AALBORG UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE
FREDRIK BAJERS VEJ 7 - DK 9220 AALBORG - DENMARK

Title:

Spiderlink: a Keyword Search Algorithm

Project period:
2003.02.01 — 2003.06.06

Members:
Linas Buténas

Advisor:
Michael Bohlen

Article: 1
Pages: 23

Copies: 6

Abstract:

The increasing need for a keyword-based search
systems on relational databases motivated us to
develop the SpiderLink search engine. It uses a
k-tree data structure to find the connections be-
tween given keywords. As a result SpiderLink re-
turns the sequences of tuples relating the tuples
where keywords were found.

In paper we first define a k-tree data structure. It
has several important properties: i) it works on
hierarchical, parallel and single relationships in a
database; ii) it is minimal; iii) it is finite; iv) it
can be implemented as a hash-table allowing to
use it most efficiently.

Later we present the SpiderLink search algorithm
and diagram in the example how it actually works.
We have implemented SpiderLink and it is a fully
developed keyword search engine. The tests done
on the databases support all our theoretical as-
sumptions.

2003

Spiderlink: a Keyword Search Algorithm

Linas Buténas
linas@cs.auc.dk

Department of Computer Science, Aalborg University,
Frederik Bajers Vej TE, 9220 Aalborg Ost, Denmark

June 6, 2003

Abstract

The increasing need for a keyword-based search systems on relational data-
bases motivated us to develop the SpiderLink search engine. It uses a k-tree
data structure to find the connections between given keywords. As a result
SpiderLink returns the sequences of tuples relating the tuples where keywords
were found.

In paper we first define a k-tree data structure. It has several important
properties: i) it works on hierarchical, parallel and single relationships in a
database; ii) it is minimal; iii) it is finite; iv) it can be implemented as a hash-
table allowing to use it most efficiently.

Later we present the SpiderLink search algorithm and diagram in the ex-
ample how it actually works. We have implemented SpiderLink and it is a fully
developed keyword search engine. The tests done on the databases support all
our theoretical assumptions.

1 Introduction

The popularity of keyword search systems shows that keyword searches are the most
convenient way of retrieving the information from huge data sources. It is simple
and precise way to ask and get the information user wants. The World Wide Web
already has a number of well developed keyword search systems, like Google [5],
Altavista and others. But there is an increasing need for keyword-based search
engines for relational databases.

In this paper we propose the SpiderLink — a keyword search engine on relational
databases. It uses a k-tree data structure to find the connections between given
keywords. As a result user gets the sequences of tuples relating the tuples where
given keywords were found.

Our main goal is to present the k-tree data structure. It is the core of our
SpiderLink algorithm. A k-tree has several very important features:

e it can be used for keyword searching on various databases having single, hier-
archical and parallel relationships.

e it is minimal and guarantees that it will take the smallest amount of space to
represent n tuples and n-1 relationships between them.

e it is finite. This feature gives a possibility for algorithm to build a k-tree till
it is possible to do that, and we are sure there is an end for building process.

e an implementation of it can be done in various ways. We propose to implement
it using a hash-table. Hash-table gives a constant time performance while
searching for a node in a k-tree.

Our second goal is to present the keyword search algorithm SpiderLink. In
paper first we describe the algorithm and after give an example showing step by
step how the algorithm works. We have also implemented SpiderLink and in one of
the sections we present the architecture of this implementation. An implemented
SpiderLink engine works as a fully functioning keyword search system for relational
databases. In addition to the properties possessed by k-trees it has some very useful
features for a user. SpiderLink finds the relationships between keywords not only
in the case then keywords are located in the tuples, but also in the case, where
keywords are located in the names of relations or attributes. It finds exact and not
exact keyword matches, and it does not require from user any knowledge of database
schema or database querying language (such as SQL).

In the article we discuss how to find the keywords in the database, the data struc-
tures used for constructing and checking the relationships between these keywords,
and the ranking and pruning of results.

The paper has the following structure. In the Section 2 we discuss the related
work and in Section 3 we give a motivation. Preliminary definitions are given in
Section 4. The data structure of a k-tree is discussed in Section 5. In Section 6
we describe the SpiderLink algorithm. The following Section 7 gives an example
how the algorithm works. In Section 8 we discuss the architecture of SpiderLink
implementation.

2 Related Work

In the recent years there has been a number of papers published in the area of
keyword searching in relational databases. All of them attempt to give a simple
keyword search interface, short searching time and wide range of results. To satisfy
all of these needs is a challenging task. Usually one of them is solved in a trade-off
of the other. Most of the papers takes a part of all the problems and tries to solve
them.

Most of the relational database management systems like DB2 [10], Microsoft
SQL Server [8], MySQL, Oracle [6] and PostgreSQL have extensions, providing text

search engines. However, these search engines can perform a text search only on
single columns. That is the reason why there is a need for keyword search engines,
capable to find relationships between keywords.

The paper [4] describing AQUA/Jungle database search engine is proposing
an idea of advertising databases via Internet. This prototype and our SpiderLink
algorithm works towards the same general idea: they give a user an easy access to the
information stored in databases. But the chosen searching strategies are different.
Jungle first indexes meta-data and later this information is used for optimization
of SQL queries in AQUA. The purpose of SpiderLink algorithm is to work directly
with database without indexing any information and to issue SQL queries on single
relation only.

There are several Internet search engines like Quigo or iBoogie that have imple-
mented the Deep Web [2] search techniques. Such type search engines are able to
find information in e-commerce or news web sites databases. Dynamically gener-
ated World Wide Web pages are not always reachable for standard WWW keyword
search engines.

The most related work to our algorithm is described in the following four papers
[1,3,7,9]. All of them aims to provide a simple interface for a database access, do
not require any knowledge of database schema and database querying language. But
the searching strategies differs.

Papers [7] and [3] treats a database like a huge graph, where tuples are nodes
and relationships are edges. Viewing from this point our work is quite relative to
what they did. We build a data structure where tuples are also treated as nodes and
relationships are references between them. The difference is that paper [7] describes
a system for keyword searches in graph-structured databases. It focuses on ranking
the results, based on shortest path computations. The BANKS system [3] loads the
whole relational database as a weighted graph. After that it uses Steiner trees ! to
find the closest connections between tuples where keywords were found.

The DISCOVER [9] and DBXplorer [1] keyword search algorithms chooses an-
other approach. They explore the properties of the database schema. First it finds
keywords in the database and later chooses one which becomes a starting point for
building the candidate paths between all keywords. DISCOVER uses schema graph
to generate minimum joining networks of tuples, which can be joined together into a
single network containing all of the keywords. It uses an execution plan to optimize
and reuse issued SQL queries.

The DBXplorer [1] locally stores database schema and index of keywords. It
finds a set of relations where given keywords are located, using the keyword index.
Then using the undirected schema graph it builds a set of subgraphs representing
a joining of relations. Each candidate subgraph is issued as an SQL statement to
check if it contains all the keywords.

!Steiner tree — a minimum-weight tree connecting set of vertices in a weighted graph.

3 Motivation

In this section we introduce a sample database and a motivating example for our
keyword search algorithm SpiderLink. Consider the database schema in Figure 1(a)
and the sample instance in Figure 1(b). The database shows information about
persons transporting goods between cities. The example contains a relation having
a relationship to itself (“Persons”), two parallel relationships from relation “Desti-
nations” to relation “Shipments”, a ternary relationship and several single relation-
ships. Such structure of the example was chosen to represent the possibilities of
our search engine and to point out the most common situations in the real world
databases.

Persons Shipments Transport
d | Pid d
C Name From Vehicle
Chief To Load
Tid
Destinations Countries
Ad 1d
City / Country
Cid

(a) A schema of database. The underlined attributes are primary keys. Arrows go from foreign
keys to primary keys.

Persons Shipments Transport
_Id | Name | Chief Pid | From | To Tid _Id | Vehicle | Load
P.| 1| James | null S, 101 | 102 | b T.| a | ship 200
P| 2| Eric 1 S 102 | 103 | a T| b | Train 60
P,| 3| Laura 2 S| 4| 104 | 105| ¢ T| ¢ | Plane 2
Pl 4| Tom null
\—‘ Destinationg Countries
Id | City Cid _Id | Country
D.| 101 Copenhagen| dk C.| dk | Denmark
D,| 102| Aalborg dk C.| no | Norway
D.| 103 | oOslo no G| fr | Frace
D,| 104 | Paris fr Ci| et | Egypt
D;| 105 | cairo et

(b) Database instance

Figure 1: Sample database. It has hierarchical relationship in relation “Persons”, parallel relation-
ship between relation “Shipments” and relation “Destinations”, and a ternary relationship between

4 relations.

Assume a user would like to find if James could transport by ship a cargo between
Aalborg and Oslo. The appropriate keyword query for SpiderLink is “James ship

Aalborg Oslo”. Now the search engine should find the tuples where these four
keywords are located. From the example in Figure 1(b) we see that tuple P; contains
keyword “James”, tuple 17 contains keyword “Ship”, tuple Ds contains “Aalborg”
and finally tuple D3 contains “Oslo”. The second step for SpiderLink is to find the
sets of tuples that connect P;,T7,Ds and Ds. The answer from a search engine
would show they are connected, but not in a straight forward way. James himself
does not transport anything between Aalborg and Oslo, but his subordinate Eric
does.

Persons Shipments Transport
_Id | Name |Chief Pid | From | To | Tid _Id | Vehicle | Load
P | 1| James null S| 3 | 102 | 103 a T.| a Ship 200
P,| 2 | Eric 1
Destinationg
1d | ciy | cid
D, 102l Aalborg l dk
D, 103‘ Oslo ‘ no

Figure 2: A graphical representation of search results

One of the answers that SpiderLink outputs is these two sets of related tuples:
{P1,P,,S2, T} and {D1, S, D3}. They represent relationships between four tuples
where keywords were found. A textual representation of results is not so self explicit
as the graphical one in Figure 2, but this is just a matter of way in which we repre-
sent the result. Our main concern for SpiderLink algorithm is to return short and
non duplicate results. We don’t confuse user by giving the same results many times
represented by different sets of tuples. Consider this example: {Py,P,,So, Dy},
{P1, P, S2,Ds}, {T1,S2,D3}. The actual result is completely the same as the pre-
vious one, and even the graphical representation is the same like in Figure 2. If a
user gets many results like these it will take time to figure out which results are new
and which ones was already presented before.

In the case we have presented above, a set of tuples are related to each other
through the primary-foreign key relationships. A set of related tuples is an answer
if it contains all the keywords in the tuples or the keywords match corresponding
attribute or relation names. We showed one example in order to illustrate what is
the keyword search query input, the result, and the meaning of the result.

4 Preliminary definitions

A Database D = (R, RL) is a pair of sets: set of relations R and set of relationships
RL. Each relation R = (S® {R1,...,R,}) is a pair consisting of schema S¥ and
a set of tuples {Ry,...,R,} over the schema S®. Schema S® = {A;,...,A4,} is a
set of attributes. Tuple R; = {vy,...,v,} of the relation R is a mapping from the
attributes of the schema S¥ to the set of values {v1,...,v,}. A number of tuples in

a database is finite as there is a finite number of relations and every relation has a
finite number of tuples.

We assign a unique identifier for each tuple in the database. We use R; as this
identifier. It shows exactly to the tuple 7 in the relation R. No other tuple has the
same identifier in the same database. In Figure 1(b) there is a database example
where you can see these identifiers written at the side of each tuple. The SpiderLink
algorithm uses these identifiers to track relationships between locations of keywords
in a database. In terms of memory consumption it is much cheaper to keep only
identifiers of tuples instead of whole tuples.

A relationship RL = {(R.A;,R".A}),...,(R.Ay,R'.Al)} is a set of pairs of
elements, representing a connection between two relations. We will write that
R,R' € RL if RL = {(R.A1,R".A)),...,(R.Ay,R'.A]))} and say that RL connects
R and R'. Attributes A; and A/ sitting in one element will be called (a pair of)
related attributes. We use a set of elements instead of one element in relationship,
because a relationship in a database could involve more than one attribute from each
relation. It could be understood like a set of attributes {Aj,...,A,} is a primary
key in relation R and set {A],..., A/} forms a foreign key in relation R’ referencing
primary key in R.

Example 4.1 Here we start a series of examples using database instance in Figure
1(b). With a help of it we explain and diagram visually the search process and terms
we define. According to our database description the database instance is defined
like that:

Database = ({P,S,T,D,C},{RL"® RL°T RLY" , RL5", RLPC}) 23

Relations: Relationships:
= ({Id, Name,Chief},{Py, Py, Ps, P1}) RLF?P = {P.Id, P.Chief}
S = ({Pid, From,To,Tid},{S1,S2, S3}) RLPS = {(P.Id,S.Pid)}
T = ({Id,Vehicle, Load}, {T1,Ts,T3}) RLST = {(S.Tid, T.Id)}
D = ({Id,City, Cid},{Dy, Dy, D3, Dy, D5}) RL{P = {(S.From, D.Id)}
C = ({Id, Country},{C1,Cs,C5,Cy}) LSD {(S.To,D.Id)}
RLDC {(D.Cid,C.Id)}

Definition 1 (Adjacent tuples). Tuple R; is adjacent to tuple R;' if there is a
relationship connecting relations R and R’ and for each pair of related attributes in
that relationship values are the same in both tuples.

Tuple R; = {v1,...,v,} is adjacent to tuple R} = {v},..., v} if:

1) exists a relationship RL, such that R, R’ € RL;

2) for each element (R.A;, R".A}) from the relationship RL the condition is
satisfied: v; = v}, where v; is a value mapped from attribute A; in the relation
R and v} is a value mapped from attribute A} in the relation R'.

*We use an abbreviations for the relation names, writing only the first letters.
3An index shows the names of connected relations by this relationship.

Definition 2 (Related tuples, Path). Tuple R; is a related tuple to tuple R,
if there exists a sequence of tuples (Ry,..., R,) where next to each other standing
elements R;, R;+1 are adjacent tuples. This sequence of tuples will be called a path
between R; and R,.

Example 4.2 Lets take a tuple P; from a relation “Persons” and analyze it. Fol-
lowing Definition 1 we find out that tuples P, and S; are adjacent to it. There are
quite a lot of related tuples to tuple P;, so we take only two as examples: P; and
T,. The path between P; and Ps is (Py, Py, P3) as well as (P, Sy, Do, S2, P3) and
many others. As you can see, there are many possible variations of putting down a
path between two tuples.

5 Data Structures

x In this section we describe a data model of our search engine. First we define a
data structure of a k-tree and explain the rationale of the design. We also describe
the notion of k-path and mk-path as they are essential elements of a result that user
gets.

User starts the search by giving a stream of keywords. This stream is parsed
to terms and every single term becomes a keyword KW. A set of all keywords we
mark as KW.

Example 5.1 Lets assume we would like to find out if James transfers goods by
train in Denmark. The keyword input stream looks like “James train Denmark”.
This stream is parsed and we get three keywords: KW;=“James”, K Wy="“train”,
KWs=“Denmark”. A set of all keywords KW = {KW;, KWy, KW3}.

After we have parsed the keywords, a database is scanned searching for the
locations of these keywords. A location of the keyword is a tuple R; containing that
keyword. If a keyword is founded in the name of relation or in the name of attribute,
then we say that keyword is founded in every tuple of that relation and every tuple
becomes a location of that keyword. We define a function kw(R;): if R; is a location
of keyword KW than kw(R;) = KW.

Example 5.2 In our database example in Figure 1(b) keyword “James” is found
in tuple P;. The location of the keyword “train” is the tuple 75, and location of
the keyword “Denmark” is the tuple C;. In Figure 3 you can see all three tuples
grouped by keywords.

5.1 The K-tree

The k-tree data structure should satisfy several requirements:

KW="James" ! KW="train" ! KW="Denmark"
,,,,,,,,,,,,,,,,,,,, S S
| |
Persons | Transport | Countries
I I
Id Name | Chief ! Id | Vehicle | Load ! Id Country
P.| 1| James nul| © T b | Train 60 i G| dk | Denmark
I I
I I
I I

Figure 3: Keyword locations

1. contains a location of a keyword as a root node;

2. represents relationships between the location of the keyword (root) and other
tuples in a database (other nodes);

3. supports possibility to reconstruct a path between a leave an a root of the
tree;

4. allows to have an unlimited number of children for each node;

5. supports different types of nodes in order to minimize the total amount of
nodes in the tree;

6. nodes are sorted in order to give a fast access to required type;
7. don’t run into cycles then there are cyclic relationships in a database;

8. keeps a minimal number of nodes without affecting the requirements pointed
above.

A k-tree T is a set of nodes. Every node N consists of two elements: a tuple
identifier R; and a reference to a parent node Npgrent: N = (Ri, Nparent). As
illustrated in Figure 4, the pointers in a k-tree point from children to their parents.
The reason is that nodes can have an unlimited number of children, but only one
parent. We define two auxiliary functions: tid(N) and parent(N). tid(N) returns the
tuple identifier of node N: tid(N) = R;. parent(N) returns the parent of node N:
parent(N) = Npgrent-

Every k-tree has a root node as a starting point. We will refer to Npyo as to the
root node of a k-tree. Root has no parent, so parent(Ngoot) = null. The name of
tuple in a root node is special - this tuple is a location for some keyword. To denote,
that a root node of the k-tree 7" has a tuple as a location for a keyword KW, we
will write rootkw(T) = KW.

Definition 3 (K-tree) A k-tree T is a union of three sets: a set of active nodes
N4, a set of idle nodes Ny and a set of parent nodes Np. All together these sets form
one k-tree T'= N4 UN; UNp. Every node in this tree fulfill three requirements:

Tree

D1 DZ P3

Figure 4: A fragment of a k-tree

1. every node is unique, e.i. VN, N’ tid(N) # tid(N'), N,N' € T.

2. every node (except root) has a parent in the same tree and their tuples are
adjacent: VN INpgrent that Npgrent = parent(N) A tuple tid(N) is adjacent
to tuple tid(Nparent), N € T\NRoot; Nparent € Np. parent(Npgoot) = null.

3. from every node (except root) it is possible to reach the root node by following
references to parents: VYN 3 sequence (N, ..., Ngyot) where for every next to
each other standing nodes N', N”, N’ is a child of N”.

From the first requirement of Definition 3 follows a property that (N4 NN;) =
(Ns NNp) = (N; N Np) = (). This means that every set does not intersect with
the other sets in a k-tree. If a node belongs to one set, we are sure that it is not
contained in the other ones.

Example 5.3 In this example we describe a tree fragment shown in Figure 4.
Tree = {P3}A U {Dl, DQ}[U {Pl,PQ, Sl}p.

The biggest amount of work is done with leaves of a tree. The other nodes
are just used to restore a path between a leaf node and the root of the tree. The
leaves are also used for different purposes. To be able to distinguish quickly between
various types of nodes and to give fast access to the needed type we distribute them
between three different types, where two of them cover leaves and the third is for
parents. There is a short description of all types of nodes in Table 1. In Figure 4
you can see a fragment of a tree having nodes of all types. All of them are drawn
according to their type.

In Figure 5 there is shown a life cycle of a node. In this picture there are
presented different states of a node during the search process. There are also shown
two processes from search algorithm which change the type of node. At this point
it is important to understand only that after the leave takes part in these processes,
its type is changed and there is no way it could be restored to the previous one.

Node type | Set | Image | Used for:
Parent Np ®© rebuilding a path between leaves and root
Leaf active | Ny O making connections between trees and tree expansion
Leaf idle Ny o making connections between trees
Table 1: Types of nodes
Connect Expand
active leaf
O N=(R,N)
Leaf active Parent
Node created Q does not exist Children added | @
Al children
- deleted
N=(R.N))
; Leaf idle
exists No children
@ to add — = Node deletec

Figure 5: A life cycle of a node

Figure 6 diagram the usage of different types of nodes. Here the main point
is to show why we need three types of nodes. All of them takes part in different

processes.

We can clearly distinguish between nodes and use the appropriate set when it
is needed. But still we will often encounter a situation where we have to find if a
node is contained in some set. In this case we would like to do better than a linear
scan. Hence, we store each set of nodes in a hash table. A key in this hash table is a
name of a tuple and a value is a reference to the parent. Hash tables helps to search
and retrieve a node in a constant time independently from the amount of nodes in
a tree. This will let us minimize the overall time spent for searching. Another issue
is to minimize a number of nodes stored in a tree. This would allow us to save the
space and time (used for rehashing the tables).

Expand Connect MakeResults
Leaf active

@ W @ L]

Leaf idle
> .

Parent

Figure 6: Node usage

10

Lemma 1 A k-tree with n nodes represents n tuples and n— 1 relationships between
these tuples.

Proof: According to requirement 1 in Definition 3 every node in a k-tree has differ-
ent tuple. Thus, n nodes will have n different tuples. Also, according to requirement
2 in Definition 3 every node represents a relationship between tuple it has and the
tuple of the parent node. In total there will be n — 1 relationships as there are n
nodes and root node doesn’t have a parent. O

We have defined the structure of the k-tree, but from the definition itself it is
not clear if k-tree is a real tree. We still need to prove that k-tree has no cycles.

Theorem 1 (K-tree is acyclic) The K-tree data structure contains no cycles.
Proof: We prove this theorem by contradiction. We will try to construct a cycle of
nodes from the tree T'. Cycle is a sequence of nodes (Ny,...,N,), that:

1) Nj41 is a parent node of Nj;

2) N, is a parent node of N,,.

If we succeed to show that it is impossible to construct such cycle - the theorem
will be proved.

Assume we have a tree T'. Ngyot 18 a root node of the tree T'. Lets also assume
that the tree T is large enough to make a sequence (Nq,...,N,), where N;;; is a
parent node of N;. Now we have a sequence complying with the first requirement
for the cyclic sequence.

According to the definition of the k-tree (Definition 3) we can make a sequence
of nodes between any node and a root node. Thus, we can make a sequence
(Npy Npt1, -+ - NRoot). Since sequence (N, Npi1, ..., Nroot) is based on the same
rules as the sequence (N, ..., N,) we can join them together. The result will be a
sequence (Ni,..., Ny, Nyi1,..., NRoot).- In this case we see that the parent of N,
is the node Np41. According to Definition 3 all nodes in the tree T' are unique, so
Ny41 # N and node N have only one parent. Therefore V] is not a parent for NV,,.

This proof shows that any time we make a sequence (Ny,..., N,), we can extend
it till the root node and every time we will get that Nj is not a parent for N,.
Thus we have to conclude that it is impossible to make a cyclic sequence of nodes
(N1, ..., Ny,) from the k-tree T'. Therefore k-tree T' is acyclic. O

This theorem gives a nice feature that whenever we take a node and follow the
references of parents, we will always end at the root node and will never run into
infinite cycle. This property allows us to build a simple procedure in the algorithm
for rebuilding a path from leave node to root node. A procedure is very simple as
we have to follow only the references to parents. Theorem 1 ensures that we always
one result for one leave node and that this process will never run into cycle.

Theorem 2 (Minimality of k-tree) K-Tree has the smallest number of nodes
(number n) representing n tuples and n — 1 relationships.

11

Proof: We prove this theorem by contradiction. Assume we have a k-tree T" with
n nodes in it. According to Lemma 1 this k-tree represents n tuples and n — 1
relationships between these tuples.

Lets remove one node from the k-tree T' and name a new k-tree 7. T has n — 1
nodes. In this case Lemma 1 says that the k-tree T” represents n — 1 tuples and
n — 2 relationships between these tuples.

We have to conclude that reducing the number of nodes in a k-tree will result in
reduced number of tuples and relationships. We wanted to prove that n tuples and
n — 1 relationships can be represented by the smaller number of nodes than n. The
proof shows that this is impossible. The theorem is correct. O

Theorem 2 says that we will always have a minimal number of nodes in a k-tree.
This feature is valuable as we can be sure that an overall number of nodes in all of
the k-trees will also be minimal. So the space is used in most efficient way by the
SpiderLink algorithm.

Theorem 3 (K-Tree is finite) K-Tree has a finite number of nodes.

Proof: According to Definition 3 all nodes in a k-tree have different tuple names.
This means that the maximum number of nodes in a k-tree is limited by the number
of tuples in a database. A database has a finite number of tuples®, hence the number
of nodes in a k-tree is also finite. O

Theorem 3 gives us another nice property: we can build a tree until there is
impossible to continue building process. A tree has a finite number of nodes, so the
number of tree building steps are also finite. We will use this property to define the
“Stop Criteria” in our algorithm.

5.2 K-path and MK-path

In previous part we presented the a k-tree. But a k-tree itself represents only
relationships between one location of one keyword and a stack of nodes. As the
result we have to give to user a data structure containing one or several sequences of
tuples showing a connection between locations of all keywords. In this part of paper
we define two data structures: k-path and mk-path. A k-path shows a relationship
between two locations of two different keywords. A mk-path shows relationships
between k number of locations of different keywords, where k is the number of all
keywords.

Definition 4 (K-path). A path P = (R, ..., R,) between two different keywords
KW and KW' is called k-path, if:
1) kw(Ri) = KW;

4This feature of database is described in Section 4

12

2) kw(Ry,) = KW'
3) VRZ',R]‘ eP R;# Rj

Let connects(P) return the two keywords connected by k-path P: connects(P) =
(KW,KW') it P = (Ry,...,R;) and kw(Ry) = KW and kw(R,) = KW'. Such
strict definition is needed, because function connects(P) outputs only two keywords
even though there is a tuple R; in the path P such that kw(R;) = KW".

From Definition 4 follows a property that if P, = (R1,..., R;) and P, = (R, ...,
are k-paths then a sequence (Py, P,) results in a new k-path P = (Ry,...,R;,..., R,
We also have to mention, that if connects(Py) = (KW, KW') and connects(P»)
(KW', KW") then connects(P) = (KW, KW").

2y

n)

~—

Definition 5 (MK-path) Let KP = {KP,,...,KP,} be a set of k-paths connect-
ing all keywords from KW. This set we will call a mk-path. This set fulfills two
requirements:

1) n = size(KW) — 1;

2) VKW, KW' € KW 3 a subset {KP;,...,KP;} C KP, such that a sequence
(KP;,...,KP;) of this subset is a k-path connecting KW and KW'

As aresult user gets a number of mk-paths representing the relationships between
all of the requested keywords.

6 Algorithm

6.1 Structure of the algorithm

Here is the section where we go through entire search process of the SpiderLink
algorithm. Our algorithm consists of four basic steps:

1. Initialization - finds locations for the given keywords. Makes initial k-trees.
2. Connect procedure - makes k-paths using k-trees.

3. MakeResults procedure - makes new mk-paths if possible. Outputs them
to user.

4. Expand procedure - expands k-trees by adding children to their leaves.

The last tree steps are performed iteratively until at least one condition in “Stop
Criteria” list is satisfied. In the following part of this section we describe each of
these parts in detail. First we present the general structure of SpiderLink algorithm.

Purpose: to find all connections between given keywords.

Input: a set of keywords KW and a database D. The input set of keywords is
treated as a conjunctive query, so every answer should include all keywords.

13

Output: set of mk-paths.

SpiderLink (KW, D)

1. let T be an empty set of k-trees
2. let P be an empty set of k-paths
3. for each keyword KW € KW:

4. for each relation R € D:

5. for each tuple {R;|kw(R;) = KW}:

6. make a k-tree T" with a root node Ngoot = (R;,null)
7. add T to T

8. end for

9. end for

10. end for

11. if VKW € KW 3T that rootkw(T) = KW than
12. while “Stop Criteria” is not satisfied:

13. for each k-tree T' € T:

14. Prew = Connect(T,T)

15. P = MakeResults(Prew,P)
16. T = Exzpand(T, D)

17. end for

18. end while

19. end if

An input for SpiderLink is a set of keywords KW and a database D. First of
all algorithm finds tuples containing keywords from KW. Then for each tuple R;
(location of a keyword) we make a new k-tree T" with a root Ngeor = (R;, null).
After the database is scanned searching for all keywords, we have a set T of initial
k-trees. These k-trees are our starting points for the iterative steps.

If we have found at least one location for each of the keywords from KW, we
start the iterations. In other way, if one of the keywords is not found, there is no
reason to make further steps. A set of keywords KW is a conjunctive keyword query.
This means that all of the keywords should be contained in the result. Thus, if one
of the keywords is not found in a database at all — we stop the search process.

After the “Initialization” part (lines 3-10) follows three important steps and
checking one condition. The “Stop Criteria” is described after the definitions of
steps “Connect”, “MakeResults” and “Expand”. At that time it will be much easier
to understand why such conditions define “Stop Criteria”.

The following process is repeated until the “Stop Criteria” is satisfied. For every
iteration we take a k-tree T' from the set T and perform “Connect”, “MakeResults”
and “Expand” steps with it. Usually the number of iterations performed is greater
than the number of k-trees in the set T. Thus, every time we process the last k-tree
T, from the set T, the next time we start again from the first k-tree 77.

6.2 Connect

The first procedure is “Connect”. It is a part of algorithm where k-paths are pro-
duced between locations of different keywords.
Purpose: to produce all possible k-paths.

14

Input: a tree T', a set of all trees T.
Output: a set of k-paths P.

Connect(7,T)

1. let P be an empty set of k-paths

2. for each leaf node {N|N € Ny UN;, T'= (Ng UN; UNp)}:

for each k-tree {1"|rootkw(T’) # rootkw(1"), T' € T,T" = (N, UN; UN},)}:

for each node {N'|tid(N') = tid(N),N' e N, UN; }:
make a k-path P = (tid(NRoot), - - -, tid(N), ..., tid(N, ;)
add P to P
if N' € N, than
remove N’ from N 4

9. add N’ to N}

10. end if

11. end for

12. end for

13. end for

14. return P

XN oW

There are several interesting issues in this procedure that we would like to dis-
cuss. The first one is that only active and idle nodes takes part in the line 4, where
we check if two nodes have the same tuple id. The reason is that when we check
only the leaves we automatically prohibit the generation of the k-paths that has
been already produced.

Another interesting issue is transferring the node N’ from the set of active nodes

', to the set of idle nodes N, (lines 7-9). This is done in order to prevent the
unnecessary expanding of two k-trees.

6.3 Make Results

Purpose: to produce new mk-paths.
Input: two sets of k-paths: P, and P.
Output: prints out the results and outputs a new set P.

MakeResults(Ppew,P)

. for each P € Ppew:

print all mk-paths {MP|MP = {P,P1,...,P,},P; € P}
. end for

add Ppew to P

. return P

The purpose of this procedure is to produce new mk-paths by making all possible
combinations of each k-path from the newly generated set P, and all previously
made k-paths in a set P. It outputs only these mk-paths that comply with Definition
5.

15

6.4 Expand

Purpose: to add the children (if possible) for every leaf node in the tree T'.
Input: a tree 7" and a database D.
Output: an expanded tree T'.

Expand(T,D)

1. for each leave {N|N € Ny, T = (Ng UN; UNp)}

2. R; = tid(N)

3. for each relation {R'|3RL, R',R € RL, R’ € D}
4. for each tuple {R}|R] is adjacent to R;}

5. make a new node N' = (R}, N)

6. if VYN € T tid(N') # tid(N"') than add N’ to Ny
7. end for

8. end for

9. if at least one node was added to Ny then

10. add N to Np

11. remove N from Ny

12. end for

13. return 7’

This procedure takes only active nodes and tries to make children for each of
them. We add a new node N’ to the k-tree T if there is no other node containing
the same tuple identifier. This requirement is defined in Definition 3.

Between lines 9 and 11 there is one interesting issue to discuss. A node N is
added to the set of parents Np only in case it has got at least one child. In other
case it is deleted from a tree.

6.5 Stop Criteria

There is one main condition for stopping the search: if after “Expand” step on all
the k-trees no new leaf nodes are added — there is no reason to continue with a search
process. This criteria uses several properties. The first one is that if the “Expand”
procedure has tried to add new children to all of the k-trees and there are no new
children nodes, hence in all of the following iterations it will not produce any new
nodes also. From this property follows another one. If at each iteration we have
the same number of active and idle nodes we can produce only the same k-paths we
produced at last iteration. Without no new k-paths no new results (mk-paths) will
be produced. Thus we have to conclude that continuing the search process will not
give as any new results and we can stop the search.

7 Application Example

In this section we diagram the work process of SpiderLink algorithm. We use lo-
cations of keywords presented in Example 5.2. Each location of keywords has been
transfered to a separate k-tree. In Figure 7 we have a picture of k-trees after the
“Initialization” step. Dashed lines divides forest to three parts indicating which

16

"James" | “train" |, “"Denmark

"James" |, ‘"train" | "Denmark" " R Lo
,,,,,,, o __Lo_______ | |
! !
Tree, | Tree, ! Tree, Tree, 3 Tree, 3 Tree,
PO ' Lo ! CO K O | GO
! !
! !
< \\::>\<1/ - 7
= s P

Figure 7: First iteration. Connect step. Figure 8: First iteration. Expand step.

"James" , "train" ; "Denmark "James" |, "train" ; "Denmark
,,,,,,, L P
| | | |
Tree, ' Tree, | Tree Tree, ' Tree, ! Tree,

| | | |

P, | T. O | C.O P, | T, | C.0O
| IN | | |

7SO 7
KUK

Py

S PR S PR S,

Figure 9: Second iteration. Connect step. Figure 10: Second iteration. Expand step.

trees belongs to which keywords. We have a forest of three trees, which looks like
that:

forest = {Treey, Treey, Trees};

Treey = {P1}a; Trees = {Ta}a; Trees = {C1}a.

rootkw(Tree;)="James”, rootkw(Trees)="train”, rootkw(I'reez)="Denmark”.

In all of the following examples we write only a tuple identifier near each node.

Figure 7 shows that “Connect” procedure has no possibilities to build a k-path.
There are no leaves having the same tuple identifiers. In Figure 8 there is shown a
state of trees after the “Expand” step. Node P; in a tree Tree; became a parent
and the are two new active leaves S; and P;.

In the second iteration of algorithm, “Connect” again can not make any k-paths
(Figure 9). Figure 10 diagrams the k-trees after the “Expand” step. The same
situation is in the third step, where only two new nodes are added to the k-tree
Trees (Figure 12).

In the fourth step diagramed in Figure 13 “Connect” procedure finds two nodes
having same tuple identifiers. It builds a k-path (Py,S1,75) and a tuple in the k-
tree T'reey becomes idle. This k-path can not be output as a result (as mk-path),
because it contains only two keywords. After the “Expand” procedure we have such
forest:

Tree; = {TQ, Dy, D5, P3}A U {Pl, P, Sl}p;
Treey = {S1}1 U{T>}p;
Treez = {Dl,DQ}A U {Cl}p.

17

"James" |, "train” ; "Denmark

7777777 Lo e R "James" | “train" |, “"Denmark

| -~~~ ____-_-_ I Lo

| |
Tree, 3 Tree, i Tree, Tree, ' Tree, ' Tree,
RoPTe oo ng | e | ag
i | |
- ///
SRS & s B s D D
- -

Figure 11: Third iteration. Connect step. Figure 12: Third iteration. Expand step.

n n ol . san I n n
"James" : “train® : “Denmark James" , "train" 7|73€zrjni1:i1r}<
,,,,,,, e
! ! Tre
Tree, ! Tree, ! Tree, &

| |
P, | T, | C.®

| |

1

T2 Dl DZ P3

Figure 13: Fourth iteration. Connect step. Figure 14: Fourth iteration. Expand step.

Figures 15 and 16 show the fifth iteration of the algorithm. During these two
steps k-tree T'rees is neither connected nor expanded. But at the following iteration
two new k-paths are produced (Figure 17): (P, Sy, D1,Cy) and (P, Sy, Do, Ch).
These two paths can be combined with the one we have produced previously. Two
mk-paths are output to a user: MK, = {(P,S51,T3),(P,S1,D1,C1)} and MK, =
{(P1,81,T2), (P1,S1,D2,C1)}. These two answers differ only in one tuple. In one
of them there is D in the other Dy. But this difference is important as the results
shows “James” connecting to “Denmark” through two different cities: Copenhagen

T2 D 1 D2 PS

Figure 15: Fifth iteration. Connect step.

T2 D 1 D2 PS \V/

Figure 16: Fifth iteration. Expand step.

18

T. D, D, P, S S

Figure 18: Sixth iteration. Expand step.

"James" | "train" | "Denmark
,,,,,,, e
Tree, 3 Tree, 3 Tree,
I I
P.® ! T, i ! C.®
I I
SA s” D} D,
T2 I P3
>K D1 Dz Sl Sz
v
S

Figure 19: Seventh iteration. Connect step. Figure 20: Seventh iteration. Expand step

and Aalborg. We should notice that two nodes Dy and Dy in a k-tree T'ree; became
idle.

We have also diagramed the seventh iteration of the SpiderLink algorithm in
Figures 19 and 20. In Figure 20 there is shown a new thing. Node T3 in a k-tree
Treey can not be expanded, therefore we delete it.

We stop our example here as we have showed all the algorithm processes we
intended. The continuing will just repeat “Connect” and “Expand” procedures.

8 Architecture

We have made an implementation of our SpiderLink algorithm. In this section we
explain the architecture of this implementation. All implementation was done in
JAVA. We used JDBC to connect to the Oracle database.

Figure 21 shows five main components of SpiderLink keyword search engine. In
this figure “User” is the starting point of the search process. A keyword query given
by user is passed to the tokenizer. The stream is cut to separate tokens and every
token becomes a keyword. All the keywords are stored in non capital letters. Tok-

19

enizer gives a set of keywords to “Keyword location finder”. This module does the
work for SpiderLink initialization step. It takes every keyword and scans a database
looking for this keyword. “Keyword location finder” issues an SQL query for each
keyword for each relation. Lets assume we have keyword KW and we are looking
in a relation R. The SQL query looks like that:

SELECT rowid FROM R
WHERE LOWER(A;) LIKE "% KW%’ OR ... OR LOWER(A,) LIKE "% KW %’.

We use SQL predicate “LIKE” to find exact and not exact matches of keywords.
A predicate “LOWER?” is used in order to get a keyword match without taking in to
account the difference between capital and non capital letters. In the query partic-
ipate only attributes A; of type “CHAR” or “VARCHAR?”. Searching for keywords
only in textual information simplifies the initialization step. The issue of interpret-
ing given keywords as various types of data (like integers, data and so on) is a big
and separate problem.

The goal of the SQL queries issued by “Keyword location finder” is to get rowid’s
of tuples where keyword KW is located in at least one of the values. Using such a
query we find exact and partial keyword matches in text values. We use an Oracle
database feature of keeping identifier for each tuple. We store tuple id and a relation
name in order to make sure that a combination of both elements gives us a unique

identifier for a tuple.
9 Keyword query

\Set of keywords

Tuple MK-paths i K-paths | K-tree expander K-trees Keyword location
retriever K-path combine! and combiner finder

= |-

Sequences of
tuples

Figure 21: Architecture of SpiderLink implementation

After we find locations for all keywords, we make a k-tree for each location
and pass them to “K-tree expander and combiner”. This module is responsible

20

for generating k-paths. As it is expanding k-trees, it issues an SQL queries to the
database. A nice feature of the implementation is that SQL queries are using tuple
identifier rowid. This is the fastest way to reach the required tuple in a database.

Every time a set of new k-paths is produced, a “K-path combiner” tries to make
new mk-paths. If it succeeds, mk-paths are passed to “Tuple retriever”. This last
module takes care that a user gets a set of tuples, not a set of tuple identifiers.

An interface we have made is very simple. User launches a compiled JAVA
program from a console window. In Figure 22 there is an example of the help
information printed in console window. It demonstrates the possibilities of our
implementation of algorithm. A user can specify the configuration file and a file
with a terms for several sequential queries. User can also decide which type of
output it prefers: to get results as a text in console window, or to generate a HTML
file with full information from queries. User can also provide the keywords for
SpiderLink through the command line. In Figure 23 there is shown an example of
simple result output in HTML format.

Bl cterm

[attalr jawa Maind -standart -—help
dbze [options] [search words]

[optionsz]
-help, —--help print help
-cof <filex uze “<filek as configuration file
-=zf <file> uze <file* as zearch parameters file
-ztandart output in stadart mode (defalt output iz in HTHL made)

[search words]
Two or more words should be placed in quotation-marks, E.g, "first second”

More detailed help iz awailable in RERIME file,

Figure 22: Example of implemented system input capabilities.

Conclusions

The increasing need for information retrieval search engines for relational databases
motivated us to develop the SpiderLink algorithm. In this article we have presented
two important issues: the k-tree data structure for keyword searching in relational
databases and SpiderLink algorithm which uses k-trees and is a fully developed
keyword search engine. In this paper we presented and proved several important
properties of k-trees: i) it can be used on databases having single, parallel and
hierarchical relationships; ii) it is minimal; iii) it is finite; iv) it can be implemented
as a hash-table.

The further development of SpiderLink keyword search system could focus on
such issues:

21

Eeywords:
etic james

Locations of Keywords:
Keyword erie found in:
PERZONEL
PERZONID MAME |CHIEF
2 Eric 1
Keywotd james found in:
PERZOMEL
PERZONID MAME |CHIEF
1 James |tall

Resulis:
Resuli 1
Path from keyword “james" to keyword “eric™

FERION31
FERIONID [NAME |CHIEF

1 James |roll

PERZOMEL
PERZONID WAME CHIEF
2 Eric 1

Messages:

Initialition time: 2741 ms.
Search time: 125 ms
Ciie Search total time: 2895 ms.

Figure 23: Example of the results in HTML format

e Developing an advanced k-tree data structure that could reuse already gath-
ered information about adjacent tuples when building k-trees.

e Developing a convenient visual representation of keyword search results.

e SpiderLink algorithm can be easily extended to support keyword searches not
only on a single database, but also on several databases (treating them as one
big database).

References

[1] Sanjay Agrawal, Surajit Chaudhuri, and Gautam Das. DBXplorer: A System
For Keyword-Based Search Over Relational Databases. In Proc. ICDE, 2002.

[2] Valerie S. Allen and Abe Lederman. Searching the deep web - distributed
explorit directed query applications. In SIGIR 2001: Proceedings of the 24th
Annual International ACM SIGIR Conference on Research and Development

22

[5]

[6]

8]

[9]

[10]

in Information Retrieval, September 9-13, 2001, New Orleans, Louisiana, USA,
pages 456—456. ACM, 2001.

Gaurav Bhalotia, Charuta Nakhe, Arvind Hulgeri, Soumen Chakrabarti, and
S. Sudarshan. Keyword Searching and Browsing in databases using BANKS.
In Proc. ICDE, 2002.

Michael H. Bohlen, Linas Bukauskas, and Curtis E. Dyreson. The jungle
database search engine. In SIGMOD 1999, Proceedings ACM SIGMOD In-
ternational Conference on Management of Data, June 1-8, 1999, Philadelphia,
Pennsylvania, USA, pages 584-586. ACM Press, 1999.

Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual
Web search engine. Computer Networks and ISDN Systems, 30(1-7):107-117,
1998.

Paul Dixon. Basics of Oracle Text Retrieval. IEEE Data Engineering Bulletin,
24(4), December 2001.

Roy Goldman, Narayanan Shivakumar, Suresh Venkatasubramanian, and Hec-
tor Garcia-Molina. Proximity search in databases. In Proc. 24th Int. Conf.
Very Large Data Bases, VLDB, pages 26—37, 24-27 1998.

James R. Hamilton and Tapas K. Nayak. Microsoft SQL Server Full-Text
Search. IEEE Data Engineering Bulletin, 24(4), December 2001.

Vagelis Hristidis and Yannis Papakonstantinou. DISCOVER: Keyword Search
in Relational Databases. In Proc. 28th Int. Conf. Very Large Data Bases,
VLDB, 2002.

Albert Maier and David E. Simmen. DB2 Optimization in Support of Full Text
Search. IEEE Data Engineering Bulletin, 24(4), December 2001.

23

