
Runtime Validation for Embedded
Real-Time Systems

A Validation Method for Real-Time Systems in Simulated Environments

Anders B. Christensen
abc@cs.auc.dk

Master Thesis

Department of Computer Science
Aalborg University

January 17th 2003

page II

Aalborg University
Department of Computer Science

Title:
Runtime Validation for Embedded Real-
Time Systems – A Validation Method for
Real-Time Systems in Simulated Environ-
ments

Semester:
Fall 2002, Dat6

Project Period:
September 1st 2002 to
January 17th 2003

Author:
Anders B. Christensen

Supervisor:
Kim G. Larsen

Number of Pages:
82

Copies:
3

Keywords:
Real-Time Systems, Validation, Real-Time
Specification for Java, Runtime Verification,
Simulation, Embedded Systems

ABSTRACT:

With the increasing use of computer
systems for controlling processes and
activities in our everyday surround-
ings, the correctness of these systems
becomes increasingly important. The
functionality of such control systems
often relies on tasks being performed at
the correct time, not to soon and not to late.

In this report we investigate the con-
temporary practices for ensuring correct
behaviour of such real-time systems.
We identify the quality and applicability
measures of current practices as well as
their limitations. Based on the contem-
porary methods, we propose a method
for validating embedded real-time systems.

The proposed method allows real-time
systems to be validated in simulated
environments. The simulation performed
is based on formal descriptions (models)
of the environments. During simulation,
the structure of the model is used by a
guiding algorithm to achieve an interesting
exploration of the possible behaviour.
Furthermore, validation is performed in
terms of the states of the environment.

A prototype of the proposed method has
been implemented. Based on this proto-
type we carry out a case study illustrating
the process of describing and formalising
the environment as well as validating pro-
grams controlling it.

page III

page IV

Prefa
e
This report documents the Master Thesis byAnders B. Christensen(05-04-77-2187), writ-
ten under the research unit ofDistributed Systems and Semanticsat theDepartment of
Computer Scienceat Aalborg University. The project is concerned with the validation of
real-time systems and proposes a validation method for suchsystems.

The author would like to thank ProfessorKim Guldstrand Larsenfor his enthusiastic and in-
spiring supervision throughout the project. Furthermore,the author wishes to thank Doctor
Klaus Havelund(who holds a research position atKestrel Technology, NASA Ames Research
Center, Moffet Field Air Base, California), and his colleagues for their aid in obtaining an
overview of current practices within model checking and runtime verification.

Anders B: Christensen

page V

page VI

Contents
1 Introduction 1

1.1 Real-Time Systems and their Environments 2

1.2 Validation Conditions .. 3

1.3 Validation Goals and Measures .. . 5

1.4 Current Practices . 7

1.4.1 Model Checking . 8

1.4.2 Runtime Verification . 11

1.4.3 Model-Based Testing . 13

1.4.4 Limitations in Current Practices 15

1.5 Proposed Validation Method .. 16

1.5.1 Quality and Applicability Considerations 17

1.6 Project Definition . 17

1.6.1 Project Scope . 18

1.6.2 Outline of the Report . 18

2 Real-Time Systems 21

2.1 Definition . 21

2.2 An Example – The Brick Sorter . 22

2.3 Characteristics .23

2.3.1 Clocks . 23

2.3.2 Expressing Time . 23

2.3.3 Temporal Scope of a Process . 24

2.3.4 Periodic and Aperiodic Processes 26

2.4 Scheduling Real-Time Systems .. . 26

2.4.1 Scheduling Model . 26

2.4.2 Overview of Scheduling Policies 28

2.4.3 Priority-based Preemptive Scheduling 29

2.5 Error Categorisation .. 30

page VII

CONTENTS CONTENTS

3 The Inquisitor Framework 33

3.1 Real-Time Features . 33

3.2 Validation Support . 34

3.3 Example . 35

4 Analysis 37

4.1 Behaviour and Interaction .. . 37

4.1.1 Environment Behaviour . 37

4.1.2 Control Program Interaction .38

4.1.3 Example . 38

4.2 Formal Specification of Environments 39

4.2.1 Formalisms . 39

4.2.2 Preliminary Simulation Considerations 43

4.2.3 Modifications of Hybrid Automata for Simulation 44

4.3 Simulation . 46

4.3.1 The Update Procedure . 48

4.4 Exploration Strategies .. . 49

4.5 Validation . 50

5 Design 51

5.1 Overview of the validation process 51

5.2 Component Architecture .52

5.2.1 Component Responsibilities .52

5.2.2 Component Interaction during Simulation 54

5.3 The Environment Component .55

5.3.1 Model Specification . 55

5.3.2 Code Generation . 57

5.3.3 Simulation and Validation Support 59

5.4 The Exploration Component .59

5.5 Validation . 61

5.6 Implementation Status .62

page VIII

CONTENTS CONTENTS

6 Case Study 63

6.1 The Bridge over Oddesund . 63

6.2 Operation of the Bridge .64

6.2.1 Incoming Trains . 64

6.2.2 Incoming Ships . 65

6.2.3 Opening the Bridge . 65

6.3 Modelling the Environment .. 65

6.3.1 The Bridge Hybrid Automaton . 66

6.3.2 The Barrier Hybrid Automaton . 66

6.3.3 The Train Hybrid Automaton . 67

6.3.4 The Ship Hybrid Automaton . 68

6.4 The Control Program . 69

6.4.1 Design . 69

6.4.2 Implementation . 71

6.4.3 Control Program Mutations . 74

6.5 Validation . 75

6.5.1 Execution and Results . 75

6.6 Conclusions on the Case Study .. 76

7 Conclusion 79

7.1 Future Work . 80

A Source Code Listings 83

A.1 Document Type Definition . 83

A.2 Partial Barrel Environment Source 83

A.2.1 The Barrel Environment Class . 83

A.2.2 The Barrel Class . 84

A.3 The Bridge Environment Specification 86

page IX

CONTENTS CONTENTS

page X

Introdu
tion CHAPTER1
Today, computer systems are heavily used in fields requiringcontrol of one or more pro-
cesses. In a typical scenario suchcontrol programscontinuously observe the entities in its
surroundings and generate appropriate reactions. Consider, for example, a simple system
controlling the temperature of a cooling facility. By reading a sensor value, the system may
monitor the current temperature. When a reading shows that the temperature has exceeded
five degrees Celsius, an appropriate reaction may be to switch on a cooling device. If the
temperature was to ever rise above eight degrees Celsius an alarm could be switched on.

Often control systems can be classified ascritical, that is, erroneous behaviour of the control
logic used may result in disastrous situations, e.g. the loss of human life. Naturally, ensur-
ing that such errors do not occur is an important discipline.However, it also represents a
complicated and tedious task – more often than not accounting for a significant amount of
the total effort spent in a project.

An important class of control systems is that ofreal-time systems. Systems in this class are
characterised by the fact that their overall correctness depends not only on the correctness of
results produced, but also on thecorrect timingof these results. For example, in the cooling
facility example given above, it may be imperative that the cooling device is switched on
within some known interval of time, in order to attain a low fluctuation in the temperature
level. Thus, even though the cooler device is eventually switched on, the system is con-
sidered to function correctly only if the cooler was indeed switched on within the required
interval of time.

In this project we continue the work presented in [Chr02], where a framework for validation
of real-time systems was introduced. In this framework, named theInquisitor Framework, it
is possible to execute a real-time system in parallel with a simulation of the environment in
which it resides. For example, with the example presented above, the control system would
interact with a set of processes representing the environment. One process would represent
the cooling device which can be turned on and off. A second process could represent the
current temperature of the cooling facility – increasing and decreasing over time depending
on the behaviour of the control systems and an assumption about the temperature of the
surroundings.

For the validation purpose, a third set of processes known asinquisitors, is introduced.
These processes have the responsibility ofmonitoring the execution of the control system.
The behaviour of the control system is thencheckedfor accordance with properties defined
by a person performing the test. For example, in the cooling facility example, one such
property is that the temperature of the system never rises above eight degrees Celsius. Fur-
thermore, the inquisition processes may be used toguidethe behaviour of certain aspects of
the environment. We shall elaborate on this functionality in a later chapter.

page 1

1.1 Real-Time Systems and their Environments Introduction

As described above, a set of environment simulation processes and a set of inquisition pro-
cesses is required in order to perform validation in the Inquisitor Framework. The applica-
tion logic of these processes must be supplied by the team of people testing a control system.
It is desirable to minimise the overhead imposed by having toimplement environment and
inquisition processes in order to lower the required effortfor testing. It is equally important
to obtain a systematic approach for validation in order to ensure a thorough testing of the
control system.

The work presented in this report aims at achieving these goals. For this purpose we intro-
duce concepts used in formal validation methods and adapt them for use in this practical
setting. Specifically we use the formalism of automata theory to represent the behaviour
of the environment. The processes needed to simulate the environment are generated from
these models, and the inquisition processes use the structure to guide the behaviour of the
environment.

In this chapter we shall first describe how control systems interact with their surroundings.
We then elaborate on the conditions for validating real-time systems and define the goals
and quality measures for validation. This is followed by an introduction to three contem-
porary validation methods,model checking, runtime validation, andmodel-based testing.
We analyse their strengths and weaknesses according to the goals and measures defined.
We also discuss how the interaction with the surrounding environment is accomplished in
the three methods. Towards the end of the chapter, we proposea validation method based
on runtime validation, and state the goals and scope of this project. Finally, we give an
overview of the remainder of the report.1.1 Real-Time Systems and their Environments
As earlier mentioned, real-time systems are often used to control some process in their
physical surrounding. A system is typically designed to control a specific environment – in
fact, it is common for real-time systems to beembeddedwithin some physical entity. For
example, in a microwave oven, an embedded control program can be used to react to events
in the surroundings – such as the push of a button.

In suchembedded systems, the control program is executed on a hardware platform which
we shall refer to as anembedded device. These typically consist of a processor, some mem-
ory, and a number of communication ports. Many embedded systems are consumer products
(microwave ovens, television sets, etc.), which ship in large quantities. Considerable cost
reductions can therefore be achieved by using embedded devices with minimum process-
ing and memory resources. As a consequence, the binding of the control program to its
environment is further tightened by the use of custom hardware configurations.

In order to interact with the entities of the environment, a conversion from the physical
representation to a data-oriented representation is required. For example, in the cooling
facility example, it is necessary to convert the temperature of the surroundings to a numeric
value in order to monitor the temperature. Similarly, when the control program needs to
start the cooler, a numeric value (orsignal) must be converted to a switch in a relay. Figure
1.1 illustrates the setting of the cooling facility controlprogram.

page 2

Introduction 1.2 Validation Conditions

Thermometer

Sensor

Actuator

Coolor

Embedded
Device

Cooling Facility

Door

Figure 1.1: The cooling facility example. The control program executing on the embed-
ded device is interacting with a thermometer and a cooler through sensors and actuators,
respectively.

The conversions mentioned above are carried out by electrical and mechanical devices,
known assensorsandactuators. The relationship between the embedded device, its sensor
and actuators, and the physical environment is illustratedin figure 1.2. The sensors and
actuators are connected to the communication ports of the embedded device. By reading
the values of the input ports, the control program obtains knowledge about the current state
of its environment, and by sending signals to the output ports it affects the future state of
the environment.

Sensor

Actuator

device
Embedded Physical

Environment

Figure 1.2:Embedded systems interact with their environments through sensor and actuator
devices.

1.2 Validation Conditions
In this section we elaborate on the conditions under which development and validation
of real-time systems are performed. Some of these motivatedthe implementation of the

page 3

1.2 Validation Conditions Introduction

Inquisitor Framework – others are dealt with by the validation method proposed later in this
chapter.Æ High reliability and robustness demands– Since real-time systems are often used

for controlling some task or process in its surrounding, thereliability and robustness
demands imposed on such systems are high. For example, the consequences of a
break-down in a control program at a nuclear facility could result in grave human and
economic losses.

Another characteristic or real-time systems is that they are often part ofembedded
devices used in everyday appliances such as cars, microwave-ovens, and washing
machines. Such devices are often produced in large quantities, leading to significant
costs if an entire product line must be retracted due to an error;Æ Platform dependence– With current practices, applications are often tightly bound
to the underlying hardware platform. That is, specialised functionality provided by
the platform are used at a low level of abstraction. As a consequence, switching the
hardware on which applications run may require significant effort for redesigning and
porting.

This dependence on a given hardware platform makes developers vulnerable to change
in hardware specifications and to the discontinuation of product lines. Furthermore,
reuse of code from component libraries is complicated. In addition to the extended
effort needed to recode functionality, quality of the software produced may also suf-
fer due to programmers becoming sluggish because of a lack ofintellectual interest
in rewriting code.

Hence, an abstraction from hardware is desirable from a quality as well as an eco-
nomic view. One way to introduce such an abstraction is by theuse of avirtual
machine– which executes so-calledbyte-code. This byte-code may then be executed
on every platform for which an appropriate virtual machine exists.

An attempt to achieve this for real-time systems is made by the introduction of the
Real-Time Java Specification. The Inquisitor Framework is based on this specifica-
tion and thereby serves as a validation tool for programs written in compliance with
it;Æ Well-defined environments– Due to the high reliability and robustness demands, a
considerable amount of effort is often spent defining the environments in which they
reside. Having a good understanding of the behaviour of the environment is vital to
produce control programs that respond correctly to given situations. These represen-
tations of the environment can be formalised and be used in the validation process.
As we shall later describe, this is utilised in the case of model checking (see section
1.4.1).Æ Difficult testing conditions– In some cases, testing software in the environment in
which it is to be deployed is not possible. For example, for large systems, interacting
with a lot of physical components, it may be too expensive to have an installation at

page 4

Introduction 1.3 Validation Goals and Measures

the development site. Thus, integration tests cannot be performed until the end of the
development process – which may lead to a late discovery of errors;Æ Analysis of real-time requirements– For real-time systems, an important activity is
that of estimating theworst-case execution timeof processes. These calculations are
used in an analysis showing whether or not the real-time requirements of the system
can be met on a given platform.

Estimating worst-case execution times is a complex and often time consuming pro-
cess. One way of obtaining a measure of the worst-case execution time is by executing
the application and measuring the time a task actually takes. However, when there are
several threads in the application – and these threads are not independent, that is, they
share some resource, such measuring can become very complicated. For example,
if two processes both require exclusive access to some shared resource, the worst-
case execution of one thread should not include the time spent waiting for access to a
resource held by another thread.

Another approach is to analyse the system using knowledge about the execution plat-
form. This, however, is complicated by the complex designs of modern processors,
due to the heavy usage of pipelines, caches etc. Also, if changes to the requirement
specification are common, so will the need to recalculate worst-case execution times
be;Æ Complicated debugging of real-time systems– When an error is found during devel-
opment or testing of a real-time system, finding the cause of the error is complicated
by the existence of timing requirements. For example, the activity of “step-through
debugging”often cannot be used as this drastically changes the timing of the system.

Some of these problems, notably the issue of platform-dependence are dealt with by the In-
quisitor Framework. Since most of the issues are directly related to validation, we now turn
to an investigation of the goals and measures of validation.This includes an investigation
of the quality of software validation processes and some relevant practices currently in use.1.3 Validation Goals and Measures
The goal of all validation is a very concrete one: To find as many errors as possible in a
given program. In a traditional scenario, testing is carried out by definingtest casesand
writing test driversthat execute a program (or part of it) with some input and records output
for analysis. Certainly, such test cases should ensure thatthe program is thoroughly tested.
In other words, the quality of the test is only as good as is thequality of the test cases. For
validation methods in general, we shall define the followingthree measures for the quality
of a particular method:Æ Coverage– As argued above, some measure for how thoroughly a program is checked

is desirable. To this end we introduce the concept ofcoverage– denoting how large
a part of the program behaviour has been subject to validation. One unit in which

page 5

1.3 Validation Goals and Measures Introduction

coverage can be measured is executed lines of code. If, aftervalidation, 80 percent of
the total amount of lines of code have been examined, by executing that line at least
once, we shall say that the coverage is 80 percent.

A simple measure such as code-line coverage is often insufficient for calculating the
coverage of program behaviour. Consider, for example, a function taking an integer
parameter that is required to be in an interval between 0 and 4. If this function is
called with the parameter value 1 it may be the case that all code lines of that function
are covered and that the test is successful. This is, however, no guarantee that the
function does in fact not fail on input value 4. In such cases,more abstract measures
of coverage, often based on programstate, are necessary. We investigate the coverage
measures of some relevant current validation practices in section 1.4;Æ Types of errors that can be discovered– Software errors take many forms. Some are
rather abstract like the usability of a system or its conformance to a requirement spec-
ification. Other errors are closer tied to the code produced –for example deadlocks,
race conditions, and various memory related errors. Errorsin the latter category typ-
ically manifest themselves as system malfunctions or even break-downs. As will be
described in section 1.4, different approaches operate on different abstraction levels
of a system and therefore are able to reveal different types of errors;Æ False negatives and positives– Say that a program is checked for a supported type of
error using some validation approach. Expected behaviour of the process would be
to report an error if and only if one was present. However, validation methods may
sometimes falsely conclude that an error is present, even though this is not the case,
or conversely, fail to detect an error that is indeed present. We shall refer to these
undesirable phenomena asfalse positivesandfalse negatives, respectively.

False positives may lead to developers fixing errors that are, in fact, not present –
inducing an overhead on validation effort. False negativesare an indication of in-
sufficiencies of the validation approach. Thus, if a given approach is prone to false
negatives it cannot, in general, be concluded that the program does not contain an
error even though no evidence was found that it does.

Though a validation approach produces high quality resultsit may still not be veryap-
plicable in real-world validation practices. The applicability of validation approaches are
characterised by the following properties:Æ Automation– An ideal validation method is one of total automation – taking a rep-

resentation of program as input and reporting errors found as output without the
involvement of manual decision making or labour. At the other end of the scale,
validation approaches without the aid of tools depend solely on manual labour and
therefore require large amounts of effort for complex system. In addition, manual
validation approaches are inherently more prone to errors.In conclusion, a high level
of automation is desirable – a very low one may easily render an approach useless;Æ Scalability– In order to meet the large and complex systems encountered in the soft-
ware industry, a validation method needs to scale well;

page 6

Introduction 1.4 Current PracticesÆ Level of abstraction– Validation methods differ in the level of abstraction at which
they operate on application logic. For example, the traditional testing approach de-
scribed earlier operates directly on compiled applications by executing it using test
data. Other methods, including static analysis, operate onthe source code without
actually executing it, while yet others operate on high-level abstractions such asmod-
els. Depending on the level of abstraction, validation approaches may be applied
at different stages in the development process. Naturally,as the level of abstraction
increases, the types of errors that can be found change from implementation errors,
such as memory and null-pointer references, towards high-level specification errors
related to the design of the system.1.4 Current Pra
ti
es

Having identified validation of real-time systems as an important and complicated task,
we now turn our attention to a review of some current validation practices. An overview of
some current practices is given in figure 1.3. Testing approaches such as unit and integration
testing are commonly used in validating real-life real-time systems. These approaches tend
to be rather informal in nature. At the other end of the scale,formal verification methods
(notably model checking, which shall be further described later) have proven successful –
as tools such as Spin ([Hol97]) and Uppaal ([LPY97]) suggest.

testing

unit
inte-

gration

validation

verification

modelstatic
checking checking

theorem
proving

model-based
testing

runtime
verification

Figure 1.3:Validation approaches for real-time systems

Between the formal and the informal methods, some hybrids between the two extremes ex-
ist. Runtime verification is based on a single executing of a program and validates that this
trace has certain properties. Model based testing usesspecification modelsfor describing
allowed input/output behaviours of a system. Using the specification model, an imple-
mentation is then tested forconformanceby feeding it allowed input and checking output
produced for validity according to the specification model.

page 7

1.4 Current Practices Introduction

In this section, we shall introduce the validation methods of model checking, runtime ver-
ification, and model-based testing. These methods are considered relevant to our proposed
validation method, described in section 1.5. For each approach we give a short description
of a typical validation process and investigate the qualityand applicability characteristics
stated in the previous section. An overview is given in table1.1, which also serves as
grounds for a description of the limitations in current practices given in section 1.4.4.1.4.1 Model Che
king
The model checking process can be divided into two parts: A design part where amodelof
the system is created and a validation part where the model ischeckedeither bysimulation
or verification. For the construction of the model the software designers identify abstract
statesin the system andtransitionsbetween them.

s2 s3

ci < 10 ci := 0 ci > 10

t := i t = i
s1

Figure 1.4:A single process in Fischer’s protocol for mutual exclusion.

For real-time systems, a popular notion is that ofTimed Automata(introduced in [AD94]), in
which clockscan be defined and clock values may be used as restrictions on transitions and
states. As an example, we consider Fischer’s protocol for mutual exclusion. Each process
in the protocol is an instance of the Timed Automaton depicted in figure 1.4, and includes
a private clockci (initialised to zero) and access to the shared integer variable t which acts
as a token. Each process must leave states1 before ten time units – thereby updating the
value of the token. Upon entering states2 processi resets its clock to zero and remains in
states2 until at least ten time units have progressed – ensuring all processes have entered
s2. Finally, having ensured that the token will no longer be updated, the process identified
by the token will enters3, obtaining exclusive access to some resource.

model checker

verificationsimulation

model S

trace

S j= ϕ

Figure 1.5:The model checking process

page 8

Introduction
1.4

C
urrent

P
ractices

Model Checking Runtime Verification Model-based Testing

Abstraction Exploration of high-level models of
applications in terms ofstatesand
transitions. There is a so-calledse-
mantic gapbetween the model and
its implementation.

Based on the monitoring of a single
run of modified application code.

Exploration of an implementation
based on a specification model
(transition system) defining allowed
input and output behaviour.

Coverage Based on abstract program state,
full state spaceexploration ensures
complete coverage.

Coverage is measured in the per-
centage of lines of code and may
vary significantly.

Measured in terms of code lines as
well as specification model state.

Error Types Based on validation of properties.
Due to the high abstraction level the
error types supported are design-
level errors including violation of
SafetyandLivenessproperties.

Based on verification of properties.
The program is monitored for vi-
olations during execution. Some
properties such as deadlock, data-
races, and runtime exceptions can
be checked implicitly.

No properties except the specifica-
tion model need be supplied. De-
tectable errors include errors where
algorithms produce erroneous re-
sults and runtime errors.

False Pos/Neg Since models are over-abstractions,
false negatives can occur.

Subject to false positives as well as
negatives.

Subject to false positives (like test-
ing).

Automation The modelling process is (most
commonly) manual – however of-
ten this model can be used for au-
tomatic generation of control logic.
Properties must be manually stated.

The modification of source code
and monitoring of the execution
is performed automatically. Some
properties must be explicitly stated
while others are checked implicitly.

The model must be provided manu-
ally. Testing is then performed au-
tomatically and may easily be re-
peated on different or altered imple-
mentations

Scalability Subject tostate space explosionim-
posing limitations to the size of
models checked.

Good scalability. Good scalability

Table 1.1:The quality and applicability properties of the validation approaches considered.

page
9

1.4 Current Practices IntroductionValidation
For the model checking part, tools such as Uppaal ([LPY97]) and Kronos ([Yov97]) are
often used. Validation is performed by simulation and verification (illustrated in figure 1.5).
In the simulation process, the behaviour of the system may beobserved by interactively
choosing the next state to enter when several possibilitiesexist. This activity is useful for
design and debugging purposes.

An automated validation approach is that ofstate exploration, offered by the verification
process. During this process, the system is examined and it is decided whether some given
property holds or not. If not, atracedescribing the error is provided. In the case of Fischer’s
protocol, properties may include that at most one process isin states3 at a time and that a
process will eventually obtain exclusive access. These properties are instances of two cate-
gories of properties known assafetyandliveness, respectively. Often informally explained
as“something bad never happens”and“something good eventually happens”, such proper-
ties constitute prototypicaldesign-levelerrors that can be discovered using model checking.

When a model checker performs a state exploration, each state encountered is checked for
the property. If the property does not hold, an error trace isgiven. Otherwise, the state is
stored – representing the fact that the given state is known to satisfy the property. Hereby,
coverage, measured in states, is complete and false positives and negatives do not occur –
presuming a correct model of the real-time system.

However, since time is continuous, thestate spacebecomes infinite. This is clearly unde-
sirable and techniques such assymbolic model checkingare applied in order to restrict the
space consumed. Still, model checking is subject to the phenomenon ofstate space explo-
sion, where the model checker runs out of memory due to a large amount of stored states.
This imposes a low scalability on the model checking technique.Quality and Appli
ability
The fact that model checking is performed on a model rather than on the actual system limits
the properties that may be checked to the design-level properties. This distance between the
model and the actual system is often referred to as asemantic gap. Due to this gap it cannot
be verified that animplementationof the system is correct – even though the model has
been shown to be. Consequently, the high abstraction level of model checking imposes
limitations on the types of errors that can be found.

The manual parts of model checking includes model construction, defining properties to be
verified, and interaction during simulation. The most significant of these tasks is construct-
ing a model of the system to validate. However, this task may be seen as part of the design
process and therefore serves purposes exceeding validation of the system. For example, it
is common practice to generate control logic for applications from models within the field
of embedded systems engineering.

Finally, it should be mentioned that recent work has been conducted which narrows in the
gap between models and actual code by generating models fromthe source code of pro-
grams. This work is most notably represented by the Bandera tool-kit ([CDH+00], [DH99],
and [DHJ+00]), which contains a front-end for generating models fromJava code and a

page 10

Introduction 1.4 Current Practices

back-end for interfacing with model checkers such as Spin ([Hol97]) and Java Pathfinder
([HP00]). Generating Promela models of software written inC++ (for verification with
Spin) is supported by the FeaVer tool ([Hol00]). At the time of writing, none of these
approaches incorporate timing requirements.Representation of the Environment
When validating real-time systems using contemporary model checking tools, the environ-
ment is represented by models similar to those representingthe control logic. Communica-
tion between these entities can be obtained in two ways:Æ Shared variables.It is possible to declare global variables whose values can be read

and reassigned from the environment as well as the control logic models;Æ Synchronisation channels.In model checking tools, such as Uppaal, it is possible to
declare channels on which synchronisation can be performed. The synchronisation
process is illustrated in figure 1.6. During validation, twomodels can synchronise if
both of the following hold:

+ The current state of one model allows a transition to be taken which can emit an
outputon a given synchronisation channel;

+ The current state of the other model allows a transition to be taken which can
accept aninput on the same synchronisation channel.

channel! channel?

Figure 1.6:Two models synchronising during validation

In formalisms which contain the notion of time, the synchronisation action occurs at
the same instant in both automata. Specifically, this is the case for Timed Automata.1.4.2 Runtime Veri�
ation

Whereas model checking operates on abstract models of systems runtime validation, re-
cently by [HP00] and [KKL+01], is performed directly on the program by executing it and
observing whether or not the program behaves as expected. Inorder to perform this moni-
toring, programs are modified to emit output describing certain events. The result of arun
of the program is therefore a finitetraceof events emitted by the program during execution.
The expected behaviour is given by one or more properties, and the system is considered to
be well-behaved if a trace satisfies a given property.

page 11

1.4 Current Practices Introduction

program events property

program’

observation

Figure 1.7:The runtime verification processValidation
The process of runtime verification is illustrated in figure 1.7. The properties that are to be
validated are stated formally be the person carrying out thetest. Typically, these properties
are inspired by the informal properties stated in the requirement specification of the control
program. The properties must define high-level validation rules from low-level program-
ming events.

In the MaC tool ([KKL+01]), the specification language is divided into to parts: ThePrimi-
tive Event Definition Language(PEDL) and theMeta Event Definition Language(MEDL).
PEDL expressions define primitive events (such as a variabledeclaration, a variable assign-
ment, or the entering of a method) and primitive conditions from these (such as eventa
holds until eventb). In MEDL specifications, higher level events and conditions are created
from those imported from a PEDL specification. Furthermore,the properties that must hold
for the system are stated in terms of these events and conditions.

Next, the set of events that must be monitored has to be deduced. Often, the events that must
be monitored can be deduced from the properties. In the MaC tool ([KKL +01]), the event
set is given by the primitive events defined in the PEDL script. Given the event set, small
pieces of code emitting output describing the events are then inserted into the program to
be tested. This modified (orinstrumented) program is then executed and a monitoring unit
observes whether or not it satisfies the properties defined.Quality and Appli
ability
The error types supported by runtime verification range fromruntime errors, such as pro-
gram exceptions, to the validation of properties, typically specified in some temporal logic.
Common properties include the existence or nonexistence ofsome event in a trace and that
one event is followed by another at some time in the future. Noteworthy, some properties
such as deadlocks and data-races in multi-threaded programs may be discovered without the
need to explicitly specify a property. This is accomplishedby observing the sequences of
acquirings and releases of semaphores by different threads. If two threads acquire exclusive

page 12

Introduction 1.4 Current Practices

access to two shared resources without obeying to some ordering, there is a possibility of
deadlock – even though it may not occur in the run.

The coverage of a run is measured in the percentage of code-lines executed and may vary
significantly between runs. In general, the coverage experienced is low since validation is
based only on a single run and the program is notguidedto ensure coverage of abstract sys-
tem state. As a consequence, false positives are common, andit can never be concluded that
a program is correct with respect to some property on groundsof an error-free trace. The
validation method is also prone to false negatives. The implicit checking of concurrency-
related errors may identify, for example, a possibility of deadlock (without actually observ-
ing one) – but no current practices are able to prove whether or not they can in fact occur in
a given program (unless actually observed).

The only manually performed task is stating properties to bechecked, since altering the
program representation can usually be performed automatically according to the property to
check. This implies that runtime verification has a high degree of automation. Furthermore,
since it is based on a single run of the program, it scales verywell to large systems.

An issue of practical nature is related to runtime verification of real-time systems. The in-
serted code emitting events from a program consumes processing time – as well as does
the observation process (including the maintenance of information about processes timing
requirements). Of course, while these tasks are executed, time progresses, which may in-
fluence whether or not a process meets it timing requirements. A common solution to this
problem is to ensure that the time spent for these activitiesare negligible with respect to the
execution of the program under test.Representation of the Environment
The tools for runtime validation that we have encountered all depend on the program being
executed in its actual environment. That is, if a program responds to the press of some
button, a user is required to physically push that button. Similarly, if a program generates
some output to a physical device, the physical device must bepresent in order to receive the
signal, thereby altering the state of the surrounding.1.4.3 Model-Based Testing
Like runtime verification,model-based testingoperates directly on the system by executing
actual application code. However, as depicted in figure 1.8,instead of observing whether
or not a given property is satisfied on a single run, in model-based testing a number of
test, making up atest suite, are generated from a specification. The overall aim is then to
test whether the implementation under test conforms to the given specification, that is, the
implementation is correct with respect to that specification.Validation
The specification is given as aninput/output model– differing from the models previously
discussed in that a transition may either emit an output to – or expect some input from – an
external entity. The tests generated contain sequences of input to be given to an implemen-
tation, and a number of allowed outputs. In order to pass, theactual output, observed when

page 13

1.4 Current Practices Introduction

test generation

pass
execution

specification

test suite

implementation
fail

m ?

Figure 1.8:The process of model-based testing

executing a test, must be a subset of the allowed outputs. Furthermore, the test must emit
no outputonly if no allowed output exists in the specification (referred toasquiescence).

If all tests pass, it may be concluded that the implementation conforms to the specification,
under the following two conditions: First, the test execution must besound, that is, no
correct implementation will ever fail a test. Second, testing must beexhaustive, that is,
every incorrect implementation will fail at least one test in the test suite. The latter objective
is, of course, not obtainable in the general case.

Tests are generated from the specification model. In TorX ([dVT00]), tests are generated
without input from the user. When in a given state, one of the following three options are
chosen at random:Æ Offer input. The implementation is given an input. This can always be donesince

models (and thus implementations) are expected to beinput-enabled– that is, always
accepts all input;Æ Expect output.The observation unit awaits an output from the implementation;Æ End test.End a test case.Quality and Appli
ability

The coverage of model-based testing can be measured in the coverage of the model as well
as in the percentage of the total amount of code lines executed. The coverage obtained relies
heavily on the algorithm used for generating tests from specifications – a process whose
description lies beyond the scope of this introduction. Though no measurements of coverage
in current tools have been found, complete coverage is expected to equal exhaustiveness –
and therefore be unobtainable. However, the coverage is expected to be better than that
of runtime verification since each test in the test suite may be seen as a trace in runtime
verification. As a consequence scalability is assumed to be worse than that of runtime
verification.

page 14

Introduction 1.4 Current Practices

Concerning the types of errors that can be detected, runtimeerrors as well as miscalcula-
tions by algorithms (in form of output) may be discovered. The remaining characteristics
are comparable to that of model checking: A model must be manually constructed – but
once this is accomplished it may be used for automatic testing of several different imple-
mentations. Also, the false negatives and positives experienced relies on the specification
and the coverage obtained.

Tools for performing model-based testing (such as TGV ([JCTG96]) and TorX ([dVT00]))
often perform the generation of test suiteson-the-fly. That is, the tools interact with the
implementations under test during execution, feeding themwith input and observing the
output produced. If the output is allowed, a new input may be given to system. Of course,
such on-the-fly techniques have the same problems dealing with real-time requirements as
do runtime verification.Representation of the Environment
No explicit model specifying the behaviour of the environment is used for model-based
testing. Instead, the algorithm for generating test cases uses the specification of the control
program to decide the inputs and outputs to offer and expect.Due to the assumption of
input-enablednes, the test case algorithm can offer any input to the implementation under
test in any state.

By this approach, no assumptions about the behaviour of the environment is made. Thus, the
control program can by subjected to all possible behavioursof an environment. It is assumed
that the control program reacts only to certain inputs, namely those in the specification. If,
during testing, it reacts to other inputs than those allowedby the specification, the test is
concluded to have failed.1.4.4 Limitations in Current Pra
ti
es
Comparing the current practices described above, it is clear that a major difference lies in
the trade-off between coverage and scalability. The high abstraction level and complete state
space exploration of model checking allows for full coverage at the cost of scalability. At
the other end, runtime verification operates only on a singlerun of the application, yielding
good scalability and low coverage. Model-based testing hasa better coverage than runtime
verification, but lower coverage than model checking. Also,the coverage may be defined
in both the amount of code executed and the part of the specification model explored. We
identify the lack of good coverage combined with good scalability as a limitation in current
approaches.

A second limitation we shall emphasise is the applicabilityof the validation approaches
to real-time systems. While model checking tools exist for verifying properties of models
real-time systems a large class of errors, namely those related to the actual execution of
application code on a given platform, is not supported. For real-time systems this includes
performancerelated errors – that is, errors where some timing requirement cannot be met
on a given platform due to performance problems.

In runtime validation and model-based testing such performance related errorscan be de-
tected – but the time consumed observing whether propertiesare satisfied or not must be

page 15

1.5 Proposed Validation Method Introduction

shown not to interfere with processes meeting their timing requirements. In conclusion,
significant limitations exist in the applicability of current validation approaches to real-time
systems.

Of the three current practices, only model checking incorporates an explicit specification of
the environment. Current runtime based approaches assume that the program is executed
in its actual environment. Since the behaviour of a physicalenvironment is hard to control,
assuring that the control program is subjected to a variety of different behaviours in the
environment is difficult.

Model-based testing makes implicit assumptions about the behaviour of the environment
based on the specification of the control program. This, however, does not allow impossible
behaviours to be disregarded. Therefore, the control program is likely to be subjected to
tests of environment behaviour that can never actually occur. Although it is important that
the control program react only to the desired inputs, testing it for environment behaviour
that is known never to occur constitutes an overhead in the testing process.1.5 Proposed Validation Method
In this report, we propose a validation method that is primarily based on run-time validation.
However, instead of interacting with a physical environment, the control program interacts
with an environment simulator(see figure 1.9). This simulation is based on a model of
the environment behaviour, comparable to the automata describing environment interaction
used when model checking real-time systems. As earlier noted, embedded systems often
operate in well-defined and well-described environments. Thus, obtaining a formal model
of the environment behaviour can be accomplished by formalising the informal environment
descriptions.

stimulate

actuate

environment simulator

requirements control
program

check

Figure 1.9:An illustration of the proposed validation method

In current run-time validation techniques, the requirements for the behaviour of a control
program are given as properties in terms of the allowed program states. As illustrated in
figure 1.9, we propose that the validation is based on the happenings of the environment –
which it is the purpose of a program to control. By following this approach, the require-
ments can be stated as limitations in the allowed happeningsof the environment, rather than
invocation of methods and values of variables.

Specifically, by incorporating timing requirements into the specification of the environ-
ment, validation of control programs with real-time constraints is supported by the proposed

page 16

Introduction 1.6 Project Definition

method. By supporting a high-level abstraction of the environment and supporting valida-
tion of real-time systems in it through simulation, we aim atimproving the applicability and
quality of run-time validation for embedded systems. In thenext sections, we investigate
these properties for the proposed method.1.5.1 Quality and Appli
ability Considerations
The proposed method combines some of the strengths of other practices. Most notably,
the explicit modelling of environments known from model checking is applied to runtime
verification. In this section, we investigate the quality and applicability of the proposed
method, based on the measures defined in section 1.3.Quality
The error types that can be found with the proposed method areequal to those supported
by run-time validation. That is, they are in the categories of run-time errors, algorithmic
errors, and timing errors. The fact that a model is used for representing the environment
introduces a risk of false negatives, in the event that this model does not correctly describe
the behaviour of the actual environment.

Coverage can be measured in terms of the environment model. Since the part of the be-
haviour of the environment that a control program is subjected to during validation is ef-
fected by the simulation algorithm, the coverage of the validation can in influenced by
guiding the simulation. In chapter 4, we shall consider several algorithms for performing
this guiding.Appli
ability
The formalisation required in order to specify the behaviour of the environment must be
performed manually. However, since an informal description of the environment is likely
to be given, this task does not constitute a large manual effort. The same applies for the
requirements of the environment. Given the automatic simulation and validation suggested
by the proposed method, the degree of automation is relatively high.

The level of abstraction is equally high, since models of theenvironment and requirements
in terms of these models are used for the validation. The scalability of the proposed method
is assumed to be better than that of model-checking, since the exploration performed is not
exhaustive. However, it is likely to be worse than the scalability of run-time validation since
a higher coverage of the states is likely to be achieved.1.6 Proje
t De�nition
In order to realise the validation method described in section 1.5, a number of tasks must
be performed. In the following, we describe these tasks, and, in the next section we define
the scope of the project. That is, we describe to which level of detail the tasks are covered
in this report. These tasks are:

page 17

1.6 Project Definition IntroductionÆ Environment Analysis.In order for the environment to be described formally, an
analysis of the generic patterns in behaviour of an environment must be performed.
The various evolutions of environments over time must be captured in the formal
models, in order to allow a simulation to be based upon them. The behaviour of
an environment, of course, is dependent on its interaction with the control program.
Thus, an investigation of the communication patterns between these entities must also
be carried out;Æ Formal representation of the environment.Having defined the behaviour that a for-
malism must be able to express, an appropriate formalism must be chosen. The for-
malism must support interaction with the control program and validation of environ-
ment requirements;Æ Simulation based on formal models.The formal representations describe how envi-
ronments may evolve over time under influence of the control program. Since the
environment may change autonomously, a method for activelyupdating the state of
the environment is necessary. Similarly, methods for interacting with the control pro-
gram during execution are required;Æ Validation based on environment requirements.When the control program is exe-
cuted in parallel with the simulated environment, an approach for validation is re-
quired. This task consists of two subtasks: Obtaining a goodcoverage of the possible
environment behaviour, and checking that a set of properties is satisfied. Both the
coverage measure and property validation are based on formal models of environ-
ments.1.6.1 Proje
t S
ope

In this project, we mainly focus on the analysis of environments, their formal descriptions,
and the simulation based on these. We aim at obtaining a high level of automation, thereby
minimising the effort required by test teams in order to use the approach. We also con-
sider different approaches to assuring a good coverage of the validation, and how to allow
validation to be performed on the states of the environment.

Since the area of expressing properties for runtime validation is well-researched in the MaC
tool ([KKL+01]), we choose not to go into depth with property expression(see section
1.4.2). However, relatively simple expressions for restricting the allowed states of the envi-
ronment will be supported.

Furthermore, we design and implement a prototype, in which the functionality requirements
deduced via the analysis is supported. Based on this prototype, a case study of a control pro-
gram for the operation of bridge is performed, in order to identify strengths and weaknesses
of the proposed validation method.1.6.2 Outline of the Report
The work presented in this report is a continuation of the work presented in [Chr02]. A
significant part of this introduction is a modification of theintroduction presented in the

page 18

Introduction 1.6 Project Definition

previous report. Chapter 2, an investigation of the characteristics of real-time systems, was
published in an almost identical version in the previous report. The remainder of the report
is structured as follows:Æ Chapter 2,Real-Time Systems, gives a description of the characteristics of real-time

systems, including a definition of the concept, timing scopes, and an overview of
scheduling policies. Furthermore, a classification of the error types that can occur in
real-time systems is made.Æ Chapter 3,The Inquisitor Framework, describes the functionality provided by the
framework resulting from the work presented in [Chr02]. Theframework allows
runtime validation of real-time systems implemented in conformance with the Real-
Time Specification for Java.Æ Chapter 4,Analysis, includes the analysis of general environment behaviour and in-
teraction. A formalism for modelling the behaviour of environments is chosen, and
a method for simulating these models is presented. This method allows validation to
be performed in terms of the states of the model.Æ Chapter 5,Design, describes how the general simulation and validation approaches
described in the analysis can be implemented in the Inquisitor Framework.Æ Chapter 6,Case Study, contains the case study of the control program for performing
the operations of a bridge. Based on this implementation, a test of the prototype is
performed.Æ Chapter 7,Conclusion, contains a conclusion on the work presented in this report
and describes future work.

page 19

1.6 Project Definition Introduction

page 20

Real-Time Systems CHAPTER2
In this chapter, we define and characterise real-time systems in order to obtain a well-defined
semantics of terms used in the remainder of the report. The chapter also serves as a theoret-
ical background for the description of the Inquisitor Framework, given in chapter 3.

After defining real-time systems, we introduce an example real-time system that sorts bricks
on a conveyor belt, which will be used throughout the next three chapters. In accordance
with this, many of the examples of the characteristics of real-time systems in this chapter
will be given in reference to the brick sorter example.

Having described the characteristics of real-time systemswe proceed to investigate the types
of errors that real-time systems may exhibit. This categorisation is made with the second
objective of the report – validation of Real-Time Java applications (as defined in chapter 1) –
in mind. We consider it useful to differentiate errors by category when validation strategies
are evaluated.2.1 De�nition
In chapter 1 we introduced real-time systems as systems in which the overall correctness
depends not only on the correctness of results produced but also on the correct timing of
these results. This definition, however, does not explicitly state anything about the environ-
ment in which such systems reside. For our purpose of validation we wish to distinguish
real-time systems from their environments. We therefore adhere to a modification of the
following definition by thePredictably Dependable Computer Systems project:

A real-time system is a system that is required to react to stim-
uli from the environment (including the passage of physical time)
within time intervals dictated by the environment in its current
state.

Figure 2.1 depicts this definition of a real-time system. Given a stimuli from the environ-
ment at timet a real-time system must react within an interval [∆;∆+∆0], ∆;∆0 2 Rn after
t. The modification of the definition is that we explicate that the current state of the envi-
ronment is allowed to effect the appropriate reaction as well as the interval of time (that is,
the values of∆ and∆0) that this reaction must occur within. Since the current state of an
environment decides the possible future states, changes inthe environment may also influ-
ence what is considered correct behaviour. Note that, by thedefinition, stimuli may simply
be that an amount of timet1 has passed. Thus no explicitinput datais required from the
environment in order to constitute stimuli.

page 21

2.2 An Example – The Brick Sorter Real-Time Systems

Real-time systems are often categorised with respect to theimportance of reacting within
the proper interval of time after a given stimuli. Systems where such misses are fatal to
the continuance of the system (because of damage to the environment) are said to behard
real-time systems. An example of a hard real-time system is acontrol program monitoring
some process (e.g. chemical or nuclear), terminating the process if it starts to run out of
control. Failure to react to such runaway processes may havedisastrous results.

��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������real-time

system
react

[t+∆ ; t+∆+∆0]stimuli

t

environment

Figure 2.1:A real-time system interacting with its environment

If, on the other hand, a system is able to survive such misses,the system is characterised as
soft. Examples of soft real-time systems include multimedia systems, where a temporary
failure to play back video or audio files with the correct timing may result in bad quality –
but does not prevent the system from continuing the execution.2.2 An Example � The Bri
k Sorter
In this section we introduce an example that contains properties characteristic to real-time
systems (described in the next section). The example, depicted in figure 2.2, consist of a
conveyor belt, a (light) sensor, a piston, and red and black bricks. These entities make up
the environment of the system. The conveyor belt moves bricks at a constant speed from
the entry point at the left towards the exit point at the right.

Control
Logic

brick eject

Conveyor Belt

Sensor Piston

Figure 2.2:The brick sorter

The aim of the system is to eject all red bricks from the conveyor when passing the piston.
Black bricks should be allowed to reach the exit point. We assume that the highest frequency
with which bricks can be placed on the conveyor belt is known –and that this frequency is
low enough that no brick will ever be placed on top of another.We shall further assume that
the belt is eitherrunningor stopped.

page 22

Real-Time Systems 2.3 Characteristics

The control program consists of some application logic controlling when to eject bricks.
The control program may poll the sensor for the colour of the brick in front of it. If no brick
is located in front of the sensor a sensor poll will return a special value expressing this fact.
The piston supports an eject action.

If a brick is located in front of the piston at the time of an eject action, the brick will be
pushed off the conveyor. No information about the position of a brick can be obtained
between the sensor and the piston. Consequently, when a red brick is observed in front of
the sensor (stimuli), the time at which an eject should occur(reaction) must be calculated
from the distance to the piston and the speed of the conveyor belt.2.3 Chara
teristi
s
In order for a real-time system to react timely to given stimuli, it is necessary to be able
to express (and schedule accordingly to) these timing demands in real-time software. Con-
sequently, applications must be able to access clocks and express time. Furthermore, we
introducetemporal scopes, by which we are able to express the desired specifications of
timing demands. Finally, we describe the concept of periodicity – that is, performing a task
several times with a given period between executions. The section is based on chapters 12
and 13 in Burns and Wellings ([BW01]).2.3.1 Clo
ks
Clocks represent thepassage of physical timein the environment, mentioned in the def-
inition of real-time systems. They are discrete representations of continuous time. That
is, time proceeds inticks constituting the fact that a fixed period of time has elapsed.The
amount of time that a clock is increased per tick is called theresolution. Typical resolutions
are measured in nanoseconds or milliseconds. A clock may be queried by applications for
its current time– that is the current value of the clock in some known unit of time.

Though multiple clocks may be available to applications, weshall assume the presence of
a global clock. All other clocks must be in synchronisation with the global clock. That is,
even though a given clock has a resolution different from that of the global clock, it still pro-
ceeds at the same speed. Without this assumption, we would have to take the phenomenon
of clock skew(one clock drifting from another) into consideration when implementing the
framework.2.3.2 Expressing Time
Having access to a clock enables a real-time application to query the current time. Most
applications, however, will also need the ability to express time in the past and future. For
example, in a personal calendar application, the user may enter an appointment at a certain
time of day. Furthermore, the application may provide functionality to pop up alerts on
the screen some interval of time before appointments. We wish to be able to express such
timings in real-time software. To this end we introduce the concepts ofabsolute, relative,
andrational time.

page 23

2.3 Characteristics Real-Time Systems

An absolutetime t with respect to some clockc refers to the time at whichc’s current time
is t. Figure 2.3 (a) illustrates this. Note that the current timevalue of a clock is itself an
absolute time. As an example, consider the application logic for polling the sensor value
in the brick sorting example. If bricks were known only to arrive at certain pre-scheduled
times, an absolute time could be used to express the next timethe sensor should be polled.

time timetimenow now now

tt t

(a) (c)(b)

Figure 2.3:(a) Absolute time, (b) relative time, and (c) rational time

A relative time t refers to a point in time relative to some absolute time offset (often the
current time of the clock, implicitly given by the offset). Thus a relative timet with an offset
at absolute timet 0 is equivalent to the absolute timet 0 + t. Note that relative times may be
negative as well as positive values. In the brick sorter example, the time the eject signal
should be sent to the piston can be found relative to the time ared brick is sensed, and thus,
a relative time may be used to express the time of ejection.

Rational time can be expressed as a pair(t;n) wheret is a relative time andn is positive
integer. The semantics is thatn eventsshould be distributed over the interval of time given
by t. The distribution of these events is not necessarily even. In the illustration of rational
time (t;3) on figure 2.3 (c) the events are clearly not evenly distributed.2.3.3 Temporal S
ope of a Pro
ess
Recall the requirement from the definition of real-time systems toreact to stimuli [...] within
time intervals dictated by the environment. Now that we have described how applications
may express time, we introduce terminology that allows us todescribe the timing require-
ments of a process. The definition of the timing of a process iscalled thetemporal scopeof
that process. Introducing temporal scopes of processes shall allow us to refine our categori-
sation of real-time systems.

In the following we shall understand by aprocessan active unit executing a task. The
temporal scope of a process can be illustrated as in figure 2.4. The figure is inspired by
[BW01] fig. 12. The following terms are used to describe the timing of a process’ execution:Æ Now– the absolute time from which the temporal scope is defined;Æ Minimum Delay– the earliest time relative from now at which a process may be

released;Æ Maximum Delay– the latest time relative to now at which a process may be released;

page 24

Real-Time Systems 2.3 CharacteristicsÆ Release– the actual time a process starts executing its task;Æ Maximum Elapsed Time– the maximum amount of time that is allowed to pass before
the process must finish its task after release;Æ Worst Case Execution Time– the guaranteed longest time a process will consume
executing its task. The value is often required to be supplied by the developers. De-
pending on the scheduling policy used (See section 2.4), a process may or may not be
preemptedduring execution. This is illustrated in figure 2.4 by the disjoint intervals
of time t1, t2, andt3 (during which the task is executed). The sum of these equal the
worst case execution time;Æ Deadline– The latest time relative from now a process is allowed to finish executing
its task. In order to be correct, a process must finish executing its task before the
deadline – regardless of the amount of time the process has been in a preempted state.

now time

max. delay

min. delay max. elapsed time

deadline

t2 t3t1

release

Figure 2.4:The temporal scope of a process

In accordance with the categorisation of hard and soft real-time systems processes are cate-
gorised as eithersoft, firm, or hard. We shall call a processsoft if the following hold: One,
Failing to deliver a result between the end of the delay and the deadline inflicts no harm on
the system and its environment, and two, the system will benefit from the result despite its
untimely occurrence.Firm processes differ from soft ones only in the second clause. In
firm processes no benefit is drawn from untimely results.Hard processes are those where
failing to deliver results within the window specified by delay and deadline will prevent the
system from continuing execution.

The categorisation of processes allows us to refine our categorisation of real-time systems.
We shall call a real-time systemsoft, firm, or hard depending on the category of thehardest
process in that system. Thus, if the hardest process of a system is firm we categorise the
system itself as firm.

A common way of delaying the execution of a task is by the use oftimers. A timer is
specified by afire timeat which one or moreassociated tasksare processed. Returning to

page 25

2.4 Scheduling Real-Time Systems Real-Time Systems

the brick sorting example we notice that we may use a timer to eject bricks. The timer is
started when a red brick is sensed and fires an interval of time(equal to the time it takes the
brick to move from the sensor to the piston) later. When the timer fires, a task that sends the
eject signal to the piston is processed.2.3.4 Periodi
 and Aperiodi
 Pro
esses
Often a task must be performed repeatedly by a process. If a process performs its task at a
fixed interval of time we shall call the processperiodic. When a process reaches the end of
a period (given by an amount of time relative to now) the valueof now is increased by an
amount of time equal to the period. After an appropriate delay, the task is then re-executed.
Since we view a process as a single active unit, the task must be finished before a new period
can start. Thus, in the temporal scope of a periodic process,the deadline cannot exceed the
period. If we need a process to finish later than the end of a period, the periodic process
may spawn a new process to handle the task.

Processes that are not periodic are calledaperiodic. The fact that a process is not periodic
does not prevent it from performing its task multiple times.For example, the task may be
executed at the occurrence of an event given by a rational time. We shall call timers periodic
if they fire multiple times at fixed intervals and aperiodic otherwise.2.4 S
heduling Real-Time Systems
In the previous section, thetemporal scopeof a process was introduced with the purpose
of describing the timing requirements of processes. The temporal scope included the time
of releaseand the possibility of a process beingpreempted– both of which were external
to the process in the sense that the process does not have control over the occurrence of
these events. Performing these external tasks is the responsibility of the scheduler. As a
consequence, thescheduling policyemployed is important to the overall correctness of a
real-time system.

Before describing some commonly used scheduling policies we shall make some assump-
tions about the scheduling model and elaborate on the preemption of processes. Further-
more, we shall introduce the concept ofschedulability.2.4.1 S
heduling Model
We shall assume that only a single unit of execution is available. That is, all processes are
executed on the same processor and only one process can be executed at a time. With this
assumption it is clear that noparallelism (two processes executing at the same time) can
occur. However, processes may still executeconcurrentlysince processes can be preempted
during execution.

When a process ispreempted by a scheduler it is removed from the processing unit and
cannot proceed until reinserted by the scheduler. Such points of preemption are under the
complete control of the scheduler. Often, real-time programming languages have facilities
that enable a process to inform the scheduler that another process should become running.

page 26

Real-Time Systems 2.4 Scheduling Real-Time Systems

exit

start

event

preempt
run

wait

new running done

ready waiting

Figure 2.5:Process state based scheduling model

Typical examples are functionality for letting another process (chosen by the scheduler)
become running and waiting for access to a resource or some event to occur.

In compliance with the processing model of Real-Time Java, we assume that schedulers are
process state based. This model is illustrated in figure 2.5. A process can be in one and
only one state at a time. In the following, the states of the model and the transitions between
them is explained:Æ New– When a new process is created its initial state is new. The process becomes

ready for execution when the creating process starts it.Æ Ready– Ready processes are those that are ready to be executed on the processor. In
the literature, ready processes are often referred to asrunnable. Due to the naming
clash with the Java interfaceRunnable we have chosen to use the term ready.Æ Running– When a process is executed on the processor we refer to it as running.
Since we assume a single unit of execution, only one process can be running at a
time. A process becomes running when the scheduler selects it from the set of ready
processes. If, at some point, the scheduler chooses to preempt the running process
(or the processyields to other processes), the process will become ready again and
another process is selected for execution.Æ Waiting– Running processes may need to wait for some event to occur. Such events
include awaiting the firing of a timer or access to some resource. For now, we shall
not distinguish such waits, but the Inquisitor Framework does. When the event occurs
the process becomes ready for processing.Æ Done– When a process finishes its work we call it done.

An important concept is that ofschedulability. A set of processes are said to beschedula-
ble if there exist a schedule that allows for all processes to execute correctly with regards

page 27

2.4 Scheduling Real-Time Systems Real-Time Systems

to their timing scopes. Depending on the scheduling policy used, there exist different algo-
rithms for testing schedulability statically. These testsoften rely on the worst case execution
times provides by the developer. We shall not be going into any depth with schedulability
algorithms, since the purpose of the framework includes testing real-time applications for
schedulability dynamically.2.4.2 Overview of S
heduling Poli
ies
The scheduler controls the states of processes, as illustrated in figure 2.5. We refer to
the various algorithms for such control asscheduling policies. The choice of scheduling
policy is a trade-off between abstraction and control. The lower the level of abstraction,
the more control the developer has over the scheduling. In this section, we shall describe
three different scheduling policies and their characteristics. We then selectpriority-based
preemptive schedulingas our policy of choice, and describe it further in the next section.

A simple approach to scheduling is that ofcyclic dispatching. The approach, also known
as round-robin scheduling, selects processes in a cyclic manner, allowingthem an equal
amount of time to execute. Thereby, the policy incorporatesfairness, that is, no process is
starved, in the sense, that it is never allowed to run.

Whereas round-robin scheduling is common for applicationswithout real-time require-
ments, it often comes in short for real-time systems as exemplified in the following. Con-
sider a real-time system containing two processes,p1 and p2, with deadlines,t1 and t2,
respectively. Further assume thatt2 < t1 and that the worst case execution time ofp1 ex-
ceedst2 relative to the current time of the global clock. Now, if bothp1 and p2 are both
ready, p1 is as eligible for execution asp2 – even though dispatchingp1 may preventp2

from finishing its task before the deadline.

From the example above, it is clear that in order to obtain a more reasonable scheduling,
processes should be assignedimportance– allowing the most important process to execute
before others. One way to implement this is to order processes by their deadlines – making
the process with the earliest deadline the most important. This policy is calledearliest
deadline first – orEDF – scheduling.

EDF scheduling gives the developer greater control over theexecution of processes in a
system (due to the increased predictability), without requiring explicit assignment of impor-
tance to processes. For instance, the problem mentioned in the example used to illustrate
the shortcomings of round-robin scheduling is no longer an issue when EDF scheduling is
employed.

There are, however, limitations to this implicit ordering of process importance. In a hard
real-time system, a soft process may be executed prior to a hard process even though this
may prevent the hard process from meeting its deadline. In such cases, the programmer
must declare the importance of processes explicitly. Such scheduling policies are known as
value-based scheduling.

We investigate a kind of value-based scheduling where each process is assigned aprior-
ity . This priority represents the importance of the process – higher priorities correspond to
greater importance. Priority-based schedulers can be categorised with respect to the allowed
priority assignments for a given process:

page 28

Real-Time Systems 2.4 Scheduling Real-Time SystemsÆ Static– Fixed priorities are assigned to processes statically, such that, each time a
process is released, it has the same priority;Æ Dynamic– The priority of a process is determined at the time of its release. It remains
fixed throughout the execution of its task;Æ Adaptive– Processes may change priorities during execution of tasks. The reassign-
ment may be performed by the process itself, or other processes (during preemption
of the process who’s priority is being changed).

Static priority-based scheduling is suitable for well-defined environments, whereas dynamic
and adaptive priority-based scheduling are often necessary in cases with greater dynamics
in the environment. For example, the priority of a process may depend only on the state
of the environment at the time it is created (and explicitly not of the future state), in which
case dynamic scheduling is applicable. If the task performed by a process can become more
or less important due to changes in the environment during its execution adaptive priority-
based scheduling is required.

In the Inquisitor Framework, we chose to use a priority-based preemptive scheduling policy
that allows adaptivity of priorities. This choice is based on the following observations:Æ It is the default scheduler required by the Real-Time Java Specification;Æ It provides greater control over processes than do EDF and round-robin scheduling.

This is favourable since it adds to the generality of the framework;Æ It is the most expressive priority-based scheduling policy. That is, the developer of
an application may choose to use only static or dynamic assignments of priorities, if
it suffices for the needs of that application.

For the remainder of this report we shall always assume adaptivity when referring to priority-
based preemptive scheduling. The following section describes the scheduling policy further
and introduces the problem of priority inversion.2.4.3 Priority-based Preemptive S
heduling
The guiding principle of priority based preemptive scheduling is that the process in the
ready set with the highest priority should always be running. If several processes with
priority equal to the highest exist one of these should run. If a process becomes ready due
to the end of a delay or access to some resource and its priority level is higher than that of
the running process a process switch should occur (by preemption of the running process).

When processes with different priority levels share resources, a situation where a high pri-
ority process is forced to wait for a resource held by a lower priority process can occur. A
scenario where this happens is depicted in figure 2.6. Let processa have a lower priority
than processb – which in turn has a priority lower than processc. Say that processa is
released first (due to its temporal scope) and obtains exclusive access to some resourcer.

page 29

2.5 Error Categorisation Real-Time Systems

priority

execution

c

b

a release rlock r

await r lock r

Figure 2.6:An illustration of priority inversion

After a while, processb is released anda is preempted due to its lower priority. Processb
now runs untilc is released and requests access tor.

Now, an unfortunate situation exists wherec cannot get access to the shared resourcer as it
is held bya, andb is released again since it is the ready process with the highest process.
Such behaviour is undesirable sincec has the highest priority of all processes and could
become running ifa was allowed to finish its task and releaser.

The above phenomenon is known aspriority inversion sincec is forced to wait for lower
priority processes to finish. Cornhillet al. introduced an algorithm for avoiding priority
inversion usingpriority inheritance([CSL+87] pp. 33-39). Basically, processes holding
resources required by higher priority processesinherit the priority of the higher priority
process. Thus, in the example of figure 2.6, afterc requests access tor the priority level of
a will be changed to that ofc – allowinga to proceed ahead ofb.2.5 Error Categorisation
For our purpose of validation, we regard it as important to classify the types of errors that
real-time systems can exhibit. First of all, it is importantfor the cause of establishing which
classes of errors can be detected using different validation methods. Second, knowledge
about which errors may exist is important for the choice of validation strategy. Finally, the
classification may prove useful when stating properties that should hold for a given system
and generating relevant output for debugging if an error is found.

We divide errors into four classes. The first two classes,application logicandconcurrency-
relatederrors, are known to exist in systems without real-time requirements. The latter two
classes classify timing errors with respect to their dependency on a given platform. The
error classes are described in the following:Æ Application logic errors– Errors that may be described asfunctional errors in the

application logic. That is, given some input, the program responds in an erroneous
way. Such errors include producing incorrect outputs and entering wrong (possibly
fatal) states, resulting in incorrect termination of the application;

page 30

Real-Time Systems 2.5 Error CategorisationÆ Concurrency-related errors– Well-known errors that may arise when applications
use concurrent processes. This includesdeadlockwhen processes acquire locks on
resources without adhering to some ordering of the resources. Lack of synchronisa-
tion on resources may lead torace conditions, and the presence of greedy processes
may lead tostarvation;

Whether a deadlock or race conditions occurs or not depends on the relative timing
of processes. Thus, even though processesp1 andp2 lock resourcesr1 andr2 without
proper ordering, deadlock may not arise if, for example,p1 and p2 cannot logically
execute concurrently. Knowledge about the relative timingof processes may be ac-
cessible via the temporal scopes of processes. In conclusion, if p1 and p2 can be
shown never to execute concurrently, we may deduce that deadlock cannot occur and
thereby eliminate some of the false negatives mentioned in section 1.4.2;Æ Timing-related logical errors– Platform independent errors where reactions to stim-
uli occur with incorrect timing. An example of this is when the timing scope of a
process is incorrectly defined. A second example would be oneprocess suppressing
the execution of another, more important process, due to a higher priority (possibly
due to a lack of adaptivity to changes in the environment).Æ Performance-related errors– Even though the timing logic of a real-time application
is correct, errors related to timing may still occur on a given platform. For example,
if the worst case execution time of a task does not hold on a given platform an error
may occur. We shall refer to such errors asperformance-related.

page 31

2.5 Error Categorisation Real-Time Systems

page 32

The Inquisitor Framework CHAPTER3
In this chapter, we describe the functionality provided by the Inquisitor Framework, pre-
sented in [Chr02]. The framework is a partial implementation of the Real-Time Specifica-
tion for Java. First, we give an introduction to the functionalities of the specification that
have been implemented. In addition to scheduling Real-TimeJava programs, the framework
includes supports for performing validation of real-time systems in simulated environments.
We present these features and give an overview of how the validation is performed by an
example.3.1 Real-Time Features
The Real-Time Specification for Java ([RTJ02]) includes a great variety of initiatives for
supporting the implementation of real-time systems in Java. The Inquisitor Framework
contains support for the scheduling of real-time systems implemented in accordance with
this specification. However, only a subset of the features inthe specification has been
implemented:Æ Preemptive, priority-based scheduling policy.The framework is based on a preemp-

tive, priority-based scheduling policy. The scheduler performs the task of scheduling
so-calledschedulableentities. These entities have objects representing their priorities
and timing scopes associated with them. A major difference between the scheduling
of Real-Time Java programs compared to regular Java programs is that the thread
with the highest priority must also be executing if possible. Similarly, when using
Java’s built-in support for thread synchronisation, the thread of highest priority must
be the most eligible for the semaphore;Æ Definition of timing scopes.The timing scopes associated with schedulables entities
which allows them to define aperiodic and periodic timing scopes;Æ Access to time through clocks.Programs have access to clocks from which time
can be represented in absolute and relative terms. Among other uses, the classes
representing absolute and relative time are used for the definition of timing scopes as
well as timers;Æ Timers.The specification allows special timer classes, which trigger executions (pos-
sibly periodically) of so-calledevent handlers. Such handler are represented by the
classAsyncEventHandler and include a method which performs the given task.Æ External happenings.Similar to asynchronous events being triggered by timers, event
handler may also be bound to a so-calledexternal happening. These happenings are
handled directly by the virtual machine and result in the triggering of an event handler.

page 33

3.2 Validation Support The Inquisitor Framework

The functionality described above has been implemented in Java. That is, the added fea-
tures for expressing real-time characteristics are implemented on top of an existing virtual
machine. Some of the functionality normally placed in the virtual machine has been re-
implemented in Java code to allow the new semantics imposed by the specification.

The two most prominent examples of this re-implementation is the support for preemp-
tion and the increased predictability of thread synchronisation. In order to achieve these
features, it is necessary to explicitly invoke the methods supporting them. This, however,
can be automatically performed by a process know asinstrumentation. In this process, the
source code of a program is investigated at the byte level, and byte code is inserted when
appropriate in order to invoke the required logic. Though the instrumentation process is
possible to implement in the framework, this has not yet beenaccomplished.3.2 Validation Support
As mentioned, the Inquisitor Framework includes support for run-time validation of real-
time systems. By this approach (depicted in figure 3.1), control programs interact with
simulated environments as opposed to their physical surroundings. The control program
consists of a number of processes interacting through a common interface with a set of
processes simulating the behaviour of the environment. In this way, the control program is
stimulated by another program, which also acts on output from the control program.

e1

e2

en

...

v1

v2

...

environment

vn

real-time system

p1

p2

pn

...

inquisitor

Figure 3.1:Validating real-time systems in simulated environments

In order to perform validation in the simulated environment, a third component, thein-
quisitor, is executed in parallel with the environment and control program. The inquisitor
stimulates the program in accordance with the possibilities defined by the environment. Fur-
thermore, it checks that the control program acts in accordance with some specification –
for example a set of properties.

page 34

The Inquisitor Framework 3.3 Example

The inquisitor tasks are performed by special threads, referred to asinquisitors. These
threads have all the capabilities of the schedulable entities of the scheduler. However,
they have a higher priority than all other entities, which allows them to perform their task
whenever it is required. In practice, to be an inquisitor, a Java process must extend the
Inquisitor class in order to have the special characteristics.

By the validation approach described above, the control program, its simulated environ-
ment, and the inquisition component are executed in parallel on a single processing unit.
This raises an issue regarding the timing scopes of the control program. When the environ-
ment and the inquisition components perform the updates, stimulation and checks, process-
ing time is consumed. Thus, the timing scopes of the control program suffer – leading to
possible deadline breaches which would not have occurred otherwise.

In order to handle this problem, the concept oflogical time is introduced. As opposed to
physical time, which progresses continuously, the progress of logical time may be stopped.
By this approach, logical time is stopped whenever an inquisitor thread becomes running
– and is restarted only when a control program thread again becomes running. In other
words, logical time progresses if and only if a an inquisitorthread is not running. Logical
time is implemented by manipulating the clocks used by Real-Time Java processes to gain
knowledge about time.3.3 Example
In order to illustrate how validation is performed in the inquisitor framework, we present
an example how it is performed. The environment implementedis the brick sorting system
described in section 2.2. The overall purpose is that red bricks are ejected and black bricks
continue to the end of the conveyor belt. The application must therefore detect red bricks –
at which point a timer must be started. When this timer fires, the piston should be given a
signal to eject bricks in front of it.

We assume that a sensor must be polled in order to detect the colour of the brick in front
of it (red, black, or none). The piston is triggered by sending it a an electrical signal. The
total system is implemented as Java classes, some of which perform control program tasks,
while others perform validation tasks. The system consistsof the following parts:Æ Environment– Three classes will represent the environment:ConveyorBelt, Sensor,

andPiston. TheConveyorBelt class will be responsible for holding the current set
of bricks (instances of a classBrick, with an attribute describing the colour) along
with their current positions on the belt. At a given period, the positions of bricks
are increased, simulating that the belt is continuously moving. In order to accommo-
date this, theConveyorBelt class is made active – which means it must specialise
RealtimeThread in order to be scheduled. However, since the thread simulates en-
vironment activity, it must instead specialise theInquisitor class – which in turn
extendsRealtimeThread;

TheSensor class includes a method, by which the control logic can poll the current
sensor value, that is, the colour of the brick currently placed in front of it. One of

page 35

3.3 Example The Inquisitor Framework

three values – red, black, and none – is returned. ThePiston class includes a method
for ejecting bricks – which will remove the brick in front of it if one exist. The
Sensor as well as thePiston class operate on grounds of the data represented by
ConveyorBelt. Since both are activated by a thread in the control logic, instances
need not be active objects themselves;Æ Control logic– The control logic is represented by two classes.PollThread, which
is a specialisation ofRealtimeThread, performs periodic polling of the sensor by in-
voking the appropriate method on theSensor class. The other class,EjectHandler,
is a specialisation ofAsyncEventHandler and is associated with a periodic timer,
firing when a brick must be ejected, at the time of construction.Æ Inquisition unit– The inquisition task in this example consist of a class specialised
for validation of the control logic described above. The class,BrickFeeder, extends
Inquisitor and performs the task of feeding the system input in form of instances
of theBrick class. It also observes whether or not the system is well-behaved. In this
case, this means that all red bricks are ejected and that no black bricks are ejected.

The system is validated by executing the control program, environment and inquisitor com-
ponents in parallel. Whenever the control program needs to interact with its surroundings,
it instead interacts with the simulated environment. When the environment must be updated
or the inquisitor investigates the system, logical time stops to progress. Thereby, the timing
scopes of the control program processes are not interrupted.

The above example is previously published in [Chr02] as partof the experimental work. In
this work, erroneous mutations of the control program were tested in the simulated environ-
ment. The results of these tests can be found in chapter 5 of [Chr02].

page 36

Analysis CHAPTER4
Through our investigation of real-time systems in chapter 2we found that real-time systems
rely on interaction with their environments. In this chapter, we turn our attention to an
analysis of the behaviour of such environments. The purposeis to find a method, by which
the environment of real-time systems can be simulated from aformal representation of the
environment. Furthermore, we describe different approaches to automatically exploring
a given environment in order to obtain a good coverage of its possible behaviours. For
fulfilling our aim of validation in simulated environments,we describe how requirements
can be specified in terms of environment properties.4.1 Behaviour and Intera
tion
Before considering which formalisms to use for modelling environments, we examine the
generic behaviour and interaction patterns of environments. Based on this description, we
define the environment characteristics that we require the chosen formalism to support
through modelling, and give an example of such an environment. This example is used
as a common example throughout the next two chapters.4.1.1 Environment Behaviour
Consider the brick sorting example presented in section 2.2. The state of the environment
changes over time in various ways. During normal operation,the belt moves forward at a
uniform rate, thereby moving each of the bricks. However, ifan engine malfunctions, the
movement of the belt may suddenly stop. The event that an error occurs in an engine has a
sporadic nature, contrary to the continuous movement of thebelt.

We characterise these continuous and sporadic changes to anenvironment in the following
way:Æ Continuous changesperform evolutionary updates of the environment. The environ-

ment changes by some rate per time unit. This rate may itself change over time.Æ Sporadic changesoccur instantaneously without progression of time. Thus, no im-
mediate change in the environment can be observed. However,the future course of
the environment is effected. In other words, a sporadic change alters the continuous
changes in the environment.

Some of the sporadic events of an environment involve the creation or destruction of entities
in the environment. For example, in the brick sorting case, bricks are added to the system
at the beginning of the conveyor belt. These bricks arenewin the sense that they were not

page 37

4.1 Behaviour and Interaction Analysis

considered part of the system prior to their insertion. Similarly, bricks stop being part of
the system if ejected from the belt by the piston, or, if they reach the end of the belt. Such
dynamic creation and destruction, is, however not considered in the scope of this project.4.1.2 Control Program Intera
tion
Figure 1.2 in section 1.1 illustrates how a control program interacts with its environment
through sensors and actuators. The control program interacts with these devices in a data-
oriented manner, allowing two kinds of communication:Æ Event-basedcommunication, by which a uniquesignal is used to inform the peer that

some event has occurred. We shall refer to this type of communication asemitting
eventsor signalling.Æ Value-basedcommunication, where values are sent and received. Typically, such
communication is used whenpolling a sensor for the current value of some entity
(for example, a temperature or position).

Although a control program sometimes uses value-based communication to actuate on its
environment, we restrict value-passed communication to polling. Allowing control pro-
grams to send data to the environment would require the specification of the environment to
contain procedures for dealing with the data received. Though this would be possible, we
wish to simplify the model specification by not allowing it.

In summary, our requirements for communication of simulated environments are event-
based communication in both directions and value-based communication in the form of
polling.4.1.3 Example
Since we do not allow dynamic creation in the environment, wenow introduce an example
that does not include it. The environment, illustrated in figure 4.1, will be used throughout
this chapter as well as the next. It consists of a barrel with awater intake and an electrical
pump connected to a water output. When the pump is off, the water level of the system
increases over time, whereas, when the pump is on, the water level decreases.

We assume the pump to be cooled by the water it is pumping. If the flow of water stops
during operation, the pump overheats and is destroyed. During pump operation, the water
output may stop for two reasons. First, the barrel may run empty, and second, the water
flow may be stopped by dirt in the pipes. In the latter case, thecontrol program is informed
by an event,EV_ERR. Once the error has been corrected, theEV_OK event is emitted.

In order to control the water level of the barrel, a control program observes the water level
by polling the value of sensoring unit. The water level must be kept within an interval
assuring that the pump is not running without a flow of water, while, at the same time, the
water level does not rise beyond the capacity of the barrel, leading to an overflow.

The control program starts and stops the pump by sending it the EV_START andEV_STOP
events, respectively. If, during pump operation, theEV_ERR event is emitted by the environ-
ment, the control program must stop the pump within a short time-limit to prevent it from
overheating. The pump may then not be started again until receipt of theEV_OK signal.

page 38

Analysis 4.2 Formal Specification of Environments

pump

barrel

water in

water out
sensor

actuator

EV_OK
EV_ERR

EV_STOP
EV_START

Figure 4.1:The barrel example4.2 Formal Spe
i�
ation of Environments
Having analysed the behaviour and interaction of environments, we turn our attention to
finding a method for specifying them formally. In this section we first state our requirements
to the formal specification, after which we consider two candidates: Timed Automata and
Hybrid Automata. Based on a comparison of the two, we choose to model environments
as Hybrid Automata, although in a version modified for our needs. The remainder of the
chapter is devoted to explaining how validation in a simulated environment can be obtained.

We require the formalism to be able to express sporadic and continuous changes alike.
Since continuous changes happen over time, the formalism must also have some means for
expressing the progress of time. We further require the formal models to allow interaction
with a control program during simulation. This means that actuation and stimulation events
must be explicitly modelled and that values that are to be polled by control programs must
be available.4.2.1 Formalisms
In this section, we consider two formalism that are both ableto express real-time constraints.
The formalisms considered are Timed Automata and a super-class of these, called Hybrid
Automata. We investigate their strengths and weaknesses and make a choice based on their
ability to meet the requirements stated above.Æ Timed Automata. The notion of Timed Automata, described in the introduction(see

section 1.4.1), meets many of the requirements specified. They allow explicit mod-
elling of real-time constraints by the use ofclocks, which progress at a uniform rate.
The state of the environment is modelled by a transition system with locationsand
transitions.

In addition to the structural state modelling, local and global bounded discrete vari-
ables are supported in several contemporary model checkingtools. The values of

page 39

4.2 Formal Specification of Environments Analysis

these variables can be updated when a transition is taken, whereas the clocks can
only bereset, that is, their value is set to zero.

Structurally, Timed Automata fit the requirements of modelling sporadic updates by
transitions. Modelling the continuous updates, on the other hand, is somewhat more
of a challenge. Although variables are supported in Timed Automata, these variables
are only updated when a transition is taken. Therefore, if a control program uses a
polling scheme, the current valuation of a variable will never differ as long as the
automaton is in the same location.

In some cases, the continuous updates that occurs over time can be modelled by
adding more locations to the model. The value of a variable ina given location
represents a set of values that can be considered equivalentto the control program.
Transitions between the added locations must be enabled at certain points in time so
that the updates occur at times when the control program polls the environment for
that value. The updates of the variable then must set the value equal to that specified
for a continuous update of the duration since the last update.

The disadvantage of the approach described above is that extra effort is required to
add the locations needed. These locations must be based on ananalysis of the com-
munication pattern between the control program and the environment. Thus, if the
timing of this interaction is altered, a modification of the environment model is re-
quired. Finally, some control programs poll their environments so often that the ap-
proach becomes inapplicable.Æ Hybrid Automata. We now consider a formalism in which the continuous updates are
modelled explicitly as so-calledflows. The formalism, known asHybrid Automata,
consist of the following ([HHWT97]):� Variables.A set of variables with values in the real domain.� Control Modes.A named entity which describe the possible states of the au-

tomaton. At all times, one and only one mode in an automaton isactive.

In each mode, aflow expression describes the continuous updates of the set of
variables over time. These expressions define the derivatives of the variables,
where a derivativex0 of a variablex describes the update performed onx for
each unit of time passed.

A mode also contains aninvariant expression, representing one or more inter-
vals in the real-valued domain for each variable. In order for a given mode to
be active, the valuation of the variables must allow the invariant expressions for
each variable to evaluate to true. In other words, the valuation of each variable
must be within the specified intervals.
Finally, aninitial condition expression defines which modes can potentially be
initially active. As with invariant expression, the initial conditions represent
intervals in the real-valued domain, which the initial valuation of the variables
must satisfy in order for the mode to be a potentially initial.� Control Jumps.A control jump represents a transition from one mode to an-
other. It is represented by an edge between two modes, calledthe sourceand

page 40

Analysis 4.2 Formal Specification of Environments

target modes. A jump from the source mode to the target mode can be per-
formed if the source mode is the active mode and the jump isenabled. The
criteria for enablednes are described after the introduction of edge decorations.

The edges are decorated by so-calledjump conditions, which are expressions in
terms of the variables. Like invariant and initial condition expressions they re-
strict the set of valuations allowing a jump between the source and target modes
to be performed.

In addition to jump conditions, edged are labelled with at most oneevent. These
events are used for internal synchronisation between two ormore automata. In
order for a jump to be made in one automaton, another automaton must be in
a mode from where a jump with the same event can be performed. The jumps
must me performed synchronously, that is, without progression of time between
the two jumps.

Three requirements must be met for a jump to be enabled. First, the guard
expression of the jump must evaluate to true. Second, if the jump is decorated
by an event, some automaton must be able to synchronise on theevent. Finally,
the invariant expression of the target mode must be satisfiedin order for the
mode to be allowed to become active.

Using Hybrid Automata, the continuous changes in the environment can be modelled
explicitly. The flow expression of the modes perform the continuous changes, and the
jumps constitute sporadic changes in the environment. The continuous updates are
supported through the derivatives defined in flow conditions.

Hybrid Automata are often used for model-checking control programs. As is the case
when model-checking Timed Automata, the behaviour of the environment must be
modelled as automata in order to interact with the control program automaton during
validation. This interaction is modelled using events – allowing the environment to
react to actuations from the control program and vice versa.

In figure 4.2, two automata modelling the barrel environmentpresented in figure 4.1
are presented. Since we are only interested in describing the behaviour of the envi-
ronment, no control program automaton has been specified. Therefore, an external
entity is required in order to control the environment. Thisis clear from the fact that
the automata cannot synchronise on the eventsEV_START andEV_STOP. In section
4.2.3, we will elaborate on this distinction between events.

The automata of figure 4.2 share a variable,h, denoting the water level of the barrel.
The first automaton, modelling the pump, has 5 modes (see figure 4.2 (a)). They
describe whether the pump is on, off, overheated, suspendeddue to an error, or on but
without a flow of water. The initial mode is off, from where theautomaton may enter
the modes on and suspended. These jumps are triggered exclusively by the receipt of
events from other entities.

If, for example, anEV_START event is received, the on mode becomes the active mode
of the pump automaton. In this mode, the water level of the automata decreases by
the rate given by the flow expression. The mode is left only when either anEV_STOP

page 41

4.
2

F
or

m
al

S
pe

ci
fic

at
io

n
of

E
nv

iro
nm

en
ts

A
na

ly
si

s

overheated

on

no flow

overflow

filling

empty

suspended

cleaning

(a) (b)

EV_START

EV_STOP

off

EV_ERR EV_OKEV_START

EV_ERREV_ERREV_OK

EV_STOP
h0 = 0:001

EV_ERR

h0 =�0:006

t 0 = 1
t � 1000 10� h� 100

t = 1000
h= 10

h= 100

Figure 4.2:The environment of the barrel example modelled in Hybrid Automata

pa
ge

42

Analysis 4.2 Formal Specification of Environments

or andEV_ERR event is observed. In the latter case, the pump enters an intermediate
mode, no flow, at which point the control program has one second to emit theEV_STOP
signal. Otherwise, the pump enters its overheated mode, designating that the pump
has been destroyed. This mode may also be entered if the control programs tries to
start the pump while in the suspended mode.

The automaton modelling the barrel is given in figure 4.2 (b).Its initial mode is
filling, where the water level of the barrel continuously raises. The water level must
be between 10 and 100 units – otherwise the barrel is either considered empty or an
overflow occurs. Finally, while filling, theEV_ERR event may be issued if the pipes
are congested by dirt.

The two automata perform internal synchronisations on theEV_OK andEV_ERR sig-
nals. As earlier mentioned, theEV_START andEV_STOP signals are considered exter-
nal, so the automata cannot synchronise on them.

Notice that the pump automaton may be in the on mode at the sametime as the barrel
automaton is in the filling mode. These both contain flow expressions involving the
height of the water level. In such cases, the sum of the flow expressions is used –
in this case yieldingh0 = �0:005. Also, in modes where the derivative defined on a
variable is zero, we do not write it on the mode.

Since Hybrid Automata offer the best explicit modelling of sporadic and continuous changes,
we choose to base our formal representations of environments on this formalism. We shall,
however, introduce some modifications making them suitablefor our simulation purpose.4.2.2 Preliminary Simulation Considerations
Before describing the modifications of the Hybrid Automata,we shall make an initial choice
of how to perform the simulation of the models. This decisioninfluences the modifications
necessary to the definition of Hybrid Automata. Thus, it is made before the modifications
are introduced. A detailed description of the simulation approach is given in section 4.3.

In order to simulate a Hybrid Automata, it is necessary to maintain the current modes and
variable valuations during run-time. Furthermore, the setof possible next states of the envi-
ronment must be calculated from the flow and invariant expressions on the active mode as
well as the guard expression of the possible transitions. For this, we consider two different
solutions:Æ Interaction with a model-checker.Using this approach, the model of the environ-

ment is maintained by a model-checker. An example of a model-checker for Hybrid
Automata isHyTech([HHWT97]). The set of next states can be calculated by the
reachabilityalgorithm applied by that model-checker.Æ Code generated from Hybrid Automata.With this approach, the simulation is per-
formed by running code. The flow, invariant, and guard expressions are given in
terms of executable code, which manipulates a set of variables with a numeric type.

page 43

4.2 Formal Specification of Environments Analysis

The main advantage of interacting with a model-checker is that an existing tool is applied.
Thereby, the effort of implementing data structures to maintain the model and functionality
to perform some of the required operations can be avoided. Using a model-checker does,
however, impose restrictions on the complexity of the flow, invariant, and guard expressions
allowed. For example, with generated code, these expression may involve the invocation of
generic functions – which is not supported by current model-checkers.

We decide to perform simulation by generating executable code from the Hybrid Automata.
We find that the added ability to express the environment is favourable compared to the extra
effort required to implement the functionality for maintaining and simulating the models.4.2.3 Modi�
ations of Hybrid Automata for Simulation
In order to suit our purpose of simulation, we introduce someextensions and restrictions
to the notion of Hybrid Automata. The extensions are mainly introduced in order to allow
communication between the environment and control programduring simulation. The re-
strictions are mainly introduced in order to limit the complexity of the simulation algorithm.

In order to allow the environment to interact by signalling (actuation and stimulation events
alike), we categorise the events by which jumps can be decorated into two classes:Æ Internal events.The internal events are used for synchronisation between automata

in the usual manner, as described in section 4.2.1. For example, in figure 4.2, the
EV_ERR andEV_OK events are internal to the model.Æ External events.External events are used for interaction with the control program.
The external events are further divided into the categoriesof actuation eventsand
stimulation events. When a jump is decorated by an actuation event, this event must
be received from the control program in order for the jump to be enabled. Stimulation
events, on the other hand, do not influence whether a jump is enabled or not. However,
when a jump decorated by a stimulation event is performed, the given event must be
emitted to the control program. TheEV_START andEV_STOP events of figure 4.2 are
examples of external events.

The distinction between input and output events is well-known from the so-called Input/-
Output Automata, used for model-based testing (see section1.4.3). As a limitation to the
project scope, we shall assume that the models of the environment do not involve internal
synchronisation by the use of internal events.

When Hybrid Automata are used for model-checking, some restrictions are imposed on the
flow expressions in order to be able to calculate the set of reachable next states. One such
restrictions is thatthe variables [...] evolve along a differentiable curve([HHWT97] pp. 4).
For our simulation purposes, we shall disregard this requirement and introduce another.

We shall refer to the added requirement aslocal invariance. The requirement states that, for
sufficiently small intervals of time, the evaluation of the invariant of a mode is consistent.
Consider an invariant expressioni : Rn ! B and a non-negative integer,δ. Further, assume
that two points in time,t1 and t2 wheret2� t1 � δ, are given. If the invariant expression

page 44

Analysis 4.2 Formal Specification of Environments

evaluates to the same boolean value,b, at t1 andt2, we say that flow expression is locally
invariant in the intervalI = [t1; t2℄ if and only if for all t 2 I , the invariant evaluates tob.

The added requirement to the flow and invariant expressions of a mode is that, for some
given δ, all flow expressions must be locally invariant. The rationale for this restriction
is that, during simulation, it is imperative to be able to findthe amount of time (less than
or equal toδ) an automaton can remain in its active mode. By the assumption of local
invariance, this calculation can be performed using a binary search algorithm.

Since physical time is assumed never to stop, we shall require that a model of an environ-
ment always allows time to progress. In other words, a deadlock in the environment is not
allowed to occur. If there is a chance that an environment maydeadlock in case the control
program misses an actuation, this must be modelled explicitly in the automata by adding a
so-callederror mode. For example, the overheated mode of the pump automaton given in
figure 4.2 (a) is an error mode. If the mode was omitted, and thecontrol program failed to
send theEV_STOP signal within one second after the error was signalled, the environment
would deadlock.

As a final restriction, we shall allow the automata to have only one initial mode. This
mode is given explicitly by decorating it with aninitial label. The variables are assigned
default values, which must satisfy the invariant expression of the initial mode. Variables
may also be assigned theparameterlabel, which means that the initial value of the variable
can optionally be given as an argument.

Though the modifications above distinct the automata used for simulation from Hybrid Au-
tomata, we shall refer to them as Hybrid Automata throughoutthe remainder of this report.
In the following, we present how the environment of the barrel example can be modelled as
one of these modified automata.Example
In figure 4.3, we present a hybrid automaton of the barrel environment with a distinction
between input and output events. Events prefixed by the string "i:" are inputs from the
control programs, that is, control program actuations. Events prefixed by "o:" represent the
requirement to stimulate the control program by the given event.

Since internal synchronisation between automata is not supported, the automata for the
pump and environment are merged into a single automaton. As aconsequence, some of
the modes of the earlier model are merged. For example, the pumping mode represents
two modes, filling and on, in figure 4.2. Similarly, the repairrepresents the two modes
suspended and cleaning.

Several automata for describing an environment are supported, however, if only they do not
rely on internal synchronisation.

Notice that the overlap between guard expressions and invariants on their source modes have
been relaxed. For example, transition from the filling mode to the overflow mode is allowed
to occur in the interval between 99:9 and 100. This relaxation is introduced because the
height of the water level is represented by a real-valued variable during simulation. Since
the representation of this variable is not precise, it is necessary to allow the transition to
occur within some interval.

page 45

4.3 Simulation Analysis

i: EV_STOP

i: EV_START

overflow

filling

pumping no flow

repair
h := 50

i: EV_START i: EV_STOP
h� 90 h� 20

h� 99:9
overheated

h0 = 0:001
h� 100

h0 =�0:005
h� 9:9 o: EV_ERR

h� 10

c := 0

c0 = 0:001
c� 1

c� 0:99

c := 0

c := 0

o: EV_OK

Figure 4.3: The environment of the barrel example modelled as a single modified Hybrid
Automaton4.3 Simulation
As earlier stated, the overall goal of formalising the description of the environment is to
allow a simulation to performed. During this simulation, the state of the environment is
observed, and, if an undesirable situation is reached, the control program is assumed to
be incorrect. As described in section 4.2.2, we have chosen to perform this simulation by
generating executable code from the environment models.

In this and the following sections, we shall describe how thesimulation is performed. We
first decide between two different simulation algorithms. The main difference between these
approaches are the accuracy of the interaction with the control program. Afterwards, we de-
scribe how updates of the environment are performed. In section 4.4 we consider different
strategies toexplorethe environment, that is, obtain a good coverage of its behaviour. Fi-
nally, in section 4.5, we explain how validation can be performed in terms of the states of
the environment.

During runtime, the interaction between the environment and the control program requires
the environment to accept actuations from the environment,emit stimuli events, and support
the polling of the values of variables. Naturally, the update of the environment must occur
concurrently with the execution of the control programs. The communication between the
environment and control program must adhere to two requirements:Æ Actuations force jumps.When a control program actuates on its surrounding, it is

imperative that a reaction in the environment occurs if one is possible. Otherwise, an

page 46

Analysis 4.3 Simulation

error that arises from a missing signal cannot be distinguished from an error arising
from adiscardedreaction. If, on the other hand, a discarding of a signal can in fact
occur due to an error in a physical component, it must be explicitly modelled in the
automaton describing the behaviour of that component.Æ No added delays when polling.When the control program needs to poll the environ-
ment for the value of some entity, the delay from the time at which the poll request
occurs to the value is returned should be no longer than the time it takes to read the
value of the variable. If an unbounded delay could occur due to the polling of some
entity, a deadline for the process performing the poll couldpotentially be broken.
Specifically, this means that no overhead in delay must be imposed by the update of
the environment. Acurrentvalue of a variable must always be immediately available.

When the environment is performing an update, there will inevitably be a period of time
in which the environment is in a state where it cannot be polled. Unfortunately, when the
control program sends a request to poll the value of some variable, it is necessary to perform
an update. Hence, the requirement that no delay must be imposed by polling cannot be met.
In order to solve this problem, we represent the continuous evolution of the environment by
discrete points. The state of the environment is only updated at certain points in time, and
then remains fixed until the next update is performed.

The discrete representation of the environment allows the environment to work on a copy of
the environment while the control program interacts with the most recent iteration. When
the update has been performed, the resulting iteration of the environment is made the active
one. This discrete representation introduces an inaccuracy in the values obtained by polling.
However, given short update times, this inaccuracy can be disregarded. We therefore choose
to operate with a periodic update of the environment, where the period of the update task is
sufficiently long to perform the update while, at the same time, short enough not to introduce
too much inaccuracy.

In chapter 5, we describe how the validation approach suggested in this chapter can be
implemented in the inquisitor framework, presented in chapter 3. In this framework, logical
time can be stopped while the update of an environment is performed. Thus, the length
of the update does not constitute a problem, since the timingscopes of control program
processes are not effected. Because of this, the issue of ensuring that the simulation period
is sufficiently long to perform updates is not considered in the scope of this project.

In figure 4.4 (a), an example interaction between a simulatedenvironment and a control
program is given. Aftert1 time units, the environment stimulates the control programby
some event. It then waits fort2 time units, unless an actuation from the environment triggers
the need for an update. In the figure, such an actuation does infact occur aftert3 time units
(t3 < t2). With the periodic update approach (see figure 4.4 (b)), actuations and stimulation
events must instead be buffered – since they cannot be handled at arbitrary times during an
update.

Using the buffering solution described above, all stimuli emitted by the control program
will occur when the active iteration of the environment is changed. When actuation events
are received, they are stored along with their time of occurrence. The update procedure,

page 47

4.3 Simulation Analysis

update

control
program

simulator

update

wait(t1)

update

stimulate

actuate

wait(t2)

t1+ t3

t1

updatet1+ t3+ t4

wait(t4)

update

control
program

simulator

actuatet1+ t3

stimulate update

update2δ

buffer output

buffer input

t1

δ

(a) (b)

Figure 4.4:The aperiodic (a) and periodic (b) approaches to simulation

described in the following section, must comply to the requirement that actuations events
force jumps if possible – and that the changes in the environment are performed at the time
of their occurrence.4.3.1 The Update Pro
edure
In this section, we describe how the periodic updates of the environment are performed. We
shall refer to the period,δ, at which an update is performed as thesimulation period. The
update task performed periodically is referred to as anupdate round. At the beginning of
the update round, a (possibly empty) set of time-stamped actuation events is available. At
the end of a round, a (possibly empty) set of stimulation events must be emitted.

The task that must be performed during each update round is tofind a way to distribute the
δ time units passed since the last round. This is achieved by selection flow and jump actions
in the environment. The simulation round is finished when thesum of the flows that have
been performed equals the simulation period.

Jump, which are enabled by events present in the actuation event vector have precedence.
Thus, if in at least one automaton a jump labelled by a actuation eventcanbe taken, itmust
be. Furthermore, in order to comply with the requirement that actuation event must cause
changes in environment state at the time of their occurrence, a flow in the current modes of
the automata may be required.

By the approach described above, the changes in the environment caused by actuation events
are registered as having occurred at the actual time. Thereby, during validation, the control
program is never penalised by the fact that an update may not occur beforeδ time units after
the emission of a signal.

page 48

Analysis 4.4 Exploration Strategies4.4 Exploration Strategies
The previous section described how the formal specifications of an environment can be used
to simulate the behaviour on an actual environment. In the simulation, some limitations
are imposed by the interaction with control programs. However, a lot of freedomin the
exploration of the model still remains. When an automaton isin some mode, and no jump
decorated by an input event is enabled, there will often be a choice between performing a
flow in the current mode, or performing a jump to another. If itis decided to stay, the length
of the flow must be decided. If, on the hand, a jump is chosen, itmust be decided which of
the enabled jumps to pursue.

We refer to an algorithm for choosing whether to perform flowsor jumps during simulation
as anexploration strategy. Certainly, the behaviour of the environment during the simu-
lation is dependent on the strategy employed. A good coverage of the behaviour of the
environment is a precondition for a thorough validation of acontrol program. Thus, the aim
of an exploration strategy is to lead to a good coverage of theenvironment model.

In the following, we describe a number of different exploration strategies that can be ap-
plied. The strategies are divided into two classes; Those that require historical data about
the choices previously made, and those that do not:Æ Non-historical strategies� Random.A simple strategy is to always choose a random action. The advantage

of this strategy is that all possible behaviours of an environment is obtainable.
On the other hand, there is no guarantee that a good coverage is achieved.� Jump and flow eager.With these strategies, the simulation either tries to stay in
the same mode as long as possible (flow eager), or performs a jump whenever
possible (jump eager). The coverage of these strategies aregood in terms of the
continuous and sporadic changes in the environment. They are further charac-
terised by their relatively high degree of determinism. This may be exploited
for making special-purpose environments for testing specific behaviours of the
environment.Æ Historical strategies� Mode and jump coverage.By storing information about the frequency by which
each jump has been performed and how much time has been spent in each mode,
a goal for an exploration strategy could be to try to obtain some equilibrium. For
example, it could be desired that an equal amount of time is spent in all modes
or that all jumps are performed an equal amount of time. Of course, since the
signals received from the control program are uncontrollable, no guarantee can
be made that this aim can be fulfilled.

In the event that the testing team has a priori knowledge about behaviours that
are likely to cause the control program to fail,weightson the modes and jumps
can be used to guide the exploration performed by this strategy. For example, a
low weight on mode is interpreted as a request to spend a shortamount of time

page 49

4.5 Validation Analysis

there, and conversely a high weight is interpreted as a request to stay longer.
Similarly, a high weight on a jump should yield a higher probability that the
jump is performed when enabled.� Value-based.By observing the values taken by the variables of the automata
during a simulation, choices could be made with the purpose of obtaining some
value-coverage. For example, the domains of the variables could be partitioned,
and a coverage aim could be that all partitions of all variables had been repre-
sented by some valuation of the variables during validation. For this strategy, a
manual partitioning of the variables is required.

From the descriptions of exploration strategies above, it is clear that each strategy has
strengths and weaknesses. Hence, no single strategy can be declared superior to all others.
One solution to this problem could be to use a combination of strategies – either simulta-
neously or by changing the strategy during runtime. In orderto allow a change between
strategies, it is necessary to store historical information for all the strategies. This may
induce a large overhead, which could considerably increasethe time consumed by each
simulation round.4.5 Validation
As stated in the project scope, our main focus in this projectis on simulating environments
from formal descriptions. Consequently, the validation support described in the following
section allows only relatively simple requirements to be stated and checked during runtime.

As is customary for runtime validation, we consider the happenings during an execution as a
trace of events. In our case, the events of a trace consist of mode changes. The requirements
for the system are formalised into properties expressing limitations in the allowed traces.
Thus, a safety requirement can be expressed as the absence ofentering some mode. Liveness
requirements can be expressed by requiring some mode to eventually be entered.

As earlier mentioned, timing requirements for the control program are modelled as error
modes in the environment. Thus, properties of control programs including time can be
modelled simply by a safety property stating that a specific error mode is never reached.
We have therefore chosen to focus on the implementation of safety properties.

For this purpose, we introduce a simple way to restrict the allowed traces. We shall refer to
these restrictions asmode constraints. A mode constraint consists of twomode properties,
which refer to a mode of some automaton and are satisfied if, during runtime, the active
mode is the referenced mode. The general form of a mode constraint is:

If some mode propertyp1 is satisfiedthen some mode propertyp2 must be satisfied.

The above definition allows constraints on the modes of parallel compositions of automata.
At any time during the simulation, one and only one mode is active in each automaton. Thus,
in fact, the trace of an execution consists of a sequence of sets of active modes, referred to
assupermodes. A mode property expresses that some mode of a given automaton is active,
whereas a mode constraint restricts the super modes allowed.

page 50

Design CHAPTER5
In this chapter we describe how the validation approach presented in the previous chapter
has been implemented in the Inquisitor framework (presented in chapter 3). We start out
by giving an overview of the validation process and the interaction between the runtime
components. We then proceed to present how executable code is generated from Hybrid
Automata and how the simulation and validation is performed. Finally, the status of the
implementation and some suggested improvements are presented.5.1 Overview of the validation pro
ess
An illustration of the validation approach is given in figure5.1. The validation process
consists of 4 stages; the informal, formal, executable, andconclusion stages. These stages
and the transitions between them are described below:

informal stage

formal stage

conclusion stage

formalisation

generation

executable stage

execution
(validation)

informal
description

informal
requirements

formal
properties

formal
model

validator

explorer

environment control
program

executable code

error ok

Figure 5.1:The validation process

page 51

5.2 Component Architecture DesignÆ The informal stage.At this stage, only informal descriptions of the behaviour of
the environment and the required properties exist. These are likely to be part of the
requirement specification of the control program.Æ The formal stage.By the process of formalisation, formal models and properties are
created from the informal environment descriptions and requirements. The entities of
the environment are modelled as Hybrid Automata, and the requirements are stated
as mode constraint properties. The formalisation process is carried out manually by
the validation team.Æ The executable stage.From the formal representations of the environment and the
properties, executable code is generated. The code generated from the hybrid au-
tomata is used for simulating the environment during the validation. In addition to
interacting with the control program, the simulated environment interacts with an
explorer component, which employs one of the exploration strategiespresented in
section 4.4. The code generated from the set of properties defines a set of mode
constraints that are checked by thevalidator component.Æ The conclusion stage.For the actual validation, the generated code is executed with
the two possible outcomes that an error was found or than no error was found. To
emphasise that it cannot be concluded that no error is contained in the control program
though none was found, we have called the conclusion stateok instead ofno errors.
For similar reasons, this conclusion can only be obtained byterminating the validation
process – either by a timeout or from some coverage requirement.

The actual validation is carried out at runtime by executingthe control program in parallel
with the simulated environment. In the next section, we describe the responsibilities of each
of the component present at runtime (at the executable stage) and the interaction between
them.5.2 Component Ar
hite
ture
The component architecture at the executable stage described above is repeated in figure
5.2, decorated with labels describing the interaction between them. Each of the components
(including the control program) are active entities. The environment, validator, and explorer
execute as inquisitors, since the time they spend executingshould not influence the timing
scopes in the control program. In the following section we describe the responsibilities of
each component.5.2.1 Component Responsibilities
The central component is the environment, which is generated from the Hybrid Automata
specification. As will be clear from the description of this generation in section 5.3, the
structure of the automata will be maintained in the generated code. The main responsibility
of the environment component is to act as data for the other components and perform the

page 52

Design 5.2 Component Architecture

update(milliseconds, actuations)

flow(milliseconds)

validator

explorer

environment
control

program

stimulate(event)

actuate(event)
poll(automaton,variable)

jump(transitions)

error

check

Figure 5.2:The interaction between the components

actions they dictate. The environment component is also responsible for initiating each
simulation round periodically.

The actions dictated by other components include receivingthe events actuated by the con-
trol program and acting as a pseudo sensor entity that the control programs can poll. The
events from the control program must be time-stamped in order to be effectuated at the right
time during the following simulation round. It also involves performing the flow and jump
updates chosen by the explorer – possibly involving stimulation of the control program. The
responsibility of the explorer component will be elaborated on later in this section. Finally,
the environment must act and report on errors found by the validator component.

The responsibility of the validator component is to monitorthe state of the environment
– ensuring that all properties are satisfied. These checks are performed at the request of
the environment each time a change in the environment has occurred. Notice that, as a
consequence of the fact that updates of the environment can only be performed by the
environment itself (not directly by the control program), these checks are performed only
during the simulation rounds.

Each of the properties have a textual description. If a property is found not to be satisfied
during simulation, this is reported back to the environment. The environment then reports
the error and, in the current implementation, terminates the execution with anerror conclu-
sion state.

The explorer has the responsibility of choosing the updatesthat the environment carries
out. At the start of each simulation round, the environment informs the explorer to choose
the updates to perform. For this purpose, a vector of the actuations received during the
simulation period is given as well the maximum time allowed to flow. An update can consist
of either a flow, a jump, or a flow followed by a jump in case a transition decorated with an
actuation event is enabled.

If a jump or a flow shorter than the remaining simulation time is chosen, the environment
must re-inform the explorer to choose another update. This procedure is repeated until the
simulation round is over – that is, the sum of all flows equals length of the simulation period.

page 53

5.2 Component Architecture Design

During this procedure the validator performs a check each time an update has occurred.
Furthermore, any stimulation events are buffered by the environment and emitted at the end
of the round.5.2.2 Component Intera
tion during Simulation
Having defined the responsibilities of the components and the interaction between the en-
vironment and each of the other components, we proceed to describe the order of the inter-
action during the simulation procedure. The environment component controls the explorer
and validator components. That is, these components only become schedulable after a no-
tification from the environments. When they have performed their tasks they notify the
environment and wait for notification.

logicalphysical
time

actuate

stimulate

!

!

!

!

control
program environment validatorexplorer

period n+1

time
period n

round n

Figure 5.3:The order of the interaction between components during simulation

The components execute in the following order (see figure 5.3):

1. Control program execution.Between each simulation round, the control program ex-
ecutes. During the execution, the control program may actuate on the environment.
As earlier mentioned, these actuation events are time-stamped and stored in the envi-
ronment.

2. A simulation round. The control program executes until the periodic environment
thread becomes schedulable. Since the environment is an inquisitor thread, it has
the highest priority and, consequently, the control program is preempted. At this
point, logical time stops since an inquisitor thread becomes running. The environment
must now be updated with a maximum flow,δ, equal to the simulation period. The

page 54

Design 5.3 The Environment Component

simulation round is carried out by repeating the following algorithm until δ equals
zero:

(a) Notify the explorer to perform an update spending at mostδ milliseconds;

(b) Wait for the explorer to notify;

(c) Perform the flow and/or jumps specified by the explorer. Buffer the stimuli
events associated with jumps;

(d) Notify the validator to check whether all the propertiesare satisfied;

(e) Wait for the validator to notify and report an error if a property is not satisfied;

(f) Subtract the flow-time of the update performed fromδ. If no flow was per-
formed,δ remains unchanged.

(g) If δ is larger than zero, repeat the above procedure.

3. Emitting signals.After the simulation round, the buffered stimuli events areemit-
ted. After this, no inquisition threads are schedulable, sothe control program again
becomes running and logical time starts to progress.

In the following sections we present the design of the three inquisition components, the
environment, the explorer, and the validator.5.3 The Environment Component
As described in section 5.1, the environment is generated from hybrid automata and acts
as data for the other components. The component’s thread is responsible for notifying the
explorer and validator components when they should execute, perform the updates chosen
by the explorer, and inform about errors reported by the validator.

In this section we shall first describe how the Hybrid Automata models are specified by tex-
tual descriptions. We then give an overview of how executable code is generated from these
descriptions, and explain how simulation and validation issupported in the environment
component.5.3.1 Model Spe
i�
ation
The Hybrid Automata describing the behaviour of the environment are specified in the eX-
tensible Mark-up Language (XML) format. The structure of anenvironment description is
given by a document type definition (see appendix A.1).

We have chosen to describe the specification of an environment by an example. For this
purpose, reconsider the barrel example given in section 4.2.3. A partial description of this
system is given in figure 5.4.

The environment consists of number of events, automata and instantiations. In the barrel
example, the environment is named "BarrelEnvironment", and there are two input and two
output events, named "EV_START", "EV_STOP" etc. In the example, only one automaton,
"Barrel", is defined. This barrel automaton has a single variable, "height" with a default

page 55

5.3 The Environment Component Design

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE environment SYSTEM "eha.dtd">
<environment name="BarrelEnvironment">

<event label="EV_START" type="INPUT"/>
<event label="EV_STOP" type="INPUT"/>
<event label="EV_ERR" type="OUTPUT"/>
<event label="EV_OK" type="OUTPUT"/>
<automaton name="Barrel" dynamic="false">

<var name="height" defaultval="0" parameter="true"/>
<mode name="filling" initial="true">
<update>me.height = me.height + millis * 0.001;</update>
<invariant>me.height <= 100</invariant>

</mode>
<mode name="pumping" initial="false">
<update>me.height = me.height - millis * 0.005;</update>
<invariant>me.height > 9.9</invariant>

</mode>
<mode name="overflow" initial="false">
<invariant>true</invariant>

</mode>
<transition>
<source mode="filling"/>
<target mode="pumping"/>
<guard>me.height >=90</guard>
<weight>1</weight>
<input>EV_START</input>

</transition>
<transition>
<source mode="pumping"/>
<target mode="filling"/>
<guard>me.height < 20</guard>
<weight>1</weight>
<input>EV_STOP</input>

</transition>
<transition>
<source mode="filling"/>
<target mode="overflow"/>
<guard>me.height >= 99.9</guard>
<weight>1</weight>

</transition>
</automaton>
<instantiation>Barrel(50)</instantiation>

</environment>

Figure 5.4:Partial textual description of the environment presented in section 4.2.3

page 56

Design 5.3 The Environment Component

value of 0. The variable is a parameter since it has the parameter attribute set to "true". This
means an initial value for the variable must be given as an argument when an automaton is
instantiated.

The automaton further consist of a number of modes and transition. Each mode has a unique
name and a parameter specifying whether the mode is the initial mode of the automaton
in which it is defined or not. Furthermore, Java expressions for flows (named updates in
the XML description) and invariants are defined. Note that, whereas invariant expressions
are required, flow expressions are not. For example, no flow expression is defined in the
overflow mode. The rationale for this will be explained in section 5.3.2.

Transitions consist of a source mode and a target mode, both referenced by their unique
names. They also include a weight for use with exploration algorithms requiring them (see
section 4.4). Furthermore, they contain a guard given by a Java expression and possibly
a stimulation or actuation event – but not both (see section 4.2.3). Note that stimulation
events are called inputs in the specification and actuationsare called outputs.

The final definition in the environment is the instantiation of the automata described above.
With the current implementation it is only possible to have one instance of each automaton
(see section 5.6). In the example, an instance of the barrel automaton is created – with the
initial value of the height variable set to 50.5.3.2 Code Generation
Given a textual description of an environment, the next stepis to generate executable code
to simulate that environment. During simulation the environment must perform two tasks:
One, interact with other components, and two, update itselfaccording to the expressions
associated with modes and jumps. The basic interaction tasks, such as receiving actuation
events from the environment and informing the explorer to perform a simulation round do
not differ from one environment to another. Neither does thestructural relations between
an environment and an automaton, and in turn, the automatonsmodes and transitions.

When generating executable code from the Hybrid Automata wetake advantage of the
similarities of the models described above. Each of the entities of a Hybrid Automaton
are mapped on to a Java class, as illustrated in figure 5.5. TheEnvironment class extends
theInquisitor class in order to ensure that logical time does not progress when updates
of the environment are performed. The Environment consistsof a list of instances of the
Automata class as well as a list ofEvent instances. TheAutomaton class holds a list of
Mode instances which in turn holds a list of outgoing transitions. To eachTransition
instance, a source and a target mode are associated. Furthermore, an event (stimulation or
actuation depending on the type given in theEvent instance) and a weight field is included
in theTransition

Although much of the underlying structure is identical to all models, the variables, events,
modes (including flow and invariant expressions), and jumps(including guard expressions)
are not. These model-specific parts are implemented by specialising the classes of the envi-
ronment (see figure 5.5). In fact, most of these classes are declaredabstract(those whose
names are given in italics), since it does not make sense to instantiate the base classes.

page 57

5.
3

T
he

E
nv

iro
nm

en
t

C
om

po
ne

nt
D

es
ig

n

input
output

Inquisitor

Environment Automaton Mode

Transition

Vector events
Vector automata

void actuate(String event)
void stimulate(String event)
void run()

Vector modes
Mode active

void flow(int millis)

Vector transitions

void flow(Automaton au, int ms)
boolean invariant(Automaton au)

void jump(Transition transition)

String event
int type

Event

Mode source
Mode target
Event event
int weight

boolean enabled(Vector events)

1

1

2

1

0..1

1..? 1..?
1..?0..? 0..?

boolean guard(Automaton au)

double pollValue(Automaton, var)

Figure 5.5:Diagram of the target classes of the code generation

pa
ge

58

Design 5.4 The Exploration Component

The code generated performs the task of defining descendantsof the abstract classes and
instantiate them. In the following, we shall explain how this works by use of the barrel
example for which a textual description in XML was given in figure 5.4. A complete listing
of the generated code is given in section A.2.

A descendant for theEnvironment class, calledBarrelEnvironment is generated. This
class performs the task of instantiating the events defined,as well as the Barrel object.
Next, code for theBarrel class is generated. This class specialises theAutomaton class
with a field namedheight of typedouble (that is, a double precision real-valued number).
Furthermore, for each mode and transition specified in the automaton definition, an instance
of ananonymousclass are generated.

In the case of modes, the anonymous class generated containstwo methods,flow and
invariant. Theflow method updates the variables of an automaton passed by argument
according to the expression given in the textual specification. As earlier mentioned, this up-
date need not occur in all modes. Theinvariant methods, on the other hand, must contain
some expression that evaluates to either true or false – corresponding to theboolean return
value of its declaration (see 5.5). Similarly, theguard method of the anonymous descen-
dant ofTransition returns a boolean value designating whether the guard is satisfied for
the automaton passed by argument or not.5.3.3 Simulation and Validation Support
Regarding interaction with other components during runtime, the various classes of the en-
vironment offer methods that fulfil the purpose. In theEnvironment class, thePollValue(
String automaton, String variable) method allows the control program to poll the
value of some variable in an automaton for its current value.The control program may
also invoke thestimulate(String event) method, thereby actuating the given event on
the environment. Analogously, the environment (which is anactive object) may invoke the
stimulate(String event) method in order to give the control program some stimuli.

The run() method of the environment performs the interaction (synchronisation) with
the instances of theExplorer andValidator classes. These two classes specialise the
Inquisitor class and are therefore active objects. The tasks they perform will be described
in sections 5.4 and 5.5, respectively.

Once the explorer component has chosen whether to perform a flow, a jump, or both, the
environment invokes theflow(int ms) orjump(Transition transition) methods, de-
fined on the abstract classAutomaton, on each of the automaton instances. After doing so,
it notifies the validator to perform the validation task and reports any errors returned.5.4 The Exploration Component
The active object of the exploration component is the abstract classExplorer (see figure
5.6). The run method of this class participates in synchronisation with theEnvironment
instance. In order to choose an action for the environment toperform, a descendant of the
Explorer class must implement thechoose() method. This method typically employs one
of the exploration strategies described in section 4.4.

page 59

5.
4

T
he

E
xp

lo
ra

tio
n

C
om

po
ne

nt
D

es
ig

n

Constraint

Property ifClause
Property thenClause
String description

Property

boolean satisfied()

jump
flow

both

ValidatorEnvironementExplorer

Environment env
Vector JumpData
int action
int flow

int getAction()
int getFlow()
int getJumpData()
int maxFlow()

void choose()
void run()

JumpData

String automaton
String transition
TimedEvent te

Inquisitor

boolean satisfied

boolean isSatisfied()
String getUnsatisfied()
void run()

Vector constraints

TrueProperty ModeProperty

boolean satisfied() String Automaton
Strng mode

boolean satisfied()

boolean negate

1 11 1

1

0..? 1

1
2

0..?
SMap enabled(Vector events)

Figure 5.6:Class diagram relating the validation, environment, and exploration components. pa
ge

60

Design 5.5 Validation

In order to help this decision, two methods,SortedMap enabled(Vector events) and
int maxFlow() are made available by the abstract class. ThemaxFlow() method investi-
gates the current configuration of the automata and returns the longest amount of millisec-
onds that all automata can flow in their current modes. By the assumption of local invariance
(see section 4.2.3) this can be calculated using a binary search approach.

TheSortedMap enabled(Vector events) returns a set ofJumpData instances, describ-
ing which transitions in which automata can be taken. Since jumps involving actuation
events from the control program must be performed at the timeof the occurrence of the
actuation, they may be associated with an instance ofTimedEvent. ClassTimedEvent spe-
cialises classEvent with a RelativeTime instance designating the time of the occurrence
relative to the simulation period. TheJumpData are sorted ascendingly by their time of
occurrence. Instances without an associatedTimedEvent are inserted at the end of the set.

Thechoose() method must set the desired update action to either flow, jump, or both. If
a flow is selected, thegetFlow() method must return the length of the flow. If a jump is
selected, thegetJumpData() method must return a list ofJumpData objects instructing the
environment thread which jumps to take. Furthermore, if theexplorer cannot find a valid
update it must enter a special deadlock state, not illustrated in the figure.5.5 Validation
In this section we describe how the mode constraints presented in section 4.5 are imple-
mented as Java classes, and how they are checked by the validator. The main class of the
validator component is the inquisitor descendant,Validator (see figure 5.6). Thevoid
run() method of this class interacts with the environment – performing checks of all con-
straints when notified by the environment. When execution returns to theEnvironment
thread, theboolean isSatisfied() method must return true if and only if all constraints
are satisfied. If one or more constraints are not satisfied, the String getUnsatisfied()
method can be invoked to get a textual description of the errors encountered.

Constraints are represented by instances of the classConstraint. This class encapsu-
lates the if and then clause fields, represented by instancesof theProperty interface. The
latter interface has a single method,boolean satisfied() that must return a value corre-
sponding to the validity of the property. The simplest classimplementing this interface is
TrueProperty, whosesatisfied() method always returnstrue.

For specifying that an automaton is either in a given state ornot, theModeProperty class
can be used. In this class, theString automaton andString mode fields describe which
state of a given automaton the property refers to. If thenegate field is set tofalse, the
satisfied() method returnstrue if an only if the automata is in the given mode. If, on
the other hand, the value ofnegate is true, the method returnstrue if and only if the
automaton is currently not in the specified mode.

When checking whether a constraint is satisfied, theValidator checks if the property field
ifClause is satisfied. If it is, the property referenced by thethenClause field must also be.
If the latter property is not satisfied, the constraint is broken, and an error must be reported.
If, on the other hand, theifClause is not satisfied, no requirements for thethenClause
exist.

page 61

5.6 Implementation Status Design5.6 Implementation Status
The current implementation employs a simple exploration strategy, specifically, that by
which the explorer chooses to stay in each mode as long as possible. This strategy was
implemented due to its deterministic behaviour. In the nextchapter, we carry out a case
study, which, among other purposes, serves as a test of the implemented functionality. The
deterministic behaviour of the chosen exploration strategy facilitates easier debugging than
strategies with a more nondeterministic behaviour.

some limitations in the current implementation should be noted. One of them is, that no
generation from a textual description of the mode constraints used for validation is avail-
able. The implication is that the constraints instances must me instantiated by manually
written Java code. Also, since the inquisitor framework does not support the automatic
instrumentation of Java byte-code, the extra code must be manually inserted.

page 62

Case Study CHAPTER6
In this chapter we shall perform a case study in which we modelan environment as Hybrid
Automata and execute the generated code in parallel with a control program while observing
a number of properties. This case study is conducted for three reasons. One, to exemplify
the validation method described in the previous chapter, and second to serve as a test of the
implemented parts of it. Finally, we hope to identify some strengths and weaknesses of the
approach from this practical work.

The case we shall study involves a bridge over Oddesund in thenorth-western Jutland,
Denmark. We first describe the components and operations of the bridge. We then model
the environment as Hybrid Automata and state the propertiesin terms of the modes of these
automata. Next, we construct a control program that performs the operations of the bridge.
For testing, we introduce errors into this control program and execute it in parallel with the
simulated environment. We then hope to be able to detect these errors during runtime.6.1 The Bridge over Oddesund
The bridge over Oddesund is a so-calledbascule bridge. It opens by sinking a counterpoise,
thereby lifting the footway into the air. This allows ships to pass under the bridge. The
bridge is depicted in figure 6.1. In addition to ships passingunder the bridge, cars and trains
cross the bridge. Thus, a system for holding back the cars andtrains when the bridge is up
is necessary. It is this logic that the control program of this case study will perform. We
shall refer to the entity controlling the operations at the bridge as thecontroller whether
consisting of a control program, or, as is currently the case, a human operator.

Figure 6.1:The Bridge over Oddesund.

The components of the bridge that we shall consider part of the system are:Æ A bridge bascule.The bridge opens and closes by raising and lowering the bascule,
respectively;Æ A set of rails.The trains pass the bridge via a single set of rails. Ensuringthat only
one train is on the rails at the same time is performed externally to the environment
described here;

page 63

6.2 Operation of the Bridge Case StudyÆ A set of barriers stopping road traffic.Before the bridge can start moving toward its
upward position, a set of barriers located on the bridge on either side of the bascule
are lowered in order to stop cars from passing the bridge;Æ Control lights for the trains.Control lights for trains passing the bridge are placed
some distance before the bridge. These tell the train controller whether to stop or pass
the bridge;Æ Interaction with ships.When a ship approaches the bridge, it must issue a request for
the bridge to be opened. When allowed to pass, the bridge is opened and a grant for
passing is sent to the ship. With the current operation of thebridge, this communica-
tion is performed via radio.

It should be noted that the above description is only partial. Among the parts excluded is an
extra set of barriers used to stop traffic from one direction when a wide load must pass the
narrow bridge from the other side. Furthermore, a large number of safety relays are used for
ensuring that a flow of current exist in all electrical components in the surrounding. These
include the barriers and warning lights on and before the barriers. The relays trigger alarms
when a malfunction is observed.

We find, however, that the parts considered above constitutean appropriately complex sys-
tem for our testing purposes. As further restrictions, we shall assume that trains only arrive
from one direction, and that ships only approach the bridge from one side. In the follow-
ing section we shall describe the operation of the bridge, serving as a refinement of the
environment and a requirement specification of the control program.6.2 Operation of the Bridge
In this section we turn our attention to how the bridge is operated. Specifically, we describe
how incoming trains and ships are handled by the controller of the bridge, trains, and ships.
This includes the communication between them as well as the actions they perform. An
aerial overview of the entities of the environment is given in figure 6.2 along with distances
from sensors and signals to the bridge.6.2.1 In
oming Trains
An incoming train is detected by the controller with the aid of a sensor placed so that
the trains position can be detected when it is between two andeight kilometers before the
bridge. This sensor can be polled in order to obtain the train’s distance to the bridge. By the
time the train passes the signal 1.5 kilometers from the bridge, the bridge controller must
have switched on the signal in order for the train to pass the bridge. Otherwise the train will
stop 500 meters before the bridge waiting for the signal. Thetrain travels at 80 kilometers
per hour until the 500 meter mark from which it travels at 50 kilometers per hour.

Once the train has passed the bridge, it enters a sensoring zone stretching from 200 to 500
meters after the bridge. When the controller detects that the train has entered this zone,
it may be concluded that the train has passed the bridge. After this point, the train may
increase its speed to 80 kilometers per hour.

page 64

Case Study 6.3 Modelling the Environment

rails

road

bridge

500 m

in range

stop

1 km

250 m

train

wait

signal

passed

2 km 1.5 km

sensoring interval
(2-8km)

sensoring interval
(200-500m)

100 m

Figure 6.2:An aerial view of the bridge parts6.2.2 In
oming Ships
When a ship is within 1 kilometer of the bridge, it enters the communication range. At this
point, it must contact the bridge controller by issuing a request for opening the bridge. The
bridge controller must respond with either a grant or deny ofthis request. In case a deny is
issued, the ship must wait 250 meters from the bridge for a grant to pass under the bridge.

We assume that a ship approaches the bridge with a velocity between 3 and 5 meters per
second when between the 1 kilometer and the 250 meter marks. From the latter mark it
proceeds to pass the bridge at between 2 and 3 meters per second. When the ship is 100
meters on the other side of the bridge it issues a signal to thebridge controller that it has
passed the bridge.6.2.3 Opening the Bridge
The bridge must be opened and closed in correspondence with the signals given to the ships.
Before a grant signal is sent to the ship, the bridge must be open. Similarly, the bridge is not
allowed to close before the ship has issued its passed signal. Furthermore, the bridge must
send signals in order for the barriers to lower and raise. We assume that the barriers raise
and lower within 10 seconds. We also assume the presence of sensor that send signals when
the bridge is fully opened and closed respectively. The procedure of opening and closing
the bridge is given in table 6.1 below.6.3 Modelling the Environment
In this section we describe how we have modelled the environment described above as
Hybrid Automata. These automata will be used for stating theproperties that we wish to

page 65

6.3 Modelling the Environment Case Study

Description Done
1 Lower the barriers after 10 seconds
2 Open the bridge when signal received
3 Send a grant signal to the ship immediately
4 Wait for passed signal when signal received
5 Close the bridge when signal received
6 Raise the barriers after 10 seconds

Table 6.1: The procedure of opening the bridge

hold in the next section. Furthermore, code generated from these models will be used for
the validation of the erroneous control programs in section6.5.

The environment modelling consists of four Hybrid Automatarepresenting the bridge, the
barriers, the trains, and the ships. We describe these automata individually. In this section,
the input and output signals given in the figures are relativeto the environment. Thus, an
input in the figure corresponds to an actuation signal by the control program. The textual
description is listed in section A.3.6.3.1 The Bridge Hybrid Automaton
The Hybrid Automaton for the bridge is depicted in figure 6.3.It consists of the four modes
down, raising, up, and lowering. A variable,deg, represents the angle of the bridge bascule
from its closed position. The bridge is initially closed. Thus, thedeg variable is set to 0 and
the initial mode is down. The bridge automaton remains in this position until it receives an
EV_BRIDGE_RAISE input signal from the control program. It then jumps to its raising mode,
at which the angle from the closed position increases until at most 80 degrees.

When the angle is between 79 and 80 degrees, a jump to the up mode must be carried
out. As mentioned in the previous section, the bridge will thereby stop raising, and the
EV_BRIDGE_UP signal is offered to the control program. Similarly, when anEV_ BRIDGE_
LOWER signal is received, the bridge starts to lower. This proceeds until the angle is between
zero and one degrees. At this point theEV_BRIDGE_DOWN stimuli is emitted.6.3.2 The Barrier Hybrid Automaton
Although the actual environment consists of four barriers closing the road for traffic from
both directions, we shall assume that these behave identically and thereby can be modelled
as a single automaton. This automaton, presented in figure 6.4, is identical in structure to
the bridge automaton presented above. Like the bridge automaton the barrier automaton has
four modes, denoting its current position and a single variable,deg, representing its degree
relative to the initial position, up.

Furthermore, it reacts to actuation signals (EV_BAR_LOWER andEV_BAR_RAISE) from the
control program for jumping between the non-moving (up and down) and moving modes
(lowering and raising). The major difference lies in the fact that no signals are emitted when
the barrier jumps from the moving modes to the non-moving ones. The rationale for this

page 66

Case Study 6.3 Modelling the Environment

flow: deg0 =�0:005

deg:= 0

flow: deg0 = 0:005

inv: deg� 0

input: EV_BRIDGE_LOWER

inv: deg� 80

guard: deg� 1
output: EV_BRIDGE_DOWN

output: EV_BRIDGE_UP
guard: deg� 79

input: EV_BRIDGE_RAISE

down lowering

upraising

Figure 6.3:The bridge Hybrid Automaton

is that we wish to introduce the need for a timer in the controlprogram. The barriers will
spend 9 seconds on closing and opening, which allows the control program to conclude that
the barriers are either up or down within the 10 seconds from the signals, as specified in the
previous section.

flow: deg0 =�0:01

deg:= 0

inv: deg� 90
flow: deg0 = 0:01

inv: deg� 0

guard: deg� 89

guard: deg� 1

input: EV_BAR_LOWER input: EV_BAR_RAISE

up raising

downlowering

Figure 6.4:The barrier Hybrid Automaton6.3.3 The Train Hybrid Automaton
According to the specification of incoming trains given in section 6.2.1, the control program
can observe a train no sooner than when it reaches a sensoringzone 8 kilometers before the
bridge, and no later than when it passes the sensoring zone 200 meters after. Therefore, the

page 67

6.3 Modelling the Environment Case Study

trains are sporadic entities which could be modelled using dynamic creation. We have cho-
sen not to do so, primarily because the current implementation does not allow for dynamic
creation. A second reason is that we assume the presence of atmost one train at a time –
whereby the advantages of dynamic creation is limited.

input: EV_CLEAR

flow: d0 =�0:02

inv: d� 500
flow: d0 =�0:02

flow: d0 =�0:015

input: EV_CLEAR

inv: d� 12000
flow: d0 = 0:02

inv: d��200

guard: d��199

d := 10000

guard: d� 1500

guard: d� 7999

inv: d� 8000

guard: d� 501

guard: d� 10000
passed

cleared

stopped

far

approach

Figure 6.5:The train Hybrid Automaton

The Hybrid Automaton for the incoming trains is depicted in figure 6.5. The automaton
contains five modes: far, approach, cleared, stopped, and passed. A variable,d, denotes
the distance to the bridge. The initial mode is far, in which the train remains until eight
kilometers from the bridge. A jump is then made to the approach mode, from which a jump
to the cleared mode can be made if and only if aEV_CLEAR signal is received from the
control program before the train passes the 1.5 kilometer mark. If this is not the case, the
train will be forced to stop 500 meters before the bridge, waiting for theEV_CLEAR signal.

Once the train is cleared to pass the bridge, it proceeds at a reduced speed until 200 meters
after the bridge, at which point it enters the passed mode. Ifwe had chosen to use dynamic
creation for trains, this would have been the final mode for the train automata. However,
in order to allow more than one train to ever pass the bridge without dynamic creation, we
introduce a cycle in the automaton. The train will remain in the passed mode until between
10 and 12 kilometers away from the bridge, at which it re-enters its far mode.6.3.4 The Ship Hybrid Automaton
Like the trains, ships could be naturally modelled as sporadic entities. However, for the
same reasons we did not model incoming trains using dynamic creation, we shall not use
dynamic creation in the modelling of ships. The single automaton for modelling ships is
shown in figure 6.6.

page 68

Case Study 6.4 The Control Program

As in the train automaton, the ship’s distance to the bridge is represented by a variable,d.
Initially, the ship is in the far mode, in which it stays untilthe distance is 1000 meters. It
then takes a jump to the in range mode, whereby aEV_IN_RANGE stimuli is emitted. The
automaton stays in this mode until either aEV_DENY or EV_GRANT signal is received from
the control program. If a grant signal is received, the ship enters the granted mode, where
it stays until it is 250 meters before the bridge. If, on the other hand, the ship is denied
passage, it enters a denied state, in which it stays until either a grant signal is received or
the distance to the bridge is 250 meters. In the first case it enters the granted mode, in the
latter it enters a waiting mode.

From the granted mode, the ship enters the passing mode when it is 250 meters from the
bridge. If in waiting mode, the ship enters the passing mode only when a grant signal is
received. When the passing mode is left, 100 meters after passing under the open bridge,
theEV_PASSED signal is emitted and the passed mode is entered. Here it stays until between
2 and 3 kilometers away, yielding a cyclic behaviour of shipssimilar to that of the train
automaton.6.4 The Control Program
In this section we describe the control program used for operating the bridge. We shall first
describe its design in terms of a state diagram, and then proceed to describe the implemen-
tation. In addition to this, we describe a number of mutations that we introduce into the
control program. These mutated versions of the control program will be used for validation
in section 6.5.6.4.1 Design
The control program is built around the state diagram illustrated in figure 6.7. Transitions
between states are triggered by events in the environment, values obtained by polling, and
timers. At some transitions, a signal is sent to the environment in order to actuate according
to the given situation.

Initially, the control program is in state closed. This denotes that the bridge is closed, but
can be opened if a ship comes into range and sends a request. If, by polling, it is found
that a train is approaching, the cleared signal is sent to thetrain and the control program
switches to the train state, from which the bridge cannot be opened. It remains in this state
until either the train has passed the bridge or a ship requests to pass under the bridge. In the
first case, the control program returns to the closed state. In the latter, it sends a deny signal
to the ship and switches to a state denoting that a ship is waiting for a grant.

From the closed and ship request states the bridge can be opened. As described in section
6.2.3, the first step of this procedure is to lower the barriers. This is done by sending a
signal to the environment, after which the control program starts a timer that triggers after
10 seconds. When the timer triggers, theEV_BRIDGE_RAISE signal is sent to the bridge.
When the environment emits theEV_BRIDGE_UP it can be assumed that the bridge is up,
and theEV_SHIP_GRANT signal is given to the ship. When theEV_SHIP_PASSED signal is
received, the bridge is closed and the barriers are lowered by a procedure analogue to that
of opening.

page 69

6.
4

T
he

C
on

tr
ol

P
ro

gr
am

C
as

e
S

tu
dy

inv: d� 1000
flow: d0 =�0:01

flow: d0 =�0:004
inv: d� 250

inv: d� 250
flow: d0 =�0:004

flow: d0 =�0:004
inv: d� 250

flow: d0 =�0:002
inv: d��100

flow: d0 = 0:05
inv: d� 3000

input: EV_GRANT

input: EV_DENY

input: EV_GRANT

guard: d� 251
output: EV_PASSED

guard: d��99

input: EV_GRANT

guard: d� 1001

guard: d� 251

guard: d� 2000far

in range

granted

waiting

passing passeddenied

Figure 6.6:The ship Hybrid Automaton

pa
ge

70

Case Study 6.4 The Control Program

train

bar lower

opening

open

closing

bar raise

closed ship req

bridge(true)

barrier(true)

train(false)

ship(true)

barrier(false)

bridge(false)

ship(false)

train(true)

train(false)

ship(true)

Figure 6.7:The state diagram of the control program6.4.2 Implementation
The implementation of the control program is centred aroundtheCPState class, partially
listed in figure 6.8. It contains an integer field,state, that holds the current state and a
boolean field,train, that is assigned the value true if a train is recognised while in the
procedure of opening and closing the bridge. The latter variable allows the control program
to clear an approaching train once the bridge has been closed. This functionality, however,
is not described in the following.

The class has three methods which are invoked by active objects when a change in state has
been observed. Their signatures arepublic void train(boolean incoming), public
void bridge(boolean open), andpublic void barrier(boolean up). Notice that
only the method body of the first of these is shown in figure 6.8.

The operation performed by the active objects is to observe when actions occur in the en-
vironment. They then invoke the methods on theCPState instance in order to reflect the
change in state. The pattern of method invocation is depicted in figure 6.8.

As an example of an active object, consider the classTrainPoller presented in figure
6.9. This class performs a periodic task with the purpose of recognising the events that
a train reaches one of the sensoring zones on either side of the bridge. It invokes the
train(boolean incoming) method in the instance ofCPState with a true parameter
value if a train is approaching and afalse parameter value if the train has passed the
bridge.

In therun() method of theTrainPoller class, the last polled value of the train’s distance
to the bridge is used to decide whether the train is approaching the bridge (incoming) or

page 71

6.4 The Control Program Case Study

import javax.realtime.*;
import environment.*;

public class CPState{
/* define states as constants */
public static final int CP_CLOSED = 0;
public static final int CP_TRAIN = 1;
public static final int CP_TRAIN_REQ = 2;
public static final int CP_OPENING = 3;
public static final int CP_OPEN = 4;
public static final int CP_CLOSING = 5;
public static final int CP_BAR_LOWERING = 6;
public static final int CP_BAR_RAISING = 7;
public static final int CP_BAR_DOWN = 8;
public static final int CP_BAR_UP = 9;

private static final int BAR_WAIT = 1100; // ms -- change at speedup
private boolean train = false;
private int state = CP_CLOSED;
private Object lock = null;

public void train(boolean incoming){
this.train = incoming;
RealtimeThread.currentRealtimeThread().beginSynchronization(lock);
synchronized(lock){

if(incoming){
if(this.state == CP_CLOSED){

this.state = CP_TRAIN;
AbstractEnvironment.instance().actuate("EV_TRAIN_CLEARED");

}
}
else{

if(this.state == CP_TRAIN){this.state = CP_CLOSED;}
if(this.state == CP_TRAIN_REQ){

this.state = CP_BAR_LOWERING;
AbstractEnvironment.instance().actuate("EV_BAR_LOWER");
/* start a timer that informs cp when barrier is down */
AsyncEventHandler aeh = new BarrierHandler(false, this);
OneShotTimer t = new OneShotTimer(new RelativeTime(BAR_WAIT),

aeh);
t.start();

}
}

}
RealtimeThread.currentRealtimeThread().endSynchronization(lock);

}
...
}

Figure 6.8:Part of the CPState class maintaining control program state information

page 72

Case Study 6.4 The Control Program

public class TrainPoller extends RealtimeThread{

CPState state = null;
private static final int POLL_PERIOD = 100; // poll every 100 ms
private static final double DIST_APPROACH_FROM = 8000.0;
private static final double DIST_APPROACH_TO = 2000.0;
private static final double DIST_PASSED_FROM = -100.0;
private static final double DIST_PASSED_TO = -200.0;

private boolean train = false;
private boolean incoming = true;
private double last = -1;

public TrainPoller(CPState state){
super(new PriorityParameters(PriorityScheduler.instance().getNormPriority()),

new PeriodicParameters(new AbsoluteTime(AbstractEnvironment.START_TIME),
new RelativeTime(POLL_PERIOD), null, null, ...);

this.state = state;
}

public void run(){
awaitRelease();
double dist;
while(true){

dist = AbstractEnvironment.instance().pollValue("Train", "distance");
if(last != -1){

if(last > dist){incoming = true;}
else{incoming = false;}

}
last = dist;

if(train){
if((dist <= DIST_PASSED_FROM) && (dist >= DIST_PASSED_TO) && !incoming){

train = false;
state.train(false);

}
}
else{

if((dist <= DIST_APPROACH_FROM) && (dist >= DIST_APPROACH_TO) && incoming){
train = true;
state.train(true);

}
}
waitForNextPeriod();

}
}

}

Figure 6.9:The class used for polling for polling for trains

page 73

6.4 The Control Program Case Study

not. This is necessary because the Hybrid Automaton modelling trains in the environment
is cyclic (see section 6.3.3). As a consequence the distanceto the bridge is within the
interval twice per cycle – whereas the train is in fact only approaching once.

We now return our focus to theCPState class. When thetrain(boolean incoming)
method is called with a parameter value oftrue, the train is cleared only if the bridge is
closed. This is done by invoking theactuate(String event) method on the instantiated
environment. The state is then changed to denote that fact that a train has been cleared.

If, on the other hand, the value of the incoming variable isfalse, the state is set to closed if
no ship is waiting. Otherwise, the bridge opening procedureis initiated by sending a signal
to the environment to lower the bars. Furthermore, a timer isstarted which, at the time of
triggering, will inform the control program that the barriers are down in fashion similar to
the event that a train is approaching.

Several threads invoke methods on the shared instance ofCPState. This may lead to
concurrent updates of the state in the control program. An example could be that the
TrainPoller instance invokes thetrain(boolean incoming) at the time the handler for
the event that bridge has been closed is executing. Thus, themethods for updating the cur-
rent state are synchronised in order to obtain atomicity. Notice that we have included the in-
vocations of thebeginSynchronization(Object o) andendSynchronization(Object
o) in the listing. As mentioned in section 3.1, these are required to obtain the behaviour
described in the Real-Time Specification for Java.6.4.3 Control Program Mutations
Based on the implementation described above, we have created four mutated control pro-
grams. These version have the potential to actuate on the environment in a manner leading
to an undesirable situation. We first describe these situations as properties in terms of the
mode constraints presented in section 4.5.Properties
For the purpose of validating the four control programs described in section 6.4.3 a number
of environment properties that are required to hold are needed. These include safety prop-
erties stating that not accidents occur in the environment.Examples of such properties are
that no train ever crosses the bridge while it is not closed and that the bridge never starts to
raise before the barriers are lowered. In addition, we introduce the requirement that no train
should ever have to stop.

We state three such requirements that we have found to sufficefor recognising that undesir-
able situations arise using the erroneous control programs. These are presented below:Æ Ship not granted when train cleared.That is, if a train is cleared, no ship is ever

granted. Stated in the mode constraint properties supported by the current implemen-
tation, this corresponds to: Train in mode cleared implies not Ship in mode granted.Æ Barriers down when bridge raising.When the bridge is opening, the barriers must be
down. Corresponds to: Bridge in mode raising implies Barriers in mode down.

page 74

Case Study 6.5 ValidationÆ Never train stopped.The simple requirement that a train is never stopped translates
to: true implies not Train in mode stopped.Mutations

The four control programs which we shall use for validation contains one of the mutations:Æ Early raising of the bridge.According to the procedure for opening the bridge, the
barriers can be assumed to be lowered ten seconds after a signal has been sent to
them. In this implementation, the control program waits foronly eight seconds.Æ Missing detection of trains when bridge open.When the bridge is open, a train cannot
be cleared. However, a cleared signal must be sent once the bridge is closed. The
error introduced here is that if a train is approaching whilethe bridge is up, it is never
cleared.Æ Sending wrong signal to ships.If a train is cleared, requests from ships should be
denied. In this version, the control program may mistakenlysend the wrong signal in
this situation. That is, a ship is granted to pass under the bridge although it cannot be
opened. The error is implemented so that, each time a ship is to be denied, there is a
certain probability that the grant signal is sent. For the validation we have chosen the
two probabilities 0.1 and 0.9.Æ Missing detection of train having passed the bridge.The control program detects
that a train has passed the bridge when it enters the polling zone after the bridge. By
increasing the period of the polling thread, we introduce a risk that the train is not
detected after passing the bridge.6.5 Validation

Having defined our control program and the environment in which we wish it to control,
we now continue to perform the validation of the mutated control programs. The properties
stated in the previous section are used to try to detect errors.6.5.1 Exe
ution and Results
The four erroneous control programs were executed in parallel with the code generated from
the Hybrid Automata. The environment was explored with the strategy currently imple-
mented, that is, the approach where the environment stays inall modes as long as possible.

The properties listed in section 6.4.3 are implemented using the classesConstraint and
the descendants of theProperty interface. As an example, the constraint stating that the
barriers must be down when the bridge is raising is listed in figure 6.10.

With the given modelling of the environment, it takes an unreasonable amount of time for
the entities in the environment to approach the bridge. Therefore, the idea of speeding up

page 75

6.6 Conclusions on the Case Study Case Study

constraint = new Constraint(env,
"Barriers::down when Bridge::raising",
new ModeProperty("Bridge", "raising", false),
new ModeProperty("Barrier", "down", false));

env.addConstraint(constraint);

Figure 6.10:The constraint that barriers must be down when the bridge is raising stated in
Java code

the simulation was appealing. A similar approach has been carried out for model checking
in Uppaal ([HL02]).

A speed-up requires both the environment and the control program to execute at a faster
pace, which requires adaption of the timing scopes as well asa fast enough test platform
to allow the control program to finish its tasks within the newdeadlines. The latter turned
out not to constitute a problem, as the load of the system on which the tests were conducted
was very low.

No support for performing speed-ups is provided by the execution framework – and it must
therefore be done manually. In the environment, this is easily accomplished by multiplying
all coefficients of the flows by some factor – in this case we chose 10. In the control
program, only one of the tasks depends on time, namely the timer started to inform the
control program when the barriers are either down or up. We therefore divide the time
waited by this timer by ten in order to match the faster environment.

Since some of the errors introduced are not deterministic, the control programs were ex-
ecuted 8 times in order to observe the variation in validation durations. The results are
presented in table 6.2.

In all executions, an error was found. In most cases, the errors are found within four minutes
– except in the implementation where a wrong signal is possibly sent to a ship. However,
this is to be expected due to the nondeterministic nature of this misbehaviour.6.6 Con
lusions on the Case Study
From the validation performed of the case study in the previous sections, we conclude that
the approach of validating control programs in simulated environments is successful. We
also conclude that the current implementation of the validation approach in the inquisitor
framework works. However, a problem regarding polling the environment for the current
value of some variable leads to problems when sporadic entities are modelled by cyclic
automata.

We also conclude that speeding up the validation process is both desirable and possible. We
therefore mention it in the future work presented in chapter7.

page 76

C
ase

S
tudy

6.6
C

onclusions
on

the
C

ase
S

tudy

Control Program Violated Property #1 #2 #3 #4 #5 #6 #7 #8 Avg.

Early raising of the
bridge

Barriers down when
bridge raising

67 s 68 s 67 s 68 s 68 s 68 s 66 s 68 s 67.5 s

Missing detection of
trains when bridge
open

Never train stopped 188 s 188 s 186 s 187 s 188 s 188 s 187 s 188 s 178.5 s

Sending wrong signal
to ships (probability
0.1)

Not ship granted when
train cleared

31 s 31 s 1703 s 1073 s 197 s 196 s 197 s 1169 s 574.6 s

Sending wrong signal
to ships (probability
0.9)

Not ship granted when
train cleared

198 s 199 s 31 s 31 s 31 s 31 s 31 s 31 s 72.9 s

Missing detection of
train having passed the
bridge

Never train stopped 188 s 188 s 186 s 187 s 188 s 188 s 187 s 188 s 178.5 s

Table 6.2:The results of 8 execution of each control program. The property mentioned is that broken by the given run.

page
77

6.6 Conclusions on the Case Study Case Study

page 78

Con
lusion CHAPTER7
As computing hardware becomes smaller and more powerful, its usage for so-calledem-
bedded systemsincreases. Such systems are embedded into special-purposedevices and
interact with other entities. Often, these entities make upanenvironmentthat must becon-
trolled by the embedded system. That is, the embedded system acts as acontrol program
which must keep its surrounding environment safe.

A special characteristic about such systems is that they often incorporatereal-time require-
ments. In order to behave correctly, the interaction between the control program and its
environment must occur at the right time. A typical example of such timing constraints is
that the control program mustreact to somestimuli from the environment within a fixed
interval of time.

Many of the systems described above are commonly used to control environments in which
errors have fatal consequences. Others are shipped in largequantities, making errors hard
and expensive to correct. Thus, a lot of effort is spentvalidating such systems for errors
before they are put into use. Similarly, a large amount of research is conducted with the aim
of improving the methods for validating embedded real-timesystems.

In this project, we investigate a validation method based onexecuting the control program
and observing its behaviour. Research in such techniques, known asrun-time validation,
has enjoyed increasing attention recently ([KKL+01] and [HP00]). We have identified two
shortcomings in current run-time validation techniques with regard to the validation of em-
bedded real-time systems. One, support for real-time systems is relatively limited, and two,
the control programs must be executed in their actual environments.

We propose a method that allows an embedded real-time systemto be validated in asimu-
lated environment. The environment is represented by a formal description of its possible
behaviour. This approach is commonly used in model checkingpractices, where models
of the control program interacts with models of the environment. Themodelof the envi-
ronment incorporates the timing requirements imposed on the control program, thereby in-
creasing the support for validation of control programs with real-time constraints. A further
contribution is that the validation is performed in terms ofthe behaviour of the environment,
rather than that of the control program, which allows a higher level of abstraction from the
implementation.

Based on analysis of the generic behaviour and communication patterns of environments,
we have found the notion ofHybrid Automatato be suitable for formally representations
of environments. We have, however, introduced a number of modifications to the general
theory, in order to support simulation and interaction withcontrol programs.

We have presented an approach to performing environment simulation based on formal
models of the allowed environment behaviour. Using this approach, generated code simu-
lating the environment is executed in parallel with the control program. In order to obtain

page 79

7.1 Future Work Conclusion

an interestingcoverageof the possible environment behaviour, we have considered several
strategiesto exploring the environment models.

Furthermore, we have suggested an approach by which requirements on the behaviour of
the control program can be stated in terms of simple constraints in the behaviour of the en-
vironment. Specifically, the specification of real-time constraints is supported by modelling
in the environment. Thereby, errors in the control program (whether timing-related or not)
can be found by observing the state of the environment duringruntime.

In order to investigate the feasibility of the proposed method, we have implemented a pro-
totype and carried out a case study. This case study exemplifies the process of formalisation
and validation. The results of the validation performed show encouraging results.7.1 Future Work
In this section, we present a number of possible future enhancements to the work presented
in this report. Some are directly related to improving the applicability of the method, others
show how the method can be applied in a greater perspective.Æ Applicability-related extensions.In this project, we have not considered the dynamic

creations of entities in the environment. Since such creations in fact do occur in
environments, a more intuitive modelling can be accomplished by supporting them.
It is suggested that the dynamic creation is mapped on to a sporadic update of the
environment. Thereby, dynamic entities can be created by a jump from one mode to
another.

Another way to increase the applicability of the method is toimplement generic sup-
port for speeding up the validation process. A manual way to increase the speed of
the validation was used in the case. In a more generic setting, the speed-up could
be supported by the Inquisitor Framework. For example, by speeding up the pro-
gression of logical time by some factor, all timing scopes inthe control program and
environment could be easily changed by the given factor.

The last applicability improvement we shall consider is to visualise the interaction
between the control program and the environment during simulation. Thereby, the
testing team would have an easier job identifying the flaw in the control program.Æ Validating external control programs.The prototype presented in this report supports
the validation of real-time systems in a setting where logical time can be stopped.
Thus, the time spent by the simulator for updating the environment is not limited by
the length of the simulation period.

In a more realistic setting, the control program is executedon specialised hardware.
By implementing a stub for interaction with the simulated environment, such control
programs could be validated even though they are executed ona separate processing
unit. In order to accomplish this, however, a limit on the time spent for updating the
environment during simulation must be adhered to.

page 80

Conclusion 7.1 Future WorkÆ Control program specifications.By assuming the presence of a specification of the
control program, a couple of enhancements to the validationmethod can be imple-
mented. First, the knowledge about the control program can be used to obtain a
greater coverage of its possible behaviour. The knowledge may also be used to iden-
tify critical states in the control program. Such knowledgemay in turn be used to
decide the simulation of the environment.

A second use of the control program specification is to observe whether the imple-
mentation behaves in accordance with the specification. Forexample, the conformity
criterion used for model-based testing could be used. The extended knowledge about
the control program may be useful for better debugging support. For example, when
an error in the environment occurs, the actions of the control program can be deduced
from the model. If a conformity error occurred before the error in the environment,
it is likely that the implementation does not conform to the specification. Otherwise,
the specification of the control program may in fact allow thegiven behaviour.

A third use of the control program specification is to performa model-check of the
control program alongside the environment models. For example, if the control pro-
gram specification was given as a Hybrid Automata the HyTech model checker could
be used. In order to allow model checking, however, the usualrestrictions on the
environment automata must be applied.

page 81

7.1 Future Work Conclusion

page 82

Sour
e Code Listings APPENDIXA
This appendix includes the source code listings referred inthe report.A.1 Do
ument Type De�nition
The environment specification must be described in XML files adhering to the following
format:

<!ELEMENT environment (event*, automaton+, instantiation+)>
<!ATTLIST environment name CDATA #REQUIRED>
<!ELEMENT event EMPTY>
<!ATTLIST event label CDATA #REQUIRED

type CDATA #REQUIRED>
<!ELEMENT automaton (var*, param*, mode+, transition*)>
<!ATTLIST automaton name CDATA #REQUIRED

dynamic CDATA #REQUIRED>
<!ELEMENT var EMPTY>
<!ATTLIST var name CDATA #REQUIRED

defaultval CDATA #REQUIRED
parameter CDATA #REQUIRED>

<!ELEMENT mode (update?, invariant*)>
<!ATTLIST mode name CDATA #REQUIRED

initial CDATA #REQUIRED>
<!ELEMENT transition (source, target, guard*, weight, input?, output?, update?)>
<!ELEMENT source EMPTY>
<!ATTLIST source mode CDATA #REQUIRED>
<!ELEMENT target EMPTY>
<!ATTLIST target mode CDATA #REQUIRED>
<!ELEMENT update (#PCDATA)>
<!ELEMENT invariant (#PCDATA)>
<!ELEMENT guard (#PCDATA)>
<!ELEMENT weight (#PCDATA)>
<!ELEMENT input (#PCDATA)>
<!ELEMENT output (#PCDATA)>
<!ELEMENT instantiation (#PCDATA)>

A.2 Partial Barrel Environment Sour
e
This section lists the source code generated from the partial specification of the barrel envi-
ronment in section 5.3.1.A.2.1 The Barrel Environment Class
TheBarrelEnvironment class is defined as follows:

page 83

A.2 Partial Barrel Environment Source Source Code Listings

// package environment.generated;

import environment.*;

public class BarrelEnvironment extends AbstractEnvironment {

public BarrelEnvironment() {
super("BarrelEnvironment");
addEvent("EV_START", Event.INPUT);
addEvent("EV_STOP", Event.INPUT);
addEvent("EV_ERR", Event.OUTPUT);
addEvent("EV_OK", Event.OUTPUT);

addAutomata(new Barrel(50));
}

}A.2.2 The Barrel Class
TheBarrel class is defined as follows:

// package environment.generated;

import environment.*;

public class Barrel extends AbstractAutomata {

public double h = 0;

public Barrel(int h) {
super("Barrel", false);

/* instance initialization */
this.h = h;

/* adding modes */
addMode(new AbstractMode(this, "filling") {

public void update(AbstractAutomata me, int millis) {
((Barrel) me).height = ((Barrel) me).height + millis * 0.001;

}
}
, true);

((AbstractMode)modes.get("filling"))
.addInvariant(new AbstractEvaluation(this) {

public boolean evaluate(AbstractAutomata me) {
return ((Barrel) me).height <= 100;

}
}

);

addMode(new AbstractMode(this, "pumping") {

public void update(AbstractAutomata me, int millis) {
((Barrel) me).height = ((Barrel) me).height - millis * 0.005;

}
}
, false);

((AbstractMode)modes.get("pumping"))
.addInvariant(new AbstractEvaluation(this) {

page 84

Source Code Listings A.2 Partial Barrel Environment Source

public boolean evaluate(AbstractAutomata me) {
return ((Barrel) me).height > 9.9;

}
}

);

addMode(new AbstractMode(this, "overflow") {

public void update(AbstractAutomata me, int millis) {
}

}
, false);

((AbstractMode)modes.get("overflow"))
.addInvariant(new AbstractEvaluation(this) {

public boolean evaluate(AbstractAutomata me) {
return true;

}
}

);

/* adding transitions */
addTransition(new AbstractTransition("transition_0", ((AbstractMode)modes.get("filling"))

, ((AbstractMode)modes.get("pumping"))
) {

public void update() {
}

}
);

((AbstractTransition)transitions.get("transition_0"))
.addGuard(new AbstractEvaluation(this) {

public boolean evaluate(AbstractAutomata me) {
return ((Barrel) me).height >=90;

}
}

);

((AbstractTransition)transitions.get("transition_0"))
.setInputEvent(AbstractEnvironment.instance().getEventByLabel("EV_START"));

((AbstractTransition)transitions.get("transition_0"))
.setWeight(1);

addTransition(new AbstractTransition("transition_1", ((AbstractMode)modes.get("pumping"))
, ((AbstractMode)modes.get("filling"))

) {
public void update() {
}

}
);

((AbstractTransition)transitions.get("transition_1"))
.addGuard(new AbstractEvaluation(this) {

public boolean evaluate(AbstractAutomata me) {
return ((Barrel) me).height < 20;

}
}

);

page 85

A.3 The Bridge Environment Specification Source Code Listings

((AbstractTransition)transitions.get("transition_1"))
.setInputEvent(AbstractEnvironment.instance().getEventByLabel("EV_STOP"));

((AbstractTransition)transitions.get("transition_1"))
.setWeight(1);

addTransition(new AbstractTransition("transition_2", ((AbstractMode)modes.get("filling"))
, ((AbstractMode)modes.get("overflow"))

) {
public void update() {
}

}
);

((AbstractTransition)transitions.get("transition_2"))
.addGuard(new AbstractEvaluation(this) {

public boolean evaluate(AbstractAutomata me) {
return ((Barrel) me).height >= 99.9;

}
}

);

((AbstractTransition)transitions.get("transition_2"))
.setWeight(1);

}
}A.3 The Bridge Environment Spe
i�
ation
The specification of the bridge environment is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE environment SYSTEM "eha.dtd">
<environment name="BridgeEnvironment">

<event label="EV_BRIDGE_RAISE" type="INPUT"/>
<event label="EV_BRIDGE_LOWER" type="INPUT"/>
<event label="EV_TRAIN_CLEARED" type="INPUT"/>
<event label="EV_SHIP_DENY" type="INPUT"/>
<event label="EV_SHIP_GRANT" type="INPUT"/>
<event label="EV_SHIP_REQUEST" type="OUTPUT"/>
<event label="EV_SHIP_PASSED" type="OUTPUT"/>
<event label="EV_BRIDGE_OPEN" type="OUTPUT"/>
<event label="EV_BRIDGE_CLOSED" type="OUTPUT"/>
<event label="EV_BAR_RAISE" type="INPUT"/>
<event label="EV_BAR_LOWER" type="INPUT"/>
<event label="EV_RAIL_DETACH" type="INPUT"/>
<event label="EV_RAIL_ATTACH" type="INPUT"/>
<automaton name="Bridge" dynamic="false">

<var name="degree" defaultval="0" parameter="false"/>
<mode name="down" initial="true">

<invariant>true</invariant>
</mode>
<mode name="raising" initial="false">

<update>me.degree = me.degree + millis * 0.05;</update>
<invariant>me.degree <= 80</invariant>

</mode>
<mode name="up" initial="false">

<invariant>true</invariant>
</mode>
<mode name="lowering" initial="false">

<update>me.degree = me.degree - millis * 0.05;</update>

page 86

Source Code Listings A.3 The Bridge Environment Specification

<invariant>me.degree >= 0</invariant>
</mode>
<transition>

<source mode="down"/>
<target mode="raising"/>
<guard>true</guard>
<weight>1</weight>
<input>EV_BRIDGE_RAISE</input>

</transition>
<transition>

<source mode="raising"/>
<target mode="up"/>
<guard>me.degree >= 79 </guard>
<weight>1</weight>
<output>EV_BRIDGE_OPEN</output>

</transition>
<transition>

<source mode="up"/>
<target mode="lowering"/>
<guard>true</guard>
<weight>1</weight>
<input>EV_BRIDGE_LOWER</input>

</transition>
<transition>

<source mode="lowering"/>
<target mode="down"/>
<guard>me.degree >= 0 </guard>
<weight>1</weight>
<output>EV_BRIDGE_CLOSED</output>

</transition>
</automaton>
<automaton name="Train" dynamic="false">

<var name="distance" defaultval="10000" parameter="true"/>
<mode name="far" initial="true">

<update>me.distance = me.distance - millis * 0.2;</update>
<invariant>me.distance >= 8000</invariant>

</mode>
<mode name="approaching" initial="false">

<update>me.distance = me.distance - millis * 0.2;</update>
<invariant>me.distance >= 500</invariant>

</mode>
<mode name="stopped" initial="false">

<invariant>true</invariant>
</mode>
<mode name="cleared" initial="false">

<update>me.distance = me.distance - millis * 0.15;</update>
<invariant>me.distance >=-200</invariant>

</mode>
<mode name="passed" initial="false">

<update>me.distance = me.distance + millis * 0.2;</update>
<invariant>me.distance <=12000</invariant>

</mode>
<transition>

<source mode="far"/>
<target mode="approaching"/>
<guard>me.distance >= 7999</guard>
<weight>1</weight>

</transition>
<transition>

<source mode="approaching"/>
<target mode="stopped"/>
<guard>me.distance <= 501</guard>
<weight>1</weight>

</transition>

page 87

A.3 The Bridge Environment Specification Source Code Listings

<transition>
<source mode="approaching"/>
<target mode="cleared"/>
<guard>me.distance >= 1500</guard>
<weight>1</weight>
<input>EV_TRAIN_CLEARED</input>

</transition>
<transition>

<source mode="stopped"/>
<target mode="cleared"/>
<guard>true</guard>
<weight>1</weight>
<input>EV_TRAIN_CLEARED</input>

</transition>
<transition>

<source mode="cleared"/>
<target mode="passed"/>
<guard>me.distance <= -199</guard>
<weight>1</weight>

</transition>
<transition>

<source mode="passed"/>
<target mode="far"/>
<guard>me.distance >= 10000</guard>
<weight>1</weight>

</transition>
</automaton>
<automaton name="Ship" dynamic="false">

<var name="distance" defaultval="2000" parameter="true"/>
<mode name="far" initial="true">

<update>me.distance = me.distance - millis * 0.1;</update>
<invariant>me.distance >=999</invariant>

</mode>
<mode name="inrange" initial="false">

<update>me.distance = me.distance - millis * 0.04;</update>
<invariant>(me.distance >=250)</invariant>

</mode>
<mode name="granted" initial="false">

<update>me.distance = me.distance - millis * 0.04;</update>
<invariant>me.distance >=250</invariant>

</mode>
<mode name = "denied" initial="false">

<update>me.distance = me.distance - millis * 0.04;</update>
<invariant>me.distance >=250</invariant>

</mode>
<mode name="waiting" initial="false">

<invariant>true</invariant>
</mode>
<mode name="passing" initial="false">

<update>me.distance = me.distance - millis * 0.02;</update>
<invariant>me.distance >= -100</invariant>

</mode>
<mode name="passed" initial="false">

<update>me.distance = me.distance + millis * 0.5;</update>
<invariant>me.distance <=3000</invariant>

</mode>
<transition>

<source mode="far"/>
<target mode="inrange"/>
<guard>me.distance <=1000</guard>
<weight>1</weight>
<output>EV_SHIP_REQUEST</output>

</transition>
<transition>

page 88

Source Code Listings A.3 The Bridge Environment Specification

<source mode="inrange"/>
<target mode="granted"/>
<guard>true</guard>
<weight>1</weight>
<input>EV_SHIP_GRANT</input>

</transition>
<transition>

<source mode="inrange"/>
<target mode="denied"/>
<guard>true</guard>
<weight>1</weight>
<input>EV_SHIP_DENY</input>

</transition>
<transition>

<source mode="denied"/>
<target mode="waiting"/>
<guard>me.distance <= 251</guard>
<weight>1</weight>

</transition>
<transition>

<source mode="granted"/>
<target mode="passing"/>
<guard>me.distance <= 251</guard>
<weight>1</weight>

</transition>
<transition>

<source mode="waiting"/>
<target mode="passing"/>
<guard>true</guard>
<weight>1</weight>
<input>EV_SHIP_GRANT</input>

</transition>
<transition>

<source mode="passing"/>
<target mode="passed"/>
<guard>me.distance <= -99</guard>
<weight>1</weight>
<output>EV_SHIP_PASSED</output>

</transition>
<transition>

<source mode="passed"/>
<target mode="far"/>
<guard>me.distance >= 2000</guard>
<weight>1</weight>

</transition>
</automaton>
<automaton name="Barrier" dynamic="false">

<var name="degree" defaultval="0" parameter="false"/>
<mode name="up" initial="true">

<invariant>true</invariant>
</mode>
<mode name="lowering" initial="false">

<update>me.degree = me.degree + millis * 0.1;</update>
<invariant>me.degree <= 90</invariant>

</mode>
<mode name="down" initial="false">

<invariant>true</invariant>
</mode>
<mode name="raising" initial="false">

<update>me.degree = me.degree - millis * 0.1;</update>
<invariant>me.degree >= 0</invariant>

</mode>
<transition>

<source mode="up"/>

page 89

A.3 The Bridge Environment Specification Source Code Listings

<target mode="lowering"/>
<guard>true</guard>
<weight>1</weight>
<input>EV_BAR_LOWER</input>

</transition>
<transition>

<source mode="lowering"/>
<target mode="down"/>
<guard>me.degree >= 89 </guard>
<weight>1</weight>

</transition>
<transition>

<source mode="down"/>
<target mode="raising"/>
<guard>true</guard>
<weight>1</weight>
<input>EV_BAR_RAISE</input>

</transition>
<transition>

<source mode="raising"/>
<target mode="up"/>
<guard>me.degree <= 1 </guard>
<weight>1</weight>

</transition>
</automaton>
<automaton name="Rails" dynamic="false">

<var name="distance" defaultval="0" parameter="false"/>
<mode name="attached" initial="true">

<invariant>true</invariant>
</mode>
<mode name="detaching" initial="false">

<update>me.distance = me.distance + millis * 0.1;</update>
<invariant>me.distance <= 20</invariant>

</mode>
<mode name="detached" initial="false">

<invariant>true</invariant>
</mode>
<mode name="attaching" initial="false">

<update>me.distance = me.distance - millis * 0.1;</update>
<invariant>me.distance >= 0</invariant>

</mode>
<transition>

<source mode="attached"/>
<target mode="detaching"/>
<guard>true</guard>
<weight>1</weight>
<input>EV_RAIL_DETACH</input>

</transition>
<transition>

<source mode="detaching"/>
<target mode="detached"/>
<guard>me.distance >= 19.9 </guard>
<weight>1</weight>

</transition>
<transition>

<source mode="detached"/>
<target mode="attaching"/>
<guard>true</guard>
<weight>1</weight>
<input>EV_RAIL_ATTACH</input>

</transition>
<transition>

<source mode="attaching"/>
<target mode="attached"/>

page 90

Source Code Listings A.3 The Bridge Environment Specification

<guard>me.distance <= 0.1 </guard>
<weight>1</weight>

</transition>
</automaton>
<instantiation>Bridge()</instantiation>
<instantiation>Train(10000)</instantiation>
<instantiation>Ship(2000)</instantiation>
<instantiation>Barrier()</instantiation>
<instantiation>Rails()</instantiation>

</environment>

page 91

A.3 The Bridge Environment Specification Source Code Listings

page 92

Bibliography
[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical

Computer Science, 126(2):183–235, 1994.

[BW01] Alan Burns and Andy Wellings.Real-Time Systems and Programming Lan-
guages. Addison Wesley, 2001.

[CDH+00] James C. Corbett, Matthew B. Dwyer, John Hatcliff, ShawnLaubach, Co-
rina S. Pasareanu, Robby, and Hongjun Zheng. Bandera: extracting finite-state
models from java source code. InInternational Conference on Software Engi-
neering, pages 439–448, 2000.

[Chr02] Anders B. Christensen.The Inquisitor Framework – A Framework for Valida-
tion of Real-Time Systems. Aalborg University, Technical Report, 2002.

[CSL+87] D. Cornhill, L. Sha, L. Lehoczky, J. Rajkumar, and H. Tokuda. Limitations of
Ada real-time scheduling. Proceedings of the International Workshop on Real
Time Ada Issues, ACM Ada Letters, 1987.

[DH99] Matthew B. Dwyer and John Hatcliff. Slicing softwarefor model construction.
In Partial Evaluation and Semantic-Based Program Manipulation, pages 105–
118, 1999.

[DHJ+00] M. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. Pasareanu, R. Visser, and
H. Zheng. Tool-supported program abstraction for finite-state verification,
2000.

[dVT00] René G. de Vries and Jan Tretmans. On-the-fly conformance testing using
spin. Software Tools for Technology Transfer, 2(4):382–393, March 2000.

[HHWT97] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HYTECH: A
model checker for hybrid systems.International Journal on Software Tools
for Technology Transfer, 1(1-2):110–122, 1997.

[HL02] Martijn Hendriks and Kim G. Larsen. Exact acceleration of real-time model
checking. 2002.

[Hol97] Gerard J. Holzmann. The spin model checker.IEEE Trans. on Software Engi-
neering, 23(5):279–295, May 1997.

[Hol00] G. J. Holzmann. Software model checking. Marktoberdorf, Germany, 2000.

page 93

BIBLIOGRAPHY BIBLIOGRAPHY

[HP00] Klaus Havelund and Thomas Pressburger. Model checking java programs us-
ing java pathfinder.International Journal on Software Tools for Technology
Transfer, 2(4), April 2000.

[JCTG96] J. C. Fernandez, C. Jard, T. Jeron, and G. Viho. Using on-the-fly verification
techniques for the generation of test suites. In Rajeev Alurand Thomas A. Hen-
zinger, editors,Proceedings of the Eighth International Conference on Com-
puter Aided Verification CAV, volume 1102, pages 348–359, New Brunswick,
NJ, USA, / 1996. Springer Verlag.

[KKL +01] Moonjoo Kim, Sampath Kannan, Insup Lee, Oleg Sokolsky, and Mahesh
Viswanathan. Java-mac: a run-time assurance tool for java programs. In Klaus
Havelund and Grigore Rosu, editors,Electronic Notes in Theoretical Computer
Science, volume 55. Elsevier Science Publishers, 2001.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. Int.
Journal on Software Tools for Technology Transfer, 1(1–2):134–152, October
1997.

[RTJ02] The Real-Time Java Export Group RTJEG.The Real-Time Specification for
Java. Addison Wesley, 2002.

[Yov97] Sergio Yovine. Kronos: A verification tool for real-time systems.Journal of
Software Tools for Technology Transfer, 1(1–2), Oct 1997.

page 94

