
Faculty of Engineering and Science
Aalborg University

Department of Computer Science

Join/Leave Protocol for Structured
Peer-to-Peer Networks

Master Thesis

Group B1-215e - 10th semester

February 1st - June 10th, 2003

Faculty of Engineering and Science
Aalborg University

Department of Computer Science

TITLE: Join/Leave Protocol for Structured P2P Networks
Master Thesis

SEMESTER PERIOD:
SSE4, 10th semester
February 1st - June 10th, 2003

PROJECT GROUP:
B1-215e

GROUP MEMBERS:
Arūnas Vrubliauskas, aras@cs.auc.dk

SUPERVISOR:
Josva Kleist, kleist@cs.auc.dk

NUMBER OF COPIES: 3

NUMBER OF PAGES: 75

SYNOPSIS:

The aim of this project is to implement and
test a Peer-to-Peer communication pro-
tocol, whose purpose is to assure a ba-
sic connectivity in the structured Peer-to-
Peer network. The protocol implementa-
tion is based on the object-oriented anal-
ysis and design (OO&D) methodologies
and it was implemented in C++ Program-
ming Language using Standard Template
Library (STL), POSIX threads and sock-
ets Application Programmable Interfaces
(APIs). Systems tests were conducted to
verify conformance to the functional and
non-functional requirements, and its target
environment. The experimental results in-
dicate that functional and non-functional
(performance) requirements are met and
further improvements are proposed.

Preface

This report has been written by project group B1-215e as a report for the second part of
the Master Thesis in the International Masters Program in Software Systems Engineering
of the Faculty of Engineering & Science, in the Computer Science Department at Aalborg
University, Denmark, during the period from the 1st of February to the 10th of June,
2003.

This report is directed to people interested in distributed systems and peer-to-peer appli-
cations.

Figures, tables and formulas in the report are numbered in succession inside each chapter.
Cross-references to formulas, figures, tables and appendix are written directly in the text.
Cross-references to source material are specified with square brackets after the part of the
text, where they are used, e.g. [2].

The source code of the Join/Leave protocol can be found at the following location:
http://www.cs.auc.dk/∼aras/sse4/

Arūnas Vrubliauskas

2

Contents

1 Introduction 5
1.1 Peer-to-Peer Systems. 5

1.1.1 Peer-to-Peer Concept. 5
1.1.2 Peer-to-Peer Systems Definition. 6
1.1.3 Overview of the Peer-to-Peer Systems. 6

1.2 The FROST System. 8
1.2.1 Limitations of the FROST System. 8
1.2.2 Problem Statement. 8

1.3 Join/Leave Protocol Concepts. 9
1.3.1 FROST Architecture Model. 9
1.3.2 Node Data . 10

2 Join/Leave Protocol Implementation 12
2.1 The Task. 12

2.1.1 Purpose. 12
2.1.2 Corrections to the Analysis. 12
2.1.3 Quality Goals. 13

2.2 Technical Platform. 14
2.3 Architecture. 14

2.3.1 Process Architecture. 14
2.3.2 Component Architecture. 15

2.4 Model Component . 16
2.4.1 Structure . 16
2.4.2 Classes. 16

2.5 Function Component. 23
2.5.1 Structure . 23
2.5.2 Classes. 24

2.6 System Interface Component. 32
2.6.1 Connection Class. 32

2.7 User Interface Component. 33

3 Join/Leave Protocol Testing 34
3.1 Equipment. 34

3.1.1 Cluster at Aalborg University. 34
3.1.2 PlanetLab. 34
3.1.3 Functional Tests. 35
3.1.4 Stress Tests. 37
3.1.5 Timing Tests . 39

3.2 Test Description. 40
3.2.1 Functional Tests. 40

3

3.2.2 Stress Tests. 43
3.2.3 Timing Tests . 49

3.3 Test Results Analysis. 53
3.3.1 Functional Tests. 53
3.3.2 Stress Tests. 53
3.3.3 Timing Tests . 53

4 Conclusion 54
4.1 Implementation. 54
4.2 Testing. 55
4.3 Further Work . 55

A Functional Tests: Actual Output 59
A.1 Functional Test 1 . 59
A.2 Functional Test 2 . 62

B Functional Tests: Functional Testing System Output 63
B.1 Functional Test 1: FT1.out. 63
B.2 Functional Test 2: FT2.out. 65

C Stress Tests: Ethereal Output 66
C.1 Stress Test 1. 66
C.2 Stress Test 2. 67
C.3 Stress Test 3. 68

D Timing Tests Output 72
D.1 Timing Test 1 . 72

D.1.1 Test Case 1. 72
D.1.2 Test Case 2. 74

4

Chapter 1

Introduction

1.1 Peer-to-Peer Systems

1.1.1 Peer-to-Peer Concept

In general, Peer-to-Peer (P2P) systems are distributed systems without any centralized control or
hierarchical organization, where Peer-to-Peer is a system architecture model in which each party
has the same capabilities and either party can initiate a communication session. Other models with
which P2P system architecture model might be contrasted include the client/server model and the
master/slave model. In computer networking, master/slave is a model for a communication pro-
tocol in which one device or process (known as the master) controls one or more other devices or
processes (known as slaves). The client/server model describes the relationship between two com-
puter programs in which one program, the client, makes a service request to another program, the
server, which fulfills the request. The main distinction between P2P and master/slave, client/server
models is that in P2P system architecture model each machine can be both, a server and a client
within the context of a given application. The machine which can serve as a server and a client
is called the Peer. The analogy of a Peer-to-Peer system architecture model could be a telephone
system where any person can call another person. Then the telephone model could be called a
Person-to-Person system architecture model, where Person could be a receiver of a call or a caller,
and no other Person has more privileges to make a call or receive a call. Same ideology can be
applied to a P2P system architecture model where Peers are connected in a network and all Peers
are working and communicating on an equal basis. The example of a P2P network can be seen in
Figure1.1.

Master/Slave

Master/Slave

Master/Slave

Master/Slave

Master/Slave

Figure 1.1: Example of a Peer-to-Peer network. Rectangular shapes represents the Peers, a line
from one Peer to another represents a communication link.

5

1.1.2 Peer-to-Peer Systems Definition

In general it is agreed that there are two major architectures of a P2P systems:hybrid P2P systems
(Figure1.2(a)) andpure P2P systems (Figure1.2(b)).

Hybrid P2P Systems: Hybrid P2P systems are regarded as centralized. They have a central server
to perform administrative tasks. The server usually has a catalog of the Peer addresses that
are referenced by a set of indexes. The main function of the server is to process lookup
queries issued by Peers. The example of a lookup query can be as follows:

1. PeerA asks the serverS to find the PeerX which has the resourceR.

2. ServerS performs search in its database on who has the resourceR and if resourceR
is available, then serverS returns the address of PeerX to PeerA.

3. PeerA connects directly to PeerX to use/get the resourceR.

Pure P2P Systems: Pure P2P systems has no central server or router. All nodes are Peers, and
each Peer may function as router, client, or server. Pure P2P systems can be classified
depending on how the routing is achieved:

Distributed index: The resource index is fragmented and distributed to Peers.

Hashing index: Nodes and associated resources are indexed by unique IDs. Each ID is a
hash value of a certain property (e.g. node ID - IP hash, resource ID - file name hash).

Flooding broadcast: A query is recursively broadcasted from one host to all its neigh-
bors. Then query propagates until the resource is found or application-level counter
TTL (Time To Live) reaches zero.

Also a combination of hybrid and pure P2P architectures has been successfully applied for some
applications and has shown its potential use.Super-Peerarchitecture (Figure1.2 (c)) presents a
cross between pure and hybrid systems. A Super-Peer is a Peer that acts as a centralized server
to a subset of clients. Clients submit queries to their Super-Peer and receive results from it, as
in a hybrid system. However, Super-Peers are connected to each other as Peers in a pure system
architecture.

S

P

P

P

a)

P

P

P

P

b)

S

P

P

P

S

P

P

P

S

P P P

c)

Figure 1.2: a) Hybrid P2P architecture, b) Pure P2P architecture, c) Super-Peer P2P architecture.
S-box represents index server and P-box represents Peer.

1.1.3 Overview of the Peer-to-Peer Systems

P2P systems have recently received significant attention in both academia and industry. Most
successful examples of P2P file sharing systems are systems such as Gnutella [15], Freenet [16]
(and some other systems with similar features), where the main idea is to unite the users, who

6

wants to share the files, into a P2P network where users can easily find what they want, get what
they want and give what they want. Another kind of P2P systems are systems that utilizes unused
or wasted CPU-cycles of the idle machines in a P2P network. Those systems are mostly used by
scientists who needs to get the results within a reasonable time for parallelizable computational
problems that require a lot of CPU-cycles. Examples of such a systems could be SETI@home [6],
THINK [13] and distributed.net [14].

SETI@home: The Search for Extraterrestrial Intelligence. They scan the sky using a large
radio telescope and record the signals in a certain frequency. The computational problem
here is that they must calculate Fast Fourier Transformation (FFT) of each signal to perform
the analysis on the power spectrum of the signal. By analyzing the power spectrum of a
signal they want to find the ”unusual” patterns in a signal, as a proof that extraterrestrial
intelligence exists.

SETI@home is a master/slave distributed calculation system where master distributes work
to the slaves. Master splits the signals into the work units, where length of the signal is
around 100 seconds (a file size is around 340kb) and then distributes them to the clients. On
the average home computer the processing of a data (one work unit) should take between 10
and 50 hours.

THINK: THINK project is a drug discovery system. System analyses each of the hundreds
of millions of molecules to see if they are likely to interact with a target protein. THINK
calculates and studies the many possible shapes, or conformers, the molecule might adopt
interacting with the protein.

THINK is a master/slave distributed calculation system and like SETI@home, they have
dedicated master server which distributes tasks to the slaves. The work unit contains ap-
proximately 10Kb of data and the CPU-time required varies from 4 hours to several days.

distributed.net: distributed.net project is based on solving mathematical problems such as
Optimal Golomb Ruler, RSA, etc. At the moment when this report has been written the
distributed.net was solving RC5-72, which is 72-bit RSA Data Security Secret Key Chal-
lenge. It is also master/slave distributed calculation system. The only difference compare to
previous examples is that a slave can control how much work he can get depending on the
available resources.

Common characteristic of those systems is that they are based on a client/server architecture where
people around the world offer their spare CPU-cycles for a particular computational problem. The
main drawback in the systems mentioned above is that a central server must be really powerful to
be able to serve all the clients.

A more challenging approach to the distributed calculation could be to use a pure P2P architecture
where all the clients are equal and allow everybody in the P2P network issue the computational
problems, meaning that everybody can use others spare CPU-cycles for theirs purposes. One of
such a systems is a distributed heterogeneous calculation platform FROST [1] which was devel-
oped in the Aalborg University.

7

1.2 The FROST System

The FROST system [1] was designed and implemented in the Aalborg University. The aim was
to develop an API that will aid a programmer in developing applications such as SETI@home
[6], THINK [13] and distributed.net [14]. From the FROST perspective the programmer is a
user which defines a computational problem, defines how to split the computational problem into
several pieces, or work units, that can be processed independently, and finally defines how to
combine the results when they have been processed. Moreover, a user has to specify the algorithm
that performs the calculations on the work units. Administration of the network communication
between the machines, distribution of the work units to the machines in the FROST network and
other administrative tasks are hidden from the user and are performed by the FROST system. Work
units can be distributed only to the machines that are members of the FROST network. A machine
is said to be a member of the FROST network if that machine has a FROST software running and
other participants of the FROST network can communicate with that machine and use the CPU-
cycles of that machine for solving some computational problem. The FROST network is based
on a pure P2P architecture where all the machines are working on an equal basis, meaning that
anybody in the network can use or give spare CPU-cycles to each other. Moreover, the machines or
nodes in the FROST network are non-dedicated workstations, which are used for a daily purposes.
Whereas the FROST system on these workstations run with low priority to assure that FROST
uses only those CPU-cycles that are unused.

1.2.1 Limitations of the FROST System

One of the limitations of the FROST system is that a current implementation scales only to a lo-
cal area network (LAN). The FROST developers indicated that a problem in scaling the FROST
system is the bottleneck induced by master and information sharing. The bottleneck induced by
master is a situation when a master node must handle thousands of clients and thus the master be-
comes a bottleneck either because of the network bandwidth or speed of a master node. Another
problem in scaling the FROST system is the information sharing, since all the nodes in the FROST
network has to share the information required for the load balancing and other administrative tasks
and it is currently done by using broadcast communication. It is normal to use broadcast commu-
nication on the local area network, but it is unprofitable for the Internet wide communication.

1.2.2 Problem Statement

A scalable solution for the FROST system was proposed in [2] where the Join/Leave protocol was
designed and verified using the SPIN [18, 19] verification tool. This work is a continuation of a
previous work [2] and there are two main goals that motivate this study:

1. Prototype Implementation.Prototyping is an efficient software development technique which
helps to better understand the environment and the requirements being addressed. A proto-
type is a demonstration of what’s actually feasible with existent technology, and where the
technical weak spots still exists. In this part the main goal is to implement a prototype of
the Join/Leave protocol and prepare it for the system testing.

2. System Testing.System testing is an important process for assuring software quality in an
environment of complex defect-prone components. In general, system testing focuses on the
complete system, its functional and non-functional requirements, and its target environment.
The following system tests will be conducted:

Functional testing. Functional testing, also called requirements testing, tests if the sys-
tem perform as promised by the requirements specification.

8

Performance testing. Performance testing is used to test if the non-functional require-
ments are met. Two types of performance tests were conducted:

Stress tests: The purpose of the stress tests is to evaluate the system when stressed
to its limits over a short period of time.

Timing tests: The purpose of the timing tests is to validate conformance to behav-
ioral and performance constraints and evaluate if the system is fast enough.

1.3 Join/Leave Protocol Concepts

In this section some required concepts, which were defined in the previous work [2] will be intro-
duced.

1.3.1 FROST Architecture Model

The structured indirect communication model was chosen because it promises to avoid the problem
induced by master and the information sharing can be done efficiently. The nodes in such a model
form the groups of nodes, where each group has one master node. Information between the nodes
is shared inside the group, whereas group masters can share the information between other group
masters as can be seen in Figure1.3. Another advantage of the model is that it is a decentralized
model meaning that there is no need to invest in dedicated machines.

G
1

G
2

G
3

G
4

Figure 1.3: Simple structured indirect communication architecture model with 4 groups of nodes.

The basic structured indirect communication model was modified by removing the root node
from the architecture, with intent to remove the central point of failure in the model. Then the
FROST architecture model will look as presented in Figure1.4. The FROST architecture model
can be described using 3 parameters:

Base: Baseparameter gives an upper bound for the number of slaves in a group of nodes. For
example, theBaseof the architecture model presented in Figure1.4 is: Base= 4, thus the
fictitious nodeN0 can have a maximum of4 slaves and they areN1, N2, N3 andN4. This
rule holds for all master nodes (N1,N2, etc.) in the architecture.

Level: Level parameter gives the number of levels in the model. For example, theLevel of the
architecture model presented in Figure1.4 is: Level = 3, meaning that model has three
hierarchical levels starting from levelL1 to L3.

Size: Sizeparameter gives the number of nodes in the model. The size can be calculated using
the following equation:1−B·l

1−B − 1, wherel = BL, B - Base, L - Level. For example, the
Sizeof architecture model presented in Figure1.4 is: Size= 84.

The FROST model could scale to a large number of nodes, for instance if base and level of a
model isB = 100 andL = 7 respectively, then the sizeS ≈ 1014, which is very large number

9

of nodes and the worst case number of hops from one node to another is onlyHOPS= 13, where
HOPS= 2 · L− 1. For example, in Figure1.4the worst case number of hops isHOPS= 5.

The nodes in the model are organized according to the performance of nodes, meaning that higher
performance nodes are locatedhigher in the hierarchy, for instance in Figure1.4, nodesN1, ..., N4

have highest performance and are located in levelL1, nodes with low performance are located in
levelL3.

L1

L
2

L3

N
0N1

N2

N
3

N4

Figure 1.4: FROST architecture model. Base 4, Level 3, Size 84.

1.3.2 Node Data

The following describes the data structures used by the Join/Leave protocol:

Static performance (SP): SPis a static node performance.

Global performance (GP): GP is a global performance of a group including subgroups. A
knowledge about a global performance will support a decision making on where the new
nodes should join to sustain as well balanced FROST architecture as possible. When the
FROST system is operational, theGPvalues of the highest level nodes should be close. For
instance, if nodesN1, N2 andN3 are from highest level, then:GP1 ≈ GP2 ≈ GP3. A
global performance is maintained by each node in the FROST system and is calculated as
shown in equation1.1. Note, that when a node has no slaves, the sum evaluates to zero and
theGP is equal to a static node performanceSP.

GPi = SPi +
∑

j∈slaves(GPi)

GPj (1.1)

GPi - global performance of nodeNi,

GPj - global performance of nodeNj , nodeNj is a slave of masterNi,

For example, consider the fragment of a FROST system in Figure1.5. The calculation of
global performanceGP1 of nodeN1 is as follows: using the equation1.1and following the
bottom-up direction in the FROST system the global performance of nodeN1 is:
GP1 = GP2 + GP3 + GP4, whereGP2 = GP5 + GP6 + GP7 andGP4 = GP8 + GP9.

Base (B): B is a constant which defines the base of a FROST architecture. The base value is
an upper bound for the number of slaves a master can have. For instance, in the FROST

10

architecture fragment in Figure1.5, the base isB = 3, and the maximum number of slaves
each node can have is3. Thus, nodeN1 and nodeN2 has maximum number of slaves, node
N4 could have one more slave and nodeN3 could have three more slaves.

1

2 3 4

5 6 7 8 9
GP

5
GP

6
GP

7
GP

8
GP

9

GP
3
=SP

3

GP
2

GP
4

GP
1

Figure 1.5: The FROST system fragment.

Level (level): levelparameter shows to which level in the FROST architecture a particular node
belongs. For instance, assume that in Figure1.5nodeN1 belongs to the highest level, then
level parameter for nodeN1 is level= 1, N2 level level= 2, N5 level level= 3, etc.

Local slaves (s): s parameter shows how many slaves particular node has. For instance, in
Figure1.5nodeN1 has three slavess = 3, nodeN3 has no slavess = 0, etc.

Slave address list (SAL): SALis a list of the slave addresses. TheSALlist is the fundamen-
tal data structure in the FROST system, since it specifies the relations between the nodes in
the FROST architecture.

11

Chapter 2

Join/Leave Protocol
Implementation

2.1 The Task

2.1.1 Purpose

The purpose of the Join/Leave protocol is to handle the node joins and departures in the FROST
network, whose system architecture and concepts were described in [2]. In general the Join/Leave
protocol can be divided into two parts based on the function it should perform:

Join: The Join/Leave protocol must assure that a node which joins the network will be organized
in the hierarchy according to its static performance measure -SP, which represents the rela-
tion between the available node resources (bandwidth, CPU and main memory) and its place
in the hierarchy. If nodes are arranged according to their static performance, the workload
to maintain the network structure will be accordingly distributed between the nodes.

Leave: When nodes leave the network (voluntarily or by failing) the Join/Leave protocol has
to assure the integrity of the communication architecture by appropriately rearranging the
related nodes in the network.

The Join/Leave protocol should be used as the communication component of the FROST system
first described in [1].

2.1.2 Corrections to the Analysis

Some corrections have been made from the analysis and design [2] of the Join/Leave protocol:

Static performance (SP): Previously, the static node performance was derived by using the
static performance parameters: bandwidth, CPU and main memory. However, the network
bandwidth (and not storage space or computation time) is presently the most limited re-
source in P2P networks [4]. Any node joining the network must send at least some number
of maintenance messages. According to the join procedure described in [2] the nodes start
joining the network from the highest level and that would yield higher traffic of the main-
tenance messages at the higher levels of the FROST communication network architecture.
The implication is that the static node performance measure can be derived considering only
the bandwidth. Thus, the nodes which have more bandwidth will join the higher levels and
nodes with less bandwidth will join the lower levels of the network architecture.

Join procedure: The joining procedure is performed by nodeNjoin and was previously de-
fined as follows:

12

1. Get a list of the highest level nodes from nodeN0.

2. Ask any node in the highest level where to join. (Answer is an address of some node
Nask).

3. Ask nodeNask where to join. (Answer is an address of some nodeNask).

4. Repeat 3, untilNask accepts nodeNjoin. (Njoin is a leaf node after the join phase).

5. Trigger the adaptation to the network if necessary. (Adaptation follows the bottom-up
direction).

An optimization was made to the join procedure presented. Instead of joining at the bottom
of the tree and then triggering the adaptation to the network, the joining node could be aware
of the possible adaptation while performing step 3; i.e. if it turns out that theSPvalue of
the joining nodeNjoin is higher than of nodeNask, then nodeNjoin could trigger the adap-
tation to the network by pushing the nodeNask downwards. Thus the overall effect of this
new scheme should reduce the rate of change in the network and thus the number of mainte-
nance messages, which in turn will reduce the bandwidth consumption. To summarize, the
optimized joining procedure is performed as follows:

1. Get a list of the highest level nodes from nodeN0.

2. Ask any node in the highest level where to join. (Answer is an address of some node
Nask).

3. Ask nodeNask where to join (answer is an address of some nodeNask) and trigger the
adaptation to the network if necessary. (Adaptation follows the top-down direction).

4. Repeat 3, untilNjoin joins.

2.1.3 Quality Goals

Table 2.1 shows the prioritization of design criteria. A special weight is placed on reliability,
correctness and usability since these characteristics are critical for whether the system will be used
at all. The main intent to implement a prototype of the Join/Leave protocol is to test and measure
the performance of the protocol. It should be possible to test the system for ensuring that the
system performs its intended functions. Also the system should be flexible and comprehensible to

Criterion Very
important

Important Less im-
portant

Irrelevant Trivially
fulfilled

Usable X
Secure X
Efficient X
Correct X
Reliable X
Maintainable X
Testable X
Flexible X
Comprehensible X
Reusable X
Portable X
Interoperable X

Table 2.1: Prioritization of design criteria.

13

reduce the cost of modification to the protocol implementation if necessary. To concentrate on the
functionality of the protocol and ability to evaluate it all other characteristics have been prioritized
lower or irrelevant. However it should be noted that some characteristics (i.e. security, portability,
interoperability) that were left out have to be considered as important in later development of the
Join/Leave protocol:

Secure. The maintenance protocols are especially susceptive to the DoS (Denial of Service)
attacks. Since the Join/Leave protocol is intended to operate Internet wide there is a high
risk of such attacks.

Portable. The protocol should be able to operate on various technical platforms to increase the
number of potential users of the FROST system [1].

Interoperable. This characteristic is important when coupling the Join/Leave protocol with
FROST system [1].

2.2 Technical Platform

Equipment. The computerized system is designed for use on the non-dedicated workstations
that are interconnected via network (LAN, Internet, etc.). There is no need to have an
expensive high speed machine to assure the basic connectivity in the FROST network since
the main limitation is the available bandwidth. Thus, the minimum requirements are: non-
archaic PC (Personal Computer) with NIC (Network Interface Card) or modem installed
and an active connection to the network.

System Software. Linux OS (Operating System) will be used to implement, test and run the
Join/Leave protocol. The design is based on implementing the system in C++ programming
language. The C++ programming language has to have an API (Application Programmable
Interface) to POSIXthreadsandsockets.

Design Language. The design is based on the UML (Unified Modeling Language) notation.

2.3 Architecture

2.3.1 Process Architecture

The physical architecture of the FROST network managed by the Join/Leave protocol (Frost Client
component) is shown in Figure2.1. A Node refers to a PC which fulfills the requirements of
the technical platform and uses the FROST client software to be a part of the FROST network.
Nodes communicate using TCP/IP Internet protocol, where reliable data delivery is provided by
a connection-oriented TCP transport protocol. Technical platform component has an interface to
the various OS components, including POSIXthreadsandsockets. The Frost Client component
comprises the model and functions of the Join/Leave protocol and is responsible for the basic
connectivity in the FROST network.

14

Node

Frost Client

Technical Platform

Node

Frost Client

Technical Platform

Node

Frost Client

Technical Platform
Node

Frost Client

Technical Platform

TCP/IP

TCP/IPTCP/IP

Figure 2.1: Deployment Diagram. The FROST network of four nodes. Dashed arrows represent
dependency associations between nodes.

User Interface

Model

Function

System Interface

Technical Platform

Figure 2.2: Component Diagram. Dashed arrows represent dependency associations between com-
ponents.

2.3.2 Component Architecture

The Frost Client component could be decomposed using a design pattern in Figure2.2as follows:

User Interface Component. A part of a system implementing the interaction with users.

System Interface Component. A part of a system implementing the interaction with other
systems.

Model Component. A part of a system that implements a model of the Join/Leave protocol.

15

Function Component. A part of a system that implements functional requirements of the
Join/Leave protocol.

2.4 Model Component

The Model component is a part of a Join/Leave protocol that handles data storage. The purpose of
the component is to control and deliver data to functions, interfaces, users and other computerized
systems. The event Table2.2 for the Model component follows from the use case diagram of the
Frost client component shown in Figure2.3. As can be seen from the event table there are three

Frost User

Join

Leave

Fail

Frost Client

Figure 2.3: Use Case Diagram for the Frost client component.

Class
Event Expector Connector SlaveList AddrList ConnQueue
Joined ? ? + + ?

Left + + +
Failed + +

Table 2.2: Event table for the Model component. ? - multiple modifications to an object; + -
onetime modification to an object.

main events that causes the change of state in a model. The system is in thejoined state when
a node is connected to the FROST network and the system is in theleft or failed state if a node
has disconnected from the FROST network either by voluntarily leaving or by failing respectively.
The behavioral pattern of this situation can be seen in Figure2.4.

2.4.1 Structure

The class diagram for the Model component is shown in Figure2.5. All classes are described in
the following.

2.4.2 Classes

The following contains a specification of the classes from the class diagram in Figure2.5.

16

/ join

Joined

Left

Failed

/ leave

/ fail

/ terminate/ join

Figure 2.4: State Chart Diagram for the Model component.

ServerClientAddrList SlaveList

Connector ConnQueueExpector

1*

1

1

1

1

11

1

*

Figure 2.5: Class Diagram for the Model component.

Class ServerClient

Purpose: It is the main class in the system, it contains the data model of the Join/Leave protocol.
The rest of the Model component classes are the parts of this class (aggregation relation) as
can be seen from the class diagram in Figure2.5. Also, it has a control over the Function
component (see Figure2.2) by being able to use its functions accordingly.

Attributes: To classify the attributes by their purpose, the attributes are represented in distinct
tables: attributes that are fundamental for the Join/Leave protocol are shown in Table2.3,
attributes that are used to interact with Function component (see Section2.5) are shown in
Table2.4and some other important attributes of the class are shown in Table2.5.

Attribute Type Purpose
ID int The unique identifier of a node.
SP int The static performance parameter of a node.
GP int The global performance parameter of a node.
level int Shows to which performance level a particular node

belongs.
base const int The base of the FROST architecture.
SAL AddrList ? The list which contains the addresses of the slave

nodes.

Table 2.3: Join/Leave protocol specific attributes. Abbreviation ”?” represents a pointer to the
object leftwards.

17

Attribute Type Purpose
acceptor Acceptor ? See section 2.5.2 for more details.
queue QueueHandler ? See section 2.5.2 for more details.
vips VIPHandler ? See section 2.5.2 for more details.
joiner JoinHandler ? See section 2.5.2 for more details.
askers AskersHandler ? See section 2.5.2 for more details.
pusher PushHandler ? See section 2.5.2 for more details.
leaver LeaveHandler ? See section 2.5.2 for more details.
failer FailHandler ? See section 2.5.2 for more details.
master MasterHandler ? See section 2.5.2 for more details.
SHL SlaveList ? The list which contains pointers to the SlaveHandler

objects (see section 2.5.2 for more details about the
SlaveHandler class).

Table 2.4: Attributes that are used to interact with the Function component. Abbreviation ”?”
represents a pointer to the object leftwards.

Attribute Type Purpose
connector Connector ? See Connector class for details.
expector Expector ? See Expector class for details.
cq ConnQueue ? The ConnQueue class contains a list of the Connec-

tion objects (see class Connection for details). The
cq list is the waiting list for the active connections
that were accepted by the Acceptor (see in section
2.5.2) thread and added by Expector object (see Ex-
pector class for details). The list is processed by the
QueueHandler (see section 2.5.2) thread.

vip ConnQueue ? The vip list is a waiting list for the active connec-
tions that were accepted by the Acceptor thread and
added to the vip list by the Expector object. The list
is processed by the VIPHandler (see section 2.5.2)
thread.

AskWL AddrList ? The AskWL list is a waiting list for the nodes that are
waiting for an answer where to join. Nodes are added
to the list by the QueueHandler thread and pro-
cessed by the AskersHandler thread. (See section
2.5.2 for more details.)

mutex pthread mutex t mutex is a mutual exclusion device, which is used
for protecting shared data structures from concurrent
modifications.

mutex pl pthread mutex t mutex pl is a mutual exclusion device, which is used
to control the concurrent executions of the functions
(threads) provided by the Function component.

Table 2.5: Other attributes. Abbreviation ”?” represents a pointer to the object leftwards.

18

Operations: The class operations are summarized in Table2.6.

Operation Purpose
join() This operation is used to join the FROST network.
leave() This operation is used to voluntarily leave the FROST network.
fail() This operation is used to simulate a fail situation.
spawn acceptor() Starts Acceptor thread. See section 2.5.2 for details.
spawn queue() Starts QueueHandler thread. See section 2.5.2 for details.
spawn vip() Starts VIPHandler thread. See section 2.5.2 for details.
spawn joiner() Starts JoinHandler thread. See section 2.5.2 for details.
spawn askers() Starts AskersHandler thread. See section 2.5.2 for details.
spawn pusher() Starts PushHandler thread. See section 2.5.2 for details.
spawn leaver() Starts LeaveHandler thread. See section 2.5.2 for details.
spawn failer() Starts FailHandler thread. See section 2.5.2 for details.
spawn master() Starts MasterHandler thread. See section 2.5.2 for details.
spawn slave() Starts SlaveHandler thread. See section 2.5.2 for details.

Table 2.6: ServerClient operations.

Behavior: The general behavioral pattern of this class can be seen in Figure2.4. An interaction
between the actor and theServerClient class is shown in Figure2.6. Two use cases are

ServerClient

Frost User

join()

joiner:JoinHandler

spawn_joiner()

status

join()

cq:QueueHandler

vip:QueueHandler

spawn_queue()

spawn_vip()

master:MasterHandler

slv1:SlaveHandler

spawn_master()

spawn_slave()

fail()

exit()

exit()

exit()

exit()

exit()

askers:AskersHandler

spawn_askers()

exit()

exit()

Figure 2.6: Sequence Diagram with concurrent objects.

shown: Join use case and Fail use case. Sequence diagram in Figure2.6 also shows the

19

creation and lifetime of certain objects involved in the use cases.

Class Connector

Purpose: Given an Internet address theConnectorclass is responsible for opening a connection
to a remote node.

Attributes :

Attribute Type Purpose
PORT const int It is a well known port used for communication in a

FROST network.

Table 2.7: Connector attributes.

Operations :

Operation Purpose
connect to() Given an Internet address it opens a connection to a remote node.

The operation returns sockaddr in structure and socket descrip-
tor fd.

Table 2.8: Connector operations.

Class AddrList

Purpose: This class is used to store and maintain a list of Internet addresses.

Attributes :

Attribute Type Purpose
al vector<uint32 t> al is a STL (Standard Template Library) con-

tainer used to store the 32-bit Internet ad-
dresses.

bounded const bool Determines if a list is bounded or not.
base const int The base of the FROST architecture. If al

list is bounded then base parameter is used
to check the boundaries of al list.

mutex pthread mutex t mutex is a mutual exclusion device, which is
used for protecting the al list from concurrent
modifications.

wl not empty pthread cond t wl not empty is a condition variable, which
is used to signal the waiting thread if al list
changed its state from empty to not empty.

Table 2.9: AddrList attributes.

20

Operations :

Operation Purpose
add() This operation is used to add an Internet address to the al list.
rem() This operation is used to remove an Internet address from the al

list.
get() This operation is used to retrieve an Internet address from the al

list.
copy() This operation is used to make a copy of the al list.
clear() This operation is used to remove all elements from the al list.
getSize() This operation is used to get the size of the al list.

Table 2.10: AddrList operations.

Class Expector

Purpose: This class is derived from the base classAddrList and inherits all the attributes and
operations from theAddrList class. However, additional functionality is added to this class.
If a node is expecting a connection from a particular remote node or nodes then theExpector
class is responsible for storing the Internet addresses of the expected nodes. When the
Acceptor accepts the new connectionExpector verifies if the connection is expected or
not. If connection is expected, thenExpector adds aConnection object to thevip queue
(classConnQueue), otherwise aConnection object is added to a conventional queuecq
(classConnQueue).

Attributes :

Attribute Type Purpose
master uint32 t If node is expecting a connection from the master

node, then an Internet address of the mater node is
stored in the master attribute.

Table 2.11: Expector attributes.

Operations :

Operation Purpose
exp master() This operation is used to set the master attribute with an Internet

address.
exp slave() This operation is used to add an Internet address to the al list.
isExpected() This operation is used to determine if a given address addr :

addr = master or addr ∈ al list. If one of the two statements is
true then a remote node with address addr is expected. Return
value is true if node is expected.

Table 2.12: Expector operations.

21

Class SlaveList

Purpose: This class is used to store and maintain a list of pointers to activeSlaveHandler
threads (see section2.5.2for SlaveHandlerclass details).

Attributes :

Attribute Type Purpose
sl vector<SlaveHandler ? > sl is a STL (Standard Template Library)

container used to store pointers to the
SlaveHandler objects.

mutex pthread mutex t mutex is a mutual exclusion device, which is
used for protecting the sl list from concurrent
modifications.

Table 2.13: SlaveList attributes.

Operations :

Operation Purpose
add() This operation is used to add a SlaveHandler object pointer to the sl list.
rem() This operation is used to remove a SlaveHandler object pointer from the

sl list.
get() This operation is used to retrieve a SlaveHandler object pointer from the

sl list.
clear() This operation is used to remove all elements from the sl list.
getSize() This operation is used to get the size of the sl list.

Table 2.14: SlaveList operations.

Class ConnQueue

Purpose: ConnQueueclass implements the FIFO buffer ofConnection objects (see System
Interface component in section2.6for details aboutConnectionclass).

Attributes :

Attribute Type Purpose
conn queue list<Connection ? > conn queue is a STL (Standard Template Li-

brary) container used to store pointers to the
Connection objects.

queue mutex pthread mutex t queue mutex is a mutual exclusion device,
which is used for protecting the conn queue
buffer from concurrent modifications.

queue not empty pthread cond t queue not empty is a condition variable,
which is used to signal the waiting thread if
conn queue buffer is not empty.

Table 2.15: ConnQueue attributes.

22

Operations :

Operation Purpose
add() This operation is used to add a Connection object pointer to the

conn queue buffer.
rem() This operation is used to remove a Connection object pointer from the

conn queue buffer.
pop() This operation is used to retrieve the first element from the conn queue

buffer.
clear() This operation is used to remove all elements from the conn queue buffer.
getSize() This operation is used to get the size of the conn queue buffer.

Table 2.16: ConnQueue operations.

2.5 Function Component

The Function component implements the functional requirements of the Join/Leave protocol de-
scribed in [2]. In this section the functional requirements will be transformed into a collection of
operations, each of which is tied to a new class in the Function component.

2.5.1 Structure

The class diagram for the Function component is shown in Figure2.7. Each class that implements
an operation is derived from the abstract base classThread, which also implements a system
interface to the POSIX threads. The implication is that each operation has its own execution
thread and thus each operation could be executed concurrently with other operations. All classes
are described in the following.

Thread

Acceptor QueueHandler VIPHandler JoinHandler AskersHandler PushHandler

LeaveHandler FailHandler MasterHandler SlaveHandler

Figure 2.7: Class Diagram for the Function component.

23

2.5.2 Classes

Thread

Purpose: Threadclass is an abstract class (objects cannot be created from this class), which im-
plements an interface to the POSIX threads and provides with a set of operations to control
and synchronize the execution of a thread.

Attributes :

Attribute Type Purpose
thread pthread t Thread identification number.
mutex pthread mutex t mutex is a mutual exclusion device, which is used in

combination with the cond (see below) attribute to
suspend and resume a thread identified by thread.

cond pthread cond t cond is a condition variable, which is used to signal
the waiting thread identified by thread.

Table 2.17: Thread attributes.

Operations :

Operation Purpose
run() This operation is executed by the thread identified by thread attribute.

run() operation is virtual (derived class should override this operation
and provide an implementation for it.)

join() This operation suspends the execution of the caller until the thread
identified by thread attribute terminates, either by calling t exit() or by
being canceled (cancel()).

wait() This operation suspends the execution of the thread identified by thread
attribute until the signal() or cancel() operation is called.

signal() This operation is used to resume the execution of the thread identified
by thread attribute.

t exit() This operation is used to terminate the execution of the thread identified
by thread attribute.

cancel() This operation is used to cancel the execution of the thread identified
by thread attribute.

clean() This operation is executed after the thread identified by thread attribute
has been canceled. The purpose of this operation is to free the resources
that a thread may hold at the time it terminates. clean() operation
is virtual (derived class should override this operation and provide an
implementation for it.)

Table 2.18: Thread operations.

Acceptor

Purpose: Acceptor class is derived from the base classThread. Acceptor is responsible for
handling the incoming connection requests.

24

Behavior: First,Acceptoropens a socket on a well known port and starts to listen for the incom-
ing connection requests. When such a request is received,Acceptor accepts the connection
and creates aConnectionobject for it. Then theExpector is used to verify if this connec-
tion is expected. If connection is expected then aConnection object is added to thevip
queue, otherwise aConnectionobject is added to thecq queue (see Table2.5 for vip and
cq queue details). Finally, when aConnectionobject is dispatched theAcceptor is ready
to accept new connections.Acceptor behavioral pattern is shown in Figure2.8.

Socket Opened

/ run(),create socket

Connection Accepted

/ got connection

/ cancel

Added To vip

/ is expected?

Added To cq

/ listen

[expected] [!expected]

Figure 2.8: State Chart Diagram for the Acceptor operation.

QueueHandler

Purpose: QueueHandlerclass is derived from the base classThread. The purpose of this class
is to process theConnection objects waiting in thecq queue (see Table2.5 for cq queue
details). The processing consist of finding out the reason why a remote node established a
connection and decide how the connection should be processed further.

Behavior: If the cq queue is empty then theQueueHandler is in the idle state (the execution
thread is suspended).QueueHandler resumes its execution if aConnectionobject or ob-
jects were added to thecq queue. When aConnectionobject is retrieved from the queue
theQueueHandlercommunicates (using aConnectionobject) with a remote node to find
out the reason why the connection has been established. According the Join/Leave protocol
specification, if connection is not expected (and it is not, since the expected connections are
in the vip queue) then a remote node is trying to join the FROST network. However, the
QueueHandlerclass is designed with a perspective that there could be some other reasons
(including attacks) that could be processed byQueueHandler. Behavioral pattern for the
QueueHandlerclass is shown in Figure2.9.

Idle

/ run()

Active

[cq !empty]

[cq empty]

Connection Fetched

/ cq.pop()

Added To AskWL Connection Closed

[join] / reply to wait

/ AskWL.add()

Reply Sent

/ close connection

/ done

Do Something

[other reasons]/ done

/ cancel

/ cancel

Figure 2.9: State Chart Diagram for the QueueHandler operation.

25

VIPHandler

Purpose: VIPHandler class is derived from the base classThread. The purpose of this class
is to process theConnectionobjects waiting in thevip queue (see Table2.5 for vip queue
details). The reason to have an additional queue together with the conventionalcq queue is
to provide the means of almost immediate processing of connections that are expected to be
established.

Behavior: Same as withQueueHandler the VIPHandler is suspended if a queue it has to
process is empty and it will be resumed when queue is not empty. There are two types of
expected connections, either the connection is meant to be with a new slave or a new master.
If connection established is with new slave then aSlaveHandlerobject is created to handle
a Connection, otherwise aMasterHandler object is created. Behavioral pattern for the
QueueHandlerclass is shown in Figure2.10.

Idle
/ run()

/ cancel

Active

[vip !empty]

[vip empty]

Connection Fetched
/ vip.pop()

[master] / spawn_master()

MasterHandler Started

/ done

/ cancel

SlaveHandler Started

[slave] / spawn_slave()

/ done

Figure 2.10: State Chart Diagram for the VIPHandler operation.

JoinHandler

Purpose: JoinHandler class is derived from the base classThread. JoinHandler is responsible
for joining the FROST network.

Behavior: When JoinHandler is started, first, it contacts the discovery server (nodeN0) to
retrieve a list of nodes located at the highest level of the FROST architecture. One node
is randomly chosen from a list to ask where to join. If, however, a chosen node is not
responding then there is a possibility to choose another node from a list. After a query
is dispatched a node waits for an answer about further join instructions. Since the FROST
network is dynamic the answer could be provided by another node which took responsibility
to process asking node. Behavioral pattern for theJoinHandler class is shown in Figure
2.11. The are three types of replies an asking node could receive:

Ask next: It says that there are no vacant positions in a group and a node has to ask the
next group master, which is chosen by a current group master. The next master an
asker has to contact will be a slave node with min(GP) value in a current group. The
reply includes an address of a chosen slave (next master).

Join granted: ”Join granted” reply is sent if current master has a vacant position in a
group and asker is welcome to join. This reply also indicates that theSPvalue of the
master node is larger than asker’s and there was no need for adaptation.

26

Join granted (push): This reply indicates that theSPvalue of an asker node is larger
than master’s and that master is ready to concede its place by pushing itself downwards
in the FROST architecture. The reply includes the addresses of slave nodes and master
node (master of the current master).

Address Obtained

Answer Received Join Accepted

/ run(),discover node

/ ask where to join[ask next]

[join granted]

MasterHandler Started

[!push] / spawn_master()

/ t_exit()

Connections Established

[push] / connect to slaves & master

SlaveHandlers Started

/ spawn_slaves()

/ spawn_master()

Figure 2.11: State Chart Diagram for the JoinHandler operation.

AskersHandler

Purpose: AskersHandler class is derived from the base classThread. AskersHandler is re-
sponsible for providing the join instructions for a node which asks for them. The addresses
of nodes that are waiting for the join instructions are stored in theAskWLwaiting list.

Behavior: AskersHandler is idle if AskWLwaiting list is empty, otherwiseAskersHandler
pops an address from the list and establishes the connection with an asker node. When the
connection is established (Connectionobject is created), one of the three situations could
happen:

• SPlocal > SPremote, s < B : asker is allowed to join as a slave.AskersHandler
sends the ”Join granted” message to an asker node and creates aSlaveHandlerobject
to handle aConnection.

• SPlocal > SPremote, s = B : a group is complete and there are no vacant places. In
this case the ”Ask next” answer message is sent with an address of a slave node, which
has the lowestGPvalue.

• SPlocal < SPremote : asker is allowed to join, but as a new master of a group by down-
grading this master to a slave. In this caseAskersHandler invokes aPushHandler to
execute the pushing routine and suspends itself untilPushHandler completes its ex-
ecution and terminates. WhenAskersHandler is resumed, it sends the ”Join granted
(push)” reply message and creates aMasterHandler object to handle aConnection.

Behavioral pattern for theAskersHandler class is shown in Figure2.12.

PushHandler

Purpose: PushHandlerclass is derived from the base classThread. PushHandler is responsi-
ble for the adaptation to the network operation. The adaptation to the network operation is
performed by pushing a local node downwards in the FROST architecture.PushHandler
could be invoked either byAskersHandler or MasterHandler. MasterHandler invokes
PushHandler if such command is sent by master of a group, because it is also being pushed.

27

Idle Active Connection EstablishedAddress Fetched

/ run()
[AskWL !empty]

[AskWL empty]

/ AskWL.pop() / connect to asker

Asker Accepted

[askerSP < SP, s < B]

SlaveHandler Started

/ done

/ spawn_slave(),send join grant msg.

/ cancel

/ cancel
Asker Redirected

/ done [askerSP < SP, s = B]

PushHandler Started

[askerSP > SP] / spawn_pusher()

Push Completed

/ pusher.join()

MasterHandler Started
/ spawn_master(),send join/push grant msg.

/ done

Figure 2.12: State Chart Diagram for the AskersHandler operation.

Behavior: Behavior ofPushHandlerdepends on which handler has invoked it:

• If PushHandler was invoked byAskersHandler, then the connection with master
node has to be closed, but before closing, the master has to grant the permission for
the adaptation to the network. After the permission is granted the local information
(SAL, AskWL) has to be sent to the asker node.

• If PushHandler was invoked byMasterHandler, then the local information (SAL,
AskWL) has to be sent to the master.

Behavioral pattern for thePushHandler class is shown in Figure2.13. From here the be-

Push Granted

MasterHandler Canceled

Slave Pushed

Local Info Sent

SlaveHandlers Cancelled

/ run() [s < B] / slaves.cancel()[keep] / send SAL, AskWL to master

/ master.cancel()

[s = 0] / t_exit()

/ t_exit()

SlaveHandlers Canceled

[s = B] / choose slave with min(SP)

/ t_exit()
Slave Chosen

/ slaves.cancel() except chosen

/ push slave,keep

[!keep, push grant] / ask master for push grant

/ send SAL, AskWL to asker

Figure 2.13: State Chart Diagram for the PushHandler operation. [keep] guard indicates that
PushHandler was invoked by MasterHandler.

havior is the same for both cases of invocation. Depending on the number of slaves in a
group, master has the following options:

s = 0: In this case, because master is a leaf node there is nothing to be done.

s < B: In this case all the connections with slaves has to be closed. After the adaptation to
the network operation is completed a master will become a leaf node.

28

s = B: In this case a group is complete and slave with min(SP) has to be chosen to be
pushed also. The remaining connections with slaves has to be closed.

LeaveHandler

Purpose: LeaveHandlerclass is derived from the base classThread. LeaveHandler is respon-
sible for handling the voluntary leaving from the FROST network.

Behavior: LeaveHandleroperation is performed in one of the three modes:

”I leave”: This mode indicates that a FROST user has pressed the ”Exit” option in a user
interface and he wants to exit the FROST network. In this caseLeaveHandler asks
the master of a group for permission to leave. When permission is granted voluntary
leave operation can be continued.

”Master leaves”: This mode indicates that master of a group is leaving the FROST
network and this node is a chosen to be a new master of a group. In this case the
connection with leaving master has to be closed and new connection has to be opened
to the master of the leaving node.

”Master relocation”: This mode indicates that master of a group is leaving a group
because it was chosen to be a master of another group and this node is chosen to be a
master of this group.

From here theLeaveHandlerbehavior is common for all leave modes. If leaving node is not
a leaf node then it has to choose a slave with max(SP) to be the new master of a group. The
local information (SAL, AskWL) has to be sent to chosen slave and remaining connections
with slaves has to be closed. Finally, if node is in one of the master leave modes it has to
establish the connections with new slave nodes. Behavioral pattern for theLeaveHandler
class is shown in Figure2.14.

AskersHandler Canceled

/ run(),askers.cancel()

[I leave] / ask master for permision

[master leaves, keep]

[master leaves, !keep] / master.cancel()
Leave Granted

MasterHandler Canceled

Slave Chosen

[s > 0] / choose slave with max(SP)

Local Info Sent

/ send SAL, AskWL to chosen

SlaveHandlers Canceled

/ slaves.cancel() except chosen

MasterHandler Started

/ connect to Nmm

Connection Established

/ spawn_master()

[s = 0]
/ connect to new slaves

Connections Established

SlaveHandlers Started

/ spawn_slaves()

/ t_exit()

[I leave] / t_exit()

[master leaves]

Figure 2.14: State Chart Diagram for the LeaveHandler operation. [keep] guard indicates that
LeaveHandler will perform leave operation in ”Master relocation” mode. Node Nmm is master
of leaving master.

29

FailHandler

Purpose: FailHandler class is derived from the base classThread. FailHandler is responsible
for handling node failures in the FROST network. Fault tolerance can be divided into two
parts: discovery of remote node which failed and recovery. A remote node is considered as
failed if the connection between local and remote node has been unexpectedly closed. The
socketsimplementation provides the means of discovering such failures and this feature has
been used in theConnection class to detect unexpected disconnections. The purpose of
the recovery operation is to assure the integrity in the FROST network. The purpose of
FailHandler class is to recover when remote node fails and it should be invoked either by
MasterHandler or SlaveHandler depending on what kind of node (slave or master) has
failed.

The recovery operation has not been implemented yet. The intent is to primarily test and
measure the Join/Leave protocol performance assuming that all nodes are reliable and then
concentrate on the recovery issue.

MasterHandler

Purpose: MasterHandler class is derived from the base classThread. This class is responsible
for maintaining the connection with the master of a group.MasterHandler has aConnec-
tion object assigned to it, which provides an interface to send and receive messages and
data.

Behavior: When started,MasterHandler enters a message processing loop in which it receives
messages from the master of a group. Message types and purpose of each is shown in Table
2.19. Behavioral pattern for theMasterHandler class is shown in Figure2.15.

Message Received Purpose and Response
PUSH Master commands to start the pushing routine. PushHandler is in-

voked and when it finishes PUSH READY and ASK MY GP messages
are sent.

LEAVE Master is leaving and this node has been chosen to be the new master of a
group. LeaveHandler is invoked and when it finishes LEAVE READY
and ASK MY GP messages are sent.

PUSH GRANT Master grants the permission for pushing. AskersHandler is signaled.
LEAVE GRANT Master grants the permission for leaving. LeaveHandler is signaled.
TAKE ID Master sends its ID.
TAKE SAL Master sends its SAL list.
TAKE WL Master sends its AskWL list.
GET ID Master asks to send this node ID.
GET SP Master asks to send this node SP value.
GET GP Master asks to send this node GP value.
GET STATUS Master asks if this node is waiting for some permission. This message is

received from the master which recently became one.
ASK AGAIN Master tells the slave that it should ask again for a permission it waits.
EXPECT Master sends an address of a new master which will connect soon. Ad-

dress is added to Expector object.
DISCONNECT Master closes the connection. MasterHandler terminates.

Table 2.19: MasterHandler messages.

30

SlaveHandler

Purpose: SlaveHandlerclass is derived from the base classThread. This class is responsible
for maintaining the connection with a slave node.SlaveHandlerhas aConnectionobject
assigned to it, which provides an interface to send and receive messages and data.

Behavior: When started,SlaveHandlerenters a message processing loop in which it receives
messages from the slave node. Message types and purpose of each is shown in Table2.20.
Behavioral pattern for theSlaveHandlerclass is shown in Figure2.15.

Message Received Purpose and Response
PUSH Slave asks for a permission to start the pushing routine. If mutex pl is

not locked then this node locks it and grants the permission to push.
LEAVE Slave asks for a permission to start the leaving routine. If mutex pl is

not locked then this node locks it and grants the permission to leave.
TAKE ID Slave sends its ID.
TAKE SP Slave sends its SP value.
TAKE GP Slave sends its GP value.
TAKE SAL Slave sends its SAL list.
TAKE WL Slave sends its AskWL list.
TAKE STATUS Slave sends its status.
GET ID Slave asks to send this node ID.
ASK MY GP Slave tells the master to update its GP value.
PUSH READY Slave has finished push operation. PushHandler is signaled.
LEAVE READY Slave has finished leave operation. LeaveHandler is signaled.
READY Slave has finished push or leave operation. Unlocks mutex pl.
EXPECT Slave sends an address of a node which will connect soon. Address is

added to Expector object.
DISCONNECT Slave closes the connection. SlaveHandler terminates.

Table 2.20: SlaveHandler messages.

Idle Message Received

Message Processesed

/ run() [interupt]

/ process message

/ done/ cancel()

Figure 2.15: State Chart Diagram for the MasterHandler and SlaveHandler operations.

31

2.6 System Interface Component

System interface component implements necessary facilities used to interact with technical plat-
form. ClassesThread andConnection implements an interface to POSIXthreadsandsockets
respectively.Threadclass is already described in section2.5.2. TheConnectionclass is specified
in the following.

2.6.1 Connection Class

Purpose

The purpose ofConnectionclass is to provide the means of sending and receiving data between
two nodes using TCP/IP protocol stack. Also it contains an information about a remote node.

Attributes

Attribute Type Purpose
sock int Socket descriptor.
ID int Remote node ID.
SP int Remote node SP value.
GP int Remote node GP value.

Table 2.21: Connection attributes.

Operations

Operation Purpose
sendID() Send local ID.
sendSP() Send local SP value.
sendGP() Send local GP value.
send msg() Send a message.
sendAddr() Send an address.
send list() Send a list of addresses.
recvID() Receive remote ID.
recvSP() Receive remote SP value.
recvGP() Receive remote GP value.
recv msg() Receive a message.
recvAddr() Receive an address.
recv list() Receive a list of nodes.

Table 2.22: Connection operations.

32

2.7 User Interface Component

User interface requirements follows from the use case diagram shown in Figure2.3. A simple
user interface on a character-based terminal has been implemented. It prints the list of options on
a terminal screen and waits for an input from a user. User has to enter the option number and press
Enter to execute the task indicated by the option number. The user interface options are shown in
Table2.23.

Option number Option Purpose
0 EXIT Voluntary leave the FROST network.
1 Join Join the FROST network.
2 Fail Leave the network unexpectedly.
3 Status This option is added for the testing purposes. It prints the

status of the Join/Leave protocol in the terminal window.
Status information example is shown in Figure 2.16.

Table 2.23: Menu options.

ID SP GP MST SLV SLV
5 10 16 6 3 N/A

Acceptor 1
QueueHandler 1
VIPHandler 1
JoinHandler 0
AskersHandler 1
PushHandler 0
LeaveHandler 0
FailHandler 0
push granted 0
leave granted 0
mutex locked 0

Figure 2.16: Example of status information. ”0” - false/non-existent, ”1” - true/active.

33

Chapter 3

Join/Leave Protocol Testing

To test the functionality and performance of the implemented Join/Leave protocol a number of
system tests were conducted. System testing focuses on the complete system, its functional and
non-functional requirements, and its target environment. The following system tests were con-
ducted:

Functional testing. Functional testing, also called requirements testing, tests if the system
perform as promised by the requirements specification. Functional testing is a black box
technique: testing finds differences between the test cases derived from the use case model
and the observed system behavior. In systems with complex functional requirements, it is
usually not possible to test all use cases for all valid and invalid inputs. Therefore, only the
tests that are relevant and have a high probability of uncovering a failure are selected.

Performance testing. Performance testing is used to test if the non-functional requirements
are met. Two types of performance tests were conducted:

Stress tests: The purpose of the stress tests is to evaluate the system when stressed to its
limits over a short period of time.

Timing tests: The purpose of the timing tests is to validate conformance to behavioral
and performance constraints and evaluate if the system is fast enough.

This chapter presents the purpose and specification of the tests and finally the analysis of the test
results.

3.1 Equipment

3.1.1 Cluster at Aalborg University

Development and some of the tests were conducted on an SCI cluster of seven homogeneous dual
733 MHz Pentium III Coppermine workstations on Asus CLS motherboards with ServerWorks LE
chipset and Linux OS with kernel 2.4.19. The nodes are interconnected by a 100 Mbit Ethernet
LAN, connected by a Cisco System Catalyst 3500 Series switch. The nodes are additionally inter-
connected in a ring topology with Dolphinics D330 SCI adapters. The SCI adapters is mounted
on 33 MHz PCI-G4 buses. Each node is equipped with 2 GB memory.

3.1.2 PlanetLab

PlanetLab [5] is an open, globally distributed testbed for developing, deploying and accessing
planetary-scale network services. There are currently more than 115 machines at 45 sites world-
wide available to support both short-term experiments and long-running network services. Since

34

the beginning of 2003, more than 70 research projects at top academic institutions including MIT,
Stanford, UC Berkeley, Princeton and the University of Washington have used PlanetLab to ex-
periment with such diverse topics as distributed storage, network mapping, peer-to-peer systems,
distributed hash tables, and distributed query processing.

PlanetLab creates a unique environment in which to conduct experiments at Internet Scale. The
most obvious is that network services deployed on PlanetLab experience all of the behaviors of the
real Internet where the only thing predictable is unpredictability (latency, bandwidth, paths taken).
A second advantage is that PlanetLab provides a diverse perspective on the Internet in terms of
connection properties, network presence, and geographical location. The broad perspective on the
Internet enables development and deployment of a new class of services that see the network from
many different angles. For example, to date, researchers using PlanetLab have created worldwide
Internet mapping software and identified a common cause of router failure.

Each node consists of a Linux-based PC running specially developed virtual machine technology
allowing experiments to be conducted independently.

3.1.3 Functional Tests

The purpose of the Join/Leave protocol is to handle node joins and departures in the FROST net-
work. The implication is that a reasonable number of nodes are required to participate in join
and/or leave activities (use cases) to test the functionality of the protocol. The functional require-
ments of the Join/Leave protocol can be tested by verifying the structural relations between the
nodes in the resulting FROST network against the predefined test cases. In general, the functional
testing can be seen as comparing two networks of nodes where one is formed by the implemented
Join/Leave protocol and another is specified in the test case as it is shown in Figure3.1. Each node

8 7

26 3

54

1

8

7

2

6

3

54

1
?

Test CaseActual

Figure 3.1: Functional Testing.

maintains anSALlist that specifies the master/slave relations in the network, and thus the testing
problem can be reduced to the problem of comparingSAL list of each node in the actual case
with correspondingSALlist in the test case. However, when the number of nodes in the observed
system grows, manual specification of the test cases is not efficient because of the time needed
to specify them. For the efficient test case specification an automated test case generator (TCG)
has to be additionally implemented. The deployment diagram for the functional testing system is
shown in Figure3.2and is explained in the following.

35

Node 1

Node 2

Node n

Functional Testing
System

Test Cases

Test Suite

in
1

out
1

in
out

out: SAL, GP, levelin: Use Case out: Passed/Failed

TCG

in 2

in
n

out
2

out
n

Figure 3.2: Deployment Diagram for the Functional Testing System. TCG - Test Case Generator.

Functional Testing System Specification

To test the functional requirements of the Join/Leave protocol a number of nodes have to be ob-
served by the functional testing system. The observed nodes can be defined as an-tupleof nodes,
where the sequence number represents sequential events (join or leave) ordered in time:

O = (N1, N2, ..., Ni, ..., Nn), ∀1 ≤ i, j ≤ n : ∀i < j : time(i) < time(j), (3.1)

whereNi is apair: Ni = (IDi, SPi).

Each node (see Figure3.2) given an input data produces an output data, which later is used by the
functional testing system. Input and output for all nodes are defined as follows:

Input: Then-tuple Ofrom definition3.1can be used to generate then-tuple INof join or leave
events ordered in time:

IN = (in1, in2, ..., ini, ..., inn), ∀1 ≤ i, j ≤ n : ∀i = j : ini = e, (3.2)

wheree ∈ {join, leave} andj is an index inO.

Output: An evente at the node input triggers the corresponding behavior of the Join/Leave
protocol:

e = leave: If node leaves the network, then no output is produced, since the node is not a
part of the network anymore and that situation will be reflected by the rest of the nodes
still in the network.

e = join: In this case node joins the FROST network and by being a part of the network it
provides the join or leave services for the rest of the nodes, if requested. The output
information is generated by reading current state of the nodes at some constant timet
and can be defined as an-tuple OUT:

OUT = (out1, out2, ..., outi, ..., outn), ∀1 ≤ i, j ≤ n : t(i) = t(j), (3.3)

whereouti is a3-tuple: outi = (SALi, GPi, leveli).

36

Expected Results

The functional testing system given the outputOUT has to verify it against the predefined test case
OUTtest. If OUT ≡ OUTtest, then the functional requirements for that particular test case are
met, otherwise there is an error in the protocol functionality. For the efficient test cases specifica-
tion theTCGcomponent is introduced into the functional testing system. TheTCGcomponent has
the same functional requirements as the implemented Join/Leave protocol, and given theO and
IN specificationTCG simulates the behavior of Join/Leave protocol and produces the simulated
outputOUTtest, which will be used as a test case for that particular setup.

3.1.4 Stress Tests

The purpose of the stress tests is to evaluate the system when stressed to its limits over a short
period of time. During the stress tests, as distinct from the functional tests, the observations
will be made on one particular node, which will be stressed to process continuous joining and/or
leaving of nodes over a short period of time. During the stress tests the following measurements
will be taken:

CPU usage. The CPU usage will be measured usingtime utility, which is used to run programs
and summarize system resource usage. The default output oftime is as follows:

real: elapsed real time in seconds.

user: total number of CPU-seconds that the process spent in user mode.

sys: total number of CPU-seconds that the process spent in kernel mode.

Percentage of the CPU usage is computed asCPU =
(

user+sys
real

)
· 100%.

Bandwidth usage. The bandwidth usage will be measured by capturing and analyzing TCP
packets sent and received by the Join/Leave protocol. The packets will be captured using
tcpdump [7] utility and analyzed by using network protocol analyzerEthereal [8], which
is able to provide with various network usage statistics given the captured data.

Throughput. For this case, the measure of throughput is the ratio of nodes processed by the
observed node per second. Let the number of nodes processed by the observed node be
n, and since the elapsed real time is given bytime utility, then throughput is computed as
follows: R = n

real ,
[

nodes
s

]
.

Expected Results

The CPU usage is expected to be reasonably low, otherwise the Join/Leave protocol is not usable at
all. The FROST system [1] is designated for exploiting wasted CPU-cycles on the client machines
and if the maintenance protocol such as Join/Leave protocol will utilize most of the spare CPU-
cycles then only a little real work will be done.

The network bandwidth usage is expected to be the mostly consumed resource, however it should
be kept as small as possible. From the global point of view, a single user usually has the powerful
gaming machine, which probably waste lots of the CPU-cycles, but the connection to the Internet
is not necessarily fast. Thus, if the requirements for the network bandwidth will be high, then
probably a large number of potential CPU-cycle volunteers will not be able to use the FROST
system. The network bandwidth measurements will settle the approximate requirements for it.

Throughput is another important characteristic of the Join/Leave protocol. If the throughput will
be lower that the rate of the node joins and/or leaves, then the Join/Leave protocol would become

37

the bottleneck for the nodes that are waiting to join or leave the network. The estimation of the
rate of arrivals and departures in the FROST system is quite a challenging task. However, the rate
of arrivals and departures has been explored in other P2P systems:

• The CoopNet [9] P2P system has very similar tree based network topology as the FROST
network and it is also used to distribute the bandwidth usage between the peers. The study of
the CoopNet network dynamics was made in [10]. The CoopNet system is a video streaming
system which was evaluated using the trace of node arrivals and departures gathered at
MSNBC [12] on September 11, 2001. The average rate of node arrivals and departures in the
911 trace was 180 per second while the peak rate was about 1000 per second. The authors
indicate that one reason for the high rate of change may be that users were discouraged
by the degradation in audio/video quality caused by the flash crowd, which caused short
lifetime of nodes (i.e. peer disconnects during the streaming session and tries to reconnect
again).

• Another measurement study of P2P systems was made in [11]. Two file sharing P2P sys-
tems, Napster [17] and Gnutella [15], has been studied to evaluate various characteristics of
the P2P networks. One of the characteristics, which has been studied, is thelifetimeof peers
in the system, i.e., how frequently peers connect to the systems, and how long they choose
to remain connected. Both, Napster and Gnutella nodes have similar lifetime measures dur-
ing 12 hours of observation as it is shown in Figure3.3, which was presented in [11]. The
rate of change was not provided by the authors, however, an approximation of rate can be
computed using the data given in [11]. The computations are as follows:

N = 17125. N - the number of Gnutella nodes observed (during 12 hours).

H = N
2 = 8562.5. Half of nodesN.

TH = 3600[s]. TH - median session duration, i.e. approximatelyH nodes will leave the
system afterTH time elapsed (see Figure3.3).

R = H
TH

≈ 2
[

nodes
s

]
. R - an approximate rate of change in the Gnutella system (assuming

that leaving nodes will be exchanged be the joining nodes). The exact rate could be

Figure 3.3: The distribution of Napster/Gnutella session durations. CDFs - cumulative distribution
functions.

38

computed by calculating the integral, however an approximate value ofR is sufficient
for further analysis.

Both studies (CoopNet in [10] and Napster/Gnutella in [11]) gives an insight about the rate of
change in a P2P networks. However, before evaluating the rate of change given in both studies,
the human factor issues has to be considered also, i.e. what are the reasons of using one or another
system and what is the relation between the human factor and the rate of change? Clearly, the
more the system is popular the higher is the rate of change. What makes the system being popular
is another human factor issue. For instance, the thirst of knowledge during the events of the high
or very high importance made the MSNBC [12] news company very popular on September 11,
2001. Another example is sharing of the popular media content (music, video), which makes the
P2P system a popular between the clients that are looking for entertainment. In both examples,
the clients were motivated to use the system because of their own needs (thirst of knowledge,
entertainment, etc.). In the FROST system, however, the users have to be motivated more to
volunteer than exploit, which probably will not make the FROST system more popular than the
systems presented above. Thus, the expectation is that the rate of change in the FROST network,
with high probability, will not exceed an approximate rate of change in the Gnutella network (i.e.
R ≈ 2

[
nodes
sec

]
).

3.1.5 Timing Tests

The purpose of the timing tests is to validate conformance to behavioral and performance con-
straints and evaluate if the system is fast enough. During the timing tests the following measure-
ments will be conducted:

Tjoin: the time required to build the FROST network from an arbitrary number of nodes.

Tleave: the time required to dismantle the FROST network consisting of an arbitrary number of
nodes.

Tjl: the time required for the half of the nodes to join the FROST network while the other half is
leaving.

The timing measurements described above will be made on several distinct FROST network con-
figurations using differentbaseparameters, but with constant number of nodes, to test which
configuration performs better (wide or narrow tree).

Another important timing measurement would be to measure the times described above with con-
stantbaseparameter, but with distinct number of nodes to establish a relation between the time
and number of nodes. Then it could be possible to estimate the timing for the larger number of
nodes without performing actual test.

Expected Results

The results of the timing tests will give an insight on how fast is the system. The results will
be evaluated against the rate of change (R ≈ 2) settled in the specification of stress tests. It is
expected that Join/Leave protocol will be able to operate at the rateRactual at least equal toR
(Ractual ≥ R). For instance, if 50 nodes were able to join the FROST network per 14 seconds,
then the actual rate of change at which protocol is able to operate isRactual = 3.571 > R.

39

3.2 Test Description

3.2.1 Functional Tests

The purpose of the functional tests is to verify if the Join/Leave protocol operates as promised
by the functional requirements. Functional tests were conducted on the global overlay network -
PlanetLab [5] (see PlanetLab specification on page34). An observation of availability was made to
select the nodes that are almost always available. 92 nodes were selected to conduct the functional
tests with Join/Leave protocol.

Functional Test 1

The purpose of this test is to verify if the protocol correctly builds the FROST network while
stressing the high level of adaptation in the network.

Test Data :

Base: Base parameterB = 3 is selected, because it will result in a reasonably complex
network structure with common functional characteristics for networks withB ≥ 3.
The minimum value for base parameter isB = 2, however it was not selected because
it will not reflect all the functional characteristics of the Join/Leave protocol. For ex-
ample, ifB = 2 and node is leaving, then a possible choice space has a multiplicity
of 1− 0..1, which means that one slave will be selected as a replacement, and at most
one slave will stay at its position. Whereas the networks withB ≥ 3 have a choice
space with multiplicity of1 − 0..∗ (one to many), i.e. if one slave is selected as a
replacement, then 1 or more slaves will stay at their positions. Thus the implication
is that networks withB ≥ 3 have common functional characteristics. The complexity
of network depends on the depth of the networktree. The larger is depth the more
complex is network, and that is because join or leave inflicts updating in the network
structure down to the bottom of the tree. Clearly, reducing the base parameter will in-

creasetreedepth for a constant number of nodes and vice versa:
(

lim
B→∞

depth = 1
)

.

In general case, for any base parameter the time complexity for join and leave opera-
tions isO(log N), whereN is the number of nodes in the network.

SP: Node static performance parameter is a key parameter when building or dismantling
the network. To stress the high level of adaptation in the network,SPvalues have to
be properly assigned to the nodes. If observed nodesO is defined as:

O = (N1, N2, ..., Ni, ..., Nn), ∀1 ≤ i, j ≤ n : ∀i < j : time(i) < time(j), (3.4)

whereNi is apair: Ni = (IDi, SPi), then:

∀1 ≤ i ≤ 3 : SPi = i + 200 : IDi = i, (3.5)

∀4 ≤ i ≤ n : SPi = IDi = i, (3.6)

wheren is the number of nodes.3.5 guarantees that nodesN1 to N3 will keep their
position at the highest level during the tests.3.6guarantees that a joining node whose
ID ≥ 13 will trigger the adaptation to the network procedure (see Fig.3.4(a)).

40

Test Procedure : The test was performed in the following steps:

1. Start nodeN0 on PlanetLab machine which is known for joining nodes.

2. Run a script, which spawns nodesN1 to N92. Nodes are forced to join following an
order in time (see Fig.3.4(b)) to avoid concurrent node joins, otherwise the resulting
network would be non-deterministic. Consequently it wouldn’t be possible to test the
actual network against the test cases generated by the test case generator.

3. When network is built, a signal has to be sent to all nodes forcing to write their status
information to the files (e.g.ssh user@planetlab1.diku.dk ”less -F pid| xargs -i kill
-USR1{}”). Each node writes itspid (process id) to”pid” file when started. A signal
handler which is able to catch and processUSR1signal has been implemented into the
Join/Leave protocol. WhenUSR1signal is caught the status information is written to
two files:

ID+”.out” (e.g. ”1.out”) : file contains the data (SAL, GP, level, etc.), which
will be used by the functional testing system.

hostname+”.out” (e.g. ”planetlab1.diku.dk.out”) : file contains human
readable detailed status information, which can be used to find a cause if system
doesn’t work as expected.

4. Stop nodeN0.

5. Fetch status information (*.out) from nodes used in test.
(e.g.sftp user@planetlab1.diku.dk:*.out).

6. Run the functional testing system to verify if actual networkOUTactual is equivalent
to the networkOUTtest, which is generated by the test case generator. Two outcomes
are possible:

(a) If OUTactual 6= OUTtest, then find a cause inhostname+”.out” files, correct an
implementation mistake and start from step 1 again.

(b) If OUTactual ≡ OUTtest, then move to Functional Test 2 to dismantle the net-
work.

Results : During the test some mistakes, which are not related to the design of the protocol,
were found and repaired. A final result of this test is shown in AppendixA.1 andB.1.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

time, sec

ID

7

2

6

3
5

4

1

0

11

12

10

8 9

13 push

(a) (b)

Figure 3.4: (a) - network snapshot at the time (circle mark in (b)) when node N13 is joining. (b)
- time diagram of node joins.

41

Functional Test 2

The purpose of this test is to verify if the protocol correctly dismantles the FROST network while
stressing the high level of of adaptation in the network.

Test Data : For this functional test the FROST network, which was build during the Functional
Test 1, will be used as a test data.

Test Procedure : The test was performed in the following steps:

1. Run a script, which sends the termination signal to nodesN13 to N92 following an or-
der in time as it is shown in time diagram in Figure3.5(b). (e.g.ssh user@planetlab1.diku.dk
”less -F pid | xargs -i kill -INT {}”). WhenINT signal is caught a node performs
voluntary leave procedure and leaves the FROST network.

2. After nodesN13 to N92 have left , a signal has to be sent to remaining nodes forcing
to write their status information to the files (e.g.ssh user@planetlab1.diku.dk ”less
-F pid | xargs -i kill -USR1 {}”). WhenUSR1signal is caught the status information
is written to two files:

ID+”.out” (e.g. ”1.out”) : file contains the data (SAL, GP, level, etc.), which
will be used by the functional testing system.

hostname+”.out” (e.g. ”planetlab1.diku.dk.out”) : file contains human
readable detailed status information, which can be used to find a cause if system
doesn’t work as expected.

3. Fetch status information (*.out) from nodes used in test.
(e.g.sftp user@planetlab1.diku.dk:*.out).

4. Send termination signal to the remaining nodes.

5. Run the functional testing system to verify if actual networkOUTactual is equivalent
to the networkOUTtest, which is generated by the test case generator. IfOUTactual ≡
OUTtest, then actual network and generated network should be the same as in Figure
3.4(a).

Results : During the test some mistakes, which are not related to the design of the protocol,
were found and repaired. A final result of this test is shown in AppendixA.2 andB.2.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

time, sec

ID

(a) (b)

2 3

1

0

leave

85 88 91

92
89

86

84
87

90

Figure 3.5: (a) - network snapshot at the time (circle mark in (b)) when node N92 is leaving. (b)
- time diagram of node leaves.

42

3.2.2 Stress Tests

Stress tests were conducted on a cluster of 7 nodes at Aalborg University (see cluster specification
on page34).

Stress Test 1

The purpose of this test is to measure a throughput - how many nodes per second an observed
node can handle, CPU usage and bandwidth usage when an observed node is stressed to process
an arbitrary number ofpurenode joins. Node join is calledpure if node after joining an observed
node can leave without involving special processing at observed node, i.e. when joined node
decides to leave, it just fails (all threads are canceled) and can start joining procedure again. This
way of leaving is appropriately handled by an observed node, since it can detect failed node and
delete all information related to that node, thus other nodes can join a vacant place. The purpose
of such test withpurenode joins is to measure the capabilities of an observed node (probably the
one at the highest levels) which operates as a guide for the joining nodes, i.e. gives a direction
where to join or accepts joining node.

Test Data : All 7 nodes are used for the stress test (see Fig.3.6), nodeN1 is an observed node,
nodesN2 to N7 are used to concurrently perform an arbitrary number ofpurenode joins to
nodeN1. Two test cases were used for testing:

Test Case 1: nodesN2 to N7 concurrently performs 50pure joins each. NodeN1 will
process 300pure joins in total.

Test Case 2: nodesN2 to N7 concurrently performs 100pure joins each. NodeN1 will
process 600pure joins in total.

72 63 54

1

Figure 3.6: Nodes used for stress test 1. N1 - observed node. N2 to N7 - nodes used to stress node
N1.

Test Procedure : For each test case the procedure is performed in the following steps:

1. Start nodeN1 with time command to measure CPU usage (e.g.time ./observednode).

2. On the machine where nodeN1 is running, starttcpdump to capture and write to a file
all incoming and outcoming packets on a well known port used by Join/Leave protocol
(e.g. tcpdump -w filename.out port 60606).

3. Run the script which spawns the nodesN2 to N7 (e.g. more hosts| xargs -ti ssh -fn
”cd client; ./frostclient” , wherehostsis a file which contains hostnames of machines
2 to 7 and-fn option tellsssh to go into background just before the execution of
command string, thensshwill return immediately after spawning a process on a remote
machine). A situation where the nodes start to operate is shown in Figure3.7 (a) and
at any given moment during the execution of the test case the situation can be similar
to one shown in Figure3.7(b).

43

4. Each node writes itspid (process id) tohostname+” pid” (”sister1 pid” , ”sister2 pid” ,
etc.) file when started. After the test case is completed the termination signal has to be
sent to all nodes including the observed nodeN1 (rsh sister1 ”cd client; less -F sis-
ter1 pid | xargs -ti kill -INT {}; rm -f sister1 pid” , etc.). A signal handler which can
catch and process the signals from an OS has been implemented into the Join/Leave
protocol and it can provide with any required information about the state of the proto-
col just before terminating. After this step all the nodes are terminated (see Fig.3.7
(c)) and the results can be collected and analyzed (see Tables3.1and3.2).

72 63 54

1

join join join join join join

72 6

3 54

1

fail

join joinjoin

fail fail

(a) (b)

72 63 54

1

(c)

Figure 3.7: (a) - network snapshot when the stress test 1 was started; (b) - network snapshot during
the execution of the stress test 1; (c) network snapshot when the stress test 1 was completed.

Test Results :

B = 6 Time CPU usage
time, s ∆time, s nodes/s user, s sys, s CPU, % ∆CPU#, %

2.23 0.05 0.42 21.12
300 2.12 2.17 138.12 0.03 0.24 12.72 14.20

2.14 0.01 0.18 8.76
4.41 0.13 0.64 17.45

600 4.18 4.25 141.34 0.18 0.35 12.69 14.07
4.14 0.02 0.48 12.07

∆ nodes/s: 139.73 ∆CPU, %: 14.13

Table 3.1: Measurements of pure join rate (nodes/s) and CPU usage at node N1. # - is the number
of joins processed by node N1. B - is the base of the FROST architecture.

B = 6 Bandwidth usage
∆time, s kbytes of traffic traffic, Mbits/s ∆traffic#, Mbits/s

569.19 2.10
300 2.17 568.62 2.20 2.15

569.64 2.15
1133.44 2.24

600 4.25 1139.42 2.23 2.24
1138.24 2.25

∆ traffic, Mbits/s : 2.19

Table 3.2: Measurements of bandwidth usage at node N1. # - is the number of pure node joins
processed by node N1. B - is the base of the FROST architecture.

44

Stress Test 2

The purpose of this test is to measure a throughput - how many nodes per second an observed
node can handle, CPU usage and bandwidth usage when an observed node is stressed to process
an arbitrary number of concurrent node joins and voluntary leaves.

Test Data : All 7 nodes are used for the stress test (see Fig.3.6), nodeN1 is an observed node,
nodesN2 toN7 are used to concurrently perform an arbitrary number of node joins followed
by voluntary leaves. Two test cases were used for testing:

Test Case 1: nodesN2 to N7 concurrently performs 50 joins and 50 voluntary leaves
each. NodeN1 will process 300 joins and 300 voluntary leaves in total.

Test Case 2: nodesN2 to N7 concurrently performs 100 joins and 100 voluntary leaves
each. NodeN1 will process 600 and 600 voluntary leaves in total.

Test Procedure : The test procedure is the same as presented for the stress test 1 on page43,
except that nodes are not failing after each join but leaving according to voluntary leave
procedure. The results are shown in Tables3.3and3.4

Test Results :

B = 6 Time CPU usage
join#/leave# time, s ∆time, s nodes/s user, s sys, s CPU, % ∆CPU#, %

6.36 0.00 0.07 1.10
300/300 6.24 6.42 93.41 0.02 0.03 0.80 3.93

6.67 0.16 0.50 9.89
11.23 0.04 0.18 1.96

600/600 12.70 12.31 97.45 0.04 0.11 1.18 1.38
13.01 0.02 0.11 1.00

∆ nodes/s: 95.43 ∆CPU, %: 2.66

Table 3.3: Measurements of rate (nodes/s) and CPU usage at node N1. join# - is the number of
joins processed by node N1. leave# - is the number of voluntary leave processed by node N1. B -
is the base of the FROST architecture.

B = 6 Bandwidth usage
join#/leave# ∆time, s kbytes of traffic traffic, Mbits/s ∆traffic#, Mbits/s

729.05 0.94
300/300 6.42 725.85 0.95 0.93

725.44 0.89
1427.23 1.04

600/600 12.31 1454.80 0.94 0.97
1460.90 0.92

∆ traffic, Mbits/s : 0.95

Table 3.4: Measurements of bandwidth usage at node N1. join# - is the number of joins processed
by node N1. leave# - is the number of voluntary leave processed by node N1. B - is the base of the
FROST architecture.

45

Stress Test 3

The first two stress tests gives a result where the rate of change is noticeably higher than expected
(Ractual ≈ 100 À Rexpected ≈ 2), whereas bandwidth usage is very high (≈ 1 Mbit/s), which
implies that the bandwidth is the most consumed resource as expected. The purpose of this test is
to measure bandwidth usage when an observed node is stressed to process an arbitrary number of
node joins and voluntary leaves at the rate of change close toRexpected.

Test Data : All 7 nodes are used for the stress test (see Fig.3.6), nodeN1 is an observed
node. To reduce the rate of change in an observed network of nodes only one node (N7) will
perform an arbitrary number of node joins followed by voluntary leaves. NodesN2 to N6

joins the network once and participates in the network activities. The following test cases
were used for testing:

Test Case 1: FROST architecture baseB = 6. Two different scenarios were tested:

1. NodeN7 performs 100 joins and 100 voluntary leaves.

2. NodeN7 performs 200 joins and 200 voluntary leaves.

Test Case 2: FROST architecture baseB = 3. Two different scenarios were tested:

1. NodeN7 performs 100 joins and 100 voluntary leaves.

2. NodeN7 performs 200 joins and 200 voluntary leaves.

Test Case 3: FROST architecture baseB = 2. Two different scenarios were tested:

1. NodeN7 performs 100 joins and 100 voluntary leaves.

2. NodeN7 performs 200 joins and 200 voluntary leaves.

Test Procedure : The test procedure is the same as presented for the stress test 1 on page43.
The snapshots of the network during each test case is shown in Table3.5. The results are
shown in Tables3.6, 3.7, 3.8, 3.9, 3.10and3.11.

Test Case 1 Test Case 2 Test Case 3

7

2 63 54

1
join 7

2

6

3

5 4

1
join 7

2

6

3

5

4

1 join

72 63 54

1 leave

leave

7

2

6

3

5

4

1

leave

7

2

6

3 54

1

Table 3.5: Test cases for stress test 3. N1 - observed node. N2 to N6 - nodes are participants in
the network. N7 is used to stress node N1.

46

Test Results :

B = 6 Time CPU usage
join#/leave# time, s ∆time, s nodes/s user, s sys, s CPU, % ∆CPU#, %

21.89 0.02 0.02 0.18
100/100 17.50 18.73 10.68 0.01 0.02 0.17 0.28

16.81 0.06 0.02 0.48
28.31 0.10 0.24 1.20

200/200 26.65 27.81 14.38 0.08 0.60 2.55 1.29
28.48 0.02 0.01 0.11

∆ nodes/s: 12.53 ∆CPU, %: 0.78

Table 3.6: Test Case 1. Measurements of rate (nodes/s) and CPU usage at node N1. join# - is
the number of joins processed by node N1. leave# - is the number of voluntary leave processed by
node N1.

B = 6 Bandwidth usage
join#/leave# ∆time, s kbytes of traffic traffic, kbits/s ∆traffic#, kbits/s

237.43 91.14
100/100 18.73 238.53 114.69 108.20

238.27 118.78
476.37 141.31

200/200 27.81 477.60 150.53 144.04
477.08 140.29

∆ traffic, kbits/s : 126.12

Table 3.7: Test Case 1. Measurements of bandwidth usage at node N1. join# - is the number of
joins processed by node N1. leave# - is the number of voluntary leave processed by node N1.

B = 3 Time CPU usage
join#/leave# time, s ∆time, s nodes/s user, s sys, s CPU, % ∆CPU#, %

27.09 0.01 0.02 0.11
100/100 24.40 25.68 7.79 0.03 0.01 0.16 0.47

25.55 0.08 0.21 1.14
49.71 0.13 0.61 1.49

200/200 41.78 44.44 9.00 0.15 0.46 1.46 1.42
41.82 0.15 0.40 1.32

∆ nodes/s: 8.40 ∆CPU, %: 0.95

Table 3.8: Test Case 2. Measurements of rate (nodes/s) and CPU usage at node N1. join# - is
the number of joins processed by node N1. leave# - is the number of voluntary leave processed by
node N1.

47

B = 3 Bandwidth usage
join#/leave# ∆time, s kbytes of traffic traffic, kbits/s ∆traffic#, kbits/s

418.90 130.05
100/100 25.68 418.66 144.38 137.22

418.84 137.22
849.48 143.36

200/200 44.44 851.49 171.01 161.79
852.25 171.01

∆ traffic, kbits/s : 149.50

Table 3.9: Test Case 2. Measurements of bandwidth usage at node N1. join# - is the number of
joins processed by node N1. leave# - is the number of voluntary leave processed by node N1.

B = 2 Time CPU usage
join#/leave# time, s ∆time, s nodes/s user, s sys, s CPU, % ∆CPU#, %

26.69 0.04 0.60 2.40
100/100 21.31 24.17 8.28 0.13 0.62 3.52 2.14

24.51 0.03 0.09 0.49
49.71 0.06 0.27 0.79

200/200 41.78 46.16 8.67 0.08 0.45 1.28 0.93
41.82 0.07 0.32 0.70

∆ nodes/s: 8.47 ∆CPU, %: 1.53

Table 3.10: Test Case 3. Measurements of rate (nodes/s) and CPU usage at node N1. join# - is
the number of joins processed by node N1. leave# - is the number of voluntary leave processed by
node N1.

B = 2 Bandwidth usage
join#/leave# ∆time, s kbytes of traffic traffic, kbits/s ∆traffic#, kbits/s

418.51 131.07
100/100 24.17 417.38 163.84 144.38

403.11 138.24
848.36 169.98

200/200 46.16 847.42 172.03 160.43
921.59 139.26

∆ traffic, kbits/s : 152.41

Table 3.11: Test Case 3. Measurements of bandwidth usage at node N1. join# - is the number
of joins processed by node N1. leave# - is the number of voluntary leave processed by node N1.

48

3.2.3 Timing Tests

The purpose of timing tests is to evaluate if the system is fast enough, while assuring that it
performs according functional requirements.

Timing Test 1

The purpose of this test is to measure the timeTjoin required to build the FROST network from an
arbitrary number of nodes and the timeTleave required to dismantle the FROST network consisting
of an arbitrary number of nodes.

The Join/Leave protocol implementation has been modified to automatically gather the following
time statistics:

1. start, endanddurationof join procedure. Data is gathered in the following steps:

(a) capturestart time: time(&start) ;

(b) run join procedure:join() ;

(c) captureendtime: time(&end);

(d) calculateduration: duration=difftime(end, start);

(e) writestart, endanddurationtimes to the fileID+” endjoin.out” (e.g.”1 endjoin.out”):

fprintf(file,”started: %s”, asctime(localtime(&start))) ;

fprintf(file,”finished: %s”, asctime(localtime(&end))) ;

fprintf(file,”elapsed: %d”, duration) ;

2. start, endanddurationof leave procedure. Data is gathered in the following steps:

(a) capturestart time: time(&start) ;

(b) run leave procedure:leave();

(c) captureendtime: time(&end);

(d) calculateduration: duration=difftime(end, start);

(e) writestart, endanddurationtimes to the fileID+” endleave.out”(e.g.”1 endleave.out”):

fprintf(file,”started: %s”, asctime(localtime(&start))) ;

fprintf(file,”finished: %s”, asctime(localtime(&end))) ;

fprintf(file,”elapsed: %d”, duration) ;

Test Data: Two test cases were used for testing:

Test Case 1: Build the network using 40 randomly selected nodes deployed at various
locations in the world. BaseB = 3.

Test Case 2: Use the network from Test Case 1 to dismantle it.

Test Procedure. Test Case 1: The test was performed in the following steps:

1. StartN0

2. Spawn all 40 nodes in parallel to stress concurrent joins. (e.g.ssh -fn user@planetlab1.diku.dk
”cd client; ./frostclient” &).

3. When the network is built, collect the results (e.g.sftp user@planetlab1.diku.dk:*.out).
See Fig.3.8(a) for results.

4. StopN0

49

Test Procedure. Test Case 2: The test was performed in the following steps:

1. Signal the nodes to start leaving the network. (e.g.ssh user@planetlab1.diku.dk
”less -F pid | xargs -i kill -INT {} &”)

2. When network is dismantled, collect the results. (e.g.sftp user@planetlab1.diku.dk:*.out).
See Fig.3.8(b) for results.

Test Results :

Test Case 1: The network was built in about 20 seconds -Tjoin ≈ 20 [sec] and the join

rate isRjoin ≈ 2
[

nodes
sec

]
. Two nodes (N17 andN30) have failed to join, and that is

because the discovery serverN0 for unknown reasons refused to establish a connection
with them.

Test Case 2: The network was dismantled in about 8 seconds -Tleave ≈ 8 [sec] and the

leave rate isRleave ≈ 5
[

nodes
sec

]
.

This test was repeated several times and similar failures occurred, when one or few nodes
were not able to contact nodeN0. Also in some cases few unexpected connection losses
were experienced while a node was performing a join or leave procedure causing some
nodes to deadlock.

Because of different bandwidth load on PlanetLab at different day time the measured times
Tjoin andTleave may change, because of delays in the network.

(a) (b)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

0 5 10 15 20 25

time, sec

ID

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

0 1 2 3 4 5 6 7 8

time, sec

ID

Figure 3.8: (a) - time diagram of joins. (b) - time diagram of departures. A horizontal line in
diagram represents time duration of join or leave operation. Error of measurement: ± 1 second.

50

Timing Test 2

The purpose of this test is to measure the timesTjoin andTleave as described in Timing Test 1, but
with distinct FROST network configurations using differentbaseparameters and with constant
number of nodes, to test which configuration performs better (wide or narrow tree). Also an
important timing measurement would be to measure the times described above with constantbase
parameter, but with distinct number of nodes to establish a relation between the time and number
of nodes. Then it could be possible to estimate the timing for the larger number of nodes without
performing actual test.

Test Data: The test data is summarized in Table3.12.

Base
3 6 9
20 Test Case 1 Test Case 4 Test Case 7
40 Test Case 2 Test Case 5 Test Case 8
60 Test Case 3 Test Case 6 Test Case 9

Table 3.12: Timing Test 2. Test data. # - is the number of nodes used in a test case.

Test Procedure: For each test case the timesTjoin andTleave will be measured following the
procedure described in Timing Test 1.

Test Results : The results are summarized in Table3.13and Figure3.9.

Base
3 6 9

Tjoin Tleave Tjoin Tleave Tjoin Tleave

20 9 3 5 1 6 2
40 20 8 12 5 13 5
60 34 10 22 9 20 9

Table 3.13: Timing Test 2. Test results. # - is the number of nodes used in a test case. Timing
results are presented in seconds. Error of measurement: ± 1 second.

Timing Test 3

The purpose of this test is to measure the timeTjl - required for the half of the nodes to join the
FROST network while the other half is leaving.

Test Data: 40 nodes, which were used in Timing Test 1, will be used to build the network and
leave it while other 40 nodes will join the network.

Test Procedure: The test was performed in the following steps:

1. Build the network of 40 nodes as described in Timing Test 1, Test Case 1.

2. When built, dismantle the network as described in Timing Test 1, Test Case 2 and at
the same time start to build the network from other 40 nodes as described in Timing
Test 1, Test Case 1.

3. When network is built, collect the results and terminate all nodes.

51

(a)

B = 3

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40
time, sec

#

Join

Leave

B = 6

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40

time, sec

#

Join

Leave

B = 9

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40

time, sec

#

Join

Leave

= 20

0
1
2
3
4
5
6
7
8
9

10

0 5 10 15 20 25 30 35 40

time, sec

B

Join

Leave

= 40

0
1
2
3
4
5
6
7
8
9

10

0 5 10 15 20 25 30 35 40

time, sec
B

Join

Leave

= 60

0
1
2
3
4
5
6
7
8
9

10

0 5 10 15 20 25 30 35 40

time, sec

B

Join

Leave

(b)

Figure 3.9: (a) - the results of the Timing Test 2 with the constant base parameter. (b) - the results
of the Timing Test 2 with the constant number of nodes. # - is the number of nodes used in the
test.

Test Results : The test was not able to complete, because of unexpected connection losses
between the nodes, causing some nodes to deadlock. Fault tolerance was not implemented
in the protocol assuming that all nodes will be reliable and no connection losses will happen.
The assumption was made with intent to primarily test and measure the Join/Leave protocol
performance with reliable nodes and then concentrate on the fault tolerance.

Some deadlock situations that happened during the tests are listed below:

• When master node grants an asking node a permission to leave or push, master has to
wait until the replacement will connect. If node, which was chosen as a replacement
fails or node, which was granted for an operation fails then master node will wait for
a replacement forever.

• During leave or push operation a number of nodes are involved in exchanging data and
instructions. If, however, at least one connection is lost then some nodes will wait for
the events that will never happen, causing the system to deadlock.

52

3.3 Test Results Analysis

3.3.1 Functional Tests

The main corollary of the functional test results is that the Join/Leave protocol correctly builds and
dismantles the network, unless the connection losses during the join or leave operation has hap-
pened. The results that are presented in appendixA.1 andA.2 where collected when no connection
losses occurred and no nodes have failed. However, there were some cases when connection fail-
ures occurred and system deadlocked.

3.3.2 Stress Tests

CPU usage: As expected the CPU usage is reasonably low -CPU ≈ 15%, even when stressed
to operate at rateR ≈ 140

[
nodes
sec

]
(see Table3.1). To evaluate and measure the CPU and

bandwidth usage at lower join and leave rates a special test was conducted. Three test cases
were used in testing, and when operating at rateR ≈ 10 the CPU usage isCPU ≈ 1% and
that is a desired result. (see Tables3.6, 3.8and3.10).

Bandwidth usage: As expected the bandwidth usage is the most consumed resource. When
stressed to operate at rateR ≈ 120 the bandwidth consumption was quite large and unsuit-
able (traffic≈ 1.5

[
Mbit
sec

]
, see Tables3.2and3.4) for Internet wide usage. However, when

operating at rateR ≈ 10 the bandwidth usage istraffic≈ 150
[

kbit
sec

]
(see Tables3.7, 3.9and

3.11), which is quite normal if having fast (e.g.≥ 256
[

kbit
sec

]
) Internet connection.

Throughput: The maximum throughput which could be expected under certain conditions is
R ≈ 140. When stressed there were more free resources available: about85% of CPU
and about97% of bandwidth resources were unused, but they were not consumed. An
explanation of it could be in the internals of the protocol itself, i.e. mutual exclusion devices,
barriers, etc.

The main corollary of the stress test results is that the Join/Leave protocol should be able to
efficiently operate at the rate of change (R ≈ 2), which was previously settled in the analysis
of the Gnutella system. When operating at rateR ≈ 2, the expected resource usage could be as
follows:

CPU usage: CPU ≈ 1% (for CPU’s faster than1Ghz).

Bandwidth usage: traffic≈ 30
[

kbit
sec

]
.

3.3.3 Timing Tests

Running the Join/Leave protocol in the realistic environment such as PlanetLab confirms that the
fault tolerance is a critical part in the FROST system and must be implemented if it is planned to
use the system Internet wide, where the machines are not reliable.

The results of timing tests indicate that the rate of change isR ≈ 3.5 and according the expecta-
tions the Join/Leave protocol satisfies the timing constraints.

Also the results of testing the protocol with different configuration setup indicate that the base
parameter could be adjusted for better performance in the system (see Figure3.9(b)). The results
in Figure3.9(a) indicate that the time required for building and dismantling the network increases
almost linearly when the number of nodes increases.

53

Chapter 4

Conclusion

The two main goals of this project were:

1. To implement the prototype of the Join/Leave protocol, whose system architecture and con-
cepts were described in [2]. The purpose of the Join/Leave protocol is to handle the node
joins and departures in the FROST network. In general the Join/Leave protocol can be
divided into two parts based on the function it should perform:

Join: The Join/Leave protocol must assure that a node which joins the network will be
organized in the hierarchy according to its static performance measure -SP.

Leave: When nodes leave the network (voluntarily or by failing) the Join/Leave protocol
has to assure the integrity of the communication architecture by appropriately rear-
ranging the related nodes in the network.

2. To conduct a proof-of-concept evaluation of the Join/Leave protocol by performing system
testing, which focuses on the complete system, its functional and non-functional require-
ments, and its target environment. The following system tests were conducted:

Functional testing. Functional testing, also called requirements testing, tests if the sys-
tem perform as promised by the requirements specification.

Performance testing. Performance testing is used to test if the non-functional require-
ments are met. Two types of performance tests were conducted:

Stress tests: The purpose of the stress tests is to evaluate the system when stressed
to its limits over a short period of time.

Timing tests: The purpose of the timing tests is to validate conformance to behav-
ioral and performance constraints and evaluate if the system is fast enough.

4.1 Implementation

Some corrections have been made to the design [2] of the Join/Leave protocol before implementing
it. Two main corrections were made:

1. The static node performanceSP has been derived from available network bandwidth re-
sources disregarding the speed of CPU and the size of the main memory.

2. Joining and adaptation to the network procedure has been optimized.

54

The Join/Leave protocol has been decomposed and implemented as four components:

1. Model Component. A part of a system that implements a model of the Join/Leave protocol.

2. Function Component. A part of a system that implements functional requirements of the
Join/Leave protocol.

3. System Interface Component. A part of a system implementing the interaction with other
systems.

4. User Interface Component. A part of a system implementing the interaction with users.

4.2 Testing

The following system tests were conducted:

Functional testing. The results of functional tests indicate that the Join/Leave protocol cor-
rectly builds and dismantles the network, unless the connection losses during the join or
leave operation has happened.

Stress tests. The results of stress tests indicate that the Join/Leave protocol should be able to
efficientlyoperate at the rate of change (R ≈ 2), which was previously settled in the analysis
of the Gnutella system. When operating at rateR ≈ 2, the expected resource usage is as
follows:

CPU usage: CPU ≈ 1% (for CPU’s faster than1Ghz).

Bandwidth usage: traffic≈ 30
[

kbit
sec

]
.

Timing tests. The results of timing tests (R ≈ 3.5) indicate that the Join/Leave protocol sat-
isfies the timing constraints, unless the connection losses during the join or leave operation
has happened. Also the results of testing the protocol with different configuration setup in-
dicate that the base parameter could be adjusted for better performance in the system (see
Figure3.9(b)). The results in Figure3.9(a) indicate that the time required for building and
dismantling the network increases almost linearly when the number of nodes increases.

4.3 Further Work

The parts of the system that were left out will be summarized in this section.

Fault tolerance. Fault tolerance was not designed in [2] and it was not planned to implement
it in this work. The intent was to primarily test the Join/Leave protocol assuming that all
nodes are reliable and then focus on fault tolerance. Running the Join/Leave protocol in the
realistic environment such as PlanetLab confirms that the fault tolerance is a critical part
in the FROST system and must be implemented if it is planned to use the system Internet
wide, where the machines are not reliable. It is expected that fault tolerance solution will
introduce an additional overhead to the system and therefore the system testing has to be
performed again to evaluate if the protocol still satisfies the functional and non-functional
requirements.

Interoperability. To fulfill its purpose, the Join/Leave protocol has to be incorporated to the
FROST system [1].

55

Security. The maintenance protocols are especially susceptive to the DoS (Denial of Service)
attacks. Since the Join/Leave protocol is intended to operate Internet wide there is a high
risk of such attacks.

Portability. The protocol should be able to operate on various technical platforms to increase
the number of potential users of the FROST system [1]. The current implementation of the
Join/Leave protocol is based on Linux OS.

56

Bibliography

[1] Michael Platz Glibstrup and Lars Kringelbach. FROST - A Distributed Heteroge-
neous Calculation Platform. Student report, Aalborg University - Department of
Computer Science, January 2002.

[2] Li Ming and Arunas Vrubliauskas. Scalability of the FROST System. Student re-
port, Aalborg University - Department of Computer Science, January 2003.

[3] Lars Mathiasen, Andreas Munk-Madsen, Peter Axel Nielsen and Jan Stage. Object
Oriented Analysis & Design. Forlaget MARKO. ISBN 87-7751-150-6. 1st edition,
2000.

[4] David Liben-Nowell, Hari Balakrishnan, and David Karger. Analysis of the Evolu-
tion of Peer-to-Peer Systems. ACM Conf. on Principles of Distributed Computing
(PODC), Monterey, CA, July 2002.

[5] PlanetLab - An open testbed for developing, deploying, and accessing planetary-
scale services. http://www.planet-lab.org

[6] SETI@home - The Search for Extraterrestrial Intelligence.
http://setiathome.ssl.berkeley.edu/

[7] http://www.tcpdump.org/

[8] Network protocol analyzer. http://www.ethereal.com/

[9] http://www.research.microsoft.com/padmanab/projects/CoopNet/

[10] Venkata N. Padmanabhan, Helen J. Wang, Philip A. Chou and Kunwadee Sripanid-
kulchai. Distributing Streaming Media Content Using Cooperative Networking.
Microsoft Research Technical Report, MSR-TR-2002-37, April 2002.

[11] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement study of peer-to-peer
file sharing systems. In Proceedings of MMCN, 2002.

[12] http://www.msnbc.com/

[13] THINK project. http://members.ud.com/home.htm

[14] distributed.net project. http://www.distributed.net/

[15] Gnutella file sharing system. http://www.gnutella.com/

[16] Freenet file sharing system. http://freenet.sourceforge.net/

[17] Napster file sharing system. http://www.napster.com/

57

[18] Gerard J. Holzmann. Design and Validation of Computer Protocols, Prentice Hall,
New Jersey, 1991, ISBN 0-13-539925-4.

[19] Gerard J. Holzmann. The Spin Model Checker, IEEE Trans. on Software Engineer-
ing, Vol. 23, No. 5, May 1997, pp. 279-295.

58

Appendix A

Functional Tests: Actual Output

File format is as follows:hostname, ID, SP, GP, level, IDmaster, SAL1, SAL2, SAL3.

A.1 Functional Test 1

1.out: planetlab1.xeno.cl.cam.ac.uk 1 201 1626 1 0 85 88 91

2.out: planetlab2.xeno.cl.cam.ac.uk 2 202 1657 1 0 86 89 92

3.out: planetlab3.xeno.cl.cam.ac.uk 3 203 1595 1 0 84 87 90

4.out: planetlab1.iis.sinica.edu.tw 4 4 4 4 58 0 0 0

5.out: planetlab2.iis.sinica.edu.tw 5 5 5 4 59 0 0 0

6.out: planetlab-01.bu.edu 6 6 6 4 60 0 0 0

7.out: planetlab-02.bu.edu 7 7 7 4 61 0 0 0

8.out: PLANETLAB-1.CMCL.CS.CMU.EDU 8 8 8 4 62 0 0 0

9.out: PLANETLAB-2.CMCL.CS.CMU.EDU 9 9 9 4 63 0 0 0

10.out: PLANETLAB-3.CMCL.CS.CMU.EDU 10 10 10 4 64 0 0 0

11.out: planetlab1.comet.columbia.edu 11 11 11 4 65 0 0 0

12.out: planetlab2.comet.columbia.edu 12 12 12 4 66 0 0 0

13.out: planetlab3.comet.columbia.edu 13 13 13 4 67 0 0 0

14.out: planetlab1.cs.cornell.edu 14 14 14 4 68 0 0 0

15.out: planetlab2.cs.cornell.edu 15 15 15 4 69 0 0 0

16.out: planetlab1.cs.duke.edu 16 16 16 4 70 0 0 0

17.out: planetlab2.cs.duke.edu 17 17 17 4 71 0 0 0

18.out: planetlab3.cs.duke.edu 18 18 18 4 72 0 0 0

19.out: planet1.pittsburgh.intel-research.net 19 19 19 4 73 0 0 0

20.out: planet2.pittsburgh.intel-research.net 20 20 20 4 74 0 0 0

21.out: planet3.pittsburgh.intel-research.net 21 21 21 4 75 0 0 0

22.out: planet1.cc.gt.atl.ga.us 22 22 22 4 76 0 0 0

23.out: planet.cc.gt.atl.ga.us 23 23 23 4 77 0 0 0

24.out: lefthand.eecs.harvard.edu 24 24 24 4 78 0 0 0

25.out: righthand.eecs.harvard.edu 25 25 25 4 79 0 0 0

59

26.out: planetlab1.postel.org 26 26 26 4 80 0 0 0

27.out: planetlab2.postel.org 27 27 27 4 81 0 0 0

28.out: kupl1.ittc.ku.edu 28 28 28 4 82 0 0 0

29.out: kupl2.ittc.ku.edu 29 29 29 4 83 0 0 0

30.out: planetlab1.netlab.uky.edu 30 30 30 4 57 0 0 0

31.out: planetlab2.netlab.uky.edu 31 31 31 4 58 0 0 0

32.out: planetlab1.cs-ipv6.lancs.ac.uk 32 32 32 4 59 0 0 0

33.out: planetlab2.cs-ipv6.lancs.ac.uk 33 33 33 4 60 0 0 0

34.out: planetlab1.lbl.gov 34 34 34 4 61 0 0 0

35.out: planetlab2.lbl.gov 35 35 35 4 62 0 0 0

36.out: planetlab1.eecs.umich.edu 36 36 36 4 63 0 0 0

37.out: planetlab2.eecs.umich.edu 37 37 37 4 64 0 0 0

38.out: planetlab1.lcs.mit.edu 38 38 38 4 65 0 0 0

39.out: planetlab2.lcs.mit.edu 39 39 39 4 66 0 0 0

40.out: planetlab3.lcs.mit.edu 40 40 40 4 67 0 0 0

41.out: planetlab1.cs.northwestern.edu 41 41 41 4 68 0 0 0

42.out: planetlab2.cs.northwestern.edu 42 42 42 4 69 0 0 0

43.out: s1 803.ie.cuhk.edu.hk 43 43 43 4 70 0 0 0

44.out: s2 803.ie.cuhk.edu.hk 44 44 44 4 71 0 0 0

45.out: planet1.ecse.rpi.edu 45 45 45 4 72 0 0 0

46.out: planet2.ecse.rpi.edu 46 46 46 4 73 0 0 0

47.out: ricepl-1.cs.rice.edu 47 47 47 4 74 0 0 0

48.out: ricepl-2.cs.rice.edu 48 48 48 4 75 0 0 0

49.out: planetlab-1.Stanford.EDU 49 49 49 4 76 0 0 0

50.out: planetlab-2.Stanford.EDU 50 50 50 4 77 0 0 0

51.out: edi.tkn.tu-berlin.de 51 51 51 4 78 0 0 0

52.out: miranda.tkn.tu-berlin.de 52 52 52 4 79 0 0 0

53.out: pl1.cs.utk.edu 53 53 53 4 80 0 0 0

54.out: pl2.cs.utk.edu 54 54 54 4 81 0 0 0

55.out: planetlab1.cs.ubc.ca 55 55 55 4 82 0 0 0

56.out: planetlab2.cs.ubc.ca 56 56 56 4 83 0 0 0

57.out: PlanetLab1.Millennium.Berkeley.EDU 57 57 87 3 84 30 0 0

58.out: PlanetLab2.Millennium.Berkeley.EDU 58 58 93 3 85 31 4 0

59.out: PlanetLab3.Millennium.Berkeley.EDU 59 59 96 3 86 32 5 0

60.out: Planetlab1.CS.UCLA.EDU 60 60 99 3 87 33 6 0

61.out: Planetlab2.CS.UCLA.EDU 61 61 102 3 88 34 7 0

62.out: planetlab1.ucsd.edu 62 62 105 3 89 35 8 0

63.out: planetlab2.ucsd.edu 63 63 108 3 90 36 9 0

64.out: planetlab3.ucsd.edu 64 64 111 3 91 37 10 0

60

65.out: planet1.cs.ucsb.edu 65 65 114 3 92 38 11 0

66.out: planet2.cs.ucsb.edu 66 66 117 3 84 39 12 0

67.out: planetlab1.cs.umass.edu 67 67 120 3 85 40 13 0

68.out: planetlab2.cs.umass.edu 68 68 123 3 86 41 14 0

69.out: planetlab1.cs.unc.edu 69 69 126 3 87 42 15 0

70.out: planetlab2.cs.unc.edu 70 70 129 3 88 43 16 0

71.out: planetlab1.cs.unibo.it 71 71 132 3 89 44 17 0

72.out: planetlab2.cs.unibo.it 72 72 135 3 90 45 18 0

73.out: planetlab1.cs.uiuc.edu 73 73 138 3 91 46 19 0

74.out: planetlab2.cs.uiuc.edu 74 74 141 3 92 47 20 0

75.out: planet-lab.cs.umd.edu 75 75 144 3 84 48 21 0

76.out: pl1.ece.toronto.edu 76 76 147 3 85 49 22 0

77.out: pl2.ece.toronto.edu 77 77 150 3 86 50 23 0

78.out: planetlab1.cs.virginia.edu 78 78 153 3 87 51 24 0

79.out: planetlab2.cs.virginia.edu 79 79 156 3 88 52 25 0

80.out: planetlab01.cs.washington.edu 80 80 159 3 89 53 26 0

81.out: planetlab02.cs.washington.edu 81 81 162 3 90 54 27 0

82.out: planetlab03.cs.washington.edu 82 82 165 3 91 55 28 0

83.out: planetlab1.cis.upenn.edu 83 83 168 3 92 56 29 0

84.out: planetlab2.cis.upenn.edu 84 84 432 2 3 75 66 57

85.out: planetlab-1.it.uu.se 85 85 445 2 1 76 67 58

86.out: planetlab-2.it.uu.se 86 86 455 2 2 77 68 59

87.out: planetlab3.flux.utah.edu 87 87 465 2 3 78 69 60

88.out: vn2.cs.wustl.edu 88 88 475 2 1 79 70 61

89.out: vn3.cs.wustl.edu 89 89 485 2 2 80 71 62

90.out: planetlab1.cs.wayne.edu 90 90 495 2 3 81 72 63

91.out: planetlab1.cs.wisc.edu 91 91 505 2 1 82 73 64

92.out: planetlab2.cs.wisc.edu 92 92 515 2 2 83 74 65

61

A.2 Functional Test 2

1.out: planetlab1.xeno.cl.cam.ac.uk 1 201 222 1 0 10 7 4

2.out: planetlab2.xeno.cl.cam.ac.uk 2 202 226 1 0 11 8 5

3.out: planetlab3.xeno.cl.cam.ac.uk 3 203 230 1 0 12 9 6

4.out: planetlab1.iis.sinica.edu.tw 4 4 4 2 1 0 0 0

5.out: planetlab2.iis.sinica.edu.tw 5 5 5 2 2 0 0 0

6.out: planetlab-01.bu.edu 6 6 6 2 3 0 0 0

7.out: planetlab-02.bu.edu 7 7 7 2 1 0 0 0

8.out: PLANETLAB-1.CMCL.CS.CMU.EDU 8 8 8 2 2 0 0 0

9.out: PLANETLAB-2.CMCL.CS.CMU.EDU 9 9 9 2 3 0 0 0

10.out: PLANETLAB-3.CMCL.CS.CMU.EDU 10 10 10 2 1 0 0 0

11.out: planetlab1.comet.columbia.edu 11 11 11 2 2 0 0 0

12.out: planetlab2.comet.columbia.edu 12 12 12 2 3 0 0 0

62

Appendix B

Functional Tests: Functional
Testing System Output

B.1 Functional Test 1: FT1.out

Functional Test Passed!
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Expected GP=4878, at highest level
Actual GP=4878, at highest level
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ID= 1, SP=201, GP=1626, level= 1 MST=N/A SAL[1]=85 SAL[2]=88 SAL[3]=91
ID= 2, SP=202, GP=1657, level= 1 MST=N/A SAL[1]=86 SAL[2]=89 SAL[3]=92
ID= 3, SP=203, GP=1595, level= 1 MST=N/A SAL[1]=84 SAL[2]=87 SAL[3]=90
ID= 4, SP= 4, GP= 4, level= 4 MST= 58
ID= 5, SP= 5, GP= 5, level= 4 MST= 59 10

ID= 6, SP= 6, GP= 6, level= 4 MST= 60
ID= 7, SP= 7, GP= 7, level= 4 MST= 61
ID= 8, SP= 8, GP= 8, level= 4 MST= 62
ID= 9, SP= 9, GP= 9, level= 4 MST= 63
ID=10, SP= 10, GP= 10, level= 4 MST= 64
ID=11, SP= 11, GP= 11, level= 4 MST= 65
ID=12, SP= 12, GP= 12, level= 4 MST= 66
ID=13, SP= 13, GP= 13, level= 4 MST= 67
ID=14, SP= 14, GP= 14, level= 4 MST= 68
ID=15, SP= 15, GP= 15, level= 4 MST= 69 20

ID=16, SP= 16, GP= 16, level= 4 MST= 70
ID=17, SP= 17, GP= 17, level= 4 MST= 71
ID=18, SP= 18, GP= 18, level= 4 MST= 72
ID=19, SP= 19, GP= 19, level= 4 MST= 73
ID=20, SP= 20, GP= 20, level= 4 MST= 74
ID=21, SP= 21, GP= 21, level= 4 MST= 75
ID=22, SP= 22, GP= 22, level= 4 MST= 76
ID=23, SP= 23, GP= 23, level= 4 MST= 77
ID=24, SP= 24, GP= 24, level= 4 MST= 78
ID=25, SP= 25, GP= 25, level= 4 MST= 79 30

ID=26, SP= 26, GP= 26, level= 4 MST= 80
ID=27, SP= 27, GP= 27, level= 4 MST= 81
ID=28, SP= 28, GP= 28, level= 4 MST= 82
ID=29, SP= 29, GP= 29, level= 4 MST= 83
ID=30, SP= 30, GP= 30, level= 4 MST= 57
ID=31, SP= 31, GP= 31, level= 4 MST= 58
ID=32, SP= 32, GP= 32, level= 4 MST= 59

63

ID=33, SP= 33, GP= 33, level= 4 MST= 60
ID=34, SP= 34, GP= 34, level= 4 MST= 61
ID=35, SP= 35, GP= 35, level= 4 MST= 62 40

ID=36, SP= 36, GP= 36, level= 4 MST= 63
ID=37, SP= 37, GP= 37, level= 4 MST= 64
ID=38, SP= 38, GP= 38, level= 4 MST= 65
ID=39, SP= 39, GP= 39, level= 4 MST= 66
ID=40, SP= 40, GP= 40, level= 4 MST= 67
ID=41, SP= 41, GP= 41, level= 4 MST= 68
ID=42, SP= 42, GP= 42, level= 4 MST= 69
ID=43, SP= 43, GP= 43, level= 4 MST= 70
ID=44, SP= 44, GP= 44, level= 4 MST= 71
ID=45, SP= 45, GP= 45, level= 4 MST= 72 50

ID=46, SP= 46, GP= 46, level= 4 MST= 73
ID=47, SP= 47, GP= 47, level= 4 MST= 74
ID=48, SP= 48, GP= 48, level= 4 MST= 75
ID=49, SP= 49, GP= 49, level= 4 MST= 76
ID=50, SP= 50, GP= 50, level= 4 MST= 77
ID=51, SP= 51, GP= 51, level= 4 MST= 78
ID=52, SP= 52, GP= 52, level= 4 MST= 79
ID=53, SP= 53, GP= 53, level= 4 MST= 80
ID=54, SP= 54, GP= 54, level= 4 MST= 81
ID=55, SP= 55, GP= 55, level= 4 MST= 82 60

ID=56, SP= 56, GP= 56, level= 4 MST= 83
ID=57, SP= 57, GP= 87, level= 3 MST= 84 SAL[1]=30
ID=58, SP= 58, GP= 93, level= 3 MST= 85 SAL[1]= 4 SAL[2]=31
ID=59, SP= 59, GP= 96, level= 3 MST= 86 SAL[1]= 5 SAL[2]=32
ID=60, SP= 60, GP= 99, level= 3 MST= 87 SAL[1]= 6 SAL[2]=33
ID=61, SP= 61, GP= 102, level= 3 MST= 88 SAL[1]= 7 SAL[2]=34
ID=62, SP= 62, GP= 105, level= 3 MST= 89 SAL[1]= 8 SAL[2]=35
ID=63, SP= 63, GP= 108, level= 3 MST= 90 SAL[1]= 9 SAL[2]=36
ID=64, SP= 64, GP= 111, level= 3 MST= 91 SAL[1]=10 SAL[2]=37
ID=65, SP= 65, GP= 114, level= 3 MST= 92 SAL[1]=11 SAL[2]=38 70

ID=66, SP= 66, GP= 117, level= 3 MST= 84 SAL[1]=12 SAL[2]=39
ID=67, SP= 67, GP= 120, level= 3 MST= 85 SAL[1]=13 SAL[2]=40
ID=68, SP= 68, GP= 123, level= 3 MST= 86 SAL[1]=14 SAL[2]=41
ID=69, SP= 69, GP= 126, level= 3 MST= 87 SAL[1]=15 SAL[2]=42
ID=70, SP= 70, GP= 129, level= 3 MST= 88 SAL[1]=16 SAL[2]=43
ID=71, SP= 71, GP= 132, level= 3 MST= 89 SAL[1]=17 SAL[2]=44
ID=72, SP= 72, GP= 135, level= 3 MST= 90 SAL[1]=18 SAL[2]=45
ID=73, SP= 73, GP= 138, level= 3 MST= 91 SAL[1]=19 SAL[2]=46
ID=74, SP= 74, GP= 141, level= 3 MST= 92 SAL[1]=20 SAL[2]=47
ID=75, SP= 75, GP= 144, level= 3 MST= 84 SAL[1]=21 SAL[2]=48 80

ID=76, SP= 76, GP= 147, level= 3 MST= 85 SAL[1]=22 SAL[2]=49
ID=77, SP= 77, GP= 150, level= 3 MST= 86 SAL[1]=23 SAL[2]=50
ID=78, SP= 78, GP= 153, level= 3 MST= 87 SAL[1]=24 SAL[2]=51
ID=79, SP= 79, GP= 156, level= 3 MST= 88 SAL[1]=25 SAL[2]=52
ID=80, SP= 80, GP= 159, level= 3 MST= 89 SAL[1]=26 SAL[2]=53
ID=81, SP= 81, GP= 162, level= 3 MST= 90 SAL[1]=27 SAL[2]=54
ID=82, SP= 82, GP= 165, level= 3 MST= 91 SAL[1]=28 SAL[2]=55
ID=83, SP= 83, GP= 168, level= 3 MST= 92 SAL[1]=29 SAL[2]=56
ID=84, SP= 84, GP= 432, level= 2 MST= 3 SAL[1]=57 SAL[2]=66 SAL[3]=75
ID=85, SP= 85, GP= 445, level= 2 MST= 1 SAL[1]=58 SAL[2]=67 SAL[3]=76 90

ID=86, SP= 86, GP= 455, level= 2 MST= 2 SAL[1]=59 SAL[2]=68 SAL[3]=77
ID=87, SP= 87, GP= 465, level= 2 MST= 3 SAL[1]=60 SAL[2]=69 SAL[3]=78
ID=88, SP= 88, GP= 475, level= 2 MST= 1 SAL[1]=61 SAL[2]=70 SAL[3]=79

64

ID=89, SP= 89, GP= 485, level= 2 MST= 2 SAL[1]=62 SAL[2]=71 SAL[3]=80
ID=90, SP= 90, GP= 495, level= 2 MST= 3 SAL[1]=63 SAL[2]=72 SAL[3]=81
ID=91, SP= 91, GP= 505, level= 2 MST= 1 SAL[1]=64 SAL[2]=73 SAL[3]=82
ID=92, SP= 92, GP= 515, level= 2 MST= 2 SAL[1]=65 SAL[2]=74 SAL[3]=83

B.2 Functional Test 2: FT2.out

Functional Test Passed!
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Expected GP=678, at highest level
Actual GP=678, at highest level
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ID= 1, SP=201, GP= 222, level= 1 MST=N/A SAL[1]=10 SAL[2]= 7 SAL[3]= 4
ID= 2, SP=202, GP= 226, level= 1 MST=N/A SAL[1]=11 SAL[2]= 8 SAL[3]= 5
ID= 3, SP=203, GP= 230, level= 1 MST=N/A SAL[1]=12 SAL[2]= 9 SAL[3]= 6
ID= 4, SP= 4, GP= 4, level= 2 MST= 1
ID= 5, SP= 5, GP= 5, level= 2 MST= 2 10

ID= 6, SP= 6, GP= 6, level= 2 MST= 3
ID= 7, SP= 7, GP= 7, level= 2 MST= 1
ID= 8, SP= 8, GP= 8, level= 2 MST= 2
ID= 9, SP= 9, GP= 9, level= 2 MST= 3
ID=10, SP= 10, GP= 10, level= 2 MST= 1
ID=11, SP= 11, GP= 11, level= 2 MST= 2
ID=12, SP= 12, GP= 12, level= 2 MST= 3

65

Appendix C

Stress Tests: Ethereal Output

C.1 Stress Test 1

Figure C.1: Test Case 1.

66

Figure C.2: Test Case 2.

C.2 Stress Test 2

Figure C.3: Test Case 1.

67

Figure C.4: Test Case 2.

C.3 Stress Test 3

Figure C.5: Test Case 1.1

68

Figure C.6: Test Case 1.2

Figure C.7: Test Case 2.1

69

Figure C.8: Test Case 2.2

Figure C.9: Test Case 3.1

70

Figure C.10: Test Case 3.2

71

Appendix D

Timing Tests Output

D.1 Timing Test 1

D.1.1 Test Case 1

1 endjoin.out :

started : Tue Jun 3 08:24:12 2003

finished: Tue Jun 3 08:24:13 2003

elapsed : 1.00 seconds

2 endjoin.out :

started : Tue Jun 3 08:24:13 2003

finished: Tue Jun 3 08:24:13 2003

elapsed : 0.00 seconds

3 endjoin.out :

started : Tue Jun 3 08:24:14 2003

finished: Tue Jun 3 08:24:14 2003

elapsed : 0.00 seconds

4 endjoin.out :

started : Tue Jun 3 08:24:16 2003

finished: Tue Jun 3 08:24:16 2003

elapsed : 0.00 seconds

5 endjoin.out :

started : Tue Jun 3 08:24:16 2003

finished: Tue Jun 3 08:24:17 2003

elapsed : 1.00 seconds

6 endjoin.out :

started : Tue Jun 3 08:24:16 2003

finished: Tue Jun 3 08:24:18 2003

elapsed : 2.00 seconds

7 endjoin.out :

started : Tue Jun 3 08:24:16 2003

finished: Tue Jun 3 08:24:20 2003

elapsed : 4.00 seconds

8 endjoin.out :

started : Tue Jun 3 08:24:16 2003

finished: Tue Jun 3 08:24:19 2003

elapsed : 3.00 seconds

9 endjoin.out :

started : Tue Jun 3 08:24:16 2003

finished: Tue Jun 3 08:24:25 2003

elapsed : 9.00 seconds

10 endjoin.out :

started : Tue Jun 3 08:24:16 2003

finished: Tue Jun 3 08:24:18 2003

elapsed : 2.00 seconds

11 endjoin.out :

started : Tue Jun 3 08:24:16 2003

finished: Tue Jun 3 08:24:27 2003

elapsed : 11.00 seconds

12 endjoin.out :

started : Tue Jun 3 08:24:16 2003

finished: Tue Jun 3 08:24:29 2003

elapsed : 13.00 seconds

13 endjoin.out :

started : Tue Jun 3 08:24:16 2003

finished: Tue Jun 3 08:24:18 2003

elapsed : 2.00 seconds

14 endjoin.out :

started : Tue Jun 3 08:24:17 2003

finished: Tue Jun 3 08:24:17 2003

elapsed : 0.00 seconds

15 endjoin.out :

started : Tue Jun 3 08:24:16 2003

finished: Tue Jun 3 08:24:19 2003

elapsed : 3.00 seconds

16 endjoin.out :

started : Tue Jun 3 08:24:16 2003

finished: Tue Jun 3 08:24:29 2003

72

elapsed : 13.00 seconds

17 endjoin.out : N/A (Failed)

18 endjoin.out :

started : Tue Jun 3 08:24:16 2003

finished: Tue Jun 3 08:24:29 2003

elapsed : 13.00 seconds

19 endjoin.out :

started : Tue Jun 3 08:24:16 2003

finished: Tue Jun 3 08:24:26 2003

elapsed : 10.00 seconds

20 endjoin.out :

started : Tue Jun 3 08:24:16 2003

finished: Tue Jun 3 08:24:20 2003

elapsed : 4.00 seconds

21 endjoin.out :

started : Tue Jun 3 08:24:17 2003

finished: Tue Jun 3 08:24:28 2003

elapsed : 11.00 seconds

22 endjoin.out :

started : Tue Jun 3 08:24:17 2003

finished: Tue Jun 3 08:24:23 2003

elapsed : 6.00 seconds

23 endjoin.out :

started : Tue Jun 3 08:24:17 2003

finished: Tue Jun 3 08:24:31 2003

elapsed : 14.00 seconds

24 endjoin.out :

started : Tue Jun 3 08:24:17 2003

finished: Tue Jun 3 08:24:26 2003

elapsed : 9.00 seconds

25 endjoin.out :

started : Tue Jun 3 08:24:17 2003

finished: Tue Jun 3 08:24:19 2003

elapsed : 2.00 seconds

26 endjoin.out :

started : Tue Jun 3 08:24:17 2003

finished: Tue Jun 3 08:24:28 2003

elapsed : 11.00 seconds

27 endjoin.out :

started : Tue Jun 3 08:24:17 2003

finished: Tue Jun 3 08:24:28 2003

elapsed : 11.00 seconds

28 endjoin.out :

started : Tue Jun 3 08:24:17 2003

finished: Tue Jun 3 08:24:29 2003

elapsed : 12.00 seconds

29 endjoin.out :

started : Tue Jun 3 08:24:17 2003

finished: Tue Jun 3 08:24:32 2003

elapsed : 15.00 seconds

30 endjoin.out : N/A (Failed)

31 endjoin.out :

started : Tue Jun 3 08:24:17 2003

finished: Tue Jun 3 08:24:28 2003

elapsed : 11.00 seconds

32 endjoin.out :

started : Tue Jun 3 08:24:17 2003

finished: Tue Jun 3 08:24:20 2003

elapsed : 3.00 seconds

33 endjoin.out :

started : Tue Jun 3 08:24:17 2003

finished: Tue Jun 3 08:24:34 2003

elapsed : 17.00 seconds

34 endjoin.out :

started : Tue Jun 3 08:24:17 2003

finished: Tue Jun 3 08:24:21 2003

elapsed : 4.00 seconds

35 endjoin.out :

started : Tue Jun 3 08:24:17 2003

finished: Tue Jun 3 08:24:21 2003

elapsed : 4.00 seconds

36 endjoin.out :

started : Tue Jun 3 08:24:17 2003

finished: Tue Jun 3 08:24:21 2003

elapsed : 4.00 seconds

37 endjoin.out :

started : Tue Jun 3 08:24:17 2003

finished: Tue Jun 3 08:24:23 2003

elapsed : 6.00 seconds

38 endjoin.out :

started : Tue Jun 3 08:24:18 2003

finished: Tue Jun 3 08:24:23 2003

elapsed : 5.00 seconds

39 endjoin.out :

started : Tue Jun 3 08:24:19 2003

finished: Tue Jun 3 08:24:25 2003

elapsed : 6.00 seconds

40 endjoin.out :

started : Tue Jun 3 08:24:19 2003

finished: Tue Jun 3 08:24:25 2003

elapsed : 6.00 seconds

73

D.1.2 Test Case 2

1 endleave.out : N/A (Killed)

2 endleave.out : N/A (Killed)

3 endleave.out : N/A (Killed)

4 endleave.out :

started : Tue Jun 3 08:25:17 2003

finished: Tue Jun 3 08:25:17 2003

elapsed : 0.00 seconds

5 endleave.out :

started : Tue Jun 3 08:25:17 2003

finished: Tue Jun 3 08:25:20 2003

elapsed : 3.00 seconds

6 endleave.out :

started : Tue Jun 3 08:25:17 2003

finished: Tue Jun 3 08:25:18 2003

elapsed : 2.00 seconds

7 endleave.out :

started : Tue Jun 3 08:25:17 2003

finished: Tue Jun 3 08:25:19 2003

elapsed : 2.00 seconds

8 endleave.out :

started : Tue Jun 3 08:25:17 2003

finished: Tue Jun 3 08:25:17 2003

elapsed : 0.00 seconds

9 endleave.out :

started : Tue Jun 3 08:25:17 2003

finished: Tue Jun 3 08:25:18 2003

elapsed : 1.00 seconds

10 endleave.out :

started : Tue Jun 3 08:25:17 2003

finished: Tue Jun 3 08:25:18 2003

elapsed : 1.00 seconds

11 endleave.out :

started : Tue Jun 3 08:25:17 2003

finished: Tue Jun 3 08:25:18 2003

elapsed : 1.00 seconds

12 endleave.out :

started : Tue Jun 3 08:25:17 2003

finished: Tue Jun 3 08:25:19 2003

elapsed : 2.00 seconds

13 endleave.out :

started : Tue Jun 3 08:25:17 2003

finished: Tue Jun 3 08:25:17 2003

elapsed : 0.00 seconds

14 endleave.out :

started : Tue Jun 3 08:25:17 2003

finished: Tue Jun 3 08:25:17 2003

elapsed : 0.00 seconds

15 endleave.out :

started : Tue Jun 3 08:25:17 2003

finished: Tue Jun 3 08:25:18 2003

elapsed : 1.00 seconds

16 endleave.out :

started : Tue Jun 3 08:25:17 2003

finished: Tue Jun 3 08:25:17 2003

elapsed : 0.00 seconds

17 endleave.out : N/A

18 endleave.out :

started : Tue Jun 3 08:25:17 2003

finished: Tue Jun 3 08:25:17 2003

elapsed : 0.00 seconds

19 endleave.out :

started : Tue Jun 3 08:25:18 2003

finished: Tue Jun 3 08:25:18 2003

elapsed : 0.00 seconds

20 endleave.out :

started : Tue Jun 3 08:25:18 2003

finished: Tue Jun 3 08:25:19 2003

elapsed : 1.00 seconds

21 endleave.out :

started : Tue Jun 3 08:25:17 2003

finished: Tue Jun 3 08:25:18 2003

elapsed : 1.00 seconds

22 endleave.out :

started : Tue Jun 3 08:25:17 2003

finished: Tue Jun 3 08:25:19 2003

elapsed : 2.00 seconds

23 endleave.out :

started : Tue Jun 3 08:25:17 2003

finished: Tue Jun 3 08:25:18 2003

elapsed : 1.00 seconds

24 endleave.out :

started : Tue Jun 3 08:25:17 2003

finished: Tue Jun 3 08:25:17 2003

elapsed : 0.00 seconds

25 endleave.out :

74

started : Tue Jun 3 08:25:18 2003

finished: Tue Jun 3 08:25:18 2003

elapsed : 0.00 seconds

26 endleave.out :

started : Tue Jun 3 08:25:17 2003

finished: Tue Jun 3 08:25:17 2003

elapsed : 0.00 seconds

27 endleave.out :

started : Tue Jun 3 08:25:17 2003

finished: Tue Jun 3 08:25:17 2003

elapsed : 0.00 seconds

28 endleave.out :

started : Tue Jun 3 08:25:18 2003

finished: Tue Jun 3 08:25:19 2003

elapsed : 1.00 seconds

29 endleave.out :

started : Tue Jun 3 08:25:18 2003

finished: Tue Jun 3 08:25:20 2003

elapsed : 2.00 seconds

30 endleave.out : N/A

31 endleave.out :

started : Tue Jun 3 08:25:17 2003

finished: Tue Jun 3 08:25:17 2003

elapsed : 0.00 seconds

32 endleave.out :

started : Tue Jun 3 08:25:18 2003

finished: Tue Jun 3 08:25:18 2003

elapsed : 0.00 seconds

33 endleave.out :

started : Tue Jun 3 08:25:18 2003

finished: Tue Jun 3 08:25:18 2003

elapsed : 0.00 seconds

34 endleave.out :

started : Tue Jun 3 08:25:18 2003

finished: Tue Jun 3 08:25:19 2003

elapsed : 1.00 seconds

35 endleave.out :

started : Tue Jun 3 08:25:18 2003

finished: Tue Jun 3 08:25:18 2003

elapsed : 0.00 seconds

36 endleave.out :

started : Tue Jun 3 08:25:17 2003

finished: Tue Jun 3 08:25:18 2003

elapsed : 1.00 seconds

37 endleave.out :

started : Tue Jun 3 08:25:18 2003

finished: Tue Jun 3 08:25:19 2003

elapsed : 1.00 seconds

38 endleave.out :

started : Tue Jun 3 08:25:18 2003

finished: Tue Jun 3 08:25:19 2003

elapsed : 1.00 seconds

39 endleave.out :

started : Tue Jun 3 08:25:19 2003

finished: Tue Jun 3 08:25:21 2003

elapsed : 2.00 seconds

40 endleave.out :

started : Tue Jun 3 08:25:19 2003

finished: Tue Jun 3 08:25:19 2003

elapsed : 0.00 seconds

75

	Introduction
	Peer-to-Peer Systems
	Peer-to-Peer Concept
	Peer-to-Peer Systems Definition
	Overview of the Peer-to-Peer Systems

	The FROST System
	Limitations of the FROST System
	Problem Statement

	Join/Leave Protocol Concepts
	FROST Architecture Model
	Node Data

	Join/Leave Protocol Implementation
	The Task
	Purpose
	Corrections to the Analysis
	Quality Goals

	Technical Platform
	Architecture
	Process Architecture
	Component Architecture

	Model Component
	Structure
	Classes

	Function Component
	Structure
	Classes

	System Interface Component
	Connection Class

	User Interface Component

	Join/Leave Protocol Testing
	Equipment
	Cluster at Aalborg University
	PlanetLab
	Functional Tests
	Stress Tests
	Timing Tests

	Test Description
	Functional Tests
	Stress Tests
	Timing Tests

	Test Results Analysis
	Functional Tests
	Stress Tests
	Timing Tests

	Conclusion
	Implementation
	Testing
	Further Work

	Functional Tests: Actual Output
	Functional Test 1
	Functional Test 2

	Functional Tests: Functional Testing System Output
	Functional Test 1: FT1.out
	Functional Test 2: FT2.out

	Stress Tests: Ethereal Output
	Stress Test 1
	Stress Test 2
	Stress Test 3

	Timing Tests Output
	Timing Test 1
	Test Case 1
	Test Case 2

