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Abstract

Several developments combine to enable a new class of en¥lobile services. Put simply, the
performance/price ratio for consumer electronics is imprg quickly, wireless communication tech-
nologies are becoming more and more widespread, and getieposy is becoming practical.

In comparison to desktop computing, mobile services usdl sti@ens, and they typically lack a
keyboard. Further, they are often used in situation whegeuber’s main focus of attention is not the
service. For these reasons, it is important that the useives the “right” information at the right time
and with as little interaction as possible. These qualitiey be obtained by making mobile services
aware of the user’s context. A mobile user’s route towardgllestination is an important aspect of her
context.

This paper considers users traveling in road networks, aipdesents a software component that
builds routes for individual users based on traced cootdmaThe paper presents the architecture and
functionality of the route component. A database model tla@tures routes is described. The paper
proposes the algorithms that solve the problems of routection. These problems include travel posi-
tion identification, formation of route parts, and route staction according to the structure of the road
network. The algorithms, implemented using Java and OsBle/SQL and Oracle Spatial, are also
presented.

1 Introduction

Currently, wireless communication technologies are bangmmore and more wide spread. Technical
characteristics of mobile devices are improving consyabiit at the same time the price of mobile devices
is becoming reasonable for the consumer. These facts cassk in a growing number of mobile users.
The development and proliferation of mobile devices enakle applications in wireless communication.
A user that has a mobile device is able to get route guidamegist services, or services based on her
current location. However, in comparison to desktop commgutmobile services use small screens, and
they typically lack a keyboard. Further, they are often usedituation where the user's main focus of
attention is not the service. If a user is traveling on thelribeen driving is the first priority. If a user goes by
foot in town then she has to be aware of her surroundings ierdainot raise danger for herself and other
people. For these reasons, it is important that the useivescenly the relevant information and with as
little interaction as possible. These qualities may beinbthby making mobile services aware of the user’s
context. A user’s location is one possible context. Locationtext-awareness is important for the group of
mobile service users that travel in a road network.

In this paper, we focus on a specific location context—raute®ute is a motion plan of a user traveling
in a road network. Most of the time, people are traveling antes they know in advance, and these routes
can be predicted. When a location-based context-awarersylshiows where and when the mobile users



are traveling, it can provide them with relevant informatid-or example, as that system knows that a user
travels on her usual route from home to work every morningait caution her about traffic jams, streets
closed for renovation, or speed changes in some parts oftthets This is important for the user—she
can re-plan her route or be aware about possible delays enadv Sending alert messages is not the only
use of routes. A route can be used when a user is interestgukaifis points of interest. The system that
knows the user’s route can give her information about objétt are based on her position on her route.
For example, if the user wants to have a cup of coffee, shefasltse nearest cafeterias, and the system
provides her with the cafeterias that are nearest on heerout

In this work, we design a software component that buildsesdor individual users based on traces
of coordinates. We assume that the mobile service user pasdevice capable of providing the service
with geo-positioning information. We propose a system iéeckure and specific functionality for such a
component. We distinguish among four main functions thatentae component usable. They include route
recording, route renewal, collection of usage, and obtagimif routes. The client side is active in supporting
the functionality. The client device performs informatifiitering and prepares information for sending it to
the server. We propose a database model adjusted for raaelieg. The purpose of the database is to store
the road network representation and information about tbbilm service users and their routes. We use a
linear-referencing framework to capture roads and rodtesur model, the user has her destination objects.
Thus each route has a start and an end destination objedhdrgute is a sequence of road parts. We store
geographical information about destination objects ars fpmints of the road network in our model. Each
usage of a route is also stored. In this paper, we presemntitpeds that capture the routes of mobile service
users. While detecting a route, we consider the user’s ggbgral position and the road network structure.
We implemented these technigues using Java and Oracleé®RLénd Oracle Spatial.

The paper is structured as follows. The next section presgecase study and requirements. An overview
of related work is given in Section 3. The system architeciardescribed in Section 4. Section 5 analyzes
system functionality. The definitions of the concepts anthlsmse model are given in Section 6.1. The
algorithms are presented in Section 7. Section 8 preseatsiqal part of our work. Section 9 summarizes
the work and gives guidelines for future work.

2 Case Study and Requirements

In this section, we consider the overall design of a routending component. At the beginning of this
section we give an overview of the usage scenario, then skstie requirements for the design.

The problem we solve in this paper is designing and impleingra route recording component. To
begin with, we provide an example to give an intuition abet kinds of real-world situations in which the
route recording component comes into play.

Example 2.1. Suppose we have a road network with car drivers travelingglb Let us pick one of these
drivers and analyze the situation where this driver, sayhJéhtraveling from his home to the university.
This is his usual route. It is important for John, as for arlyeotemployee, to be at work on time, so he wants
to use a mobile service that informs him about road condititraffic jams ahead on the route, etc. In order
to receive such information, John has to inform the serviceider about exactly what route he is traveling
on. Therefore John, with the help of a geo-positioning deya&cGPS receiver) and a mobile phone records
his travel coordinates all the way from the start of the rdilk¢he end of it in a log file, and he sends this
information to the service provider. The mobile servicevider in turn stores the information from the log
file as “Johns route: Home-University.” Now, every time Jahitraveling along this route, he is informed
about road conditions and other relevant information suistg to the route.

Example 2.1 illustrates the situation where we observe fsbange of information between a mobile
service user and a service provider. The information thaislved in this exchange includes data about
a real-world road network, mobile service users, and serugers’ routes. In our work, by integrating this
kind of information into our system and enabling the funcéitity of that system, we create a so-called route
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recording component. Stated briefly, this is a software camept that builds routes for individual mobile
service users based on traces of their coordinates.

We model a route recording architecture that includes tlsesgponents: a user’'s mobile device and a
server.

The main task of the system is to record the routes of the maalvice users. In order to record
the route of a user, the system has to be provided with infiomabout where the route starts, where it
leads to, and where it ends. In our paper, we analyze thetisittiuahere the information about the route
of the user is obtained with the help of a GPS receiver. Werasdihat the mobile device collects this
GPS information. Notice that “GPS sentences” are relagtil@hg. Therefore, the longer the route, the
bigger the file with the GPS information is. We allow diffetastrategies for further maintenance of the GPS
information, depending on the technical abilities of thebifeodevices. One is to send this information to
the server “online.” Another strategy is to use bufferingl@end it in chunks of some defined size, or to
send the whole file with GPS information. The server in turintans all the information received from all
users.

In order to record and store the routes of the users on theiseve need to come up with a representation
of the real-world road network. See Figure 1.
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Figure 1. Modeling the road network (map from [8])

In our paper, the representation of a real-world road netwsra projection of that network onto
two-dimensional (2D) space. The way we do that is by sam@irsgt ofbase-pointghat hold the geo-
information inz andy coordinates about the real-world road network, and by cadiimg these points into
polylines. See Figures 1(b) and 1(c). The result of the ptme is a network of approximated roads. In
our work, we use a linear-referencing framework [1, 9, 13pider not to loose information such as real
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road distances. This framework is also used for capturingeoas parts of the road network representation
stored in the database. Each route is defined as a directetbpding from one destination object to another
one. These destination objects have geo-information.

3 Related Work

We are not aware of any previous work on components that genereanings for routes from the GPS
information. But our work is related to a few research dii@t$ in mobile services. We also use already
invented techniques in our work. Research challenges inlensérvices are outlined in [11]. The challenges
are grouped according to themes—data representatiorsiimgjejuerying, data modeling. Research issues
in location management are presented in [20].

The building of our component involves the modeling of roativork data. Our data model uses alinear
referencing framework ([1, 4,5, 7,13, 16]. In particular wse linear referencing not only for capturing a
road network, but also for capturing routes. A data modet ithtagrates representations of geo-referenced
content and transportation infrastructures is descrimef®]. Our data model uses part of their model of
road networks, but we supplement it in order to capture u@ur data model integrates with any linear
referencing model for road network ([1, 4,5, 7,9]. Lineaierencing is not the only way to model a road
network. Vazirgiannis et al. [18] model a road network asraaled graph. Their routes are sequences of
edges.

Our paper uses already invented techniques that we do netogefurther. We use the shortest path
algorithm to fill the gaps in information when we construatites. This part is related to works that consider
shortest paths in graphs. Barrett et al. [2] study a gerser@Dijkstra’s algorithm for shortest paths in
graphs on large transportation networks to do route plapnwazirgiannis et al. [18] compute the lowest
cost path.

To create a route, we do map matching of GPS coordinates tm#tenetwork. Bernstein and Korn-
hauser [3] explore map matching algorithms that can be wseztbncile inaccurate locational data with an
inaccurate map. They analyze algorithms such as “Poipbtot,” “Point-to-curve,” and “Curve-to-curve.”

In contrast, we analyze more specialized situations, anchagmatch a GPS point to a position on a poly-
line. To do map matching, we also use the geographic locafitite roads together with the structure of the
road network, i.e., connections of the polylines. We focusmap matching in a specific data model, and we
explore its properties, but the techniques proposed ingdB]le integrated into our work. Our map matching
includes searching for nearest neighbors. We define thelseange according to the allowed imprecision
and the candidate polylines are within this range. Thatleted to the work of Roussopoulos et al. [15],
in which they consider minimum and maximum distances froenghery object while searching the nearest
neighbors. We also choose the polyline according to how teeigus GPS point was map matched. The
nearest neighbors for the previous positions of the movisjgat are considered in [17]. In comparison to
[15] and [17], we use nearest neighbor search for other papthan they do. We search for nearest neigh-
bors to define the movement of a user in the road network, assaus do not travel freely in 2-dimensional
space. We construct a sequence of connected polyline elenmen a set of nearest objects for every step.

Our route component is a part of a context-aware system. fMia&es available the users’ routes as
context. We propose an architecture for a specific contexsir@ system and have requirements for concrete
functionality, instead of focusing on a more abstract I@felescription ([10, 12]). Hohl et al. [10] examine
the context concept, present a classification of contexd, datd give requirements of a mobile service
platform for a context system. Data management issues datioss in location-dependent information
services are discussed in [12].



4 System Architecture

In this section we describe the architecture of the cordewdre system for mobile services based on
routes. The requirements for the parts of the system arepies.

4.1 Basic Requirements

We assume that our user has some mobile device that has tbssaegc technical properties to send
information to the server, to get information from the seread to store the information about the user and
her routes. The device should include a GPS receiver andatsdlould be able to analyze the information
that comes from the GPS receiver.

The server of the system must be able to take care of all theestg from the user. It has to analyze the
information sent by the device and to record it into the dasab Everything about a route (parts of the road
network), its usage and user’s personal information isest@n the server. This requirement is included in
order to avoid information loss. This means that the usercbamge the device and subsequently obtain her
routes from the server. The architecture of the system isgoted in Figure 2.
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Figure 2: System architecture

4.2 Client Side

The user uses the system functionality through the intertacthe device. The interface interacts with
the application that enables functionality of the systenihenclient side. The application uses stored data
and records new data if it is necessary. The user can see waftaasdtored on the device using the interface.
She does not need to know the technical details about théngiapplication or stored data.

There are four data blocks that are stored on the device. XM@]) notation is used in Figure 3 to
describe them. The first block contains user’s personatimétion (Figure 3(a)). It contains the user’s iden-
tification number and user’s information. The identificatioumber is a global parameter and it is unique
for each system user. It is used on the server to record the mila particular user. User’s information
includes the information the user wants the system to stbcan be a name, nickname and etc. The second
data block contains the information about the user’s dastin objects (Figure 3(b)). Each object has a
global identification number, local identification numbecation information, and description. The global
identification number is stored in order to have the samernédion on both client and server sides and to
be able to make updates on both sides. Local identificatiodkemeoute descriptions easy, because global
parameters can be complex. Location of the object is destritsing geo-information. It is used when
the application on the device analyzes the GPS informatioidetects if the destination object has already
been defined. The description is needed for the user to hagdydefined destination objects, i.e. “home”
or “work”, because the user can forget what is his route friahus say, the object 3 to the object 5. The
third block of data is related to the route information (Fig3(c)). Here we have global/local identification
numbers, and objects. Objects define from which destinatijact to which one a particular route is. The
objects are defined using local identification numbers froensgecond data block. The fourth block of data
is so-called “log” data (Figure 3(d)). It includes the usaigees of every route. The time is approximated



to weekdays, hours, and quarters. These time intervalswdigdual for each route. The device stores the
information how frequently the user traveled along the ecart each approximated time.
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Figure 3: Data on the client side

Data on the device is stored in .xml or .txt files. The appiarats a Java or C program that can be run on
the mobile device. The user inputs the information, i.espeal information, names for destination objects,
when she is asked by the program. As the device stores thenafimn about the routes and the user it can
predict what route is going to be used by the user at somecpkatitime and there is no need to connect
to the server. The application initiates interaction betwéhe device and the server when it is necessary to
unify the information on both sides.

4.3 Server Side

On server side (see Server in Figure 2) we have an applicaéorer and a database server. The appli-
cation server interacts with the database server. Thecgtigih server gets the requests from the clients.
The requests can be different by the functionality. Thussgy@ication server has to take care of all requests
and at the same time to be able to interact with the databdssreTs a need for multi-client system based
on multi-thread functioning. The application server azalythe information from the client and makes cal-
culations interacting with the database. The applicatemwes initiates the database updates when they are
necessary, i.e. a new route is recorded or a route is used.efianed in the previous sections, the system
uses global parameters that are stored on the client sideratite server side. The application server uses
these parameters to distinguish among users and theistoute

Example 4.1. Figure 4 presents an example of data stored on the clientisidee. The data is stored in four
XML files. Their structure follows the schema shown in Fig@teThe rectangles indicate data that is the
same on the client and on the server sides, namely identifiicatimbers for the user, destination objects,
and routes. The circles indicate local data that is used i itih@n one data block. We have a user 9876. She
has two destination objects. The user’s first destinatigradlHOME” has global parameter PO2003152
and the second one, “WORK,” has parameter PO20032456. Endas one route from the second destina-
tion object to the first destination object. The route is tifezd globally by number PR456789. This route
was used during two time intervals—15 times on Tuesday apeately at 8:00-8:15 (the 1st quarter) and
three times on Wednesday approximately at 8:30-8:45 (ttieGarter).



7 jon="1.0" ? .
<?urml version="1.0" ?= 7urml version="1.0" 7=

- <objects> - <routess
- <objects - «<routex
<global_idP02003152}/global_id= <global_idlPR456789d/global_id>
<local_idf1d7ocal o= b Ei _
- <location _ <objec_ts> _
<x_coordinate=23456+</%_coordinates I% <start_ohject=2</start_objects
<y_coordinatex=5214«</y_coordinates ~ cend Ebjecblq’end DEjectb
</locations <mb_]ec_ts> -
=description=HOME</descriptionz </routes
</object:> <froutes>
- zobject=
<global_id /global_id= <7uml version="1.0" 7>
<local_id f|DCEI|_id> - <usage_informations
+ <locations - <usagex
<description=WORK=/description: <ruute_id@fr0ute_id>
=/objects - <time=
</objectss oweekday>Tuesday</weekday>
<hour=8</hours
<guarter=1</quarters
=/time=
<frequency>15</frequency=
<fusagex
N PR, - <usagex
~ :[I:Z:’rzaizrliir;o:lu [ <r0ute_id@/’route_id> o

zuser_id19876+/user_id= - <time=

<user_infarmation>Agne and Nora</user_informationz <weekday>Wednesday</weekday>
<hour=8</hour=
</personal_infox»

<guarter=3</quarters
=/ times
<frequency>3</frequencys
</usage>
</fusage_informations

Figure 4: Example of data on the client side

5 Functionality

This section concerns the functionality of the system. Vg#imtjuish among four main functions that
support a route based context-aware system: route regprdoilection of usage, renewal of routes, and
obtaining of routes from the device. We present first theidetd the route recording, as it is the main
function in the system.

5.1 Route Recording

Route recording is the most complex function in our systerhis Bection presents the description of
the function. The interaction between the client side amdsirver side while supporting this function is
explained. The algorithms for route recording on the cleamd server sides are presented in diagrams.

5.1.1 Description

The function sends buffer(s) of GPS data to the server, wthieh analyzes the data and records a
route. Arguments:user identification number, information about destinatbfects, date, time, a set of the
coordinates from the GPS receiv&tesult: the route identification number and identified parts of thedro
network that belong to the route. If destination objectsher tiser herself are new, the function registers
them/her in the system.

We assume that the user controls the process of her routediegqsee Figure 5(a)). She activates
the service (Step 1) and deactivates it (Step 2). Duringtiime period, the device is active. The device
filters and records the user location information that cofma® the GPS receiver. It prepares the stream
for the server by adding the parameters about the user anddstination objects to the GPS set. The
information can be sent to the server as one buffer, or it @admt from time to time when the buffer is
large enough (dashed lines between Device and Applicateomey. The choice of strategy depends on
the route length, the technical characteristics of the teadévice, and the connection quality. When the
information or the last part of it is sent to the applicati@ner (Step 3), the application server can make



calculations communicating with the database server—iegees a unique number for the route, defines
the usage time and does map matching and route construckiom.application prepares the sequence of
updates and sends it to the database (Step 4). The databasearsferms the application server whether the
update is successful or not (Step 5), and the applicatioresean send the data stream to the mobile device
of the user (Step 6). The device records the data from thamatend fixes the first usage time. After that,
the mobile device informs the user about the end of the raderding (Step 7).

% %
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I I I I |

I I I
1. start() ) ) 1 renewgz — ) ,
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(a) Route recording (b) Route renewal
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| 6. activated ! : |
- ]
"7 OK — 5.time_set(_ | 4. updated() | ' 2. displayed() — ! !
I I I I 1 ] I I
(c) Collection of usage (d) Obtaining routes

Figure 5: Sequence diagrams for client functions

The data stream that is sent to the server by the device teomdithree parts: user information, object
information, and standard information. The data streamhezae different formats. The format depends on
which data is already stored and on which data is new.

User information. If the user is already registered, this data block includasidentification number. As
the route recording function also includes user regigirative can have additional data, namely a user
description for a new user, in the data stream. Thus we haarld] or [undefined: description] in
this block.

Object information. This data block consists of information about the route idasbn objects if these
objects are new. The destination objects can have beerdglteszed to define a start or an end for
other routes. This means that the server knows the infoomatbout them, so that it, according to
the GPS coordinates, can identify the objects itself. Ifdbstination objects are new, the data stream
includes their descriptions. If both objects are knowns tiéta block is emptj;]. If we have one
undefined object we have a data block that contains startigiéso [undefined:description,] or end
description[,undefined:description]. If start and end objects are undefined the block has demseript
for both of them:[undefined:description, undefined: description]

Standard information. Date, time, and GPS information are always included in tresasgt for the server.
We call it standard information, and this block includessthéhree element$date, time, GPS]
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The server also sends a data stream to the client device. efter always returns the identification
number for a newly recorded route. If any of the parametezsuadefined, the device assumes that the data
stream from the server will include the missing informatidie server generates identification numbers for
a user and the user’s destination objects. These numberstareed to the client. Thus, the format for the
data stream from the server[isserld, startObjectld, endObjectld, routeld] , whererouteld is the only
parameter that is always included. The device gets the ttatans from the server, analyzes it, and records
its data.

5.1.2 Route Recording on the Client Side

Part of the route recording task is done on the client sidee dlient device prepares the data stream
and sends it to the server, as it is described in the previeasos. The first and second blocks of the
data stream are constructed using data stored locally (set#o8 4) on the device. The third data block
is constructed analyzing the information from the GPS remeiGPS receivers transmit NMEA sentences
[6, 14]. These sentences include information about theipasif the object, but also information about the
GPS satellites. The device analyzes this data to retrievedbessary information—date, time, and a set of
GPS coordinates. The set of coordinates should includeast t&/o coordinates to fix the start and the end
position of the route.

Example 5.1. Figure 6(a) shows data from a GPS receiver. The block of GPEANId&entences—from
$GPRMC to $SPGRME—is formed for the position of an object gw&cond. In our system, we use date
(denoted byl), time (denoted by), and a set of the coordinates (denotedBland4). In each block of GPS
sentences, the date is repeated, but we are interested jhst $tart time and date of the route usage. So the
application on the device parses the stream of GPS sentandderms a sequence (see Figure 6(b)) of data
that includes only the necessary information with no rejoets.

@ ® @ @
$GPRMC, [ 142958, A, 5540.8342N,[01233.7116) E,020.9,304.5,, 001.1, E*74
$GPRMC, 142958,A,5540.8342,N,01233.7116,E,020.9,304.5,270402,001.1,E*74
$GPGGA,142958,5540.8342,N,01233.7116,E,1,05,2.8,33.6,M,40.4,M, *73
$GPGSA A 3,,07,11,14,20,,,,31,,,,2.8,2.8,1.031
$GPGSV,3,1,09,01,01,194,,07,25,312,50,11,79,205,46,14,40,061,48*7A
$GPGSV,3,2,09,20,46,243,51,21,03,067,,25,09,112,41,28,10,272,31*76

$GPGSV,3,3,09,31,16,181,37,.,,,1,0111) *49 @ 270402
$PGRME,11.1,M,17.5,M,20,8,M*16 @ 142958
@ @ @ @ 5540.8342 01233.7116 @

6
$GPRMC, [142959) A, [5540.8371] N,[01233.7039| E, 019.5,304.7,270402, 001.1, E*7D
$GPGGA,142959,5540.8371,N,01233.7039,E,1,05,2.8,32.8,M,40.4,M,,*71 (3 5540.837101233.7039 @

(a) Information from GPS (b) Filtered information

Figure 6: Filtering of GPS information

The order of the steps for route recording on the client deiggpresented in Figure 7. When the user
activates her route recording process, the device stating&PS information from the GPS receiver. The
device gets the first GPS message (1) and adds position iafiam(2) to the data stream for the server.
The first GPS block describes the start of the route; thuspdsition information is noted (3) in order to
use it later. Date and time are also retrieved from the bldgkq add (7) them to the data stream. All other
transmitted GPS blocks (6) are analyzed to retrieve onlyptsgtion information, which is added (5) to the
data stream. After this, each block is checked (8) to deteeriiiit is already the last block or not. If it is not
the last block, the device gets another one. If the user hetidated the service, then the block is the last,
and the end of the route is noted (9) for further analysissairt of the algorithm constructs the standard
information block for the data stream that is sent to theeserv

When no more GPS coordinates are transmitted, the deviaksli£0) if the user is already registered
in the system. If the user is new, the device asks (11) thetasaput her description. The device records
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(12) the description locally, sets (14) the user as undeiimédtke data stream and adds (13) the description to
the data stream. If the user is already registered, herifatiton number is added (15) to the data stream.

To build the block about the destination objects in the daam, the device uses the noted location
information about the start and the end of the route. If thet sind end objects are undefined (17, 18) or the
user is new, the device asks (19) the user to input desanpfmr her destination objects. These descriptions
are recorded (20) locally. But the objects are set (25) asfimet in the data stream, and the descriptions are
added (24) to the data stream. If only one object is undefitmedsame steps are done for one object—for
the start (17, 18, 23, 22, 27, 28) or for the end (17, 16, 2122630). If both objects are defined (17, 16),
the block about destination objects in the data stream resreanpty. When all three data blocks have been
constructed, the route is recorded (31) locally using tlcallparameters and leaving the global parameters
undefined. After that, the stream is sent (32) to the server.

(1) 2 3 (4)
[getGPSCod—| addGPSToStreaf—noteStartCop—#{ getTime |

(5) 6) (1) * _|
addGPSToStrear{wq—- getGPSCo addTimeToStream
NO *

(11) (12)
askUserDesq—{recUserDesc]

(13) (14)
|addUserDescToStrearha—| setUserUndefined

(19 (20)
| askObjectsDeslt,—>| recObjectsDes}

(22) (23) (24) (25)
| recObjectDe#e(—| askStartDe:{;c | addObjectsDescToStredﬂ{ setObjectsUndefinel

26) ¥ @7 v (28)
recObjectDes | setStartUndefineb—Pl addStartDescToStre
29 (30)

setEndUndefined addEndDescToStregm

o Y

| sendStreamToServér

Figure 7: Route recording on the device

5.1.3 Route Recording on the Server Side

The main route recording is performed on the server side. éssribed in the previous sections, the
server gets the data stream from the client and analysed#fioe a route. The device only prepares the
information that is necessary to define a route and to fix it tisage time. The server records the data
concerning the new route. This data always includes routts jmen the road and a route identification
number that is generated. If the data stream from the demitades descriptions of destination objects or
of the user herself, the new objects/user are registeredording to the information from the device, the
server forms the data stream (see the format in Section)5.1.1

The route recording process on the server is presented und-8 The server gets (1) the stream from
the device. The server checks (2) if the user is new. If soséneer gets (7) her description from the device
data stream, generates (6) an identification number, reddd) the user’s information, and adds (12) her
identification number to the data stream for the device. hawlentified a user, the server analyses the
information about the destination objects. If the user ismaw, the server checks if any destination objects
come as undefined. If both destination objects are undefBe®),(i.e., the server gets their descriptions, or
the user is new, the server takes (17) this information, gaese (16) their identification numbers, records
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(20) new objects, and adds (21) the identification numbetfsstdata stream. If only one object is undefined,
the steps are done for one object. If the start is undefineg) (Ben at the beginning, data about it is prepared
(13, 14) and recorded (18, 23). After that, the end objedasiified (22) using knowledge about the user’s
objects. If the start object is defined, but the end objechideiined (3, 4) according to the device stream,
then the start is identified (5) at the beginning. After thagdta about the end is prepared (10, 15) and
recorded (19, 24). If both objects are defined (3, 4), theydmetified (9) using stored data.

After the two first parts of the device stream are analyzeel sérver analyses the third one that includes
the standard data. The server detects (25) the route fro@B&information, generates (27) the identifica-
tion number for the route, adds (26) this number to the daéast for the device, records (28) the route in
the database, and records (29) the first usage time of the.rdtie constructed data stream is sent (30) to
the device to end the route recording process.

(@)

getStreamFromDevicg

(100 ¥
generateUserI g takeUserDes | findObjects I— | takeEndDes‘i:
(11) (12) 15 *
(13) 14) -
recNewUser addUserIdToStrealIn |takeStartDes¢—>|generateObjectlb generateObjectlq

(16) an

18 19
| generateObjectslc*-a.—hakeObjectsDe

recNewObjec recNewObjec
(20) ¢ (21) (22) (23) ¢ 24 +
| recNewObjectsi—»l addObjectsldsToStreaqln |f|ndEnd |<-|addOb]ect|dTOStrea|Jp addObjectidToStrea

| (25) 4
S| findRouteFromGP.
>

(26) 27)

addRouteldToStreal generateRouteld

(28) (29) (30)

[ recRoute]—#{ recUsag——p-| SendStreamToDevick

Figure 8: Route recording on the server

5.2 Collection of Usage

The collection of usage function enables the system to geogontext-aware services. Its purpose is
to store route statisticéArguments:route identification number, usage date and tifResult: a fixed route
usage time.

We assume that each user has more than one route and thaethesas some routes more than one
time. The user controls the process of usage time recorgieg Figure 5(c)). When the user starts traveling
on a particular, already stored route, she uses the devsmntbinformation about the current date and time,
when she activates the service (1). This means that thealsgitds a message (2) to the application server
with information about the route, date, and time. The ajili; server does the necessary calculations to
approximate the time and it initiates an update of the da@@). Steps 4—7 are included to send messages
about the result of the process. The database server intberepplication server whether or not the usage
date is fixed successfully, and the application server séridamessage to the device the message. The
device also records the usage time after it gets the mesbage asuccessfully fixed time on the server.

5.3 Renewal of Routes

The route renewal function returns a list of user routes ftbenserver to the device. It may happen that
the user looses the mobile device or she gets a new one. Tiusdn restores lost information on the client
side. Arguments:user identification numbeResult: the set of the user’s routes, the set of the destination
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objects, and summarized usage. It may happen that a userlbiasfaoutes and that some of them were
used once or long ago. Then the solution is to return “usaioletes and information about them.

The user can get her routes (see Figure 5(b)) from the seyMesbusing the device (1). She only needs
to input her identification number. When the device gets tmlver, it initiates the message (2) for the
application server. The application server communicatiéls thve database server to retrieve the information
(3—4) about the routes of this particular user. Everythibgut routes together with destination objects
and their summarized usage is prepared for sending to theedeVhe user description is also included.
Information buffer(s) of a special format are constructedtee application server and are sent to the device
(5). The device records data from the buffer(s) and infornesuser about the result of the process.

5.4 Obtaining Routes

This function uses the history about the usage of routeguments:location, date, time Result: n
routes ordered by their probability.

When the user wants her route usage recorded, she needsdbtbkel route the usage applies to. The
device can provide a service that guesses what route wilsbd.uThen the user does not need to browse
through all her routes. The user can ask for the routes (sgard-i5(d)) (1). The device calculates the
probabilities for each route. Date, time, and location aeduto make compute probabilities. The main
parameter is location. If we have several routes startingeasame destination point, then time and date are
also considered. The device presents the list (2) of theesonitdered by these probabilities.

5.5 Other Functions

We have present the four main functions for the route compionBut there are other functions, i.e.,
route deletion and route re-recording, that complete thetfanality.

Route Deletion The user may want to delete a route if she thinks she will nagerit again. It is enough
to send the route identification number of the route to betddi&om the database. The route identification
number, route parts and usage times are to be deleted frosetter and from the device. This may also
cause the deletion of destination objects if they are nadl usether routes. But they can be left, assuming
that the user perhaps will use them in other routes. Theeglyatn both client and server sides must be the
same.

Route Re-recording It may occur that the user changes some destination objaatsalls them by the
same names. For example, the user moves to another apadmeminges her job. Every route related
to these objects is to be re-recorded. The route parts ariohaliesn object(s) change, but the usage time
intervals can be the same, because the usage depends da hab#s and on certain circumstances. For
example, the user has a longer route from home to the new \Wwarkghe had previously, but the work starts
later and the user starts traveling on this route on the same tit follows from this that the usage times
should not be deleted at once, but marked as “old” in orderackithe new route. If the usage is not the
same after some time, the old history is deleted.

6 Data Model

In this section we present the formal foundation for theiimfation used by the route recording compo-
nent. We also describe the database model that capturesrout

6.1 Data Structure

In our work the route recording component deals with therimfation about the real-world road network
and mobile service users. Let us begin with describing tpessentation of the data about the real-world
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road network. As it was mentioned in the Section 2, we prdjeat data into 2D space. We say that the
result of such a projection is a set of points connected iotglipes.

The smallest particles of the road network representatierpaints. The points relate the model of the
road network with the real-world road network by holding tpeo-information about the real-world road
network. We assume that for any selected position of thewedld road network we can obtain the geo-
measurements of that position and refer this informatioa point in the 2D model. These points are called
“base points.”

Definition 6.1. (Base Points)et B C R? be a finite set obase pointgz, y) in 2D space.

When projecting the real-world road network into 2D spacesetect a set of base points and connect
these points with line segments. To select such a set on &éhevoeld road network we take into account
characteristics of that road network, like sinuosity ofdedsee Figure 9).

@) (b)

Figure 9: Example of road approximation

As a result we obtain a road network approximated with lingnsents. Notice, that for the road in
Figure 9(a) it is enough to select two base points in ordeibtaio a good approximation of the road when
connecting these two base points into a line segment, wihiégjuires more base points to approximate the
road in Figure 9(b). Therefore, the bigger the set of basatpdhe more precise the representation of the
real-world road network is. Also observe that the roads guFe 9 are shown as a sequences of base points
connected into line segments. In other words, the roadssaresented gsolylines

Definition 6.2. (Polyline) Let PL C B*? = {(by,...,by)|b; € B AN > 2} be a finite set opolylines
Each polylinepl = (b1, bo,...,by) is a N-tuple, where

1) (b1, bs,...,bn) € PLis the sequence of base points that form the polyline;

2) b € B, by € B are, respectively, start and end base points of the polyline

(a) (b)

Figure 10: Example of polylines and a subpolyline

Example 6.1. Figure 10(a) illustrates two intersecting polylinB¢,; andP L,. The polylinePL; is formed
out of sequence of base poir(ts , b9, b3, by). The start base point f5 and the end base pointég. The
polyline PL, is formed out of(bs, bg, b7). The start base point d?Ls is b5, end—b7.
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In our 2D road network model we say that each polyline reprisse bidirectional road. Without refer-
ence to the directions of the roads the polylines have tli#iections” leading from the start base points to
the end base points. When simulating the movement of thercaun2D road network model with the help
of the direction of the polyline we can specify if the car isvimy towards the start or end base point of that
polyline.

The roads in our model also have lengths. We consider twesdasdhe obtaining the length values
of the roads. One is to have the road network representatiaonishown in Figure 10(a), where the 2D
base points are connected by line segments into polylinéen The length of a polyline is calculated by
summing up the Euclidean distances between the consequiaid pf the polyline. This approximation of
curves into polylines makes calculations concerning tlaelsoeasy. But if we use the Euclidean distances
for the length of the road, we get the imprecise lengths coathto the world situation. The other case for
obtaining the lengths of the roads is to assume that we aectalget the real road distance measures for
the base points (or some of them) from the road informatiavigers. It means that for (some) base points
of the polyline, we are provided with the road distances ftbm start of the polyline to these points. For
example, the ideal case is when for any base point of theipelylve have the road distance from the start
of the polyline. The measure associated with the last basg pbthe polyline indicates the road length
of the polyline. Then, the subtraction of distance measofesy two consequent base points is greater or
equal to the Euclidean distance between these points.

There are situations where we have road distance informatity for some base points of the polyline.
If we have the measure for the last base point, then we distrithat distance among the intermediate non-
measured points proportionally. If we do not have the distaneasure for the last base point of the polyline,
then we calculate the Euclidean distance between the @aoptbe remaining points, starting from the last
base point with a known road distance measure to the lastdeaseof the polyline.

() (b)

Figure 11: Polyline length calculations

Example 6.2. Let us analyze the example in Figure 11(a). The polyling, is formed out of sequence
of base pointgby, bo, b3, by, b5, bg). The numbers above the polyline indicate the Euclideamnist values
between the couples of base points. The numbers below tikngohold the road distance values given by
the road information provider. The road distance from theebpointb; to b, is equal to4, from b; to by

— equal to13. The road distance fromy to bg equals t22, and it is the whole road length of the polyline
PL,.

But we are not provided with the road distances freto b3 and fromb; to bs. In such a case we
calculate approximate road distance values. First, we fintbase points that have a known road distance
values, and also are closestitp These aré, andb,. Then, from the distance value of the pointwe
subtract the road distance value of the paint The result is9. Further, sum up the Euclidean distances
between(by, b3) and(bs, by). The result isr. Now, in order to obtain the approximated road value for the
base poinbs, we say that the length of the line segmént b3) takes% of the road distance betweépnand
by. Therefore, we multiply) by% and ge6.4. The valueb.4 is the road distance betweénandbs. Finally,
the numberl 0.4 inside the ellipse indicates the road distance betwgemdbs. For the base point; we
calculate the approximated road distance similarly asfor

14



Figure 11(b) illustrates the situation when we are not ptediwith the road distance values for the last
base point$; andbg of the polyline PL;. In this case, we calculate the Euclidean distanceébfobs) and
for (bs, bs). The results ared and4 respectively. The distance betwelgnandbs is calculated by summing
up the Euclidean distance betwdgrandbs, which is3, with the road distance value bf, which is13, and
the result isl6. For the base poirtis we take the calculated Euclidean distance betwgeandbgs and add
with the polyline length value df;. The result i20.

The operator that calculates the length measure for eaehdmast of the polyline is defined as follows:

Definition 6.3. (Length) Let £ : PL x B — R be the length operator that returns the road distance
from the start of the polyline to any base point of the polgliThe operator takes as arguments a polyline
pl = (b1,...,by) € PL and a base poiri; € pl,1 <i < N.

For the first base point of a polyling = (by,...,bx) € PL, we have a length measure that is equal
to 0. For any other base point,i > 1, the measure is greater than It is also greater than the length of
L(pl,b;—1) to the previous base point_,. The differencel(pl, b;) — L(pl,b;—1) is at least the Euclidean
distance value betweeén_; andb;. L(pl, by) is the length of the entire polyline.

Further we define the notions of a part of a road network andtaopa polyline—asubpolyline

Definition 6.4. (Subpolyline)Let SPL Cc PL x R? be a finite set oubpolylines Each subpolyline
spl = (pl,17,17) is a 3-tuple, where

1) pl = (b1,b2,...,bx) € PLis the polyline the subpolylinep! lies on;

2) 0 < 1" <1 < L(pl,by), wherel” andi™ are distances from the start base painbf the polyline
pl: 1" is the distance within the subpolyline starts on the potylamd!™ is the distance within the
subpolyline ends on the polyline.

A subpolyline in our model can be seen as a “cutout” of a po&liThe length of a subpolyline is never
0, and it can be as long as the polyline it lies on. Let us lookigafe 10(b). It shows an accentuated part of
polyline P L,—subpolylineSPL,. The subpolyline starts within the distaniefrom the start base point
bs of the polyline PL,, and it ends within the distandé from the same start base potatof PLs.

Having defined the representation of real-world roads aglipek, we also want to add into our model
intersections of the roads. We assume that the informatiomitethe connectivity of the real-world roads is
known in advance.

Definition 6.5. (Connection)Let C' C {{(pl1,1}),..., (pln, )} (pli,15) € PLXxRAN > 2} be afinite

)

set ofconnectionsEach connection; = {(pl1,}), (pl2, 1), .., (pln, )}, N > 2.

Figure 12 illustrates the situations where two roads represl as polylines intersect at connections.
Figure 12(a) describes the intersection of polylifes, and PL,. The connection point is within the
distancel| from the start of the polyline”L; and it also is within the distanc§ from the start of the
polyline PL,. Therefore, according to Definition 6.5, this point is defireesc = {(PL1,1}), (PLo,15)}.
The connection points in Figures 12(b) and 12(c) are ana®¢mthe one in Figure 12(a), but also show the
situations where the connection point coincides with basetp belonging to both of the polylines.

In our model we say that@ad networkis a set of polylines with connectivity rules. Further we defi
mobile serviceusers

Definition 6.6. (Users)Let U be a finite set of mobile serviagsers

Consider the situation with the user traveling on the roavagk. Let us say, that she started her trip
from homeand went tovork. The objectdhome, workare the destination objects of the trip. In our model
we call themuser objects

Definition 6.7. (User Objects)Let UO C PL x R x U be a finite set oiser objects Each user object
uo = (pl, 1+, u) is a 3-tuple, where
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Figure 12: Connections of polylines

1) pl € PL is the polyline that user object is located on;

2) 0 < I+ <1, wherel is the length of the polylingl, andl* denotes the distance within which the user
object is located on the polyline;

3) u € U is the owner of the object.

Thetimestamps used to fix the time the user travels on a particubarte and to be able to approximate
this time. As the users travel on their usual routes a weelgage the factors to decide on the users’ habits.
To get a weekday we need a year, month and day. We also assamesdins start to travel at inexactly the
same time as they did on the previous days. Thus time is appated to hours and their quarters using
minutes and seconds. At last we have th#treestamgncludes all the necessary information from which
we can derive the necessary one:

Definition 6.8. (Timestamp)Let atimestamgl’ be a finite set of 6-tuplegy, m, d, h, mn, s), where
1) y, m,and d denoteyear, monthandday;,
2) h,mn,and s denotehours, minutesandseconds

Now we have all the terms defined to have the description ®rdhte A routeincludes start and end
objects, subpolylines that cover the paths between thegtttegwith directions according to the polyline’s
direction, and a set of timestamps to have usage information

Definition 6.9. (Routes)Let R be a finite set ofoutes Each route is a 4-tupleRE, uos, uo., ST'), where

1) RE is a sequence of pai(spl;, dir;), wherespl; defines a subpolyline that forms the route afic}
is the motion direction on this subpolyline:

RE = ((sply, diry), (splz, dirs), ..., (sply, diry)),
where for eachpl; = (pl;, (7 ,1;') € SPL
dirs — { 1 if motion direction on the subpolylingpl; coincides with direction of the polyling!;
;=

—1 if opposite
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2) uos = (pl1,l+,u) € UO is the start object of the route, and

[l ifdin =1
s T I{ ifopposite

3) uo. = (ply,1+,u) € UO is the end object of the route, and

L Iy if diry = 1
e Iy if opposite

3) ST C T denotes the time when the route was used by thewser

T Y O O O O O

Figure 13: Route in 2D road network

Example 6.3. Figure 13 illustrates the fragment of the 2D road networkhviliree polylines—PL,; =
(bl, b2, b3, b4, b5), PLy = (b@, bg, b7, bg, bg, blo), andPLs = (bllu bg, b4, blg). Let us analyze the example
of a router. The router lies on the parts of all three polyline8L;, PLy, and PL3. According to the
Definition 6.9,r = (RE, uos, uo., ST, Whereuos is the start object of the route and correspondsdpin
Figure 13. Similarly, the objeaio, is the end object of the route and correspondsadgin our example.
ST denotes the times when the route was used by the route owrkRE = ((spl;, dir;) ) iS the set
of subpolylines with directions that form the route Let us analyze the first subpolyline of the route
The first subpolylinespl; = (PLs,1", L(PLs, b)) lies on the polylinePL,. The start point ofpl; is the
objectuo;, which is located within the distandé from the start of the polyline®L,. The end point of
sply is by and it is located within the distana®( P Lo, b3). In our example, the movement directidiv,
on the subpolylinepl, coincides with the direction of the polylinBL,. Also, the polylineP L, intersects
with the polyline PL; at a connection point. According to the Definition 12, this intersection is defined
asc = {(PL1,I}), (Pls,15)}. The valuel| denotes the distance from the start of the polylitle to the
connection point, andl, denotes the distance from the start of the polylifB, to the same connection
pointc. In Figure 13 the connection point coincides with the basete.

6.2 Database Schema

We create a model of the database (see Figure 14) to storaftvenation defined in Section 6.1. To
begin with, we create a tabldNEAR _ELEMENTS for the main elements representing roads of the road
network—polylines. Each row in the tabldNEAR _ELEMENTS contains unique identification number
of the polyline (attribute POLD) and also the length value of that polyline (attribute ROENGTH). The
primary key of the table is the attribute POD.

Our model of the real-world road network captures informatabout the intersections of the roads and
describes that information in terms of intersection of tioéylines at the connection points. Graphically it
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is illustrated in Figure 12. The information about the istmstions of the polylines is stored in tal@®N-
NECTIONS. The record in this table describes the situation where @ipel (POL ID) within the distance
from it's start point (POLFROM) intersects with other polyline(s) at the connectiomp(CONNLID). The
pair of attributes (POLD, CONNL.ID) forms a primary key of the tabl€ONNECTIONS. The attribute
POLLID is a foreign key referencing to the attribute P of the tableLINEAR _.ELEMENTS.

SDO_POLYLINE_ELEMENTS POLYLINE_ELEMENTS ROUTE_ELEMENTS
o]
* 789 POL_ID % 789 POL_ID POL PR % 789| POL_ID
% 789 POL_FROM %789 POL_FROM % 789| POL_FROM
% 789 SEQUENCE_NR %78 SEQUENCE_NR (O 789 POL_TO
% 789 POL_TO k789 X_COORD Pk 789 SEQUENCE_NR
P¥SDO ELEMENT %78 Y_COORD ROUTE b FK pk 789 DIRECTION
—— < 789 ROUTE_ID
LINEAR_ELEMENTS  poy_ip Fk (O 789 SPEED
Pk 789| POL_ID
% 789 POL_LENGTH ROUTES
k- 789 ROUTE_ID
CONNECTIONS —

POL_ID_FK —k A | START_OBJECT B
% A | END_OBJECT

k 789 POL_ID
k789 POL_FROM
% 789 CONN_ID

VIEW_INFO INFO
______________ . ROUTE_ID_FK

* 789 ROUTE_ID ¥ 789 ROUTE_ID
* A | WEEKDAY * D | DATETIME
*789 HOUR

DESTINATION_OBJECTS

END_OBJECT_FK

4789 QUARTER ¥ A | D_ID START_OBJECT_FK|
* A | DESCRIPTION
USERS USER_ID_FK
% 789 USER_ID
* 7esCOERTD) % 789 X_COORD
O A|USER_INFO % 78 Y_COORD
- primary key Q - null values allowed A - characters
% - not null value 789 - numeric values D -date

Figure 14: Tabular diagram

The tablePOLYLINE _ELEMENTS is created to store the geographical information on eacitpol
line. As it was mentioned earlier in Section 6.1, the polgtimre formed out of sequences of base point
connected with the line segments. Therefore records ofable POLYLINE _ELEMENTS capture this
representation of the polyline. The table contains fivelattes: POLID, POL FROM, SEQUENCENR,
X_COORD and YCOORD. Let us describe the record of the taBBLYLINE ELEMENTS more de-
tailed. The part of the record captured by attribute PIDLpoints out the concrete polyline. The attribute
SEQUENCENR indicates the number of the base point in the sequencedifdbke points of that polyline.
Further, the POLFROM captures the distance from the start base point of théip®to the one indicated
by SEQUENCENR. The attributes XCOORD and YCOORD hold the geographical location information
of the base point. The primary key of the taBI®LYLINE _ELEMENTS is formed by the pair (POLD,
SEQUENCENR). The attribute POLD is a foreign key, and it refers to the attribute P of the table
LINEAR ELEMENTS.

The tableSDO_POLYLINE _ELEMENTS (see Figure 14) is created in order to use the possibilities
provided by Oracle Spatial [13]. The attributes in this éable similar to the ones in the talfROLY-
LINE _ELEMENTS, except the attribute ELEMENT. This attribute capturesthetgeo-information about
a single base point, but the whole line segment with its staaitend points.

Further, let us look at the tabldSERSIin Figure 14. The record of this table contains the unique
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identification number of mobile service user (USHR) and also additional information about these users
(USERINFO). By “additional” information we mean that the user gqamovide service provider with her
personal information (first name, last name, address or)taed store this information together with her
route information. The attribute USEM of the tableUSERSis the primary key.

Before describing the tabular representation of the rowtesgive the description of the tabRESTI-
NATION _OBJECTS. See Figure 14. The information stored in this table contastination objects of the
routes of the individual users. The attributes of this taiske D ID, DESCRIPTION, USERD, X_COORD
and Y.COORD. Each record of the table names the object@Pof the user (USERD), gives the descrip-
tion of that object (DESCRIPTION), and also contains thelimfation captured by the attributesGOORD
and Y.COORD. In our model, we assume that the descriptions of riE&in objects are provided by the
user. The geo-location OQCOORD, Y. COORD ) of the destination objects is obtained when anadyitie
log file with the GPS points. The first GPS point from the logileonsidered as a geo-location of the start
object of the route. The last GPS point indicates locatiothefend object. The attribute [ of the table
DESTINATION _OBJECTSis a primary key, while the attribute USER is a foreign key referencing the
attribute with the same name in tabl&SERS

The tableROUTES is created for storing the information about the routes efrtiobile service users.
In our road network representation each route starts ans anithe start and end destination objects of the
route. This information is captured by the attributes ROUDE START_.OBJECT and ENDOBJECT of
the tableROUTES. See Figure 14. Each record in this table contains the unggrification number of
the route (ROUTHD), start object (STARTOBJECT) and the end object (ENOBJECT) of that route.
The primary key of the tablROUTES is ROUTELID. The foreign keys referencing the_ID of the table
DESTINATION _OBJECTS are the attributes STARDBJECT and ENDOBJECT.

Records in tablROUTE_ELEMENTS (see Figure 14) describe routes in terms of subpolylines. In
our road network representation the route can lie on sed#falent polylines, as it is shown in Figure 13.
Therefore, we modeled the route as a sequence of subpalylaeh row in the tablROUTE_ELEMENTS
describes a route element—subpolyline. The attribute FRDOM captures the distance between the start
of the polyline and the start of the subpolyline (see Defnit6.4). The attribute PQIO captures the
distance between the start base point of the polyline an@lepoint of that subpolyline. This attribute
is created to make the calculations easier while queryiegitita. Following the route from its start to the
end, we number the parts of the route (subpolylines) ane $tos sequence with the help of the attribute
SEQUENCENR. Recall that the polylines in our road network represimtahave the start and end base
points (see Definition 6.2), and we also assume that eaclinmlyas a direction leading from the start of
the polyline to the end of that polyline. Each route in ourdogtwork representation also has a direction
leading from the start of the route to the end of it. The infatibn we store in DIRECTION indicates
whether the direction of the polyline coincides with theediion of the route on that polyline. The attribute
SPEED captures the average speed of the user on each patrotite. The attributes ROUTID and SE-
QUENCENR form the primary key of th@ROUTE_ELEMENTS . The attributes POLD and ROUTEID
are the foreign keys referencing respectively the BOLin the tablePOLYLINE , and the ROUTHD in
the tableROUTES.

Further, we create the tabIFO to store the statistical information about the usage of thers (see
Figure 14). The record in this table captures unique ID ofthe (ROUTEID) and the time (DATETIME)
when this route was used. Note that the attribute DATETIME&fia standard time format and captures the
time with precision up to seconds. In our model, in order towate the usage of the route we find it more
useful to operate with the terms such as weekdays, hoursuartegs. This is obtained by creating a view
tableVIEW _INFO (see Figure 14). This table contains the attributes ROUWDTBVEEKDAY, HOUR and
QUARTER (the PL/SQL function that creates the taldl&W _INFO can be found in Appendix A). The
attribute WEEKDAY captures the days of the week when theeravais used by the user. Similarly with
the hours (HOUR). We approximate the exact route usage tiittequarters (QUARTER). The values in
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QUARTER arel, 2, 3 and4, where each of them refer to the time interval, i.e., 1 quarteresponds to the
time interval from O to 14 minutes, 2—to the time intervalrfrd.5 to 29 minutes and so on.
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(a) Fragment of the 2D road network
POLYLINE_ELEMENTS USERS
POL_ID| POL_FROM SEQUENCE_NRX_COORD| Y_COORD USER ID|USER INFQ
s 0 1 1 7 T Agne
" 3.3 2 4 6 -
i1 .6 3 8 2
1 N 84 4 16 4 SN
i1 6.3 5 21 5 DESTINATION-OBJECTS
2 0. 1 1 3 D_ID |DESCRIPFION USER_ID X_COORDY_COORD
12 4.4 2 4 6 11 Home 1 3 5
2 7 3 1 6 2 | WUniversity S 17 9
2 46 4 13 10 S B
2 5.6 5 18 9
2 24 6 19 1 g
&) 0 N1 15 13 ROUTES : .
< 4 2. 13 10 ROUTE_ID| START_OBJECT|] END_OBJECT
i3 7 S 16 4 N S -
] 1 - I
i3 4 4 14 2 < <
) LINEAR_ELEMENTS _INFO
- POL_ID| POL_LENGTH - ROUTE_ID | DATETIME
Y 24 1 2003:01:29 11:12:03
- | 2 ¥ 24 1 2003:02:06 12:34:15
-3 15 L 2003:02:13 09:05:47
CONNECTIONS. -~ = ~
POL_ID[-POL_FROM CONN_ID |.-~ X
1 33 o ROUTE_ELEMENTS 9
11 17.7 5 " [PGL_ID[POL_FROM POL_TQ SEQUENCE_NR DIRECTION ROUTE]ID SPE
2 a4 [ 1 N 3 4.4 1 1 T 50
2 16° 3 .1 3.3 17.7 2 1 1 70
3 4 3 \ 3 11 4 3 -1 L 50
3. 11 2 \2 16 20.6 4 1 u 60

(b) Example of the data stored in the database

Figure 15: Instance of the database

Example 6.4. Figure 15(b) illustrates the instance of the database loulthe example of the 2D road net-
work in Figure 15(a). Mobile service user Agné (takl8ERS travels every workday from her “HOME”
to “UNIVERSITY”. These are descriptions of the destinatioibjects of her usual route (see tafd&S-
TINATION _OBJECTS). This route has the identification number 1 and is store@ltetROUTES. The
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route 1 leads through the lineatements with the identification numbers 1, 2 and 3, as it@svshin table
ROUTE_ELEMENTS . The identification numbers of the are retrieved from théssbINEAR _ELEMENTS
andPOLYLINE _EELEMENTS. The records in the tabl&NFO describes the usage of the route.

7 High-level Algorithms

This section presents a set of high-level algorithms thhtesthe route recording problem. Polyline
identification is covered. We also describe how we consthe&subpolylines that make up a route, including
the types of subpolylines. We give the algorithms that com¢kese topics. Finally, we give the route
construction algorithm and describe how it solves the réiatding problem.

7.1 Polyline Identification

The first problem we address when recording a route is p@yiliientification. We get a set of GPS
coordinates from the user device. Based on these, the pedyind positions on them have to be defined in
order to obtain the subpolylines that form the route. We nmeakew assumptions about the GPS data that
help solve this problem.

e We allow an imprecisionD for the GPS coordinates. The information from the satalligefairly
accurate, but still not precise. Thus, the imprecision nbestonsideredD is the radius of a circle
that has the GPS coordinate point as a center.

e We assume that the first GPS point is mapped to the correctinmlyThis polyline is the nearest
polyline to the first coordinate. This assumption is needetidve correct start information. We
consider the previous polyline to define polylines for alletcoordinates.

e We assume that a user moves on the road network according teaffic regulations, i.e., she does
not make illegal turns and she travels according to the &tbdirection. The road properties such as
driving directions are not considered to define the polylmeur work. The polyline identification is
made according to the geographical coordinates and caansaif the polylines.

Projection of the Point and Distance From the Start of the Pofline. The polyline is identified using
the distance of the GPS coordinate point to the polyline. GRS point is projected onto the polyline, and
according to the projection, the distance from the starhefpolyline is calculated. There are three cases
of the projection. Figure 16 illustrates them. There is g/lwd segmenb;b; ;. Small circles indicate the
sequence of the GPS points. The GPS pajntg, andgs are points of interest. Large circles have radius
D, and they are areas of imprecision. The GPS point can belgxabbve” the polyline segment asis in
Figure 16(a). It is projected onto the polyline segment a@stpg and Euclidean distance to the projection
point isd < D. The coordinate can also be ahead of or behind the polyligmeet asy; andg- are in
Figure 16(b). Now we project the GPS points to the end poirgs,b; andb;, 1, of the polyline segment.
We do not need the projected points in our algorithms. But eednthe distancé from a GPS point to
its projection, because based on this, we decide whichipelguits for us. We also need the distatice
from the start of the polyline to the point projection for etttalculations, like subpolyline formation and
direction identification.

We calculate distancé using vector algebra. According to its definition (see Dé&bni6.2), a polyline
has a direction. Thus, polyline segméyit;, ; has a start and an end point. The start pbjid the beginning
of two vectors. The end of the first vector is the end péjni of the segment. The end of the second vector
is the GPS poiny (see Figure 17). The angte between these vectors is the argument to calculate the
distance to the point projection. The angle is calculatedguscalar multiplication:

bibis1 - big = |bibiy1| - |big| - cos
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(a) On the segment (b) Ahead of or behind the segment

Figure 16: Position of the GPS coordinate due to the polydiegment
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(a) Obtuse angle. (b) Acute angle. The pro- (c) Acute angle. The pro-
jection is shorter than the jection is longer than the
polyline segment. polyline segment.

Figure 17: Angles and projections

If the angle is obtuse (Figure 17(a)), the distance to thatgwojection is the Euclidean distance from
the GPS point to the start of the polyline segment. The distdrom the start of the polyline to the point
projection is the distance from the start of the polylinette start of the polyline segment (see Definition
6.3):

if 90° < a < 270° then d = |gb;|, 1™ = L(pl, b;), where b; € pl = (b1, ..., b;, bit1, .., by)

If the angle is acute, we have two possible situations (idai(b) and Figure 17(c)). We project vector
b;g onto vectorb;b; ;. If the length|b;¢’| of the projection is greater than the length of the segrgnt 1,
distanced is the distance between the end padint; of the segment and the GPS pajntThe distance from
the start of the polyline is the distance from the start ofgblyline to the end poin; ., of the segment:

if —90° < o < 90° A big'| > (L(pl,bit1) — L(pl, b)) then d = |gbist|,I = L(pl, bir1),
where bi,bzqu epl= (bl, ...,bN)

If the projection lengthlb;¢’| is less than the length of the polyline segment, then distanis the
distance from the GPS coordinate to the polyline segmeng distance from the start of the polyline is a
sum of the projection length and the distance between tiectihe segment ank:

if —90° < a <90° A |big’| < (L(pl,bit1) — L(pl,b;)) then d = |gg'|, 1" = L(pl, b;) + |big'],
where b;,b; 11 € pl = (bl, ...,bN)

Using this strategy, functiomnalcParam (see Algorithm 7.1) calculates the distan¢érom the GPS
point ¢ to the segmenils of the polylinepl and the distanc& from the start of the polyline to the projected
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point on it. In our paper, we find it convenient to use exp@ssi = b to let o denoteb and as a logical
expression. The meaning follows from the context in whidhk iised.

Algorithm 7.1 Calculation of the Parameters (functiocParam)

Require: INPUT: g = (z,y) € R?,pl € PL,pls = ((z1,91), (z2,y2)), where (z;,y;) € pl. OUTPUT:
(d,1") e R x R.
01 = {vzi;oyr } {22 — 21500 — 1}
Uy = {vagsvys}  {z — x5y — 1}
|01  /vz? + vy?
|Ua|  /vz3 + vy3
a < arccos((vxy - vy + vy - vy2)/(|U1] - |U2]))
if 90° < a < 270° then
d <+ |'l72|
1"« L(pl, (z1,11))
else
projection < |Us| - cos
length < L(pl, (x2,y2)) — L(pl, (x1,y1))
if length < projection then
d = /(z = 22)2 + (y — 12)°
1" L(pl, (2, y2))
else
d < |Us] - sina
1" < L(pl, (x1,y1)) + projection
18: end if
19: end if
20: return (d,I")

R =
N B o
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First GPS Point. As mentioned earlier, the first GPS point is mapped to theastgolyline. The one
parameter used to detect the polyline for the first GPS psitig distance from the polyline to the GPS point.
The distance to the polyline is the distance from the GPStpoithe polyline’s nearest segment. Function
polyFirstld (see Algorithm 7.2) finds the nearest polyline for the GPSpgi It returns the polyline
and the distance from the start of the polyline to the poimjgmtion. The function uses the parameters
calculated by functioralcParam. The search is performed analyzing all the polylipgs The parameters
(currD, currL) for each polyline segmentpl;, pl;; ., ) are calculated. If the distanerrD to the current
polyline is less than the distandego the previous nearest polyline, it becomes the nearedtirendistance

I from the start of the polyline igurrL.

Other GPS Coordinates. The GPS point other that the first one can also be mapped tcetirest poly-
lines. But this strategy causes many faults. The GPS caatebrare not precise and are not exactly on the
polyline segment. There is an imprecisiéh There are a few cases of the road network when the nearest
polyline is not the true polyline. The first case is when theSG®int is near a crossroads. It can be that the
nearest polyline is one that crosses the true one. The squstible case is when the polyline segments
are a small distance from each other, even if they do notsatgr In real world this can appear when there
are two roads at different heights, for example, when ond pmsses under another. These problems are
solved using our strategy. We identify polylines for GPSy®rconsidering the results of the mapping of the
previous GPS point. If we have the poit j > 1, then we determine where the poipt_; is mapped to.
The pointg; should be mapped to the same polyline or the other polyliaehhs a connection point with
the previous polyline. This strategy causes bad resulisdarcase of a crossroads if the GPS point has to be
mapped on the other polyline. The results that are in thesasépolyline connections can be eliminated.
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Algorithm 7.2 First Polyline Identification (functiopoly Firstid)
Require: INPUT: g € R?. OUTPUT: (pl,i") € PL x R.

1 (pl,17) < (0, 00)

2. d 4+ o0

3: for all pl; = (b;y,...,b;,) € PLdo

4 forall pl;; = (bi;,b;;,,),suchthal <j <n-—1,do
5 (currD, currL) < calcParam(g, pl;, pli;)

6: if currD < dthen

7 d < currD

8 (pl,17) < (pl;, currL)

9 end if

10: end for

11: end for

12: return (pl,1")

Figure 18 illustrates how the nearest polyline strategy caumse bad results (Figure 18(a)) and how other
strategy can solve this problem (Figure 18(b) and Figure)}.8(

(a) Nearest polylines (b) Polylines identified ac- (c) Elimination of candidate
cording to the previous results polylines

Figure 18: Polyline identification

In Figure 18, we have three polylines. The route is on thelp@yl, with the traveling direction from
left to right. Unfilled circles are GPS points. The arrowswstvehere each point should be mapped to. Filled
and crossed circles present bad projections. The GPS pgiatsdg, are points of interest because they are
mapped to wrong polylinesy; is projected onto polylingl;, andg, is projected onto polylingis. If we
consider the previous result, thenis mapped twl, andg, (Figure 18(b)) is also mapped 16,. Polyline
pl3 cannot be the candidate polyline, because it does not et@msaat withpls. If the GPS point is mapped
to the connection area gs (Figure 18(c)) its result can be eliminated.

Function polyld (see Algorithm 7.3) identifies the polyling for the GPS poiny according to the
polyline prev Pl that the previous GPS point is mapped to. The function rettiva polyline and the distance
from the start of the polyline to the point projection. Thadtion has two parts. In the first part (Steps 4-10),
we check if the GPS point is on the same polyline as the prew@RS point. The distanceirrD to every
segment of the polylingrevPl is calculated. The shortest one is chosen, as it was in tumgtily Firstld.

But the distance has also be less thianthe a value of imprecision. If this search gives no resigte[f
11), we assume that perhaps the GPS point should be mapplkeéd polyline that has a connection with
the previous polyline. Thus, the second part (Steps 12-Ptedunction searches for the polyline that is
nearest among the polylines that intersect witbvPl. The distance to the polyline has to be less than the
imprecisionD. If this part of the algorithm also does not give an answaeg,ftinction returns the polyline
and the distance undefined. Such a result means that thegajs ia the GPS data, which then has to be
filled in.

To define if the GPS point is in the connection area, at first aedrthe result of functiopolyld. The
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Algorithm 7.3 Polyline Identification (functiomolyld)

Require: INPUT: g € R?, prevPl € PL. OUTPUT: (pl,i") € PL x R.
L (pl,1") (9, 0)
2. d <+ o0
3: pl < prevPl = (by, ..., by)
4: forall pl; = (bj,bj4+1),suchthal <j <n—1,do

5. (currD, currL) < calcParam(g, prevPl, pl;)
6: if currD < d A currD < D then

7. I" « currL

8: d + currD

9. endif

10: end for

11: if d = oo then
12:  forall pl; = (b, ..., b;,), such thalBec = (..., (pl;, 1;), ..., (prevPl, prevL), ...) € C do

13: for all pl;; = (b;;,b;,,,), suchthal <j <n —1,do
14: (currD, currL) < calcParam(g, pl;, pl;;)

15: if currD < d A currD < D then

16: (pl,17) «+ (pl;, currL)

17: d < currD

18: end if

19: end for

20: end for

21: end if

22: return (pl,1")

function identifies the candidate polyline the GPS pointriggrted onto and gives the distance from the
start of the polyline. The connection (see Definition 6.5)e$ined using the distance from the start of the
polyline. Thus, if the GPS point is mapped to the polyline asdlistance to the connection on the polyline
is less than imprecisiov, we say that the GPS point is in the connection area. Latedomgot consider
this result. We have functiopossible Connection (see Algorithm 7.4) that returns a Boolean value showing
if the GPS point is in the connection area. All the conneditglated to the polyline are analyzed and the
distance from the point projection to the connection isdaled. A distance less than imprecisibrmakes
the resulttrue and the function returns a result; otherwise, it remdatse

Algorithm 7.4 Detection of Connection Area (functigssible Connection)

Require: INPUT: pl € PL,I” € R INPUT: connection € {true, false}.
1: connection < false

2: forall ¢; = {ccy, ..., ce, } € C, such thalice;;, = (pl,lg) € c; do

3. forall cc;; € ¢;, such thate;;, = (pl,l;_j) do
4: if —Dng—lngthen

5: connection < true

6: return (connection)

7. end if

8: endfor

9: end for

10: return (connection)
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7.2 Formation of a Route Element

The next problem we deal with while detecting a route is thenfiion of subpolylines. A route is a
sequence of subpolylines that are connected to the neiigigbsubpolylines. There cannot be gaps. Accord-
ing to our model, the user can change the polyline she islinaven only at connections, but not anywhere
else. The requirement to have a sequence of subpolylinégatima an uninterrupted polyline makes the
route construction include specific functions.

There are four main cases of subpolylines that form a routguré 19 illustrates them. The unfilled
circles mark the GPS points. The are three polylines drawthénfigure: (b1, b, b3, by), (bg, b2), and
(bs, bs). The route is emphasized.

Figure 19(a) illustrates the most simple case of a route nwdrdy one subpolyline belongs to it. Ac-
cording to our model, we always fix the exact positions for steet and the end of the route and do not
approximate them. That means that when we form such a pelyie consider the first and the last GPS
points, i.e.go andgy. The distances from the start of the polyline present whit pf the polyline is the
route and the movement direction indicates the start andride

Figure 19(b) illustrates how the first subpolyline is forméthe feature of the first subpolyline is that
one distance measure from the start of the polyline is thetgx@jection position, as it is the start of the
route. Another measure usually has to be approximated teetlne that shows the connection distance from
the start of the polyline. As the figure shows, the GPS pajpt8 < i < j, are projected onto one polyline.
The GPS poiny; is projected onto another polyline. The polyline can be deahonly at connection
positionbs; thus, the projection of; is approximated to the distance from the start of the potytim the
nearest intersection with the other polyline, i.e.b$0 In case of the first subpolyline, the start is defined
from the GPS point, and the end is calculated. Accordingealtfinition (see Definition 6.4), a subpolyline
has start distance that is less than end distance. If thel tlaection is opposite to the polylines’s direction,
these distances are interchanged and the direction is sdt t®his means that we have a measured end, but
an approximated start.

Figure 19(c) illustrates how the last subpolyline is formdthis case is similar to the case of the first
subpolyline, but it has the opposite way of formation. If thevement direction is the same as the direction
of the polyline, the start of the last subpolyline is approated, as fog;; in the figure. The end of the
subpolyline is the end of the route, i.@y . If the direction is opposite, the measures are formed in the
opposite way.

Figure 19(d) illustrates how the middle subpolyline is fexn Middle subpolylines are in the route
if the GPS points are mapped to more than two polylines. Tkabgolylines are full. The start and the
end distances for the subpolyline are not those from priojest but approximated to the distances of the
connections at which the polylines are changed. As it is shiawhe figure, GPS poinig,; andg; are the
first and last GPS points that are projected onto the firstlipely Their distance values from the start of the
polyline are approximated to values of the connectignandbs.

If there are no neighboring subpolylines that belong to thmmes polyline, only these four cases are
used to form a subpolyline. There are situations when a roasetwo subpolylines belonging to the same
polyline, but having the opposite direction. Figure 20 shawch a situation. The user can travel on the
polyline and turn around at some point. In the real worlds 8iiuation may occur if it is not allowed to turn
left at some crossroads. Then the user has to turn right andriaround when it is possible, as in Figure
20(a). If the direction is changed on the same polyline,glae two neighboring subpolylines that share
one common point: it is the end for one subpolyline, but tleet gioint for another. Figure 20(b) shows
how it looks in the real situation. The GPS points are markgdilimbers, the greater number shows the
later GPS point. The last point that is in the same direct®tha current subpolyline is also the start of the
new subpolyline. The real GPS point can be still on the sanedithe polyline (before turning around) or
already on the other (after turning around), as shown inifei@0(b).

According to the described strategy, the movement dirac$othe parameter that is used to form a
subpolyline. We have a functiofefine Direction (see Algorithm 7.5) that defines the movement direction
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(a) Only one subpolyline (b) First subpolyline
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(c) Last subpolyline (d) Middle subpolyline

Figure 19: Cases of subpolylines
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Figure 20: Subpolylines on the same polyline

on the polyline for two point projections. The function takisvo distances from the start of the polyline:
prevDst is the distance to the previous point projection, amdrDst is the distance to the current point
projection. The function also considers the movement tdorgrevDir on the polyline until the current
GPS point. The function returns the movement directiorection that is on the polyline between the
previous and the current points. If the previous distandess than the current one, the direction coincides
with the direction of the polyline— it is equal tb If the previous distance is greater than the current one,
the direction is the opposite—it is equal +d.. If the previous distance is equal to the current distartee, t
direction cannot be defined and is equal to the previous tibrecThe last situation happens if the user is
stuck in a traffic jam and moves so slowly that this causesaheesGPS coordinates for a few points.

The movement direction is used to approximate distancesn fhe start of the polyline to the point
projections when we construct “uninterruptible” routerfr@ sequence of subpolylines. Functjind End
(see Algorithm 7.6) finds the distaneedDst from the start of the polylin@revP! to the connection where
the previous polylingrevPl and the current polylineurrPl intersect. The function considers the distance
prevDst from the start of the polyline for the previous GPS point afgbdhe directionprevDir on the
polyline prevPl. The function chooses the nearest connection if there amvacbnnections where the
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Algorithm 7.5 Direction Identification (functiorlefine Direction)

Require: INPUT: prevDst, currDst € R, prevDir € {—1,0,1}. OUTPUT: direction € {—1,0,1}.
1: direction <+ 0

2: if prevDst < currDst then

3 direction < 1

4: else ifprevDst > currDst then

5. direction < —1

6

7

8

9

. else

. direction < prevDir
»endif
. return (direction)

polylines intersect. The temporary variabléstToConn stores the value of the distance to the previous
nearest connection. All the connectiofgswhere prevPl and currPl intersect are analyzed. The variable
currDistToConn is used to calculate the distaneevDst from the previous projected point to each suitable
connection. A connection is suitable if it is ahead of thgguted point when the direction coincides with
the polyline’s direction, or if it is behind the projectedippbwhen the direction is the opposite (Step 4).
Otherwise, the function returns an undefined value. If tistagice to the connection is less than the distance
to the previous connection then its distance from the sfatte polyline is the candidate end distance for
the subpolyline. The distance to it is noted in variablerDist ToConn. If the direction on the subpolyline

is undefined, the nearest connection is chosen as a candiddtéhe direction to it does not matter.

Algorithm 7.6 End Position Identification for a Subpolyline (functigindEnd)
Require: INPUT: prevPl, currPl € PL, prevDst € R, prevDir € {—1,0,1}. OUTPUT: endDst € R.
1. distToConn, endDst < oo
2: forall ¢; = {cci1,...,ccp} € C, such thaBec;;, cc;, € ¢; : cc; = (pTevPl,l'i—j),ccij = (currPl,l'i—k)
do

3 currDistToConn < (lz — prevDst)

4:  if (prevDir = 1 A currDistToConn > 0 A currDistToConn < distToConn)V
(prevDir = —1 A currDistToConn < 0 A currDistToConn > distToConn) then

5: endDst li:_

6: distToConn < currDistToConn

7. elseifprevDir = 0 then

8: if (currDistToConn > 0 A currDistToConn < distToConn) then

9: endDst <+ l;_]_

10: distToConn < currDistToConn

11 else if (currDistToConn < 0 A currDistToConn - (—1) < distToConn) then

12: endDst <+ l'i_j

13: distToConn < currDistToConn - (—1)

14: end if

15:  end if

16: end for

17: return (endDst)

Function findStart is closely related to functiofindEnd. The next subpolyline should always start
at the same place where the previous subpolyline ended., Timuion findStart defines where the next
subpolyline starts on the polyline.rrPl, according to the previous subpolyline that was on polyjine Pl
and ended at distangeevDst from its start. The function returns theartDst that is the distance at which
the current subpolyline starts.
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Algorithm 7.7 Start Position Identification for a Subpolyline (functigindStart)
Require: INPUT: prevPl, currPl € PL, prevDst € R. OUTPUT: startDst € R.
1: for ¢ = (ccy, ..., ) € C, such thaBey, ¢, : ¢ = (prevPl, prevDst), ¢, = (currPl, I}) do
2. startDst < I,
3: end for
4: return (startDst)

FunctionformSubPoly is used to create a subpolyline that satisfies the requirenfiena subpolyline.
According to the definition, the distance where the subpudy$tarts should be less then the distance where
it ends. While making calculations, the real start can beethe point of the “theoretical” subpolyline.
Function formSubPoly solves this problem. It takes the start and end distancespasameters. If the
movement direction coincides with the direction of the fioky, the parameters do not need to be exchanged.
If the direction is opposite, then the start distance istgreand it has to be exchanged with the end direction.

Algorithm 7.8 Subpolyline Formation (functiofpormSubPoly)
Require: INPUT:pl € PL,l,,l, € R, dir € {—1,0,1}. OUTPUT:spl = (pl,I",1") € SPL.

1. if dir = 1 then

2. spl = (pl, 17,17 « (pl, 1y, 1)
3: else

4 spl = (pl, 17,17 « (pl, 1., 1)
5: end if

6: return (spl)

7.3 Route Construction

When constructing a route we deal with sequences of elemérgsave a sequence of route elements,
and a sequence of input GPS points. Thus, we need three afzetatmake operations on sequences that
contain elements of the same type. The first operator is netedadd an element to the end of a sequence.
The second operator is needed to return the first elementdreaquence. The third operator removes the
first element from a sequence.

Definition 7.1. (2 Operator) LetQ : S* x S — S*, whereS is a set of elements angf" is the set of all
finite sequences of elements frdnbe a sequence operator that constructs a sequence by addigment
to the end of a sequence.

Definition 7.2. (Y Operator) Let Y : S* — S, whereS is a set of elements arff* is the set of all finite
sequences of elements fra$in be a sequence operator that returns the first element oluzisee,

Definition 7.3. (¥ Operator) Let ¥ : S — S*, whereS is a set of elements arff* is the set of all finite
sequences of elements froffy be a sequence operator that constructs a sequence by rgnrtbei first
element from the sequence.

Sequence € S* must have at least one element if we want to use operd@tensdY. Thus, we have to
check ifs is empty. If the sequence has one element, then opebateturns an empty sequence.

Example 7.1. Let us consider the route, = (RFE,uos,uo., ST) (see Definition 6.9), wher®RE =
(rei,reg, re3) is a sequence of route elements. We can add the eleraeotthe end of this sequence
by using2 operator:Q((rel,reg,reg),re) = (rei,req,res,re). We can get the first element of the se-
qguence by usin@ operator:“f((rel,reg,reg)) = re;. We can remove the first route element by using
operator:¥ ((rei,res,res)) = (rea, res).
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These operators help to manipulate the sequences in the finding algorithm (see Algorithm 7.9).
The route finding algorithm is the step of route recordingcpss on the server side described in Section
4. This algorithm constructs sequenBé’ of route subpolylines analyzing sequerte®f GPS points. The
algorithm uses two functionsValidateRoute and FillGap, that validate the route when other functions
return undefined values.

FillGap As mentioned earlier, information gaps in the GPS sequeaneause situations where the poly-
lines identified for neighboring GPS points are not neighimpthemselves. Functiopolyld cannot
identify the polyline. In this case, functigwlyFirstld is used to identify the polyline. If this polyline
is not in the connection area, the gap between two polylisgs be filled. The strategy for how to
do this is based on shortest path search in a graph. First,dhalpolylines that intersect with the
gap’s first polyline are retrieved. For each of these posdinwe again retrieve all intersecting poly-
lines. If the gap’s second polyline is not among them, theg@dare is repeated recursively for each
polyline of this level. The search stops when the gap’s se@atyline is in the result set. When we
have intersecting polylines, we take the set of connectmmsform subpolylines using the connection
information. These constructed subpolylines fill the gaivieen two previously described polylines.

ValidateRoute This function eliminates bad results in projecting poiMghen we search for the end mea-
sure for a subpolyline, we consider its direction and makagproximation according to the direction.
But when we do projections, we project onto the same polytliraé the previous GPS point is pro-
jected onto if this is possible. These two requirementse#ust we may jump through a connection,
and functionfind End does not turn back to get it. Functidrulidate Route searches for the connec-
tion behind. Then it checks if the previous subpolylines sauigable for the current situation. If not
then the subpolylines are validated.

The route finding algorithm starts by taking the first GPS paiemoving it from the GPS sequence.
The first polyline is identified using functiopolyFiirstld. Several temporary parameters store values that
are necessary to construct a route: paraméters-Pl, currDst) are the polyline, the current GPS point is
mapped to and the distance from the start of the polylipezvPl, prevDst) are the polyline and the distance
for the previous GPS pointpl, I") store values for the start of the constructed subpolylifie andprevDir
are the current and the previous directions on the polyMigile the sequence of GPS points is not empty,
each point is taken from it and analyzed. The polyline is idiexl for each point using functiopolyld. If
this function returns an undefined polyline, it means thetehs a gap in information and it is to be filled in.
If the function returns the polyline, it is checked if the j@ction is in the connection area that can cause bad
results. If the point projection is not in the connectionaariee., the result opossible Connection is false
the other calculations can be done.

If the current polyline is not the same (Step 14) as for theviptes GPS point, a new subpolyline is
formed. First of all, the measure for the end of the polylimealculated by functiofindEnd. This function
may return the undefined end measure if there were bad pajsct This fault is eliminated. Using the
defined measure, we form a new subpolyline and add it to theesegRE of route elements. The start
measure is calculated for the next subpolyline. The tempqrarameters get new values: the direction
becomes undefined, the start of the polyline is a newly caledlmeasure.

If the polyline is the same (Step 26) as for the previous GR&t pee check if the movement direction
is the same as until the previous point. If the previous dibecwas undefined, its value is set to a value
of the current direction. If the direction is the same, naakdtions are done; only the temporary variable
prevDst becomes equal to the distance of the current GPS point. Witieetion is not the same, we have
to form a subpolyline by taking the previous values. The jmew distance becomes the start of the new
subpolyline.

When the GPS sequence is empty, the last subpolyline of tite e formed, using the distance from
the start of the polyline to the last GPS point.
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Algorithm 7.9 Route Finding
Require: INPUT: G = (g1,...,9n),9i € Ron > 1. OUTPUT: RE = ((sply,diry1), ..., (splm, diry,)),
m > 1, spl; = (pl;, 17, 1;') € SPL.

1: RE + )
2. g« Y(G)
3 G+ ¥Y(G)
4: (pl,1"), (currPl, currDst), (prevPl, prevDst) < polyFirstld(g)
5. dir, prevDir <0
6: while Gisnotempty do
7. g+ Y(G)
8 G+ ¥(G)
9:  (currPl, currDst) < polyld (g, prevPl)
10:  if currPl = () then
11: FillGap()
12:  else
13: if possibleConnection(currPl, currDst) = false then
14: if currPl # prevPl then
15: 1" < findEnd(pl, currPl, prevDst, prevDir)
16: if I = oo then
17 ValidateRoute()
18: else
19: spl < formSubPoly(pl, 1”17, prevDir)
20: RE < Q(RE, (spl, prevDir))
21: 1" « findStart(pl, currPl, 1™
22 pl < currPl
23: prevDir < 0
24: (prevPl, prevDst) + (pl, 1)
25: end if
26: else
27: dir < defineDirection(prevDst, currDst)
28: if prevDir = 0 then
29: prevDir < dir
30: else ifprevDir = dir then
31 prevDst < currDst
32: else
33 I « prevDst
34 spl + formSubPoly(pl, 17,17, dir)
35: RE < Q(RE, (spl, prevDir))
36: prevDir < dir
37 IF « prevDst
38: prevDst < currDst
39: end if
40 end if
41: end if
42:  endif
43: end while
44: 1™ < currDst
45: spl < formSubPoly(pl, 1", 17, prevDir)
46: RE <+ Q(RE, (spl,prevDir))
47: return (RE)
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8 Practical Part

This section describes a practical part of our work. The dagdested our algorithms on is presented.
The algorithms were implemented using Java and Oracletiegetith its PL/SQL and Oracle Spatial. The
aspects of implementation are analyzed.

8.1 Data

We tested the algorithms on synthetic data. We wrote a gemgisee Appendix D for more detailed
explanations) to generate a road network and movement aiiomilon it. To test the algorithms we used
Oracle Spatial operators and functions.

8.1.1 Generated Data

We generated a simple road network (see Figure 21(a)) tolséar possible problems while detecting
a route. This road network includes 100 randomly generasese Ipoints, and 117 polyline segments that
use these points form 35 polylines. In our data, a numbergrhsats for any polyline can vary from 1 to 9
segments. There are 49 connections where polylines iaterfae information about such a road network
is stored in a database. The schema of the database is @eseriBection 6.2.

We also generated a number of GPS point sequences (see aplexarfigure 21(b)) to simulate a
movement of a user on this road network. To have destinatmntpfor a route we randomly chose two
segments and positions on them. We searched for a path oresegiretween these two objects using
breadth-first search strategy. For each segment on the patenerated GPS coordinates. A number of
these GPS points depended on the segment length and onptszste The points were not exactly on the
segment in order to simulate real world situations. Alse, pints could be on both sides of the segment
and within different distances to that segment. We allowedpredefined imprecision of the GPS point to
the segment.

(a) Road network (b) Example of generated GPS co-
ordinates

Figure 21: Generated data

8.1.2 Oracle Spatial

We used Oracle Spatial [13] while implementing our algarnith As described in Section 6.2, segments
of polylines are spatial data objects (see SPOLYLINE_ELEMENTS in Figure 14). Thus, we use spatial
operators (see Table 1) and geometry functions (see Taliter 2alculations. Polyline segments are also
linear referencing system (LRS) elements and we use LRitur(see Table 3).
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Spatial operator Short description

SDO.NN Determines the nearest neighbor geometries to a geometry.

SDO.NN_DISTANCE Returns the distance of an object returned by the SNINDoper-
ator.

Table 1: Spatial operators

Geometry function Short description
SDO.GEOM.SDQDISTANCE Computes the distance between two geometry objects.

Table 2: Geometry functions

Linear referencing function Short description
SDO.LRS.GEOMSEGMENT.START_PT Returns the start point of a geometric segment.
SDO.LRS.PROJECTPT Returns the projection point of a point on a geometric segmén

Table 3: Linear referencing functions

To use the Oracle Spatial functions we create an index onpiduas attribute. SQL script that forms a
spatial element and inserts it into our database is shovowbel

I NSERT | NTO POLYLI NE_ELEMENTS VALUES
( 25, 0, 170, 1,

MDSYS. SDO_GEOVETRY( 3302, NULL, NULL,

MDSYS. SDO_ELEM | NFO ARRAY( 1, 2, 1),

MDSYS. SDO_ORDI NATE_ARRAY( 4130, 2630, 0, 4280, 2540, 0) )
)

This example shows how the first element of the polyline 2&sgited into the database. This element
starts at distance 0 and ends at distance 170 from the st pblyline. A spatial attribute is constructed
according to the syntax of the object MDSYS.SIBEOMETRY.

8.2 Route Finding with Oracle Spatial

The implemented route finding algorithm is different frone thne described in the theoretical part. We
use Oracle Spatial to identify the route, and for that we bgsebuilt-in functions or SQL statements. The
main program is written in Java (see classes in Appendix Qje pgrogram uses JDBC to execute SQL
queries.

8.2.1 Polyline identification

The first parameter according to which we choose the poliinghe distance to it. Oracle Spatial
operator SDONN finds the nearest spatial objects and operator NMNDDISTANCE returns the distances
to these objects. For the first GPS point we need the nearahlspbject, i.e., polyline element, and also
we need its distance from the start of the polyline to thequiipn of the GPS point. The example shows
how the nearest polyline is identified for the first GPS poiithwoordinates (1570,2320):

SELECT a.pol _id, a.pol_from+
SDO.GEOM SDO.DI STANCE( SDO_LRS. PRQJECT_PT( a. el enent,
MDSYS. SDO.GEOVETRY( 3001, NULL, MDSYS. SDOPO NT_TYPE( 1570, 2320, 0) , NULL, NULL)),
SDOLRS. GEOMLSEGVENT _START_PT( a. el ement ), 0. 0001) di st
FROM pol yl i ne_el enents a
WHERE SDO _NN( a. el ement , MDSYS. SDOGEOVETRY( 3001, NULL,
MDSYS. SDO_PO NT_TYPE( 1570, 2320, 0) , NULL, NULL), ' sdo_num res=1", 1) =" TRUE ;
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The point is projected onto the element (SDAS.PROJECIPT) that is nearest (SD@AN). The dis-
tance from this projection to the start of the element (SCR5.GEOMSEGMENT.START_PT) is cal-
culated (SDOQGEOM.SDQDISTANCE) and added to the distance from the start of the lpayto this
element.

To identify polylines for other GPS points, we have functolyld (see Appendix B). This function
analyzes the same polyline, where the previous GPS pointvagped to. If the distance to the polyline is
greater than the imprecision, the function searches fondaest polyline that intersects with the previous
one. For generated GPS sequences we allowed the impreoisikihmeters. Thus, the identified polyline
should always be in less than 50 meters from the GPS point.Hé&fkcevery mapped point if it falls into a
connection area. The points mapped to the area around aatmmef polylines are ignored. We defined
the imprecision of that area, and in our case it is the samerdSRPS points. The query (see Appendix A)
returns the connection if it is within distance of 50 metesf the point projection in any direction. If the
point is not mapped to connection area the further proceoiureute detection is done.

8.2.2 Formation of a Route Element

The end of the subpolyline is calculated using the strateggiibed in Section 7, but with one modifica-
tion. In the theoretical part, we search for the connecti@t is ahead of the point projection. The distance
from the start of the polyline to the connection becomes tiewvalue for the subpolyline. This distance to
the connection is greater than the distance to the poinegtion if the user travels in the polyline’s direc-
tion, and less if the direction is opposite. In the implenagioh, we modify this requirement allowing the
connection to be behind, but within less than 50 metersmistaThe tests show that this strategy implies
better results than the one with the strong requirement. thatlis because the points are mapped to the
same polyline after crossing the connection area even ifisee has turned off to the other polyline. This
situation occurs when after crossing the connection amatersecting polylines are still within a distance
less than 50 meters from each other for some time. We have iwoes (see Appendix A) that calculate
the end distance value for the subpolyline. The programmieghod controls its usage depending on the
movement direction. The end distance value of the subpayik used to calculate the start distance value
of the new subpolyline (see Appendix A).

8.2.3 Route Construction

The route finding algorithm (see Appendix C) is implementethe same way as described in Section 7.
We have sequences of route elements, i.e., subpolylinasfam the route. We use the built-in Java class
LinkedListto store these elements. Java programming language ssppmetations to manipulate these
elements in the list. We distinguish between the class thegsponsible for the execution of SQL queries
and a class that is responsible for route finding. But thersctass includes the instance of the second one
to be able to get results from the SQL queries.

9 Summary and Future Work

In part because of predominant tendency to develop smalilendévices, i.e., with small keyboards and
screens, there is a need to have mobile services be aware o$éns’ contexts. It is important for mobile
services to provide the users only with relevant informatioith as little interaction as possible. For mobile
service users that travel in road networks, the locatiortexdns important.

In this paper, we considered the routes of the users to baemegting and useful context. We designed a
route component that constructs routes based on a useatsdodénformation provided by the user’s device.
We proposed a system architecture for the route componegtintduced the main functions that were
necessary in constructing such a component. A databasd foodsad networks and for information about
the users and their routes was presented.
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The paper analyzed the specific problems that appear whikegytto record user’s routes. We proposed
solutions for all these problems. For some of them, we useaddy invented techniques. Having the input
information as a stream of location coordinates from a GR8iver, we presented the main algorithms for
detecting the route of the mobile user.

There are several possible directions in which to extersivtioirk. In this paper, we assume that the user
controls the process of her route recording. But this camberivenient for the user as she has to remember
to start and stop recording. One of the extensions can be ke tha system smart enough to decide if the
current position of the user is already the end of the route.eikkample, if the user is at a particular position
for some time without moving, the process of recording cafirbghed.

Another possible extension can be the creation of a systatriglable to detect if the route is already
recorded or to divide a long route into smaller ones when kpaaits of the route are used. Other possible
extensions are related to the database schema. To add met®fiality, the current database model can
be extended by integrating into it some of road network festulike driving directions or turn restrictions.
Currently, we do not consider these which may cause faultiserdetection of routes. The driving time of
the route can also be stored. This feature would add morexpatvareness to the system.
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A SQL Scripts

A.1 Creation of View VIEW _INFO

-- Creates view using data fromtable | NFO Weekday and Hour are
-- calculated using built in functions and Quarter is cal cul ated using

our PL/SQL function getQuarter

CREATE VI EW VI EW | NFO AS

SELECT Route_id, Weekday, Hour, Quarter, COUNT(*) datetine
FROM
(
SELECT route_id, TO CHAR(datetine, 'Day’) as Weekday,
TO CHAR(datetime, 'HH24') as Hour,
get Quarter (TO_ NUMBER(TO CHAR(datetime, "M'))) as Quarter
FROM | NFO

)
GROUP BY route_id, Wekday, Hour, Quarter;

A.2 Query to Define a Connection Area

Shows the exanple how it is checked if the GPS point is in the
connection area: sone point was napped to polyline 12 within distance
960 fromits start. The query returns any connection that is in

di stance 50 fromthe point projection.

SELECT conn_id
FROM connecti ons
WHERE pol _id = 12 AND

(pol _from- 50 <= 960 AND 960 <= pol _from +50);

A.3 Queries to Find the End of a Subpolyline

Shows the exanpl es how the end distance for the subpolyline is
defined. The previous point was napped to polyline 12 within

di stance 900. The current point is mapped to polyline 13. The first
exanpl e defines the end distance if the direction coincides with the
polyline direction. The second defines if the direction is

opposi te.

SELECT a. pol _from
FROM connections a, connections b
WHERE a.pol _id = 12 AND b.pol _id = 13 AND a.conn_id = b.conn_id

AND (a.pol_from+ 50 >= 900 OR 900 < a.pol _fronm;

SELECT a.pol _from
FROM connecti ons a, connections b
WHERE a.pol _id = 12 AND b.pol _id = 13 AND a.conn_id = b.conn_id

AND (a.pol_from- 50 <= 900 OR 900 > a.pol _fron;

A.4 Query to Find the Start of a Subpolyline

Shows the exanpl e how the start of the polyline is defined. The
previ ous subpol yline was on polyline 13 and ended within distance
0. The current subpolyline is on polyline 12. The exanpl e
identifies the distance on the polyline where the previous
polyline intersects with the current one.

SELECT b. pol _from

FROM connecti ons a, connections b

WHERE a. pol _id = 13 AND a. pol _from= 0

AND b. pol _id = 12 and a.conn_id = b.conn_id;
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B PL/SQL Functions

B.1 Quarter Calculation

-- Calculates a quarter for a value of mnutes.

CREATE OR REPLACE FUNCTI ON get Quarter
(

)
RETURN NUMBER

AS
quarter NUMBER;

BEG N
| F minutes BETWEEN O AND 14 THEN quarter := 1;
ELSI F mi nutes BETVEEN 15 AND 29 THEN quarter
ELSI F mi nutes BETWEEN 30 AND 44 THEN quarter
ELSE quarter := 4,
END if;
RETURN quarter;

END get Quarter;

/

m nutes | N NUMBER

B.2 Polyline Identification

-- ldentifies the polyline polld where the current point (X,y) is
-- mapped to. The previous polyline prevPl is taken into consideration. The polyline
-- and the distance to the mapped point on that polyline is returned.

CREATE OR REPLACE PROCEDURE pol yld
(

prevPl I N I NTEGER,

X I N NUMBER,

y I N NUMBER,

pol I d QUT | NTECER,

di stance OUT NUMBER

)
I's

pol Fr om NUMBER :
di st NUMBER :

_1;
_1’

CURSOR sanePl IS
SELECT pol _from MDSYS. SDO_NN_DI STANCE(1) di st
FROM

SELECT *
FROM pol yl i ne_el enent s
WHERE pol _id = prevPl

WHERE SDO NN( el enent, ndsys. sdo_geonet ry (3001, NULL,
MDSYS. SDO_PO NT_TYPE( X, y, 0) , NULL, NULL) , * sdo_num res=10", 1) = ' TRUF
ORDER BY di st ;

CURSOR connPl | S
SELECT pol _id, pol _from MDSYS. SDO NN DI STANCE(1) di st
FROM

SELECT *
FROM pol yl i ne_el ement s
WHERE pol _id IN
(

SELECT DI STI NCT b. pol _id

FROM connections a, connections b

WHERE a. pol _id = prevPl AND b.pol _id <> a.pol _id AND

a.conn_id = b.conn_id

)

)
WHERE SDO_NN( el ement, MDSYS. SDO_GEOVETRY( 3001, NULL,
MDSYS. SDO_PO NT_TYPE( 1800, 2040, 0) , NULL, NULL) , ' sdo_num res=10", 1) =" TRUE'
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ORDER BY di st;
BEG N

pol Id 1= 0;
di stance : = -1;

OPEN sanePl ;
FETCH sanmePl | NTO pol From di st;

I F ((samePl %OUND) AND (dist <= 50)) THEN

polId := prevPl;

SELECT pol _from + SDO_GEOM SDO_DI STANCE( SDO_LRS. PROJECT_PT
(el enent, MDSYS. SDO_GEOVETRY
(3001, NULL, MDSYS. SDO_PO NT_TYPE(X, y, 0), NULL, NULL) ) ,
SDO_LRS. GEOM _SEGMVENT_START_PT( el ement ), 0. 0001)

I NTO di st ance

FROM pol yl i ne_el enent s

WHERE pol _id = prevPl AND pol _from = pol From

CLOSE sanePl ;

ELSE
CLOSE sanePl ;
OPEN connPl ;
FETCH connPl I NTO pol Id, pol From di st;

I F ((SQLY%OUND) AND (dist <= 50)) THEN
SELECT pol _from + SDO_GEOM SDO_DI STANCE( SDO_LRS. PROJECT_PT
(el enent, ndsys. sdo_geonetry
(3001, NULL, MDSYS. SDO_PO NT_TYPE(X, y, 0), NULL, NULL) ),

SDO_LRS. GEOM _SEGVENT_START_PT( el enent ), 0. 0001)

I NTO di st ance

FROM pol yl i ne_el ement s

WHERE pol _id = polld AND pol _from = pol From

CLOSE connPl ;
END | F;
END | F;

END pol yl d;
/

C Route Finder. Java Classes

We have four main classes that are written in order to imphgnmute recording algorithm:

e ClassrouteElement This class corresponds to the route element in data stas;tue., a subpolyline
with a direction. Thus, the class has four variablesl_id, pol_from, pol_to, anddirection It has two
constructors: for creation with default values, and forati@n with predefined values.

e ClasstempValue. This class is used to store values of projections of GPStpaind direction ac-
cording to the previous point. The main program has thretaintes of the class: for the start of
the subpolyline, for the current point, and for the previgumnt. The class has variableg®l_id,
dist from_start, anddirection

e ClasscalcRoutes This class is responsible for the execution of SQL queries.

— MethodsidentifyPolyandidentifyFirstPolycorrespond to the algorithms that deal with polyline
identification and are described in Section 7. Methd&htifyFirstPolyuses the query described
in Section 8 and methadentifyPolycalls the procedurpolyld given in Appendix B.

— MethodpossibleConnectiodefines if the GPS point is the connection area. The method exe

cutes the query (see Appendix A) that returns the connexifanhis so.
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— MethodsfindEndandfindStartdeal with the calculation of the end distance and start mista
values for subpolylines.

e Classfind. The class is responsible for route construction and cpomds to the Algorithm 7.9. The
class has the instances of classegeElement, tempValue, andcalcRoutes The main methods are:

— getGpsforms a list of GPS coordinates from the input stream. Cilyetakes the coordinates
from the file that is given to the method as a parameter.

— findRouteconstructs the route according to the route finding algoritirhis method uses other
methods likeformElemenanddefineDirectionto calculate parameters for route elements. The
result of the method is the list of route elements.

D Map Generator. Java Classes

We have two main classes that were used to generate our dessn@pGenerator has methods to
support map generation:

e Method generateBasePointgenerates the base points for the road network. The numbleass
points and the ranges of two dimensional space depend ongheparameters.

¢ Method findDensitycalculates the number of base points that fall into the sjasea around the
particular base point.

e MethodgenerateSegmentiefines how many segments for each point should be geneffsiteithod
formSegmentgenerates the segments for each base point. MejéodratePolylinegenerates poly-
lines from the set of the segments. These polylines form @ad network.

e MethodgenerateDstObjeaenerates a destination object choosing randomly a segandrithen any
distance on it.

e Method generateGpgenerates a sequence of the GPS points. In order not to havis po the
segment, we randomize them using a maximum imprecision.

e Method generatePatlgenerates a path in the road network. It cagémerateDstObjecto generate
two destination objects. Then it finds the path between theseobjects. Finally, the method calls
generateGps$o make a sequence of GPS points.

e Method generateMapgenerates a new map using the previously described metmoblw/iiites the
results into the files. MethogenerateMapFromFiléakes already generated GPS points from the file
usingtakeCooFromFileand generates a map.

ClassmakeDatahas an instance of the clasmpGeneratorand gives the parameters to its public methods
to generate a map.
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