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onne
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h algorithmand diagram in the example how it a
tually works.We have implemented SpiderLink and it is a fullydeveloped keyword sear
h engine. The tests doneon the databases support all our theoreti
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Spiderlink: a Keyword Sear
h AlgorithmLinas B�ut_enaslinas�
s.au
.dkDepartment of Computer S
ien
e, Aalborg University,Frederik Bajers Vej 7E, 9220 Aalborg �st, DenmarkJune 6, 2003Abstra
tThe in
reasing need for a keyword-based sear
h systems on relational data-bases motivated us to develop the SpiderLink sear
h engine. It uses a k-treedata stru
ture to �nd the 
onne
tions between given keywords. As a resultSpiderLink returns the sequen
es of tuples relating the tuples where keywordswere found.In paper we �rst de�ne a k-tree data stru
ture. It has several importantproperties: i) it works on hierar
hi
al, parallel and single relationships in adatabase; ii) it is minimal; iii) it is �nite; iv) it 
an be implemented as a hash-table allowing to use it most eÆ
iently.Later we present the SpiderLink sear
h algorithm and diagram in the ex-ample how it a
tually works. We have implemented SpiderLink and it is a fullydeveloped keyword sear
h engine. The tests done on the databases support allour theoreti
al assumptions.1 Introdu
tionThe popularity of keyword sear
h systems shows that keyword sear
hes are the most
onvenient way of retrieving the information from huge data sour
es. It is simpleand pre
ise way to ask and get the information user wants. The World Wide Webalready has a number of well developed keyword sear
h systems, like Google [5℄,Altavista and others. But there is an in
reasing need for keyword-based sear
hengines for relational databases.In this paper we propose the SpiderLink { a keyword sear
h engine on relationaldatabases. It uses a k-tree data stru
ture to �nd the 
onne
tions between givenkeywords. As a result user gets the sequen
es of tuples relating the tuples wheregiven keywords were found.Our main goal is to present the k-tree data stru
ture. It is the 
ore of ourSpiderLink algorithm. A k-tree has several very important features:1



� it 
an be used for keyword sear
hing on various databases having single, hier-ar
hi
al and parallel relationships.� it is minimal and guarantees that it will take the smallest amount of spa
e torepresent n tuples and n-1 relationships between them.� it is �nite. This feature gives a possibility for algorithm to build a k-tree tillit is possible to do that, and we are sure there is an end for building pro
ess.� an implementation of it 
an be done in various ways. We propose to implementit using a hash-table. Hash-table gives a 
onstant time performan
e whilesear
hing for a node in a k-tree.Our se
ond goal is to present the keyword sear
h algorithm SpiderLink. Inpaper �rst we des
ribe the algorithm and after give an example showing step bystep how the algorithm works. We have also implemented SpiderLink and in one ofthe se
tions we present the ar
hite
ture of this implementation. An implementedSpiderLink engine works as a fully fun
tioning keyword sear
h system for relationaldatabases. In addition to the properties possessed by k-trees it has some very usefulfeatures for a user. SpiderLink �nds the relationships between keywords not onlyin the 
ase then keywords are lo
ated in the tuples, but also in the 
ase, wherekeywords are lo
ated in the names of relations or attributes. It �nds exa
t and notexa
t keyword mat
hes, and it does not require from user any knowledge of databases
hema or database querying language (su
h as SQL).In the arti
le we dis
uss how to �nd the keywords in the database, the data stru
-tures used for 
onstru
ting and 
he
king the relationships between these keywords,and the ranking and pruning of results.The paper has the following stru
ture. In the Se
tion 2 we dis
uss the relatedwork and in Se
tion 3 we give a motivation. Preliminary de�nitions are given inSe
tion 4. The data stru
ture of a k-tree is dis
ussed in Se
tion 5. In Se
tion 6we des
ribe the SpiderLink algorithm. The following Se
tion 7 gives an examplehow the algorithm works. In Se
tion 8 we dis
uss the ar
hite
ture of SpiderLinkimplementation.2 Related WorkIn the re
ent years there has been a number of papers published in the area ofkeyword sear
hing in relational databases. All of them attempt to give a simplekeyword sear
h interfa
e, short sear
hing time and wide range of results. To satisfyall of these needs is a 
hallenging task. Usually one of them is solved in a trade-o�of the other. Most of the papers takes a part of all the problems and tries to solvethem.Most of the relational database management systems like DB2 [10℄, Mi
rosoftSQL Server [8℄, MySQL, Ora
le [6℄ and PostgreSQL have extensions, providing text2



sear
h engines. However, these sear
h engines 
an perform a text sear
h only onsingle 
olumns. That is the reason why there is a need for keyword sear
h engines,
apable to �nd relationships between keywords.The paper [4℄ des
ribing AQUA/Jungle database sear
h engine is proposingan idea of advertising databases via Internet. This prototype and our SpiderLinkalgorithm works towards the same general idea: they give a user an easy a

ess to theinformation stored in databases. But the 
hosen sear
hing strategies are di�erent.Jungle �rst indexes meta-data and later this information is used for optimizationof SQL queries in AQUA. The purpose of SpiderLink algorithm is to work dire
tlywith database without indexing any information and to issue SQL queries on singlerelation only.There are several Internet sear
h engines like Quigo or iBoogie that have imple-mented the Deep Web [2℄ sear
h te
hniques. Su
h type sear
h engines are able to�nd information in e-
ommer
e or news web sites databases. Dynami
ally gener-ated World Wide Web pages are not always rea
hable for standard WWW keywordsear
h engines.The most related work to our algorithm is des
ribed in the following four papers[1, 3, 7, 9℄. All of them aims to provide a simple interfa
e for a database a

ess, donot require any knowledge of database s
hema and database querying language. Butthe sear
hing strategies di�ers.Papers [7℄ and [3℄ treats a database like a huge graph, where tuples are nodesand relationships are edges. Viewing from this point our work is quite relative towhat they did. We build a data stru
ture where tuples are also treated as nodes andrelationships are referen
es between them. The di�eren
e is that paper [7℄ des
ribesa system for keyword sear
hes in graph-stru
tured databases. It fo
uses on rankingthe results, based on shortest path 
omputations. The BANKS system [3℄ loads thewhole relational database as a weighted graph. After that it uses Steiner trees 1 to�nd the 
losest 
onne
tions between tuples where keywords were found.The DISCOVER [9℄ and DBXplorer [1℄ keyword sear
h algorithms 
hooses an-other approa
h. They explore the properties of the database s
hema. First it �ndskeywords in the database and later 
hooses one whi
h be
omes a starting point forbuilding the 
andidate paths between all keywords. DISCOVER uses s
hema graphto generate minimum joining networks of tuples, whi
h 
an be joined together into asingle network 
ontaining all of the keywords. It uses an exe
ution plan to optimizeand reuse issued SQL queries.The DBXplorer [1℄ lo
ally stores database s
hema and index of keywords. It�nds a set of relations where given keywords are lo
ated, using the keyword index.Then using the undire
ted s
hema graph it builds a set of subgraphs representinga joining of relations. Ea
h 
andidate subgraph is issued as an SQL statement to
he
k if it 
ontains all the keywords.1Steiner tree { a minimum-weight tree 
onne
ting set of verti
es in a weighted graph.3



3 MotivationIn this se
tion we introdu
e a sample database and a motivating example for ourkeyword sear
h algorithm SpiderLink. Consider the database s
hema in Figure 1(a)and the sample instan
e in Figure 1(b). The database shows information aboutpersons transporting goods between 
ities. The example 
ontains a relation havinga relationship to itself (\Persons"), two parallel relationships from relation \Desti-nations" to relation \Shipments", a ternary relationship and several single relation-ships. Su
h stru
ture of the example was 
hosen to represent the possibilities ofour sear
h engine and to point out the most 
ommon situations in the real worlddatabases.
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(b) Database instan
eFigure 1: Sample database. It has hierar
hi
al relationship in relation \Persons", parallel relation-ship between relation \Shipments" and relation \Destinations", and a ternary relationship between4 relations.Assume a user would like to �nd if James 
ould transport by ship a 
argo betweenAalborg and Oslo. The appropriate keyword query for SpiderLink is \James ship4



Aalborg Oslo". Now the sear
h engine should �nd the tuples where these fourkeywords are lo
ated. From the example in Figure 1(b) we see that tuple P1 
ontainskeyword \James", tuple T1 
ontains keyword \Ship", tuple D2 
ontains \Aalborg"and �nally tuple D3 
ontains \Oslo". The se
ond step for SpiderLink is to �nd thesets of tuples that 
onne
t P1; T1;D2 and D3. The answer from a sear
h enginewould show they are 
onne
ted, but not in a straight forward way. James himselfdoes not transport anything between Aalborg and Oslo, but his subordinate Eri
does.
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Figure 2: A graphi
al representation of sear
h resultsOne of the answers that SpiderLink outputs is these two sets of related tuples:fP1; P2; S2; T1g and fD1; S2;D3g. They represent relationships between four tupleswhere keywords were found. A textual representation of results is not so self expli
itas the graphi
al one in Figure 2, but this is just a matter of way in whi
h we repre-sent the result. Our main 
on
ern for SpiderLink algorithm is to return short andnon dupli
ate results. We don't 
onfuse user by giving the same results many timesrepresented by di�erent sets of tuples. Consider this example: fP1; P2; S2;D2g,fP1; P2; S2;D3g, fT1; S2;D3g. The a
tual result is 
ompletely the same as the pre-vious one, and even the graphi
al representation is the same like in Figure 2. If auser gets many results like these it will take time to �gure out whi
h results are newand whi
h ones was already presented before.In the 
ase we have presented above, a set of tuples are related to ea
h otherthrough the primary-foreign key relationships. A set of related tuples is an answerif it 
ontains all the keywords in the tuples or the keywords mat
h 
orrespondingattribute or relation names. We showed one example in order to illustrate what isthe keyword sear
h query input, the result, and the meaning of the result.4 Preliminary de�nitionsA Database D = (R;RL ) is a pair of sets: set of relations R and set of relationshipsRL . Ea
h relation R = (SR; fR1; : : : ; Rng) is a pair 
onsisting of s
hema SR anda set of tuples fR1; : : : ; Rng over the s
hema SR. S
hema SR = fA1; : : : ; Ang is aset of attributes. Tuple Ri = fv1; : : : ; vng of the relation R is a mapping from theattributes of the s
hema SR to the set of values fv1; : : : ; vng. A number of tuples in5



a database is �nite as there is a �nite number of relations and every relation has a�nite number of tuples.We assign a unique identi�er for ea
h tuple in the database. We use Ri as thisidenti�er. It shows exa
tly to the tuple i in the relation R. No other tuple has thesame identi�er in the same database. In Figure 1(b) there is a database examplewhere you 
an see these identi�ers written at the side of ea
h tuple. The SpiderLinkalgorithm uses these identi�ers to tra
k relationships between lo
ations of keywordsin a database. In terms of memory 
onsumption it is mu
h 
heaper to keep onlyidenti�ers of tuples instead of whole tuples.A relationship RL = f(R:A1; R0:A01); : : : ; (R:An; R0:A0n)g is a set of pairs ofelements, representing a 
onne
tion between two relations. We will write thatR;R0 2 RL if RL = f(R:A1; R0:A01); : : : ; (R:An; R0:A0n)g and say that RL 
onne
tsR and R0. Attributes Ai and A0i sitting in one element will be 
alled (a pair of)related attributes. We use a set of elements instead of one element in relationship,be
ause a relationship in a database 
ould involve more than one attribute from ea
hrelation. It 
ould be understood like a set of attributes fA1; : : : ; Ang is a primarykey in relation R and set fA01; : : : ; A0ng forms a foreign key in relation R0 referen
ingprimary key in R.Example 4.1 Here we start a series of examples using database instan
e in Figure1(b). With a help of it we explain and diagram visually the sear
h pro
ess and termswe de�ne. A

ording to our database des
ription the database instan
e is de�nedlike that:Database = (fP; S; T;D;Cg; fRLPS ; RLST ; RLSD1 ; RLSD2 ; RLDCg) 23Relations: Relationships:P = (fId;Name;Chiefg; fP1 ; P2; P3; P4g) RLPP = fP:Id; P:ChiefgS = (fPid; From; To; T idg; fS1 ; S2; S3g) RLPS = f(P:Id; S:P id)gT = (fId; V ehi
le; Loadg; fT1 ; T2; T3g) RLST = f(S:T id; T:Id)gD = (fId; City; Cidg; fD1 ;D2;D3;D4;D5g) RLSD1 = f(S:From;D:Id)gC = (fId; Countryg; fC1; C2; C3; C4g) RLSD2 = f(S:To;D:Id)gRLDC = f(D:Cid;C:Id)gDe�nition 1 (Adja
ent tuples). Tuple Ri is adja
ent to tuple R0j if there is arelationship 
onne
ting relations R and R0 and for ea
h pair of related attributes inthat relationship values are the same in both tuples.Tuple Ri = fv1; : : : ; vng is adja
ent to tuple R0j = fv01; : : : ; v0ng if:1) exists a relationship RL, su
h that R;R0 2 RL;2) for ea
h element (R:Ai; R0:A0j) from the relationship RL the 
ondition issatis�ed: vi = v0i, where vi is a value mapped from attribute Ai in the relationR and v0i is a value mapped from attribute A0i in the relation R0.2We use an abbreviations for the relation names, writing only the �rst letters.3An index shows the names of 
onne
ted relations by this relationship.6



De�nition 2 (Related tuples, Path). Tuple R1 is a related tuple to tuple Rnif there exists a sequen
e of tuples (R1; : : : ; Rn) where next to ea
h other standingelements Ri; Ri+1 are adja
ent tuples. This sequen
e of tuples will be 
alled a pathbetween R1 and Rn.Example 4.2 Lets take a tuple P1 from a relation \Persons" and analyze it. Fol-lowing De�nition 1 we �nd out that tuples P2 and S1 are adja
ent to it. There arequite a lot of related tuples to tuple P1, so we take only two as examples: P3 andT2. The path between P1 and P3 is (P1; P2; P3) as well as (P1; S1;D2; S2; P3) andmany others. As you 
an see, there are many possible variations of putting down apath between two tuples.5 Data Stru
turesx In this se
tion we des
ribe a data model of our sear
h engine. First we de�ne adata stru
ture of a k-tree and explain the rationale of the design. We also des
ribethe notion of k-path and mk-path as they are essential elements of a result that usergets.User starts the sear
h by giving a stream of keywords. This stream is parsedto terms and every single term be
omes a keyword KW . A set of all keywords wemark as KW .Example 5.1 Lets assume we would like to �nd out if James transfers goods bytrain in Denmark. The keyword input stream looks like \James train Denmark".This stream is parsed and we get three keywords: KW1=\James", KW2=\train",KW3=\Denmark". A set of all keywords KW = fKW1;KW2;KW3g.After we have parsed the keywords, a database is s
anned sear
hing for thelo
ations of these keywords. A lo
ation of the keyword is a tuple Ri 
ontaining thatkeyword. If a keyword is founded in the name of relation or in the name of attribute,then we say that keyword is founded in every tuple of that relation and every tuplebe
omes a lo
ation of that keyword. We de�ne a fun
tion kw(Ri): if Ri is a lo
ationof keyword KW than kw(Ri) = KW .Example 5.2 In our database example in Figure 1(b) keyword \James" is foundin tuple P1. The lo
ation of the keyword \train" is the tuple T2, and lo
ation ofthe keyword \Denmark" is the tuple C1. In Figure 3 you 
an see all three tuplesgrouped by keywords.5.1 The K-treeThe k-tree data stru
ture should satisfy several requirements:7
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1C60TrainbFigure 3: Keyword lo
ations1. 
ontains a lo
ation of a keyword as a root node;2. represents relationships between the lo
ation of the keyword (root) and othertuples in a database (other nodes);3. supports possibility to re
onstru
t a path between a leave an a root of thetree;4. allows to have an unlimited number of 
hildren for ea
h node;5. supports di�erent types of nodes in order to minimize the total amount ofnodes in the tree;6. nodes are sorted in order to give a fast a

ess to required type;7. don't run into 
y
les then there are 
y
li
 relationships in a database;8. keeps a minimal number of nodes without a�e
ting the requirements pointedabove.A k-tree T is a set of nodes. Every node N 
onsists of two elements: a tupleidenti�er Ri and a referen
e to a parent node NParent: N = (Ri; NParent). Asillustrated in Figure 4, the pointers in a k-tree point from 
hildren to their parents.The reason is that nodes 
an have an unlimited number of 
hildren, but only oneparent. We de�ne two auxiliary fun
tions: tid(N) and parent(N). tid(N) returns thetuple identi�er of node N : tid(N) = Ri. parent(N) returns the parent of node N :parent(N) = NParent.Every k-tree has a root node as a starting point. We will refer to NRoot as to theroot node of a k-tree. Root has no parent, so parent(NRoot) = null. The name oftuple in a root node is spe
ial - this tuple is a lo
ation for some keyword. To denote,that a root node of the k-tree T has a tuple as a lo
ation for a keyword KW , wewill write rootkw(T ) = KW .De�nition 3 (K-tree) A k-tree T is a union of three sets: a set of a
tive nodesNA , a set of idle nodes NI and a set of parent nodes NP . All together these sets formone k-tree T = NA [ NI [ NP . Every node in this tree ful�ll three requirements:8
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D1 D2 P3Figure 4: A fragment of a k-tree1. every node is unique, e.i. 8N;N 0 tid(N) 6= tid(N 0), N;N 0 2 T .2. every node (ex
ept root) has a parent in the same tree and their tuples areadja
ent: 8N 9NParent that NParent = parent(N) ^ tuple tid(N) is adja
entto tuple tid(NParent), N 2 TnNRoot, NParent 2 NP . parent(NRoot) = null.3. from every node (ex
ept root) it is possible to rea
h the root node by followingreferen
es to parents: 8N 9 sequen
e (N; : : : ; NRoot) where for every next toea
h other standing nodes N 0; N 00, N 0 is a 
hild of N 00.From the �rst requirement of De�nition 3 follows a property that (NA \ NI ) =(NA \ NP ) = (NI \ NP ) = ;. This means that every set does not interse
t withthe other sets in a k-tree. If a node belongs to one set, we are sure that it is not
ontained in the other ones.Example 5.3 In this example we des
ribe a tree fragment shown in Figure 4.Tree = fP3gA [ fD1;D2gI [ fP1; P2; S1gP .The biggest amount of work is done with leaves of a tree. The other nodesare just used to restore a path between a leaf node and the root of the tree. Theleaves are also used for di�erent purposes. To be able to distinguish qui
kly betweenvarious types of nodes and to give fast a

ess to the needed type we distribute thembetween three di�erent types, where two of them 
over leaves and the third is forparents. There is a short des
ription of all types of nodes in Table 1. In Figure 4you 
an see a fragment of a tree having nodes of all types. All of them are drawna

ording to their type.In Figure 5 there is shown a life 
y
le of a node. In this pi
ture there arepresented di�erent states of a node during the sear
h pro
ess. There are also showntwo pro
esses from sear
h algorithm whi
h 
hange the type of node. At this pointit is important to understand only that after the leave takes part in these pro
esses,its type is 
hanged and there is no way it 
ould be restored to the previous one.9



Node type Set Image Used for:Parent NP rebuilding a path between leaves and rootLeaf a
tive NA making 
onne
tions between trees and tree expansionLeaf idle NI making 
onne
tions between treesTable 1: Types of nodes
Leaf active

does not exist

exists

Children added

active leaf

Leaf idle

Node created

Expand

No children
to add

Connect

Node deleted

deleted
All children

Parent

N =(R ,N )i i j

N’=(R ,N’)i i j

Figure 5: A life 
y
le of a nodeFigure 6 diagram the usage of di�erent types of nodes. Here the main pointis to show why we need three types of nodes. All of them takes part in di�erentpro
esses.We 
an 
learly distinguish between nodes and use the appropriate set when itis needed. But still we will often en
ounter a situation where we have to �nd if anode is 
ontained in some set. In this 
ase we would like to do better than a linears
an. Hen
e, we store ea
h set of nodes in a hash table. A key in this hash table is aname of a tuple and a value is a referen
e to the parent. Hash tables helps to sear
hand retrieve a node in a 
onstant time independently from the amount of nodes ina tree. This will let us minimize the overall time spent for sear
hing. Another issueis to minimize a number of nodes stored in a tree. This would allow us to save thespa
e and time (used for rehashing the tables).
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Parent Figure 6: Node usage10



Lemma 1 A k-tree with n nodes represents n tuples and n�1 relationships betweenthese tuples.Proof: A

ording to requirement 1 in De�nition 3 every node in a k-tree has di�er-ent tuple. Thus, n nodes will have n di�erent tuples. Also, a

ording to requirement2 in De�nition 3 every node represents a relationship between tuple it has and thetuple of the parent node. In total there will be n � 1 relationships as there are nnodes and root node doesn't have a parent. 2We have de�ned the stru
ture of the k-tree, but from the de�nition itself it isnot 
lear if k-tree is a real tree. We still need to prove that k-tree has no 
y
les.Theorem 1 (K-tree is a
y
li
) The K-tree data stru
ture 
ontains no 
y
les.Proof: We prove this theorem by 
ontradi
tion. We will try to 
onstru
t a 
y
le ofnodes from the tree T . Cy
le is a sequen
e of nodes (N1; : : : ; Nn), that:1) Ni+1 is a parent node of Ni;2) N1 is a parent node of Nn.If we su

eed to show that it is impossible to 
onstru
t su
h 
y
le - the theoremwill be proved.Assume we have a tree T . NRoot is a root node of the tree T . Lets also assumethat the tree T is large enough to make a sequen
e (N1; : : : ; Nn), where Ni+1 is aparent node of Ni. Now we have a sequen
e 
omplying with the �rst requirementfor the 
y
li
 sequen
e.A

ording to the de�nition of the k-tree (De�nition 3) we 
an make a sequen
eof nodes between any node and a root node. Thus, we 
an make a sequen
e(Nn; Nn+1; : : : ; NRoot). Sin
e sequen
e (Nn; Nn+1; : : : ; NRoot) is based on the samerules as the sequen
e (N1; : : : ; Nn) we 
an join them together. The result will be asequen
e (N1; : : : ; Nn; Nn+1; : : : ; NRoot). In this 
ase we see that the parent of Nnis the node Nn+1. A

ording to De�nition 3 all nodes in the tree T are unique, soNn+1 6= N1 and node N have only one parent. Therefore N1 is not a parent for Nn.This proof shows that any time we make a sequen
e (N1; : : : ; Nn), we 
an extendit till the root node and every time we will get that N1 is not a parent for Nn.Thus we have to 
on
lude that it is impossible to make a 
y
li
 sequen
e of nodes(N1; : : : ; Nn) from the k-tree T . Therefore k-tree T is a
y
li
. 2This theorem gives a ni
e feature that whenever we take a node and follow thereferen
es of parents, we will always end at the root node and will never run intoin�nite 
y
le. This property allows us to build a simple pro
edure in the algorithmfor rebuilding a path from leave node to root node. A pro
edure is very simple aswe have to follow only the referen
es to parents. Theorem 1 ensures that we alwaysone result for one leave node and that this pro
ess will never run into 
y
le.Theorem 2 (Minimality of k-tree) K-Tree has the smallest number of nodes(number n) representing n tuples and n� 1 relationships.11



Proof: We prove this theorem by 
ontradi
tion. Assume we have a k-tree T withn nodes in it. A

ording to Lemma 1 this k-tree represents n tuples and n � 1relationships between these tuples.Lets remove one node from the k-tree T and name a new k-tree T 0. T 0 has n� 1nodes. In this 
ase Lemma 1 says that the k-tree T 0 represents n � 1 tuples andn� 2 relationships between these tuples.We have to 
on
lude that redu
ing the number of nodes in a k-tree will result inredu
ed number of tuples and relationships. We wanted to prove that n tuples andn� 1 relationships 
an be represented by the smaller number of nodes than n. Theproof shows that this is impossible. The theorem is 
orre
t. 2Theorem 2 says that we will always have a minimal number of nodes in a k-tree.This feature is valuable as we 
an be sure that an overall number of nodes in all ofthe k-trees will also be minimal. So the spa
e is used in most eÆ
ient way by theSpiderLink algorithm.Theorem 3 (K-Tree is �nite) K-Tree has a �nite number of nodes.Proof: A

ording to De�nition 3 all nodes in a k-tree have di�erent tuple names.This means that the maximum number of nodes in a k-tree is limited by the numberof tuples in a database. A database has a �nite number of tuples4, hen
e the numberof nodes in a k-tree is also �nite. 2Theorem 3 gives us another ni
e property: we 
an build a tree until there isimpossible to 
ontinue building pro
ess. A tree has a �nite number of nodes, so thenumber of tree building steps are also �nite. We will use this property to de�ne the\Stop Criteria" in our algorithm.5.2 K-path and MK-pathIn previous part we presented the a k-tree. But a k-tree itself represents onlyrelationships between one lo
ation of one keyword and a sta
k of nodes. As theresult we have to give to user a data stru
ture 
ontaining one or several sequen
es oftuples showing a 
onne
tion between lo
ations of all keywords. In this part of paperwe de�ne two data stru
tures: k-path and mk-path. A k-path shows a relationshipbetween two lo
ations of two di�erent keywords. A mk-path shows relationshipsbetween k number of lo
ations of di�erent keywords, where k is the number of allkeywords.De�nition 4 (K-path). A path P = (R1; : : : ; Rn) between two di�erent keywordsKW and KW 0 is 
alled k-path, if:1) kw(R1) = KW ;4This feature of database is des
ribed in Se
tion 412



2) kw(Rn) = KW 0;3) 8Ri; Rj 2 P Ri 6= RjLet 
onne
ts(P ) return the two keywords 
onne
ted by k-path P : 
onne
ts(P ) =(KW;KW 0) if P = (R1; : : : ; Rn) and kw(R1) = KW and kw(Rn) = KW 0. Su
hstri
t de�nition is needed, be
ause fun
tion 
onne
ts(P ) outputs only two keywordseven though there is a tuple Ri in the path P su
h that kw(Ri) = KW 00.From De�nition 4 follows a property that if P1 = (R1; : : : ; Ri) and P2 = (Ri; : : : ; Rn)are k-paths then a sequen
e (P1; P2) results in a new k-path P = (R1; : : : ; Ri; : : : ; Rn).We also have to mention, that if 
onne
ts(P1) = (KW;KW 0) and 
onne
ts(P2) =(KW 0;KW 00) then 
onne
ts(P ) = (KW;KW 00).De�nition 5 (MK-path) Let KP = fKP1; : : : ;KPng be a set of k-paths 
onne
t-ing all keywords from KW . This set we will 
all a mk-path. This set ful�lls tworequirements:1) n = size(KW )� 1;2) 8KW;KW 0 2 KW 9 a subset fKPi; : : : ;KPjg � KP, su
h that a sequen
e(KPi; : : : ;KPj) of this subset is a k-path 
onne
ting KW and KW 0;As a result user gets a number of mk-paths representing the relationships betweenall of the requested keywords.6 Algorithm6.1 Stru
ture of the algorithmHere is the se
tion where we go through entire sear
h pro
ess of the SpiderLinkalgorithm. Our algorithm 
onsists of four basi
 steps:1. Initialization - �nds lo
ations for the given keywords. Makes initial k-trees.2. Conne
t pro
edure - makes k-paths using k-trees.3. MakeResults pro
edure - makes new mk-paths if possible. Outputs themto user.4. Expand pro
edure - expands k-trees by adding 
hildren to their leaves.The last tree steps are performed iteratively until at least one 
ondition in \StopCriteria" list is satis�ed. In the following part of this se
tion we des
ribe ea
h ofthese parts in detail. First we present the general stru
ture of SpiderLink algorithm.Purpose: to �nd all 
onne
tions between given keywords.Input: a set of keywords KW and a database D. The input set of keywords istreated as a 
onjun
tive query, so every answer should in
lude all keywords.13



Output: set of mk-paths.SpiderLink(KW ,D)1. let T be an empty set of k-trees2. let P be an empty set of k-paths3. for ea
h keyword KW 2 KW :4. for ea
h relation R 2 D:5. for ea
h tuple fRijkw(Ri) = KWg:6. make a k-tree T with a root node NRoot = (Ri; null)7. add T to T8. end for9. end for10. end for11. if 8KW 2 KW 9T that rootkw(T ) = KW than12. while \Stop Criteria" is not satis�ed:13. for ea
h k-tree T 2 T:14. Pnew = Conne
t(T;T)15. P= MakeResults(Pnew;P)16. T = Expand(T;D)17. end for18. end while19. end ifAn input for SpiderLink is a set of keywords KW and a database D. First ofall algorithm �nds tuples 
ontaining keywords from KW . Then for ea
h tuple Ri(lo
ation of a keyword) we make a new k-tree T with a root NRoot = (Ri; null).After the database is s
anned sear
hing for all keywords, we have a set T of initialk-trees. These k-trees are our starting points for the iterative steps.If we have found at least one lo
ation for ea
h of the keywords from KW , westart the iterations. In other way, if one of the keywords is not found, there is noreason to make further steps. A set of keywords KW is a 
onjun
tive keyword query.This means that all of the keywords should be 
ontained in the result. Thus, if oneof the keywords is not found in a database at all { we stop the sear
h pro
ess.After the \Initialization" part (lines 3-10) follows three important steps and
he
king one 
ondition. The \Stop Criteria" is des
ribed after the de�nitions ofsteps \Conne
t", \MakeResults" and \Expand". At that time it will be mu
h easierto understand why su
h 
onditions de�ne \Stop Criteria".The following pro
ess is repeated until the \Stop Criteria" is satis�ed. For everyiteration we take a k-tree T from the set T and perform \Conne
t", \MakeResults"and \Expand" steps with it. Usually the number of iterations performed is greaterthan the number of k-trees in the set T. Thus, every time we pro
ess the last k-treeTn from the set T, the next time we start again from the �rst k-tree T1.6.2 Conne
tThe �rst pro
edure is \Conne
t". It is a part of algorithm where k-paths are pro-du
ed between lo
ations of di�erent keywords.Purpose: to produ
e all possible k-paths.14



Input: a tree T , a set of all trees T.Output: a set of k-paths P.Conne
t(T ,T)1. let P be an empty set of k-paths2. for ea
h leaf node fN jN 2 NA [ NI , T = (NA [ NI [ NP )g:3. for ea
h k-tree fT 0jrootkw(T ) 6= rootkw(T 0), T 0 2 T, T 0 = (N0A [ N0I [ N0P )g:4. for ea
h node fN 0jtid(N 0) = tid(N); N 0 2 N0A [ N0I g:5. make a k-path P = (tid(NRoot); : : : ; tid(N); : : : ; tid(N 0Root))6. add P to P7. if N 0 2 N0A than8. remove N 0 from N0A9. add N 0 to N0I10. end if11. end for12. end for13. end for14. return PThere are several interesting issues in this pro
edure that we would like to dis-
uss. The �rst one is that only a
tive and idle nodes takes part in the line 4, wherewe 
he
k if two nodes have the same tuple id. The reason is that when we 
he
konly the leaves we automati
ally prohibit the generation of the k-paths that hasbeen already produ
ed.Another interesting issue is transferring the node N 0 from the set of a
tive nodesN 0A to the set of idle nodes N 0I (lines 7-9). This is done in order to prevent theunne
essary expanding of two k-trees.6.3 Make ResultsPurpose: to produ
e new mk-paths.Input: two sets of k-paths: Pnew and P.Output: prints out the results and outputs a new set P.MakeResults(Pnew,P)1. for ea
h P 2 Pnew:2. print all mk-paths fMP jMP = fP;P1; : : : ; Png; Pi 2 Pg3. end for4. add Pnew to P5. return PThe purpose of this pro
edure is to produ
e new mk-paths by making all possible
ombinations of ea
h k-path from the newly generated set Pnew and all previouslymade k-paths in a set P. It outputs only these mk-paths that 
omply with De�nition5.
15



6.4 ExpandPurpose: to add the 
hildren (if possible) for every leaf node in the tree T .Input: a tree T and a database D.Output: an expanded tree T .Expand(T ,D)1. for ea
h leave fN jN 2 NA ; T = (NA [ NI [ NP )g2. Ri = tid(N)3. for ea
h relation fR0j9RL, R0,R 2 RL, R0 2 Dg4. for ea
h tuple fR0ijR0i is adja
ent to Rig5. make a new node N 0 = (R0i; N)6. if 8N 00 2 T tid(N 0) 6= tid(N 00) than add N 0 to NA7. end for8. end for9. if at least one node was added to NA then10. add N to NP11. remove N from NA12. end for13. return TThis pro
edure takes only a
tive nodes and tries to make 
hildren for ea
h ofthem. We add a new node N 0 to the k-tree T if there is no other node 
ontainingthe same tuple identi�er. This requirement is de�ned in De�nition 3.Between lines 9 and 11 there is one interesting issue to dis
uss. A node N isadded to the set of parents NP only in 
ase it has got at least one 
hild. In other
ase it is deleted from a tree.6.5 Stop CriteriaThere is one main 
ondition for stopping the sear
h: if after \Expand" step on allthe k-trees no new leaf nodes are added { there is no reason to 
ontinue with a sear
hpro
ess. This 
riteria uses several properties. The �rst one is that if the \Expand"pro
edure has tried to add new 
hildren to all of the k-trees and there are no new
hildren nodes, hen
e in all of the following iterations it will not produ
e any newnodes also. From this property follows another one. If at ea
h iteration we havethe same number of a
tive and idle nodes we 
an produ
e only the same k-paths weprodu
ed at last iteration. Without no new k-paths no new results (mk-paths) willbe produ
ed. Thus we have to 
on
lude that 
ontinuing the sear
h pro
ess will notgive as any new results and we 
an stop the sear
h.7 Appli
ation ExampleIn this se
tion we diagram the work pro
ess of SpiderLink algorithm. We use lo-
ations of keywords presented in Example 5.2. Ea
h lo
ation of keywords has beentransfered to a separate k-tree. In Figure 7 we have a pi
ture of k-trees after the\Initialization" step. Dashed lines divides forest to three parts indi
ating whi
h16
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ond iteration. Conne
t step.
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P2S1 SFigure 10: Se
ond iteration. Expand step.trees belongs to whi
h keywords. We have a forest of three trees, whi
h looks likethat:forest = fTree1; T ree2; T ree3g;Tree1 = fP1gA; Tree2 = fT2gA; Tree3 = fC1gA.rootkw(Tree1)="James", rootkw(Tree2)="train", rootkw(Tree3)="Denmark".In all of the following examples we write only a tuple identi�er near ea
h node.Figure 7 shows that \Conne
t" pro
edure has no possibilities to build a k-path.There are no leaves having the same tuple identi�ers. In Figure 8 there is shown astate of trees after the \Expand" step. Node P1 in a tree Tree1 be
ame a parentand the are two new a
tive leaves S1 and P2.In the se
ond iteration of algorithm, \Conne
t" again 
an not make any k-paths(Figure 9). Figure 10 diagrams the k-trees after the \Expand" step. The samesituation is in the third step, where only two new nodes are added to the k-treeTree3 (Figure 12).In the fourth step diagramed in Figure 13 \Conne
t" pro
edure �nds two nodeshaving same tuple identi�ers. It builds a k-path (P1; S1; T2) and a tuple in the k-tree Tree2 be
omes idle. This k-path 
an not be output as a result (as mk-path),be
ause it 
ontains only two keywords. After the \Expand" pro
edure we have su
hforest:Tree1 = fT2;D1;D2; P3gA [ fP1; P2; S1gP ;Tree2 = fS1gI [ fT2gP ;Tree3 = fD1;D2gA [ fC1gP . 17
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P2S1 S1Figure 11: Third iteration. Conne
t step.
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1DFigure 14: Fourth iteration. Expand step.Figures 15 and 16 show the �fth iteration of the algorithm. During these twosteps k-tree Tree2 is neither 
onne
ted nor expanded. But at the following iterationtwo new k-paths are produ
ed (Figure 17): (P1; S1;D1; C1) and (P1; S1;D2; C1).These two paths 
an be 
ombined with the one we have produ
ed previously. Twomk-paths are output to a user: MK1 = f(P1; S1; T2); (P1; S1;D1; C1)g and MK2 =f(P1; S1; T2); (P1; S1;D2; C1)g. These two answers di�er only in one tuple. In oneof them there is D1 in the other D2. But this di�eren
e is important as the resultsshows \James" 
onne
ting to \Denmark" through two di�erent 
ities: Copenhagen
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Figure 17: Sixth iteration. Conne
t step.
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Figure 20: Seventh iteration. Expand step.and Aalborg. We should noti
e that two nodes D1 and D2 in a k-tree Tree1 be
ameidle.We have also diagramed the seventh iteration of the SpiderLink algorithm inFigures 19 and 20. In Figure 20 there is shown a new thing. Node T2 in a k-treeTree1 
an not be expanded, therefore we delete it.We stop our example here as we have showed all the algorithm pro
esses weintended. The 
ontinuing will just repeat \Conne
t" and \Expand" pro
edures.8 Ar
hite
tureWe have made an implementation of our SpiderLink algorithm. In this se
tion weexplain the ar
hite
ture of this implementation. All implementation was done inJAVA. We used JDBC to 
onne
t to the Ora
le database.Figure 21 shows �ve main 
omponents of SpiderLink keyword sear
h engine. Inthis �gure \User" is the starting point of the sear
h pro
ess. A keyword query givenby user is passed to the tokenizer. The stream is 
ut to separate tokens and everytoken be
omes a keyword. All the keywords are stored in non 
apital letters. Tok-19



enizer gives a set of keywords to \Keyword lo
ation �nder". This module does thework for SpiderLink initialization step. It takes every keyword and s
ans a databaselooking for this keyword. \Keyword lo
ation �nder" issues an SQL query for ea
hkeyword for ea
h relation. Lets assume we have keyword KW and we are lookingin a relation R. The SQL query looks like that:SELECT rowid FROM RWHERE LOWER(A1) LIKE '%KW%' OR . . . OR LOWER(An) LIKE '%KW%'.We use SQL predi
ate \LIKE" to �nd exa
t and not exa
t mat
hes of keywords.A predi
ate \LOWER" is used in order to get a keyword mat
h without taking in toa

ount the di�eren
e between 
apital and non 
apital letters. In the query parti
-ipate only attributes Ai of type \CHAR" or \VARCHAR". Sear
hing for keywordsonly in textual information simpli�es the initialization step. The issue of interpret-ing given keywords as various types of data (like integers, data and so on) is a bigand separate problem.The goal of the SQL queries issued by \Keyword lo
ation �nder" is to get rowid'sof tuples where keyword KW is lo
ated in at least one of the values. Using su
h aquery we �nd exa
t and partial keyword mat
hes in text values. We use an Ora
ledatabase feature of keeping identi�er for ea
h tuple. We store tuple id and a relationname in order to make sure that a 
ombination of both elements gives us a uniqueidenti�er for a tuple.
User

Sequences of
tuples

JDBC

Database

Set of keywords

Keyword location
finder

K−tree expander
and combiner

K−paths
K−path combinerTuple

retriever
MK−paths

SQL
SQLSQL

K−trees

Keyword query

Tokenizer

Figure 21: Ar
hite
ture of SpiderLink implementationAfter we �nd lo
ations for all keywords, we make a k-tree for ea
h lo
ationand pass them to \K-tree expander and 
ombiner". This module is responsible20



for generating k-paths. As it is expanding k-trees, it issues an SQL queries to thedatabase. A ni
e feature of the implementation is that SQL queries are using tupleidenti�er rowid. This is the fastest way to rea
h the required tuple in a database.Every time a set of new k-paths is produ
ed, a \K-path 
ombiner" tries to makenew mk-paths. If it su

eeds, mk-paths are passed to \Tuple retriever". This lastmodule takes 
are that a user gets a set of tuples, not a set of tuple identi�ers.An interfa
e we have made is very simple. User laun
hes a 
ompiled JAVAprogram from a 
onsole window. In Figure 22 there is an example of the helpinformation printed in 
onsole window. It demonstrates the possibilities of ourimplementation of algorithm. A user 
an spe
ify the 
on�guration �le and a �lewith a terms for several sequential queries. User 
an also de
ide whi
h type ofoutput it prefers: to get results as a text in 
onsole window, or to generate a HTML�le with full information from queries. User 
an also provide the keywords forSpiderLink through the 
ommand line. In Figure 23 there is shown an example ofsimple result output in HTML format.

Figure 22: Example of implemented system input 
apabilities.Con
lusionsThe in
reasing need for information retrieval sear
h engines for relational databasesmotivated us to develop the SpiderLink algorithm. In this arti
le we have presentedtwo important issues: the k-tree data stru
ture for keyword sear
hing in relationaldatabases and SpiderLink algorithm whi
h uses k-trees and is a fully developedkeyword sear
h engine. In this paper we presented and proved several importantproperties of k-trees: i) it 
an be used on databases having single, parallel andhierar
hi
al relationships; ii) it is minimal; iii) it is �nite; iv) it 
an be implementedas a hash-table.The further development of SpiderLink keyword sear
h system 
ould fo
us onsu
h issues: 21



Figure 23: Example of the results in HTML format� Developing an advan
ed k-tree data stru
ture that 
ould reuse already gath-ered information about adja
ent tuples when building k-trees.� Developing a 
onvenient visual representation of keyword sear
h results.� SpiderLink algorithm 
an be easily extended to support keyword sear
hes notonly on a single database, but also on several databases (treating them as onebig database).Referen
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