Faculty of Engineering and Science ({‘

Aalborg University

Department of Computer Science

Join /Leave Protocol for Structured
Peer-to-Peer Networks

Master Thesis

Group B1-215e - 10th semester
February 1st - June 10th, 2003

Faculty of Engineering and Science

Aalborg University

Department of Computer Science

TITLE: Join/Leave Protocol for Structured P2P Networks

Master Thesis

SEMESTER PERIOD:
SSE4, 10th semester
February 1st - June 10th, 2003

PROJECT GROUP:
B1-215e

GROUP MEMBERS:

Arﬁnas Vrubliauskas, aras@cs.auc.dk

SUPERVISOR:

Josva Kleist, kleist@cs.auc.dk

NUMBER OF COPIES: 3
NUMBER OF PAGES: 75

SYNOPSIS:

The aim of this project is to implement and
test a Peer-to-Peer communication pro-
tocol, whose purpose is to assure a ba-
sic connectivity in the structured Peer-to-
Peer network. The protocol implementa-
tion is based on the object-oriented anal-
ysis and design (OO&D) methodologies
and it was implemented in C++ Program-
ming Language using Standard Template
Library (STL), POSIX threads and sock-
ets Application Programmable Interfaces
(APIs). Systems tests were conducted to
verify conformance to the functional and
non-functional requirements, and its target
environment. The experimental results in-
dicate that functional and non-functional
(performance) requirements are met and
further improvements are proposed.

Preface

This report has been written by project group B1-215e as a report for the second part of
the Master Thesis in the International Masters Program in Software Systems Engineering
of the Faculty of Engineering & Science, in the Computer Science Department at Aalborg
University, Denmark, during the period from the 1st of February to the 10th of June,
2003.

This report is directed to people interested in distributed systems and peer-to-peer appli-
cations.

Figures, tables and formulas in the report are numbered in succession inside each chapter.
Cross-references to formulas, figures, tables and appendix are written directly in the text.
Cross-references to source material are specified with square brackets after the part of the
text, where they are used, e.g. [2].

The source code of the Join/Leave protocol can be found at the following location:
http://www.cs.auc.dk/~aras/ssed /

Arunas Vrubliauskas

Contents

1.1 Peer-to-PeersSystems. o o
[L.I.1 Peerto-PeerConcept,
[I.1.2 Peer-to-Peer Systems Definition

122 Problem Statement.
[I:3 Join/Leave Protocol Concepts i
1.3.1 FROST Architecture Model.
132 NodeData.

Join/Leave Protocol Implementation

21 TheTask

DIT PUMPOSE . o o o v et e e e e
[2.1.2 Correclionstothe Analysis.

Join/Leave Protocol Testing

BT EqQUIPMENt e
[3.I.1 ClusteratAalborgUniversjty.
BIZ Planeflah

[3.2 TestDescriptign

12
12
12
12
13
14
14
14
15
16
16
16
23
23
24
32
32
33

[3.2.3 Timing Tests. .
[3.3 Test Results Analysis .

[3:3°37 Timing Tesis . .

4 Conclusior
@1 Tmplementafign.
42 Testng

B.1 Functional Test1: Fllqut

|C Stress Tests: Ethereal Outpuyt

C1 Stressfestl......

|ID Timing Tests Output
[D.1 TimingTestl.
D.1.1 TestCasell . .

Chapter 1

Introduction

1.1 Peer-to-Peer Systems

1.1.1 Peer-to-Peer Concept

In general, Peer-to-Peer (P2P) systems are distributed systems without any centralized control or
hierarchical organization, where Peer-to-Peer is a system architecture model in which each party
has the same capabilities and either party can initiate a communication session. Other models with
which P2P system architecture model might be contrasted include the client/server model and the
master/slave model. In computer networking, master/slave is a model for a communication pro-
tocol in which one device or process (known as the master) controls one or more other devices or
processes (known as slaves). The client/server model describes the relationship between two com-
puter programs in which one program, the client, makes a service request to another program, the
server, which fulfills the request. The main distinction between P2P and master/slave, client/server
models is that in P2P system architecture model each machine can be both, a server and a client
within the context of a given application. The machine which can serve as a server and a client
is called the Peer. The analogy of a Peer-to-Peer system architecture model could be a telephone
system where any person can call another person. Then the telephone model could be called a
Person-to-Person system architecture model, where Person could be a receiver of a call or a caller,
and no other Person has more privileges to make a call or receive a call. Same ideology can be
applied to a P2P system architecture model where Peers are connected in a network and all Peers
are working and communicating on an equal basis. The example of a P2P network can be seen in
Figurel.1

Master/Slave

Master/Slave

Master/Slave

Master/Slave

Master/Slave

Figure 1.1: Example of a Peer-to-Peer network. Rectangular shapes represents the Peers, a line
from one Peer to another represents a communication link.

1.1.2 Peer-to-Peer Systems Definition

In general itis agreed that there are two major architectures of a P2P syktdimd: P2P systems
(Figurell.2 (a)) andpure P2P systems (Figufe2(b)).

Hybrid P2P Systems: Hybrid P2P systems are regarded as centralized. They have a central server
to perform administrative tasks. The server usually has a catalog of the Peer addresses that
are referenced by a set of indexes. The main function of the server is to process lookup
gueries issued by Peers. The example of a lookup query can be as follows:

1. PeerA asks the serve$ to find the PeeX which has the resourck.

2. ServerS performs search in its database on who has the reséuecsl if resource?
is available, then served returns the address of PeErto PeerA.

3. PeerA connects directly to Peé¥ to use/get the resourde

Pure P2P Systems: Pure P2P systems has no central server or router. All nodes are Peers, and
each Peer may function as router, client, or server. Pure P2P systems can be classified
depending on how the routing is achieved:

Distributed index: The resource index is fragmented and distributed to Peers.

Hashing index: Nodes and associated resources are indexed by unique IDs. Each ID is a
hash value of a certain property (e.g. node ID - IP hash, resource ID - file name hash).

Flooding broadcast: A query is recursively broadcasted from one host to all its neigh-
bors. Then query propagates until the resource is found or application-level counter
TTL (Time To Live) reaches zero.

Also a combination of hybrid and pure P2P architectures has been successfully applied for some
applications and has shown its potential uSaper-Peerarchitecture (Figurd.2(c)) presents a

cross between pure and hybrid systems. A Super-Peer is a Peer that acts as a centralized server
to a subset of clients. Clients submit queries to their Super-Peer and receive results from it, as
in a hybrid system. However, Super-Peers are connected to each other as Peers in a pure system
architecture.

e
N A E
a) b)

Figure 1.2: a) Hybrid P2P architecture, b) Pure P2P architecture, ¢) Super-Peer P2P architecture.
S-box represents index server and P-box represents Peer.

1.1.3 Overview of the Peer-to-Peer Systems

P2P systems have recently received significant attention in both academia and industry. Most
successful examples of P2P file sharing systems are systems such as ChjteHeegnet /L]
(and some other systems with similar features), where the main idea is to unite the users, who

wants to share the files, into a P2P network where users can easily find what they want, get what
they want and give what they want. Another kind of P2P systems are systems that utilizes unused
or wasted CPU-cycles of the idle machines in a P2P network. Those systems are mostly used by
scientists who needs to get the results within a reasonable time for parallelizable computational
problems that require a lot of CPU-cycles. Examples of such a systems could be SETI@home [
THINK [[13] and distributed.netll4].

SETI@home: The Search for Extraterrestrial Intelligence. They scan the sky using a large
radio telescope and record the signals in a certain frequency. The computational problem
here is that they must calculate Fast Fourier Transformation (FFT) of each signal to perform
the analysis on the power spectrum of the signal. By analyzing the power spectrum of a
signal they want to find the "unusual” patterns in a signal, as a proof that extraterrestrial
intelligence exists.

SETI@home is a master/slave distributed calculation system where master distributes work
to the slaves. Master splits the signals into the work units, where length of the signal is
around 100 seconds (a file size is around 340kb) and then distributes them to the clients. On
the average home computer the processing of a data (one work unit) should take between 10
and 50 hours.

THINK: THINK project is a drug discovery system. System analyses each of the hundreds
of millions of molecules to see if they are likely to interact with a target protein. THINK
calculates and studies the many possible shapes, or conformers, the molecule might adopt
interacting with the protein.

THINK is a master/slave distributed calculation system and like SETI@home, they have
dedicated master server which distributes tasks to the slaves. The work unit contains ap-
proximately 10Kb of data and the CPU-time required varies from 4 hours to several days.

distributed.net: distributed.net project is based on solving mathematical problems such as
Optimal Golomb Ruler, RSA, etc. At the moment when this report has been written the
distributed.net was solving RC5-72, which is 72-bit RSA Data Security Secret Key Chal-
lenge. Itis also master/slave distributed calculation system. The only difference compare to
previous examples is that a slave can control how much work he can get depending on the
available resources.

Common characteristic of those systems is that they are based on a client/server architecture where
people around the world offer their spare CPU-cycles for a particular computational problem. The
main drawback in the systems mentioned above is that a central server must be really powerful to
be able to serve all the clients.

A more challenging approach to the distributed calculation could be to use a pure P2P architecture
where all the clients are equal and allow everybody in the P2P network issue the computational
problems, meaning that everybody can use others spare CPU-cycles for theirs purposes. One of
such a systems is a distributed heterogeneous calculation platform FRDShi¢h was devel-

oped in the Aalborg University.

1.2 The FROST System

The FROST systentil] was designed and implemented in the Aalborg University. The aim was

to develop an API that will aid a programmer in developing applications such as SETI@home
[6], THINK [[13] and distributed.netld]. From the FROST perspective the programmer is a
user which defines a computational problem, defines how to split the computational problem into
several pieces, or work units, that can be processed independently, and finally defines how to
combine the results when they have been processed. Moreover, a user has to specify the algorithm
that performs the calculations on the work units. Administration of the network communication
between the machines, distribution of the work units to the machines in the FROST network and
other administrative tasks are hidden from the user and are performed by the FROST system. Work
units can be distributed only to the machines that are members of the FROST network. A machine
is said to be a member of the FROST network if that machine has a FROST software running and
other participants of the FROST network can communicate with that machine and use the CPU-
cycles of that machine for solving some computational problem. The FROST network is based
on a pure P2P architecture where all the machines are working on an equal basis, meaning that
anybody in the network can use or give spare CPU-cycles to each other. Moreover, the machines or
nodes in the FROST network are non-dedicated workstations, which are used for a daily purposes.
Whereas the FROST system on these workstations run with low priority to assure that FROST
uses only those CPU-cycles that are unused.

1.2.1 Limitations of the FROST System

One of the limitations of the FROST system is that a current implementation scales only to a lo-
cal area network (LAN). The FROST developers indicated that a problem in scaling the FROST
system is the bottleneck induced by master and information sharing. The bottleneck induced by
master is a situation when a master node must handle thousands of clients and thus the master be-
comes a bottleneck either because of the network bandwidth or speed of a master node. Another
problem in scaling the FROST system is the information sharing, since all the nodes in the FROST
network has to share the information required for the load balancing and other administrative tasks
and it is currently done by using broadcast communication. It is normal to use broadcast commu-
nication on the local area network, but it is unprofitable for the Internet wide communication.

1.2.2 Problem Statement

A scalable solution for the FROST system was proposed]iwhere the Join/Leave protocol was
designed and verified using the SP[RNB[[19] verification tool. This work is a continuation of a
previous work[P] and there are two main goals that motivate this study:

1. Prototype ImplementatioriRrototyping is an efficient software development technique which
helps to better understand the environment and the requirements being addressed. A proto-
type is a demonstration of what'’s actually feasible with existent technology, and where the
technical weak spots still exists. In this part the main goal is to implement a prototype of
the Join/Leave protocol and prepare it for the system testing.

2. System TestingSystem testing is an important process for assuring software quality in an
environment of complex defect-prone components. In general, system testing focuses on the
complete system, its functional and non-functional requirements, and its target environment.
The following system tests will be conducted:

Functional testing. Functional testing, also called requirements testing, tests if the sys-
tem perform as promised by the requirements specification.

Performance testing. Performance testing is used to test if the non-functional require-
ments are met. Two types of performance tests were conducted:

Stress tests: The purpose of the stress tests is to evaluate the system when stressed
to its limits over a short period of time.

Timing tests: The purpose of the timing tests is to validate conformance to behav-
ioral and performance constraints and evaluate if the system is fast enough.

1.3 Join/Leave Protocol Concepts

In this section some required concepts, which were defined in the previous2jyerill pe intro-
duced.

1.3.1 FROST Architecture Model

The structured indirect communication model was chosen because it promises to avoid the problem
induced by master and the information sharing can be done efficiently. The nodes in such a model
form the groups of nodes, where each group has one master node. Information between the nodes
is shared inside the group, whereas group masters can share the information between other group
masters as can be seen in Figlird Another advantage of the model is that it is a decentralized
model meaning that there is no need to invest in dedicated machines.

Figure 1.3: Simple structured indirect communication architecture model with 4 groups of nodes.

The basic structured indirect communication model was modified by removing the root node
from the architecture, with intent to remove the central point of failure in the model. Then the
FROST architecture model will look as presented in Figlude The FROST architecture model
can be described using 3 parameters:

Base: Baseparameter gives an upper bound for the number of slaves in a group of nodes. For
example, thdBaseof the architecture model presented in Fidlirdis: Base= 4, thus the
fictitious nodeN, can have a maximum df slaves and they ar&+, No, N3 and N4. This
rule holds for all master node®V(, N>, etc.) in the architecture.

Level: Level parameter gives the number of levels in the model. For examplé.eied of the
architecture model presented in Figlrd is: Level = 3, meaning that model has three
hierarchical levels starting from levél, to Ls.

Size: Sizeparameter gives the number of nodes in the model. The size can be calculated using
the following equation: f_%l — 1, wherel = BL, B-Base L - Level. For example, the
Sizeof architecture model presented in Figltd is: Size= 84.

The FROST model could scale to a large number of nodes, for instance if base and level of a
model isB = 100 and L = 7 respectively, then the sizg ~ 104, which is very large number

of nodes and the worst case number of hops from one node to another IS@R$= 13, where
HOPS= 2. L — 1. For example, in Figurg.4the worst case number of hopHOPS= 5.

The nodes in the model are organized according to the performance of nodes, meaning that higher
performance nodes are locatgéigherin the hierarchy, for instance in Figuied nodesVy, ..., N4

have highest performance and are located in I&yehodes with low performance are located in

level Ls.

Figure 1.4: FROST architecture model. Base 4, Level 3, Size 8.

1.3.2 Node Data
The following describes the data structures used by the Join/Leave protocol:
Static performance (SP): SPis a static node performance.

Global performance (GP): GPis a global performance of a group including subgroups. A
knowledge about a global performance will support a decision making on where the new
nodes should join to sustain as well balanced FROST architecture as possible. When the
FROST system is operational, td values of the highest level nodes should be close. For
instance, if nodesvy, N, and N3 are from highest level, therGP, ~ GP, ~ GP3. A
global performance is maintained by each node in the FROST system and is calculated as
shown in equatiod.1 Note, that when a node has no slaves, the sum evaluates to zero and
theGPis equal to a static node performarse

GP;=SP+ > GP (1.1)
j€slaves(GF;)
GP; - global performance of nody,
GP; - global performance of nod¥;, nodelV; is a slave of mastew;,
For example, consider the fragment of a FROST system in FireThe calculation of
global performancé;P; of nodeV; is as follows: using the equati@nl and following the

bottom-up direction in the FROST system the global performance of Nads:
GP) =GPy, +GP; + GPy, whereGP, = GPs + GPs + GP; andGPy = GPs + GP,.

Base (B): Bis a constant which defines the base of a FROST architecture. The base value is
an upper bound for the number of slaves a master can have. For instance, in the FROST

10

architecture fragment in Figufeg, the base i3 = 3, and the maximum number of slaves
each node can haveds Thus, nodeV; and nodeV, has maximum number of slaves, node
N, could have one more slave and nadgcould have three more slaves.

PSP

G
® @ ©

GP GP GP
Figure 1.5: The FROST system fragment.

Level (level): levelparameter shows to which level in the FROST architecture a particular node
belongs. For instance, assume that in FigliEnode N; belongs to the highest level, then
level parameter for nod® is level= 1, N, levellevel= 2, N5 levellevel = 3, etc.

Local slaves (s): s parameter shows how many slaves particular node has. For instance, in
Figurel.BnodeN; has three slaves= 3, nodeN3 has no slaves = 0, etc.

Slave address list (SAL): SALis a list of the slave addresses. Td&Llist is the fundamen-
tal data structure in the FROST system, since it specifies the relations between the nodes in
the FROST architecture.

11

Chapter 2

Join/Leave Protocol
Implementation

2.1 The Task

2.1.1 Purpose

The purpose of the Join/Leave protocol is to handle the node joins and departures in the FROST
network, whose system architecture and concepts were descril#gdlimdeneral the Join/Leave
protocol can be divided into two parts based on the function it should perform:

Join: The Join/Leave protocol must assure that a node which joins the network will be organized
in the hierarchy according to its static performance measBRewhich represents the rela-
tion between the available node resources (bandwidth, CPU and main memory) and its place
in the hierarchy. If nodes are arranged according to their static performance, the workload
to maintain the network structure will be accordingly distributed between the nodes.

Leave: When nodes leave the network (voluntarily or by failing) the Join/Leave protocol has
to assure the integrity of the communication architecture by appropriately rearranging the
related nodes in the network.

The Join/Leave protocol should be used as the communication component of the FROST system
first described in7].

2.1.2 Corrections to the Analysis
Some corrections have been made from the analysis and d@kigjthie Join/Leave protocol:

Static performance (SP): Previously, the static node performance was derived by using the
static performance parameters: bandwidth, CPU and main memory. However, the network
bandwidth (and not storage space or computation time) is presently the most limited re-
source in P2P networkd]. Any node joining the network must send at least some number
of maintenance messages. According to the join procedure descrili2idlie nodes start
joining the network from the highest level and that would yield higher traffic of the main-
tenance messages at the higher levels of the FROST communication network architecture.
The implication is that the static node performance measure can be derived considering only
the bandwidth. Thus, the nodes which have more bandwidth will join the higher levels and
nodes with less bandwidth will join the lower levels of the network architecture.

Join procedure: The joining procedure is performed by nodg,;, and was previously de-
fined as follows:

12

1. Getallist of the highest level nodes from nddg

2. Ask any node in the highest level where to join. (Answer is an address of some node
Nask)-
3. Ask nodeN,,, where to join. (Answer is an address of some nofley.).

4. Repeat 3, untilV, 4, accepts Nod&V;qin. (Vjoin is a leaf node after the join phase).

5. Trigger the adaptation to the network if necessary. (Adaptation follows the bottom-up
direction).

An optimization was made to the join procedure presented. Instead of joining at the bottom
of the tree and then triggering the adaptation to the network, the joining node could be aware
of the possible adaptation while performing step 3; i.e. if it turns out thaSthealue of

the joining nodeV;,;, is higher than of nodév,;,, then nodeV;,;, could trigger the adap-

tation to the network by pushing the nodg,;, downwards. Thus the overall effect of this

new scheme should reduce the rate of change in the network and thus the number of mainte-
nance messages, which in turn will reduce the bandwidth consumption. To summarize, the
optimized joining procedure is performed as follows:

1. Getallist of the highest level nodes from nddg

2. Ask any node in the highest level where to join. (Answer is an address of some node
Nask)-

3. Ask nodeN,,; where to join (answer is an address of some n¥gg.) and trigger the
adaptation to the network if necessary. (Adaptation follows the top-down direction).

4. Repeat 3, untilV;,;, joins.

2.1.3 Quality Goals

Table[2.J shows the prioritization of design criteria. A special weight is placed on reliability,
correctness and usability since these characteristics are critical for whether the system will be used
at all. The main intent to implement a prototype of the Join/Leave protocol is to test and measure
the performance of the protocol. It should be possible to test the system for ensuring that the
system performs its intended functions. Also the system should be flexible and comprehensible to

Criterion Very Important | Less im- | Irrelevant | Trivially
important portant fulfilled
Usable X
Secure X
Efficient X
Correct X
Reliable X
Maintainable X
Testable

Flexible

Comprehensible
Reusable X
Portable X
Interoperable X

ikalls

Table 2.1: Prioritization of design criteria.

13

reduce the cost of modification to the protocol implementation if necessary. To concentrate on the
functionality of the protocol and ability to evaluate it all other characteristics have been prioritized
lower or irrelevant. However it should be noted that some characteristics (i.e. security, portability,
interoperability) that were left out have to be considered as important in later development of the
Join/Leave protocol:

Secure. The maintenance protocols are especially susceptive to the DoS (Denial of Service)
attacks. Since the Join/Leave protocol is intended to operate Internet wide there is a high
risk of such attacks.

Portable. The protocol should be able to operate on various technical platforms to increase the
number of potential users of the FROST systédn [

Interoperable. This characteristic is important when coupling the Join/Leave protocol with
FROST systeml].

2.2 Technical Platform

Equipment. The computerized system is designed for use on the non-dedicated workstations
that are interconnected via network (LAN, Internet, etc.). There is no need to have an
expensive high speed machine to assure the basic connectivity in the FROST network since
the main limitation is the available bandwidth. Thus, the minimum requirements are: non-
archaic PC (Personal Computer) with NIC (Network Interface Card) or modem installed
and an active connection to the network.

System Software. Linux OS (Operating System) will be used to implement, test and run the
Join/Leave protocol. The design is based on implementing the system in C++ programming
language. The C++ programming language has to have an API (Application Programmable
Interface) to POSIXhreadsandsockets

Design Language. The design is based on the UML (Unified Modeling Language) notation.

2.3 Architecture

2.3.1 Process Architecture

The physical architecture of the FROST network managed by the Join/Leave protocol (Frost Client
component) is shown in Figui21 A Node refers to a PC which fulfills the requirements of

the technical platform and uses the FROST client software to be a part of the FROST network.
Nodes communicate using TCP/IP Internet protocol, where reliable data delivery is provided by
a connection-oriented TCP transport protocol. Technical platform component has an interface to
the various OS components, including POSXeadsandsockets The Frost Client component
comprises the model and functions of the Join/Leave protocol and is responsible for the basic
connectivity in the FROST network.

14

Frost Client
————— -

Node

[}
U
Technical Platform

TCP/IP

Node

Frost Client

Technical Platform

Technical Platform

Pt ————————

Technical Platform

Figure 2.1: Deployment Diagram. The FROST network of four nodes. Dashed arrows represent
dependency associations between nodes.

User Interface System Interface

Function

Model

E Technical Platform é —————)

Figure 2.2: Component Diagram. Dashed arrows represent dependency associations between com-
ponents.

2.3.2 Component Architecture

The Frost Client component could be decomposed using a design pattern inZEBmsdollows:
User Interface Component. A part of a system implementing the interaction with users.

System Interface Component. A part of a system implementing the interaction with other
systems.

Model Component. A part of a system that implements a model of the Join/Leave protocol.

15

Function Component. A part of a system that implements functional requirements of the
Join/Leave protocol.

2.4 Model Component

The Model component is a part of a Join/Leave protocol that handles data storage. The purpose of
the component is to control and deliver data to functions, interfaces, users and other computerized
systems. The event Tali®e2 for the Model component follows from the use case diagram of the
Frost client component shown in Figl28 As can be seen from the event table there are three

Frost Client

Leave

Frost User

o

Figure 2.8: Use Case Diagram for the Frost client component.

Class
Event Expector | Connector | SlaveList | AddrList | ConnQueue
Joined * * + + *
Left + + +
Failed + +

Table 2.2: Event table for the Model component. x - multiple modifications to an object; + -
onetime modification to an object.

main events that causes the change of state in a model. The system igdmdkstate when

a node is connected to the FROST network and the system is Iefthar failed state if a node

has disconnected from the FROST network either by voluntarily leaving or by failing respectively.
The behavioral pattern of this situation can be seen in F@ue

2.4.1 Structure

The class diagram for the Model component is shown in FigueAll classes are described in
the following.

2.4.2 Classes

The following contains a specification of the classes from the class diagram in Bi§ure

16

/join / leave

/ terminate >©

Joined

Figure 2.4: State Chart Diagram for the Model component.

AddrList . 1 ServerClient SlaveList
1 1
—< S>>
1
1
1 1 *
Expector Connector ConnQueue

Figure 2.5: Class Diagram for the Model component.

Class ServerClient

Purpose: lItisthe main class in the system, it contains the data model of the Join/Leave protocol.
The rest of the Model component classes are the parts of this class (aggregation relation) as
can be seen from the class diagram in FigZ# Also, it has a control over the Function
component (see FiguEg?) by being able to use its functions accordingly.

Attributes: To classify the attributes by their purpose, the attributes are represented in distinct
tables: attributes that are fundamental for the Join/Leave protocol are shown irfl2Table
attributes that are used to interact with Function component (see SEdfjaare shown in
Table2.4and some other important attributes of the class are shown in[Zdble

Attribute | Type Purpose

1D int The unique identifier of a node.

SP int The static performance parameter of a node.

GP int The global performance parameter of a node.

level int Shows to which performance level a particular node
belongs.

base const int The base of the FROST architecture.

SAL AddrList x | The list which contains the addresses of the slave
nodes.

Table 2.3: Join/Leave protocol specific attributes. Abbreviation "x” represents a pointer to the
object leftwards.

17

Attribute | Type Purpose

acceptor | Acceptor * See section [2.5.2] for more details.
queue QueueHandler x | See section 2.5.2] for more details.
VIpS VIPHandler x See section 2.5.2] for more details.

joiner JoinHandler * See section [Z.5.2] for more details.

askers AskersHandler x | See section [2.5.2] for more details.

pusher PushHandler * See section [2.5.2] for more details.

leaver LeaveHandler * See section for more details.
failer FailHandler % See section 2.5.2] for more details.
master MasterHandler % | See section for more details.
SHL SlaveList * The list which contains pointers to the SlaveHandler

objects (see section 2.5.2] for more details about the
SlaveHandler class).

Ny »

Table 2.4: Attributes that are used to interact with the Function component. Abbreviation "%
represents a pointer to the object leftwards.

Attribute | Type Purpose

connector | Connector * See Connector class for details.

expector | Expector x See Expector class for details.

cq ConnQueue x | The ConnQueue class contains a list of the Connec-

tion objects (see class Connection for details). The
cq list is the waiting list for the active connections
that were accepted by the Acceptor (see in section
[2.5.2)) thread and added by Expector object (see Ex-
pector class for details). The list is processed by the
QueueHandler (see section [Z5.2)) thread.

vip ConnQueue x | The vip list is a waiting list for the active connec-
tions that were accepted by the Acceptor thread and
added to the vip list by the Expector object. The list
is processed by the VIPHandler (see section 2.5.2])
thread.

AskWL AddrList The AskWL list is a waiting list for the nodes that are
waiting for an answer where to join. Nodes are added
to the list by the QueueHandler thread and pro-
cessed by the AskersHandler thread. (See section
for more details.)

muter pthread mutex_t | muter is a mutual exclusion device, which is used
for protecting shared data structures from concurrent
modifications.

muter_pl | pthread_mutex_t | mutex_pl is a mutual exclusion device, which is used
to control the concurrent executions of the functions
(threads) provided by the Function component.

Table 2.5: Other attributes. Abbreviation "x” represents a pointer to the object leftwards.

18

Operations: The class operations are summarized in TRbe

Operation Purpose

join() This operation is used to join the FROST network.

leave() This operation is used to voluntarily leave the FROST network.
fail() This operation is used to simulate a fail situation.

spawn_acceptor()

Starts Acceptor thread. See section 2.5.2] for details.

spawn_queue()

Starts QueueHandler thread. See section 2.5.2] for details.

spawn_vip()

Starts VIPHandler thread. See section [2.5.2] for details.

spawn_joiner()

Starts JoinHandler thread. See section [2.5.2] for details.

spawn_askers()

Starts AskersHandler thread. See section [2.5.2] for details.

spawn_pusher()

Starts PushHandler thread. See section [2.5.2] for details.

spawn_leaver()

Starts LeaveHandler thread. See section [2.5.2] for details.

spawn_failer()

Starts FailHandler thread. See section 2.5.2] for details.

spawn_master()

Starts MasterHandler thread. See section [2.5.2] for details.

spawn_slave()

Starts SlaveHandler thread. See section [2.5.2] for details.

Table 2.6: ServerClient operations.

Behavior: The general behavioral pattern of this class can be seen in Eghr&n interaction
between the actor and ti&erverClient class is shown in Figufg.8 Two use cases are

Frost User

join()

fail()

: Spawnjome(o::l

join() :

spawn_master()
spawn_slave()
slvi:SlaveHandler
status rl

k——————— k=== i)
spawn_askers()

spawn_queue()
cg:QueueHandler

spawn_vip()

rl;! kers Aslk Handler

rl vip:QueueHandler

exit()

exit()

exit()

exit()

exit()

= —

-
~
_- exit()

f
1

Figure 2.6: Sequence Diagram with concurrent objects.

shown: Join use case and Fail use case. Sequence diagram in[Eigatso shows the

19

creation and lifetime of certain objects involved in the use cases.

Class Connector

Purpose: Given an Internet address t@®nnectorclass is responsible for opening a connection
to a remote node.

Attributes :
Attribute | Type Purpose
PORT const int | It is a well known port used for communication in a
FROST network.
Table 2.7: Connector attributes.
Operations :
Operation Purpose

connect_to() | Given an Internet address it opens a connection to a remote node.
The operation returns sockaddr_in structure and socket descrip-
tor fd.

Table 2.8: Connector operations.

Class AddrList

Purpose: This class is used to store and maintain a list of Internet addresses.

Attributes :

Attribute Type Purpose

al vector<uint32_t> | alis a STL (Standard Template Library) con-
tainer used to store the 32-bit Internet ad-
dresses.

bounded const bool Determines if a list is bounded or not.

base const int The base of the FROST architecture. If al
list is bounded then base parameter is used
to check the boundaries of al list.

mutex pthread_mutex_t | muter is a mutual exclusion device, which is
used for protecting the al list from concurrent
modifications.

wl_not_empty | pthread_cond_t wl_not_empty is a condition variable, which
is used to signal the waiting thread if al list
changed its state from empty to not empty.

Table 2.9: AddrList attributes.

20

Operations :

Operation | Purpose

add() This operation is used to add an Internet address to the al list.

rem() This operation is used to remove an Internet address from the al
list.

get() This operation is used to retrieve an Internet address from the al
list.

copy() This operation is used to make a copy of the al list.

clear() This operation is used to remove all elements from the al list.

getSize() | This operation is used to get the size of the al list.

Table 2.10: AddrList operations.

Class Expector

Purpose: This class is derived from the base cldsidrList and inherits all the attributes and
operations from th&ddrList class. However, additional functionality is added to this class.
If a node is expecting a connection from a particular remote node or nodes thexpeaetor
class is responsible for storing the Internet addresses of the expected nodes. When the
Acceptor accepts the new connecti@xpector verifies if the connection is expected or
not. If connection is expected, th&xpector adds aConnection object to thevip queue
(classConnQueusd, otherwise aConnection object is added to a conventional quexg
(classConnQueus.

Attributes :
Attribute | Type Purpose
master uint32_t | If node is expecting a connection from the master
node, then an Internet address of the mater node is
stored in the master attribute.
Table 2.11: Expector attributes.
Operations :
Operation Purpose

exp_master()

This operation is used to set the master attribute with an Internet
address.

exp_slave()

This operation is used to add an Internet address to the al list.

isExpected()

This operation is used to determine if a given address addr:

addr = master or addr € al list. If one of the two statements is
true then a remote node with address addr is expected. Return
value is true if node is expected.

Table 2.12: Expector operations.

21

Class SlavelList

Purpose: This class is used to store and maintain a list of pointers to a8ieeHandler
threads (see secti@h5.2for SlaveHandlerclass details).

Attributes :
Attribute | Type Purpose
sl vector<SlaveHandler x > | sl is a STL (Standard Template Library)
container used to store pointers to the
SlaveHandler objects.
mutex pthread mutex_t mutex is a mutual exclusion device, which is
used for protecting the s/ list from concurrent
modifications.
Table 2.13: SlaveList attributes.
Operations :
Operation | Purpose
add() This operation is used to add a SlaveHandler object pointer to the sl list.
rem() This operation is used to remove a SlaveHandler object pointer from the
sl list.
get() This operation is used to retrieve a SlaveHandler object pointer from the
sl list.
clear() This operation is used to remove all elements from the s/ list.
getSize() | This operation is used to get the size of the sl list.

Table 2.14: SlaveList operations.

Class ConnQueue

Purpose: ConnQueueclass implements the FIFO buffer @fonnection objects (see System
Interface component in secti@@ for details abou€Connectionclass).

Attributes :
Attribute Type Purpose
CONN_queue list<Connection x > | conn_queue is a STL (Standard Template Li-

brary) container used to store pointers to the
Connection objects.

queue_mutex pthread mutex_t queue_mutexr is a mutual exclusion device,
which is used for protecting the conn_queue
buffer from concurrent modifications.
queue_not_empty | pthread_cond_t queue_not_empty is a condition variable,
which is used to signal the waiting thread if
conn_queue buffer is not empty.

Table 2.15: ConnQueue attributes.

22

Operations :

Operation | Purpose

add() This operation is used to add a Connection object pointer to the
conn_queue buffer.

rem() This operation is used to remove a Connection object pointer from the
conn_queue buffer.

pop() This operation is used to retrieve the first element from the conn_queue
buffer.

clear() This operation is used to remove all elements from the conn_queue buffer.

getSize() | This operation is used to get the size of the conn_queue buffer.

Table 2.16: ConnQueue operations.

2.5 Function Component

The Function component implements the functional requirements of the Join/Leave protocol de-
scribed inP]. In this section the functional requirements will be transformed into a collection of
operations, each of which is tied to a new class in the Function component.

2.5.1 Structure

The class diagram for the Function component is shown in FgdreEach class that implements

an operation is derived from the abstract base cldsgad which also implements a system
interface to the POSIX threads. The implication is that each operation has its own execution
thread and thus each operation could be executed concurrently with other operations. All classes
are described in the following.

Thread

JAN

Acceptor QueueHandler VIPHandler JoinHandler AskersHandler PushHandler

LeaveHandler FailHandler MasterHandler SlaveHandler

Figure 2.7: Class Diagram for the Function component.

23

2.5.2 Classes

Thread

Purpose: Threadclass is an abstract class (objects cannot be created from this class), which im-
plements an interface to the POSIX threads and provides with a set of operations to control

and synchronize the execution of a thread.

Attributes :
Attribute | Type Purpose
thread pthread_t Thread identification number.
mutex pthread_mutex_t | muter is a mutual exclusion device, which is used in
combination with the cond (see below) attribute to
suspend and resume a thread identified by thread.
cond pthread_cond_t cond is a condition variable, which is used to signal
the waiting thread identified by thread.
Table 2.17: Thread attributes.
Operations :
Operation | Purpose
run() This operation is executed by the thread identified by thread attribute.
run() operation is virtual (derived class should override this operation
and provide an implementation for it.)
join() This operation suspends the execution of the caller until the thread
identified by thread attribute terminates, either by calling ¢_ezit() or by
being canceled (cancel()).
wait() This operation suspends the execution of the thread identified by thread
attribute until the signal() or cancel() operation is called.
signal() This operation is used to resume the execution of the thread identified
by thread attribute.
t_exit() This operation is used to terminate the execution of the thread identified
by thread attribute.
cancel() This operation is used to cancel the execution of the thread identified
by thread attribute.
clean() This operation is executed after the thread identified by thread attribute
has been canceled. The purpose of this operation is to free the resources
that a thread may hold at the time it terminates. clean() operation
is virtual (derived class should override this operation and provide an
implementation for it.)
Table 2.18: Thread operations.
Acceptor

Purpose: Acceptor class is derived from the base claBsread Acceptor is responsible for

handling the incoming connection requests.

24

Behavior: First,Acceptoropens a socket on a well known port and starts to listen for the incom-
ing connection requests. When such a request is recéheegptor accepts the connection
and creates €onnectionobiject for it. Then thé&xpector is used to verify if this connec-
tion is expected. If connection is expected theGanection object is added to theip
gueue, otherwise @onnection object is added to theg queue (see Tab[g.B for vip and
cq queue details). Finally, when@onnection object is dispatched th&cceptor is ready
to accept new connection&cceptor behavioral pattern is shown in FiguZe8

/listen

/ run(),create socket / got connection
Socket Opened Connection Accepted

/ cancel | is expected?

[expected] i [texpected]
Added To vip Added To cq

Figure 2.8: State Chart Diagram for the Acceptor operation.

QueueHandler

Purpose: QueueHandlerclass is derived from the base cldgwgead The purpose of this class
is to process th€onnection objects waiting in theq queue (see Tab[.5 for cq queue
details). The processing consist of finding out the reason why a remote node established a
connection and decide how the connection should be processed further.

Behavior: If the cqqueue is empty then th@ueueHandleris in the idle state (the execution
thread is suspendedQueueHandlerresumes its execution if @onnection object or ob-
jects were added to the queue. When &onnection object is retrieved from the queue
the QueueHandlercommunicates (using @onnection object) with a remote node to find
out the reason why the connection has been established. According the Join/Leave protocol
specification, if connection is not expected (and it is not, since the expected connections are
in the vip queue) then a remote node is trying to join the FROST network. However, the
QueueHandlerclass is designed with a perspective that there could be some other reasons
(including attacks) that could be processed(uyeueHandler. Behavioral pattern for the
QueueHandlerclass is shown in Figui2.9

[cq tempty]

/run() / ca.pop()
Active Connection Fetched
cq em | [join] / reply to wait
[cq empty] /done [other reasons]

/ cancel

/ done
Reply Sent
Do Something

/ close connection

/ cancel

\ / AskWL.add()]
Added To AskWL Connection Closed

Figure 2.9: State Chart Diagram for the QueueHandler operation.

25

VIPHandler

Purpose: VIPHandler class is derived from the base cladwead The purpose of this class
is to process th€onnection objects waiting in thevip queue (see Tabl&.5 for vip queue
details). The reason to have an additional queue together with the convectianedue is
to provide the means of almost immediate processing of connections that are expected to be
established.

Behavior: Same as withQueueHandler the VIPHandler is suspended if a queue it has to
process is empty and it will be resumed when queue is not empty. There are two types of
expected connections, either the connection is meant to be with a new slave or a new master.
If connection established is with new slave theBlaveHandlerobject is created to handle
a Connection, otherwise aviasterHandler object is created. Behavioral pattern for the

QueueHandlerclass is shown in Figui2 10

[slave] / spawn_slave()

Connection Fetched

[master] / spawn_master()

MasterHandler Started

Figure 2.10: State Chart Diagram for the VIPHandler operation.

[vip lempty]

/ run() /vip.pop()

Active

/ cancel

/ cancel

JoinHandler

Purpose: JoinHandler class is derived from the base cldgsead JoinHandler is responsible
for joining the FROST network.

Behavior: WhenJoinHandler is started, first, it contacts the discovery server (ndde to
retrieve a list of nodes located at the highest level of the FROST architecture. One node
is randomly chosen from a list to ask where to join. If, however, a chosen node is not
responding then there is a possibility to choose another node from a list. After a query
is dispatched a node waits for an answer about further join instructions. Since the FROST
network is dynamic the answer could be provided by another node which took responsibility
to process asking node. Behavioral pattern forbimHandler class is shown in Figure
[2.11 The are three types of replies an asking node could receive:

Ask next: It says that there are no vacant positions in a group and a node has to ask the
next group master, which is chosen by a current group master. The next master an
asker has to contact will be a slave node with @R value in a current group. The
reply includes an address of a chosen slave (next master).

Join granted: "Join granted” reply is sent if current master has a vacant position in a
group and asker is welcome to join. This reply also indicates thabEhalue of the
master node is larger than asker’s and there was no need for adaptation.

26

Join granted (push): This reply indicates that th8Pvalue of an asker node is larger
than master’s and that master is ready to concede its place by pushing itself downwards
in the FROST architecture. The reply includes the addresses of slave nodes and master
node (master of the current master).

/ run(),discover node / t_exit()
Address Obtained MasterHandler Started >©

/ ask where to join ['push] / spawn_master()

[ask next]

/ spawn_master()

[join granted]

o Aecepted
[push] / connect to slaves & master

Connections Established SlaveHandlers Started

Figure 2.11: State Chart Diagram for the JoinHandler operation.

/ spawn_slaves()

AskersHandler

Purpose: AskersHandler class is derived from the base cladwead AskersHandler is re-
sponsible for providing the join instructions for a node which asks for them. The addresses
of nodes that are waiting for the join instructions are stored irAglaN Lwaiting list.

Behavior: AskersHandler is idle if AskWLwaiting list is empty, otherwiséskersHandler
pops an address from the list and establishes the connection with an asker node. When the
connection is establishe@@nnectionobject is created), one of the three situations could
happen:

® SPcal > SPremotes S < B . asker is allowed to join as a slavé&skersHandler
sends the "Join granted” message to an asker node and cr&itasBandlerobject
to handle a&onnection

e SPicar > SPremote, s = B . agroup is complete and there are no vacant places. In
this case the "Ask next” answer message is sent with an address of a slave node, which
has the lowesGP value.

® SPical < SPremote - asker is allowed to join, but as a new master of a group by down-
grading this master to a slave. In this caskersHandler invokes aPushHandlerto
execute the pushing routine and suspends itself BotthHandler completes its ex-
ecution and terminates. WhéskersHandler is resumed, it sends the "Join granted
(push)” reply message and creatddasterHandler object to handle £&onnection

Behavioral pattern for thaskersHandler class is shown in Figui212

PushHandler

Purpose: PushHandlerclass is derived from the base claggead PushHandleris responsi-
ble for the adaptation to the network operation. The adaptation to the network operation is
performed by pushing a local node downwards in the FROST architeddushHandler
could be invoked either bpskersHandler or MasterHandler. MasterHandler invokes
PushHandlerif such command is sent by master of a group, because itis also being pushed.

27

/ cancel / done r \ [askerSP < SP, s = B]
Asker Redirected
/ cancel l\)

/ connect to asker
Address Fetched

[askerSP < SP, s < B]

Asker Accepted
/ done

/ spawn_slave(),send join grant msg.

[AskWL lempty]

1 AskWL.pop()

/run()

Active Connection Established

[AskWL empty]

[askerSP > SP] / spawn_pusher()

PushHandler Started

/ pusher join()

SlaveHandler Started

\ / spawn_master(),send join/push grant msg.
MasterHandler Started Push Completed

Figure 2.12: State Chart Diagram for the AskersHandler operation.

Behavior: Behavior ofPushHandlerdepends on which handler has invoked it:

e If PushHandler was invoked byAskersHandler, then the connection with master
node has to be closed, but before closing, the master has to grant the permission for
the adaptation to the network. After the permission is granted the local information
(SAL, AskW) has to be sent to the asker node.

¢ If PushHandler was invoked byMasterHandler, then the local informationSAL,
AskWL) has to be sent to the master.

Behavioral pattern for thBushHandler class is shown in Figuig.I3 From here the be-

/run() [keep] / send SAL, AskWL to master [s < B]/ slaves.cancel()
. Y SlaveHandlers Cancelled

1t_exit()

['keep, push grant] / ask master for push grant

N\ [s =0]/t_exit()
Local Info Sent /Y

[s = B] / choose slave with min(SP)

/ master.cancel()

1 t_exit()
Slave Chosen

/ send SAL, AskWL to asker
| slaves.cancel() except chosen

/ push slave keep
SlaveHandlers Canceled Slave Pushed

Figure 2.13: State Chart Diagram for the PushHandler operation. [keep| guard indicates that
PushHandler was invoked by MasterHandler.

MasterHandler Canceled

havior is the same for both cases of invocation. Depending on the number of slaves in a
group, master has the following options:

s = 0: In this case, because master is a leaf node there is nothing to be done.

s < B: Inthis case all the connections with slaves has to be closed. After the adaptation to
the network operation is completed a master will become a leaf node.

28

s = B: In this case a group is complete and slave with @M (has to be chosen to be
pushed also. The remaining connections with slaves has to be closed.

LeaveHandler

Purpose: LeaveHandlerclass is derived from the base cld$sead LeaveHandleris respon-
sible for handling the voluntary leaving from the FROST network.

Behavior: LeaveHandleroperation is performed in one of the three modes:

”T leave”: This mode indicates that a FROST user has pressed the "Exit” option in a user
interface and he wants to exit the FROST network. In this tasyeHandler asks
the master of a group for permission to leave. When permission is granted voluntary
leave operation can be continued.

”Master leaves”: This mode indicates that master of a group is leaving the FROST
network and this node is a chosen to be a new master of a group. In this case the
connection with leaving master has to be closed and new connection has to be opened
to the master of the leaving node.

”Master relocation”: This mode indicates that master of a group is leaving a group
because it was chosen to be a master of another group and this node is chosen to be a
master of this group.

From here théeeaveHandlerbehavior is common for all leave modes. If leaving node is not

a leaf node then it has to choose a slave with 188x{o be the new master of a group. The
local information SAL, AskW)_has to be sent to chosen slave and remaining connections
with slaves has to be closed. Finally, if node is in one of the master leave modes it has to
establish the connections with new slave nodes. Behavioral pattern fhedéiveHandler

class is shown in Figui2. 14

I / run(),askers.cancel()

[master leaves, 'keep] / master.cancel()

[I leave] / ask master for permision
\/ Leave Granted
[master leaves, keep]
MasterHandler Canceled

[s=0]

/ connect to Nmm / connect to new slaves
/Y Connections Established

[s > 0] / choose slave with max(SP)
Connection Established

| spawn_slaves()
/ spawn_master()
Slave Chosen

/'send SAL, AskWL to chosen
MasterHandler Started
Local Info Sent

/ slaves.cancel() except chosen

[I leave] / t_exit()
SlaveHandlers Canceled

Figure 2.14: State Chart Diagram for the LeaveHandler operation. [keep| guard indicates that
LeaveHandler will perform leave operation in ”Master relocation” mode. Node N, is master
of leaving master.

AskersHandler Canceled

[master leaves] SlaveHandlers Started

/t_exit()

29

FailHandler

Purpose: FailHandler class is derived from the base cld$wead FailHandler is responsible
for handling node failures in the FROST network. Fault tolerance can be divided into two
parts: discovery of remote node which failed and recovery. A remote node is considered as
failed if the connection between local and remote node has been unexpectedly closed. The
socketsmplementation provides the means of discovering such failures and this feature has
been used in th€onnection class to detect unexpected disconnections. The purpose of
the recovery operation is to assure the integrity in the FROST network. The purpose of
FailHandler class is to recover when remote node fails and it should be invoked either by
MasterHandler or SlaveHandler depending on what kind of node (slave or master) has
failed.

The recovery operation has not been implemented yet. The intent is to primarily test and
measure the Join/Leave protocol performance assuming that all nodes are reliable and then
concentrate on the recovery issue.

MasterHandler

Purpose: MasterHandler class is derived from the base cld$wead This class is responsible
for maintaining the connection with the master of a groMipsterHandler has aConnec-
tion object assigned to it, which provides an interface to send and receive messages and
data.

Behavior: When startedMasterHandler enters a message processing loop in which it receives
messages from the master of a group. Message types and purpose of each is shown in Table
[2.19 Behavioral pattern for th®lasterHandler class is shown in Figui2. 13

Message Received | Purpose and Response

PUSH Master commands to start the pushing routine. PushHandler is in-
voked and when it finishes PUSH_ READY and ASK_MY_GP messages
are sent.

LEAVE Master is leaving and this node has been chosen to be the new master of a

group. LeaveHandler is invoked and when it finishes LEAVE_READY
and ASK_MY_GP messages are sent.

PUSH_GRANT Master grants the permission for pushing. AskersHandler is signaled.
LEAVE_GRANT | Master grants the permission for leaving. LeaveHandler is signaled.
TAKE_ID Master sends its ID.

TAKE_SAL Master sends its SAL list.

TAKE_WL Master sends its AskWL list.

GET_ID Master asks to send this node ID.

GET_SP Master asks to send this node SP value.

GET_GP Master asks to send this node GP value.

GET_STATUS Master asks if this node is waiting for some permission. This message is
received from the master which recently became one.

ASK_AGAIN Master tells the slave that it should ask again for a permission it waits.

EXPECT Master sends an address of a new master which will connect soon. Ad-

dress is added to Expector object.
DISCONNECT Master closes the connection. MasterHandler terminates.

Table 2.19: MasterHandler messages.

30

SlaveHandler

Purpose: SlaveHandlerclass is derived from the base cla@wead This class is responsible
for maintaining the connection with a slave no@aveHandlerhas aConnection object
assigned to it, which provides an interface to send and receive messages and data.

Behavior: When startedSlaveHandler enters a message processing loop in which it receives
messages from the slave node. Message types and purpose of each is showrdiZTable
Behavioral pattern for th8laveHandlerclass is shown in Figui2.18

Message Received | Purpose and Response

PUSH Slave asks for a permission to start the pushing routine. If mutez_pl is
not locked then this node locks it and grants the permission to push.

LEAVE Slave asks for a permission to start the leaving routine. If mutexr_pl is
not locked then this node locks it and grants the permission to leave.

TAKE_ID Slave sends its 1D.

TAKE_SP Slave sends its SP value.

TAKE_GP Slave sends its GP value.

TAKE_SAL Slave sends its SAL list.

TAKE_WL Slave sends its AskWL list.

TAKE_STATUS Slave sends its status.

GET_ID Slave asks to send this node ID.

ASK_MY_GP Slave tells the master to update its GP value.

PUSH_READY Slave has finished push operation. PushHandler is signaled.

LEAVE_READY | Slave has finished leave operation. LeaveHandler is signaled.

READY Slave has finished push or leave operation. Unlocks mutez_pl.

EXPECT Slave sends an address of a node which will connect soon. Address is
added to Expector object.

DISCONNECT Slave closes the connection. SlaveHandler terminates.

Table 2.20: SlaveHandler messages.

/ run() [interupt]

Message Received

| process message

/cancel() /done

q
1

Message Proc

@<

Figure 2.15: State Chart Diagram for the MasterHandler and SlaveHandler operations.

31

2.6 System Interface Component

System interface component implements necessary facilities used to interact with technical plat-
form. Classed hread and Connectionimplements an interface to POSIKreadsand sockets
respectivelyThreadclass is already described in secibb.2 TheConnectionclass is specified

in the following.

2.6.1

Purpose

The purpose o€onnectionclass is to provide the means of sending and receiving data between
two nodes using TCP/IP protocol stack. Also it contains an information about a remote node.

Connection Class

Attributes
Attribute | Type | Purpose
sock int Socket descriptor.
1D int Remote node ID.
SP int Remote node SP value.
GP int Remote node GP value.
Table 2.21: Connection attributes.
Operations

Operation

Purpose

sendID()

Send local ID.

sendSP()

Send local SP value.

sendGP()

Send local GP value.

send-msg()

Send a message.

sendAddr()

Send an address.

send_list()

Send a list of addresses.

recvlD()

Receive remote ID.

recvSP()

Receive remote SP value.

recvGP()

Receive remote GP value.

recv-msg()

Receive a message.

recvAddr()

Receive an address.

recv_list()

Receive a list of nodes.

Table 2.22: Connection operations.

32

2.7 User Interface Component

User interface requirements follows from the use case diagram shown in Biguré simple

user interface on a character-based terminal has been implemented. It prints the list of options on
a terminal screen and waits for an input from a user. User has to enter the option number and press
Enterto execute the task indicated by the option number. The user interface options are shown in
Table2Z.23

Option number | Option | Purpose

0 EXIT | Voluntary leave the FROST network.

1 Join Join the FROST network.

2 Fail Leave the network unexpectedly.

3 Status | This option is added for the testing purposes. It prints the

status of the Join/Leave protocol in the terminal window.
Status information example is shown in Figure 2.16]

Table 2.23: Menu options.

ID | SP | GP | MST | SLV | SLV
5 | 10 | 16 6 3 | N/A

Acceptor
QueueHandler
VIPHandler
JoinHandler
AskersHandler
PushHandler
LeaveHandler
FailHandler
push_granted
leave_granted
mutex_locked

SO OO OO O

Figure 2.16: Example of status information. 707 - false/non-existent, 71”7 - true/active.

33

Chapter 3

Join/Leave Protocol Testing

To test the functionality and performance of the implemented Join/Leave protocol a number of
system tests were conducted. System testing focuses on the complete system, its functional and
non-functional requirements, and its target environment. The following system tests were con-
ducted:

Functional testing. Functional testing, also called requirements testing, tests if the system
perform as promised by the requirements specification. Functional testing is a black box
technique: testing finds differences between the test cases derived from the use case model
and the observed system behavior. In systems with complex functional requirements, it is
usually not possible to test all use cases for all valid and invalid inputs. Therefore, only the
tests that are relevant and have a high probability of uncovering a failure are selected.

Performance testing. Performance testing is used to test if the non-functional requirements
are met. Two types of performance tests were conducted:

Stress tests: The purpose of the stress tests is to evaluate the system when stressed to its
limits over a short period of time.

Timing tests: The purpose of the timing tests is to validate conformance to behavioral
and performance constraints and evaluate if the system is fast enough.

This chapter presents the purpose and specification of the tests and finally the analysis of the test
results.

3.1 Equipment

3.1.1 Cluster at Aalborg University

Development and some of the tests were conducted on an SCI cluster of seven homogeneous dual
733 MHz Pentium 11l Coppermine workstations on Asus CLS motherboards with ServerWorks LE
chipset and Linux OS with kernel 2.4.19. The nodes are interconnected by a 100 Mbit Ethernet
LAN, connected by a Cisco System Catalyst 3500 Series switch. The nodes are additionally inter-
connected in a ring topology with Dolphinics D330 SCI adapters. The SCI adapters is mounted
on 33 MHz PCI-G4 buses. Each node is equipped with 2 GB memory.

3.1.2 PlanetLab

PlanetLab[f] is an open, globally distributed testbed for developing, deploying and accessing
planetary-scale network services. There are currently more than 115 machines at 45 sites world-
wide available to support both short-term experiments and long-running network services. Since

34

the beginning of 2003, more than 70 research projects at top academic institutions including MIT,
Stanford, UC Berkeley, Princeton and the University of Washington have used PlanetLab to ex-
periment with such diverse topics as distributed storage, network mapping, peer-to-peer systems,
distributed hash tables, and distributed query processing.

PlanetLab creates a unique environment in which to conduct experiments at Internet Scale. The
most obvious is that network services deployed on PlanetLab experience all of the behaviors of the
real Internet where the only thing predictable is unpredictability (latency, bandwidth, paths taken).
A second advantage is that PlanetLab provides a diverse perspective on the Internet in terms of
connection properties, network presence, and geographical location. The broad perspective on the
Internet enables development and deployment of a new class of services that see the network from
many different angles. For example, to date, researchers using PlanetLab have created worldwide
Internet mapping software and identified a common cause of router failure.

Each node consists of a Linux-based PC running specially developed virtual machine technology
allowing experiments to be conducted independently.

3.1.3 Functional Tests

The purpose of the Join/Leave protocol is to handle node joins and departures in the FROST net-
work. The implication is that a reasonable number of nodes are required to participate in join
and/or leave activities (use cases) to test the functionality of the protocol. The functional require-
ments of the Join/Leave protocol can be tested by verifying the structural relations between the
nodes in the resulting FROST network against the predefined test cases. In general, the functional
testing can be seen as comparing two networks of nodes where one is formed by the implemented
Join/Leave protocol and another is specified in the test case as it is shown iNEifyuEach node

[

Figure 3.1: Functional Testing.

maintains arBALlist that specifies the master/slave relations in the network, and thus the testing
problem can be reduced to the problem of compaBid.list of each node in the actual case

with correspondingALlist in the test case. However, when the number of nodes in the observed
system grows, manual specification of the test cases is not efficient because of the time needed
to specify them. For the efficient test case specification an automated test case geh€@tor (

has to be additionally implemented. The deployment diagram for the functional testing system is
shown in Figuré8.2and is explained in the following.

35

Node 1 out Functional Testing
1
oO— b System

Test Suite out O

. out
in, Node 2 P
O—
TCG
.
’
’
: Node n out
in n Test Cases
O—

in: Use Case out: SAL, GP, level Ij out: Passed/Failed Ij

Figure 3.2: Deployment Diagram for the Functional Testing System. TCG - Test Case Generator.

Functional Testing System Specification

To test the functional requirements of the Join/Leave protocol a number of nodes have to be ob-
served by the functional testing system. The observed nodes can be definedusdemf nodes,
where the sequence number represents sequential events (join or leave) ordered in time:

O = (Ny,Noy ...y Niy ooy Np), V1 <ii,j <n:Vi<j:time(i) < time(j), (3.1)

whereN; is apair: N; = (ID;, SP;).

Each node (see Figu&d) given an input data produces an output data, which later is used by the
functional testing system. Input and output for all nodes are defined as follows:

Input: Then-tuple Ofrom definition3.1 can be used to generate thuple IN of join or leave
events ordered in time:

IN = (iny,ing, ..., N4, ...,ing), V1 <i,j<n:Vi=j:in; =e, (3.2)
wheree € {join, leave} andj is an index inO.

Output: An evente at the node input triggers the corresponding behavior of the Join/Leave
protocol:

e = leave: If node leaves the network, then no output is produced, since the node is not a
part of the network anymore and that situation will be reflected by the rest of the nodes
still in the network.

e = join: Inthis case node joins the FROST network and by being a part of the network it
provides the join or leave services for the rest of the nodes, if requested. The output
information is generated by reading current state of the nodes at some constant time
and can be defined asauple OUT:

OUT = (outy,outy, ...,out;, ...,outy), V1 <i,j<n:t(i)=1t(j), (3.3)

whereout; is a3-tuple out; = (SAL;, GP;,level;).

36

Expected Results

The functional testing system given the out@ui T has to verify it against the predefined test case
OUTiest. If OUT = OUTiest, then the functional requirements for that particular test case are
met, otherwise there is an error in the protocol functionality. For the efficient test cases specifica-
tion theTCGcomponent is introduced into the functional testing system.Tl@component has

the same functional requirements as the implemented Join/Leave protocol, and gigarte

IN specificationTCG simulates the behavior of Join/Leave protocol and produces the simulated
outputOU T, Which will be used as a test case for that particular setup.

3.1.4 Stress Tests

The purpose of the stress tests is to evaluate the system when stressed to its limits over a short
period of time. During the stress tests, as distinct from the functional tests, the observations
will be made on one particular node, which will be stressed to process continuous joining and/or
leaving of nodes over a short period of time. During the stress tests the following measurements
will be taken:

CPU usage. The CPU usage will be measured usiimge utility, which is used to run programs
and summarize system resource usage. The default outporteois as follows:

real: elapsed real time in seconds.
user: total number of CPU-seconds that the process spent in user mode.
sys: total number of CPU-seconds that the process spent in kernel mode.

real

Percentage of the CPU usage is computed B§/ = (w) -100%.

Bandwidth usage. The bandwidth usage will be measured by capturing and analyzing TCP
packets sent and received by the Join/Leave protocol. The packets will be captured using
tcpdump [[7] utility and analyzed by using network protocol analyEthereal [8], which
is able to provide with various network usage statistics given the captured data.

Throughput. For this case, the measure of throughput is the ratio of nodes processed by the
observed node per second. Let the number of nodes processed by the observed node be
n, and since the elapsed real time is givertibye utility, then throughput is computed as

follows: R = -2 {M}

real’ s

Expected Results

The CPU usage is expected to be reasonably low, otherwise the Join/Leave protocol is not usable at
all. The FROST systend] is designated for exploiting wasted CPU-cycles on the client machines
and if the maintenance protocol such as Join/Leave protocol will utilize most of the spare CPU-
cycles then only a little real work will be done.

The network bandwidth usage is expected to be the mostly consumed resource, however it should
be kept as small as possible. From the global point of view, a single user usually has the powerful
gaming machine, which probably waste lots of the CPU-cycles, but the connection to the Internet
is not necessarily fast. Thus, if the requirements for the network bandwidth will be high, then
probably a large number of potential CPU-cycle volunteers will not be able to use the FROST
system. The network bandwidth measurements will settle the approximate requirements for it.

Throughput is another important characteristic of the Join/Leave protocol. If the throughput will
be lower that the rate of the node joins and/or leaves, then the Join/Leave protocol would become

37

the bottleneck for the nodes that are waiting to join or leave the network. The estimation of the
rate of arrivals and departures in the FROST system is quite a challenging task. However, the rate
of arrivals and departures has been explored in other P2P systems:

e The CoopNetl/§] P2P system has very similar tree based network topology as the FROST
network and it is also used to distribute the bandwidth usage between the peers. The study of
the CoopNet network dynamics was madeli@][The CoopNet system is a video streaming
system which was evaluated using the trace of node arrivals and departures gathered at
MSNBC [12] on September 11, 2001. The average rate of node arrivals and departures in the
911 trace was 180 per second while the peak rate was about 1000 per second. The authors
indicate that one reason for the high rate of change may be that users were discouraged
by the degradation in audio/video quality caused by the flash crowd, which caused short
lifetime of nodes (i.e. peer disconnects during the streaming session and tries to reconnect
again).

e Another measurement study of P2P systems was madelin Two file sharing P2P sys-
tems, Napsteil[7] and GnutellalL5], has been studied to evaluate various characteristics of
the P2P networks. One of the characteristics, which has been studiedjfistiime of peers
in the system, i.e., how frequently peers connect to the systems, and how long they choose
to remain connected. Both, Napster and Gnutella nodes have similar lifetime measures dur-
ing 12 hours of observation as it is shown in FigBt& which was presented id1]. The
rate of change was not provided by the authors, however, an approximation of rate can be
computed using the data given il]. The computations are as follows:

N = 17125. N - the number of Gnutella nodes observed (during 12 hours).

H = & =8562.5. Half of nodesN.
Ty = 3600[s]. Ty - median session duration, i.e. approximat&lynodes will leave the
system aftefl; time elapsed (see Figuged).

R= % ~ 2 {%des} . R - an approximate rate of change in the Gnutella system (assuming
that leaving nodes will be exchanged be the joining nodes). The exact rate could be

COF s of Session Duration

100%
0%
BO%
TO% -
B0%
50% -
40%
20%

Percentage of Seasionsa

20% -
10%

0%
0 &0 120 180 240 300 350 420 480 540 600 &80 T20
Session Duration (Minutes)

—Napster Sessions -
~Gnutella Sessions

Figure 3.3: The distribution of Napster/Gnutella session durations. CDFs - cumulative distribution
functions.

38

computed by calculating the integral, however an approximate valke®tsufficient
for further analysis.

Both studies (CoopNet irlD] and Napster/Gnutella inlfl]) gives an insight about the rate of
change in a P2P networks. However, before evaluating the rate of change given in both studies,
the human factor issues has to be considered also, i.e. what are the reasons of using one or another
system and what is the relation between the human factor and the rate of change? Clearly, the
more the system is popular the higher is the rate of change. What makes the system being popular
is another human factor issue. For instance, the thirst of knowledge during the events of the high
or very high importance made the MSNBICZ[news company very popular on September 11,
2001. Another example is sharing of the popular media content (music, video), which makes the
P2P system a popular between the clients that are looking for entertainment. In both examples,
the clients were motivated to use the system because of their own needs (thirst of knowledge,
entertainment, etc.). In the FROST system, however, the users have to be motivated more to
volunteer than exploit, which probably will not make the FROST system more popular than the
systems presented above. Thus, the expectation is that the rate of change in the FROST network,
with high probability, will not exceed an approximate rate of change in the Gnutella network (i.e.

R~2 {Ldes})

sec

3.1.5 Timing Tests

The purpose of the timing tests is to validate conformance to behavioral and performance con-
straints and evaluate if the system is fast enough. During the timing tests the following measure-
ments will be conducted:

Tjoin: the time required to build the FROST network from an arbitrary number of nodes.

Treave: the time required to dismantle the FROST network consisting of an arbitrary number of
nodes.

Tj: the time required for the half of the nodes to join the FROST network while the other half is
leaving.

The timing measurements described above will be made on several distinct FROST network con-
figurations using differenbase parameters, but with constant number of nodes, to test which
configuration performs better (wide or narrow tree).

Another important timing measurement would be to measure the times described above with con-
stantbaseparameter, but with distinct number of nodes to establish a relation between the time

and number of nodes. Then it could be possible to estimate the timing for the larger number of
nodes without performing actual test.

Expected Results

The results of the timing tests will give an insight on how fast is the system. The results will
be evaluated against the rate of change~ 2) settled in the specification of stress tests. It is
expected that Join/Leave protocol will be able to operate at theRatg,; at least equal ta?
(Ractual = R). For instance, if 50 nodes were able to join the FROST network per 14 seconds,
then the actual rate of change at which protocol is able to oper&g.js,; = 3.571 > R.

39

3.2 Test Description

3.2.1 Functional Tests

The purpose of the functional tests is to verify if the Join/Leave protocol operates as promised
by the functional requirements. Functional tests were conducted on the global overlay network -
PlanetLablf] (see PlanetLab specification on p&gk. An observation of availability was made to

select the nodes that are almost always available. 92 nodes were selected to conduct the functional
tests with Join/Leave protocol.

Functional Test 1

The purpose of this test is to verify if the protocol correctly builds the FROST network while
stressing the high level of adaptation in the network.

Test Data :

Base: Base parameteB = 3 is selected, because it will result in a reasonably complex
network structure with common functional characteristics for networks Rith 3.
The minimum value for base parameteBis= 2, however it was not selected because
it will not reflect all the functional characteristics of the Join/Leave protocol. For ex-
ample, if B = 2 and node is leaving, then a possible choice space has a multiplicity
of 1 — 0..1, which means that one slave will be selected as a replacement, and at most
one slave will stay at its position. Whereas the networks @itk 3 have a choice
space with multiplicity ofl — 0..x (one to many), i.e. if one slave is selected as a
replacement, then 1 or more slaves will stay at their positions. Thus the implication
is that networks withB > 3 have common functional characteristics. The complexity
of network depends on the depth of the netwtsde. The larger is depth the more
complex is network, and that is because join or leave inflicts updating in the network
structure down to the bottom of the tree. Clearly, reducing the base parameter will in-

creasdreedepth for a constant number of nodes and vice ve@h'm depth = 1).
—00

In general case, for any base parameter the time complexity for join and leave opera-
tions isO(log N), whereN is the number of nodes in the network.

SP: Node static performance parameter is a key parameter when building or dismantling
the network. To stress the high level of adaptation in the netw®iPkjalues have to
be properly assigned to the nodes. If observed nQuisdefined as:

O = (N1,Nay ...y Nijy ooy Np), V1 <'iyj <m:Vi<j:time(i) < time(j), (3.4)
whereN; is apair: N; = (ID;, SF;), then:
V1<i<3:SPi=i+200:1D; =1, (3.5)

V4§i§n:SPZ‘:IDi:’i, (3.6)

wheren is the number of node$.5 guarantees that nodeg, to N3 will keep their
position at the highest level during the te@% guarantees that a joining node whose
ID > 13 will trigger the adaptation to the network procedure (seel(Eid(a)).

40

Test Procedure : The test was performed in the following steps:

1. Start nodeV, on PlanetLab machine which is known for joining nodes.

2. Run a script, which spawns nod®&s to Ng>. Nodes are forced to join following an
order in time (see Fid3.4 (b)) to avoid concurrent node joins, otherwise the resulting
network would be non-deterministic. Consequently it wouldn't be possible to test the
actual network against the test cases generated by the test case generator.

3. When network is built, a signal has to be sent to all nodes forcing to write their status
information to the files (e.gssh user@planetlabl.diku.dk "less -F pid xargs -i kill
-USR1{}"). Each node writes itgid (process id) tdpid” file when started. A signal
handler which is able to catch and procE&R1signal has been implemented into the
Join/Leave protocol. WhedSR1signal is caught the status information is written to
two files:

ID+”.out” (e.g. ”1l.out”) : file contains the dateSAL GP, level etc.), which
will be used by the functional testing system.

hostname+”.out” (e.g. ”planetlabl.diku.dk.out”) : file contains human
readable detailed status information, which can be used to find a cause if system
doesn’t work as expected.

4. Stop nodeVy.
5. Fetch status informatiori.out) from nodes used in test.
(e.g.sftp user@planetlabl.diku.dk:*.out).

6. Run the functional testing system to verify if actual netwolT,,.;..; iS equivalent
to the networkOU T;.:, which is generated by the test case generator. Two outcomes
are possible:
(@) If OUT,ctuar # OUTiest, then find a cause inostname+".out” files, correct an
implementation mistake and start from step 1 again.
(b) If OUT,ctuar = OUTiest, then move to Functional Test 2 to dismantle the net-
work.

Results : During the test some mistakes, which are not related to the design of the protocol,
were found and repaired. A final result of this test is shown in AppdAdidandB.1

100

90

80

70

60

50

D

40

30

20

10

0

0 10 20 30 40 50 60 70 80 90 100

time, sec

(@) (b)

Figure 3.4: (a) - network snapshot at the time (circle mark in (b)) when node Ni3 is joining. (b)
- time diagram of node joins.

41

Functional Test 2

The purpose of this test is to verify if the protocol correctly dismantles the FROST network while
stressing the high level of of adaptation in the network.

Test Data : For this functional test the FROST network, which was build during the Functional
Test 1, will be used as a test data.

Test Procedure : The test was performed in the following steps:

1. Run a script, which sends the termination signal to nddéggo Ny, following an or-
derintime as itis shown in time diagram in Figl&&(b). (e.g.ssh user@planetlabl.diku.dk
"less -F pid | xargs -i kill -INT {}”). WhenINT signal is caught a node performs
voluntary leave procedure and leaves the FROST network.

2. After nodesVi3 to Ngo have left , a signal has to be sent to remaining nodes forcing
to write their status information to the files (eggh user@planetlabl.diku.dk "less
-F pid | xargs -i kill -USR1 {}"). WhenUSR1signal is caught the status information
is written to two files:

ID+”.out” (e.g. ”1l.out”) : file contains the dateSAL GP, level etc.), which
will be used by the functional testing system.
hostname+”.out” (e.g. ”planetlabl.diku.dk.out”) : file contains human
readable detailed status information, which can be used to find a cause if system
doesn’t work as expected.
3. Fetch status informatiori.put) from nodes used in test.
(e.g.sftp user@planetlabl.diku.dk:*.out).
4. Send termination signal to the remaining nodes.
5. Run the functional testing system to verify if actual netwol T, .;,..; is equivalent
to the networlOU T3¢, which is generated by the test case generat@ U, ;0 =

OUT;st, then actual network and generated network should be the same as in Figure
3.4 (a).

Results : During the test some mistakes, which are not related to the design of the protocol,
were found and repaired. A final result of this test is shown in AppdAdiandB.2

100
o

80

70

60

50 AN

D

40 N

30

20

10

0

0 10 20 30 40 50 60 70 80 90 100

time, sec

(b)

Figure 3.5: (a) - network snapshot at the time (circle mark in (b)) when node Ny is leaving. (b)
- time diagram of node leaves.

42

3.2.2 Stress Tests

Stress tests were conducted on a cluster of 7 nodes at Aalborg University (see cluster specification

on pagé3d).

Stress Test 1

The purpose of this test is to measure a throughput - how many nodes per second an observed
node can handle, CPU usage and bandwidth usage when an observed node is stressed to process
an arbitrary number gburenode joins. Node join is callegureif node after joining an observed

node can leave without involving special processing at observed node, i.e. when joined node
decides to leave, it just fails (all threads are canceled) and can start joining procedure again. This
way of leaving is appropriately handled by an observed node, since it can detect failed node and
delete all information related to that node, thus other nodes can join a vacant place. The purpose
of such test wittpure node joins is to measure the capabilities of an observed node (probably the
one at the highest levels) which operates as a guide for the joining nodes, i.e. gives a direction
where to join or accepts joining node.

Test Data : All 7 nodes are used for the stress test (see[E), nodeN; is an observed node,
nodesN, to N; are used to concurrently perform an arbitrary numbgrué node joins to
nodeN;. Two test cases were used for testing:

Test Case 1: nodesN, to N7 concurrently performs 5pure joins each. Nodév; will
process 30@urejoins in total.

Test Case 2: nodesN, to N; concurrently performs 10purejoins each. NodéV; will
process 60@urejoins in total.

OLO20XO0X020
@

Figure 3.6: Nodes used for stress test 1. N1 - observed node. No to N7 - nodes used to stress node
Nj.

Test Procedure : For each test case the procedure is performed in the following steps:

1. Start nodeV; with time command to measure CPU usage (&rge ./observednodé.

2. Onthe machine where nodg is running, startcpdump to capture and write to a file
all incoming and outcoming packets on a well known port used by Join/Leave protocol
(e.g.tcpdump -w filename.out port 60606.

3. Run the script which spawns the nodésto N; (e.g. more hosts| xargs -ti ssh -fn
"cd client; ./frostclient” , wherehostsis a file which contains hostnames of machines
2 to 7 and-fn option tellssshto go into background just before the execution of
command string, thesshwill return immediately after spawning a process on a remote
machine). A situation where the nodes start to operate is shown in IBglifa) and
at any given moment during the execution of the test case the situation can be similar
to one shown in Figur@.7 (b).

43

4. Each node writes igid (process id) thhostname+"_pid” ("sisterl_pid” , "sister2_pid” ,
etc.) file when started. After the test case is completed the termination signal has to be
sent to all nodes including the observed ndde(rsh sisterl "cd client; less -F sis-
terl_pid | xargs -tikill -INT {}; rm -f sisterl_pid”, etc.). A signal handler which can
catch and process the signals from an OS has been implemented into the Join/Leave
protocol and it can provide with any required information about the state of the proto-
col just before terminating. After this step all the nodes are terminated (seB.Hig.
(c)) and the results can be collected and analyzed (see Tafllesd3.2).

S lolololololo
3

@

(©

Figure 3.7: (a) - network snapshot when the stress test 1 was started; (b) - network snapshot during
the execution of the stress test 1; (c¢) network snapshot when the stress test 1 was completed.

Test Results :

B=6 Time CPU usage
time, s | Atime, s || nodes/s || user, s | sys, s | CPU, % || ACPUgk, %
2.23 0.05 0.42 21.12
300 2.12 2.17 138.12 0.03 0.24 12.72 14.20
2.14 0.01 0.18 8.76
4.41 0.13 0.64 17.45
600 4.18 4.25 141.34 0.18 0.35 12.69 14.07
4.14 0.02 0.48 12.07
’ A nodes/s: | 139.73 | ACPU, %: | 14.13

Table 3.1: Measurements of pure join rate (nodes/s) and CPU usage at node N1. # - is the number
of joins processed by node N1. B - is the base of the FROST architecture.

B=6 Bandwidth usage
| Atime, s | kbytes of traffic | traffic, Mbits/s | Atrafficy, Mbits/s
569.19 2.10
300 2.17 568.62 2.20 2.15
569.64 2.15
1133.44 2.24
600 4.25 1139.42 2.23 2.24
1138.24 2.25
A traffic, Mbits/s : | 2.19 |

Table 3.2: Measurements of bandwidth usage at node Ni. # - is the number of pure node joins
processed by node Ny. B - is the base of the FROST architecture.

44

Stress Test 2

The purpose of this test is to measure a throughput - how many nodes per second an observed
node can handle, CPU usage and bandwidth usage when an observed node is stressed to process

an arbitrary number of concurrent node joins and voluntary leaves.

Test Data : All 7 nodes are used for the stress test (seelEg, nodelN; is an observed node,

nodesN, to N; are used to concurrently perform an arbitrary number of node joins followed

by voluntary leaves. Two test cases were used for testing:

Test Case 1: nodesN, to N; concurrently performs 50 joins and 50 voluntary leaves

each. NodeV; will process 300 joins and 300 voluntary leaves in total.

Test Case 2: nodesN- to N7 concurrently performs 100 joins and 100 voluntary leaves

each. NodeV; will process 600 and 600 voluntary leaves in total.

Test Procedure : The test procedure is the same as presented for the stress test 1 @3 page
except that nodes are not failing after each join but leaving according to voluntary leave

procedure. The results are shown in Taflgsand3.4

Test Results :

B=6 Time CPU usage
joiny /leavey | time, s | Atime, s || nodes/s || user, s | sys, s | CPU, % || ACPUyg, %

6.36 0.00 0.07 1.10

300/300 6.24 6.42 93.41 0.02 0.03 0.80 3.93
6.67 0.16 0.50 9.89
11.23 0.04 0.18 1.96

600/600 12.70 12.31 97.45 0.04 0.11 1.18 1.38
13.01 0.02 0.11 1.00

’ A nodes/s: | 95.43 | ACPU, %: | 2.66 ‘

Table 3.3: Measurements of rate (nodes/s) and CPU usage at node Ni. joing - is the number of
joins processed by node Ni. leavey - is the number of voluntary leave processed by node Ni. B -
is the base of the FROST architecture.

B=6 Bandwidth usage
joing /leavey | Atime, s | kbytes of traffic | traffic, Mbits/s | Atrafficy, Mbits/s
729.05 0.94
300/300 6.42 725.85 0.95 0.93
725.44 0.89
1427.23 1.04
600,/600 12.31 1454.80 0.94 0.97
1460.90 0.92
| A traffic, Mbits/s : | 0.95 |

Table 3.4: Measurements of bandwidth usage at node Np. joing - is the number of joins processed
by node Ni. leavey - is the number of voluntary leave processed by node Ni. B - is the base of the

FROST architecture.

45

Stress Test 3

The first two stress tests gives a result where the rate of change is noticeably higher than expected
(Ractual = 100 > Reppectea =~ 2), Whereas bandwidth usage is very high I Mbit/s), which

implies that the bandwidth is the most consumed resource as expected. The purpose of this test is
to measure bandwidth usage when an observed node is stressed to process an arbitrary number of
node joins and voluntary leaves at the rate of change cloBg.tQ cq-

Test Data : All 7 nodes are used for the stress test (see Bd), node NV, is an observed
node. To reduce the rate of change in an observed network of nodes only onévapaa|(
perform an arbitrary number of node joins followed by voluntary leaves. Node® Ng
joins the network once and participates in the network activities. The following test cases
were used for testing:

Test Case 1: FROST architecture bade = 6. Two different scenarios were tested:

1. NodeN; performs 100 joins and 100 voluntary leaves.
2. NodeN; performs 200 joins and 200 voluntary leaves.

Test Case 2: FROST architecture bade = 3. Two different scenarios were tested:
1. NodeN; performs 100 joins and 100 voluntary leaves.
2. NodeN; performs 200 joins and 200 voluntary leaves.

Test Case 3: FROST architecture bade = 2. Two different scenarios were tested:
1. NodeNr; performs 100 joins and 100 voluntary leaves.
2. NodeN7 performs 200 joins and 200 voluntary leaves.

Test Procedure : The test procedure is the same as presented for the stress test 1 @@ page
The snapshots of the network during each test case is shown in[3&bl€he results are
shown in TableB.6 [3.7,3.8 3.9 B.10and3.11

Test Case 1 Test Case 2 Test Case 3

Table 3.5: Test cases for stress test 3. Ny - observed mode. Ny to Ng - nodes are participants in
the network. N7 is used to stress node N7.

46

Test Results :

B=6 Time CPU usage
joing /leavey | time, s | Atime, s || nodes/s || user, s | sys, s | CPU, % || ACPUy, %
21.89 0.02 0.02 0.18
100/100 17.50 18.73 10.68 0.01 0.02 0.17 0.28
16.81 0.06 0.02 0.48
28.31 0.10 0.24 1.20
200/200 26.65 27.81 14.38 0.08 0.60 2.55 1.29
28.48 0.02 0.01 0.11
’ A nodes/s: H 12.53 H ACPU, %: H 0.78

Table 3.6: Test Case 1. Measurements of rate (nodes/s) and CPU usage at node Ni. joing - is
the number of joins processed by node Ni. leavey - is the number of voluntary leave processed by
node N.

B=6 Bandwidth usage
joing /leavey | Atime, s | kbytes of traffic | traffic, kbits/s | Atrafficy, kbits/s
237.43 91.14
100/100 18.73 238.53 114.69 108.20
238.27 118.78
476.37 141.31
200/200 27.81 477.60 150.53 144.04
477.08 140.29
’ A traffic, kbits/s : ‘ 126.12 ‘

Table 3.7: Test Case 1. Measurements of bandwidth usage at node Ny. joiny - is the number of
joins processed by node Ny. leavey - is the number of voluntary leave processed by node N.

B=3 Time CPU usage
joiny /leavey | time, s | Atime, s || nodes/s || user, s | sys, s | CPU, % || ACPUy4, %
27.09 0.01 0.02 0.11
100/100 24.40 25.68 7.79 0.03 | 0.01 0.16 0.47
25.55 0.08 0.21 1.14
49.71 0.13 0.61 1.49
200/200 41.78 44.44 9.00 0.15 0.46 1.46 1.42
41.82 0.15 0.40 1.32
| A nodes/s: | 840 | ACPU, %: | 0.95

Table 3.8: Test Case 2. Measurements of rate (nodes/s) and CPU usage at node Ny. joing - is
the number of joins processed by node N;. leavey - is the number of voluntary leave processed by
node N7.

47

B=3 Bandwidth usage
joing /leavey | Atime, s | kbytes of traffic | traffic, kbits/s | Atrafficy, kbits/s
418.90 130.05
100/100 25.68 418.66 144.38 137.22
418.84 137.22
849.48 143.36
200/200 44.44 851.49 171.01 161.79
852.25 171.01
| A traffic, kbits/s : | 149.50 \

Table 3.9: Test Case 2. Measurements of bandwidth usage at node Ni. joiny - is the number of
joins processed by node Ni. leavey - is the number of voluntary leave processed by node Nj.

B=2 Time CPU usage
joiny /leavey | time, s | Atime, s || nodes/s || user, s | sys, s | CPU, % || ACPUx%, %
26.69 0.04 0.60 2.40
100/100 21.31 24.17 8.28 0.13 0.62 3.52 2.14
24.51 0.03 0.09 0.49
49.71 0.06 0.27 0.79
200/200 41.78 46.16 8.67 0.08 0.45 1.28 0.93
41.82 0.07 0.32 0.70
| A nodes/s: | 847 | ACPU, %: | 1.53

Table 3.10: Test Case 3. Measurements of rate (nodes/s) and CPU usage at node Ny. joing - is
the number of joins processed by node N;. leavey - is the number of voluntary leave processed by
node N7.

B=2 Bandwidth usage
joiny /leavey | Atime, s | kbytes of traffic | traffic, kbits/s | Atrafficy, kbits/s
418.51 131.07
100/100 24.17 417.38 163.84 144.38
403.11 138.24
848.36 169.98
200/200 46.16 847.42 172.03 160.43
921.59 139.26
| A traffic, kbits/s : | 152.41

Table 3.11: Test Case 3. Measurements of bandwidth usage at node Ni. joing - is the number
of joins processed by node Np. leavewu - is the number of voluntary leave processed by node Nj.

48

3.2.3 Timing Tests

The purpose of timing tests is to evaluate if the system is fast enough, while assuring that it
performs according functional requirements.

Timing Test 1

The purpose of this test is to measure the tifiag,, required to build the FROST network from an
arbitrary number of nodes and the tiffig,,,.. required to dismantle the FROST network consisting
of an arbitrary number of nodes.

The Join/Leave protocol implementation has been modified to automatically gather the following
time statistics:

1. start, endanddurationof join procedure. Data is gathered in the following steps:

(a) capturestarttime: time(&start) ;

(b) run join procedurejoin();

(c) captureendtime: time(&end);

(d) calculateduratiort duration=difftime(end, start);

(e) writestart, endanddurationtimes to the fildD+" _endjoin.out” (e.g.”1 _endjoin.out”):

fprintf(file,”started: %s”, asctime(localtime(&start))) ;
fprintf(file,"finished: %s”, asctime(localtime(&end))) ;
fprintf(file,”elapsed: %d”, duration) ;

2. start, endanddurationof leave procedure. Data is gathered in the following steps:

(a) capturestarttime: time(&start) ;

(b) run leave procedurdeave()

(c) captureendtime: time(&end);

(d) calculatedurationt duration =difftime(end, start);

(e) writestart, endanddurationtimes to the fildD+” _endleave.out”(e.g.”1 _endleave.out):

fprintf(file,"started: %s”, asctime(localtime(&start))) ;
fprintf(file,"finished: %s”, asctime(localtime(&end))) ;
fprintf(file,”elapsed: %d”, duration) ;

Test Data: Two test cases were used for testing:
Test Case 1: Build the network using 40 randomly selected nodes deployed at various
locations in the world. BasB8 = 3.
Test Case 2: Use the network from Test Case 1 to dismantle it.

Test Procedure. Test Case 1: The test was performed in the following steps:

1. StartiVy

2. Spawn all 40 nodes in parallel to stress concurrent joins. gstg:fn user@planetlabl.diku.dk
"cd client; ./frostclient” &).

3. When the network is built, collect the results (esfip user@planetlabl.diku.dk:*.out).
See Fig[3.8(a) for results.

4. StopNy

49

Test Procedure. Test Case 2: The test was performed in the following steps:

1. Signal the nodes to start leaving the network. (esgh user@planetlabl.diku.dk
"less -F pid | xargs -i kill -INT {} &”)

2. When network is dismantled, collect the results. (sftp user@planetlabl.diku.dk:*.out).
See Fig[3.8 (b) for results.

Test Results :

Test Case 1: The network was built in about 20 seconds;z;, ~ 20 [sec| and the join
rate isRjoin ~ 2 [M} Two nodes V17 and N3) have failed to join, and that is

sec

because the discovery servés for unknown reasons refused to establish a connection
with them.

Test Case 2: The network was dismantled in about 8 second ;,. ~ 8 [sec| and the
leave rate iSReqpe ~ 5 [m}

sec

This test was repeated several times and similar failures occurred, when one or few nodes
were not able to contact nod€;. Also in some cases few unexpected connection losses
were experienced while a node was performing a join or leave procedure causing some
nodes to deadlock.

Because of different bandwidth load on PlanetLab at different day time the measured times
Tj0in andTj.q,c may change, because of delays in the network.

W
a
W
a

ID

N
]

ID

N
N
N
N

o
~ 4
©

4 5

-
[N
w

0 5 10 15 20 25 0

time, sec time, sec

(@) (b)

Figure 3.8: (a) - time diagram of joins. (b) - time diagram of departures. A horizontal line in
diagram represents time duration of join or leave operation. Error of measurement: £+ 1 second.

50

Timing Test 2

The purpose of this test is to measure the tiffigg, and7;..,. as described in Timing Test 1, but

with distinct FROST network configurations using differémiseparameters and with constant
number of nodes, to test which configuration performs better (wide or narrow tree). Also an
important timing measurement would be to measure the times described above with doastant
parameter, but with distinct number of nodes to establish a relation between the time and number
of nodes. Then it could be possible to estimate the timing for the larger number of nodes without
performing actual test.

Test Data: The test data is summarized in TaBld2

Base
3 6 9
20 | Test Case 1 | Test Case 4 | Test Case 7
40 | Test Case 2 | Test Case 5 | Test Case 8
60 | Test Case 3 | Test Case 6 | Test Case 9

Table 3.12: Timing Test 2. Test data. # - is the number of nodes used in a test case.

Test Procedure: For each test case the times,;,, and7j.,,. will be measured following the
procedure described in Timing Test 1.

Test Results : The results are summarized in TaBld3and Figuré3.2

Base
3 6 9
T’join ,Tleaxue ,Tjoin Tlezwe eroin CZ1leave
20 9 3) 1 6 2
40 | 20 8 12) 13)
60 | 34 10 22 9 20 9

Table 3.13: Timing Test 2. Test results. # - is the number of nodes used in a test case. Timing
results are presented in seconds. Error of measurement: + 1 second.

Timing Test 3

The purpose of this test is to measure the tifiye- required for the half of the nodes to join the
FROST network while the other half is leaving.

Test Data: 40 nodes, which were used in Timing Test 1, will be used to build the network and
leave it while other 40 nodes will join the network.

Test Procedure: The test was performed in the following steps:

1. Build the network of 40 nodes as described in Timing Test 1, Test Case 1.

2. When built, dismantle the network as described in Timing Test 1, Test Case 2 and at
the same time start to build the network from other 40 nodes as described in Timing
Test 1, Test Case 1.

3. When network is built, collect the results and terminate all nodes.

51

Figure 3.9: (a) - the results of the Timing Test 2 with the
of the Timing Test 2 with the constant number of nodes. # - is the number of nodes used in the

test.

70 10
9 o &
60 *
} " 8 _/r r
50 7
40 6 *
3 o i \
30
0 SN
20 + L g 2 —e—Join
10 —e—Join | | 1 —m— Leave
—m—Leave 0 T
0 : 0 5 10 15 20 25 30 35 40
0 5 10 15 20 25 30 35 40 _)
B=3 time, sec #=20 time, sec
70 10 *
9 &
60 7 3
/ —» 8 /
% 8 /
o 6
40
* / L P T ~
30 4
20 -/ 3 \.
2 N
- —e—Join
10 on 1 —m—Leave
—a—Leave 0 r
0 T
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
B=6 time, sec #=40 time, sec
70 10
60 9 »
/ i I
50 7
w W 6 » .
® / o 5 T
30 4
20 _/ / 3 k \
—e—Join 2 —e—Join
10 —m—Leave[| 1 —m— Leavef]
0 T 0 T
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
B=9 time, sec #=60 time, sec
(a) (b)

constant base parameter. (b) - the results

Test Results : The test was not able to complete, because of unexpected connection losses
between the nodes, causing some nodes to deadlock. Fault tolerance was not implemented
in the protocol assuming that all nodes will be reliable and no connection losses will happen.
The assumption was made with intent to primarily test and measure the Join/Leave protocol

performance with reliable nodes and then concentrate on the fault tolerance.

Some deadlock situations that happened during the tests are listed below:

e When master node grants an asking node a permission to leave or push, master has to
wait until the replacement will connect. If node, which was chosen as a replacement
fails or node, which was granted for an operation fails then master node will wait for

a replacement forever.

e During leave or push operation a number of nodes are involved in exchanging data and
instructions. If, however, at least one connection is lost then some nodes will wait for

the events that will never happen, causing the system to deadlock.

52

3.3 Test Results Analysis

3.3.1 Functional Tests

The main corollary of the functional test results is that the Join/Leave protocol correctly builds and
dismantles the network, unless the connection losses during the join or leave operation has hap-
pened. The results that are presented in app&hdiandA.2where collected when no connection
losses occurred and no nodes have failed. However, there were some cases when connection fail-
ures occurred and system deadlocked.

3.3.2 Stress Tests

CPU usage: As expected the CPU usage is reasonably |6WPU ~ 15%, even when stressed
to operate at rat® =~ 140 [%‘fss} (see Tabl@.]). To evaluate and measure the CPU and
bandwidth usage at lower join and leave rates a special test was conducted. Three test cases
were used in testing, and when operating at fate 10 the CPU usage i€ PU ~ 1% and
that is a desired result. (see TalBe§ [3.8and3.10).

Bandwidth usage: As expected the bandwidth usage is the most consumed resource. When

stressed to operate at radtex~ 120 the bandwidth consumption was quite large and unsuit-
able ¢raffic ~ 1.5 [”S[é’gt} see Table8.2and3.9) for Internet wide usage. However, when

operating at rat&® ~ 10 the bandwidth usage fgaffic ~ 150 [%} (see TableB. 74, [3.9and

[3.11), which is quite normal if having fast (e.g: 256 [%}) Internet connection.

Throughput: The maximum throughput which could be expected under certain conditions is
R =~ 140. When stressed there were more free resources available: &ounf CPU
and about97% of bandwidth resources were unused, but they were not consumed. An
explanation of it could be in the internals of the protocol itself, i.e. mutual exclusion devices,
barriers, etc.

The main corollary of the stress test results is that the Join/Leave protocol should be able to
efficiently operate at the rate of chang® (= 2), which was previously settled in the analysis

of the Gnutella system. When operating at r&te- 2, the expected resource usage could be as
follows:

CPU usage: CPU ~ 1% (for CPU’s faster than Ghz).

Bandwidth usage: traffic ~ 30 [@]

sec

3.3.3 Timing Tests

Running the Join/Leave protocol in the realistic environment such as PlanetLab confirms that the
fault tolerance is a critical part in the FROST system and must be implemented if it is planned to
use the system Internet wide, where the machines are not reliable.

The results of timing tests indicate that the rate of chande 4s 3.5 and according the expecta-
tions the Join/Leave protocol satisfies the timing constraints.

Also the results of testing the protocol with different configuration setup indicate that the base
parameter could be adjusted for better performance in the system (seeERB(iry. The results

in Figure3.9(a) indicate that the time required for building and dismantling the network increases
almost linearly when the number of nhodes increases.

53

Chapter 4

Conclusion

The two main goals of this project were:

1. Toimplement the prototype of the Join/Leave protocol, whose system architecture and con-
cepts were described i2]f] The purpose of the Join/Leave protocol is to handle the node
joins and departures in the FROST network. In general the Join/Leave protocol can be
divided into two parts based on the function it should perform:

Join: The Join/Leave protocol must assure that a node which joins the network will be
organized in the hierarchy according to its static performance meaSite -

Leave: When nodes leave the network (voluntarily or by failing) the Join/Leave protocol
has to assure the integrity of the communication architecture by appropriately rear-
ranging the related nodes in the network.

2. To conduct a proof-of-concept evaluation of the Join/Leave protocol by performing system
testing, which focuses on the complete system, its functional and non-functional require-
ments, and its target environment. The following system tests were conducted:

Functional testing. Functional testing, also called requirements testing, tests if the sys-
tem perform as promised by the requirements specification.

Performance testing. Performance testing is used to test if the non-functional require-
ments are met. Two types of performance tests were conducted:

Stress tests: The purpose of the stress tests is to evaluate the system when stressed
to its limits over a short period of time.

Timing tests: The purpose of the timing tests is to validate conformance to behav-
ioral and performance constraints and evaluate if the system is fast enough.

4.1 Implementation

Some corrections have been made to the de&jgyf fhe Join/Leave protocol before implementing
it. Two main corrections were made:

1. The static node performan&P has been derived from available network bandwidth re-
sources disregarding the speed of CPU and the size of the main memory.

2. Joining and adaptation to the network procedure has been optimized.

o4

The Join/Leave protocol has been decomposed and implemented as four components:
1. Model ComponentA part of a system that implements a model of the Join/Leave protocol.

2. Function ComponentA part of a system that implements functional requirements of the
Join/Leave protocol.

3. System Interface Componer part of a system implementing the interaction with other
systems.

4. User Interface Componené part of a system implementing the interaction with users.

4.2 Testing

The following system tests were conducted:

Functional testing. The results of functional tests indicate that the Join/Leave protocol cor-
rectly builds and dismantles the network, unless the connection losses during the join or
leave operation has happened.

Stress tests. The results of stress tests indicate that the Join/Leave protocol should be able to
efficiently operate at the rate of change & 2), which was previously settled in the analysis
of the Gnutella system. When operating at r&te= 2, the expected resource usage is as
follows:

CPU usage: CPU ~ 1% (for CPU’s faster thanGhz).
Bandwidth usage: traffic =~ 30 {@]

sec

Timing tests. The results of timing testd{ ~ 3.5) indicate that the Join/Leave protocol sat-
isfies the timing constraints, unless the connection losses during the join or leave operation
has happened. Also the results of testing the protocol with different configuration setup in-
dicate that the base parameter could be adjusted for better performance in the system (see
Figure3.9(b)). The results in Figu@.9 (a) indicate that the time required for building and
dismantling the network increases almost linearly when the number of nodes increases.

4.3 Further Work

The parts of the system that were left out will be summarized in this section.

Fault tolerance. Fault tolerance was not designed(2) &nd it was not planned to implement
it in this work. The intent was to primarily test the Join/Leave protocol assuming that all
nodes are reliable and then focus on fault tolerance. Running the Join/Leave protocol in the
realistic environment such as PlanetLab confirms that the fault tolerance is a critical part
in the FROST system and must be implemented if it is planned to use the system Internet
wide, where the machines are not reliable. It is expected that fault tolerance solution will
introduce an additional overhead to the system and therefore the system testing has to be
performed again to evaluate if the protocol still satisfies the functional and non-functional
requirements.

Interoperability. To fulfill its purpose, the Join/Leave protocol has to be incorporated to the
FROST systemn]]].

55

Security. The maintenance protocols are especially susceptive to the DoS (Denial of Service)
attacks. Since the Join/Leave protocol is intended to operate Internet wide there is a high
risk of such attacks.

Portability. The protocol should be able to operate on various technical platforms to increase
the number of potential users of the FROST sysi&mnThe current implementation of the
Join/Leave protocol is based on Linux OS.

o6

Bibliography

[1] Michael Platz Glibstrup and Lars Kringelbach. FROST - A Distributed Heteroge-
neous Calculation Platform. Student report, Aalborg University - Department of
Computer Science, January 2002.

[2] Li Ming and Arunas Vrubliauskas. Scalability of the FROST System. Student re-
port, Aalborg University - Department of Computer Science, January 2003.

[3] Lars Mathiasen, Andreas Munk-Madsen, Peter Axel Nielsen and Jan Stage. Object
Oriented Analysis & Design. Forlaget MARKO. ISBN 87-7751-150-6. 1st edition,
2000.

[4] David Liben-Nowell, Hari Balakrishnan, and David Karger. Analysis of the Evolu-
tion of Peer-to-Peer Systems. ACM Conf. on Principles of Distributed Computing
(PODC), Monterey, CA, July 2002.

[5] PlanetLab - An open testbed for developing, deploying, and accessing planetary-
scale services. http://www.planet-lab.org

[6] SETI@home - The Search for Extraterrestrial Intelligence.
http://setiathome.ssl.berkeley.edu/

[7] http://www.tcpdump.org/
[8] Network protocol analyzer. http://www.ethereal.com/
[9] http://www.research.microsoft.com/padmanab/projects/CoopNet/

[10] Venkata N. Padmanabhan, Helen J. Wang, Philip A. Chou and Kunwadee Sripanid-
kulchai. Distributing Streaming Media Content Using Cooperative Networking.
Microsoft Research Technical Report, MSR-TR-2002-37, April 2002.

[11] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement study of peer-to-peer
file sharing systems. In Proceedings of MMCN, 2002.

[12] http://www.msnbc.com/

[13] THINK project. http://members.ud.com/home.htm

[14] distributed.net project. http://www.distributed.net/

[15] Gnutella file sharing system. http://www.gnutella.com/

[16] Freenet file sharing system. http://freenet.sourceforge.net/

[17] Napster file sharing system. http://www.napster.com/

57

[18] Gerard J. Holzmann. Design and Validation of Computer Protocols, Prentice Hall,
New Jersey, 1991, ISBN 0-13-539925-4.

[19] Gerard J. Holzmann. The Spin Model Checker, IEEE Trans. on Software Engineer-
ing, Vol. 23, No. 5, May 1997, pp. 279-295.

o8

Appendix A

Functional Tests: Actual Output

File format is as followshostnamelD, SP, GP, level I D,,qsters SAL1, SALoy, SAL3.

A.1 Functional Test 1

1l.out: planetlabl.xeno.cl.cam.ac.uk 1201 1626 1 0 85 88 91
2.out: planetlab2.xeno.cl.cam.ac.uk 2 202 1657 1 0 86 89 92
3.out: planetlab3.xeno.cl.cam.ac.uk 3 203 1595 1 0 84 87 90
4.out: planetlabl.iis.sinica.edu.tw 444458000

5.out: planetlab2.iis.sinica.edu.tw555459000

6.out: planetlab-01.bu.edu666460000

7.out: planetlab-02.bu.edu777461000

8.out: PLANETLAB-1.CMCL.CS.CMU.EDU888462000
9.out: PLANETLAB-2.CMCL.CS.CMU.EDU999463000
10.out: PLANETLAB-3.CMCL.CS.CMU.EDU 101010464000
11.out: planetlabl.comet.columbia.edu111111465000
12.out: planetlab2.comet.columbia.edu 121212466000
13.out: planetlab3.comet.columbia.edu 131313467000
14.out: planetlabl.cs.cornell.edu 141414468000

15.out: planetlab2.cs.cornell.edu 151515469000

16.out: planetlabl.cs.duke.edu 161616470000

17.out: planetlab2.cs.duke.edu 171717471000

18.out: planetlab3.cs.duke.edu 181818472000

19.out: planetl.pittsburgh.intel-research.net 191919473000
20.out: planet2.pittsburgh.intel-research.net 202020474000
21.out: planet3.pittsburgh.intel-research.net 212121475000
22.out: planetl.cc.gt.atl.ga.us 222222476000

23.out: planet.cc.gt.atl.ga.us 232323477000

24.out: lefthand.eecs.harvard.edu 242424478000

25.out: righthand.eecs.harvard.edu 252525479000

59

26.out:
27.out:
28.out:
29.out:
30.out:
31.out:
32.out:
33.out:
34.out:
35.0ut:
36.out:
37.out:
38.out:
39.out:
40.out:
41.out:
42.o0ut:
43.out:
44.out:
45.out:
46.out:
47.out:
48.out:
49.out:
50.0ut:
51.out:
52.out:
53.out:
54.out:
55.out:
56.out:
57.out:
58.out:
59.out:
60.out:
61.out:
62.out:
63.out:
64.out:

planetlabl.postel.org 26 26 26 48000 0
planetlab2.postel.org 27 2727481000
kupll.ittc.ku.edu 28 28 28482000
kupl2.ittc.ku.edu 292929483000
planetlabl.netlab.uky.edu 303030457000
planetlab2.netlab.uky.edu 313131458000
planetlabl.cs-ipv6.lancs.ac.uk 323232459000
planetlab2.cs-ipv6.lancs.ac.uk 333333460000
planetlabl.lbl.gov 343434461000
planetlab2.lbl.gov 353535462000
planetlabl.eecs.umich.edu 36 36 36 463000
planetlab2.eecs.umich.edu 37 3737464000
planetlabl.lcs.mit.edu 383838465000
planetlab2.lcs.mit.edu 393939466 000
planetlab3.lcs.mit.edu 40 4040467000
planetlabl.cs.northwestern.edu 414141468000
planetlab2.cs.northwestern.edu 42 42 42469000
s1803.ie.cuhk.edu.hk 434343470000
s2.803.ie.cuhk.edu.hk 444444471000
planetl.ecse.rpi.edu 454545472000
planet2.ecse.rpi.edu 46 46 46 473000
ricepl-1.cs.rice.edu 47 4747474000
ricepl-2.cs.rice.edu 484848475000
planetlab-1.Stanford. EDU 494949476000
planetlab-2.Stanford. EDU 50 50 504 7700 0
edi.tkn.tu-berlin.de 515151478000
miranda.tkn.tu-berlin.de 525252479000
pll.cs.utk.edu 535353480000

pl2.cs.utk.edu 545454481000
planetlabl.cs.ubc.ca555555482000
planetlab2.cs.ubc.ca56 56 56 483000
PlanetLabl.Millennium.Berkeley.EDU 57 57 87384 3000
PlanetLab2.Millennium.Berkeley.EDU 58 58 93385314 0
PlanetLab3.Millennium.Berkeley.EDU 5959 96 386 3250
Planetlabl.CS.UCLA.EDU 6060993873360
Planetlab2.CS.UCLA.EDU 61 61 1023883470
planetlabl.ucsd.edu 62 62 1053893580
planetlab2.ucsd.edu 63 63 108 3903690
planetlab3.ucsd.edu 64 64 111 391 37100

60

65.out:
66.out:
67.out:
68.out:
69.out:
70.out:
71.out:
72.out:
73.out:
74.out:
75.out:
76.out:
77.out:
78.out:
79.out:
80.out:
81.out:
82.out:
83.out:
84.out:
85.out:
86.out:
87.out:
88.out:
89.out:
90.0ut:
91.out:
92.out:

planetl.cs.ucsb.edu 6565114 39238110
planet2.cs.ucsb.edu 66 66 117 384 39120
planetlabl.cs.umass.edu 67 67 120 38540 130
planetlab2.cs.umass.edu 68 68 123 3 86 41 14 0
planetlabl.cs.unc.edu 69 69 126 387 42 150
planetlab2.cs.unc.edu 70 70 1293884316 0
planetlabl.cs.unibo.it 71 71 13238944 17 0
planetlab2.cs.unibo.it 72 72 135390 45 18 0
planetlabl.cs.uiuc.edu 737313839146 190
planetlab2.cs.uiuc.edu 74 74 14139247 200
planet-lab.cs.umd.edu 75 75 144 384 48 21 0
pll.ece.toronto.edu 76 76 147 38549220
pl2.ece.toronto.edu 77 77 150 386 50 23 0
planetlabl.cs.virginia.edu 78 78 153387 51 240
planetlab2.cs.virginia.edu 79 79 156 388 52 250
planetlab01.cs.washington.edu 80 80 159 3 89 53 26 0
planetlab02.cs.washington.edu 81 81 162 390 54 27 0
planetlab03.cs.washington.edu 82 82 165 391 5528 0
planetlabl.cis.upenn.edu 83 83 168 392 56 29 0
planetlab2.cis.upenn.edu 84 84 432 2 3 75 66 57
planetlab-1.it.uu.se 8585 44521 76 67 58
planetlab-2.it.uu.se 86 86 455 2 2 77 68 59
planetlab3.flux.utah.edu 87 87 465 2 3 78 69 60
vn2.cs.wustl.edu 8888 47521797061
vn3.cs.wustl.edu 89 89 48522 80 71 62
planetlabl.cs.wayne.edu 90 90 495 2 3 81 72 63
planetlabl.cs.wisc.edu 91 915052 182 73 64
planetlab2.cs.wisc.edu 92 92 515 2 2 83 74 65

61

A.2 Functional Test 2

1l.out: planetlabl.xeno.cl.cam.ac.uk 1201222101074
2.out: planetlab2.xeno.cl.cam.ac.uk 2 202226101185
3.out: planetlab3.xeno.cl.cam.ac.uk 3203230101296
4.out: planetlabl.iis.sinica.edu.tw44421000

5.out: planetlab2.iis.sinica.edu.tw55522000

6.out: planetlab-01.bu.edu66623000

7.out: planetlab-02.bu.edu77721000

8.out: PLANETLAB-1.CMCL.CS.CMU.EDU88822000
9.out: PLANETLAB-2.CMCL.CS.CMU.EDU99923000
10.out: PLANETLAB-3.CMCL.CS.CMU.EDU 10101021000
11.out: planetlabl.comet.columbia.edu11111122000
12.out: planetlab2.comet.columbia.edu 12121223000

62

Appendix B

Functional Tests: Functional
Testing System Output

B.1 Functional Test 1: FT1.out

Functional Test Passed!

Expected GP=4878, at highest level
Actual GP=4878, at highest level

ID= 1, SP=201, GP=1626, level= 1 MST=N/A SAL[1]=85 SAL[2]=88 SAL[3]=91

ID= 2, SP=202, GP=1657, level= 1 MST=N/A SAL[1]=86 SAL[2]=89 SAL[3]=92

ID= 3, SP=203, GP=1595, level= 1 MST=N/A SAL[1]=84 SAL[2]=87 SAL[3]=90

ID= 4, SP= 4, GP= 4, level= 4 MST= 58

ID= 5, SP= 5, GP= 5, level= 4 MST= 59 10
ID= 6, SP= 6, GP= 6, level= 4 MST= 60

ID= 7, SP= 7, GP= 7, level= 4 MST= 61

ID= 8, SP= 8, GP= 8, level= 4 MST= 62

ID= 9, SP= 9, GP= 9, level= 4 MST= 63
ID=10, SP= 10, GP= 10, level= 4 MST= 64
ID=11, SP= 11, GP= 11, level= 4 MST= 65
ID=12, SP= 12, GP= 12, level= 4 MST= 66
ID=13, SP= 13, GP= 13, level= 4 MST= 67
ID=14, SP= 14, GP= 14, level= 4 MST= 68
ID=15, SP= 15, GP= 15, level= 4 MST= 69 20
ID=16, SP= 16, GP= 16, level= 4 MST= 70
ID=17, SP= 17, GP= 17, level= 4 MST= 71
ID=18, SP= 18, GP= 18, level= 4 MST= 72
ID=19, SP= 19, GP= 19, level= 4 MST= 73
ID=20, SP= 20, GP= 20, level= 4 MST= 74
ID=21, SP= 21, GP= 21, level= 4 MST= 75
ID=22, SP= 22, GP= 22, level= 4 MST= 76
ID=23, SP= 23, GP= 23, level= 4 MST= 77
ID=24, SP= 24, GP= 24, level= 4 MST= 78
ID=25, SP= 25, GP= 25, level= 4 MST= 79 30
ID=26, SP= 26, GP= 26, level= 4 MST= 80
ID=27, SP= 27, GP= 27, level= 4 MST= 81
ID=28, SP= 28, GP= 28, level= 4 MST= 82
ID=29, SP= 29, GP= 29, level= 4 MST= 83
ID=30, SP= 30, GP= 30, level= 4 MST= 57
ID=31, SP= 31, GP= 31, level= 4 MST= 58
ID=32, SP= 32, GP= 32, level= 4 MST= 59

63

ID=33,
ID=34,
ID=35,
ID=36,
ID=37,
ID=38,
ID=39,
ID=40,
ID=41,
ID=42,
ID=43,
ID=44,
ID=45,
ID=46,
ID=47,
ID=48,
ID=49,
ID=50,
ID=51,
ID=52,
ID=53,
ID=54,
ID=55,
ID=56,
ID=57,
ID=58,
ID=59,
ID=60,
ID=61,
ID=62,
ID=63,
ID=64,
ID=65,
ID=66,
ID=67,
ID=68,
ID=69,
ID=70,
ID=71,
ID=72,
ID=73,
ID=74,
ID=75,
ID=76,
ID=77,
ID=78,
ID=79,
ID=80,
ID=81,
ID=82,
ID=83,
ID=84,
ID=85,
ID=86,
ID=87,
ID=88,

SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=
SP=

33, level= 4 MST=
34, level= 4 MST=

= 35, level= 4 MST=
= 36, level= 4 MST=

37, level= 4 MST=
38, level= 4 MST=
39, level= 4 MST=
40, level= 4 MST=

= 41, level= 4 MST=
= 42, level= 4 MST=

43, level= 4 MST=
44, level= 4 MST=

= 45, level= 4 MST=
= 46, level= 4 MST=

47, level= 4 MST=
48, level= 4 MST=
49, level= 4 MST=
50, level= 4 MST=

= 51, level= 4 MST=
= 52, level= 4 MST=

53, level= 4 MST=
54, level= 4 MST=

= b5, level= 4 MST=
= 56, level= 4 MST=

87, level= 3 MST=
93, level= 3 MST=
96, level= 3 MST=
99, level= 3 MST=

= 102, level= 3 MST=
= 105, level= 3 MST=
= 108, level= 3 MST=

111, level= 3 MST=

= 114, level= 3 MST=
= 117, level= 3 MST=
= 120, level= 3 MST=

123, level= 3 MST=
126, level= 3 MST=
129, level= 3 MST=

= 132, level= 3 MST=
= 135, level= 3 MST=
= 138, level= 3 MST=

141, level= 3 MST=
144, level= 3 MST=

= 147, level= 3 MST=
= 150, level= 3 MST=

153, level= 3 MST=
156, level= 3 MST=
159, level= 3 MST=
162, level= 3 MST=

= 165, level= 3 MST=
= 168, level= 3 MST=

432, level= 2 MST=
445, level= 2 MST=

= 455, level= 2 MST=
= 465, level= 2 MST=

475, level= 2 MST=

64

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84 SAL[1]=30
85 SAL[1]= 4 SAL[2]=31
86 SAL[1]= 5 SAL[2]=32
87 SAL[1]= 6 SAL[2]=33

88 SAL[1]= 7 SAL[2]=34

89 SAL[1]= 8 SAL[2]=35

90 SAL[1]= 9 SAL[2]=36

91 SAL[1]=10 SAL[2]=37

92 SAL[1]=11 SAL[2]=38

84 SAL[1]=12 SAL[2]=39

85 SAL[1]=13 SAL[2]=40

86 SAL[1]=14 SAL[2]=41

87 SAL[1]=15 SAL[2]=42

88 SAL[1]=16 SAL[2]=43

89 SAL[1]=17 SAL[2]=44

90 SAL[1]=18 SAL[2]=45

91 SAL[1]=19 SAL[2]=46

92 SAL[1]=20 SAL[2]=47

84 SAL[1]=21 SAL[2]=48

85 SAL[1]=22 SAL[2]=49

86 SAL[1]=23 SAL[2]=50

87 SAL[1]=24 SAL[2]=51

88 SAL[1]=25 SAL[2]=52

89 SAL[1]=26 SAL[2]=53

90 SAL[1]=27 SAL[2]=54

91 SAL[1]=28 SAL[2]=55

92 SAL[1]=29 SAL[2]=56

3 SAL[1]=57 SAL[2]=66 SAL[3]=75
1 SAL[1]=58 SAL[2]=67 SAL[3]=76
2 SAL[1]=59 SAL[2]=68 SAL[3]=77
3 SAL[1]=60 SAL[2]=69 SAL[3]=78
1 SAL[1]=61 SAL[2]=70 SAL[3]=79

40

50

60

70

80

90

ID=89, SP= 89, GP= 485, level= 2 MST= 2 SAL[1]=62 SAL[2]=71 SAL[3]=80
ID=90, SP= 90, GP= 495, level= 2 MST= 3 SAL[1]=63 SAL[2]=72 SAL[3]=81
ID=91, SP= 91, GP= 505, level= 2 MST= 1 SAL[1]=64 SAL[2]=73 SAL[3]=82
ID=92, SP= 92, GP= 515, level= 2 MST= 2 SAL[1]=65 SAL[2]=74 SAL[3]=83

B.2 Functional Test 2: FT2.out

Functional Test Passed!

Expected GP=678, at highest level
Actual GP=678, at highest level

ID= 1, SP=201, GP= 222, level= 1 MST=N/A SAL[1]=10 SAL[2]= 7 SAL[3]= 4
ID= 2, SP=202, GP= 226, level= 1 MST=N/A SAL[1]=11 SAL[2]= 8 SAL[3]= 5
ID= 3, SP=203, GP= 230, level= 1 MST=N/A SAL[1]=12 SAL[2]= 9 SAL[3]= 6
ID= 4, SP= 4, GP= 4, level= 2 MST=1
ID= 5, SP= 5, GP= 5, level= 2 MST= 2
ID= 6, SP= 6, GP= 6, level= 2 MST= 3
ID= 7, SP=7, GP= 7, level= 2 MST=1
ID= 8, SP= 8, GP= 8, level= 2 MST= 2

ID= 9, SP= 9, GP= 9, level= 2 MST= 3

ID=10, SP= 10, GP= 10, level= 2 MST=1
ID=11, SP= 11, GP= 11, level= 2 MST= 2
ID=12, SP= 12, GP= 12, level= 2 MST= 3

65

10

Appendix C

Stress Tests: Ethereal Output

C.1 Stress Test 1

=

[Ethereal: Summary

d Ethereal: Summary

rFile

=1k

bd Ethereal: Summary =]k

Mame: fhomesaras/Projects/dump/300_1.out
Length: 720966

Format: libpcap (topdump, Ethereal, etc)
Snapshat length: 96

rFile

Mame: fhomesaras/Projects/dumps/300_2. out
Length: 720236

Format: libpcap itcpdump, Ethereal, etc.)
Snapshot length: 96

rFile

Mame: fhomesarasProjects/dump/300_3.out
Length: 721548

Format: libpcap itcpdump, Ethereal, etc))
Snapshot length: 96

rData

Elapsed time: 2.225 seconds

Packet count: 8631

Filtered packet count: 8631
tarked packet count: 0

&y, packets/sec: 3976.738
Ave. packet size: 67.529 bytes
Bytes of traffic: 582546

avy. bytesssec: Z61928.767
Avi. Mhit'sec: 2.095

Between first and last packet: 2.225 seconds|

rData

Elapsed time: 2.122 seconds

Between first and last packet: 2122 seconds
Packet count: 8622

Filtered packet count: 5622

Marked packet count: 0

Av0. packetsisec: 4063.635

Avg. packet size: B7.5932 hytes

Bytes of fraffic: 562262

Avg. bytes/sec: 2744268128

Avg. Mhitfsec: 2135

rData

Elapsed time: 2.163 seconds
Between first and last packet 2163 seconds|
Packet count: 8638

Filtered packet count: 8633
harked packet count: 0

Ay, packetsfsec: 3951.337
Ay, packet size: 67.529 hytes
Bytes of traffic: 583316

Avn. bytes/sec: Z65856.450
Avi. Mhitsec: 2.151

rCapture
Interface: unknown

Display filter: none
Capture filter: none

rCapture
Interface: unknown

Dizplay filter: none
Capture filter: none

rCapture
Interface: unknown

Dizplay filter: none
Capture filter: none

| Close |

| Close |

| Close |

e

Figure C.1: Test Case 1.

66

hd Ethereal: Summary -

| v Ethereal: Summary -|E %

hd Ethereal: Summary -l

rFile

Mame: fhomesaras/Projects/dump/a00_1.out
Length: 1435538

Format: libpcap {cpdump, Ethereal, etc))
Shapshot length: 96

rFile
MHame: fhomesaras/Projects/dump/a00_2.out
Length: 1443240

Format: libpcap {cpdump, Ethereal, etc))
Shapshot length: 96

rFile

Mame: fhomesaras/Projects/dump/600_3.out
Length: 1441744

Farmat: libpcap (fcpdump, Ethereal, etc))
Shapshot length: 96

rData
Elapsed time: 4143 seconds

Eetween first and last packet: 4.143 seconds
Packet count: 17183

Filtered packet count: 17183

Marked packet count: 0

Ay, packetsdsec: 4147.712

&vg. packet size: 67 346 hytes

Bytes of traffic: 1160646

Ay, bytes/sec: 260162.095

Ay, Mhit'sec: 2.241

rData
Elapsed time: 4178 seconds

Eetween first and last packet: 4175 seconds)
Packet count: 17278

Filtered packet count: 17274

Marked packet count: 0

Ay, packetsisec: 4135.225

Avg. packet size: B7.529 hytes

Bytes of traffic: 1166768

Avo. bytesfsec: 279248.085

Av. Mbit'sec: 2.234

rData
Elapsed time: 4.144 seconds

Eetween first and last packet: 4.144 seconds
Packet count: 17260

Filtered packet count: 17260

Marked packet count: 0

Av. packetsisec: 4165.219

Avg. packet size: 67.530 bytes

Bytes of traffic: 1165560

Avg. hytesdsec: 261275342

Avy. Mbit'sec: 2.250

rCapture
Interface: unknown

Display filter: none
Capture filter: none

Capture
“nterface: Unknown

Display filter: none
Capture filter: none

rCapture
Interface: unknown

Display filter: none
Capture filter: none

I Close |

I Close I

e

| Close |

C.2 Stress Test 2

[l Ethereal: Summary =1t

File

Figure C.2: Test Case 2.

Ethereal: Summary

[l Ethereal: Summary

- 0%

Mame: fhome/aras/Projects/dump/300_1_leave.ouf
Length: 921642

Format: libpcap (tcpdump, Ethereal, efc)
Snapshot length: 96

rFile

Mame: shomesaras/Projects/dump/300_2_leave.oul
Length: 917964

Faormat: libpcap (topdump, Ethereal, etc))
Snapshot length: 96

File

Mame: /homesaras/Projects/dump/300_3_leave.ouf
Length: 917034

Format: libpcap (tcpdump, Ethereal, etc)
Snapshat length: 36

Data
Elapsed time: 6.360 seconds

Between first and last packet: 6.360 seconds
Packet count 10342

Filtered packet count: 10342

rdarked packet count: 0

Avg. packetsfsec: 1720.395

Avy. packet size: 63.228 bytes

Bytes of trafiic: 746546

Avy. bytesssec: 117378.382

Avi. Mhit'sec: 0.939

rData

Elapsed time: 6.235 seconds

Between first and last packet: 6.2.35 seconds
Packet count: 10832

Filtered packet count: 10832

Marked packet count: 0

Avg. packetsfsec: 1746815

Avg. packet size: 68.240 bytes

Bytes of fraffic: 743268

Avy. hytesfsec: 119202323

Avy. Mhit'sec: 0.954

Data
Elapsed time: 6.674 secands

Between first and last packet 6.674 seconds
Packet count 108835

Filtered packet count: 10&85

tarked packet count: 0

Avg. packetsfsec: 1630678

Ayg. packet size: B3.245 bytes

Bytes of traffic: 742a50

Ay, bytesssec: 111299.760

Avg. Mbitsec: 0690

Caplure
Interface: unknown

Display filter: none
Capture filter: none

rCapture
Interface: unknown

Display filter: nong
Capture filter: none

Capture
Interface: unknown

Display filter: none
Capture filter: none

| Close |

Close |

| Close

Figure C.3: Test Case 1.

67

v Ethereal: Summary - E %

v Ethereal: Summary

-B%

v Ethereal: Summary

-0%

File

Mame: shome/aras/Projects/dump/a00_1_leave.ouf
Length: 1804164

Format: libpcap fcpdump, Ethereal, etc)
Snapshot length: 96

rFile

Mame: shomesaras/Projects/dumpsa00_2_leave.out
Length: 1635000

Farmat: libpcap (fepdump, Ethereal, etc)
Snapshot length: 96

File

Mame: /fhomesaras/Projects/dump/e00_3_leave.out
Length: 1846735

Format: libpcap (tcpdump, Ethereal, efc.)
Snapshat length: 98

Data
Elapsed time: 11.228 secands

Between first and last packet: 11.228 seconds
Packet count: 21416

Filtered packet count: 21416

Marked packet count: 0

Ay, packets/sec: 1307 363

Ay, packet size: 65.243 hytes

Bytes of traffic: 1461454

fvy. bytesssec: 130163.861

Ay, Mhit'sec: 1.041

rData
Elapsed time: 12.703 seconds

Between first and last packet 12.703 seconds
Packet count: 21829

Filtered packet count: 21623

Marked packet count: 0

Avy. packetsisec: 1716476

Avy. packet size: B5.245 hytes

Bytes of traffic: 1489712

Avg. bytes/sec: 117276.785

Avy. Mbit'sec: 0.933

Data.
Elapsed time: 13.011 seconds

Between first and last packet 13.011 seconds
Packet count 21922

Filtered packet count: 21322

arked packet count: 0

Ay, packetsisec: 1654928

Avg. packet size: B3.240 hytes

Bytes of traffic: 1495962

Ay bytes/sec: 114979.840

Ay, Mbit'sec: 0.920

Capture
Interface: unkhown

Display filter: none
Capture filter: none

rCapture
Interface: unknawh

Display filter: none
Capture filter: none

Capture
Intatface: unknawn

Display filter: none
Capture filter: none

| Close

Close |

| Close

C.3 Stress Test 3

[lhd Ethereal: Summary =1k]

[l Ethereal: Summary -

rFile

Figure C.4: Test Case 2.

Ethereal: Summary -|En

Mame: /home/aras/Projects/dump/100bE_1.0uf
Length: 300160

Format: libpcap cpdump, Ethereal, etc))
Snapshot length: 96

rFile

Mame: fhome/aras/Projects/dump/1 00bE_2. ouf
Length: 301554

Format: libpcap (tcpdump, Ethereal, etc)
Snapshot length: 96

rFile

Mame: fhomesaras/Projects/dump/1 00b6_3.out
Length: 301226

Format: libpcap (tcpdump, Ethereal, etc)
Snapshot length: 36

rData
Elapsed time: 21.689 secands

Between first and last packet: 21.889 seconds
Packet count: 3563

Filtered packet count: 3563

Marked packet count: 0

Avy. packetsisec: 162.777

Avg. packet size: B5.237 bytes

Bytes of traffic: 243128

Avy. bytesfsec: 11107415

Avg. Mhit'sec: 0.083

rData

Elapsed time: 17.502 seconds

Between first and last packet: 17.502 seconds
Facket count: 3580

Filtered packet count: 3580

tarked packet count: 0

Avy. packetsisec: 204.550

Ay, packet size: 65.226 bytes

Bytes of traffic: 244250

Avg. bytesfsec: 13955.686

Ay, Mhbitfsec: 0112

rData
Elapsed time: 16.509 secands

Between first and last packet: 16.809 seconds
Packet count: 3576

Filtered packet count: 3576

Marked packet count: 0

Avig. packets/zec: 212.746

Ay, packet size: 63.229 hytes

Bytes of traffic: 243386

Avi. bytesssec: 14515.391

Avy. Mhit'sec: 0116

rCapture
Interface: unknown

Display filter: none
Capture filter: none

rCapture
Interface: unknown

Display filter: none
Capture filter: none

riCapture
Interface: unknown

Display filter: none
Capture filter: hone

| Close |

| Close |

| Close |

Figure C.5: Test Case 1.1

68

lhd Ethereal: Summary -

rFile

Ethereal: Summary -

[l Ethereal: Summary o I=1k.]

Mame: fhomesaras/Projects/dump/200bE6_1.ouf
Length: 602212

Format: libpcap (iepdump, Ethereal, etc))
Snapshot length: 96

rFile

Mame: fhomesaras/Projects/dump/200hE_2. ou
Length: B03770

Format: libpcap (tcpdump, Ethereal, etc)
Snapshot length: 96

rFile
Mame: shomesaras/Projects/dump/z00bE_3.out
Length: 603114

Format: libpcap (tcpdump, Ethereal, etc)
Snapshot length: 36

rData
Elapsed time: 28.312 seconds

Between first and last packet: 28.312 seconds
Packet count: 7143

Filtered packet count: 7143

Marked packet count: 0

Avg. packets/sec: 252.505

Avg. packet size: B8.234 bytes

Bytes of traffic: 457604

Avy. hytesisec: 17223.371

Avy. Mhit/sec: 0,138

rData
Elapsed time: 26,646 seconds

Between first and last packet: 26.646 seconds
Facket count: 7168

Filtered packet count: 7163

tarked packet count: 0

Avg. packets/sec: 269.010

Avg. packet size: 68.228 bytes

Bytes of traffic: 453058

Avg. bytesdsec: 18353.9580

Avy. Mhit'sec: 0147

rData
Elapsed time: 28480 seconds

Between first and last packet: 25480 seconds
Packet count: 7160

Filtered packet count: 7160

Marked packet count: 0

Avg. packets/sec: 251.402

Ay, packet size: 63.230 bytes

Bytes of traffic: 465530

Avi. bytesssec: 17153.278

Avi. Mhitfsec: 0137

rCapture
Interface: unknown

Display filter: none
Capture filter: hone

rCapture
Interface: unknown

Display filter: none
Capture filter: none

rCapture
Interface: unknown

Display filter: none
Capture filter: none

| Close |

| Close |

| Close |

lhd Ethereal: Summary S 1=1k.]

Figure C.6: Test Case 1.2

[l Ethereal: Summary =1k

[l Ethereal: Summary =1k

rFile

Mame: fhomesaras/Projects/dump/100b3_1.0uf
Length: 529346

Format: libpcap (icpdump, Ethereal, etc))
Snapshot length: 96

rFile
Mame: fhome/aras/Projects/dump/1 00b3_2.oud
Length: 529050

Format: libpcap (tcpdump, Ethereal, etc.)
Snapshot length: 96

rFile
Mame: fhomesaras/Projects/dump/100b3_3.out
Length: 529286

Format: libpcap (tcpdump, Ethereal, etc)
Snapshot length: 36

rData
Elapsed time: 27.090 secands

Between first and last packet: 27.090 seconds
Packet count: 6273

Filtered packet count: 6273

Marked packet count: 0

Avg. packets/sec: 231.562

Avg. packet size: B8.381 bytes

Bytes of traffic: 426354

Avy. hytesfsec: 15834417

Avy. Mhit/sec: 0127

rData
Elapsed time: 24.396 seconds

Between first and last packet: 24,396 seconds
Facket count: 6270

Filtered packet count: 6270

tarked packet count: 0

Avg. packets/sec: 257.007

Avg. packet size: 65.374 hytes

Bytes of traffic: 426706

Avy. bytesdsec: 1757 2.661

Avy. Mhit'sec: 0141

rData
Elapsed time: 25.547 secands

Between first and last packet: 25.547 seconds
Packet count: 6273

Filtered packet count: 6273

Marked packet count: 0

Avyg. packets/sec: 245.549

Ay, packet size: 63.371 bytes

Bytes of traffic: 425534

Avy. hytesssec: 16768.967

Avi. Mhitfsec: 0.134

rCapture
Interface: unknown

Display filter: none
Capture filter: hone

rCapture
Interface: unknown

Display filter: none
Capture filter: none

rCapture
Interface: unknown

Display filter: none
Capture filter: none

| Close |

| Close |

| Close |

Figure C.7: Test Case 2.1

69

lad Ethereal: Summary - E]X

lhd Ethereal: Summary -

rFile

Ethereal: Summary -l

Mame: fhomesaras/Projects/dump/200b3_1.ouf
Length: 1073394

Format: libpcap cpdump, Ethereal, etc))
Snapshot length: 96

rFile

Mame: fhomesaras/Projects/dump/200b3_2.ou
Length: 1075986

Format: libpcap (tcpdump, Ethereal, etc)
Snapshot length: 96

rFile

Mame: shomesaras/Projects/dump/z00b3_3.ouf
Length: 1076972

Format: libpcap (tcpdump, Ethereal, etc)
Snapshot length: 36

rData
Elapsed time: 49.712 seconds

Between first and last packet: 43.712 seconds
Packet count: 12713

Filtered packet count: 12713

Marked packet count: 0

Avg. packets/sec: 255,852

Avg. packet size: B5.391 bytes

Bytes of traffic: 69666

Avy. bytesfsec: 17437.360

Avy. Mhit'sec: 0.140

rData

Elapsed time: 41.779 seconds

Between first and last packet: 41.779 seconds
Facket count: 12752

Filtered packet count: 12752

Marked packet count: 0

Avg. packets/sec: 305.224

Ay, packet size: 65.376 bytes

Bytes of traffic: 71330

Avy. bytesssec: 20670.011

Avy. Mhit'sec: 0167

rData
Elapsed time: 41.818 seconds

Between first and last packet: 41.818 seconds
Packet count: 12765

Filtered packet count: 12765

Marked packet count: 0

Avg. packets/sec: 305.250

Ay, packet size: 63.367 bytes

Bytes of traffic: 672708

Avi. bytesssec: 20663.075

Avi. Mhitfsec: 0167

rCapture
Interface: unknown

Display filter: none
Capture filter: none

rCapture
Interface: unknown

Display filter: none
Capture filter: none

rCapture
Interface: unknown

Display filter: none
Capture filter: hone

| Close |

| Close |

| Close |

[lhd Ethereal: Summary =1k]

Figure C.8: Test Case 2.2

[l Ethereal: Summary =1k

[l Ethereal: Summary S =1F.]

rFile
Mame: /home/aras/Projects/dump/100bZ_1.0uf
Length: 528882

Format: libpcap cpdump, Ethereal, etc))
Snapshot length: 96

rFile

Mame: fhome/aras/Projects/dump/1 00b2_2 ouf
Length: 527385

Format: libpcap (tcpdump, Ethereal, etc)
Snapshot length: 96

rFile

Mame: fhomesaras/Projects/dump/100b2_3.out
Length: 509252

Format: libpcap (tcpdump, Ethereal, etc)
Snapshot length: 36

rData
Elapsed time: 26.687 secands

Between first and last packet: 26.687 seconds
Packet count: G263

Filtered packet count: G263

Marked packet count: 0

Avg. packets/sec: 234.908

Avg. packet size: B5.361 bytes

Bytes of traffic: 426554

Avy. bytesfsec: 16055483

Avy. Mhit'sec: 0128

rData

Elapsed time: 21.305 seconds

Between first and last packet: 21.305 seconds
Facket count: 6248

Filtered packet count: 6243

Marked packet count: 0

Avg. packets/sec: 293.265

Ay, packet size: 65.405 bytes

Bytes of traffic: 427336

Avg. bytesssec: 20060.840

Avy. Mhit'sec: 0160

rData
Elapsed time: 24.508 secands

Between first and last packet: 24508 seconds
Packet count: 6028

Filtered packet count: 6023

Marked packet count: 0

Avig. packets/sec: 245.965

Ay, packet size: 63477 bytes

Bytes of traffic: 412780

Avi. hytesssec: 16842.972

Avi. Mhitfsec: 0,135

rCapture
Interface: unknown

Display filter: none
Capture filter: none

rCapture
Interface: unknown

Display filter: none
Capture filter: none

rCapture
Interface: unknown

Display filter: none
Capture filter: hone

| Close |

| Close |

| Close |

Figure C.9: Test Case 3.1

70

lhd Ethereal: Summary S 1=1k.]

rFile

[l Ethereal: Summary =1k

[l Ethereal: Summary =1k

Mame: /homesaras/Projects/dump/Z00bZ_1.0uf
Length: 1071540

Format: libpcap (icpdump, Ethereal, etc))
Snapshot length: 96

rFile

Mame: fhome/aras/Projects/dump/Z00b2_2 oud
Length: 1070724

Format: libpcap (tcpdump, Ethereal, etc.)
Snapshot length: 96

rFile
Mame: fhomesaras/Projects/dump/200b2_3.out
Length: 1164730

Format: libpcap (tcpdump, Ethereal, etc)
Snapshot length: 36

rData
Elapsed time: 41.840 seconds

Between first and last packet: 41.5840 seconds
Packet count: 12700

Filtered packet count: 12700

Marked packet count: 0

Avg. packets/sec: 303.539

Avg. packet size: 65403 bytes

Bytes of traffic: G66716

Avy. hytesfsec: 20762.835

Avy. Mhit/sec: 0166

rData
Elapsed time: 41.272 seconds

Between first and last packet: 41.272 seconds
Facket count: 12654

Filtered packet count: 12654

tarked packet count: 0

Avg. packets/sec: 307.328

Avg. packet size: 653.413 bytes

Bytes of traffic: 867756

Avg. hytesdsec: 21025.363

Avy. Mhit'sec: 0168

rData
Elapsed time: 55.374 seconds

Between first and last packet: 55.374 seconds
Packet count: 13816

Filtered packet count: 13816

Marked packet count: 0

Avyg. packets/sec: 249.504

Avg. packet size: 63.306 bytes

Bytes of traffic: 343710

Avi. hytesssec: 17042.525

Avi. Mhitfsec: 0,136

rCapture
Interface: unknown

Display filter: none
Capture filter: hone

rCapture
Interface: unknown

Display filter: none
Capture filter: none

rCapture
Interface: unknown

Display filter: none
Capture filter: none

| Close |

| Close |

| Close |

Figure C.10: Test Case 3.2

71

Appendix D

Timing Tests Output

D.1 Timing Test 1
D.1.1 Test Case 1

1_endjoin.out :

started :
finished:
elapsed :

2_endjoin.out :

started :
finished:
elapsed :

3_endjoin.out :

started :
finished:
elapsed :

4_endjoin.out :

started :
finished:
elapsed :

5_endjoin.out :

started :
finished:
elapsed :
6_endjoin.out :
started :
finished:
elapsed :
7_endjoin.out :

started :
finished:
elapsed :

8_endjoin.out :

started :

Tue Jun 3 08:24:12 2003
Tue Jun 3 08:24:13 2003
1.00 seconds

Tue Jun 3 08:24:13 2003
Tue Jun 3 08:24:13 2003
0.00 seconds

Tue Jun 3 08:24:14 2003
Tue Jun 3 08:24:14 2003
0.00 seconds

Tue Jun 3 08:24:16 2003
Tue Jun 3 08:24:16 2003
0.00 seconds

Tue Jun 3 08:24:16 2003
Tue Jun 3 08:24:17 2003
1.00 seconds

Tue Jun 3 08:24:16 2003
Tue Jun 3 08:24:18 2003
2.00 seconds

Tue Jun 3 08:24:16 2003
Tue Jun 3 08:24:20 2003
4.00 seconds

Tue Jun 3 08:24:16 2003

finished:
elapsed :

9_endjoin.out :

started :
finished:
elapsed :

Tue Jun 3 08:24:19 2003
3.00 seconds

Tue Jun 3 08:24:16 2003
Tue Jun 3 08:24:25 2003
9.00 seconds

10_endjoin.out :

started :
finished:
elapsed :

Tue Jun 3 08:24:16 2003
Tue Jun 3 08:24:18 2003
2.00 seconds

11_endjoin.out :

started :
finished:
elapsed :

Tue Jun 3 08:24:16 2003
Tue Jun 3 08:24:27 2003
11.00 seconds

12_endjoin.out :

started :
finished:
elapsed :

Tue Jun 3 08:24:16 2003
Tue Jun 3 08:24:29 2003
13.00 seconds

13_endjoin.out :

started :
finished:

elapsed :

Tue Jun 3 08:24:16 2003
Tue Jun 3 08:24:18 2003
2.00 seconds

14_endjoin.out :

started :
finished:

elapsed :

Tue Jun 3 08:24:17 2003
Tue Jun 3 08:24:17 2003
0.00 seconds

15_endjoin.out :

started :
finished:

elapsed :

Tue Jun 3 08:24:16 2003
Tue Jun 3 08:24:19 2003
3.00 seconds

16_endjoin.out :

started :
finished:

72

Tue Jun 3 08:24:16 2003
Tue Jun 3 08:24:29 2003

elapsed :

17_endjoin.out

13.00 seconds
- N/A (Failed)

18_endjoin.out :

started :
finished:
elapsed :

Tue Jun 3 08:24:16 2003
Tue Jun 3 08:24:29 2003
13.00 seconds

19_endjoin.out :

started :
finished:
elapsed :

Tue Jun 3 08:24:16 2003
Tue Jun 3 08:24:26 2003
10.00 seconds

20_endjoin.out :

started :
finished:
elapsed :

Tue Jun 3 08:24:16 2003
Tue Jun 3 08:24:20 2003
4.00 seconds

21_endjoin.out :

started :
finished:
elapsed :

Tue Jun 3 08:24:17 2003
Tue Jun 3 08:24:28 2003
11.00 seconds

22_endjoin.out :

started :
finished:
elapsed :

Tue Jun 3 08:24:17 2003
Tue Jun 3 08:24:23 2003
6.00 seconds

23_endjoin.out :

started :
finished:
elapsed :

Tue Jun 3 08:24:17 2003
Tue Jun 3 08:24:31 2003
14.00 seconds

24_endjoin.out :

started :
finished:

elapsed :

Tue Jun 3 08:24:17 2003
Tue Jun 3 08:24:26 2003
9.00 seconds

25_endjoin.out :

started :
finished:
elapsed :

Tue Jun 3 08:24:17 2003
Tue Jun 3 08:24:19 2003
2.00 seconds

26_endjoin.out :

started :
finished:
elapsed :

Tue Jun 3 08:24:17 2003
Tue Jun 3 08:24:28 2003
11.00 seconds

27_endjoin.out :

started :
finished:
elapsed :

Tue Jun 3 08:24:17 2003
Tue Jun 3 08:24:28 2003
11.00 seconds

28_endjoin.out :

started :
finished:
elapsed :

Tue Jun 3 08:24:17 2003
Tue Jun 3 08:24:29 2003
12.00 seconds

29_endjoin.out :

started :
finished:
elapsed :

30_endjoin.out

31_endjoin.out :

started :
finished:
elapsed :

Tue Jun 3 08:24:17 2003
Tue Jun 3 08:24:32 2003
15.00 seconds

- N/A (Failed)

Tue Jun 3 08:24:17 2003
Tue Jun 3 08:24:28 2003
11.00 seconds

32_endjoin.out :

started :
finished:
elapsed :

Tue Jun 3 08:24:17 2003
Tue Jun 3 08:24:20 2003
3.00 seconds

33_endjoin.out :

started :
finished:
elapsed :

Tue Jun 3 08:24:17 2003
Tue Jun 3 08:24:34 2003
17.00 seconds

34_endjoin.out :

started :
finished:

elapsed :

Tue Jun 3 08:24:17 2003
Tue Jun 3 08:24:21 2003
4.00 seconds

35_endjoin.out :

started :
finished:

elapsed :

Tue Jun 3 08:24:17 2003
Tue Jun 3 08:24:21 2003
4.00 seconds

36_endjoin.out :

started :
finished:

elapsed :

Tue Jun 3 08:24:17 2003
Tue Jun 3 08:24:21 2003
4.00 seconds

37_endjoin.out :

started :
finished:

elapsed :

Tue Jun 3 08:24:17 2003
Tue Jun 3 08:24:23 2003
6.00 seconds

38_endjoin.out :

started :
finished:

elapsed :

Tue Jun 3 08:24:18 2003
Tue Jun 3 08:24:23 2003
5.00 seconds

39_endjoin.out :

started :
finished:

elapsed :

Tue Jun 3 08:24:19 2003
Tue Jun 3 08:24:25 2003
6.00 seconds

40_endjoin.out :

started :
finished:

elapsed :

73

Tue Jun 3 08:24:19 2003
Tue Jun 3 08:24:25 2003
6.00 seconds

D.1.2 Test Case 2

1_endleave.out : N/A (Killed)
2_endleave.out : N/A (Killed)
3_endleave.out : N/A (Killed)

4_endleave.out

started :
finished:
elapsed :

Tue Jun 3 08:25:17 2003
Tue Jun 3 08:25:17 2003
0.00 seconds

5_endleave.out :

started :
finished:
elapsed :

Tue Jun 3 08:25:17 2003
Tue Jun 3 08:25:20 2003
3.00 seconds

6_endleave.out

started :
finished:
elapsed :

Tue Jun 3 08:25:17 2003
Tue Jun 3 08:25:18 2003
2.00 seconds

7_endleave.out :

started :
finished:
elapsed :

Tue Jun 3 08:25:17 2003
Tue Jun 3 08:25:19 2003
2.00 seconds

8_endleave.out :

started :
finished:
elapsed :

Tue Jun 3 08:25:17 2003
Tue Jun 3 08:25:17 2003
0.00 seconds

9_endleave.out

started :
finished:
elapsed :

Tue Jun 3 08:25:17 2003
Tue Jun 3 08:25:18 2003
1.00 seconds

elapsed : 0.00 seconds
14_endleave.out :

started : Tue Jun 3 08:25:17 2003

finished: Tue Jun 3 08:25:17 2003

elapsed : 0.00 seconds
15_endleave.out :

started : Tue Jun 3 08:25:17 2003

finished: Tue Jun 3 08:25:18 2003

elapsed : 1.00 seconds
16_endleave.out :

started : Tue Jun 3 08:25:17 2003

finished: Tue Jun 3 08:25:17 2003

elapsed : 0.00 seconds
17_endleave.out : N/A
18_endleave.out :

started : Tue Jun 3 08:25:17 2003

finished: Tue Jun 3 08:25:17 2003

elapsed : 0.00 seconds
19_endleave.out :

started : Tue Jun 3 08:25:18 2003

finished: Tue Jun 3 08:25:18 2003

elapsed : 0.00 seconds
20_endleave.out :

started : Tue Jun 3 08:25:18 2003

finished: Tue Jun 3 08:25:19 2003

elapsed : 1.00 seconds
21_endleave.out :

started : Tue Jun 3 08:25:17 2003

10_endleave.out :
started : Tue Jun 3 08:25:17 2003
finished: Tue Jun 3 08:25:18 2003
elapsed : 1.00 seconds
11_endleave.out :
started : Tue Jun 3 08:25:17 2003
finished: Tue Jun 3 08:25:18 2003
elapsed : 1.00 seconds
12_endleave.out :
started : Tue Jun 3 08:25:17 2003
finished: Tue Jun 3 08:25:19 2003
elapsed : 2.00 seconds
13_endleave.out :

started : Tue Jun 3 08:25:17 2003
finished: Tue Jun 3 08:25:17 2003

finished: Tue Jun 3 08:25:18 2003
elapsed : 1.00 seconds
22_endleave.out :
started : Tue Jun 3 08:25:17 2003
finished: Tue Jun 3 08:25:19 2003
elapsed : 2.00 seconds
23_endleave.out :
started : Tue Jun 3 08:25:17 2003
finished: Tue Jun 3 08:25:18 2003
elapsed : 1.00 seconds
24 _endleave.out :
started : Tue Jun 3 08:25:17 2003
finished: Tue Jun 3 08:25:17 2003
elapsed : 0.00 seconds

25_endleave.out :

74

started : Tue Jun 3 08:25:18 2003
finished: Tue Jun 3 08:25:18 2003
elapsed : 0.00 seconds

26_endleave.out :
started : Tue Jun 3 08:25:17 2003
finished: Tue Jun 308:25:17 2003
elapsed : 0.00 seconds
27_endleave.out :
started : Tue Jun 3 08:25:17 2003
finished: Tue Jun 3 08:25:17 2003
elapsed : 0.00 seconds
28_endleave.out :
started : Tue Jun 3 08:25:18 2003
finished: Tue Jun 3 08:25:19 2003

elapsed : 1.00 seconds

29_endleave.out :
started : Tue Jun 3 08:25:18 2003
finished: Tue Jun 3 08:25:20 2003
elapsed : 2.00 seconds
30_endleave.out : N/A
31_endleave.out :
started : Tue Jun 3 08:25:17 2003
finished: Tue Jun 3 08:25:17 2003
elapsed : 0.00 seconds
32_endleave.out :
started : Tue Jun 3 08:25:18 2003
finished: Tue Jun 3 08:25:18 2003

elapsed : 0.00 seconds

33_endleave.out :
started : Tue Jun 3 08:25:18 2003
finished: Tue Jun 308:25:18 2003
elapsed : 0.00 seconds
34_endleave.out :
started : Tue Jun 3 08:25:18 2003
finished: Tue Jun 3 08:25:19 2003
elapsed : 1.00 seconds
35_endleave.out :
started : Tue Jun 3 08:25:18 2003
finished: Tue Jun 3 08:25:18 2003

elapsed : 0.00 seconds

36_endleave.out :

started : Tue Jun 3 08:25:17 2003
finished: Tue Jun 3 08:25:18 2003

elapsed : 1.00 seconds
37_endleave.out :

started : Tue Jun 3 08:25:18 2003

finished: Tue Jun 3 08:25:19 2003

elapsed : 1.00 seconds
38_endleave.out :

started : Tue Jun 3 08:25:18 2003

finished: Tue Jun 3 08:25:19 2003

elapsed : 1.00 seconds
39_endleave.out :

started : Tue Jun 3 08:25:19 2003

finished: Tue Jun 3 08:25:21 2003

elapsed : 2.00 seconds
40_endleave.out :

started : Tue Jun 3 08:25:19 2003

finished: Tue Jun 3 08:25:19 2003

elapsed : 0.00 seconds

75

	Introduction
	Peer-to-Peer Systems
	Peer-to-Peer Concept
	Peer-to-Peer Systems Definition
	Overview of the Peer-to-Peer Systems

	The FROST System
	Limitations of the FROST System
	Problem Statement

	Join/Leave Protocol Concepts
	FROST Architecture Model
	Node Data

	Join/Leave Protocol Implementation
	The Task
	Purpose
	Corrections to the Analysis
	Quality Goals

	Technical Platform
	Architecture
	Process Architecture
	Component Architecture

	Model Component
	Structure
	Classes

	Function Component
	Structure
	Classes

	System Interface Component
	Connection Class

	User Interface Component

	Join/Leave Protocol Testing
	Equipment
	Cluster at Aalborg University
	PlanetLab
	Functional Tests
	Stress Tests
	Timing Tests

	Test Description
	Functional Tests
	Stress Tests
	Timing Tests

	Test Results Analysis
	Functional Tests
	Stress Tests
	Timing Tests

	Conclusion
	Implementation
	Testing
	Further Work

	Functional Tests: Actual Output
	Functional Test 1
	Functional Test 2

	Functional Tests: Functional Testing System Output
	Functional Test 1: FT1.out
	Functional Test 2: FT2.out

	Stress Tests: Ethereal Output
	Stress Test 1
	Stress Test 2
	Stress Test 3

	Timing Tests Output
	Timing Test 1
	Test Case 1
	Test Case 2

