
Design and Implementation of Route Recording
for Mobile Services

Agnė Brilingaitė Nora Zokaitė
agne@cs.auc.dk nora@cs.auc.dk

Department of Computer Science, Aalborg University
Fredrik Bajers Vej 7E, 9220 Aalborg Øst, Denmark

June 6, 2003

Abstract

Several developments combine to enable a new class of on-line mobile services. Put simply, the
performance/price ratio for consumer electronics is improving quickly, wireless communication tech-
nologies are becoming more and more widespread, and geo-positioning is becoming practical.

In comparison to desktop computing, mobile services use small screens, and they typically lack a
keyboard. Further, they are often used in situation where the user’s main focus of attention is not the
service. For these reasons, it is important that the user receives the “right” information at the right time
and with as little interaction as possible. These qualitiesmay be obtained by making mobile services
aware of the user’s context. A mobile user’s route towards her destination is an important aspect of her
context.

This paper considers users traveling in road networks, and it presents a software component that
builds routes for individual users based on traced coordinates. The paper presents the architecture and
functionality of the route component. A database model thatcaptures routes is described. The paper
proposes the algorithms that solve the problems of route detection. These problems include travel posi-
tion identification, formation of route parts, and route construction according to the structure of the road
network. The algorithms, implemented using Java and Oracle’s PL/SQL and Oracle Spatial, are also
presented.

1 Introduction

Currently, wireless communication technologies are becoming more and more wide spread. Technical
characteristics of mobile devices are improving constantly, but at the same time the price of mobile devices
is becoming reasonable for the consumer. These facts cause result in a growing number of mobile users.
The development and proliferation of mobile devices enablenew applications in wireless communication.
A user that has a mobile device is able to get route guidance, tourist services, or services based on her
current location. However, in comparison to desktop computing, mobile services use small screens, and
they typically lack a keyboard. Further, they are often usedin situation where the user’s main focus of
attention is not the service. If a user is traveling on the road then driving is the first priority. If a user goes by
foot in town then she has to be aware of her surroundings in order to not raise danger for herself and other
people. For these reasons, it is important that the user receives only the relevant information and with as
little interaction as possible. These qualities may be obtained by making mobile services aware of the user’s
context. A user’s location is one possible context. Location context-awareness is important for the group of
mobile service users that travel in a road network.

In this paper, we focus on a specific location context—routes. A route is a motion plan of a user traveling
in a road network. Most of the time, people are traveling on routes they know in advance, and these routes
can be predicted. When a location-based context-aware system knows where and when the mobile users

1

are traveling, it can provide them with relevant information. For example, as that system knows that a user
travels on her usual route from home to work every morning, itcan caution her about traffic jams, streets
closed for renovation, or speed changes in some parts of the streets. This is important for the user—she
can re-plan her route or be aware about possible delays in advance. Sending alert messages is not the only
use of routes. A route can be used when a user is interested in specific points of interest. The system that
knows the user’s route can give her information about objects that are based on her position on her route.
For example, if the user wants to have a cup of coffee, she asksfor the nearest cafeterias, and the system
provides her with the cafeterias that are nearest on her route.

In this work, we design a software component that builds routes for individual users based on traces
of coordinates. We assume that the mobile service user posses a device capable of providing the service
with geo-positioning information. We propose a system architecture and specific functionality for such a
component. We distinguish among four main functions that make the component usable. They include route
recording, route renewal, collection of usage, and obtaining of routes. The client side is active in supporting
the functionality. The client device performs informationfiltering and prepares information for sending it to
the server. We propose a database model adjusted for route recording. The purpose of the database is to store
the road network representation and information about the mobile service users and their routes. We use a
linear-referencing framework to capture roads and routes.In our model, the user has her destination objects.
Thus each route has a start and an end destination object. Butthe route is a sequence of road parts. We store
geographical information about destination objects and base points of the road network in our model. Each
usage of a route is also stored. In this paper, we present techniques that capture the routes of mobile service
users. While detecting a route, we consider the user’s geographical position and the road network structure.
We implemented these techniques using Java and Oracle’s PL/SQL and Oracle Spatial.

The paper is structured as follows. The next section presents a case study and requirements. An overview
of related work is given in Section 3. The system architecture is described in Section 4. Section 5 analyzes
system functionality. The definitions of the concepts and database model are given in Section 6.1. The
algorithms are presented in Section 7. Section 8 presents practical part of our work. Section 9 summarizes
the work and gives guidelines for future work.

2 Case Study and Requirements

In this section, we consider the overall design of a route recording component. At the beginning of this
section we give an overview of the usage scenario, then discuss the requirements for the design.

The problem we solve in this paper is designing and implementing a route recording component. To
begin with, we provide an example to give an intuition about the kinds of real-world situations in which the
route recording component comes into play.

Example 2.1. Suppose we have a road network with car drivers traveling along it. Let us pick one of these
drivers and analyze the situation where this driver, say John, is traveling from his home to the university.
This is his usual route. It is important for John, as for any other employee, to be at work on time, so he wants
to use a mobile service that informs him about road conditions, traffic jams ahead on the route, etc. In order
to receive such information, John has to inform the service provider about exactly what route he is traveling
on. Therefore John, with the help of a geo-positioning device (a GPS receiver) and a mobile phone records
his travel coordinates all the way from the start of the routetill the end of it in a log file, and he sends this
information to the service provider. The mobile service provider in turn stores the information from the log
file as “Johns route: Home–University.” Now, every time Johnis traveling along this route, he is informed
about road conditions and other relevant information sustaining to the route.

Example 2.1 illustrates the situation where we observe the exchange of information between a mobile
service user and a service provider. The information that isinvolved in this exchange includes data about
a real-world road network, mobile service users, and service users’ routes. In our work, by integrating this
kind of information into our system and enabling the functionality of that system, we create a so-called route

2

recording component. Stated briefly, this is a software component that builds routes for individual mobile
service users based on traces of their coordinates.

We model a route recording architecture that includes thesecomponents: a user’s mobile device and a
server.

The main task of the system is to record the routes of the mobile service users. In order to record
the route of a user, the system has to be provided with information about where the route starts, where it
leads to, and where it ends. In our paper, we analyze the situation where the information about the route
of the user is obtained with the help of a GPS receiver. We assume that the mobile device collects this
GPS information. Notice that “GPS sentences” are relatively long. Therefore, the longer the route, the
bigger the file with the GPS information is. We allow different strategies for further maintenance of the GPS
information, depending on the technical abilities of the mobile devices. One is to send this information to
the server “online.” Another strategy is to use buffering and send it in chunks of some defined size, or to
send the whole file with GPS information. The server in turn maintains all the information received from all
users.

In order to record and store the routes of the users on the server, we need to come up with a representation
of the real-world road network. See Figure 1.

(a) (b)

(c)

Figure 1: Modeling the road network (map from [8])

In our paper, the representation of a real-world road network is a projection of that network onto
two-dimensional (2D) space. The way we do that is by samplinga set ofbase-pointsthat hold the geo-
information inx andy coordinates about the real-world road network, and by connecting these points into
polylines. See Figures 1(b) and 1(c). The result of the projection is a network of approximated roads. In
our work, we use a linear-referencing framework [1, 9, 13] inorder not to loose information such as real

3

road distances. This framework is also used for capturing routes as parts of the road network representation
stored in the database. Each route is defined as a directed path leading from one destination object to another
one. These destination objects have geo-information.

3 Related Work

We are not aware of any previous work on components that generate meanings for routes from the GPS
information. But our work is related to a few research directions in mobile services. We also use already
invented techniques in our work. Research challenges in mobile services are outlined in [11]. The challenges
are grouped according to themes—data representation, indexing, querying, data modeling. Research issues
in location management are presented in [20].

The building of our component involves the modeling of road network data. Our data model uses a linear
referencing framework ([1, 4, 5, 7, 13, 16]. In particular weuse linear referencing not only for capturing a
road network, but also for capturing routes. A data model that integrates representations of geo-referenced
content and transportation infrastructures is described in [9]. Our data model uses part of their model of
road networks, but we supplement it in order to capture routes. Our data model integrates with any linear
referencing model for road network ([1, 4, 5, 7, 9]. Linear referencing is not the only way to model a road
network. Vazirgiannis et al. [18] model a road network as a directed graph. Their routes are sequences of
edges.

Our paper uses already invented techniques that we do not develop further. We use the shortest path
algorithm to fill the gaps in information when we construct routes. This part is related to works that consider
shortest paths in graphs. Barrett et al. [2] study a generalized Dijkstra’s algorithm for shortest paths in
graphs on large transportation networks to do route planning. Vazirgiannis et al. [18] compute the lowest
cost path.

To create a route, we do map matching of GPS coordinates to theroad network. Bernstein and Korn-
hauser [3] explore map matching algorithms that can be used to reconcile inaccurate locational data with an
inaccurate map. They analyze algorithms such as “Point-to-point,” “Point-to-curve,” and “Curve-to-curve.”
In contrast, we analyze more specialized situations, and wemap match a GPS point to a position on a poly-
line. To do map matching, we also use the geographic locationof the roads together with the structure of the
road network, i.e., connections of the polylines. We focus on map matching in a specific data model, and we
explore its properties, but the techniques proposed in [3] can be integrated into our work. Our map matching
includes searching for nearest neighbors. We define the search range according to the allowed imprecision
and the candidate polylines are within this range. That is related to the work of Roussopoulos et al. [15],
in which they consider minimum and maximum distances from the query object while searching the nearest
neighbors. We also choose the polyline according to how the previous GPS point was map matched. The
nearest neighbors for the previous positions of the moving object are considered in [17]. In comparison to
[15] and [17], we use nearest neighbor search for other purposes than they do. We search for nearest neigh-
bors to define the movement of a user in the road network, as ourusers do not travel freely in 2-dimensional
space. We construct a sequence of connected polyline elements, not a set of nearest objects for every step.

Our route component is a part of a context-aware system. Thatmakes available the users’ routes as
context. We propose an architecture for a specific context-aware system and have requirements for concrete
functionality, instead of focusing on a more abstract levelof description ([10, 12]). Hohl et al. [10] examine
the context concept, present a classification of context data, and give requirements of a mobile service
platform for a context system. Data management issues and solutions in location-dependent information
services are discussed in [12].

4

4 System Architecture

In this section we describe the architecture of the context-aware system for mobile services based on
routes. The requirements for the parts of the system are presented.

4.1 Basic Requirements

We assume that our user has some mobile device that has the necessary technical properties to send
information to the server, to get information from the server, and to store the information about the user and
her routes. The device should include a GPS receiver and it also should be able to analyze the information
that comes from the GPS receiver.

The server of the system must be able to take care of all the requests from the user. It has to analyze the
information sent by the device and to record it into the database. Everything about a route (parts of the road
network), its usage and user’s personal information is stored on the server. This requirement is included in
order to avoid information loss. This means that the user canchange the device and subsequently obtain her
routes from the server. The architecture of the system is presented in Figure 2.

�������
�������
�������
�������

APPLICATION
INTERFACE

DEVICE SERVERUSER

DATA

SERVER
APPLICATION

SERVER
DATABASE

�������
�������
�������

�������
�������
�������

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

Figure 2: System architecture

4.2 Client Side

The user uses the system functionality through the interface on the device. The interface interacts with
the application that enables functionality of the system onthe client side. The application uses stored data
and records new data if it is necessary. The user can see what data is stored on the device using the interface.
She does not need to know the technical details about the running application or stored data.

There are four data blocks that are stored on the device. XML ([19]) notation is used in Figure 3 to
describe them. The first block contains user’s personal information (Figure 3(a)). It contains the user’s iden-
tification number and user’s information. The identification number is a global parameter and it is unique
for each system user. It is used on the server to record the route of a particular user. User’s information
includes the information the user wants the system to store.It can be a name, nickname and etc. The second
data block contains the information about the user’s destination objects (Figure 3(b)). Each object has a
global identification number, local identification number,location information, and description. The global
identification number is stored in order to have the same information on both client and server sides and to
be able to make updates on both sides. Local identification makes route descriptions easy, because global
parameters can be complex. Location of the object is described using geo-information. It is used when
the application on the device analyzes the GPS information and detects if the destination object has already
been defined. The description is needed for the user to have clearly defined destination objects, i.e. “home”
or “work”, because the user can forget what is his route from,let us say, the object 3 to the object 5. The
third block of data is related to the route information (Figure 3(c)). Here we have global/local identification
numbers, and objects. Objects define from which destinationobject to which one a particular route is. The
objects are defined using local identification numbers from the second data block. The fourth block of data
is so-called “log” data (Figure 3(d)). It includes the usagetimes of every route. The time is approximated

5

to weekdays, hours, and quarters. These time intervals are individual for each route. The device stores the
information how frequently the user traveled along the route on each approximated time.

USER_ID

PERSONAL_INFO

USER_INFORMATION

(a) User information

GLOBAL_ID LOCAL_ID

OBJECTS

OBJECT

Y_COORDINATEX_COORDINATE

DESCRIPTIONLOCATION

*

(b) Objects

LOCAL_ID OBJECTSGLOBAL_ID

*

ROUTES

END_OBJECTSTART_OBJECT

ROUTE

(c) Routes

USAGE_INFORMATION

TIME

*
USAGE

ROUTE_ID FREQUENCY

QUARTERHOURWEEKDAY

(d) Usage information

Figure 3: Data on the client side

Data on the device is stored in .xml or .txt files. The application is a Java or C program that can be run on
the mobile device. The user inputs the information, i.e. personal information, names for destination objects,
when she is asked by the program. As the device stores the information about the routes and the user it can
predict what route is going to be used by the user at some particular time and there is no need to connect
to the server. The application initiates interaction between the device and the server when it is necessary to
unify the information on both sides.

4.3 Server Side

On server side (see Server in Figure 2) we have an applicationserver and a database server. The appli-
cation server interacts with the database server. The application server gets the requests from the clients.
The requests can be different by the functionality. Thus theapplication server has to take care of all requests
and at the same time to be able to interact with the database. There is a need for multi-client system based
on multi-thread functioning. The application server analyzes the information from the client and makes cal-
culations interacting with the database. The application server initiates the database updates when they are
necessary, i.e. a new route is recorded or a route is used. As mentioned in the previous sections, the system
uses global parameters that are stored on the client side andon the server side. The application server uses
these parameters to distinguish among users and their routes.

Example 4.1.Figure 4 presents an example of data stored on the client sidedevice. The data is stored in four
XML files. Their structure follows the schema shown in Figure3. The rectangles indicate data that is the
same on the client and on the server sides, namely identification numbers for the user, destination objects,
and routes. The circles indicate local data that is used in more than one data block. We have a user 9876. She
has two destination objects. The user’s first destination object “HOME” has global parameter PO2003152
and the second one, “WORK,” has parameter PO20032456. The user has one route from the second destina-
tion object to the first destination object. The route is identified globally by number PR456789. This route
was used during two time intervals—15 times on Tuesday approximately at 8:00-8:15 (the 1st quarter) and
three times on Wednesday approximately at 8:30-8:45 (the 3rd quarter).

6

Figure 4: Example of data on the client side

5 Functionality

This section concerns the functionality of the system. We distinguish among four main functions that
support a route based context-aware system: route recording, collection of usage, renewal of routes, and
obtaining of routes from the device. We present first the details of the route recording, as it is the main
function in the system.

5.1 Route Recording

Route recording is the most complex function in our system. This section presents the description of
the function. The interaction between the client side and the server side while supporting this function is
explained. The algorithms for route recording on the clientand server sides are presented in diagrams.

5.1.1 Description

The function sends buffer(s) of GPS data to the server, whichthen analyzes the data and records a
route.Arguments:user identification number, information about destinationobjects, date, time, a set of the
coordinates from the GPS receiver.Result: the route identification number and identified parts of the road
network that belong to the route. If destination objects or the user herself are new, the function registers
them/her in the system.

We assume that the user controls the process of her route recording (see Figure 5(a)). She activates
the service (Step 1) and deactivates it (Step 2). During thistime period, the device is active. The device
filters and records the user location information that comesfrom the GPS receiver. It prepares the stream
for the server by adding the parameters about the user and herdestination objects to the GPS set. The
information can be sent to the server as one buffer, or it can be sent from time to time when the buffer is
large enough (dashed lines between Device and Application Server). The choice of strategy depends on
the route length, the technical characteristics of the mobile device, and the connection quality. When the
information or the last part of it is sent to the application server (Step 3), the application server can make

7

calculations communicating with the database server—it generates a unique number for the route, defines
the usage time and does map matching and route construction.The application prepares the sequence of
updates and sends it to the database (Step 4). The database server informs the application server whether the
update is successful or not (Step 5), and the application server can send the data stream to the mobile device
of the user (Step 6). The device records the data from the stream and fixes the first usage time. After that,
the mobile device informs the user about the end of the route recording (Step 7).

DEVICEUSER APP_SERVER DB_SERVER

7. message()

4. record()3. analyze()

6. analyzed()
5. recorded()

8. OK

2. end()

1. start()

(a) Route recording

DEVICEUSER APP_SERVER DB_SERVER

1. renew()

3. retrieve()

6. renewed()

2. send()

5. take()

7. OK

4. retrieved()

(b) Route renewal

DEVICEUSER APP_SERVER DB_SERVER

2. set_time()
3. update()

4. updated()
7. OK

6. activated()

1. activate()

5. time_set()

(c) Collection of usage

DEVICE

2. displayed()

DB_SERVERAPP_SERVERUSER

1. obtain_routes()

(d) Obtaining routes

Figure 5: Sequence diagrams for client functions

The data stream that is sent to the server by the device consists of three parts: user information, object
information, and standard information. The data stream canhave different formats. The format depends on
which data is already stored and on which data is new.

User information. If the user is already registered, this data block includes her identification number. As
the route recording function also includes user registration, we can have additional data, namely a user
description for a new user, in the data stream. Thus we have[userId] or [undefined: description] in
this block.

Object information. This data block consists of information about the route destination objects if these
objects are new. The destination objects can have been already used to define a start or an end for
other routes. This means that the server knows the information about them, so that it, according to
the GPS coordinates, can identify the objects itself. If thedestination objects are new, the data stream
includes their descriptions. If both objects are known, this data block is empty[,]. If we have one
undefined object we have a data block that contains start description [undefined:description,] or end
description[,undefined:description]. If start and end objects are undefined the block has descriptions
for both of them:[undefined:description, undefined: description].

Standard information. Date, time, and GPS information are always included in the stream for the server.
We call it standard information, and this block includes these three elements:[date, time, GPS].

8

The server also sends a data stream to the client device. The server always returns the identification
number for a newly recorded route. If any of the parameters are undefined, the device assumes that the data
stream from the server will include the missing information. The server generates identification numbers for
a user and the user’s destination objects. These numbers arereturned to the client. Thus, the format for the
data stream from the server is[userId, startObjectId, endObjectId, routeId] , whererouteId is the only
parameter that is always included. The device gets the data stream from the server, analyzes it, and records
its data.

5.1.2 Route Recording on the Client Side

Part of the route recording task is done on the client side. The client device prepares the data stream
and sends it to the server, as it is described in the previous section. The first and second blocks of the
data stream are constructed using data stored locally (see Section 4) on the device. The third data block
is constructed analyzing the information from the GPS receiver. GPS receivers transmit NMEA sentences
[6, 14]. These sentences include information about the position of the object, but also information about the
GPS satellites. The device analyzes this data to retrieve the necessary information—date, time, and a set of
GPS coordinates. The set of coordinates should include at least two coordinates to fix the start and the end
position of the route.

Example 5.1. Figure 6(a) shows data from a GPS receiver. The block of GPS NMEA sentences—from
$GPRMC to $PGRME—is formed for the position of an object every second. In our system, we use date
(denoted by1), time (denoted by2), and a set of the coordinates (denoted by3 and4). In each block of GPS
sentences, the date is repeated, but we are interested just in the start time and date of the route usage. So the
application on the device parses the stream of GPS sentencesand forms a sequence (see Figure 6(b)) of data
that includes only the necessary information with no repetitions.

270402, 001.1, E*7D

$GPRMC, 142958, A, 5540.8342,N, 01233.7116, E,

...
$GPGGA,142959,5540.8371,N,01233.7039,E,1,05,2.8,32.8,M,40.4,M,,*71

$PGRME,11.1,M,17.5,M,20.8,M*16
$GPGSV,3,3,09,31,16,181,37,,,,,,,,,,,,*49
$GPGSV,3,2,09,20,46,243,51,21,03,067,,25,09,112,41,28,10,272,31*76
$GPGSV,3,1,09,01,01,194,,07,25,312,50,11,79,205,46,14,40,061,48*7A
$GPGSA,A,3,,07,11,14,20,,,,31,,,,2.8,2.8,1.0*31
$GPGGA,142958,5540.8342,N,01233.7116,E,1,05,2.8,33.6,M,40.4,M,,*73
$GPRMC, 142958,A,5540.8342,N,01233.7116,E,020.9,304.5,270402,001.1,E*74

E*74001.1,270402,304.5,020.9,

304.7,

2 3 4 1

2 3 4

019.5,E,01233.7039,N,5540.8371,A,142959,$GPRMC,
1

(a) Information from GPS

2

1

3

3 4

4

.................
01233.70395540.8371

5540.8342 01233.7116
142958
270402

(b) Filtered information

Figure 6: Filtering of GPS information

The order of the steps for route recording on the client device is presented in Figure 7. When the user
activates her route recording process, the device starts getting GPS information from the GPS receiver. The
device gets the first GPS message (1) and adds position information (2) to the data stream for the server.
The first GPS block describes the start of the route; thus, theposition information is noted (3) in order to
use it later. Date and time are also retrieved from the block (4) to add (7) them to the data stream. All other
transmitted GPS blocks (6) are analyzed to retrieve only theposition information, which is added (5) to the
data stream. After this, each block is checked (8) to determine if it is already the last block or not. If it is not
the last block, the device gets another one. If the user has deactivated the service, then the block is the last,
and the end of the route is noted (9) for further analysis. This part of the algorithm constructs the standard
information block for the data stream that is sent to the server.

When no more GPS coordinates are transmitted, the device checks (10) if the user is already registered
in the system. If the user is new, the device asks (11) the userto input her description. The device records

9

(12) the description locally, sets (14) the user as undefinedin the data stream and adds (13) the description to
the data stream. If the user is already registered, her identification number is added (15) to the data stream.

To build the block about the destination objects in the data stream, the device uses the noted location
information about the start and the end of the route. If the start and end objects are undefined (17, 18) or the
user is new, the device asks (19) the user to input descriptions for her destination objects. These descriptions
are recorded (20) locally. But the objects are set (25) as undefined in the data stream, and the descriptions are
added (24) to the data stream. If only one object is undefined,the same steps are done for one object—for
the start (17, 18, 23, 22, 27, 28) or for the end (17, 16, 21, 26,29, 30). If both objects are defined (17, 16),
the block about destination objects in the data stream remains empty. When all three data blocks have been
constructed, the route is recorded (31) locally using the local parameters and leaving the global parameters
undefined. After that, the stream is sent (32) to the server.

getGPSCoo

getGPSCoo

NO

YES

NO

addGPSToStream

NO NOYES
fixedEnd?

YES

YES

addTimeToStream

askStartDesc

fixedStart?

sendStreamToServer

(18) (19) (20)

(21) (22) (23) (24) (25)

(26) (27) (28)

(29) (30) (31)

(32)

noteStartCoo getTime

noteEndCoo

addUserIdToStream

(17)

(2)

(5) (6) (7)

(8)

(9)
YES

(10)

(1) (3) (4)

(11) (12)

(13) (14)

NO

recObjectDesc

recObjectDesc

(15)

(16)

setObjectsUndefinedaddObjectsDescToStream

setStartUndefined addStartDescToStream

askEndDesc

addEndDescToStreamsetEndUndefined recRoute

recObjectsDesc

addGPSToStream

lastGPS?

askUserDesc recUserDesc

setUserUndefinedaddUserDescToStream

newUser?

fixedEnd? askObjectsDesc

Figure 7: Route recording on the device

5.1.3 Route Recording on the Server Side

The main route recording is performed on the server side. As described in the previous sections, the
server gets the data stream from the client and analyses it todefine a route. The device only prepares the
information that is necessary to define a route and to fix its first usage time. The server records the data
concerning the new route. This data always includes route parts on the road and a route identification
number that is generated. If the data stream from the device includes descriptions of destination objects or
of the user herself, the new objects/user are registered. According to the information from the device, the
server forms the data stream (see the format in Section 5.1.1).

The route recording process on the server is presented in Figure 8. The server gets (1) the stream from
the device. The server checks (2) if the user is new. If so, theserver gets (7) her description from the device
data stream, generates (6) an identification number, records (11) the user’s information, and adds (12) her
identification number to the data stream for the device. Having identified a user, the server analyses the
information about the destination objects. If the user is not new, the server checks if any destination objects
come as undefined. If both destination objects are undefined (3, 8), i.e., the server gets their descriptions, or
the user is new, the server takes (17) this information, generates (16) their identification numbers, records

10

(20) new objects, and adds (21) the identification numbers tothe data stream. If only one object is undefined,
the steps are done for one object. If the start is undefined (3,8) then at the beginning, data about it is prepared
(13, 14) and recorded (18, 23). After that, the end object is identified (22) using knowledge about the user’s
objects. If the start object is defined, but the end object is undefined (3, 4) according to the device stream,
then the start is identified (5) at the beginning. After that,data about the end is prepared (10, 15) and
recorded (19, 24). If both objects are defined (3, 4), they areidentified (9) using stored data.

After the two first parts of the device stream are analyzed, the server analyses the third one that includes
the standard data. The server detects (25) the route from theGPS information, generates (27) the identifica-
tion number for the route, adds (26) this number to the data stream for the device, records (28) the route in
the database, and records (29) the first usage time of the route. The constructed data stream is sent (30) to
the device to end the route recording process.

getStreamFromDevice NO YES

NOYES

(14)
(15)

(16) (17) (18) (19)

(20) (21) (22) (23) (24)

(25)

(26) (27)

(28) (29) (30)

(13)

NO

YES

SendStreamToDevice

NO

YES

(1) (2) (3) (4) (5)

(6) (7)
(8)

(9) (10)

(11) (12)

fixedEnd?
takeUserDesc

takeObjectsDesc

recNewUser addUserIdToStream

recNewObjects

fixedEnd?newUser?

generateUserId

generateObjectsIds

fixedStart?

addObjectsIdsToStream

recRoute

addObjectIdToStreamfindEnd

findRouteFromGPS

recUsage

addRouteIdToStream generateRouteId

recNewObject

findStart

takeEndDesc

generateObjectId

recNewObject

addObjectIdToStream

findObjects

takeStartDesc generateObjectId

Figure 8: Route recording on the server

5.2 Collection of Usage

The collection of usage function enables the system to provide context-aware services. Its purpose is
to store route statistics.Arguments:route identification number, usage date and time.Result:a fixed route
usage time.

We assume that each user has more than one route and that the user uses some routes more than one
time. The user controls the process of usage time recording (see Figure 5(c)). When the user starts traveling
on a particular, already stored route, she uses the device tosend information about the current date and time,
when she activates the service (1). This means that the device sends a message (2) to the application server
with information about the route, date, and time. The application server does the necessary calculations to
approximate the time and it initiates an update of the database (3). Steps 4–7 are included to send messages
about the result of the process. The database server informsthe application server whether or not the usage
date is fixed successfully, and the application server sendsthis message to the device the message. The
device also records the usage time after it gets the message about a successfully fixed time on the server.

5.3 Renewal of Routes

The route renewal function returns a list of user routes fromthe server to the device. It may happen that
the user looses the mobile device or she gets a new one. This function restores lost information on the client
side. Arguments:user identification number.Result: the set of the user’s routes, the set of the destination

11

objects, and summarized usage. It may happen that a user has alot of routes and that some of them were
used once or long ago. Then the solution is to return “usable”routes and information about them.

The user can get her routes (see Figure 5(b)) from the server by just using the device (1). She only needs
to input her identification number. When the device gets the number, it initiates the message (2) for the
application server. The application server communicates with the database server to retrieve the information
(3–4) about the routes of this particular user. Everything about routes together with destination objects
and their summarized usage is prepared for sending to the device. The user description is also included.
Information buffer(s) of a special format are constructed on the application server and are sent to the device
(5). The device records data from the buffer(s) and informs the user about the result of the process.

5.4 Obtaining Routes

This function uses the history about the usage of routes.Arguments:location, date, time.Result: n
routes ordered by their probability.

When the user wants her route usage recorded, she needs to select the route the usage applies to. The
device can provide a service that guesses what route will be used. Then the user does not need to browse
through all her routes. The user can ask for the routes (see Figure 5(d)) (1). The device calculates the
probabilities for each route. Date, time, and location are used to make compute probabilities. The main
parameter is location. If we have several routes starting atthe same destination point, then time and date are
also considered. The device presents the list (2) of the routes ordered by these probabilities.

5.5 Other Functions

We have present the four main functions for the route component. But there are other functions, i.e.,
route deletion and route re-recording, that complete the functionality.

Route Deletion The user may want to delete a route if she thinks she will neveruse it again. It is enough
to send the route identification number of the route to be deleted from the database. The route identification
number, route parts and usage times are to be deleted from theserver and from the device. This may also
cause the deletion of destination objects if they are not used in other routes. But they can be left, assuming
that the user perhaps will use them in other routes. The strategy on both client and server sides must be the
same.

Route Re-recording It may occur that the user changes some destination objects,but calls them by the
same names. For example, the user moves to another apartmentor changes her job. Every route related
to these objects is to be re-recorded. The route parts and destination object(s) change, but the usage time
intervals can be the same, because the usage depends on private habits and on certain circumstances. For
example, the user has a longer route from home to the new work than she had previously, but the work starts
later and the user starts traveling on this route on the same time. It follows from this that the usage times
should not be deleted at once, but marked as “old” in order to track the new route. If the usage is not the
same after some time, the old history is deleted.

6 Data Model

In this section we present the formal foundation for the information used by the route recording compo-
nent. We also describe the database model that captures routes.

6.1 Data Structure

In our work the route recording component deals with the information about the real-world road network
and mobile service users. Let us begin with describing the representation of the data about the real-world

12

road network. As it was mentioned in the Section 2, we projectthat data into 2D space. We say that the
result of such a projection is a set of points connected into polylines.

The smallest particles of the road network representation are points. The points relate the model of the
road network with the real-world road network by holding thegeo-information about the real-world road
network. We assume that for any selected position of the real-world road network we can obtain the geo-
measurements of that position and refer this information toa point in the 2D model. These points are called
“base points.”

Definition 6.1. (Base Points)LetB � R2 be a finite set ofbase points(x; y) in 2D space.

When projecting the real-world road network into 2D space weselect a set of base points and connect
these points with line segments. To select such a set on the real-world road network we take into account
characteristics of that road network, like sinuosity of roads (see Figure 9).

(a) (b)

Figure 9: Example of road approximation

As a result we obtain a road network approximated with line segments. Notice, that for the road in
Figure 9(a) it is enough to select two base points in order to obtain a good approximation of the road when
connecting these two base points into a line segment, while it requires more base points to approximate the
road in Figure 9(b). Therefore, the bigger the set of base points the more precise the representation of the
real-world road network is. Also observe that the roads in Figure 9 are shown as a sequences of base points
connected into line segments. In other words, the roads are represented aspolylines:

Definition 6.2. (Polyline) Let PL � B�2 = f(b1; :::; bN)jbi 2 B ^ N � 2g be a finite set ofpolylines.
Each polylinepl = (b1; b2; : : : ; bN) is a N-tuple, where

1) (b1; b2; : : : ; bN) 2 PL is the sequence of base points that form the polyline;

2) b1 2 B, bN 2 B are, respectively, start and end base points of the polyline.

PL

2PL

1

b

b

b

b

b

bb

3 4

76

1 2

5

(a)

2SPL

PL1

b

2PL

b

b

b
l

l
b

b

b

1

7

35

2

4

6

(b)

Figure 10: Example of polylines and a subpolyline

Example 6.1.Figure 10(a) illustrates two intersecting polylinesPL1 andPL2. The polylinePL1 is formed
out of sequence of base points(b1; b2; b3; b4). The start base point isb1 and the end base point isb4. The
polylinePL2 is formed out of(b5; b6; b7). The start base point ofPL2 is b5, end—b7.

13

In our 2D road network model we say that each polyline represents a bidirectional road. Without refer-
ence to the directions of the roads the polylines have their “directions” leading from the start base points to
the end base points. When simulating the movement of the car on our 2D road network model with the help
of the direction of the polyline we can specify if the car is moving towards the start or end base point of that
polyline.

The roads in our model also have lengths. We consider two cases for the obtaining the length values
of the roads. One is to have the road network representation as it is shown in Figure 10(a), where the 2D
base points are connected by line segments into polylines. Then the length of a polyline is calculated by
summing up the Euclidean distances between the consequent points of the polyline. This approximation of
curves into polylines makes calculations concerning the roads easy. But if we use the Euclidean distances
for the length of the road, we get the imprecise lengths compared to the world situation. The other case for
obtaining the lengths of the roads is to assume that we are able to get the real road distance measures for
the base points (or some of them) from the road information providers. It means that for (some) base points
of the polyline, we are provided with the road distances fromthe start of the polyline to these points. For
example, the ideal case is when for any base point of the polyline, we have the road distance from the start
of the polyline. The measure associated with the last base point of the polyline indicates the road length
of the polyline. Then, the subtraction of distance measuresof any two consequent base points is greater or
equal to the Euclidean distance between these points.

There are situations where we have road distance information only for some base points of the polyline.
If we have the measure for the last base point, then we distribute that distance among the intermediate non-
measured points proportionally. If we do not have the distance measure for the last base point of the polyline,
then we calculate the Euclidean distance between the couples of the remaining points, starting from the last
base point with a known road distance measure to the last basepoint of the polyline.

0

3

5

2
3

413

224

10.4

16.9
b

1

b

PL

b

b

b

b1

3

2

4 5

6

(a)

16

0

3

5

2
3

413

4

10

20

b
1

b

PL

b

b

b

b1

3

2

4 5

6

(b)

Figure 11: Polyline length calculations

Example 6.2. Let us analyze the example in Figure 11(a). The polylinePL1 is formed out of sequence
of base points(b1; b2; b3; b4; b5; b6). The numbers above the polyline indicate the Euclidean distance values
between the couples of base points. The numbers below the polyline hold the road distance values given by
the road information provider. The road distance from the base pointb1 to b2 is equal to4, from b1 to b4
— equal to13. The road distance fromb1 to b6 equals to22, and it is the whole road length of the polylinePL1.

But we are not provided with the road distances fromb1 to b3 and fromb1 to b5. In such a case we
calculate approximate road distance values. First, we find the base points that have a known road distance
values, and also are closest tob3. These areb2 andb4. Then, from the distance value of the pointb4 we
subtract the road distance value of the pointb2. The result is9. Further, sum up the Euclidean distances
between(b2; b3) and(b3; b4). The result is7. Now, in order to obtain the approximated road value for the
base pointb3, we say that the length of the line segment(b2; b3) takes57 of the road distance betweenb2 andb4. Therefore, we multiply9 by 57 and get6:4. The value6:4 is the road distance betweenb2 andb3. Finally,
the number10:4 inside the ellipse indicates the road distance betweenb1 andb3. For the base pointb5 we
calculate the approximated road distance similarly as forb3.

14

Figure 11(b) illustrates the situation when we are not provided with the road distance values for the last
base pointsb5 andb6 of the polylinePL1. In this case, we calculate the Euclidean distances for(b4; b5) and
for (b5; b6). The results are,3 and4 respectively. The distance betweenb1 andb5 is calculated by summing
up the Euclidean distance betweenb4 andb5, which is3, with the road distance value ofb4, which is13, and
the result is16. For the base pointb6 we take the calculated Euclidean distance betweenb5 andb6 and add
with the polyline length value ofb5. The result is20.

The operator that calculates the length measure for each base point of the polyline is defined as follows:

Definition 6.3. (Length) Let L : PL � B ! R be the length operator that returns the road distance
from the start of the polyline to any base point of the polyline. The operator takes as arguments a polylinepl = (b1; :::; bN) 2 PL and a base pointbi 2 pl; 1 � i � N .

For the first base point of a polylinepl = (b1; :::; bN) 2 PL, we have a length measure that is equal
to 0. For any other base pointbi; i > 1; the measure is greater than0. It is also greater than the length ofL(pl; bi�1) to the previous base pointbi�1. The differenceL(pl; bi) � L(pl; bi�1) is at least the Euclidean
distance value betweenbi�1 andbi. L(pl; bN) is the length of the entire polyline.

Further we define the notions of a part of a road network and a part of a polyline—asubpolyline:

Definition 6.4. (Subpolyline) Let SPL � PL � R2 be a finite set ofsubpolylines. Each subpolylinespl = (pl; l`; la) is a 3-tuple, where

1) pl = (b1; b2; : : : ; bN) 2 PL is the polyline the subpolylinespl lies on;

2) 0 � l` < la � L(pl; bN), wherel` andla are distances from the start base pointb1 of the polylinepl: l` is the distance within the subpolyline starts on the polyline andla is the distance within the
subpolyline ends on the polyline.

A subpolyline in our model can be seen as a “cutout” of a polyline. The length of a subpolyline is never0, and it can be as long as the polyline it lies on. Let us look at Figure 10(b). It shows an accentuated part of
polyline PL2—subpolylineSPL2. The subpolyline starts within the distancel` from the start base pointb5 of the polylinePL2, and it ends within the distancela from the same start base pointb5 of PL2.

Having defined the representation of real-world roads as polylines, we also want to add into our model
intersections of the roads. We assume that the information about the connectivity of the real-world roads is
known in advance.

Definition 6.5. (Connection)LetC � ff(pl1; l1̀); : : : ; (plN ; lǸ)gj(pli; lì) 2 PL�R^N � 2g be a finite
set ofconnections. Each connection
i = f(pl1; l1̀); (pl2; l2̀); : : : ; (plN ; lǸ)g, N � 2.

Figure 12 illustrates the situations where two roads represented as polylines intersect at connections.
Figure 12(a) describes the intersection of polylinesPL1 andPL2. The connection point is within the
distancel1̀ from the start of the polylinePL1 and it also is within the distancel2̀ from the start of the
polyline PL2. Therefore, according to Definition 6.5, this point is defined as
 = f(PL1; l1̀); (PL2; l2̀)g.
The connection points in Figures 12(b) and 12(c) are analogous to the one in Figure 12(a), but also show the
situations where the connection point coincides with base points belonging to both of the polylines.

In our model we say that aroad networkis a set of polylines with connectivity rules. Further we define
mobile serviceusers:

Definition 6.6. (Users)LetU be a finite set of mobile serviceusers.

Consider the situation with the user traveling on the road network. Let us say, that she started her trip
from homeand went towork. The objectshome, workare the destination objects of the trip. In our model
we call themuser objects.

Definition 6.7. (User Objects)Let UO � PL � R � U be a finite set ofuser objects. Each user objectuo = (pl; l?; u) is a 3-tuple, where

15

l 2

1

2PL

1PL

b

bb

b

b b

l

2 3

4

1

5 6

(a)

b
b

b

1PL

2PL
b b

b

b

21

5

7

4

6
3

(b)

b

PL

b

PL2

b

b
b

1

3
5

4
2

1

(c)

Figure 12: Connections of polylines

1) pl 2 PL is the polyline that user object is located on;

2) 0 � l? � l, wherel is the length of the polylinepl, andl? denotes the distance within which the user
object is located on the polyline;

3) u 2 U is the owner of the object.

Thetimestampis used to fix the time the user travels on a particularrouteand to be able to approximate
this time. As the users travel on their usual routes a weekdayis one the factors to decide on the users’ habits.
To get a weekday we need a year, month and day. We also assume that users start to travel at inexactly the
same time as they did on the previous days. Thus time is approximated to hours and their quarters using
minutes and seconds. At last we have that atimestampincludes all the necessary information from which
we can derive the necessary one:

Definition 6.8. (Timestamp)Let atimestampT be a finite set of 6-tuples(y;m; d; h;mn; s), where

1) y;m; and d denoteyear, month, andday;

2) h;mn; and s denotehours, minutes, andseconds.

Now we have all the terms defined to have the description for the route. A route includes start and end
objects, subpolylines that cover the paths between them together with directions according to the polyline’s
direction, and a set of timestamps to have usage information.

Definition 6.9. (Routes)LetR be a finite set ofroutes. Each route is a 4-tuple(RE; uos; uoe; ST), where

1) RE is a sequence of pairs(spli; diri), wherespli defines a subpolyline that forms the route anddiri
is the motion direction on this subpolyline:RE = ((spl1; dir1); (spl2; dir2); : : : ; (splN ; dirN));
where for eachspli = (pli; lì ; lai) 2 SPLdiri = � 1 if motion direction on the subpolylinespli coincides with direction of the polylinepli�1 if opposite

16

2) uos = (pl1; l?s ; u) 2 UO is the start object of the route, andl?s = � l1̀ if dir1 = 1la1 if opposite

3) uoe = (plN ; l?e ; u) 2 UO is the end object of the route, andl?e = � laN if dirN = 1lǸ if opposite

3) ST � T denotes the time when the route was used by the useru.

Y

X

b
bb

b

bb

b

b
b

PL3

PL2

PL1

b uo

uo

b

b

1

10

2

2

4

1
5

6

12

7

8

11

9

3

Figure 13: Route in 2D road network

Example 6.3. Figure 13 illustrates the fragment of the 2D road network with three polylines—PL1 =(b1; b2; b3; b4; b5), PL2 = (b6; b2; b7; b8; b9; b10), andPL3 = (b11; b8; b4; b12). Let us analyze the example
of a router. The router lies on the parts of all three polylinesPL1, PL2 andPL3. According to the
Definition 6.9,r = (RE; uos; uoe; ST), whereuos is the start object of the route and corresponds touo1 in
Figure 13. Similarly, the objectuoe is the end object of the route and corresponds touo2 in our example.ST denotes the times when the route was used by the route owner, and RE = ((spli; diri)N) is the set
of subpolylines with directions that form the router. Let us analyze the first subpolyline of the router.
The first subpolylinespl1 = (PL2; l`;L(PL2; b2)) lies on the polylinePL2. The start point ofspl1 is the
objectuo1, which is located within the distancel` from the start of the polylinePL2. The end point ofspl1 is b2 and it is located within the distanceL(PL2; b2). In our example, the movement directiondir1
on the subpolylinespl1 coincides with the direction of the polylinePL2. Also, the polylinePL2 intersects
with the polylinePL1 at a connection point
. According to the Definition 12, this intersection is defined
as
 = f(PL1; l1̀); (P l2; l2̀)g. The valuel1̀ denotes the distance from the start of the polylineP l1 to the
connection point
, andl2̀ denotes the distance from the start of the polylinePL2 to the same connection
point
. In Figure 13 the connection point coincides with the base point b2.
6.2 Database Schema

We create a model of the database (see Figure 14) to store the information defined in Section 6.1. To
begin with, we create a tableLINEAR ELEMENTS for the main elements representing roads of the road
network—polylines. Each row in the tableLINEAR ELEMENTS contains unique identification number
of the polyline (attribute POLID) and also the length value of that polyline (attribute POLLENGTH). The
primary key of the table is the attribute POLID.

Our model of the real-world road network captures information about the intersections of the roads and
describes that information in terms of intersection of the polylines at the connection points. Graphically it

17

is illustrated in Figure 12. The information about the intersections of the polylines is stored in tableCON-
NECTIONS. The record in this table describes the situation where a polyline (POL ID) within the distance
from it’s start point (POLFROM) intersects with other polyline(s) at the connection point (CONN ID). The
pair of attributes (POLID, CONN ID) forms a primary key of the tableCONNECTIONS. The attribute
POL ID is a foreign key referencing to the attribute POLID of the tableLINEAR ELEMENTS .

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

POL_ID_FK

POL_TO

SEQUENCE_NR

DIRECTION

ROUTE_ELEMENTS

SPEED

ROUTE_ID
ROUTE_ID_FK

− dateD

A − characters

789 − numeric values

− null values allowed

− not null value

POL_ID789

789

CONN_ID

789

789

789

789

789

789

POL_ID

POL_LENGTH

789

789

789

789

789

789

789

DESTINATION_OBJECTS

789

A

A

A

LINEAR_ELEMENTS

POLYLINE_ELEMENTS

QUARTER

D

789

789

A

789

789

789

789

789

789

SDO_POLYLINE_ELEMENTS

SDO

789

VIEW_INFO

END_OBJECT

ROUTE_ID

START_OBJECT

ROUTES

POL_ID

POL_FROM

CONNECTIONS

789

789

USER_ID_FK

POL_ID_FK

ROUTE_ID_FK

POL_ID_FK

X_COORD

Y_COORD

SEQUENCE_NR

POL_ID

POL_FROM POL_FROMPOL_FROM

END_OBJECT_FK

START_OBJECT_FK

Y_COORD

X_COORD

USER_ID

DESCRIPTIONA

D_ID

HOUR

WEEKDAY

ROUTE_ID

DATETIME

ROUTE_ID789

INFO

POL_TO

ELEMENT

SEQUENCE_NR

POL_ID

789

789

USERS

USER_ID

USER_INFOA

− primary key

Figure 14: Tabular diagram

The tablePOLYLINE ELEMENTS is created to store the geographical information on each poly-
line. As it was mentioned earlier in Section 6.1, the polylines are formed out of sequences of base point
connected with the line segments. Therefore records of the tablePOLYLINE ELEMENTS capture this
representation of the polyline. The table contains five attributes: POLID, POL FROM, SEQUENCENR,
X COORD and YCOORD. Let us describe the record of the tablePOLYLINE ELEMENTS more de-
tailed. The part of the record captured by attribute POLID points out the concrete polyline. The attribute
SEQUENCENR indicates the number of the base point in the sequence of the base points of that polyline.
Further, the POLFROM captures the distance from the start base point of the polyline to the one indicated
by SEQUENCENR. The attributes XCOORD and YCOORD hold the geographical location information
of the base point. The primary key of the tablePOLYLINE ELEMENTS is formed by the pair (POLID,
SEQUENCENR). The attribute POLID is a foreign key, and it refers to the attribute POLID of the table
LINEAR ELEMENTS .

The tableSDO POLYLINE ELEMENTS (see Figure 14) is created in order to use the possibilities
provided by Oracle Spatial [13]. The attributes in this table are similar to the ones in the tablePOLY-
LINE ELEMENTS , except the attribute ELEMENT. This attribute captures notthe geo-information about
a single base point, but the whole line segment with its startand end points.

Further, let us look at the tableUSERS in Figure 14. The record of this table contains the unique

18

identification number of mobile service user (USERID) and also additional information about these users
(USERINFO). By “additional” information we mean that the user canprovide service provider with her
personal information (first name, last name, address or other), and store this information together with her
route information. The attribute USERID of the tableUSERSis the primary key.

Before describing the tabular representation of the routes, we give the description of the tableDESTI-
NATION OBJECTS. See Figure 14. The information stored in this table containdestination objects of the
routes of the individual users. The attributes of this tableare: D ID, DESCRIPTION, USERID, X COORD
and Y COORD. Each record of the table names the object (DID) of the user (USERID), gives the descrip-
tion of that object (DESCRIPTION), and also contains the information captured by the attributes XCOORD
and Y COORD. In our model, we assume that the descriptions of destination objects are provided by the
user. The geo-location (XCOORD, Y COORD) of the destination objects is obtained when analyzing the
log file with the GPS points. The first GPS point from the log fileis considered as a geo-location of the start
object of the route. The last GPS point indicates location ofthe end object. The attribute DID of the table
DESTINATION OBJECTS is a primary key, while the attribute USERID is a foreign key referencing the
attribute with the same name in tableUSERS.

The tableROUTES is created for storing the information about the routes of the mobile service users.
In our road network representation each route starts and ends at the start and end destination objects of the
route. This information is captured by the attributes ROUTEID, START OBJECT and ENDOBJECT of
the tableROUTES. See Figure 14. Each record in this table contains the uniqueidentification number of
the route (ROUTEID), start object (STARTOBJECT) and the end object (ENDOBJECT) of that route.
The primary key of the tableROUTES is ROUTEID. The foreign keys referencing the DID of the table
DESTINATION OBJECTS are the attributes STARTOBJECT and ENDOBJECT.

Records in tableROUTE ELEMENTS (see Figure 14) describe routes in terms of subpolylines. In
our road network representation the route can lie on severaldifferent polylines, as it is shown in Figure 13.
Therefore, we modeled the route as a sequence of subpolylines. Each row in the tableROUTE ELEMENTS
describes a route element—subpolyline. The attribute POLFROM captures the distance between the start
of the polyline and the start of the subpolyline (see Definition 6.4). The attribute POLTO captures the
distance between the start base point of the polyline and theend point of that subpolyline. This attribute
is created to make the calculations easier while querying the data. Following the route from its start to the
end, we number the parts of the route (subpolylines) and store this sequence with the help of the attribute
SEQUENCENR. Recall that the polylines in our road network representation have the start and end base
points (see Definition 6.2), and we also assume that each polyline has a direction leading from the start of
the polyline to the end of that polyline. Each route in our road network representation also has a direction
leading from the start of the route to the end of it. The information we store in DIRECTION indicates
whether the direction of the polyline coincides with the direction of the route on that polyline. The attribute
SPEED captures the average speed of the user on each part of the route. The attributes ROUTEID and SE-
QUENCENR form the primary key of theROUTE ELEMENTS . The attributes POLID and ROUTEID
are the foreign keys referencing respectively the POLID in the tablePOLYLINE , and the ROUTEID in
the tableROUTES.

Further, we create the tableINFO to store the statistical information about the usage of the routes (see
Figure 14). The record in this table captures unique ID of theroute (ROUTEID) and the time (DATETIME)
when this route was used. Note that the attribute DATETIME isof a standard time format and captures the
time with precision up to seconds. In our model, in order to calculate the usage of the route we find it more
useful to operate with the terms such as weekdays, hours and quarters. This is obtained by creating a view
tableVIEW INFO (see Figure 14). This table contains the attributes ROUTEID, WEEKDAY, HOUR and
QUARTER (the PL/SQL function that creates the tableVIEW INFO can be found in Appendix A). The
attribute WEEKDAY captures the days of the week when the route was used by the user. Similarly with
the hours (HOUR). We approximate the exact route usage time with quarters (QUARTER). The values in

19

QUARTER are1; 2; 3 and4, where each of them refer to the time interval, i.e., 1 quarter corresponds to the
time interval from 0 to 14 minutes, 2—to the time interval from 15 to 29 minutes and so on.

Y

X

PL1

b

b

b

b

b

b

b

b

b

b
b

uo

uo

PL3

b
PL2

1

6

3 4 13

9

16 17

4

5

10

3

6

12

11

10

9

8

7

5

4

1
2

2

(a) Fragment of the 2D road network

DESCRIPTION USER_ID X_COORDD_ID Y_COORD

1

2

Home 1

1University

3

17

5

9

DESTINATION_OBJECTS

START_OBJECT

1

ROUTE_ID

ROUTES

1

USER_INFOUSER_ID

USERS

1

2003:02:13 09:05:47

2003:02:06 12:34:15

2003:01:29 11:12:03

1

1

1

DATETIMEROUTE_ID

INFO

END_OBJECT

2

1

1

50

70

50

60

ROUTE_ELEMENTS

3 4.4

17.7

2

1 3.3

1

2

1

1

3

2

11

16

4

20.6

3

4

−1

1

1

POL_LENGTHPOL_ID

2

3

24

24

15

LINEAR_ELEMENTS

POL_ID POL_FROM POL_TO SEQUENCE_NR DIRECTION ROUTE_ID SPEED

1

1

POLYLINE_ELEMENTS

POL_ID POL_FROM SEQUENCE_NRX_COORD Y_COORD

1 0

1

1

1

4.6

7

4.4

2

2

2

2

2 0

6.3

8.4

6

3.3

1

POL_ID POL_FROM

1

2

CONNECTIONS

CONN_ID

2

1

3

3

3

3

2

2

1

1

4.4

17.7

3.3

4

11

16

5.6

16

1

14

16

13

15

19

18

13

11

4

7

6

2

.
Agne

6

6

10

9

11

13

10

4

2

3

5

4

21

2.42

3

3

3

3

0

4

7

4 4

3

2

1

8

4

11

2

3

4

5

1

2

3

4

5

6

(b) Example of the data stored in the database

Figure 15: Instance of the database

Example 6.4. Figure 15(b) illustrates the instance of the database buildon the example of the 2D road net-
work in Figure 15(a). Mobile service user Agnė (tableUSERS) travels every workday from her “HOME”
to “UNIVERSITY”. These are descriptions of the destinationobjects of her usual route (see tableDES-
TINATION OBJECTS). This route has the identification number 1 and is stored in tableROUTES. The

20

route 1 leads through the linearelements with the identification numbers 1, 2 and 3, as it is shown in table
ROUTE ELEMENTS . The identification numbers of the are retrieved from the tablesLINEAR ELEMENTS
andPOLYLINE ELEMENTS . The records in the tableINFO describes the usage of the route.

7 High-level Algorithms

This section presents a set of high-level algorithms that solve the route recording problem. Polyline
identification is covered. We also describe how we constructthe subpolylines that make up a route, including
the types of subpolylines. We give the algorithms that concern these topics. Finally, we give the route
construction algorithm and describe how it solves the routefinding problem.

7.1 Polyline Identification

The first problem we address when recording a route is polyline identification. We get a set of GPS
coordinates from the user device. Based on these, the polylines and positions on them have to be defined in
order to obtain the subpolylines that form the route. We makea few assumptions about the GPS data that
help solve this problem.� We allow an imprecisionD for the GPS coordinates. The information from the satellites is fairly

accurate, but still not precise. Thus, the imprecision mustbe considered.D is the radius of a circle
that has the GPS coordinate point as a center.� We assume that the first GPS point is mapped to the correct polyline. This polyline is the nearest
polyline to the first coordinate. This assumption is needed to have correct start information. We
consider the previous polyline to define polylines for all other coordinates.� We assume that a user moves on the road network according to the traffic regulations, i.e., she does
not make illegal turns and she travels according to the allowed direction. The road properties such as
driving directions are not considered to define the polylinein our work. The polyline identification is
made according to the geographical coordinates and connections of the polylines.

Projection of the Point and Distance From the Start of the Polyline. The polyline is identified using
the distance of the GPS coordinate point to the polyline. TheGPS point is projected onto the polyline, and
according to the projection, the distance from the start of the polyline is calculated. There are three cases
of the projection. Figure 16 illustrates them. There is a polyline segmentbibi+1. Small circles indicate the
sequence of the GPS points. The GPS pointsg, g1, andg2 are points of interest. Large circles have radiusD , and they are areas of imprecision. The GPS point can be exactly “above” the polyline segment asg is in
Figure 16(a). It is projected onto the polyline segment as point o, and Euclidean distance to the projection
point is d < D . The coordinate can also be ahead of or behind the polyline segment asg1 andg2 are in
Figure 16(b). Now we project the GPS points to the end points,i.e., bi andbi+1, of the polyline segment.
We do not need the projected points in our algorithms. But we need the distanced from a GPS point to
its projection, because based on this, we decide which polyline suits for us. We also need the distancel`
from the start of the polyline to the point projection for other calculations, like subpolyline formation and
direction identification.

We calculate distanced using vector algebra. According to its definition (see Definition 6.2), a polyline
has a direction. Thus, polyline segmentbibi+1 has a start and an end point. The start pointbi is the beginning
of two vectors. The end of the first vector is the end pointbi+1 of the segment. The end of the second vector
is the GPS pointg (see Figure 17). The angle� between these vectors is the argument to calculate the
distance to the point projection. The angle is calculated using scalar multiplication:bibi+1 � big = jbibi+1j � jbigj �
os�

21

ib i+1

d

D

o b

g

(a) On the segment

2d
1

D g

b

2g

1d

i i+1b

(b) Ahead of or behind the segment

Figure 16: Position of the GPS coordinate due to the polylinesegment

i+1

i

d
α

b

g

b

(a) Obtuse angle.

g’
i+1

i

d

b
b

g

α

(b) Acute angle. The pro-
jection is shorter than the
polyline segment.

i+1b

i

d

g’

g

α
b

(c) Acute angle. The pro-
jection is longer than the
polyline segment.

Figure 17: Angles and projections

If the angle is obtuse (Figure 17(a)), the distance to the point projection is the Euclidean distance from
the GPS point to the start of the polyline segment. The distance from the start of the polyline to the point
projection is the distance from the start of the polyline to the start of the polyline segment (see Definition
6.3): if 90Æ < � < 270Æ then d = jgbij; l` = L(pl; bi); where bi 2 pl = (b1; :::; bi; bi+1; :::; bN)

If the angle is acute, we have two possible situations (Figure 17(b) and Figure 17(c)). We project vectorbig onto vectorbibi+1. If the lengthjbig0j of the projection is greater than the length of the segmentbibi+1,
distanced is the distance between the end pointbi+1 of the segment and the GPS pointg. The distance from
the start of the polyline is the distance from the start of thepolyline to the end pointbi+1 of the segment:if � 90Æ � � � 90Æ ^ jbig0j � (L(pl; bi+1)�L(pl; bi)) then d = jgbi+1j; l` = L(pl; bi+1);where bi; bi+1 2 pl = (b1; :::; bN)

If the projection lengthjbig0j is less than the length of the polyline segment, then distance d is the
distance from the GPS coordinate to the polyline segment. The distance from the start of the polyline is a
sum of the projection length and the distance between the start of the segment andbi:if � 90Æ � � � 90Æ ^ jbig0j < (L(pl; bi+1)�L(pl; bi)) then d = jgg0j; l` = L(pl; bi) + jbig0j;where bi; bi+1 2 pl = (b1; :::; bN)

Using this strategy, function
al
Param (see Algorithm 7.1) calculates the distanced from the GPS
pointg to the segmentpls of the polylinepl and the distancel` from the start of the polyline to the projected

22

point on it. In our paper, we find it convenient to use expression a = b to let a denoteb and as a logical
expression. The meaning follows from the context in which itis used.

Algorithm 7.1 Calculation of the Parameters (function
al
Param)

Require: INPUT: g = (x; y) 2 R2 ; pl 2 PL; pls = ((x1; y1); (x2; y2)); where (xi; yi) 2 pl. OUTPUT:(d; l`) 2 R � R.
1: ~v1 = �vx1; vy1	 �x2 � x1; y2 � y1	
2: ~v2 = �vx2; vy2	 �x� x1; y � y1	
3: j~v1j pvx21 + vy21
4: j~v2j pvx22 + vy22
5: � ar

os((vx1 � vx2 + vy1 � vy2)=(j~v1j � j~v2j))
6: if 90Æ < � < 270Æ then
7: d j~v2j
8: l` L(pl; (x1; y1))
9: else

10: proje
tion j~v2j �
os�
11: length L(pl; (x2; y2))�L(pl; (x1; y1))
12: if length � proje
tion then
13: d p(x� x2)2 + (y � y2)2
14: l` L(pl; (x2; y2))
15: else
16: d j~v2j � sin�
17: l` L(pl; (x1; y1)) + proje
tion
18: end if
19: end if
20: return (d; l`)
First GPS Point. As mentioned earlier, the first GPS point is mapped to the nearest polyline. The one
parameter used to detect the polyline for the first GPS point is the distance from the polyline to the GPS point.
The distance to the polyline is the distance from the GPS point to the polyline’s nearest segment. FunctionpolyFirstId (see Algorithm 7.2) finds the nearest polyline for the GPS point g. It returns the polyline
and the distance from the start of the polyline to the point projection. The function uses the parameters
calculated by function
al
Param . The search is performed analyzing all the polylinespli. The parameters(
urrD ;
urrL) for each polyline segment(plijplij+1) are calculated. If the distance
urrD to the current
polyline is less than the distanced to the previous nearest polyline, it becomes the nearest, and the distancel` from the start of the polyline is
urrL.

Other GPS Coordinates. The GPS point other that the first one can also be mapped to the nearest poly-
lines. But this strategy causes many faults. The GPS coordinates are not precise and are not exactly on the
polyline segment. There is an imprecisionD. There are a few cases of the road network when the nearest
polyline is not the true polyline. The first case is when the GPS point is near a crossroads. It can be that the
nearest polyline is one that crosses the true one. The secondpossible case is when the polyline segments
are a small distance from each other, even if they do not intersect. In real world this can appear when there
are two roads at different heights, for example, when one road passes under another. These problems are
solved using our strategy. We identify polylines for GPS points considering the results of the mapping of the
previous GPS point. If we have the pointgj; j > 1; then we determine where the pointgj�1 is mapped to.
The pointgj should be mapped to the same polyline or the other polyline that has a connection point with
the previous polyline. This strategy causes bad results in the case of a crossroads if the GPS point has to be
mapped on the other polyline. The results that are in the areas of polyline connections can be eliminated.

23

Algorithm 7.2 First Polyline Identification (functionpolyFirstId)

Require: INPUT: g 2 R2 . OUTPUT: (pl; l`) 2 PL� R.
1: (pl; l`) (;;1)
2: d 1
3: for all pli = (bi1 ; :::; bin) 2 PL do
4: for all plij = (bij ; bij+1), such that1 � j � n� 1; do
5: (
urrD ;
urrL)
al
Param(g; pli; plij)
6: if
urrD < d then
7: d
urrD
8: (pl; l`) (pli;
urrL)
9: end if

10: end for
11: end for
12: return (pl; l`)
Figure 18 illustrates how the nearest polyline strategy cancause bad results (Figure 18(a)) and how other
strategy can solve this problem (Figure 18(b) and Figure 18(c)).

g
2

g
1

pl

pl2

1

pl3

(a) Nearest polylines

g
1

pl1

pl2
pl3

g
2

(b) Polylines identified ac-
cording to the previous results

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������g

1

pl1

pl2
pl3

g
2

(c) Elimination of candidate
polylines

Figure 18: Polyline identification

In Figure 18, we have three polylines. The route is on the polyline pl2 with the traveling direction from
left to right. Unfilled circles are GPS points. The arrows show where each point should be mapped to. Filled
and crossed circles present bad projections. The GPS pointsg1 andg2 are points of interest because they are
mapped to wrong polylines:g1 is projected onto polylinepl1, andg2 is projected onto polylinepl3. If we
consider the previous result, theng1 is mapped topl2 andg2 (Figure 18(b)) is also mapped topl2. Polylinepl3 cannot be the candidate polyline, because it does not even intersect withpl2. If the GPS point is mapped
to the connection area asg1 (Figure 18(c)) its result can be eliminated.

FunctionpolyId (see Algorithm 7.3) identifies the polylinepl for the GPS pointg according to the
polylineprevP l that the previous GPS point is mapped to. The function returns the polyline and the distance
from the start of the polyline to the point projection. The function has two parts. In the first part (Steps 4–10),
we check if the GPS point is on the same polyline as the previous GPS point. The distance
urrD to every
segment of the polylineprevPl is calculated. The shortest one is chosen, as it was in function polyFirstId .
But the distance has also be less thanD, the a value of imprecision. If this search gives no results (Step
11), we assume that perhaps the GPS point should be mapped to the polyline that has a connection with
the previous polyline. Thus, the second part (Steps 12–20) of the function searches for the polyline that is
nearest among the polylines that intersect withprevPl . The distance to the polyline has to be less than the
imprecisionD. If this part of the algorithm also does not give an answer, the function returns the polyline
and the distance undefined. Such a result means that there is agap in the GPS data, which then has to be
filled in.

To define if the GPS point is in the connection area, at first we need the result of functionpolyId . The

24

Algorithm 7.3 Polyline Identification (functionpolyId)

Require: INPUT: g 2 R2 ; prevPl 2 PL. OUTPUT: (pl; l`) 2 PL� R.
1: (pl; l`) (;;1)
2: d 1
3: pl prevPl = (b1; :::; bn)
4: for all plj = (bj ; bj+1), such that1 � j � n� 1; do
5: (
urrD ;
urrL)
al
Param(g; prevPl ; plj)
6: if
urrD < d ^
urrD � D then
7: l`
urrL
8: d
urrD
9: end if

10: end for
11: if d =1 then
12: for all pli = (bi1 ; :::; bin), such that9
 = (:::; (pli; li); :::; (prevP l; prevL); :::) 2 C do
13: for all plij = (bij ; bij+1), such that1 � j � n� 1; do
14: (
urrD ;
urrL)
al
Param(g; pli; plij)
15: if
urrD < d ^
urrD � D then
16: (pl; l`) (pli;
urrL)
17: d
urrD
18: end if
19: end for
20: end for
21: end if
22: return (pl; l`)
function identifies the candidate polyline the GPS point is projected onto and gives the distance from the
start of the polyline. The connection (see Definition 6.5) isdefined using the distance from the start of the
polyline. Thus, if the GPS point is mapped to the polyline andits distance to the connection on the polyline
is less than imprecisionD, we say that the GPS point is in the connection area. Later, wedo not consider
this result. We have functionpossibleConne
tion (see Algorithm 7.4) that returns a Boolean value showing
if the GPS point is in the connection area. All the connections related to the polyline are analyzed and the
distance from the point projection to the connection is calculated. A distance less than imprecisionD makes
the resulttrue and the function returns a result; otherwise, it remainsfalse.

Algorithm 7.4 Detection of Connection Area (functionpossibleConne
tion)

Require: INPUT: pl 2 PL, l` 2 R. INPUT:
onne
tion 2 ftrue; falseg.
1:
onne
tion false
2: for all
i = f

1; :::;

ng 2 C, such that9

ij = (pl; lìj) 2
i do

3: for all

ij 2
i, such that

ij = (pl; lìj) do

4: if �D � lìj � l` � D then
5:
onne
tion true
6: return (
onne
tion)
7: end if
8: end for
9: end for

10: return (
onne
tion)
25

7.2 Formation of a Route Element

The next problem we deal with while detecting a route is the formation of subpolylines. A route is a
sequence of subpolylines that are connected to the neighboring subpolylines. There cannot be gaps. Accord-
ing to our model, the user can change the polyline she is traveling on only at connections, but not anywhere
else. The requirement to have a sequence of subpolylines that form an uninterrupted polyline makes the
route construction include specific functions.

There are four main cases of subpolylines that form a route. Figure 19 illustrates them. The unfilled
circles mark the GPS points. The are three polylines drawn inthe figure: (b1; b2; b3; b4), (b6; b2), and(b3; b5). The route is emphasized.

Figure 19(a) illustrates the most simple case of a route, when only one subpolyline belongs to it. Ac-
cording to our model, we always fix the exact positions for thestart and the end of the route and do not
approximate them. That means that when we form such a polyline, we consider the first and the last GPS
points, i.e.,g0 andgN . The distances from the start of the polyline present which part of the polyline is the
route and the movement direction indicates the start and theend.

Figure 19(b) illustrates how the first subpolyline is formed. The feature of the first subpolyline is that
one distance measure from the start of the polyline is the exact projection position, as it is the start of the
route. Another measure usually has to be approximated to thevalue that shows the connection distance from
the start of the polyline. As the figure shows, the GPS pointsgi; 0 � i � j; are projected onto one polyline.
The GPS pointgj+1 is projected onto another polyline. The polyline can be changed only at connection
positionb3; thus, the projection ofgj is approximated to the distance from the start of the polyline to the
nearest intersection with the other polyline, i.e. tob3. In case of the first subpolyline, the start is defined
from the GPS point, and the end is calculated. According to the definition (see Definition 6.4), a subpolyline
has start distance that is less than end distance. If the travel direction is opposite to the polylines’s direction,
these distances are interchanged and the direction is set to�1. This means that we have a measured end, but
an approximated start.

Figure 19(c) illustrates how the last subpolyline is formed. This case is similar to the case of the first
subpolyline, but it has the opposite way of formation. If themovement direction is the same as the direction
of the polyline, the start of the last subpolyline is approximated, as forgj+1 in the figure. The end of the
subpolyline is the end of the route, i.e.,gN . If the direction is opposite, the measures are formed in the
opposite way.

Figure 19(d) illustrates how the middle subpolyline is formed. Middle subpolylines are in the route
if the GPS points are mapped to more than two polylines. Thesesubpolylines are full. The start and the
end distances for the subpolyline are not those from projections, but approximated to the distances of the
connections at which the polylines are changed. As it is shown in the figure, GPS pointsgk+1 andgj are the
first and last GPS points that are projected onto the first polyline. Their distance values from the start of the
polyline are approximated to values of the connectionsb2 andb3.

If there are no neighboring subpolylines that belong to the same polyline, only these four cases are
used to form a subpolyline. There are situations when a routehas two subpolylines belonging to the same
polyline, but having the opposite direction. Figure 20 shows such a situation. The user can travel on the
polyline and turn around at some point. In the real world, this situation may occur if it is not allowed to turn
left at some crossroads. Then the user has to turn right and toturn around when it is possible, as in Figure
20(a). If the direction is changed on the same polyline, there are two neighboring subpolylines that share
one common point: it is the end for one subpolyline, but the start point for another. Figure 20(b) shows
how it looks in the real situation. The GPS points are marked by numbers, the greater number shows the
later GPS point. The last point that is in the same direction as the current subpolyline is also the start of the
new subpolyline. The real GPS point can be still on the same side of the polyline (before turning around) or
already on the other (after turning around), as shown in Figure 20(b).

According to the described strategy, the movement direction is the parameter that is used to form a
subpolyline. We have a functionde�neDire
tion (see Algorithm 7.5) that defines the movement direction

26

b

b

b
3 4

5
b6

b1

gN

g0 b2

(a) Only one subpolyline

g
g

b

b

b

b

2

3 4

j
j+1

5
b6

b1

0
g

(b) First subpolyline

b

b

b
3 4

5

j+1

6

b1

b2

gN

ggj

b

(c) Last subpolyline

g
g

b

b

b
3

2

j
j+1

5
b6

b1

gk+1
gk

b

4

(d) Middle subpolyline

Figure 19: Cases of subpolylines

b

b2bb

b

1

5

34

(a) Movement

5

1

4

5

2

3

b3
1b

1b
3b

4
3

21

(b) Formation

Figure 20: Subpolylines on the same polyline

on the polyline for two point projections. The function takes two distances from the start of the polyline:prevDst is the distance to the previous point projection, and
urrDst is the distance to the current point
projection. The function also considers the movement direction prevDir on the polyline until the current
GPS point. The function returns the movement directiondire
tion that is on the polyline between the
previous and the current points. If the previous distance isless than the current one, the direction coincides
with the direction of the polyline— it is equal to1. If the previous distance is greater than the current one,
the direction is the opposite—it is equal to�1. If the previous distance is equal to the current distance, the
direction cannot be defined and is equal to the previous direction. The last situation happens if the user is
stuck in a traffic jam and moves so slowly that this causes the same GPS coordinates for a few points.

The movement direction is used to approximate distances from the start of the polyline to the point
projections when we construct “uninterruptible” route from a sequence of subpolylines. Function�ndEnd
(see Algorithm 7.6) finds the distanceendDst from the start of the polylineprevPl to the connection where
the previous polylineprevPl and the current polyline
urrPl intersect. The function considers the distanceprevDst from the start of the polyline for the previous GPS point and also the directionprevDir on the
polyline prevPl . The function chooses the nearest connection if there are a few connections where the

27

Algorithm 7.5 Direction Identification (functionde�neDire
tion)
Require: INPUT: prevDst ;
urrDst 2 R; prevDir 2 f�1; 0; 1g. OUTPUT: dire
tion 2 f�1; 0; 1g.

1: dire
tion 0
2: if prevDst <
urrDst then
3: dire
tion 1
4: else ifprevDst >
urrDst then
5: dire
tion �1
6: else
7: dire
tion prevDir
8: end if
9: return (dire
tion)

polylines intersect. The temporary variabledistToConn stores the value of the distance to the previous
nearest connection. All the connections
i whereprevPl and
urrPl intersect are analyzed. The variable
urrDistToConn is used to calculate the distanceprevDst from the previous projected point to each suitable
connection. A connection is suitable if it is ahead of the projected point when the direction coincides with
the polyline’s direction, or if it is behind the projected point when the direction is the opposite (Step 4).
Otherwise, the function returns an undefined value. If the distance to the connection is less than the distance
to the previous connection then its distance from the start of the polyline is the candidate end distance for
the subpolyline. The distance to it is noted in variable
urrDistToConn . If the direction on the subpolyline
is undefined, the nearest connection is chosen as a candidate, and the direction to it does not matter.

Algorithm 7.6 End Position Identification for a Subpolyline (function�ndEnd)
Require: INPUT: prevPl ;
urrPl 2 PL; prevDst 2 R; prevDir 2 f�1; 0; 1g. OUTPUT: endDst 2 R.

1: distToConn; endDst 1
2: for all
i = f

1; :::;

ng 2 C, such that9

ij ;

ik 2
i :

ij = (prevPl ; lìj);

ij = (
urrPl ; lìk)

do
3:
urrDistToConn (lìj � prevDst)
4: if (prevDir = 1 ^
urrDistToConn > 0 ^
urrDistToConn < distToConn)_(prevDir = �1 ^
urrDistToConn < 0 ^
urrDistToConn > distToConn) then
5: endDst lìj
6: distToConn
urrDistToConn
7: else ifprevDir = 0 then
8: if (
urrDistToConn > 0 ^
urrDistToConn < distToConn) then
9: endDst lìj

10: distToConn
urrDistToConn
11: else if(
urrDistToConn < 0 ^
urrDistToConn � (�1) < distToConn) then
12: endDst lìj
13: distToConn
urrDistToConn � (�1)
14: end if
15: end if
16: end for
17: return (endDst)

Function�ndStart is closely related to function�ndEnd . The next subpolyline should always start
at the same place where the previous subpolyline ended. Thus, function�ndStart defines where the next
subpolyline starts on the polyline
urrPl , according to the previous subpolyline that was on polylineprevPl
and ended at distanceprevDst from its start. The function returns thestartDst that is the distance at which
the current subpolyline starts.

28

Algorithm 7.7 Start Position Identification for a Subpolyline (function�ndStart)
Require: INPUT: prevPl ;
urrPl 2 PL; prevDst 2 R. OUTPUT: startDst 2 R.

1: for
 = (

1; :::;
n) 2 C, such that9
k;
m :
k = (prevPl ; prevDst);
m = (
urrPl ; lm̀) do
2: startDst lm̀
3: end for
4: return (startDst)

FunctionformSubPoly is used to create a subpolyline that satisfies the requirements for a subpolyline.
According to the definition, the distance where the subpolyline starts should be less then the distance where
it ends. While making calculations, the real start can be theend point of the “theoretical” subpolyline.
Function formSubPoly solves this problem. It takes the start and end distances as aparameters. If the
movement direction coincides with the direction of the polyline, the parameters do not need to be exchanged.
If the direction is opposite, then the start distance is greater, and it has to be exchanged with the end direction.

Algorithm 7.8 Subpolyline Formation (functionformSubPoly)

Require: INPUT:pl 2 PL; ls; le 2 R; dir 2 f�1; 0; 1g. OUTPUT:spl = (pl; l`; la) 2 SPL.
1: if dir = 1 then
2: spl = (pl; l`; la) (pl; ls; le)
3: else
4: spl = (pl; l`; la) (pl; le; ls)
5: end if
6: return (spl)

7.3 Route Construction

When constructing a route we deal with sequences of elements. We have a sequence of route elements,
and a sequence of input GPS points. Thus, we need three operators to make operations on sequences that
contain elements of the same type. The first operator is needed to add an element to the end of a sequence.
The second operator is needed to return the first element froma sequence. The third operator removes the
first element from a sequence.

Definition 7.1. (
 Operator) Let
 : S� � S ! S�, whereS is a set of elements andS� is the set of all
finite sequences of elements fromS, be a sequence operator that constructs a sequence by addingan element
to the end of a sequence.

Definition 7.2. (� Operator) Let � : S� ! S, whereS is a set of elements andS� is the set of all finite
sequences of elements fromS, be a sequence operator that returns the first element of a sequence.

Definition 7.3. (Operator) Let 	 : S ! S�, whereS is a set of elements andS� is the set of all finite
sequences of elements fromS, be a sequence operator that constructs a sequence by removing the first
element from the sequence.

Sequences 2 S� must have at least one element if we want to use operators	 and�. Thus, we have to
check ifs is empty. If the sequence has one element, then operator	 returns an empty sequence.

Example 7.1. Let us consider the router
 = (RE; uos; uoe; ST) (see Definition 6.9), whereRE =(re1; re2; re3) is a sequence of route elements. We can add the elementre to the end of this sequence
by using
 operator:
�(re1; re2; re3); re� = (re1; re2; re3; re). We can get the first element of the se-
quence by using� operator:��(re1; re2; re3)� = re1. We can remove the first route element by using	
operator:	�(re1; re2; re3)� = (re2; re3).

29

These operators help to manipulate the sequences in the route finding algorithm (see Algorithm 7.9).
The route finding algorithm is the step of route recording process on the server side described in Section
4. This algorithm constructs sequenceRE of route subpolylines analyzing sequenceG of GPS points. The
algorithm uses two functions,ValidateRoute andFillGap, that validate the route when other functions
return undefined values.

FillGap As mentioned earlier, information gaps in the GPS sequence can cause situations where the poly-
lines identified for neighboring GPS points are not neighboring themselves. FunctionpolyId cannot
identify the polyline. In this case, functionpolyFirstId is used to identify the polyline. If this polyline
is not in the connection area, the gap between two polylines is to be filled. The strategy for how to
do this is based on shortest path search in a graph. First of all, the polylines that intersect with the
gap’s first polyline are retrieved. For each of these polylines, we again retrieve all intersecting poly-
lines. If the gap’s second polyline is not among them, the procedure is repeated recursively for each
polyline of this level. The search stops when the gap’s second polyline is in the result set. When we
have intersecting polylines, we take the set of connectionsand form subpolylines using the connection
information. These constructed subpolylines fill the gap between two previously described polylines.

ValidateRoute This function eliminates bad results in projecting points.When we search for the end mea-
sure for a subpolyline, we consider its direction and make anapproximation according to the direction.
But when we do projections, we project onto the same polylinethat the previous GPS point is pro-
jected onto if this is possible. These two requirements cause that we may jump through a connection,
and function�ndEnd does not turn back to get it. FunctionValidateRoute searches for the connec-
tion behind. Then it checks if the previous subpolylines aresuitable for the current situation. If not
then the subpolylines are validated.

The route finding algorithm starts by taking the first GPS point, removing it from the GPS sequence.
The first polyline is identified using functionpolyFirstId . Several temporary parameters store values that
are necessary to construct a route: parameters(
urrPl ;
urrDst) are the polyline, the current GPS point is
mapped to and the distance from the start of the polyline;(prevPl ; prevDst) are the polyline and the distance
for the previous GPS point;(pl; l`) store values for the start of the constructed subpolyline;dir andprevDir
are the current and the previous directions on the polyline.While the sequence of GPS points is not empty,
each point is taken from it and analyzed. The polyline is identified for each point using functionpolyId . If
this function returns an undefined polyline, it means that there is a gap in information and it is to be filled in.
If the function returns the polyline, it is checked if the projection is in the connection area that can cause bad
results. If the point projection is not in the connection area, i.e., the result ofpossibleConne
tion is false
the other calculations can be done.

If the current polyline is not the same (Step 14) as for the previous GPS point, a new subpolyline is
formed. First of all, the measure for the end of the polyline is calculated by function�ndEnd . This function
may return the undefined end measure if there were bad projections. This fault is eliminated. Using the
defined measure, we form a new subpolyline and add it to the sequenceRE of route elements. The start
measure is calculated for the next subpolyline. The temporary parameters get new values: the direction
becomes undefined, the start of the polyline is a newly calculated measure.

If the polyline is the same (Step 26) as for the previous GPS point, we check if the movement direction
is the same as until the previous point. If the previous direction was undefined, its value is set to a value
of the current direction. If the direction is the same, no calculations are done; only the temporary variableprevDst becomes equal to the distance of the current GPS point. If thedirection is not the same, we have
to form a subpolyline by taking the previous values. The previous distance becomes the start of the new
subpolyline.

When the GPS sequence is empty, the last subpolyline of the route is formed, using the distance from
the start of the polyline to the last GPS point.

30

Algorithm 7.9 Route Finding
Require: INPUT: G = (g1; :::; gn); gi 2 R; n > 1. OUTPUT: RE = ((spl1; dir1); :::; (splm; dirm)),m � 1, spli = (pli; lì ; lai) 2 SPL.

1: RE ;
2: g �(G)
3: G 	(G)
4: (pl; l`); (
urrPl ;
urrDst); (prevPl ; prevDst) polyFirstId (g)
5: dir ; prevDir 0
6: while Gisnotempty do
7: g �(G)
8: G 	(G)
9: (
urrPl ;
urrDst) polyId (g; prevPl)

10: if
urrPl = ; then
11: FillGap()
12: else
13: if possibleConne
tion(
urrPl ;
urrDst) = false then
14: if
urrPl 6= prevPl then
15: la �ndEnd(pl;
urrPl ; prevDst ; prevDir)
16: if la =1 then
17: ValidateRoute()
18: else
19: spl formSubPoly(pl; l`; la; prevDir)
20: RE
(RE; (spl; prevDir))
21: l` �ndStart(pl;
urrPl ; la)
22: pl
urrPl
23: prevDir 0
24: (prevPl ; prevDst) (pl; l`)
25: end if
26: else
27: dir de�neDire
tion(prevDst ;
urrDst)
28: if prevDir = 0 then
29: prevDir dir
30: else ifprevDir = dir then
31: prevDst
urrDst
32: else
33: la prevDst
34: spl formSubPoly(pl; l`; la; dir)
35: RE
(RE; (spl; prevDir))
36: prevDir dir
37: l` prevDst
38: prevDst
urrDst
39: end if
40: end if
41: end if
42: end if
43: end while
44: la
urrDst
45: spl formSubPoly(pl; l`; la; prevDir)
46: RE
(RE; (spl; prevDir))
47: return (RE)

31

8 Practical Part

This section describes a practical part of our work. The datawe tested our algorithms on is presented.
The algorithms were implemented using Java and Oracle together with its PL/SQL and Oracle Spatial. The
aspects of implementation are analyzed.

8.1 Data

We tested the algorithms on synthetic data. We wrote a generator (see Appendix D for more detailed
explanations) to generate a road network and movement simulation on it. To test the algorithms we used
Oracle Spatial operators and functions.

8.1.1 Generated Data

We generated a simple road network (see Figure 21(a)) to search for possible problems while detecting
a route. This road network includes 100 randomly generated base points, and 117 polyline segments that
use these points form 35 polylines. In our data, a number of segments for any polyline can vary from 1 to 9
segments. There are 49 connections where polylines intersect. The information about such a road network
is stored in a database. The schema of the database is described in Section 6.2.

We also generated a number of GPS point sequences (see an example in Figure 21(b)) to simulate a
movement of a user on this road network. To have destination points for a route we randomly chose two
segments and positions on them. We searched for a path on segments between these two objects using
breadth-first search strategy. For each segment on the path we generated GPS coordinates. A number of
these GPS points depended on the segment length and on the step size. The points were not exactly on the
segment in order to simulate real world situations. Also, the points could be on both sides of the segment
and within different distances to that segment. We allowed the predefined imprecision of the GPS point to
the segment.

(a) Road network (b) Example of generated GPS co-
ordinates

Figure 21: Generated data

8.1.2 Oracle Spatial

We used Oracle Spatial [13] while implementing our algorithms. As described in Section 6.2, segments
of polylines are spatial data objects (see SDOPOLYLINE ELEMENTS in Figure 14). Thus, we use spatial
operators (see Table 1) and geometry functions (see Table 2)for calculations. Polyline segments are also
linear referencing system (LRS) elements and we use LR functions (see Table 3).

32

Spatial operator Short description
SDO NN Determines the nearest neighbor geometries to a geometry.

SDO NN DISTANCE Returns the distance of an object returned by the SDONN oper-
ator.

Table 1: Spatial operators

Geometry function Short description
SDO GEOM.SDODISTANCE Computes the distance between two geometry objects.

Table 2: Geometry functions

Linear referencing function Short description
SDO LRS.GEOMSEGMENTSTART PT Returns the start point of a geometric segment.

SDO LRS.PROJECTPT Returns the projection point of a point on a geometric segment.

Table 3: Linear referencing functions

To use the Oracle Spatial functions we create an index on the spatial attribute. SQL script that forms a
spatial element and inserts it into our database is shown below:

INSERT INTO POLYLINE_ELEMENTS VALUES
(25, 0, 170, 1,

MDSYS.SDO_GEOMETRY(3302, NULL,NULL,
MDSYS.SDO_ELEM_INFO_ARRAY(1,2,1),
MDSYS.SDO_ORDINATE_ARRAY(4130,2630,0,4280,2540,0))

);

This example shows how the first element of the polyline 25 is inserted into the database. This element
starts at distance 0 and ends at distance 170 from the start ofthe polyline. A spatial attribute is constructed
according to the syntax of the object MDSYS.SDOGEOMETRY.

8.2 Route Finding with Oracle Spatial

The implemented route finding algorithm is different from the one described in the theoretical part. We
use Oracle Spatial to identify the route, and for that we use the built-in functions or SQL statements. The
main program is written in Java (see classes in Appendix C). The program uses JDBC to execute SQL
queries.

8.2.1 Polyline identification

The first parameter according to which we choose the polylineis the distance to it. Oracle Spatial
operator SDONN finds the nearest spatial objects and operator SDONN DISTANCE returns the distances
to these objects. For the first GPS point we need the nearest spatial object, i.e., polyline element, and also
we need its distance from the start of the polyline to the projection of the GPS point. The example shows
how the nearest polyline is identified for the first GPS point with coordinates (1570,2320):

SELECT a.pol_id, a.pol_from +
SDO GEOM.SDO DISTANCE(SDO_LRS.PROJECT_PT(a.element,
MDSYS.SDO GEOMETRY(3001,NULL,MDSYS.SDO POINT TYPE(1570,2320,0),NULL,NULL)),
SDO LRS.GEOM SEGMENT START PT(a.element),0.0001) dist

FROM polyline_elements a
WHERE SDO_NN(a.element,MDSYS.SDO GEOMETRY(3001,NULL,

MDSYS.SDO_POINT_TYPE(1570,2320,0),NULL,NULL),’sdo_num_res=1’,1)=’TRUE’;

33

The point is projected onto the element (SDOLRS.PROJECTPT) that is nearest (SDONN). The dis-
tance from this projection to the start of the element (SDOLRS.GEOMSEGMENTSTART PT) is cal-
culated (SDOGEOM.SDODISTANCE) and added to the distance from the start of the polyline to this
element.

To identify polylines for other GPS points, we have functionpolyId (see Appendix B). This function
analyzes the same polyline, where the previous GPS point wasmapped to. If the distance to the polyline is
greater than the imprecision, the function searches for thenearest polyline that intersects with the previous
one. For generated GPS sequences we allowed the imprecisionof 50 meters. Thus, the identified polyline
should always be in less than 50 meters from the GPS point. We check every mapped point if it falls into a
connection area. The points mapped to the area around a connection of polylines are ignored. We defined
the imprecision of that area, and in our case it is the same as for GPS points. The query (see Appendix A)
returns the connection if it is within distance of 50 meters from the point projection in any direction. If the
point is not mapped to connection area the further procedureof route detection is done.

8.2.2 Formation of a Route Element

The end of the subpolyline is calculated using the strategy described in Section 7, but with one modifica-
tion. In the theoretical part, we search for the connection that is ahead of the point projection. The distance
from the start of the polyline to the connection becomes the end value for the subpolyline. This distance to
the connection is greater than the distance to the point projection if the user travels in the polyline’s direc-
tion, and less if the direction is opposite. In the implementation, we modify this requirement allowing the
connection to be behind, but within less than 50 meters distance. The tests show that this strategy implies
better results than the one with the strong requirement. Andthat is because the points are mapped to the
same polyline after crossing the connection area even if theuser has turned off to the other polyline. This
situation occurs when after crossing the connection area the intersecting polylines are still within a distance
less than 50 meters from each other for some time. We have two queries (see Appendix A) that calculate
the end distance value for the subpolyline. The programmingmethod controls its usage depending on the
movement direction. The end distance value of the subpolyline is used to calculate the start distance value
of the new subpolyline (see Appendix A).

8.2.3 Route Construction

The route finding algorithm (see Appendix C) is implemented in the same way as described in Section 7.
We have sequences of route elements, i.e., subpolylines, that form the route. We use the built-in Java class
LinkedList to store these elements. Java programming language supports operations to manipulate these
elements in the list. We distinguish between the class that is responsible for the execution of SQL queries
and a class that is responsible for route finding. But the second class includes the instance of the second one
to be able to get results from the SQL queries.

9 Summary and Future Work

In part because of predominant tendency to develop small mobile devices, i.e., with small keyboards and
screens, there is a need to have mobile services be aware of the users’ contexts. It is important for mobile
services to provide the users only with relevant information, with as little interaction as possible. For mobile
service users that travel in road networks, the location context is important.

In this paper, we considered the routes of the users to be an interesting and useful context. We designed a
route component that constructs routes based on a user’s location information provided by the user’s device.
We proposed a system architecture for the route component. We introduced the main functions that were
necessary in constructing such a component. A database model for road networks and for information about
the users and their routes was presented.

34

The paper analyzed the specific problems that appear while trying to record user’s routes. We proposed
solutions for all these problems. For some of them, we used already invented techniques. Having the input
information as a stream of location coordinates from a GPS receiver, we presented the main algorithms for
detecting the route of the mobile user.

There are several possible directions in which to extend this work. In this paper, we assume that the user
controls the process of her route recording. But this can be inconvenient for the user as she has to remember
to start and stop recording. One of the extensions can be to make the system smart enough to decide if the
current position of the user is already the end of the route. For example, if the user is at a particular position
for some time without moving, the process of recording can befinished.

Another possible extension can be the creation of a system that is able to detect if the route is already
recorded or to divide a long route into smaller ones when small parts of the route are used. Other possible
extensions are related to the database schema. To add more functionality, the current database model can
be extended by integrating into it some of road network features, like driving directions or turn restrictions.
Currently, we do not consider these which may cause faults inthe detection of routes. The driving time of
the route can also be stored. This feature would add more context-awareness to the system.

10 Acknowledgments

We would like to thank the company Euman A/S for allowing us touse their road database, for sharing
their insights into road data management with us, and for constructive comments.

References

[1] American National Standards Institute.Geographic Information Framework—Data Content Standards
For Transportation: Roads, 2003.

[2] C. Barrett, K. Bisset, R. Jacob, G. Konjevod, and M. Marathe. Classical and Contemporary Shortest
Path Problems in Road Networks: Implementation and Experimental Analysis of the TRANSIMS
Router. InProc. of the 10th European Symposium on Algorithms, ESA, volume 2461 ofLecture Notes
in Computer Science, pages 126–138, 2002.

[3] D. Bernstein and A. Kornhauser.An Introduction to Map Matching for Personal Navigation Assistants.
New Jersey TIDE Center, 1996. http://www.njtide.org/reports/mapmatchintro.pdf.

[4] J. A. Butler and K. J. Dueker.A Primer on GIS-T Databases. Center for Urban Studies, Portland State
University, 2000. http://www.upa.pdx.edu/CUS/publications/discussionpapers.html.

[5] J. A. Butler and K. J. Dueker. Implementing the Enterprise GIS in Transportation Database Design.
Journal of the Urban and Regional Information Systems Association, 13(1):17–28, 2001.

[6] CommLinx Solutions Pty Ltd. Common NMEA Sentence Types, 2002.
http://www.commlinx.com.au/NMEAsentences.htm.

[7] K. J. Dueker and J. A. Butler. GIS-T Enterprise Data Modelwith Suggested Implementation Choices.
Journal of the Urban and Regional Information Systems Association, 10(1):12–36, 1998.

[8] HNIT-BALTIC Geoinfoservice. Digital maps. http://www.maps.lt/.

[9] C. Hage, C. S. Jensen, T. B. Pedersen, L. Speicys, and I. Timko. Integrated Data Management for
Mobile Services in the Real World. To appear in VLDB, 2003.

35

[10] F. Hohl, L. Mehrmann, and A. Hamdan. A Context System fora Mobile Service Platform. InProc.
of International Conference on Architecture of Computing Systems, volume 2299 ofLecture Notes in
Computer Science, pages 21–33, 2002.

[11] C. S. Jensen. Research Challenges in Location-EnabledM-Services. InProc. of the International
Conference on Mobile Data Management, pages 3–7, 2002.

[12] D. L. Lee, J. Xu, B. Zheng, and W.-C. Lee. Data Managementin Location-Dependent Information
Services.Pervasive Computing, Mobile and Ubiquitous Systems. Context-Aware Computing, 1(3):65–
72, 2002.

[13] C. Murray. Oracle Spatial User Guide and Reference, Release 9.2. Oracle Corporation, 2002.

[14] NMEA. NMEA 0183 Standard, 2002. http://www.nmea.org/pub/0183/.

[15] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest Neighbor Queries. InProc. of the 1995 ACM
SIGMOD International Conference on Management of Data, pages 71–79, 1995.

[16] P. Scarponcini. Generalized Model for Linear Referencing. In Proc. of the 7th ACM-GIS International
Symposium on Advances in Geographic Information Systems, pages 53–59, 1999.

[17] Z. Song and N. Roussopoulos.K-Nearest Neighbor Search for Moving Query Point. InProc. of
the SSTD International Symposium, Advances in Spatial and Temporal Databases, volume 2121 of
Lecture Notes in Computer Science, pages 79–96, 2001.

[18] M. Vazirgiannis and O. Wolfson. A Spatiotemporal Modeland Language for Moving Objects on
Road Networks. InProc. of the SSTD International Symposium, Advances in Spatial and Temporal
Databases, volume 2121 ofLecture Notes in Computer Science, pages 20–35, 2001.

[19] W3C. Extensible Markup Language (XML). http://www.w3.org/XML/.

[20] O. Wolfson. Moving Objects Information Management: The Database Challenge. InProc. of the
International Workshop, Next Generation Informat ion Technologies and Systems, volume 2382 of
Lecture Notes in Computer Science, pages 75–89, 2002.

36

A SQL Scripts

A.1 Creation of View VIEW INFO
-- Creates view using data from table INFO. Weekday and Hour are
-- calculated using built in functions and Quarter is calculated using
-- our PL/SQL function getQuarter

CREATE VIEW VIEW_INFO AS
SELECT Route_id, Weekday, Hour, Quarter, COUNT(*) datetime
FROM
(
SELECT route_id, TO_CHAR(datetime, ’Day’) as Weekday,

TO_CHAR(datetime, ’HH24’) as Hour,
getQuarter(TO_NUMBER(TO_CHAR(datetime, ’MI’))) as Quarter

FROM INFO
)

GROUP BY route_id, Weekday, Hour, Quarter;

A.2 Query to Define a Connection Area
-- Shows the example how it is checked if the GPS point is in the
-- connection area: some point was mapped to polyline 12 within distance
-- 960 from its start. The query returns any connection that is in
-- distance 50 from the point projection.

SELECT conn_id
FROM connections
WHERE pol_id = 12 AND

(pol_from - 50 <= 960 AND 960 <= pol_from +50);

A.3 Queries to Find the End of a Subpolyline
-- Shows the examples how the end distance for the subpolyline is
-- defined. The previous point was mapped to polyline 12 within
-- distance 900. The current point is mapped to polyline 13. The first
-- example defines the end distance if the direction coincides with the
-- polyline direction. The second defines if the direction is
-- opposite.

SELECT a.pol_from
FROM connections a, connections b
WHERE a.pol_id = 12 AND b.pol_id = 13 AND a.conn_id = b.conn_id

AND (a.pol_from + 50 >= 900 OR 900 < a.pol_from);

SELECT a.pol_from
FROM connections a, connections b
WHERE a.pol_id = 12 AND b.pol_id = 13 AND a.conn_id = b.conn_id

AND (a.pol_from - 50 <= 900 OR 900 > a.pol_from);

A.4 Query to Find the Start of a Subpolyline
-- Shows the example how the start of the polyline is defined. The
-- previous subpolyline was on polyline 13 and ended within distance
-- 0. The current subpolyline is on polyline 12. The example
-- identifies the distance on the polyline where the previous
-- polyline intersects with the current one.

SELECT b.pol_from
FROM connections a, connections b
WHERE a.pol_id = 13 AND a.pol_from = 0
AND b.pol_id = 12 and a.conn_id = b.conn_id;

37

B PL/SQL Functions

B.1 Quarter Calculation
-- Calculates a quarter for a value of minutes.

CREATE OR REPLACE FUNCTION getQuarter
(
minutes IN NUMBER

)
RETURN NUMBER
AS

quarter NUMBER;
BEGIN

IF minutes BETWEEN 0 AND 14 THEN quarter := 1;
ELSIF minutes BETWEEN 15 AND 29 THEN quarter := 2;
ELSIF minutes BETWEEN 30 AND 44 THEN quarter := 3;
ELSE quarter := 4;
END if;
RETURN quarter;

END getQuarter;
/

B.2 Polyline Identification
-- Identifies the polyline polId where the current point (x,y) is
-- mapped to. The previous polyline prevPl is taken into consideration. The polyline
-- and the distance to the mapped point on that polyline is returned.

CREATE OR REPLACE PROCEDURE polyId
(
prevPl IN INTEGER,
x IN NUMBER,
y IN NUMBER,
polId OUT INTEGER,
distance OUT NUMBER
)
IS

polFrom NUMBER := -1;
dist NUMBER := -1;

CURSOR samePl IS
SELECT pol_from, MDSYS.SDO_NN_DISTANCE(1) dist
FROM
(

SELECT *
FROM polyline_elements
WHERE pol_id = prevPl

)
WHERE SDO_NN(element,mdsys.sdo_geometry(3001,NULL,

MDSYS.SDO_POINT_TYPE(x,y,0),NULL,NULL),’sdo_num_res=10’,1) = ’TRUE’
ORDER BY dist;

CURSOR connPl IS
SELECT pol_id, pol_from, MDSYS.SDO_NN_DISTANCE(1) dist
FROM
(

SELECT *
FROM polyline_elements
WHERE pol_id IN

(
SELECT DISTINCT b.pol_id
FROM connections a, connections b
WHERE a.pol_id = prevPl AND b.pol_id <> a.pol_id AND

a.conn_id = b.conn_id
)

)
WHERE SDO_NN(element,MDSYS.SDO_GEOMETRY(3001,NULL,

MDSYS.SDO_POINT_TYPE(1800,2040,0),NULL,NULL),’sdo_num_res=10’,1)=’TRUE’

38

ORDER BY dist;

BEGIN

polId := 0;
distance := -1;

OPEN samePl;
FETCH samePl INTO polFrom, dist;

IF ((samePl%FOUND) AND (dist <= 50)) THEN
polId := prevPl;
SELECT pol_from + SDO_GEOM.SDO_DISTANCE(SDO_LRS.PROJECT_PT

(element,MDSYS.SDO_GEOMETRY
(3001,NULL,MDSYS.SDO_POINT_TYPE(x,y,0),NULL,NULL)),
SDO_LRS.GEOM_SEGMENT_START_PT(element),0.0001)

INTO distance
FROM polyline_elements
WHERE pol_id = prevPl AND pol_from = polFrom;

CLOSE samePl;

ELSE
CLOSE samePl;
OPEN connPl;
FETCH connPl INTO polId, polFrom, dist;

IF ((SQL%FOUND) AND (dist <= 50)) THEN
SELECT pol_from + SDO_GEOM.SDO_DISTANCE(SDO_LRS.PROJECT_PT

(element,mdsys.sdo_geometry
(3001,NULL,MDSYS.SDO_POINT_TYPE(x,y,0),NULL,NULL)),

SDO_LRS.GEOM_SEGMENT_START_PT(element),0.0001)
INTO distance
FROM polyline_elements
WHERE pol_id = polId AND pol_from = polFrom;

CLOSE connPl;
END IF;

END IF;

END polyId;
/

C Route Finder. Java Classes

We have four main classes that are written in order to implement route recording algorithm:� ClassrouteElement. This class corresponds to the route element in data structures, i.e., a subpolyline
with a direction. Thus, the class has four variables:pol id, pol from, pol to, anddirection. It has two
constructors: for creation with default values, and for creation with predefined values.� ClasstempValue. This class is used to store values of projections of GPS points and direction ac-
cording to the previous point. The main program has three instances of the class: for the start of
the subpolyline, for the current point, and for the previouspoint. The class has variablespol id,
dist from start, anddirection.� ClasscalcRoutes. This class is responsible for the execution of SQL queries.

– MethodsidentifyPolyandidentifyFirstPolycorrespond to the algorithms that deal with polyline
identification and are described in Section 7. MethodidentifyFirstPolyuses the query described
in Section 8 and methodidentifyPolycalls the procedurepolyId given in Appendix B.

– MethodpossibleConnectiondefines if the GPS point is the connection area. The method exe-
cutes the query (see Appendix A) that returns the connections if it is so.

39

– MethodsfindEndandfindStartdeal with the calculation of the end distance and start distance
values for subpolylines.� Classfind. The class is responsible for route construction and corresponds to the Algorithm 7.9. The

class has the instances of classesrouteElement, tempValue, andcalcRoutes. The main methods are:

– getGpsforms a list of GPS coordinates from the input stream. Currently, it takes the coordinates
from the file that is given to the method as a parameter.

– findRouteconstructs the route according to the route finding algorithm. This method uses other
methods likeformElementanddefineDirectionto calculate parameters for route elements. The
result of the method is the list of route elements.

D Map Generator. Java Classes

We have two main classes that were used to generate our data. ClassmapGenerator has methods to
support map generation:� Method generateBasePointsgenerates the base points for the road network. The number ofbase

points and the ranges of two dimensional space depend on the input parameters.� Method findDensitycalculates the number of base points that fall into the square area around the
particular base point.� MethodgenerateSegmentsdefines how many segments for each point should be generated.Method
formSegmentsgenerates the segments for each base point. MethodgeneratePolylinesgenerates poly-
lines from the set of the segments. These polylines form our road network.� MethodgenerateDstObjectgenerates a destination object choosing randomly a segmentand then any
distance on it.� Method generateGpsgenerates a sequence of the GPS points. In order not to have points on the
segment, we randomize them using a maximum imprecision.� MethodgeneratePathgenerates a path in the road network. It callsgenerateDstObjectto generate
two destination objects. Then it finds the path between thesetwo objects. Finally, the method calls
generateGpsto make a sequence of GPS points.� MethodgenerateMapgenerates a new map using the previously described methods and writes the
results into the files. MethodgenerateMapFromFiletakes already generated GPS points from the file
usingtakeCooFromFileand generates a map.

ClassmakeDatahas an instance of the classmapGeneratorand gives the parameters to its public methods
to generate a map.

40

