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Abstra
t: In this Master thesis westudy de
ision analysis, in whi
h timeon a quantitative level is an aspe
t.This study has, in addition to thestudies of [Broe et al., 2003℄, resultedin a series of requirements for frame-works modelling de
ision problemsinvolving time, DPITs. We present aframework for modelling and solvingDPITs, whi
h ful�lls all of these re-quirements.The framework, in
uen
e diagramsinvolving time, IDITs, was originallyproposed in [Broe et al., 2003℄. Inthis thesis it is extended to handleadditional aspe
ts of time, amongstthese are lo
al utility fun
tions real-ized later than the end-time of thelast de
ision. Furthermore, we devisea method for solving IDITs with re-spe
t to �nding an optimal strat-egy. We solve an IDIT by resolvingall asymmetries introdu
ed by time.This leads to a number of symmetri
sub-problems, whi
h we solve usinga method based on strong jun
tiontrees with lazy propagation.We illustrate the solution method us-ing two examples in order to demon-strate how the framework is used.Furthermore, we dis
uss the bene�tsand drawba
ks of having one frame-work handling all issues of time asopposed to multiple smaller frame-works.
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Chapter 1Introdu
tion
De
ision analysis is a resear
h area fo
using on how to take de
isions, in un
ertainsurroundings, and do this in a manner, whi
h is optimal for the de
ision taker. Tryingto formalize de
ision analysis has resulted in a range of di�erent frameworks ea
hhaving their pros and 
ons.[von Neumann and Morgenstern, 1944℄ and [Rai�a, 1968℄ proposed to stru
ture ade
ision problem in a so-
alled de
ision tree. A de
ision tree models the 
hoi
es and
ir
umstan
es as internal nodes in a tree and the out
omes as the leaves. The treegives a good intuition of a de
ision problem, but it is exponential in size, whereforeother more 
ompa
t frameworks have been proposed. As opposed to de
ision trees,in whi
h the states of ea
h variable are nodes in the tree, the more 
ompa
t frame-works groups these states in variables. [Howard and Matheson, 1981℄ proposed in
u-en
e diagrams, whi
h is, basi
ally, a Bayesian network, as des
ribed in [Pearl, 1988℄,[Lauritzen, 1996℄, and [Jensen, 2001℄, augmented with de
ision and utility nodes.Other frameworks have been proposed as well, amongst these are valuation net-works, des
ribed in [Shenoy, 1992℄. Both in
uen
e diagrams and valuation networksare based on multiple levels, su
h that the reader 
an abstra
t from 
ertain detailson di�erent levels of the framework.Even though de
ision analysis has been resear
hed for several de
ades, surpris-ingly little resear
h has been done on the e�e
ts of time in de
ision problems.The three frameworks des
ribed above are all 
apable of representing a qualita-tive aspe
t of time, whi
h spe
i�es in whi
h order de
isions and observations aretaken. However, the quantitative aspe
t of time has gotten little attention. Thequantitative aspe
t of time is a representation of time, whi
h is dire
tly quanti-�ed in the de
ision problem, that is, the point in time when something happens
an have an e�e
t on what happens. For instan
e, time may in
uen
e the pos-sible 
hoi
es for a Friday night in town. If the football mat
h begins at eighto'
lo
k the 
hoi
e of going to the stadium and seeing the game is not possible atten o'
lo
k. [Horvitz and Rutledge, 1991℄ and [Horvitz and Seiver, 1997℄ dis
ussedhow time may in
uen
e the utility fun
tions of a de
ision problem, whi
h is in1



2 Chapter 1. Introdu
tionfa
t a quantitative aspe
t. In [Broe et al., 2003℄ the 
lass of de
ision problems in-volving time was analyzed and a framework, for modelling these, was proposed.The analysis showed how de
ision problems involving time, 
ombine two well stud-ied aspe
ts of de
ision problems, these being asymmetri
 problems and 
ontinu-ous variables. [Bielza and Shenoy, 1999℄ and [Nielsen and Jensen, 2002℄ both dis
ussthe e�e
t of modelling asymmetri
 de
ision problems. The e�e
ts of having 
on-tinuous variables in Bayesian networks have gotten some attention, for instan
e,in the form of hybrid networks, [Lauritzen, 1996℄. [Sha
hter and Kenley, 1989℄and [Madsen and Jensen, 2003℄ examined 
ontinuous variables in in
uen
e diagrams,but, as for similar work, the 
ontinuous variables are restri
ted in di�erent manners,for instan
e, by not allowing 
ontinuous variables as parents of dis
rete variables.[Lerner et al., 2001℄ showed one approa
h of removing this restri
tion for Bayesiannetworks.One aspe
t of de
ision problems is the model, another is �nding a strategyfor taking the optimal 
hoi
es of the de
ision problem. For ea
h of the frame-works, des
ribed above, solution methods have been proposed. For solving in
u-en
e diagrams [Howard and Matheson, 1981℄ proposed a method turning the in
u-en
e diagram into a de
ision tree, whi
h 
ould be solved using the method from[von Neumann and Morgenstern, 1944℄. [Sha
hter, 1986℄ and [Jensen et al., 1994℄also proposed solution methods for in
uen
e diagrams. The solution method pro-posed by [Nielsen and Jensen, 2002℄ for asymmetri
 in
uen
e diagrams splits theasymmetri
 in
uen
e diagram in symmetri
 sub-problems, whi
h are then solvedusing lazy propagation as des
ribed in [Madsen and Jensen, 1999℄. A similar ap-proa
h for splitting the problem is used in [Demirer and Shenoy, 2001℄ for a frame-work based on valuation networks and sequential de
ision diagrams. Furthermore,[Nielsen and Jensen, 2002℄ argues for the symmetri
 sub-problems being wellde�nedbased on [Nielsen and Jensen, 1999℄.The reason why time is an interesting aspe
t in relation to de
ision problems is thatwe aim at modelling the real world, and time is of importan
e, on some level, inalmost everything we do. So being 
apable of modelling time as a fa
tor of a de
isionproblem yields models 
loser to reality. For example, modelling the de
ision of buy-ing sto
ks should be done re
e
ting the time at whi
h they are bought, as the pointin time when they are bought in
uen
es the pri
e, and later the earnings. Time notonly in
uen
es the 
ir
umstan
es, but de
isions and utilities as well. Chapter 3 givesan in-depth analysis of the in
uen
e of time.1.1 Problem Spe
i�
ationRepresenting and solving de
ision problems involving time is the main fo
us of thisthesis. By further analysis of de
ision problems involving time we want to �nd im-portant elements, whi
h were not dis
losed in [Broe et al., 2003℄. The results of thisanalysis should end with an extended representation language for de
ision problemsinvolving time, yielding it more suitable for modelling. Besides being more expres-



1.2 Outline of the Thesis 3sive, we seek to devise a method for solving in
uen
e diagrams involving time of anygiven model of a de
ision problem involving time. Therefore, we des
ribe a solutionmethod whi
h, given a model of a de
ision problem involving time, returns an opti-mal strategy for taking the de
isions. Finally, we dis
uss the framework with respe
tto its usability.1.2 Outline of the ThesisThis thesis 
onsists of seven 
hapters, whi
h 
an be divided into three main parts.Chapters 2 and 3 dis
uss the preliminaries of the framework being 
onstru
ted.Chapter 2 gives an introdu
tion to the notation used in this thesis, while spe
ifyinggraph and probability related 
on
epts. In it we also dis
uss how this thesis buildson [Broe et al., 2003℄, and where the main di�eren
es between the two works lie.Chapter 3 dis
usses the problem domain of de
ision problems involving time, intro-du
es the 
on
epts relating to these problems, and sets up a series of requirementsfor frameworks modelling de
ision problems involving time.The se
ond part of the thesis is fo
used on the development of the framework formodelling and solving de
ision problems involving time. Chapter 4 de�nes the rep-resentation language for modelling de
ision problems involving time, whi
h is 
alledin
uen
e diagrams involving time. The representation language is �rst des
ribed byits semanti
s, whi
h is followed by de�nitions of its synta
ti
al spe
i�
ations. Finally,we argue for the representation language being wellde�ned. Chapter 5 des
ribes ageneral solution method for solving in
uen
e diagrams involving time. The 
haptergives an overview of the solution, and then spe
i�es the details of ea
h step involvedin the method.The �nal part 
on
ludes on the thesis by illustrating the use of in
uen
e diagramsinvolving time, and by dis
ussing the pros and 
ons of a spe
i�
 framework for mod-elling de
ision problems involving time. Chapter 6 introdu
es two examples, whi
hare solved using the solution method proposed in Chapter 5. Furthermore, alter-natives to the approximation method, we utilize, are dis
ussed. In Chapter 7 we
on
lude on the thesis, by a dis
ussion of the works of the thesis, and summarize theresults a
hieved. Finally, we propose whi
h aspe
ts should be 
onsidered as futureresear
h.
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Chapter 2Preliminaries
In this 
hapter we des
ribe the theory on whi
h this thesis is built. The theory isdivided into three se
tions, where Se
tion 2.1 des
ribes graph theory, and introdu
esthe notation used in this thesis. Se
tion 2.2 introdu
es the probability theory usedand des
ribes some of the theoreti
al aspe
ts of utilities. Finally, Se
tion 2.3 des
ribesthe representation language 
onstru
ted in [Broe et al., 2003℄, and dis
usses how thisthesis di�ers from the earlier work.2.1 Graph TheoryAs the modelling of de
ision problems is done using graphi
al models, graph theoryis essential to any framework for modelling de
ision problems. We introdu
e the keyaspe
ts of graph theory used in this thesis.An element is a generi
 term, whi
h is used to 
over any mathemati
al instan
e,for example, a variable or a graph. An unordered 
olle
tion of distin
t elements isreferred to as a set . To separate a set from its elements we denote sets by bold
apitalized letters, whereas elements are non bold, for instan
e, X 
ould be the set
onsisting of X; Y and Z, also written as X = fX; Y; Zg. In this thesis, unless expli
itlystated, no sets are multisets, that is, sets do not in
lude multiple instan
es of anelement. We use traditional set operations when manipulating sets, su
h as [ fortaking the union of two sets and \ to denote the interse
tion of two sets.A graph, G, is a pair of sets, (V;E), where V is a set of nodes, and E is a subset ofV �V, whi
h we 
all edges. The edges of a graph 
an be dire
ted or undire
ted . Ifboth (V;V0) and (V 0; V), also denoted as fV;V0g, are in E the edge is undire
ted. Ifonly one of these is in E, it is a dire
ted edge, whi
h we usually refer to as an ar
.If all edges of a graph are dire
ted we 
all the graph a dire
ted graph, and if not we
all it an undire
ted graph.Labelled graphs are graphs in whi
h the edges are labelled . We de�ne a labelled graph5



6 Chapter 2. Preliminariesby a triple, (V;L;E), where V is a set of nodes, L a set of labels, and E a subset ofV�V� L.A node, V, in a graph, (V;E), is said to be the parent of a node, V 0, if the ar
 (V;V0)is in E, and we say V 0 is a 
hild of V.We denote the set of parents of some node, V, bypa(V), and the set of 
hildren of V as 
h(V). If two nodes, V and V 0, are 
onne
tedby an edge fV;V0g they are referred to as neighbours. The set of neighbours of somenode, V, is denoted ne(V).In a graph, (V;E), a path, P, is an ordered sequen
e of nodes, V1; V2; : : : ; Vn, in V,where there exists an edge fVi; Vi+1g for 1 � i � n - 1. A dire
ted path is a path
onsisting of only dire
ted ar
s. If there is a dire
ted path, V;V0; : : : ; V 00, we say V 00is a des
endent of V and V is an an
estor of V 00. We denote the set of an
estors ofsome node, V, by an(V), and the set of des
endents of V by de(V). Furthermore, adire
ted path, V;V0; : : : ; V 00, and an ar
, (V 00; V), is referred to as a 
y
le. If a graphdoes not have any 
y
les it is said to be a
y
li
.A graph (V 0;E 0) is a subgraph if there exists a graph (V;E), where V 0 is a subsetof V, and (V;V0) is in E 0, if and only if it is in E and both V and V 0 are in V 0. Agraph, (V;E) is said to be 
omplete, if, for all nodes, V, in V, the set of neighboursequals V n fVg. A maximal 
omplete subgraph is 
alled a 
lique.2.2 Probability TheoryIn this se
tion we introdu
e the probability theory used in this thesis. In the mod-elling of de
ision problems the 
hoi
es are taken under un
ertainty. This un
ertaintyis formalized using probability 
al
ulus.2.2.1 Dis
rete VariablesA dis
rete 
han
e variable is a �nite set of mutually ex
lusive and exhaustive states,ea
h of whi
h is asso
iated with a probability of being in that state. The semanti
sof 
han
e variables in relation to de
ision problems are dis
ussed in Chapter 3. Con-ventionally, we denote variables with 
apitalized letters, and its state by low 
aseletters. For instan
e, V 
ould be a variable with the states fv1; v2; : : : ; vng. We 
allthe set of states of a variable the state spa
e of the variable, whi
h we denote sp(V).The un
ertainty of a state of a 
han
e variable, V, is represented by a probabilitydistribution P : sp(V) 7! [0; 1℄, where it holds that:Xv2sp(V)P(v) = 1:We 
all a probability distribution over only one variable a marginal probability dis-tribution.The joint probability distribution of a set of 
han
e variables, V, is a fun
tion



2.2 Probability Theory 7PV : sp(V) 7! [0; 1℄ for whi
h it holds that:X�!v 2sp(V)P(�!v ) = 1;where �!v is a 
on�guration of the 
han
e variables in V. Given a joint probabilitydistribution for a set of variables, V, we 
an derive the joint probability distribution,P, for any subset, V 0, of V by marginalizing out the variables of V nV 0, that is:P(V 0) = XVnV 0 P(V):The state of a variable is always dependent on some 
ontext. For instan
e, the stateof a variable, V, representing the se
ond hand in a poker game is dependent on the�rst hand, represented by the variable, V 0. The probability distribution of a 
han
evariable, V, we say is 
onditionally dependent on V 0, written P(VjV0). Generally,a 
onditional probability distribution for some set of variables, V, given a set ofvariables, V 0, is a probability distribution of V for ea
h 
on�guration �!v 0 of V 0. The
onditional probability distribution P(VjV 0) 
an by found using the fundamentalrule: P(VjV 0) = P(V;V 0)P(V 0) :From the fundamental rule Bayes rule 
an be dedu
ed:P(VjV 0) = P(V 0jV) � P(V)P(V 0)2.2.2 Continuous VariablesIn the previous se
tion we des
ribed 
han
e variables for whi
h the state spa
e is �-nite, however, not all variables have a �nite state spa
e. Continuous 
han
e variablesare 
han
e variables with an in�nite state spa
e. Unlike dis
rete 
han
e variables,
ontinuous 
han
e variables do not have a probability asso
iated with ea
h state. In-stead, we asso
iate a density fun
tion, whi
h re
e
ts the probability distribution ofthe 
ontinuous variable. That is, the probability distribution of a 
ontinuous 
han
evariable being in the interval ℄a;b℄ is a fun
tion fV : R 7! R+ [ f0g for whi
h it holdsthat: Z1-1 fV(x)dx = 1;and zero for all x not in ℄a;b℄.We de�ne the probability of an interval in the 
ontinuous 
han
e variable as a 
umu-lative probability distribution, that is, the probability of a 
han
e variable, V, beingat most a is: PV(a) = Za-1 fV(x)dx:



8 Chapter 2. PreliminariesIn this thesis all 
ontinuous 
han
e variables are asso
iated to a �2-distribution,whi
h is given by: fV(x) = 8<:e-x2 �xk2-12k2 ��(k2 ) for x > 00 for x � 0where � is a gamma-distribution as des
ribed in [Grimmett and Stirzaker, 1992℄, andk is a measure of degrees of freedom. To illustrate the behaviour of a �2-distribution,Figure 2.1 shows it for one with three degrees of freedom.

00.050.1
0.150.2
0.250.3

0 5 10 15 20


hi(x,3.00)

Figure 2.1: A �2-distribution with three degrees of freedom.We later argue for the 
hoi
e of using �2-distributions.2.2.3 Utility TheoryIn the domain of de
ision analysis, a value, or utility, denoted by u, is asso
iatedto ea
h 
on�guration of a set of variables, V. This value re
e
ts how preferable the
on�guration is in relation to other 
on�gurations over the set of variables. Someof these variables may be 
han
e variables, that is, there is an un
ertainty of thestate of the variable. When the value is dire
tly asso
iated with a 
han
e variable,it is possible to �nd the expe
ted value or expe
ted utility of this 
han
e node givena 
on�guration of the rest of the variables in the set.The expe
ted utility is the sum of the values weighed in a

ordan
e to the un
ertainty



2.3 Previous Work 9of the 
on�guration, that is, the expe
ted utility, EU, of a 
han
e variable, V, withthe states v1; v2; : : : ; vn, whi
h has a value ui(vi;�!x ) for 1 � i � n, given a set ofvariables X whi
h has a 
on�guration �!x is:EU(V) = nXi=1 P(vi) � ui(vi;�!x );for all 
on�gurations of X.2.3 Previous WorkIn this se
tion we dis
uss the works of [Broe et al., 2003℄, whi
h is the foundationfor this thesis, and relate [Broe et al., 2003℄ to the work presented in this thesis.[Broe et al., 2003℄ took outset in the identi�
ation of a 
lass of de
ision problems,whi
h involve time. The main di�eren
e in these problems as opposed to traditionalde
ision problems is that time not only in
uen
es the stru
ture of the de
ision prob-lem, but also the numeri
al part. That is, where traditional de
ision problems have aqualitative aspe
t of time, in
uen
ing the order in whi
h de
isions are taken, de
isionproblems involving time have a quantitative aspe
t too. Therefore, besides in
uen
-ing the order, time 
an in
uen
e the un
ertainty of a state of a 
han
e variables orthe value of a utility.After an analysis of traditional frameworks for modelling de
ision problems, their
apabilities of modelling de
ision problems involving time were analyzed. This re-sulted in a series of requirements for frameworks modelling de
ision problems in-volving time, and the 
on
lusion that the traditional frameworks were not 
apableof modelling de
ision problems involving time in a satisfa
tory manner.Instead, a new framework, in
uen
e diagrams involving time, abbreviated as IDITs,was 
onstru
ted. IDITs are based on the framework of in
uen
e diagrams, whi
hhas been extended to handle the time issues required by de
ision problems involv-ing time. The framework represented the quantitative aspe
t of time by introdu
ingvariables, representing time. Two variables were introdu
ed, one modelling the pos-sibility of 
ontrolling time, and one modelling the un
ertainty involving time. Fur-thermore, in
uen
e diagrams involving time were made to represent time in
uen
ingutility fun
tions and 
han
e variables, and aspe
ts of time involving the restri
tionsof de
isions and the possibility of observations. [Broe et al., 2003℄ 
onstru
ted therepresentation language of IDITs and proposed a sket
h of how a possible solution
ould be found.In this thesis we extend the representation language of [Broe et al., 2003℄, su
h that ithandles some of the aspe
ts of time, whi
h were not in
luded. And we 
larify how theframework of IDITs a
tually handles time in
uen
ing utility fun
tions and 
han
evariables. The representation language of [Broe et al., 2003℄ was restri
ted in thesense that it does not allow time to in
uen
e the order in whi
h de
isions are taken,



10 Chapter 2. Preliminariesbut only to restri
t the possible options of the de
isions. Likewise the possibilityof having time not asso
iated to de
ision, is not in
luded in [Broe et al., 2003℄. Itis however an interesting aspe
t of time as the payo� of a de
ision is sometimespostponed into the future, for instan
e, when selling sto
ks the a
tual payo� 
omesthe next day. These 
lari�
ations and extensions yield a more expressive framework,whi
h should be expressible through the syntax and semanti
s of the representationlanguage.Furthermore, we spe
ify what a wellde�ned IDIT is, and how we ensure that thisproperty is ful�lled. This property ensures that a unique de
ision 
an be identi�ed asthe next de
ision to be taken, and is, therefore, an essential matter when modellingde
ision problems involving time, and when solving them.The solution sket
h of [Broe et al., 2003℄ did not in
lude a general des
ription of howto solve de
ision problems involving time, and this matter is solved in this thesis. Wedes
ribe how to solve an IDIT, and dis
uss the usefulness of the proposed solutionmethod. Having spe
i�ed a solution method makes it possible to implement andtest the framework, whi
h is a ne
essity if the framework should be usable, besidesas a means of 
ommuni
ation. Finally, we dis
uss how the representation languagebene�ts as a means of 
ommuni
ating a de
ision problem involving time, and dis
ussthe bene�ts and diÆ
ulties of using the framework.



Chapter 3De
ision Problems InvolvingTime
The purpose of this 
hapter is to re
apture the ideas and parts of de
ision problemsinvolving time, abbreviated as DPITs, as presented in [Broe et al., 2003℄. DPITs arethe foundation on whi
h the rest of this thesis builds.DPITs 
onstitute a 
lass of de
ision problems, in whi
h time in
uen
es the de
isiontaking. Unlike de
ision problems, time quanti�ed and plays a 
entral part of theun
ertainty of observations, the order of events, and of preferen
es in DPITs. DPITsshare the fa
t that the 
on
ept of time dire
tly in
uen
es the parts of the problem,whether by in
reasing the un
ertainty of an observation, yielding it impossible tomake an observation, or waiting until a 
ertain point in time before taking somede
ision. For instan
e, it may not be possible to observe the severity of an earthquakeright away and by waiting a period of time before dispat
hing help, the help 
an bespe
ialized and thereby save a lot of lives, however, the delay may 
ause many peopleto die.The 
on
ept of time also introdu
es an un
ertainty in itself. A
tions, whi
h may beexe
uted with ease now, may be impossible to perform ten minutes from now, andunforeseen events may 
hange the amount of time it takes to perform even a simpletask.In Se
tion 3.1 we spe
ify what a de
ision problem involving time, abbreviated as aDPIT, is based on and present the parts it 
onsists of. In Se
tion 3.2 we presentthe properties of DPITs, and in Se
tion 3.3 we list requirements for a framework tomodel DPITs, and a justi�
ation for these.

11



12 Chapter 3. De
ision Problems Involving Time3.1 Parts of De
ision Problems Involving TimeA DPIT des
ribes a 
olle
tion of 
ir
umstan
es and 
hoi
es and the asso
iation ofthese to the de
ision taker . It also en
ompasses information of the un
ertainty ofthe 
ir
umstan
es given the 
hoi
es, the temporal order of 
ir
umstan
es and 
hoi
es,the preferen
es of the de
ision taker, and the time related to this information.In the following se
tions we elaborate on these parts.3.1.1 The De
ision TakerA de
ision taker is an entity, whi
h en
ounters a series of 
hoi
es, from whi
h he
hooses a subset, based on his preferen
es. He is always thought of as an entity, thatis, if the de
ision taker represents a group of people, it is assumed that this group,with 
ertainty, bases its 
hoi
es on the same set of preferen
es.3.1.2 Variables in a De
ision Problem Involving TimeA de
ision problem 
onsists of a set of variables, a utility fun
tion, and relationshipsbetween the variables. There are two types of variables, 
han
e and de
ision vari-ables. The set of 
han
e variables is denoted as VC and the set of de
ision variablesas VD. A 
han
e variable is 
omprised of a set of mutually ex
lusive and exhaustive
ir
umstan
es, while a de
ision variable is 
omprised of a set of mutually ex
lusiveand exhaustive 
hoi
es. This in turn means that the 
ir
umstan
es of a 
han
e vari-able and the 
hoi
es of a de
ision variable ea
h are 
on
eptually related.A 
hoi
e is related to the de
ision taker as something over whi
h he has dire
t 
on-trol. A 
ir
umstan
e on the other hand is something over whi
h the de
ision taker
an only have an indire
t 
ontrol.If a variable, V, is known to be in one of its states, v, we 
all v its true state, and wesay that V is instantiated as being in v.We say that the de
ision taker 
an 
hoose a 
hoi
e or take a de
ision. Chan
e vari-ables 
an be observed meaning that the de
ision taker knows their true state.The set of 
han
e variables for a DPIT 
onsists of two disjoint subsets, one is a setof dis
rete 
han
e variables, VDC, and the other a set of time variables, VT, thatis, VC = VDC [VT. The set of time variables, VT, 
onsists of two disjoint subsets,one being the set of end-times for de
isions, denoted as VeT, and the other the set offree time variables, denoted VF, that is, VT = VeT [ VF. A time variable, T, in VeTis always asso
iated with some de
ision variable, D, and, 
onventionally, we writethe de
ision, to whi
h the time variables is asso
iated, as subs
ript, in this 
ase TeD.We say that TeD represents both the end-time of D and the initiation-time of thenext de
ision to 
onsider after taking D. The impli
ations of this are dis
ussed later.When it is apparent from the 
ontext what type of 
han
e variable is referred to, we



3.1 Parts of De
ision Problems Involving Time 13use the term 
han
e variable, otherwise we use their full name.The set of de
ision variables, for a DPIT, also 
onsists of two disjoint subsets, one be-ing a set of dis
rete de
ision variables, VDD, and the other a set of wait de
ision vari-ables, VW. That is, the set of de
ision variables VD is de�ned as VD = VDD [VW.Wait de
ision variables are 
ontinuous de
ision variables. A wait de
ision is alwaysa de
ision of how long to wait before taking the next de
ision, and we say that thewait de
ision is referen
ing a de
ision following it in the temporal order. When it isapparent from the 
ontext what type of de
ision variable we are talking about, weuse the term de
ision variable, otherwise we use their full name.Some 
hoi
es may imply that a timed a
tion is to be exe
uted. The exe
ution of atimed a
tion takes some amount of time, thus time passes when exe
uting the timeda
tion. A de
ision variable 
onsisting of one or more 
hoi
es implying timed a
tionsis 
alled a de
ision variable involving time. A de
ision variable, whi
h does not implythe exe
ution of a timed a
tion, is 
alled an instant de
ision, and when a 
hoi
e foran instant de
ision is exe
uted, we 
all that 
hoi
e an a
tion. As a
tions do notimpose the passing of time, the initiation-time and end-time of an instant de
isionis represented by the exa
t same point in time.A de
ision variable involving time has a time variable asso
iated with it, pinpointinghow long the 
hosen timed a
tion takes. As the 
hoi
e indi
ates how long it takesto perform the timed a
tion, the time variable represents an element of un
ertaintyin the exe
ution of a timed a
tion. The amount of time it is assumed to take forthe timed a
tion to be exe
uted is known as the time span of the timed a
tion. Thea
tual time it takes is the di�eren
e in time between the initiation-time and theend-time of the de
ision at hand.Furthermore, time variables represent the global time of the DPIT. That is, timea

ummulates through the DPIT for ea
h observed time variable.3.1.3 The Utility Fun
tionChoi
es are taken on the basis of some set of preferen
es. These preferen
es 
anformally be des
ribed by a utility fun
tion. Before it makes sense to 
onsider anyDPIT the preferen
es of the de
ision taker should be 
lari�ed, and a method for doingthis is to de�ne a utility fun
tion for that DPIT. A utility fun
tion is a mapping ofea
h 
on�guration of the variables of the de
ision problem to a real number re
e
tinghow preferable the 
on�guration is. A utility fun
tion 
an be additively de
omposedto a set of lo
al utility fun
tions. That is, a utility fun
tion, U, of some DPIT, 
an bede�ned as U =Pni=1 ui, where ui is a lo
al utility fun
tion. The set of lo
al utilityfun
tions is denoted as VU. Ea
h lo
al utility fun
tion maps the state spa
es of aproper subset of the variables in the DPIT to R, while U maps the state spa
es ofall variables in the DPIT to R.The spe
i�
ations of a lo
al utility fun
tion is, in prin
iple, di�erent for everybody,as it depends on the subje
tive preferen
es of the individual, that is, the preferen
es



14 Chapter 3. De
ision Problems Involving Timeof the de
ision taker. Therefore, a utility fun
tion 
an be any fun
tion, as long as itis unambiguous, and there is a surje
tion between the 
ombinations of states of thevariables in
uen
ing the utility fun
tion, and the number of possible outputs of theutility fun
tion.
3.1.4 Relationships Between VariablesThe 
han
e and de
ision variables of a DPIT are related through the un
ertainty ofthe states of 
han
e variables given de
ision variables. The joint 
onditional prob-ability distribution for the 
han
e variables in a DPIT given the de
ision variablesis P(VCjVD). The joint 
onditional probability destribution 
an be de
omposed toa set of 
onditional probability distributions, one for ea
h 
han
e variable using the
hain rule for in
uen
e diagrams.Ea
h 
hoi
e is 
hosen based on a set of observations and the relevant past of thatde
ision variable. The relevant past of some de
ision variable, D, is representedthrough the observation fun
tion, obs�!t (D). obs�!t (D) is the set 
onsisting of thede
ision itself, the set of variables observed beforeD is taken at time t, and obs�!t (D 0)where D 0 is the de
ision taken immediately before D.Other relations between variables in
lude how the e�e
ts of time may restri
t thestate spa
e of a de
ision variable. This type of relationship is a restri
tion, whi
his represented by a restri
tion fun
tion. A restri
tion fun
tion on a de
ision, D, isa fun
tion, whi
h maps the state spa
es of a set of variables in
uen
ing D to somesubset of the state spa
e for D. That is, a fun
tion, 
 : sp(V) 7! sp(D), where Vis the set of variables restri
ting D. The set of restri
tion fun
tions for a DPIT isdenoted as Qt. The subtyped t denotes that Qt is de�ned for every point in time, t.A restri
tion fun
tion between variables 
an also refer to a 
han
e variable only beingobservable within a spe
i�
 time frame. For instan
e, if some test is performed andthe result of the test is available to the de
ision taker after ten hours. The de
isiontaker 
annot use the information given by the best result, if he takes a de
ision afteronly �ve hours of the test has been performed. The test result is still available afterten hours, but it simply has no in
uen
e on the de
ision it was meant for, as thede
ision has already been taken.We 
onstrain de
ision variables to in
lude at least one 
hoi
e for any given point intime. This 
hoi
e should still be 
on
eptually related to the other 
hoi
e, in su
h amanner that the extra 
hoi
e makes sense. In other words, the de
ision taker mustalways be able to 
hoose at least one 
hoi
e for every de
ision variable.



3.2 Properties of De
ision Problems Involving Time 153.2 Properties of De
ision Problems Involving TimeDPITs have some properties as a 
onsequen
e of time in these problems. This se
tiondes
ribes these properties.3.2.1 The No-Delay AssumptionA time variable asso
iated with a de
ision represents both the end-time of this de-
ision variable and the initiation-time of the next de
ision variable, we 
all this theno-delay assumption. The no-delay assumption states that between two de
isionstime is �xed. This assumption ensures that observing 
han
e variables is instan-taneous, that is, 
han
e variables are only observed immediately before a de
isionvariable at the point in time spe
i�ed as the initiation time for that de
ision.3.2.2 Temporal Order of VariablesThe order in whi
h de
isions are taken in a DPIT, 
onstitutes a temporal orderingof these and all other variables. For instan
e, a de
ision on whether or not to harvest
rops on a �eld should not pre
ede the de
ision of whether or not to sow the 
rops.Not all 
ases of the orderings of de
isions are as apparent as just illustrated though,therefore an ordering of the de
isions is spe
i�ed for a DPIT. This ordering ordersthe de
isions and time variables, su
h that, the 
hoi
e of one de
ision or possibly theend-time of this de
ision makes it possible to unambiguously identify whi
h de
isionis to be taken next. DPITs allow two or more de
isions to be unordered initiallywith respe
t to ea
h other, if, before taking any of the unordered de
isions, a uniqueorder 
an be found.Furthermore, de
isions are ordered in relation to the time variables, su
h that, theend-time of a de
ision is only known after the de
ision. We extend this to say thatthe end-time of a de
ision is known before taking the next de
ision in the DPIT. Ob-served 
han
e variables, whi
h in
uen
e some de
ision, D, are pla
ed immediatelybefore D in the temporal ordering, unless they have already been pla
ed somewhere,that is, they in
uen
e another de
ision, whi
h is pla
ed before D.DPITs do not have a total ordering of variables. However, as observations and de
i-sions are taken, an ordering emerges. Instead of the total ordering there is a partialordering, denoted as !, of de
ision and 
han
e variables. This ordering orders thede
isions and time variables in relation to ea
h other, and the dis
rete 
han
e vari-ables a

ordingly, but the dis
rete 
han
e variables are not ordered with respe
t tothemselves.When a variable, V, is said to be before another variable, V 0, in the temporal orderof a DPIT, V is either observed or taken before V 0, depending on whether V is a
han
e or de
ision variable. And if V is said to be after V 0, V is observed or takenafter V 0. When we write V! V 0, it means that V is before V 0 in the temporal order



16 Chapter 3. De
ision Problems Involving Timeof the DPIT. If we want to be more spe
i�
 and express that V is immediately beforeV 0, we say so expli
itly. For any two variables, V1 and V2, in VD [VeT, there existsan ordering, this is a transitive ordering, that is, if V1!W and W! V2, where Wis some other variable in VD [VeT, then it follows that V1! V2.Furthermore, there exists a total ordering of all time variables, as a 
onsequen
e oftime variables representing a global time aspe
t. This means that for every two timevariables, T and T 0, in VT are ordered su
h that either T! T 0 or T 0 ! T.Furthermore, if a time variable is a free time varaible, all dis
rete 
han
e variablesin
uen
e this time variable are said to be prior to the time variable and are thereforebefore the time variable in the temporal order.The order of de
ision variables in a DPIT 
an be de�ned through the obs�!t fun
tionfor all de
ision variables in a DPIT, so some de
ision variable, D, is before someother de
ision variable, D 0, i� obs�!t (D) � obs�!t (D 0). Through this ordering the�rst de
ision variable of a DPIT 
an be found, and we de�ne the initiation-time ofthis de
ision variable to be zero.� There is one de
ision, D, and a relation, obs�!t (D) � obs�!t (D 0), for allD 0 2 VD n fDg. We refer to D as the �rst de
ision variable of the DPIT. Fur-thermore, there are no time variable in
uen
ing D, yielding the initiation-timeof D as zero.Let D and D 0 be de
ision variables, su
h that D ! D 0, and let TeD and TeD 0 bethe time variables asso
iated with D and D 0, respe
tively. Then the following bullets
omprise what 
an be dedu
ed from having the temporal order of 
han
e and de
isionvariables in a DPIT.TeD represents the end-time of D, and D is immediately before TeD in the temporalorder.� There is no variable, V, in VD [VT, su
h that D! V! TeD.The end-time of D is less than or equal to the initiation-time of D 0. If D is imme-diately before D 0, then, be
ause of the no-delay assumption, the end-time of D isequal to the initiation-time of D 0. That is, the timed a
tion imposed by taking Dmust end before D 0 is initiated. And, 
onsequently, TeD 0 is greater than or equal toTeD.� For all tD, tD 0 , and tD 00 in R, where TeD = tD, the initiation-time of D 0 istD 0 , and TeD 0 = tD 00 , it follows that, tD � tD 0 � tD 00 . Furthermore, if D isimmediately before D 0, then tD = tD 0 .If D 0 is a wait de
ision variable, then there is always a time variable, TeD 0. If D isimmediately before D 0, then TeD 0 always represents a point in time, whi
h is later



3.2 Properties of De
ision Problems Involving Time 17than or equal to TeD plus the amount of time the de
ision taker has 
hosen to wait inD 0, this we refer to as the delay of D 0. In short the point in time D 0 ends is alwaysthe same as or later than the initiation-time in addition to the delay period 
hosenat D.� If there exists a wait de
ision variable, D 0, then D 0 ! TeD 0 and, for all ti, d,and tD in R, where the initiation-time of D 0 is ti, D 0 = d, and TeD 0 = tD, itfollows that ti + d � tD.When TeD, is immediately before D 0 in the temporal order, TeD represents theinitiation-time of D 0. This also holds if there are a number of de
ision variables andno other time variable between TeD and D 0, TeD then represents the initiation-timeand end-time of all intermediate de
ision variables, and these intermediate de
isionvariables represent instant de
isions. That is, the point in time represented by TeDalso represents the initiation-time of D 0.� If TeD! D 0 and there is no time variable, T 0, su
h that TeD! T 0 ! D 0, then,for all t and tD in R, where TeD = t and the initiation-time of D 0 is tD, itfollows that t = tD.A result of the no-delay assumption and the fa
t that free time variables exist isthat a time variable, T, does not have to be in
uen
ed by the 
hoi
e 
hosen at somede
ision variable, D, but if this is the 
ase, then no new de
ision variables may be
onsidered in the DPIT, as the no-delay assumption would be violated.� If, for two time variables, T1 and T2, where T1! T2, there is no de
ision variable,D, su
h that T1 is asso
iated with D, then there are no de
ision variable D 0,su
h that T2! D 0, and T1 and T2 are 
onsidered free time variables.This rule allows for several time variables to in
uen
e ea
h other while not beingin
uen
ed by or in
uen
ing any de
ision variables. This means that utility fun
tionsmay be in
uen
ed by time, but not by the de
ision taker himself. This represents aphenomenon we 
all a post-realized utility fun
tion.As mentioned, the temporal order of a DPIT in
ludes not only ordering time vari-ables and de
isions, it also in
ludes the order of observing 
han
e variables, whi
h
onstitutes a partial temporal order. Meaning that there is no prede�ned order ofobserving 
han
e variables, when taking de
isions. The only rule is that, a

ordingto the no-delay assumption, the observation of 
han
e variables is instantaneous.Chan
e variables, whi
h are only observable in some spe
i�
 time interval, have aspe
ial role in the temporal order. Su
h 
han
e variables 
an be observed only withinthis spe
i�
 time span.



18 Chapter 3. De
ision Problems Involving Time3.2.3 De
ision S
enariosA de
ision s
enario for a DPIT is a list of 
ir
umstan
es and 
hoi
es, whi
h has autility atta
hed to it. Ea
h 
ir
umstan
e and 
hoi
e in a de
ision s
enario representsa state of one variable in the DPIT, and a de
ision s
enario respe
ts the temporalorder of the DPIT. For ea
h variable, represented in a de
ision s
enario, we workunder the assumption that the de
ision taker has information of the past and futureof that variable. The future of a de
ision variable, D, is all de
isions, whi
h are tobe taken after D.A de
ision s
enario is a 
on�guration of a subset of variables in a DPIT. The max-imum number of de
ision s
enarios of a DPIT equals the Cartesian produ
t of thestate spa
e of all variables. Therefore, in any DPIT there are an in�nite number of
on�gurations, be
ause of the 
ontinuous variables.3.3 Representing De
ision Problems Involving TimeAs a 
onsequen
e of introdu
ing time, DPITs 
annot be modelled by traditionalframeworks for modelling de
ision problems, as they do not present these models ina 
ompa
t nor a 
omplete manner. [Broe et al., 2003℄ showed that traditional frame-works tend to 
lutter with ar
s when a DPIT is attempted at being modelled, and theresulting models do not 
orre
tly model the 
ontinuity of time. Furthermore, DPITsare asymmetri
, as a 
onsequen
e of restri
tions of de
isions at given points in time,whi
h needs spe
ial frameworks, su
h as those presented in [Bielza and Shenoy, 1999℄and [Nielsen and Jensen, 2002℄, while still representing time 
orre
tly.There is a possibility that some, or all, variables may be in
uen
ed by time, orin
uen
e time themselves. In order to use a framework as a means of modellingDPITs, these aspe
ts must be expressible in the framework. Therefore a series of re-quirements was proposed in [Broe et al., 2003℄, whi
h, when respe
ted, handles theseaspe
ts.The requirements proposed below are presented as rules for 
onstru
ting a frameworkfor representing and 
ommuni
ating DPITs.3.3.1 Requirements for FrameworksThe requirements presented here originate from [Broe et al., 2003℄, in whi
h theywere 
on
o
ted through an analysis of frameworks. This analysis resulted in thedis
overy of problems with traditional frameworks when attempting to use themfor modelling a DPIT. The requirements only re
e
t what should be expressible tomodel the aspe
t of time, but a framework for DPITs should be 
apable of modellingany de
ision problem, that is, it should not lose any expressive power in the e�ortof modelling DPITs.



3.3 Representing De
ision Problems Involving Time 19This des
ription of the requirements is presented by �rst showing that there in fa
tis a problem, then the requirement for solving the problem is presented, and �nallythe requirement is explained more thoroughly.When 
onsidering DPITs it is apparent that a means of representing the passing oftime, and time itself, is needed. There should be both an element of time, whi
h is
ontrollable by the de
ision taker, and one, whi
h has an element of un
ertainty toit, in order to handle, for instan
e, unforeseen delays in performing a timed a
tion.This need leads to Requirement 1.Requirement 1It should be possible to model time and wait de
ision variables. That is, the variablesin VW [VT, should be expressible in the framework.The introdu
tion of these types of variables introdu
es the risk of having a framework,whi
h is hard to interpret, as additional types of variables have to be represented.This is a

eptable though, as this requirement yields a framework 
apable of repre-senting time expli
itly. This requirement also makes 
ertain that time is representedby 
ontinuous variables, as variables in VW [VT are 
ontinuous.As time often has an e�e
t on what 
hoi
es a person is presented with, a frame-work for modelling DPITs has to be 
apable of representing de
ision variables, forwhi
h the state spa
e varies a

ording to the point in time at whi
h they are taken.Requirement 2 introdu
es su
h possibilities.Requirement 2It should be possible to model de
ision variables, for whi
h the state spa
e variesover other variables, and a

urately portray the dependen
ies involved. That is, thedomains of restri
tion fun
tions in Qt should be expressible in the framework.A restri
tion fun
tion is a fun
tion, Qt : sp(obs�!t (D) n fDg)� R 7! sp(D), where Dis the de
ision variable, whi
h is being restri
ted, and R represents time.As des
ribed above, time variables are 
ontinuous 
han
e variables. The time spanof a timed a
tion 
an be a�e
ted by other 
ir
umstan
es, for instan
e, the weather
an have an impa
t on how long harvesting some �eld takes. This 
alls for the needto represent variables, whi
h alter the end-time of de
isions.Requirement 3It should be possible to model variables a�e
ting the end-time of a de
ision. Thatis, for every variable, T, in VeT, the domain of the density fun
tion for T, obtainedfrom P(VCjVD), should be expressible in the framework.This requirement states that the state spa
e of a time variable may be restri
ted andthis should be expressible in the framework. Therefore, time variables 
an be 
ondi-tionally dependent on other variables, shown at least through the density fun
tionof the time variable.



20 Chapter 3. De
ision Problems Involving TimeIn order to keep the model of a DPIT unambiguous, the next de
ision to be takenand the observations for this de
ision must be identi�able. Furthermore, it shouldbe possible to always know what the de
ision taker bases his 
hoi
es on, that is, fordi�erent points in time di�erent variables may be observed.Requirement 4It should be possible to model the time dependent observation fun
tion. That is, forall de
isions, D, in VD, obs�!t (D) should be expressible in the framework.This requirement ensures that for all de
isions, D in VD, and all points in time, t,there exists a fun
tion, obs�!t (D), giving the set of variables, whi
h are observed forany D at the point in time t.Having time in
uen
e dis
rete 
han
e variables is an aspe
t, whi
h the frameworkshould be 
apable of modelling. That is, to have the possibility of having probabilitydistributions 
hange over time.Requirement 5It should be possible to model time variables having an impa
t on dis
rete 
han
evariables. That is, the existen
e of a 
onditional probability distribution, P(CjX),for some 
han
e variable, C, in VDC, for whi
h some time variable, T, is in the
onditioning set, X, should be expressible in the framework.This requirement introdu
es the 
on
ept of having dis
rete 
han
e variables have atime variable in their 
onditioning set. This way time not only in
uen
es what thede
ision taker 
an 
ontrol, but also the 
ir
umstan
es of the DPIT, over whi
h hehas no dire
t 
ontrol.It is often not easy to 
omprise the preferen
es of a de
ision taker into one meaningfulexpression, whi
h 
an be 
al
ulated through a single utility fun
tion. By introdu
ingthe 
on
ept of lo
al utility fun
tions, the preferen
es 
an be represented in a manner,whi
h is more easily understood. Di�erent points in time 
an also in
uen
e thepreferen
es of the de
ision taker, this should also be expressible in the lo
al utilityfun
tions, thereby giving the framework more expressive power.Requirement 6It should be possible to model variables determining the value of lo
al utilityfun
tions. That is, the domain of all lo
al utilities, ui, obtained from VU, wherei = f1; 2; : : : ; ng, should be expressible in the framework.The lo
al utility fun
tions should be expressible, and should ea
h en
ompass di�erentparts of the whole DPIT. This yields models more easily read and interpreted, andgives a set of lo
al utility fun
tions, whi
h 
an be realized at di�erent points in time.In addition to these six requirements for modelling time, [Broe et al., 2003℄ presentedthree requirements, whi
h were the main requirements fo
using on the presentability



3.4 Summary 21of the models modelled using the framework. These are: unambiguity, 
ompa
tness,and easily read by humans. These requirements impose guidelines for frameworks,representing DPITs. The representation language should present DPITs in a manner,whi
h does not 
onfuse the reader by having redundant elements, whi
h 
an bemisinterpreted. The representation language should 
onsist solely of the elementsne
essary for giving the de
ision taker the 
orre
t interpretation of the DPIT athand and the representation language should be presented in a manner, whi
h isintuitive for a human when examining the model.We have, furthermore, found two requirements, whi
h ensure that a framework formodelling DPITs also 
an model post-realized utility fun
tions and de
isions, forwhi
h the order of taking them 
hanges due to the point in time they are to betaken. In many real world de
ision problems the payo� of taking a ta
ision is notne
essarily realized right after taking the last de
ision of the de
ision problem. Forexample, the total 
ost of a loan is not 
e
essarily known when taking the loan, asthe iterest rates 
u
tuates. Requirement 7 ensures this is modellable.Requirement 7It should be possible to model time variables, whi
h are not asso
iated to de
isionvariables, but have an e�e
t on some lo
al utility fun
tion. That is, having a timevariable, T, in the domain of some lo
al utility fun
tion, U, should be expressible inthe framework.As it is not always the 
ase that de
isions are taken in the same order, a frameworkfor modelling DPITs should make it possible to have time in
uen
e the order ofde
isions.Requirement 8It should be possible to have time variables a�e
t the temporal ordering of twode
isions. That is, D ! D 0 at some points in time and D 0 ! D at all other pointsin time, should be expressible in the framework.As we further require that we at any point in time know what de
ision is next, thisshould also be ensured in the framework.3.4 SummaryThrough this 
hapter we have de�ned the 
on
ept of a DPIT. We have done this byintrodu
ing the parts of a DPIT, and dis
ussing whi
h properties DPITs have. Fi-nally, we have presented guidelines for how an every day problem 
an be expressed interms of a DPIT, and we have set up requirements, whi
h help formulate a frameworkfor representing DPITs.
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Chapter 4Representing In
uen
eDiagrams Involving Time
In Chapter 3 a spe
ial 
lass of de
ision problems, whi
h 
annot be modelled using theframeworks normally used for modelling de
ision problems was introdu
ed. ModellingDPITs requires that the representation language 
an model both the asymmetriesand the 
ontinuous elements of DPITs. In [Broe et al., 2003℄, a framework, IDITs,whi
h was tailored to represent these, was presented. In this 
hapter we re
apturethe �ndings of [Broe et al., 2003℄ and extend the existing representation language tohandle the additional requirements.We give an informal des
ription of IDITs in Se
tion 4.1, in whi
h we present both thequalitative and the quantitative levels in an informal manner and present examplesfor 
lari�
ation. In Se
tion 4.2 we present the formal des
ription of the aforemen-tioned levels, and present de�nitions of the essential elements in this representationlanguage.
4.1 Informal Des
ription of In
uen
e Diagrams Involv-ing TimeIn this se
tion we give an informal introdu
tion to IDITs, whi
h is the frameworkfor representing DPITs. We only dis
uss the representation language of the frame-work and postpone the solution method to Chapter 5. We give semanti
s wheneverelements are introdu
ed, and dis
uss how a DPIT is modelled using an IDIT. Whenreferen
ing elements dire
tly related to DPITs, we do not spe
ify the semanti
s again,instead we refer the reader to Chapter 3 for these.23
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uen
e Diagrams Involving Time4.1.1 Des
ription of the Parts of In
uen
e Diagrams Involving TimeIDITs were introdu
ed to represent DPITs in a manner, whi
h is 
ompa
t, unam-biguous, and easy to read for humans.The framework is, as the name implies, based on in
uen
e dia-grams [Howard and Matheson, 1981℄ and uses mu
h of the same terminology.The representation language is divided into a qualitative and a quantitative part .The qualitative part is a dire
ted labelled graph des
ribing global informationregarding relations between variables and utility fun
tions, and the quantitativepart des
ribes lo
al information relating to ea
h variable or lo
al utility fun
tion.We des
ribe ea
h part in turn beginning with the qualitative part.The qualitative part of an IDIT is a dire
ted labelled graph 
onsisting of nodes,representing variables and lo
al utility fun
tions, and ar
s, representing relationshipsbetween these. The qualitative level of IDITs gives the reader an overview of theDPIT without in
luding numeri
al information for the variables, yielding it easy to
ommuni
ate. The nodes in an IDIT are divided into �ve sets in a

ordan
e to thetype of variable or fun
tion they represent. The �ve sets of nodes are: 
han
e nodes,time nodes, de
ision nodes, wait de
ision nodes, and utility nodes.A de
ision node represents a de
ision variable from the DPIT. Graphi
ally a de
isionnode is drawn as a re
tangle. It 
an have a time node atta
hed to it, representingthat it is a de
ision variable involving time, or not, if it represents an instant de
ision.A wait de
ision node represents a wait de
ision. A wait de
ision node is drawn asa double re
tangle with a double semi
ir
le atta
hed. A wait de
ision node alwayshas a double semi
ir
le atta
hed to it and always has the de
ision it is referen
ingas a dire
t 
hild of the atta
hed time node. Sometimes we refer to de
ision and waitde
ision nodes simply as de
isions.A 
han
e node represents a 
han
e variable, and is illustrated by a 
ir
ular node. Ifa 
han
e node represents a 
han
e variable dependent on time, there is an ar
 froma time node to the 
han
e node.A time node represents either the end-time of the de
ision it is atta
hed to, or thepoint in time some utility fun
tion is realized. A time node, representing the end-timeof a de
ision, is represented, graphi
ally, in an IDIT by a double semi
ir
le atta
hedto a de
ision node. A free time variable is represented by a double 
ir
le.Lo
al utility fun
tions are represented in IDITs by utility nodes. A utility node isdrawn as a diamond shaped node. If a lo
al utility fun
tion is dependent on timethere is an ar
 from a time node to the utility node.Conventionally, we use a two letter abbreviation of the variable or fun
tion name asa unique identi�er of a node. When dis
ussing IDITs we usually do not distinguishbetween a node and the variable it represents, but if a distin
tion is needed, we referto the node by the abbreviation.The nodes in an IDIT are 
onne
ted by ar
s, whi
h, depending on the node the ar
emanates from, or is going into, have di�erent semanti
s. We distinguish between�ve 
ategories of ar
s, whi
h are: informational ar
s, dependen
e ar
s, fun
tional
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s, guarded ar
s, and restri
tion ar
s.Informational ar
s are ar
s going into a de
ision or wait de
ision node and are drawnas solid ar
s. An informational ar
 represents two related 
on
epts. It represents apre
eden
e of the nodes it 
onne
ts, that is, the node from whi
h an informationalar
 emanates pre
edes the de
ision to whi
h it goes in the temporal ordering. It alsorepresents that the de
ision taker has knowledge about the variable, from whi
h thear
 emanates, before taking the de
ision. Having knowledge about a variable, meansto either have observed it as being in a spe
i�
 state, if it is a 
han
e or time variable,or to have de
ided upon it when it is a de
ision variable. Like in in
uen
e diagrams,IDITs operate under the no-forgetting assumption, [Howard and Matheson, 1981℄.The no-forgetting assumption spe
i�es that the true states of variables taken or ob-served before taking the 
urrent de
ision are remembered, su
h that ar
s from thosevariables are omitted.An ar
 going into a 
han
e node, indi
ates a probabilisti
 dependen
e between the
han
e node and the node, from whi
h the ar
 emanates. We 
all these ar
s depen-den
e ar
s. The 
han
e variable, the ar
 goes to, is 
onditionally dependent on thevariable, from whi
h the ar
 emanates. The absen
e of a dependen
e ar
 indi
atesthat the 
han
e variable is 
onditionally independent of the variable given its par-ents.A fun
tional ar
 is an ar
 going to a utility node. A fun
tional ar
 spe
i�es that thelo
al utility fun
tion has the variable, from whi
h the ar
 emanates, as one of its ar-guments. If the node is a time node, the ar
 spe
i�es that the utility node representsa time dependent utility node.A guarded ar
 is an informational ar
 asso
iated with a boolean fun
tion. A guardedar
 represents that the node, the ar
 emanates from, is only observed or de
idedupon in the time spans satisfying the fun
tion. The boolean fun
tion is referred toas a guard , and the guarded ar
 is drawn as a labelled ar
 in the IDIT. Guardsare restri
ted to those involving time, meaning that a guard must referen
e a timevariable in order to be evaluated. Instead of expli
itly stating whi
h time variable isreferen
ed, it is by de�nition given as the time variable representing the initiationtime of the de
ision to whi
h the guarded ar
 goes. As long as the guard on an ar
is satis�ed the ar
 has the same semanti
s as an informational ar
. We do not allowguards on dependen
e ar
s.A restri
tion ar
 indi
ates that the true state of the variable, the ar
 emanates from,restri
ts the state spa
e of the variable, the ar
 is going into. Restri
tion ar
s 
anonly go to de
isions, as restri
tions on 
han
e variables are emulated by setting theprobability of the illegal states to zero. A restri
tion ar
 represents both an infor-mational ar
 and the restri
tion of the de
ision, the ar
 goes to. Restri
tion ar
s aredrawn as dashed ar
s.For IDITs we assume that 
han
e and de
ision nodes may not be barren nodes. Thatis, all 
han
e and de
ision nodes have at least one 
hild. [Sha
hter, 1986℄ arguesthat the removal of barren nodes is permitted. Furthermore, as it semanti
allydoes not make sense to have one variable or utility fun
tion being realized at two
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e Diagrams Involving Timedi�erent points in time, IDITs do not allow a node to be the 
hild of more thanone time node. Finally, we do not allow utility nodes as parents of other nodes.The past of a node, V, is the set of nodes whi
h are before V in the temporalordering. For DPITs we spe
i�ed the set of observed variables, obs�!t (D), for somede
ision, D, and the set of prior variables, prior(T), for some free time variable,T. For IDITs the sets are de�ned as follows: obs�!t (D) = fV j(V;D) 2 E; V 2 VCg;prior(T) = fV j(V;T) 2 E; V 62 obs�!t (D) for any D 2 VD; V 2 VC and T 2 VFg.That is, the set of variables in obs�!t (D), is the set of 
han
e variables, whi
h havean informational ar
 going to D. If there is a guard on the informational ar
, thevariable, it emanates from, is in obs�!t (D) only if the guard is evaluated to true,given the 
on�guration of the last observed time variable. The set of variables inprior(T) is the set of variables, whi
h have a dependen
e ar
 going to T, and whi
hare not in the set of observed variables for any de
ision.As opposed to in
uen
e diagrams IDITs are allowed to in
lude 
y
les, if guards ensurethe 
y
les are broken, given any 
on�guration of the past of the node the guardedar
 goes to. Thus, when solving the IDIT, it results in an a
y
li
 graph. That is, if a
y
le exists there needs to be two guards in the 
y
le, whi
h are mutually ex
lusive.The ar
s in IDITs further 
onstitute the partial ordering of all nodes ensuring thereis a path 
ontaining all time and de
ision nodes. If a 
y
le between two de
isionnodes exists, the order of these 
an only be dedu
ed when a 
on�guration of thepast is given.In order to 
larify the graphi
al representation of an IDIT, we have 
hosen to rede�nethe semanti
s of guarded ar
s, from the de�nition presented in [Broe et al., 2003℄.In [Broe et al., 2003℄, guarded ar
s were inherited throughout the IDIT until theguard was satis�ed, or a new ar
 was introdu
ed, su
h as the ar
, (C;Dn; true), inthe graph of Figure 4.1. This de�nition is, however, not intuitive as the guard, g,may never be true as a 
onsequen
e of time only progressing. For instan
e, if g ist � 4, and the point in time at D1 is taken is �ve, the guard would never be
ometrue for any of the following de
isions.Instead, we require there being an expli
it ar
 in the IDIT if it should be observedat a later point, in the 
ase where a guard on an ar
 has been evaluated to false.C1 D1 Di Dn� � �g
Figure 4.1: A guarded ar
, g, from a 
han
e node, C1, whi
h is rendered obsolete asa new ar
 is introdu
ed from C1.
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e Diagrams Involving Time 27The model of Figure 4.1 is still legal, but it means something di�erent. Now, even ifg is satis�ed somewhere in between D1 and Dn, C1 is not observed when taking Di.To illustrate the elements of an IDIT, we present Example 1, in whi
h we dis
uss aDPIT we 
all the Sear
h and Res
ue Problem.Example 1In this example we des
ribe a DPIT, whi
h revolves around the sear
h and res
ue (SAR)mission, taking pla
e whenever a person is reported missing in a spe
i�
 area. In this example,this area is known as Lost Dale. The de
ision taker of this problem is the SAR dire
tor ofLost Dale.The area around Lost Dale is a mixture of forest and mountains, where people o

asionallylose themselves in the valley. Whenever a person is reported missing, the SAR dire
torassesses the situation at hand. Based on, amongst other things, the person missing, res
ueteams are dispat
hed to �nd the missing person. After some time it is possible to get a heatsignature of the entire area, giving an indi
ation of where the missing person is. If a missingperson is found, the SAR dire
tor re
eives a reward based on the su

ess of the mission andthe 
ondition of the person, that is, if the person is alive or dead.The SAR dire
tor has three de
isions in this de
ision problem, namely Mobilization (Mo),When to begin sear
hing (Ws), and Sear
h (Se). As many people visit Lost Dale and it oftenhappens that somebody gets lost for a 
ouple of hours, a SAR mission is �rst initiated 12hours after the a
tual report of the missing person has been �led.Lost Dale does not itself have SAR teams, but 
an issue some from neighbouring towns.The assembly of SAR teams therefore takes time, and the SAR dire
tor therefore has thepossibility of mobilizing the teams before the initial 12 hours have passed.Mobilization is a de
ision of whi
h teams, if any, should be mobilized when a person isreported missing. The possible 
hoi
es of the de
ision are none, SAR dogs, heli
opters, andboth. both being the 
ombination of sending for heli
opters and dogs. SAR dogs are 
apableof sear
hing the forest, whereas a heli
opter 
annot see through the thi
k foliage, but it isbetter at sear
hing the mountains. The 
hoi
e ofMobilization in
uen
es when the sear
h 
anbegin as it takes time to assemble the teams. It takes at least 12 hours to get a heli
opter toLost Dale, and 18 hours to get dogs. When both SAR dogs and heli
opters are needed twoadditional hours are used to get a joint strategy, thus the assembly of both takes 20 hours.When to begin sear
hing is a wait de
ision, whi
h postpones the a
tual sear
h de
ision untilthe SAR teams are assembled. As it is a wait de
ision it has a 
ontinuous state spa
e.Sear
h is the de
ision in whi
h the SAR dire
tor 
hooses in what part of Lost Dale to
on
entrate the sear
h. As Lost Dale is part forest and part mountains the state spa
e of thede
ision is nowhere, forest, mountains, and both, where both is a 
ombination of sear
hingboth the forest and the mountains. nowhere, is the only 
hoi
e available until the point in timethe teams have been mobilized. Sear
hing through the forest using the dogs takes 36 hours,whereas it is not possible to do a sear
h of the forest using only heli
opters. Sear
hing themountains with heli
opters takes 18 hours, while it takes 80 hours sear
hing the mountainsusing only the dogs.At the 
hoi
e of whi
h team to mobilize the pro�le of the person missing is observed. TheSAR dire
tor 
lassi�es missing persons into three 
ategories, whi
h are modelled in a 
han
evariable, Missing person (Mp), these 
ategories are: the lost girl 
ategory, the average male
ategory, and the eager danger seeking male 
ategory. These are also the names of the statesof the variable. Missing person in
uen
es a 
han
e variable, Lo
ation of the missing person(Lp).
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uen
e Diagrams Involving TimeLo
ation of the missing person is the a
tual lo
ation of the person. The states of the 
han
evariable are forest, and mountains. This 
han
e variable in
uen
es three other 
han
e vari-ables, namely Survivability (Su), Found (Fo), and Heat signature (Hs).Survivability represents the 
han
e of the missing person being alive or dead when found.This 
han
e variable is also in
uen
ed by the weather and the amount of time the sear
htakes. The states of the 
han
e variable are alive, and dead. The reward for the SAR dire
toris dependent on the state of this variable.How well the sear
h has gone is modelled in Found, that is, if the missing person is foundor remains lost. Besides Lo
ation of the missing person, the 
hosen area for the sear
h, andthe time the sear
h ends, in
uen
es this 
han
e variable. The two states of this variable arefound and lost. The reward for the SAR dire
tor is also dependent on this variable.The possible heat signature is modelled through the 
han
e variable Heat signature. If theSAR dire
tor waits 48 hours before taking the de
ision on where to sear
h, he has a heatsignature of Lost Dale, indi
ating the lo
ation of the missing person.In Lost Dale the Sun normally shines at least six days of the week, and as it has never rainedor snowed two days in a row, it is assumed that it rains or snows at most one day ea
h week.Weather (We) is the 
han
e variable, whi
h models if it will rain or snow one day during thesear
h, or if it will stay sunny. It has three states: sunshine, rain, and snow. If it rains thesear
h will be delayed by eight hours, and if it snows the sear
h will be paused for 24 hours.There are three lo
al utility fun
tions in this de
ision problem, namely, Cost of mobilization(Cm), Cost of sear
h (Cs), andGovernmental support (Gs).Governmental support representsa monetary support whi
h the SAR dire
tor re
eives to 
over the expenses of a SAR mission.The government rewards the SAR dire
tor $50,000 for �nding the missing person and a bonusof $50,000 if the missing person is alive when found. Cost of sear
h is dependent on time inthe sense that the 
ost in
reases as long as the sear
h 
ontinues. If the person is not foundwithin a week after the person is reported missing, it is assumed that the person will notbe found, as this gives enough time to both get the heat signature and sear
h through theentire area. At this point the a
tive sear
h is dis
ontinued, and the only tra
e of it is a �leat the SAR dire
tor's oÆ
e.The des
ribed DPIT is modelled using an IDIT, and the resulting IDIT is depi
ted in Fig-ure 4.2. 2Looking at the SAR problem, we see how an IDIT represents a DPIT. The IDITstarts at the �rst de
ision node, whi
h is Mo. Before taking the de
ision the de
i-sion taker observes who the missing person is. This is illustrated in Figure 4.2 bythe informational ar
 from Mp to Mo. Furthermore, it should be noted that Morepresents an instant de
ision shown by the la
k of an atta
hed time node. The 
ostasso
iated to mobilizing is depi
ted by the utility node Cm, having a fun
tional ar
into it from Mo.The de
ision following Mobilization is the wait de
ision Ws, whi
h has a time nodeatta
hed in a

ordan
e to the rules of wait de
isions. The node and the atta
hedsemi
ir
le should be thought of as two separate nodes, where there exists a solid ar
from the de
ision node to the time node. The 
ontra
tion of these are due to easeof reading, as the IDIT otherwise would 
lutter with ar
s. Ws, and the time nodeatta
hed to it, illustrates how IDITs on the qualitative level handle Requirement 1for frameworks modelling DPITs.
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Mo Ws Se
Mp

Su
We

Lp
FoHs

Cm Cs

Gst � 48
Figure 4.2: An IDIT modelling the SAR problem.Continuing through the IDIT of the SAR problem the next de
ision node is Se,whi
h is restri
ted by the 
hoi
e taken in Mobilization and the end-time of When tobegin sear
hing, as shown by two the restri
tion ar
s. These restri
tion ar
s depi
thow IDITs handle Requirement 2 on the qualitative level.Before taking the de
ision, the de
ision taker observes Weather and if the initiation-time is greater than or equal to 48 hours, Heat signature is also observed. The lattershows an example of a guarded ar
, whi
h is how IDITs satisfy Requirement 4.Cs, whi
h represents the 
ost of sear
hing, is in
uen
ed by the 
hoi
e of Mobilizationand the end-time of Sear
h. This is illustrated by having fun
tional ar
s from bothMo and the time node atta
hed to Se going to Cs. The node is an example of autility fun
tion dependent on time, and shows how IDITs handles Requirement 6,on the qualitative level.The end-time of Sear
h is in
uen
ed by the 
hoi
e taken in Sear
h, the end-time ofWhen to begin sear
hing, and Weather. The fa
t that the end-time is in
uen
ed byWeather 
an be seen dire
tly in the IDIT by the dependen
e ar
 emanating fromWegoing into the time node. This illustrates how IDITs handle Requirement 3. That theend-time of Se is in
uen
ed by the end-time of Ws 
annot be seen in the graphi
alrepresentation. This is a deliberate 
hoi
e to avoid the diagram 
luttering with ar
s.The remaining 
han
e variables are never observed or observed too late to have animpa
t on taking de
isions. Lp represents an ordinary 
han
e variable and the ar
going into Lp represents 
onditional dependen
e. Su and Fo both represent 
han
evariables dependent on time, whi
h is illustrated by the dependen
e ar
s emanating
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e Diagrams Involving Timefrom the time node atta
hed to Se. This illustrates how IDITs handle Requirement 5.Besides the dependen
e ar
 from the time node both have other dependen
e ar
s go-ing into them, illustrating the rest of their 
onditioning sets.The SAR problem does not in
lude any o

urren
es of post-realized utility fun
tionsor 
y
les. To illustrate how these are handled by IDITs we present an example we
all the software release problem. We have split the example in two, one in whi
hwe dis
uss 
y
les, and one in whi
h we dis
uss post-realized utility fun
tions. Theexamples are presented in Example 2Example 2This DPIT takes outset in a software development proje
t. We fo
us on two di�erent partsof the pro
ess. The �rst part we look at 
on
erns the transition from the analysis phase tothe design phase, and the se
ond part 
on
erns what might happen after the software hasbeen released. The two examples have been simpli�ed for ease of understanding.Consider a software development s
enario in whi
h the analysis is about to be 
on
luded.The two de
isions following this are one 
on
erning prototyping and one 
on
erning design.With an obje
t-oriented approa
h, the order in whi
h these phases is taken should notmatter [Mathiassen et al., 2001℄. The fa
tor, whi
h determines whi
h phase to begin, 
ould bethe amount of time the analysis has taken. That is, the end-time for the analysis determinesin what sequen
e the prototyping and the design phases are taken.This gives three de
isions for the �rst part of this example. These are Analysis (An), Proto-typing (Pr), and Design (De).To keep this simple, all de
ision variables have a binary state spa
e. The 
hoi
es for Analysisare 
ursory analysis and thorough analysis. Choosing a 
ursory analysis results in the phasetaking two months, while 
hoosing a thorough analysis results in four months of work. Werefrain from determining the state spa
e of Prototyping and Design, as these have no impa
ton the fo
us of this example.These 
hara
teristi
s introdu
e a 
y
le in the IDIT. In order to make it a valid 
y
le, theremust be guards on all ar
s in the 
y
le, and these guards must be mutually ex
lusive, su
hthat any 
on�guration of the last time variable before the 
y
le, breaks the 
y
le. Figure 4.3depi
ts the resulting IDIT.
An Pr

De. . . . . .t<90t � 90
Figure 4.3: A 
y
le between the de
isions Pr and De.
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ided upon before Analysis andafter either of Prototyping and Design, respe
tively.Being able to model 
y
les gives the framework more expressive power. And it opens thepossibility of having IDITs more 
orre
tly portray how we handle problems we are fa
edwith in our every day life, problems similar to the one just des
ribed, where we know wehave more than one thing to do, and time helps us de
ide in whi
h order we do things.The se
ond part of this software development s
enario 
on
erns the release part of the pro-
ess. The proje
t manager has one de
ision to 
onsider in this part of the software develop-ment pro
ess. This de
ision is Release (Re), and the states of Release are now, postpone twoweeks, and 
omplete missing bits. If the software manager 
hooses to postpone two weeks,the time is used to either 
omplete some missing tests or 
orre
t errors found during testingof the software.There is one 
han
e variable, Faults found after installation (Fi), whi
h has the states 2, 10,and 25. Where ea
h state indi
ates the number of errors and 
rashes after 100 exe
utions ofthe software. This 
han
e variable is in
uen
ed by the end-time of Release and a number ofvariables not present in this simpli�ed DPIT.After the software has been released the 
ustomer tests it, and if he experien
es 
rashes ofthe software, or �nds other faults in it, he sends ba
k a des
ription of these unfortunateo

urren
es to the software 
ompany. The software 
ompany is then obligated to 
orre
tthis as best it 
an. The software 
ompany has no dire
t in
uen
e over whether the 
ustomer�nds any 
aws, or how long it takes before the 
ustomer 
onta
ts the software 
ompany withthese. The amount of 
aws has an impa
t on some extra expenses, whi
h goes to wages and
ompensation to the 
ustomer, as he is for
ed to wait even longer before he 
an put his mu
hneeded pie
e of software to work. This amount of extra expenses is represented as a lo
alutility fun
tion, whi
h is realized at a point in time, whi
h is later than the last de
ision inthe DPIT.To represent that some time passes after the software has been released, a free time variable,T 0, is present. This represents the time period between a
tually releasing the software, thatis, the end-time of Release, and the point in time the lo
al utility fun
tion is realized.The lo
al utility fun
tion for this example is named Extra expenses, and represents theamount of money the software 
ompany spends on 
orre
ting possible errors in the software.Extra expenses represents a post-realized utility fun
tion.Figure 4.4 depi
ts the IDIT for the se
ond part of this example.
Re Fi T 0 Ee. . .Figure 4.4: An IDIT modelling the se
ond part of the software development problem.In Figure 4.4 � � � denotes the set of variables observed or de
ided upon before 
onsideringRelease.
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uen
e Diagrams Involving TimeIt should be noted that there may be multiple 
y
les and post-realized utility fun
tions inan IDIT, but, as per the de�nition of post-realized utility fun
tions, no de
isions may bepresent after the �rst o

urren
e of a post-realized utility fun
tion. 2The quantitative part of IDITs represents the lo
al information relating to the in-dividual variable or utility fun
tion. The state spa
e of ea
h variable is an exampleof the information hidden in the quantitative level of IDITs. Other than this thequantitative level 
onsists of four sets, these being: a set of probability distributionsfor the 
han
e variables; a set of lo
al utility fun
tions; a set of density fun
tions forthe time variables; and a set of restri
tion fun
tions.For ea
h 
han
e variable in the DPIT the set of probability distributions 
ontains a
onditional probability distribution for the 
han
e variable given its parents.The set of utility fun
tions 
onsists of all lo
al utility fun
tions. A lo
al utility fun
-tion maps ea
h 
on�guration of its parents into a real number representing thepreferen
es of the de
ision taker.For ea
h time variable, T, in the IDIT, the set of density fun
tions in
lude a densityfun
tion des
ribing the 
onditional probability distribution of T given its parents asthe 
onditioning set. The un
ertainty of the time variable is shown by the degrees offreedom the density fun
tion has.The set of restri
tion fun
tions 
onsists of all restri
tive fun
tions in the DPIT. Su
hfun
tions are either related to the guards on ar
s or the restri
tion of the statespa
e of some de
ision as a 
onsequen
e of the 
on�guration of the time variablerepresenting its initiation-time.To give an impression of the quantitative level of an IDIT, we des
ribe the quanti-tative part of the SAR problem in Example 3.Example 3In Example 1 the qualitative level of the SAR problem was des
ribed. The example alsodis
ussed the state spa
e of the variables in the DPIT, whi
h in fa
t is a part of the DPITbelonging to the quantitative level. We, however, 
hoose to present the states of the variablesin Example 1, to give the reader a better idea of how the DPIT is modelled, and to give thereader a more intuitive approa
h to the SAR problem.IDITs represent the SAR problem on the quantitative level by four sets of fun
tions. IDITsspe
ify a 
onditional probability distribution for ea
h 
han
e variable given its 
onditioningset and a density fun
tion for ea
h time variable. The 
onditioning set 
an be dedu
ed fromthe qualitative level, as the set of parents of the 
han
e node. One way of representing theseprobability distributions is by a set of tables, where ea
h table represents the 
onditionalprobability distribution for one 
han
e variable.The marginal probability distribution forMissing person is given in Table 4.1(a). Lo
ation ofmissing person has a 
onditional probability distribution with a 
onditioning set 
onsistingof Missing person, and is presented in Table 4.1(b).The 
onditional probability distribution for Heat signature given Lo
ation of missing personis shown in Table 4.2(a) and Table 4.2(b) shows the marginal probability distribution forWeather.
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lg am em0.3 0.5 0.2(a)

Mplg am emfo 0.8 0.55 0.2Lp mo 0.2 0.45 0.8(b)Table 4.1: (a): The marginal probability distribution for Missing person.(b): The 
on-ditional probability distribution for Lo
ation of missing person given Missing person.Lpfo mofo 0.8 0.1Hs mo 0.2 0.9(a) su ra sn0.7 0.2 0.1(b)Table 4.2: (a): The 
onditional probability distribution for Heat signature given Lo-
ation of person.(b): The marginal probability distribution for Weather.The 
onditional probability distributions of the two 
han
e variables, whi
h are dependenton time, are des
ribed in the quantitative part of IDITs by two fun
tions whi
h takes apoint in time, and a set of parameters, whi
h is found using the dis
rete variables of the
onditioning set, as their arguments, and returns the probability of the variable given the
onditioning set.Survivability has a 
onditioning set 
onsisting of the dis
rete variables Lo
ation ofmissing person and Weather and the time variable TeSe. The fun
tion des
ribingP(Su = aljWe; Lp; TeSe) is: s(t; 
) = (1 - 
)t;and P(Su = dejWe; Lp; TeSe) is 1 - s(t; 
), where 
 is a parameter given by the dis
retevariables, and t the time given by TeSe. The values of 
, is found in Table 4.3(a).Thus, the probability of survival is dropping towards zero as time passes. For instan
e, the
han
e of surviving 48 hours given the missing person is in the mountains and it stays sunny,is s(48; 0:02) = 0:38. This fun
tion is depi
ted in Figure 4.5.Found has a 
onditioning set 
onsisting of the dis
rete variables Lo
ation of missing personand Sear
h and the time variable TeSe. The probability of found is des
ribed by a fun
tion,f , whi
h is given as: f (
; t) = 
t;where 
 is given by Table 4.3(b), and t is the point in time represented by TeSe.The two 
onditional probability distributions for Survivability and Found are examples ofhow IDITs represent 
han
e variables being dependent on time, that is, how IDITs satisfy
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Lpfo mosu 0.005 0.02We ra 0.01 0.05sn 0.05 0.08(a) Lpfo mofo 0.03 0Se mo 0 0.05bo 0.03 0.05(b)Table 4.3: (a): The table of parameters for Survivability given Weather, and Lo
ationof missing person. (b): The table of parameters for Found given Sear
h, and Lo
ationof missing person.

00.2
0.40.6
0.81

0 20 40 60 80 100

s(x,0.02)

Figure 4.5: The time dependent probability fun
tion for P(Su = sujWe; Lp; TeSe).
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ify a fun
tion, whi
h takes a set of arguments 
onsisting of parametersfound using the 
on�guration of dis
rete parents and the point in time it is realized andmapping this to a single value, whi
h is the probability of this exa
t 
on�guration. In the
ases su
h as the ones illustrated here, both variables have binary state spa
es, whi
h makesthe summation of probabilities to one a simple task, as one state has the probability p andthe other automati
ally has the probability 1 - p. In 
ases with larger state spa
es it isne
essary to have a di�erent table for ea
h state, and the probability of ea
h state is givenby: f(C = Ci; t)PC f(C; t) :When mobilizing for a SAR mission, the SAR dire
tor pays expenses a

ording to the 
hoi
etaken at Mobilization. If he has 
hosen not to mobilize anything he pays nothing. The mobi-lization of SAR dogs 
osts $2,000, and the mobilization of heli
opters 
osts $8,000. The 
ostof mobilizing both dogs and heli
opters is the sum of those two, thus $10,000.The lo
al utility fun
tion for Cost of Mobilization is given in Table 4.4no do he bo$0 $2,000 $8,000 $10,000Table 4.4: The lo
al utility fun
tion for Cost of mobilization.The 
ost of sear
hing depends on what type of sear
hing is initiated. Dogs 
ost $100 per hourduring the sear
h plus $1,000 at the beginning of the sear
h period. Heli
opters 
ost $500per hour of the sear
h mission. The 
ost of sear
hing with both dogs and heli
opter 
ostsan additional $500 per day to 
over expenses for 
ommuni
ations between the two sear
hparties.The lo
al utility fun
tion for Cost of sear
h is a time dependent utility fun
tion, realized asthree linear fun
tions one for ea
h state of Mobilization. The three fun
tions are: for dogsthe fun
tion is u1(t) = 1; 000 + 100t; for heli
opters the fun
tion is u2(t) = 500t; and forboth the fun
tion is u3(t) = 1; 000(500=24 + 100 + 500)t, and are illustrated in Figure 4.6As 
an be seen from Figure 4.2 the time node, TeWs, is only in
uen
ed by the 
hoi
e atWhen to begin sear
hing. The density fun
tion should express: zero probability states forthe interval of the time variable, [0 : ws[, where ws is the point in time 
hosen at Ws; alarge in
rease in probability immediately after the number of hours 
hosen in Ws, and thenthe probability goes towards zero after a few hours. These restri
tions to the probabilitydistribution of TeWs are a result of the semanti
s and representation of time variables. Ifthe 
hoi
e at When to begin sear
hing is 18 hours, the density fun
tion of TeWs 
ould be asdepi
ted in Figure 4.7, with 1:50 degree of freedom.The density fun
tion of the time variable, TeSe, asso
iated with Sear
h is in
uen
ed by TeWs,Sear
h, Mobilization, and Weather. The 
hoi
es of Mobilization, Sear
h and the true stateof Weather implies whi
h arguments are to be supplied to the density fun
tion. Table 4.5illustrates these arguments. The arguments are on the form (a; b), where a is the degree offreedom, and b is the displa
ement on the x-axis. The displa
ement of some time variable,TeD, is determined by the end-time of the time variable in pa(TeD). In Table 4.5 entries of theform (0; 0) indi
ate invalid 
on�gurations.
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05000100001500020000250003000035000400004500050000

0 50 100 150 200

u1(x)u2(x)u3(x)

Figure 4.6: The time dependent utility fun
tion for Cost of sear
h.

00.2
0.40.6
0.81

18 19 20 21 22 23


hi(x,1.5,18)

Figure 4.7: The density fun
tion for TeWs.
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e Diagrams Involving Time 37Sefo mo boMo Mo Modo he bo do he bo do he bosu (5.5,36) (0,0) (0,0) (6.5,80) (3,18) (6.5,80) (8,116) (0,0) (5.5,36)We ra (7,44) (0,0) (0,0) (8.5,88) (3.5,26) (8.5,88) (13,124) (0,0) (7,44)sn (11,60) (0,0) (0,0) (11,104) (4,42) (11,104) (20,144) (0,0) (11,60)Table 4.5: The table of arguments for TeSe given Weather, Mobilization, and Sear
h.The fun
tion for TeSe, given a mobilization of both dogs and heli
opters; the end-time ofwaiting being 21 hours; and having de
ided to sear
h both forest and mountains gives,dependent on the weather, one of the three density fun
tions illustrated in Figure 4.8.

00.050.1
0.150.2
0.250.3

60 70 80 90 100 110


hi(5.50, 57.00, x)
hi(7.00,65.00,x)
hi(11.00,81.00,x)

Figure 4.8: Three fun
tions for TeSe for di�erent states of weather.This is an example of how IDITs express the un
ertainty of time, in a manner satisfyingRequirements 1, 3, and 5 for time variables on the quantitative level.A 
onstraint the SAR dire
tor must take into 
onsideration, when de
iding what to do, isthe one whi
h is imposed by his 
hoi
e for Mobilization setting a 
onstraint on when thesear
hing 
an begin, as the SAR teams have to rea
h Lost Dale �rst. The extent of this
onstraint is des
ribed in Example 1.Finally, if the SAR dire
tor wants to have a heat signature, before 
hoosing where to sear
h,he has to wait until the 48th hour, before taking the sear
h de
ision.In the SAR problem there is only one de
ision whi
h has a restri
ted state spa
e. Further-more, there is a guard on one ar
. The set of restri
tion fun
tions therefore 
onsists of thesefun
tions.The state spa
e of Sear
h is restri
ted by the end-time of When to begin sear
hing and the
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hoi
e of Mobilization. This yields the following restri
tion fun
tion:fSe = 8>>>>>>>><>>>>>>>>:
Mo = do, and TeWs < 18! fnogMo = do, and TeWs � 18! fno, fo, mo, bogMo = he, and TeWs < 12! fnogMo = he, and TeWs � 12! fmogMo = bo, and TeWs < 20! fnogMo = bo, and TeWs � 20! fno, fo, mo, bo gThe guard on the ar
 between Hs and Se results in the following restri
tion fun
tion:fSe = ÆTeWs < 48! Hs 62 obs�!t (Se)TeWs � 48! Hs 2 obs�!t (Se)The restri
tion fun
tions for Sear
h illustrate how IDITs handle Requirement 2 for frame-works modelling DPITs. 2We refrain from presenting the tables, density fun
tions, and utility fun
tions for thesoftware release problem, as the information they provide is not essential in under-standing how 
y
les and post-realized utility fun
tions are represented in IDITs.4.2 Formal Des
ription of In
uen
e Diagrams InvolvingTimeIn this se
tion we give a formal de�nition of both the qualitative and the quantitativelevels of IDITs.We begin by des
ribing the qualitative level, in whi
h we present a formal de�nitionfor the synta
ti
al parts of an IDIT. In order to put this into a \real world" 
ontext,we illustrate this using the SAR problem. Following the dis
ussion of the qualitativelevel, we give a de�nition of the quantitative level of IDITs, whi
h is followed bydis
ussions of the elements presented in this de�nition.4.2.1 The Qualitative Level of In
uen
e Diagrams Involving TimeThe qualitative level of an IDIT 
onsists of a labelled dire
ted graph, whi
h mustfollow a set of synta
ti
al rules for the 
orrelation of the elements of the graph. Toput this formally we refer to De�nition 4.1. The rules are dis
ussed informally afterthe formal des
ription.De�nition 4.1 (Qualitative Level of an IDIT)Let I = (V;L;E) be a labelled dire
ted graph, with nodes V, labels L, and ar
s E.The nodes 
an be partitioned in six disjoint subsets: VDC, VeT, VF, VDD, VW, and
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rete 
han
e variables, time variablesrepresenting end-times of de
isions, free time variables, dis
rete de
ision variables,wait de
ision variables, and lo
al utility fun
tions, respe
tively. Furthermore, the setVDD [VW 
onstitutes the set of de
isions, VD; the set VeT [VF 
onstitutes the setof time variables, VT; and the set VDC [VT 
onstitutes the set of 
han
e variables,VC. The set of labels 
onsists of fun
tions, f : R 7! ftrue; falseg. Furthermore, theedges 
an be partitioned in two disjoint sets: Eg and Ed. Ed is the set of restri
tionar
s, and are a subset of V�V. And Eg represents the set of the remaining ar
s, andare a subset of V �V� L. Then I is an IDIT, modelling some DPIT, if it satis�esthat:1. for all V in V, jpa(V)\VTj is zero or one,2. for all V in VD [VC, 
h(V) 6= ?,3. for all V in VU 
h(V) = ?,4. there is a dire
ted path, P, in I, su
h that VD [VT is a subset of the nodesof P for every possible 
on�guration of the variables in VT,5. for all V and V 0 in VT, there is a path from V to V 0, if not, then there is apath from V 0 to V,6. for all TeD in VeT there exists a D in VD, su
h that TeD is in 
h(D),7. for all D in VW, 
h(D) equals fTeDg, where TeD is in VeT, and (D;TeD; true) is inEg, and there exists a de
ision D 0 2 VDD, su
h that (TeD;D 0; true) is in Eg.8. for all T in VF there does not exist a D, su
h that D is in de(T),9. for all (V;D) in Ed, D is in VD, and10. for all T 2 VT, there exists a T 0 2 VT, for whi
h it holds that T 0 2 pa(T), orVT n fTg� de(T).In order to keep IDITs simple all ar
s, besides restri
tion ar
s, are asso
iated to alabel. Conventionally, we label all unguarded ar
s with the label true.To ease the reading of the graphi
al representation of an IDIT, we do not print thelabel the unguarded ar
s. To separate the unguarded ar
s from the ar
s of Ed, wedraw the ar
s of Ed as dashed ar
s.The rules of De�nition 4.1 ensure that the dire
ted labelled graph follows the syntaxof IDITs. (1) ensures that two time nodes 
annot be parent of the same node, and (2)removes the possibility of barren nodes. (3) spe
i�es that utility nodes 
annot have
hildren. (4) se
ures that there exists at least one path through all time and de
isionvariables, and (5) says that two time variables are ordered by a path between thesetwo nodes. (6) ensures that all time variables representing end-times of de
isions areasso
iated to a de
ision, (7) says that wait de
isions always have an end-time, and



40 Chapter 4. Representing In
uen
e Diagrams Involving Timethat there exists a de
ision following the wait de
ision and (8) ensures that free timevariables are only found after the last de
ision, whi
h is a 
onsequen
e of the no-delay assumption. (9) says that restri
tion ar
s are only allowed into de
ision nodes.(10) ensures that time variables form a path, when also respe
ting (1).Besides these rules the IDIT must follow the semanti
s of ar
s and nodes as dis
ussedin Se
tion 4.1 and the requirements presented in Chapter 3.To illustrate the qualitative level of an IDIT, the SAR-problem of Example 1 ispresented formally.Example 4The graphi
al representation of the SAR problem 
an be seen in Figure 4.2. Formally, theSAR-problem is spe
i�ed as below:V = fMo; Se;Wsg[ fMp; Lp;Hs; Fo; Su;We; TeWs; TeSeg [ fCm;Cs;Gsg.L = ftrue; t � 48g.E = f(Mp; Lp; true), (Mp;Mo; true), (Lp;Hs; true), (Lp; Fo; true), (Lp; Su; true),(Mo;Cm; true), (Mo;Cs; true), (Mo;Ws; true), (Mo; Se), (Mo; Se; true),(Hs; Se; t � 48), (TeWs; Se), (TeWs; Se; true), (Su;Gs; true), (Fo;Gs; true),(Se; Fo; true), (TeSe; Cs; true), (TeSe; Fo; true), (TeSe; Su; true), (We; Se; true),(We;TeSe; true), (We; Su; true), (Se; TeSe; true),(TeWs; TeSe; true), (Ws; TeWs; true)g.The SAR-problem satis�es all the rules of the qualitative level of an IDIT. (1), (2), (3),(9), and (10), are obviously satis�ed, and (4) is ful�lled by the path (Mo;Ws; TeWs; Se; TeSe),and so is (5). (6) is satis�ed by the ar
s (Ws; TeWs; true), and (Se; TeSe; true), and (8) isnot appli
able in the SAR-problem as there are no post-realized utility fun
tions. The ar
s(Ws; TeWs; true), (TeWs; Se), and (TeWs; Se; true) satisfy (7). 2De�nition of a Temporal OrderingIn Chapter 3 we dis
ussed the temporal ordering, !, of a DPIT. This temporalordering is re
e
ted in the qualitative level of an IDIT and sets the order in whi
han IDIT is read.De�nition 4.2 de�nes the temporal ordering of the variables given time, ��!t , for anIDIT. The temporal ordering is a total ordering of time and de
ision variables anda partial ordering of the set of all variables, as it does not order the dis
rete 
han
evariables. We assume that, to ea
h de
ision variable, D, there is a time variable, TeD,asso
iated.After de�ning the temporal order, we dis
uss an operational approa
h for �nding it.De�nition 4.2 (Temporal Ordering, ��!t )Let I = (V;L;E) be an IDIT; �!t some 
on�guration of the variables in VeT [ VF;D1, D2, . . . , Dn an ordered sequen
e of nodes in VDD [ VW, where Di is takenimmediately before taking Di+1; Ii the subset of VDC, whi
h is observed before Di;and In+1 the subset of VDC, whi
h is never observed, or observed too late to have an
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uen
e on any de
ision or time variable. Then the temporal order of I is de�nedas: I1 ��!t D1 ��!t TeD1 ��!t � � � In ��!t Dn ��!t TeDnprior(T1) ��!t T1 � � �prior(Tn) ��!t Tn ��!t In+1;where TeDi are time nodes representing end-times for de
isions and Ti are free timenodes.The temporal order as shown in the de�nition is found by identifying the �rst de
isionof the IDIT; identifying its set of observed variables and its asso
iated time node, ifit has any; and then ordering these a

ordingly. For any time node found, it mustbe 
on�gured to some state, as to resolve any possible guards a�e
ting the set ofobserved variables for the next de
ision. For all time nodes, the 
on�guration of thelast time node must be remembered and taken into 
onsideration. Then the orderednodes are removed and the operation is repeated until no more de
isions exist. If,after this, there are more time nodes, the �rst of these is identi�ed in a similarmanner as used in identifying the �rst de
ision node. The prior of the time nodeis identi�ed and the nodes are ordered a

ordingly. The ordered nodes are removedand the pro
ess 
ontinues until no more time nodes exist. Then the remaining nodesare pla
ed in the set we have 
hosen to 
all In+1.De�nition 4.2 relies on there being a de
ision, whi
h is before all others. Theorem 4.3ensures that this de
ision exists and shows how it is found.Theorem 4.3 (First De
ision)In an IDIT, I, there exists a de
ision, D, su
h that D ��!t D 0 for all D 0 in VD n fDg.This is the de
ision, D, whi
h for any �!t #? has no other de
isions as an
estor.Proof: Assume that su
h a �rst de
ision is not unique. Then two or more �rstde
isions would exist, and, as IDITs require, there is a path between them, either,one would be before all others, 
ontradi
ting there being multiple �rst de
isions, or,there is a 
y
le between them. If su
h a 
y
le exists there needs to be guards onthe ar
s of the 
y
le, su
h that a 
on�guration of the time nodes would render thediagram a
y
li
. As guards are only allowed to referen
e time variables before the
y
le, and time variables are asso
iated to de
isions, some de
ision must be beforethe two �rst de
isions, 
ontradi
ting that they are the �rst de
isions. Furthermore, ifa free time variable exists, then that time variable must be after the last de
ision, andtherefore also after any de
ision in a 
y
le. This proves that only one �rst de
isionexists, and it 
an be uniquely identi�ed.It should be 
lear that De�nition 4.2 does not imply there only being one temporalordering for an IDIT. In fa
t several temporal orderings 
an exist, depending onthe di�erent 
on�gurations of time variables. This indi
ates that an in�nite numberof orderings exists on the quantitative level, however, as IDITs require that there
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on�gurations yield equivalent temporal orderings. Later we des
ribe how to �ndthe number of temporal orderings ne
essary to have a wellde�ned IDIT, both for thequalitative and the quantitative level.The temporal orderings of an IDIT are de�ned through the semanti
s of the ar
sand nodes on the qualitative level, and the semanti
s of a set of restri
tion fun
tionsfound on the quantitative level, that is, restri
tions imposed by guards and restri
tionar
s. A temporal ordering is built su
h that it follows the manner of reading anIDIT. This means that, when reading an IDIT, if some variable, V, is read beforeanother variable, V 0, V 
omes before V 0 in the temporal order, denoted as V ��!t V 0.If V is read immediately before reading V 0, then there is no node, V 00, su
h thatV ��!t V 00 ��!t V 0.We have de�ned a temporal ordering, through how the IDIT is read. This leads to�nding one temporal ordering for an IDIT. In the following se
tion we des
ribe howto dedu
e any order of an IDIT given any 
on�guration of the time variables byusing a stru
ture we have named a preliminary temporal ordering .Preliminary Temporal OrderingThe preliminary temporal ordering is a partial ordering of all nodes in an IDIT.It is the ordering, whi
h is found without 
onsidering a 
on�guration of the timenodes of the IDIT. This means that, when all temporal orderings are to be found,the preliminary temporal ordering is used, instead of going through the ordering ofall nodes for every unique 
on�guration of time variables. This results in the needto only go through the nodes of whi
h the initial ordering is un
ertain, as these areexpli
itly identi�ed. Furthermore, this information is used when solving an IDIT, asis des
ribed in Chapter 5.A partial temporal ordering of all variables 
an be dedu
ed dire
tly from the qual-itative level of any IDIT. This orders all variables, whi
h 
an be ordered, that is, ifan unguarded path between two de
isions exists, then the two de
isions are orderedwith respe
t to ea
h other. Furthermore, ea
h de
ision, D, is ordered with respe
t tothe set of 
han
e variables observed before taking D and the possible time variableasso
iated to D. We 
all this ordering a preliminary temporal ordering, denoted as <,as it does not ne
essarily impose a total ordering of de
isions, su
h as the temporalordering, but 
an be dedu
ed from the qualitative level alone.As the preliminary temporal ordering is dedu
ed from the qualitative level of theIDIT, guarded ar
s are not evaluated. Therefore, multiple instan
es of a guardedvariable exists in the ordering. For instan
e, if a 
han
e variable, C, has a guardedar
 to a de
ision, D, then C is both before and after D in the preliminary tempo-ral ordering. This should be interpreted as a preliminary un
ertainty on when C isobserved rather than C a
tually being observed twi
e.The preliminary temporal ordering is dedu
ed from the IDIT by identifying the �rst
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ision, whi
h 
an be unambiguously identi�ed, as stated by Theorem 4.3. We �ndthe �rst de
ision by exploiting that its set of an
estors interse
ted with de
isionvariables is the empty set.In order not to 
onfuse an observed variable with a guarded 
han
e variable, we
onstru
t, for ea
h de
ision, a set 
onsisting of the guarded 
han
e variables. We 
allthis the set of guarded observed variables.When the �rst de
ision is identi�ed the set of observed variables for this de
isionand the time variable asso
iated with it, are ordered with respe
t to the de
ision.That is, ID < D < TeD, where ID is the set of observed variables. Noti
e that there
annot be any guarded ar
s among the ar
s between ID and D as there is no timevariable, whi
h 
an be referen
ed.Whenever a de
ision is ordered in the preliminary temporal ordering, the de
isionor de
isions immediately following this de
ision, are identi�ed. One manner of doingthis is by 
omparing the past of all unordered de
isions. The de
ision, whi
h hasonly the set of already ordered de
isions in its set of an
estors, is the next de
ision.If two de
isions both satisfy this requirement, the two de
isions are not ordered withrespe
t to ea
h other. Whenever there are more than two de
isions, whi
h have thesame set of an
estors, multiple 
y
les exist. For ea
h de
ision found this way the setof observed variables is identi�ed and so is the time variable, whi
h is asso
iatedwith it.Cy
les are allowed in IDITs, if guards se
ure that they are broken whenever the timevariables before 
y
les are 
on�gured. As a result of this, multiple 
y
les 
an exist,su
h that multiple de
isions 
an have equivalent sets of an
estors, but there stillexists an ordering of a subset of these de
isions. Figure 4.9 illustrates the de
isionsof an IDIT in whi
h four de
isions, D2, D3, D4, and D5 have equivalent sets ofan
estors, as the de
isions are also treated as an
estors of themselves.
D1 D3D2 D4D5:b1

b1
b1b2 :b2 R

Figure 4.9: Part of an IDIT with 
y
les.As 
an be dedu
ed from Figure 4.9 the four de
isions D2;D3;D4, and D5 have equiv-alent sets of an
estors, when not 
onsidering the guards on the ar
s. Considering theguards, we see that, in the preliminary temporal ordering, D3 should be before bothD4 and D5, and D1 should be before all others. R is the set of nodes, whi
h are
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i�
ally represented in the �gure.Whenever two or more de
isions have an equivalent set of an
estors, the set of an-
estors from unguarded ar
s is used to order the variables. The set of an
estors fromunguarded ar
s for some variable, V, is the set of variables, from whi
h there existsa path 
onsisting of unguarded ar
s going to V, for instan
e, D3 and D1 are in thean
estor set from unguarded ar
s for D4, but D5 is not.If the sets of an
estors are still equivalent the de
isions are entered in the prelimi-nary temporal ordering in an unordered fashion. Ea
h of the unordered de
isions areordered with respe
t to its set of observed variables and to a possible time variableasso
iated with it.In 
ases where the sets of an
estors from unguarded ar
s di�er for one or more de-
isions, at least one of the sets of an
estors from unguarded ar
s in
lude one of theother de
isions being ordered. The preliminary temporal ordering, in su
h 
ases, isthat a de
ision, whi
h are in the set of an
estors from unguarded ar
s, is pla
ed be-fore the other de
ision. For instan
e, in the 
ase shown in Figure 4.9 the preliminarytemporal ordering, < is:D1 < TeD < fD2; (D3 < fD4;D5g)g < R:One manner of reading an IDIT is to read it a

ording to the preliminary temporalordering. That is, to identify the �rst de
ision, then to establish, whi
h 
han
e vari-ables are observed before taking this de
ision. When the �rst de
ision is found thenext de
ision 
an be found in a manner similar to the one des
ribed above. Guardedar
s should be read as possible informational ar
s, as the existen
e of the ar
 
annotbe established, based only on the qualitative level. However, it gives the reader ofthe IDIT a sense of when the 
han
e variable 
an be observed.The preliminary temporal ordering, <, is related to the temporal ordering, ��!t ,su
h that, if two de
ision or time variables, V and V 0, are ordered as V < V 0, thenV ��!t V 0.Dedu
ing the preliminary temporal ordering for the SAR problem yields the followingordering:Mp <Mo < Ws < TeWs < fHs;Weg < Se < TeSe < fLp; Su; Fo;HsgAfter having de�ned the qualitative level of IDITs, we now de�ne the quantitativelevel of IDITs.4.2.2 The Quantitative Level of In
uen
e Diagrams Involving TimeThe quantitative level of an IDIT is de�ned as a realization, given in De�nition 4.4.After presenting the de�nition we informally dis
uss the impli
ation of ea
h synta
-ti
al rule of the realization of an IDIT. Finally, the elements of su
h a realization aredis
ussed. De�nition 4.4 de�nes an ideal realization, and as su
h does not dis
ussthe problems imposed by the rules.We use pad(D) to denote the set of parents for some de
ision, D, from dashed ar
s.
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e Diagrams Involving Time 45De�nition 4.4 (Realization of an IDIT)Let I = fV;L;Eg be the qualitative part of an IDIT modelling some DPIT. Then arealization of I 
onsists of four sets of fun
tions: �, whi
h is the set of 
onditionalprobability distributions for 
han
e variables in I; 	, whi
h is the set of lo
al utilityfun
tions for I; �, whi
h is the set of density fun
tions for time variables in I; and�, whi
h is the set of restri
tion fun
tions asso
iated with I. Su
h that,1. If C 2 VC is in I, then there exists a 
onditional probability distribution forC, P(Cjpa(C)), in �.2. If V 2 VU is in I, then there exists a lo
al utility fun
tion for V, : sp(pa(V)) 7! R , in 	.3. TeD is in VeT, D is in VDD, and there does not exist a time node, TeD 0, in VeT,su
h that TeD is in 
h(TeD 0), i� a density fun
tion, fTeD(pa(TeD)), is in �, su
hthat fTeD(�!
 ; t) is zero for all 
on�gurations, �!
 , of pa(TeD) and all times, t, inR, where t is less than zero,4. TeD is in VeT, D is in VDD, and there exists a time node, TeD 0, in VeT, su
hthat TeD is in 
h(TeD 0), i� a density fun
tion, fTeD(pa(TeD)), is in �, su
h thatfTeD(�!
 ; t 0; t) is zero for all 
on�gurations, �!
 , of pa(TeD) n fTeD 0g and all times,t and t 0, in R, where t � t 0,5. TeD is in VeT, D is in VW, and there does not exist a time node, TeD 0, in VeT, su
hthat TeD is in 
h(TeD 0), i� a density fun
tion, fTeD(pa(TeD)), is in �, su
h thatfTeD(�!
 ; d; t) is zero for all 
on�gurations, �!
 , of pa(TeD) n fDg and all times, tand d, in R, where t � d,6. TeD is in VeT, D is in VW, and there exists a time node, TeD 0, in VeT, su
hthat TeD is in 
h(TeD 0), i� a density fun
tion, fTeD(pa(TeD)), is in �, su
h thatfTeD(�!
 ; d; t 0; t) is zero for all 
on�gurations, �!
 , of pa(TeD) n fD;TeD 0g and alltimes, t, d, and t 0, in R, where t � t 0 + d,7. Ti is in VF, and T 0 is in VT, su
h that Ti is in 
h(T 0), i� a density fun
tionfTeD(�!
 ; t 0; t) is zero for all 
on�gurations, �!
 , of pa(TeD) n fTeD 0g and all times,t and t 0, in R, where t � t 0,8. If D is in VD, TeD 0 is in VeT, and there is an ar
, (V;D), in Ed, then there is arestri
tion fun
tion for D, fD : sp(pad(D))! sp(D), in �, and9. If (V;D; g) is in Eg, then TeD 0 is in VeT, su
h that (TeD 0;D; true) is in Eg, and gis de�ned as g : sp(TeD 0) 7! ftrue; falseg is in �.Rule (1) determines that all 
han
e variables in a realization of an IDIT have a
onditional probability distribution atta
hed. And the 
onditional probability dis-tribution of ea
h 
han
e variable is in �. Rule (2) handles 	, whi
h is the set oflo
al utility fun
tions. It says that for ea
h lo
al utility in an IDIT there exists a
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tion for ea
h 
on�guration of parents of the lo
al utility. These utilityfun
tions are all in 	. Rules (3), (4), (5), and (6) are related. The two �rst of thesehandle time variables asso
iated with de
isions, and the two last handle time vari-ables asso
iated with wait de
isions. They all say that all time variables, T, in VeThave a density fun
tion asso
iated with it, and the point in time represented by theindividual time variable is in
uen
ed by the 
hoi
e of the de
ision it is asso
iatedwith, and the point in time represented by the time variable it has as a parent. The�rst time variable is, of 
ourse, only in
uen
ed by the de
ision it is asso
iated with,in this respe
t. All the density fun
tions are pla
ed in �. The rules also determinethat time may not be negative and time always progresses through an IDIT. Rule (7)says the same as the four previous rules, only for free time variables. That is, the freetime variables may not be negative and time progresses. And the density fun
tionasso
iated to ea
h free time variable takes the parents and a possible previous timevariable as parameter. These density fun
tions are also in �. Rule(8) says that forany restri
tion ar
 in an IDIT, there exists a restri
tion fun
tion, whi
h determinesthe state spa
e of the restri
ted de
ision, given the state spa
e of the restri
tingvariable. As per our de�nition, only de
ision variables may be restri
ted, and onlythe e�e
t of time may restri
t these. All restri
tion fun
tions related to restri
tionar
s are in �. Rule (9) says that for ea
h guarded ar
 into a de
ision, there existsa time variable representing the initiation-time of that de
ision. The point in timethis time variable represents determines if the guard is evaluated to true or false.This information is also in �.We dis
uss, for ea
h set of fun
tions, whi
h limitations are imposed in this thesisand what the 
onsequen
es of this are.�: This set 
onsists of the 
onditional probability distributions for 
han
e vari-ables in an IDIT. For a dis
rete 
han
e variable, C, whi
h only has other dis-
rete variables in its 
onditioning set, the 
onditional probability distributionasso
iated to it is P(Cjpa(C)), whi
h is similar to the 
onditional probabilitydistributions of 
han
e variables in in
uen
e diagrams.When C has a time variable in its 
onditioning set, the 
onditional probabilitydistribution 
annot be de�ned by asso
iating a spe
i�
 probability for ea
hstate, given all 
on�gurations of the parents, as there are an in�nite numberof su
h 
on�gurations. Instead the 
onditional probability distribution is de-�ned by asso
iating to ea
h state of C, given its dis
rete parents, a fun
tionover time, des
ribed by f : R 7! [0; 1℄. f is based on the 
on�guration of dis-
rete parents of C. The introdu
tion of fun
tions to des
ribe the probabilitydistributions does not alter the requirement that the probability distributionsums to one, for all 
on�gurations of parents. One manner of ensuring this isby normalizing the fun
tion. That is, a fun
tion of a state 
i is given as:fC=
i(t) = f(xi; t)Pnj=1 f(xj; t) ;where xi is a parameter for C = 
i given a 
on�guration of the dis
rete parents
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ases where C is binary, the probabilities 
an befound as f for one state and 1 - f for the other.In order to ease the development of a solution method, we further limit thefun
tions to be those whi
h are di�erentiable and integratable, as these areni
e properties to have ful�lled for 
ontinuous fun
tions.	: The set of lo
al utility fun
tions 
onsists of a utility fun
tion for ea
h utilitynode in the IDIT. The fun
tion maps ea
h 
on�guration of the parents of theutility node to a real value. When a lo
al utility fun
tion is dependent on time amethod similar to the one used for 
han
e variables dependent on time is used,that is, the dis
rete parents are used to look up some parameter for a fun
tionover time. Su
h a fun
tion re
e
ts the preferen
es of the de
ision taker, likefor lo
al utility fun
tions, whi
h are not dependent on time, and the axiomsof utilities, as des
ribed in [Pearl, 1988℄ should also be followed. Finally, thesefun
tion should be de�ned for all positive reals, su
h that they are de�ned forall points in time.�: The un
ertainty asso
iated with time variables is represented through den-sity fun
tions. We have 
hosen to have time variables be represented by �2-distributions. This 
hoi
e is based on the semanti
s of time variables, namelythat they portray an unforeseen delay in the end-time of some timed a
tion,and, a �2-distribution most a

urately portrays the intuitive 
on
eption of thissemanti
s. This is be
ause the output of su
h a distribution is a fun
tion, forwhi
h the density of the fun
tion is 
on
entrated on the �rst part of the domain.When 
ombining this with the semanti
s of a time variable, this is interpretedas: there is a high probability that the timed a
tion being delayed is delayedwith a short amount of time, and a very low probability of the delay beinghigher than some set time, dependent on the spe
i�
 parameters for the �2-distribution of the time variable at hand. Time variables, whi
h are dependenton dis
rete variables are asso
iated to a table, from whi
h the parameters forthe �2-distribution is found, based on a 
on�guration of the parents. When atime variable, T, is dependent on another time variable, T 0, P(TjT0), we assumethat this 
an be rewritten to P(T)+t 0, where T 0 = t 0, that is, P(Tjt 0) � P(T)+t 0.Even though we have 
hosen to represent the probability distributions of timevariables using the �2-distributions another 
hoi
e of density fun
tion wouldnot 
hange the framework, 
onsiderably.�: This de�nes the set of restri
tion fun
tions. If the de
ision being restri
ted is await de
ision, then the state spa
e is altered, so that points in time in spe
i�
intervals are invalid 
hoi
es for that de
ision. If, on the other hand, the de
isionis a dis
rete de
ision, then 
ertain states are restri
ted, that is, they are invalid.This set also handles the fun
tions for determining if some guard evaluates totrue or false.
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i�ed by using tables and fun
tions as inExample 3.The temporal ordering, as de�ned in De�nition 4.2, is based on IDITs, in whi
hall asymmetries have been resolved through 
on�gurations of the time variables. Toresolve these asymmetries we 
onvert the IDIT to a number of symmetri
 IDITs andthrough these we determine a temporal ordering.4.2.3 Symmetri
 In
uen
e Diagrams Involving TimeFrom the qualitative level of an IDIT a preliminary temporal ordering was dedu
ed.To dedu
e the temporal ordering of an IDIT the quantitative level is also needed.Two de
isions, whi
h are not ordered in the preliminary temporal ordering, shouldbe ordered in the temporal ordering. Likewise, the time of observation of guarded
han
e variables should be pinpointed. To �nd the ordering of, for instan
e, two su
hde
isions, the time variable, to whi
h their ordering refers, is identi�ed. The statespa
e of the time variable is divided into the values yielding one ordering and thevalues whi
h yield the other ordering. Generally, we say that a time variable splitsthe IDIT into a set of new IDITs, in whi
h the asymmetries imposed by the timevariable are resolved. We sometimes refer to the time variable as a split variable. AnIDIT, in whi
h all split variables have been split upon, resulting in the resolution ofall asymmetries, is 
alled a symmetri
 IDIT , and, if only some of the asymmetrieshave been resolved, we 
all it a partially symmetri
 IDIT . As symmetri
 IDITs arespe
ial 
ases of partially symmetri
 IDITs, we only de�ne partially symmetri
 IDITs.Partially symmetri
 IDITs are de�ned in De�nition 4.5.When splitting the IDIT into a set of symmetri
 or partially symmetri
 IDITs,the sets of ar
s are altered. Consider an IDIT, for whi
h, at some point, a timevariable, Tn, indu
es a split. If the IDIT is split on Tn it means that there is a pathbetween Tn and at least one de
ision, D. The set of guarded ar
s going into D fromvariables, Vi 2 V, now be
ome informational ar
s if their guard is satis�ed. The setof restri
tion ar
s going into D are also 
onverted, su
h that the state spa
e of D isresolved to a spe
i�
 state spa
e. All other ar
s remain the same. Furthermore, theset of restri
tion fun
tions alters to a

ommodate the 
hanges in the set of ar
s.In De�nition 4.5 we use EdTn to denote the set of dashed ar
s in the partially sym-metri
 IDIT resulting from a split on Tn. And EgTn is the set of labelled ar
s in thepartially symmetri
 IDIT resulting from a split on Tn. If some index, Tn-1, does notrefer to any time variable, it simply means the initial IDIT, and if some index, Tn+1,does not refer to any time variable, it simply means the rest of the IDIT.De�nition 4.5 (Partially Symmetri
 IDIT)Let I = (V;L;E) be an IDIT, and Tn some split variable.Then EgTn = f(V;Di; l)jl(Tn-1) = true;Di ��!t Tn+1; (V;Di; l) 2 EgTn-1g[f(V;Di; l)jTn+1 ��!t Dig and EdTn = EdTn-1 n f(V;Di)jTn+1 ��!t Dig. Then
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 IDIT resulting of a split on Tn,where E 0 = EgTn [ EdTn.Besides this qualitative de�nition of a partially symmetri
 IDIT, the set of rules,whi
h de�ne an IDIT, must also be followed when 
onstru
ting a partially symmetri
IDIT. A symmetri
 IDIT is a partially symmetri
 IDIT in whi
h Ed is empty andthe label on all ar
s in Eg is true.For the realization of a partially symmetri
 IDIT, we have that the set of restri
-tion fun
tions is 
hanged, while everything else remains the same. That is, theset of restri
tions resulting from a split on Tn is denoted as �Tn and is de�ned as�Tn = f
(Di)jTn+1Dig.A symmetri
 IDIT has some properties, whi
h neither partially symmetri
 IDITs norIDITs have. In a symmetri
 IDIT there exists a total ordering of de
ision and timevariables, and a partial ordering of all de
ision and 
han
e variables. Furthermore,for ea
h dis
rete 
han
e variable it 
an be dedu
ed before whi
h de
ision, if ever, it isobserved. From the variables of a symmetri
 IDIT the temporal ordering, as de�nedin De�nition 4.2, 
an be dedu
ed.Partially symmetri
 IDITs have the property that all variables before the time vari-able introdu
ing the next split, 
an be ordered a

ording to the temporal ordering.Thus, in the temporal ordering, of partially symmetri
 IDITs, the set of time vari-ables, whi
h 
onstitutes fT1; : : : ; Tng, is the variables before the split variable, Tn.The part of the partially symmetri
 IDIT following the split variable 
an only beordered a

ording to a preliminary temporal ordering, thus, some variables mightnot be ordered. It should be noti
ed that this fa
t also holds for IDITs, whi
h havenot been split, as variables before the �rst split variable are ordered in a

ordan
eto the temporal ordering.Due to the restri
tion of only allowing asymmetries arising from time variables, onlytime variables 
an be split variables. A time variable splits an IDIT, or a partiallysymmetri
 IDIT, whenever a guard or restri
tion fun
tion is referring it. We postponethe details of the pro
ess of �nding the parts, into whi
h an IDIT is split, untilChapter 5.The splitting of an IDIT 
an be illustrated by 
onstru
ting a tree stru
ture, 
alleda split tree, whi
h reveals the asymmetries imposing a split on its bran
hes and theresulting partially symmetri
 and symmetri
 IDITs as its nodes. The root of the treeis the original IDIT, all internal nodes are partially symmetri
 IDITs, and all leafnodes are symmetri
 IDITs. For instan
e, splitting the IDIT of Se
tion 4.1.1, withrespe
t to TeWs, results in the split tree of Figure 4.10.A time variable splits an IDIT if two di�erent 
on�gurations of the variable either
ause a guard to 
hange its value, or a de
ision to 
hange its state spa
e. For in-stan
e, the instantiation of TeWs in Example 1 will, a

ording to the interval it isinstantiated to, impose a di�erent state spa
e for Sear
h, and 
hange whether or notHeat signature 
an be observed before taking Sear
h.
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Figure 4.10: A split tree resulting from a split on TeWs.
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h that, if TeWs splits to a point in time, whi
h iseither 48 hours or later, then the temporal order of the IDIT follows how the IDITin the lower leaf is read. Otherwise the temporal order follows how the IDIT in oneof the other leaves is read. The restri
tions to the state spa
e of Sear
h 
an only beseen in the quantitative level of the IDIT, but the fa
t that there are leaves withsimilar symmetri
 IDITs in them indi
ates that some de
ision variable after the lastsplit variable has a restri
ted state spa
e.In partially symmetri
 and symmetri
 IDITs, restri
tion ar
s referen
ing time vari-ables, whi
h have already been split upon, are ex
hanged with informational ar
s.This we do as all information regarding the restri
tion has been removed, be
ausethe time variable referred by the restri
tion fun
tion is known to be in a spe
i�
interval. This interval is based on the restri
tion fun
tions themselves. The same istrue for guarded ar
s. That is, if a guard is evaluated to true be
ause of a split, thear
 is present as an informational ar
 in the resulting partially symmetri
 or sym-metri
 IDIT. If, on the other hand, the guard evaluates to false, the ar
 is removed.As an example of this 
onsider Figure 4.10. When 
omparing the labels on the edgesbetween the root and the leaves of the split tree, we see that only in the lower rightleaf is the former guarded ar
 present.The temporal ordering of a symmetri
 IDIT 
an be found by the same te
hnique forthe preliminary temporal ordering. That is, we �nd the �rst de
ision, D, and the
han
e variables observed before taking it, ID, and stru
ture those as ID ��!t D. Thisis followed by the time variable asso
iated with D. Then all variables, whi
h havebeen ordered, are removed from 
onsideration, and the pro
ess is repeated, until allvariables are ordered.The di�eren
e in the temporal ordering between the qualitative level and the quan-titative level lies in the number of possible orderings. The number of temporal or-derings in the qualitative level is only a�e
ted by the number of guards in the IDIT.As long as there is at least one time variable in the IDIT, there is an in�nite amountof temporal orderings on the quantitative level of the IDIT.We say that the set of temporal orderings on the qualitative level 
onstitutes therequired set of temporal orderings for an IDIT, while the set of temporal orderingson the quantitative level 
onstitutes the set of possible temporal orderings.4.2.4 Wellde�ned In
uen
e Diagrams Involving TimeWhen modelling or solving IDITs it is important that the IDIT is wellde�ned. Bywellde�ned we mean that the next de
ision to be taken 
an be uniquely and unam-biguously identi�ed. This requirement is satis�ed as a 
on�guration of time variablesuntil some time variable, Tn, resolves all asymmetries between Tn and Tn+1 in thepreliminary temporal ordering, where Tn+1 is the time variable immediately afterTn. Thus, the next de
ision 
an be found.That wellde�ned IDITs are only a matter of �nding the next de
ision is a 
onse-
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e of Rule (4) in De�nition 4.1. For further dis
ussion of wellde�ned in
uen
ediagrams, whi
h are related to this, we refer to [Nielsen and Jensen, 1999℄.4.3 SummaryIn this 
hapter we have introdu
ed a framework for modelling DPITs. The syntaxof the framework has been de�ned and semanti
s of the 
on
epts have been given.Furthermore, heuristi
s for reading and understanding an in
uen
e diagram involvingtime, both on the graphi
al level and the numeri
al level, have been given. This isdone through the temporal and the preliminary temporal ordering. We have alsoargued for IDITs being wellde�ned.



Chapter 5Solving In
uen
e DiagramsInvolving Time
In Chapter 4 we presented a representation language, IDIT, for modelling DPITs. Inthis 
hapter we present a solution method for solving IDITs. The solution methodproposed solves IDITs with respe
t to �nding the 
hoi
e, whi
h is preferred by thede
ision taker, for ea
h de
ision, assuming all future 
hoi
es are taken in this man-ner, too.First, we present an outline of the solution method, giving an overview of the keyparts of the solution. Following the overview, ea
h part of the solution method isdis
ussed in detail, and the diÆ
ulties of ea
h part are identi�ed, and, �nally, in Se
-tion 5.6 the full solution method is presented. We end this 
hapter by, in Se
tion 5.7,dis
ussing sampling and the te
hnique we have 
hosen.5.1 Overview of the Solution MethodWe begin with a preliminary dis
ussion of the solution method for IDITs. It is pre-liminary as it does not in
lude how to solve the individual steps of the solutionmethod, but rather gives an overview of the steps in the solution method.The solution method follows the solution sket
h of [Broe et al., 2003℄. However,where the sket
h only showed how to solve a single spe
i�
 example of a DPIT,the method in this se
tion is a general solution method, su
h that it 
an be used tosolve all IDITs.A solution method of an IDIT is basi
ally the task of determining a poli
y for ea
hde
ision in the IDIT. A poli
y, Æ��!tD , for a de
ision, D, given the past with respe
tto the temporal ordering, ��!t , is some 
hoi
e of D based on its past. The past of ade
ision is the set of variables, whi
h are before the de
ision in the temporal ordering,that is, past(D)��!t = fV jV 2 VD [VC and V ��!t Dg. De�nition 5.1 de�nes a poli
y:53
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y, Æ��!t )Let D be a de
ision in an IDIT and past(D)��!t be the past of D, then a poli
y,Æ��!tD , for D is the fun
tion:Æ��!tD : sp(past(D)��!t ) 7! sp(D):If past(D)��!t in
ludes 
ontinuous variables an in�nite number of poli
ies exists forD. In order to deal with this, a poli
y of a de
ision, whi
h has a 
ontinuous variablein its past, is taken based on a grouping of the states of 
ontinuous variables. Wedis
uss this in detail later.A strategy, �, of an IDIT is a set 
ontaining a poli
y for ea
h de
ision in the IDIT,that is:De�nition 5.2 (Strategy, �)Let VD be a set of de
isions, and ea
h D in VD has a poli
y, Æ��!tD , then a strategy,� is: � = fÆ��!tD j8D 2 VDg:We say a poli
y is an optimal poli
y if it maximizes the expe
ted utility of thede
ision. A strategy 
ontaining only optimal poli
ies is an optimal strategy , whi
hwe denote �̂.The aim of a solution method is to �nd an optimal strategy for taking the de
isionsin an IDIT.5.1.1 Outline of the Solution MethodThe solution method for IDITs is stru
tured on two levels. A global level, whi
h de-
omposes the IDIT into symmetri
 IDITs, and merges these when a result is found,to get the solution for the IDIT. When the IDIT is de
omposed to manageable pie
es,ea
h pie
e is solved using a lo
al solution method.The global level of the solution method is inspired by the solution methodsfor asymmetri
 de
ision problems, su
h as the ones in [Nielsen and Jensen, 2002℄,and [Demirer and Shenoy, 2001℄, and the lo
al level is inspired by lazy evaluation,[Madsen and Jensen, 1999℄. The idea is to de
ompose an IDIT, whi
h in
ludes asym-metries, into a number of symmetri
 IDITs. The symmetri
 IDITs are then solvedindividually and the results of the de
ompositions are merged to give the result ofthe original IDIT.The outline of the parts of a solution method for IDITs, and what ea
h part does,is as follows:Splitting an IDIT: In order to �nd an elimination sequen
e for an IDIT the tem-poral ordering of the variables has to be found. As there is no unique temporalordering for an IDIT, we split the IDIT into symmetri
 IDITs. The splitting is
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e Diagram Involving Time 55done by �nding the �rst variable imposing a split, based on a preliminary tem-poral ordering, whi
h 
an be dedu
ed from the original IDIT. By instantiatingall variables, whi
h lead to asymmetries, and splitting the IDIT a

ording tothese guards and restri
tion fun
tions, all asymmetries are resolved in the re-sulting partially symmetri
 IDITs. This is 
ontinued until all asymmetries areresolved, thus a symmetri
 IDIT is 
onstru
ted. This splitting of the IDIT isthe �rst part of solving an IDIT. The splitting of an IDIT follows the approa
hdes
ribed in Chapter 4.Stru
ture of eliminations: When a temporal ordering of the variableshas been dedu
ed, a method should stru
ture the elimination of variables.Several approa
hes are appli
able to do this. The goal of all approa
hes isto 
onstru
t an elimination order from the temporal ordering, su
h that theelimination 
an be exe
uted as eÆ
iently as possible.Elimination of variables: Having found an elimination order, the elimi-nation 
ommen
es. The elimination of variables is done for one node at a time,by following the prin
iples of expe
ted utility. In this manner an optimal poli
yfor ea
h de
ision 
an be found, and when all de
isions have been eliminatedthe optimal strategy for the IDIT is found.Merging of symmetri
 IDITs The splitting is done re
ursively, and whenevera symmetri
 IDIT is found, an elimination order for this symmetri
 IDIT isdedu
ed. Then the variables before the last split variable, with respe
t to theelimination order, are eliminated, and optimal poli
ies for the de
ision variablesafter this split are found. When the split variable is to be eliminated the resultsfrom ea
h bran
h indu
ed by the split variable is used to eliminate the splitvariable. That is, when an intermediate node in the split tree has re
eivedresults from all its 
hildren, these results are merged, making the intermediatenode a new leaf node. In this manner the optimal poli
ies for all de
isions arefound.The following se
tions elaborate further on ea
h of the four steps presented above.5.2 Splitting an In
uen
e Diagram Involving TimeIn Chapter 4 we des
ribed the temporal ordering of a symmetri
 IDIT, whi
h is away of resolving the asymmetries of the IDIT. This prin
iple is also ne
essary inorder to solve the IDITs as we need an order in whi
h we 
an eliminate the variablesto �nd an optimal strategy, [Jensen et al., 1994℄. The e�e
ts of splitting an IDIT arethree-fold in the solution method, as it divides the problem into sub-problems; itresolves the asymmetries within the IDIT, su
h that te
hniques inspired by thoseused for in
uen
e diagrams 
an be used; and a total ordering of de
ision and timevariables emerges.
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uen
e Diagrams Involving TimeThe strategy for splitting the IDIT follows the strategy for �nding the temporalordering. First, a preliminary temporal ordering is found using the qualitative levelof the IDIT. Then a �rst time variable is found using the preliminary temporalordering, and the set of splits this variable imposes is found. Then the IDIT is spliton the time variable. By performing these operations in a re
ursive manner, we�nd a set of symmetri
 IDITs. The temporal ordering for ea
h symmetri
 IDIT isestablished, so a stru
ture of elimination 
an be 
onstru
ted for ea
h. By mergingthe result of ea
h symmetri
 IDIT, resulting from a split, a solution for the IDIT isfound. The spe
i�
s of how the stru
ture of elimination and the merging is performedfollows in the se
tions below.Finding the Preliminary Temporal OrderingTo initiate the 
onstru
tion of the preliminary temporal ordering, the �rst de
isionin the IDIT must be identi�ed. There is always one su
h de
ision, as proven in Chap-ter 4. It 
an be identi�ed as the de
ision, for whi
h the set of an
estors interse
tedwith the set of de
ision variables is the empty set. That is, the �rst de
ision, D 0, ofan IDIT is the de
ision for whi
h it holds that an(D 0) \VD = ?.As there 
annot be any guards before the �rst de
ision the set of observed variablesfor this de
ision 
onsists of only unguarded variables. The preliminary temporalordering of an IDIT with a �rst de
ision, D, for whi
h the set of observed variablesis ID, therefore has a preliminary temporal ordering, ID < D.If a de
ision is a de
ision involving time, the time variable asso
iated with the de
isionis immediately after the de
ision variable in the preliminary temporal ordering, thatis, if there exists a de
ision variable, D, and an asso
iated time variable, TeD, thenD < TeD.Having identi�ed the �rst de
ision, the set of observed variables for this de
ision,and, possibly, a time variable, all remaining variables should now be ordered in asimilar manner. We order these variables by repeatedly identifying the next de
isionin the preliminary temporal ordering. As long as no de
ision, already pla
ed in thepreliminary temporal ordering, has a time variable asso
iated with it, the next de-
ision 
an be identi�ed. The next de
ision is the one, for whi
h the set of an
estorsinterse
ted with the set of de
ision variables equals all the previous de
isions in thepreliminary temporal ordering. That is, if the next de
ision is Di and P is the set ofde
isions already ordered, then an(Di) \VD = P.Until the �rst time variable in the IDIT is pla
ed in the preliminary temporal or-dering, the de
ision variables before this time variable, and the observed variablesfor ea
h of the de
isions are ordered in this fashion. In the spe
ial 
ase of IDITs,in whi
h there does not exist a time variable, the temporal ordering yields an ordersimilar to the one for in
uen
e diagrams as des
ribed in [Jensen et al., 1994℄.De
isions, whi
h are after the �rst time variable in the preliminary temporal ordering,
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an have a set of observed variables, whi
h di�ers a

ording to the point in time theyare taken. This is a result of guards on guarded ar
s being evaluated to either trueor false. The order of taking two or more de
isions may also 
hange due to di�erent
on�gurations of time variables.Assuming that the part of an IDIT before the �rst time variable has been ordereda

ording to the above spe
i�
ations, and the de
ision variable following this timevariable has been uniquely identi�ed, then the set of observed variables for thisde
ision 
an be found as previously, ex
ept for the 
han
e variables, whi
h have aguarded ar
 going to the de
ision. That is, we have an IDIT as the one illustratedin Figure 5.1.Figure 5.1 depi
ts an IDIT in whi
h: D1 is the �rst de
ision involving time; R0 is thepart of the IDIT before D1; D2 is the de
ision following immediately after D1 in thepreliminary temporal ordering; ID2 [ IgD2 is the set of 
han
e variables between thetwo de
isions, where ID2 is the set of 
han
e variables always observed, and IgD2 isthe set of guarded observed variables; and R1 is the set of variables after D2, whi
hmay in
lude a time variable asso
iated with D2, and R1 also in
ludes IgD2 , as de�nedpreviously. An ar
 emanating from a set of nodes going into a node in the �gurerepresents that ea
h element in the set has an ar
 going to that node, this is the 
asefor the relation between R0 and D1, whereas an ar
 from a node into a set of nodesrepresents a preliminary temporal pre
eden
e, su
h as the relation between D2 andR1. R1IgD2R0 ID2 D2D1 Figure 5.1: Part of an IDIT.In the preliminary temporal ordering the two sets of observed variables, ID2 andIgD2 , are before D2, and the set of guarded observed variables, IgD2 , is also in the setof 
han
e variables never observed, or observed too late to have an impa
t on anyde
ision, that is, we have a preliminary temporal ordering dedu
ed as:: : : < ID2 [ IgD2 < D2 < : : : < IgD2.We 
an generalize this and say that, for any de
ision, D, in an IDIT, the preliminarytemporal ordering, <, with respe
t to D, is dedu
ed as ID[IgD < D < TeD < : : : < IgD,where ID is the set of observed variables, and IgD is the set of guarded observedvariables, for D and TeD is the possible time variable asso
iated with D.
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uen
e Diagrams Involving TimeHaving spe
i�ed the preliminary temporal ordering for any single de
ision, a possibleasso
iated time variable, and the set of observed variables for this de
ision, only thespe
i�
ation of how to �nd the ordering of multiple de
isions after the �rst timevariable remains.From the de�nition of the qualitative part of an IDIT it is known that there is a paththrough all time and de
ision variables, this is spe
i�ed in Rule (4) for the qualitativepart of an IDIT. This path is used to �nd the next de
ision for some de
ision,assuming that all de
isions before the 
urrent one is ordered in the preliminarytemporal ordering. The de
ision read after the 
urrent de
ision, is the de
ision forwhi
h the set of an
estors is minimal, 
ompared to the set of an
estors for all otherde
isions not yet 
onsidered. Using this de�nition it is known that, if the presentde
ision, D, is not the last de
ision in the IDIT, then there exists a de
ision, D 0,whi
h has D in its set of an
estors, as there must be a path between the two de
isionsa

ording to the de�nition. If there are multiple de
isions after the present one, theminimal set of an
estors is the set, whi
h is a proper subset of all others. In 
aseswhere multiple 
y
les exist, su
h as was illustrated in Figure 4.9 the set of an
estorsfrom unguarded ar
s are used to order the de
isions involved in the 
y
les.Algorithm 5.1 spe
i�es how a preliminary temporal ordering is found based on thequalitative level of an IDIT, I.PreliminaryTemporalOrdering(I = (V;L;E))1: Find de
isions, D, with minimal sets of an
estors.2: if D 
ontains one element, D then3: Find the set of observed variables, ID and guarded observed variables, IgD forD4: Insert ID [ IgD < D < TeD in PTO5: Call PreliminaryTemporalOrdering(I 0 = (V n fDg [ ID [ fTeDg;L;E)6: else if D is ? then7: Insert V in PTO8: return PTO9: else10: Find the set of observed variables, ID and guarded observed variables, IgD forea
h D 2 D11: Compare sets of an
estors from unguarded ar
s for ea
h pair, D, D 0.12: if an(D) � an(D 0) then13: Insert ID [ IgD < D < TeD < ID 0 [ IgD 0 < D 0 < TeD 0 in PTO14: else15: Insert (ID [ IgD < D < TeD); (ID 0 [ IgD 0 < D 0 < TeD 0) in PTO16: Call PreliminaryTemporalOrdering(I 0 = (V nDSD2D ID [ fTeDg;L;E).Algorithm 5.1: The algorithm for 
onstru
ting the preliminary temporal ordering ofany IDIT, I.
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onstru
ting the split tree for some IDIT is to �rst �nd the prelimi-nary temporal ordering, <, of the variables. The method then 
onstru
ts the root ofthe tree, whi
h is the original IDIT. The �rst possible split variable 
an be found inthe preliminary temporal ordering as the �rst time variable. The method splits ona time variable, if one or more de
isions, whi
h are before the next time variable inthe preliminary temporal ordering, have a set of guarded observed variables, are notordered in relations to other de
isions, or have a restri
tion fun
tion.For ea
h guard or restri
tion the point in time asso
iated with it is used to
onstru
t a minimal set of time intervals, su
h that no information is lost inan instantiation of the intervals. For instan
e, in Example 1, the SAR problem,when instantiating TeWs, the guard between Hs and Se, whi
h is true if t � 48,and the restri
tion of the state spa
e of Sear
h are used to �nd the intervals:[0; 12[; [12; 18[; [18; 20[; [20; 48[; and [48; 168[.For ea
h interval found in this manner, a new node is 
onstru
ted and a bran
h 
on-ne
ting the 
urrent node to the new node is added. The partially symmetri
 IDITin this node is an IDIT, in whi
h the guards between the split variable and the nexttime variable are 
hanged to true, if the guard evaluates to true, or removed if theguard evaluates to false. The evaluation of the guards is a result of the time variablebeing in the interval determined by the split. As the intervals of the split are 
on-stru
ted from the guards, no interval 
an exist in whi
h it 
annot be determined ifthe guard is true or false. Furthermore, the restri
tion fun
tion is evaluated and theresult of this evaluation is set to be the state spa
e of the de
ision.The algorithm for 
onstru
ting a split tree is given in Algorithm 5.2. Before thealgorithm begins it is assumed that an initiation method has 
onstru
ted the root ofthe split tree, found a preliminary temporal ordering, PTO, the �rst split variable,V, and the point in time or interval, T, setting the range for V in partially symmetri
IDIT. The algorithm uses a set of list operations whi
h should be self explanatory.Algorithm 5.2 is 
ompa
t with respe
t to elu
idating 
omments. What happens isthe following: we start in line 1 by identifying the next element in the preliminarytemporal ordering, with respe
t to V. If this next element, or variable, is a de
isionvariable with some restri
tion on it, either in form of a restri
tion fun
tion or aguarded ar
, we take the point in time, or time interval, asso
iated to that restri
tionor guard and store it in a list. Then we add the de
ision to a list of de
isions, thisis done in line 8. This we 
ontinue doing as long as we are not 
onsidering a timevariable representing the end-time of some de
ision. Lines 10 and 11 state that, ifwe have 
onsidered the last variable in the IDIT, we simply return to the parent,with respe
t to the entire split tree. If we, at any time, 
onsider a time variable, asjust mentioned, or have 
onsidered the last variable in the IDIT, we order the timeintervals we have gotten from the restri
tion fun
tions and guards, a

ording to ea
hother. As long as the list of these time intervals is not empty we 
onstru
t a 
hildof the 
urrent partially symmetri
 IDIT. As seen in line 16, this 
hild is a new split
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SplitTree(V;I;PTO; T)1: V 0  PTO:NextElement(V)2: while V 0 =2 VeT do3: if V 0 2 VD then4: if 
D 2 � then5: timeInterval timeInterval:AddElement(Extra
tTime(V 0))6: for (X;V 0; l) 2 Eg and l 6= true do7: timeInterval timeInterval:AddElement(Extra
tTime(l))8: de
isions de
isions:AddElement(V 0)9: V 0  PTO:NextElement(V 0)10: if V 0 = null then11: return to parent12: timeInterval timeInterval:Sort()13: T0 T14: T1 timeInterval:FirstElement()15: repeat16: newnode SplitTree(V 0;Symmetri
IDIT(I; T0;de
isions);PTO; T0)17: AddEdge((thisnode, newnode, T0 � t < T1))18: T0 T119: T1 timeInterval:NextElement(T0)20: until T0 = null21: return to parentAlgorithm 5.2: The algorithm for 
onstru
ting a split tree for any IDIT, I.
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hild and the node 
ontaining thepartially symmetri
 IDIT we have been dealing with so far. This edge is labelledwith whatever time interval we are building the new split tree from. Then, in line19, we pi
k the next element in the list of time intervals, and this 
onstru
tion of
hildren we repeat until no more time intervals exist in the aforementioned list.Algorithm 5.3 implements Symmetri
IDIT, whi
h takes as input an IDIT, a pointin time, for whi
h the symmetri
 IDIT is 
onstru
ted, and a list of de
isions.Symmetri
IDIT(I; T0;de
isions)1: for D 2 de
isions do2: if 
D 2 � then3: sp(D) fdi : 
di(T0) = trueg4: for (X;D; l) 2 Eg do5: if l(T0) = true then6: Eg  Eg:AddElement(X;D)7: for (X; Y; l 0) do8: Eg  Eg:Remove((X; Y; l 0))9: else10: Eg  Eg:Remove((X;D; l))11: return IAlgorithm 5.3: The algorithm for 
onstru
ting symmetri
 IDITs for any IDIT, I.Algorithm 5.3 is also 
ompa
t with respe
t to elu
idating 
omments. What it doesis to go through all de
isions in the list of de
isions it re
eives as input. Then, forall de
isions, whi
h are restri
ted, the state spa
e is 
hanged to 
omply with therestri
tion, this is seen in lines 2 and 3. And for all guarded ar
s into ea
h of thesede
isions, if the guard evaluates to true, as a 
onsequen
e of the interval in whi
h the
urrent symmetri
 IDIT is, the ar
 is 
onverted to an informational ar
. If the guardevaluates to false, the ar
 is simply removed from the set of ar
s. This happens in lines4 through 10. In line 10 the resulting symmetri
 IDIT is returned. The symmetri
IDIT is then put in the node representing the interval of T0 in the split tree.For the root and ea
h internal node in the split tree a temporal ordering for thepartially symmetri
 IDIT in it is 
onstru
ted using Algorithm 5.1. This gives anordering of the partially symmetri
 IDITs in these nodes, whi
h is similar to thetemporal ordering for the part of the partially symmetri
 IDIT before the timevariable, whi
h the partially symmetri
 IDIT splits on, and a preliminary temporalordering of the rest.For all leaf nodes in the split tree a method similar to Algorithm 5.1 is used. However,the sets of guarded variables are not 
onsidered and the part, whi
h handles multiplede
isions, whi
h 
annot be ordered in relation to ea
h other, is removed too.
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uen
e Diagrams Involving Time5.3 Stru
ture of EliminationAfter splitting the original IDIT into partially symmetri
 and symmetri
 IDITs,we use an approa
h inspired by a solution method for in
uen
e diagrams, to solvethe IDITs. We only solve the leaves of a split tree, meaning that an internal nodere
eives a result of elimination from ea
h of its 
hildren, before the lo
al solution ofthe internal node begins, eliminating the leaf nodes in the pro
ess. The part of thepartially symmetri
 IDIT, whi
h is to be solved is therefore the part between the splitvariable indu
ing this partially symmetri
 IDIT and the split variable, whi
h splitsit into its 
hildren. This part of the partially symmetri
 IDIT is symmetri
, thus, thelo
al solution method of internal nodes is no di�erent than the lo
al solution methodfor leaf nodes, ex
ept for the merging of its 
hildren. A solution of a symmetri
IDIT is to �nd an optimal poli
y for all de
ision variables, whi
h are before thevariable that 
aused the split, in the elimination order. In 
ases where there are node
ision variables the result of eliminating all variables before the split variable inthe elimination order is passed on to the parent node in the split tree. If no moresplit variables exist, the rest of the variables are eliminated in the same fashion, stillrespe
ting the elimination order.We have 
hosen to stru
ture the elimination of variables using strong jun
tion trees,[Jensen et al., 1994℄, as this method of stru
turing the elimination has several bene-�ts: a strong jun
tion tree is a di�erent representation of a DPIT than a symmetri
IDIT, thus the 
onversion to a strong jun
tion tree liberates the solution method ofrespe
ting the rules imposed by the de�nition of IDITs; furthermore, strong jun
-tion trees are eÆ
ient for retrieving an optimal strategy for a de
ision problem,[Jensen et al., 1994℄; and it dire
tly depi
ts the 
onditional independen
e of the sym-metri
 IDIT.A di�erent approa
h of stru
turing the order of elimination, is to use the ideas ofnode-removal and ar
-reversal as proposed by [Sha
hter, 1986℄, whi
h is also eÆ-
ient. An approa
h based on this method works dire
tly on the symmetri
 IDIT.Thus, it does not have the bene�ts a
hieved through strong jun
tion trees.An interesting aspe
t, whi
h should be noted, is that the dedu
tion of the temporalordering des
ribed above, and the elimination of variables, whi
h is des
ribed inSe
tion 5.4, enables future solution methods to use, for instan
e, node-removal andar
-reversal instead of strong jun
tion trees, without 
hanging these parts of themethod.5.3.1 Moralizing In
uen
e Diagrams Involving TimeIn order to 
onstru
t a strong jun
tion tree the symmetri
 IDITs have to be stru
-tured into 
liques, a

ording to the elimination order, using strong triangulation. Wetriangulate the symmetri
 IDIT by �rst 
onverting it to a moral graph, whi
h is anundire
ted graph, in whi
h all immoralities have been removed. In this se
tion we
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ribe how a symmetri
 IDIT is moralized.A moralization of a dire
ted graph, G = (V;E), is the undire
ted graph, (V 0;E 0)resulting from removing all immoralities. It should be noti
ed that the set of labelshave been omitted as the set of labels of a symmetri
 IDIT 
onsists only of the label,true. The idea is to �rst remove all informational ar
s from the IDIT. Then removeall immoralities, by adding an edge between nodes sharing a 
hild, if this edge doesnot already exist, and �nally, remove all utility nodes.Algorithm 5.4 spe
i�es what is meant by moralization in the thesis.Moralize(I)1: Remove all informational ar
s2: for ea
h node, V, in I do3: Add edge between ea
h pair of parents of V, if it does not already exist4: Remove all utility nodes5: Undire
t the graph6: return resulting graphAlgorithm 5.4: An algorithm for 
onstru
ting the moral graph of any IDIT, I.5.3.2 Strong TriangulationBefore 
onstru
ting a strong jun
tion tree, we triangulate the graph. The idea of thistriangulation is to ensure that when a node is to be eliminated all its neighbours are
onne
ted. This is ensured by going through the elimination order and for ea
h nodeadding �ll-ins between neighbours, whi
h are not 
onne
ted, and whi
h have not al-ready been 
onsidered. When we have 
ompleted adding �ll-ins the resulting graphis triangulated. We eliminate the variables in an elimination order, whi
h respe
tsthe reverse of the temporal order.As there 
an be many elimination orders, due to the 
han
e variables not beingordered, and di�erent orders yield di�erent strong triangulations, we strive to �ndthe triangulation whi
h is minimum. A triangulation 
an be minimum in di�er-ent ways. For instan
e, a minimum triangulation 
an be the triangulation, whi
hadds the least amount of �ll-ins, or the one for whi
h the sum of the 
lique sizesis minimum. We refer to [Kj�rul�, 1993℄ for a dis
ussion of minimum triangula-tions. No matter what approa
h of minimum triangulation is 
hosen, �nding it isNP-hard [Jensen and Jensen, 1994℄. This means that, in order to 
omplete it in areasonable amount of time, some heuristi
s have to be applied. We have 
hosen touse minimum �ll-in triangulation. To this we apply a heuristi
 in the form of havinga look-ahead of two, so if two or more 
han
e variables are not ordered we examineall possible 
ombinations of these variables. We add the �ll-ins ne
essary for thetriangulation of the graph when eliminating the �rst two variables, and 
hoose thetriangulation whi
h adds the fewest �ll-ins. If two 
ombinations both have the least
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uen
e Diagrams Involving Timeamount of �ll-ins we eliminate the next variable to see if there is a di�eren
e, andif not, we 
hoose one of these at random. Other alternatives, in
lude using minimalseparator sets, [HUGIN Expert, 2003℄, whi
h seems to work quite well.The elimination order orders the variables in a total ordering. We de�ne a fun
tion,�, whi
h maps ea
h node in the elimination ordering to the natural number a

ordingto when it is eliminated. We de�ne � to be the bije
tion, � : V$ f1; : : : jVjg, whereV is the set of nodes in the elimination order, su
h that, if V is before V 0, a

ordingto the elimination order, then �(V)< �(V 0).The algorithm for triangulation takes as its arguments an undire
ted graph and isstru
tured as presented in Algorithm 5.5.Triangulation(M = (V;E))1: V 0  V2: for �(V) = 1 to jVj do3: for ea
h X; Y 2 ne(V) do4: E E [ ffX; Ygg5: V 0  V 0 n fVg6: return (V, E)Algorithm 5.5: An algorithm for setting up a strong triangulation of any moralizedgraph, M.The result of Algorithm 5.5 is the triangulated graph from whi
h the strong jun
tiontree is 
onstru
ted.5.3.3 Strong Jun
tion TreeA strong jun
tion tree is a rooted tree of 
liques, whi
h is 
onstru
ted su
h thatelimination of variables 
an be performed using an absorption method.The graph resulting from the strong triangulation 
an be divided into a set of 
liques,K, by following the elimination order. These 
liques are organized in a strong jun
tiontree, T , for whi
h it holds, that:� For ea
h pair of 
liques, C and C 0, in T , the set C\C 0 is in all 
liques on thepath between C and C 0.� For ea
h pair of adja
ent 
liques, C and C 0, in T , the interse
tion, C \C 0, isasso
iated as a separator between the two.� There exists a strong root, and for ea
h pair of adja
ent 
liques, C and C 0, inT , where C is 
losest to the strong root, the variables of the set, C \ C 0, areafter the variables of the set C 0 nC in the elimination order.
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ture of Elimination 65In a strong jun
tion tree the elimination order is stru
tured su
h that the solutionis found by marginalizing free variables, and propagating the resulting potentialstowards the root. The 
onstru
tion of the strong jun
tion tree is des
ribed in Algo-rithm 5.6 whi
h takes a triangulated graph as its argument.StrongJun
tionTree(G = (V;E))1: i 12: while i � jVj do (Find 
andidates to 
liques.)3: Ci is set to be the 
lique 
ontaining a variable V, where i equal �(V).4: K K [Ci5: for Ci;Cj 2 K do (Removes 
liques whi
h are subsets of another 
lique)6: if Ci � Cj then7: K K nCi8: S E 0  ?9: K 0  fCjg (Cj is the 
lique with lowest index in K.)10: while K 0 6= K do (Constru
ting the tree.)11: pi
k Ci 2 K nK 0 s.t. 9Ck 2 K 0jCi \Ck 6= ?12: S S [ fCi \Ckg13: E 0  E 0 [ ffCi;Ck;Ci \Ckgg14: K 0  K 0 [ fCig15: return (K;S;E 0)Algorithm 5.6: An algorithm for 
onstru
ting a strong jun
tion tree, of a triangulatedgraph, G.Algorithm 5.6 is similar to the algorithm of [Jensen et al., 1994℄, in whi
h the 
or-re
tness of the algorithm is argued for.Following the 
onstru
tion of a strong jun
tion tree we asso
iate to ea
h 
lique inthe strong jun
tion tree two sets of potentials, whi
h re
e
t the quantitative level ofthe symmetri
 IDIT.Generally, a probability distribution, � = P(XjY), 
an be 
alled a probability po-tential. A probability potential is a fun
tion, �, whi
h maps the state spa
e of a setof variables, W = X [ Y, into a positive real number, that is, � : sp(W) 7! R+ .The set of variables, W, is 
alled the domain of � and is denoted as dom(�). Twoprobability potentials 
an be multiplied to �nd the potential for the joint distribu-tion. Other properties of potentials are des
ribed in [Jensen, 2001℄. Furthermore, wespe
ify division of two potentials to be the same as when two reals are divided, withthe ex
eption that, if the denominator is zero we de�ne the result to be zero as well.In a similar manner as done for probability distributions, utility fun
tions 
an beviewed as utility potentials. It should be noted that this 
an impose a positive lineartransformation of the utility fun
tion to satisfy the fun
tion mapping to a positivereal. In a

ordan
e to the de
omposition of the utility fun
tion as lo
al utility fun
-tions, two utility potentials may be summed.
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uen
e Diagrams Involving TimeTo ea
h 
lique, Ci, in the strong jun
tion tree, we asso
iate two sets of poten-tials, �Ci and 	Ci . �Ci is the set 
onsisting of all probability potentials, forwhi
h dom(�) � Ci, that is, �Ci = f� 2� [�jV 2 dom(�); V 2 Cig, and 	Ciis the set 
onsisting of all utility potentials, for whi
h dom( ) � Ci, that is,	Ci = f 2 	jV 2 dom( ); V 2 Cig.5.4 Elimination of VariablesHaving 
onstru
ted a strong jun
tion tree the solution method pro
eeds by elimi-nating the free variables in the symmetri
 IDIT in a

ordan
e to the strong jun
tiontree. The manner in whi
h a variable is eliminated depends on its type and whetheror not it has a 
ontinuous variable in its set of parents. In this se
tion we des
ribehow ea
h type of variable is eliminated. Finally, we des
ribe how the elimination is
arried out in strong jun
tion trees.A node, Ci, in a strong jun
tion tree represents a 
lique of variables, fV1; V2; : : : ; Vng,and has the two sets of potentials, �Ci and 	Ci , asso
iated with it. Eliminating avariable, Vi, from Ci is done by marginalizing Vi from all probability potentials, �,where Vi is in the domain of � in �Ci , and remove it from all utility potentials,  in 	Ci , and then updating the two sets of potentials a

ordingly.Let �Vi be the set of probability potentials, whi
h have Vi in their domain and 	Vithe set of utility potentials, whi
h have Vi in their domain; furthermore, let ��Vi bethe set of probability potentials resulting from marginalizing Vi from �Vi and 	�Vithe set of utility potentials resulting from marginalizing Vi from 	Vi; and �nallylet PVi represent the manner in whi
h Vi is marginalized. That is, generally, if Viis a 
han
e variable PVi represents summation, and if Vi is a de
ision variable PVirepresents maximization, we elaborate on this below. Elimination of Vi is then:��Vi = PVi Y�2�Vi�, and (5.1)	�Vi = PVi Y�2�Vi� � X 2	Vi : (5.2)After �nding ��Vi and 	�Vi, the two sets of potentials are updated to:�� =(� [��Vi) n�Vi and (5.3)	� =�	 [ 	�Vi��Vi� n	Vi: (5.4)The division of 	�Vi by ��Vi is done in order to 
ompensate for the multipli
ation inEquation 5.2. The method presented above shows a general manner of eliminatingvariables, however, the exa
t marginalization has not been spe
i�ed. In the followingse
tions we spe
ify what PVi means for the di�erent types of variables.



5.4 Elimination of Variables 675.4.1 Elimination of Dis
rete Chan
e VariablesDis
rete 
han
e variables, whi
h are not dependent on a time variable, are elimi-nated by summation over the 
han
e variable being marginalized out. That is, inEquations 5.1 and 5.2, the universal marginalization operator is the sum over Vi.Marginalization of 
han
e variables dependent on time is 
on
eptually equivalent tomarginalization of 
han
e variables, whi
h are not dependent on time.However, even though the two marginalizations are 
on
eptually similar, the out-
omes of the two are not. Whenever we marginalize a 
han
e variable, whi
h isin
uen
ed by time, we need to deal with fun
tions. We divide the 
ases in the oneswhere a dis
rete 
han
e variable, C, is in
uen
ed by time and those where it in
u-en
es time.Let C be the dis
rete 
han
e variable, whi
h is about to be eliminated. Theprodu
t of the probability potentials in
luding C in their domain is �, wheredom(�) = fXg [ fCg [A, where A is a set of dis
rete variables and X is a timevariable. Marginalizing C in this 
ase results in a new potential where ea
h 
on�gu-ration of A is asso
iated to a fun
tion. The fun
tion is found as the sum, over thestates of C, of the fun
tions of this 
on�guration of the original probability potential.If the potential in
ludes two 
ontinuous variables, a

ording to Chapter 4, we knowthat P(TjT0) is P(T)+ t 0. We utilize this to obtain a fun
tion as des
ribed above onlyover both time variables.When C in
uen
es a time variable, and is eliminated before the time variable theprodu
t of probability potentials in
ludes a joint over these two variables. Whenmarginalizing C the result is a probability potential over the time variable. Thispotential in
ludes a new fun
tion, instead of the density fun
tion of the time variable,for ea
h 
on�guration of dis
rete variables in the potential. This fun
tion is the sumof the density fun
tions found by the state of C given this 
on�guration of the dis
retevariables.Marginalizing from the utility potential is done in a similar manner, but where thefun
tions are multiplied by the fun
tion of the utility given the 
on�guration of thedis
rete variables.We have 
hosen to restri
t the models of IDITs, to not allow one variable to be inthe 
onditioning set of multiple time variables.5.4.2 Elimination of Dis
rete De
ision VariablesThe elimination of dis
rete de
ision variables is done di�erently than the eliminationof dis
rete 
han
e variables. De
isions are marginalized from � and 	 using maxi-mization, as opposed to summation. De
isions are marginalized from � by 
hoosingany 
hoi
e, yielding a new potential from whi
h the de
ision has been marginalized.De
ision variables are eliminated from utility potentials by maximizing the out
ome
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uen
e Diagrams Involving Timegiven observations and previous de
isions, a

ording to an assumption that all futurede
ision variables have been taken following this prin
iple too.When de
isions do not have any 
ontinuous variables as parents, this maximization
an be found as in in
uen
e diagrams, by taking the 
hoi
e yielding the best resultin the utility potential. That is, in this 
ase 5.2 be
omes:	�D =arg maxD Y�2�D � X 2	D Equation 5.1, for de
ision variables, is found by 
hoosing any 
hoi
e of D, as theresulting potentials are equivalent.Having a time variable in the 
onditioning set does not 
hange the 
al
ulation of��D, however the out
ome, is 
hanged as the resulting potential has a fun
tion overthe time for ea
h 
on�guration of the variables in its domain.If the de
ision we are marginalizing has a time variable as a parent, we get a utilitypotential with a 
ontinuous fun
tion for ea
h state of the de
ision. By �nding theinterse
tions of these fun
tions, we �nd the intervals where one 
hoi
e is better thananother, and this way we �nd the optimal strategy for ea
h su
h interval. An exampleof this is seen in Figure 5.2.

00.5
11.5
2

0 5 10 15 20 25 30 35 40 45 50

f(x)s(x)

Figure 5.2: Two utility fun
tions representing the development over time given eitherthe 
hoi
e of d1, f(x), or d2, s(x), of D.When 
omputing this, there 
an be an in�nite number of su
h intervals if one ofthe fun
tions is periodi
 or 
u
tuates. We restri
t IDITs from using su
h utilityfun
tions.



5.4 Elimination of Variables 695.4.3 Elimination of Time VariablesElimination of time variables is done by integration over the entire state spa
e ofthe variables. When the time variable is a split variable the integration is done overthe interval of ea
h symmetri
 IDIT, and the result is the sum of all integrals. Forsimpli
ity we say that if the time variables is not a split variable it has the interval[0;1[, and we generalize the updating of potentials, so Equations 5.1 and 5.2 be
ome:��T = n-1Xi=0 Z ti+1ti �idt and	�T = n-1Xi=0 Z ti+1ti �i �  idt;where �i and  i denotes the probability and utility potentials for ea
h interval.This is the ideal elimination. Unfortunately we 
annot do this, as we have 
hosen torepresent time variables by �2-distributions, whi
h are not on 
losed form, meaningwe 
annot perform an exa
t integration over the state spa
e of our time variables.This means that we have to use other methods to aid us. Su
h methods 
ould bedis
retization of the time variables, or using some sampling te
hnique. We have
hosen the latter. We have 
hosen sampling, as we feel a dis
retization would result inlosing too mu
h expressive power with respe
t to representing time. One 
ould arguethat the dis
retization 
ould be performed using any granularity, but the informationof the intervals must be stored somewhere, so our 
hoi
e is a matter of spa
e. Theexa
t sampling te
hnique and algorithms for it are presented in Se
tion 5.7, here weonly show the ideal marginalization.Time variables, whi
h have a 
ontinuous variable in the 
onditioning set are marginal-ized in a similar manner. The di�eren
e is that the intervals go from ti+t 0 to ti+1+t 0,where t 0 is the out
ome of the time variable in the 
onditioning set of T.5.4.4 Elimination of Wait De
ision VariablesAn optimal 
hoi
e of a wait de
ision has similar properties as the optimal 
hoi
eof a dis
rete de
ision variable, however, as wait de
isions have a 
ontinuous statespa
e, simply taking the maximum argument is not possible. One idea 
ould be todis
retize the wait de
ision. The reason for not doing this is similar to that for notdis
retizing time variables.Assuming that the produ
t of probability potentials in
luding a wait de
ision mul-tiplied by the sum of utility potentials in
luding the same wait de
ision is a di�er-entiable fun
tion, it is possible to �nd the 
hoi
e of the wait de
ision, whi
h resultsin the optimal strategy for the de
ision. This is done by examining the fun
tion forextrema, and sele
ting the extremum yielding the maximum value. By �nding forwhi
h values of the range the derivative of the fun
tion equals zero, and 
omparing
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uen
e Diagrams Involving Timethe domain value of ea
h of these values with ea
h other the global extremum isfound. The derivative 
an be found using a gradient des
ent method. This 
an onlybe done if the wait de
ision has no time variable as a parent.In other words, the ideal marginalization of a wait de
ision is equal to the eliminationof dis
rete de
ision variables, where argmaxD , in the 
ase of wait de
isions, means to�nd the maximum value of a 
ontinuous fun
tion.In the 
ase where the wait de
ision we want to eliminate has a time variable as aparent, we �nd the optimal strategy in the same manner, but when evaluating theresult, we set it to t - t 0, where t is the interval or point in time found to result inthe optimal strategy, and t 0 is the point in time represented by the time variable,whi
h is a parent of the wait de
ision.Updating � when eliminating a wait de
ision is done in the same manner as wheneliminating a dis
rete de
ision variable.5.4.5 Message Passing and MarginalizationIn this se
tion we primarily fo
us on a solution in whi
h it is assumed that we 
an�nd the exa
t probability distribution for our density fun
tions, that is, 
al
ulatetheir integrals, and then later we show how an approximated value 
an be found.We have now des
ribed how ea
h type of variables is eliminated. Returning to thestrong jun
tion tree we 
an use this to �nd the optimal strategy for an IDIT.It is assumed that a strong jun
tion tree, T , has been 
onstru
ted from the symmetri
IDIT, whi
h we are solving. In T there are two adja
ent 
liques, Ci and Cj, and theyare separated by the separator set, S. To Ci there are two sets asso
iated, �Ci and	Ci . There are two similar sets asso
iated to Cj. Furthermore, Ci is 
loser to theroot of T than Cj.Lazy propagation, whi
h is the approa
h our solution method is inspired by, usesmessage passing between 
liques, and propagates these messages from the leavesto the root of T . The messages are 
olle
ted to the root by re
ursively invoking amessage request from all underlying 
liques, that is, 
liques further from the root, andadja
ent to the 
urrent one. In our example this means that Ci invokes a messagerequest in Cj and all other underlying 
liques, and when the underlying 
liqueshave 
omputed a message, ea
h passes its message ba
k to Ci. When Ci re
eivesthese messages they are absorbed and then passed along as a single message to theoverlying node. That is, a 
lique adja
ent to Ci, and 
loser to the root.Absorption of messages from one 
lique, Cj, into another, Ci, whi
h are separatedwith S, means to marginalize the variables of Cj nS from �Cj and 	Cj and from allthe sets �S 0 and 	S 0 , where S 0 is a separator set of an underlying 
lique adja
entto Cj in T . The result of marginalizing the variables is two sets of potentials, �Sand 	S, whi
h are asso
iated to S as the result of absorbing Cj in Ci. These setsare used as Ci passes its message further up the tree. In Algorithm 5.7 we present



5.4 Elimination of Variables 71how absorption of potentials is done for IDITs.Absorption1: RS  �Cj [	Cj [ [S 02
h(Cj)�S 0 [	S 02: Marginalize all variables not in S from RS.3: Asso
iate �S and 	S with S as the result of absorbing Cj in Ci.Algorithm 5.7: The algorithm for absorption of potentials in IDITs.Algorithm 5.7 does not spe
ify how variables are marginalized from the potentials.The marginalization is done in a

ordan
e to the type of variables being eliminated,using the rules des
ribed previously. Generally, however, the algorithm is as in Al-gorithm 5.8. We assume the algorithm returns the optimal 
hoi
e when eliminatinga de
ision variable.Marginalization1: Constru
t two sets, �V and 	V, whi
h 
ontain every � and  , respe
tively, inany of the �, and 	, where V is in the domain of either of � or  .2: Cal
ulate ��V and 	�V3: return �� = (� [��V) n�V and 	� = (	 [ 	�V��V ) n	V.Algorithm 5.8: The general algorithm for marginalization of variables in IDITs.We do not give a formal proof for the algorithm, but referto [Madsen and Jensen, 1999℄ for the proof when dealing with in
uen
e dia-grams, and based on this we argue that the introdu
tion of a set of 
ontinuousvariables does not alter this result. As 
ontinuous 
han
e variables are essentially
han
e variables with an in�nite state spa
e, the di�eren
e when marginalizingthese as opposed to dis
rete 
han
e variables is how to sum over the state spa
e.However, neither Absorption nor Marginalization spe
i�es the marginalizationoperator, whi
h is determined by the type of node being marginalized. The additionsto Marginalization is to in
lude the 
ontinuous variables when �nding the utilitypotential, in a similar manner as for dis
rete variables, and to update the set of
ontinuous probability potentials. This goes for both steps two and three in thealgorithm.The use of 
ontinuous 
han
e and de
ision variables in IDITs yields it ne
essaryto use integration and di�erentiation when solving an IDIT. As these integrations
annot be done in an exa
t manner, some approximation method has to be used.In [Broe et al., 2003℄ the solution sket
h uses a numeri
al approximation, however,neither the appropriateness nor alternatives of this approximation were dis
ussed.In Se
tion 5.7 we dis
uss how we �nd the approximated values.
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uen
e Diagrams Involving Time5.5 Merging of Symmetri
 In
uen
e Diagrams Involv-ing TimeIn Se
tion 5.2 we des
ribed how the original IDIT is split into partially symmetri
and symmetri
 IDITs, and in Se
tions 5.3 and 5.4 we showed how ea
h of thesepartially symmetri
 and symmetri
 IDITs are solved individually. In this se
tionwe des
ribe how the solutions of two symmetri
 IDITs are merged. The symmetri
IDITs are merged on two levels. First the strong jun
tion trees from the symmetri
IDITs are merged, and then the sets of potentials are merged.In this se
tion we des
ribe the merging of two symmetri
 IDITs, as merging morethan two is done by �rst merging two, and then viewing this merger as one symmetri
IDIT. This is then merged to another and so on until no more symmetri
 IDITs needmerging.5.5.1 Merging Strong Jun
tion TreesFrom ea
h of the subtrees resulting from splitting on a split variable, V, there existsa strong jun
tion tree, J . These strong jun
tion trees have an equivalent subtree, asthey are all 
onstru
ted from symmetri
 IDITs based on the same partially symmetri
IDIT. If any two of these strong jun
tion trees should not have this property, theadding or removal of an ar
 in the part of the symmetri
 IDIT following the splitnode, should impose an additional ar
 in the part pre
eding the split node. We 
an,thus, redu
e the problem to whether the removal of an ar
, due to di�erent symmetri
IDITs, 
hanges the stru
ture of the part of the strong jun
tion tree 
onstru
ted fromthe part of the symmetri
 IDIT, whi
h is before the split variable in the temporalordering. If this part of the tree di�ers be
ause of di�erent symmetri
 IDITs, thenthe merging of two strong jun
tion trees, is impossible, yielding the strong jun
tiontree method unusable for solving symmetri
 IDITs.Theorem 5.3 se
ures that the two sub-jun
tion trees are equivalent.Theorem 5.3 (Sub-Jun
tion Tree Equivalen
e)If I = (V;L;E) is an IDIT, T a time variable, D a de
ision variable, and C a 
han
evariable in V, (C;D; g) a guarded ar
 in Eg, where g referen
es T, I 0 and I 00 twosymmetri
 IDITs resulting from a split on T, su
h that g 
an be evaluated, and T 0and T 00 the two strong jun
tion trees 
onstru
ted from I 0 and I 00, respe
tively. Thenthe sub-jun
tion trees of T 0 and T 00, from the root to the 
lique, from whi
h T iseliminated, are equivalent.Proof: We prove Theorem 5.3 by arguing that no matter the elimination orderof two variables, C and D, the 
liques 
onstru
ted by a strong triangulation for allvariables after C and D are un
hanged. When the 
liques are un
hanged, then thepart of the strong jun
tion tree, whi
h is 
onstru
ted from this set of 
liques, isequivalent no matter the future.



5.5 Merging of Symmetri
 In
uen
e Diagrams Involving Time 73If a 
lique 
loser to the strong root should be a�e
ted, one of the two eliminationorders must add an ar
 between the two nodes, X and Y, in the 
lique. An edge isadded during the strong triangulation if there is a path between X and Y, and allother nodes on this path are eliminated before them. However, as the moralizationof two symmetri
 IDITs is similar even though they impose di�erent eliminationorders, due to the ar
, (C;D; g), being an informational ar
, the path is either inboth symmetri
 IDITs or not at all, as both elimination orders have C and D beforeX and Y. Thus, su
h an ar
 
annot be added.This problem is similar to that of �nding the value of information for some 
han
evariable. The solution to �nding the value of information in strong jun
tion trees isproposed in [Dittmer and Jensen, 1997℄.The merging of two strong jun
tion trees, therefore, redu
es to pi
king one of thestrong jun
tion trees from the 
hildren and using this as the strong jun
tion tree forthe partially symmetri
 IDIT. As there always is a �rst interval we pi
k the strongjun
tion tree resulting from the symmetri
 IDIT of this interval.5.5.2 Merging PotentialsTheorem 5.3 ensures that the stru
ture of two strong jun
tion trees 
an be merged, itdoes, however, not ensure that the asso
iated potentials are equivalent. Two poten-tials 
an di�er by either not having the same domain, or having di�erent values forsimilar 
on�gurations. In this se
tion we dis
uss how to merge the potentials fromtwo di�erent symmetri
 IDITs.If two probability potentials have di�erent values, either some 
al
ulation has gonewrong, or the use of approximation has proposed two di�erent values. As the algo-rithm is unambiguous, the �rst 
ase 
annot o

ur. In the se
ond 
ase, two approxi-mations yield two di�erent results, as these are both approximations, none of themare the exa
t result, and we have no way of �nding whi
h is the better approxima-tion, in su
h 
ases we therefore 
hoose one of the two to be the 
orre
t probabilitypotential.In 
ases where the domain of two probability potentials di�er, for instan
e, P(XjY)and P(XjY;Z), we 
laim that the set of variables, X are 
onditionally independentof Z given Y. The 
laim 
an be proven using the fa
t that the di�eren
e in proba-bility potentials o

urs due to the addition of edges during the strong triangulation.We know from Chapter 4 that the absen
e of an ar
 between two variables impliesthat the variables are 
onditionally independent given the past, thus, if X should bedependent on Z, there must be a 
onne
tion between the variables in the moralizedgraph.The a
tual merging is done by 
omparing the potentials for ea
h variable in the
lique. If there are two potentials, P(VjX) and P(VjX0), then the 
ombined potential isP(VjX0\X). We merge utility potentials by asso
iating the utility potential a
hieved
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uen
e Diagrams Involving Timeby the split into some interval [t0; t1[, to the states of the time variable, whi
h arewithin this interval.5.6 The Solution MethodIn the previous se
tions we have des
ribed how ea
h step of the solution method isexe
uted, yielding a lo
al result. In this se
tion we propose how the overall solutionmethod is exe
uted by use of Algorithms 5.1 to 5.8. We do not propose an expli
italgorithm, as this would be a matter of �tting all previous algorithms together, byadding how ea
h algorithm 
alls the next, and what is to be returned after an ex-e
ution. We leave this for future implementations, and 
on
entrate on the idea ofthe overall solution method. Figure 5.3 illustrates how the solution method shoulddivide the problem using a global solution method, and des
ribe how ea
h subprob-lem should be solved using a lo
al solution method. The numbers in the �gure areused as both the order of the a
tual exe
ution and as a referen
e point for a morethorough des
ription, following the �gure.
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h parts 
an be
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[3℄ Continue splitting the tree,
Stru
ture in a strong jun
tion tree, SJTEliminate variables until TDn-1Send result and SJT to parent

Re
eive SJT from all 
hildrenUse Merge on resultEliminate the remaining variablesReturn �̂.[6℄
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Figure 5.3: An overview of the entire solution method.Figure 5.3 illustrates the elements of the overall solution method. Initially, an IDITis given to the method as an argument. In [1℄ a preliminary temporal ordering, usingAlgorithm 5.1, is found. This establishes a temporal ordering until the �rst split



5.6 The Solution Method 75variable, and it is used for the 
onstru
tion of the temporal ordering of the partiallysymmetri
 and symmetri
 IDITs. After the preliminary temporal ordering has beendedu
ed the �rst split variable is found, if su
h a variable exists. If it does not existthe IDIT is solved using a lo
al solution method, as des
ribed in [4℄. When a splitvariable exists the intervals are found using Algorithm 5.2. These are the intervals,whi
h are proposed by the split variable. The IDIT is also split into partially sym-metri
 IDITs using Algorithm 5.3. Then ea
h of these are solved lo
ally.Solving a partially symmetri
 IDIT, as in [2℄ follows the same idea of solving theoriginal IDIT, the main di�eren
e is that the preliminary temporal ordering is al-ready found, whi
h makes this step obsolete. The splitting of the partially symmetri
IDIT 
ontinues in [3℄ until all split variables have been split on, thereby yielding aset of symmetri
 IDITs.Until [4℄ the solution method has primarily fo
used on the global level. However,when a symmetri
 IDIT is dedu
ed the solution method shifts to fo
us on the lo-
al solution method. As we have 
hosen to stru
ture the elimination using strongjun
tion trees, the symmetri
 IDIT is 
onverted to this stru
ture, by using Algo-rithms 5.4 to 5.6. When the symmetri
 IDIT is stru
tured in a strong jun
tion tree,Algorithm 5.7 is used to �nd an optimal poli
y for ea
h de
ision in the symmetri
IDIT, whi
h is after the split variable resulting in the symmetri
 IDIT, in the tem-poral ordering. When the split variable is to be eliminated the strong jun
tion treeand the optimal poli
ies are propagated ba
k to the partially symmetri
 IDIT, whi
his a parent in the split tree.When a partially symmetri
 IDIT has re
eived all the strong jun
tion trees and opti-mal poli
ies from its 
hildren, this information is merged using the method des
ribedin Se
tion 5.5. Algorithm 5.7 is exe
uted on the merged strong jun
tion tree and theresult is sent to its parent. This is 
ontinued until the root re
eives the results ofall its 
hildren, and the merged strong jun
tion tree, obtained from this, is solved.When all variables are eliminated the solution method returns an optimal strategyfor the IDIT.The 
omplexity of this algorithm is exponential in the number of split variables,whi
h in terms mean that this is not feasible for IDITs in whi
h there are a lot ofrestri
tion fun
tions and guards. Furthermore, as mentioned in Se
tion 5.3, �ndinga minimum triangulation is also NP-hard.To argue that the solution method in fa
t does solve IDITs we look at the elements ofthe solution method and argue for their 
orre
tness. The solution method takes out-set in an IDIT, and splits this IDIT into partially symmetri
 IDITs. As SplitTree�nds all possible splits by extra
ting the point in time ea
h guard and restri
tionfun
tion refers to, and does this in a re
ursive manner until all split variables havebeen split on, all asymmetries are revealed and, 
onsequently, resolved. Thus, theasymmetries 
an be removed in the partially symmetri
 and symmetri
 IDITs with-out loss of information. Therefore, information is not lost after splitting the IDIT.We 
an dis
retize the 
ontinuous variables of ea
h symmetri
 IDIT to any granular-ity, and for ea
h of these intervals approximate the probability using, for instan
e,
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uen
e Diagrams Involving Timesampling, whi
h 
an be approximated to be arbitrarily 
lose to the exa
t probabilitydistribution. We argue that the lo
al solution of ea
h symmetri
 IDIT 
an be doneusing any approa
h for solving in
uen
e diagrams, as an IDIT with only dis
retevariables is, essentially, an in
uen
e diagram. Therefore, an optimal strategy is 
or-re
tly found. The merging of two symmetri
 IDITs has already been proven to be
orre
t in Se
tion 5.5. Be
ause of this the solution method does indeed solve IDITs.5.7 The Sampling Approa
hIn this se
tion we present the sampling approa
h, whi
h we use to approximate po-tentials in
luding time variables. We do this by �rst presenting the motivation behindthis approa
h. Then we present the general idea behind the sampling te
hnique, wehave 
hosen, together with an algorithm.5.7.1 Motivation for Introdu
ing SamplingThe motivation for 
hoosing sampling, for determining the probability distributionfor a 
ontinuous 
han
e variable, is that we have 
hosen to represent time variables by�2-distributions. Under normal 
ir
umstan
es we would use an approa
h as des
ribedin Se
tion 5.4. That is, when eliminating some 
ontinuous 
han
e variable, V, theutility potential would be 	�V =Pi R f(t)dt �  i(V), where f(t) is the distributionover time, t, and  i(V) is the utility potentials with V in their domain. In our
ase we 
annot do this, as a �2-distribution is not on 
losed form, whi
h meansthat exa
t integration is not a possibility. In [Broe et al., 2003℄ the solution to thiswas by numeri
al integration using Maple [Maplesoft, 2002℄. In this thesis we have
hosen to use sampling to solve the problem. We use a standard method, as des
ribedin [Gentle, 1998℄, for drawing random samples from a �2-distribution.5.7.2 Utilizing SamplingWe approximate the probability distribution for some time variable and 
al
ulate theexpe
ted utility based on this. We 
al
ulate this by drawing a number of samples andsumming the value for ea
h sample. This sum we divide by the number of sampleswe have drawn, and the result is the utility for some potential. That is, for some timevariable, T, we 
al
ulate 	�T �Pj 1nPni=1 fj(XXXi), where XXXi is some random sample,n is the number of drawn samples, and fj is the utility potentials with T in theirdomain. The number of samples is determined by the de
ision taker before samplingis performed.When sampling we take a 
andidate point from some proposal distribution and 
om-pare that point with the target distribution, using some s
heme. The nature of thiss
heme is elaborated on shortly.



5.7 The Sampling Approa
h 77When 
hoosing 
andidate points for sampling, we use two di�erent algorithms, de-pending on whether the degree of freedom is less than 0:5, or not. The proposaldistribution 
an be any distribution, and no matter what the target distribution is,it 
an be proven that, given enough samples, and due to the laws of large numbers,we 
an approximate the target probability distribution with an arbitrary pre
ision.The two algorithms are taken from [Gentle, 1998℄. The algorithm for a degree offreedom less than 0:5 is presented in Algorithm 5.9, and for a degree of freedomgreater than or equal to 0:5 we present Algorithm 5.10. For both algorithms, YYY isthe sample point, d is the degrees of freedom for the �2-distribution, and all other
hara
ters are just parameters to help ease the algorithms along. The two algo-rithms were originally 
onstru
ted for use in sampling from �-distributions, but asa �2-distribution is, essentially, a spe
ial 
ase of a �-distribution, we use the samealgorithms. As 
an be dedu
ed from the two algorithms, the proposal distributionis a uniform distribution. The s
heme, we mentioned, takes on a di�erent 
hara
terthrough the algorithms. The lines between two return statements in the algorithms
onstitute the di�erent s
hemes for manipulating numbers in order to 
reate randomsamples from the �2-distributions.The names of the algorithms portray the authors upon who these representationsare based.Best/Ahrens/Dieter1: x = 0:07 + 0:75 � p1 - d2: b = d+ exp-x�dx3: while i � n do4: Generate u1 and u2 independently from U(0; 1)5: v = b � u16: if v � 1 then7: YYY= x � v 1d8: if u2 � 2-YYY2+YYY then9: return YYY10: else if u2 � exp-YYY then11: return YYY12: else13: YYY= log�x�(b-v)d �14: y = YYYx15: if u2 � (d+ y � (1 - d)) � 1 then16: return YYY17: else if u2 � yd-1 then18: return YYY19: i = i+ 1Algorithm 5.9: The algorithm for 
hoosing a sample from a �2-distribution with lessthan 0:5 degrees of freedom. n is 
hosen by the de
ision taker.



78 Chapter 5. Solving In
uen
e Diagrams Involving TimeCheng/Feast1: while i � n do2: Generate u1 and u2 independently from U(0; 1)3: v = (d- 16�d)�u1(d-1)�u24: if 2�(u2-1)d-1 + v+ 1v � 2 then5: YYY= (d- 1) � v6: return YYY7: else if 2�logu2d-1 - log v+ v � 1 then8: YYY= (d- 1) � v9: return YYY10: i = i+ 1Algorithm 5.10: The algorithm for 
hoosing a sample from a �2-distribution with 0:5degrees of freedom, or more. n is 
hosen by the de
ision taker.The algorithms use a reje
tion/approval method to identify whi
h samples should bea

epted as samples. The reason for having su
h a method, and not just a

eptingevery sample, is that the 
andidate samples are not ne
essarily from the 
orre
tdistribution, but from some random distribution. The reje
tion/a

eptan
e fa
tor isalso the reason why the di�erent s
hemes, as mentioned above, are applied.We draw our samples using either of the two algorithms presented above, a

ordingto the nature of the distribution being sampled.Our aim is to �nd the utility potential obtained by marginalizing some time variable,T. To exemplify this, 
onsider a standard �2-distribution with �ve degrees of freedom.Imagining that this represents the probability distribution for some time variable.We want to �nd the utility potential obtained by marginalizing this, so we need tosample from it, but beforehand we have identi�ed intervals in whi
h the state of thistime variable 
hanges the state spa
e for some future de
ision. If we say that wehave divided the time variable in two intervals, and these are [0 : 5[ and [5 :1[. Theutility potential obtained by marginalizing T is then: �(T) = 1n nXi=1 (f0;5(XXXi) + f5;1(XXXi)) ; (5.5)where fa;b(XXXi) means the value 
al
ulated over samples, XXXi, whi
h lie in the interval[a : b[, and n is the number of drawn samples. Using this approa
h we do notapproximate the a
tual probability distribution, per se, but we 
al
ulate the expe
tedvalue of the utility. As we only need the optimal 
hoi
es for our solution, we neednot know the exa
t probability distribution.When marginalizing T we know that the probability potential, �, is P(TjX), whereX is the 
onditioning set for T, and if this is not the 
ase, then some other variableoutside of X must be dependent on T. We 
an show that this is not the 
ase as



5.7 The Sampling Approa
h 79all variables dependent on T, in the IDIT, have been marginalized and any othervariable dependent on T would introdu
e an unresolved 
y
le in the IDIT.If T is asso
iated with a dis
rete de
ision variable, we �nd the utility potential for Tas just des
ribed. If, on the other hand, T is asso
iated with a wait de
ision variablewe do not �nd the exa
t utility potential, but pass along the fun
tion, as shown inEquation (5.5) and when we know the optimal poli
y of the wait de
ision, we 
an�nd the utility potential for T. As long as T is not the �rst time variable in the IDITit is also in
uen
ed by some other time variable. This we handle in the same manneras if T has a wait de
ision as a parent. That is, we pass along the fun
tion, withonly the point in time represented by the time variable, whi
h is a parent of T, asan argument. As time variables are dependent on ea
h other, we end up sending thefun
tion along until we eliminate the last time variable. This has the unfortunatee�e
t that the number of expressions, in the fun
tion we are sending along, risesexponentially in the number of time variables. We 
an put it into perspe
tive if we
onsider a simple IDIT, in whi
h there are two time variables, T1 and T2, su
h aspresented in Figure 5.4. D1 T1 UFigure 5.4: A simple IDIT showing how the fun
tion for the utility potential grows.When eliminating variables from this IDIT we start with T1, then TeD1, and then D1.Eliminating T1 gives:  �T = 1n nXi=1 f(XXXi; teD):What we see here is that the utility potential is 
al
ulated from the distribution ofT1, but as the point in time represented by T1 is dependent on the point in timerepresented by TeD, teD, we 
annot 
al
ulate the exa
t value. The next variable toeliminate is TeD, and we get: �TeD = 1m mXj=1 1n nXi=1 f(XXXi; f(XXXj; d)):That is, for every sample of the distribution for TeD we draw n samples over T1. Andthis 
ontinues, sin
e we see that teD in fa
t depends on the 
hoi
e of D.In Chapter 7 we dis
uss the 
onsequen
es we have drawn in using the approa
h asdes
ribed in this 
hapter.
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uen
e Diagrams Involving Time5.8 SummaryIn this 
hapter we have proposed a general solution method for solving IDITs. Wehave shown how the split tree, whi
h we presented in Chapter 4, is used not onlyas a guide for reading IDITs, but also as a guideline when solving IDITs. We havepresented a method for removing asymmetries in an IDIT. Besides this we haveshown how strong jun
tion trees 
an be used to solve IDITs, while leaving the dooropen for other approa
hes.Be
ause of our de�nition of time in IDITs we have 
ome a
ross a problem, namelythat of using �2-distributions to represent the density fun
tion for time variables.We have proposed using a sampling te
hnique, whi
h is based on algorithms by Best,Ahrens, and Dieter and the other by Cheng and Feast.We have, however, rea
hed the 
on
lusion that using sampling only introdu
es anew problem, as our solution method ends up having to deal with exponentiallylarge fun
tions in the number of time variables in the IDIT we are solving.



Chapter 6Results and Dis
ussion
In this 
hapter we begin by illustrating the use of the solution method. We applyit on two IDITs designed to point out some of the di�erent elements of IDITs, andhow these elements a�e
t the pro
ess of solving an IDIT. In Se
tion 6.2, we 
ompareelements of the solution method to using other approa
hes, su
h as a nonuniformdis
retization of 
ontinuous variables [Kozlov and Koller, 1997℄, and using a multi-stage Monte Carlo approa
h [Charnes and Shenoy, 2002℄. Finally, in Se
tion 6.3 wedis
uss IDITs as a framework.6.1 Solving Two ExamplesIn this se
tion we present two examples. These examples in
orporate some of theaspe
ts of time we have dis
ussed in Chapter 4, and we use them to exemplify thesolution method, we devised in Chapter 5. The goal of applying the solution methodto an IDIT is to �nd the optimal strategy for the de
isions in that IDIT.6.1.1 Example One - Post-Realized Utility Fun
tion and Chan
eVariables Dependent on TimeIn the �rst example we present an instan
e of a post-realized utility fun
tion, adis
rete 
han
e variable dependent on time, and a time variable asso
iated with ade
ision. The main fo
us of this example is the lo
al solution method, that is, theelimination of variables, both 
ontinuous and dis
rete. The IDIT, we use as a modelfor this, is depi
ted in Figure 6.1.For this IDIT the 
han
e variable A has a marginal probability distribution, B hasa 
onditional probability distribution, P(BjA), and C has a 
onditional probabilitydistribution, P(CjB; TeD), in whi
h the 
ondition set 
onsists of the dis
rete 
han
evariable, B, and the time variable, TeD. The two time variables, TeD and T have,81
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AB D CT U

Figure 6.1: A model of an IDIT 
ontaining a post-realized utility fun
tion and a timedependent 
han
e variable.per de�nition, a 
onditional probability distribution de�ned by a �2-distribution,with the degrees of freedom determined through their dis
rete parents. As T has nodis
rete parents, we set it to three degrees of freedom, whi
h we have 
hosen as thedefault.The three 
han
e variables are binary variables, and the tables representing theirprobability distributions are presented in Tables 6.1(a) and 6.1(b).
a1 a20.3 0.7(a)

Aa1 a2b1 0.2 0.6B b2 0.8 0.4(b)Table 6.1: (a): The marginal probability distribution, P(A), for A. (b): The 
ondi-tional probability distribution, P(BjA), for B.Table 6.2 shows the parameters for C, given the 
on�guration of its dis
rete parent.The fun
tion for representing C is f(p; t) = (1-p)t for C = 
1 and f(p; t) = 1-(1-p)tfor C = 
2, where p is the parameter we �nd in Table 6.2, and t represents time.Bb1 b2
1 0.03 0.05C 
2 0.03 0.05Table 6.2: The table of parameters for the time dependent 
han
e variable, C.The only de
ision variable for this IDIT is D. It has the states d1 and d2. Taking
hoi
e d1 results in a timed a
tion, whi
h takes 10 time units to perform, yieldinga distribution for TeD, whi
h is displa
ed by 10 time units and the distribution has2:8 degrees of freedom. If the 
hoi
e 
hosen is d2, then the distribution for TeD is
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ed by 15 time units and the distribution has 3:4 degrees of freedom. The twodensity fun
tions are depi
ted in Figure 6.2.

00.050.1
0.150.2
0.25

0 5 10 15 20 25 30


hi(x,2.80,10)
hi(x,3.40,15)

Figure 6.2: The density fun
tion for TeD given the 
hoi
e of D.The lo
al utility fun
tion for this IDIT, U, is de�ned as:U(C = 
1; T) = log t4U(C = 
2; T) = 2 � log t2t :In order to solve the IDIT presented in Figure 6.1, we �rst determine that no moresplits are needed. Therefore, following the solution method we 
onstru
t a strongjun
tion tree for the IDIT. The strong jun
tion tree respe
ts the reverse of thetemporal order. To �nd the temporal order, we �rst �nd the preliminary temporalorder of the IDIT, this order is A ��!t D ��!t TeD ��!t T ��!t fB;Cg. There are no splitsin this IDIT, yielding the preliminary temporal order as the temporal order of theIDIT. The moral graph is then 
onstru
ted and the strong triangulation is performed.We use heuristi
s to �nd that the elimination order should be C before B. If we wereto eliminate B �rst, we must put in two �ll-ins, while eliminating C results in onlyinserting one �ll-in. In 
onstru
ting the moral graph two edges are entered, these are(B; TeD) and (C;T). In performing the strong triangulation four �ll-ins are entered.These are: (B; T), (A;TeD), (A;T), and (A;D). The resulting graph is depi
ted in
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ussionFigure 6.3(a). From the triangulated graph the 
liques are identi�ed, and a strongjun
tion tree is 
onstru
ted. Figure 6.3(b) illustrates the strong jun
tion tree for thegraph. We illustrate the separator sets as boxes.

AB CTeD TD
(a) TeD; T; B;CC1

A;TeD; T; BC2
A;D; TeDC4
TeD; T; B
A; TeD

(b)Figure 6.3: (a): The triangulated graph for the IDIT of Figure 6.1. (b): A strongjun
tion tree for the graph to the left.The 
liques of the strong jun
tion tree we name C1, C2, and C4, where C4 is thestrong root. These are the names of the bottom 
lique, the middle 
lique, and thetop 
lique, respe
tively. The sets of probability and utility potentials for the en-tire strong jun
tion tree are: � = fP(A); P(TeDjD); P(TjTeD); P(BjA); P(CjB; TeD)g and	 = fU(C;T)g, respe
tively.As mentioned above, the �rst variable we are eliminating is C. This is in a

ordan
eto the rules for message passing and absorption as des
ribed in Chapter 5.The set of probability potentials atta
hed to C1, �C1 , is: fP(CjB; TeD)g. Andthe set of utility potentials, 	C1 , is: fU(C;T)g. The utility fun
tion for thisutility potential is des
ribed above. Updating the probability potentials isstraight forward as P(CjB; TeD) is a unit potential, meaning no other variablesare dependent on C, and therefore the potential is simply removed, yielding�� = fP(A); P(TeDjD); P(T jTeD); P(BjA)g. 	� is then found to be fU(B; TeD; T)g. Theutility potential,  �C, is de�ned asPCU(C;T) � P(CjB; TeD). This gives us the follow-ing utility fun
tions, given the 
on�guration of the domain of U:U(B = b1; T; TeD) = � log t4 � (1 - 0:03)teD� +�2 � log t2t � (1- (1 - 0:03)teD� and



6.1 Solving Two Examples 85U(B = b2; T; TeD) = � log t4 � (1 - 0:05)teD )�+�2 � log t2t � (1 - (1 - 0:05)teD)� ;where t is the point in time represented by T, and teD is the point in time representedby TeD.After passing the message of the potentials along, this gives us a strong jun
tion treeas depi
ted in Figure 6.4.
A;TeD; T; BC2
A;D; TeDC4A;TeD

Figure 6.4: The strong jun
tion tree after eliminating C and passing along the mes-sages.The sets of potentials of the absorption of C1 in C2 are, �C2 = fP(BjA); P(TjTeD)gand 	C2 = fU(B; TeD; T)g. Following the elimination order, the next variable to beeliminated is B. Again the probability potential is a unit potential and 
an simplybe removed, yielding �� = fP(A); P(TeDjD); P(T jTeD)g. The set of utility potentials isthen updated to be 	� = fU(A;TeD; T)g after elimination of B. The utility fun
tionfor  �B is found asPBU(B; TeD; T) �P(BjA). This yields the following utility fun
tions,given the 
on�guration of the domain:U(A = a1; T; TeD) = (U(B = b1; T; TeD) � 0:2) + (U(B = b2; T; TeD) � 0:8)and U(A = a2; T; TeD) = (U(B = b1; T; TeD) � 0:6) + (U(B = b2; T; TeD) � 0:4):Now T is to be eliminated. This gives us that �� = fP(A); P(TeDjD)g,�C2 = fP(TjTeD)g, and 	� = 	C2 = fU(A;TeD)g. The utility fun
tion for  �T is foundasPTU(A;TeD; T) �P(TjTeD). This yields the following utility fun
tion, given the 
on-�guration of the domain:U(A = a1; TeD) = ZTU(A = a1; t; TeD) � �2(t- teD)(3:00)dt andU(A = a2; TeD) = ZTU(A = a2; t; TeD) � �2(t- teD)(3:00)dt;
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ussionwhere �2(t - teD)(3:00) is the �2-distribution, whi
h has three degrees of freedom,and is displa
ed by a measure of teD, where teD is the point in time represented byTeD.As we have said earlier, we use sampling to handle the 
ontinuous 
han
e variables.This gives that the utility potential after eliminating T is:U(A = a1; TeD) = 1n nXi=1 f(XXXi) andU(A = a2; TeD) = 1n nXi=1 f(XXXi);where f(XXXi) is a fun
tion returning the value of the utility fun
tion given somesample, XXXi, and n denotes the number of samples drawn.The fun
tion we have gotten, we pass up the tree, and the resulting strong jun
tiontree is depi
ted in Figure 6.5. A;D; TeDC4Figure 6.5: The strong jun
tion tree after eliminating T and absorbing C2.The next variable to be eliminated is TeD, whi
h is the �rst time variable of theIDIT and, 
onsequently, the last time variable to be eliminated. Again only oneprobability potential has the variable to be eliminated in its domain, so the potentialis simply removed and � updated a

ordingly, yielding�� = fP(A)g. 	� is updatedto fU(A;D)g.  �TeD is found by PTeDU(A;TeD) � P(TeDjD). This yields the followingutility fun
tions, given the domain:U(A = a1;D = d1) = ZTeDU(A = a1; TeD) � �2(teD - 10)(2:80)dteD ;U(A = a1;D = d2) = ZTeDU(A = a1; TeD) � �2(teD - 15)(3:40)dteD ;U(A = a2;D = d1) = ZTeDU(A = a2; TeD) � �2(teD - 10)(2:80)dteD andU(A = a2;D = d2) = ZTeDU(A = a2; TeD) � �2(teD - 15)(3:40)dteD :The displa
ement of the �2-distributions, whi
h for these is set to 10 and 15, origi-nates from the de�nition of D.



6.1 Solving Two Examples 87Now we draw samples for TeD. This gives us a utility for  �TeD as:U(A = a1;D = d1) = 1m mXj=1 1n nXi=1 f(XXXi; f(XXXj; 10));U(A = a1;D = d2) = 1m mXj=1 1n nXi=1 f(XXXi; f(XXXj; 15));U(A = a2;D = d1) = 1m mXj=1 1n nXi=1 f(XXXi; f(XXXj; 10)); andU(A = a2;D = d2) = 1m mXj=1 1n nXi=1 f(XXXi; f(XXXj; 15));where m is the number of drawn samples for TeD, and f(XXXj; d) is a fun
tion returningthe value of the utility fun
tion given sample XXXj and the point in time asso
iated to
hoi
e, d, of D.The next variable to be eliminated is D, whi
h is a de
ision variable. The method ofeliminating a de
ision variable is di�erent than for 
han
e variables. The utility po-tential is updated by 
hoosing the maximum over a set of expe
ted utilities, insteadof summing over it. This is be
ause we aim at �nding the optimal strategy, whi
h isthe strategy yielding the maximum expe
ted utility.When eliminating D from C4, the sets of potentials are updated. As D a�e
tsno remaining 
han
e variables �� is una�e
ted. 	� = fU(A)g. U(A) is found byargmaxD U(A;D). This yields the following utility fun
tion, given the domain:U(A) = argmaxD U(A;D):The obje
t is then to determine the optimal strategy, �̂, for the IDIT. As only onede
ision exists in the IDIT, this is found by 
onsidering the poli
y for this de
isionalone.As 
an be seen from the example, the size of the fun
tion grows exponentially in thenumber of time variables. If, for instan
e, the number of samples for the �rst timevariable is set to 1000, and the same is done for the se
ond time variable, the numberof expressions in the fun
tion is in the range of 106. As a sample size of 1000 is rathersmall, we 
an 
on
lude that solving IDITs using this type of sampling approa
h isintra
table. Even though this means that this approa
h is pra
ti
ally unusable forproblems with more than a few time variables, we are still able to use it to 
larifyhow an ideal solution of an IDIT is 
onstru
ted.During the example we have used sampling to resolve the o

urren
esof integrals. Sampling 
an be performed by use of tools su
h as Win-BUGS [MRC Biostati
 Unit, Cambridge, UK, ℄, we have, however, not had time to



88 Chapter 6. Results and Dis
ussionexplore this path. Thus, we 
annot determine the a
tual poli
y for taking D. Whatis needed for �nding this poli
y, however, is a numeri
al solution, as the fun
tionsfor determining it are already given.6.1.2 Example Two - Split and Wait De
isionIn this se
ond example we fo
us on the 
reation of a split tree and the merging of leafnodes in the split tree. As 
an be seen, Figure 6.6 
ontains guards, and in parti
ular,guards in relation to a 
y
le. Furthermore, the IDIT 
ontains a wait de
ision.
A BC E D UTe A<10 T eA � 10Figure 6.6: A model of an IDIT 
ontaining guards, introdu
ing the need to split onthe �rst time variable.For the IDIT represented in Figure 6.6, the state spa
es of the variables are as fol-lows. A is a wait de
ision, meaning that it has a 
ontinuous state spa
e. The de
isionsB, C, and D are all binary de
isions, resulting in the 
hoi
es b1, b2; 
1, 
2; and d1,d2, for B, C, and D, respe
tively. The 
hoi
es in D result in timed a
tions lasting�ve and ten time units, respe
tively.E, is a dis
rete 
han
e variable in the IDIT, has the 
onditional probability distribu-tion, P(EjC;B), des
ribed in Table 6.3. Bb1 b2C C
1 
2 
1 
2e1 0.3 0.4 0.6 0.7E e2 0.7 0.6 0.4 0.3Table 6.3: The 
onditional probability distribution for E, given B and C.There are two time variables in the IDIT, TeA and TeD. TeA has no dis
rete parents,yielding a probability distribution with three degrees of freedom, and a displa
ementdependent on the 
hoi
e of A. TeD has one dis
rete parent. The degrees of freedomin the �2-distribution for TeD is therefore dependent on the 
hoi
e of D. If D = d1,TeD has 4:6 degrees of freedom, and a displa
ement of teA + 5. And if D = d2, TeD has4:2 degrees of freedom and a displa
ement of teA + 10, where teA is the point in time



6.1 Solving Two Examples 89represented by TeA.There is one lo
al utility fun
tion, U, in the IDIT. The fun
tion of U is dependenton both the out
ome of E and the time represented by TeD. The fun
tion is de�nedas: U(E = e1; TeD) = log t4U(E = e2; TeD) = 2 � log t2t :Examining the IDIT of Figure 6.6, we see that guards are on two of the ar
s. Whensolving the IDIT we 
onstru
t a split tree. The split tree is built from the preliminarytemporal ordering of the IDIT. For this IDIT this is dedu
ed to be:A ��!t TeA ��!t fB;Cg ��!t E ��!t D ��!t TeD, showing that the split is from the �rst time variable, as this is the last time variablebefore a set of unordered de
isions o

urs. The split tree is found by splitting on TeA,is presented in Figure 6.7.
A BC E D UTe A<10 T eA � 10

A BC E D U

A BC E D U
Te A< 10T eA � 10Figure 6.7: The split tree for the IDIT presented in Figure 6.6.We 
onstru
t the split tree by pla
ing the original IDIT in the root of the tree. Thenwe �nd the �rst split variable and identify the restri
tion fun
tions referring to it. Forthis IDIT those are the guards on the ar
s 
onne
ting B and C. We 
onstru
t a nodefor ea
h partially symmetri
 IDIT resulting from the split, and remove ar
s, for whi
hthe guard evaluates to false. Then we �nd the preliminary temporal ordering for ea
hpartially symmetri
 IDIT and identify new potential split variables. No su
h variableexist, and the partially symmetri
 IDITs are identi�ed to be symmetri
 IDITs.A strong jun
tion tree for ea
h symmetri
 IDIT, is now 
reated, beginning with theone depi
ted in the top leaf node. This symmetri
 IDIT has, be
ause of the split,the temporal ordering: A ��!t TeA ��!t B ��!t C ��!t E ��!t D ��!t TeD, this gives onlyone possible elimination order. The resulting triangulated graph and strong jun
tion
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ussiontree, resulting from this elimination order, are depi
ted in Figures 6.8(a) and 6.8(b),respe
tively. These are 
onstru
ted in a similar manner as for the previous example.
A TeA B

C E D TeD
(a) E;D; TeA; TeDE; TeATeA; C; B; ETeAA;TeA

(b)Figure 6.8: (a): The triangulated graph for the IDIT of the leaf nodes of Figure 6.7.(b): A strong jun
tion tree for the graph presented to the left.During 
onstru
tion of the strong jun
tion tree, edges are added in the moralizationof the symmetri
 IDIT, and �ll-ins are added in the strong triangulation of the mor-alized graph. The edges are: (TeA; B), (TeA;D), (B;C), and (E; TeD) for the moralization,and the �ll-ins are: (TeA; E), (TeA; C), and (E;D) for the strong triangulation.Examining the symmetri
 IDITs of the split tree further, we noti
e that their trian-gulated graphs are equivalent, thus they result in equivalent strong jun
tion trees.Therefore, we do not show the strong triangulation or the strong jun
tion tree forthe symmetri
 IDIT in the lower leaf of the split tree.The method for solving the strong jun
tion tree follows the method, whi
h we wentthrough in the �rst example. We, therefore, only show what is done in the presen
eof a split variable and when eliminating a wait de
ision.We do not show the elimination of the variables before TeA in the elimination ordering,as this resembles the elimination done in the �rst example.The elimination of variables up until TeA in the two symmetri
 IDITs results inequivalent sets, � and 	 but with di�erent values for the potentials in 	, for thetwo symmetri
 IDITs. Before eliminating TeA the two strong jun
tion trees are similarin stru
ture, so the merged strong jun
tion tree is a 
lique 
onsisting of A and TeA.The set of probability potentials for this 
lique 
onsists of only P(TeAjA). This is the
ase for both symmetri
 IDITs. The set of utility potentials 
onsists of a fun
tion,U, over the domain TeA. U is a fun
tion, whi
h, as long as TeA is less than ten, equals
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hes 91U1. U1 is the utility potential for the upper symmetri
 IDIT. U equals U2 for valuesof TeA greater than or equal to ten, where U2 is the utility potential for the lowersymmetri
 IDIT. There is in fa
t no reason to distinguish between U1 and U2, whensolving the IDIT, as argmaxD (argmaxD 0  ) is equivalent to argmaxD 0 (argmaxD  ) forany two de
isions, D and D 0.Eliminating TeA we get ��TeA = ? and 	�TeA = PTeAU(A) � P(TeAjA). This yields thefollowing fun
tion over A:U(A) = Z 100 U1(TeA) � �2(teA - a)(3:00)dteA + Z110 U2(TeA) � �2(teA - a)(3:00)dteA;where a denotes the time 
hosen for A.To eliminateA we maximize over U(A). As A is a wait de
ision, we �nd the maximumby 
omputing the derived of U(A) and �nding the extrema. Then we 
ompare theseextrema to �nd the global maximum. If two or more maximum points exist, we
hoose the �rst, with respe
t to time.This 
on
ludes the two examples of how we solve IDITs.6.2 Alternative Approa
hesIn the previous se
tion we saw how two examples were solved using the solutionmethod we present in Chapter 5.In this se
tion we dis
uss alternative approa
hes handling di�erent elements of thesolution of IDITs. As we saw in the �rst example, the use of sampling as proposedintrodu
es a grand 
omplexity of the fun
tions being sampled. In this se
tion we dis-
uss alternatives to that approa
h. We look at [Kozlov and Koller, 1997℄, in whi
h anonuniform dis
retization for the dis
rete variables is used. Then we dis
uss an ap-proa
h presented in [Charnes and Shenoy, 2002℄, whi
h utilizes a sampling method,in whi
h samples are drawn from multiple variables, and the aim is to approximatethe optimal poli
y for de
ision variables. We dis
uss numeri
al integration, as this isthe approa
h used in [Broe et al., 2003℄. Finally, we mention an approa
h in whi
hthe distributions of the time variables is approximated using polynomials.6.2.1 Dis
retizing Continuous VariablesAnother way, than using sampling to approximate the probability distributionof time variables, would be to dis
retize these variables. Usually one would goabout this by dis
retizing variables independently of ea
h other and one at a time.In [Kozlov and Koller, 1997℄ a method, for dis
retizing 
ontinuous variables in a hy-brid Bayesian network in a nonuniform and dynami
 manner, is proposed. They
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ussionpresent what they 
all a Binary Split Partition tree, a BSP tree for short, whi
hthey use for dis
retizing variables in 
liques of a jun
tion tree. A BSP tree is simplya data stru
ture for storing information regarding how the dis
retization of someinterval is performed.The dis
retization is performed in iterations. Ea
h iteration bases the new intervalson the nature of the distribution in ea
h interval. These iterations 
ontinue untileither the de
ision taker 
hooses not to have any more iterations, or the Kullba
k-Leibler distan
e, whi
h is the relative entropy, between the original distribution andthe dis
retized distribution is smaller than some set value. This value is set by thede
ision taker.For ea
h iteration, the algorithm is designed to 
on
entrate intervals around areas ofthe distribution, whi
h has the most a
tivity. That is, 
onsidering two ranges, [a : b[and [b : 
[, where a and 
 are arbitrary reals, and b is the mean of a and 
, the algo-rithm would dis
retize the interval, whi
h has the most 
u
tuation in values, morethoroughly than the interval with the least 
u
tuation of. The value for a dis
retizedinterval is the mean for the same interval in the original distribution. The reason forthis is that this ends up giving the minimal Kullba
k-Leibler distan
e, KL-distan
e,between the two distributions. This is not proven in [Kozlov and Koller, 1997℄, butthey refer to [Cover and Thomas, 1991℄ for the proof and justi�
ation for using theKullba
k-Leibler distan
e as a guidan
e measure.The reason for 
on
entrating intervals around a
tive parts of the distribution isthat this should help in making the errors introdu
ed by any form for dis
retizationsmaller and therefore give a 
loser approximation with fewer operations.This only des
ribes the nonuniform part of the method. The dynami
 part 
on-
erns how the variable, whi
h should be dis
retized, is 
hosen. Before any variableis dis
retized the hybrid Bayesian network is 
onverted to a jun
tion tree. The dis-
retization is stored in the BSP tree, whi
h is organized, so the original fun
tion is theroot. Ea
h node may have two 
hildren, ea
h 
hild representing half the distributionof its parent. When 
hoosing whi
h half to dis
retize, gradient des
ent is used, in or-der to dis
over the a
tivity of the fun
tion in the interval 
urrently being examined.Finding whi
h variable to dis
retize is done by 
onsidering the KL-distan
e betweenthe joint probability distribution of the 
ontinuous variables in the 
urrent 
liqueand the joint probability distribution of the same variables after a dis
retization.The dis
retization yielding the minimum KL-distan
e between these two distribu-tions, is then 
hosen. When performing many dis
retizations, this qui
kly be
omesan intra
table approa
h and heuristi
s are applied to �nd the variable and intervalto dis
retize.We do not go through the algorithms or proofs in this thesis, but refer the reader to[Kozlov and Koller, 1997℄ for further detail.If we were to use this approa
h on an IDIT, and still using the split trees, we wouldhave some intervals, whi
h are prede�ned. This ruins part of the approa
h, as thisleads the use of a BSP tree inappli
able. A similar data stru
ture 
an be 
onstru
ted,



6.2 Alternative Approa
hes 93whi
h takes into 
onsideration the intervals imposed by the splits in the split tree.The algorithm must then also 
onsider these intervals when dis
retizing the timevariable. As a result of the semanti
s of time variables, dis
retization of a timevariable, results in intervals of the form [a + t : b+ t[, where a and b are the limitsof the interval if the time variable was not dependent on any other variable, and t isthe latest point in time represented by the variables in
uen
ing this time variable. Afurther restri
tion on the time variables is their range. A time variable may not havean in�nite range, if this method is to be utilized for dis
retizing it, as ea
h iterationof the dis
retization splits the 
onsidered in two equally large intervals.As long as no wait de
ision variables are in the IDIT the dynami
 aspe
t of theapproa
h proposed in [Kozlov and Koller, 1997℄ is still appli
able. If a wait de
isionis to be dis
retized, a poli
y for this wait de
ision variable should be devised, andthen the de
ision 
ould be 
onverted to a 
han
e variable in a manner su
h thatthe probability distribution for this 
han
e variable respe
ts the poli
y of the waitde
ision. This would then represent a dis
retized 
han
e variable.6.2.2 Multi-stage Monte Carlo using Lo
al ComputationMulti-stage Monte Carlo [Charnes and Shenoy, 2002℄, or MMC for short, di�ers fromour approa
h in the way variables are eliminated and how sampling is performed.Furthermore, MMC requires that all 
ontinuous variables are dis
retized.MMC was devised for use on in
uen
e diagrams and by a dis
retization and the im-posed resolutions of asymmetries 
ould be applied to IDITs. The purpose of MMCis to approximate optimal poli
ies for de
isions in situations, where the potentialsof the in
uen
e diagram grow so large that it is intra
table to 
al
ulate their exa
tvalues.In prin
iple, MMC works by, for ea
h 
on�guration of the required past of some de
i-sion, D, sampling the variables in
uen
ing the utility, in
uen
ed by D. Multiple sam-ples are taken and when some threshold is rea
hed, no more samples are drawn, andthe 
on�guration, yielding the optimal poli
y, is 
hosen. Before taking samples, all
on�gurations are inspe
ted, and invalid 
on�gurations are not 
onsidered. A thresh-old, for the number of samples to draw, 
ould be some number 
hosen by the de
isiontaker, or, as proposed in [Charnes and Shenoy, 2002℄, an ("; �)-approximation. Thelimits for this approximation are set as a fun
tion of the number of samples drawn.This is a way of approximating the optimal poli
y within " of the maximum expe
tedutility, with a level of 
on�den
e of 100(1 - �)%.A strategy for an in
uen
e diagram is ("; �)-optimal, if P(Ej) = 1-�k , for j = 1; : : : ; k,where Ej is the event in whi
h \the de
ision fun
tion sele
ted in stage j has expe
tedutilities within " of the 
orresponding expe
ted utilities of an optimal de
ision fun
-tion for that stage". When an optimal poli
y has been approximated for some de-
ision variable, that de
ision variable is 
onverted to a de
ision fun
tion respe
tingthe optimal poli
y. The stage refers to whi
h de
ision variable is being 
onsidered.Examining if the expe
ted utility is within " of the maximum expe
ted utility is



94 Chapter 6. Results and Dis
ussiondone by letting Fij be the event that \the ith estimated expe
ted utility at stage j iswithin " of its true value". This means that if the ith estimate follows this de�nition,then P(Ej) � P(\nji1 Fij) � 1 - �k for j = 1; : : : ; k.We do not explain this any further but refer the reader to [Charnes and Shenoy, 2002℄for further dis
ussion.For MMC the �rst thing to do is to dis
retize any 
ontinuous variables, this meansthat both time variables and wait de
ision variables are dis
retized. As this approa
his developed for use on in
uen
e diagrams, the 
onstru
tion of a split tree, to handleasymmetries, is still a valid step. As all variables are dis
rete, MMC 
an be utilizedon ea
h of the symmetri
 IDITs of the split tree. We need to do this for ea
h sym-metri
 IDIT, as the resolved asymmetries result in di�erent IDITs, possibly yieldingdi�erent optimal poli
ies for the de
isions. This 
ould be that some 
han
e variableis observed before taking some de
ision in one symmetri
 IDIT, while being observedbefore taking another de
ision in another symmetri
 IDIT, be
ause of guarded ar
s.This approa
h handles elimination with outset in the last de
ision in some in
uen
ediagram. When enough samples are drawn, the approximated optimal poli
y is usedto 
onvert that de
ision variable to a 
han
e variable. This variable is always in thestate yielding the maximum expe
ted utility given the 
on�guration of its 
ondition-ing set.When the de
ision variable, D, is 
onverted to a 
han
e variable, the next de
isionvariable is found, and the lo
al utility fun
tions, in
uen
ed by D, are eliminated. Anew lo
al utility fun
tion, whi
h portrays the numbers found to be the maximumexpe
ted utilities for D, is 
onstru
ted. Now, be
ause of the elimination of some lo
alutility fun
tions, there might be barren nodes. Su
h nodes are removed from the in-
uen
e diagram, as they yield no useful information for the solution [Sha
hter, 1986℄.Examining the de�nition of IDITs we �nd some problems though. First there is thedis
retization of variables, this always results in some measure of error, and the lessdis
retizations the greater the error. Of 
ourse there is no rule, whi
h says that thedis
retization may not result in an arbitrarily large number of intervals.Another aspe
t, whi
h 
ould prove to be a problem, also has to do with dis
retization,it arises if the IDIT, we are solving, 
ontains post-realized utility fun
tions. There is,usually, no upper limit for the extent of the time variable in a post-realized utilityfun
tion. This means that it, in prin
iple, ranges from the end-time of the last timevariable to in�nity. This makes it hard to have an intelligent manner of dis
retizingit without the risk of loosing mu
h information, no matter how �ne a granularity thedis
retization uses. We 
an get around this problem by saying that from some pointin time and forward, the time variable has a zero probability, or simply just to set alimit on the range of the time variables.



6.3 Dis
ussion of the Framework 956.2.3 Numeri
al IntegrationUsing numeri
al integration is another approa
h to solving the question of proba-bility distributions for time variables. [Broe et al., 2003℄ used this method throughMaple [Maplesoft, 2002℄. Using numeri
al integration, the distribution is dis
retizedto a number of uniform intervals. The idea is then to approximate the value for ea
hinterval and through this approximating the probability distribution for the entiredistribution. This is done by, for ea
h of these intervals using the mean of the originaldistribution as the value for the interval. The �ner the dis
retization, the 
loser theapproximation.The di�eren
e between this and the dis
retization method des
ribed in Se
tion 6.2.1is that this approa
h does not take into 
onsideration that some intervals have ahigher density than others, nor does it dis
retize in a dynami
 manner.6.2.4 Approximation using PolynomialsOne approa
h to approximating a density fun
tion is to approximate its behaviourwith a new fun
tion. This 
an be done in di�erent manners, but one approa
h isto use Tailor series, as proposed in [Nielsen, 2003℄. The idea is to approximate theprobability distributions with polynomials, whi
h are both integratable and di�er-entiable. As summation and multipli
ation for these still are polynomials with theseproperties �nding the approximated maximum expe
ted utility 
an be done easily.6.3 Dis
ussion of the FrameworkThe goal of this proje
t has been to develop a framework for DPITs. From the begin-ning three key requirements, whi
h the representation language should ful�ll, were setup. These requirements spe
ify that the representation language should model DPITsin a manner whi
h is 
ompa
t, easy to read, and unambiguous. [Broe et al., 2003℄had a fourth requirement, namely that the representation language should be 
om-plete with respe
t to modelling DPITs. We have removed this requirement as it isimpossible to ful�ll unless the 
lass of DPITs has been pre
isely de�ned, thus yield-ing a new representation language.Even though the fourth requirement has been removed we have still sought to makea framework, whi
h has as mu
h expressive power as possible. In this thesis we haveextended IDITs to also handle situations where the quantitative part of time in
u-en
es the order of taking de
isions. Furthermore, we have made it possible to modelun
ertainties of time not related to de
isions, by introdu
ing post-realized utilityfun
tions. However, by these additions the representation language has be
ome in-
reasingly 
omplex, and we stand the risk that models of DPITs therefore end upbeing harder to 
omprehend.In this se
tion we dis
uss pre
isely this dilemma in relation to IDITs and try to lay
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ussionbare the 
onsequen
es of the 
hoi
es we have taken. In doing this we hope to givefuture resear
hers in the area of de
ision problems involving time a foundation onwhi
h to base their 
hoi
es.The expressive power of IDITs aims at expressing all possible DPITs. Therefore, allaspe
ts found, whi
h relates to time, have been sought expressible in IDITs. Thishas been done in order to give the modeller of DPITs as mu
h freedom as possible,and give him a universal tool for 
ommuni
ating and solving DPITs.Another approa
h is to try to 
lassify the aspe
ts of time in logi
ally 
onne
ted
lasses, and make a spe
ialized framework for ea
h su
h 
lass. This yields a frame-work, whi
h is not 
apable of modelling all aspe
ts of time, but models some in apre
ise and 
ompa
t manner. As noted before, time introdu
es asymmetries in de
i-sion problems. These aspe
ts are good 
andidates for 
lasses of DPITs. That is, one
lass handling those DPITs, in whi
h the quantitative aspe
t of time restri
ts thestate spa
e of de
ision variables, 
hanges the set of observed variables, or imposesdi�erent orderings of de
isions. Another 
lass then 
onsists of those DPITs, for whi
htime in
uen
es the states of variables, and has an in
uen
e on the preferen
es of thede
ision taker. Both 
lasses should ful�ll the requirements with respe
t to represent-ing time as a 
ontinuous element. They 
ould, however, do this in di�erent manners.The expressive power of two frameworks modelling these 
lasses of DPITs would ea
hbe less than that of IDITs, however, as the models from these frameworks would bespe
ialized to show the important information relating to the 
lass dire
tly in thegraphi
al representation. For instan
e, a representation language without asymme-tries may use dashed ar
s to point out an in
uen
e of time, whereas in IDITs wehave 
hosen to use that form of representation to tell the reader that there exists arestri
tion between the two variables 
onne
ted by the dashed ar
. Likewise, the so-lution method for any of the two 
lasses would be faster as some steps of the solutionmethod for IDITs would be obsolete. The splitting in order to reveal asymmetrieswould not be ne
essary for one of the frameworks, and the fa
t that time does notin
uen
e probabilities and utility fun
tions in the other spe
ialized framework, 
ouldbe utilized to perform a dis
retization of time in some manner.The 
hoi
e of whether a spe
ialized framework is preferred to a general purposeframework, as IDITs, or not, is subje
tive. If models should re
e
t a 
omplex realworld problem, and the primary goal of this model is to �nd an optimal strategy fortaking the de
isions, the more expressive framework would be 
hosen. This framework
an model all aspe
ts of the problem, and an optimal strategy is given based onall these aspe
ts. However, when the model only needs to represent a part of a
omplex problem, as 
ould often be the 
ase, a spe
ialized framework is preferred.This mounts to a question about the de
ision problems being modelled, and theout
ome of modelling. If most de
ision problems involving time only in
lude one ofthe two 
lasses of DPITs, the spe
ialized frameworks would be preferred. If, on theother hand, most de
ision problems span both of the spe
ialized frameworks, thegeneral framework would be preferred. To 
on
lude on this, more resear
h shouldbe applied into the in
uen
e of time. Furthermore, the la
k of expressive power in a
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ialized framework, might be less important if the framework is easier to read.Looking at the three requirements set up for the framework, it 
an be seen thatIDITs is a 
ompa
t and unambiguous framework. Whether or not, IDITs are easy toread is a subje
tive dis
ussion, but as in
uen
e diagrams are usually deemed hardto grasp, IDITs are most likely also hard for a layman to grasp.6.4 SummaryWe have applied the solution method, as proposed in Chapter 5, to two di�erentexamples. The examples in
orporate the use of both a 
y
le and an instan
e of apost-realized utility fun
tion. Besides this we have presented alternatives and modi-�
ations to the sampling approa
h and the solution as a whole, su
h as the use of adis
retization for the 
ontinuous variables.We have 
on
luded this se
tion by dis
ussing IDITs as a framework. We have dis-
ussed the problems we have identi�ed in the stru
ture as it is now and have proposeda way of splitting it to a set of spe
ialized frameworks.
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Chapter 7Con
lusion and Future Work
The aim of this proje
t has been to represent and solve DPITs. We have done thisby extending the representation language, IDITs, proposed by [Broe et al., 2003℄, inorder to be more expressive, and by devising a solution method for IDITs.By analysis of DPITs we have found additional requirements for a framework mod-elling them. These requirements ensure that the framework 
an handle the orderingof de
isions being in
uen
ed by time and post-realized utility fun
tions. The latterbeing the 
ases where a utility fun
tion is not realized immediately after the timeda
tion of the last de
ision is exe
uted, but at some later point in time. An exampleof this 
ould be the event of selling sto
ks, as the payo� of selling is realized the nextday, thus the market value of the sto
k may have fallen sin
e the de
ision to sell wastaken.We have re�ned IDITs to be 
apable of handling these additional requirements byallowing guarded 
y
les between de
isions, and by adding the possibility of havingtime variables, whi
h are not asso
iated with de
isions.Furthermore, we have shown that a temporal ordering of variables in an IDIT existsand how this temporal ordering 
an be dedu
ed from the two levels of the IDIT.This is also used to show that IDITs are wellde�ned in respe
t to �nding the nextde
ision to be taken.We have also given semanti
s of the quantitative level, by showing how this level 
anbe realized in an IDIT, and dis
ussing how this level 
an be modelled generally.We have devised a general method for solving IDITs. This method takes outset in apreliminary temporal ordering, and uses this 
onstru
t as a split tree. A split tree isa tree, in whi
h the nodes are instan
es of the IDIT being solved. The root of the treeis the original IDIT and the leaves are symmetri
 IDITs in whi
h all asymmetries,imposed by time variables, are resolved. For ea
h symmetri
 IDIT we have 
hosen touse a strong jun
tion tree using lazy propagation for solving them. As a 
onsequen
eof modelling time variables using �2-distributions an exa
t solution 
annot be 
om-puted. We have 
hosen to use a sampling te
hnique, based on the [Gentle, 1998℄,99



100 Chapter 7. Con
lusion and Future Workfor approximating the distributions of the time variables. The 
ombination of this
hoi
e and our semanti
s of time variables has led to the unfortunate event that thesolution method results in intra
tably large fun
tions when solving IDITs with evena small number of time variables.On a lighter note, we present arguments for the 
orre
tness of our algorithm, andhave presented other alternatives to our 
urrent solution method.The last part of this 
on
lusion is aimed at the results of this thesis. We present twosmall examples, whi
h we have solved using our solution method. To give another an-gle to our solution method we dis
uss alternative approa
hes to solving the dilemmawe have en
ountered. These in
lude a nonuniform dynami
 dis
retization and a multistaged Monte Carlo method using lo
al 
omputations. What we �nd intriguing aboutthese approa
hes is that the dis
retization is proposed for use on hybrid Bayesiannetworks in jun
tion trees, and the multi staged Monte Carlo method was devisedfor in
uen
e diagrams, a framework, whi
h is 
losely related to IDITs.Finally, we have dis
ussed the framework of IDITs. In this dis
ussion we present the
ompli
ations we have found and we propose 
onstru
ting a number of spe
ializedframeworks as opposed to a single framework for handling all aspe
ts of time, su
has IDITs.Unfortunately, we have not had suÆ
ient time to try out all our proposals, norto devise an implementation of our framework. We have, however, expanded bothDPITs and IDITs, proposed a temporal ordering of IDITs, devised a stru
ture forrepresenting IDITs in a manner, whi
h exposes all asymmetries, and we have deviseda general solution method for IDITs.7.1 Future WorkThis thesis do
uments the study of de
ision problems involving time, and in the
ourse of this work many interesting aspe
ts of time, and its impa
t on how a frame-work should be 
onstru
ted, have been dis
losed. However, we have not had time toexplore all of them fully, so we present some of these aspe
ts in the hope that otherswill 
ontinue this work. We divide the aspe
ts into three 
ategories, these being: theaspe
ts relating to the expressive power of IDITs, the aspe
ts relating to the solutionmethod, and the aspe
ts applying the work to real world problems.During the analysis of several DPITs an element of time, whi
h is not modellable inIDITs, was dis
overed. De
isions, whi
h must be taken at a spe
i�
 point in time,whi
h we have opted to 
all �xed time de
isions. These 
annot be 
orre
tly portrayedin IDITs. The problem with �xed time de
isions is the semanti
s of the de
ision. Forinstan
e, if the de
ision taker, at the time a �xed time de
ision must be taken, is inthe midst of exe
uting the timed a
tion imposed by his 
hoi
e in another de
ision.Should the timed a
tion be skipped, and the �xed time de
ision be taken instead?Or should all de
isions before a �xed time de
ision have a 
hoi
e, whi
h is resolved



7.1 Future Work 101instantly, thus making it possible to 
hoose this 
hoi
e and in this manner skip to the�xed time de
ision? Future resear
h should analyze the need of �xed time de
isions,�nd a suitable semanti
s for them, and, based on the semanti
s, extend IDITs to be
apable of modelling su
h de
isions.The solution method devised for solving IDITs in this thesis is an general solutionmethod, whi
h, unfortunately, is intra
table on models, whi
h handle more than afew time variables. This is be
ause of the exponential nature of the fun
tions weuse to represent utility potentials. Therefore, we propose that a method for solvingIDITs should be devised, whi
h fo
uses on keeping the intermediate results and 
al-
ulations to a minimum with respe
t to size. Fun
tion analysis 
ould be of used to�nd some regularities in the fun
tion expressions and use this to approximate thelarge expressions by smaller ones.An approa
h 
ould be to �rst alter the semanti
s of time variables, so they onlyrepresent an un
ertainty in time, and not a spe
i�
 point in time. This results in thetime variables not being dependent on ea
h other, whi
h is one of the aspe
ts, whi
hlies as the foundation of our problem.In Chapter 6 we have proposed other approa
hes to handling the 
ontinuous elementsof IDITs. An interesting approa
h to 
onsider is that of a nonuniform dynami
 dis-
retization [Kozlov and Koller, 1997℄, as this approa
h also uses the 
on�nements ofa jun
tion tree to stru
ture the variables of some network.The approa
h we dis
uss in Chapter 6, proposed in [Charnes and Shenoy, 2002℄, wasproposed to handle potentials, whi
h are intra
tably large. This is exa
tly the prob-lem we end up having. Unfortunately, this approa
h is aimed at models in whi
h allvariables are dis
rete, so either a dis
retization must be performed beforehand, orthe approa
h should be modi�ed to also handle hybrid networks.The framework of IDITs, as proposed in this thesis, is yet only appli
ative as a toolfor 
ommuni
ating DPITs, as it is not yet implemented. The use of sampling and the
omplexity of the solution method makes even small IDITs hard to solve by hand.An implementation 
ould take outset in the solution method proposed, yielding itpossible to solve small to medium sized IDITs, however, larger IDITs would betoo time and spa
e 
onsuming for 
omputers to handle. Assuming that IDITs areimplemented 
onsiderable speed ups 
an be a
hieve by utilizing the equality of thesymmetri
 IDITs. As mentioned in Chapter 5 there exists an exponential amountof symmetri
 IDITs in the number of split variables. All these symmetri
 IDITs are
onverted to a strong jun
tion tree. By studying the symmetri
 IDITs, however, itis dedu
ed that many of these are equivalent, as splits are also 
aused by restri
tionfun
tions, whi
h do not 
hange the stru
ture of the IDITs, but only the state spa
eof the de
ision variables in it. An implementation would also make it possible toargue about the use of sampling as opposed to, for instan
e, approximating theprobability distribution of time variables using polynomials or any other method ofapproximation.
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Appendix ASummary
De
ision analysis is a resear
h area fo
using on taking de
isions in an un
er-tain 
ontext. Trying to formalize de
ision analysis has resulted in a range ofdi�erent frameworks, ea
h having their pros and 
ons. The frameworks typi-
ally used are de
ision trees [von Neumann and Morgenstern, 1944℄, in
uen
e di-agrams [Howard and Matheson, 1981℄, and valuation networks [Shenoy, 1992℄.Even though these frameworks have been used to model de
ision problems, the mod-els are limited to only en
ompass time on a qualitative level, that is, having atemporal ordering of the events of the de
ision problem. However, time also hasa quantitative level. De
ision problems are models of real world problems, but,as de
ision problems are modelled without a quantitative representation of time,these do not re
e
t this dimension of the real world. [Horvitz and Rutledge, 1991℄and [Horvitz and Seiver, 1997℄ dis
uss how time may in
uen
e the utility fun
tionsof a de
ision problem. But the in
uen
e of time ex
eeds the in
uen
e of utility fun
-tions, for instan
e, time often in
uen
es whi
h 
hoi
es are possible in a de
ision. Asan example, one 
annot go to the stadium at ten o'
lo
k to see a football mat
h,whi
h ended at eight o'
lo
k. In [Broe et al., 2003℄ the 
lass of de
ision problemsinvolving time was analyzed and a framework, for modelling these, was proposed.The analysis showed how de
ision problems involving time, 
ombine two well studiedaspe
ts of de
ision problems, these being that the problems tend to be asymmetri
and that time should be represented by 
ontinuous variables. In this thesis we have
ontinued the work of [Broe et al., 2003℄.De
ision problems involving time, DPITs, are 
hara
terized by the elements of theindividual DPIT being in
uen
ed by time. We have found that a DPIT 
an be di-vided into four parts, these being: the variables in the DPIT, the de
ision taker,the preferen
es of the de
ision taker, and the relations between the variables. Thevariables represent the de
isions, the un
ertainty of 
ir
umstan
es, and time in theDPIT. The de
ision taker is the person to whom the DPIT is presented. Finally,relationships between variables is represented as probabilisti
 dependen
ies, pre
e-den
e of taking one de
ision before another, or a restri
tion of the possible 
hoi
es107



108 Chapter A. Summaryof a de
ision.The analysis of DPITs has led to a series of requirements for frameworks modellingthese. These requirements ensure that the framework: models time as a 
ontinuouselement, and does so in a manner resulting in both a 
ontrollable and an un
ontrol-lable element; is 
apable of modelling restri
tions of state spa
es of de
isions; 
anmodel time being in
uen
ed by other variables; 
an model observations, whi
h 
anonly be taken in spe
i�
 time spans; 
an model 
han
e variables in
uen
ed by time;and 
an model the preferen
es, of the de
ision taker, being in
uen
ed by time. Itshould also be modellable that some preferen
e of the de
ision taker is not realizeduntil some time in the future. Furthermore, the pre
eden
e of one de
ision in relationto another de
ision may dependent on the point in time they are to be taken.To satisfy the requirements, for a framework modelling DPITs, we have 
onstru
teda framework, named in
uen
e diagrams involving time, IDITs, whi
h models su
hde
ision problems. The framework builds on the ideas of in
uen
e diagrams, su
hthat it models DPITs on two levels. On the qualitative level IDITs models variablesand lo
al utility fun
tions as nodes in a dire
ted labelled graph, and the relationshipsbetween variables as the ar
s of the graph. The semanti
s of an ar
 di�ers a

ording tothe nodes it 
onne
ts, and whether or not the ar
 is labelled with a guard. Likewise, it
an be seen dire
tly in the graphi
al representation, if one variable restri
ts another.On the quantitative level information, relating to the individual variables, is given.That is, to ea
h variable the state spa
e of the variable is given, and probabilitydistributions are asso
iated to 
han
e variables. Furthermore, all restri
tion fun
tionsare spe
i�ed on this level and the fun
tions relating to ea
h lo
al utility fun
tion.We des
ribe IDITs by giving an informal introdu
tion to the 
on
epts of IDITs, andtheir graphi
al representation. To exemplify this we have proposed a DPIT, whi
hwe have named the SAR problem. It takes outset in the res
ue mission set in motionwhen a person is reported missing. The example in
ludes time on a quantitativelevel, as the su

ess of the mission is related to �nding the missing person alive,within some time frame. We have introdu
ed time variables, whi
h are not dire
tlyasso
iated with de
isions, in order to model lo
al utility fun
tions realized after thelast de
ision. After des
ribing the ideas of IDITs we de�ne the syntax for both thequalitative and the quantitative level of IDITs. We then des
ribe how the IDIT
an be read a

ording to a temporal ordering, whi
h is dedu
ed from the two levels.Furthermore, based on this temporal ordering, we argue for IDITs being a wellde�nedframework, that is, when a temporal ordering of de
ision variables exists the nextde
ision 
an be unambiguously identi�ed.As a modelling tool the representation language of IDITs would be enough. However,we want to �nd a poli
y for taking ea
h de
ision of the IDIT, therefore, a generalsolution method is needed. We propose a solution method for solving IDITs, withrespe
t to �nding an optimal strategy.The in
uen
e of time 
an be divided into two main 
ategories, namely one relating totime as a 
ontinuous element, and one, whi
h renders the models asymmetri
. In thesolution method we re
ursively resolve all asymmetries of an IDIT by splitting the



109IDIT into symmetri
 sub-problems. We end up with a number of totally symmetri
sub-problems, whi
h we have organized in a tree stru
ture, 
alled a split tree. Wethen solve the part of ea
h symmetri
 sub-problem, whi
h is unique to this spe
i�
sub-problem, using a solution method inspired by the solution method for in
uen
ediagrams, however, the sub-problems are solved in an environment whi
h has 
ontin-uous variables. We have 
hosen to use a strong jun
tion tree approa
h when solvingthe symmetri
 sub-problems. When a solution for the unique part of a sub-problemis found, we merge this result with all other results of sub-problems resulting fromthis split. This is 
ontinued until all results have been returned to the root of thesplit tree, and the original IDITs is then solved. In this manner we end up with anoptimal strategy for taking all the de
isions in the IDIT, whi
h is the solution weaimed at.As we have 
ontinuous variables we need to approximate the probability distributionsof these in order to obtain the solution. The solution method proposes a samplingte
hnique for this approximation. However, we 
on
lude that sampling over the 
on-tinuous distributions yields expressions, whi
h grow exponentially in the number oftime variables, thus is not appli
able for large problems.Finally, we present two examples, whi
h illustrate some of the important parts ofIDITs, and we have solved these using the solution method. As a 
onsequen
e of theexponential growth in fun
tion size we have not found a numeri
al solution to theseexamples. However, the examples still serve as an illustration of all other aspe
ts ofthe solution method.Furthermore, we have dis
ussed di�erent approa
hes to approximation, su
h thatfuture resear
h might �nd a numeri
al solution to IDITs. Finally, we dis
uss theappropriateness of the framework proposed, as opposed to having proposed smallerframeworks.


