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Preface
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of February to the 10th of June, 2003.

In the report we follow some general conventions which the reader should
be familiar with before proceeding. The references in the report are marked
with a number corresponding to the numbers in the literature list like [17].
Certain phrases are abbreviated. The abbreviation appears in parenthesis after
the full phrase, for example “... Hierarchical Agglomerative Clustering (HAC) is
...". Attribute names in-lined in the text will be written in bold font. /talics are
used to mark the introduction of a new technical term and the term can be
expected to be explained short after.

| would like to thank my supervisor Jose M. Pefia for his great help, guidance
and valuable comments in this project.
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Introduction

This paper introduces a model-based clustering algorithm, which uses Bayesian
networks as models, and documents investigation on its properties. As clustering
is one of the thechniques used in data mining, this work can bee seen as a
continuation of a data mining project implemented in cooperation with the textile
company Green House during KDE3 course [18].

1.1 Data mining

Data mining or knowledge discovery in databases is a fairly young research area
that has emerged as a reply to the flood of data we are faced with nowadays.
It tries to meet the challenge to develop methods that can help human be-
ings to discover useful patterns in their data. Data mining can be defined as
the non-trivial extraction of implicit, previously unknown, and potentially useful
information from data [11].

Data mining has its applications within science and research as well as in the
industry and in business applications. It suits perfectly within application areas
where there is a huge amount of factors each affecting the application area. The
biology and medical research societies which deal with a huge amount of data
such as DNA-profiles, diseases, symptoms, blood-types and drugs, have been us-
ing data mining with success. Data mining has also been dragging attention from
the common business areas such as supermarkets and mobile phone providers.
The following is an often referred example of a successful application of data
mining performed by an American supermarket chain. It illustrates how the pro-
cess of examining raw data, drawing mature conclusions and as a consequence,
deploying the result in the business can result in an improved understanding of a
business. Moreover, the resulting knowledge increased profit for the supermarket.
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1.2 Predictive and descriptive models

“For example, one Midwest grocery chain used the data mining capac-
ity of Oracle software to analyze local buying patterns. They discov-
ered that when men bought diapers on Thursdays and Saturdays, they
also tended to buy beer... The retailer concluded that they purchased
the beer to have it available for the upcoming weekend. The grocery
chain could use this newly discovered information in various ways to
increase revenue. For example, they could move the beer display closer
to the diaper display.” [25]

1.2 Predictive and descriptive models

A successful data mining process applied on a database ends in knowledge, which
is called a model and is a high level, global description of a data set. According
to their final goal, data mining techniques can be considered to be predictive or
descriptive.

A predictive model uses existing data to predict some response of interest.
For instance, a credit card company may want to engage in a predictive model in
order to identify the transactions that are thought most likely to be fraudulent.
Thus, predictive models are learned by processing an existing set of data and
should be able to predict some circumstances regarding yet unseen data.

As opposed to the predictive model, a descriptive model is not used to pre-
dict or classify yet unseen data. It tries to give a short summarized and human
understandable description of an existing data set. Descriptive models are well
suited to analyze characteristics of certain populations, e.g. in medical science or
in business analyzing various factors concerning a group of people could make it
possible to detect abnormalities, such as people who suffer from a certain disease
or subpopulations requiring more specific marketing.

1.3 Clustering

One way to generate a descriptive model is by use of clustering. Clustering is
the search for the description of group-structure underlying some given data. In
some cases the description is a partition of the data, the other times is a model
of the generative mechanism underlying the data.

Discovering groups in the data makes sense only if such groups exist. There-
fore, clustering is based on the assumption that the data is generated by an
underlying model which is responsible for such groups. Existing clustering ap-
proaches can be divided into two main categories: partitional approaches that
attempt to find the groups of instances generated by the same model and
probabilistic/model-based approaches that attempt to learn generative models
from the data, with each corresponding to one particular cluster.

In general, two main problems are encountered while clustering. First, the
number of underlying clusters has to be found and second, the clusters need a
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Chapter 1: Introduction

description. We aim to propose a clustering algorithm that employes the model-
based approach and can cope with the mentioned problems.

In this paper, we present a model-based hierarchical clustering algorithm
that uses directed graphical models (Bayesian networks) to describe clusters.
The method applies an agglomerative clustering procedure to discover the most
probable set of clusters and employes a partitioning method to get the initial
partitions. The introduced algorithm results in a dendogram where each cluster
is represented by a Bayesian network, thus enables us to exploit the advantages
of Bayesian networks.

The report is organized as follows. In Chapter 2, we give the necessary back-
ground in clustering. An overview of graphical models and particularly Bayesian
networks as well as learning them from data is given in Chapter 3. In Chapter
4 we define the model-based hierarchical clustering algorithm using Bayesian
networks. Chapter 5 discusses the experimental results for real-world data. We
conclude in Chapter 6. The possible directions for future work are presented in
Chapter 7.
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Clustering

As described in Section 1.3 clustering is one of the possible ways to generate
a descriptive model. In this chapter we will discuss clustering and its different
approaches. k-means algorithm and hierarchical clustering techniques will be
examined as they will be involved in the clustering algorithm proposed in Chapter
4.

2.1 Clustering

As we have already mentioned, clustering is the search for the description of
group-structure underlying some given data where the description can be either
a partition of the data or a model of the generative mechanism underlying the
data. It is clear that it only makes sense to identify groups if some groups exists.
Therefore, clustering is based on the assumption that the data is generated by an
underlying model which is responsible for such groups. Specifically, the purpose
of clustering is to gain more information about this model. Figure 2.1 depicts
a mechanism which is often used to explain the underlying model. It consists
of a selector, a number of physical processes and the data set. The assumption
is that each instance in the data set is generated by this mechanism. For each
instance the selector selects one and only one of the physical processes. The
physical process then generates each attribute value of the instance, based on
an unknown probability distribution. In the end, all the instances generated by
one physical process are assumed to belong to the same cluster. The clusters and
the physical processes remain unknown or hidden, i.e. it is unknown by which of
the physical processes and how a specific instance was generated.

More specifically, cluster analysis in this report is based on the following
assumptions:

1. Clustering is applied to a data set D containing N instances d; ...dy.
Each instance d; is a vector of p values d; . .. d;, where each value belongs
to one of the variables A7 ... A, of the data set.

Page 5 of 51



2.1 Clustering
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Figure 2.1: The underlying assumption: Each instance in the data set is generated
by a physical process, selected by a selector which remains unknown for us.
Physical processes as well as their number are also unknown.

2. Each instance d; € D is a member of one and only one of the underlying
hidden clusters C = {ci,...cx}. The membership is represented by the
label I; assigned to each d;. This label is unknown for us (hidden cluster
membership).

3. D is generated by an underlying model consisting of & physical processes
which, together with the selector are represented by a joint probability
distribution.

In general, when clustering, one encounters two main problems. First the
number of underlying clusters (k) has to be found and second, the clusters need
a description. The description of the clusters, or the model, must be optimal with
respect to some measurement function which assigns a score to each possible
description. This measurement is based on an intuitive understanding of the term
""being similar" which is referred to as the clustering criterion. If this criterion is
translated into a mathematical formula which measures the homogeneity within
each cluster, the clustering problem is left as a search for the description that
yields the most homogeneous clusters. There exist two classical descriptions of
the clusters, partitional and probabilistic, also called model-based. Partitional
data clustering covers all the approaches which describe the data set by separat-
ing it into k& non-empty, exhaustive and mutually exclusive subsets of instances
which are similar to each other according to the clustering criterion. The prob-
abilistic descriptions however, describe the clusters by modeling the mechanism
that generated the data. After identifying a number of clusters it recovers the
different probability distributions assigned to each of the physical processes and
the selectors [27].
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Chapter 2: Clustering

2.2 Partitional data clustering

Due to the lack of a priori knowledge of the mechanism that caused the instances
grouped in D, partitional data clustering involves a very simple definition of the
description of the clusters that exist in a data set D. Partitional data clustering
describes each cluster of D by means of the set of instances. This way the
partitional approach reduces data clustering to completing every instance of the
original unlabelled database D with the label of the cluster whose physical process
generated the instance.

Some researchers introduce a subdivision of the methods in partitional data
clustering into groups of partitioning and hierarchical methods.

The partitioning methods attempt to directly decompose the data into disjoint
clusters: first creates an initial partition of k groups, then it uses an iterative
relocation technique that attempts to improve the partitioning by moving objects
from one group to another.

In a hierarchical clustering the data are not partitioned into a particular num-
ber of clusters at a single step. Instead the clustering consists of nested partitions
which may run from a single cluster containing all individuals, to N clusters each
containing a single individual.

2.2.1 Partitioning algorithms

Further we will present k-means algorithm which is the most popular approach
in data partitioning algorithms [14].

k-means algorithm

In k-means each cluster c; is represented by a cluster centroid, T;, which is the
n-dimensional mean vector of values z;1,...x;, each corresponding to one of
the attributes A; ... A,,. The clustering criterion which the k-means algorithm
is based on is a distance measure. A common choice for continuous data is the
Euclidean distance function. Other distance measurement functions may be more
appropriate for different data types. In some cases the distance measurement
function is called similarity measurement function refering to the fact that when
the distance between a set of instances is low they are said to be similar.

The similarity measurement allows the assignment of an instance to a cluster
with similar instances. This is determined by finding the nearest cluster centroid.
The centroid can be defined as:

1
T = (%i1, - - - Tip) = ﬁZd (2.1)
¢ dec;

where N; is the number of instances in cluster i, N; > 0, and d is a vector
that represents an instance of cluster ¢;. The formula calculates the centroid by
summing the instances (vectors) of the clusters and dividing it by the number
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2.2 Partitional data clustering

of the instances in the cluster.

The pseudo-code for k-means algorithm follows:
The algorithm: k-means. For partitioning based on the centroids of the clusters.

Input: The number of clusters k and N instances of a database (dy,...,dn).
Output: A set of k clusters (c1, . .. ck).
Method:

select randomly k instances as initial cluster centroids;
repeat
For every instance in the database and preserving the instances order Do
Re(assign) the instance to the nearest cluster to it;
If the instance changes its cluster, recalculate the
centroids of the previous and current cluster;
until no instance can change its cluster or some stop criterion is met.

Drawbacks of k-means algorithm

Despite being widely used, the k-means algorithm is not exempt from drawbacks.
The most important drawbacks, which are extensively reported in the literature
are listed below:

e As many clustering algorithms, the k-means algorithm assumes that the
number of clusters k in the database is known beforehand which, is not
necessarily true in real-world applications.

e As an iterative technique, the k-means algorithm is especially sensitive to
initial starting conditions: initial clusters and order of instances [21] [26].

e The k-means algorithm converges typically to a local minima. The running
of the algorithm defines a deterministic mapping from the initial solution
to the final one [34].

2.2.2 Hierarchical algorithms

There are two kinds of hierarchical clustering techniques: the agglomerative and
the divisive. They construct their hierarchy in the oposite direction, possibly
yielding quite different results. Agglomerative methods follow bottom-up strat-
egy and start having all objects apart, that is in the beginning we have N clusters.
Then in each step two cluster are merged, until only one is left. On the other
hand, divisive methods follow top-down approach when in the beginning all ob-
jects are in one cluster and each following step a cluster is split up, until there
are N of them. Hierarchical clusterings may be represented by a two-dimensional
diagram known as dendrogram which illustrates the fusions or divisions made at
each successive stage of analysis. An example of such a diagram for data set
with N =5 instances is given in Figure 2.2.
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Chapter 2: Clustering

0step 1step  2step  3step  Astep
| | | |

) agglomerative

| | | | | divisive

4 step 3step 2 step 1step 0 step

Figure 2.2: Hierarchical clustering of the set {a,b,c,d, e}

Of the two types of hierarchical clustering scheme, the agglomerative methods
are far more widely used. Divisive algorithms have been much less used than
agglomeratives due to, in principle, their much bigger computational complexity
and requirements for computer resources. For example, the first step of the
agglomerative algorithm is to check which pair of objects should be merged and
makes a total of:

N(N —1)

> (2.2)

evaluations. However, the first step of divisive algorithm has to look for all
possible splittings into two and makes a total of:

N1 _ 1 (2.3)

evaluations. Obviously it is impossible to make it with databases of relatively
large size. Because of this reason divisive algorithms have received less studies and
interest from the researchers [20]. From now on we focus only on agglomerative
algorithms.

An agglomerative hierarchical clustering procedure produces a series of parti-
tions of the data, Py, Py_1,..., P1. The first, Py, consists of N single-member
clusters while the last, P;, consists of a single group containing all N individu-
als. At each particular stage the methods fuse individuals or groups of individuals
which are closest (or most similar).

The basic operation of hierarchical agglomerative clustering (HAC) proce-
dures is outlined:

1. Start by assigning each instance to its own cluster, compute distances
(similarities) between the formed clusters.
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2.2 Partitional data clustering

2. Find the closest (most similar) pair of clusters and merge them into a
single cluster and decrement the number of clusters by one.

3. Compute distances (similarities) between the new cluster and each of the
old clusters.

4. Repeat steps 2 and 3 until all instances are clustered into a single cluster.

Differences between methods arise because of the different ways of defining
distance (or similarity) between an individual and a group containing several
individuals, or between two groups of individuals.

Single linkage clustering

One of the simplest agglomerative hierarchical clustering method is single linkage
also often known as the nearest neighbour technique [9]. The defining feature
of the method is that distance between groups is defined as that of the closest
pair of individuals, where only pairs consisting of one individual from each group
are considered. This measure of inter-group distance is illustrated in Figure 2.3.
The single linkage method is closely related to certain aspects of graph theory.

Cluster A

Cluster B

*
*

% ¥
*

Figure 2.3: Single linkage distance

Complete linkage clustering

The complete linkage or furthest neighbour clustering method is the opposite of
single linkage in the sense that distance between groups is now defined as that
of the most distant pair of individuals, one from each group. The measure is
illustrated in Figure 2.4.

Group-average clustering

Here the distance between two clusters is defined as the average of the distances
between all pairs of individuals that are made up of one individual from each

group.
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Chapter 2: Clustering

Cluster B

* %
*

Figure 2.4: Complete linkage distance

Centroid clustering

With this method, groups once formed are represented by their mean values for
each variable, that is, their mean vector, and inter-group distance is now defined
in terms of distance between two such mean vectors.

A disadvantage of this method is that if the sizes of the two groups to be
fused are very different then the centroid of the new group will be very close to
that of the larger group and will remain within that group. The characteristic
properties of the smaller group then are virtually lost.

Median clustering

The method assumes that the groups to be fused are of equal size. The apparent
position of the new group will then always be between the two groups to be fused.
Moreover if the centroids of the groups to be fused are represented by ¢; and ¢;,
then the distance of the centroid of the third group cj, from the group formed
by the fusion of ¢; and ¢; lies along the median of the triangle defined by ¢;, ¢;
and Chp.-

Ward’s hierarchical clustering method

Ward [39] proposed a clustering procedure seeking to form the partitions Py,
Pyn_1,..., P inamanner that minimizes the loss associated with each grouping,
and to quantify that loss in a form that is readily interpretable. At each step in
the analysis, the union of every possible pair of clusters is considered and the
two clusters whose fusion results in the minimum increase in information loss are
combined.

Information loss is defined by Ward in terms of an error sum-of-squares crite-
rion, ESS. The rationale behind Ward’s proposal can be illustrated most simply
by considering univariate data. The loss of information having univariate data is
given by
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2.3 Model-based data clustering

k
ESS = Z Z (‘Tj - 'T_i)2a (2'4)

i=1 z;€c4

where & is the number of clusters, ¢; is cluster ¢, Z; denotes a mean of cluster

Properties and problems of agglomerative hierarchical clustering tech-
niques

A hierarchical method suffers from the defect that it can never repair what was
done in previous steps. Once an agglomerative algorithm has joined two objects,
they cannot be separated anymore. This rigidity of hierarchical agglomerative
methods is both the key to its success as it leads to small computation times
and its main disadvantage - the inability to correct erroneous decisions. On
the other hand, hierarchical techniques do not really compete with partitioning
methods because they do not pursue the same goal, as they try to describe the
data in a totally different way [19].

Empirical studies point to Ward's method, group average and complete link-
age as the most useful in practice, although the results are not clear out, and it
was found that no single method could be claimed superior for all types of data
[9].

It is often the case, when hierarchical clustering techniques are used in prac-
tice, that the investigator is not interested in the complete hierarchy but only
in one or two partitions obtained from it. In hierarchical clustering, partitions
are achieved by 'cutting’ the dendrogram or selecting one of the solutions in the
nested sequence of clusterings that comprise the hierarchy. A number of appli-
cations have been suggested for this purpose but it remains a difficult problem.

2.3 Model-based data clustering

Despite the partitional approach to data clustering is broadly considered as a
useful tool in many fields, it is well known that it sometimes suffers from the
lack of theoretical basis. Thus model-based approach to data clustering gains an
advantage over partitional approach due to its statistically well established root
[1].

In model-based data clustering, the objective is to learn generative models
from the data with each model component corresponding to one particular clus-
ter. Model-based data clustering does not perform a completion of the unlabelled
database D as every case may be seen as belonging to each of the k clusters
with certain probability, due to the probabilistic nature of their description.

When facing data clustering from the model-based perspective, the data clus-
tering criterion is usually a measure of closeness between the true joint probability
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Chapter 2: Clustering

distributions that represent the mechanism that produced the data and the set
of joint probability distributions being evaluated as description of this mecha-
nism. As the true joint probability distributions are not available, the closeness
is indirectly measured with the help of D. That is, the data clustering criterion
usually reduces to assesing how likely it is that D was generated by the set of
joint probability distributions being evaluated as description of the underlying
clusters of D [28].

The most classical solution to model-based data clustering is based on the
theory of finite mixture models [8]. Despite the solid statistical background of
finite mixture models in general and for probabilistic data clustering in particular,
the high-dimensional manipulations and computations that they usually involve
make them impractical in some cases and unattractive in some others. One of
the paradigms that can help us to prevent the referred drawbacks and encode a
joint probability distribution is the Bayesian network paradigm [17].

It is often the case that model-based clustering algorithms incorporate par-
titional clustering methods. As we mentioned in Chapter 1 the model-based
clustering algorithm we propose will employ HAC approach for finding the most
probable set of clusters. Involvement of HAC in model-based data clustering is
not a novel idea. Model-based HAC algorithm has been explored by Banfield and
Raftery [2] and Fraley [10] using Gaussian model components, by Vaithyanathan
and Dom [38] using multinomial models for clustering documents. Ramoni et
al. [31] present a Bayesian method for clustering dynamic processes where they
apply a HAC to discover the most probable set of clusters capturing different
dynamics.

The forthcoming chapter introduces Bayesian networks.
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Bayesian
networks

It is important to have knowledge discovering techniques that allow flexibility
in the way knowledge can be encoded, represented and discovered. Probabilistic
graphical models offer such a technique as they are a framework for structur-
ing, representing and decomposing a problem using the notion of conditional
independence.

We start this chapter by a short introduction to graphical models. Later on
we only discuss directed graphical models, i.e. Bayesian networks.

3.1 Graphical models

Probabilistic graphical models are graphs in which nodes represent random vari-
ables, and the (lack of) arcs represent conditional independence assumptions.
Hence they provide a compact representation of joint probability distributions.
Graphical models are subdivided into undirected and directed according to their
definition of independence. In undirected graphical models, also called Markov
random fields or Markov networks, conditional independence is based on presence
or absence of arcs. The notion of independence for directed graphical models,
also called Bayesian networks or belief networks, is more complicated as it takes
into account the directionality of arcs.

Although directed graphical models have a more complicated notion of in-
dependence than undirected models, they have several advantages. The most
important one is that one can regard an arc from A to B as indicating that A
causes B. This can be used as a guide to construct the graph structure when the
structure is learned by domain experts. In addition, directed models can encode
deterministic relationships and are easier to learn (fit to data) [23].

Graphical models are popular because of graphs that provide a structural view

Page 15 of 51



3.2 Bayesian networks

of a probability distribution without getting lost in the mathematical details,
thus make graphical models easily understood by human beings. Another nice
property that distinguishes graphical models from other approaches (such as
regression, decision trees, rules) is that they are independent of the choice of
the target variable, so they can be used as a problem independent knowledge
representation.

3.2 Bayesian networks

A Bayesian network (BN) for a random variable X = (X3, ..., X,,) consists of:

e A directed acyclic graph (DAG) G over X encoding the conditional (in)dependencies
between the random variables of X (i.e., model structure).

e A set of parameters O¢ for the local probability distributions imposed by
the model structure (i.e., model parameters).

The semantics of a BN is that the joint probability distribution of X can be
factored into the product of conditional probability distributions of each variable
X; given the set of its parents ;. A BN represents a joint probability distribution
for X as follows:

p(z|O¢, G) = Hp(xi\a:m,@i,G). (3.1)

=1

This factorization formalizes the graphical intuition that X; depends on its
parents: given its parents, X; is conditionally independent of all other variables
which are not descendants of X;. The set of parameters governing the condi-
tional distribution which relates X, to X; is denoted by ©;, while the set of all
parameters in the BN is denoted O = (04, ...,05).

Consider the example in Figure 3.1. Here, nodes represent random binary
variables. We can see that the event “grass is wet” (W = true) has two possible
causes: either the water sprinkler is on (S = true) or it is raining (R = true).
The strength of this relationship is shown in the model parameters. For example,
we see that P(W = true|S = true, R = false) = 0.9 (second entry of second
row), and hence, P(W = false|S = true, R = false) =1 —0.9 = 0.1, since
each row must sum to one. Since the node C' has no parents, the prior probability
for being cloudy is specified (in this case, 0.5).

The simplest conditional independence relationship encoded in a BN can be
stated as follows: a node is independent of its ancestors given its parents, where
the ancestor/parent relationship is with respect to some fixed topological ordering
of the nodes.
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Chapter 3: Bayesian networks

P(C=T) P(C=F)
05 05

S R |P(W=T) P(W=F)
TT| 099 o001

TF| 09 0.1
FT| 09 0.1
FF| 00 1.0

Figure 3.1: A simple BN

By the chain rule of probability, the joint probability of all the nodes in Figure
31is

P(C,S,R,W) = P(C) « P(S|C) « P(R|C,S) *x P(W|C, S, R) (3.2)
By using conditional independence relationships, we can rewrite this as
P(C,S,R,W) = P(C) = P(S|C) « P(R|C) « P(W|S, R) (3.3)

where we were allowed to simplify the third term because R is independent of S
given its parent C, and the last term because W is independent of C given its
parents S and R.
BNs have two main advantages over other paradigms for knowledge/uncer-
tainty representation. These are provision of insight into the conditional (in)dependencies
in the problem domain and ability to perform efficient and effective reasoning
under uncertainty.
The ability to combine two different sources of information, domain experts
and data, for learning structure and parameters is another quality of BNs.

3.3 Learning Bayesian networks from data

Learning a BN can be separated into two tasks: (1) structure learning, i.e., iden-
tifying the topology of the network, and (2) parameter learning, i.e., determining
the associated joint probability distribution for a given network topology [30].
The former task is considered to be more challenging than the latter.
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3.3 Learning Bayesian networks from data

Two main sources of information to learn structure and parameters of a BN
exist: domain experts and data. Most often, however, the structure is provided by
domain experts alone. The probability tables, on the other hand, are often gen-
erated from data using a variety of statistical methods. However, this does not
mean that the probabilities may only be based on statistics. Equally, the proba-
bility tables can be generated on the base of subjective assessments by domain
experts. Combining expert knowledge and statistical methods often provides the
best practical solution to constructing robust models.

In the remainder of this report, we will only discuss learning BNs from data.
Moreover, we restrict our discussion to only learning BNs from complete data as
we assume that data have no missing values.

3.3.1 Structure learning

The goal of structure learning is to learn a DAG that best explains the data. It
was shown that the problem is NP-hard since the number of DAGs on n variables
is super-exponential in n [4].

The model structure learning algorithms can be divided into two main groups:
dependency analysis algorithms based on detecting conditional (in)dependencies
and search and scoring/model selection algorithms based on problem optimiza-
tion, according to their nature.

Dependency analysis

The dependency analysis approach performs a series of tests of conditional in-
dependence on the sample, and uses the results to construct the set of DAGs
that most closely implies the results of tests. If the time order of the variables is
known, the output is a single DAG.

Probably the most spread BN structure learning algorithm based on detecting
conditional (in)dependencies is PC algorithm introduced by Spirtes and Glymour
[37].

PC algorithm

The PC algorithm learns a BN by starting from a complete undirected graph.
In the first pass, the algorithm removes each link if the end nodes of the link
are marginally independent. In the second pass, it removes each link if the end
nodes of the link are independent conditioned on a third node. In each of the
following passes, it removes each link if the end points of the link are independent
conditioned on a subset of nodes of higher order until a stopping condition is
met. Finally, the arcs are oriented in order to obtain a DAG.

Let Adjacencies(C, A) be the set of vertices adjacent to A in the undi-
rected acyclic graph C'. In the algorithm, the graph C' is continually updated, so
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Adjacencies(C, A) is constantly changing as the algorithm progresses. Pseudo-
code for PC algorithm follows:

(A) Form the complete undirected graph C on vertex set V.

(B) n=0.
repeat
repeat
select an ordered pair of variables X and Y that are adjacent in C
such that Adjacencies(C,X)\{Y} has cardinality greater than or equal
to n, and a subset S of Adjacencies(C,X)\{Y} of cardinality n, and
if X and Y are conditionally independendent given S delete edge
X - Y from C and record S in Sepset(X,Y);
until all ordered pairs of adjacent variables X and Y such that
Adjacencies(C,X)\{Y} has cardinality greater than or equal to n and all
subsets S of Adjacencies(C,X)\{Y} of cardinality n have been tested for
conditional independence;
n=n+1;
until for each ordered pair of adjacent vertices X, Y, Adjacencies(C,X)\{Y}
is of cardinality less than n.

(C) For each triple of vertices X, Y, Z such that the pairs X, Y and Y, Z are
each adjacent in C but the pair X, Z is not adjacent in C, orient
X-Y-Zas X ->Y<-Z if and only if Y is not in Sepset(X,Z).

(D) repeat
If A -> B, B and C are adjacent, A and C are not adjacent, and there is
no arrowhead at B, then orient B - C as B -> C.
If there is a directed path from A to B, and an edge between A and B,
then orient A - B as A ->B.
until no more edges can be oriented.

Even if this group of algorithms is closer to the semantics of BN structures, the
vast majority of BN structure learning algorithms belong to the model selection
approach. These methods are presented further.

Model selection

The space search approach, which is also called model selection, searches the
model that maximizes a certain scoring function in a space of models.

Model selection procedure usually consists of three components: (1) a neigh-
borhood, (2) a scoring criterion and (3) a search strategy. The neighborhood
of a model restricts the search to a small part of the search space around that
model. The scoring cryterion evaluates the quality of a model and it is usually
required to be score equivalent, locally consistent and decomposable. The search
strategy selects a new model, from those in neihgborhood of the current best
model, based on the scoring cryterion.

Different options for the components of model selection procedure are re-
viewed further.
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Neighborhood

The neighborhood of a model defines the search space where the search is
done. One of possible search spaces is the inclusion boundary I1B(M(G)) which
was characterized by Chickering [5] as the set of models represented by all those
DAGs that can be obtained by adding or removing a single arc from any DAG
G* equivalent to G. Two DAGs are equivalent G and G are equivalent if they
represent the same model, i.e. M(G1) = M(G3).

Scoring criteria

From the Bayesian perspective, a natural scoring function is the marginal
likelihood of model given data. Cooper and Herskovits gave a formula for com-
puting it in the case of complete data [6]. Herewith they showed that exact
computation of the score is intractable when missing data are present. In such
cases asymptotic approximations of the marginal likelihood such as the Bayesian
Information Criterion (BIC) [36] and the Cheeseman-Stutz Criterion (CS) [3] are
usually employed. Hereinafter we will only discuss BIC which is widely used in
BN structure learning.

The BIC score has two parts: one evaluates the fit of the model to the data
and the other penalizes the model according to its complexity. The complexity
of a model is measured by the number of independent parameters. The formula
for computing the BIC score is presented below:

n qi T3 N
SN Nijrlog SZE — pe(N)dim(S) (3.4)

i=1 j=1 k=1
where

e N,ji denotes the number of cases in D in which X; has the value xf and
7; is instantiated as its j-th value,

e 7; denotes the number of states X; has and ¢; denotes the number of its
parental combinations,

T
Nij = E Nij,
k=1

dim(S) = gi(r; — 1),
i—1
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1
pe(N) = ilogN.

As we noted before, usually it is a requirement for a scoring criterion to be
score equivalent, locally consistent and decomposable.

Suppose a BN model. Data can be used to select among different models
according to some scoring criterion that assigns a score S(M) to a model M.
In some cases it can be convenient to assign a score S(G) = S(M(G)) to a
representative DAG of a model, too. We say that the scoring criterion is score
equivalent if it assigns the same value to all the DAGs representing the same
model. A scoring criterion is locally consistent if the score given to a DAG for
some data sampled from a joint probability distribution p assimptotically always
increases by removing an arc in G, unless this arc removal adds a conditional
independence constraint to the model that does not hold in p. Finally, we call
a scoring criterion decomposable if it can be expressed as a sum over all the
families of BN, where a family is a node and its parents.

BIC score is equivalent, locally consistent and decomposable.

Search algorithms

A variety of methods of search for models with the highest score have been
proposed, including K-2, local search, hill-climbing, genetic algorithms, and sim-
ulated annealing.

As it was noted earlier structure learning is an NP-hard problem. However,
the task is much simpler if the ordering of nodes is known, since we can learn
the parent set for each node independently (since score is decomposable), and
there is no problem of acyclity anymore. The algorithm that uses the assumption
of total ordering among variables is K2 algorithm, developed by Cooper and
Herskovits [6]. This algorithm is frequently used for BN structure construction
from data.

Given a database D, K2 algorithm searches for the BN structure G that max-
imises the probability P(G|D). K2 is a greedy heuristic. The algorithm starts by
assuming that a node lacks parents, after which in every step it adds incremen-
tally that parent whose addition most increases the probability of the resulting
structure. K2 stops adding parents to the nodes when the addition of a single
parent cannot increase the probability.

Despite being widely used the requirement of K2 algorithm for a total or-
der among nodes to start, which can be regarded as a form of prior domain
knowledge, is its significant drawback.

In this type of algorithms asymptotically optimal learning algorithm, greedy
equivalence search algorithm [5], has been developed under the faithfulness as-
sumption. As an alternative for this algorithm the k-greedy equivalence search
algorithm (KES) [24] has been proposed.
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The main characteristic of KES is that it allows a trade-off between greediness
and randomness, thus exploring different good local optima when run repeatedly.
Due to the possibility of trading between greediness and randomness KES can
be seen as a family of algorithms. The KES algorithm uses inclusion bound-
ary neighborhood, score equivalent, locally consistent and decomposable scoring
criterion and complete data.

KES is formally described as follows:

M = empty graph model
repeat
B = set of models in IB(M) with higher score than the model M
if |B| > O then
C = random subset of the set B with size max(1,|B]|*k)
M = the highest scoring model from the set C
else return(M)

where k € [0,1].

The scoring and dependency analysis approaches have also been combined
in the hope of obtaining a method that is more powerful than its constituents.
For example, the CB algorithm does not require a total order among nodes as
start; it uses conditional independence tests for that purpose, and uses K2 in its
second phase [35].

3.3.2 Parameter learning

As it was already mentioned learning parameters of a BN is an easier task than
learning structure of a BN.

In the case we have to learn model parameters from complete data, we assume
that the goal of learning is to find the maximum likelihood (ML) estimates of
the parameters of each conditional probability table, i.e., the parameter values
which maximize the likelihood of the data.

Assume we are given a data set D of N independant and identically dis-

tributed observations of the settings of all variables in our BN structure D =z(1), ..

where z(9) = (:cgi), ...,xS)). The likelihood is a function of the parameters which

is the probability of the observed data:

N
p(D[©) = Hp(ﬂc“)I@) (3.5)

We assume that the parameters are unknown and we wish to estimate them
from data. We focus on the problem of estimating a single setting of the pa-
rameters which maximizes the likelihood. Equivalently we can maximize the log
likelihood:
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N N n
L(©) = logp(D|©) = Y _logp(z?[0) = 3 Y logp(z|’|2),0;) (3.6)
=1 i=1 j=1

where the last equality makes use of the factorization of joint distribution in
the directed graphical model. If we assume that the parameters ©; governing
the conditional probability distribution of X given its parents are functionally
independent of the parameters governing the conditional probability distribution
of other nodes in the graphical model, then the log likelihood decouples into a
sum of local terms involving each node and its parents:

L(®) =) L;(6;) (3.7)
j=1

where L;(0;) = YN, logp(xg-z)|x§rzj),®j). Each L; can be maximized in-
dependently as a function of ©;. For example, if the X variables are discrete
and ©; is the conditional probability table for z; given its parents, then the ML
estimate of ©; is simply a normalised table containing counts of each setting of
X; given each setting of its parents in the data set.

If there is a small number of cases compared to the number of parameters
prior can be used to regularize the problem. In this case, we call the estimates
maximum a posteriori (MAP) estimates.

Maximum a posteriori parameter estimation incorporates prior knowledge
about the parameters in the form of a distribution p(©). The goal of MAP
estimation is to find the parameter setting that maximizes the posterior over
parameters, p(©|D), which is proportional to the prior times the likelihood. If
the prior factorizes over the parameters goverining each conditional probability
distribution, i.e., p(©) = [[j_, p(©;) then MAP estimates can be found by
maximizing

n

L'(8) = ) (L;(©;) +logp(©;)). (3.8)

i=1

The log prior can be seen as a regularizer, which can help reduce overfit-
ting in situations where there is insufficient data for the parameters to be well-
determined.
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Proposed
algorithm

This chapter introduces a model-based clustering algorithm that uses BNs and
employes the hierarchical agglomerative clustering approach. Different options
for the particular steps of the algorithm will be discussed.

4.1 The algorithm

We introduce the model-based clustering algorithm that applies a hierarchical
agglomerative procedure to describe the underlying cluster-structure of a given
database. All clusters are represented by BNs which are well-known for their
ability to structure, represent and decompose a problem using the notion of
conditional independence.

The proposed algorithm performs a search by recursively merging the closest
BNs representing a cluster and evaluating whether the resulting global model is
more probable than the global model where these BNs represented two different
clusters. A similarity measure between two BNs and a stopping criterion are used
to guide this process.

The pseudo-code for the proposed model-based clustering algorithm using
BNs is presented:

The algorithm: Model-based clustering algorithm using BNss.

Input: A database of NV instances d1,...,dn and the number of initial clusters k.

Output: Nested partitions where each cluster is described by a BN.
Method:

Get k initial clusters.

Learn a BN for each cluster.

Compute the similarity between any pair of models.
Repeat

Sw N e
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Data set Initial clusters Bayesian networks
D={dy-ch} C={G,G } BN=(BN,...BN, }
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algorithm

Nested partitions, where
clusters are described by BNs
at each stage

Figure 4.1: Graphical representation for the proposed algorithm

a. Merge the two closest clusters.
b. Learn a new model using the instances from the newly merged cluster.
c. Re-compute the similarity between the newly learned model and the
other intact models.
until stopping criterion is met.

Graphical representation for the proposed algorithm is given in Figure 4.1.

The model-based hierarchical clustering algorithm results in a dendogram
where each cluster is represented by directed graphical model. The created mod-
els allow the experts of field to read conditional independencies from them. One
more advantage of the proposed algorithm is evidence propagation, sum propa-
gation and max propagation, what cannot be done if you don't take model-based
clustering approach.

The algorithm we propose is similar to a Bayesian method for clustering dy-
namic processes introduced by Ramoni and Sebastiani [31]. The method models
dynamics as first-order Markov chains and then applies a hierarchical agglomer-
ative clustering algorithm to discover the most probable set of clusters capturing
different dynamics. The significant difference between these two clustering algo-
rithms is data: we aim to learn generative models from static, i.e. non-temporal,
data.

In this paper we are only concerned with discrete data as we deal with discrete
data clustering.
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4.2 Initial clusters

The first step of the algorithm is getting initial clusters that could be later de-
scribed by BNs. Partitioning methods suit perfectly for this task as they attempt
to directly decompose data into disjoint clusters. k-means algorithm, which is of-
ten given as the most popular approach in the group of partitioning algorithms,
can be used for getting initial clusters. k-means algorithm was introduced in
Chapter 2.

As it was noted in Chapter 2, hierarchical agglomerative clustering provides
a representation of the various clusters as branches of a tree, allowing very easy
interpretation. The clear structure of the result visualization is one of the biggest
advantages of this approach. However, especially with large datasets it is easy
to lose the overview of the resulting tree representation [32]. This fact and a
request for BN not to be overfitted because of too small quantity of data should
be the main guidelines choosing the number of initial clusters.

4.3 Learning of Bayesian networks

For learning of BNs from data any of existing algorithms could be used. We de-
cided to apply two algorithms representing two main groups of structure learning
algorithms: PC algorithm, which represents dependency analysis algorithms and
KES algorithm, which represents model selection algorithms. Both algorithms
were introduced in Chapter 3. Since KES allows a trade-off between greediness
and randomness we can be flexible setting its parameter.

As we do not intend to incorporate prior knowledge, learning parameters
of BNs is simply the task of finding the maximum likelihood estimates of the
parameters of each conditional probability distribution. Learning parameters of
a BN was introduced in Chapter 3.

4.4 Similarity measure

The similarity measure between two BNs representing clusters could be any dis-
tance between probability distributions. Measures of distance such as symmetric
Kullback-Leibler distance could be used. However, Kullback-Leibler approach
may be inefficient for domains with a large number of attributes as it requires
the joint probability of any state.

Instead we choose another approach to compute the similarity measure that
would guide the merging process; we compute the fitness of model given the
data. The similarity measure we propose is a computation of how well one model
fits the data of the other model we tend to merge and vice versa. We look for
the pair of models with the smallest value of similarity measure:
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+
2

log L(D;|BN;)
N

3

log L(D;|BN;)
il (4.1)

mini;,gj =

In the formula above the average fitness of the model given the data for one
instance is computed.

If we are dealing with real-world data it is very likely that data are noisy.
Thus, similarity measure can be untruthful as noisy instances are involved in
computation. Using only those instances that are the best representatives of the
model they belong to, could be a solution to avoid inaccurate results.

A possible way to select the best representatives of the model is to compute
the probabilities for each instance entering the evidence to the model this in-
stance belongs to. Later instances are ranked according to their probabilities and
the chosen percentage of instances with the highest probabilities are used for
computation of the similarity measure. In the terms of hierarchical agglomera-
tive clustering approach could be a combination of group-average clustering and
centroid clustering methods.

4.5 Stopping criterion

The task of the stopping criterion is to evaluate whether the resulting partition
with two BNs merged into one is more probable than the previous partition where
these BNs are kept apart.

The stopping criterion we introduce is based on the BN paradigm. A partition
of clusters is represented by a global model that can be seen as a BN of one node
where all BNs representing clusters are the states of this node. The proposed
stopping criterion learns how well the global model fits data.

The scoring metric for evaluation and comparison of global models can be
the BIC score for the global model:

Nst Nst

N; 1
BICqiobat = ) BICi + ) Nilog 7= — - log N(ns — 1) (4.2)
i=1 =1

where ng; denotes a number of states in the global model, i.e. the number of
clusters left at this particular stage of clustering.

BICyiopar consists of two components: the summation of BIC score of each
state of the global model, i.e. each BN included in the global model, and estimate
of the score for the global model itself.

Graphical representation of global models comparison is given in Figure 4.2.

Suppose we are at step 2 of the clustering process shown in Figure 4.2. We
want to assess whether or not the model constructed from the current model
such ¢ and c3 are merged is better. If BIC;0p4; score for a new global model is
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:

Current
model

Ostep 1step 2step 3step

Figure 4.2: Comparison of global models

higher than BICgopq for a current model stopping criteria advices to continue
on merging, otherwise - current model is recomended as the best solution.
The twofold task is set for the introduced stopping criterion: annotate the
process of fusions and advise the most probable partition of clusters.
Experimental evaluations of the model-based clustering algorithm using BNs
will be shown in the next chapter.
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In this chapter we empirically evaluate the effectiveness of the proposed cluster-
ing algorithm. Experiments are run with real-world data, gene expression data.
We start the chapter by briefly describing the implementation of the algorithm.
Introduction of data involved in the evaluation follows. Finally, we report and
discuss the obtained results.

5.1 Implementation

In order to evaluate the proposed algorithm in practice certain settings have to
be adopted. We report only the major settings involved in the implementation.

The performance of the algorithm highly depends on the set of initial clus-
ters. As we reported already we chose k-means algorithm to discover the initial
clusters. It is widely reported that k-means algorithm suffers from initial starting
condition effects. Thus, we have adopted RANDOM initialization method, which
divides the database into a partition of k clusters at random, as this method was
shown to be a good election because of its good performance [26].

Once the set of initial clusters is found the next step is to describe each
cluster by a BN. As it was noted in the previous chapter PC algorithm and KES
algorithm were chosen to learn structure of BNs.

For running experiments with the PC algorithm (see Section 3.4 for the de-
scription) the implementation of the algorithm in the BN package Hugin was
used [15]. The PC algorithm performs the dependency tests that calculate a
test statistic assuming (conditional) independence. If the test statistic is large,
the independence hypothesis is rejected; otherwise, accepted. While running the
experiments we set the significance level, i.e. the probability of rejecting a true
independence hypothesis to 0.01. This value is lower than the default value of
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0.05. We have chosen a smaller value of significance level with an expectation
to reduce the complexity of the learned BNs as reducing the significance level
results in fewer edges.

For the experiments using the KES algorithm (presented in Section 3.4) for
learning structure of BNs our implementation of the algorithm written in the
JAVA programming language was used. As it was noted the KES algorithm
allows a trade-off between greediness and randomness by setting the value of
the parameter k. Hereinafter presented experimental evaluation was done with
setting k = 1.

As our experiments are run with real-world data noisy instances are expected.
In order to avoid untruthful results computing the similarity measure between
pairs of clusters represented by BNs we decided to leave some data out for
eluding outliers and consider only the best representatives of the model. In the
experiments presented further, computation of the similarity measure is based
on 10% of instances from a cluster when the instances are ranked following the
approach described in Chapter 4.

Experimental evaluation of the proposed model-based clustering algorithm
using BNs is made with real-world data. Specificaly, the evaluation in real-world
data applies this paper’s proposal to gene expression data.

5.2 Gene expression data

Development of high throughput data acquisition technologies in biological sci-
ences, and specificaly in genome sequencing, together with advances in digital
storage and computing, have lead to the development of DNA microarray experi-
ments. DNA microarray allows the monitoring and measurement of the expression
levels of thousands of genes simultaneously in an organism.

Important biological knowledge is implicit in gene expression data, but extract-
ing it is a difficult task. Therefore, there has been a significant recent interest
in the development of new methods for functional interpretation of microarray
gene expression datasets. Hierarchical approach for clustering biological data was
found to be very useful as the hierarchy provides insight about cellular mecha-
nisms. Genes that are similarly expressed are often involved in the same cellular
processes, so that clustering suggests functional relationships between clustered
genes [33].

The database involved in the evaluation is the leukemia database, which has
become pretty much of a standard test base for gene expression data analysis
techiques [13]. It consists of 72 samples from leukemia patients, with each sam-
ple being characterizes by the expression levels of 7129 genes. Each sample is
labelled with the specific type of acute leukemia the patient suffers from: acute
lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML). The database
consists of 47 samples labelled as ALL and 25 labelled as AML.
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The preprocessing of the leukemia database was kept at minimum as pos-
sible. This means that data were only discretized. Following the most common
approach in the literature, gene expression levels were discretized into three
states, corresponding to the concepts of a gene being either underexpressed,
or baseline, ar overexpressed with respect to its control expression level [12].
The discretization method that was used is based on information theory [16].
The resulting discretized database Djeyremia Was separated into two assisting
databases where one of them contains ALL patients while the other takes in
AML patients. For the sake of interpretability of the experimental results both
databases were reduced to ten patients. The first database includes the ten first
ALL patients in Dj.ykemia While the second database contains the first ten AML
patients in Djeyremia- T hese two newly created databases were transposed, so
that the 7129 genes were the cases and the measurements for the corresponding
ten patients were the predictive attributes. The resulting databases are denoted
Darr and Dy

Pefia et al. [29] report the experimental results that suggest the generative
mechanisms underlying D47, and D s, consist of three physical processes
each, with each physical process being governed by a joint probability distribution
that tends towards genes being underexpressed, or baseline, or overexpressed for
all the patients. This finding will be the direction to follow while interpreting the
experimental results presented further.

Examination of the homogeneity of the clusters underlying D 411, and D s
revealed that clusters underlying D 457, are slightly more homogeneous than
those underlying D a1, [29]. Therefore, the first part of the evaluation is carried
out in more homogeneous D g7,

5.3 Results and discussion: D 4,1,

As we specified earlier two algorithms representing different approaches will be
applied for structure learning of BNs. We start from the experimental results
obtained employing the PC algorithm.

5.3.1 PC algorithm

In order to get easier apprehensible experimental results we fixed the number of
the initial clusters relatively small number of ten. This setting is kept the same
in all following experiments.

The fusions made at each stage of the algorithm are shown in Figure 5.1.
Clusters are represented by centroids of each attribute, i.e. average values of
genes assigned to this cluster for all ten AML patients. Thus, each box contains
ten lines which show the average level of gene expression for a certain patient. In
the beginning (0 step) clusters were ordered according to the average of cluster
centroids: from a cluster where genes are most likely to be unexpressed (on the
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top) to a cluster with mostly overexpressed genes (on the bottom). This ordering
should help keeping trace of merging.

0 step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9 step

Figure 5.1: The dendogram for clustering results with the PC algorithm employed
for structure learning from D 4/,

Starting the analysis it should be noticed that the majority of initial clusters
have at least one patient whose genes do not support the trend of a cluster for
genes being in a certain state. For example, ¢y exhibits the tendency towards all
variables being in state 0 (underexpressed) but genes of one patient show the
tendency to be in state 2 (overexpressed). The same situation can be found in
other clusters.

From the presented dendogram we can see that merging of clusters appears
to be consequent as the clusters that are adjacent by their centroids tend to be
merged. The only fusion where it can look like the rule of the closest clusters
being merged first is broken (c7 and ¢ are merged skipping cg) can be explained
by identity of ¢7 and cs.

Our next interest is to find the most probable partition, i.e. cutting point in
the dendogram. As we declared earlier stopping criteria is designed to counsel
us on this issue. Figure 5.2 presents BIC score for global model at each stage of
the algorithm.

Introducing the stopping criterion based on BIC score for global model we
had the expected model of its performance. We expected to see a growth of
BIC score in the beginning of the algorithm while fusions of clusters improve the
global model and a fall of BIC score when two divergent clusters are merged.
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Figure 5.2: BIC score for the global model (D 471, PC algorithm)

However, analysing the visualization of BIC score we can see only a decrease in
score after each merging is done. This can be explained by the high complexity
of models learnt by the PC algorithm. Thus, we will look for the biggest drop
in BIC score and consider it as a suggestion that the most probable partition is
found.

From the figure we can see two falls in BIC score: going from six to five
clusters and from four to three clusters. However, the second drop in score is
much more significant so we can say that the stopping criterion advises that four
clusters is the most probable partition.

Being adviced by the stopping criterion we can come back to Figure 5.1 and
analyse the four final clusters. We learn that there are three compound clusters
presenting different states of variables: ¢15 (includes three initial clusters) shows
a tendency towards variables being in state 0, ¢11 (includes two initial clusters)
towards being in state 1 and ¢ (includes four initial clusters) towards being in
state 2. Additionaly, we find the cluster ¢, that was left aside and was not merged
with the other clusters. Four clusters we find as final ones are quite different in
their sizes, i.e. number of instances included. See Table 5.1.

Cluster | Number of instances
4 583

11 1311

15 2313

16 2922

Table 5.1: Size of final clusters

BNs representing the four final clusters are shown in Figure 5.3. In order to see
the tendencies variables being in a certain state max propagation was performed.
This operation computes the most probable configuration of all variables. This
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is computed from the joint probability distribution.
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Figure 5.3: BNs learned from the clusters (D 45s1,, PC algorithm)

The figure suggests that in the cluster 15 the most probable state for all
ten patients is 0, in the cluster 11 the most probable state for all variables is
1 and in the cluster 16 the most probable state is 2. However, we cannot find
such a convincing description for the cluster 4 where eight patients tend to have
unexpressed genes while two patients tend to have the same genes overexpressed.

Further the analysis of the results gotten employing the KES algorithm are
presented.

5.3.2 KES algorithm

The fusions made at each stage of the proposed model-based algorithm are
shown in Figure 5.4. It should be reminded that because of the initialization
method for k-means algorithm initial clusters are different from the ones in the
previous run with the PC algorithm applied.

The presented dendogram suggests that merging of clusters is sensible as the
clusters that are adjoining according to their centroids tend to be merged. One
exception can be found: cluster 8 and cluster 10 are fused ignoring the cluster 9.
However, these clusters are very close to each other if the comparison is based
on the values of centroids.

BIC score for the global model at each stage of the algorithm is presented in
Figure 5.5.
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Figure 5.4: Dendogram for clustering results with the KES algorithm employed
for structure learning of BNs from D 41,
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Figure 5.5: BIC score for the global model (D 41, KES algorithm)

In the evaluation of the experimental results with the PC algorithm employed
the biggest fall in BIC score for the global model was considered to determine the
most probable partition. However, such a determination cannot be applied for
the results with the KES algorithm as BIC score for the global model increases at
each stage. This is closer to our expectations that the score should grow in the
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beginning. However, there is no fall in BIC score now. The possible interpretation
of such performance is the same structure shared by all generative mechanisms
underlying gene expression data we use.

One possible way to find the most probable partition is to consider the same
number of final clusters as in the results with the PC algorithm applied, i.e.
four clusters. If we choose four clusters as the most probable partition we obtain
three composed clusters with the tendency towards all variables being in one
state and one initial cluster - cluster 4. This cluster that was not included in the
composed clusters is very similar to the cluster 4 from the experiments with the
PC algorithm.

As the cluster left aside from merging is almost the same as in the previous
results we try to analyse the results when the most probable model includes
three clusters. Thus, we can check if this partition contains three clearly distinct
physical processes. Table 5.2 presents the sizes of three final clusters.

Cluster | Number of instances
15 2178
16 2305
17 2646

Table 5.2: Size of final clusters

Figure 5.6 presents BNs representing the clusters 15, 16 and 17. The graphs
after performing max propagation show that genes tend to be underexpressed for
all patients in cluster 15, baseline for all patients in cluster 17 and in cluster 16
nine patients have mostly overexpressed genes while one patient has the same
genes underexpressed.

5.4 Results and discussion: D4;;,

We continue with the experimental evaluation in D4 .

5.4.1 PC results

The dendogram for the results obtained running the model-based hierarchical
clustering algorithm with the PC algorithm employed are shown in Figure 5.7.
This visualization of merging process confirms that the proposed algorithm per-
forms in the sensible way.

BIC score for the global model shown in Figure 5.8 suggests that the most
probable number of clusters is six. The curve for BIC is rather convincing as
reducing the number of clusters from six to five causes the drop of BIC from
-35140 to -123709. Following the advice of the stopping criteria we continue with
analysis of six clusters: cg, ¢7, cg, ¢11, c13 and c14. The sizes of these clusters
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Figure 5.7: Dendogram for clustering results with the PC algorithm employed for
structure learning of BNs from D 477,
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are given in Table 5.3 and directed graphical models learned from the clusters
are shown in Figure 5.9.
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Figure 5.8: BIC score for the global model (D 41, PC algorithm)

Cluster | Number of instances
6 850

7 502

8 793

11 1937

13 2000

14 1047

Table 5.3: Size of final clusters

Three clusters from the six represented are combined clusters. The cluster
11 contains the genes that show the tendency to be overexpressed. Genes in
the cluster 13 tend to be underexpressed, so do the genes from the cluster 14.
However, the latter cluster has three patients with mostly overexpressed genes.
The cluster 6 includes genes that tend to be baseline, the same tendency just
with four exceptions corresponds to the cluster 8. Finally, the cluster 7 contains
genes that are overexpressed for the majority of variables.

5.4.2 KES results

Figure 5.10 presents the obtained hierarchy of clusters running the algorithm
when the KES algorithm is applied.

The curve of BIC score for the global model in Figure 5.11 shows the slight
increase after each merging. As this does not give us a hint about the number
of the underlying generative mechanisms we will assume three of them to exist
as it was suggested by experiments of other researchers [29].
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Figure 5.9: BNs learned from the clusters (D 41z, PC algorithm)
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Figure 5.10: Dendogram for clustering results with the KES algorithm employed
for structure learning of BNs from D41,
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Figure 5.11: BIC score for the global model (D 411, KES algorithm)

From Table 5.4 we can see that two of final clusters are big clusters while
one of them, cluster 5, is relatively small.

Two of three final clusters shown in Figure 5.12 are combined clusters where
the cluster 17 contains genes with the tendency to be underexpressed while the
cluster 15 includes genes that tend to be overexpressed. Genes that tend to be
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Cluster | Number of instances
5 879
15 3405
17 2845
Table 5.4: Size of final clusters

baseline are collected in cluster 5 that was not fused with other clusters. The
nice thing to notice is that the tendencies of genes to be in a certain state are
supported by all variables in all three graphical models.
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Figure 5.12: BNs learned from the clusters (D41, KES algorithm)

5.5 Summary

The experimental evaluation showed that the model-based hierarchical clustering
algorithm we proposed performs in a sensible manner and the similarity measure
for merging the clusters represented by BNs is proper for this task.

The other issue is stopping criteria that was designed to advice the most
probable model. We have obtained diverse results with different algorithms for
structure learning of BNs being employed. Having PC algorithm applied BIC score
decreases all the time and at some point it has a significant drop thus indicating
the most probable partition. On the other hand, BIC score slightly increases all
the time running the algorithm with application of the KES algorithm.
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5.5 Summary

The possible explanation for such results could be different dimensionality of
BNs learned by these two structure learning algorithms. It was found that BNs
learned by KES algorithm did not have more than three parents for one node.
This can be seen as a bound on the maximum number of parents of each node.
However, it is known that in real genetic networks some genes can have very
high fan-in and fan-out [22]. Therefore, the PC algorithm which characteristics
do not create such a tight bound for the number of parents tends to learn BNs
with high dimensionality. BIC score rapidly decreases because of the growing
dimensionality of the learned BNs and high penalty for this.

The fact that BIC score for the clustering algorithm using the KES algorithm
never decreases can be explained by the same structure shared by all generative
mechanisms underlying gene expression data we use.
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Conclusions

The main contribution of this paper has been the proposal and experimental
evaluation of the model-based clustering algorithm which represents clusters as
BNs and adopts hierarchical clustering strategy. The evaluation has been done
on gene expression databases as the physical processes underlying this data could
be assumed on the basis of the investigations made by other researchers this way
simplifying the task of results analysis.

The model-based hierarchical clustering algorithm creates a dendogram where
each cluster is represented by a directed graphical model that enables to exploit
the advantages of BN paradigm over other paradigms such as evidence propa-
gation and ability to read conditional independencies.

Two model structure learning algorithms representing different approaches
for structure learning, the PC algorithm and the KES algorithm, were applied.
Regardless of diverse results in the dimensionality of learned BNs, both algorithms
showed the same tendency to merge the nearest graphical models. Therefore, the
results that have been reported in this paper show the sensemaking performance
of the introduced model-based hierarchical clustering algorithm.

We have also analysed the stopping criterion which should be a helpful tool
advicing on the best model to select from the sequence of nested partitions.
The preliminary results proved the assistance of it in selecting the best parti-
tion. However, additional investigation is needed as gene expression data used
in empirical evaluation turned out to be pretty much unsuitable for testing the
introduced stopping criterion.
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Future work

The experimental results reported in this study can be seen as a preliminary stage
for further investigation on the introduced model-based hierarchical clustering
algorithm. We claim so because of the specifics of the data that has been used
for the empirical evaluation of the approach. Future research could be done
with data that is known to have several generative mechanisms with different
structure underlying the data. Such a study could help to learn more about the
properties of the introduced stopping criterion.

Study of other possible similarity measures between two clusters represented
by BNs that would guide the model-based hierarchical clustering algorithm in
merging is another possible line for future research.
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