
AALBORG UNIVERSITYDEPARTMENT OF COMPUTER SCIENCEFREDRIK BAJERS VEJ 7 - DK 9220 AALBORG - DENMARKfTitle:Spiderlink: a Keyword Searh AlgorithmProjet period:2003.02.01 { 2003.06.06Members:Linas B�ut_enasAdvisor:Mihael B�ohlen
Artile: 1Pages: 23Copies: 6

Abstrat:The inreasing need for a keyword-based searhsystems on relational databases motivated us todevelop the SpiderLink searh engine. It uses ak-tree data struture to �nd the onnetions be-tween given keywords. As a result SpiderLink re-turns the sequenes of tuples relating the tupleswhere keywords were found.In paper we �rst de�ne a k-tree data struture. Ithas several important properties: i) it works onhierarhial, parallel and single relationships in adatabase; ii) it is minimal; iii) it is �nite; iv) itan be implemented as a hash-table allowing touse it most eÆiently.Later we present the SpiderLink searh algorithmand diagram in the example how it atually works.We have implemented SpiderLink and it is a fullydeveloped keyword searh engine. The tests doneon the databases support all our theoretial as-sumptions.

2003

Spiderlink: a Keyword Searh AlgorithmLinas B�ut_enaslinas�s.au.dkDepartment of Computer Siene, Aalborg University,Frederik Bajers Vej 7E, 9220 Aalborg �st, DenmarkJune 6, 2003AbstratThe inreasing need for a keyword-based searh systems on relational data-bases motivated us to develop the SpiderLink searh engine. It uses a k-treedata struture to �nd the onnetions between given keywords. As a resultSpiderLink returns the sequenes of tuples relating the tuples where keywordswere found.In paper we �rst de�ne a k-tree data struture. It has several importantproperties: i) it works on hierarhial, parallel and single relationships in adatabase; ii) it is minimal; iii) it is �nite; iv) it an be implemented as a hash-table allowing to use it most eÆiently.Later we present the SpiderLink searh algorithm and diagram in the ex-ample how it atually works. We have implemented SpiderLink and it is a fullydeveloped keyword searh engine. The tests done on the databases support allour theoretial assumptions.1 IntrodutionThe popularity of keyword searh systems shows that keyword searhes are the mostonvenient way of retrieving the information from huge data soures. It is simpleand preise way to ask and get the information user wants. The World Wide Webalready has a number of well developed keyword searh systems, like Google [5℄,Altavista and others. But there is an inreasing need for keyword-based searhengines for relational databases.In this paper we propose the SpiderLink { a keyword searh engine on relationaldatabases. It uses a k-tree data struture to �nd the onnetions between givenkeywords. As a result user gets the sequenes of tuples relating the tuples wheregiven keywords were found.Our main goal is to present the k-tree data struture. It is the ore of ourSpiderLink algorithm. A k-tree has several very important features:1

� it an be used for keyword searhing on various databases having single, hier-arhial and parallel relationships.� it is minimal and guarantees that it will take the smallest amount of spae torepresent n tuples and n-1 relationships between them.� it is �nite. This feature gives a possibility for algorithm to build a k-tree tillit is possible to do that, and we are sure there is an end for building proess.� an implementation of it an be done in various ways. We propose to implementit using a hash-table. Hash-table gives a onstant time performane whilesearhing for a node in a k-tree.Our seond goal is to present the keyword searh algorithm SpiderLink. Inpaper �rst we desribe the algorithm and after give an example showing step bystep how the algorithm works. We have also implemented SpiderLink and in one ofthe setions we present the arhiteture of this implementation. An implementedSpiderLink engine works as a fully funtioning keyword searh system for relationaldatabases. In addition to the properties possessed by k-trees it has some very usefulfeatures for a user. SpiderLink �nds the relationships between keywords not onlyin the ase then keywords are loated in the tuples, but also in the ase, wherekeywords are loated in the names of relations or attributes. It �nds exat and notexat keyword mathes, and it does not require from user any knowledge of databaseshema or database querying language (suh as SQL).In the artile we disuss how to �nd the keywords in the database, the data stru-tures used for onstruting and heking the relationships between these keywords,and the ranking and pruning of results.The paper has the following struture. In the Setion 2 we disuss the relatedwork and in Setion 3 we give a motivation. Preliminary de�nitions are given inSetion 4. The data struture of a k-tree is disussed in Setion 5. In Setion 6we desribe the SpiderLink algorithm. The following Setion 7 gives an examplehow the algorithm works. In Setion 8 we disuss the arhiteture of SpiderLinkimplementation.2 Related WorkIn the reent years there has been a number of papers published in the area ofkeyword searhing in relational databases. All of them attempt to give a simplekeyword searh interfae, short searhing time and wide range of results. To satisfyall of these needs is a hallenging task. Usually one of them is solved in a trade-o�of the other. Most of the papers takes a part of all the problems and tries to solvethem.Most of the relational database management systems like DB2 [10℄, MirosoftSQL Server [8℄, MySQL, Orale [6℄ and PostgreSQL have extensions, providing text2

searh engines. However, these searh engines an perform a text searh only onsingle olumns. That is the reason why there is a need for keyword searh engines,apable to �nd relationships between keywords.The paper [4℄ desribing AQUA/Jungle database searh engine is proposingan idea of advertising databases via Internet. This prototype and our SpiderLinkalgorithm works towards the same general idea: they give a user an easy aess to theinformation stored in databases. But the hosen searhing strategies are di�erent.Jungle �rst indexes meta-data and later this information is used for optimizationof SQL queries in AQUA. The purpose of SpiderLink algorithm is to work diretlywith database without indexing any information and to issue SQL queries on singlerelation only.There are several Internet searh engines like Quigo or iBoogie that have imple-mented the Deep Web [2℄ searh tehniques. Suh type searh engines are able to�nd information in e-ommere or news web sites databases. Dynamially gener-ated World Wide Web pages are not always reahable for standard WWW keywordsearh engines.The most related work to our algorithm is desribed in the following four papers[1, 3, 7, 9℄. All of them aims to provide a simple interfae for a database aess, donot require any knowledge of database shema and database querying language. Butthe searhing strategies di�ers.Papers [7℄ and [3℄ treats a database like a huge graph, where tuples are nodesand relationships are edges. Viewing from this point our work is quite relative towhat they did. We build a data struture where tuples are also treated as nodes andrelationships are referenes between them. The di�erene is that paper [7℄ desribesa system for keyword searhes in graph-strutured databases. It fouses on rankingthe results, based on shortest path omputations. The BANKS system [3℄ loads thewhole relational database as a weighted graph. After that it uses Steiner trees 1 to�nd the losest onnetions between tuples where keywords were found.The DISCOVER [9℄ and DBXplorer [1℄ keyword searh algorithms hooses an-other approah. They explore the properties of the database shema. First it �ndskeywords in the database and later hooses one whih beomes a starting point forbuilding the andidate paths between all keywords. DISCOVER uses shema graphto generate minimum joining networks of tuples, whih an be joined together into asingle network ontaining all of the keywords. It uses an exeution plan to optimizeand reuse issued SQL queries.The DBXplorer [1℄ loally stores database shema and index of keywords. It�nds a set of relations where given keywords are loated, using the keyword index.Then using the undireted shema graph it builds a set of subgraphs representinga joining of relations. Eah andidate subgraph is issued as an SQL statement tohek if it ontains all the keywords.1Steiner tree { a minimum-weight tree onneting set of verties in a weighted graph.3

3 MotivationIn this setion we introdue a sample database and a motivating example for ourkeyword searh algorithm SpiderLink. Consider the database shema in Figure 1(a)and the sample instane in Figure 1(b). The database shows information aboutpersons transporting goods between ities. The example ontains a relation havinga relationship to itself (\Persons"), two parallel relationships from relation \Desti-nations" to relation \Shipments", a ternary relationship and several single relation-ships. Suh struture of the example was hosen to represent the possibilities ofour searh engine and to point out the most ommon situations in the real worlddatabases.
To

From

Pid

Shipments

Tid

Load

Country

Id

Countries

Vehicle

Id

Transport

Chief

Name

Id

Persons

Cid

City

Id

Destinations(a) A shema of database. The underlined attributes are primary keys. Arrows go from foreignkeys to primary keys.
101

102

103

104

Copenhagen

Oslo

Paris

3

4 c

b

a

Destinations

Persons

Chief

null

1

2

Tom

Laura

City

ToPid

Shipments

1 101 102

104 105

102 103

Id

Eric

Cairo

Aalborg dk

dk

no

fr

et

Cid Id Country

Norway

Frace

dk

no

fr

Countries

Denmark

Egyptet

From Tid

105

James

Id Name

1

3

2

4

Id Vehicle

Train

a

b

null

Transport

Load

Ship

Plane

60

c

200

2

C2

C3

C4

D2

D3

D4

D5

D1 1

S1

S2

S3

P2

P1

P3

P4

T1

T2

T3

C

(b) Database instaneFigure 1: Sample database. It has hierarhial relationship in relation \Persons", parallel relation-ship between relation \Shipments" and relation \Destinations", and a ternary relationship between4 relations.Assume a user would like to �nd if James ould transport by ship a argo betweenAalborg and Oslo. The appropriate keyword query for SpiderLink is \James ship4

Aalborg Oslo". Now the searh engine should �nd the tuples where these fourkeywords are loated. From the example in Figure 1(b) we see that tuple P1 ontainskeyword \James", tuple T1 ontains keyword \Ship", tuple D2 ontains \Aalborg"and �nally tuple D3 ontains \Oslo". The seond step for SpiderLink is to �nd thesets of tuples that onnet P1; T1;D2 and D3. The answer from a searh enginewould show they are onneted, but not in a straight forward way. James himselfdoes not transport anything between Aalborg and Oslo, but his subordinate Eridoes.
Id

2

1

NameId

James

Eric 1

null

Chief

Persons Shipments

Pid To Vehicle

no

dk

Oslo

Aalborg

103

102

Cid

Destinations

CityId

3 a103102

TidFrom

200Ship

Load

Transport

a

3D
2D

2S 1T
1P

2P

Figure 2: A graphial representation of searh resultsOne of the answers that SpiderLink outputs is these two sets of related tuples:fP1; P2; S2; T1g and fD1; S2;D3g. They represent relationships between four tupleswhere keywords were found. A textual representation of results is not so self expliitas the graphial one in Figure 2, but this is just a matter of way in whih we repre-sent the result. Our main onern for SpiderLink algorithm is to return short andnon dupliate results. We don't onfuse user by giving the same results many timesrepresented by di�erent sets of tuples. Consider this example: fP1; P2; S2;D2g,fP1; P2; S2;D3g, fT1; S2;D3g. The atual result is ompletely the same as the pre-vious one, and even the graphial representation is the same like in Figure 2. If auser gets many results like these it will take time to �gure out whih results are newand whih ones was already presented before.In the ase we have presented above, a set of tuples are related to eah otherthrough the primary-foreign key relationships. A set of related tuples is an answerif it ontains all the keywords in the tuples or the keywords math orrespondingattribute or relation names. We showed one example in order to illustrate what isthe keyword searh query input, the result, and the meaning of the result.4 Preliminary de�nitionsA Database D = (R;RL) is a pair of sets: set of relations R and set of relationshipsRL . Eah relation R = (SR; fR1; : : : ; Rng) is a pair onsisting of shema SR anda set of tuples fR1; : : : ; Rng over the shema SR. Shema SR = fA1; : : : ; Ang is aset of attributes. Tuple Ri = fv1; : : : ; vng of the relation R is a mapping from theattributes of the shema SR to the set of values fv1; : : : ; vng. A number of tuples in5

a database is �nite as there is a �nite number of relations and every relation has a�nite number of tuples.We assign a unique identi�er for eah tuple in the database. We use Ri as thisidenti�er. It shows exatly to the tuple i in the relation R. No other tuple has thesame identi�er in the same database. In Figure 1(b) there is a database examplewhere you an see these identi�ers written at the side of eah tuple. The SpiderLinkalgorithm uses these identi�ers to trak relationships between loations of keywordsin a database. In terms of memory onsumption it is muh heaper to keep onlyidenti�ers of tuples instead of whole tuples.A relationship RL = f(R:A1; R0:A01); : : : ; (R:An; R0:A0n)g is a set of pairs ofelements, representing a onnetion between two relations. We will write thatR;R0 2 RL if RL = f(R:A1; R0:A01); : : : ; (R:An; R0:A0n)g and say that RL onnetsR and R0. Attributes Ai and A0i sitting in one element will be alled (a pair of)related attributes. We use a set of elements instead of one element in relationship,beause a relationship in a database ould involve more than one attribute from eahrelation. It ould be understood like a set of attributes fA1; : : : ; Ang is a primarykey in relation R and set fA01; : : : ; A0ng forms a foreign key in relation R0 refereningprimary key in R.Example 4.1 Here we start a series of examples using database instane in Figure1(b). With a help of it we explain and diagram visually the searh proess and termswe de�ne. Aording to our database desription the database instane is de�nedlike that:Database = (fP; S; T;D;Cg; fRLPS ; RLST ; RLSD1 ; RLSD2 ; RLDCg) 23Relations: Relationships:P = (fId;Name;Chiefg; fP1 ; P2; P3; P4g) RLPP = fP:Id; P:ChiefgS = (fPid; From; To; T idg; fS1 ; S2; S3g) RLPS = f(P:Id; S:P id)gT = (fId; V ehile; Loadg; fT1 ; T2; T3g) RLST = f(S:T id; T:Id)gD = (fId; City; Cidg; fD1 ;D2;D3;D4;D5g) RLSD1 = f(S:From;D:Id)gC = (fId; Countryg; fC1; C2; C3; C4g) RLSD2 = f(S:To;D:Id)gRLDC = f(D:Cid;C:Id)gDe�nition 1 (Adjaent tuples). Tuple Ri is adjaent to tuple R0j if there is arelationship onneting relations R and R0 and for eah pair of related attributes inthat relationship values are the same in both tuples.Tuple Ri = fv1; : : : ; vng is adjaent to tuple R0j = fv01; : : : ; v0ng if:1) exists a relationship RL, suh that R;R0 2 RL;2) for eah element (R:Ai; R0:A0j) from the relationship RL the ondition issatis�ed: vi = v0i, where vi is a value mapped from attribute Ai in the relationR and v0i is a value mapped from attribute A0i in the relation R0.2We use an abbreviations for the relation names, writing only the �rst letters.3An index shows the names of onneted relations by this relationship.6

De�nition 2 (Related tuples, Path). Tuple R1 is a related tuple to tuple Rnif there exists a sequene of tuples (R1; : : : ; Rn) where next to eah other standingelements Ri; Ri+1 are adjaent tuples. This sequene of tuples will be alled a pathbetween R1 and Rn.Example 4.2 Lets take a tuple P1 from a relation \Persons" and analyze it. Fol-lowing De�nition 1 we �nd out that tuples P2 and S1 are adjaent to it. There arequite a lot of related tuples to tuple P1, so we take only two as examples: P3 andT2. The path between P1 and P3 is (P1; P2; P3) as well as (P1; S1;D2; S2; P3) andmany others. As you an see, there are many possible variations of putting down apath between two tuples.5 Data Struturesx In this setion we desribe a data model of our searh engine. First we de�ne adata struture of a k-tree and explain the rationale of the design. We also desribethe notion of k-path and mk-path as they are essential elements of a result that usergets.User starts the searh by giving a stream of keywords. This stream is parsedto terms and every single term beomes a keyword KW . A set of all keywords wemark as KW .Example 5.1 Lets assume we would like to �nd out if James transfers goods bytrain in Denmark. The keyword input stream looks like \James train Denmark".This stream is parsed and we get three keywords: KW1=\James", KW2=\train",KW3=\Denmark". A set of all keywords KW = fKW1;KW2;KW3g.After we have parsed the keywords, a database is sanned searhing for theloations of these keywords. A loation of the keyword is a tuple Ri ontaining thatkeyword. If a keyword is founded in the name of relation or in the name of attribute,then we say that keyword is founded in every tuple of that relation and every tuplebeomes a loation of that keyword. We de�ne a funtion kw(Ri): if Ri is a loationof keyword KW than kw(Ri) = KW .Example 5.2 In our database example in Figure 1(b) keyword \James" is foundin tuple P1. The loation of the keyword \train" is the tuple T2, and loation ofthe keyword \Denmark" is the tuple C1. In Figure 3 you an see all three tuplesgrouped by keywords.5.1 The K-treeThe k-tree data struture should satisfy several requirements:7

Countries

Denmark

Persons

32
KW="Denmark"KW="train"

1
KW="James"

1P 1

NameId

James null

Chief

dkT2

Id Vehicle

Transport

Load CountryId

1C60TrainbFigure 3: Keyword loations1. ontains a loation of a keyword as a root node;2. represents relationships between the loation of the keyword (root) and othertuples in a database (other nodes);3. supports possibility to reonstrut a path between a leave an a root of thetree;4. allows to have an unlimited number of hildren for eah node;5. supports di�erent types of nodes in order to minimize the total amount ofnodes in the tree;6. nodes are sorted in order to give a fast aess to required type;7. don't run into yles then there are yli relationships in a database;8. keeps a minimal number of nodes without a�eting the requirements pointedabove.A k-tree T is a set of nodes. Every node N onsists of two elements: a tupleidenti�er Ri and a referene to a parent node NParent: N = (Ri; NParent). Asillustrated in Figure 4, the pointers in a k-tree point from hildren to their parents.The reason is that nodes an have an unlimited number of hildren, but only oneparent. We de�ne two auxiliary funtions: tid(N) and parent(N). tid(N) returns thetuple identi�er of node N : tid(N) = Ri. parent(N) returns the parent of node N :parent(N) = NParent.Every k-tree has a root node as a starting point. We will refer to NRoot as to theroot node of a k-tree. Root has no parent, so parent(NRoot) = null. The name oftuple in a root node is speial - this tuple is a loation for some keyword. To denote,that a root node of the k-tree T has a tuple as a loation for a keyword KW , wewill write rootkw(T) = KW .De�nition 3 (K-tree) A k-tree T is a union of three sets: a set of ative nodesNA , a set of idle nodes NI and a set of parent nodes NP . All together these sets formone k-tree T = NA [NI [NP . Every node in this tree ful�ll three requirements:8

Tree

P2S1

P1

D1 D2 P3Figure 4: A fragment of a k-tree1. every node is unique, e.i. 8N;N 0 tid(N) 6= tid(N 0), N;N 0 2 T .2. every node (exept root) has a parent in the same tree and their tuples areadjaent: 8N 9NParent that NParent = parent(N) ^ tuple tid(N) is adjaentto tuple tid(NParent), N 2 TnNRoot, NParent 2 NP . parent(NRoot) = null.3. from every node (exept root) it is possible to reah the root node by followingreferenes to parents: 8N 9 sequene (N; : : : ; NRoot) where for every next toeah other standing nodes N 0; N 00, N 0 is a hild of N 00.From the �rst requirement of De�nition 3 follows a property that (NA \ NI) =(NA \ NP) = (NI \ NP) = ;. This means that every set does not interset withthe other sets in a k-tree. If a node belongs to one set, we are sure that it is notontained in the other ones.Example 5.3 In this example we desribe a tree fragment shown in Figure 4.Tree = fP3gA [fD1;D2gI [fP1; P2; S1gP .The biggest amount of work is done with leaves of a tree. The other nodesare just used to restore a path between a leaf node and the root of the tree. Theleaves are also used for di�erent purposes. To be able to distinguish quikly betweenvarious types of nodes and to give fast aess to the needed type we distribute thembetween three di�erent types, where two of them over leaves and the third is forparents. There is a short desription of all types of nodes in Table 1. In Figure 4you an see a fragment of a tree having nodes of all types. All of them are drawnaording to their type.In Figure 5 there is shown a life yle of a node. In this piture there arepresented di�erent states of a node during the searh proess. There are also showntwo proesses from searh algorithm whih hange the type of node. At this pointit is important to understand only that after the leave takes part in these proesses,its type is hanged and there is no way it ould be restored to the previous one.9

Node type Set Image Used for:Parent NP rebuilding a path between leaves and rootLeaf ative NA making onnetions between trees and tree expansionLeaf idle NI making onnetions between treesTable 1: Types of nodes
Leaf active

does not exist

exists

Children added

active leaf

Leaf idle

Node created

Expand

No children
to add

Connect

Node deleted

deleted
All children

Parent

N =(R ,N)i i j

N’=(R ,N’)i i j

Figure 5: A life yle of a nodeFigure 6 diagram the usage of di�erent types of nodes. Here the main pointis to show why we need three types of nodes. All of them takes part in di�erentproesses.We an learly distinguish between nodes and use the appropriate set when itis needed. But still we will often enounter a situation where we have to �nd if anode is ontained in some set. In this ase we would like to do better than a linearsan. Hene, we store eah set of nodes in a hash table. A key in this hash table is aname of a tuple and a value is a referene to the parent. Hash tables helps to searhand retrieve a node in a onstant time independently from the amount of nodes ina tree. This will let us minimize the overall time spent for searhing. Another issueis to minimize a number of nodes stored in a tree. This would allow us to save thespae and time (used for rehashing the tables).
ConnectExpand

Leaf active

Leaf idle

MakeResults

Parent Figure 6: Node usage10

Lemma 1 A k-tree with n nodes represents n tuples and n�1 relationships betweenthese tuples.Proof: Aording to requirement 1 in De�nition 3 every node in a k-tree has di�er-ent tuple. Thus, n nodes will have n di�erent tuples. Also, aording to requirement2 in De�nition 3 every node represents a relationship between tuple it has and thetuple of the parent node. In total there will be n � 1 relationships as there are nnodes and root node doesn't have a parent. 2We have de�ned the struture of the k-tree, but from the de�nition itself it isnot lear if k-tree is a real tree. We still need to prove that k-tree has no yles.Theorem 1 (K-tree is ayli) The K-tree data struture ontains no yles.Proof: We prove this theorem by ontradition. We will try to onstrut a yle ofnodes from the tree T . Cyle is a sequene of nodes (N1; : : : ; Nn), that:1) Ni+1 is a parent node of Ni;2) N1 is a parent node of Nn.If we sueed to show that it is impossible to onstrut suh yle - the theoremwill be proved.Assume we have a tree T . NRoot is a root node of the tree T . Lets also assumethat the tree T is large enough to make a sequene (N1; : : : ; Nn), where Ni+1 is aparent node of Ni. Now we have a sequene omplying with the �rst requirementfor the yli sequene.Aording to the de�nition of the k-tree (De�nition 3) we an make a sequeneof nodes between any node and a root node. Thus, we an make a sequene(Nn; Nn+1; : : : ; NRoot). Sine sequene (Nn; Nn+1; : : : ; NRoot) is based on the samerules as the sequene (N1; : : : ; Nn) we an join them together. The result will be asequene (N1; : : : ; Nn; Nn+1; : : : ; NRoot). In this ase we see that the parent of Nnis the node Nn+1. Aording to De�nition 3 all nodes in the tree T are unique, soNn+1 6= N1 and node N have only one parent. Therefore N1 is not a parent for Nn.This proof shows that any time we make a sequene (N1; : : : ; Nn), we an extendit till the root node and every time we will get that N1 is not a parent for Nn.Thus we have to onlude that it is impossible to make a yli sequene of nodes(N1; : : : ; Nn) from the k-tree T . Therefore k-tree T is ayli. 2This theorem gives a nie feature that whenever we take a node and follow thereferenes of parents, we will always end at the root node and will never run intoin�nite yle. This property allows us to build a simple proedure in the algorithmfor rebuilding a path from leave node to root node. A proedure is very simple aswe have to follow only the referenes to parents. Theorem 1 ensures that we alwaysone result for one leave node and that this proess will never run into yle.Theorem 2 (Minimality of k-tree) K-Tree has the smallest number of nodes(number n) representing n tuples and n� 1 relationships.11

Proof: We prove this theorem by ontradition. Assume we have a k-tree T withn nodes in it. Aording to Lemma 1 this k-tree represents n tuples and n � 1relationships between these tuples.Lets remove one node from the k-tree T and name a new k-tree T 0. T 0 has n� 1nodes. In this ase Lemma 1 says that the k-tree T 0 represents n � 1 tuples andn� 2 relationships between these tuples.We have to onlude that reduing the number of nodes in a k-tree will result inredued number of tuples and relationships. We wanted to prove that n tuples andn� 1 relationships an be represented by the smaller number of nodes than n. Theproof shows that this is impossible. The theorem is orret. 2Theorem 2 says that we will always have a minimal number of nodes in a k-tree.This feature is valuable as we an be sure that an overall number of nodes in all ofthe k-trees will also be minimal. So the spae is used in most eÆient way by theSpiderLink algorithm.Theorem 3 (K-Tree is �nite) K-Tree has a �nite number of nodes.Proof: Aording to De�nition 3 all nodes in a k-tree have di�erent tuple names.This means that the maximum number of nodes in a k-tree is limited by the numberof tuples in a database. A database has a �nite number of tuples4, hene the numberof nodes in a k-tree is also �nite. 2Theorem 3 gives us another nie property: we an build a tree until there isimpossible to ontinue building proess. A tree has a �nite number of nodes, so thenumber of tree building steps are also �nite. We will use this property to de�ne the\Stop Criteria" in our algorithm.5.2 K-path and MK-pathIn previous part we presented the a k-tree. But a k-tree itself represents onlyrelationships between one loation of one keyword and a stak of nodes. As theresult we have to give to user a data struture ontaining one or several sequenes oftuples showing a onnetion between loations of all keywords. In this part of paperwe de�ne two data strutures: k-path and mk-path. A k-path shows a relationshipbetween two loations of two di�erent keywords. A mk-path shows relationshipsbetween k number of loations of di�erent keywords, where k is the number of allkeywords.De�nition 4 (K-path). A path P = (R1; : : : ; Rn) between two di�erent keywordsKW and KW 0 is alled k-path, if:1) kw(R1) = KW ;4This feature of database is desribed in Setion 412

2) kw(Rn) = KW 0;3) 8Ri; Rj 2 P Ri 6= RjLet onnets(P) return the two keywords onneted by k-path P : onnets(P) =(KW;KW 0) if P = (R1; : : : ; Rn) and kw(R1) = KW and kw(Rn) = KW 0. Suhstrit de�nition is needed, beause funtion onnets(P) outputs only two keywordseven though there is a tuple Ri in the path P suh that kw(Ri) = KW 00.From De�nition 4 follows a property that if P1 = (R1; : : : ; Ri) and P2 = (Ri; : : : ; Rn)are k-paths then a sequene (P1; P2) results in a new k-path P = (R1; : : : ; Ri; : : : ; Rn).We also have to mention, that if onnets(P1) = (KW;KW 0) and onnets(P2) =(KW 0;KW 00) then onnets(P) = (KW;KW 00).De�nition 5 (MK-path) Let KP = fKP1; : : : ;KPng be a set of k-paths onnet-ing all keywords from KW . This set we will all a mk-path. This set ful�lls tworequirements:1) n = size(KW)� 1;2) 8KW;KW 0 2 KW 9 a subset fKPi; : : : ;KPjg � KP, suh that a sequene(KPi; : : : ;KPj) of this subset is a k-path onneting KW and KW 0;As a result user gets a number of mk-paths representing the relationships betweenall of the requested keywords.6 Algorithm6.1 Struture of the algorithmHere is the setion where we go through entire searh proess of the SpiderLinkalgorithm. Our algorithm onsists of four basi steps:1. Initialization - �nds loations for the given keywords. Makes initial k-trees.2. Connet proedure - makes k-paths using k-trees.3. MakeResults proedure - makes new mk-paths if possible. Outputs themto user.4. Expand proedure - expands k-trees by adding hildren to their leaves.The last tree steps are performed iteratively until at least one ondition in \StopCriteria" list is satis�ed. In the following part of this setion we desribe eah ofthese parts in detail. First we present the general struture of SpiderLink algorithm.Purpose: to �nd all onnetions between given keywords.Input: a set of keywords KW and a database D. The input set of keywords istreated as a onjuntive query, so every answer should inlude all keywords.13

Output: set of mk-paths.SpiderLink(KW ,D)1. let T be an empty set of k-trees2. let P be an empty set of k-paths3. for eah keyword KW 2 KW :4. for eah relation R 2 D:5. for eah tuple fRijkw(Ri) = KWg:6. make a k-tree T with a root node NRoot = (Ri; null)7. add T to T8. end for9. end for10. end for11. if 8KW 2 KW 9T that rootkw(T) = KW than12. while \Stop Criteria" is not satis�ed:13. for eah k-tree T 2 T:14. Pnew = Connet(T;T)15. P= MakeResults(Pnew;P)16. T = Expand(T;D)17. end for18. end while19. end ifAn input for SpiderLink is a set of keywords KW and a database D. First ofall algorithm �nds tuples ontaining keywords from KW . Then for eah tuple Ri(loation of a keyword) we make a new k-tree T with a root NRoot = (Ri; null).After the database is sanned searhing for all keywords, we have a set T of initialk-trees. These k-trees are our starting points for the iterative steps.If we have found at least one loation for eah of the keywords from KW , westart the iterations. In other way, if one of the keywords is not found, there is noreason to make further steps. A set of keywords KW is a onjuntive keyword query.This means that all of the keywords should be ontained in the result. Thus, if oneof the keywords is not found in a database at all { we stop the searh proess.After the \Initialization" part (lines 3-10) follows three important steps andheking one ondition. The \Stop Criteria" is desribed after the de�nitions ofsteps \Connet", \MakeResults" and \Expand". At that time it will be muh easierto understand why suh onditions de�ne \Stop Criteria".The following proess is repeated until the \Stop Criteria" is satis�ed. For everyiteration we take a k-tree T from the set T and perform \Connet", \MakeResults"and \Expand" steps with it. Usually the number of iterations performed is greaterthan the number of k-trees in the set T. Thus, every time we proess the last k-treeTn from the set T, the next time we start again from the �rst k-tree T1.6.2 ConnetThe �rst proedure is \Connet". It is a part of algorithm where k-paths are pro-dued between loations of di�erent keywords.Purpose: to produe all possible k-paths.14

Input: a tree T , a set of all trees T.Output: a set of k-paths P.Connet(T ,T)1. let P be an empty set of k-paths2. for eah leaf node fN jN 2 NA [NI , T = (NA [NI [NP)g:3. for eah k-tree fT 0jrootkw(T) 6= rootkw(T 0), T 0 2 T, T 0 = (N0A [N0I [N0P)g:4. for eah node fN 0jtid(N 0) = tid(N); N 0 2 N0A [N0I g:5. make a k-path P = (tid(NRoot); : : : ; tid(N); : : : ; tid(N 0Root))6. add P to P7. if N 0 2 N0A than8. remove N 0 from N0A9. add N 0 to N0I10. end if11. end for12. end for13. end for14. return PThere are several interesting issues in this proedure that we would like to dis-uss. The �rst one is that only ative and idle nodes takes part in the line 4, wherewe hek if two nodes have the same tuple id. The reason is that when we hekonly the leaves we automatially prohibit the generation of the k-paths that hasbeen already produed.Another interesting issue is transferring the node N 0 from the set of ative nodesN 0A to the set of idle nodes N 0I (lines 7-9). This is done in order to prevent theunneessary expanding of two k-trees.6.3 Make ResultsPurpose: to produe new mk-paths.Input: two sets of k-paths: Pnew and P.Output: prints out the results and outputs a new set P.MakeResults(Pnew,P)1. for eah P 2 Pnew:2. print all mk-paths fMP jMP = fP;P1; : : : ; Png; Pi 2 Pg3. end for4. add Pnew to P5. return PThe purpose of this proedure is to produe new mk-paths by making all possibleombinations of eah k-path from the newly generated set Pnew and all previouslymade k-paths in a set P. It outputs only these mk-paths that omply with De�nition5.
15

6.4 ExpandPurpose: to add the hildren (if possible) for every leaf node in the tree T .Input: a tree T and a database D.Output: an expanded tree T .Expand(T ,D)1. for eah leave fN jN 2 NA ; T = (NA [NI [NP)g2. Ri = tid(N)3. for eah relation fR0j9RL, R0,R 2 RL, R0 2 Dg4. for eah tuple fR0ijR0i is adjaent to Rig5. make a new node N 0 = (R0i; N)6. if 8N 00 2 T tid(N 0) 6= tid(N 00) than add N 0 to NA7. end for8. end for9. if at least one node was added to NA then10. add N to NP11. remove N from NA12. end for13. return TThis proedure takes only ative nodes and tries to make hildren for eah ofthem. We add a new node N 0 to the k-tree T if there is no other node ontainingthe same tuple identi�er. This requirement is de�ned in De�nition 3.Between lines 9 and 11 there is one interesting issue to disuss. A node N isadded to the set of parents NP only in ase it has got at least one hild. In otherase it is deleted from a tree.6.5 Stop CriteriaThere is one main ondition for stopping the searh: if after \Expand" step on allthe k-trees no new leaf nodes are added { there is no reason to ontinue with a searhproess. This riteria uses several properties. The �rst one is that if the \Expand"proedure has tried to add new hildren to all of the k-trees and there are no newhildren nodes, hene in all of the following iterations it will not produe any newnodes also. From this property follows another one. If at eah iteration we havethe same number of ative and idle nodes we an produe only the same k-paths weprodued at last iteration. Without no new k-paths no new results (mk-paths) willbe produed. Thus we have to onlude that ontinuing the searh proess will notgive as any new results and we an stop the searh.7 Appliation ExampleIn this setion we diagram the work proess of SpiderLink algorithm. We use lo-ations of keywords presented in Example 5.2. Eah loation of keywords has beentransfered to a separate k-tree. In Figure 7 we have a piture of k-trees after the\Initialization" step. Dashed lines divides forest to three parts indiating whih16

"Denmark""train""James"

1P 1C

1Tree 3Tree2Tree

2TFigure 7: First iteration. Connet step.
"James" "train" "Denmark"

1

T2

Tree2 Tree3Tree1

C1P1

P2SFigure 8: First iteration. Expand step.
"James" "train" "Denmark"

T2

Tree2 Tree3Tree1

C1P1

P2S1Figure 9: Seond iteration. Connet step.
"James" "train" "Denmark"

1

T2

Tree2 Tree3Tree1

C1P1

P2S1 SFigure 10: Seond iteration. Expand step.trees belongs to whih keywords. We have a forest of three trees, whih looks likethat:forest = fTree1; T ree2; T ree3g;Tree1 = fP1gA; Tree2 = fT2gA; Tree3 = fC1gA.rootkw(Tree1)="James", rootkw(Tree2)="train", rootkw(Tree3)="Denmark".In all of the following examples we write only a tuple identi�er near eah node.Figure 7 shows that \Connet" proedure has no possibilities to build a k-path.There are no leaves having the same tuple identi�ers. In Figure 8 there is shown astate of trees after the \Expand" step. Node P1 in a tree Tree1 beame a parentand the are two new ative leaves S1 and P2.In the seond iteration of algorithm, \Connet" again an not make any k-paths(Figure 9). Figure 10 diagrams the k-trees after the \Expand" step. The samesituation is in the third step, where only two new nodes are added to the k-treeTree3 (Figure 12).In the fourth step diagramed in Figure 13 \Connet" proedure �nds two nodeshaving same tuple identi�ers. It builds a k-path (P1; S1; T2) and a tuple in the k-tree Tree2 beomes idle. This k-path an not be output as a result (as mk-path),beause it ontains only two keywords. After the \Expand" proedure we have suhforest:Tree1 = fT2;D1;D2; P3gA [fP1; P2; S1gP ;Tree2 = fS1gI [fT2gP ;Tree3 = fD1;D2gA [fC1gP . 17

"James" "train" "Denmark"

T2

Tree2 Tree3Tree1

C1P1

P2S1 S1Figure 11: Third iteration. Connet step.
"James" "train" "Denmark"

T2

Tree2 Tree3Tree1

C1P1

P2S1 S1 D2D1Figure 12: Third iteration. Expand step.
"James" "train" "Denmark"

T2

Tree2 Tree3Tree1

C1P1

P2S1 S1 D2D1Figure 13: Fourth iteration. Connet step.
"Denmark""train""James"

D1S

1P 1C

1Tree 3Tree2Tree

2T

2

2D1D2T
3P

1S
2P

1DFigure 14: Fourth iteration. Expand step.Figures 15 and 16 show the �fth iteration of the algorithm. During these twosteps k-tree Tree2 is neither onneted nor expanded. But at the following iterationtwo new k-paths are produed (Figure 17): (P1; S1;D1; C1) and (P1; S1;D2; C1).These two paths an be ombined with the one we have produed previously. Twomk-paths are output to a user: MK1 = f(P1; S1; T2); (P1; S1;D1; C1)g and MK2 =f(P1; S1; T2); (P1; S1;D2; C1)g. These two answers di�er only in one tuple. In oneof them there is D1 in the other D2. But this di�erene is important as the resultsshows \James" onneting to \Denmark" through two di�erent ities: Copenhagen
"Denmark""train""James"

1D 2D

1P 1C

1Tree 3Tree2Tree

2T

P 1S

2D1D2T
3P

1S
2Figure 15: Fifth iteration. Connet step.

"Denmark""train""James"

1D 2D

1P 1C

1Tree 3Tree2Tree

2T

P 1S

2D1D2T
3P

1S
2Figure 16: Fifth iteration. Expand step.18

"Denmark""train""James"

1D 2D

1P 1C

1Tree 3Tree2Tree

2T

P 1S

2D1D2T
3P

1S
2

Figure 17: Sixth iteration. Connet step.
"Denmark""train""James"

2T
3P

1S

1P 1C

1Tree 3Tree2Tree

2T

D 2S1S

1D2P
2D1S

2D1Figure 18: Sixth iteration. Expand step.
"Denmark""train""James"

D2T
3P

1S

1P 1C

1Tree 3Tree2Tree

2T

1 2S1S

1D2P
2D1S

2DFigure 19: Seventh iteration. Connet step.
"Denmark""train""James"

1S

2D1D

1S

1P 1C

1Tree 3Tree2Tree

2T

D

2S

2T
3P

2S1S

1D2P
2

Figure 20: Seventh iteration. Expand step.and Aalborg. We should notie that two nodes D1 and D2 in a k-tree Tree1 beameidle.We have also diagramed the seventh iteration of the SpiderLink algorithm inFigures 19 and 20. In Figure 20 there is shown a new thing. Node T2 in a k-treeTree1 an not be expanded, therefore we delete it.We stop our example here as we have showed all the algorithm proesses weintended. The ontinuing will just repeat \Connet" and \Expand" proedures.8 ArhitetureWe have made an implementation of our SpiderLink algorithm. In this setion weexplain the arhiteture of this implementation. All implementation was done inJAVA. We used JDBC to onnet to the Orale database.Figure 21 shows �ve main omponents of SpiderLink keyword searh engine. Inthis �gure \User" is the starting point of the searh proess. A keyword query givenby user is passed to the tokenizer. The stream is ut to separate tokens and everytoken beomes a keyword. All the keywords are stored in non apital letters. Tok-19

enizer gives a set of keywords to \Keyword loation �nder". This module does thework for SpiderLink initialization step. It takes every keyword and sans a databaselooking for this keyword. \Keyword loation �nder" issues an SQL query for eahkeyword for eah relation. Lets assume we have keyword KW and we are lookingin a relation R. The SQL query looks like that:SELECT rowid FROM RWHERE LOWER(A1) LIKE '%KW%' OR . . . OR LOWER(An) LIKE '%KW%'.We use SQL prediate \LIKE" to �nd exat and not exat mathes of keywords.A prediate \LOWER" is used in order to get a keyword math without taking in toaount the di�erene between apital and non apital letters. In the query parti-ipate only attributes Ai of type \CHAR" or \VARCHAR". Searhing for keywordsonly in textual information simpli�es the initialization step. The issue of interpret-ing given keywords as various types of data (like integers, data and so on) is a bigand separate problem.The goal of the SQL queries issued by \Keyword loation �nder" is to get rowid'sof tuples where keyword KW is loated in at least one of the values. Using suh aquery we �nd exat and partial keyword mathes in text values. We use an Oraledatabase feature of keeping identi�er for eah tuple. We store tuple id and a relationname in order to make sure that a ombination of both elements gives us a uniqueidenti�er for a tuple.
User

Sequences of
tuples

JDBC

Database

Set of keywords

Keyword location
finder

K−tree expander
and combiner

K−paths
K−path combinerTuple

retriever
MK−paths

SQL
SQLSQL

K−trees

Keyword query

Tokenizer

Figure 21: Arhiteture of SpiderLink implementationAfter we �nd loations for all keywords, we make a k-tree for eah loationand pass them to \K-tree expander and ombiner". This module is responsible20

for generating k-paths. As it is expanding k-trees, it issues an SQL queries to thedatabase. A nie feature of the implementation is that SQL queries are using tupleidenti�er rowid. This is the fastest way to reah the required tuple in a database.Every time a set of new k-paths is produed, a \K-path ombiner" tries to makenew mk-paths. If it sueeds, mk-paths are passed to \Tuple retriever". This lastmodule takes are that a user gets a set of tuples, not a set of tuple identi�ers.An interfae we have made is very simple. User launhes a ompiled JAVAprogram from a onsole window. In Figure 22 there is an example of the helpinformation printed in onsole window. It demonstrates the possibilities of ourimplementation of algorithm. A user an speify the on�guration �le and a �lewith a terms for several sequential queries. User an also deide whih type ofoutput it prefers: to get results as a text in onsole window, or to generate a HTML�le with full information from queries. User an also provide the keywords forSpiderLink through the ommand line. In Figure 23 there is shown an example ofsimple result output in HTML format.

Figure 22: Example of implemented system input apabilities.ConlusionsThe inreasing need for information retrieval searh engines for relational databasesmotivated us to develop the SpiderLink algorithm. In this artile we have presentedtwo important issues: the k-tree data struture for keyword searhing in relationaldatabases and SpiderLink algorithm whih uses k-trees and is a fully developedkeyword searh engine. In this paper we presented and proved several importantproperties of k-trees: i) it an be used on databases having single, parallel andhierarhial relationships; ii) it is minimal; iii) it is �nite; iv) it an be implementedas a hash-table.The further development of SpiderLink keyword searh system ould fous onsuh issues: 21

Figure 23: Example of the results in HTML format� Developing an advaned k-tree data struture that ould reuse already gath-ered information about adjaent tuples when building k-trees.� Developing a onvenient visual representation of keyword searh results.� SpiderLink algorithm an be easily extended to support keyword searhes notonly on a single database, but also on several databases (treating them as onebig database).Referenes[1℄ Sanjay Agrawal, Surajit Chaudhuri, and Gautam Das. DBXplorer: A SystemFor Keyword-Based Searh Over Relational Databases. In Pro. ICDE, 2002.[2℄ Valerie S. Allen and Abe Lederman. Searhing the deep web - distributedexplorit direted query appliations. In SIGIR 2001: Proeedings of the 24thAnnual International ACM SIGIR Conferene on Researh and Development22

in Information Retrieval, September 9-13, 2001, New Orleans, Louisiana, USA,pages 456{456. ACM, 2001.[3℄ Gaurav Bhalotia, Charuta Nakhe, Arvind Hulgeri, Soumen Chakrabarti, andS. Sudarshan. Keyword Searhing and Browsing in databases using BANKS.In Pro. ICDE, 2002.[4℄ Mihael H. B�ohlen, Linas Bukauskas, and Curtis E. Dyreson. The jungledatabase searh engine. In SIGMOD 1999, Proeedings ACM SIGMOD In-ternational Conferene on Management of Data, June 1-3, 1999, Philadelphia,Pennsylvania, USA, pages 584{586. ACM Press, 1999.[5℄ Sergey Brin and Lawrene Page. The anatomy of a large-sale hypertextualWeb searh engine. Computer Networks and ISDN Systems, 30(1{7):107{117,1998.[6℄ Paul Dixon. Basis of Orale Text Retrieval. IEEE Data Engineering Bulletin,24(4), Deember 2001.[7℄ Roy Goldman, Narayanan Shivakumar, Suresh Venkatasubramanian, and He-tor Garia-Molina. Proximity searh in databases. In Pro. 24th Int. Conf.Very Large Data Bases, VLDB, pages 26{37, 24{27 1998.[8℄ James R. Hamilton and Tapas K. Nayak. Mirosoft SQL Server Full-TextSearh. IEEE Data Engineering Bulletin, 24(4), Deember 2001.[9℄ Vagelis Hristidis and Yannis Papakonstantinou. DISCOVER: Keyword Searhin Relational Databases. In Pro. 28th Int. Conf. Very Large Data Bases,VLDB, 2002.[10℄ Albert Maier and David E. Simmen. DB2 Optimization in Support of Full TextSearh. IEEE Data Engineering Bulletin, 24(4), Deember 2001.

23

