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Chapter 1

Introduction

This report is a continuation of the work presented in [4fhaligh the present report can be read
independently of its predecessor. It describes ESKuSEcamym for ESKUSE is &Structureless
Keyword giery Search Engine which is a fast and efficient keyword search engine for i
databases.

1.1 Motivation

Today, large amounts of data are stored in relational datsharhey are almost exclusively queried
in a structured fashion using query languages such as SQLsefA who wishes to issue his own
queries on the database must have knowledge of its scheohajast either use SQL (or equivalent
languages) or rely on e.g. graphical query design tools.tMsars, however, only interface indirectly
with the database through applications that hide commtiarcavith the database through predefined
queries.

This imposes several restrictions on the user. First ofitathises the bar on the qualifications
needed to issue queries. Secondly, structured queriesnilireturn the results that the user expects
to get, whereas keyword queries might also find results tieatr@expected. Thirdly, structured queries
allow almost no vagueness, but the user may not have enofimation to make an adequately
precise query.

Keyword querying will not displace structured querying ig current roles, since the latter has
significant benefits with regard to control of the query resahd raw performance, but the two com-
plement each other well. Perhaps most significantly, kegvgorery engines can dramatically reduce
the effort required to publish structured data and subsstuperform queries on these data [2].

The great success Internet search engines shows that petpleo special training or education
take very easily to using keyword queries to find relevargrimfation on the Internet. Keyword search
engines for relational databases can present users withisinterface, which will thus be both
familiar and unintimidating to even inexpert users. Thislldoeasily prove to become a significant
new source of information on corporate networks, thoughgéreeral method is still very young, and
has not yet seen widespread usage.

1.2 Keyword queries

Today, we know keyword queries primarily from Internet sfteengines. We can enter our query as a
list of keywords, which are normally just words and/or numsh@nd that’s all the search engine needs
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to find documents that match our query. While a relationaloiase is very different from a collection
of web pages, queries may well look exactly the same and beceegh to return results in much the
same way.

Keyword queries, by their nature, offer only limited exmi®s power. As we know them from
Internet search engines, keyword queries are normalleeitbnsidered conjunctive or disjunctive.
Consider a keyword query as a set of keywofdsh, c¢}. A conjunctive query will require all keywords
to be found, i.ea A b A ¢, and a disjunctive query will require at least one keywortédound, i.e.
aVbVec.

Most search engines, though, allow a combination of the winich is to say that some keywords
are specified to be required, typically by prefixing the keyavwith a +, and the remainder are
optional. Given such rules, the quefya, b, ¢} would be expressed as/ (a A (b V ¢)). Furthermore,
exclusion of certain keywords, commonly denoted by prefjthre excluded keyword with-a, is also
supported by most search engines, whiere, b, ¢} would be expresseda A (bV ¢). The+ and—
prefixes add significant improvements in expressive power giiery while not adding significantly
to the complexity of the query itself. Generally, exclustmequeries are not supported.

The popularity of today’s Internet search engines shows fikaple generally are comfortable
with using keyword queries. When submitting a keyword quena search engine, the usual way
of thinking of it is as being ‘as conjunctive as possibled. ithe user expects as many keywords as
possible to be found, but if not all of them can be found in ang cesult, fewer will suffice. Let’s
call these queries ‘mostly conjunctive’ as opposed tocyriconjunctive’, the latter which will be a
true conjunctive query. The impreciseness in this form argwcan either be hidden in more complex
logical expressions of the query than is shown here, or,gpsrimore likely, in some ranking system.
In the latter case, the query might be entirely disjunctiug, the ranking system could favour results
in which many of the keywords in the query occur. Fortunatalythis complexity is hidden from the
view of the user, who can usually get good search resultsowitany knowledge of the underlying
system.

1.3 Related work

The work presented in this report is the continuation of [#je ESKUSE system has seen considerable
speed improvements since the writing of aforementionedrtepnd the quality of search results has
been significantly increased. Speed improvements haveibgeduced mainly through simple mass-
query optimisation, which dramatically reduces the nundfe3QL queries necessary to perform for
each keyword query, especially on more complex queriesthBunore, an algorithm that generates
‘templates’ for all possible candidate networks, which @ren stored in the schema graph, thereby
avoiding many redundant calculations. Quality improvetaare achieved by improving the algo-
rithms involved in executing the query, by making informegegses about the conceptual database
model based on information about the logical database madédlby adding to the expressive power
of keyword queries.

ESKUSE is in many ways similar to the DISCOVER system preskint [7]. DISCOVER’s
method of ranking query results is implicit in its searchaaithm. ESKuSE allows for different
ranking techniques, but currently it only uses graph wesightits data structures for this purpose.
DISCOVER, using its Master Index, is able to locate pregiské tuples containing keywords, but
only uses this knowledge to generate tuple sets, whereld pmssibly also be used to further optimise
SQL queries. DISCOVER has a practical upper limit of canideetwork sizes of arounsl— 6 on a
100 MB database; larger candidate networks take a prorehitlong time to evaluate. This limits the



usefulness of the system to either small queries or smalbdaes. For queries to take prohibitively
long for ESKUSE to perform on a database of similar sizegeitine query must consist of very many
keywords, or one or more of the keywords in the query mustapipghousands of tuples. The former
problem should be considered a user error, and the lattédgmowill often be solved by removing
‘too common’ words from the index like Internet search emgimost often do.

In the BANKS system, described in [2], a database is perdeagea graph in which every tuple is a
node, and where relationships represent edges. Sincetireedatabase is perceived as a graph, which
is held in main memory, this graph will be larger than the bate itself, setting a much lower limit
to the size of database that can be practically searchedBB&uSE. ESKuUSE’s query graphs and
candidate networks can be considered incomplete or umitestad subgraphs of the larger graph that
BANKS uses. The authors employ a ranking system similar ab ofi Google [3], where references
to tuples count as votes. Also they use the ‘fan out’ of cotingmodes in ranking: if a query is
performed on the relationship between two people, and tiodly belong to a group of 6 people and
another group of 100 people, then the smaller group will Bertao be the closer relationship. This
ranking technique has been adapted for use in ESKUSE. BANKSdes a means for the user to
interactively refine query results. Currently, ESKUSE or@furns final, unalterable results, but it is
possible that ESKUSE could be made to support somethindasimith fairly minor changes to the
existing code base.

DBXplorer's symbol tables, described in [1], are much like index used in ESKUSE. The pa-
per explores different indexing strategies which couldvprgaluable to further work on ESKuUSE’s
index, but which would require completely rethinking keya@modes. A problematic limitation of
DBXplorer is that it cannot connect two tuples in the samatreh.

1.4 Problem definition

This project aims to finish the work started in [4] and creatells functional keyword search engine
backend for relational databases that is practically esabproduction environments.
To meet this goal, two equally important subgoals must be met

e query results must be returned quickly, and

e query results must be of high quality.

Being intended for interactive use rather than batch psings ESKUSE should be able to return
results to most queries within a matter of seconds, or thetdiinteractive use is soon lost. Thus the
speed issue becomes important. The importance of highitggalkery results is obvious, since no-one
will want to use a search engine that yields mostly uselessdtee

1.5 Composition of the report

This report is laid out as follows.

Chapter 2 presents the basic ESKUSE system. It provides latlvalugh of the ESKUSE ar-
chitecture, defines the data structures used and descebma algorithms involved in performing
keyword queries. Also, it describes the most important dpgeimisations.

Chapter 3 discusses the concept of quality in query resailtd, it presents the techniques that
ESKUSE uses to improve its results.

Chapter 4 presents and discusses the tests that have beemperwith ESKUSE and their results.
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Chapter 5 concludes the report and discusses possible furturk.



Chapter 2

ESKUSE fundamentals

This chapter describes the basic ESKUSE system. It is meaddress some of the clarity issues
in [4]. Many of the unused implementation options mentiomefd] are omitted from this paper so as
to not add unnecessary complexity.

ESKUSE is a search engine that searches arbitrary relatiat@bases. The basic units that we
search for with ESKUSE are keywords. To formalise the nofrom Chapter 1.2, the following
definition is given:

Definition 2.1 (keyword) A keywordkw is a tuple(TY PE,value), whereT'Y PE is the data type
of the keyword, andalue is the what is being searched for in the database. ddiee element must
be of typel'Y PE.

From this, the definition of keyword queries follows trivial
Definition 2.2 (keyword query) A keyword queryy) is a set of keyword§kwg, kw1, . .., kwy }.

As an example(STRING, john) and(INTEGER, 42) are possible keywords, and they can form
the keyword quenf{ (STRING, john) ,(INTEGER,42)}.

With a proper definition of keyword queries in hand, we canifbég explore how they are pro-
cessed.

2.1 Architecture

This section describes ESKUSE's architecture. It servegviothe reader an understanding of how
the elements introduced throughout this chapter tie t@getim this section, terms are used that are
not immediately explained; these terms are detailed latehis chapter. Figure 2.1 illustrates the
ESKUSE architecture. The ‘Caller on Figure 2.1 is assunodoet some program that uses ESKuUSE
as a back-end.

SchemaThis is ESKUSE's representation of the schema of the dagaliais read from a definition
file that is written by hand. It is possible to create a valitiesna definition that does not
represent the database schema with total accuracy; fanicst it might be desirable that certain
relations be made unavailable to ESKUSE. Individual attab in any relation may be flagged
as ‘do not index’, which means that ESKuUSE will not attempfitol keywords in attributes
with this flag.
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Figure 2.1: Model of ESKUSE'’s architecture. The roundedesan the left represent data resources,
and the sharp-edged boxes to the right represent proceSsdigl lines with arrows represent data
flow, and punctured lines represent dependency on dataroesou

Schema graph The schema graph is a graph representation of the logicabdsé structure as de-
scribed by the above mentioned schema description.

Index This is a database-wide index that it used to find the tuplaisdgiven keywords can be found
in. It is basically an inverted file index. When given a keyd/@s an input, it returns iden-
tifiers all indexed tuples that the keyword can be found in. uple identifier has the form
(relation, pkvalue), whererelation is the relation that the tuple belongs to, asiebalue is
the value of the primary key of the tuple. For this reasony eelations with primary keys may
be indexed.

Index look-up This component looks up the keywords it receives from thiéngaprogram and out-
put the tuple identifiers for the tuples that each keyword fwasd in.

Query grapher Based on the stored schema graph and the tuple identifiars dimve, the this
component creates a query graph for the current keywordyquer

CNG The CNG (candidate network generator) finds candidate mkswo the query graph it receives
as input, eliminates any redundancy in the candidate n&saamd outputs them.

CN evaluator This component translates the candidate networks it reseinto SQL queries, which
it then executes. This yields joining networks of tuples,iclihit outputs. The translation
from candidate network to SQL query requires knowledge ahary keys and foreign key
relationships, which is obtained from ESKuUSE’s interndiesna representation.

JNT postprocessor The joining networks of tuples received from the previoumponent are com-
bined as described in Chapter 2.3 and output according tg best ranking results first.



2.2 Data model

Schema structure information is presented on a well-knasvmfby representing the schema as a
graph.

First, let's examine our database schema. $et (R, K) be the schema over our database of
interest, whereR = {rg,r1,...,r,} is the set of relations i, and K = {ko, k1, ..., kn} is the set
of foreign key relationships between relationsSnEachk; € K is represented a3y, r;), r, andr;
being relations ik, where there’s an attribute i, that is a foreign key referencing an attributerjn
It may be allowed that = .

Using the above, we can define our graph to represent the schéfa call such graphs schema
graphs. They are directed, weighted graphs and containam@ynode type: relation notes.

Definition 2.3 (relation node) A relation noden corresponds to exactly one relatione R, where
R is the set of relations in our schema.

As a matter of terminologyy is said to represent, or, converselyy maps ton. The notation
r — n is used to show that maps ton.

A basic schema graph directly represents a schema withgaogtto make implicit information
explicit. This type of graph is what was called a naive scagnaph in [4]. It serves as the basis for
creating more elaborate schema graph as we’ll see in Chapter

Definition 2.4 (basic schema graph)Let G° = (NS, ES) be the basic schema graph 6 where

N¥ is the set of relation nodes in the graph, afd is the set of edgesN® = {ng,n1,...,n,}
where each element iR is represented by an element/i\r°.

Each edge: € E° is represented aguy, n;, w), whereny,n; € N°, andw is the weight of the
edge.ES is defined a¥ (rg,r;) € K Ing, ny (rpy — ng Arp — ng) = (ng,ng, 1), (ng,ng,2) € ES.

As an example of a basic schema graph, consider the simpénsa{ro, 1}, {(ro,71)}). If
ro — mno andr; — np, this schema will be represented by the basic schema graphbtele in
Figure 2.2(a).

Schema graphs are not used directly in queries. We assuinthéhdatabase schema only very
rarely changes, and thus the schema graph that represaetsdtonly change equally rarely. If the
schema changes, the schema graph must be rebuilt.

When a query is performed, a query graph is built based onciiensa graph. This schema graph can
be a basic schema graph or a more advanced schema graphe pubdt¢ledure for building the query
graph will be the same. A query graph is built from the schenaglg, i.e. the schema graph will be a
subset of the query graph.

The main thing that distinguishes a query graph from a schgnayah is the presence of another
node class: keyword nodes.

Definition 2.5 (keyword node) A keyword node:’ represents a tuplé € r, wherer € R. LetQ

be a keyword query. There exists a non-empty set of keywovtd$ = {kwy, kw1, . .., kw,}, where
KW'" C @Q, such that eacltw; € KW' can be found at least once inand nokw; can be found in
¢ such thattw; € Q A kw; ¢ KW



As a matter of notation, a keyword noaéis said to represent both the tuglethe set of keywords
KW?" and every element ok W'. Furthermore, ift € r, thenn' is said to stem from the relation
noden, wherer — n.

When we perform a keyword query, keyword nodes representoteions of the data we are
interested in. When we insert keyword nodes into the queaplyin the appropriate places, we will
have sufficient information to create SQL queries to deteenili and how the tuples that the keyword
nodes represent are connected.

Definition 2.6 (query graph) Let query graptG’® be created for a quer§) = {kwo, kwy, ..., kw,}
over schema grapti’®. For every tuple in the database that contains at least oyevked, a keyword
noden' is created to represent it. i’ stems fromm, thenn' will be given the same edges with the
same weights leading to and from itas

For an example of a simple query graph, consider the exangdie schema graph given above. If
some keyword is found in some tuple in the relation that maps tthe resulting query graph will be
the one depicted in Figure 2.2(b).

(a) Schema graph (b) Query graph.
n} is a keyword
node

Figure 2.2: Simple examples of a basic schema graph and g gragsh built from it.

The two classes of graphs that have just been described edetaisepresent the data that queries
are performed upon. Using these, we can adequately desciibgword query. However, they are
insufficient to describe the results yielded by such queries

Consider the following facts:

e schema graphs, and by extension query graphs, accuraagsent the underlying logical
structure of the database,

¢ the information we are after can be found in the result sebofesSQL query,

e SQL queries are expressed through a combination of keywnbodnnation and structural infor-
mation, both of which are present in the query graph.

Given these facts, we now know that it is possible to repiedeneventual result of a keyword
query as a subgraph of the query graph, because it can béotraesl into an SQL query whose result
set is relevant to the keyword query. Because of the limitquessive power of keyword queries as



discussed in Chapter 1.2, it is not necessary to use morelwatgg SQL queries than can adequately
be expressed by ESKUSE'’s data structures.

The result of a keyword query is the result set of one or moré @ queries, just as it quite
often is when we use SQL directly. These results will be jmnnetworks of tuples, which are, as
the name implies, tuples that join, i.e. the result of a jginSQL query. When working with query
graphs, we can't tell which tuples join and which do not, jastwe can't tell what the result set of
an SQL query will be (most of the time). When writing SQL qgestiwe specify what we want our
result set to look like and how we want to narrow it. It is ekatihe same thing we do when working
with query graphs. To represent the possible joining netwarf tuples on the graph level, we have
candidate networks. We might say that candidate netwokkseanplates for our query results.

In [7], the authors describe two properties of their Joinkhetworks of Tuple Sets, namely that
they can beotal andminimal These properties are also useful for ESKUSE, and they aea ghe
following meanings:

Let a query graplt?’® be created over schema gra@li based on query). Consider a subgraph
T of G'S that is a treeT is total if all keywords in() are represented by at least one keyword node in
T, andT is minimalwhen the root node and every leaf node is a keyword node.

With these definitions in hand, the definition of candidatevoeks follows simply:

Definition 2.7 (candidate network (CN)) Let 7" be a subgraph of query grapi’®. If T is a tree
and it is minimal 1" is a candidate network (CN).

With CNs being minimal, we help prevent superfluous data ffpatiuting’ the results. Unlike
DISCOVER, ESKUSE does not require CNs to also be total, mgathiat keyword queries are not
strictly conjunctive.

So far, we have only dealt with data descriptions and paniedata. As mentioned previously,
CNs can be translated into SQL queries. This makes briddiegap between data descriptions and
concrete data, as represented by joining networks of tupkesy.

Definition 2.8 (joining network of tuples (JNT)) A joining network of tuples (JNT) is an instantia-
tion of a CN.

A set of INTs is the final result of a query.
This concludes the definition of all ESKUSE'’s central datacstires, from the input received from
the caller to the final output that it will be given in return.

2.3 Basic algorithms

This section describes the algorithms used in the currere @Nd JNT postprocessor.

First, please note that there is a restriction on how the ONGESKUSE currently uses generates
CNs, which is simpler than the definition of CNs given. CutigrCNs do not branch (DISCOVER
calls non-branching CNsequencgs and they only contain two keyword nodes, one at either Asd.
such, the JNTs that the CNs generate can be thought of asopagigvant and related tuples.

The ‘relatedness’ of data is defined by the important constdnz PathLen, whose role will
presently be described. As we already know, CNs are creabed duery graphs, and query graphs
are weighted, directed graphs. Consider a CN as a path thringgquery graph. The length of the
path will be the sum of weight of the edges in the CN in the dioecfrom the root to the leaf. If the
length of the path is greater thaWl ax Path Len, then the tuples at either end are not considered to
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be related, and thus the path is not accepted as a CN, sinasahwill not want the search results to
contain unrelated datal/ az PathLen should be set with some care: if it has too small a value, the
CNG will ignore data that should be considered related, &itchas too large a value, data may be
included that should not be considered related.

Consider the following example. If two tuples join withoutyaintermediate tuples (e.&ELECT
* FROMrl, r2 WHERE r 1. pk = r 2. f k), there is obviously bound to be a close relationship
between the two tuples, but if there are many intermedigtlesue.gSELECT * FROMr1, r2,

., rn WHERE rl.pk = r2.fk AND ... AND r(n-1). pk = rn. fk), the data in the
tuples at either extreme are not likely to be closely related

MazPathLen also impacts performance. Since it indirectly affects #mgest allowed size of
CNs, it also affects the size of the largest SQL join queti@s$ the DBMS must perform.

Now that M ax Path Len has been accounted for, we can look at how the two componemis w

Initially, the CNG receives a query graph. Algorithm 2.1 wisathe Python code use in the pre-
vious implementation of the CNG algorithm. Due to optimisas described in Chapter 2.5, these
computations have been moved elsewhere, but the algoritiowsshow the CNG works conceptu-
ally. It employs a depth first search-like algorithm to séaitom each keyword node in the query
graph. Whenever another keyword node is reached from therside that does not make the sum
of the weight of all the edges between the start node and thertunode larger than/ az Path Len,
the subgraph on the current path is appended to the list of CNs

When all possible CNs from each node have been calculatddndancies will be found and
eliminated. Consider two CNs b, c andc, b, a. They represent the same information, and thus they
are redundant. Whichever of them has the larger sum of edgghtgas removed, or if they have the
same weight, one is chosen arbitrarily for removal.

The now redundancy-free list is output from the CNG and ph$sethe CN evaluator, which
creates JNTs from the CNs. The evaluation process itselng straightforward: an example of its
use is given in Chapter 2.4, and more information can be fonr@hapter 2.5. The list of INTs is
passed to the INT postprocessor.

First, here’s a short overview of how the JNT postprocessanks/conceptually: It creates com-
posite JNTs from the smaller INTs it receives. It does thifirsycreating an undirected graph from
the received JNTs: its nodes represent the same tuples ¢natrepresented by keyword nodes in the
query graph, and its edges are the JNTs that join the diffdtgrtes. The resulting graph may not
be connected. The composite JNTs will each span an entimected component within the graph.
Because of the way that the ESKUSE implementation hand[€s ikternally, it would be impractical
to use actual code snippets to illustrate the algorithnesdifiove, so instead pseudo-code algorithms
are given, though using Python syntax.

The algorithm for creating the JNT graph is given in Algonitt2.2. Conceptually, this graph
can be considered an instantiation of a query graph. Conaidasic JNT#, ¢1,...,%, as output
by the CN evaluator, where < n < MaxzPathLen. We know thatty andt,, are tuples that were
represented by keyword nodes, or the network that the JNTcvesded from would not be minimal
and thus not a CN. We also know thgtandt, may be shared with other INTs because the same
keyword nodes may appear in several CNs. It then makes senbmk of ¢, andt, as nodes in a
graph, and, ..., t,_1 as an undirected edge connecting them. This is how JNT grehsreated.

Consider the JNy, t1, . .., t, from before and another JN#,, ¢, 11, ..., t,+m. Because they
have the tuple,, in commongg, t1,. .., t,+., will also be a INT. In this way, we can continue merging
JNTs that share tuples into composite JNTs. This is the iptmbehind Algorithm 2.3. It starts with
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MPL = 3 # Constant MaxPathLen. It may be different from 3.
def crawl(g, s): # Takes a query graph and a start node. Initialise the crawl.

5 path = []
candidatepaths= []
pathlength= 0

candidatepathss __crawl(g, s, s, path pathlength candidatepaths
10
return candidatepaths

def __crawl(g, s, node path pathlength candidatepaths
15
newpath= patl:] # Avoid Python's reference semantics, so do manual copylev
newpathappendnode

for child in nodechildrenkeys):
20 if not child.name== s.name # We don’'t want to go back to s.
newpathlength= pathlength+ nodechildrerichild]

if newpathlength<= MPL:
# Do not continue crawling if it's a keyword node.
25 if type(child) == keyword.node
newpathappendchild)
candidatepathappend(newpath newpathlengt})
else
candidatepathss __crawl(g, s, child, newpath newpathlength candidatepaths

30
return candidatepaths
Algorithm 2.1: CNG algorithm used to find paths of siz&uxz PathLen or less.
def mk_jntgraphikeywordnodes jnts): # Takes a list of all keyword nodes from the query
# graph and all JNTs from the CN evaluator.
jntgraph = grapk)
5 for kwn in keywordnodes# Create a node for each tuple represented by a keyword node.

jntgraphadd.node€kwn)

# At the head and tail of each JNT from the CN evaluator is a tupk is represented
# by a keyword node. For each JNT, create an edge between thes megresenting its
10 # head and tail.
for jnt in jnts
kwn_u = headjnt)
kwn_v = tail(jnt)
kntgraphadd edgékwn_u, kwn_v)
15
return jntgraph

Algorithm 2.2: Pseudo-code algorithm to create a graph fiteenJNTs produced by the CN evaluator.
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an arbitrary node in the JNT graph and, using a breadth figetrithm, grows the JNT to span the
entire connected component of the graph, which may be theeegraph. The exception to this rule
is when a node has no edges: that means that the tuple doesrticippte in any JNTs, and thus it is
considered irrelevant by this algorithm. Ultimately, tHgaithm will output one JNT per connected
component with more than one node.

def jntgraph searclijntgraph): # Takes a JNT graph as created by fjmkgraph().

nodes= jntgraphget.nodeg)
jnts = [] # The list of JNTs that we create from the graph. Recall that slidie trees.

# Breadth first search that removes visited nodes from the lgrapd appends them to
# the current INT.
while nodes

t = tred)

a = nodespop)

if not achildren(): # Disregard unconnected nodes: they do not participatey ig dNTSs.
continue

treeappendleaf(a, Nong # Make 'a’ a leaf node of None, i.e. the root.

for i in treeleaveg):
for j in i.children):
treeappendleaf(j, i)
nodesremovéj)

jnts.appendtree

return jnts

Algorithm 2.3: Pseudo-code algorithm to make larger JNTsnfrthe graph produced by Algo-
rithm 2.2.

The order in which the JNT postprocessor outputs JNTs dependhe ranking of the JNTs. A low
ranking value is considered better than a high one. The réskJINT depends on two things: the
number of keywords in the JNT (keyword rakkr), and the sum of the weights of the edges in the
CN that can generate the JNT (edge weight ramk). A INT will have a rank okwr — kwr.

We will want as many of the keywords in the keyword query to d&gresented in our results. We
will also want the same keyword to be represented severaistiii possible, but the more times the
same keyword appears, the less interesting another oocersgill be. For each keyworéw; in a
query that occurg times in the JNT, we compute the partial keyword ran-; = Ef:o % and the
collected keyword rank will be the sum of the partial keywaoathks, i.e.kwn = 3, kwn;. As an
example, consider keyword quety = {kwy, kw, }, wherekw, occurs3 times in the INT under our
consideration, andw; occurs2 times. We then have thétwr =  + 1 + 1, andkwr; = 1 + 1,
and by summatiorkwn = 1 ~ 3.3.

Arguments have been given above for how JNTs can be mergexiriolarger INTs. The same
must necessarily also be true for CNs, since CNs are whatgend&NTs. The method for calculating
the combined edge weight, or path length, remains the sarhis. cbmbined edge weight is set to
equalewr. Since we can now compute bathyr andkwr, we can determine a JNTs rank.
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The JNT postprocessor, as it works now, has several drasb&iowing the composite JNTS to span
the entire connected component of the JNT graph can easiffecdNTSs that are significantly larger
than the user expects as a result. It's unlikely that the widéwery often have results in mind that
span more than a handful of relations or so. Smaller INTscbeljust as relevant, but much more
manageable. Also, Algoritm 2.3 discards arbitrary JNTsanneg that they will not be used in the
composite JNTs: if we consider a strongly connected comptonih the set of nodesa, b, ¢}, then,

if we start the breadth first search from nadethe JNT represented by the eddec) will never be
considered. Despite its drawbacks, the INT postprocessery fast, running it (n) with respect to
the number of keyword nodes in the query graph (even if, tieelfiy, it never actually sees the query
graph). An algorithm that addresses the above mentionedbadieks, but which conversely is slower,
is under development. Chapter 5.2 gives further mentiohisfriew algorithm.

2.4 Example of use

This section gives a complete example of how ESKUSE wouldwggea query on a database. This
example does not consider any optimisations made to ESKuS3E&ny of the refinements presented
in Chapter 3.

For this example, a small library database has been crelisesthema is depicted in Figure 2.3,
and its data contents can be seen in Table 2.1. It contaiogmation about books and their authors,
borrowers and what books they have checked out in the past.

Author Book Borrows Borrower

id id —book id id

name title borrower _id I name
author

Figure 2.3: Schema for the example database. Attributeslohdre primary keys. Arrows represent
foreign key relationships.

First, we create a schema graph, depicted in Figure 2.4 éod#ftabase. For each relation in the
schema, we create a relation node. Figure 2.3 shows thatdible ©8lation has a foreign key pointing
to the Author relation. Thus we create an edge with welgiom the book node to thezuthor node
and an edge with weigl from the author node to thebook node. We do the same for every other
foreign key relationship, and the result is the schema giatigure 2.4.

1 2 1
(@ ‘@ *@ ).borrower
2 1 9

Figure 2.4: Schema graph for the example database.

We need to sedM az PathLen to a reasonable value. To start with, let’s set iBtdater we’'ll see
the consequences of higher and lower values.

Now we're ready to perform queries on the database. Let'stlsatywe wish to know what is
know about Alice and Complete Works books. To find relatigostbetween these in the database,
we can issue the queR( STRING, alice) ,(STRING, complete) ,(STRING,works)}. Since
the database is small enough that we don’t need a global imaegan find keyword nodes manually.
The only place we find the keyword ‘alice’ is in the Borrowelaten in the tuple where the value
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Book
Author id | title author
id | name 1 | Complete Works 1
1 | William Shakespeare | 2 | Complete Works 2
2 | Oscar Wilde 3 | The Picture of Dorian Gray 2
3 | Charles Dickens 4 | David Copperfield 3
5 | The Tragedy of Hamlet 1
Borrows
book.id | borrowerid
1 1 Borrower
2 1 id | name
1 2 1 | Alice
5 2 2 | Bob
2 3 3 | Charles
3 3
4 3

Table 2.1: Data for the example database.

of the primary key (id) is 1, so we create a keyword n@ble-rower, 1) to represent this tuple. This
keyword node stems from thierrower relation node, so it gets the same edges as this relation node
an edge with weigh? leading toborrows, and an edge with weight leading fromborrows. The
keywords(STRING, complete) and (ST RING,works)} can be found in the same two tuples in
the Book relation, so for each of the two tuples, we createyavked node. The resulting query graph

is depicted in Figure 2.5.

2

Figure 2.5: Query graph for the example query.

Now the CNG takes over. From each keyword node, it attempfitbpaths to other keyword
nodes whose collected edge weights are no greaterithanPathLen. Again, we can start with the
(borrower, 1) keyword node. To begin with, the current path length willlhsince we have not gone
anywhere yet. Fronborrower, 1), we can only go to one other nodeyrows. Since the weight of
the edge leading tborrows is 2, the current path length is set20Also, we find that the node is not
a keyword node, so we continue our search. Fbomrows, we can go to every adjacent node except
the one we came from. Every edge leading frawnrows has a weight ofl, so we can still ‘afford’
to go anywhere. When we go to therrower andbook nodes, in each case we find that they are
neither keyword nodes, nor can we go any further, becauseing go either node, our current path
length has been increased3te= MaxPathLen, SO we abandon the search along those paths. When
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from borrows we go to(book, 1) and(book, 2), in both cases we find that we've come to a keyword
node, so we record each path as a CN and abandon the seargltresa paths. So in our search from
(borrower, 1), we finish our search having found the following CNs:

e (borrower, 1) ,borrows, (book, 1)

e (borrower, 1) ,borrows, (book,2)

We do the same for the two remaining keyword nodes, and innide we obtain the following
CNs:

e (borrower, 1) ,borrows, (book, 1)

e (borrower, 1) ,borrows, (book,2)

book;, 1) , borrows, (borrower, 1)

)

book, 1) , borrows, (book, 2)

. )
)

book, 2

author, (borrower, 1)

(
(
(
(
( ,
o (book,2) ,author, (book, 1)

Some of these CNs are redundant. For instdheek, 2) , author, (bookl, 1) represents the same
information as(book, 1) , author, (book,2); one CN is the other with the nodes in the reverse order.
To reduce redundancy, the CN with the highest collected edgght is removed. In this case, the
two CNs have the same collected edge weight, so either magnbeved. Ultimately, our list of CNs
is reduced to:

e (borrower, 1) ,borrows, (book, 1)

e (borrower, 1) ,borrows, (book,2)

(
(

e (book, 1) ,borrows, (book, 2)
(

book;, 2) , author, (book, 1)

These CNs are then passed to the CN evaluator. Here, each @istated to an SQL query,
which is subsequently executed. The @idrrower, 1) , borrows, (book, 1) will be translated into the
SQL querySELECT * FROM Borrower AS R1, Borrows AS R2, Book AS R3 VWHERE
Rl1.id = R2. borrower id AND R2. bookid = R3.id AND RL.id = 1 AND R3.id
= 1. Itbecomes necessary to rename relations when the sartienelppears in the query more than
once, such as would be the case when the two latter CNs asgaeah The two former CNs yield
each a JNT, the two latter yield none, so we get the INTs:

e (1,Alice),(1,1), (1, Complete Works, 1)

e (1,Alice), (2,1), (2, Complete Works, 2)
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These JNTs are then passed to the JNT postprocessor whehergmaph is generated. This
takes the tuples represented from keyword nodes before,(LgAlice), (1, Complete Works, 1)
and (2, Complete Works, 2) creates a node for each. Then it inserts an edge in this goagvéry
JNT. Since the JNT1, Alice) , (1,1) , (1, Complete Works, 1) has the tuplé1, Alice) in one end and
(1, Complete Works, 1) in the other, this INT creates an edge between the two. Thiingsgraph is
depicted in Figure 2.6. Since this graph is connected, wiedN T postprocessor runs its breadth first
search to combine JNTs, only one JNT will be the final restithd search started in the node to the far
left, the INT would bé1, Complete Works, 1), (1,1), (1, Alice), (2,1), (2, Complete Works, 2).

(1, Complete Works, 1) @ (2, Complete Works, 2)

Figure 2.6: JNT graph for the example query.

Since there will be only one JNT in the result, ranking is rtatdy necessary, but for the sake
of completeness, let's compute it just the same. Assumeethdting JNT is the one given above.
The keyword rankswn depends on how many different keywords are found, and howyrtiares
the same keywords were found. The keywatéte was found once, and the keywords/ected and
works were found twice each. Thus we can compute that = 1 + 2 (% + %) = 4. The edge

weight rank will be the length of the pathook, 1) , borrows, (borrower, 1) , borrows, (book,2), i.e.
2+ 142+ 1= 6. That makes the rank of the IN\T- 4 = 2.

Now that we have seen how ESKUSE processes a query fromastarish, let's consider a few
thought experiments. Say we issue the quef§ 7T’ RING,bob) ,(STRING, charles)}, expect-
ing to find information about Bob and Charles’ common readimgrests. WithMazPathLen
set to3 as it is, we will generate no CNs on this query. If we had spetithe title of a book in
our query, we would have been able to see if they had both Wedahe book, because the path
length from borrower to book, and vice versa, i8. However, the CN that we expect to gener-
ate, namelyborrower, borrows, book, borrows, borrower, has a path length . This example
database is so small that no relation can truly be said to bedaiad to any other relation so increas-
ing MaxPathLen to this large value may be justified. If, however, we consither TPC-H schema
shown in Figure 4.1, we see that if we SdtaxzPathLen = 6, we would be in a situation where
the ORDERS relation would be considered directly relatethéeoREGION relation, which is hardly
reasonable to assume. If we look at Figure 2.4, we see tha¢dh@roblem is that by our definition,
borrowers are not considered very closely related to thé&k®dloat they borrow. Conceptually, they
are as closely related to the books as the authors of the lawekbut this is not reflected in ESKUSE’s
model. Chapter 3 addresses this type of problems.

2.5 Speed optimisations

This section describes two optimisations that allow ESKt&Eesolve queries significantly faster
than by using the basic ESKUSE algorithms as described abieee simple queries, or for small
databases, the speed improvements are modest, but moceldifieries are resolved several orders
of magnitude more efficiently.

The primary speed improvement comes from a simple means s$-aery optimisation. Nor-
mally, ESKUSE would attempt to evaluate each CN indepehdére. translate it to its own SQL
query and execute that query. This optimisation finds CNsdbasimilar and evaluates them with
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one query. Consider the CNs output by the CNG in the examplngn Chapter 2.4. An SQL query
for evaluating the topmost CN is given below the list of CN&eTeader will notice that the second
CN from the top can be evaluated with an almost identical SQary In fact, we can evaluate both
CNs with one query:SELECT * FROM Borrower AS Rl1, Borrows AS R2, Book AS
R3 WHERE R1.id = R2. borrower_id AND R2. bookid = R3.id AND R1.id IN (1)
AND R3.id IN (1, 2).

Consider a CNCy = d/, b, ¢, where keyword nodes’ andc’ stem from relation nodes andc
respectively. We then call the netwoukb, ¢ the templatefor Cy. If we have some’; = a”, b, ",
we can use the same template for this CN. Also, for all nomditang CNs, it makes no practical
difference if we reverse the order of the nodes, so if we hatle & ¢/, b,d’, thenC, = C,, and thus
we can use the same template €&r. The mass-query optimiser finds the minimum set of templates
necessary to cover all CNs. As illustrated above, we onlydrieeexecute one SQL query per CN
template.

Early experiments with the mass-query optimiser on a 10 MBHPdatabase showed that, for a
wide range of queries with between 2 and 130 keyword noddteiguery graph, the average number
of SQL queries was reduced from nearly 1400 to just 4, andttietiverage time to perform these
queries was reduced from 185 seconds to 1 second. More gaaming to a redesign of ESKUSE’s
index and the way it identifies tuples represented by keywontks, further speed improvements have
been made, though similar comparative experiments havieewst run.

After the above described mass-query optimisation teclenltas been applied, for queries that gen-
erate query graphs with hundreds of keyword nodes, the ihajofr the time it takes to execute a
keyword query is spent in the CNG. Again, consider the CN fatep described above. Because
keyword nodes inherit the edges of the relation node that $skem from, the path lengths for a CN
will be the same as the path lengths for its template.

As before, consider the CNs output by the CNG in the exampléhapter 2.4, where the two
topmost CNs have the same templdi@:rower, borrows, book. If we have the template beforehand,
we can generate these two CNs without having to go througldepéh first search-like algorithm of
the CNG described in Algorithm 2.1 for each individual keydmode. We can divide the template
into three parts: the head, the body and the tail, where thd isghe first node, the tail is the last node,
and the body is everything between the two. The body may beyertipour exampleporrower is
the headporrows is the body andooks is the tail. As described in Algorithm 2.4, for each keyword
node stemming from the head, we can create a CN with each kdywaale stemming from the tail
by connecting the two with the body of the template.

h: set of all keyword nodes stemming from the head
t: set of all keyword nodes stemming from the tail

for i in h:

for j in t:
make.cn(i, body, j)

Algorithm 2.4: Pseudo-code algorithm to generate CNs frat€nplates.

What this optimisation does is that it generates all possN templates by using a slightly
modified version of Algorithm 2.1. It can do this based on ttleesna graph, so there is even no need
to make these computations for every query. All these ptes€§iN templates are then stored in the
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relation node objects in the schema graph. Each relatioa had a hash map of all CN templates that
it is head of and whose path lengths do not excébar PathLen. Generating CNs then becomes
simple: for each relation node , consider all other relatiodes that is the tail in one of the templates
in which the current relation node is the head, then applyAigm 2.4.

The exact complexity of the unmodified CNG based on Algorithhas not been analysed, but
since it behaves very similarly to a regular depth first deaacsafe guess is that it runs@{nb™) [5],
wheren is the number of keyword nodekjs the average branch factor in the query graph anid
the maximum search depth. This optimisation has compléXity.’n?), wherem is the number of
relation nodes and is the number of keyword nodes. Sinegis constant for any one database, it may
be more appropriate to give the complexidfn?). For all practical purposes, however, complexity
becomes a moot point with the optimised version, since the it takes to generate CNs becomes
negligible compared to SQL query execution times for botlalsmnd large numbers of keyword
nodes.
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Chapter 3

Improving quality of search results

This chapter discusses the nature of high-quality searshitseeand describes the means by which
ESKUSE attempts to yield them.

3.1 Discussion of quality

In order to make a search engine that yields search resultsgbfquality, it is first necessary to
make clear what makes a search result good. Anyone who hdsausearch engine on the web,
for instance, has an intuition of what a good search resullsch, simply put, boils down to ‘that
which best corresponds to what | am looking for.” By its natuhis is subjective and thus not easily
quantified. One way to do this would be by popular vote, i.e libst search engine is the one that
most people agree is best, and by implication, it must be ieetfvat often yields good search results.

It is not fair to compare two methods of searching indepetiger the means by which a query
is specified. Examine, for instance, the difference betweedweyword query and an SQL query:
formulating an SQL query requires knowledge of the datalzabema, the insight (or foresight) to
specify exactly what the query result should be and not I&astliarity with SQL. By the above
definition, an SQL query is guaranteed to yield very high tgualearch results. On the other hand,
formulating a keyword query is trivial, but it becomes mucbrendifficult to guarantee the quality of
search results. The most important difference between S@Lkayword queries is their respective
expressive power: while an SQL query can express many tlabgst the exact form of the desired
result, logical relationships etc., a keyword query cary@Xpress keywords to include or exclude.
However, the fact that it is difficult to guarantee searchultssof high quality for keyword queries
does not mean that it is not possible to generally get goadtses

Attempts have been made to quantify the notion of good seasalits, but with little success.
Ultimately, the judgement of what is good and what is bad énrttethods described in this report and
specifically in this chapter has defaulted to the authortgesttive opinion, likely to be biased qua his
paternal role.

3.2 Schema structural hints

Databases are typically modelled as having three levetscodmceptual, logical and physical levels.
The conceptual level is fairly abstract, and representsusiee’'s view of the data; the logical level is
the one that we can query with SQL, where we deal with relatituples, etc.; and the physical level
is where the details regarding storage on disk are handl&KuSE knows only about the logical
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level, but it will be able to yield higher quality search risuf it can make educated guesses about
how the conceptual level looks, since that would bring iseloto the user, so to speak. This section
describes how such educated guesses are made and how thégteed in ESKUSE’s data model.

In [8] and [6], instructions are given for how to reduce EpRelation schema to relations. From
those instructions it quickly becomes clear that for the Weat many Entity-Relation constructs are
mapped to relations, there is no easy or reliable way of siwgrthe process. Perhaps the simplest,
and certainly very worthwhile, constructs to identify isssto-many and many-to-many relationships.
This report does not attempt to describe how other constrean be taken advantage of.

In Definition 2.4 we see how a foreign key relationship betvieo relations result in a schema
graph where the weight of the edge in the direction of theifordey is lower than in the opposite
direction, and as such, moving in the direction of the fandigy is considered an indicator of closer
relationship, as described in Chapter 2.3, and it is alsouigd in ranking.

The reasoning is the same as given in [2]: a foreign key cay @ikrence a single tuple, and
thus in that direction the relationship is unique. In theeottlirection, a primary key may have many
references to it, and thus the relationship may not be unigjbe authors reason that a rare relationship
indicates a closer connection between data than a lessetat®nship.

The consequence of Definition 2.4 and the above reasonimgtigh edge that leads to a unique
tuple (a one-to-one or many-to-one relationship) is atted a weight ofi, while an edge that pos-
sibly leads to multiple tuples (one-to-many or many-to-gnagationship) is attributed a weight of
2. Binary many-to-many relationships and ternary or greates-to-many or many-to-many relation-
ships are mapped to relations usingetationship set relationi.e. a relation containing information
about the relationship set. Recall the discussion at theoé@hapter 2.4. When thinking on the
conceptual level, we are more interested in relationshgis/éen data than in actual relations in the
database. Since the schema graph represents the way wealtfwokrelationships in the database, we
will want it to reflect our conceptual model of the database. d& this by locating relation nodes that
represent relationship set relations and altering the ®ttgand from these nodes to adapt them to our
conceptual model.

A simple rule is used to identify relationship set relatioAgelation is identified as a relationship set
relation if all participants of its primary key are foreigeys. This strategy will fail if the creator of
the database for some reason does not choose a primary kihefoglationship set relation. Such a
reason could be there being no practical benefit of indexiparacular relationship set relation. Since
ESKuUSE’s internal representation of the database schemdiffer from the actual schema, it is still
possible to tell ESKUSE what the primary key is, even whemitt reflected in the actual schema.

When a relationship set relation has been identified, thestiading to and from the node that
represents the relation in the schema graph will have theights altered to reflect their cardinality.

Let G = (N, E) be a basic schema graph for our schema.rl.et€ N be a node that represents
a relation that we have identified as a relationship setioglatWe alter all edges that lead 1Q to
have weigh?.5, i.e. Vn; (nj,n.,w) € E = w = 0.5, as shown in Figure 3.1. This makes it always
cheap to go ta:.; when going away from. again, we can determine if it's a ‘to-one’ or ‘to-many’
relationship and set the weight of outgoing nodes accolyling

Conceptually, determining the cardinality of a relatiopstepresented by a relationship set rela-
tion is simple. Let three relations, r1, 7o be connected by relationship set relatiognwherer. has
attributesky, k1, ko that are foreign keys pointing t@, r, andr, respectively. Consider the following
from ry’s point of view. Say that attributi, is not unique and thak, is unique. This means thag has
a to-many relationship with; and a to-one relationship with. This is illustrated in Figure 3.2(a).
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z 0.5

Figure 3.1 Edges leading to a relation node that represergtationship set relation all receive the
weight0.5.

(0,1) 0.5 0.5
(0,n) (0,m) 0.5 < 1.5 <
<> )@,
1.5 0.5
(a) E-R diagram (b) Schema graph

Figure 3.2: The relationshipbetween-, r; andr, in the E-R diagram to the left is mediated by the
relationship set relation representedshyto the right. The E-R model to the left is then translated to
the schema graph to the right.

We create a schema graph to represent these relations, vghatgpicted in Figure 3.2(b). As
mentioned before, all edges leadingrtowill have weight0.5. Above it was explained that to-one
relationships get an edge weight hfand to-many relationships get an edge weigh?.offo get to
n. Will cost 0.5, so the remainder is left to the outgoing edge weight, so wesdges(n., n1, 1.5)
and (n., ne,0.5). To put it formally, if r;, — n; andk; € r. is an attribute referencing;, then
Vn; (ne, ni, w) € E A (k; is unique) = w = 0.5, andVn; (n., n;,w) € E A (k; is not unique) =
w = 1.5.

So long as we know which attributessp are unique and which are not, all is well. However, we
do not always know this. There are two ways to be certain thattibute is unique:

e itis the only participant in the primary key, or
e it was created with the SQUNI QUE constraint.

We can also try to determine experimentally whether anbaiiei is unique or not. If the SQL
queriesSELECT COUNT(<attri bute>) FROM <rel ati on>andSELECT COUNT( DI STI NCT
<attribute>) FROM <rel ati on>return different values, then we can be sure that the at&ibu
is not unique. If they return the same value, then right nbe,ttribute is unique, but we don’t know
if that is by coincidence or by design. In conclusion, the tmekable solution is for a knowledgeable
human to indicate uniqueness where positive automatidifaztion cannot be made. ESKUSE does
not attempt to experimentally determine uniqueness.

Having presented this method for automatically tuning tireesna graph, it should be noted that it is,
of course, entirely possible to manually adjust the scheraplgif one so desires. This way, one can
suggest relatedness of data exactly as one wishes.

This section has presented a very black and white view oigakhip cardinality;eitherit's a
to-oneor a to-many relationship, and consequently the combined aagghts in crossing a node
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representing a relationship set relation arther 1 or 2. There is room for more nuances. For in-
stance, by the reasoning given at the start of this sectienetare plenty of reasons why a one-to-two
relationship should be treated differently than a oneae-fiundred relationship. This path has not
yet been explored, but is left for future work.

3.3 Database meta-information in ranking

The BANKS system, described in [2], employs a notion thagti@ors calprestigein ranking search
results. The principle is the same as that of Google’s [3eRamk algorithm. This section describes
how BANKS’ ranking strategy can be adapted for use in ESKu@Epugh this has not yet been
done.

First, let’s clarify what prestige means. Prestige is dateed by the number of foreign keys that
point to a tuple; the more foreign key references, the highestige the tuple has. A high prestige
implies that the prestigious tuple is more important thaess Iprestigious tuple, and therefore it is
statistically more likely to be relevant to any given query.

For ESKUSE to employ such a technique, its ranking systent bauexpanded to include a pres-
tige rank, which would be very similar to the current keywoadk, since it binds itself to a particular
tuple.

The primary challenge in adapting prestige-based ranlgrigat we do not know how many ref-
erences a particular tuple has. The most precise way tondigtetthis is, of course, by counting them.
Say that relation rl has an attribute fk that referencesiogla2’s primary key pk. If we want to know
how many references the tuple in r2 where fk = 1 has, we car ifsiquenySELECT COUNT( *)
FROMr1, r2 WHERE r1.fk = r2. pk AND r2. pk = 1. If we had to do this for every
keyword node in a query graph, the number of queries itséfferathan their individual complex-
ity could quickly become quite expensive. If we wanted toakhitie number of references for every
tuple in r2 with a pk value of I, we can fortunately do it with just one queBELECT COUNT( *),
r2.pk FROMr1, r2 WHERE r1.fk = r2.pk AND r2.pk IN (1,2,...,n) GROUP
BY r 2. pk. The valid values of pk are given as a set rather than as ageintange [ < pk < n)
because pk will not likely always be integers, let alone digoiwus range of them.

In the worst case, one such query must be issued for everigiokey relationship. They are
likely to involve full-table scans and therefore be relatvexpensive, since foreign keys are rarely
indexed outside of relationship set relations as describgdhapter 3.2. A choice will be have to
made whether the extra ranking information will be worth tieegessary performance hit.

A much faster, but also less precise, method of determiniagtige would be to use the statistical
information that most DBMS’ gather and make available incigdesystem relations. If rl references
r2 and we know that rl1 has 500 tuples and r2 has 100, then oag®jeevery tuple in r2 will have 5
references from rl. The danger is, of course, that thesistatatcan be greatly skewed.

3.4 Increasing expressive power

As discussed in Chapter 1.2, most search engines on the \ppbrskeyword queries with the and

— operators, that is, mandatory inclusion and exclusion giMoeds respectively. While they have
not yet been implemented for ESKUSE, doing so would not bedif. The+ and— operators have
a very predictable effect on queries: they define demandsmbatbe met for a search result to be
accepted to the exclusion of results that do not meet thesamds. This aids the user in writing
queries that will return results of high quality.
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The added expressive power cannot not be compensated fobétyea ranking system: while it
would be possible to give bottom rank to any result that wadticontain all keywords, there would
be no way of expressing the desire to exclude a word from beasults. The part of the keyword
query that is not prefixed with &/—, however, would be treated like a normal query, and for tlaat p
of the query, normal ranking still applies.

For these reasons, it is clear that thend — operators are very useful. Since they are a very new
addition to ESKUSE'’s capabilities, their use has not beerotighly tested.

Mandatory inclusion of a keyword is implemented in the JN§tpoocessor. Every JNT is exam-
ined, and JNTs that do no contain the keyword to be includedleleted.

Mandatory exclusion of a keyword is handled primarily in tingery grapher. Initially, the ex-
cluded keyword is treated like any other keyword when baoidihe query graph. When the query
graph has been built, any keyword node representing the &elyte be excluded is deleted from the
graph. This method is not bulletproof, though; it only gusess that the tuples represented by the
keyword nodes in the query graph. Say that tuples;, to form a JNT, and that, and¢, were rep-
resented by keyword nodes. There’s no easy way of checkatg;tidoes not contain a keyword that

we will want to exclude from the query without examining thple for that keyword, so this must be
done.
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Chapter 4

Testing

This chapter describes the empirical results that have detined with the ESKUSE system and how
they were obtained. A series of performance tests are prxbéhat measure ESKUSE'’s raw speed,
as well as quality tests, which are anecdotal.

4.1 Testenvironment

All tests have been run from a common desktop PC, an Athlon 800+ with 512 MB SDRAM.
The operating system is Debian GNU/Linux running kernelsigr 2.4.20. The RDBMS used is
PostgreSQL v. 7.3.2, and Python v. 2.2.2 was used to exdweieIKuUSE code. The Python module
pyPgSQL has been used to interface with PostgreSQL. Nodypanticular to these tests has been
done to the used software.

In all speed tests, a 10 MB TPC-H database was used. Due nmstlg randomness of its data,
querying a TPC-H database can be considered a torture tdgtyfiword search engines. It is fair to
assume that performance tests run against such a datalase censidered a sort of worst case tests.
The schema for the TPC-H database is given in Figure 4.1.

To measure the quality of results, TPC-H databases werelfimipe inadequate. Itis very difficult
for a human to determine if a search result is good or bad dfrisists of only randomly generated data.
For the purpose of testing quality, a document database mgated containing 50 papers taken from
the CiteSeerHt t p: / / ci t eseer. nj . nec. cont cs) for the documents themselves, and the rest of
the data set is fictional. The schema for this database isrshoRigure 4.2. The comparatively small
number of tuples in this database makes it poor for speedurerasnts.

4.2 Performance tests

Compared to the performance results presented previongH], ESKUSE has seen significant per-
formance improvements, the most important of which are rilesd in Chapter 2.5.

A series of tests have been run on the TPC-H database. A latbdfary keywords was taken
from the index, all of which appear at most in 50 differentlégy on average appearing in just above
10 different tuples. A test run executes queries of 2, 5, H2andifferent keywords, picked at random
from the list, and repeats this 10 times. Such test runs we@erwhereM ax PathLen was set to
values 2, 3, 4 and 5.

Currently, processing time is spent mostly in two placeshtwd which belong to the CN eval-
uator. One is in pyPgSQL, the database interface moduleEBKIUSE uses. Data is received from
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PART(P.)

PARTSUPP(PS_)

LINEITEM(L_)

ORDERS(0_)
SF*1,500,000

SF*200,000 SF*800,000 SF*6,000,000
PARTKEY —— PARTKEY ORDERKEY [
NAME ™ SUPPKEY ]1[: PARTKEY
MFGR AVAILQTY SUPPKEY
BRAND SUPPLYCOST LINENUMBER
TYPE COMMENT QUANTITY
SIZE CUSTOMER(C_) EXTENDEDPRICE
CONTAINER SF+150,000 DISCOUNT
CUSTKEY E—
RETAILPRICE TAX
NAME
COMMENT RETURNFLAG
ADDRESS
LINESTATUS
SUPPLIER(S_) | NATIONKEY
SF*10,000 SHIPDATE
L PHONE
SUPPKEY COMMITDATE
ACCTBAL
NAME RECEIPTDATE
MKTSEGMENT
ADDRESS SHIPINSTRUCT
NATIONKEY - COMMENT SHIPMODE
PHONE NATION(N_) COMMENT
25
ACCTBAL
L | NATIONKEY REGION(R_)
COMMENT 5
NAME
REGIONKEY
REGIONKEY J
NAME
COMMENT
COMMENT

Figure 4.1: The TPC-H schema. Figure taken from [9]. Oppdsitconvention in this report, arrows

point from the referenced attribute to the referencinglaite.

ORDERKEY

CUSTKEY

ORDERSTATUS

TOTALPRICE

ORDERDATE

ORDER-
PRIORITY

CLERK

SHIP-
PRIORITY

COMMENT

Workplace Author Writes
id ] id - author_id
name name document _id
location position
—workplace_id

Publisher Document References
id ] id referer_id
name title referred_id
type pub_date

. abstract
Published keywords
publisher_id — body
document id pub”cation
conference id——
Conference
id -
name
location

Figure 4.2: Schema for the article database. Unlike the FF&Chema, but according to the convetion
of this report, arrows point from referencing attributeste referenced attribute. Attributes in bold

are primary keys.
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PostgreSQL as strings, and considerable resources aréouseavert these strings to different native
Python types (integers, floats etc.). This will not be so mofichn issue in a better suited database
using queries that are not random, since the number of geoked&I Ts will then typically be smaller.

The second and primary place that processing time is spenttise DBMS, executing SQL
queries.
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Figure 4.3: Performance tests measuring query executiore tusing different values of
MaxPathLen.

Figure 4.3 shows the time ESKUSE takes to execute queriefirent values oV ax Path Len,
and Figure 4.4 shows the resulting number of SQL queriesniust be executed per keyword query.
This illustrates the discussion of this constant’s impaciperformance. AV axPathLen grows,
so does both the number and the complexity of the SQL quérasnust be executed. In this case,
complexity refers to the number of joins in a single query.

One would expect queries to take less time #dnx PathLen = 2 for two connected reasons.
Firstly, by using indices on primary keys, the number of segy full-table scans should be kept
down, and secondly, the largest relation has no foreign &&rences to it, making full-table scans of
it unnecessary.

The test results show that even with hundreds of keyword s\@ael aM ax PathLen that is
impractically large, all queries have been executed in flkaa one minute. From the performance
results presented in [7] we can see that DISCOVER runs inerfapnance barrier when it searches
for more than a certain number of keywords and allows its @Htd Networks to grow beyond a
certain size. For ESKUSE, the corresponding values ardfisamtly higher before query execution
takes impractically long. Also, the ESKUSE system itseffsrin only a few MB of memory, a large
amount of which is used by the Python interpreter itself.
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Figure 4.4 Performance test measuring the number of SQliepurecessary to execute in the CN
evaluator for different values aWf ax Path Len.

4.3 Quality tests

Attempts have been made to measure the quality improverétite methods proposed in Chapter 3
as well as the impact of alterinty/ az: Path Len in objective ways, but they have been unsuccessful.
Thus the only evidence is anecdotal by necessity, relyinthemuthor’'s judgement.

As mentioned in Chapter 4.1, quality tests have been run aglmtument database created specif-
ically for the purpose. It was created as a typical example d@étabase for which keyword querying
would be a good way of accessing its data.

In this database, a high value &f ax Path Len has a much smaller negative impact than for the
TPC-H database. The names of people, companies, placeanchent content are fairly cleanly
separated, whereas in the TPC-H database, keywords areamt@ss just as likely to be found in
one relation as in another. Since the relationships betwedifferent relations are quite simple, we
get very few ‘unexpected’ results, even for large valuedfzx PathLen. MaxPathLen = 4 was
found to be a good value, since it allows authors to be coedatitectly to publishers of their papers,
the conferences they present their papers on as well asiteegpers that either they cite or are cited
by. If the schema had been more complex, this might have loeelatge a value.

It was found that the effect of applying the method for mafapog nodes representing relation-
ship set relations described in Chapter 3.2 to this schensanwtinoticeably different from merely
increasingM ax PathLen to 6. The reason for this becomes clear when we notice that allioals
with ‘interesting’ data except the Workplace relation apamected by relationship set relations. In a
schema where fewer, but still some, relationships are nesligarough relationship set relations, the
effect of applying this method is bound to be more pronouneed an increasetl ax Path Len may
be less appealing than for this test database.

The added expressive power of mandatory keyword inclusi@hexclusion, particularly exclu-
sion, shows its value when searching for many different lags. Incidentally, this is consistent with
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the author’s own experiences when using Internet searcinengSuch uses are typically searching
for related papers, common keywords and such, i.e. mostirevine Document relation is concerned.
In the same kind of searches, the prestige-based additithretourrent ranking system presented in
Chapter 3.3 would likely be a boon.

The only annoyance, but this is a big annoyance, is that tHeptistprocessor always generates
as large JNTs as it can. Sometimes, JNTs of monstrous propenvill be returned where many
smaller JNTs would have been preferable. These large JNfTalarost invariably focused on the
Document relation. The author feels that once a replacetoetie current JINT postprocessor is in

place, ESKUSE can be relied upon to yield generally goodyquesults, though there is yet room for
improvement in the ranking algorithm.
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Chapter 5

Conclusion

This chapter concludes upon the work presented in this teput gives the author’'s thoughts on
future work.

5.1 Project conclusion

This report has presented the ESKUSE system, a continuatidnmprovement to the work begun
in [4], a both time and memory efficient keyword search engine

ESKuUSE models database schema and executes queries usgihng.gMethods for greatly im-
proving query execution speed by taking advantage of thesgghgstructures were presented, as well
as several methods for using and manipulating these grapasi and improve the quality of search
results.

Experimental results have shown that the current INT posgssor is often too aggressive in
creating large JNTs. A replacement is under developmertrgeet this problem.

5.2 Future and ongoing work

To target mainly the annoyance of the overly large JNTs sonestgenerated by the JNT postproces-
sor, a replacement algorithm is under development. Likprigslecessor, it starts from a JNT graph,
where it attempts to grow composite JNTs from the smallersINTeceives from the CN evalua-
tor. Unlike its predecessor, it includes a hill-climbingyatithm where at each expansive step it will
consider whether including another JNT into the compo$\€ Will increase or decrease its rank.

An alternative or supplement to this method would be to gitetm adopt the BANKS system'’s
backwards expanding search algorithiihis maybe be possible without too much redesign of ES-
KuUSE, since the JNT graphs created in the JNT postprocessairailar to the graph BANKS uses
to represent a database.

For ESKUSE to be adapted for practical use, it will need soone fof frontend. Providing an
interface through which to accept input is simple, but guesult visualisation is a project unto itself.
Fortunately, there is existing research to draw upon indbimain.

There are also plenty of tuning challenges left, such asmgakaproved ranking algorithms based
on the current functionality, trying to guess more of theaaptual database model from the database
schema, increasing sensitivity to relationship cardipand so on. While none of these by themselves
would advance ESKUSE by leaps and bounds, they would helgé&becan overall better system.
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