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Abstract. The temporal multi-dimensional join (TMDJ) is a simple
parameterizable operator which offers a systematic and efficient imple-
mentation for a wide range of advanced temporal operators. We start
out by formalizing point-based, interval-based and duplicate-aware tem-
poral operators. These are crucial but often confused semantic properties
of temporal operators. We show that these semantic properties can be
determined via a parameterization of the TMDJ. Finally, we describe a
lightweight implementation of the TMDJ and report experimental results
which show the performance of advanced temporal operations is orders
of magnitude better than the performance of equivalent SQL solutions.

1 Introduction

An essential aspect of a temporal data model is the semantic properties of
its temporal operators. Widely acknowledged key properties are point-based,
interval-based, and duplicate-aware semantics. Although these terms are used
widely a consensus definition is still missing. We illustrate this by considering
the temporal difference of P and @Q, i.e., P —! ). Even this simple task turns
out to be quite complex and it is surprising to notice the number of different
results that have been proposed. Essentially, the different results can be traced
to the choice of the three semantic properties: interval-based, point-based and
duplicate-aware.

Table 1. Temporal bags P and @

P Q

Al 1 Al 1
7|[T1,10] 7([[15,18]
71[[11,20] 71/[17,22]
71([21,30]

71([28,30]

Consider the temporal bags in Table 1 (We use the term “bag” rather than
“relation” to emphasize the possible presence of duplicates). For a point-based
operator the result is independent of the grouping of time points into intervals,
and as a consequence it is possible to view temporal data as a time-indexed



sequence of non-temporal data i.e. an interval timestamp is simply a shorthand
notation for a sequence of time points. However, for an interval-based operator
the result depends on the grouping of time points into intervals, and the grouping
of time points in the result must be derived from the grouping of time points
in its argument. Thus, it is significant that the time points of P in Table 1
between 11 and 30 are grouped into the intervals [11,20] and [21,30]. For a
duplicate-aware operator the multiplicity of a fact matters, which, e.g., makes
the last tuple in P non-redundant. Combining the three properties yields eight
semantically different classes of operators:

duplicate-aware (da) o point-based (pb) y interval-based (ib)
not duplicate-aware (da) not point-based (pb) not interval-based (ib)

Eight different possible results of the temporal difference P —t ) are illus-
trated in Table 2, which correspond to the eight different types of semantics.
Results R;, R», R3, and R4 contain the time points which are in P and not
in @, these are point-based results since the time points in the results do not
depend on how the time points were grouped into intervals in P and @ Results
Ry, Rs, Rs5, and Rg are interval-based, since the grouping of time points in P
are preserved and respected in the results. Finally results Ry, R3, R5, and Ry
are duplicate-aware, since the last tuple of P is considered non-redundant.

Table 2. Point-based (pb), interval-based (ib), and duplicate-aware (da) results

Ry: pb, ib, da Ry: pb,ib,da Rs: pb, ib, da Ra: pb,ib,da

A I A I A I A I
7 11,10] 71| T1,10] 7 1,14] 71 T1,14]
7\ [11,14] 71 [11,14] | |7]| [23,30] 71 [23,30]
7| [23,30] 71 [23,30] | |7 [28,30]
71 [28,30]
Rs: pb,ib,da  Rs: pb,ib,da Ry: pb,ib,da  Rs: pb,ib,da
A I A I A I A I
71l 11,10] 71 11,10] 7 11,3] 7 11,3]
71 [11,20] 71| 11,200 | |7]| [4,20] 71| [4,20]
71 [21,30] 71l [21,30] | |7]| [21,30] 71| [21,30]
71| [28,30] 71| [28,30]

The temporal multi-dimensional join (TMDJ) is a simple parameterizable
operator, which can be used to efficiently implement a range of temporal oper-
ators. Conceptually the TMDJ groups tuples together in a number of subsets,
where each subset is evaluated independently of all other subsets, and the fi-
nal result of the TMDJ consists of the tuples derived from each subset. The
data structure used for grouping tuples is the grouped temporal bag, where time
points of non-temporally equivalent tuples can be explicitly grouped together.



Essentially, grouping all time points when a fact is true together gives us point-
based semantics, grouping duplicate time points separately gives us duplicate-
aware semantics, and grouping time points according to the timestamp gives us
interval-based semantics.

The main contributions of this paper are:

— A formal definition of duplicate-aware, point-based, and interval-based se-
mantics.

— A formal definition of the TMDJ, including a simple and efficient evaluation
algorithm.

— A formal definition of the grouped temporal bag, the core data structure of
the TMDJ.

— A specification of the parameters which determine the temporal semantics
of the TMDJ.

— A performance study of a lightweight TMDJ implementation.

The remainder of the paper is organized as follows. Section 3 introduces
the temporal data model. Section 4 formalizes interval-based, point-based, and
duplicate-aware temporal operator semantics. Section 5 introduces grouped tem-
poral bags, the core data structure of the TMDJ, which is used for grouping
time points together. Section 6 formalizes the temporal multi-dimensional join
(TMDJ), and specifies the parameters which can determine the temporal se-
mantics of the TMDJ. Section 7 shows how the TMDJ can be used for temporal
difference, and temporal aggregation. Section 8 evaluates the performance of the
TMDJ. Finally conclusions and future work are presented in Section 9.

2 Related Work

The research into temporal databases has led to the development of various
temporal data models [Ari86,NA89], and several temporal query languages, e.g.
TSQL2 [Sno95], ATSQL [BJ96], IXSQL [LM97], and TQUEL [Sno096]. Often the
main difference between the various data models have been the way in which
the temporal dimension is incorporated into the model [TCGT93]. A common
characteristic is that each model argues (often strongly!) for its specific data
model. The result is a set of (incompatible) data models that are good for some
applications but fail for others. We choose a different approach where we isolate
three key properties that account for the differences between the models, and
make them available as parameters of the TMDJ algorithm.

Several temporal query processing algorithms have been proposed [BSS96]
[PJ99,51n099,YWO01,BJ03]. In general, the proposals are based on translating
temporal query language statements into SQL statements, which are processed
by an underlying conventional DBMS [S1i01]. It has been shown that such an ap-
proach is limited and suffers from a poor performance. Particularly, the advanced
temporal operations considered in this paper cannot be implemented efficiently
using plain SQL.



The semantic properties introduced in this paper extend the notions in
[BBJ9§], while the TMDJ is a temporal generalization of the MD-join [MAKO1]
[ABO3], which has been used to efficiently implement complex OLAP queries.

3 Preliminaries

3.1 Temporal Data Model

A data model M = (D, O) is composed of a set of data structures D and a set of
operations O defined on these data structures. For instance, the relational data
model is composed of relations and relational operators.

A temporal data model My = (Dy,Or) is composed of temporal data struc-
tures Dy and a set of temporal operators Op. An operator is temporal iff it
returns a temporal bag when applied to temporal bags. A temporal bag R is an
instance of a temporal schema R = (X1,..., Xp|I), where X; is a non-temporal
attribute and I is the temporal attribute. We use the | to separate the non-
temporal attributes from the temporal attribute, and use X as a shorthand for
the non-temporal attributes Xy, ..., X,;. The temporal attribute I is a closed in-
terval with start point I'™ and end point I~ (i.e., I = [I*,17]), where IT < I~
We write p € I to state that time point p is contained in the interval I, i.e.,
I <p<I-.

3.2 Bag Algebra

A bag is a collection of elements that may contain duplicates [GM93]. We use
{...} to denote a bag. An element n-belongs (€") to a bag iff it occurs exactly
n times in the bag. Assume the bag R = {c, ¢,d, d,d}, then element ¢ 2-belongs
to R and element d 3-belongs to R. Below we define the most common bag
operations.

Duplicate elimination, R’ = ¢(R): R’ contains a single instance of each ele-
ment in R:y €' R' &y €™ R.

Selection, R' = ¢[P|(R): R’ contains all elements in R that satisfy predicate
P:ye™ R <y €™ RA P(y).

Projection, R’ = n[Z](R): R' contains all elements of R projected on Z:
y en Re R=R YRy A |R1| =nAVte Rl(t.Z :y) AVt € RQ(t.Z ;éy)

Additive union, R’ = R; W Ry: R’ contains all elements in R; and R»:
yePtM R & yeP Ry Ay € Ry.

Difference, R’ = R; — R>: R’ contains all elements in R minus all elements
inRe: y €"R' &y €P Ry Ay €9 Ry An =max(0,p — q).

Cartesian product, R’ = R; X Ry: R’ contains each element of R; combined
with each element of Ry: yoz €P*? R' < y €P Ry Az €1 R,.

In the remainder of the paper we use the tuple calculus [SKS96] over bags to
define newly introduced concepts and operators.



4 Semantic Properties

In the introduction we argued that the different opinions about the intended
outcome of temporal operators can be attributed to three properties of the op-
erators: is it interval-based, is it point-based, and is it duplicate-aware. This
section gives a formal definition of these properties. First we define the time
domain.

Definition 1. 77 = (7, <) is a time point domain over the set T iff < defines
a total order on T . Each element of T corresponds to a time point of TP.

Definition 2. A time interval I of TP is a set of connected time points iff any
time point between two time points in I are also in I i.e. (pp € I A p2 € I A p3
€ETPAp <ps <p2)= ps €L IfT is the set of all time intervals of TP, then

Tt = (Z, C) is a time interval domain over the time point domain TP.

Note that intervals are often utilized as a syntactic shorthand representa-
tion for time points, due to the impractical nature of recording all time points
when a tuple is true individually. Thus, it is clear that the difference between a
point-based and an interval-based operator cannot be determined from the time-
stamp syntax. The characterizing difference between point-based operators and
interval-based operators is found in the way they treat an interval timestamp. A
point-based operator treats an interval as a set of individual time points, while
an interval-based operator treats an interval as a set of connected time points
i.e. the interval-based operator differentiates between the interval [1,10], and the
intervals [1, 5] and [6,10], while a point-based does not.

4.1 Point-based Operators

A point-based operator considers an interval timestamp as a set of individual
time points. Thus, a point-based operator treats two temporal bags as equivalent,
if the time points associated with a fact in one bag is identical to the time points
associated with the same fact in the other bag. This is referred to as snapshot
equivalence, and is defined as follows.

Definition 3. The timeslice operator, 7,, ezxtracts the snapshot of a temporal
bag R at time point p: T,(R) = {{¢.X)|[t € RApet.)}.

Definition 4. Two temporal bags R, and R are snapshot equivalent, R; =P
Ry, iff their snapshots are pairwise identical: Ry =P Ry iff Vp(1,(R1) = 1p(R2)).

A temporal operator O is point-based iff snapshot equivalent arguments yield
snapshot equivalent results. We use A as a shorthand notation for a list of
arguments bags Ry, ..., Ry, and A’ C A is a shorthand notation for R} C Ry A
AR, CR, AU, R; C U, Ri.

Definition 5. A temporal operator O is point-based iff it preserves snapshot
equivalence, i.e., VA1, Aa(A1 =F Ay = O(A;1) =P O(A»))



Ezample 1. Consider the coalesce operator (coal) [BSS96] an operator similar to
conventional duplicate elimination, which merges values-equivalent tuples if the
union of their timestamp is an interval.

coal(R) = R, iff
Vp e TP(t € T,(R) & t €' 1,(R))A
Vi, t' € R'(t Zt' ANt.X =t'X = —adje(t.I, t'.I) A —ovlp(t.I,t'.I))

The predicates adjc and ovlp are defined as usual:

adjc([IT,I7),[J*,J7]) = (It = suce(J7)) V (succ(I™) = JT)
ovlp((I*, I7],[JF, J7) = ([T <JF<IT)v({IT<J <I7)

Let R; and Ry be temporal bags, where Ry = {{(5|[1,15]), (5][10,20])},
and Ry = {{(5|[1,5]), (5][6,15]), (5][10,20])}, then coal(Ry) = coal(Ry) =
(50, 200) 3

The coalesce operator defines a normal form for point-based models, which
ensures independence of both the timestamp representation and multiplicity of
a fact i.e. the number of times a fact occurs in a snapshot.

Lemma 1. Coalesce is a point-based operator.
Ry =P Ry = coal(Ry) = coal(R2)

Proof: Since the snapshots are identical and coalesce merges all adjacent time
points the results must be identical i.e. also snapshot equivalent.

Lemma 2. Coalescing the argument of a temporal operator O yields point-based
semantics.

Proof: Temporal bags which are snapshot equivalent are identical when coa-
lesced.

VA1,A2(A1 =P Az = coal(A1) = coal(A2) A O(coal(A1)) = O(coal(Az)))

4.2 Interval-based Operators

Intuitively, an operator is interval-based iff it respects the grouping of time points
into intervals. The defining property of interval-based operators is that they pre-
serve the original grouping of time points. The first step towards a definition of
interval-based operators is the definition of the time points that shall be asso-
ciated with a result fact. For each operator O we assume the explicit definition
of OP, which defines the bag of resulting time points associated with a set of
non-temporal attribute values.



Ezample 2. Consider the definition of OP for the set of basic temporal relational
algebra operators: Temporal selection, temporal projection, temporal additive
union, temporal difference, temporal Cartesian product, and coalesce.

or = {(tX|p)t e RAC(t) Apet.l}

o¢ (R)
OitZ(R) ={({t.Z|p)t € RApetl}
Opueq tX|p)(te PVteU)Apetl}

OllgxtQ t.X,s.Y|p)te PAseQApesIntl}

(
= 1
Op_iqg = }{{étX"thEP/\pEtI/\VsEQ(SX_tX§p¢sI)}}
Otpu(ry = LXIp)p € TP A3t € 7(R)(X = t.X)}

As an example let us consider the definition of OP for temporal selection
ot,, where the condition C' is (X = 7) and the temporal bag R = { (7|1, 3]),
(10][1,10]), (7][2,5]) } with the schema R(X]|I), then O, C(R) = = { (7|1), (7|2),

(712), (713), (713}, (714, (715) }-

Definition 6. Let O be a temporal operator, then O is interval-based, iff forall
result tuples (X|I)

(X|I) e O(A) &

JA' CA(OP(A') C OP(A) AVp € I({X]p) € OP(A"))A (1)
VB1,..Bn(B1W.. 0B, =A'AB;1 Z0A .. AB, #0 >
O?(B1) W... s OF(By) # O (A")A (2)

(X|pred(I™)) ¢ OP(A’) (X|suce(I™)) ¢ OP(A")) (3)

Thus, a result tuple, (x|I), must be derivable from a subset A’ of the argu-
ment bags (1), this subset must be minimal (2), and the subset may not permit
the derivation of larger result intervals (3).

Ezample 3. Consider the temporal projection 7, (R), where R = {(5,10][1, 3]},
(5,10][3,5])} is an instance of the schema R(X, Z|I), and Oi‘Z(R = {(10]1),
(10]2), (10]3), (10|3), (10]4), (10]5)}. Then there are two minimal subsets
of R from which result tuples are derivable: Ry = {(5,10|[1,3])}, and Ry =
45,1003, 3]}, where O, 1, | = {{10]1), (10]2), (10J3)} and O, = £(10]3),
(10]4), (10]5) }. Thus, deriving the largest possible result mtervals the result of
the interval-based temporal projection is 7% (R) = {(10][1, 3]), (10|| [3,5))}.

Ezample 4. Consider the coalesce operator coal(R), where R = { (4|[L,4]),
(41[5,8))}, and OF, ;) = £(411), (412), (4]3), (4]4), (4]5), (4]6), (4]7), (4I8)}-
There are two minimal subsets of R from which result tuples are derivable:
Ry = {(4l[1,4]) }, and R, = {(4][5,8])}, where OF, ,;(5,) = {(411), (4]2), (4]3),
(4|4)} and Ocoal(Rz) = {(4]5), (4]6), (4]7), (4|8)}. Deriving the largest possi-
ble result intervals yield (4|[1,4]) and (4|[5, 8]), which does not match with the
desired result of {(4|[1,8]). Thus, coalesce is not interval-based. Which is also
intuitively correct, since coalesce merges intervals of overlapping and adjacent
tuples i.e. it does not respect the grouping of time points into intervals.



4.3 Duplicate-aware Operators

With a temporal data model it is not a priori clear what a duplicate is. We
say that a temporal bag contains duplicates iff one of its snapshots contains
duplicates.

Definition 7. A temporal bag R contains temporal duplicates iff a tuple t oc-
curs multiple times in at least one of its snapshots.

duplicates(R) =3dp € TP(t €" 7,(R) An > 1)

Definition 8. An operator O is duplicate-aware iff (1) it is sensitive to dupli-
cates and (2) the number of duplicates in each snapshot is consistent with the
definition of OP:

3A1,A2(Vp € TP(E(TP(Az) g 6(Tp(A1))) N OP(A]_) 7é OP(A]_ &) Az)) A (1)
VA1,p € TP(1p(0(A1)) = 1,(07(A1))) (2)

Intuitively, (1) requires that the result changes if duplicates are added to the
argument relations. (2) requires that the number of duplicates returned by O is
correct at each point in time, i.e., consistent with the definition of OP.

Ezample 5. Consider the temporal additive union P; W @1, let the temporal bags
P = {(10][7,9])}, P. = {(10|[8,9])}, and @1 = {(10][5,6])} be instances of
the schema R(X|I), where (’)ﬁ’,lthl = {{(10]5), (10|6), (10|7), (10|8), (10]9)},
and Oy, 1 oror = £(1015), (10[6), (10]7), (10]8), (10]8), (10]9), (10]9)}. I the
results of the temporal additive union respectively are: P, Wt Q1 = {(10][7,9]),
(10][5,6])) }, and (Py @ ) &' Q1 = {(10][7,9]), (10][5,6]), (10][8,9])}. Then
the operator is duplicate-aware, since this means the temporal additive union is
both sensitive to duplicates, and the number of duplicates is consistent with the
definition of OpPl&J‘Ql'

5 Grouped Temporal Bags

A grouped temporal bag is a temporal data structure, where temporal tuples,
which are non-temporally equivalent can be explicitly grouped together in tem-
poral groups.

5.1 Structure

A grouped temporal bag G has the schema (X1, ..., X,|TC), where X; is a non-
temporal attribute, TC is a bag of temporal compounds, and | separates non-
temporal attributes from the temporal compounds. A temporal compound TC
is a tuple consisting of a time interval and m non-temporal attribute values (m
can be 0). Table 3 shows the structure of a grouped temporal bag.The elements,
g € G, of a grouped temporal bag G are referred to as temporal groups. Note



Table 3. Structure of the Grouped Temporal Bag G

G

X ... X, TC

11 T (L1, 0000, @0 0m), o (fLys @1y 1, @1y m) B
Tq,1 - Tan||f{ta,1,0q,1,15 0, Qg,1,m), s {tau, Agyu,1y -y Aguu,m) |

that the cardinality of a temporal group, |g.TC|, is not necessarily the same for
each temporal group.

A grouped temporal bag G is normalized (closely related to coalesce for
temporal bags cf. Section 4.1) if it does not contain temporally overlapping or
adjacent temporal compounds with identical non-temporal attribute values, i.e.,
Vg € G the following must hold:

VCl,CQ € g.TC(Cl 7é OoNC . X=03.X=>
—adjc(Cy.I,Cs.I) A —ovlp(Cy .1,C,.1))

In the remainder of this paper we exclusively consider normalized grouped
temporal bags. Thus, whenever we refer to a grouped temporal bag we always
assume a normalized grouped temporal bag.

5.2 Grouping Strategies

A temporal group can model a number of temporal tuples Let g be a temporal
group and R be a temporal bag, then g and R are group equivalent (=9), iff g
models the tuples that are in R.

g=7 R iff
R={(9.X, A1, ... An|D|{I, As,..., Ap) € . TC}

Clearly, a grouped temporal bag can model a temporal bag in several distinct
ways. For example, each temporal tuple could be modeled by an individual
temporal group or all temporal tuples with the same non-temporal values could
be modeled by a single temporal group. The specific strategy that is used to
model a temporal bag is called the grouping of the grouped temporal bag. Below
we introduce scattered, compact, composite and filtered groupings. We use the
temporal bag R in Table 4 to illustrate the groupings.

Definition 9. A grouped temporal bag G is a scattered grouping of the temporal
bag R, iff each temporal group g models exactly one temporal tuple.

group(R, scattered) = G, iff
(X.zZ|I) e R & (X|{(,Z)}) € G



Table 4. A temporal bag R

A B sum(A) count(B)|| I

1010 10 1 [5,24]
1010 20 2 |[25,30]
54 5 1 [1,4]
54 10 2 | [5,10]
54 10 2 | [5,10]

Table 5. A scattered grouping of R

A B TC
10 10| {{[5, 24], 10, 1) }
10 10|/ (]

25, 30], 20, 2) }
(

5 4 {([1,4],5, 1)}
5 4| {(5, 10] 10,2)}}
5 4| {([5,10],10,2)}

Table 5 shows the scattered grouping of the temporal bag in Table 4.

Definition 10. A grouped temporal bag G is a compact grouping of the temporal
bag R, iff all temporal groups are non-temporally distinct, and all tuples with the
same non-temporal values as a temporal group are modeled by that group.

group(R,compact) = G, iff
(X,Z|I) e RApel & X|TCYe GA{I',Zy e TCApe I'A
Vg1,92 € G(g1 # 92 = 91.X # 92.X)
Table 6 shows the compact representation of the temporal bag in table 4. No-

tice that a compact grouping is equivalent to coalescing (Remember grouped
temporal bags are normalized).

Table 6. A compact grouping of R

A B TC
10 10][ (5, 241, 10, 1), ([25, 30], 20, 2}
5 4| {([1,4],5,1),(5,10],10,2)}

Definition 11. A grouped temporal bag G is a composite grouping of a temporal
bag R, iff it can be partitioned into a number of compact grouped temporal bags

10



G, ... Gy, where any fact which i-belongs to a snapshot of R, 1-belongs to the
temporal bags G1, ... , G; i.e. G =9 R', R' =P R and G1 =9 coal(R).

group(R,composite) = G1 W ... & G, iff
(X,Z) €' 7,(R) & (X|TC) € G; A{I,Z) € TCAp € IA
V91,92 € Gi(g1 # 92 = 1. X # 92.X)

Table 7 shows the composite grouping of the temporal bag in Table 4. Notice
that a composite grouping is equivalent to a duplicate preserving coalesce.

Table 7. A composite grouping of R

A B TC

10 10{[ {5, 241, 10, 1), ([25, 30], 20, 2}
5 4 L 4),5,1),([5,10], 10,2)}
5 4 {([5,10], 10, 2) }

Definition 12. A grouped temporal bag G is a filtered grouping of a temporal
bag R, iff each temporal group g models exactly one temporal tuple and there are
no temporal duplicates.

group(R, filtered) = G, iff
~Ipe TPt e (R)An>1)ANX,Z|I) e Re (X|{({I,Z)}) e G

Table 8 shows the filtered grouping of the temporal bag in Table 4. Note the
non-deterministic nature of removing duplicates. If two groups overlap then the
overlapping time points are removed from only one of the groups.

Table 8. A filtered grouping of R

A B TC

10 10| {([5, 24], 10, 1) }
10 10| ([25, 30], 20, 2) }
5 4| {([1,4],51)}
5 4| {([5,10],10,2)}

11



6 The Temporal Multi-Dimensional Join

The TMDJ is a simple parameterizable operator, which takes four arguments:
A temporal bag D, a grouped temporal bag G, a group operator O, and a
condition @ that references non-temporal attributes of D and . The condition
O is evaluated for each temporal tuple of D and each group of G. If a temporal
tuple in D and a group in G satisfy the condition, then the group is updated
according to the group operator O.

A group operator O is an operator, which takes two operands: A temporal
tuple ¢ and a temporal group g, and it returns the temporal group g’, where
g'.X =g¢g.X.

Definition 13. Let D be a temporal bag, G be a grouped temporal bag, O be a
group operator and 6 a condition with attributes from D and G.

TMDJ(G,D,0,0) =
fd'lge GAR={tlt e DAO(t,9)} Ng' = Apply(O, R, 9)}

g iff R=10
Apply(O, B, 9) = {Appzyw, R',O(t,g)) iff R = {t}w R’

A key property of the TMDJ is the existence of a simple and efficient eval-
uation algorithm. The parameters of the algorithm are: The temporal bags R;
and Rz, the © condition, the group operator O, and a grouping parameter.

TMDJ Algorithm
IN: Ri, R»2, O, O, grouping
Body: Initialize D = R,
Initialize G = group(R2, grouping)
For each temporal tuple ¢ of D {
For each group g of bucket[search-key(¢)] {
If O(t, g9) == TRUE Then {
g =0(, g)

Return All temporal tuples in G

The first step is the initialization of the grouped temporal bag G as a grouping
of Ry (note, when initializing G attributes which appear in the @ condition
should not appear in a temporal compound). The initialization includes the
construction of a hash index for the temporal groups in G. All groups with
an identical search-key are hashed to the same bucket. The search-key is the
summation of the binary representations of the non-temporal attributes. In the
main loop each tuple of D is applied to all qualifying groups.

6.1 Semantics

We formalized point-based, interval-based and duplicate-aware semantics in Sec-
tion 4. In Section 5 we introduced four grouping strategies: scattered, compact,

12



filtered and composite. In this section we specify how each grouping strategy
determines the temporal semantics of the TMDJ.

The basic semantics of the TMDJ are determined by the specific group opera-
tor, which is applied to the groups in the grouped temporal bag G. The temporal
semantics of the TMDJ, however, are determined by both the group operator
and the grouping strategy, where the grouping strategy decides the grouping of
time points and the group operator decides how they are processed.

Conceptually the TMDJ performs the temporal operation Apply on each
group ¢ of the grouped temporal bag G, where Apply is defined by a subset
of the temporal bag D and a group operator O. The result of the TMDJ is
a temporal bag of tuples R, which consists of all the tuples modeled by each
temporal group gj.

R=R;W¥..¥R,, where R; =9 g|

This means that each bag of tuples R; is derived from a temporal group g;,
and the temporal semantics of the deriving operation depends on how the time
points are initially grouped into g; i.e. the grouping of the grouped temporal bag
G:

Scattered (ib, da): Each temporal group g initially corresponds to exactly one
argument tuple t, g =9 {{t}. Thus, all tuples derived from g are derived
from the minimal subset ¢, and normalizing ensures that all derived inter-
vals are maximal i.e. interval-based semantics. Additionally, since duplicates
are grouped separately they are processed independently, which means the
multiplicity of a fact is bound by the multiplicity of the fact from which it
is derived from i.e. duplicate-aware semantics.

Filtered (ib): A filtered grouping is equivalent to a scattered grouping, except
it does not recognize temporal duplicates i.e. this grouping yields interval-
based semantics.

Compact (pb): A compact grouping of a temporal bag R is equal to coalescing
Rie. G =9 coal(R). From Lemma 2 we know that this gives us point-based
semantics.

Composite (pb, da): A composite grouping of a temporal bag R defines a
point-based normal form similar to coalescing, except it deals correctly with
temporal duplicates:

Ry =P Ry < group(Ri, composite) = group(Rs, composite)
A group(Ry, composite) = R} A R} =P R;

This grouping yields point-based and duplicate-aware semantics.

7 Temporal Operators

The TMDJ can be used to implement a wide range of temporal operators. We
have used it to implement temporal aggregation and temporal difference, as these
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are difficult to implement using current database technology and are often not
even supported.

We use the following auxiliary interval operations: —% returns the left in-
terval of an interval subtraction, —% returns the right interval of an interval
subtraction, and N returns the intersection of two intervals.

I = I = [I7 ,min(I], pred(I;))] it I < Iy
L -fL= [ma:U(I1 ,succ(J*)) I if I < I
I N L =[max(I}, L),min(I;, I,)] if ovip(I1,I»)

If the condition on the right is not satisfied the respective operator does not
return a result interval.

7.1 Temporal Difference

The temporal difference P —t () can be expressed as a TMDJ, where the grouped
temporal bag G is a grouping of P, the temporal bag D is equal to Q, the @
condition is non-temporal equivalence, D.X = G.X, and the group operator O
is subtract.

—tQ =TMDJ(P,Q, subtract, D.X = G.X)

Definition 14. The group operator subtract removes time points that are in
the temporal tuple t from the time points that are in the temporal group g.

subtract(t,g) = ¢', iff ¢/ X =¢.X
ANg . TC={I|C€g.TCAIc{C.I-Lt.I,CI-BtI}ANIT#0}

Ezample 6. Consider applying subtract to the tuple ¢ = (7| [5,35] ) and the
temporal group g1 = ( 7 |{ ([3,10]), ([15,25]), ([30,40]) } ), and subsequently
to the temporal group ¢g» = ( 7 |{ ([1,40]), ([50,60]) } )

subtract(t, 1) = (T[{([3,4]), ([36,40]) }})
subtract(t, g2) = (T|{{[1,4]), ([36,40]), {[50, 60]) })

Ezample 7. To illustrate the temporal difference P —* Q we use the temporal
bags P and @ in Table 9. The first step is to initialize the temporal bag D as @,
and the grouped temporal bag G as P grouped respectively scattered, filtered,
compact or composite as illustrated in Table 10. Subsequent to the initialization
each tuple of D is processed tuple-by-tuple, if a group of G satisfies the @
condition (G.X = D.X) with regard to the tuple currently being processed,
then the tuple is subtracted from the group, as illustrated for each grouping in
Table 11 (where qualifying groups are marked by =).
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Table 9. Temporal bags P and @

P Q

A I A I

10][ [1,10] 10][ [1,5]

101[[11,20] 10{([15,20]

5 |[21,40] 5 |[21,25]

5 {|[21,40] 5 {|[35,40]

Table 10. G grouped as P

TC
0] (L, 100 ¥ | [A TC A TC
10/[€([11, 20])}| [10] {(T, 100 F | [A]__TC | [10][{(, 200}
5 |1f([21, 40D }| (10 {([11, 201 }| |10 {([1,20D)} | | 5 | £([21, 40]) }
5 [[{([21, 40D B| |5 [|{([21, 30D} [5 | f([21,40D}] {5 [|f<[21,40]) }
Scattered Filtered Compact Composite

7.2 Temporal Aggregation

The temporal aggregation g, ,..G,, G, (41)....f.(A,) (P) can be expressed as a TMDJ,
where the grouped temporal bag G is a grouping of P, the temporal bag D is
equal to P, the © condition is non-temporal equivalence, and the group operator
O is split.

Grr G G 1 (AL) o fn(An) (P) =
TMD.J(P, P, split(f1(A1), - fu(An)), D.X = G.X)

Definition 15. The group operator split splits the time points of the temporal
group g into a set containing the time points of g, that are also in the temporal
tuple t, and a set which contains the time points of g that are not in t. Addi-
tionally the aggregate values of the first set are updated according to the set of
aggregate functions fi,..., fn.

split(t, g, fi(A1), .., fa(An)) =4, iff ¢ X=9g.XAg.TC =
{UNf1(C. ALY, s fu(C.Ap, 1))|C € g. TCA
Ie{CI-ttr,CT-"tI}AT#0}
w{({I|C.A,...,C.A)C € g.TCANTI=CINtINT #0D}
Ezample 8. Consider applying split to the tuple ¢ = (10, 5| [20,30] ) from a

temporal bag with the schema (A, B|I) and the temporal group ¢ = ( 10 |{
([1,40]) } ), and counting the attribute B.

split(t, g, count(B)) = (10]{([1, 19]), ([20, 30], 1), ([31,40])} })

Ezample 9. To illustrate the temporal aggregation aGcount(s)(P’) we use the
temporal bag P in Table 12. The first step is to initialize the temporal bag D as
P, and the grouped temporal bag G as P grouped respectively scattered, filtered,
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R

Table 11. Temporal difference.

A TC A TC A TC A TC

101 f([6, 101 } | =10 {([6, 10]) } 10\ {([6, 101) } 101 {([6, 10) }

101{([11, 20]) }| =|10{|{([11, 14])} 10(f([11, 14]) } 10{|€([11, 14]) }

5| 1{([21, 40]) } 5 |[{([21, 40D} =5 |[{([26, 40D} =5 ||{([26,34])}

5 | f([21, 40 } 5 ||f([21, 40 } 5 [|{([26, 40D }] =5 |[{([26,34]) }
(a) Scattered grouping.

A TC A TC A TC A TC

1011 ([6, 10D } | =10\ {([6, 10]) } 10\ {<[6, 101) } 101 {([6, 10) }

10/ (11,20 }| =10/ f([11, 14} |10[{([11, 14} 10}/ {([11, 14])}

5 | f([21, 40 } 5 ||f([21, 40 } 5 [|{([26, 40D }] =5 ||{([26,34])}
(b) Filtered grouping.

A TC A TC A TC A TC

1011 ([6,20D } | ={10{ {([6, 14]) } 101 {<[6, 14]) } 101 {([6, 14]) }

5 | f([21, 40 } 5 ||f([21, 40 } 5 [|{([26, 40D }] =5 |[{([26,34]) }
(¢) Compact grouping

A TC A TC A TC A TC

1011 ([6,20D } | ={10[ {([6, 14]) } 10 {([6, 14]) } 101 {([6, 14]) }

5| 1{([21, 40]) } 5 |[{([21, 40D} =5 |[{([26, 40D} =5 ||{([26,34])}

5 | f([21, 40 } 5 ||f([21, 40D }| =5 [[{([26, 40D }]| =5 ||{([26,34])}

(d) Composite grouping

16




Table 12. Temporal bags P

P

A B I

10 10|[ [1,5]

10 5 ||[6,20]

5 10]([1,30]

5 51[1,20]

Table 13. G grouped as P
A TC
10{ §([1,5],0)} | |A TC A TC
10( (6, 201, 0)}| [T0] {51, 0¥ | [A]__TC | [10] [T, 201, 0)F
5 ||{([1, 301, 0)}| [10( (6, 20),0)}| [T0][F(TL, 20T, B)F] | 5 | 4([1, 301, 0}
5 ||f([1, 20, ) }| | 5 ||f<[1, 30, @) }| |5 || <1, 300, 00} |5 |€<[1,20], 00}
Scattered Filtered Compact Composite

compact or composite as illustrated in Table 13. Subsequent to the initialization
each tuple of D is processed tuple-by-tuple, if a group of G satisfies the @
condition (G.X = D.X) with regard to the tuple currently being processed, then
the group is split, as illustrated for each grouping in Table 11 (where qualifying
groups are marked by =).

8 Performance Evaluation

In this section we report the results of three test sets, where we measure the
performance of a TMDJ implementation of temporal difference, temporal aggre-
gation, and the initial grouping of the grouped temporal bag.

We use two test databases: One consisting of non-temporally distinct tuples,
and one consisting of a chain of overlapping tuples. In the first set of tests we
measure the performance of the TMDJ on the non-temporally distinct tuples,
in the second test set we measure the performance of the TMDJ on the chain of
overlapping tuples, and finally in the third test set we compare the performance
of the TMDJ implementation of temporal difference and coalesce with equivalent
SQL solutions, where coalesce is simply a compact grouping.

8.1 Implementation

We implemented a lightweight version of the TMDJ evaluation algorithm on
top of Oracle9i with a few simple optimizations. The hash index is implemented
as an array of buckets, where each bucket is implemented as a linked list to
prevent bucket overflows. Each temporal group of the grouped temporal bag G
is implemented as two linked lists: One list for the non-temporal attributes, and
one list for the temporal compounds. This allows us to quickly determine if the
© condition is satisfied, and subsequently flexible manipulation of the temporal
compounds as required by a group operator.
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Table 14. Temporal aggregation.
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(d) Composite grouping.
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8.2 Experimental Results

Test Set #1 (Non-temporally Distinct Tuples): In the first set of tests we
measured the performance of the TMDJ on a test database which contained all
non-temporally distinct tuples. This test provides a performance reference point,
since the grouped temporal bag is identical for all groupings, and the hash index
should work perfectly.

Fig. 1. Reference point.

140
120 +
Temporal Aggregation —+—
7 100 Temporal Difference ---x--—
g Grouping %
o]
3 e
| .
*
T 40 4
2 1 -
x
0 T T T . . . . i
10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

number of tuples (=n)

The results were almost completely identical for all groupings, and a reference
point for temporal difference, temporal aggregation, and the initial grouping of
the grouped temporal bag is illustrated in Figure 1. The result includes the time
it takes to fetch the argument tuples, as illustrated in Figure 2 (left) the amount
of time spent fetching takes up quite a large percentage of the total performance
cost (up to 95%!). Excluding the fetch time from the reference point yields results
around 20 to 30 seconds of processing time for 100.000 tuples as illustrated in
Figure 2. This also shows that the time it takes to create the initial grouping,
and to compute both temporal difference and temporal aggregation is almost
identical within a few seconds of each other. This is interesting since the initial
grouping is little more than a scan of the temporal bag which is used to initialize
the grouped temporal bag.

Fig. 2. Fetch (left) and reference point for all groupings excluding fetch (right).
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Test Set #2 (Overlapping Tuples): In the second set of tests we measured
the performance of the TMDJ on a test database, which contained only over-
lapping tuples. The results for the initial grouping of the grouped temporal bag
are illustrated in Figure 3.

The results show that compact and scattered groupings perform best and
quite close to the reference point, while composite and filtered groupings perform
far worse than the reference point at a cost approximately 5 times the reference.
This may be explained by the fact that composite and filtered groupings are
variations of scattered and compact, which require special attention to temporal
duplicates. However, it is interesting to note that the special attention goes in
opposite directions i.e. composite preserves duplicates, where filtered removes
duplicates.

Fig. 3. Grouping initialization for overlapping tuples.
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Fig. 4. Temporal aggregation results for overlapping tuples, including (left) and ex-
cluding (right) grouping initialization.
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The test results for temporal aggregation on overlapping tuples are illustrated
in Figure 4, including (left) and excluding (right) the grouping initialization.
The test results for temporal difference on overlapping tuples are illustrated in
Figure 5, including (left) and excluding (right) the grouping initialization.

The results for temporal difference and temporal aggregation are very similar,
as previously compact and scattered perform best. However, if we exclude the
grouping time we get a slightly different view of the performance. For temporal
aggregation we see scattered, filtered and compact groupings perform the same,
while the composite grouping is quite expensive compared with the others. This
result is similar for temporal difference where the composite grouping deterio-
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Fig. 5. Temporal difference results for overlapping tuples, including (left) and excluding
(right) grouping initialization.
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rates at approximately 80.000 tuples. However, the compact grouping performs
significantly better than both the scattered and filtered grouping. The reason
that the composite grouping performs worse may be because it is effectively
dealing with all the temporal duplicates of all the overlapping test tuples. While
the reverse holds for the compact grouping, which is effectively dealing with a
lot less tuples than the other groupings.

Fig. 6. Coalesce (left) and temporal difference (right) as performed by the TMDJ and
equivalent SQL solutions.
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Test Set #3 (SQL): In the third set of tests we compared temporal difference
and coalesce as performed by the TMDJ with equivalent SQL solutions. The
results are summarized in Figure 6. The SQL solutions quickly become imprac-
ticable as illustrated for temporal difference at 10.000 tuples, which takes the
SQL solution 10.000 seconds while it takes approximately 10 seconds for the
equivalent TMDJ.

8.3 Evaluation

The test results show that the TMDJ overall performs at a linear cost, and a
high percentage of this cost is spent fetching tuples. It is likely that integrating
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the TMDJ into the underlying DBMS would provide significant performance
improvement.

The tests also showed that introducing temporal duplicates into the argu-
ment bags lowers the performance. Specifically temporal duplicates influence
the performance of composite and filtered groupings, where composite preserves
the temporal duplicates and filtered removes temporal duplicates compared re-
spectively with compact and scattered groupings. With regards to the seman-
tics this means point-based semantics perform at a cost similar to semantics
which are both interval-based and duplicate-aware, while interval-based seman-
tics perform at a cost near the cost of semantics, which are both point-based
and duplicate-aware. Thus, if we want point-based semantics it is expensive to
also have duplicate-aware semantics, where if we want interval-based semantics
it is inexpensive to have duplicate-aware semantics.

Overall the test results show that temporal difference and temporal aggrega-
tion can very elegantly be reduced to a TMDJ, which exhibits a linear perfor-
mance, and is orders of magnitude better than equivalent SQL solutions.

9 Conclusion and Future Work

In this paper we identified and formalized point-based, interval-based and dupli-
cate-aware semantics. Point-based operators are defined as operators, where the
time points in the result is independent of how time points are grouped in the
argument bags. Interval-based operators are defined as operators, which respect
and preserve the interval grouping of time points. Duplicate-aware operators are
defined as operators, which are sensitive to temporal duplicates in the argument,
and yield results with a clearly defined number of temporal duplicates.

Next, we formalized the temporal multi-dimensional join (TMDJ), and the
grouped temporal bag, the core data structure of the TMDJ. Then we spec-
ified how grouping time points in the grouped temporal bag determines the
temporal semantics of the TMDJ: Grouping all time points of a fact together
yields point-based semantics, grouping duplicate time points separately yields
duplicate-aware semantics, and finally grouping time points of a fact according
to the timestamps yields interval-based semantics.

Finally, we studied the performance of the TMDJ in a series of tests, which
concluded that the main performance issue is how to process temporal duplicates
depending on the desired semantics. Where preserving duplicate is expensive
for point-based semantics, and removing duplicates is expensive for interval-
based semantics. Additionally, tests showed that the performance of the TMDJ is
orders of magnitude better than equivalent SQL solutions for temporal difference
and coalesce.

Future work includes a further formalization of the parameters to provide
an orthogonal and complete framework for determining the semantic properties.
Several other research directions may also prove to be interesting, such as the
role of the TMDJ in complex temporal OLAP queries.
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