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Abstract: In this Master thesis we
study decision analysis, in which time
on a quantitative level is an aspect.
This study has, in addition to the
studies of [Broe et al., 2003], resulted
in a series of requirements for frame-
works modelling decision problems
involving time, DPITs. We present a
framework for modelling and solving
DPITs, which fulfills all of these re-
quirements.

The framework, influence diagrams
inwvolving time, IDITs, was originally
proposed in [Broe et al., 2003]. In
this thesis it is extended to handle
additional aspects of time, amongst
these are local utility functions real-
ized later than the end-time of the
last decision. Furthermore, we devise
a method for solving IDITs with re-
spect to finding an optimal strat-
egy. We solve an IDIT by resolving
all asymmetries introduced by time.
This leads to a number of symmetric
sub-problems, which we solve using
a method based on strong junction
trees with lazy propagation.

We illustrate the solution method us-
ing two examples in order to demon-
strate how the framework is used.
Furthermore, we discuss the benefits
and drawbacks of having one frame-
work handling all issues of time as
opposed to multiple smaller frame-
works.
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Chapter 1

Introduction

Decision analysis is a research area focusing on how to take decisions, in uncertain
surroundings, and do this in a manner, which is optimal for the decision taker. Trying
to formalize decision analysis has resulted in a range of different frameworks each
having their pros and cons.

[von Neumann and Morgenstern, 1944] and [Raiffa, 1968] proposed to structure a
decision problem in a so-called decision tree. A decision tree models the choices and
circumstances as internal nodes in a tree and the outcomes as the leaves. The tree
gives a good intuition of a decision problem, but it is exponential in size, wherefore
other more compact frameworks have been proposed. As opposed to decision trees,
in which the states of each variable are nodes in the tree, the more compact frame-
works groups these states in variables. [Howard and Matheson, 1981] proposed influ-
ence diagrams, which is, basically, a Bayesian network, as described in [Pearl, 1988],
[Lauritzen, 1996], and [Jensen, 2001], augmented with decision and utility nodes.
Other frameworks have been proposed as well, amongst these are wvaluation net-
works, described in [Shenoy, 1992]. Both influence diagrams and valuation networks
are based on multiple levels, such that the reader can abstract from certain details
on different levels of the framework.

Even though decision analysis has been researched for several decades, surpris-
ingly little research has been done on the effects of time in decision problems.
The three frameworks described above are all capable of representing a qualita-
tive aspect of time, which specifies in which order decisions and observations are
taken. However, the quantitative aspect of time has gotten little attention. The
quantitative aspect of time is a representation of time, which is directly quanti-
fied in the decision problem, that is, the point in time when something happens
can have an effect on what happens. For instance, time may influence the pos-
sible choices for a Friday night in town. If the football match begins at eight
o’clock the choice of going to the stadium and seeing the game is not possible at
ten o’clock. [Horvitz and Rutledge, 1991] and [Horvitz and Seiver, 1997] discussed
how time may influence the utility functions of a decision problem, which is in
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fact a quantitative aspect. In [Broe et al., 2003] the class of decision problems in-
volving time was analyzed and a framework, for modelling these, was proposed.
The analysis showed how decision problems involving time, combine two well stud-
ied aspects of decision problems, these being asymmetric problems and continu-
ous variables. [Bielza and Shenoy, 1999] and [Nielsen and Jensen, 2002] both discuss
the effect of modelling asymmetric decision problems. The effects of having con-
tinuous variables in Bayesian networks have gotten some attention, for instance,
in the form of hybrid networks, [Lauritzen, 1996]. [Shachter and Kenley, 1989]
and [Madsen and Jensen, 2003] examined continuous variables in influence diagrams,
but, as for similar work, the continuous variables are restricted in different manners,
for instance, by not allowing continuous variables as parents of discrete variables.
[Lerner et al., 2001] showed one approach of removing this restriction for Bayesian
networks.

One aspect of decision problems is the model, another is finding a strategy
for taking the optimal choices of the decision problem. For each of the frame-
works, described above, solution methods have been proposed. For solving influ-
ence diagrams [Howard and Matheson, 1981] proposed a method turning the influ-
ence diagram into a decision tree, which could be solved using the method from
[von Neumann and Morgenstern, 1944]. [Shachter, 1986] and [Jensen et al., 1994]
also proposed solution methods for influence diagrams. The solution method pro-
posed by [Nielsen and Jensen, 2002] for asymmetric influence diagrams splits the
asymmetric influence diagram in symmetric sub-problems, which are then solved
using lazy propagation as described in [Madsen and Jensen, 1999]. A similar ap-
proach for splitting the problem is used in [Demirer and Shenoy, 2001] for a frame-
work based on valuation networks and sequential decision diagrams. Furthermore,
[Nielsen and Jensen, 2002] argues for the symmetric sub-problems being welldefined
based on [Nielsen and Jensen, 1999].

The reason why time is an interesting aspect in relation to decision problems is that
we aim at modelling the real world, and time is of importance, on some level, in
almost everything we do. So being capable of modelling time as a factor of a decision
problem yields models closer to reality. For example, modelling the decision of buy-
ing stocks should be done reflecting the time at which they are bought, as the point
in time when they are bought influences the price, and later the earnings. Time not
only influences the circumstances, but decisions and utilities as well. Chapter 3 gives
an in-depth analysis of the influence of time.

1.1 Problem Specification

Representing and solving decision problems involving time is the main focus of this
thesis. By further analysis of decision problems involving time we want to find im-
portant elements, which were not disclosed in [Broe et al., 2003]. The results of this
analysis should end with an extended representation language for decision problems
involving time, yielding it more suitable for modelling. Besides being more expres-
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sive, we seek to devise a method for solving influence diagrams involving time of any
given model of a decision problem involving time. Therefore, we describe a solution
method which, given a model of a decision problem involving time, returns an opti-
mal strategy for taking the decisions. Finally, we discuss the framework with respect
to its usability.

1.2 Outline of the Thesis

This thesis consists of seven chapters, which can be divided into three main parts.
Chapters 2 and 3 discuss the preliminaries of the framework being constructed.
Chapter 2 gives an introduction to the notation used in this thesis, while specifying
graph and probability related concepts. In it we also discuss how this thesis builds
on [Broe et al., 2003], and where the main differences between the two works lie.
Chapter 3 discusses the problem domain of decision problems involving time, intro-
duces the concepts relating to these problems, and sets up a series of requirements
for frameworks modelling decision problems involving time.

The second part of the thesis is focused on the development of the framework for
modelling and solving decision problems involving time. Chapter 4 defines the rep-
resentation language for modelling decision problems involving time, which is called
influence diagrams involving time. The representation language is first described by
its semantics, which is followed by definitions of its syntactical specifications. Finally,
we argue for the representation language being welldefined. Chapter 5 describes a
general solution method for solving influence diagrams involving time. The chapter
gives an overview of the solution, and then specifies the details of each step involved
in the method.

The final part concludes on the thesis by illustrating the use of influence diagrams
involving time, and by discussing the pros and cons of a specific framework for mod-
elling decision problems involving time. Chapter 6 introduces two examples, which
are solved using the solution method proposed in Chapter 5. Furthermore, alter-
natives to the approximation method, we utilize, are discussed. In Chapter 7 we
conclude on the thesis, by a discussion of the works of the thesis, and summarize the
results achieved. Finally, we propose which aspects should be considered as future
research.
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Chapter 2

Preliminaries

In this chapter we describe the theory on which this thesis is built. The theory is
divided into three sections, where Section 2.1 describes graph theory, and introduces
the notation used in this thesis. Section 2.2 introduces the probability theory used
and describes some of the theoretical aspects of utilities. Finally, Section 2.3 describes
the representation language constructed in [Broe et al., 2003], and discusses how this
thesis differs from the earlier work.

2.1 Graph Theory

As the modelling of decision problems is done using graphical models, graph theory
is essential to any framework for modelling decision problems. We introduce the key
aspects of graph theory used in this thesis.

An element is a generic term, which is used to cover any mathematical instance,
for example, a variable or a graph. An unordered collection of distinct elements is
referred to as a set. To separate a set from its elements we denote sets by bold
capitalized letters, whereas elements are non bold, for instance, X could be the set
consisting of X, Y and Z, also written as X ={X, Y, Z}. In this thesis, unless explicitly
stated, no sets are multisets, that is, sets do not include multiple instances of an
element. We use traditional set operations when manipulating sets, such as U for
taking the union of two sets and N to denote the intersection of two sets.

A graph, G, is a pair of sets, (V,E), where V is a set of nodes, and E is a subset of
V x V, which we call edges. The edges of a graph can be directed or undirected. If
both (V,V’) and (V',V), also denoted as {V,V'}, are in E the edge is undirected. If
only one of these is in E, it is a directed edge, which we usually refer to as an arc.
If all edges of a graph are directed we call the graph a directed graph, and if not we
call it an undirected graph.

Labelled graphs are graphs in which the edges are labelled. We define a labelled graph

5
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by a triple, (V,L,E), where V is a set of nodes, L a set of labels, and E a subset of
V xVxL.

A node, V, in a graph, (V,E), is said to be the parent of a node, V', if the arc (V,V’)
isin E, and we say V' is a child of V. We denote the set of parents of some node, V, by
pa(V), and the set of children of V as ch(V). If two nodes, V and V', are connected
by an edge {V, V'} they are referred to as neighbours. The set of neighbours of some
node, V, is denoted ne(V).

In a graph, (V,E), a path, P, is an ordered sequence of nodes, V1, Va,...,Vy, in V,
where there exists an edge {Vi, Visq} for 1 <1 < n—1. A directed path is a path
consisting of only directed arcs. If there is a directed path, V, V' ... V", we say V"
is a descendent of V and V is an ancestor of V". We denote the set of ancestors of
some node, V, by an(V), and the set of descendents of V by de(V). Furthermore, a
directed path, V, V' ..., V" and an arc, (V",V), is referred to as a cycle. If a graph
does not have any cycles it is said to be acyclic.

A graph (V' E') is a subgraph if there exists a graph (V,E), where V' is a subset
of V, and (V,V’) is in B/, if and only if it is in E and both V and V' are in V'. A
graph, (V,E) is said to be complete, if, for all nodes, V, in V, the set of neighbours
equals V\ {V}. A maximal complete subgraph is called a clique.

2.2 Probability Theory

In this section we introduce the probability theory used in this thesis. In the mod-
elling of decision problems the choices are taken under uncertainty. This uncertainty
is formalized using probability calculus.

2.2.1 Discrete Variables

A discrete chance variable is a finite set of mutually exclusive and exhaustive states,
each of which is associated with a probability of being in that state. The semantics
of chance variables in relation to decision problems are discussed in Chapter 3. Con-
ventionally, we denote variables with capitalized letters, and its state by low case
letters. For instance, V could be a variable with the states {vi,v2,...,vn}. We call
the set of states of a variable the state space of the variable, which we denote sp(V).
The uncertainty of a state of a chance variable, V., is represented by a probability
distribution P :sp(V)— [0;1], where it holds that:

> Py)=1
vesp(V)

We call a probability distribution over only one variable a marginal probability dis-
tribution.
The joint probability distribution of a set of chance variables, V, is a function
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Py :sp(V) — [0;1] for which it holds that:

where V is a configuration of the chance variables in V. Given a joint probability
distribution for a set of variables, V, we can derive the joint probability distribution,
P, for any subset, V', of V by marginalizing out the variables of V' \ V', that is:

P(V') = Z P(V).

VAV/

The state of a variable is always dependent on some context. For instance, the state
of a variable, V, representing the second hand in a poker game is dependent on the
first hand, represented by the variable, V'. The probability distribution of a chance
variable, V, we say is conditionally dependent on V', written P(V|V'). Generally,
a conditional probability distribution for some set of variables, V, given a set of
variables, V', is a probability distribution of V for each configuration v’ of V'. The
conditional probability distribution P(V|V’) can by found using the fundamental
rule:

P(V,V’)
P(VIV') = —1—.
From the fundamental rule Bayes rule can be deduced:
P(V'IV)-P(V)
PVIV)= ——r i’
(VIV?) P(V")

2.2.2 Continuous Variables

In the previous section we described chance variables for which the state space is fi-
nite, however, not all variables have a finite state space. Continuous chance variables
are chance variables with an infinite state space. Unlike discrete chance variables,
continuous chance variables do not have a probability associated with each state. In-
stead, we associate a density function, which reflects the probability distribution of
the continuous variable. That is, the probability distribution of a continuous chance
variable being in the interval ]a;b] is a function fy : R — R* U{0} for which it holds
that:

and zero for all x not in ]a;b].

We define the probability of an interval in the continuous chance variable as a cumu-
lative probability distribution, that is, the probability of a chance variable, V, being
at most a is:
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In this thesis all continuous chance variables are associated to a y2-distribution,
which is given by:
for x >0

0 for x <0

where I" is a gamma-distribution as described in [Grimmett and Stirzaker, 1992], and
k is a measure of degrees of freedom. To illustrate the behaviour of a x?-distribution,
Figure 2.1 shows it for one with three degrees of freedom.

0.3
' ' chi(x,3.00) ——
0.25 | i
0.2
0.15 |

0.1

0.05

15 20

Figure 2.1: A x%-distribution with three degrees of freedom.

We later argue for the choice of using x2-distributions.

2.2.3 Utility Theory

In the domain of decision analysis, a value, or utility, denoted by u, is associated
to each configuration of a set of variables, V. This value reflects how preferable the
configuration is in relation to other configurations over the set of variables. Some
of these variables may be chance variables, that is, there is an uncertainty of the
state of the variable. When the value is directly associated with a chance variable,
it is possible to find the expected value or expected utility of this chance node given
a configuration of the rest of the variables in the set.

The expected utility is the sum of the values weighed in accordance to the uncertainty
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of the configuration, that is, the expected utility, EU, of a chance variable, V, with
the states vi,Vv2,...,vn, which has a value ui(vi,7) for T < i < m, given a set of
variables X which has a configuration X is:

EU(V) =) Pvi) - wi(vi, X),

i=1

for all configurations of X.

2.3 Previous Work

In this section we discuss the works of [Broe et al., 2003], which is the foundation
for this thesis, and relate [Broe et al., 2003] to the work presented in this thesis.

[Broe et al., 2003] took outset in the identification of a class of decision problems,
which involve time. The main difference in these problems as opposed to traditional
decision problems is that time not only influences the structure of the decision prob-
lem, but also the numerical part. That is, where traditional decision problems have a
qualitative aspect of time, influencing the order in which decisions are taken, decision
problems involving time have a quantitative aspect too. Therefore, besides influenc-
ing the order, time can influence the uncertainty of a state of a chance variables or
the value of a utility.

After an analysis of traditional frameworks for modelling decision problems, their
capabilities of modelling decision problems involving time were analyzed. This re-
sulted in a series of requirements for frameworks modelling decision problems in-
volving time, and the conclusion that the traditional frameworks were not capable
of modelling decision problems involving time in a satisfactory manner.

Instead, a new framework, influence diagrams involving time, abbreviated as IDITs,
was constructed. IDITs are based on the framework of influence diagrams, which
has been extended to handle the time issues required by decision problems involv-
ing time. The framework represented the quantitative aspect of time by introducing
variables, representing time. Two variables were introduced, one modelling the pos-
sibility of controlling time, and one modelling the uncertainty involving time. Fur-
thermore, influence diagrams involving time were made to represent time influencing
utility functions and chance variables, and aspects of time involving the restrictions
of decisions and the possibility of observations. [Broe et al., 2003] constructed the

representation language of IDITs and proposed a sketch of how a possible solution
could be found.

In this thesis we extend the representation language of [Broe et al., 2003], such that it
handles some of the aspects of time, which were not included. And we clarify how the
framework of IDITs actually handles time influencing utility functions and chance
variables. The representation language of [Broe et al., 2003] was restricted in the
sense that it does not allow time to influence the order in which decisions are taken,
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but only to restrict the possible options of the decisions. Likewise the possibility
of having time not associated to decision, is not included in [Broe et al., 2003]. It
is however an interesting aspect of time as the payoff of a decision is sometimes
postponed into the future, for instance, when selling stocks the actual payoff comes
the next day. These clarifications and extensions yield a more expressive framework,
which should be expressible through the syntax and semantics of the representation
language.

Furthermore, we specify what a welldefined IDIT is, and how we ensure that this
property is fulfilled. This property ensures that a unique decision can be identified as
the next decision to be taken, and is, therefore, an essential matter when modelling
decision problems involving time, and when solving them.

The solution sketch of [Broe et al., 2003] did not include a general description of how
to solve decision problems involving time, and this matter is solved in this thesis. We
describe how to solve an IDIT, and discuss the usefulness of the proposed solution
method. Having specified a solution method makes it possible to implement and
test the framework, which is a necessity if the framework should be usable, besides
as a means of communication. Finally, we discuss how the representation language
benefits as a means of communicating a decision problem involving time, and discuss
the benefits and difficulties of using the framework.



Chapter 3

Decision Problems Involving
Time

The purpose of this chapter is to recapture the ideas and parts of decision problems
involving time, abbreviated as DPITs, as presented in [Broe et al., 2003]. DPITs are
the foundation on which the rest of this thesis builds.

DPITs constitute a class of decision problems, in which time influences the decision
taking. Unlike decision problems, time quantified and plays a central part of the
uncertainty of observations, the order of events, and of preferences in DPITs. DPITs
share the fact that the concept of time directly influences the parts of the problem,
whether by increasing the uncertainty of an observation, yielding it impossible to
make an observation, or waiting until a certain point in time before taking some
decision. For instance, it may not be possible to observe the severity of an earthquake
right away and by waiting a period of time before dispatching help, the help can be
specialized and thereby save a lot of lives, however, the delay may cause many people
to die.

The concept of time also introduces an uncertainty in itself. Actions, which may be
executed with ease now, may be impossible to perform ten minutes from now, and
unforeseen events may change the amount of time it takes to perform even a simple
task.

In Section 3.1 we specify what a decision problem involving time, abbreviated as a
DPIT, is based on and present the parts it consists of. In Section 3.2 we present
the properties of DPITs, and in Section 3.3 we list requirements for a framework to
model DPITs, and a justification for these.

11
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3.1 Parts of Decision Problems Involving Time

A DPIT describes a collection of circumstances and choices and the association of
these to the decision taker. It also encompasses information of the wuncertainty of
the circumstances given the choices, the temporal order of circumstances and choices,
the preferences of the decision taker, and the time related to this information.

In the following sections we elaborate on these parts.

3.1.1 The Decision Taker

A decision taker is an entity, which encounters a series of choices, from which he
chooses a subset, based on his preferences. He is always thought of as an entity, that
is, if the decision taker represents a group of people, it is assumed that this group,
with certainty, bases its choices on the same set of preferences.

3.1.2 Variables in a Decision Problem Involving Time

A decision problem consists of a set of variables, a utility function, and relationships
between the variables. There are two types of variables, chance and decision vari-
ables. The set of chance variables is denoted as V¢ and the set of decision variables
as Vp. A chance variable is comprised of a set of mutually exclusive and exhaustive
circumstances, while a decision variable is comprised of a set of mutually exclusive
and exhaustive choices. This in turn means that the circumstances of a chance vari-
able and the choices of a decision variable each are conceptually related.

A choice is related to the decision taker as something over which he has direct con-
trol. A circumstance on the other hand is something over which the decision taker
can only have an indirect control.

If a variable, V, is known to be in one of its states, v, we call v its true state, and we
say that V is instantiated as being in v.

We say that the decision taker can choose a choice or take a decision. Chance vari-
ables can be observed meaning that the decision taker knows their true state.

The set of chance variables for a DPIT consists of two disjoint subsets, one is a set
of discrete chance variables, Vpc, and the other a set of time variables, V1, that
is, Vc = Vpc U V1. The set of time variables, VT, consists of two disjoint subsets,
one being the set of end-times for decisions, denoted as V¥, and the other the set of
free time variables, denoted V¥, that is, V1 = VU V. A time variable, T, in V§
is always associated with some decision variable, D, and, conventionally, we write
the decision, to which the time variables is associated, as subscript, in this case Tf.
We say that TJ represents both the end-time of D and the initiation-time of the
next decision to consider after taking D. The implications of this are discussed later.
When it is apparent from the context what type of chance variable is referred to, we



3.1 Parts of Decision Problems Involving Time 13

use the term chance variable, otherwise we use their full name.

The set of decision variables, for a DPIT, also consists of two disjoint subsets, one be-
ing a set of discrete decision variables, Vpp, and the other a set of wait decision vari-
ables, V. That is, the set of decision variables Vp is defined as Vp = Vpp U V.
Wait decision variables are continuous decision variables. A wait decision is always
a decision of how long to wait before taking the next decision, and we say that the
wait decision is referencing a decision following it in the temporal order. When it is
apparent from the context what type of decision variable we are talking about, we
use the term decision variable, otherwise we use their full name.

Some choices may imply that a timed action is to be executed. The execution of a
timed action takes some amount of time, thus time passes when executing the timed
action. A decision variable consisting of one or more choices implying timed actions
is called a decision variable involving time. A decision variable, which does not imply
the execution of a timed action, is called an instant decision, and when a choice for
an instant decision is executed, we call that choice an action. As actions do not
impose the passing of time, the initiation-time and end-time of an instant decision
is represented by the exact same point in time.

A decision variable involving time has a time variable associated with it, pinpointing
how long the chosen timed action takes. As the choice indicates how long it takes
to perform the timed action, the time variable represents an element of uncertainty
in the execution of a timed action. The amount of time it is assumed to take for
the timed action to be executed is known as the time span of the timed action. The
actual time it takes is the difference in time between the initiation-time and the
end-time of the decision at hand.

Furthermore, time variables represent the global time of the DPIT. That is, time
accummulates through the DPIT for each observed time variable.

3.1.3 The Utility Function

Choices are taken on the basis of some set of preferences. These preferences can
formally be described by a utility function. Before it makes sense to consider any
DPIT the preferences of the decision taker should be clarified, and a method for doing
this is to define a utility function for that DPIT. A utility function is a mapping of
each configuration of the variables of the decision problem to a real number reflecting
how preferable the configuration is. A utility function can be additively decomposed
to a set of local utility functions. That is, a utility function, U, of some DPIT, can be
defined as U = ) ' ; u;, where u; is a local utility function. The set of local utility
functions is denoted as V. Each local utility function maps the state spaces of a
proper subset of the variables in the DPIT to R, while U maps the state spaces of
all variables in the DPIT to R.

The specifications of a local utility function is, in principle, different for everybody,
as it depends on the subjective preferences of the individual, that is, the preferences
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of the decision taker. Therefore, a utility function can be any function, as long as it
is unambiguous, and there is a surjection between the combinations of states of the
variables influencing the utility function, and the number of possible outputs of the
utility function.

3.1.4 Relationships Between Variables

The chance and decision variables of a DPIT are related through the uncertainty of
the states of chance variables given decision variables. The joint conditional prob-
ability distribution for the chance variables in a DPIT given the decision variables
is P(Vc|Vp). The joint conditional probability destribution can be decomposed to
a set of conditional probability distributions, one for each chance variable using the
chain rule for influence diagrams.

Each choice is chosen based on a set of observations and the relevant past of that
decision variable. The relevant past of some decision variable, D, is represented
through the observation function, obs4 (D). obs(D) is the set consisting of the
decision itself, the set of variables observed before D is taken at time t, and obs— (D)
where D’ is the decision taken immediately before D.

Other relations between variables include how the effects of time may restrict the
state space of a decision variable. This type of relationship is a restriction, which
is represented by a restriction function. A restriction function on a decision, D, is
a function, which maps the state spaces of a set of variables influencing D to some
subset of the state space for D. That is, a function, vy :sp(V) — sp(D), where V
is the set of variables restricting D. The set of restriction functions for a DPIT is
denoted as Q. The subtyped t denotes that Qy is defined for every point in time, t.

A restriction function between variables can also refer to a chance variable only being
observable within a specific time frame. For instance, if some test is performed and
the result of the test is available to the decision taker after ten hours. The decision
taker cannot use the information given by the best result, if he takes a decision after
only five hours of the test has been performed. The test result is still available after
ten hours, but it simply has no influence on the decision it was meant for, as the
decision has already been taken.

We constrain decision variables to include at least one choice for any given point in
time. This choice should still be conceptually related to the other choice, in such a
manner that the extra choice makes sense. In other words, the decision taker must
always be able to choose at least one choice for every decision variable.
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3.2 Properties of Decision Problems Involving Time

DPITs have some properties as a consequence of time in these problems. This section
describes these properties.

3.2.1 The No-Delay Assumption

A time variable associated with a decision represents both the end-time of this de-
cision variable and the initiation-time of the next decision variable, we call this the
no-delay assumption. The no-delay assumption states that between two decisions
time is fixed. This assumption ensures that observing chance variables is instan-
taneous, that is, chance variables are only observed immediately before a decision
variable at the point in time specified as the initiation time for that decision.

3.2.2 Temporal Order of Variables

The order in which decisions are taken in a DPIT, constitutes a temporal ordering
of these and all other variables. For instance, a decision on whether or not to harvest
crops on a field should not precede the decision of whether or not to sow the crops.
Not all cases of the orderings of decisions are as apparent as just illustrated though,
therefore an ordering of the decisions is specified for a DPIT. This ordering orders
the decisions and time variables, such that, the choice of one decision or possibly the
end-time of this decision makes it possible to unambiguously identify which decision
is to be taken next. DPITs allow two or more decisions to be unordered initially
with respect to each other, if, before taking any of the unordered decisions, a unique
order can be found.

Furthermore, decisions are ordered in relation to the time variables, such that, the
end-time of a decision is only known after the decision. We extend this to say that
the end-time of a decision is known before taking the next decision in the DPIT. Ob-
served chance variables, which influence some decision, D, are placed immediately
before D in the temporal ordering, unless they have already been placed somewhere,
that is, they influence another decision, which is placed before D.

DPITs do not have a total ordering of variables. However, as observations and deci-
sions are taken, an ordering emerges. Instead of the total ordering there is a partial
ordering, denoted as —, of decision and chance variables. This ordering orders the
decisions and time variables in relation to each other, and the discrete chance vari-
ables accordingly, but the discrete chance variables are not ordered with respect to
themselves.

When a variable, V| is said to be before another variable, V', in the temporal order
of a DPIT, V is either observed or taken before V', depending on whether V is a
chance or decision variable. And if V is said to be after V', V is observed or taken
after V/. When we write V — V', it means that V is before V' in the temporal order
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of the DPIT. If we want to be more specific and express that V is immediately before
V', we say so explicitly. For any two variables, V1 and V5, in Vp U V¥, there exists
an ordering, this is a transitive ordering, that is, if Vi - W and W — V,, where W
is some other variable in Vp U V¥, then it follows that Vi — V.

Furthermore, there exists a total ordering of all time variables, as a consequence of
time variables representing a global time aspect. This means that for every two time
variables, T and T’, in V1 are ordered such that either T — T or T — T.
Furthermore, if a time variable is a free time varaible, all discrete chance variables
influence this time variable are said to be prior to the time variable and are therefore
before the time variable in the temporal order.

The order of decision variables in a DPIT can be defined through the obs— function
for all decision variables in a DPIT, so some decision variable, D, is before some
other decision variable, D', iff obs (D) C obs?(D’ ). Through this ordering the
first decision variable of a DPIT can be found, and we define the initiation-time of
this decision variable to be zero.

o There is one decision, D, and a relation, obs3(D) C obsy(D’), for all
D’ € Vp \ {D}. We refer to D as the first decision variable of the DPIT. Fur-
thermore, there are no time variable influencing D, yielding the initiation-time
of D as zero.

Let D and D' be decision variables, such that D — D’, and let T§ and T§, be
the time variables associated with D and D', respectively. Then the following bullets

comprise what can be deduced from having the temporal order of chance and decision
variables in a DPIT.

T5 represents the end-time of D, and D is immediately before T{ in the temporal
order.

e There is no variable, V,in Vp U V7, such that D — V — Tf.

The end-time of D is less than or equal to the initiation-time of D’. If D is imme-
diately before D', then, because of the no-delay assumption, the end-time of D is
equal to the initiation-time of D’. That is, the timed action imposed by taking D
must end before D’ is initiated. And, consequently, T§, is greater than or equal to
T5.

e For all tp, tpr, and tpr in R, where T = tp, the initiation-time of D’ is
tpr, and TS, = tpw, it follows that, tp < tp/ < tpr. Furthermore, if D is
immediately before D', then tp = tp-.

If D’ is a wait decision variable, then there is always a time variable, T§,. If D is
immediately before D', then T, always represents a point in time, which is later
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than or equal to T§ plus the amount of time the decision taker has chosen to wait in
D', this we refer to as the delay of D’. In short the point in time D’ ends is always
the same as or later than the initiation-time in addition to the delay period chosen
at D.

o If there exists a wait decision variable, D', then D’ — T§, and, for all t;, d,
and tp in R, where the initiation-time of D' is t;, D’ = d, and T§, = tp, it
follows that t; + d < tp.

When T§, is immediately before D’ in the temporal order, T§ represents the
initiation-time of D’. This also holds if there are a number of decision variables and
no other time variable between T§ and D', TS then represents the initiation-time
and end-time of all intermediate decision variables, and these intermediate decision
variables represent instant decisions. That is, the point in time represented by Tf
also represents the initiation-time of D’.

o If T§ — D’ and there is no time variable, T', such that T§ — T’ — D', then,
for all t and tp in R, where T = t and the initiation-time of D’ is tp, it
follows that t = tp.

A result of the no-delay assumption and the fact that free time variables exist is
that a time variable, T, does not have to be influenced by the choice chosen at some
decision variable, D, but if this is the case, then no new decision variables may be
considered in the DPIT, as the no-delay assumption would be violated.

e If, for two time variables, Ty and T, where T; — T, there is no decision variable,
D, such that Ty is associated with D, then there are no decision variable D’,
such that T, — D', and T; and T, are considered free time variables.

This rule allows for several time variables to influence each other while not being
influenced by or influencing any decision variables. This means that utility functions
may be influenced by time, but not by the decision taker himself. This represents a
phenomenon we call a post-realized utility function.

As mentioned, the temporal order of a DPIT includes not only ordering time vari-
ables and decisions, it also includes the order of observing chance variables, which
constitutes a partial temporal order. Meaning that there is no predefined order of
observing chance variables, when taking decisions. The only rule is that, according
to the no-delay assumption, the observation of chance variables is instantaneous.
Chance variables, which are only observable in some specific time interval, have a
special role in the temporal order. Such chance variables can be observed only within
this specific time span.
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3.2.3 Decision Scenarios

A decision scenario for a DPIT is a list of circumstances and choices, which has a
utility attached to it. Each circumstance and choice in a decision scenario represents
a state of one variable in the DPIT, and a decision scenario respects the temporal
order of the DPIT. For each variable, represented in a decision scenario, we work
under the assumption that the decision taker has information of the past and future
of that variable. The future of a decision variable, D, is all decisions, which are to
be taken after D.

A decision scenario is a configuration of a subset of variables in a DPIT. The max-
imum number of decision scenarios of a DPIT equals the Cartesian product of the
state space of all variables. Therefore, in any DPIT there are an infinite number of
configurations, because of the continuous variables.

3.3 Representing Decision Problems Involving Time

As a consequence of introducing time, DPITs cannot be modelled by traditional
frameworks for modelling decision problems, as they do not present these models in
a compact nor a complete manner. [Broe et al., 2003] showed that traditional frame-
works tend to clutter with arcs when a DPIT is attempted at being modelled, and the
resulting models do not correctly model the continuity of time. Furthermore, DPITs
are asymietric, as a consequence of restrictions of decisions at given points in time,
which needs special frameworks, such as those presented in [Bielza and Shenoy, 1999]
and [Nielsen and Jensen, 2002], while still representing time correctly.

There is a possibility that some, or all, variables may be influenced by time, or
influence time themselves. In order to use a framework as a means of modelling
DPITs, these aspects must be expressible in the framework. Therefore a series of re-
quirements was proposed in [Broe et al., 2003], which, when respected, handles these
aspects.

The requirements proposed below are presented as rules for constructing a framework
for representing and communicating DPITs.

3.3.1 Requirements for Frameworks

The requirements presented here originate from [Broe et al., 2003], in which they
were concocted through an analysis of frameworks. This analysis resulted in the
discovery of problems with traditional frameworks when attempting to use them
for modelling a DPIT. The requirements only reflect what should be expressible to
model the aspect of time, but a framework for DPITs should be capable of modelling
any decision problem, that is, it should not lose any expressive power in the effort
of modelling DPITs.



3.3 Representing Decision Problems Involving Time 19

This description of the requirements is presented by first showing that there in fact
is a problem, then the requirement for solving the problem is presented, and finally
the requirement is explained more thoroughly.

When considering DPITs it is apparent that a means of representing the passing of
time, and time itself, is needed. There should be both an element of time, which is
controllable by the decision taker, and one, which has an element of uncertainty to
it, in order to handle, for instance, unforeseen delays in performing a timed action.
This need leads to Requirement 1.

Requirement 1
It should be possible to model time and wait decision variables. That is, the variables
in Vy U V7, should be expressible in the framework.

The introduction of these types of variables introduces the risk of having a framework,
which is hard to interpret, as additional types of variables have to be represented.
This is acceptable though, as this requirement yields a framework capable of repre-
senting time explicitly. This requirement also makes certain that time is represented
by continuous variables, as variables in Vyy U V1 are continuous.

As time often has an effect on what choices a person is presented with, a frame-
work for modelling DPITs has to be capable of representing decision variables, for
which the state space varies according to the point in time at which they are taken.
Requirement 2 introduces such possibilities.

Requirement 2

It should be possible to model decision variables, for which the state space varies
over other variables, and accurately portray the dependencies involved. That is, the
domains of restriction functions in Q; should be expressible in the framework.

A restriction function is a function, Q¢ : sp(obs¢ (D) \ {D}) x R + sp(D), where D
is the decision variable, which is being restricted, and R represents time.

As described above, time variables are continuous chance variables. The time span
of a timed action can be affected by other circumstances, for instance, the weather
can have an impact on how long harvesting some field takes. This calls for the need
to represent variables, which alter the end-time of decisions.

Requirement 3

It should be possible to model variables affecting the end-time of a decision. That
is, for every variable, T, in V{, the domain of the density function for T, obtained
from P(V¢|Vp), should be expressible in the framework.

This requirement states that the state space of a time variable may be restricted and
this should be expressible in the framework. Therefore, time variables can be condi-
tionally dependent on other variables, shown at least through the density function
of the time variable.
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In order to keep the model of a DPIT unambiguous, the next decision to be taken
and the observations for this decision must be identifiable. Furthermore, it should
be possible to always know what the decision taker bases his choices on, that is, for
different points in time different variables may be observed.

Requirement 4
It should be possible to model the time dependent observation function. That is, for
all decisions, D, in Vp, obs+ (D) should be expressible in the framework.

This requirement ensures that for all decisions, D in Vp, and all points in time, t,
there exists a function, obs—4 (D), giving the set of variables, which are observed for
any D at the point in time t.

Having time influence discrete chance variables is an aspect, which the framework
should be capable of modelling. That is, to have the possibility of having probability
distributions change over time.

Requirement 5

It should be possible to model time variables having an impact on discrete chance
variables. That is, the existence of a conditional probability distribution, P(C|X),
for some chance variable, C, in Vpc, for which some time variable, T, is in the
conditioning set, X, should be expressible in the framework.

This requirement introduces the concept of having discrete chance variables have a
time variable in their conditioning set. This way time not only influences what the
decision taker can control, but also the circumstances of the DPIT, over which he
has no direct control.

It is often not easy to comprise the preferences of a decision taker into one meaningful
expression, which can be calculated through a single utility function. By introducing
the concept of local utility functions, the preferences can be represented in a manner,
which is more easily understood. Different points in time can also influence the
preferences of the decision taker, this should also be expressible in the local utility
functions, thereby giving the framework more expressive power.

Requirement 6

It should be possible to model variables determining the value of local utility
functions. That is, the domain of all local utilities, u;, obtained from Vv, where
i={1,2,...,n}, should be expressible in the framework.

The local utility functions should be expressible, and should each encompass different
parts of the whole DPIT. This yields models more easily read and interpreted, and
gives a set of local utility functions, which can be realized at different points in time.

In addition to these six requirements for modelling time, [Broe et al., 2003] presented
three requirements, which were the main requirements focusing on the presentability
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of the models modelled using the framework. These are: unambiguity, compactness,
and easily read by humans. These requirements impose guidelines for frameworks,
representing DPITs. The representation language should present DPITs in a manner,
which does not confuse the reader by having redundant elements, which can be
misinterpreted. The representation language should consist solely of the elements
necessary for giving the decision taker the correct interpretation of the DPIT at
hand and the representation language should be presented in a manner, which is
intuitive for a human when examining the model.

We have, furthermore, found two requirements, which ensure that a framework for
modelling DPITs also can model post-realized utility functions and decisions, for
which the order of taking them changes due to the point in time they are to be
taken. In many real world decision problems the payoff of taking a tacision is not
necessarily realized right after taking the last decision of the decision problem. For
example, the total cost of a loan is not cecessarily known when taking the loan, as
the iterest rates fluctuates. Requirement 7 ensures this is modellable.

Requirement 7

It should be possible to model time variables, which are not associated to decision
variables, but have an effect on some local utility function. That is, having a time
variable, T, in the domain of some local utility function, U, should be expressible in
the framework.

As it is not always the case that decisions are taken in the same order, a framework
for modelling DPITs should make it possible to have time influence the order of
decisions.

Requirement 8

It should be possible to have time variables affect the temporal ordering of two
decisions. That is, D — D' at some points in time and D' — D at all other points
in time, should be expressible in the framework.

As we further require that we at any point in time know what decision is next, this
should also be ensured in the framework.

3.4 Summary

Through this chapter we have defined the concept of a DPIT. We have done this by
introducing the parts of a DPIT, and discussing which properties DPITs have. Fi-
nally, we have presented guidelines for how an every day problem can be expressed in
terms of a DPIT, and we have set up requirements, which help formulate a framework
for representing DPITs.
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Chapter 4

Representing Influence
Diagrams Involving Time

In Chapter 3 a special class of decision problems, which cannot be modelled using the
frameworks normally used for modelling decision problems was introduced. Modelling
DPITs requires that the representation language can model both the asymmetries
and the continuous elements of DPITs. In [Broe et al., 2003], a framework, IDITs,
which was tailored to represent these, was presented. In this chapter we recapture
the findings of [Broe et al., 2003] and extend the existing representation language to
handle the additional requirements.

We give an informal description of IDITs in Section 4.1, in which we present both the
qualitative and the quantitative levels in an informal manner and present examples
for clarification. In Section 4.2 we present the formal description of the aforemen-
tioned levels, and present definitions of the essential elements in this representation
language.

4.1 Informal Description of Influence Diagrams Involv-
ing Time

In this section we give an informal introduction to IDITs, which is the framework
for representing DPITs. We only discuss the representation language of the frame-
work and postpone the solution method to Chapter 5. We give semantics whenever
elements are introduced, and discuss how a DPIT is modelled using an IDIT. When
referencing elements directly related to DPITs, we do not specify the semantics again,
instead we refer the reader to Chapter 3 for these.

23
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4.1.1 Description of the Parts of Influence Diagrams Involving Time

IDITs were introduced to represent DPITs in a manner, which is compact, unam-
biguous, and easy to read for humans.

The framework is, as the name implies, based on influence dia-
grams [Howard and Matheson, 1981] and uses much of the same terminology.
The representation language is divided into a qualitative and a quantitative part.
The qualitative part is a directed labelled graph describing global information
regarding relations between variables and utility functions, and the quantitative
part describes local information relating to each variable or local utility function.
We describe each part in turn beginning with the qualitative part.

The qualitative part of an IDIT is a directed labelled graph consisting of nodes,
representing variables and local utility functions, and arcs, representing relationships
between these. The qualitative level of IDITs gives the reader an overview of the
DPIT without including numerical information for the variables, yielding it easy to
communicate. The nodes in an IDIT are divided into five sets in accordance to the
type of variable or function they represent. The five sets of nodes are: chance nodes,
time nodes, decision nodes, wait decision nodes, and utility nodes.

A decision node represents a decision variable from the DPIT. Graphically a decision
node is drawn as a rectangle. It can have a time node attached to it, representing
that it is a decision variable involving time, or not, if it represents an instant decision.
A wait decision node represents a wait decision. A wait decision node is drawn as
a double rectangle with a double semicircle attached. A wait decision node always
has a double semicircle attached to it and always has the decision it is referencing
as a direct child of the attached time node. Sometimes we refer to decision and wait
decision nodes simply as decisions.

A chance node represents a chance variable, and is illustrated by a circular node. If
a chance node represents a chance variable dependent on time, there is an arc from
a time node to the chance node.

A time node represents either the end-time of the decision it is attached to, or the
point in time some utility function is realized. A time node, representing the end-time
of a decision, is represented, graphically, in an IDIT by a double semicircle attached
to a decision node. A free time variable is represented by a double circle.

Local utility functions are represented in IDITs by utility nodes. A utility node is
drawn as a diamond shaped node. If a local utility function is dependent on time
there is an arc from a time node to the utility node.

Conventionally, we use a two letter abbreviation of the variable or function name as
a unique identifier of a node. When discussing IDITs we usually do not distinguish
between a node and the variable it represents, but if a distinction is needed, we refer
to the node by the abbreviation.

The nodes in an IDIT are connected by arcs, which, depending on the node the arc
emanates from, or is going into, have different semantics. We distinguish between
five categories of arcs, which are: informational arcs, dependence arcs, functional
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arcs, guarded arcs, and restriction arcs.

Informational arcs are arcs going into a decision or wait decision node and are drawn
as solid arcs. An informational arc represents two related concepts. It represents a
precedence of the nodes it connects, that is, the node from which an informational
arc emanates precedes the decision to which it goes in the temporal ordering. It also
represents that the decision taker has knowledge about the variable, from which the
arc emanates, before taking the decision. Having knowledge about a variable, means
to either have observed it as being in a specific state, if it is a chance or time variable,
or to have decided upon it when it is a decision variable. Like in influence diagrams,
IDITs operate under the no-forgetting assumption, [Howard and Matheson, 1981].
The no-forgetting assumption specifies that the true states of variables taken or ob-
served before taking the current decision are remembered, such that arcs from those
variables are omitted.

An arc going into a chance node, indicates a probabilistic dependence between the
chance node and the node, from which the arc emanates. We call these arcs depen-
dence arcs. The chance variable, the arc goes to, is conditionally dependent on the
variable, from which the arc emanates. The absence of a dependence arc indicates
that the chance variable is conditionally independent of the variable given its par-
ents.

A functional arc is an arc going to a utility node. A functional arc specifies that the
local utility function has the variable, from which the arc emanates, as one of its ar-
guments. If the node is a time node, the arc specifies that the utility node represents
a time dependent utility node.

A guarded arc is an informational arc associated with a boolean function. A guarded
arc represents that the node, the arc emanates from, is only observed or decided
upon in the time spans satisfying the function. The boolean function is referred to
as a guard, and the guarded arc is drawn as a labelled arc in the IDIT. Guards
are restricted to those involving time, meaning that a guard must reference a time
variable in order to be evaluated. Instead of explicitly stating which time variable is
referenced, it is by definition given as the time variable representing the initiation
time of the decision to which the guarded arc goes. As long as the guard on an arc
is satisfied the arc has the same semantics as an informational arc. We do not allow
guards on dependence arcs.

A restriction arc indicates that the true state of the variable, the arc emanates from,
restricts the state space of the variable, the arc is going into. Restriction arcs can
only go to decisions, as restrictions on chance variables are emulated by setting the
probability of the illegal states to zero. A restriction arc represents both an infor-
mational arc and the restriction of the decision, the arc goes to. Restriction arcs are
drawn as dashed arcs.

For IDITs we assume that chance and decision nodes may not be barren nodes. That
is, all chance and decision nodes have at least one child. [Shachter, 1986] argues
that the removal of barren nodes is permitted. Furthermore, as it semantically
does not make sense to have one variable or utility function being realized at two
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different points in time, IDITs do not allow a node to be the child of more than
one time node. Finally, we do not allow utility nodes as parents of other nodes.
The past of a node, V, is the set of nodes which are before V in the temporal
ordering. For DPITs we specified the set of observed variables, obs?(D), for some
decision, D, and the set of prior variables, prior(T), for some free time variable,
T. For IDITs the sets are defined as follows: obs?(D) ={V|(V\D)€e E,V € Vc}
prior(T) ={V|(V,T) €E,V € obs (D) for any D € Vp,V € Vc and T € V¢}.
That is, the set of variables in obs?(D), is the set of chance variables, which have
an informational arc going to D. If there is a guard on the informational arc, the
variable, it emanates from, is in obs?(D) only if the guard is evaluated to true,
given the configuration of the last observed time variable. The set of variables in
prior(T) is the set of variables, which have a dependence arc going to T, and which
are not in the set of observed variables for any decision.

As opposed to influence diagrams IDITs are allowed to include cycles, if guards ensure
the cycles are broken, given any configuration of the past of the node the guarded
arc goes to. Thus, when solving the IDIT, it results in an acyclic graph. That is, if a
cycle exists there needs to be two guards in the cycle, which are mutually exclusive.
The arcs in IDITs further constitute the partial ordering of all nodes ensuring there
is a path containing all time and decision nodes. If a cycle between two decision
nodes exists, the order of these can only be deduced when a configuration of the
past is given.

In order to clarify the graphical representation of an IDIT, we have chosen to redefine
the semantics of guarded arcs, from the definition presented in [Broe et al., 2003].
In [Broe et al., 2003], guarded arcs were inherited throughout the IDIT until the
guard was satisfied, or a new arc was introduced, such as the arc, (C, Dy, true), in
the graph of Figure 4.1. This definition is, however, not intuitive as the guard, g,
may never be true as a consequence of time only progressing. For instance, if g is
t < 4, and the point in time at Dy is taken is five, the guard would never become
true for any of the following decisions.

Instead, we require there being an explicit arc in the IDIT if it should be observed
at a later point, in the case where a guard on an arc has been evaluated to false.

Figure 4.1: A guarded arc, g, from a chance node, Cy, which is rendered obsolete as
a new arc is introduced from Cy.
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The model of Figure 4.1 is still legal, but it means something different. Now, even if
g is satisfied somewhere in between D7 and Dy, Cy is not observed when taking Dj.

To illustrate the elements of an IDIT, we present Example 1, in which we discuss a
DPIT we call the Search and Rescue Problem.

Example 1

In this example we describe a DPIT, which revolves around the search and rescue (SAR)
mission, taking place whenever a person is reported missing in a specific area. In this example,
this area is known as Lost Dale. The decision taker of this problem is the SAR director of
Lost Dale.

The area around Lost Dale is a mixture of forest and mountains, where people occasionally
lose themselves in the valley. Whenever a person is reported missing, the SAR director
assesses the situation at hand. Based on, amongst other things, the person missing, rescue
teams are dispatched to find the missing person. After some time it is possible to get a heat
signature of the entire area, giving an indication of where the missing person is. If a missing
person is found, the SAR director receives a reward based on the success of the mission and
the condition of the person, that is, if the person is alive or dead.

The SAR director has three decisions in this decision problem, namely Mobilization (Mo),
When to begin searching (Ws), and Search (Se). As many people visit Lost Dale and it often
happens that somebody gets lost for a couple of hours, a SAR mission is first initiated 12
hours after the actual report of the missing person has been filed.

Lost Dale does not itself have SAR teams, but can issue some from neighbouring towns.
The assembly of SAR teams therefore takes time, and the SAR director therefore has the
possibility of mobilizing the teams before the initial 12 hours have passed.

Mobilization is a decision of which teams, if any, should be mobilized when a person is
reported missing. The possible choices of the decision are none, SAR dogs, helicopters, and
both. both being the combination of sending for helicopters and dogs. SAR dogs are capable
of searching the forest, whereas a helicopter cannot see through the thick foliage, but it is
better at searching the mountains. The choice of Mobilization influences when the search can
begin as it takes time to assemble the teams. It takes at least 12 hours to get a helicopter to
Lost Dale, and 18 hours to get dogs. When both SAR dogs and helicopters are needed two
additional hours are used to get a joint strategy, thus the assembly of both takes 20 hours.
When to begin searching is a wait decision, which postpones the actual search decision until
the SAR teams are assembled. As it is a wait decision it has a continuous state space.
Search is the decision in which the SAR director chooses in what part of Lost Dale to
concentrate the search. As Lost Dale is part forest and part mountains the state space of the
decision is nowhere, forest, mountains, and both, where both is a combination of searching
both the forest and the mountains. nowhere, is the only choice available until the point in time
the teams have been mobilized. Searching through the forest using the dogs takes 36 hours,
whereas it is not possible to do a search of the forest using only helicopters. Searching the
mountains with helicopters takes 18 hours, while it takes 80 hours searching the mountains
using only the dogs.

At the choice of which team to mobilize the profile of the person missing is observed. The
SAR director classifies missing persons into three categories, which are modelled in a chance
variable, Missing person (Mp), these categories are: the lost girl category, the average male
category, and the eager danger seeking male category. These are also the names of the states
of the variable. Missing person influences a chance variable, Location of the missing person

(Lp).
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Location of the missing person is the actual location of the person. The states of the chance
variable are forest, and mountains. This chance variable influences three other chance vari-
ables, namely Survivability (Su), Found (Fo), and Heat signature (Hs).

Survivability represents the chance of the missing person being alive or dead when found.
This chance variable is also influenced by the weather and the amount of time the search
takes. The states of the chance variable are alive, and dead. The reward for the SAR director
is dependent on the state of this variable.

How well the search has gone is modelled in Found, that is, if the missing person is found
or remains lost. Besides Location of the missing person, the chosen area for the search, and
the time the search ends, influences this chance variable. The two states of this variable are
found and lost. The reward for the SAR director is also dependent on this variable.

The possible heat signature is modelled through the chance variable Heat signature. If the
SAR director waits 48 hours before taking the decision on where to search, he has a heat
signature of Lost Dale, indicating the location of the missing person.

In Lost Dale the Sun normally shines at least six days of the week, and as it has never rained
or snowed two days in a row, it is assumed that it rains or snows at most one day each week.
Weather (We) is the chance variable, which models if it will rain or snow one day during the
search, or if it will stay sunny. It has three states: sunshine, rain, and snow. If it rains the
search will be delayed by eight hours, and if it snows the search will be paused for 24 hours.

There are three local utility functions in this decision problem, namely, Cost of mobilization
(Cm), Cost of search (Cs), and Governmental support (Gs). Governmental support represents
a monetary support which the SAR director receives to cover the expenses of a SAR mission.
The government rewards the SAR director $50,000 for finding the missing person and a bonus
of $50,000 if the missing person is alive when found. Cost of search is dependent on time in
the sense that the cost increases as long as the search continues. If the person is not found
within a week after the person is reported missing, it is assumed that the person will not
be found, as this gives enough time to both get the heat signature and search through the
entire area. At this point the active search is discontinued, and the only trace of it is a file
at the SAR director’s office.

The described DPIT is modelled using an IDIT, and the resulting IDIT is depicted in Fig-
ure 4.2. O

Looking at the SAR problem, we see how an IDIT represents a DPIT. The IDIT
starts at the first decision node, which is Mo. Before taking the decision the deci-
sion taker observes who the missing person is. This is illustrated in Figure 4.2 by
the informational arc from Mp to Mo. Furthermore, it should be noted that Mo
represents an instant decision shown by the lack of an attached time node. The cost
associated to mobilizing is depicted by the utility node Cm, having a functional arc
into it from Mo.

The decision following Mobilization is the wait decision Ws, which has a time node
attached in accordance to the rules of wait decisions. The node and the attached
semicircle should be thought of as two separate nodes, where there exists a solid arc
from the decision node to the time node. The contraction of these are due to ease
of reading, as the IDIT otherwise would clutter with arcs. Ws, and the time node
attached to it, illustrates how IDITs on the qualitative level handle Requirement 1
for frameworks modelling DPITs.
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Figure 4.2: An IDIT modelling the SAR problem.

Continuing through the IDIT of the SAR problem the next decision node is Se,
which is restricted by the choice taken in Mobilization and the end-time of When to
begin searching, as shown by two the restriction arcs. These restriction arcs depict
how IDITs handle Requirement 2 on the qualitative level.

Before taking the decision, the decision taker observes Weather and if the initiation-
time is greater than or equal to 48 hours, Heat signature is also observed. The latter
shows an example of a guarded arc, which is how IDITs satisfy Requirement 4.

Cs, which represents the cost of searching, is influenced by the choice of Mobilization
and the end-time of Search. This is illustrated by having functional arcs from both
Mo and the time node attached to Se going to Cs. The node is an example of a
utility function dependent on time, and shows how IDITs handles Requirement 6,
on the qualitative level.

The end-time of Search is influenced by the choice taken in Search, the end-time of
When to begin searching, and Weather. The fact that the end-time is influenced by
Weather can be seen directly in the IDIT by the dependence arc emanating from We
going into the time node. This illustrates how IDITs handle Requirement 3. That the
end-time of Se is influenced by the end-time of Ws cannot be seen in the graphical
representation. This is a deliberate choice to avoid the diagram cluttering with arcs.
The remaining chance variables are never observed or observed too late to have an
impact on taking decisions. Lp represents an ordinary chance variable and the arc
going into Lp represents conditional dependence. Su and Fo both represent chance
variables dependent on time, which is illustrated by the dependence arcs emanating
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from the time node attached to Se. This illustrates how IDITs handle Requirement 5.
Besides the dependence arc from the time node both have other dependence arcs go-
ing into them, illustrating the rest of their conditioning sets.

The SAR problem does not include any occurrences of post-realized utility functions
or cycles. To illustrate how these are handled by IDITs we present an example we
call the software release problem. We have split the example in two, one in which
we discuss cycles, and one in which we discuss post-realized utility functions. The
examples are presented in Example 2

Example 2

This DPIT takes outset in a software development project. We focus on two different parts
of the process. The first part we look at concerns the transition from the analysis phase to
the design phase, and the second part concerns what might happen after the software has
been released. The two examples have been simplified for ease of understanding.

Consider a software development scenario in which the analysis is about to be concluded.
The two decisions following this are one concerning prototyping and one concerning design.
With an object-oriented approach, the order in which these phases is taken should not
matter [Mathiassen et al., 2001]. The factor, which determines which phase to begin, could be
the amount of time the analysis has taken. That is, the end-time for the analysis determines
in what sequence the prototyping and the design phases are taken.

This gives three decisions for the first part of this example. These are Analysis (An), Proto-
typing (Pr), and Design (De).

To keep this simple, all decision variables have a binary state space. The choices for Analysis
are cursory analysis and thorough analysis. Choosing a cursory analysis results in the phase
taking two months, while choosing a thorough analysis results in four months of work. We
refrain from determining the state space of Prototyping and Design, as these have no impact
on the focus of this example.

These characteristics introduce a cycle in the IDIT. In order to make it a valid cycle, there
must be guards on all arcs in the cycle, and these guards must be mutually exclusive, such
that any configuration of the last time variable before the cycle, breaks the cycle. Figure 4.3
depicts the resulting IDIT.

]

[ AnD) N
—

06 > 1%

5e]

Figure 4.3: A cycle between the decisions Pr and De.
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In Figure 4.3 - - - denotes the sets of variables observed or decided upon before Analysis and
after either of Prototyping and Design, respectively.

Being able to model cycles gives the framework more expressive power. And it opens the
possibility of having IDITs more correctly portray how we handle problems we are faced
with in our every day life, problems similar to the one just described, where we know we
have more than one thing to do, and time helps us decide in which order we do things.

The second part of this software development scenario concerns the release part of the pro-
cess. The project manager has one decision to consider in this part of the software develop-
ment process. This decision is Release (Re), and the states of Release are now, postpone two
weeks, and complete missing bits. If the software manager chooses to postpone two weeks,
the time is used to either complete some missing tests or correct errors found during testing
of the software.

There is one chance variable, Faults found after installation (F'i), which has the states 2, 10,
and 25. Where each state indicates the number of errors and crashes after 100 executions of
the software. This chance variable is influenced by the end-time of Release and a number of
variables not present in this simplified DPIT.

After the software has been released the customer tests it, and if he experiences crashes of
the software, or finds other faults in it, he sends back a description of these unfortunate
occurrences to the software company. The software company is then obligated to correct
this as best it can. The software company has no direct influence over whether the customer
finds any flaws, or how long it takes before the customer contacts the software company with
these. The amount of flaws has an impact on some extra expenses, which goes to wages and
compensation to the customer, as he is forced to wait even longer before he can put his much
needed piece of software to work. This amount of extra expenses is represented as a local
utility function, which is realized at a point in time, which is later than the last decision in
the DPIT.

To represent that some time passes after the software has been released, a free time variable,
T', is present. This represents the time period between actually releasing the software, that
is, the end-time of Release, and the point in time the local utility function is realized.

The local utility function for this example is named FExtra expenses, and represents the
amount of money the software company spends on correcting possible errors in the software.
Extra expenses represents a post-realized utility function.

Figure 4.4 depicts the IDIT for the second part of this example.

(1 )—<e>
()

Figure 4.4: An IDIT modelling the second part of the software development problem.

In Figure 4.4 --- denotes the set of variables observed or decided upon before considering
Release.
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It should be noted that there may be multiple cycles and post-realized utility functions in
an IDIT, but, as per the definition of post-realized utility functions, no decisions may be
present after the first occurrence of a post-realized utility function. a

The quantitative part of IDITs represents the local information relating to the in-
dividual variable or utility function. The state space of each variable is an example
of the information hidden in the quantitative level of IDITs. Other than this the
quantitative level consists of four sets, these being: a set of probability distributions
for the chance variables; a set of local utility functions; a set of density functions for
the time variables; and a set of restriction functions.

For each chance variable in the DPIT the set of probability distributions contains a
conditional probability distribution for the chance variable given its parents.

The set of utility functions consists of all local utility functions. A local utility func-
tion maps each configuration of its parents into a real number representing the
preferences of the decision taker.

For each time variable, T, in the IDIT, the set of density functions include a density
function describing the conditional probability distribution of T given its parents as
the conditioning set. The uncertainty of the time variable is shown by the degrees of
freedom the density function has.

The set of restriction functions consists of all restrictive functions in the DPIT. Such
functions are either related to the guards on arcs or the restriction of the state
space of some decision as a consequence of the configuration of the time variable
representing its initiation-time.

To give an impression of the quantitative level of an IDIT, we describe the quanti-
tative part of the SAR problem in Example 3.

Example 3

In Example 1 the qualitative level of the SAR problem was described. The example also
discussed the state space of the variables in the DPIT, which in fact is a part of the DPIT
belonging to the quantitative level. We, however, choose to present the states of the variables
in Example 1, to give the reader a better idea of how the DPIT is modelled, and to give the
reader a more intuitive approach to the SAR problem.

IDITs represent the SAR problem on the quantitative level by four sets of functions. IDITs
specify a conditional probability distribution for each chance variable given its conditioning
set and a density function for each time variable. The conditioning set can be deduced from
the qualitative level, as the set of parents of the chance node. One way of representing these
probability distributions is by a set of tables, where each table represents the conditional
probability distribution for one chance variable.

The marginal probability distribution for Missing person is given in Table 4.1(a). Location of
missing person has a conditional probability distribution with a conditioning set consisting
of Missing person, and is presented in Table 4.1(b).

The conditional probability distribution for Heat signature given Location of missing person
is shown in Table 4.2(a) and Table 4.2(b) shows the marginal probability distribution for
Weather.
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Mp
lg am em
lg am | em I fo | 0.8 | 0.55 | 0.2
03| 0.5 | 0.2 P Yo [ 02 [ 045 | 0.8
(a) (b)

Table 4.1: (a): The marginal probability distribution for Missing person.(b): The con-
ditional probability distribution for Location of missing person given Missing person.

Lp
fo | mo
Hs fo | 0.8 | 0.1 sU ra sn
mo | 0.2 | 0.9 0.7 { 0.2 | 0.1
(a) (b)

Table 4.2: (a): The conditional probability distribution for Heat signature given Lo-
cation of person.(b): The marginal probability distribution for Weather.

The conditional probability distributions of the two chance variables, which are dependent
on time, are described in the quantitative part of IDITs by two functions which takes a
point in time, and a set of parameters, which is found using the discrete variables of the
conditioning set, as their arguments, and returns the probability of the variable given the
conditioning set.

Survivability has a conditioning set consisting of the discrete variables Location of
missing person and Weather and the time variable T¢,. The function describing
P(Su=allWe, Lp, T¢,) is:

s(t,c) =(1—=0¢)t,

and P(Su = de/lWe,Lp,T§,) is 1 — s(t,c), where c is a parameter given by the discrete
variables, and t the time given by T¢,. The values of ¢, is found in Table 4.3(a).

Thus, the probability of survival is dropping towards zero as time passes. For instance, the
chance of surviving 48 hours given the missing person is in the mountains and it stays sunny,
is $(48,0.02) = 0.38. This function is depicted in Figure 4.5.

Found has a conditioning set consisting of the discrete variables Location of missing person
and Search and the time variable T¢,. The probability of found is described by a function,
f, which is given as:

fle,t) =c,
where c is given by Table 4.3(b), and t is the point in time represented by T¢..

The two conditional probability distributions for Survivability and Found are examples of
how IDITs represent chance variables being dependent on time, that is, how IDITs satisfy
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Lp Lp
fo mo fo mo
su | 0.005 | 0.02 fo | 0.03 0
We | ra 0.01 0.05 Se | mo 0 0.05
sn 0.05 0.08 bo | 0.03 | 0.05

(a) (b)

Table 4.3: (a): The table of parameters for Survivability given Weather, and Location
of missing person. (b): The table of parameters for Found given Search, and Location
of missing person.

5(x,0.02) ——

0.6 - .
04 - .

0.2 - .

0 | | | |
0 20 40 60 80 100

Figure 4.5: The time dependent probability function for P(Su = sulWe,Lp, T¢,).
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Requirement 5 on the quantitative level.
The idea is to specify a function, which takes a set of arguments consisting of parameters
found using the configuration of discrete parents and the point in time it is realized and
mapping this to a single value, which is the probability of this exact configuration. In the
cases such as the ones illustrated here, both variables have binary state spaces, which makes
the summation of probabilities to one a simple task, as one state has the probability p and
the other automatically has the probability 1 — p. In cases with larger state spaces it is
necessary to have a different table for each state, and the probability of each state is given
by:

f(C = Cy,t)

ZC f(C) t) ’

When mobilizing for a SAR mission, the SAR director pays expenses according to the choice
taken at Mobilization. If he has chosen not to mobilize anything he pays nothing. The mobi-
lization of SAR dogs costs $2,000, and the mobilization of helicopters costs $8,000. The cost
of mobilizing both dogs and helicopters is the sum of those two, thus $10,000.

The local utility function for Cost of Mobilization is given in Table 4.4

no do he bo
$0 $2,000 $8,000 $10,000

Table 4.4: The local utility function for Cost of mobilization.

The cost of searching depends on what type of searching is initiated. Dogs cost $100 per hour
during the search plus $1,000 at the beginning of the search period. Helicopters cost $500
per hour of the search mission. The cost of searching with both dogs and helicopter costs
an additional $500 per day to cover expenses for communications between the two search
parties.

The local utility function for Cost of search is a time dependent utility function, realized as
three linear functions one for each state of Mobilization. The three functions are: for dogs
the function is ul(t) = 1,000 + 100t; for helicopters the function is u2(t) = 500t; and for
both the function is u3(t) = 1,000(500/24 + 100 + 500)t, and are illustrated in Figure 4.6

As can be seen from Figure 4.2 the time node, Ty, is only influenced by the choice at
When to begin searching. The density function should express: zero probability states for
the interval of the time variable, [0 : ws[, where ws is the point in time chosen at Ws; a
large increase in probability immediately after the number of hours chosen in Ws, and then
the probability goes towards zero after a few hours. These restrictions to the probability
distribution of Ty, are a result of the semantics and representation of time variables. If
the choice at When to begin searching is 18 hours, the density function of Ty, could be as
depicted in Figure 4.7, with 1.50 degree of freedom.

The density function of the time variable, T¢,, associated with Search is influenced by Ty,
Search, Mobilization, and Weather. The choices of Mobilization, Search and the true state
of Weather implies which arguments are to be supplied to the density function. Table 4.5
illustrates these arguments. The arguments are on the form (a,b), where a is the degree of
freedom, and b is the displacement on the x-axis. The displacement of some time variable,
T§, is determined by the end-time of the time variable in pa(Tg). In Table 4.5 entries of the
form (0,0) indicate invalid configurations.
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50000 : - .
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Figure 4.6: The time dependent utility function for Cost of search.

" chi(x,1.5,18) ——

0.8 -
0.6 -

0.4

0 | | | |
18 19 20 21 22 23

Figure 4.7: The density function for T3,.



4.1 Informal Description of Influence Diagrams Involving Time

37

Se
fo mo bo
Mo Mo Mo
do he bo do he bo do he bo
w su | (5.5,36) | (0,0) | (0,0) | (6.5,80) (3,18) (6.5,80) (8,116) (0,0) | (5.5,36)
¢ Ira | (7440 | (0,0) | (0,0) | (8.5,88) | (3.5,26) | (8.5,88) | (13,124) | (0,0) | (7,44)
sn | (11,60) | (0,0) | (0,0) | (11,104) | (4,42) | (11,104) | (20,144) | (0,0) | (11,60)

Table 4.5: The table of arguments for TS, given Weather, Mobilization, and Search.

The function for T§,, given a mobilization of both dogs and helicopters; the end-time of
waiting being 21 hours; and having decided to search both forest and mountains gives,
dependent on the weather, one of the three density functions illustrated in Figure 4.8.

0.3 T T

chi(5.50, 57.00, x

chi(7.00,65.00,x) - - - -
0.25 - chi(11.00,81.00x) ------- i
0.2 - i
0.15 | i
0.1 i
0.05 i

0 == 1 Lot

90 100 110

Figure 4.8: Three functions for TS, for different states of weather.

This is an example of how IDITs express the uncertainty of time, in a manner satisfying
Requirements 1, 3, and 5 for time variables on the quantitative level.

A constraint the SAR director must take into consideration, when deciding what to do, is
the one which is imposed by his choice for Mobilization setting a constraint on when the
searching can begin, as the SAR teams have to reach Lost Dale first. The extent of this
constraint is described in Example 1.

Finally, if the SAR director wants to have a heat signature, before choosing where to search,
he has to wait until the 48th hour, before taking the search decision.

In the SAR problem there is only one decision which has a restricted state space. Further-
more, there is a guard on one arc. The set of restriction functions therefore consists of these
functions.

The state space of Search is restricted by the end-time of When to begin searching and the
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choice of Mobilization. This yields the following restriction function:

(Mo = do, and Tgs < 18 = {no}
Mo = do, and Ty, > 18 = {no, fo, mo, bo}
Mo = he, and Ty, < 12 = {no}
Mo = he, and Ty, > 12 — {mo}
Mo = bo, and Ty, < 20 = {no}
Mo = bo, and Ty, > 20 — {no, fo, mo, bo }

fSe =

The guard on the arc between Hs and Se results in the following restriction function:

fo, _ [ Thve <48 = Hs # obsy(Se)
¢ 7| T8 > 48 — Hs € obs—(Se)

The restriction functions for Search illustrate how IDITs handle Requirement 2 for frame-
works modelling DPITs. a

We refrain from presenting the tables, density functions, and utility functions for the
software release problem, as the information they provide is not essential in under-
standing how cycles and post-realized utility functions are represented in IDITs.

4.2 Formal Description of Influence Diagrams Involving
Time

In this section we give a formal definition of both the qualitative and the quantitative
levels of IDITs.

We begin by describing the qualitative level, in which we present a formal definition
for the syntactical parts of an IDIT. In order to put this into a “real world” context,
we illustrate this using the SAR problem. Following the discussion of the qualitative
level, we give a definition of the quantitative level of IDITs, which is followed by
discussions of the elements presented in this definition.

4.2.1 The Qualitative Level of Influence Diagrams Involving Time

The qualitative level of an IDIT consists of a labelled directed graph, which must
follow a set of syntactical rules for the correlation of the elements of the graph. To
put this formally we refer to Definition 4.1. The rules are discussed informally after
the formal description.

Definition 4.1 (Qualitative Level of an IDIT)
Let T = (V,L,E) be a labelled directed graph, with nodes V, labels L, and arcs E.
The nodes can be partitioned in six disjoint subsets: Vpc, V5, Vr, Vpp, Vw, and
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Vu, where they hold nodes representing discrete chance variables, time variables
representing end-times of decisions, free time variables, discrete decision variables,
wait decision variables, and local utility functions, respectively. Furthermore, the set
Vpp U Vi constitutes the set of decisions, Vp; the set V5 U VF constitutes the set
of time variables, V1; and the set Vpc U VT constitutes the set of chance variables,
V. The set of labels consists of functions, f : R — {true, false}. Furthermore, the
edges can be partitioned in two disjoint sets: Eg and Eq. Eq is the set of restriction
arcs, and are a subset of V x V. And £ represents the set of the remaining arcs, and
are a subset of V x V x L. Then Z is an IDIT, modelling some DPIT, if it satisfies
that:

1. for all V in V, |pa(V)N V7| is zero or one,
2. for all V in Vp U V¢, ch(V) # @,
3. for all V in Vy ch(V) =@,

4. there is a directed path, P, in T, such that Vp U VT is a subset of the nodes
of P for every possible configuration of the variables in V,

5. for all V and V' in VT, there is a path from V to V', if not, then there is a
path from V' to V,

6. for all TS in V§ there exists a D in Vp, such that T§ is in ch(D),

7. for all D in Vi, ch(D) equals {T§}, where T§ is in V%, and (D, T§, true) is in
Eg, and there exists a decision D' € Vpp, such that (T§, D' true) is in Eg.

8. for all T in V there does not exist a D, such that D is in de(T),
9. for all (V,D) in E4, D is in Vp, and

10. for all T € V1, there exists a T' € V, for which it holds that T' € pa(T), or
Vi \{T} C de(T).

In order to keep IDITs simple all arcs, besides restriction arcs, are associated to a
label. Conventionally, we label all unguarded arcs with the label true.

To ease the reading of the graphical representation of an IDIT, we do not print the
label the unguarded arcs. To separate the unguarded arcs from the arcs of E4, we
draw the arcs of E4 as dashed arcs.

The rules of Definition 4.1 ensure that the directed labelled graph follows the syntax
of IDITs. (1) ensures that two time nodes cannot be parent of the same node, and (2)
removes the possibility of barren nodes. (3) specifies that utility nodes cannot have
children. (4) secures that there exists at least one path through all time and decision
variables, and (5) says that two time variables are ordered by a path between these
two nodes. (6) ensures that all time variables representing end-times of decisions are
associated to a decision, (7) says that wait decisions always have an end-time, and
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that there exists a decision following the wait decision and (8) ensures that free time
variables are only found after the last decision, which is a consequence of the no-
delay assumption. (9) says that restriction arcs are only allowed into decision nodes.
(10) ensures that time variables form a path, when also respecting (1).

Besides these rules the IDIT must follow the semantics of arcs and nodes as discussed
in Section 4.1 and the requirements presented in Chapter 3.

To illustrate the qualitative level of an IDIT, the SAR-problem of Example 1 is
presented formally.

Example 4
The graphical representation of the SAR problem can be seen in Figure 4.2. Formally, the
SAR-problem is specified as below:

V ={Mo,Se,Ws}U{Mp, Lp, Hs, Fo, Su, We, Ty, T$.} U{Cm, Cs, Gs}.

L = {true,t > 48}.

E = {(Mvapvtme)a (Mp)Movtme)a (vaHSvtme)a (Lp)FOvtme)a (vasuvtme)a
(Mo, Cm,true), (Mo,Cs,true), (Mo, Ws,true), (Mo,Se), (Mo,Se,true),
(Hs, Se, t > 48), (T Se)s (Tyys Se, true), (Su, Gs, true), (Fo, Gs, true),
(Se,Fo,true), (T§,,Cs,true), (T§, Fo,true), (T§,,Su,true), (We,Se, true),
(We, TS, true), (We, Su, true), (Se, TS, true), (T, TS, true), (Ws, Ty, true)}.

The SAR-problem satisfies all the rules of the qualitative level of an IDIT. (1), (2), (3),
(9), and (10), are obviously satisfied, and (4) is fulfilled by the path (Mo, Ws, Ty, Se, T§.),
and so is (5). (6) is satisfied by the arcs (Ws, Ty, true), and (Se, TS, true), and (8) is
not applicable in the SAR-problem as there are no post-realized utility functions. The arcs
(Ws, T, true), (T Se), and (T, Se, true) satisfy (7). a

Definition of a Temporal Ordering

In Chapter 3 we discussed the temporal ordering, —, of a DPIT. This temporal
ordering is reflected in the qualitative level of an IDIT and sets the order in which
an IDIT is read.

Definition 4.2 defines the temporal ordering of the variables given time, <4, for an
IDIT. The temporal ordering is a total ordering of time and decision variables and
a partial ordering of the set of all variables, as it does not order the discrete chance
variables. We assume that, to each decision variable, D, there is a time variable, T,
associated.

After defining the temporal order, we discuss an operational approach for finding it.

Definition 4.2 (Temporal Ordering, <)

Let T = (V,L,E) be an IDIT; T some configuration of the variables in V§ U VF;
Dy, Dy, ..., Dy an ordered sequence of nodes in Vpp U Vyy, where D; is taken
immediately before taking Diy1; I the subset of Vpc, which is observed before Dy;
and L, 1 the subset of Vpc, which is never observed, or observed too late to have an
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influence on any decision or time variable. Then the temporal order of T is defined
as:

I <p D1 =<3 T, <3¢ - In <3 Dn <3 T,
prior(Tq) <3 T+ prior(Ty) <p Tn <3 Loy,

where T, are time nodes representing end-times for decisions and T; are free time
s
nodes.

The temporal order as shown in the definition is found by identifying the first decision
of the IDIT; identifying its set of observed variables and its associated time node, if
it has any; and then ordering these accordingly. For any time node found, it must
be configured to some state, as to resolve any possible guards affecting the set of
observed variables for the next decision. For all time nodes, the configuration of the
last time node must be remembered and taken into consideration. Then the ordered
nodes are removed and the operation is repeated until no more decisions exist. If,
after this, there are more time nodes, the first of these is identified in a similar
manner as used in identifying the first decision node. The prior of the time node
is identified and the nodes are ordered accordingly. The ordered nodes are removed
and the process continues until no more time nodes exist. Then the remaining nodes
are placed in the set we have chosen to call I,1.

Definition 4.2 relies on there being a decision, which is before all others. Theorem 4.3
ensures that this decision exists and shows how it is found.

Theorem 4.3 (First Decision)
In an IDIT, Z, there exists a decision, D, such that D <3 D’ for all D' in Vp \ {D}.

This is the decision, D, which for any t'° has no other decisions as ancestor.

Proof: Assume that such a first decision is not unique. Then two or more first
decisions would exist, and, as IDITs require, there is a path between them, either,
one would be before all others, contradicting there being multiple first decisions, or,
there is a cycle between them. If such a cycle exists there needs to be guards on
the arcs of the cycle, such that a configuration of the time nodes would render the
diagram acyclic. As guards are only allowed to reference time variables before the
cycle, and time variables are associated to decisions, some decision must be before
the two first decisions, contradicting that they are the first decisions. Furthermore, if
a free time variable exists, then that time variable must be after the last decision, and
therefore also after any decision in a cycle. This proves that only one first decision
exists, and it can be uniquely identified. |

It should be clear that Definition 4.2 does not imply there only being one temporal
ordering for an IDIT. In fact several temporal orderings can exist, depending on
the different configurations of time variables. This indicates that an infinite number
of orderings exists on the quantitative level, however, as IDITs require that there
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needs to be a finite number of variables, thus also a finite number of guards, some
configurations yield equivalent temporal orderings. Later we describe how to find
the number of temporal orderings necessary to have a welldefined IDIT, both for the
qualitative and the quantitative level.

The temporal orderings of an IDIT are defined through the semantics of the arcs
and nodes on the qualitative level, and the semantics of a set of restriction functions
found on the quantitative level, that is, restrictions imposed by guards and restriction
arcs. A temporal ordering is built such that it follows the manner of reading an
IDIT. This means that, when reading an IDIT, if some variable, V, is read before
another variable, V', V comes before V' in the temporal order, denoted as V <3 A48
If V is read immediately before reading V', then there is no node, V", such that
V<pVIi<e V.

We have defined a temporal ordering, through how the IDIT is read. This leads to
finding one temporal ordering for an IDIT. In the following section we describe how
to deduce any order of an IDIT given any configuration of the time variables by
using a structure we have named a preliminary temporal ordering.

Preliminary Temporal Ordering

The preliminary temporal ordering is a partial ordering of all nodes in an IDIT.
It is the ordering, which is found without counsidering a configuration of the time
nodes of the IDIT. This means that, when all temporal orderings are to be found,
the preliminary temporal ordering is used, instead of going through the ordering of
all nodes for every unique configuration of time variables. This results in the need
to only go through the nodes of which the initial ordering is uncertain, as these are
explicitly identified. Furthermore, this information is used when solving an IDIT, as
is described in Chapter 5.

A partial temporal ordering of all variables can be deduced directly from the qual-
itative level of any IDIT. This orders all variables, which can be ordered, that is, if
an unguarded path between two decisions exists, then the two decisions are ordered
with respect to each other. Furthermore, each decision, D, is ordered with respect to
the set of chance variables observed before taking D and the possible time variable
associated to D. We call this ordering a preliminary temporal ordering, denoted as <,
as it does not necessarily impose a total ordering of decisions, such as the temporal
ordering, but can be deduced from the qualitative level alone.

As the preliminary temporal ordering is deduced from the qualitative level of the
IDIT, guarded arcs are not evaluated. Therefore, multiple instances of a guarded
variable exists in the ordering. For instance, if a chance variable, C, has a guarded
arc to a decision, D, then C is both before and after D in the preliminary tempo-
ral ordering. This should be interpreted as a preliminary uncertainty on when C is
observed rather than C actually being observed twice.

The preliminary temporal ordering is deduced from the IDIT by identifying the first
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decision, which can be unambiguously identified, as stated by Theorem 4.3. We find
the first decision by exploiting that its set of ancestors intersected with decision
variables is the empty set.

In order not to confuse an observed variable with a guarded chance variable, we
construct, for each decision, a set consisting of the guarded chance variables. We call
this the set of guarded observed variables.

When the first decision is identified the set of observed variables for this decision
and the time variable associated with it, are ordered with respect to the decision.
That is, Ip < D < Tf, where Ip is the set of observed variables. Notice that there
cannot be any guarded arcs among the arcs between Ip and D as there is no time
variable, which can be referenced.

Whenever a decision is ordered in the preliminary temporal ordering, the decision
or decisions immediately following this decision, are identified. One manner of doing
this is by comparing the past of all unordered decisions. The decision, which has
only the set of already ordered decisions in its set of ancestors, is the next decision.
If two decisions both satisfy this requirement, the two decisions are not ordered with
respect to each other. Whenever there are more than two decisions, which have the
same set of ancestors, multiple cycles exist. For each decision found this way the set
of observed variables is identified and so is the time variable, which is associated
with it.

Cycles are allowed in IDITs, if guards secure that they are broken whenever the time
variables before cycles are configured. As a result of this, multiple cycles can exist,
such that multiple decisions can have equivalent sets of ancestors, but there still
exists an ordering of a subset of these decisions. Figure 4.9 illustrates the decisions
of an IDIT in which four decisions, Dy, D3, D4, and Ds have equivalent sets of
ancestors, as the decisions are also treated as ancestors of themselves.

D»
V{N
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D; ! Dy
\ / J
Ds " Y

.
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Figure 4.9: Part of an IDIT with cycles.

As can be deduced from Figure 4.9 the four decisions D;, D3, D4, and D5 have equiv-
alent sets of ancestors, when not considering the guards on the arcs. Considering the
guards, we see that, in the preliminary temporal ordering, D3 should be before both
D4 and Ds, and Dy should be before all others. R is the set of nodes, which are
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observed or taken later than those specifically represented in the figure.

Whenever two or more decisions have an equivalent set of ancestors, the set of an-
cestors from unguarded arcs is used to order the variables. The set of ancestors from
unguarded arcs for some variable, V, is the set of variables, from which there exists
a path consisting of unguarded arcs going to V, for instance, D3 and Dy are in the
ancestor set from unguarded arcs for Dy, but Dj is not.

If the sets of ancestors are still equivalent the decisions are entered in the prelimi-
nary temporal ordering in an unordered fashion. Each of the unordered decisions are
ordered with respect to its set of observed variables and to a possible time variable
associated with it.

In cases where the sets of ancestors from unguarded arcs differ for one or more de-
cisions, at least one of the sets of ancestors from unguarded arcs include one of the
other decisions being ordered. The preliminary temporal ordering, in such cases, is
that a decision, which are in the set of ancestors from unguarded arcs, is placed be-
fore the other decision. For instance, in the case shown in Figure 4.9 the preliminary
temporal ordering, < is:

Dy < TS5 < {D2,(D3 < {D4,Ds})} < R.

One manner of reading an IDIT is to read it according to the preliminary temporal
ordering. That is, to identify the first decision, then to establish, which chance vari-
ables are observed before taking this decision. When the first decision is found the
next decision can be found in a manner similar to the one described above. Guarded
arcs should be read as possible informational arcs, as the existence of the arc cannot
be established, based only on the qualitative level. However, it gives the reader of
the IDIT a sense of when the chance variable can be observed.

The preliminary temporal ordering, <, is related to the temporal ordering, <,
such that, if two decision or time variables, V and V', are ordered as V < V', then
V< V.

Deducing the preliminary temporal ordering for the SAR problem yields the following
ordering:

Mp < Mo < Ws < T, < {Hs,We} < Se < T¢, < {Lp, Su, Fo, Hs}

After having defined the qualitative level of IDITs, we now define the quantitative
level of IDITs.

4.2.2 The Quantitative Level of Influence Diagrams Involving Time

The quantitative level of an IDIT is defined as a realization, given in Definition 4.4.
After presenting the definition we informally discuss the implication of each syntac-
tical rule of the realization of an IDIT. Finally, the elements of such a realization are
discussed. Definition 4.4 defines an ideal realization, and as such does not discuss
the problems imposed by the rules.

We use pay(D) to denote the set of parents for some decision, D, from dashed arcs.
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Definition 4.4 (Realization of an IDIT)

Let T ={V,L,E} be the qualitative part of an IDIT modelling some DPIT. Then a
realization of T consists of four sets of functions: @, which is the set of conditional
probability distributions for chance variables in Z; W, which is the set of local utility
functions for Z; T1, which is the set of density functions for time variables in Z; and
I', which is the set of restriction functions associated with Z. Such that,

1. If C € V¢ is in I, then there exists a conditional probability distribution for
C, P(Clpa(C)), in @.

2. If V € Vy is in Z, then there exists a local utility function for V,
VP:sp(pa(V))— R, in V.

3. T§ is in V§, D is in Vpp, and there does not exist a time node, T§,, in V¥,
such that T is in ch(T§,), iff a density function, fr¢(pa(Tp)), is in TT, such
that fTS(?},t) is zero for all configurations, E), of pa(T§) and all times, t, in
R, where t is less than zero,

4. T§ is in VT, D is in Vpp, and there exists a time node, T§,, in V, such
that T§ is in ch(T§,), iff a density function, leej(pa(Tl%)), is in T1, such that
ng(?,t’,t) is zero tor all configurations, ?, of pa(T§) \ (TS} and all times,
t and t’, in R, where t < t’,

5. T§isin V&, D is in Vi, and there does not exist a time node, T§,, in V5, such
that T§ is in ch(Tp,), iff a density function, fre(pa(T5)), is in TT, such that
fTB(E), d,t) is zero for all configurations, ?), of pa(T§) \ {D} and all times, t
and d, in R, where t < d,

6. TS is in V§, D is in Vi, and there exists a time node, T§,, in VT, such
that T§ is in ch(Tj,), iff a density function, fTB(pa(Tg)), is in T1, such that
fTB(?, d,t’,t) is zero for all configurations, ?, of pa(T§) \ {D,T5,} and all
times, t, d, and t’, in R, where t < t’ +d,

7. Ty is in Vg, and T’ is in V7, such that Ty is in ch(T'), iff a density function
fTB(?,t’,t) is zero tor all configurations, ?, of pa(T§) \ {T5.} and all times,
tand t’, in R, where t < t’,

8. If D is in Vp, T, is in V%, and there is an arc, (V,D), in Eq, then there is a
restriction function for D, fp : sp(pay(D)) — sp(D), in ', and

9. If (V,D, g) is in By, then TS, is in V§, such that (T§,, D, true) is in Ey, and g
is defined as g : sp(T§/) — {true, false} is in T.

Rule (1) determines that all chance variables in a realization of an IDIT have a
conditional probability distribution attached. And the conditional probability dis-
tribution of each chance variable is in @. Rule (2) handles ¥, which is the set of
local utility functions. It says that for each local utility in an IDIT there exists a
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utility function for each configuration of parents of the local utility. These utility
functions are all in W. Rules (3), (4), (5), and (6) are related. The two first of these
handle time variables associated with decisions, and the two last handle time vari-
ables associated with wait decisions. They all say that all time variables, T, in V%
have a density function associated with it, and the point in time represented by the
individual time variable is influenced by the choice of the decision it is associated
with, and the point in time represented by the time variable it has as a parent. The
first time variable is, of course, only influenced by the decision it is associated with,
in this respect. All the density functions are placed in TT. The rules also determine
that time may not be negative and time always progresses through an IDIT. Rule (7)
says the same as the four previous rules, only for free time variables. That is, the free
time variables may not be negative and time progresses. And the density function
associated to each free time variable takes the parents and a possible previous time
variable as parameter. These density functions are also in TT. Rule(8) says that for
any restriction arc in an IDIT, there exists a restriction function, which determines
the state space of the restricted decision, given the state space of the restricting
variable. As per our definition, only decision variables may be restricted, and only
the effect of time may restrict these. All restriction functions related to restriction
arcs are in I'. Rule (9) says that for each guarded arc into a decision, there exists
a time variable representing the initiation-time of that decision. The point in time
this time variable represents determines if the guard is evaluated to true or false.
This information is also in T".

We discuss, for each set of functions, which limitations are imposed in this thesis
and what the consequences of this are.

®: This set consists of the conditional probability distributions for chance vari-
ables in an IDIT. For a discrete chance variable, C, which only has other dis-
crete variables in its conditioning set, the conditional probability distribution
associated to it is P(C|pa(C)), which is similar to the conditional probability
distributions of chance variables in influence diagrams.
When C has a time variable in its conditioning set, the conditional probability
distribution cannot be defined by associating a specific probability for each
state, given all configurations of the parents, as there are an infinite number
of such configurations. Instead the conditional probability distribution is de-
fined by associating to each state of C, given its discrete parents, a function
over time, described by f: R — [0;1]. f is based on the configuration of dis-
crete parents of C. The introduction of functions to describe the probability
distributions does not alter the requirement that the probability distribution
sums to one, for all configurations of parents. One manner of ensuring this is
by normalizing the function. That is, a function of a state c; is given as:

f(xi, )
Z?:] f(X] ) t) )

where x; is a parameter for C = c; given a configuration of the discrete parents

fC=ci (t) =
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of C, when C has n states. In cases where C is binary, the probabilities can be
found as f for one state and 1 —f for the other.

In order to ease the development of a solution method, we further limit the
functions to be those which are differentiable and integratable, as these are
nice properties to have fulfilled for continuous functions.

YW: The set of local utility functions consists of a utility function for each utility
node in the IDIT. The function maps each configuration of the parents of the
utility node to a real value. When a local utility function is dependent on time a
method similar to the one used for chance variables dependent on time is used,
that is, the discrete parents are used to look up some parameter for a function
over time. Such a function reflects the preferences of the decision taker, like
for local utility functions, which are not dependent on time, and the axioms
of utilities, as described in [Pearl, 1988] should also be followed. Finally, these
function should be defined for all positive reals, such that they are defined for
all points in time.

IT: The uncertainty associated with time variables is represented through den-
sity functions. We have chosen to have time variables be represented by x*-
distributions. This choice is based on the semantics of time variables, namely
that they portray an unforeseen delay in the end-time of some timed action,
and, a x2-distribution most accurately portrays the intuitive conception of this
semantics. This is because the output of such a distribution is a function, for
which the density of the function is concentrated on the first part of the domain.
When combining this with the semantics of a time variable, this is interpreted
as: there is a high probability that the timed action being delayed is delayed
with a short amount of time, and a very low probability of the delay being
higher than some set time, dependent on the specific parameters for the x?-
distribution of the time variable at hand. Time variables, which are dependent
on discrete variables are associated to a table, from which the parameters for
the x?-distribution is found, based on a configuration of the parents. When a
time variable, T, is dependent on another time variable, T', P(T|T’), we assume
that this can be rewritten to P(T)+t’, where T’ = t/, that is, P(T|t’) ~ P(T)+t".
Even though we have chosen to represent the probability distributions of time
variables using the x2-distributions another choice of density function would
not change the framework, considerably.

I':  This defines the set of restriction functions. If the decision being restricted is a
wait decision, then the state space is altered, so that points in time in specific
intervals are invalid choices for that decision. If, on the other hand, the decision
is a discrete decision, then certain states are restricted, that is, they are invalid.
This set also handles the functions for determining if some guard evaluates to
true or false.
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The quantitative level of an IDIT is specified by using tables and functions as in
Example 3.

The temporal ordering, as defined in Definition 4.2, is based on IDITs, in which
all asymmetries have been resolved through configurations of the time variables. To
resolve these asymmetries we convert the IDIT to a number of symmetric IDITs and
through these we determine a temporal ordering.

4.2.3 Symmetric Influence Diagrams Involving Time

From the qualitative level of an IDIT a preliminary temporal ordering was deduced.
To deduce the temporal ordering of an IDIT the quantitative level is also needed.
Two decisions, which are not ordered in the preliminary temporal ordering, should
be ordered in the temporal ordering. Likewise, the time of observation of guarded
chance variables should be pinpointed. To find the ordering of, for instance, two such
decisions, the time variable, to which their ordering refers, is identified. The state
space of the time variable is divided into the values yielding one ordering and the
values which yield the other ordering. Generally, we say that a time variable splits
the IDIT into a set of new IDITs, in which the asymmetries imposed by the time
variable are resolved. We sometimes refer to the time variable as a split variable. An
IDIT, in which all split variables have been split upon, resulting in the resolution of
all asymmetries, is called a symmetric IDIT, and, if only some of the asymmetries
have been resolved, we call it a partially symmetric IDIT. As symmetric IDITs are
special cases of partially symmetric IDITs, we only define partially symmetric IDITs.
Partially symmetric IDITs are defined in Definition 4.5.

When splitting the IDIT into a set of symmetric or partially symmetric IDITs,
the sets of arcs are altered. Consider an IDIT, for which, at some point, a time
variable, T, induces a split. If the IDIT is split on T, it means that there is a path
between T, and at least one decision, D. The set of guarded arcs going into D from
variables, Vi € V, now become informational arcs if their guard is satisfied. The set
of restriction arcs going into D are also converted, such that the state space of D is
resolved to a specific state space. All other arcs remain the same. Furthermore, the
set of restriction functions alters to accommodate the changes in the set of arcs.

In Definition 4.5 we use Eq; to denote the set of dashed arcs in the partially sym-
metric IDIT resulting from a split on T,. And By, is the set of labelled arcs in the
partially symmetric IDIT resulting from a split on T,. If some index, T,, 1, does not
refer to any time variable, it simply means the initial IDIT, and if some index, T, 41,
does not refer to any time variable, it simply means the rest of the IDIT.

Definition 4.5 (Partially Symmetric IDIT)

Let T = (V,LLE) be an IDIT, and T, some split variable.
Then Eng ={(V,Dy, V|IUT,, 1) = true, Dy <7 Thet, (VD 1) € Engq}U
{(V,Dy, U[Trq < Di} and Bq, = Ea;  \{(V,Di)IThs1 <3 Di}. Then
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7' = (V,L,E') is the partially symmetric IDIT resulting of a split on T,
where ' = E4; UEq, .

Besides this qualitative definition of a partially symmetric IDIT, the set of rules,
which define an IDIT, must also be followed when constructing a partially symmetric
IDIT. A symmetric IDIT is a partially symmetric IDIT in which E4 is empty and
the label on all arcs in Eg is true.

For the realization of a partially symmetric IDIT, we have that the set of restric-
tion functions is changed, while everything else remains the same. That is, the
set of restrictions resulting from a split on T, is denoted as I't, and is defined as
I'r, ={v(Di)[TwDil

A symmetric IDIT has some properties, which neither partially symmetric IDITs nor
IDITs have. In a symmetric IDIT there exists a total ordering of decision and time
variables, and a partial ordering of all decision and chance variables. Furthermore,
for each discrete chance variable it can be deduced before which decision, if ever, it is
observed. From the variables of a symmetric IDIT the temporal ordering, as defined
in Definition 4.2, can be deduced.

Partially symmetric IDITs have the property that all variables before the time vari-
able introducing the next split, can be ordered according to the temporal ordering.
Thus, in the temporal ordering, of partially symmetric IDITs, the set of time vari-
ables, which constitutes {Ty,..., Ty}, is the variables before the split variable, T,,.
The part of the partially symmetric IDIT following the split variable can only be
ordered according to a preliminary temporal ordering, thus, some variables might
not be ordered. It should be noticed that this fact also holds for IDITs, which have
not been split, as variables before the first split variable are ordered in accordance
to the temporal ordering.

Due to the restriction of only allowing asymmetries arising from time variables, only
time variables can be split variables. A time variable splits an IDIT, or a partially
symmetric IDIT, whenever a guard or restriction function is referring it. We postpone
the details of the process of finding the parts, into which an IDIT is split, until
Chapter 5.

The splitting of an IDIT can be illustrated by constructing a tree structure, called
a split tree, which reveals the asymmetries imposing a split on its branches and the
resulting partially symmetric and symmetric IDITs as its nodes. The root of the tree
is the original IDIT, all internal nodes are partially symmetric IDITs, and all leaf
nodes are symmetric IDITs. For instance, splitting the IDIT of Section 4.1.1, with
respect to Ty, results in the split tree of Figure 4.10.

A time variable splits an IDIT if two different configurations of the variable either
cause a guard to change its value, or a decision to change its state space. For in-
stance, the instantiation of Ty, in Example 1 will, according to the interval it is
instantiated to, impose a different state space for Search, and change whether or not
Heat signature can be observed before taking Search.
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Figure 4.10: A split tree resulting from a split on Ty,



4.2 Formal Description of Influence Diagrams Involving Time 51

The split tree should be read such that, if Ty, splits to a point in time, which is
either 48 hours or later, then the temporal order of the IDIT follows how the IDIT
in the lower leaf is read. Otherwise the temporal order follows how the IDIT in one
of the other leaves is read. The restrictions to the state space of Search can only be
seen in the quantitative level of the IDIT, but the fact that there are leaves with
similar symmetric IDITs in them indicates that some decision variable after the last
split variable has a restricted state space.

In partially symmetric and symmetric IDITs, restriction arcs referencing time vari-
ables, which have already been split upon, are exchanged with informational arcs.
This we do as all information regarding the restriction has been removed, because
the time variable referred by the restriction function is known to be in a specific
interval. This interval is based on the restriction functions themselves. The same is
true for guarded arcs. That is, if a guard is evaluated to true because of a split, the
arc is present as an informational arc in the resulting partially symmetric or sym-
metric IDIT. If, on the other hand, the guard evaluates to false, the arc is removed.
As an example of this consider Figure 4.10. When comparing the labels on the edges
between the root and the leaves of the split tree, we see that only in the lower right
leaf is the former guarded arc present.

The temporal ordering of a symmetric IDIT can be found by the same technique for
the preliminary temporal ordering. That is, we find the first decision, D, and the
chance variables observed before taking it, Ip, and structure those as Ip <5 D. This
is followed by the time variable associated with D. Then all variables, which have
been ordered, are removed from consideration, and the process is repeated, until all
variables are ordered.

The difference in the temporal ordering between the qualitative level and the quan-
titative level lies in the number of possible orderings. The number of temporal or-
derings in the qualitative level is only affected by the number of guards in the IDIT.
As long as there is at least one time variable in the IDIT, there is an infinite amount
of temporal orderings on the quantitative level of the IDIT.

We say that the set of temporal orderings on the qualitative level constitutes the
required set of temporal orderings for an IDIT, while the set of temporal orderings
on the quantitative level constitutes the set of possible temporal orderings.

4.2.4 Welldefined Influence Diagrams Involving Time

When modelling or solving IDITs it is important that the IDIT is welldefined. By
welldefined we mean that the next decision to be taken can be uniquely and unam-
biguously identified. This requirement is satisfied as a configuration of time variables
until some time variable, Ty, resolves all asymmetries between T, and T, 1 in the
preliminary temporal ordering, where T, .1 is the time variable immediately after
T,.. Thus, the next decision can be found.

That welldefined IDITs are only a matter of finding the next decision is a conse-
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quence of Rule (4) in Definition 4.1. For further discussion of welldefined influence
diagrams, which are related to this, we refer to [Nielsen and Jensen, 1999].

4.3 Summary

In this chapter we have introduced a framework for modelling DPITs. The syntax
of the framework has been defined and semantics of the concepts have been given.
Furthermore, heuristics for reading and understanding an influence diagram involving
time, both on the graphical level and the numerical level, have been given. This is
done through the temporal and the preliminary temporal ordering. We have also
argued for IDITs being welldefined.



Chapter 5

Solving Influence Diagrams
Involving Time

In Chapter 4 we presented a representation language, IDIT, for modelling DPITs. In
this chapter we present a solution method for solving IDITs. The solution method
proposed solves IDITs with respect to finding the choice, which is preferred by the
decision taker, for each decision, assuming all future choices are taken in this man-
ner, too.

First, we present an outline of the solution method, giving an overview of the key
parts of the solution. Following the overview, each part of the solution method is
discussed in detail, and the difficulties of each part are identified, and, finally, in Sec-
tion 5.6 the full solution method is presented. We end this chapter by, in Section 5.7,
discussing sampling and the technique we have chosen.

5.1 Overview of the Solution Method

We begin with a preliminary discussion of the solution method for IDITs. It is pre-
liminary as it does not include how to solve the individual steps of the solution
method, but rather gives an overview of the steps in the solution method.

The solution method follows the solution sketch of [Broe et al., 2003]. However,
where the sketch only showed how to solve a single specific example of a DPIT,
the method in this section is a general solution method, such that it can be used to
solve all IDITs.

A solution method of an IDIT is basically the task of determining a policy for each
decision in the IDIT. A policy, 5;?7 for a decision, D, given the past with respect
to the temporal ordering, <, is some choice of D based on its past. The past of a
decision is the set of variables, which are before the decision in the temporal ordering,
that is, past(D)~7¥ ={V|Ve€ Vp U Vc and V <+ DJ. Definition 5.1 defines a policy:

o3
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Definition 5.1 (Policy, 5~7)

Let D be a decision in an IDIT and past(D)~% be the past of D, then a policy,

< . .
6D?, for D is the function:

63? : sp(past(D)~7) — sp(D).

If past(D)~7 includes continuous variables an infinite number of policies exists for
D. In order to deal with this, a policy of a decision, which has a continuous variable
in its past, is taken based on a grouping of the states of continuous variables. We
discuss this in detail later.

A strategy, A, of an IDIT is a set containing a policy for each decision in the IDIT,
that is:

Definition 5.2 (Strategy, A) -
Let Vp be a set of decisions, and each D in Vp has a policy, 6", then a strategy,
A is:

A={5,7 VD € Vp}.

We say a policy is an optimal policy if it maximizes the expected utility of the
decision. A strategy containing only optimal policies is an optimal strategy, which
we denote A.

The aim of a solution method is to find an optimal strategy for taking the decisions
in an IDIT.

5.1.1 Outline of the Solution Method

The solution method for IDITSs is structured on two levels. A global level, which de-
composes the IDIT into symmetric IDITs, and merges these when a result is found,
to get the solution for the IDIT. When the IDIT is decomposed to manageable pieces,
each piece is solved using a local solution method.

The global level of the solution method is inspired by the solution methods
for asymmetric decision problems, such as the ones in [Nielsen and Jensen, 2002],
and [Demirer and Shenoy, 2001], and the local level is inspired by lazy evaluation,
[Madsen and Jensen, 1999]. The idea is to decompose an IDIT, which includes asym-
metries, into a number of symmetric IDITs. The symmetric IDITs are then solved
individually and the results of the decompositions are merged to give the result of
the original IDIT.

The outline of the parts of a solution method for IDITs, and what each part does,
is as follows:

Splitting an IDIT: In order to find an elimination sequence for an IDIT the tem-
poral ordering of the variables has to be found. As there is no unique temporal
ordering for an IDIT, we split the IDIT into symmetric IDITs. The splitting is



5.2 Splitting an Influence Diagram Involving Time 55

done by finding the first variable imposing a split, based on a preliminary tem-
poral ordering, which can be deduced from the original IDIT. By instantiating
all variables, which lead to asymmetries, and splitting the IDIT according to
these guards and restriction functions, all asymmetries are resolved in the re-
sulting partially symmetric IDITs. This is continued until all asymmetries are
resolved, thus a symmetric IDIT is constructed. This splitting of the IDIT is
the first part of solving an IDIT. The splitting of an IDIT follows the approach
described in Chapter 4.

Structure of eliminations: When a temporal ordering of the variables
has been deduced, a method should structure the elimination of variables.
Several approaches are applicable to do this. The goal of all approaches is
to construct an elimination order from the temporal ordering, such that the
elimination can be executed as efficiently as possible.

Elimination of variables: Having found an elimination order, the elimi-
nation commences. The elimination of variables is done for one node at a time,
by following the principles of expected utility. In this manner an optimal policy
for each decision can be found, and when all decisions have been eliminated
the optimal strategy for the IDIT is found.

Merging of symmetric IDITs The splitting is done recursively, and whenever
a symmetric IDIT is found, an elimination order for this symmetric IDIT is
deduced. Then the variables before the last split variable, with respect to the
elimination order, are eliminated, and optimal policies for the decision variables
after this split are found. When the split variable is to be eliminated the results
from each branch induced by the split variable is used to eliminate the split
variable. That is, when an intermediate node in the split tree has received
results from all its children, these results are merged, making the intermediate
node a new leaf node. In this manner the optimal policies for all decisions are
found.

The following sections elaborate further on each of the four steps presented above.

5.2 Splitting an Influence Diagram Involving Time

In Chapter 4 we described the temporal ordering of a symmetric IDIT, which is a
way of resolving the asymmetries of the IDIT. This principle is also necessary in
order to solve the IDITs as we need an order in which we can eliminate the variables
to find an optimal strategy, [Jensen et al., 1994]. The effects of splitting an IDIT are
three-fold in the solution method, as it divides the problem into sub-problems; it
resolves the asymmetries within the IDIT, such that techniques inspired by those
used for influence diagrams can be used; and a total ordering of decision and time
variables emerges.
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The strategy for splitting the IDIT follows the strategy for finding the temporal
ordering. First, a preliminary temporal ordering is found using the qualitative level
of the IDIT. Then a first time variable is found using the preliminary temporal
ordering, and the set of splits this variable imposes is found. Then the IDIT is split
on the time variable. By performing these operations in a recursive manner, we
find a set of symmetric IDITs. The temporal ordering for each symmetric IDIT is
established, so a structure of elimination can be constructed for each. By merging
the result of each symmetric IDIT, resulting from a split, a solution for the IDIT is
found. The specifics of how the structure of elimination and the merging is performed
follows in the sections below.

Finding the Preliminary Temporal Ordering

To initiate the construction of the preliminary temporal ordering, the first decision
in the IDIT must be identified. There is always one such decision, as proven in Chap-
ter 4. It can be identified as the decision, for which the set of ancestors intersected
with the set of decision variables is the empty set. That is, the first decision, D', of
an IDIT is the decision for which it holds that an(D’) N Vp = @.

As there cannot be any guards before the first decision the set of observed variables
for this decision counsists of only unguarded variables. The preliminary temporal
ordering of an IDIT with a first decision, D, for which the set of observed variables
is Ip, therefore has a preliminary temporal ordering, Ip < D.

If a decision is a decision involving time, the time variable associated with the decision
is immediately after the decision variable in the preliminary temporal ordering, that
is, if there exists a decision variable, D, and an associated time variable, T§, then
D <Tg.

Having identified the first decision, the set of observed variables for this decision,
and, possibly, a time variable, all remaining variables should now be ordered in a
similar manner. We order these variables by repeatedly identifying the next decision
in the preliminary temporal ordering. As long as no decision, already placed in the
preliminary temporal ordering, has a time variable associated with it, the next de-
cision can be identified. The next decision is the one, for which the set of ancestors
intersected with the set of decision variables equals all the previous decisions in the
preliminary temporal ordering. That is, if the next decision is D; and P is the set of
decisions already ordered, then an(D;) N Vp = P.

Until the first time variable in the IDIT is placed in the preliminary temporal or-
dering, the decision variables before this time variable, and the observed variables
for each of the decisions are ordered in this fashion. In the special case of IDITs,
in which there does not exist a time variable, the temporal ordering yields an order
similar to the one for influence diagrams as described in [Jensen et al., 1994].

Decisions, which are after the first time variable in the preliminary temporal ordering,
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can have a set of observed variables, which differs according to the point in time they
are taken. This is a result of guards on guarded arcs being evaluated to either true
or false. The order of taking two or more decisions may also change due to different
configurations of time variables.

Assuming that the part of an IDIT before the first time variable has been ordered
according to the above specifications, and the decision variable following this time
variable has been uniquely identified, then the set of observed variables for this
decision can be found as previously, except for the chance variables, which have a
guarded arc going to the decision. That is, we have an IDIT as the one illustrated
in Figure 5.1.

Figure 5.1 depicts an IDIT in which: Dy is the first decision involving time; R is the
part of the IDIT before Dy; D is the decision following immediately after Dy in the
preliminary temporal ordering; Ip, U I%Z is the set of chance variables between the
two decisions, where Ip, is the set of chance variables always observed, and I]g)Z is
the set of guarded observed variables; and Ry is the set of variables after D,, which
may include a time variable associated with D, and R; also includes I%Z, as defined
previously. An arc emanating from a set of nodes going into a node in the figure
represents that each element in the set has an arc going to that node, this is the case
for the relation between Ry and D7, whereas an arc from a node into a set of nodes
represents a preliminary temporal precedence, such as the relation between D, and
R;.

B
g

Figure 5.1: Part of an IDIT.

In the preliminary temporal ordering the two sets of observed variables, Ip, and
I]g)27 are before D, and the set of guarded observed variables, I%z, is also in the set
of chance variables never observed, or observed too late to have an impact on any
decision, that is, we have a preliminary temporal ordering deduced as:

...<ID2UIQD2<D2< ...<Ilg32

We can generalize this and say that, for any decision, D, in an IDIT, the preliminary
temporal ordering, <, with respect to D, is deduced as IDUI% <D<T5<...< Ilg),
where Ip is the set of observed variables, and I3 is the set of guarded observed
variables, for D and Tf is the possible time variable associated with D.
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Having specified the preliminary temporal ordering for any single decision, a possible
associated time variable, and the set of observed variables for this decision, only the
specification of how to find the ordering of multiple decisions after the first time
variable remains.

From the definition of the qualitative part of an IDIT it is known that there is a path
through all time and decision variables, this is specified in Rule (4) for the qualitative
part of an IDIT. This path is used to find the next decision for some decision,
assuming that all decisions before the current one is ordered in the preliminary
temporal ordering. The decision read after the current decision, is the decision for
which the set of ancestors is minimal, compared to the set of ancestors for all other
decisions not yet considered. Using this definition it is known that, if the present
decision, D, is not the last decision in the IDIT, then there exists a decision, D’,
which has D in its set of ancestors, as there must be a path between the two decisions
according to the definition. If there are multiple decisions after the present one, the
minimal set of ancestors is the set, which is a proper subset of all others. In cases
where multiple cycles exist, such as was illustrated in Figure 4.9 the set of ancestors
from unguarded arcs are used to order the decisions involved in the cycles.
Algorithm 5.1 specifies how a preliminary temporal ordering is found based on the
qualitative level of an IDIT, Z.

PRELIMINARY TEMPORALORDERING(Z = (V,L,E))

1: Find decisions, D, with minimal sets of ancestors.
2: if D contains one element, D then
3:  Find the set of observed variables, Ip and guarded observed variables, I% for
D
Insert Ip U I% <D <T5in PTO
Call PRELIMINARYTEMPORALORDERING(Z' = (V\ {D}UIp U{T§}, L, E)
else if D is @ then
Insert V in PTO
return PTO
else
10:  Find the set of observed variables, Ip and guarded observed variables, Ilg) for
each D e D
11:  Compare sets of ancestors from unguarded arcs for each pair, D, D’.
12: if an(D) C an(D’) then

13: Insert IpUIE <D <T§ <Ip UL, <D’ <T§ in PTO
14:  else
15: Insert (Ip U Ilg) <D< TS), (Ipr U Ilg), <D'<T§,) in PTO

16:  Call PRELIMINARY TEMPORALORDERING(Z' = (V\ D Upp Ip U{TH}, L, E).

Algorithm 5.1: The algorithm for constructing the preliminary temporal ordering of
any IDIT, T.
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5.2.1 Split Trees

The method for constructing the split tree for some IDIT is to first find the prelimi-
nary temporal ordering, <, of the variables. The method then constructs the root of
the tree, which is the original IDIT. The first possible split variable can be found in
the preliminary temporal ordering as the first time variable. The method splits on
a time variable, if one or more decisions, which are before the next time variable in
the preliminary temporal ordering, have a set of guarded observed variables, are not
ordered in relations to other decisions, or have a restriction function.

For each guard or restriction the point in time associated with it is used to
construct a minimal set of time intervals, such that no information is lost in
an instantiation of the intervals. For instance, in Example 1, the SAR problem,
when instantiating T\, the guard between Hs and Se, which is true if t > 48,
and the restriction of the state space of Search are used to find the intervals:
[0;12],[12; 18], [18;20[, [20;48[, and [48;168].

For each interval found in this manner, a new node is constructed and a branch con-
necting the current node to the new node is added. The partially symmetric IDIT
in this node is an IDIT, in which the guards between the split variable and the next
time variable are changed to true, if the guard evaluates to true, or removed if the
guard evaluates to false. The evaluation of the guards is a result of the time variable
being in the interval determined by the split. As the intervals of the split are con-
structed from the guards, no interval can exist in which it cannot be determined if
the guard is true or false. Furthermore, the restriction function is evaluated and the
result of this evaluation is set to be the state space of the decision.

The algorithm for constructing a split tree is given in Algorithm 5.2. Before the
algorithm begins it is assumed that an initiation method has constructed the root of
the split tree, found a preliminary temporal ordering, PTO, the first split variable,
V, and the point in time or interval, T, setting the range for V in partially symmetric
IDIT. The algorithm uses a set of list operations which should be self explanatory.

Algorithm 5.2 is compact with respect to elucidating comments. What happens is
the following: we start in line 1 by identifying the next element in the preliminary
temporal ordering, with respect to V. If this next element, or variable, is a decision
variable with some restriction on it, either in form of a restriction function or a
guarded arc, we take the point in time, or time interval, associated to that restriction
or guard and store it in a list. Then we add the decision to a list of decisions, this
is done in line 8. This we continue doing as long as we are not considering a time
variable representing the end-time of some decision. Lines 10 and 11 state that, if
we have considered the last variable in the IDIT, we simply return to the parent,
with respect to the entire split tree. If we, at any time, consider a time variable, as
just mentioned, or have considered the last variable in the IDIT, we order the time
intervals we have gotten from the restriction functions and guards, according to each
other. As long as the list of these time intervals is not empty we construct a child
of the current partially symmetric IDIT. As seen in line 16, this child is a new split
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SPLITTREE(V,Z,PTO, T)

1:
2:
3:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

V'« PTO.NEXTELEMENT(V)
while V' ¢ V§ do
if V/ € Vp then
if yp €T then
TIMEINTERVAL ¢ TIMEINTERVAL.ADDELEMENT(EXTRACTTIME(V'))
for (X,V' 1) € B4 and 1 # true do
TIMEINTERVAL ¢ TIMEINTERVAL.ADDELEMENT(EXTRACTTIME(1))
DECISIONS ¢— DECISIONS.ADDELEMENT(V’)
V'« PTO.NEXTELEMENT(V')
if V/ =null then
return to parent
TIMEINTERVAL ¢— TIMEINTERVAL.SORT()
To —T
Ty & TIMEINTERVAL.FIRSTELEMENT()
repeat
newnode + SPLITTREE(V', SYMMETRICIDIT(Z, Tp, DECISIONS), PTO, Ty)
ADDEDGE((thisnode, newnode, To <t < Ty))
T() — T]
Ty &« TIMEINTERVAL.NEXTELEMENT(T))
until Ty = null
return to parent

Algorithm 5.2: The algorithm for constructing a split tree for any IDIT, T.
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tree. In line 17 we add an edge between the new child and the node containing the
partially symmetric IDIT we have been dealing with so far. This edge is labelled
with whatever time interval we are building the new split tree from. Then, in line
19, we pick the next element in the list of time intervals, and this construction of
children we repeat until no more time intervals exist in the aforementioned list.

Algorithm 5.3 implements SYMMETRICIDIT, which takes as input an IDIT, a point
in time, for which the symmetric IDIT is constructed, and a list of decisions.

SYMMETRICIDIT(Z, Ty, DECISIONS)

1: for D € DECISIONS do
2: if yp €T then

3: sp(D) « {di : vq,(To) = true}

4 for (X,D,1) e E5 do

5: if 1(Tp) = true then

6: Ey «— Eg. ADDELEMENT(X, D)
T: for (X,Y,l') do

8: Ey, — E4g.REMOVE((X,Y, 1))
9: else

10: Ey — Eg.REMOVE((X, D, 1))

11: return 7

Algorithm 5.3: The algorithm for constructing symmetric IDITs for any IDIT, T.

Algorithm 5.3 is also compact with respect to elucidating comments. What it does
is to go through all decisions in the list of decisions it receives as input. Then, for
all decisions, which are restricted, the state space is changed to comply with the
restriction, this is seen in lines 2 and 3. And for all guarded arcs into each of these
decisions, if the guard evaluates to true, as a consequence of the interval in which the
current symmetric IDIT is, the arc is converted to an informational arc. If the guard
evaluates to false, the arc is simply removed from the set of arcs. This happens in lines
4 through 10. In line 10 the resulting symmetric IDIT is returned. The symmetric
IDIT is then put in the node representing the interval of Ty in the split tree.

For the root and each internal node in the split tree a temporal ordering for the
partially symmetric IDIT in it is constructed using Algorithm 5.1. This gives an
ordering of the partially symmetric IDITs in these nodes, which is similar to the
temporal ordering for the part of the partially symmetric IDIT before the time
variable, which the partially symmetric IDIT splits on, and a preliminary temporal
ordering of the rest.

For all leaf nodes in the split tree a method similar to Algorithm 5.1 is used. However,
the sets of guarded variables are not considered and the part, which handles multiple
decisions, which cannot be ordered in relation to each other, is removed too.
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5.3 Structure of Elimination

After splitting the original IDIT into partially symmetric and symmetric IDITs,
we use an approach inspired by a solution method for influence diagrams, to solve
the IDITs. We only solve the leaves of a split tree, meaning that an internal node
receives a result of elimination from each of its children, before the local solution of
the internal node begins, eliminating the leaf nodes in the process. The part of the
partially symmetric IDIT, which is to be solved is therefore the part between the split
variable inducing this partially symmetric IDIT and the split variable, which splits
it into its children. This part of the partially symmetric IDIT is symmetric, thus, the
local solution method of internal nodes is no different than the local solution method
for leaf nodes, except for the merging of its children. A solution of a symmetric
IDIT is to find an optimal policy for all decision variables, which are before the
variable that caused the split, in the elimination order. In cases where there are no
decision variables the result of eliminating all variables before the split variable in
the elimination order is passed on to the parent node in the split tree. If no more
split variables exist, the rest of the variables are eliminated in the same fashion, still
respecting the elimination order.

We have chosen to structure the elimination of variables using strong junction trees,
[Jensen et al., 1994], as this method of structuring the elimination has several bene-
fits: a strong junction tree is a different representation of a DPIT than a symmetric
IDIT, thus the conversion to a strong junction tree liberates the solution method of
respecting the rules imposed by the definition of IDITs; furthermore, strong junc-
tion trees are efficient for retrieving an optimal strategy for a decision problem,
[Jensen et al., 1994]; and it directly depicts the conditional independence of the sym-
metric IDIT.

A different approach of structuring the order of elimination, is to use the ideas of
node-removal and arc-reversal as proposed by [Shachter, 1986], which is also effi-
cient. An approach based on this method works directly on the symmetric IDIT.
Thus, it does not have the benefits achieved through strong junction trees.

An interesting aspect, which should be noted, is that the deduction of the temporal
ordering described above, and the elimination of variables, which is described in
Section 5.4, enables future solution methods to use, for instance, node-removal and
arc-reversal instead of strong junction trees, without changing these parts of the
method.

5.3.1 Moralizing Influence Diagrams Involving Time

In order to construct a strong junction tree the symmetric IDITs have to be struc-
tured into cliques, according to the elimination order, using strong triangulation. We
triangulate the symmetric IDIT by first converting it to a moral graph, which is an
undirected graph, in which all immoralities have been removed. In this section we



5.3 Structure of Elimination 63

describe how a symmetric IDIT is moralized.

A moralization of a directed graph, G = (V,E), is the undirected graph, (V',E’)
resulting from removing all immoralities. It should be noticed that the set of labels
have been omitted as the set of labels of a symmetric IDIT consists only of the label,
true. The idea is to first remove all informational arcs from the IDIT. Then remove
all immoralities, by adding an edge between nodes sharing a child, if this edge does
not already exist, and finally, remove all utility nodes.

Algorithm 5.4 specifies what is meant by moralization in the thesis.

MORALIZE(Z)

Remove all informational arcs
for each node, V,in Z do
Add edge between each pair of parents of V, if it does not already exist
Remove all utility nodes
Undirect the graph
return resulting graph

Algorithm 5.4: An algorithm for constructing the moral graph of any IDIT, T.

5.3.2 Strong Triangulation

Before constructing a strong junction tree, we triangulate the graph. The idea of this
triangulation is to ensure that when a node is to be eliminated all its neighbours are
connected. This is ensured by going through the elimination order and for each node
adding fill-ins between neighbours, which are not connected, and which have not al-
ready been considered. When we have completed adding fill-ins the resulting graph
is triangulated. We eliminate the variables in an elimination order, which respects
the reverse of the temporal order.

As there can be many elimination orders, due to the chance variables not being
ordered, and different orders yield different strong triangulations, we strive to find
the triangulation which is minimum. A triangulation can be minimum in differ-
ent ways. For instance, a minimum triangulation can be the triangulation, which
adds the least amount of fill-ins, or the one for which the sum of the clique sizes
is minimum. We refer to [Kjaerulff, 1993] for a discussion of minimum triangula-
tions. No matter what approach of minimum triangulation is chosen, finding it is
NP-hard [Jensen and Jensen, 1994]. This means that, in order to complete it in a
reasonable amount of time, some heuristics have to be applied. We have chosen to
use minimum fill-in triangulation. To this we apply a heuristic in the form of having
a look-ahead of two, so if two or more chance variables are not ordered we examine
all possible combinations of these variables. We add the fill-ins necessary for the
triangulation of the graph when eliminating the first two variables, and choose the
triangulation which adds the fewest fill-ins. If two combinations both have the least
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amount of fill-ins we eliminate the next variable to see if there is a difference, and
if not, we choose one of these at random. Other alternatives, include using minimal
separator sets, [HUGIN Expert, 2003], which seems to work quite well.

The elimination order orders the variables in a total ordering. We define a function,
«, which maps each node in the elimination ordering to the natural number according
to when it is eliminated. We define « to be the bijection, oc: V « {1,...|V]}, where
V is the set of nodes in the elimination order, such that, if V is before V', according
to the elimination order, then (V) < a(V').

The algorithm for triangulation takes as its arguments an undirected graph and is
structured as presented in Algorithm 5.5.

TRIANGULATION(M = (V,E))

.V «V

2: for «(V) =1 to |V] do

3:  for each X,Y € ne(V) do
4: E— EBEU{X,Y}}

5 Vi VI\{V}

6: return (V, E)

Algorithm 5.5: An algorithm for setting up o strong triangulation of any moralized
graph, M.

The result of Algorithm 5.5 is the triangulated graph from which the strong junction
tree is constructed.

5.3.3 Strong Junction Tree

A strong junction tree is a rooted tree of cliques, which is constructed such that
elimination of variables can be performed using an absorption method.

The graph resulting from the strong triangulation can be divided into a set of cliques,
K, by following the elimination order. These cliques are organized in a strong junction
tree, 7, for which it holds, that:

e For each pair of cliques, C and C’, in 7, the set CN C’ is in all cliques on the
path between C and C'.

e For each pair of adjacent cliques, C and C’, in 7, the intersection, C N C’, is
associated as a separator between the two.

e There exists a strong root, and for each pair of adjacent cliques, C and C’, in
T, where C is closest to the strong root, the variables of the set, C N C’, are
after the variables of the set C'\ C in the elimination order.
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In a strong junction tree the elimination order is structured such that the solution
is found by marginalizing free variables, and propagating the resulting potentials
towards the root. The construction of the strong junction tree is described in Algo-
rithm 5.6 which takes a triangulated graph as its argument.

STRONGJUNCTIONTREE(G = (V,E))

111

2: while 1 < |V| do (Find candidates to cliques.)
3:  Cj is set to be the clique containing a variable V, where i equal (V).

4: K« KuUC;

5: for C;,C; € K do (Removes cliques which are subsets of another clique)
6: if C; C C]' then

T K« K\ C;

8: S—E o

9: K {C;} (C; is the clique with lowest index in K.)
10: while K’ # K do (Constructing the tree.)
11: pick C; € K\ K’ s.t. 3C € K'|C; N Cy + O

12: S« SU{C;nCy}

13: E'—E'U {C, C, CiN G}
14: K «K'uU {Cy}
15: return (K, S, E’)

Algorithm 5.6: An algorithm for constructing a strong junction tree, of a triangulated
graph, G.

Algorithm 5.6 is similar to the algorithm of [Jensen et al., 1994], in which the cor-
rectness of the algorithm is argued for.

Following the construction of a strong junction tree we associate to each clique in
the strong junction tree two sets of potentials, which reflect the quantitative level of
the symmetric IDIT.

Generally, a probability distribution, ¢ = P(X|Y), can be called a probability po-
tential. A probability potential is a function, ¢, which maps the state space of a set
of variables;, W = X UY, into a positive real number, that is, ¢ : sp(W) — RT.
The set of variables, W, is called the domain of ¢ and is denoted as dom(¢). Two
probability potentials can be multiplied to find the potential for the joint distribu-
tion. Other properties of potentials are described in [Jensen, 2001]. Furthermore, we
specify division of two potentials to be the same as when two reals are divided, with
the exception that, if the denominator is zero we define the result to be zero as well.
In a similar manner as done for probability distributions, utility functions can be
viewed as utility potentials. It should be noted that this can impose a positive linear
transformation of the utility function to satisfy the function mapping to a positive
real. In accordance to the decomposition of the utility function as local utility func-
tions, two utility potentials may be summed.
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To each clique, Ci, in the strong junction tree, we associate two sets of poten-
tials, ®c, and Wc,. @c, is the set consisting of all probability potentials, for
which dom(¢p) C Cj, that is, D¢, ={p € D UTI|V € dom(¢),V € Ci}, and ¥,
is the set consisting of all utility potentials, for which dom({) C Cj, that is,
Ye, = e ¥V edom(),V e Ci}.

5.4 Elimination of Variables

Having constructed a strong junction tree the solution method proceeds by elimi-
nating the free variables in the symmetric IDIT in accordance to the strong junction
tree. The manner in which a variable is eliminated depends on its type and whether
or not it has a continuous variable in its set of parents. In this section we describe
how each type of variable is eliminated. Finally, we describe how the elimination is
carried out in strong junction trees.

A node, Cy, in a strong junction tree represents a clique of variables, {V1, V2,..., Vn},
and has the two sets of potentials, @ ¢, and Wc,, associated with it. Eliminating a
variable, Vj, from Cj is done by marginalizing V; from all probability potentials, ¢,
where Vi is in the domain of ¢ in @¢,, and remove it from all utility potentials, 1
in Wc,, and then updating the two sets of potentials accordingly.

Let @y, be the set of probability potentials, which have Vj in their domain and Wy,
the set of utility potentials, which have Vj in their domain; furthermore, let (I){,i be
the set of probability potentials resulting from marginalizing V; from ®y, and 11’(,i
the set of utility potentials resulting from marginalizing Vi from Wy ; and finally
let M represent the manner in which Vi is marginalized. That is, generally, if V;

is a chance variable M represents summation, and if V; is a decision variable [™]

Vi Vi
represents maximization, we elaborate on this below. Elimination of Vj is then:
@y, =M ] ¢, and (5.1)
Vi dedy,

Rl MM § U RIS (52)

Vi Py, peW¥y,

After finding @y, and Wy, the two sets of potentials are updated to:

O =(® U ®3,) \ Dy, and (5.3)
ll’*
v (w02 "

The division of ¥y, by @y, is done in order to compensate for the multiplication in
Equation 5.2. The method presented above shows a general manner of eliminating
variables, however, the exact marginalization has not been specified. In the following

sections we specify what I\/I means for the different types of variables.
Vi



5.4 Elimination of Variables 67

5.4.1 Elimination of Discrete Chance Variables

Discrete chance variables, which are not dependent on a time variable, are elimi-
nated by summation over the chance variable being marginalized out. That is, in
Equations 5.1 and 5.2, the universal marginalization operator is the sum over V;.

Marginalization of chance variables dependent on time is conceptually equivalent to
marginalization of chance variables, which are not dependent on time.

However, even though the two marginalizations are conceptually similar, the out-
comes of the two are not. Whenever we marginalize a chance variable, which is
influenced by time, we need to deal with functions. We divide the cases in the ones
where a discrete chance variable, C, is influenced by time and those where it influ-
ences time.

Let C be the discrete chance variable, which is about to be eliminated. The
product of the probability potentials including C in their domain is ¢, where
dom(¢p) ={XJU{CIUA, where A is a set of discrete variables and X is a time
variable. Marginalizing C in this case results in a new potential where each configu-
ration of A is associated to a function. The function is found as the sum, over the
states of C, of the functions of this configuration of the original probability potential.
If the potential includes two continuous variables, according to Chapter 4, we know
that P(T|T’) is P(T)+t’. We utilize this to obtain a function as described above only
over both time variables.

When C influences a time variable, and is eliminated before the time variable the
product of probability potentials includes a joint over these two variables. When
marginalizing C the result is a probability potential over the time variable. This
potential includes a new function, instead of the density function of the time variable,
for each configuration of discrete variables in the potential. This function is the sum
of the density functions found by the state of C given this configuration of the discrete
variables.

Marginalizing from the utility potential is done in a similar manner, but where the
functions are multiplied by the function of the utility given the configuration of the
discrete variables.

We have chosen to restrict the models of IDITs, to not allow one variable to be in
the conditioning set of multiple time variables.

5.4.2 Elimination of Discrete Decision Variables

The elimination of discrete decision variables is done differently than the elimination
of discrete chance variables. Decisions are marginalized from ® and ¥ using maxi-
mization, as opposed to summation. Decisions are marginalized from @ by choosing
any choice, yielding a new potential from which the decision has been marginalized.
Decision variables are eliminated from utility potentials by maximizing the outcome
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given observations and previous decisions, according to an assumption that all future
decision variables have been taken following this principle too.

When decisions do not have any continuous variables as parents, this maximization
can be found as in influence diagrams, by taking the choice yielding the best result
in the utility potential. That is, in this case 5.2 becomes:

YT, =arg mélx H ) Z ()

ee®@p  VYeWD

Equation 5.1, for decision variables, is found by choosing any choice of D, as the
resulting potentials are equivalent.

Having a time variable in the conditioning set does not change the calculation of
@7, however the outcome, is changed as the resulting potential has a function over
the time for each configuration of the variables in its domain.

If the decision we are marginalizing has a time variable as a parent, we get a utility
potential with a continuous function for each state of the decision. By finding the
intersections of these functions, we find the intervals where one choice is better than
another, and this way we find the optimal strategy for each such interval. An example
of this is seen in Figure 5.2.

Figure 5.2: Two utility functions representing the development over time given either
the choice of dy, f(x), or da, s(x), of D.

When computing this, there can be an infinite number of such intervals if one of
the functions is periodic or fluctuates. We restrict IDITs from using such utility
functions.
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5.4.3 Elimination of Time Variables

Elimination of time variables is done by integration over the entire state space of
the variables. When the time variable is a split variable the integration is done over
the interval of each symmetric IDIT, and the result is the sum of all integrals. For
simplicity we say that if the time variables is not a split variable it has the interval
[0; co[, and we generalize the updating of potentials, so Equations 5.1 and 5.2 become:
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where ¢; and ; denotes the probability and utility potentials for each interval.
This is the ideal elimination. Unfortunately we cannot do this, as we have chosen to
represent time variables by x?-distributions, which are not on closed form, meaning
we cannot perform an exact integration over the state space of our time variables.
This means that we have to use other methods to aid us. Such methods could be
discretization of the time variables, or using some sampling technique. We have
chosen the latter. We have chosen sampling, as we feel a discretization would result in
losing too much expressive power with respect to representing time. One could argue
that the discretization could be performed using any granularity, but the information
of the intervals must be stored somewhere, so our choice is a matter of space. The
exact sampling technique and algorithms for it are presented in Section 5.7, here we
only show the ideal marginalization.

Time variables, which have a continuous variable in the conditioning set are marginal-
ized in a similar manner. The difference is that the intervals go from t;+t’ to tj;1+t/,
where t’ is the outcome of the time variable in the conditioning set of T.

5.4.4 Elimination of Wait Decision Variables

An optimal choice of a wait decision has similar properties as the optimal choice
of a discrete decision variable, however, as wait decisions have a continuous state
space, simply taking the maximum argument is not possible. One idea could be to
discretize the wait decision. The reason for not doing this is similar to that for not
discretizing time variables.

Assuming that the product of probability potentials including a wait decision mul-
tiplied by the sum of utility potentials including the same wait decision is a differ-
entiable function, it is possible to find the choice of the wait decision, which results
in the optimal strategy for the decision. This is done by examining the function for
extrema, and selecting the extremum yielding the maximum value. By finding for
which values of the range the derivative of the function equals zero, and comparing
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the domain value of each of these values with each other the global extremum is
found. The derivative can be found using a gradient descent method. This can only
be done if the wait decision has no time variable as a parent.

In other words, the ideal marginalization of a wait decision is equal to the elimination
of discrete decision variables, where argmlglx, in the case of wait decisions, means to

find the maximum value of a continuous function.

In the case where the wait decision we want to eliminate has a time variable as a
parent, we find the optimal strategy in the same manner, but when evaluating the
result, we set it to t — t’, where t is the interval or point in time found to result in
the optimal strategy, and t’ is the point in time represented by the time variable,
which is a parent of the wait decision.

Updating @ when eliminating a wait decision is done in the same manner as when
eliminating a discrete decision variable.

5.4.5 Message Passing and Marginalization

In this section we primarily focus on a solution in which it is assumed that we can
find the exact probability distribution for our density functions, that is, calculate
their integrals, and then later we show how an approximated value can be found.

We have now described how each type of variables is eliminated. Returning to the
strong junction tree we can use this to find the optimal strategy for an IDIT.

It is assumed that a strong junction tree, 7, has been constructed from the symmetric
IDIT, which we are solving. In 7 there are two adjacent cliques, C; and C;, and they
are separated by the separator set, S. To C; there are two sets associated, @ ¢, and
We.. There are two similar sets associated to Cj. Furthermore, Cj is closer to the
root of 7 than C;.

Lazy propagation, which is the approach our solution method is inspired by, uses
message passing between cliques, and propagates these messages from the leaves
to the root of 7. The messages are collected to the root by recursively invoking a
message request from all underlying cliques, that is, cliques further from the root, and
adjacent to the current one. In our example this means that C; invokes a message
request in C; and all other underlying cliques, and when the underlying cliques
have computed a message, each passes its message back to C;. When C; receives
these messages they are absorbed and then passed along as a single message to the
overlying node. That is, a clique adjacent to Cj, and closer to the root.

Absorption of messages from one clique, Cj, into another, C;, which are separated
with §, means to marginalize the variables of C;\ S from ®¢; and W¢, and from all
the sets ®g, and W/, where S’ is a separator set of an underlying clique adjacent
to Cj in 7. The result of marginalizing the variables is two sets of potentials, ®@g
and Ws, which are associated to S as the result of absorbing C; in C;. These sets
are used as Cj passes its message further up the tree. In Algorithm 5.7 we present
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how absorption of potentials is done for IDITs.

ABSORPTION
1: Rg (I)C)- U‘l’cj U U Ogr UWg
S’ech(C;)
2: Marginalize all variables not in S from Rg.
3: Associate @g and Wg with S as the result of absorbing C; in C;.

Algorithm 5.7: The algorithm for absorption of potentials in IDITs.

Algorithm 5.7 does not specify how variables are marginalized from the potentials.
The marginalization is done in accordance to the type of variables being eliminated,
using the rules described previously. Generally, however, the algorithm is as in Al-
gorithm 5.8. We assume the algorithm returns the optimal choice when eliminating
a decision variable.

MARGINALIZATION

1: Construct two sets, @y and Wy, which contain every ¢ and 1, respectively, in
any of the @, and ¥, where V is in the domain of either of ¢ or 1.
2: Calculate @y, and ¥y,

3: return @ = (@ U DY) \ @y and ¥* = (WU

lll*
(I))‘\// ) \ Wy.

Algorithm 5.8: The general algorithm for marginalization of variables in IDITs.

We do not give a formal proof for the algorithm, but refer
to [Madsen and Jensen, 1999] for the proof when dealing with influence dia-
grams, and based on this we argue that the introduction of a set of continuous
variables does not alter this result. As continuous chance variables are essentially
chance variables with an infinite state space, the difference when marginalizing
these as opposed to discrete chance variables is how to sum over the state space.
However, neither ABSORPTION nor MARGINALIZATION specifies the marginalization
operator, which is determined by the type of node being marginalized. The additions
to MIARGINALIZATION is to include the continuous variables when finding the utility
potential, in a similar manner as for discrete variables, and to update the set of
continuous probability potentials. This goes for both steps two and three in the
algorithm.

The use of continuous chance and decision variables in IDITs yields it necessary
to use integration and differentiation when solving an IDIT. As these integrations
cannot be done in an exact manner, some approximation method has to be used.
In [Broe et al., 2003] the solution sketch uses a numerical approximation, however,
neither the appropriateness nor alternatives of this approximation were discussed.
In Section 5.7 we discuss how we find the approximated values.
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5.5 Merging of Symmetric Influence Diagrams Involv-
ing Time

In Section 5.2 we described how the original IDIT is split into partially symmetric
and symmetric IDITs, and in Sections 5.3 and 5.4 we showed how each of these
partially symmetric and symmetric IDITs are solved individually. In this section
we describe how the solutions of two symmetric IDITs are merged. The symmetric
IDITs are merged on two levels. First the strong junction trees from the symmetric
IDITs are merged, and then the sets of potentials are merged.

In this section we describe the merging of two symmetric IDITs, as merging more
than two is done by first merging two, and then viewing this merger as one symmetric
IDIT. This is then merged to another and so on until no more symmetric IDITs need
merging.

5.5.1 Merging Strong Junction Trees

From each of the subtrees resulting from splitting on a split variable, V, there exists
a strong junction tree, J. These strong junction trees have an equivalent subtree, as
they are all constructed from symmetric IDITs based on the same partially symmetric
IDIT. If any two of these strong junction trees should not have this property, the
adding or removal of an arc in the part of the symmetric IDIT following the split
node, should impose an additional arc in the part preceding the split node. We can,
thus, reduce the problem to whether the removal of an arc, due to different symmetric
IDITs, changes the structure of the part of the strong junction tree constructed from
the part of the symmetric IDIT, which is before the split variable in the temporal
ordering. If this part of the tree differs because of different symmetric IDITs, then
the merging of two strong junction trees, is impossible, yielding the strong junction
tree method unusable for solving symmetric IDITs.

Theorem 5.3 secures that the two sub-junction trees are equivalent.

Theorem 5.3 (Sub-Junction Tree Equivalence)

If7 = (V,L,E) is an IDIT, T a time variable, D a decision variable, and C a chance
variable in V, (C,D, g) a guarded arc in £y, where g references T, Z' and Z" two
symmetric IDITs resulting from a split on T, such that g can be evaluated, and T"'
and T" the two strong junction trees constructed from Z' and I", respectively. Then
the sub-junction trees of T' and T", from the root to the clique, from which T is
eliminated, are equivalent.

Proof: We prove Theorem 5.3 by arguing that no matter the elimination order
of two variables, C and D, the cliques constructed by a strong triangulation for all
variables after C and D are unchanged. When the cliques are unchanged, then the
part of the strong junction tree, which is constructed from this set of cliques, is
equivalent no matter the future.
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If a clique closer to the strong root should be affected, one of the two elimination
orders must add an arc between the two nodes, X and Y, in the clique. An edge is
added during the strong triangulation if there is a path between X and Y, and all
other nodes on this path are eliminated before them. However, as the moralization
of two symmetric IDITs is similar even though they impose different elimination
orders, due to the arc, (C,D,g), being an informational arc, the path is either in
both symmetric IDITs or not at all, as both elimination orders have C and D before
X and Y. Thus, such an arc cannot be added.

[ |

This problem is similar to that of finding the value of information for some chance
variable. The solution to finding the value of information in strong junction trees is
proposed in [Dittmer and Jensen, 1997].

The merging of two strong junction trees, therefore, reduces to picking one of the
strong junction trees from the children and using this as the strong junction tree for
the partially symmetric IDIT. As there always is a first interval we pick the strong
junction tree resulting from the symmetric IDIT of this interval.

5.5.2 Merging Potentials

Theorem 5.3 ensures that the structure of two strong junction trees can be merged, it
does, however, not ensure that the associated potentials are equivalent. Two poten-
tials can differ by either not having the same domain, or having different values for
similar configurations. In this section we discuss how to merge the potentials from
two different symmetric IDITs.

If two probability potentials have different values, either some calculation has gone
wrong, or the use of approximation has proposed two different values. As the algo-
rithm is unambiguous, the first case cannot occur. In the second case, two approxi-
mations yield two different results, as these are both approximations, none of them
are the exact result, and we have no way of finding which is the better approxima-
tion, in such cases we therefore choose one of the two to be the correct probability
potential.

In cases where the domain of two probability potentials differ, for instance, P(X|Y)
and P(X]Y,Z), we claim that the set of variables, X are conditionally independent
of Z given Y. The claim can be proven using the fact that the difference in proba-
bility potentials occurs due to the addition of edges during the strong triangulation.
We know from Chapter 4 that the absence of an arc between two variables implies
that the variables are conditionally independent given the past, thus, if X should be
dependent on Z, there must be a connection between the variables in the moralized
graph.

The actual merging is done by comparing the potentials for each variable in the
clique. If there are two potentials, P(V|X) and P(V|X'), then the combined potential is
P(VIX'NX). We merge utility potentials by associating the utility potential achieved
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by the split into some interval [tp;t;], to the states of the time variable, which are
within this interval.

5.6 The Solution Method

In the previous sections we have described how each step of the solution method is
executed, yielding a local result. In this section we propose how the overall solution
method is executed by use of Algorithms 5.1 to 5.8. We do not propose an explicit
algorithm, as this would be a matter of fitting all previous algorithms together, by
adding how each algorithm calls the next, and what is to be returned after an ex-
ecution. We leave this for future implementations, and concentrate on the idea of
the overall solution method. Figure 5.3 illustrates how the solution method should
divide the problem using a global solution method, and describe how each subprob-
lem should be solved using a local solution method. The numbers in the figure are
used as both the order of the actual execution and as a reference point for a more
thorough description, following the figure.

[2] If asplit variable exists find it else the alg.
for symmetric IDIT
Split on variable, and find which parts can be
made symmetric in the resulting diagrams

[3] Continue splitting the tree,
until no more split variables exist

[5] Receive SIT from al children Symmetric
Use Merge on result o — > IDIT
Eliminate variable until Tp,
Send result and SJT to parent

- [4] Structure in a strong junction tree, SJT
Partially Eliminate variables until T

%Iﬁ%maric Send result and SJT to parent

IDIT

1] Find Preliminary Temporal
If asplit variable existsfind it el
for symmetric IDIT
Split on variable, Tp,, and find which parts can be
made symmetric in the resulting diagrams

[6] Receive SIT from all children
Use Merge on result
Eliminate the remaining variables
Return A.

Figure 5.3: An overview of the entire solution method.

Figure 5.3 illustrates the elements of the overall solution method. Initially, an IDIT
is given to the method as an argument. In [1] a preliminary temporal ordering, using
Algorithm 5.1, is found. This establishes a temporal ordering until the first split
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variable, and it is used for the construction of the temporal ordering of the partially
symmetric and symmetric IDITs. After the preliminary temporal ordering has been
deduced the first split variable is found, if such a variable exists. If it does not exist
the IDIT is solved using a local solution method, as described in [4]. When a split
variable exists the intervals are found using Algorithm 5.2. These are the intervals,
which are proposed by the split variable. The IDIT is also split into partially sym-
metric IDITs using Algorithm 5.3. Then each of these are solved locally.

Solving a partially symmetric IDIT, as in [2] follows the same idea of solving the
original IDIT, the main difference is that the preliminary temporal ordering is al-
ready found, which makes this step obsolete. The splitting of the partially symmetric
IDIT continues in [3] until all split variables have been split on, thereby yielding a
set of symmetric IDITs.

Until [4] the solution method has primarily focused on the global level. However,
when a symmetric IDIT is deduced the solution method shifts to focus on the lo-
cal solution method. As we have chosen to structure the elimination using strong
junction trees, the symmetric IDIT is converted to this structure, by using Algo-
rithms 5.4 to 5.6. When the symmetric IDIT is structured in a strong junction tree,
Algorithm 5.7 is used to find an optimal policy for each decision in the symmetric
IDIT, which is after the split variable resulting in the symmetric IDIT, in the tem-
poral ordering. When the split variable is to be eliminated the strong junction tree
and the optimal policies are propagated back to the partially symmetric IDIT, which
is a parent in the split tree.

When a partially symmetric IDIT has received all the strong junction trees and opti-
mal policies from its children, this information is merged using the method described
in Section 5.5. Algorithm 5.7 is executed on the merged strong junction tree and the
result is sent to its parent. This is continued until the root receives the results of
all its children, and the merged strong junction tree, obtained from this, is solved.
When all variables are eliminated the solution method returns an optimal strategy
for the IDIT.

The complexity of this algorithm is exponential in the number of split variables,
which in terms mean that this is not feasible for IDITs in which there are a lot of
restriction functions and guards. Furthermore, as mentioned in Section 5.3, finding
a minimum triangulation is also NP-hard.

To argue that the solution method in fact does solve IDITs we look at the elements of
the solution method and argue for their correctness. The solution method takes out-
set in an IDIT, and splits this IDIT into partially symmetric IDITs. As SPLITTREE
finds all possible splits by extracting the point in time each guard and restriction
function refers to, and does this in a recursive manner until all split variables have
been split on, all asymmetries are revealed and, consequently, resolved. Thus, the
asymmetries can be removed in the partially symmetric and symmetric IDITs with-
out loss of information. Therefore, information is not lost after splitting the IDIT.
We can discretize the continuous variables of each symmetric IDIT to any granular-
ity, and for each of these intervals approximate the probability using, for instance,
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sampling, which can be approximated to be arbitrarily close to the exact probability
distribution. We argue that the local solution of each symmetric IDIT can be done
using any approach for solving influence diagrams, as an IDIT with only discrete
variables is, essentially, an influence diagram. Therefore, an optimal strategy is cor-
rectly found. The merging of two symmetric IDITs has already been proven to be
correct in Section 5.5. Because of this the solution method does indeed solve IDITs.

5.7 The Sampling Approach

In this section we present the sampling approach, which we use to approximate po-
tentials including time variables. We do this by first presenting the motivation behind
this approach. Then we present the general idea behind the sampling technique, we
have chosen, together with an algorithm.

5.7.1 Motivation for Introducing Sampling

The motivation for choosing sampling, for determining the probability distribution
for a continuous chance variable, is that we have chosen to represent time variables by
x?-distributions. Under normal circumstances we would use an approach as described
in Section 5.4. That is, when eliminating some continuous chance variable, V, the
utility potential would be Wy, = >, [ f(t)dt - ¥i(V), where f(t) is the distribution
over time, t, and ;(V) is the utility potentials with V in their domain. In our
case we cannot do this, as a x2-distribution is not on closed form, which means
that exact integration is not a possibility. In [Broe et al., 2003] the solution to this
was by numerical integration using Maple [Maplesoft, 2002]. In this thesis we have
chosen to use sampling to solve the problem. We use a standard method, as described
in [Gentle, 1998], for drawing random samples from a x?-distribution.

5.7.2 Utilizing Sampling

We approximate the probability distribution for some time variable and calculate the
expected utility based on this. We calculate this by drawing a number of samples and
summing the value for each sample. This sum we divide by the number of samples
we have drawn, and the result is the utility for some potential. That is, for some time
variable, T, we calculate WT ~ Zi % > i fi(Xi), where X; is some random sample,
n is the number of drawn samples, and f; is the utility potentials with T in their
domain. The number of samples is determined by the decision taker before sampling
is performed.

When sampling we take a candidate point from some proposal distribution and com-
pare that point with the target distribution, using some scheme. The nature of this
scheme is elaborated on shortly.
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When choosing candidate points for sampling, we use two different algorithms, de-
pending on whether the degree of freedom is less than 0.5, or not. The proposal
distribution can be any distribution, and no matter what the target distribution is,
it can be proven that, given enough samples, and due to the laws of large numbers,
we can approximate the target probability distribution with an arbitrary precision.
The two algorithms are taken from [Gentle, 1998]. The algorithm for a degree of
freedom less than 0.5 is presented in Algorithm 5.9, and for a degree of freedom
greater than or equal to 0.5 we present Algorithm 5.10. For both algorithms, Y is
the sample point, d is the degrees of freedom for the y?-distribution, and all other
characters are just parameters to help ease the algorithms along. The two algo-
rithms were originally constructed for use in sampling from I'-distributions, but as
a x?-distribution is, essentially, a special case of a I'-distribution, we use the same
algorithms. As can be deduced from the two algorithms, the proposal distribution
is a uniform distribution. The scheme, we mentioned, takes on a different character
through the algorithms. The lines between two return statements in the algorithms
constitute the different schemes for manipulating numbers in order to create random
samples from the x2-distributions.

The names of the algorithms portray the authors upon who these representations
are based.

BEST/AHRENS/DIETER
1. x=0.07+075-v1—-d
22 b=d+ %ﬂ
3: while 1 <n do

4:  Generate u; and uy independently from U(0, 1)
5 v=D>b-uw
6: if v <1 then
7 Y=x-va
8 if uy < 3 then
9: return Y
10: else if u; < exp*Y then
11: return Y
12: else
13: Y=log (@)
14: y=Y
15: ifu,-(d+vy-(1—d)) <1 then
16: return Y
17: else if u; <y4 ! then
18: return Y

19: i=1+1

Algorithm 5.9: The algorithm for choosing a sample from a x*-distribution with less
than 0.5 degrees of freedom. n is chosen by the decision taker.
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CHENG/FEAST
1: while i <n do
2:  Generate u; and u, independently from U(0, 1)

(d—gig)w
VE

if 20220 4y 4 1 <) then
Y: (d— 1)-v
return Y
else if Zloguz —logv+v <1then
Y= (d— 1)
return Y
10 i=1+41

Algorithm 5.10: The algorithm for choosing a sample from a x*-distribution with 0.5
degrees of freedom, or more. n is chosen by the decision taker.

The algorithms use a rejection/approval method to identify which samples should be
accepted as samples. The reason for having such a method, and not just accepting
every sample, is that the candidate samples are not necessarily from the correct
distribution, but from some random distribution. The rejection/acceptance factor is
also the reason why the different schemes, as mentioned above, are applied.

We draw our samples using either of the two algorithms presented above, according
to the nature of the distribution being sampled.

Our aim is to find the utility potential obtained by marginalizing some time variable,
T. To exemplify this, consider a standard y?-distribution with five degrees of freedom.
Imagining that this represents the probability distribution for some time variable.
We want to find the utility potential obtained by marginalizing this, so we need to
sample from it, but beforehand we have identified intervals in which the state of this
time variable changes the state space for some future decision. If we say that we
have divided the time variable in two intervals, and these are [0 : 5[ and [5 : oo[. The
utility potential obtained by marginalizing T is then:

YT = 3 (fosXo) + f500(X0)), )
i=1

where fy v (Xi) means the value calculated over samples, X, which lie in the interval
[a : b[, and n is the number of drawn samples. Using this approach we do not
approximate the actual probability distribution, per se, but we calculate the expected
value of the utility. As we only need the optimal choices for our solution, we need
not know the exact probability distribution.

When marginalizing T we know that the probability potential, ¢, is P(T|X), where
X is the conditioning set for T, and if this is not the case, then some other variable
outside of X must be dependent on T. We can show that this is not the case as
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all variables dependent on T, in the IDIT, have been marginalized and any other
variable dependent on T would introduce an unresolved cycle in the IDIT.

If T is associated with a discrete decision variable, we find the utility potential for T
as just described. If, on the other hand, T is associated with a wait decision variable
we do not find the exact utility potential, but pass along the function, as shown in
Equation (5.5) and when we know the optimal policy of the wait decision, we can
find the utility potential for T. As long as T is not the first time variable in the IDIT
it is also influenced by some other time variable. This we handle in the same manner
as if T has a wait decision as a parent. That is, we pass along the function, with
only the point in time represented by the time variable, which is a parent of T, as
an argument. As time variables are dependent on each other, we end up sending the
function along until we eliminate the last time variable. This has the unfortunate
effect that the number of expressions, in the function we are sending along, rises
exponentially in the number of time variables. We can put it into perspective if we
consider a simple IDIT, in which there are two time variables, T; and T;, such as

presented in Figure 5.4.

Figure 5.4: A simple IDIT showing how the function for the utility potential grows.

When eliminating variables from this IDIT we start with Ty, then T&, and then Dj.
Eliminating Ty gives:
.l n
v =—) X th).

i=1

What we see here is that the utility potential is calculated from the distribution of
T;, but as the point in time represented by T; is dependent on the point in time
represented by T§, tf, we cannot calculate the exact value. The next variable to
eliminate is T, and we get:

Z o f(X5,d)).

;fl—‘

] m
Vip= L

That is, for every sample of the distribution for T we draw n samples over T;. And
this continues, since we see that tf) in fact depends on the choice of D.

In Chapter 7 we discuss the consequences we have drawn in using the approach as
described in this chapter.
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5.8 Summary

In this chapter we have proposed a general solution method for solving IDITs. We
have shown how the split tree, which we presented in Chapter 4, is used not only
as a guide for reading IDITs, but also as a guideline when solving IDITs. We have
presented a method for removing asymmetries in an IDIT. Besides this we have
shown how strong junction trees can be used to solve IDITs, while leaving the door
open for other approaches.

Because of our definition of time in IDITs we have come across a problem, namely
that of using x?-distributions to represent the density function for time variables.
We have proposed using a sampling technique, which is based on algorithms by Best,
Ahrens, and Dieter and the other by Cheng and Feast.

We have, however, reached the conclusion that using sampling only introduces a
new problem, as our solution method ends up having to deal with exponentially
large functions in the number of time variables in the IDIT we are solving.



Chapter 6

Results and Discussion

In this chapter we begin by illustrating the use of the solution method. We apply
it on two IDITs designed to point out some of the different elements of IDITs, and
how these elements affect the process of solving an IDIT. In Section 6.2, we compare
elements of the solution method to using other approaches, such as a nonuniform
discretization of continuous variables [Kozlov and Koller, 1997], and using a multi-
stage Monte Carlo approach [Charnes and Shenoy, 2002]. Finally, in Section 6.3 we
discuss IDITs as a framework.

6.1 Solving Two Examples

In this section we present two examples. These examples incorporate some of the
aspects of time we have discussed in Chapter 4, and we use them to exemplify the
solution method, we devised in Chapter 5. The goal of applying the solution method
to an IDIT is to find the optimal strategy for the decisions in that IDIT.

6.1.1 Example One - Post-Realized Utility Function and Chance
Variables Dependent on Time

In the first example we present an instance of a post-realized utility function, a
discrete chance variable dependent on time, and a time variable associated with a
decision. The main focus of this example is the local solution method, that is, the
elimination of variables, both continuous and discrete. The IDIT, we use as a model
for this, is depicted in Figure 6.1.

For this IDIT the chance variable A has a marginal probability distribution, B has
a conditional probability distribution, P(B|A), and C has a conditional probability
distribution, P(C|B, T§), in which the condition set consists of the discrete chance
variable, B, and the time variable, T5. The two time variables, T and T have,

81
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@ C
D)

Figure 6.1: A model of an IDIT containing a post-realized utility function and a time
dependent chance variable.

per definition, a conditional probability distribution defined by a x?-distribution,
with the degrees of freedom determined through their discrete parents. As T has no
discrete parents, we set it to three degrees of freedom, which we have chosen as the
default.

The three chance variables are binary variables, and the tables representing their
probability distributions are presented in Tables 6.1(a) and 6.1(b).

A
ay az
al az B b, 0.2 | 0.6
0.3 | 0.7 b, | 0.8 | 0.4

(a) (b)

Table 6.1: (a): The marginal probability distribution, P(A), for A. (b): The condi-
tional probability distribution, P(BJA), for B.

Table 6.2 shows the parameters for C, given the configuration of its discrete parent.
The function for representing C is f(p,t) = (1—p)* for C = ¢y and f(p,t) = 1—(1—-p)*
for C = ¢y, where p is the parameter we find in Table 6.2, and t represents time.

B
b by
c1 0.03 | 0.05
c2 0.03 | 0.05

Table 6.2: The table of parameters for the time dependent chance variable, C.

The only decision variable for this IDIT is D. It has the states d; and d;. Taking
choice dj results in a timed action, which takes 10 time units to perform, yielding
a distribution for T, which is displaced by 10 time units and the distribution has
2.8 degrees of freedom. If the choice chosen is d,, then the distribution for Tf is
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displaced by 15 time units and the distribution has 3.4 degrees of freedom. The two
density functions are depicted in Figure 6.2.

0.25 | | |

chi(x,2.80,10) ———
X.3.40/15

chi

0.2

0.15

0.05 -

Figure 6.2: The density function for T5 given the choice of D.

The local utility function for this IDIT, U, is defined as:

1
U(C=c¢;,T) = %t

) 2

U(C =y T) = 21081 ligt .

In order to solve the IDIT presented in Figure 6.1, we first determine that no more
splits are needed. Therefore, following the solution method we construct a strong
junction tree for the IDIT. The strong junction tree respects the reverse of the
temporal order. To find the temporal order, we first find the preliminary temporal
order of the IDIT, this order is A <3 D <3 T <3 T < {B, C}. There are no splits
in this IDIT, yielding the preliminary temporal order as the temporal order of the
IDIT. The moral graph is then constructed and the strong triangulation is performed.
We use heuristics to find that the elimination order should be C before B. If we were
to eliminate B first, we must put in two fill-ins, while eliminating C results in only
inserting one fill-in. In constructing the moral graph two edges are entered, these are
(B,T§) and (C,T). In performing the strong triangulation four fill-ins are entered.
These are: (B, T), (A, T§), (A,T), and (A,D). The resulting graph is depicted in
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Figure 6.3(a). From the triangulated graph the cliques are identified, and a strong
junction tree is constructed. Figure 6.3(b) illustrates the strong junction tree for the

graph. We illustrate the separator sets as boxes.

15, T,B,C

(a) (b)

Figure 6.3: (a): The triangulated graph for the IDIT of Figure 6.1. (b): A strong
junction tree for the graph to the left.

The cliques of the strong junction tree we name Cj, C;, and C4, where Cy is the
strong root. These are the names of the bottom clique, the middle clique, and the
top clique, respectively. The sets of probability and utility potentials for the en-
tire strong junction tree are: ® ={P(A), P(T§/D), P(T[T5), P(B|A), P(C|B, T5)} and
Y ={U(C, T)}, respectively.

As mentioned above, the first variable we are eliminating is C. This is in accordance
to the rules for message passing and absorption as described in Chapter 5.

The set of probability potentials attached to Cj, ®c,, is: {P(C|B,T§)}. And
the set of utility potentials, W¢,, is: {U(C,T)}. The utility function for this
utility potential is described above. Updating the probability potentials is
straight forward as P(C|B,T5) is a unit potential, meaning no other variables
are dependent on C, and therefore the potential is simply removed, yielding
@* ={P(A),P(T§ID),P(TITS),P(BJA)}. ¥* is then found to be {U(B, TS, T)}. The
utility potential, ¢, is defined as ) -~ U(C,T)- P(C[B, T5). This gives us the follow-
ing utility functions, given the configuration of the domain of U:

. 2 €
U(B = by, T,TE) = <_1°§t (1 —o.os)t%> + (”%t (- —o.os)tm> and
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2 logt?

U(B =by, T,T§) = (RTgt (1 —o.o5)t%)> + ( (1-Q —0.05)%)) ,

where t is the point in time represented by T, and tf, is the point in time represented
by T&.

After passing the message of the potentials along, this gives us a strong junction tree

as depicted in Figure 6.4.

Cy
A TS

A TS5 TB

G
Figure 6.4: The strong junction tree after eliminating C and passing along the mes-
sages.

The sets of potentials of the absorption of Cy in C; are, ®¢, ={P(B|A), P(T[T5)}
and We, = {U(B,T§, T)}. Following the elimination order, the next variable to be
eliminated is B. Again the probability potential is a unit potential and can simply
be removed, yielding ®* = {P(A), P(T5/D),P(T|T§)}. The set of utility potentials is
then updated to be ¥* = {U(A, T§, T)} after elimination of B. The utility function
for Py is found as ) 5 U(B, TS, T)-P(BJA). This yields the following utility functions,
given the configuration of the domain:

WA =a;, TT) = (U(B =Dby, T,T5) - 0.2) + (U(B = by, T, T5) - 0.8)
and

U(A =ay, T,T§) = (U(B =by, T, T§) - 0.6) + (U(B = by, T, TS) - 0.4).

Now T is to be eliminated. This gives us that ®* ={P(A),P(T5D)},
D¢, ={P(T[TH)}, and ¥* =W¢, = {U(A, T§)}. The utility function for P} is found
as ) 1 U(A, TS, T)-P(TITS). This yields the following utility function, given the con-
figuration of the domain:

U(A =a;,TS) = J U(A = aj,t, T§) - x*(t — t§)(3.00)dt and
T

U(A = QZ)TB) = J u(A = aZ)t)TB) Xz(t_t%)(soo)dt)
T
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where x%(t — t5)(3.00) is the x%-distribution, which has three degrees of freedom,
and is displaced by a measure of tf, where tf) is the point in time represented by
5.

As we have said earlier, we use sampling to handle the continuous chance variables.
This gives that the utility potential after eliminating T is:

n
U(A =a;,TH) = %Z f(X;) and
i=1
.I n
UA = a2, Tp) = — D f(X),
i=1

where f(X;) is a function returning the value of the utility function given some
sample, X;, and n denotes the number of samples drawn.

The function we have gotten, we pass up the tree, and the resulting strong junction

tree is depicted in Figure 6.5.

Cy
Figure 6.5: The strong junction tree after eliminating T and absorbing C,.

The next variable to be eliminated is T{J, which is the first time variable of the
IDIT and, consequently, the last time variable to be eliminated. Again only one
probability potential has the variable to be eliminated in its domain, so the potential
is simply removed and @ updated accordingly, yielding ®@* = {P(A)}. ¥* is updated
to {U(A,D)}. 11)?1% is found by ZTB U(A,T§) - P(TSID). This yields the following
utility functions, given the domain:

UA =D =di) = UA=ayTs) - xth — 10)(280)dt,
D

e
D

UA=aq;,D=dy) = J W(A = ay, TS) - X2 (t§ — 15)(3.40)dtS,,

e
D

U(A =ay,D=d;) = J U(A = a3, TS) - X2 (t§ — 10)(2.80)dt§, and

UA=a,,D=d;) = J WA = ay, TS) - X2 (t§ — 15)(3.40)dtS, .

TS5

The displacement of the x?-distributions, which for these is set to 10 and 15, origi-
nates from the definition of D.
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Now we draw samples for T5. This gives us a utility for lbf‘rg as:

T &1 &
U(A:al»D:d1):EZEZf(Xi’f(Xj’]O))’

T &1 &
u(A:al,D:dZ):EZEZf(Xiif(Xj’]S))’

1 m 1 n
U(A = (12,D = d]) = EZ] T_LZ]f(Xuf(X)a]o))a and
=1 i=

T &1 &
UA =a,,D =dy) = EZ T—lZf(Xi)f(Xj)IS)))

where m is the number of drawn samples for T, and f(Xj, d) is a function returning
the value of the utility function given sample Xj and the point in time associated to
choice, d, of D.

The next variable to be eliminated is D, which is a decision variable. The method of
eliminating a decision variable is different than for chance variables. The utility po-
tential is updated by choosing the maximum over a set of expected utilities, instead
of summing over it. This is because we aim at finding the optimal strategy, which is
the strategy yielding the maximum expected utility.

When eliminating D from C4, the sets of potentials are updated. As D affects
no remaining chance variables ®@* is unaffected. ¥* = {U(A)}. U(A) is found by
argmax U(A, D). This yields the following utility function, given the domain:

U(A) = argmax U(A, D).

The object is then to determine the optimal strategy, A, for the IDIT. As only one
decision exists in the IDIT, this is found by considering the policy for this decision
alone.

As can be seen from the example, the size of the function grows exponentially in the
number of time variables. If, for instance, the number of samples for the first time
variable is set to 1000, and the same is done for the second time variable, the number
of expressions in the function is in the range of 10°. As a sample size of 1000 is rather
small, we can conclude that solving IDITs using this type of sampling approach is
intractable. Even though this means that this approach is practically unusable for
problems with more than a few time variables, we are still able to use it to clarify
how an ideal solution of an IDIT is constructed.

During the example we have used sampling to resolve the occurrences
of integrals. Sampling can be performed by wuse of tools such as Win-
BUGS [MRC Biostatic Unit, Cambridge, UK, |, we have, however, not had time to
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explore this path. Thus, we cannot determine the actual policy for taking D. What
is needed for finding this policy, however, is a numerical solution, as the functions
for determining it are already given.

6.1.2 Example Two - Split and Wait Decision

In this second example we focus on the creation of a split tree and the merging of leaf
nodes in the split tree. As can be seen, Figure 6.6 contains guards, and in particular,
guards in relation to a cycle. Furthermore, the IDIT contains a wait decision.

§ W

AP Oy

Figure 6.6: A model of an IDIT containing guards, introducing the need to split on
the first time variable.

For the IDIT represented in Figure 6.6, the state spaces of the variables are as fol-
lows. A is a wait decision, meaning that it has a continuous state space. The decisions
B, C, and D are all binary decisions, resulting in the choices by, by; cq, c2; and dy,
dp, for B, C, and D, respectively. The choices in D result in timed actions lasting
five and ten time units, respectively.

E, is a discrete chance variable in the IDIT, has the conditional probability distribu-
tion, P(E|C, B), described in Table 6.3.

B
b1 b2
C C
Cq C2 C1 C2
E L& 0.3 |04 | 06 | 0.7
e; | 0.7 106 | 04] 0.3

Table 6.3: The conditional probability distribution for E, given B and C.

There are two time variables in the IDIT, T{ and T{. TS has no discrete parents,
yielding a probability distribution with three degrees of freedom, and a displacement
dependent on the choice of A. T has one discrete parent. The degrees of freedom
in the y2-distribution for T5 is therefore dependent on the choice of D. If D = dj,
T§ has 4.6 degrees of freedom, and a displacement of t§ +5. And if D = d,, T§ has
4.2 degrees of freedom and a displacement of t§ + 10, where t§ is the point in time
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represented by TZ.

There is one local utility function, U, in the IDIT. The function of U is dependent
on both the outcome of E and the time represented by Tf. The function is defined
as:

log t
U(E = e, TE) = %

2 - log t?

U(E = ey, TE) = %t.

Examining the IDIT of Figure 6.6, we see that guards are on two of the arcs. When
solving the IDIT we construct a split tree. The split tree is built from the preliminary
temporal ordering of the IDIT. For this IDIT this is deduced to be:

A<3TA<3B,Cl<p E<p D=3 TH

, showing that the split is from the first time variable, as this is the last time variable
before a set of unordered decisions occurs. The split tree is found by splitting on T%,
is presented in Figure 6.7.

Figure 6.7: The split tree for the IDIT presented in Figure 6.6.

We construct the split tree by placing the original IDIT in the root of the tree. Then
we find the first split variable and identify the restriction functions referring to it. For
this IDIT those are the guards on the arcs connecting B and C. We construct a node
for each partially symmetric IDIT resulting from the split, and remove arcs, for which
the guard evaluates to false. Then we find the preliminary temporal ordering for each
partially symmetric IDIT and identify new potential split variables. No such variable
exist, and the partially symmetric IDITs are identified to be symmetric IDITs.

A strong junction tree for each symmetric IDIT, is now created, beginning with the
one depicted in the top leaf node. This symmetric IDIT has, because of the split,
the temporal ordering: A <p TZ <2 B <p C <p E <3 D <3 Tf, this gives only
one possible elimination order. The resulting triangulated graph and strong junction
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tree, resulting from this elimination order, are depicted in Figures 6.8(a) and 6.8(b),
respectively. These are constructed in a similar manner as for the previous example.

(a) (b)

Figure 6.8: (a): The triangulated graph for the IDIT of the leaf nodes of Figure 6.7.
(b): A strong junction tree for the graph presented to the left.

During construction of the strong junction tree, edges are added in the moralization
of the symmetric IDIT, and fill-ins are added in the strong triangulation of the mor-
alized graph. The edges are: (T5,B), (Tg, D), (B, C), and (E, T§) for the moralization,
and the fill-ins are: (T5,E), (T5, C), and (E, D) for the strong triangulation.
Examining the symmetric IDITs of the split tree further, we notice that their trian-
gulated graphs are equivalent, thus they result in equivalent strong junction trees.
Therefore, we do not show the strong triangulation or the strong junction tree for
the symmetric IDIT in the lower leaf of the split tree.

The method for solving the strong junction tree follows the method, which we went
through in the first example. We, therefore, only show what is done in the presence
of a split variable and when eliminating a wait decision.

We do not show the elimination of the variables before TZ in the elimination ordering,
as this resembles the elimination done in the first example.

The elimination of variables up until T{ in the two symmetric IDITs results in
equivalent sets, @ and W but with different values for the potentials in W, for the
two symmetric IDITs. Before eliminating T the two strong junction trees are similar
in structure, so the merged strong junction tree is a clique consisting of A and T3.
The set of probability potentials for this clique consists of only P(Tg/A). This is the
case for both symmetric IDITs. The set of utility potentials consists of a function,
U, over the domain T£. U is a function, which, as long as T% is less than ten, equals
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U;. Uy is the utility potential for the upper symmetric IDIT. U equals U, for values
of TZ greater than or equal to ten, where U, is the utility potential for the lower
symmetric IDIT. There is in fact no reason to distinguish between U; and U,, when
solving the IDIT, as arngax(arngqx V) is equivalent to arngqx(arngx V) for

any two decisions, D and D’.

Eliminating T3 we get q):kr/e\ = @ and ‘l’f‘r; = ZT;U(A) - P(TRIA). This yields the
following function over A:

10 00
U(A) = L Uy (TS) - X2t — a)(3.00)dts + Jw U (TS) - XA (t5 — a)(3.00)dtg,

where a denotes the time chosen for A.

To eliminate A we maximize over U(A). As A is a wait decision, we find the maximum
by computing the derived of U(A) and finding the extrema. Then we compare these
extrema to find the global maximum. If two or more maximum points exist, we
choose the first, with respect to time.

This concludes the two examples of how we solve IDITs.

6.2 Alternative Approaches

In the previous section we saw how two examples were solved using the solution
method we present in Chapter 5.

In this section we discuss alternative approaches handling different elements of the
solution of IDITs. As we saw in the first example, the use of sampling as proposed
introduces a grand complexity of the functions being sampled. In this section we dis-
cuss alternatives to that approach. We look at [Kozlov and Koller, 1997], in which a
nonuniform discretization for the discrete variables is used. Then we discuss an ap-
proach presented in [Charnes and Shenoy, 2002], which utilizes a sampling method,
in which samples are drawn from multiple variables, and the aim is to approximate
the optimal policy for decision variables. We discuss numerical integration, as this is
the approach used in [Broe et al., 2003]. Finally, we mention an approach in which
the distributions of the time variables is approximated using polynomials.

6.2.1 Discretizing Continuous Variables

Another way, than using sampling to approximate the probability distribution
of time variables, would be to discretize these variables. Usually one would go
about this by discretizing variables independently of each other and one at a time.
In [Kozlov and Koller, 1997] a method, for discretizing continuous variables in a hy-
brid Bayesian network in a nonuniform and dynamic manner, is proposed. They
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present what they call a Binary Split Partition tree, a BSP tree for short, which
they use for discretizing variables in cliques of a junction tree. A BSP tree is simply
a data structure for storing information regarding how the discretization of some
interval is performed.

The discretization is performed in iterations. Each iteration bases the new intervals
on the nature of the distribution in each interval. These iterations continue until
either the decision taker chooses not to have any more iterations, or the Kullback-
Leibler distance, which is the relative entropy, between the original distribution and
the discretized distribution is smaller than some set value. This value is set by the
decision taker.

For each iteration, the algorithm is designed to concentrate intervals around areas of
the distribution, which has the most activity. That is, considering two ranges, [a : b|
and [b : c[, where a and c are arbitrary reals, and b is the mean of a and c, the algo-
rithm would discretize the interval, which has the most fluctuation in values, more
thoroughly than the interval with the least fluctuation of. The value for a discretized
interval is the mean for the same interval in the original distribution. The reason for
this is that this ends up giving the minimal Kullback-Leibler distance, KL-distance,
between the two distributions. This is not proven in [Kozlov and Koller, 1997], but
they refer to [Cover and Thomas, 1991] for the proof and justification for using the
Kullback-Leibler distance as a guidance measure.

The reason for concentrating intervals around active parts of the distribution is
that this should help in making the errors introduced by any form for discretization
smaller and therefore give a closer approximation with fewer operations.

This only describes the nonuniform part of the method. The dynamic part con-
cerns how the variable, which should be discretized, is chosen. Before any variable
is discretized the hybrid Bayesian network is converted to a junction tree. The dis-
cretization is stored in the BSP tree, which is organized, so the original function is the
root. Each node may have two children, each child representing half the distribution
of its parent. When choosing which half to discretize, gradient descent is used, in or-
der to discover the activity of the function in the interval currently being examined.
Finding which variable to discretize is done by considering the KL-distance between
the joint probability distribution of the continuous variables in the current clique
and the joint probability distribution of the same variables after a discretization.
The discretization yielding the minimum KL-distance between these two distribu-
tions, is then chosen. When performing many discretizations, this quickly becomes
an intractable approach and heuristics are applied to find the variable and interval
to discretize.

We do not go through the algorithms or proofs in this thesis, but refer the reader to
[Kozlov and Koller, 1997] for further detail.

If we were to use this approach on an IDIT, and still using the split trees, we would
have some intervals, which are predefined. This ruins part of the approach, as this
leads the use of a BSP tree inapplicable. A similar data structure can be constructed,
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which takes into consideration the intervals imposed by the splits in the split tree.
The algorithm must then also consider these intervals when discretizing the time
variable. As a result of the semantics of time variables, discretization of a time
variable, results in intervals of the form [a + t : b 4 t[, where a and b are the limits
of the interval if the time variable was not dependent on any other variable, and t is
the latest point in time represented by the variables influencing this time variable. A
further restriction on the time variables is their range. A time variable may not have
an infinite range, if this method is to be utilized for discretizing it, as each iteration
of the discretization splits the considered in two equally large intervals.

As long as no wait decision variables are in the IDIT the dynamic aspect of the
approach proposed in [Kozlov and Koller, 1997] is still applicable. If a wait decision
is to be discretized, a policy for this wait decision variable should be devised, and
then the decision could be converted to a chance variable in a manner such that
the probability distribution for this chance variable respects the policy of the wait
decision. This would then represent a discretized chance variable.

6.2.2 Multi-stage Monte Carlo using Local Computation

Multi-stage Monte Carlo [Charnes and Shenoy, 2002], or MMC for short, differs from
our approach in the way variables are eliminated and how sampling is performed.
Furthermore, MMC requires that all continuous variables are discretized.

MMC was devised for use on influence diagrams and by a discretization and the im-
posed resolutions of asymmetries could be applied to IDITs. The purpose of MMC
is to approximate optimal policies for decisions in situations, where the potentials
of the influence diagram grow so large that it is intractable to calculate their exact
values.

In principle, MMC works by, for each configuration of the required past of some deci-
sion, D, sampling the variables influencing the utility, influenced by D. Multiple sam-
ples are taken and when some threshold is reached, no more samples are drawn, and
the configuration, yielding the optimal policy, is chosen. Before taking samples, all
configurations are inspected, and invalid configurations are not considered. A thresh-
old, for the number of samples to draw, could be some number chosen by the decision
taker, or, as proposed in [Charnes and Shenoy, 2002], an (e, «)—approximation. The
limits for this approximation are set as a function of the number of samples drawn.
This is a way of approximating the optimal policy within € of the maximum expected
utility, with a level of confidence of 100(1 — «)%.

A strategy for an influence diagram is (e, o)-optimal, if P(E;) =1, forj =1,... k,
where Ej is the event in which “the decision function selected in stage j has expected
utilities within € of the corresponding expected utilities of an optimal decision func-
tion for that stage”. When an optimal policy has been approximated for some de-
cision variable, that decision variable is converted to a decision function respecting
the optimal policy. The stage refers to which decision variable is being considered.
Examining if the expected utility is within € of the maximum expected utility is
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done by letting F;; be the event that “the ith estimated expected utility at stage j is
within ¢ of its true value”. This means that if the ith estimate follows this definition,
then P(E;) > P(m’;jFﬁ) >1—gforj=1,... k.

We do not explain this any further but refer the reader to [Charnes and Shenoy, 2002]
for further discussion.

For MMC the first thing to do is to discretize any continuous variables, this means
that both time variables and wait decision variables are discretized. As this approach
is developed for use on influence diagrams, the construction of a split tree, to handle
asymmetries, is still a valid step. As all variables are discrete, MMC can be utilized
on each of the symmetric IDITs of the split tree. We need to do this for each sym-
metric IDIT, as the resolved asymmetries result in different IDITs, possibly yielding
different optimal policies for the decisions. This could be that some chance variable
is observed before taking some decision in one symmetric IDIT, while being observed
before taking another decision in another symmetric IDIT, because of guarded arcs.
This approach handles elimination with outset in the last decision in some influence
diagram. When enough samples are drawn, the approximated optimal policy is used
to convert that decision variable to a chance variable. This variable is always in the
state yielding the maximum expected utility given the configuration of its condition-
ing set.

When the decision variable, D, is converted to a chance variable, the next decision
variable is found, and the local utility functions, influenced by D, are eliminated. A
new local utility function, which portrays the numbers found to be the maximum
expected utilities for D, is constructed. Now, because of the elimination of some local
utility functions, there might be barren nodes. Such nodes are removed from the in-
fluence diagram, as they yield no useful information for the solution [Shachter, 1986].

Examining the definition of IDITs we find some problems though. First there is the
discretization of variables, this always results in some measure of error, and the less
discretizations the greater the error. Of course there is no rule, which says that the
discretization may not result in an arbitrarily large number of intervals.

Another aspect, which could prove to be a problem, also has to do with discretization,
it arises if the IDIT, we are solving, contains post-realized utility functions. There is,
usually, no upper limit for the extent of the time variable in a post-realized utility
function. This means that it, in principle, ranges from the end-time of the last time
variable to infinity. This makes it hard to have an intelligent manner of discretizing
it without the risk of loosing much information, no matter how fine a granularity the
discretization uses. We can get around this problem by saying that from some point
in time and forward, the time variable has a zero probability, or simply just to set a
limit on the range of the time variables.
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6.2.3 Numerical Integration

Using numerical integration is another approach to solving the question of proba-
bility distributions for time variables. [Broe et al., 2003] used this method through
Maple [Maplesoft, 2002]. Using numerical integration, the distribution is discretized
to a number of uniform intervals. The idea is then to approximate the value for each
interval and through this approximating the probability distribution for the entire
distribution. This is done by, for each of these intervals using the mean of the original
distribution as the value for the interval. The finer the discretization, the closer the
approximation.

The difference between this and the discretization method described in Section 6.2.1
is that this approach does not take into consideration that some intervals have a
higher density than others, nor does it discretize in a dynamic manner.

6.2.4 Approximation using Polynomials

One approach to approximating a density function is to approximate its behaviour
with a new function. This can be done in different manners, but one approach is
to use Tailor series, as proposed in [Nielsen, 2003]. The idea is to approximate the
probability distributions with polynomials, which are both integratable and differ-
entiable. As summation and multiplication for these still are polynomials with these
properties finding the approximated maximum expected utility can be done easily.

6.3 Discussion of the Framework

The goal of this project has been to develop a framework for DPITs. From the begin-
ning three key requirements, which the representation language should fulfill, were set
up. These requirements specify that the representation language should model DPITs
in a manner which is compact, easy to read, and unambiguous. [Broe et al., 2003]
had a fourth requirement, namely that the representation language should be com-
plete with respect to modelling DPITs. We have removed this requirement as it is
impossible to fulfill unless the class of DPITs has been precisely defined, thus yield-
ing a new representation language.

Even though the fourth requirement has been removed we have still sought to make
a framework, which has as much expressive power as possible. In this thesis we have
extended IDITs to also handle situations where the quantitative part of time influ-
ences the order of taking decisions. Furthermore, we have made it possible to model
uncertainties of time not related to decisions, by introducing post-realized utility
functions. However, by these additions the representation language has become in-
creasingly complex, and we stand the risk that models of DPITs therefore end up
being harder to comprehend.

In this section we discuss precisely this dilemma in relation to IDITs and try to lay
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bare the consequences of the choices we have taken. In doing this we hope to give
future researchers in the area of decision problems involving time a foundation on
which to base their choices.

The expressive power of IDITs aims at expressing all possible DPITs. Therefore, all
aspects found, which relates to time, have been sought expressible in IDITs. This
has been done in order to give the modeller of DPITs as much freedom as possible,
and give him a universal tool for communicating and solving DPITs.

Another approach is to try to classify the aspects of time in logically connected
classes, and make a specialized framework for each such class. This yields a frame-
work, which is not capable of modelling all aspects of time, but models some in a
precise and compact manner. As noted before, time introduces asymmetries in deci-
sion problems. These aspects are good candidates for classes of DPITs. That is, one
class handling those DPITs, in which the quantitative aspect of time restricts the
state space of decision variables, changes the set of observed variables, or imposes
different orderings of decisions. Another class then consists of those DPITs, for which
time influences the states of variables, and has an influence on the preferences of the
decision taker. Both classes should fulfill the requirements with respect to represent-
ing time as a continuous element. They could, however, do this in different manners.
The expressive power of two frameworks modelling these classes of DPITs would each
be less than that of IDITs, however, as the models from these frameworks would be
specialized to show the important information relating to the class directly in the
graphical representation. For instance, a representation language without asymme-
tries may use dashed arcs to point out an influence of time, whereas in IDITs we
have chosen to use that form of representation to tell the reader that there exists a
restriction between the two variables connected by the dashed arc. Likewise, the so-
lution method for any of the two classes would be faster as some steps of the solution
method for IDITs would be obsolete. The splitting in order to reveal asymmetries
would not be necessary for one of the frameworks, and the fact that time does not
influence probabilities and utility functions in the other specialized framework, could
be utilized to perform a discretization of time in some manner.

The choice of whether a specialized framework is preferred to a general purpose
framework, as IDITs, or not, is subjective. If models should reflect a complex real
world problem, and the primary goal of this model is to find an optimal strategy for
taking the decisions, the more expressive framework would be chosen. This framework
can model all aspects of the problem, and an optimal strategy is given based on
all these aspects. However, when the model only needs to represent a part of a
complex problem, as could often be the case, a specialized framework is preferred.
This mounts to a question about the decision problems being modelled, and the
outcome of modelling. If most decision problems involving time only include one of
the two classes of DPITs, the specialized frameworks would be preferred. If, on the
other hand, most decision problems span both of the specialized frameworks, the
general framework would be preferred. To conclude on this, more research should
be applied into the influence of time. Furthermore, the lack of expressive power in a
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specialized framework, might be less important if the framework is easier to read.
Looking at the three requirements set up for the framework, it can be seen that
IDITSs is a compact and unambiguous framework. Whether or not, IDITs are easy to
read is a subjective discussion, but as influence diagrams are usually deemed hard
to grasp, IDITs are most likely also hard for a layman to grasp.

6.4 Summary

We have applied the solution method, as proposed in Chapter 5, to two different
examples. The examples incorporate the use of both a cycle and an instance of a
post-realized utility function. Besides this we have presented alternatives and modi-
fications to the sampling approach and the solution as a whole, such as the use of a
discretization for the continuous variables.

We have concluded this section by discussing IDITs as a framework. We have dis-
cussed the problems we have identified in the structure as it is now and have proposed
a way of splitting it to a set of specialized frameworks.
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Chapter 7

Conclusion and Future Work

The aim of this project has been to represent and solve DPITs. We have done this
by extending the representation language, IDITs, proposed by [Broe et al., 2003], in
order to be more expressive, and by devising a solution method for IDITs.

By analysis of DPITs we have found additional requirements for a framework mod-
elling them. These requirements ensure that the framework can handle the ordering
of decisions being influenced by time and post-realized utility functions. The latter
being the cases where a utility function is not realized immediately after the timed
action of the last decision is executed, but at some later point in time. An example
of this could be the event of selling stocks, as the payoff of selling is realized the next
day, thus the market value of the stock may have fallen since the decision to sell was
taken.

We have refined IDITs to be capable of handling these additional requirements by
allowing guarded cycles between decisions, and by adding the possibility of having
time variables, which are not associated with decisions.

Furthermore, we have shown that a temporal ordering of variables in an IDIT exists
and how this temporal ordering can be deduced from the two levels of the IDIT.
This is also used to show that IDITs are welldefined in respect to finding the next
decision to be taken.

We have also given semantics of the quantitative level, by showing how this level can
be realized in an IDIT, and discussing how this level can be modelled generally.

We have devised a general method for solving IDITs. This method takes outset in a
preliminary temporal ordering, and uses this construct as a split tree. A split tree is
a tree, in which the nodes are instances of the IDIT being solved. The root of the tree
is the original IDIT and the leaves are symmetric IDITs in which all asymmetries,
imposed by time variables, are resolved. For each symmetric IDIT we have chosen to
use a strong junction tree using lazy propagation for solving them. As a consequence
of modelling time variables using x?-distributions an exact solution cannot be com-
puted. We have chosen to use a sampling technique, based on the [Gentle, 1998],
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for approximating the distributions of the time variables. The combination of this
choice and our semantics of time variables has led to the unfortunate event that the
solution method results in intractably large functions when solving IDITs with even
a small number of time variables.

On a lighter note, we present arguments for the correctness of our algorithm, and
have presented other alternatives to our current solution method.

The last part of this conclusion is aimed at the results of this thesis. We present two
small examples, which we have solved using our solution method. To give another an-
gle to our solution method we discuss alternative approaches to solving the dilemma
we have encountered. These include a nonuniform dynamic discretization and a multi
staged Monte Carlo method using local computations. What we find intriguing about
these approaches is that the discretization is proposed for use on hybrid Bayesian
networks in junction trees, and the multi staged Monte Carlo method was devised
for influence diagrams, a framework, which is closely related to IDITs.

Finally, we have discussed the framework of IDITs. In this discussion we present the
complications we have found and we propose constructing a number of specialized
frameworks as opposed to a single framework for handling all aspects of time, such
as IDITs.

Unfortunately, we have not had sufficient time to try out all our proposals, nor
to devise an implementation of our framework. We have, however, expanded both
DPITs and IDITs, proposed a temporal ordering of IDITs, devised a structure for
representing IDITs in a manner, which exposes all asymmetries, and we have devised
a general solution method for IDITs.

7.1 Future Work

This thesis documents the study of decision problems involving time, and in the
course of this work many interesting aspects of time, and its impact on how a frame-
work should be constructed, have been disclosed. However, we have not had time to
explore all of them fully, so we present some of these aspects in the hope that others
will continue this work. We divide the aspects into three categories, these being: the
aspects relating to the expressive power of IDITs, the aspects relating to the solution
method, and the aspects applying the work to real world problems.

During the analysis of several DPITs an element of time, which is not modellable in
IDITs, was discovered. Decisions, which must be taken at a specific point in time,
which we have opted to call fized time decisions. These cannot be correctly portrayed
in IDITs. The problem with fixed time decisions is the semantics of the decision. For
instance, if the decision taker, at the time a fixed time decision must be taken, is in
the midst of executing the timed action imposed by his choice in another decision.
Should the timed action be skipped, and the fixed time decision be taken instead?
Or should all decisions before a fixed time decision have a choice, which is resolved
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instantly, thus making it possible to choose this choice and in this manner skip to the
fixed time decision? Future research should analyze the need of fixed time decisions,
find a suitable semantics for them, and, based on the semantics, extend IDITs to be
capable of modelling such decisions.

The solution method devised for solving IDITs in this thesis is an general solution
method, which, unfortunately, is intractable on models, which handle more than a
few time variables. This is because of the exponential nature of the functions we
use to represent utility potentials. Therefore, we propose that a method for solving
IDITs should be devised, which focuses on keeping the intermediate results and cal-
culations to a minimum with respect to size. Function analysis could be of used to
find some regularities in the function expressions and use this to approximate the
large expressions by smaller ones.

An approach could be to first alter the semantics of time variables, so they only
represent an uncertainty in time, and not a specific point in time. This results in the
time variables not being dependent on each other, which is one of the aspects, which
lies as the foundation of our problem.

In Chapter 6 we have proposed other approaches to handling the continuous elements
of IDITs. An interesting approach to consider is that of a nonuniform dynamic dis-
cretization [Kozlov and Koller, 1997], as this approach also uses the confinements of
a junction tree to structure the variables of some network.

The approach we discuss in Chapter 6, proposed in [Charnes and Shenoy, 2002], was
proposed to handle potentials, which are intractably large. This is exactly the prob-
lem we end up having. Unfortunately, this approach is aimed at models in which all
variables are discrete, so either a discretization must be performed beforehand, or
the approach should be modified to also handle hybrid networks.

The framework of IDITs, as proposed in this thesis, is yet only applicative as a tool
for communicating DPITs, as it is not yet implemented. The use of sampling and the
complexity of the solution method makes even small IDITs hard to solve by hand.
An implementation could take outset in the solution method proposed, yielding it
possible to solve small to medium sized IDITs, however, larger IDITs would be
too time and space consuming for computers to handle. Assuming that IDITs are
implemented considerable speed ups can be achieve by utilizing the equality of the
symmetric IDITs. As mentioned in Chapter 5 there exists an exponential amount
of symmetric IDITs in the number of split variables. All these symmetric IDITs are
converted to a strong junction tree. By studying the symmetric IDITs, however, it
is deduced that many of these are equivalent, as splits are also caused by restriction
functions, which do not change the structure of the IDITs, but only the state space
of the decision variables in it. An implementation would also make it possible to
argue about the use of sampling as opposed to, for instance, approximating the
probability distribution of time variables using polynomials or any other method of
approximation.
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Appendix A

Summary

Decision analysis is a research area focusing on taking decisions in an uncer-
tain context. Trying to formalize decision analysis has resulted in a range of
different frameworks, each having their pros and cons. The frameworks typi-
cally used are decision trees [von Neumann and Morgenstern, 1944], influence di-
agrams [Howard and Matheson, 1981], and valuation networks [Shenoy, 1992].
Even though these frameworks have been used to model decision problems, the mod-
els are limited to only encompass time on a qualitative level, that is, having a
temporal ordering of the events of the decision problem. However, time also has
a quantitative level. Decision problems are models of real world problems, but,
as decision problems are modelled without a quantitative representation of time,
these do not reflect this dimension of the real world. [Horvitz and Rutledge, 1991]
and [Horvitz and Seiver, 1997] discuss how time may influence the utility functions
of a decision problem. But the influence of time exceeds the influence of utility func-
tions, for instance, time often influences which choices are possible in a decision. As
an example, one cannot go to the stadium at ten o’clock to see a football match,
which ended at eight o’clock. In [Broe et al., 2003] the class of decision problems
involving time was analyzed and a framework, for modelling these, was proposed.
The analysis showed how decision problems involving time, combine two well studied
aspects of decision problems, these being that the problems tend to be asymmetric
and that time should be represented by continuous variables. In this thesis we have
continued the work of [Broe et al., 2003].

Decision problems involving time, DPITs, are characterized by the elements of the
individual DPIT being influenced by time. We have found that a DPIT can be di-
vided into four parts, these being: the variables in the DPIT, the decision taker,
the preferences of the decision taker, and the relations between the variables. The
variables represent the decisions, the uncertainty of circumstances, and time in the
DPIT. The decision taker is the person to whom the DPIT is presented. Finally,
relationships between variables is represented as probabilistic dependencies, prece-
dence of taking one decision before another, or a restriction of the possible choices
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of a decision.

The analysis of DPITs has led to a series of requirements for frameworks modelling
these. These requirements ensure that the framework: models time as a continuous
element, and does so in a manner resulting in both a controllable and an uncontrol-
lable element; is capable of modelling restrictions of state spaces of decisions; can
model time being influenced by other variables; can model observations, which can
only be taken in specific time spans; can model chance variables influenced by time;
and can model the preferences, of the decision taker, being influenced by time. It
should also be modellable that some preference of the decision taker is not realized
until some time in the future. Furthermore, the precedence of one decision in relation
to another decision may dependent on the point in time they are to be taken.

To satisfy the requirements, for a framework modelling DPITs, we have constructed
a framework, named influence diagrams involving time, IDITs, which models such
decision problems. The framework builds on the ideas of influence diagrams, such
that it models DPITs on two levels. On the qualitative level IDITs models variables
and local utility functions as nodes in a directed labelled graph, and the relationships
between variables as the arcs of the graph. The semantics of an arc differs according to
the nodes it connects, and whether or not the arc is labelled with a guard. Likewise, it
can be seen directly in the graphical representation, if one variable restricts another.
On the quantitative level information, relating to the individual variables, is given.
That is, to each variable the state space of the variable is given, and probability
distributions are associated to chance variables. Furthermore, all restriction functions
are specified on this level and the functions relating to each local utility function.
We describe IDITs by giving an informal introduction to the concepts of IDITs, and
their graphical representation. To exemplify this we have proposed a DPIT, which
we have named the SAR problem. It takes outset in the rescue mission set in motion
when a person is reported missing. The example includes time on a quantitative
level, as the success of the mission is related to finding the missing person alive,
within some time frame. We have introduced time variables, which are not directly
associated with decisions, in order to model local utility functions realized after the
last decision. After describing the ideas of IDITs we define the syntax for both the
qualitative and the quantitative level of IDITs. We then describe how the IDIT
can be read according to a temporal ordering, which is deduced from the two levels.
Furthermore, based on this temporal ordering, we argue for IDITs being a welldefined
framework, that is, when a temporal ordering of decision variables exists the next
decision can be unambiguously identified.

As a modelling tool the representation language of IDITs would be enough. However,
we want to find a policy for taking each decision of the IDIT, therefore, a general
solution method is needed. We propose a solution method for solving IDITs, with
respect to finding an optimal strategy.

The influence of time can be divided into two main categories, namely one relating to
time as a continuous element, and one, which renders the models asymmetric. In the
solution method we recursively resolve all asymmetries of an IDIT by splitting the
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IDIT into symmetric sub-problems. We end up with a number of totally symmetric
sub-problems, which we have organized in a tree structure, called a split tree. We
then solve the part of each symmetric sub-problem, which is unique to this specific
sub-problem, using a solution method inspired by the solution method for influence
diagrams, however, the sub-problems are solved in an environment which has contin-
uous variables. We have chosen to use a strong junction tree approach when solving
the symmetric sub-problems. When a solution for the unique part of a sub-problem
is found, we merge this result with all other results of sub-problems resulting from
this split. This is continued until all results have been returned to the root of the
split tree, and the original IDITs is then solved. In this manner we end up with an
optimal strategy for taking all the decisions in the IDIT, which is the solution we
aimed at.

As we have continuous variables we need to approximate the probability distributions
of these in order to obtain the solution. The solution method proposes a sampling
technique for this approximation. However, we conclude that sampling over the con-
tinuous distributions yields expressions, which grow exponentially in the number of
time variables, thus is not applicable for large problems.

Finally, we present two examples, which illustrate some of the important parts of
IDITs, and we have solved these using the solution method. As a consequence of the
exponential growth in function size we have not found a numerical solution to these
examples. However, the examples still serve as an illustration of all other aspects of
the solution method.

Furthermore, we have discussed different approaches to approximation, such that
future research might find a numerical solution to IDITs. Finally, we discuss the
appropriateness of the framework proposed, as opposed to having proposed smaller
frameworks.



