthe split tree, found a preliminary temporal ordering, PTO, the �rst split variable,V, and the point in time or interval, T, setting the range for V in partially symmetriIDIT. The algorithm uses a set of list operations whih should be self explanatory.Algorithm 5.2 is ompat with respet to eluidating omments. What happens isthe following: we start in line 1 by identifying the next element in the preliminarytemporal ordering, with respet to V. If this next element, or variable, is a deisionvariable with some restrition on it, either in form of a restrition funtion or aguarded ar, we take the point in time, or time interval, assoiated to that restritionor guard and store it in a list. Then we add the deision to a list of deisions, thisis done in line 8. This we ontinue doing as long as we are not onsidering a timevariable representing the end-time of some deision. Lines 10 and 11 state that, ifwe have onsidered the last variable in the IDIT, we simply return to the parent,with respet to the entire split tree. If we, at any time, onsider a time variable, asjust mentioned, or have onsidered the last variable in the IDIT, we order the timeintervals we have gotten from the restrition funtions and guards, aording to eahother. As long as the list of these time intervals is not empty we onstrut a hildof the urrent partially symmetri IDIT. As seen in line 16, this hild is a new split
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SplitTree(V;I;PTO; T)1: V 0  PTO:NextElement(V)2: while V 0 =2 VeT do3: if V 0 2 VD then4: if D 2 � then5: timeInterval timeInterval:AddElement(ExtratTime(V 0))6: for (X;V 0; l) 2 Eg and l 6= true do7: timeInterval timeInterval:AddElement(ExtratTime(l))8: deisions deisions:AddElement(V 0)9: V 0  PTO:NextElement(V 0)10: if V 0 = null then11: return to parent12: timeInterval timeInterval:Sort()13: T0 T14: T1 timeInterval:FirstElement()15: repeat16: newnode SplitTree(V 0;SymmetriIDIT(I; T0;deisions);PTO; T0)17: AddEdge((thisnode, newnode, T0 � t < T1))18: T0 T119: T1 timeInterval:NextElement(T0)20: until T0 = null21: return to parentAlgorithm 5.2: The algorithm for onstruting a split tree for any IDIT, I.



5.2 Splitting an Inuene Diagram Involving Time 61tree. In line 17 we add an edge between the new hild and the node ontaining thepartially symmetri IDIT we have been dealing with so far. This edge is labelledwith whatever time interval we are building the new split tree from. Then, in line19, we pik the next element in the list of time intervals, and this onstrution ofhildren we repeat until no more time intervals exist in the aforementioned list.Algorithm 5.3 implements SymmetriIDIT, whih takes as input an IDIT, a pointin time, for whih the symmetri IDIT is onstruted, and a list of deisions.SymmetriIDIT(I; T0;deisions)1: for D 2 deisions do2: if D 2 � then3: sp(D) fdi : di(T0) = trueg4: for (X;D; l) 2 Eg do5: if l(T0) = true then6: Eg  Eg:AddElement(X;D)7: for (X; Y; l 0) do8: Eg  Eg:Remove((X; Y; l 0))9: else10: Eg  Eg:Remove((X;D; l))11: return IAlgorithm 5.3: The algorithm for onstruting symmetri IDITs for any IDIT, I.Algorithm 5.3 is also ompat with respet to eluidating omments. What it doesis to go through all deisions in the list of deisions it reeives as input. Then, forall deisions, whih are restrited, the state spae is hanged to omply with therestrition, this is seen in lines 2 and 3. And for all guarded ars into eah of thesedeisions, if the guard evaluates to true, as a onsequene of the interval in whih theurrent symmetri IDIT is, the ar is onverted to an informational ar. If the guardevaluates to false, the ar is simply removed from the set of ars. This happens in lines4 through 10. In line 10 the resulting symmetri IDIT is returned. The symmetriIDIT is then put in the node representing the interval of T0 in the split tree.For the root and eah internal node in the split tree a temporal ordering for thepartially symmetri IDIT in it is onstruted using Algorithm 5.1. This gives anordering of the partially symmetri IDITs in these nodes, whih is similar to thetemporal ordering for the part of the partially symmetri IDIT before the timevariable, whih the partially symmetri IDIT splits on, and a preliminary temporalordering of the rest.For all leaf nodes in the split tree a method similar to Algorithm 5.1 is used. However,the sets of guarded variables are not onsidered and the part, whih handles multipledeisions, whih annot be ordered in relation to eah other, is removed too.



62 Chapter 5. Solving Inuene Diagrams Involving Time5.3 Struture of EliminationAfter splitting the original IDIT into partially symmetri and symmetri IDITs,we use an approah inspired by a solution method for inuene diagrams, to solvethe IDITs. We only solve the leaves of a split tree, meaning that an internal nodereeives a result of elimination from eah of its hildren, before the loal solution ofthe internal node begins, eliminating the leaf nodes in the proess. The part of thepartially symmetri IDIT, whih is to be solved is therefore the part between the splitvariable induing this partially symmetri IDIT and the split variable, whih splitsit into its hildren. This part of the partially symmetri IDIT is symmetri, thus, theloal solution method of internal nodes is no di�erent than the loal solution methodfor leaf nodes, exept for the merging of its hildren. A solution of a symmetriIDIT is to �nd an optimal poliy for all deision variables, whih are before thevariable that aused the split, in the elimination order. In ases where there are nodeision variables the result of eliminating all variables before the split variable inthe elimination order is passed on to the parent node in the split tree. If no moresplit variables exist, the rest of the variables are eliminated in the same fashion, stillrespeting the elimination order.We have hosen to struture the elimination of variables using strong juntion trees,[Jensen et al., 1994℄, as this method of struturing the elimination has several bene-�ts: a strong juntion tree is a di�erent representation of a DPIT than a symmetriIDIT, thus the onversion to a strong juntion tree liberates the solution method ofrespeting the rules imposed by the de�nition of IDITs; furthermore, strong jun-tion trees are eÆient for retrieving an optimal strategy for a deision problem,[Jensen et al., 1994℄; and it diretly depits the onditional independene of the sym-metri IDIT.A di�erent approah of struturing the order of elimination, is to use the ideas ofnode-removal and ar-reversal as proposed by [Shahter, 1986℄, whih is also eÆ-ient. An approah based on this method works diretly on the symmetri IDIT.Thus, it does not have the bene�ts ahieved through strong juntion trees.An interesting aspet, whih should be noted, is that the dedution of the temporalordering desribed above, and the elimination of variables, whih is desribed inSetion 5.4, enables future solution methods to use, for instane, node-removal andar-reversal instead of strong juntion trees, without hanging these parts of themethod.5.3.1 Moralizing Inuene Diagrams Involving TimeIn order to onstrut a strong juntion tree the symmetri IDITs have to be stru-tured into liques, aording to the elimination order, using strong triangulation. Wetriangulate the symmetri IDIT by �rst onverting it to a moral graph, whih is anundireted graph, in whih all immoralities have been removed. In this setion we



5.3 Struture of Elimination 63desribe how a symmetri IDIT is moralized.A moralization of a direted graph, G = (V;E), is the undireted graph, (V 0;E 0)resulting from removing all immoralities. It should be notied that the set of labelshave been omitted as the set of labels of a symmetri IDIT onsists only of the label,true. The idea is to �rst remove all informational ars from the IDIT. Then removeall immoralities, by adding an edge between nodes sharing a hild, if this edge doesnot already exist, and �nally, remove all utility nodes.Algorithm 5.4 spei�es what is meant by moralization in the thesis.Moralize(I)1: Remove all informational ars2: for eah node, V, in I do3: Add edge between eah pair of parents of V, if it does not already exist4: Remove all utility nodes5: Undiret the graph6: return resulting graphAlgorithm 5.4: An algorithm for onstruting the moral graph of any IDIT, I.5.3.2 Strong TriangulationBefore onstruting a strong juntion tree, we triangulate the graph. The idea of thistriangulation is to ensure that when a node is to be eliminated all its neighbours areonneted. This is ensured by going through the elimination order and for eah nodeadding �ll-ins between neighbours, whih are not onneted, and whih have not al-ready been onsidered. When we have ompleted adding �ll-ins the resulting graphis triangulated. We eliminate the variables in an elimination order, whih respetsthe reverse of the temporal order.As there an be many elimination orders, due to the hane variables not beingordered, and di�erent orders yield di�erent strong triangulations, we strive to �ndthe triangulation whih is minimum. A triangulation an be minimum in di�er-ent ways. For instane, a minimum triangulation an be the triangulation, whihadds the least amount of �ll-ins, or the one for whih the sum of the lique sizesis minimum. We refer to [Kj�rul�, 1993℄ for a disussion of minimum triangula-tions. No matter what approah of minimum triangulation is hosen, �nding it isNP-hard [Jensen and Jensen, 1994℄. This means that, in order to omplete it in areasonable amount of time, some heuristis have to be applied. We have hosen touse minimum �ll-in triangulation. To this we apply a heuristi in the form of havinga look-ahead of two, so if two or more hane variables are not ordered we examineall possible ombinations of these variables. We add the �ll-ins neessary for thetriangulation of the graph when eliminating the �rst two variables, and hoose thetriangulation whih adds the fewest �ll-ins. If two ombinations both have the least



64 Chapter 5. Solving Inuene Diagrams Involving Timeamount of �ll-ins we eliminate the next variable to see if there is a di�erene, andif not, we hoose one of these at random. Other alternatives, inlude using minimalseparator sets, [HUGIN Expert, 2003℄, whih seems to work quite well.The elimination order orders the variables in a total ordering. We de�ne a funtion,�, whih maps eah node in the elimination ordering to the natural number aordingto when it is eliminated. We de�ne � to be the bijetion, � : V$ f1; : : : jVjg, whereV is the set of nodes in the elimination order, suh that, if V is before V 0, aordingto the elimination order, then �(V)< �(V 0).The algorithm for triangulation takes as its arguments an undireted graph and isstrutured as presented in Algorithm 5.5.Triangulation(M = (V;E))1: V 0  V2: for �(V) = 1 to jVj do3: for eah X; Y 2 ne(V) do4: E E [ ffX; Ygg5: V 0  V 0 n fVg6: return (V, E)Algorithm 5.5: An algorithm for setting up a strong triangulation of any moralizedgraph, M.The result of Algorithm 5.5 is the triangulated graph from whih the strong juntiontree is onstruted.5.3.3 Strong Juntion TreeA strong juntion tree is a rooted tree of liques, whih is onstruted suh thatelimination of variables an be performed using an absorption method.The graph resulting from the strong triangulation an be divided into a set of liques,K, by following the elimination order. These liques are organized in a strong juntiontree, T , for whih it holds, that:� For eah pair of liques, C and C 0, in T , the set C\C 0 is in all liques on thepath between C and C 0.� For eah pair of adjaent liques, C and C 0, in T , the intersetion, C \C 0, isassoiated as a separator between the two.� There exists a strong root, and for eah pair of adjaent liques, C and C 0, inT , where C is losest to the strong root, the variables of the set, C \ C 0, areafter the variables of the set C 0 nC in the elimination order.



5.3 Struture of Elimination 65In a strong juntion tree the elimination order is strutured suh that the solutionis found by marginalizing free variables, and propagating the resulting potentialstowards the root. The onstrution of the strong juntion tree is desribed in Algo-rithm 5.6 whih takes a triangulated graph as its argument.StrongJuntionTree(G = (V;E))1: i 12: while i � jVj do (Find andidates to liques.)3: Ci is set to be the lique ontaining a variable V, where i equal �(V).4: K K [Ci5: for Ci;Cj 2 K do (Removes liques whih are subsets of another lique)6: if Ci � Cj then7: K K nCi8: S E 0  ?9: K 0  fCjg (Cj is the lique with lowest index in K.)10: while K 0 6= K do (Construting the tree.)11: pik Ci 2 K nK 0 s.t. 9Ck 2 K 0jCi \Ck 6= ?12: S S [ fCi \Ckg13: E 0  E 0 [ ffCi;Ck;Ci \Ckgg14: K 0  K 0 [ fCig15: return (K;S;E 0)Algorithm 5.6: An algorithm for onstruting a strong juntion tree, of a triangulatedgraph, G.Algorithm 5.6 is similar to the algorithm of [Jensen et al., 1994℄, in whih the or-retness of the algorithm is argued for.Following the onstrution of a strong juntion tree we assoiate to eah lique inthe strong juntion tree two sets of potentials, whih reet the quantitative level ofthe symmetri IDIT.Generally, a probability distribution, � = P(XjY), an be alled a probability po-tential. A probability potential is a funtion, �, whih maps the state spae of a setof variables, W = X [ Y, into a positive real number, that is, � : sp(W) 7! R+ .The set of variables, W, is alled the domain of � and is denoted as dom(�). Twoprobability potentials an be multiplied to �nd the potential for the joint distribu-tion. Other properties of potentials are desribed in [Jensen, 2001℄. Furthermore, wespeify division of two potentials to be the same as when two reals are divided, withthe exeption that, if the denominator is zero we de�ne the result to be zero as well.In a similar manner as done for probability distributions, utility funtions an beviewed as utility potentials. It should be noted that this an impose a positive lineartransformation of the utility funtion to satisfy the funtion mapping to a positivereal. In aordane to the deomposition of the utility funtion as loal utility fun-tions, two utility potentials may be summed.



66 Chapter 5. Solving Inuene Diagrams Involving TimeTo eah lique, Ci, in the strong juntion tree, we assoiate two sets of poten-tials, �Ci and 	Ci . �Ci is the set onsisting of all probability potentials, forwhih dom(�) � Ci, that is, �Ci = f� 2� [�jV 2 dom(�); V 2 Cig, and 	Ciis the set onsisting of all utility potentials, for whih dom( ) � Ci, that is,	Ci = f 2 	jV 2 dom( ); V 2 Cig.5.4 Elimination of VariablesHaving onstruted a strong juntion tree the solution method proeeds by elimi-nating the free variables in the symmetri IDIT in aordane to the strong juntiontree. The manner in whih a variable is eliminated depends on its type and whetheror not it has a ontinuous variable in its set of parents. In this setion we desribehow eah type of variable is eliminated. Finally, we desribe how the elimination isarried out in strong juntion trees.A node, Ci, in a strong juntion tree represents a lique of variables, fV1; V2; : : : ; Vng,and has the two sets of potentials, �Ci and 	Ci , assoiated with it. Eliminating avariable, Vi, from Ci is done by marginalizing Vi from all probability potentials, �,where Vi is in the domain of � in �Ci , and remove it from all utility potentials,  in 	Ci , and then updating the two sets of potentials aordingly.Let �Vi be the set of probability potentials, whih have Vi in their domain and 	Vithe set of utility potentials, whih have Vi in their domain; furthermore, let ��Vi bethe set of probability potentials resulting from marginalizing Vi from �Vi and 	�Vithe set of utility potentials resulting from marginalizing Vi from 	Vi; and �nallylet PVi represent the manner in whih Vi is marginalized. That is, generally, if Viis a hane variable PVi represents summation, and if Vi is a deision variable PVirepresents maximization, we elaborate on this below. Elimination of Vi is then:��Vi = PVi Y�2�Vi�, and (5.1)	�Vi = PVi Y�2�Vi� � X 2	Vi : (5.2)After �nding ��Vi and 	�Vi, the two sets of potentials are updated to:�� =(� [��Vi) n�Vi and (5.3)	� =�	 [ 	�Vi��Vi� n	Vi: (5.4)The division of 	�Vi by ��Vi is done in order to ompensate for the multipliation inEquation 5.2. The method presented above shows a general manner of eliminatingvariables, however, the exat marginalization has not been spei�ed. In the followingsetions we speify what PVi means for the di�erent types of variables.



5.4 Elimination of Variables 675.4.1 Elimination of Disrete Chane VariablesDisrete hane variables, whih are not dependent on a time variable, are elimi-nated by summation over the hane variable being marginalized out. That is, inEquations 5.1 and 5.2, the universal marginalization operator is the sum over Vi.Marginalization of hane variables dependent on time is oneptually equivalent tomarginalization of hane variables, whih are not dependent on time.However, even though the two marginalizations are oneptually similar, the out-omes of the two are not. Whenever we marginalize a hane variable, whih isinuened by time, we need to deal with funtions. We divide the ases in the oneswhere a disrete hane variable, C, is inuened by time and those where it inu-enes time.Let C be the disrete hane variable, whih is about to be eliminated. Theprodut of the probability potentials inluding C in their domain is �, wheredom(�) = fXg [ fCg [A, where A is a set of disrete variables and X is a timevariable. Marginalizing C in this ase results in a new potential where eah on�gu-ration of A is assoiated to a funtion. The funtion is found as the sum, over thestates of C, of the funtions of this on�guration of the original probability potential.If the potential inludes two ontinuous variables, aording to Chapter 4, we knowthat P(TjT0) is P(T)+ t 0. We utilize this to obtain a funtion as desribed above onlyover both time variables.When C inuenes a time variable, and is eliminated before the time variable theprodut of probability potentials inludes a joint over these two variables. Whenmarginalizing C the result is a probability potential over the time variable. Thispotential inludes a new funtion, instead of the density funtion of the time variable,for eah on�guration of disrete variables in the potential. This funtion is the sumof the density funtions found by the state of C given this on�guration of the disretevariables.Marginalizing from the utility potential is done in a similar manner, but where thefuntions are multiplied by the funtion of the utility given the on�guration of thedisrete variables.We have hosen to restrit the models of IDITs, to not allow one variable to be inthe onditioning set of multiple time variables.5.4.2 Elimination of Disrete Deision VariablesThe elimination of disrete deision variables is done di�erently than the eliminationof disrete hane variables. Deisions are marginalized from � and 	 using maxi-mization, as opposed to summation. Deisions are marginalized from � by hoosingany hoie, yielding a new potential from whih the deision has been marginalized.Deision variables are eliminated from utility potentials by maximizing the outome



68 Chapter 5. Solving Inuene Diagrams Involving Timegiven observations and previous deisions, aording to an assumption that all futuredeision variables have been taken following this priniple too.When deisions do not have any ontinuous variables as parents, this maximizationan be found as in inuene diagrams, by taking the hoie yielding the best resultin the utility potential. That is, in this ase 5.2 beomes:	�D =arg maxD Y�2�D � X 2	D Equation 5.1, for deision variables, is found by hoosing any hoie of D, as theresulting potentials are equivalent.Having a time variable in the onditioning set does not hange the alulation of��D, however the outome, is hanged as the resulting potential has a funtion overthe time for eah on�guration of the variables in its domain.If the deision we are marginalizing has a time variable as a parent, we get a utilitypotential with a ontinuous funtion for eah state of the deision. By �nding theintersetions of these funtions, we �nd the intervals where one hoie is better thananother, and this way we �nd the optimal strategy for eah suh interval. An exampleof this is seen in Figure 5.2.
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Figure 5.2: Two utility funtions representing the development over time given eitherthe hoie of d1, f(x), or d2, s(x), of D.When omputing this, there an be an in�nite number of suh intervals if one ofthe funtions is periodi or utuates. We restrit IDITs from using suh utilityfuntions.



5.4 Elimination of Variables 695.4.3 Elimination of Time VariablesElimination of time variables is done by integration over the entire state spae ofthe variables. When the time variable is a split variable the integration is done overthe interval of eah symmetri IDIT, and the result is the sum of all integrals. Forsimpliity we say that if the time variables is not a split variable it has the interval[0;1[, and we generalize the updating of potentials, so Equations 5.1 and 5.2 beome:��T = n-1Xi=0 Z ti+1ti �idt and	�T = n-1Xi=0 Z ti+1ti �i �  idt;where �i and  i denotes the probability and utility potentials for eah interval.This is the ideal elimination. Unfortunately we annot do this, as we have hosen torepresent time variables by �2-distributions, whih are not on losed form, meaningwe annot perform an exat integration over the state spae of our time variables.This means that we have to use other methods to aid us. Suh methods ould bedisretization of the time variables, or using some sampling tehnique. We havehosen the latter. We have hosen sampling, as we feel a disretization would result inlosing too muh expressive power with respet to representing time. One ould arguethat the disretization ould be performed using any granularity, but the informationof the intervals must be stored somewhere, so our hoie is a matter of spae. Theexat sampling tehnique and algorithms for it are presented in Setion 5.7, here weonly show the ideal marginalization.Time variables, whih have a ontinuous variable in the onditioning set are marginal-ized in a similar manner. The di�erene is that the intervals go from ti+t 0 to ti+1+t 0,where t 0 is the outome of the time variable in the onditioning set of T.5.4.4 Elimination of Wait Deision VariablesAn optimal hoie of a wait deision has similar properties as the optimal hoieof a disrete deision variable, however, as wait deisions have a ontinuous statespae, simply taking the maximum argument is not possible. One idea ould be todisretize the wait deision. The reason for not doing this is similar to that for notdisretizing time variables.Assuming that the produt of probability potentials inluding a wait deision mul-tiplied by the sum of utility potentials inluding the same wait deision is a di�er-entiable funtion, it is possible to �nd the hoie of the wait deision, whih resultsin the optimal strategy for the deision. This is done by examining the funtion forextrema, and seleting the extremum yielding the maximum value. By �nding forwhih values of the range the derivative of the funtion equals zero, and omparing



70 Chapter 5. Solving Inuene Diagrams Involving Timethe domain value of eah of these values with eah other the global extremum isfound. The derivative an be found using a gradient desent method. This an onlybe done if the wait deision has no time variable as a parent.In other words, the ideal marginalization of a wait deision is equal to the eliminationof disrete deision variables, where argmaxD , in the ase of wait deisions, means to�nd the maximum value of a ontinuous funtion.In the ase where the wait deision we want to eliminate has a time variable as aparent, we �nd the optimal strategy in the same manner, but when evaluating theresult, we set it to t - t 0, where t is the interval or point in time found to result inthe optimal strategy, and t 0 is the point in time represented by the time variable,whih is a parent of the wait deision.Updating � when eliminating a wait deision is done in the same manner as wheneliminating a disrete deision variable.5.4.5 Message Passing and MarginalizationIn this setion we primarily fous on a solution in whih it is assumed that we an�nd the exat probability distribution for our density funtions, that is, alulatetheir integrals, and then later we show how an approximated value an be found.We have now desribed how eah type of variables is eliminated. Returning to thestrong juntion tree we an use this to �nd the optimal strategy for an IDIT.It is assumed that a strong juntion tree, T , has been onstruted from the symmetriIDIT, whih we are solving. In T there are two adjaent liques, Ci and Cj, and theyare separated by the separator set, S. To Ci there are two sets assoiated, �Ci and	Ci . There are two similar sets assoiated to Cj. Furthermore, Ci is loser to theroot of T than Cj.Lazy propagation, whih is the approah our solution method is inspired by, usesmessage passing between liques, and propagates these messages from the leavesto the root of T . The messages are olleted to the root by reursively invoking amessage request from all underlying liques, that is, liques further from the root, andadjaent to the urrent one. In our example this means that Ci invokes a messagerequest in Cj and all other underlying liques, and when the underlying liqueshave omputed a message, eah passes its message bak to Ci. When Ci reeivesthese messages they are absorbed and then passed along as a single message to theoverlying node. That is, a lique adjaent to Ci, and loser to the root.Absorption of messages from one lique, Cj, into another, Ci, whih are separatedwith S, means to marginalize the variables of Cj nS from �Cj and 	Cj and from allthe sets �S 0 and 	S 0 , where S 0 is a separator set of an underlying lique adjaentto Cj in T . The result of marginalizing the variables is two sets of potentials, �Sand 	S, whih are assoiated to S as the result of absorbing Cj in Ci. These setsare used as Ci passes its message further up the tree. In Algorithm 5.7 we present



5.4 Elimination of Variables 71how absorption of potentials is done for IDITs.Absorption1: RS  �Cj [	Cj [ [S 02h(Cj)�S 0 [	S 02: Marginalize all variables not in S from RS.3: Assoiate �S and 	S with S as the result of absorbing Cj in Ci.Algorithm 5.7: The algorithm for absorption of potentials in IDITs.Algorithm 5.7 does not speify how variables are marginalized from the potentials.The marginalization is done in aordane to the type of variables being eliminated,using the rules desribed previously. Generally, however, the algorithm is as in Al-gorithm 5.8. We assume the algorithm returns the optimal hoie when eliminatinga deision variable.Marginalization1: Construt two sets, �V and 	V, whih ontain every � and  , respetively, inany of the �, and 	, where V is in the domain of either of � or  .2: Calulate ��V and 	�V3: return �� = (� [��V) n�V and 	� = (	 [ 	�V��V ) n	V.Algorithm 5.8: The general algorithm for marginalization of variables in IDITs.We do not give a formal proof for the algorithm, but referto [Madsen and Jensen, 1999℄ for the proof when dealing with inuene dia-grams, and based on this we argue that the introdution of a set of ontinuousvariables does not alter this result. As ontinuous hane variables are essentiallyhane variables with an in�nite state spae, the di�erene when marginalizingthese as opposed to disrete hane variables is how to sum over the state spae.However, neither Absorption nor Marginalization spei�es the marginalizationoperator, whih is determined by the type of node being marginalized. The additionsto Marginalization is to inlude the ontinuous variables when �nding the utilitypotential, in a similar manner as for disrete variables, and to update the set ofontinuous probability potentials. This goes for both steps two and three in thealgorithm.The use of ontinuous hane and deision variables in IDITs yields it neessaryto use integration and di�erentiation when solving an IDIT. As these integrationsannot be done in an exat manner, some approximation method has to be used.In [Broe et al., 2003℄ the solution sketh uses a numerial approximation, however,neither the appropriateness nor alternatives of this approximation were disussed.In Setion 5.7 we disuss how we �nd the approximated values.



72 Chapter 5. Solving Inuene Diagrams Involving Time5.5 Merging of Symmetri Inuene Diagrams Involv-ing TimeIn Setion 5.2 we desribed how the original IDIT is split into partially symmetriand symmetri IDITs, and in Setions 5.3 and 5.4 we showed how eah of thesepartially symmetri and symmetri IDITs are solved individually. In this setionwe desribe how the solutions of two symmetri IDITs are merged. The symmetriIDITs are merged on two levels. First the strong juntion trees from the symmetriIDITs are merged, and then the sets of potentials are merged.In this setion we desribe the merging of two symmetri IDITs, as merging morethan two is done by �rst merging two, and then viewing this merger as one symmetriIDIT. This is then merged to another and so on until no more symmetri IDITs needmerging.5.5.1 Merging Strong Juntion TreesFrom eah of the subtrees resulting from splitting on a split variable, V, there existsa strong juntion tree, J . These strong juntion trees have an equivalent subtree, asthey are all onstruted from symmetri IDITs based on the same partially symmetriIDIT. If any two of these strong juntion trees should not have this property, theadding or removal of an ar in the part of the symmetri IDIT following the splitnode, should impose an additional ar in the part preeding the split node. We an,thus, redue the problem to whether the removal of an ar, due to di�erent symmetriIDITs, hanges the struture of the part of the strong juntion tree onstruted fromthe part of the symmetri IDIT, whih is before the split variable in the temporalordering. If this part of the tree di�ers beause of di�erent symmetri IDITs, thenthe merging of two strong juntion trees, is impossible, yielding the strong juntiontree method unusable for solving symmetri IDITs.Theorem 5.3 seures that the two sub-juntion trees are equivalent.Theorem 5.3 (Sub-Juntion Tree Equivalene)If I = (V;L;E) is an IDIT, T a time variable, D a deision variable, and C a hanevariable in V, (C;D; g) a guarded ar in Eg, where g referenes T, I 0 and I 00 twosymmetri IDITs resulting from a split on T, suh that g an be evaluated, and T 0and T 00 the two strong juntion trees onstruted from I 0 and I 00, respetively. Thenthe sub-juntion trees of T 0 and T 00, from the root to the lique, from whih T iseliminated, are equivalent.Proof: We prove Theorem 5.3 by arguing that no matter the elimination orderof two variables, C and D, the liques onstruted by a strong triangulation for allvariables after C and D are unhanged. When the liques are unhanged, then thepart of the strong juntion tree, whih is onstruted from this set of liques, isequivalent no matter the future.



5.5 Merging of Symmetri Inuene Diagrams Involving Time 73If a lique loser to the strong root should be a�eted, one of the two eliminationorders must add an ar between the two nodes, X and Y, in the lique. An edge isadded during the strong triangulation if there is a path between X and Y, and allother nodes on this path are eliminated before them. However, as the moralizationof two symmetri IDITs is similar even though they impose di�erent eliminationorders, due to the ar, (C;D; g), being an informational ar, the path is either inboth symmetri IDITs or not at all, as both elimination orders have C and D beforeX and Y. Thus, suh an ar annot be added.This problem is similar to that of �nding the value of information for some hanevariable. The solution to �nding the value of information in strong juntion trees isproposed in [Dittmer and Jensen, 1997℄.The merging of two strong juntion trees, therefore, redues to piking one of thestrong juntion trees from the hildren and using this as the strong juntion tree forthe partially symmetri IDIT. As there always is a �rst interval we pik the strongjuntion tree resulting from the symmetri IDIT of this interval.5.5.2 Merging PotentialsTheorem 5.3 ensures that the struture of two strong juntion trees an be merged, itdoes, however, not ensure that the assoiated potentials are equivalent. Two poten-tials an di�er by either not having the same domain, or having di�erent values forsimilar on�gurations. In this setion we disuss how to merge the potentials fromtwo di�erent symmetri IDITs.If two probability potentials have di�erent values, either some alulation has gonewrong, or the use of approximation has proposed two di�erent values. As the algo-rithm is unambiguous, the �rst ase annot our. In the seond ase, two approxi-mations yield two di�erent results, as these are both approximations, none of themare the exat result, and we have no way of �nding whih is the better approxima-tion, in suh ases we therefore hoose one of the two to be the orret probabilitypotential.In ases where the domain of two probability potentials di�er, for instane, P(XjY)and P(XjY;Z), we laim that the set of variables, X are onditionally independentof Z given Y. The laim an be proven using the fat that the di�erene in proba-bility potentials ours due to the addition of edges during the strong triangulation.We know from Chapter 4 that the absene of an ar between two variables impliesthat the variables are onditionally independent given the past, thus, if X should bedependent on Z, there must be a onnetion between the variables in the moralizedgraph.The atual merging is done by omparing the potentials for eah variable in thelique. If there are two potentials, P(VjX) and P(VjX0), then the ombined potential isP(VjX0\X). We merge utility potentials by assoiating the utility potential ahieved



74 Chapter 5. Solving Inuene Diagrams Involving Timeby the split into some interval [t0; t1[, to the states of the time variable, whih arewithin this interval.5.6 The Solution MethodIn the previous setions we have desribed how eah step of the solution method isexeuted, yielding a loal result. In this setion we propose how the overall solutionmethod is exeuted by use of Algorithms 5.1 to 5.8. We do not propose an expliitalgorithm, as this would be a matter of �tting all previous algorithms together, byadding how eah algorithm alls the next, and what is to be returned after an ex-eution. We leave this for future implementations, and onentrate on the idea ofthe overall solution method. Figure 5.3 illustrates how the solution method shoulddivide the problem using a global solution method, and desribe how eah subprob-lem should be solved using a loal solution method. The numbers in the �gure areused as both the order of the atual exeution and as a referene point for a morethorough desription, following the �gure.
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Figure 5.3: An overview of the entire solution method.Figure 5.3 illustrates the elements of the overall solution method. Initially, an IDITis given to the method as an argument. In [1℄ a preliminary temporal ordering, usingAlgorithm 5.1, is found. This establishes a temporal ordering until the �rst split



5.6 The Solution Method 75variable, and it is used for the onstrution of the temporal ordering of the partiallysymmetri and symmetri IDITs. After the preliminary temporal ordering has beendedued the �rst split variable is found, if suh a variable exists. If it does not existthe IDIT is solved using a loal solution method, as desribed in [4℄. When a splitvariable exists the intervals are found using Algorithm 5.2. These are the intervals,whih are proposed by the split variable. The IDIT is also split into partially sym-metri IDITs using Algorithm 5.3. Then eah of these are solved loally.Solving a partially symmetri IDIT, as in [2℄ follows the same idea of solving theoriginal IDIT, the main di�erene is that the preliminary temporal ordering is al-ready found, whih makes this step obsolete. The splitting of the partially symmetriIDIT ontinues in [3℄ until all split variables have been split on, thereby yielding aset of symmetri IDITs.Until [4℄ the solution method has primarily foused on the global level. However,when a symmetri IDIT is dedued the solution method shifts to fous on the lo-al solution method. As we have hosen to struture the elimination using strongjuntion trees, the symmetri IDIT is onverted to this struture, by using Algo-rithms 5.4 to 5.6. When the symmetri IDIT is strutured in a strong juntion tree,Algorithm 5.7 is used to �nd an optimal poliy for eah deision in the symmetriIDIT, whih is after the split variable resulting in the symmetri IDIT, in the tem-poral ordering. When the split variable is to be eliminated the strong juntion treeand the optimal poliies are propagated bak to the partially symmetri IDIT, whihis a parent in the split tree.When a partially symmetri IDIT has reeived all the strong juntion trees and opti-mal poliies from its hildren, this information is merged using the method desribedin Setion 5.5. Algorithm 5.7 is exeuted on the merged strong juntion tree and theresult is sent to its parent. This is ontinued until the root reeives the results ofall its hildren, and the merged strong juntion tree, obtained from this, is solved.When all variables are eliminated the solution method returns an optimal strategyfor the IDIT.The omplexity of this algorithm is exponential in the number of split variables,whih in terms mean that this is not feasible for IDITs in whih there are a lot ofrestrition funtions and guards. Furthermore, as mentioned in Setion 5.3, �ndinga minimum triangulation is also NP-hard.To argue that the solution method in fat does solve IDITs we look at the elements ofthe solution method and argue for their orretness. The solution method takes out-set in an IDIT, and splits this IDIT into partially symmetri IDITs. As SplitTree�nds all possible splits by extrating the point in time eah guard and restritionfuntion refers to, and does this in a reursive manner until all split variables havebeen split on, all asymmetries are revealed and, onsequently, resolved. Thus, theasymmetries an be removed in the partially symmetri and symmetri IDITs with-out loss of information. Therefore, information is not lost after splitting the IDIT.We an disretize the ontinuous variables of eah symmetri IDIT to any granular-ity, and for eah of these intervals approximate the probability using, for instane,



76 Chapter 5. Solving Inuene Diagrams Involving Timesampling, whih an be approximated to be arbitrarily lose to the exat probabilitydistribution. We argue that the loal solution of eah symmetri IDIT an be doneusing any approah for solving inuene diagrams, as an IDIT with only disretevariables is, essentially, an inuene diagram. Therefore, an optimal strategy is or-retly found. The merging of two symmetri IDITs has already been proven to beorret in Setion 5.5. Beause of this the solution method does indeed solve IDITs.5.7 The Sampling ApproahIn this setion we present the sampling approah, whih we use to approximate po-tentials inluding time variables. We do this by �rst presenting the motivation behindthis approah. Then we present the general idea behind the sampling tehnique, wehave hosen, together with an algorithm.5.7.1 Motivation for Introduing SamplingThe motivation for hoosing sampling, for determining the probability distributionfor a ontinuous hane variable, is that we have hosen to represent time variables by�2-distributions. Under normal irumstanes we would use an approah as desribedin Setion 5.4. That is, when eliminating some ontinuous hane variable, V, theutility potential would be 	�V =Pi R f(t)dt �  i(V), where f(t) is the distributionover time, t, and  i(V) is the utility potentials with V in their domain. In ourase we annot do this, as a �2-distribution is not on losed form, whih meansthat exat integration is not a possibility. In [Broe et al., 2003℄ the solution to thiswas by numerial integration using Maple [Maplesoft, 2002℄. In this thesis we havehosen to use sampling to solve the problem. We use a standard method, as desribedin [Gentle, 1998℄, for drawing random samples from a �2-distribution.5.7.2 Utilizing SamplingWe approximate the probability distribution for some time variable and alulate theexpeted utility based on this. We alulate this by drawing a number of samples andsumming the value for eah sample. This sum we divide by the number of sampleswe have drawn, and the result is the utility for some potential. That is, for some timevariable, T, we alulate 	�T �Pj 1nPni=1 fj(XXXi), where XXXi is some random sample,n is the number of drawn samples, and fj is the utility potentials with T in theirdomain. The number of samples is determined by the deision taker before samplingis performed.When sampling we take a andidate point from some proposal distribution and om-pare that point with the target distribution, using some sheme. The nature of thissheme is elaborated on shortly.



5.7 The Sampling Approah 77When hoosing andidate points for sampling, we use two di�erent algorithms, de-pending on whether the degree of freedom is less than 0:5, or not. The proposaldistribution an be any distribution, and no matter what the target distribution is,it an be proven that, given enough samples, and due to the laws of large numbers,we an approximate the target probability distribution with an arbitrary preision.The two algorithms are taken from [Gentle, 1998℄. The algorithm for a degree offreedom less than 0:5 is presented in Algorithm 5.9, and for a degree of freedomgreater than or equal to 0:5 we present Algorithm 5.10. For both algorithms, YYY isthe sample point, d is the degrees of freedom for the �2-distribution, and all otherharaters are just parameters to help ease the algorithms along. The two algo-rithms were originally onstruted for use in sampling from �-distributions, but asa �2-distribution is, essentially, a speial ase of a �-distribution, we use the samealgorithms. As an be dedued from the two algorithms, the proposal distributionis a uniform distribution. The sheme, we mentioned, takes on a di�erent haraterthrough the algorithms. The lines between two return statements in the algorithmsonstitute the di�erent shemes for manipulating numbers in order to reate randomsamples from the �2-distributions.The names of the algorithms portray the authors upon who these representationsare based.Best/Ahrens/Dieter1: x = 0:07 + 0:75 � p1 - d2: b = d+ exp-x�dx3: while i � n do4: Generate u1 and u2 independently from U(0; 1)5: v = b � u16: if v � 1 then7: YYY= x � v 1d8: if u2 � 2-YYY2+YYY then9: return YYY10: else if u2 � exp-YYY then11: return YYY12: else13: YYY= log�x�(b-v)d �14: y = YYYx15: if u2 � (d+ y � (1 - d)) � 1 then16: return YYY17: else if u2 � yd-1 then18: return YYY19: i = i+ 1Algorithm 5.9: The algorithm for hoosing a sample from a �2-distribution with lessthan 0:5 degrees of freedom. n is hosen by the deision taker.



78 Chapter 5. Solving Inuene Diagrams Involving TimeCheng/Feast1: while i � n do2: Generate u1 and u2 independently from U(0; 1)3: v = (d- 16�d)�u1(d-1)�u24: if 2�(u2-1)d-1 + v+ 1v � 2 then5: YYY= (d- 1) � v6: return YYY7: else if 2�logu2d-1 - log v+ v � 1 then8: YYY= (d- 1) � v9: return YYY10: i = i+ 1Algorithm 5.10: The algorithm for hoosing a sample from a �2-distribution with 0:5degrees of freedom, or more. n is hosen by the deision taker.The algorithms use a rejetion/approval method to identify whih samples should beaepted as samples. The reason for having suh a method, and not just aeptingevery sample, is that the andidate samples are not neessarily from the orretdistribution, but from some random distribution. The rejetion/aeptane fator isalso the reason why the di�erent shemes, as mentioned above, are applied.We draw our samples using either of the two algorithms presented above, aordingto the nature of the distribution being sampled.Our aim is to �nd the utility potential obtained by marginalizing some time variable,T. To exemplify this, onsider a standard �2-distribution with �ve degrees of freedom.Imagining that this represents the probability distribution for some time variable.We want to �nd the utility potential obtained by marginalizing this, so we need tosample from it, but beforehand we have identi�ed intervals in whih the state of thistime variable hanges the state spae for some future deision. If we say that wehave divided the time variable in two intervals, and these are [0 : 5[ and [5 :1[. Theutility potential obtained by marginalizing T is then: �(T) = 1n nXi=1 (f0;5(XXXi) + f5;1(XXXi)) ; (5.5)where fa;b(XXXi) means the value alulated over samples, XXXi, whih lie in the interval[a : b[, and n is the number of drawn samples. Using this approah we do notapproximate the atual probability distribution, per se, but we alulate the expetedvalue of the utility. As we only need the optimal hoies for our solution, we neednot know the exat probability distribution.When marginalizing T we know that the probability potential, �, is P(TjX), whereX is the onditioning set for T, and if this is not the ase, then some other variableoutside of X must be dependent on T. We an show that this is not the ase as



5.7 The Sampling Approah 79all variables dependent on T, in the IDIT, have been marginalized and any othervariable dependent on T would introdue an unresolved yle in the IDIT.If T is assoiated with a disrete deision variable, we �nd the utility potential for Tas just desribed. If, on the other hand, T is assoiated with a wait deision variablewe do not �nd the exat utility potential, but pass along the funtion, as shown inEquation (5.5) and when we know the optimal poliy of the wait deision, we an�nd the utility potential for T. As long as T is not the �rst time variable in the IDITit is also inuened by some other time variable. This we handle in the same manneras if T has a wait deision as a parent. That is, we pass along the funtion, withonly the point in time represented by the time variable, whih is a parent of T, asan argument. As time variables are dependent on eah other, we end up sending thefuntion along until we eliminate the last time variable. This has the unfortunatee�et that the number of expressions, in the funtion we are sending along, risesexponentially in the number of time variables. We an put it into perspetive if weonsider a simple IDIT, in whih there are two time variables, T1 and T2, suh aspresented in Figure 5.4. D1 T1 UFigure 5.4: A simple IDIT showing how the funtion for the utility potential grows.When eliminating variables from this IDIT we start with T1, then TeD1, and then D1.Eliminating T1 gives:  �T = 1n nXi=1 f(XXXi; teD):What we see here is that the utility potential is alulated from the distribution ofT1, but as the point in time represented by T1 is dependent on the point in timerepresented by TeD, teD, we annot alulate the exat value. The next variable toeliminate is TeD, and we get: �TeD = 1m mXj=1 1n nXi=1 f(XXXi; f(XXXj; d)):That is, for every sample of the distribution for TeD we draw n samples over T1. Andthis ontinues, sine we see that teD in fat depends on the hoie of D.In Chapter 7 we disuss the onsequenes we have drawn in using the approah asdesribed in this hapter.



80 Chapter 5. Solving Inuene Diagrams Involving Time5.8 SummaryIn this hapter we have proposed a general solution method for solving IDITs. Wehave shown how the split tree, whih we presented in Chapter 4, is used not onlyas a guide for reading IDITs, but also as a guideline when solving IDITs. We havepresented a method for removing asymmetries in an IDIT. Besides this we haveshown how strong juntion trees an be used to solve IDITs, while leaving the dooropen for other approahes.Beause of our de�nition of time in IDITs we have ome aross a problem, namelythat of using �2-distributions to represent the density funtion for time variables.We have proposed using a sampling tehnique, whih is based on algorithms by Best,Ahrens, and Dieter and the other by Cheng and Feast.We have, however, reahed the onlusion that using sampling only introdues anew problem, as our solution method ends up having to deal with exponentiallylarge funtions in the number of time variables in the IDIT we are solving.



Chapter 6Results and Disussion
In this hapter we begin by illustrating the use of the solution method. We applyit on two IDITs designed to point out some of the di�erent elements of IDITs, andhow these elements a�et the proess of solving an IDIT. In Setion 6.2, we ompareelements of the solution method to using other approahes, suh as a nonuniformdisretization of ontinuous variables [Kozlov and Koller, 1997℄, and using a multi-stage Monte Carlo approah [Charnes and Shenoy, 2002℄. Finally, in Setion 6.3 wedisuss IDITs as a framework.6.1 Solving Two ExamplesIn this setion we present two examples. These examples inorporate some of theaspets of time we have disussed in Chapter 4, and we use them to exemplify thesolution method, we devised in Chapter 5. The goal of applying the solution methodto an IDIT is to �nd the optimal strategy for the deisions in that IDIT.6.1.1 Example One - Post-Realized Utility Funtion and ChaneVariables Dependent on TimeIn the �rst example we present an instane of a post-realized utility funtion, adisrete hane variable dependent on time, and a time variable assoiated with adeision. The main fous of this example is the loal solution method, that is, theelimination of variables, both ontinuous and disrete. The IDIT, we use as a modelfor this, is depited in Figure 6.1.For this IDIT the hane variable A has a marginal probability distribution, B hasa onditional probability distribution, P(BjA), and C has a onditional probabilitydistribution, P(CjB; TeD), in whih the ondition set onsists of the disrete hanevariable, B, and the time variable, TeD. The two time variables, TeD and T have,81



82 Chapter 6. Results and Disussion
AB D CT U

Figure 6.1: A model of an IDIT ontaining a post-realized utility funtion and a timedependent hane variable.per de�nition, a onditional probability distribution de�ned by a �2-distribution,with the degrees of freedom determined through their disrete parents. As T has nodisrete parents, we set it to three degrees of freedom, whih we have hosen as thedefault.The three hane variables are binary variables, and the tables representing theirprobability distributions are presented in Tables 6.1(a) and 6.1(b).
a1 a20.3 0.7(a)

Aa1 a2b1 0.2 0.6B b2 0.8 0.4(b)Table 6.1: (a): The marginal probability distribution, P(A), for A. (b): The ondi-tional probability distribution, P(BjA), for B.Table 6.2 shows the parameters for C, given the on�guration of its disrete parent.The funtion for representing C is f(p; t) = (1-p)t for C = 1 and f(p; t) = 1-(1-p)tfor C = 2, where p is the parameter we �nd in Table 6.2, and t represents time.Bb1 b21 0.03 0.05C 2 0.03 0.05Table 6.2: The table of parameters for the time dependent hane variable, C.The only deision variable for this IDIT is D. It has the states d1 and d2. Takinghoie d1 results in a timed ation, whih takes 10 time units to perform, yieldinga distribution for TeD, whih is displaed by 10 time units and the distribution has2:8 degrees of freedom. If the hoie hosen is d2, then the distribution for TeD is



6.1 Solving Two Examples 83displaed by 15 time units and the distribution has 3:4 degrees of freedom. The twodensity funtions are depited in Figure 6.2.
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Figure 6.2: The density funtion for TeD given the hoie of D.The loal utility funtion for this IDIT, U, is de�ned as:U(C = 1; T) = log t4U(C = 2; T) = 2 � log t2t :In order to solve the IDIT presented in Figure 6.1, we �rst determine that no moresplits are needed. Therefore, following the solution method we onstrut a strongjuntion tree for the IDIT. The strong juntion tree respets the reverse of thetemporal order. To �nd the temporal order, we �rst �nd the preliminary temporalorder of the IDIT, this order is A ��!t D ��!t TeD ��!t T ��!t fB;Cg. There are no splitsin this IDIT, yielding the preliminary temporal order as the temporal order of theIDIT. The moral graph is then onstruted and the strong triangulation is performed.We use heuristis to �nd that the elimination order should be C before B. If we wereto eliminate B �rst, we must put in two �ll-ins, while eliminating C results in onlyinserting one �ll-in. In onstruting the moral graph two edges are entered, these are(B; TeD) and (C;T). In performing the strong triangulation four �ll-ins are entered.These are: (B; T), (A;TeD), (A;T), and (A;D). The resulting graph is depited in



84 Chapter 6. Results and DisussionFigure 6.3(a). From the triangulated graph the liques are identi�ed, and a strongjuntion tree is onstruted. Figure 6.3(b) illustrates the strong juntion tree for thegraph. We illustrate the separator sets as boxes.

AB CTeD TD
(a) TeD; T; B;CC1

A;TeD; T; BC2
A;D; TeDC4
TeD; T; B
A; TeD

(b)Figure 6.3: (a): The triangulated graph for the IDIT of Figure 6.1. (b): A strongjuntion tree for the graph to the left.The liques of the strong juntion tree we name C1, C2, and C4, where C4 is thestrong root. These are the names of the bottom lique, the middle lique, and thetop lique, respetively. The sets of probability and utility potentials for the en-tire strong juntion tree are: � = fP(A); P(TeDjD); P(TjTeD); P(BjA); P(CjB; TeD)g and	 = fU(C;T)g, respetively.As mentioned above, the �rst variable we are eliminating is C. This is in aordaneto the rules for message passing and absorption as desribed in Chapter 5.The set of probability potentials attahed to C1, �C1 , is: fP(CjB; TeD)g. Andthe set of utility potentials, 	C1 , is: fU(C;T)g. The utility funtion for thisutility potential is desribed above. Updating the probability potentials isstraight forward as P(CjB; TeD) is a unit potential, meaning no other variablesare dependent on C, and therefore the potential is simply removed, yielding�� = fP(A); P(TeDjD); P(T jTeD); P(BjA)g. 	� is then found to be fU(B; TeD; T)g. Theutility potential,  �C, is de�ned asPCU(C;T) � P(CjB; TeD). This gives us the follow-ing utility funtions, given the on�guration of the domain of U:U(B = b1; T; TeD) = � log t4 � (1 - 0:03)teD� +�2 � log t2t � (1- (1 - 0:03)teD� and



6.1 Solving Two Examples 85U(B = b2; T; TeD) = � log t4 � (1 - 0:05)teD )�+�2 � log t2t � (1 - (1 - 0:05)teD)� ;where t is the point in time represented by T, and teD is the point in time representedby TeD.After passing the message of the potentials along, this gives us a strong juntion treeas depited in Figure 6.4.
A;TeD; T; BC2
A;D; TeDC4A;TeD

Figure 6.4: The strong juntion tree after eliminating C and passing along the mes-sages.The sets of potentials of the absorption of C1 in C2 are, �C2 = fP(BjA); P(TjTeD)gand 	C2 = fU(B; TeD; T)g. Following the elimination order, the next variable to beeliminated is B. Again the probability potential is a unit potential and an simplybe removed, yielding �� = fP(A); P(TeDjD); P(T jTeD)g. The set of utility potentials isthen updated to be 	� = fU(A;TeD; T)g after elimination of B. The utility funtionfor  �B is found asPBU(B; TeD; T) �P(BjA). This yields the following utility funtions,given the on�guration of the domain:U(A = a1; T; TeD) = (U(B = b1; T; TeD) � 0:2) + (U(B = b2; T; TeD) � 0:8)and U(A = a2; T; TeD) = (U(B = b1; T; TeD) � 0:6) + (U(B = b2; T; TeD) � 0:4):Now T is to be eliminated. This gives us that �� = fP(A); P(TeDjD)g,�C2 = fP(TjTeD)g, and 	� = 	C2 = fU(A;TeD)g. The utility funtion for  �T is foundasPTU(A;TeD; T) �P(TjTeD). This yields the following utility funtion, given the on-�guration of the domain:U(A = a1; TeD) = ZTU(A = a1; t; TeD) � �2(t- teD)(3:00)dt andU(A = a2; TeD) = ZTU(A = a2; t; TeD) � �2(t- teD)(3:00)dt;



86 Chapter 6. Results and Disussionwhere �2(t - teD)(3:00) is the �2-distribution, whih has three degrees of freedom,and is displaed by a measure of teD, where teD is the point in time represented byTeD.As we have said earlier, we use sampling to handle the ontinuous hane variables.This gives that the utility potential after eliminating T is:U(A = a1; TeD) = 1n nXi=1 f(XXXi) andU(A = a2; TeD) = 1n nXi=1 f(XXXi);where f(XXXi) is a funtion returning the value of the utility funtion given somesample, XXXi, and n denotes the number of samples drawn.The funtion we have gotten, we pass up the tree, and the resulting strong juntiontree is depited in Figure 6.5. A;D; TeDC4Figure 6.5: The strong juntion tree after eliminating T and absorbing C2.The next variable to be eliminated is TeD, whih is the �rst time variable of theIDIT and, onsequently, the last time variable to be eliminated. Again only oneprobability potential has the variable to be eliminated in its domain, so the potentialis simply removed and � updated aordingly, yielding�� = fP(A)g. 	� is updatedto fU(A;D)g.  �TeD is found by PTeDU(A;TeD) � P(TeDjD). This yields the followingutility funtions, given the domain:U(A = a1;D = d1) = ZTeDU(A = a1; TeD) � �2(teD - 10)(2:80)dteD ;U(A = a1;D = d2) = ZTeDU(A = a1; TeD) � �2(teD - 15)(3:40)dteD ;U(A = a2;D = d1) = ZTeDU(A = a2; TeD) � �2(teD - 10)(2:80)dteD andU(A = a2;D = d2) = ZTeDU(A = a2; TeD) � �2(teD - 15)(3:40)dteD :The displaement of the �2-distributions, whih for these is set to 10 and 15, origi-nates from the de�nition of D.



6.1 Solving Two Examples 87Now we draw samples for TeD. This gives us a utility for  �TeD as:U(A = a1;D = d1) = 1m mXj=1 1n nXi=1 f(XXXi; f(XXXj; 10));U(A = a1;D = d2) = 1m mXj=1 1n nXi=1 f(XXXi; f(XXXj; 15));U(A = a2;D = d1) = 1m mXj=1 1n nXi=1 f(XXXi; f(XXXj; 10)); andU(A = a2;D = d2) = 1m mXj=1 1n nXi=1 f(XXXi; f(XXXj; 15));where m is the number of drawn samples for TeD, and f(XXXj; d) is a funtion returningthe value of the utility funtion given sample XXXj and the point in time assoiated tohoie, d, of D.The next variable to be eliminated is D, whih is a deision variable. The method ofeliminating a deision variable is di�erent than for hane variables. The utility po-tential is updated by hoosing the maximum over a set of expeted utilities, insteadof summing over it. This is beause we aim at �nding the optimal strategy, whih isthe strategy yielding the maximum expeted utility.When eliminating D from C4, the sets of potentials are updated. As D a�etsno remaining hane variables �� is una�eted. 	� = fU(A)g. U(A) is found byargmaxD U(A;D). This yields the following utility funtion, given the domain:U(A) = argmaxD U(A;D):The objet is then to determine the optimal strategy, �̂, for the IDIT. As only onedeision exists in the IDIT, this is found by onsidering the poliy for this deisionalone.As an be seen from the example, the size of the funtion grows exponentially in thenumber of time variables. If, for instane, the number of samples for the �rst timevariable is set to 1000, and the same is done for the seond time variable, the numberof expressions in the funtion is in the range of 106. As a sample size of 1000 is rathersmall, we an onlude that solving IDITs using this type of sampling approah isintratable. Even though this means that this approah is pratially unusable forproblems with more than a few time variables, we are still able to use it to larifyhow an ideal solution of an IDIT is onstruted.During the example we have used sampling to resolve the ourrenesof integrals. Sampling an be performed by use of tools suh as Win-BUGS [MRC Biostati Unit, Cambridge, UK, ℄, we have, however, not had time to



88 Chapter 6. Results and Disussionexplore this path. Thus, we annot determine the atual poliy for taking D. Whatis needed for �nding this poliy, however, is a numerial solution, as the funtionsfor determining it are already given.6.1.2 Example Two - Split and Wait DeisionIn this seond example we fous on the reation of a split tree and the merging of leafnodes in the split tree. As an be seen, Figure 6.6 ontains guards, and in partiular,guards in relation to a yle. Furthermore, the IDIT ontains a wait deision.
A BC E D UTe A<10 T eA � 10Figure 6.6: A model of an IDIT ontaining guards, introduing the need to split onthe �rst time variable.For the IDIT represented in Figure 6.6, the state spaes of the variables are as fol-lows. A is a wait deision, meaning that it has a ontinuous state spae. The deisionsB, C, and D are all binary deisions, resulting in the hoies b1, b2; 1, 2; and d1,d2, for B, C, and D, respetively. The hoies in D result in timed ations lasting�ve and ten time units, respetively.E, is a disrete hane variable in the IDIT, has the onditional probability distribu-tion, P(EjC;B), desribed in Table 6.3. Bb1 b2C C1 2 1 2e1 0.3 0.4 0.6 0.7E e2 0.7 0.6 0.4 0.3Table 6.3: The onditional probability distribution for E, given B and C.There are two time variables in the IDIT, TeA and TeD. TeA has no disrete parents,yielding a probability distribution with three degrees of freedom, and a displaementdependent on the hoie of A. TeD has one disrete parent. The degrees of freedomin the �2-distribution for TeD is therefore dependent on the hoie of D. If D = d1,TeD has 4:6 degrees of freedom, and a displaement of teA + 5. And if D = d2, TeD has4:2 degrees of freedom and a displaement of teA + 10, where teA is the point in time



6.1 Solving Two Examples 89represented by TeA.There is one loal utility funtion, U, in the IDIT. The funtion of U is dependenton both the outome of E and the time represented by TeD. The funtion is de�nedas: U(E = e1; TeD) = log t4U(E = e2; TeD) = 2 � log t2t :Examining the IDIT of Figure 6.6, we see that guards are on two of the ars. Whensolving the IDIT we onstrut a split tree. The split tree is built from the preliminarytemporal ordering of the IDIT. For this IDIT this is dedued to be:A ��!t TeA ��!t fB;Cg ��!t E ��!t D ��!t TeD, showing that the split is from the �rst time variable, as this is the last time variablebefore a set of unordered deisions ours. The split tree is found by splitting on TeA,is presented in Figure 6.7.
A BC E D UTe A<10 T eA � 10

A BC E D U

A BC E D U
Te A< 10T eA � 10Figure 6.7: The split tree for the IDIT presented in Figure 6.6.We onstrut the split tree by plaing the original IDIT in the root of the tree. Thenwe �nd the �rst split variable and identify the restrition funtions referring to it. Forthis IDIT those are the guards on the ars onneting B and C. We onstrut a nodefor eah partially symmetri IDIT resulting from the split, and remove ars, for whihthe guard evaluates to false. Then we �nd the preliminary temporal ordering for eahpartially symmetri IDIT and identify new potential split variables. No suh variableexist, and the partially symmetri IDITs are identi�ed to be symmetri IDITs.A strong juntion tree for eah symmetri IDIT, is now reated, beginning with theone depited in the top leaf node. This symmetri IDIT has, beause of the split,the temporal ordering: A ��!t TeA ��!t B ��!t C ��!t E ��!t D ��!t TeD, this gives onlyone possible elimination order. The resulting triangulated graph and strong juntion



90 Chapter 6. Results and Disussiontree, resulting from this elimination order, are depited in Figures 6.8(a) and 6.8(b),respetively. These are onstruted in a similar manner as for the previous example.
A TeA B

C E D TeD
(a) E;D; TeA; TeDE; TeATeA; C; B; ETeAA;TeA

(b)Figure 6.8: (a): The triangulated graph for the IDIT of the leaf nodes of Figure 6.7.(b): A strong juntion tree for the graph presented to the left.During onstrution of the strong juntion tree, edges are added in the moralizationof the symmetri IDIT, and �ll-ins are added in the strong triangulation of the mor-alized graph. The edges are: (TeA; B), (TeA;D), (B;C), and (E; TeD) for the moralization,and the �ll-ins are: (TeA; E), (TeA; C), and (E;D) for the strong triangulation.Examining the symmetri IDITs of the split tree further, we notie that their trian-gulated graphs are equivalent, thus they result in equivalent strong juntion trees.Therefore, we do not show the strong triangulation or the strong juntion tree forthe symmetri IDIT in the lower leaf of the split tree.The method for solving the strong juntion tree follows the method, whih we wentthrough in the �rst example. We, therefore, only show what is done in the preseneof a split variable and when eliminating a wait deision.We do not show the elimination of the variables before TeA in the elimination ordering,as this resembles the elimination done in the �rst example.The elimination of variables up until TeA in the two symmetri IDITs results inequivalent sets, � and 	 but with di�erent values for the potentials in 	, for thetwo symmetri IDITs. Before eliminating TeA the two strong juntion trees are similarin struture, so the merged strong juntion tree is a lique onsisting of A and TeA.The set of probability potentials for this lique onsists of only P(TeAjA). This is thease for both symmetri IDITs. The set of utility potentials onsists of a funtion,U, over the domain TeA. U is a funtion, whih, as long as TeA is less than ten, equals



6.2 Alternative Approahes 91U1. U1 is the utility potential for the upper symmetri IDIT. U equals U2 for valuesof TeA greater than or equal to ten, where U2 is the utility potential for the lowersymmetri IDIT. There is in fat no reason to distinguish between U1 and U2, whensolving the IDIT, as argmaxD (argmaxD 0  ) is equivalent to argmaxD 0 (argmaxD  ) forany two deisions, D and D 0.Eliminating TeA we get ��TeA = ? and 	�TeA = PTeAU(A) � P(TeAjA). This yields thefollowing funtion over A:U(A) = Z 100 U1(TeA) � �2(teA - a)(3:00)dteA + Z110 U2(TeA) � �2(teA - a)(3:00)dteA;where a denotes the time hosen for A.To eliminateA we maximize over U(A). As A is a wait deision, we �nd the maximumby omputing the derived of U(A) and �nding the extrema. Then we ompare theseextrema to �nd the global maximum. If two or more maximum points exist, wehoose the �rst, with respet to time.This onludes the two examples of how we solve IDITs.6.2 Alternative ApproahesIn the previous setion we saw how two examples were solved using the solutionmethod we present in Chapter 5.In this setion we disuss alternative approahes handling di�erent elements of thesolution of IDITs. As we saw in the �rst example, the use of sampling as proposedintrodues a grand omplexity of the funtions being sampled. In this setion we dis-uss alternatives to that approah. We look at [Kozlov and Koller, 1997℄, in whih anonuniform disretization for the disrete variables is used. Then we disuss an ap-proah presented in [Charnes and Shenoy, 2002℄, whih utilizes a sampling method,in whih samples are drawn from multiple variables, and the aim is to approximatethe optimal poliy for deision variables. We disuss numerial integration, as this isthe approah used in [Broe et al., 2003℄. Finally, we mention an approah in whihthe distributions of the time variables is approximated using polynomials.6.2.1 Disretizing Continuous VariablesAnother way, than using sampling to approximate the probability distributionof time variables, would be to disretize these variables. Usually one would goabout this by disretizing variables independently of eah other and one at a time.In [Kozlov and Koller, 1997℄ a method, for disretizing ontinuous variables in a hy-brid Bayesian network in a nonuniform and dynami manner, is proposed. They



92 Chapter 6. Results and Disussionpresent what they all a Binary Split Partition tree, a BSP tree for short, whihthey use for disretizing variables in liques of a juntion tree. A BSP tree is simplya data struture for storing information regarding how the disretization of someinterval is performed.The disretization is performed in iterations. Eah iteration bases the new intervalson the nature of the distribution in eah interval. These iterations ontinue untileither the deision taker hooses not to have any more iterations, or the Kullbak-Leibler distane, whih is the relative entropy, between the original distribution andthe disretized distribution is smaller than some set value. This value is set by thedeision taker.For eah iteration, the algorithm is designed to onentrate intervals around areas ofthe distribution, whih has the most ativity. That is, onsidering two ranges, [a : b[and [b : [, where a and  are arbitrary reals, and b is the mean of a and , the algo-rithm would disretize the interval, whih has the most utuation in values, morethoroughly than the interval with the least utuation of. The value for a disretizedinterval is the mean for the same interval in the original distribution. The reason forthis is that this ends up giving the minimal Kullbak-Leibler distane, KL-distane,between the two distributions. This is not proven in [Kozlov and Koller, 1997℄, butthey refer to [Cover and Thomas, 1991℄ for the proof and justi�ation for using theKullbak-Leibler distane as a guidane measure.The reason for onentrating intervals around ative parts of the distribution isthat this should help in making the errors introdued by any form for disretizationsmaller and therefore give a loser approximation with fewer operations.This only desribes the nonuniform part of the method. The dynami part on-erns how the variable, whih should be disretized, is hosen. Before any variableis disretized the hybrid Bayesian network is onverted to a juntion tree. The dis-retization is stored in the BSP tree, whih is organized, so the original funtion is theroot. Eah node may have two hildren, eah hild representing half the distributionof its parent. When hoosing whih half to disretize, gradient desent is used, in or-der to disover the ativity of the funtion in the interval urrently being examined.Finding whih variable to disretize is done by onsidering the KL-distane betweenthe joint probability distribution of the ontinuous variables in the urrent liqueand the joint probability distribution of the same variables after a disretization.The disretization yielding the minimum KL-distane between these two distribu-tions, is then hosen. When performing many disretizations, this quikly beomesan intratable approah and heuristis are applied to �nd the variable and intervalto disretize.We do not go through the algorithms or proofs in this thesis, but refer the reader to[Kozlov and Koller, 1997℄ for further detail.If we were to use this approah on an IDIT, and still using the split trees, we wouldhave some intervals, whih are prede�ned. This ruins part of the approah, as thisleads the use of a BSP tree inappliable. A similar data struture an be onstruted,



6.2 Alternative Approahes 93whih takes into onsideration the intervals imposed by the splits in the split tree.The algorithm must then also onsider these intervals when disretizing the timevariable. As a result of the semantis of time variables, disretization of a timevariable, results in intervals of the form [a + t : b+ t[, where a and b are the limitsof the interval if the time variable was not dependent on any other variable, and t isthe latest point in time represented by the variables inuening this time variable. Afurther restrition on the time variables is their range. A time variable may not havean in�nite range, if this method is to be utilized for disretizing it, as eah iterationof the disretization splits the onsidered in two equally large intervals.As long as no wait deision variables are in the IDIT the dynami aspet of theapproah proposed in [Kozlov and Koller, 1997℄ is still appliable. If a wait deisionis to be disretized, a poliy for this wait deision variable should be devised, andthen the deision ould be onverted to a hane variable in a manner suh thatthe probability distribution for this hane variable respets the poliy of the waitdeision. This would then represent a disretized hane variable.6.2.2 Multi-stage Monte Carlo using Loal ComputationMulti-stage Monte Carlo [Charnes and Shenoy, 2002℄, or MMC for short, di�ers fromour approah in the way variables are eliminated and how sampling is performed.Furthermore, MMC requires that all ontinuous variables are disretized.MMC was devised for use on inuene diagrams and by a disretization and the im-posed resolutions of asymmetries ould be applied to IDITs. The purpose of MMCis to approximate optimal poliies for deisions in situations, where the potentialsof the inuene diagram grow so large that it is intratable to alulate their exatvalues.In priniple, MMC works by, for eah on�guration of the required past of some dei-sion, D, sampling the variables inuening the utility, inuened by D. Multiple sam-ples are taken and when some threshold is reahed, no more samples are drawn, andthe on�guration, yielding the optimal poliy, is hosen. Before taking samples, allon�gurations are inspeted, and invalid on�gurations are not onsidered. A thresh-old, for the number of samples to draw, ould be some number hosen by the deisiontaker, or, as proposed in [Charnes and Shenoy, 2002℄, an ("; �)-approximation. Thelimits for this approximation are set as a funtion of the number of samples drawn.This is a way of approximating the optimal poliy within " of the maximum expetedutility, with a level of on�dene of 100(1 - �)%.A strategy for an inuene diagram is ("; �)-optimal, if P(Ej) = 1-�k , for j = 1; : : : ; k,where Ej is the event in whih \the deision funtion seleted in stage j has expetedutilities within " of the orresponding expeted utilities of an optimal deision fun-tion for that stage". When an optimal poliy has been approximated for some de-ision variable, that deision variable is onverted to a deision funtion respetingthe optimal poliy. The stage refers to whih deision variable is being onsidered.Examining if the expeted utility is within " of the maximum expeted utility is



94 Chapter 6. Results and Disussiondone by letting Fij be the event that \the ith estimated expeted utility at stage j iswithin " of its true value". This means that if the ith estimate follows this de�nition,then P(Ej) � P(\nji1 Fij) � 1 - �k for j = 1; : : : ; k.We do not explain this any further but refer the reader to [Charnes and Shenoy, 2002℄for further disussion.For MMC the �rst thing to do is to disretize any ontinuous variables, this meansthat both time variables and wait deision variables are disretized. As this approahis developed for use on inuene diagrams, the onstrution of a split tree, to handleasymmetries, is still a valid step. As all variables are disrete, MMC an be utilizedon eah of the symmetri IDITs of the split tree. We need to do this for eah sym-metri IDIT, as the resolved asymmetries result in di�erent IDITs, possibly yieldingdi�erent optimal poliies for the deisions. This ould be that some hane variableis observed before taking some deision in one symmetri IDIT, while being observedbefore taking another deision in another symmetri IDIT, beause of guarded ars.This approah handles elimination with outset in the last deision in some inuenediagram. When enough samples are drawn, the approximated optimal poliy is usedto onvert that deision variable to a hane variable. This variable is always in thestate yielding the maximum expeted utility given the on�guration of its ondition-ing set.When the deision variable, D, is onverted to a hane variable, the next deisionvariable is found, and the loal utility funtions, inuened by D, are eliminated. Anew loal utility funtion, whih portrays the numbers found to be the maximumexpeted utilities for D, is onstruted. Now, beause of the elimination of some loalutility funtions, there might be barren nodes. Suh nodes are removed from the in-uene diagram, as they yield no useful information for the solution [Shahter, 1986℄.Examining the de�nition of IDITs we �nd some problems though. First there is thedisretization of variables, this always results in some measure of error, and the lessdisretizations the greater the error. Of ourse there is no rule, whih says that thedisretization may not result in an arbitrarily large number of intervals.Another aspet, whih ould prove to be a problem, also has to do with disretization,it arises if the IDIT, we are solving, ontains post-realized utility funtions. There is,usually, no upper limit for the extent of the time variable in a post-realized utilityfuntion. This means that it, in priniple, ranges from the end-time of the last timevariable to in�nity. This makes it hard to have an intelligent manner of disretizingit without the risk of loosing muh information, no matter how �ne a granularity thedisretization uses. We an get around this problem by saying that from some pointin time and forward, the time variable has a zero probability, or simply just to set alimit on the range of the time variables.



6.3 Disussion of the Framework 956.2.3 Numerial IntegrationUsing numerial integration is another approah to solving the question of proba-bility distributions for time variables. [Broe et al., 2003℄ used this method throughMaple [Maplesoft, 2002℄. Using numerial integration, the distribution is disretizedto a number of uniform intervals. The idea is then to approximate the value for eahinterval and through this approximating the probability distribution for the entiredistribution. This is done by, for eah of these intervals using the mean of the originaldistribution as the value for the interval. The �ner the disretization, the loser theapproximation.The di�erene between this and the disretization method desribed in Setion 6.2.1is that this approah does not take into onsideration that some intervals have ahigher density than others, nor does it disretize in a dynami manner.6.2.4 Approximation using PolynomialsOne approah to approximating a density funtion is to approximate its behaviourwith a new funtion. This an be done in di�erent manners, but one approah isto use Tailor series, as proposed in [Nielsen, 2003℄. The idea is to approximate theprobability distributions with polynomials, whih are both integratable and di�er-entiable. As summation and multipliation for these still are polynomials with theseproperties �nding the approximated maximum expeted utility an be done easily.6.3 Disussion of the FrameworkThe goal of this projet has been to develop a framework for DPITs. From the begin-ning three key requirements, whih the representation language should ful�ll, were setup. These requirements speify that the representation language should model DPITsin a manner whih is ompat, easy to read, and unambiguous. [Broe et al., 2003℄had a fourth requirement, namely that the representation language should be om-plete with respet to modelling DPITs. We have removed this requirement as it isimpossible to ful�ll unless the lass of DPITs has been preisely de�ned, thus yield-ing a new representation language.Even though the fourth requirement has been removed we have still sought to makea framework, whih has as muh expressive power as possible. In this thesis we haveextended IDITs to also handle situations where the quantitative part of time inu-enes the order of taking deisions. Furthermore, we have made it possible to modelunertainties of time not related to deisions, by introduing post-realized utilityfuntions. However, by these additions the representation language has beome in-reasingly omplex, and we stand the risk that models of DPITs therefore end upbeing harder to omprehend.In this setion we disuss preisely this dilemma in relation to IDITs and try to lay



96 Chapter 6. Results and Disussionbare the onsequenes of the hoies we have taken. In doing this we hope to givefuture researhers in the area of deision problems involving time a foundation onwhih to base their hoies.The expressive power of IDITs aims at expressing all possible DPITs. Therefore, allaspets found, whih relates to time, have been sought expressible in IDITs. Thishas been done in order to give the modeller of DPITs as muh freedom as possible,and give him a universal tool for ommuniating and solving DPITs.Another approah is to try to lassify the aspets of time in logially onnetedlasses, and make a speialized framework for eah suh lass. This yields a frame-work, whih is not apable of modelling all aspets of time, but models some in apreise and ompat manner. As noted before, time introdues asymmetries in dei-sion problems. These aspets are good andidates for lasses of DPITs. That is, onelass handling those DPITs, in whih the quantitative aspet of time restrits thestate spae of deision variables, hanges the set of observed variables, or imposesdi�erent orderings of deisions. Another lass then onsists of those DPITs, for whihtime inuenes the states of variables, and has an inuene on the preferenes of thedeision taker. Both lasses should ful�ll the requirements with respet to represent-ing time as a ontinuous element. They ould, however, do this in di�erent manners.The expressive power of two frameworks modelling these lasses of DPITs would eahbe less than that of IDITs, however, as the models from these frameworks would bespeialized to show the important information relating to the lass diretly in thegraphial representation. For instane, a representation language without asymme-tries may use dashed ars to point out an inuene of time, whereas in IDITs wehave hosen to use that form of representation to tell the reader that there exists arestrition between the two variables onneted by the dashed ar. Likewise, the so-lution method for any of the two lasses would be faster as some steps of the solutionmethod for IDITs would be obsolete. The splitting in order to reveal asymmetrieswould not be neessary for one of the frameworks, and the fat that time does notinuene probabilities and utility funtions in the other speialized framework, ouldbe utilized to perform a disretization of time in some manner.The hoie of whether a speialized framework is preferred to a general purposeframework, as IDITs, or not, is subjetive. If models should reet a omplex realworld problem, and the primary goal of this model is to �nd an optimal strategy fortaking the deisions, the more expressive framework would be hosen. This frameworkan model all aspets of the problem, and an optimal strategy is given based onall these aspets. However, when the model only needs to represent a part of aomplex problem, as ould often be the ase, a speialized framework is preferred.This mounts to a question about the deision problems being modelled, and theoutome of modelling. If most deision problems involving time only inlude one ofthe two lasses of DPITs, the speialized frameworks would be preferred. If, on theother hand, most deision problems span both of the speialized frameworks, thegeneral framework would be preferred. To onlude on this, more researh shouldbe applied into the inuene of time. Furthermore, the lak of expressive power in a



6.4 Summary 97speialized framework, might be less important if the framework is easier to read.Looking at the three requirements set up for the framework, it an be seen thatIDITs is a ompat and unambiguous framework. Whether or not, IDITs are easy toread is a subjetive disussion, but as inuene diagrams are usually deemed hardto grasp, IDITs are most likely also hard for a layman to grasp.6.4 SummaryWe have applied the solution method, as proposed in Chapter 5, to two di�erentexamples. The examples inorporate the use of both a yle and an instane of apost-realized utility funtion. Besides this we have presented alternatives and modi-�ations to the sampling approah and the solution as a whole, suh as the use of adisretization for the ontinuous variables.We have onluded this setion by disussing IDITs as a framework. We have dis-ussed the problems we have identi�ed in the struture as it is now and have proposeda way of splitting it to a set of speialized frameworks.



98 Chapter 6. Results and Disussion



Chapter 7Conlusion and Future Work
The aim of this projet has been to represent and solve DPITs. We have done thisby extending the representation language, IDITs, proposed by [Broe et al., 2003℄, inorder to be more expressive, and by devising a solution method for IDITs.By analysis of DPITs we have found additional requirements for a framework mod-elling them. These requirements ensure that the framework an handle the orderingof deisions being inuened by time and post-realized utility funtions. The latterbeing the ases where a utility funtion is not realized immediately after the timedation of the last deision is exeuted, but at some later point in time. An exampleof this ould be the event of selling stoks, as the payo� of selling is realized the nextday, thus the market value of the stok may have fallen sine the deision to sell wastaken.We have re�ned IDITs to be apable of handling these additional requirements byallowing guarded yles between deisions, and by adding the possibility of havingtime variables, whih are not assoiated with deisions.Furthermore, we have shown that a temporal ordering of variables in an IDIT existsand how this temporal ordering an be dedued from the two levels of the IDIT.This is also used to show that IDITs are wellde�ned in respet to �nding the nextdeision to be taken.We have also given semantis of the quantitative level, by showing how this level anbe realized in an IDIT, and disussing how this level an be modelled generally.We have devised a general method for solving IDITs. This method takes outset in apreliminary temporal ordering, and uses this onstrut as a split tree. A split tree isa tree, in whih the nodes are instanes of the IDIT being solved. The root of the treeis the original IDIT and the leaves are symmetri IDITs in whih all asymmetries,imposed by time variables, are resolved. For eah symmetri IDIT we have hosen touse a strong juntion tree using lazy propagation for solving them. As a onsequeneof modelling time variables using �2-distributions an exat solution annot be om-puted. We have hosen to use a sampling tehnique, based on the [Gentle, 1998℄,99



100 Chapter 7. Conlusion and Future Workfor approximating the distributions of the time variables. The ombination of thishoie and our semantis of time variables has led to the unfortunate event that thesolution method results in intratably large funtions when solving IDITs with evena small number of time variables.On a lighter note, we present arguments for the orretness of our algorithm, andhave presented other alternatives to our urrent solution method.The last part of this onlusion is aimed at the results of this thesis. We present twosmall examples, whih we have solved using our solution method. To give another an-gle to our solution method we disuss alternative approahes to solving the dilemmawe have enountered. These inlude a nonuniform dynami disretization and a multistaged Monte Carlo method using loal omputations. What we �nd intriguing aboutthese approahes is that the disretization is proposed for use on hybrid Bayesiannetworks in juntion trees, and the multi staged Monte Carlo method was devisedfor inuene diagrams, a framework, whih is losely related to IDITs.Finally, we have disussed the framework of IDITs. In this disussion we present theompliations we have found and we propose onstruting a number of speializedframeworks as opposed to a single framework for handling all aspets of time, suhas IDITs.Unfortunately, we have not had suÆient time to try out all our proposals, norto devise an implementation of our framework. We have, however, expanded bothDPITs and IDITs, proposed a temporal ordering of IDITs, devised a struture forrepresenting IDITs in a manner, whih exposes all asymmetries, and we have deviseda general solution method for IDITs.7.1 Future WorkThis thesis douments the study of deision problems involving time, and in theourse of this work many interesting aspets of time, and its impat on how a frame-work should be onstruted, have been dislosed. However, we have not had time toexplore all of them fully, so we present some of these aspets in the hope that otherswill ontinue this work. We divide the aspets into three ategories, these being: theaspets relating to the expressive power of IDITs, the aspets relating to the solutionmethod, and the aspets applying the work to real world problems.During the analysis of several DPITs an element of time, whih is not modellable inIDITs, was disovered. Deisions, whih must be taken at a spei� point in time,whih we have opted to all �xed time deisions. These annot be orretly portrayedin IDITs. The problem with �xed time deisions is the semantis of the deision. Forinstane, if the deision taker, at the time a �xed time deision must be taken, is inthe midst of exeuting the timed ation imposed by his hoie in another deision.Should the timed ation be skipped, and the �xed time deision be taken instead?Or should all deisions before a �xed time deision have a hoie, whih is resolved



7.1 Future Work 101instantly, thus making it possible to hoose this hoie and in this manner skip to the�xed time deision? Future researh should analyze the need of �xed time deisions,�nd a suitable semantis for them, and, based on the semantis, extend IDITs to beapable of modelling suh deisions.The solution method devised for solving IDITs in this thesis is an general solutionmethod, whih, unfortunately, is intratable on models, whih handle more than afew time variables. This is beause of the exponential nature of the funtions weuse to represent utility potentials. Therefore, we propose that a method for solvingIDITs should be devised, whih fouses on keeping the intermediate results and al-ulations to a minimum with respet to size. Funtion analysis ould be of used to�nd some regularities in the funtion expressions and use this to approximate thelarge expressions by smaller ones.An approah ould be to �rst alter the semantis of time variables, so they onlyrepresent an unertainty in time, and not a spei� point in time. This results in thetime variables not being dependent on eah other, whih is one of the aspets, whihlies as the foundation of our problem.In Chapter 6 we have proposed other approahes to handling the ontinuous elementsof IDITs. An interesting approah to onsider is that of a nonuniform dynami dis-retization [Kozlov and Koller, 1997℄, as this approah also uses the on�nements ofa juntion tree to struture the variables of some network.The approah we disuss in Chapter 6, proposed in [Charnes and Shenoy, 2002℄, wasproposed to handle potentials, whih are intratably large. This is exatly the prob-lem we end up having. Unfortunately, this approah is aimed at models in whih allvariables are disrete, so either a disretization must be performed beforehand, orthe approah should be modi�ed to also handle hybrid networks.The framework of IDITs, as proposed in this thesis, is yet only appliative as a toolfor ommuniating DPITs, as it is not yet implemented. The use of sampling and theomplexity of the solution method makes even small IDITs hard to solve by hand.An implementation ould take outset in the solution method proposed, yielding itpossible to solve small to medium sized IDITs, however, larger IDITs would betoo time and spae onsuming for omputers to handle. Assuming that IDITs areimplemented onsiderable speed ups an be ahieve by utilizing the equality of thesymmetri IDITs. As mentioned in Chapter 5 there exists an exponential amountof symmetri IDITs in the number of split variables. All these symmetri IDITs areonverted to a strong juntion tree. By studying the symmetri IDITs, however, itis dedued that many of these are equivalent, as splits are also aused by restritionfuntions, whih do not hange the struture of the IDITs, but only the state spaeof the deision variables in it. An implementation would also make it possible toargue about the use of sampling as opposed to, for instane, approximating theprobability distribution of time variables using polynomials or any other method ofapproximation.
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Appendix ASummary
Deision analysis is a researh area fousing on taking deisions in an uner-tain ontext. Trying to formalize deision analysis has resulted in a range ofdi�erent frameworks, eah having their pros and ons. The frameworks typi-ally used are deision trees [von Neumann and Morgenstern, 1944℄, inuene di-agrams [Howard and Matheson, 1981℄, and valuation networks [Shenoy, 1992℄.Even though these frameworks have been used to model deision problems, the mod-els are limited to only enompass time on a qualitative level, that is, having atemporal ordering of the events of the deision problem. However, time also hasa quantitative level. Deision problems are models of real world problems, but,as deision problems are modelled without a quantitative representation of time,these do not reet this dimension of the real world. [Horvitz and Rutledge, 1991℄and [Horvitz and Seiver, 1997℄ disuss how time may inuene the utility funtionsof a deision problem. But the inuene of time exeeds the inuene of utility fun-tions, for instane, time often inuenes whih hoies are possible in a deision. Asan example, one annot go to the stadium at ten o'lok to see a football math,whih ended at eight o'lok. In [Broe et al., 2003℄ the lass of deision problemsinvolving time was analyzed and a framework, for modelling these, was proposed.The analysis showed how deision problems involving time, ombine two well studiedaspets of deision problems, these being that the problems tend to be asymmetriand that time should be represented by ontinuous variables. In this thesis we haveontinued the work of [Broe et al., 2003℄.Deision problems involving time, DPITs, are haraterized by the elements of theindividual DPIT being inuened by time. We have found that a DPIT an be di-vided into four parts, these being: the variables in the DPIT, the deision taker,the preferenes of the deision taker, and the relations between the variables. Thevariables represent the deisions, the unertainty of irumstanes, and time in theDPIT. The deision taker is the person to whom the DPIT is presented. Finally,relationships between variables is represented as probabilisti dependenies, pree-dene of taking one deision before another, or a restrition of the possible hoies107



108 Chapter A. Summaryof a deision.The analysis of DPITs has led to a series of requirements for frameworks modellingthese. These requirements ensure that the framework: models time as a ontinuouselement, and does so in a manner resulting in both a ontrollable and an unontrol-lable element; is apable of modelling restritions of state spaes of deisions; anmodel time being inuened by other variables; an model observations, whih anonly be taken in spei� time spans; an model hane variables inuened by time;and an model the preferenes, of the deision taker, being inuened by time. Itshould also be modellable that some preferene of the deision taker is not realizeduntil some time in the future. Furthermore, the preedene of one deision in relationto another deision may dependent on the point in time they are to be taken.To satisfy the requirements, for a framework modelling DPITs, we have onstruteda framework, named inuene diagrams involving time, IDITs, whih models suhdeision problems. The framework builds on the ideas of inuene diagrams, suhthat it models DPITs on two levels. On the qualitative level IDITs models variablesand loal utility funtions as nodes in a direted labelled graph, and the relationshipsbetween variables as the ars of the graph. The semantis of an ar di�ers aording tothe nodes it onnets, and whether or not the ar is labelled with a guard. Likewise, itan be seen diretly in the graphial representation, if one variable restrits another.On the quantitative level information, relating to the individual variables, is given.That is, to eah variable the state spae of the variable is given, and probabilitydistributions are assoiated to hane variables. Furthermore, all restrition funtionsare spei�ed on this level and the funtions relating to eah loal utility funtion.We desribe IDITs by giving an informal introdution to the onepts of IDITs, andtheir graphial representation. To exemplify this we have proposed a DPIT, whihwe have named the SAR problem. It takes outset in the resue mission set in motionwhen a person is reported missing. The example inludes time on a quantitativelevel, as the suess of the mission is related to �nding the missing person alive,within some time frame. We have introdued time variables, whih are not diretlyassoiated with deisions, in order to model loal utility funtions realized after thelast deision. After desribing the ideas of IDITs we de�ne the syntax for both thequalitative and the quantitative level of IDITs. We then desribe how the IDITan be read aording to a temporal ordering, whih is dedued from the two levels.Furthermore, based on this temporal ordering, we argue for IDITs being a wellde�nedframework, that is, when a temporal ordering of deision variables exists the nextdeision an be unambiguously identi�ed.As a modelling tool the representation language of IDITs would be enough. However,we want to �nd a poliy for taking eah deision of the IDIT, therefore, a generalsolution method is needed. We propose a solution method for solving IDITs, withrespet to �nding an optimal strategy.The inuene of time an be divided into two main ategories, namely one relating totime as a ontinuous element, and one, whih renders the models asymmetri. In thesolution method we reursively resolve all asymmetries of an IDIT by splitting the



109IDIT into symmetri sub-problems. We end up with a number of totally symmetrisub-problems, whih we have organized in a tree struture, alled a split tree. Wethen solve the part of eah symmetri sub-problem, whih is unique to this spei�sub-problem, using a solution method inspired by the solution method for inuenediagrams, however, the sub-problems are solved in an environment whih has ontin-uous variables. We have hosen to use a strong juntion tree approah when solvingthe symmetri sub-problems. When a solution for the unique part of a sub-problemis found, we merge this result with all other results of sub-problems resulting fromthis split. This is ontinued until all results have been returned to the root of thesplit tree, and the original IDITs is then solved. In this manner we end up with anoptimal strategy for taking all the deisions in the IDIT, whih is the solution weaimed at.As we have ontinuous variables we need to approximate the probability distributionsof these in order to obtain the solution. The solution method proposes a samplingtehnique for this approximation. However, we onlude that sampling over the on-tinuous distributions yields expressions, whih grow exponentially in the number oftime variables, thus is not appliable for large problems.Finally, we present two examples, whih illustrate some of the important parts ofIDITs, and we have solved these using the solution method. As a onsequene of theexponential growth in funtion size we have not found a numerial solution to theseexamples. However, the examples still serve as an illustration of all other aspets ofthe solution method.Furthermore, we have disussed di�erent approahes to approximation, suh thatfuture researh might �nd a numerial solution to IDITs. Finally, we disuss theappropriateness of the framework proposed, as opposed to having proposed smallerframeworks.


