Runtime Validation for Embedded
Real-Time Systems

A Validation Method for Real-Time Systems in Simulated Environments

Anders B. Christensen
abc@s. auc. dk

Master Thesis

Department of Computer Science
Aalborg University

January 17" 2003

page |I

Aalborg University ‘

Department of Computer Science

Title:
Runtime Validation for Embedded Real
Time Systems — A \(alidgtion Method.for With the increasing use of computer

ABSTRACT:

ments activities in our everyday surround-
ings, the correctness of these systems

Semester: becomes increasingly important. The

Fall 2002, Dat6 functionality of such control systems

often relies on tasks being performed @t

. . the correct time, not to soon and not to late.
Project Period:

September %2002 to In this report we investigate the con-
January 1% 2003 temporary practices for ensuring corregt
behaviour of suchreal-time systems
Author: We identify the quality and applicability
Anders B. Christensen measures of current practices as well as
their limitations. Based on the contem-
Supervisor: porary methods, we propose a method

Kim G. Larsen for validating embedded real-time systens.

The proposed method allows real-time
Number of Pages: systems to be validated in simulated
82 environments. The simulation performed

is based on formal descriptions (models)
Copies: of the environments. During simulatior]
3 the structure of the model is used by

exploration of the possible behaviour.

Keywords: o | Furthermore, validation is performed i
Real-Time Systems, Validation, Real-Time terms of the states of the environment.

Specification for Java, Runtime Verification,
Simulation, Embedded Systems A prototype of the proposed method has
been implemented. Based on this proto-
type we carry out a case study illustrating
the process of describing and formalising
the environment as well as validating pro-
grams controlling it.

a
guiding algorithm to achieve an interestir|g

r

n

page I

page IV

Preface

This report documents the Master ThesisArders B. Christensef®5-04-77-2187), writ-
ten under the research unit Bfistributed Systems and Semantatsthe Department of
Computer Sciencat Aalborg University. The project is concerned with theidation of
real-time systems and proposes a validation method for systiems.

The author would like to thank Professd¢im Guldstrand Larseffor his enthusiastic and in-
spiring supervision throughout the project. Furthermdne,author wishes to thank Doctor
Klaus Havelunqwho holds a research positionkastrel TechnologyNASA Ames Research
Center Moffet Field Air Base, Californig and his colleagues for their aid in obtaining an
overview of current practices within model checking andtimee verification.

Anders B Christensen

page V

page VI

Contents

1

Introduction
1.1 Real-Time Systems and their Environments

1.2 \Validation Conditions
1.3 \Validation Goalsand Measures
1.4 CurrentPractices
141 ModelChecking
1.4.2 Runtime Verification
143 Model-BasedTesting
1.4.4 Limitations in Current Practices
1.5 Proposed Validation Method
1.5.1 Quality and Applicability Considerations
1.6 Project Definition
1.6.1 ProjectScope
1.6.2 OutlineoftheReport

Real-Time Systems

2.1 Definition
2.2 AnExample —The Brick Sorter
2.3 Characteristics o
231 Clocks
2.3.2 ExpressingTime
2.3.3 Temporal ScopeofaProcess
2.3.4 Periodic and Aperiodic Processes
2.4 Scheduling Real-Time Systems
2.4.1 SchedulingModel
2.4.2 Overview of Scheduling Policies

2.4.3 Priority-based Preemptive Scheduling

2.5 ErrorCategorisation.

page VII

CONTENTS CONTENTS
3 The Inquisitor Framework 33
3.1 Real-TimeFeatures 3 3
3.2 \Validation Support 43
3.3 Example 35
4 Analysis 37
4.1 Behaviourand Interaction. e 37
4.1.1 Environment Behaviour 37
4.1.2 Control Program Interaction 38
413 Example 38
4.2 Formal Specification of Environments 39
421 Formalisms 39
4.2.2 Preliminary Simulation Considerations 43
4.2.3 Modifications of Hybrid Automata for Simulation. 44
4.3 Simulation. 46
4.3.1 TheUpdate Procedure 48
4.4 Exploration Strategies 49
4.5 \Validation 50
5 Design 51
5.1 Overview of the validation process u.u.. 51
5.2 Component Architecture 52
5.2.1 Component Responsibilities 52
5.2.2 Component Interaction during Simulation 54
5.3 The Environment Component. 55
5.3.1 Model Specification 55
532 CodeGeneration 57
5.3.3 Simulation and Validation Support 59
5.4 The Exploration Component 59
55 MValidation 61
5.6 Implementation Status 62

page VIII

CONTENTS CONTENTS

6 Case Study 63
6.1 TheBridgeoverOddesund 3 6
6.2 OperationoftheBridge 64

6.2.1 IncomingTrains e 64
6.2.2 IncomingShips 65
6.2.3 OpeningtheBridge 65
6.3 Modelling the Environment 65
6.3.1 The Bridge Hybrid Automaton 66
6.3.2 The Barrier Hybrid Automaton 66
6.3.3 The Train Hybrid Automaton 67
6.3.4 The Ship Hybrid Automaton 68
6.4 TheControl Program e 69
6.4.1 Design 69
6.4.2 Implementation 71
6.4.3 Control Program Mutations 74
6.5 Validation 75
6.5.1 ExecutionandResults 75
6.6 ConclusionsontheCaseStudy 76

7 Conclusion 79
7.1 Future Work 80

A Source Code Listings 83
A.1 Document Type Definition 38
A.2 Partial Barrel Environment Source 83

A.2.1 The Barrel EnvironmentClass 38
A.222 TheBarrelClass 84
A.3 The Bridge Environment Specification 86

page IX

CONTENTS CONTENTS

page X

IntrOdUCtlon CHAPTER1

Today, computer systems are heavily used in fields requoorgrol of one or more pro-
cesses. In a typical scenario sumntrol programscontinuously observe the entities in its
surroundings and generate appropriate reactions. Cangidleexample, a simple system
controlling the temperature of a cooling facility. By reagdia sensor value, the system may
monitor the current temperature. When a reading shows lieaieimperature has exceeded
five degrees Celsius, an appropriate reaction may be tolswitca cooling device. If the
temperature was to ever rise above eight degrees Celsidaram@ould be switched on.

Often control systems can be classifiedtasical, that is, erroneous behaviour of the control
logic used may result in disastrous situations, e.g. the ddfiuman life. Naturally, ensur-
ing that such errors do not occur is an important disciplif@wever, it also represents a
complicated and tedious task — more often than not accapfina significant amount of
the total effort spent in a project.

An important class of control systems is thatredl-time systemsSystems in this class are
characterised by the fact that their overall correctnepgdés not only on the correctness of
results produced, but also on tberrect timingof these results. For example, in the cooling
facility example given above, it may be imperative that tbeling device is switched on
within some known interval of time, in order to attain a lowdiuation in the temperature
level. Thus, even though the cooler device is eventuallyched on, the system is con-
sidered to function correctly only if the cooler was indegdtshed on within the required
interval of time.

In this project we continue the work presented in [ChrO2]eveha framework for validation
of real-time systems was introduced. In this framework, @edtimelnquisitor Frameworkit

is possible to execute a real-time system in parallel witlmaukation of the environment in
which it resides. For example, with the example presentedelihe control system would
interact with a set of processes representing the envirahn@ne process would represent
the cooling device which can be turned on and off. A secondgs® could represent the
current temperature of the cooling facility — increasingl @ecreasing over time depending
on the behaviour of the control systems and an assumptiont dbe temperature of the
surroundings.

For the validation purpose, a third set of processes knowim@ssitors is introduced.
These processes have the responsibilitynohitoringthe execution of the control system.
The behaviour of the control system is thelreckedor accordance with properties defined
by a person performing the test. For example, in the coolawiify example, one such
property is that the temperature of the system never risegeadight degrees Celsius. Fur-
thermore, the inquisition processes may be useplitdethe behaviour of certain aspects of
the environment. We shall elaborate on this functionalita iater chapter.

page 1

1.1 Real-Time Systems and their Environments Introduction

As described above, a set of environment simulation preseasd a set of inquisition pro-
cesses is required in order to perform validation in the isitpr Framework. The applica-

tion logic of these processes must be supplied by the teamopie testing a control system.
It is desirable to minimise the overhead imposed by havinghf@ement environment and
inquisition processes in order to lower the required effortesting. It is equally important

to obtain a systematic approach for validation in order tsue@ a thorough testing of the
control system.

The work presented in this report aims at achieving thesésgéar this purpose we intro-
duce concepts used in formal validation methods and adept fbr use in this practical
setting. Specifically we use the formalism of automata theorrepresent the behaviour
of the environment. The processes needed to simulate th®ement are generated from
these models, and the inquisition processes use the s&uotguide the behaviour of the
environment.

In this chapter we shall first describe how control systenteract with their surroundings.
We then elaborate on the conditions for validating reaktisystems and define the goals
and quality measures for validation. This is followed by atmaduction to three contem-
porary validation methodsnodel checkingruntime validation and model-based testing
We analyse their strengths and weaknesses according to#ie and measures defined.
We also discuss how the interaction with the surroundingrenmnent is accomplished in
the three methods. Towards the end of the chapter, we prapeakdation method based
on runtime validation, and state the goals and scope of tloeg. Finally, we give an
overview of the remainder of the report.

1.1 Real-Time Systems and their Environments

As earlier mentioned, real-time systems are often used mdralosome process in their

physical surrounding. A system is typically designed totoara specific environment — in

fact, it is common for real-time systems to embeddedvithin some physical entity. For

example, in a microwave oven, an embedded control progranbeaised to react to events
in the surroundings — such as the push of a button.

In suchembedded systerrtkie control program is executed on a hardware platform kwvhic
we shall refer to as aembedded devicd hese typically consist of a processor, some mem-
ory, and a number of communication ports. Many embedde@sysare consumer products
(microwave ovens, television sets, etc.), which ship igdaquantities. Considerable cost
reductions can therefore be achieved by using embeddededewiith minimum process-
ing and memory resources. As a consequence, the bindingeafdhtrol program to its
environment is further tightened by the use of custom hardwanfigurations.

In order to interact with the entities of the environment, aersion from the physical
representation to a data-oriented representation is negjuiFor example, in the cooling
facility example, it is necessary to convert the tempegatirthe surroundings to a numeric
value in order to monitor the temperature. Similarly, whea tontrol program needs to
start the cooler, a numeric value (®ignal) must be converted to a switch in a relay. Figure
1.1 illustrates the setting of the cooling facility contpsbgram.

page 2

Introduction 1.2 Validation Conditions

Thermometer Cooling Facility
Sensor
Embedded
Actuator Device
Coolor Door

Figure 1.1: The cooling facility example. The control program executing on the embed-
ded device is interacting with a thermometer and a cooler through sensors and actuators,
respectively.

The conversions mentioned above are carried out by elattaicd mechanical devices,
known assensorsandactuators The relationship between the embedded device, its sensor
and actuators, and the physical environment is illustratefigure 1.2. The sensors and
actuators are connected to the communication ports of theedded device. By reading
the values of the input ports, the control program obtairskaedge about the current state

of its environment, and by sending signals to the outputspibrffects the future state of
the environment.

Sensor

Embedded
device

Physical
Environment

Actuator

T

Figure 1.2:Embedded systems interact with their environments through sensor and actuator
devices.

1.2 Validation Conditions

In this section we elaborate on the conditions under whickeld@ment and validation
of real-time systems are performed. Some of these motivliedmplementation of the

page 3

1.2 Validation Conditions Introduction

Inquisitor Framework — others are dealt with by the validatmethod proposed later in this
chapter.

o High reliability and robustness demandsSince real-time systems are often used
for controlling some task or process in its surrounding, rel@bility and robustness
demands imposed on such systems are high. For example, tsequeences of a
break-down in a control program at a nuclear facility cowddult in grave human and
economic losses.

Another characteristic or real-time systems is that theyaten part ofembedded
devices used in everyday appliances such as cars, micresvaves, and washing
machines. Such devices are often produced in large quemtigading to significant
costs if an entire product line must be retracted due to am;err

o Platform dependence With current practices, applications are often tightlyibd
to the underlying hardware platform. That is, specialisgdcfionality provided by
the platform are used at a low level of abstraction. As a ogmsece, switching the
hardware on which applications run may require significdiotrefor redesigning and
porting.

This dependence on a given hardware platform makes devslepkaerable to change
in hardware specifications and to the discontinuation oflpeb lines. Furthermore,
reuse of code from component libraries is complicated. lditaeh to the extended

effort needed to recode functionality, quality of the sa@ftes produced may also suf-
fer due to programmers becoming sluggish because of a lackedfectual interest

in rewriting code.

Hence, an abstraction from hardware is desirable from atygued well as an eco-
nomic view. One way to introduce such an abstraction is byus$e of avirtual
machine- which executes so-calldnyte-code This byte-code may then be executed
on every platform for which an appropriate virtual machinets.

An attempt to achieve this for real-time systems is made byiritroduction of the

Real-Time Java Specification. The Inquisitor Frameworkasda on this specifica-
tion and thereby serves as a validation tool for program#evriin compliance with

it;

o Well-defined environments Due to the high reliability and robustness demands, a
considerable amount of effort is often spent defining therenments in which they
reside. Having a good understanding of the behaviour of tiké@ment is vital to
produce control programs that respond correctly to giveragibns. These represen-
tations of the environment can be formalised and be usedeivdlidation process.
As we shall later describe, this is utilised in the case of ehatiecking (see section
1.4.1).

o Difficult testing conditions- In some cases, testing software in the environment in
which it is to be deployed is not possible. For example, faydasystems, interacting
with a lot of physical components, it may be too expensiveaeehan installation at

page 4

Introduction 1.3 Validation Goals and Measures

the development site. Thus, integration tests cannot Herpeed until the end of the
development process — which may lead to a late discoveryrofser

o Analysis of real-time requirementsFor real-time systems, an important activity is
that of estimating thevorst-case execution tingd processes. These calculations are
used in an analysis showing whether or not the real-timeirepents of the system
can be met on a given platform.

Estimating worst-case execution times is a complex andhdiilee consuming pro-
cess. One way of obtaining a measure of the worst-case éxetinte is by executing

the application and measuring the time a task actually tdhes/ever, when there are
several threads in the application — and these threads aiedependentthat is, they

share some resource, such measuring can become very cataglicFor example,
if two processes both require exclusive access to somedheseurce, the worst-
case execution of one thread should not include the timet sysgting for access to a
resource held by another thread.

Another approach is to analyse the system using knowledget éitre execution plat-
form. This, however, is complicated by the complex designsiadern processors,
due to the heavy usage of pipelines, caches etc. Also, ifgdsato the requirement
specification are common, so will the need to recalculatestacaise execution times
be;

o Complicated debugging of real-time systeaid/hen an error is found during devel-
opment or testing of a real-time system, finding the causkeétror is complicated
by the existence of timing requirements. For example, thigigcof “step-through
debugging”often cannot be used as this drastically changes the tinfitigesystem.

Some of these problems, notably the issue of platform-dégrere are dealt with by the In-
quisitor Framework. Since most of the issues are directbtee to validation, we now turn
to an investigation of the goals and measures of validafidrs includes an investigation
of the quality of software validation processes and sonmevagit practices currently in use.

1.3 Validation Goals and Measures

The goal of all validation is a very concrete one: To find as ynamors as possible in a
given program. In a traditional scenario, testing is caro@it by definingtest casesand
writing test driversthat execute a program (or part of it) with some input and résoutput
for analysis. Certainly, such test cases should ensurght@girogram is thoroughly tested.
In other words, the quality of the test is only as good as igjtinity of the test cases. For
validation methods in general, we shall define the followtimge measures for the quality
of a particular method:

o Coverage- As argued above, some measure for how thoroughly a prograhecked
is desirable. To this end we introduce the conceptaferage- denoting how large
a part of the program behaviour has been subject to validatdne unit in which

page 5

1.3 Validation Goals and Measures Introduction

coverage can be measured is executed lines of code. Ifvaftdation, 80 percent of
the total amount of lines of code have been examined, by &@rgcthat line at least
once, we shall say that the coverage is 80 percent.

A simple measure such as code-line coverage is often insuffitor calculating the
coverage of program behaviour. Consider, for example, atiom taking an integer
parameter that is required to be in an interval between O antd this function is
called with the parameter value 1 it may be the case that d# tnes of that function
are covered and that the test is successful. This is, howerweguarantee that the
function does in fact not fail on input value 4. In such caseste abstract measures
of coverage, often based on progratate are necessary. We investigate the coverage
measures of some relevant current validation practicesdticn 1.4,

o Types of errors that can be discoveredoftware errors take many forms. Some are
rather abstract like the usability of a system or its confance to a requirement spec-
ification. Other errors are closer tied to the code producéat example deadlocks,
race conditions, and various memory related errors. Eirotise latter category typ-
ically manifest themselves as system malfunctions or eveakbdowns. As will be
described in section 1.4, different approaches operataffameiht abstraction levels
of a system and therefore are able to reveal different typesrors;

o False negatives and positivesSay that a program is checked for a supported type of
error using some validation approach. Expected behavibtiveoprocess would be
to report an error if and only if one was present. Howeveridation methods may
sometimes falsely conclude that an error is present, evamgththis is not the case,
or conversely, fail to detect an error that is indeed pres&# shall refer to these
undesirable phenomena fadse positiveandfalse negativesespectively.

False positives may lead to developers fixing errors thatiaréact, not present —
inducing an overhead on validation effort. False negatasesan indication of in-

sufficiencies of the validation approach. Thus, if a giveprapch is prone to false
negatives it cannot, in general, be concluded that the progtoes not contain an
error even though no evidence was found that it does.

Though a validation approach produces high quality redtltsay still not be veryap-
plicable in real-world validation practices. The applicability adlidation approaches are
characterised by the following properties:

o Automation— An ideal validation method is one of total automation —rigka rep-
resentation of program as input and reporting errors fousidatput without the
involvement of manual decision making or labour. At the otaed of the scale,
validation approaches without the aid of tools depend galel manual labour and
therefore require large amounts of effort for complex systdn addition, manual
validation approaches are inherently more prone to erfarsonclusion, a high level
of automation is desirable — a very low one may easily rendexpgroach useless;

o Scalability— In order to meet the large and complex systems encountertbe soft-
ware industry, a validation method needs to scale well;

page 6

Introduction 1.4 Current Practices

o Level of abstraction- Validation methods differ in the level of abstraction atieth
they operate on application logic. For example, the traddl testing approach de-
scribed earlier operates directly on compiled applicatiby executing it using test
data. Other methods, including static analysis, operathersource code without
actually executing it, while yet others operate on higleleabstractions such asod-
els Depending on the level of abstraction, validation appneacmay be applied
at different stages in the development process. Natur@dlyhe level of abstraction
increases, the types of errors that can be found change frpieimentation errors,
such as memory and null-pointer references, towards géHspecification errors
related to the design of the system.

1.4 Current Practices

Having identified validation of real-time systems as an ingat and complicated task,
we now turn our attention to a review of some current vala@afpractices. An overview of
some current practices is given in figure 1.3. Testing apgres.such as unit and integration
testing are commonly used in validating real-life realdisystems. These approaches tend
to be rather informal in nature. At the other end of the scfdemal verification methods
(notably model checking, which shall be further describetér) have proven successful —
as tools such as Spin ([Hol97]) and Uppaal ([LPY97]) suggest

{ .] [runtime] [model-based] { I]
testing . . verification
verification testing
v ! v |
. inte- static model theorem
unit) . . .
gration checking checking proving

Figure 1.3:Validation approaches for real-time systems

Between the formal and the informal methods, some hybritisd®n the two extremes ex-
ist. Runtime verification is based on a single executing afogam and validates that this
trace has certain properties. Model based testing spesification model&r describing
allowed input/output behaviours of a system. Using the ifipation model, an imple-
mentation is then tested faonformanceby feeding it allowed input and checking output
produced for validity according to the specification model.

page 7

1.4 Current Practices Introduction

In this section, we shall introduce the validation methotdshodel checking, runtime ver-
ification, and model-based testing. These methods ared=yesi relevant to our proposed
validation method, described in section 1.5. For each ambrove give a short description
of a typical validation process and investigate the qualitg applicability characteristics
stated in the previous section. An overview is given in table, which also serves as
grounds for a description of the limitations in current firees given in section 1.4.4.

1.4.1 Model Checking

The model checking process can be divided into two parts: shgdepart where anodelof

the system is created and a validation part where the modikiskedeither bysimulation
or verification For the construction of the model the software designezatify abstract
statesin the system anttansitionsbetween them.

Figure 1.4:A single process in Fischer’s protocol for mutual exclusion.

For real-time systems, a popular notion is thatiohied Automatéintroduced in [AD94]), in
which clockscan be defined and clock values may be used as restrictiomar@itions and
states. As an example, we consider Fischer’s protocol fduatexclusion. Each process
in the protocol is an instance of the Timed Automaton degiatefigure 1.4, and includes
a private clockg; (initialised to zero) and access to the shared integer bartavhich acts
as a token. Each process must leave stateefore ten time units — thereby updating the
value of the token. Upon entering staeprocess resets its clock to zero and remains in
states, until at least ten time units have progressed — ensuringratigsses have entered
$. Finally, having ensured that the token will no longer beatpd, the process identified
by the token will enters, obtaining exclusive access to some resource.

(model S (model checker

l simulation verification

|

Figure 1.5:The model checking process

page 8

| Model Checking \

Runtime Verification \

Model-based Testing |

o

Abstraction Exploration of high-level models of Based on the monitoring of a sing|eExploration of an implementation
applications in terms o$tatesand | run of modified application code. | based on a specification mod
transitions There is a so-callede- (transition system) defining allowe
mantic gapbetween the model angd input and output behaviour.
its implementation.

Coverage Based on abstract program statgCoverage is measured in the perMeasured in terms of code lines
full state spacexploration ensures centage of lines of code and maywell as specification model state.
complete coverage. vary significantly.

Error Types Based on validation of properties.Based on verification of properties.No properties except the specific

Due to the high abstraction level th
error types supported are desig
level errors including violation of
SafetyandLivenesgroperties.

nelations during execution. Som

be checked implicitly.

eThe program is monitored for vir tion model need be supplied. D

properties such as deadlock, dataalgorithms produce erroneous r
races, and runtime exceptions casults and runtime errors.

etectable errors include errors where

False Pos/Neg

Since models are over-abstraction
false negatives can occur.

sSubject to false positives as well
negatives.

asSubject to false positives (like tes
ing).

Automation

The modelling process is (mo
commonly) manual — however of
ten this model can be used for &
tomatic generation of control logig
Properties must be manually state

5tThe modification of source cod
-and monitoring of the executio
uis performed automatically. Som
. properties must be explicitly state
dwhile others are checked implicitly

eThe model must be provided man
nally. Testing is then performed al
etomatically and may easily be re
dpeated on different or altered impl¢
. mentations

Scalability

Subject tostate space explosiam-
posing limitations to the size o
models checked.

Good scalability.
f

Good scalability

6 abed

Table 1.1:The quality and applicability properties of the validation approaches considered.

uonanpoU|

AS

S9dl10eid uaund #'1

1.4 Current Practices Introduction

Validation

For the model checking part, tools such as Uppaal ([LPY9iit) Kronos ([Yov97]) are
often used. Validation is performed by simulation and vesition (illustrated in figure 1.5).
In the simulation process, the behaviour of the system maghserved by interactively
choosing the next state to enter when several possibiktiest. This activity is useful for
design and debugging purposes.

An automated validation approach is thatstte explorationoffered by the verification
process. During this process, the system is examined asd@&dided whether some given
property holds or not. If not, macedescribing the error is provided. In the case of Fischer’s
protocol, properties may include that at most one proceBsstates; at a time and that a
process will eventually obtain exclusive access. Thespgrties are instances of two cate-
gories of properties known amafetyandliveness respectively. Often informally explained
as“something bad never happenghd“‘something good eventually happensuch proper-
ties constitute prototypicalesign-levekrrors that can be discovered using model checking.

When a model checker performs a state exploration, eadh estaountered is checked for
the property. If the property does not hold, an error tracgiven. Otherwise, the state is
stored — representing the fact that the given state is knovgatisfy the property. Hereby,

coverage, measured in states, is complete and false paséivd negatives do not occur —
presuming a correct model of the real-time system.

However, since time is continuous, te&te spacéecomes infinite. This is clearly unde-
sirable and techniques such@anbolic model checkingre applied in order to restrict the
space consumed. Still, model checking is subject to theqgrhenon ofstate space explo-

sion, where the model checker runs out of memory due to a large anhujistored states.

This imposes a low scalability on the model checking tealiq

Quality and Applicability

The fact that model checking is performed on a model ratter tim the actual system limits
the properties that may be checked to the design-level piepeThis distance between the
model and the actual system is often referred to ssmantic gapDue to this gap it cannot
be verified that anmplementatiorof the system is correct — even though the model has
been shown to be. Consequently, the high abstraction |éweloolel checking imposes
limitations on the types of errors that can be found.

The manual parts of model checking includes model consbryctlefining properties to be
verified, and interaction during simulation. The most digaint of these tasks is construct-
ing a model of the system to validate. However, this task neagden as part of the design
process and therefore serves purposes exceeding vatidz#tibe system. For example, it
is common practice to generate control logic for appligagiérom models within the field
of embedded systems engineering.

Finally, it should be mentioned that recent work has beemgoted which narrows in the
gap between models and actual code by generating modelstfi®source code of pro-
grams. This work is most notably represented by the Bandeizkit ((CDH*00], [DH99],

and [DHJ 00]), which contains a front-end for generating models fréewa code and a

page 10

Introduction 1.4 Current Practices

back-end for interfacing with model checkers such as Spiold7]) and Java Pathfinder
([HPOO]). Generating Promela models of software writterCia+ (for verification with
Spin) is supported by the FeaVer tool ([Hol00]). At the timewsiting, none of these
approaches incorporate timing requirements.

Representation of the Environment

When validating real-time systems using contemporary rhcitiecking tools, the environ-
ment is represented by models similar to those represetiiagontrol logic. Communica-
tion between these entities can be obtained in two ways:

o Shared variableslt is possible to declare global variables whose values earead
and reassigned from the environment as well as the congal lmodels;

o Synchronisation channel$n model checking tools, such as Uppaal, it is possible to
declare channels on which synchronisation can be perfarriibd synchronisation
process is illustrated in figure 1.6. During validation, tmodels can synchronise if
both of the following hold:

+ The current state of one model allows a transition to bertakeich can emit an
outputon a given synchronisation channel;

+ The current state of the other model allows a transitioneddiken which can
accept annput on the same synchronisation channel.

channel! channel?

Figure 1.6:Two models synchronising during validation

In formalisms which contain the notion of time, the synchsation action occurs at
the same instant in both automata. Specifically, this is &se ¢or Timed Automata.

1.4.2 Runtime Verification

Whereas model checking operates on abstract models ofsystmtime validation re-
cently by [HP0O] and [KKLF01], is performed directly on the program by executing it and
observing whether or not the program behaves as expectexntdén to perform this moni-
toring, programs are modified to emit output describingaiarevents. The result ofrain

of the program is therefore a finiteace of events emitted by the program during execution.
The expected behaviour is given by one or more propertiasitasystem is considered to
be well-behaved if a trace satisfies a given property.

page 11

1.4 Current Practices Introduction

program l events H property '

observation

Figure 1.7:The runtime verification process

Validation

The process of runtime verification is illustrated in figur@.1The properties that are to be
validated are stated formally be the person carrying outdke Typically, these properties
are inspired by the informal properties stated in the rexqugnt specification of the control
program. The properties must define high-level validatioles from low-level program-
ming events.

In the MaC tool ([KKL"01]), the specification language is divided into to partse Phmi-
tive Event Definition Languag€EDL) and theéVieta Event Definition Languag®EDL).
PEDL expressions define primitive events (such as a vargdstaration, a variable assign-
ment, or the entering of a method) and primitive conditiormsf these (such as eveat
holds until evenb). In MEDL specifications, higher level events and condsiamne created
from those imported from a PEDL specification. Furthermdmne,properties that must hold
for the system are stated in terms of these events and comsliti

Next, the set of events that must be monitored has to be déd@feen, the events that must
be monitored can be deduced from the properties. In the MalQ[iéKL *01]), the event
set is given by the primitive events defined in the PEDL scrpiven the event set, small
pieces of code emitting output describing the events ane itgerted into the program to
be tested. This modified (émstrumentedl program is then executed and a monitoring unit
observes whether or not it satisfies the properties defined.

Quality and Applicability

The error types supported by runtime verification range fromtime errors, such as pro-
gram exceptions, to the validation of properties, typicajpecified in some temporal logic.
Common properties include the existence or nonexistenserok event in a trace and that
one event is followed by another at some time in the futuretelorthy, some properties
such as deadlocks and data-races in multi-threaded pregraay be discovered without the
need to explicitly specify a property. This is accomplishdobserving the sequences of
acquirings and releases of semaphores by different thréfatgs threads acquire exclusive

page 12

Introduction 1.4 Current Practices

access to two shared resources without obeying to someimgdénere is a possibility of
deadlock — even though it may not occur in the run.

The coverage of a run is measured in the percentage of coee-¢ixecuted and may vary
significantly between runs. In general, the coverage e&peed is low since validation is
based only on a single run and the program isguitledto ensure coverage of abstract sys-
tem state. As a consequence, false positives are commoit,camiever be concluded that
a program is correct with respect to some property on growfids error-free trace. The
validation method is also prone to false negatives. Theignmhecking of concurrency-
related errors may identify, for example, a possibility edlock (without actually observ-
ing one) — but no current practices are able to prove whetheotthey can in fact occur in
a given program (unless actually observed).

The only manually performed task is stating properties talhecked, since altering the
program representation can usually be performed autoaligtccording to the property to
check. This implies that runtime verification has a high éegsf automation. Furthermore,
since it is based on a single run of the program, it scaleswetito large systems.

An issue of practical nature is related to runtime verifigatof real-time systems. The in-
serted code emitting events from a program consumes piogetisie — as well as does
the observation process (including the maintenance ofnméition about processes timing
requirements). Of course, while these tasks are executed,grogresses, which may in-
fluence whether or not a process meets it timing requiremextommon solution to this
problem is to ensure that the time spent for these activatiesegligible with respect to the
execution of the program under test.

Representation of the Environment

The tools for runtime validation that we have encounterédegend on the program being
executed in its actual environment. That is, if a progranpoesls to the press of some
button, a user is required to physically push that buttomil@rly, if a program generates
some output to a physical device, the physical device mugtdsent in order to receive the
signal, thereby altering the state of the surrounding.

1.4.3 Model-Based Testing

Like runtime verificationmodel-based testingperates directly on the system by executing
actual application code. However, as depicted in figureihsfigad of observing whether
or not a given property is satisfied on a single run, in modealdd testing a number of
test, making up dest suite are generated from a specification. The overall aim is then t
test whether the implementation under test conforms to ithengspecification, that is, the
implementation is correct with respect to that specificatio

Validation

The specification is given as amput/output modet differing from the models previously
discussed in that a transition may either emit an output toexpect some input from — an
external entity. The tests generated contain sequencepuifto be given to an implemen-
tation, and a number of allowed outputs. In order to passatteal output, observed when

page 13

1.4 Current Practices Introduction

specification test generation

g2 test suite

implementation -
execution

Figure 1.8:The process of model-based testing

executing a test, must be a subset of the allowed outputshdfarore, the test must emit
no outputonly if no allowed output exists in the specification (referrecagguiescence

If all tests pass, it may be concluded that the implementatanforms to the specification,
under the following two conditions: First, the test exeontimust besound that is, no
correct implementation will ever fail a test. Second, tgtmust beexhaustive that is,
every incorrect implementation will fail at least one testhe test suite. The latter objective
is, of course, not obtainable in the general case.

Tests are generated from the specification model. In TorXT[aD]), tests are generated
without input from the user. When in a given state, one of tiking three options are
chosen at random:

o Offer input. The implementation is given an input. This can always be dinee
models (and thus implementations) are expected {ofng-enabled- that is, always
accepts all input;

o Expect outputThe observation unit awaits an output from the implemeoteti

o End testEnd a test case.

Quality and Applicability

The coverage of model-based testing can be measured intheage of the model as well
as in the percentage of the total amount of code lines exeécilitee coverage obtained relies
heavily on the algorithm used for generating tests from gijgations — a process whose
description lies beyond the scope of this introduction. dgiono measurements of coverage
in current tools have been found, complete coverage is éxgeo equal exhaustiveness —
and therefore be unobtainable. However, the coverage isctg to be better than that
of runtime verification since each test in the test suite mayéen as a trace in runtime
verification. As a consequence scalability is assumed to dwsenvthan that of runtime
verification.

page 14

Introduction 1.4 Current Practices

Concerning the types of errors that can be detected, rurgimues as well as miscalcula-
tions by algorithms (in form of output) may be discovered.eTTemaining characteristics
are comparable to that of model checking: A model must be mdnoonstructed — but
once this is accomplished it may be used for automatic gstfrseveral different imple-
mentations. Also, the false negatives and positives espeed relies on the specification
and the coverage obtained.

Tools for performing model-based testing (such as TGV ([3G6]) and TorX ([dVTO00]))
often perform the generation of test suits-the-fly That is, the tools interact with the
implementations under test during execution, feeding theth input and observing the
output produced. If the output is allowed, a new input may igergto system. Of course,
such on-the-fly techniques have the same problems dealthgedl-time requirements as
do runtime verification.

Representation of the Environment

No explicit model specifying the behaviour of the enviromné used for model-based
testing. Instead, the algorithm for generating test cases the specification of the control
program to decide the inputs and outputs to offer and expBce to the assumption of
input-enablednes, the test case algorithm can offer anyt itgpthe implementation under
test in any state.

By this approach, no assumptions about the behaviour oftfisbement is made. Thus, the
control program can by subjected to all possible behaviotias environment. Itis assumed
that the control program reacts only to certain inputs, Hgri®se in the specification. If,
during testing, it reacts to other inputs than those allolgdhe specification, the test is
concluded to have failed.

1.4.4 Limitations in Current Practices

Comparing the current practices described above, it ig ¢hed a major difference lies in
the trade-off between coverage and scalability. The higlrattion level and complete state
space exploration of model checking allows for full coverag the cost of scalability. At
the other end, runtime verification operates only on a singheof the application, yielding
good scalability and low coverage. Model-based testingahaetter coverage than runtime
verification, but lower coverage than model checking. Atbe, coverage may be defined
in both the amount of code executed and the part of the spadiicmodel explored. We
identify the lack of good coverage combined with good sdtglas a limitation in current
approaches.

A second limitation we shall emphasise is the applicabiitythe validation approaches
to real-time systems. While model checking tools exist ferifying properties of models

real-time systems a large class of errors, namely thos¢éetela the actual execution of
application code on a given platform, is not supported. Eai-time systems this includes
performancerelated errors — that is, errors where some timing requirgnaannot be met

on a given platform due to performance problems.

In runtime validation and model-based testing such peréowe related errorsan be de-
tected — but the time consumed observing whether propatiesatisfied or not must be

page 15

1.5 Proposed Validation Method Introduction

shown not to interfere with processes meeting their timiaguirements. In conclusion,
significant limitations exist in the applicability of currevalidation approaches to real-time
systems.

Of the three current practices, only model checking incoafes an explicit specification of
the environment. Current runtime based approaches ashahéhe program is executed
in its actual environment. Since the behaviour of a phystogironment is hard to control,

assuring that the control program is subjected to a variétgifeerent behaviours in the

environment is difficult.

Model-based testing makes implicit assumptions about éiaiour of the environment
based on the specification of the control program. This, keweloes not allow impossible
behaviours to be disregarded. Therefore, the control progs likely to be subjected to
tests of environment behaviour that can never actually ogsithough it is important that
the control program react only to the desired inputs, tgsiirfor environment behaviour
that is known never to occur constitutes an overhead in stetgprocess.

1.5 Proposed Validation Method

In this report, we propose a validation method that is prilpéased on run-time validation.
However, instead of interacting with a physical environiéme control program interacts
with an environment simulatofsee figure 1.9). This simulation is based on a model of
the environment behaviour, comparable to the automataibagg environment interaction
used when model checking real-time systems. As earliedn@mbedded systems often
operate in well-defined and well-described environmentsus] obtaining a formal model
of the environment behaviour can be accomplished by fosimgithe informal environment
descriptions.

(" environment simulator)

check stimulate control
H -+
requirements program
actuate

Figure 1.9:An illustration of the proposed validation method

In current run-time validation techniques, the requiretadnor the behaviour of a control
program are given as properties in terms of the allowed nogstates. As illustrated in
figure 1.9, we propose that the validation is based on thedrapgs of the environment —
which it is the purpose of a program to control. By followings approach, the require-
ments can be stated as limitations in the allowed happewiie environment, rather than
invocation of methods and values of variables.

Specifically, by incorporating timing requirements intcethpecification of the environ-
ment, validation of control programs with real-time comastts is supported by the proposed

page 16

Introduction 1.6 Project Definition

method. By supporting a high-level abstraction of the emwinent and supporting valida-
tion of real-time systems in it through simulation, we ainmaproving the applicability and
quality of run-time validation for embedded systems. Iniegt sections, we investigate
these properties for the proposed method.

1.5.1 Quality and Applicability Considerations

The proposed method combines some of the strengths of othetiges. Most notably,
the explicit modelling of environments known from model ckieg is applied to runtime
verification. In this section, we investigate the qualitydapplicability of the proposed
method, based on the measures defined in section 1.3.

Quality

The error types that can be found with the proposed methoeguel to those supported
by run-time validation. That is, they are in the categoriésun-time errors, algorithmic
errors, and timing errors. The fact that a model is used fpregenting the environment
introduces a risk of false negatives, in the event that tredehdoes not correctly describe
the behaviour of the actual environment.

Coverage can be measured in terms of the environment modwete $e part of the be-
haviour of the environment that a control program is sulgieédb during validation is ef-
fected by the simulation algorithm, the coverage of thedalon can in influenced by
guiding the simulation. In chapter 4, we shall consider savalgorithms for performing
this guiding.

Applicability

The formalisation required in order to specify the behawiotithe environment must be
performed manually. However, since an informal descriptid the environment is likely
to be given, this task does not constitute a large manualtefidhe same applies for the
requirements of the environment. Given the automatic satiart and validation suggested
by the proposed method, the degree of automation is reliatigh.

The level of abstraction is equally high, since models ofehéironment and requirements
in terms of these models are used for the validation. Thebd#y of the proposed method
is assumed to be better than that of model-checking, sirecexploration performed is not
exhaustive. However, it is likely to be worse than the sdtglof run-time validation since
a higher coverage of the states is likely to be achieved.

1.6 Project Definition

In order to realise the validation method described in sacti.5, a number of tasks must
be performed. In the following, we describe these tasks, inithe next section we define
the scope of the project. That is, we describe to which lef/eletail the tasks are covered
in this report. These tasks are:

page 17

1.6 Project Definition Introduction

o Environment Analysis.In order for the environment to be described formally, an
analysis of the generic patterns in behaviour of an enviemnmust be performed.
The various evolutions of environments over time must bawagd in the formal
models, in order to allow a simulation to be based upon therne Behaviour of
an environment, of course, is dependent on its interactiibn tive control program.
Thus, an investigation of the communication patterns betwkese entities must also
be carried out;

o Formal representation of the environmeriaving defined the behaviour that a for-
malism must be able to express, an appropriate formalisnt beushosen. The for-
malism must support interaction with the control progrard salidation of environ-
ment requirements;

o Simulation based on formal modelShe formal representations describe how envi-
ronments may evolve over time under influence of the controg@m. Since the
environment may change autonomously, a method for activetiating the state of
the environment is necessary. Similarly, methods for adtng with the control pro-
gram during execution are required,;

o Validation based on environment requirement¥hen the control program is exe-
cuted in parallel with the simulated environment, an apgho@r validation is re-
quired. This task consists of two subtasks: Obtaining a govérage of the possible
environment behaviour, and checking that a set of propgetiesatisfied. Both the
coverage measure and property validation are based on lfonodels of environ-
ments.

1.6.1 Project Scope

In this project, we mainly focus on the analysis of environtsetheir formal descriptions,
and the simulation based on these. We aim at obtaining a &igh of automation, thereby
minimising the effort required by test teams in order to use approach. We also con-
sider different approaches to assuring a good coverageesofalidation, and how to allow
validation to be performed on the states of the environment.

Since the area of expressing properties for runtime vatidas well-researched in the MaC
tool ([KKL™01]), we choose not to go into depth with property expresggee section
1.4.2). However, relatively simple expressions for resing the allowed states of the envi-
ronment will be supported.

Furthermore, we design and implement a prototype, in whietfunctionality requirements
deduced via the analysis is supported. Based on this ppetpéycase study of a control pro-
gram for the operation of bridge is performed, in order taniifg strengths and weaknesses
of the proposed validation method.

1.6.2 OQutline of the Report

The work presented in this report is a continuation of theknyaesented in [Chr02]. A
significant part of this introduction is a modification of th#roduction presented in the

page 18

Introduction 1.6 Project Definition

previous report. Chapter 2, an investigation of the charastics of real-time systems, was
published in an almost identical version in the previousrepl he remainder of the report
is structured as follows:

o Chapter 2,Real-Time Systems, gives a description of the characteristics of real-time
systems, including a definition of the concept, timing sspmd an overview of
scheduling policies. Furthermore, a classification of thiergypes that can occur in
real-time systems is made.

o Chapter 3,The Inquisitor Framework, describes the functionality provided by the
framework resulting from the work presented in [Chr02]. Ti@mework allows
runtime validation of real-time systems implemented infoomance with the Real-
Time Specification for Java.

o Chapter 4,Analysis, includes the analysis of general environment behaviodrian
teraction. A formalism for modelling the behaviour of emnments is chosen, and
a method for simulating these models is presented. Thisadeitiows validation to
be performed in terms of the states of the model.

o Chapter 5,Design, describes how the general simulation and validation agres
described in the analysis can be implemented in the InquiSitamework.

o Chapter 6,Case Study, contains the case study of the control program for perfogmi
the operations of a bridge. Based on this implementatioerstdf the prototype is
performed.

o Chapter 7,Conclusion, contains a conclusion on the work presented in this report
and describes future work.

page 19

1.6 Project Definition Introduction

page 20

Real-Time Systems cnorend

In this chapter, we define and characterise real-time sysieorder to obtain a well-defined
semantics of terms used in the remainder of the report. Taptehalso serves as a theoret-
ical background for the description of the Inquisitor Fravoek, given in chapter 3.

After defining real-time systems, we introduce an exammétiene system that sorts bricks
on a conveyor belt, which will be used throughout the nextéhthapters. In accordance
with this, many of the examples of the characteristics of-tie@e systems in this chapter
will be given in reference to the brick sorter example.

Having described the characteristics of real-time systi@mpgroceed to investigate the types
of errors that real-time systems may exhibit. This categdion is made with the second
objective of the report — validation of Real-Time Java aggdions (as defined in chapter 1) —
in mind. We consider it useful to differentiate errors byegairy when validation strategies
are evaluated.

2.1 Definition

In chapter 1 we introduced real-time systems as systems ichwie overall correctness
depends not only on the correctness of results producedIbatam the correct timing of
these resultsThis definition, however, does not explicitly state angthabout the environ-
ment in which such systems reside. For our purpose of vadidate wish to distinguish
real-time systems from their environments. We thereforieeael to a modification of the
following definition by thePredictably Dependable Computer Systems project:

A real-time system is a system that is required to react to stim-
uli from the environment (including the passage of physical time)
within time intervals dictated by the environment in its current
state.

Figure 2.1 depicts this definition of a real-time system. éaia stimuli from the environ-
ment at time a real-time system must react within an inten&j4 + A'], A,A" € R" after
t. The modification of the definition is that we explicate tHa turrent state of the envi-
ronment is allowed to effect the appropriate reaction as agthe interval of time (that is,
the values ofA andA’) that this reaction must occur within. Since the currentestf an
environment decides the possible future states, changbs environment may also influ-
ence what is considered correct behaviour. Note that, bgéfieition, stimuli may simply
be that an amount of timig has passed. Thus no expligiput datais required from the
environment in order to constitute stimuli.

page 21

2.2 An Example — The Brick Sorter Real-Time Systems

Real-time systems are often categorised with respect torthertance of reacting within
the proper interval of time after a given stimuli. Systemsevehsuch misses are fatal to
the continuance of the system (because of damage to th@emsént) are said to beard
real-time systems. An example of a hard real-time systenc@né&ol program monitoring
some process (e.g. chemical or nuclear), terminating thegss if it starts to run out of
control. Failure to react to such runaway processes may digastrous results.

stimuli real-time react
—_— —_—
t SYSIeM |t f At A+ A]

environment /

Figure 2.1:A real-time system interacting with its environment

If, on the other hand, a system is able to survive such mifisesystem is characterised as
soft. Examples of soft real-time systems include multimediaesys, where a temporary
failure to play back video or audio files with the correct tigimay result in bad quality —
but does not prevent the system from continuing the exetutio

2.2 An Example — The Brick Sorter

In this section we introduce an example that contains ptigsecharacteristic to real-time
systems (described in the next section). The example, tepio figure 2.2, consist of a
conveyor belt, a (light) sensor, a piston, and red and bladk$ These entities make up
the environment of the system. The conveyor belt moves britka constant speed from
the entry point at the left towards the exit point at the right

brick Control eject
Sensor — . — Piston
Logic

Conveyor Belt

Figure 2.2:The brick sorter

The aim of the system is to eject all red bricks from the conveyhen passing the piston.
Black bricks should be allowed to reach the exit point. Weiassthat the highest frequency
with which bricks can be placed on the conveyor belt is knovame that this frequency is
low enough that no brick will ever be placed on top of anothée shall further assume that
the belt is eitherunning or stopped

page 22

Real-Time Systems 2.3 Characteristics

The control program consists of some application logic img when to eject bricks.
The control program may poll the sensor for the colour of thekian front of it. If no brick

is located in front of the sensor a sensor poll will return acspl value expressing this fact.
The piston supports an eject action.

If a brick is located in front of the piston at the time of anatjaction, the brick will be
pushed off the conveyor. No information about the positibradorick can be obtained
between the sensor and the piston. Consequently, when aickdsobserved in front of
the sensor (stimuli), the time at which an eject should o¢raction) must be calculated
from the distance to the piston and the speed of the convegfor b

2.3 Characteristics

In order for a real-time system to react timely to given stimit is necessary to be able

to express (and schedule accordingly to) these timing ddminreal-time software. Con-
sequently, applications must be able to access clocks gmésxtime. Furthermore, we
introducetemporal scopesby which we are able to express the desired specifications of
timing demands. Finally, we describe the concept of petibdi- that is, performing a task
several times with a given period between executions. Tb#oseis based on chapters 12
and 13 in Burns and Wellings ([BWO01]).

2.3.1 Clocks

Clocks represent thpassage of physical timea the environment, mentioned in the def-
inition of real-time systems. They are discrete repres@mta of continuous time. That
is, time proceeds iticks constituting the fact that a fixed period of time has elapSdte
amount of time that a clock is increased per tick is calleddiselution Typical resolutions
are measured in nanoseconds or milliseconds. A clock mayéeegl by applications for
its current time— that is the current value of the clock in some known unit ioifeti

Though multiple clocks may be available to applications,slvall assume the presence of
aglobal clock. All other clocks must be in synchronisation with tHelwal clock. That is,
even though a given clock has a resolution different from dfighe global clock, it still pro-
ceeds at the same speed. Without this assumption, we wouddibidake the phenomenon
of clock skew(one clock drifting from another) into consideration whempiementing the
framework.

2.3.2 Expressing Time

Having access to a clock enables a real-time applicatiorugwygthe current time. Most
applications, however, will also need the ability to exgréme in the past and future. For
example, in a personal calendar application, the user mi@y an appointment at a certain
time of day. Furthermore, the application may provide fiorality to pop up alerts on
the screen some interval of time before appointments. Wh widbe able to express such
timings in real-time software. To this end we introduce tbaaepts ofabsolute relative
andrational time.

page 23

2.3 Characteristics Real-Time Systems

An absolutetimet with respect to some cloakrefers to the time at whicb's current time

ist. Figure 2.3 (a) illustrates this. Note that the current tvakie of a clock is itself an
absolute time. As an example, consider the applicatiorcléwi polling the sensor value
in the brick sorting example. If bricks were known only toiagrat certain pre-scheduled
times, an absolute time could be used to express the nexthigrsgensor should be polled.

t t t

| | =
now time now time now time

@ (b) (©

Figure 2.3:(a) Absolute time, (b) relative time, and (c) rational time

A relative timet refers to a point in time relative to some absolute time ofteéten the
current time of the clock, implicitly given by the offset)hilis a relative timéwith an offset
at absolute tim¢' is equivalent to the absolute tinte+t. Note that relative times may be
negative as well as positive values. In the brick sorter gxtathe time the eject signal
should be sent to the piston can be found relative to the tined &rick is sensed, and thus,
a relative time may be used to express the time of ejection.

Rational time can be expressed as a pain) wheret is a relative time ana is positive
integer. The semantics is thatventshould be distributed over the interval of time given
by t. The distribution of these events is not necessarily everthé illustration of rational
time (t,3) on figure 2.3 (c) the events are clearly not evenly distrihute

2.3.3 Temporal Scope of a Process

Recall the requirement from the definition of real-time eys$ toreact to stimuli [...] within
time intervals dictated by the environmemMow that we have described how applications
may express time, we introduce terminology that allows ugescribe the timing require-
ments of a process. The definition of the timing of a procesalied thetemporal scopef
that process. Introducing temporal scopes of processéisaibav us to refine our categori-
sation of real-time systems.

In the following we shall understand bymocessan active unit executing a task. The
temporal scope of a process can be illustrated as in figure Th4 figure is inspired by
[BWO1]fig. 12. The following terms are used to describe tha&rg of a process’ execution:

o Now- the absolute time from which the temporal scope is defined;

o Minimum Delay- the earliest time relative from now at which a process may be
released;

o Maximum Delay- the latest time relative to now at which a process may baselg

page 24

Real-Time Systems 2.3 Characteristics

o Release- the actual time a process starts executing its task;

o Maximum Elapsed Timethe maximum amount of time that is allowed to pass before
the process must finish its task after release;

o Worst Case Execution Timethe guaranteed longest time a process will consume
executing its task. The value is often required to be sugdiethe developers. De-
pending on the scheduling policy used (See section 2.4p@ps may or may not be
preemptedduring execution. This is illustrated in figure 2.4 by thejaiist intervals
of timety, tp, andtz (during which the task is executed). The sum of these eqeal th
worst case execution time;

o Deadline— The latest time relative from now a process is allowed tsfirgxecuting
its task. In order to be correct, a process must finish exeglts task before the
deadline — regardless of the amount of time the process leasiba preempted state.

release
|
I
| ty t2 t3
I
: deadline
|
max. delay :
I
min. delay I max. elapsed time

l L l

I 1 T =

now : time
|

Figure 2.4:The temporal scope of a process

In accordance with the categorisation of hard and softtie®-systems processes are cate-
gorised as eithesoft, firm, or hard. We shall call a processoft if the following hold: One,
Failing to deliver a result between the end of the delay arditadline inflicts no harm on
the system and its environment, and two, the system will fitsfin@m the result despite its
untimely occurrenceFirm processes differ from soft ones only in the second clause. In
firm processes no benefit is drawn from untimely resutard processes are those where
failing to deliver results within the window specified by dgland deadline will prevent the
system from continuing execution.

The categorisation of processes allows us to refine our easagion of real-time systems.
We shall call a real-time systesoft, firm, or hard depending on the category of thardest
process in that system. Thus, if the hardest process of arsyistfirm we categorise the
system itself as firm.

A common way of delaying the execution of a task is by the usgnoérs A timer is
specified by dire timeat which one or morassociated taskare processed. Returning to

page 25

2.4 Scheduling Real-Time Systems Real-Time Systems

the brick sorting example we notice that we may use a timejeict dricks. The timer is
started when a red brick is sensed and fires an interval of @qeal to the time it takes the
brick to move from the sensor to the piston) later. When timetifires, a task that sends the
eject signal to the piston is processed.

2.3.4 Periodic and Aperiodic Processes

Often a task must be performed repeatedly by a process. Baeps performs its task at a
fixed interval of time we shall call the procegsriodic. When a process reaches the end of
a period (given by an amount of time relative to now) the valtiaow s increased by an
amount of time equal to the period. After an appropriate el task is then re-executed.
Since we view a process as a single active unit, the task medstibhed before a new period
can start. Thus, in the temporal scope of a periodic protesgjeadline cannot exceed the
period. If we need a process to finish later than the end of imghethe periodic process
may spawn a new process to handle the task.

Processes that are not periodic are ca#lpdriodic. The fact that a process is not periodic
does not prevent it from performing its task multiple tim&ar example, the task may be
executed at the occurrence of an event given by a rational tie shall call timers periodic
if they fire multiple times at fixed intervals and aperiodibentwise.

2.4 Scheduling Real-Time Systems

In the previous section, themporal scop@f a process was introduced with the purpose
of describing the timing requirements of processes. Theteal scope included the time
of releaseand the possibility of a process beipgeempted- both of which were external
to the process in the sense that the process does not havel ayr the occurrence of
these events. Performing these external tasks is the reifdian of the scheduler As a
consequence, thecheduling policyemployed is important to the overall correctness of a
real-time system.

Before describing some commonly used scheduling policieshall make some assump-
tions about the scheduling model and elaborate on the ptesmaf processes. Further-
more, we shall introduce the conceptszhedulability

2.4.1 Scheduling Model

We shall assume that only a single unit of execution is avtlaThat is, all processes are
executed on the same processor and only one process candogeeikat a time. With this
assumption it is clear that numarallelism (two processes executing at the same time) can
occur. However, processes may still exeagacurrentlysince processes can be preempted
during execution.

When a process ipreempted by a scheduler it is removed from the processing unit and
cannot proceed until reinserted by the scheduler. Suchtgoimpreemption are under the
complete control of the scheduler. Often, real-time prograng languages have facilities
that enable a process to inform the scheduler that anotbeegs should become running.

page 26

Real-Time Systems 2.4 Scheduling Real-Time Systems

exit

running done

wait

Figure 2.5:Process state based scheduling model

preempt
start

event

Typical examples are functionality for letting another gges (chosen by the scheduler)
become running and waiting for access to a resource or soarg g&voccur.

In compliance with the processing model of Real-Time Jawagsume that schedulers are
process state basedrhis model is illustrated in figure 2.5. A process can be ie and
only one state at a time. In the following, the states of the@hand the transitions between
them is explained:

o New— When a new process is created its initial state is new. Tbhegss becomes
ready for execution when the creating process starts it.

o Ready- Ready processes are those that are ready to be executesl mmodlessor. In
the literature, ready processes are often referred tum@msable Due to the naming
clash with the Java interfad®nnabl e we have chosen to use the term ready.

o Running— When a process is executed on the processor we refer to inang.
Since we assume a single unit of execution, only one procase running at a
time. A process becomes running when the scheduler setdnisi the set of ready
processes. If, at some point, the scheduler chooses to pteékenrunning process
(or the procesyieldsto other processes), the process will become ready again and
another process is selected for execution.

o Waiting— Running processes may need to wait for some event to ocaah &/ents
include awaiting the firing of a timer or access to some res@muFor now, we shall
not distinguish such waits, but the Inquisitor FrameworksldoNhen the event occurs
the process becomes ready for processing.

o Done— When a process finishes its work we call it done.

An important concept is that gichedulability. A set of processes are said tosmhedula-
ble if there exist a schedule that allows for all processes t@@eecorrectly with regards

page 27

2.4 Scheduling Real-Time Systems Real-Time Systems

to their timing scopes. Depending on the scheduling polggdythere exist different algo-
rithms for testing schedulability statically. These tedten rely on the worst case execution
times provides by the developer. We shall not be going injodapth with schedulability
algorithms, since the purpose of the framework includesngseal-time applications for
schedulability dynamically.

2.4.2 Overview of Scheduling Policies

The scheduler controls the states of processes, as itledtia figure 2.5. We refer to
the various algorithms for such control asheduling policies The choice of scheduling
policy is a trade-off between abstraction and control. Tdweelr the level of abstraction,
the more control the developer has over the scheduling. isnséction, we shall describe
three different scheduling policies and their charactiess We then seleqtriority-based
preemptive schedulings our policy of choice, and describe it further in the nextisa.

A simple approach to scheduling is thatayclic dispatching. The approach, also known
asround-robin scheduling, selects processes in a cyclic manner, allothiegn an equal
amount of time to execute. Thereby, the policy incorporéa@sess that is, no process is
starved in the sense, that it is never allowed to run.

Whereas round-robin scheduling is common for applicatiasithiout real-time require-
ments, it often comes in short for real-time systems as ek&atpin the following. Con-
sider a real-time system containing two processgsand py, with deadlinest; andty,
respectively. Further assume that t; and that the worst case execution timepafex-
ceedst, relative to the current time of the global clock. Now, if bgbh and p, are both
ready, p; is as eligible for execution ag, — even though dispatching; may preventp,
from finishing its task before the deadline.

From the example above, it is clear that in order to obtain aemeasonable scheduling,
processes should be assigmeghortance— allowing the most important process to execute
before others. One way to implement this is to order procebgeaheir deadlines — making
the process with the earliest deadline the most importarttis Policy is calledearliest
deadline first — or EDF — scheduling.

EDF scheduling gives the developer greater control overettexution of processes in a
system (due to the increased predictability), without neag explicit assignment of impor-
tance to processes. For instance, the problem mentiondg iexample used to illustrate
the shortcomings of round-robin scheduling is no longersaneé when EDF scheduling is
employed.

There are, however, limitations to this implicit orderinfprocess importance. In a hard
real-time system, a soft process may be executed prior tachgracess even though this
may prevent the hard process from meeting its deadline. ¢h sases, the programmer
must declare the importance of processes explicitly. Sabkduling policies are known as
value-based scheduling

We investigate a kind of value-based scheduling where esmtegs is assigned ior-
ity. This priority represents the importance of the processyhéri priorities correspond to
greater importance. Priority-based schedulers can bgaaged with respect to the allowed
priority assignments for a given process:

page 28

Real-Time Systems 2.4 Scheduling Real-Time Systems

o Static— Fixed priorities are assigned to processes staticallsh shat, each time a
process is released, it has the same priority;

o Dynamic— The priority of a process is determined at the time of iteask. It remains
fixed throughout the execution of its task;

o Adaptive— Processes may change priorities during execution of ta3ks reassign-
ment may be performed by the process itself, or other prese@uring preemption
of the process wha's priority is being changed).

Static priority-based scheduling is suitable for well-defi environments, whereas dynamic
and adaptive priority-based scheduling are often necgssarases with greater dynamics
in the environment. For example, the priority of a procesy m@pend only on the state
of the environment at the time it is created (and explicithf af the future state), in which
case dynamic scheduling is applicable. If the task perfdrbyea process can become more
or less important due to changes in the environment durggxecution adaptive priority-
based scheduling is required.

In the Inquisitor Framework, we chose to use a priority-lgseemptive scheduling policy
that allows adaptivity of priorities. This choice is basedtbe following observations:

o ltis the default scheduler required by the Real-Time JawecHpation;

o It provides greater control over processes than do EDF amadroobin scheduling.
This is favourable since it adds to the generality of the fauork;

o It is the most expressive priority-based scheduling poliEiat is, the developer of
an application may choose to use only static or dynamic asggts of priorities, if
it suffices for the needs of that application.

For the remainder of this report we shall always assume adtgphen referring to priority-
based preemptive scheduling. The following section dessrihe scheduling policy further
and introduces the problem of priority inversion.

2.4.3 Priority-based Preemptive Scheduling

The guiding principle of priority based preemptive schauylis that the process in the
ready set with the highest priority should always be runninfyseveral processes with
priority equal to the highest exist one of these should rfila. grocess becomes ready due
to the end of a delay or access to some resource and its priewvel is higher than that of
the running process a process switch should occur (by preéemgf the running process).

When processes with different priority levels share resesir a situation where a high pri-
ority process is forced to wait for a resource held by a lowasrjty process can occur. A
scenario where this happens is depicted in figure 2.6. Letgssa have a lower priority
than proces® — which in turn has a priority lower than process Say that procesa is
released first (due to its temporal scope) and obtains éxelascess to some resounce

page 29

2.5 Error Categorisation Real-Time Systems

A

priority

| | | | | |

I I awaitr 1 I lock r
°r . I AR SRRISEREIEN >
bl o — '

| | | |

lock r release r
al 'I _______________ | | 'I
| | | |
1 1 1 1 1 1
| | | | | | execution

Figure 2.6:An illustration of priority inversion

After a while, proces$ is released and is preempted due to its lower priority. Procdss
now runs untilc is released and requests access to

Now, an unfortunate situation exists whereannot get access to the shared resoua®it

is held bya, andb is released again since it is the ready process with the sigitecess.
Such behaviour is undesirable sincdas the highest priority of all processes and could
become running i was allowed to finish its task and release

The above phenomenon is known@gority inversion sincec is forced to wait for lower
priority processes to finish. Cornhidlt al. introduced an algorithm for avoiding priority
inversion usingpriority inheritance ((CSL*87] pp. 33-39). Basically, processes holding
resources required by higher priority processgaserit the priority of the higher priority
process. Thus, in the example of figure 2.6, aftezquests access tdhe priority level of
awill be changed to that af — allowinga to proceed ahead &k

2.5 Error Categorisation

For our purpose of validation, we regard it as important &ssify the types of errors that
real-time systems can exhibit. First of all, it is importémtthe cause of establishing which
classes of errors can be detected using different validatiethods. Second, knowledge
about which errors may exist is important for the choice didaion strategy. Finally, the
classification may prove useful when stating propertiesshauld hold for a given system
and generating relevant output for debugging if an errooistl.

We divide errors into four classes. The first two classgglication logicandconcurrency-
relatederrors, are known to exist in systems without real-time nexuents. The latter two
classes classify timing errors with respect to their depeng on a given platform. The
error classes are described in the following:

o Application logic errors— Errors that may be described fasctional errors in the
application logic. That is, given some input, the prograsponds in an erroneous
way. Such errors include producing incorrect outputs artérerg wrong (possibly
fatal) states, resulting in incorrect termination of th@lagation;

page 30

Real-Time Systems 2.5 Error Categorisation

o Concurrency-related errors- Well-known errors that may arise when applications
use concurrent processes. This includeadlockwhen processes acquire locks on
resources without adhering to some ordering of the ressurcack of synchronisa-
tion on resources may lead tace conditionsand the presence of greedy processes
may lead tcstarvation

Whether a deadlock or race conditions occurs or not dependBeorelative timing
of processes. Thus, even though procegsesdp, lock resources; andr, without
proper ordering, deadlock may not arise if, for exammeand p, cannot logically
execute concurrently. Knowledge about the relative timrohgrocesses may be ac-
cessible via the temporal scopes of processes. In conoludig; and p, can be
shown never to execute concurrently, we may deduce thatatacannot occur and
thereby eliminate some of the false negatives mentioneddtios 1.4.2;

o Timing-related logical errors- Platform independent errors where reactions to stim-
uli occur with incorrect timing. An example of this is wheretiiming scope of a
process is incorrectly defined. A second example would bepooeess suppressing
the execution of another, more important process, due tgfehipriority (possibly
due to a lack of adaptivity to changes in the environment).

o Performance-related errors Even though the timing logic of a real-time application
is correct, errors related to timing may still occur on a giy#atform. For example,
if the worst case execution time of a task does not hold on engdlatform an error
may occur. We shall refer to such errorspesformance-related

page 31

2.5 Error Categorisation Real-Time Systems

page 32

The Inquisitor Framework S

In this chapter, we describe the functionality provided bg tnquisitor Framework, pre-
sented in [Chr02]. The framework is a partial implementatd the Real-Time Specifica-
tion for Java. First, we give an introduction to the functbties of the specification that
have been implemented. In addition to scheduling Real-Tiawea programs, the framework
includes supports for performing validation of real-tinystems in simulated environments.
We present these features and give an overview of how thdatedn is performed by an
example.

3.1 Real-Time Features

The Real-Time Specification for Java ([RTJ02]) includes eagwariety of initiatives for

supporting the implementation of real-time systems in Javhe Inquisitor Framework

contains support for the scheduling of real-time systen@emented in accordance with
this specification. However, only a subset of the featurethénspecification has been
implemented:

o Preemptive, priority-based scheduling polidyhe framework is based on a preemp-
tive, priority-based scheduling policy. The schedulef@rens the task of scheduling
so-calledschedulableentities. These entities have objects representing thienifes
and timing scopes associated with them. A major differeretevéen the scheduling
of Real-Time Java programs compared to regular Java pragrarhat the thread
with the highest priority must also be executing if possib&milarly, when using
Java’s built-in support for thread synchronisation, thedid of highest priority must
be the most eligible for the semaphore;

o Definition of timing scopesThe timing scopes associated with schedulables entities
which allows them to define aperiodic and periodic timingps

o Access to time through clock€?rograms have access to clocks from which time
can be represented in absolute and relative terms. Amorey oges, the classes
representing absolute and relative time are used for thaitlefi of timing scopes as
well as timers;

o Timers.The specification allows special timer classes, which &igegkecutions (pos-
sibly periodically) of so-callegtvent handlers Such handler are represented by the
classAsyncEvent Handl er and include a method which performs the given task.

o External happeningsSimilar to asynchronous events being triggered by timeene
handler may also be bound to a so-caleedernal happeningThese happenings are
handled directly by the virtual machine and result in thggering of an event handler.

page 33

3.2 Validation Support The Inquisitor Framework

The functionality described above has been implementedva.JThat is, the added fea-
tures for expressing real-time characteristics are impleied on top of an existing virtual
machine. Some of the functionality normally placed in theudl machine has been re-
implemented in Java code to allow the new semantics impogéukelspecification.

The two most prominent examples of this re-implementat®the support for preemp-
tion and the increased predictability of thread synchmatias. In order to achieve these
features, it is necessary to explicitly invoke the methagispsrting them. This, however,
can be automatically performed by a process knowstsumentation In this process, the
source code of a program is investigated at the byte level,bgite code is inserted when
appropriate in order to invoke the required logic. Thougé istrumentation process is
possible to implement in the framework, this has not yet lmsmomplished.

3.2 Validation Support

As mentioned, the Inquisitor Framework includes supportrém-time validation of real-
time systems. By this approach (depicted in figure 3.1), robmrograms interact with
simulated environments as opposed to their physical sndiogs. The control program
consists of a number of processes interacting through a arminterface with a set of
processes simulating the behaviour of the environmenthigwray, the control program is
stimulated by another program, which also acts on outpum fitee control program.

A:/,/—\A,

environment

e .
real-time system

inquisitor

<+—> <+

Figure 3.1:Validating real-time systems in simulated environments

In order to perform validation in the simulated environmeatthird component, the-
quisitor, is executed in parallel with the environment and contraigoam. The inquisitor
stimulates the program in accordance with the possitslifiefined by the environment. Fur-
thermore, it checks that the control program acts in accweavith some specification —
for example a set of properties.

page 34

The Inquisitor Framework 3.3 Example

The inquisitor tasks are performed by special threadsmedeto asinquisitors These
threads have all the capabilities of the schedulable estitif the scheduler. However,
they have a higher priority than all other entities, whiclowk them to perform their task
whenever it is required. In practice, to be an inquisitor,agalprocess must extend the
I nqui si tor class in order to have the special characteristics.

By the validation approach described above, the contronar, its simulated environ-

ment, and the inquisition component are executed in pa@tie single processing unit.

This raises an issue regarding the timing scopes of theagmgram. When the environ-

ment and the inquisition components perform the updatesukttion and checks, process-
ing time is consumed. Thus, the timing scopes of the contajyam suffer — leading to

possible deadline breaches which would not have occuritezhwise.

In order to handle this problem, the conceptiagical timeis introduced. As opposed to
physical time, which progresses continuously, the pragaédogical time may be stopped.
By this approach, logical time is stopped whenever an iniguishread becomes running
— and is restarted only when a control program thread agasorbes running. In other

words, logical time progresses if and only if a an inquisitmead is not running. Logical

time is implemented by manipulating the clocks used by R&ak Java processes to gain
knowledge about time.

3.3 Example

In order to illustrate how validation is performed in the ungjtor framework, we present

an example how it is performed. The environment implemergéle brick sorting system

described in section 2.2. The overall purpose is that rezkbrare ejected and black bricks
continue to the end of the conveyor belt. The applicationtrtheyefore detect red bricks —
at which point a timer must be started. When this timer fireg,diston should be given a
signal to eject bricks in front of it.

We assume that a sensor must be polled in order to detect ki @i the brick in front
of it (red, black, or none). The piston is triggered by segdira an electrical signal. The
total system is implemented as Java classes, some of whifdtpecontrol program tasks,
while others perform validation tasks. The system consiktke following parts:

o Environment Three classes will represent the environmé&utiveyor Bel t, Sensor,
andPi st on. TheConveyor Bel t class will be responsible for holding the current set
of bricks (instances of a clagsi ck, with an attribute describing the colour) along
with their current positions on the belt. At a given periode tpositions of bricks
are increased, simulating that the belt is continuouslyimgvin order to accommo-
date this, theConveyor Bel t class is made active — which means it must specialise
Real ti meThread in order to be scheduled. However, since the thread sinaitate
vironment activity, it must instead specialise theyui si t or class — which in turn
extendsReal ti meThr ead;

TheSensor class includes a method, by which the control logic can paldurrent
sensor value, that is, the colour of the brick currently pthan front of it. One of

page 35

3.3 Example The Inquisitor Framework

three values —red, black, and none —is returned.Prkeon class includes a method
for ejecting bricks — which will remove the brick in front of if one exist. The
Sensor as well as thePi st on class operate on grounds of the data represented by
ConveyorBel t. Since both are activated by a thread in the control logistainces
need not be active objects themselves;

o Control logic— The control logic is represented by two clasded.| Thr ead, which
is a specialisation d®eal ti neThr ead, performs periodic polling of the sensor by in-
voking the appropriate method on tBensor class. The other clasj ect Handl er,
is a specialisation ofisyncEvent Handl er and is associated with a periodic timer,
firing when a brick must be ejected, at the time of constructio

o Inquisition unit— The inquisition task in this example consist of a class igtised
for validation of the control logic described above. Thessl8r i ckFeeder , extends
I nqui si tor and performs the task of feeding the system input in form sfances
of theBri ck class. It also observes whether or not the system is webaezh In this
case, this means that all red bricks are ejected and thate& blicks are ejected.

The system is validated by executing the control programiy@mment and inquisitor com-
ponents in parallel. Whenever the control program needstevadct with its surroundings,
it instead interacts with the simulated environment. WHenenvironment must be updated
or the inquisitor investigates the system, logical timg@stto progress. Thereby, the timing
scopes of the control program processes are not interrupted

The above example is previously published in [Chr02] as piifte experimental work. In
this work, erroneous mutations of the control program wested in the simulated environ-
ment. The results of these tests can be found in chapter Sho®RT.

page 36

AnaIySiS CHAPTER4

Through our investigation of real-time systems in chapteeZound that real-time systems
rely on interaction with their environments. In this chaptee turn our attention to an

analysis of the behaviour of such environments. The purotefind a method, by which

the environment of real-time systems can be simulated fréonmaal representation of the
environment. Furthermore, we describe different appreadio automatically exploring

a given environment in order to obtain a good coverage of dissiple behaviours. For
fulfilling our aim of validation in simulated environmentae describe how requirements
can be specified in terms of environment properties.

4.1 Behaviour and Interaction

Before considering which formalisms to use for modellingissnments, we examine the
generic behaviour and interaction patterns of environsieBased on this description, we
define the environment characteristics that we require tiwsen formalism to support
through modelling, and give an example of such an environm@&his example is used
as a common example throughout the next two chapters.

41.1 Environment Behaviour

Consider the brick sorting example presented in section Ph2 state of the environment
changes over time in various ways. During normal operatibe,belt moves forward at a
uniform rate, thereby moving each of the bricks. Howevearifengine malfunctions, the
movement of the belt may suddenly stop. The event that an ecaurs in an engine has a
sporadic nature, contrary to the continuous movement olbétte

We characterise these continuous and sporadic changestv@onment in the following
way:

o Continuous changegserform evolutionary updates of the environment. The emsr
ment changes by some rate per time unit. This rate may itealige over time.

o Sporadic changesccur instantaneously without progression of time. Thuwsim-
mediate change in the environment can be observed. Howeefuture course of
the environment is effected. In other words, a sporadic ghalters the continuous
changes in the environment.

Some of the sporadic events of an environment involve thegtiore or destruction of entities
in the environment. For example, in the brick sorting casiekb are added to the system
at the beginning of the conveyor belt. These bricksreaein the sense that they were not

page 37

4.1 Behaviour and Interaction Analysis

considered part of the system prior to their insertion. &inty, bricks stop being part of
the system if ejected from the belt by the piston, or, if thegah the end of the belt. Such
dynamic creation and destruction, is, however not conetiér the scope of this project.

4.1.2 Control Program Interaction

Figure 1.2 in section 1.1 illustrates how a control prograeracts with its environment
through sensors and actuators. The control program intergith these devices in a data-
oriented manner, allowing two kinds of communication:

o Event-based@¢ommunication, by which a uniquggnalis used to inform the peer that
some event has occurred. We shall refer to this type of conation asemitting
eventsor signalling

o Value-basedcommunication, where values are sent and received. Typicich
communication is used whepolling a sensor for the current value of some entity
(for example, a temperature or position).

Although a control program sometimes uses value-based cmication to actuate on its
environment, we restrict value-passed communication tbngo Allowing control pro-
grams to send data to the environment would require the fépegtn of the environment to
contain procedures for dealing with the data received. ghahis would be possible, we
wish to simplify the model specification by not allowing it.

In summary, our requirements for communication of simuag@vironments are event-
based communication in both directions and value-basedmontation in the form of

polling.
4.1.3 Example

Since we do not allow dynamic creation in the environmentpaw introduce an example
that does not include it. The environment, illustrated infeg4.1, will be used throughout
this chapter as well as the next. It consists of a barrel wittater intake and an electrical
pump connected to a water output. When the pump is off, themevel of the system
increases over time, whereas, when the pump is on, the vesglrdecreases.

We assume the pump to be cooled by the water it is pumping.elfltdw of water stops
during operation, the pump overheats and is destroyed.nBymump operation, the water
output may stop for two reasons. First, the barrel may runtgngmd second, the water
flow may be stopped by dirt in the pipes. In the latter casectimtrol program is informed
by an eventEV_ERR. Once the error has been corrected, EleK event is emitted.

In order to control the water level of the barrel, a contradgnam observes the water level
by polling the value of sensoring unit. The water level mustkept within an interval
assuring that the pump is not running without a flow of watdrijley at the same time, the
water level does not rise beyond the capacity of the bagatlihg to an overflow.

The control program starts and stops the pump by sending EXYhSTART andEV_STCP
events, respectively. If, during pump operation, BYeERR event is emitted by the environ-
ment, the control program must stop the pump within a shorédiimit to prevent it from
overheating. The pump may then not be started again unélpeof theEV_K signal.

page 38

Analysis 4.2 Formal Specification of Environments

water in

' EV_START EV_ERR
EV_STOP EV_OK

v actuator

barrel

water out
sensor —
pump

~_

Figure 4.1:The barrel example

4.2 Formal Specification of Environments

Having analysed the behaviour and interaction of enviramsjewe turn our attention to
finding a method for specifying them formally. In this seative first state our requirements
to the formal specification, after which we consider two gdates: Timed Automata and
Hybrid Automata. Based on a comparison of the two, we choosaddel environments
as Hybrid Automata, although in a version modified for ourdseeThe remainder of the
chapter is devoted to explaining how validation in a simedagnvironment can be obtained.

We require the formalism to be able to express sporadic antintmus changes alike.
Since continuous changes happen over time, the formalisgt atlep have some means for
expressing the progress of time. We further require the &mmodels to allow interaction
with a control program during simulation. This means thavaton and stimulation events
must be explicitly modelled and that values that are to bkedddy control programs must
be available.

4.2.1 Formalisms

In this section, we consider two formalism that are both &bkxpress real-time constraints.
The formalisms considered are Timed Automata and a supss-df these, called Hybrid

Automata. We investigate their strengths and weaknesgkemake a choice based on their
ability to meet the requirements stated above.

o Timed Automata. The notion of Timed Automata, described in the introduciisee
section 1.4.1), meets many of the requirements specifiedy @thow explicit mod-
elling of real-time constraints by the useabcks which progress at a uniform rate.
The state of the environment is modelled by a transitionesyswith locationsand
transitions

In addition to the structural state modelling, local andbgllobounded discrete vari-
ables are supported in several contemporary model chedkirlg. The values of

page 39

4.2 Formal Specification of Environments Analysis

these variables can be updated when a transition is takeareas the clocks can
only bereset that is, their value is set to zero.

Structurally, Timed Automata fit the requirements of modellsporadic updates by
transitions. Modelling the continuous updates, on therdthed, is somewhat more
of a challenge. Although variables are supported in Timetbfata, these variables
are only updated when a transition is taken. Therefore, rarol program uses a
polling scheme, the current valuation of a variable will eediffer as long as the
automaton is in the same location.

In some cases, the continuous updates that occurs over etmée modelled by
adding more locations to the model. The value of a variabla miven location

represents a set of values that can be considered equivalém control program.
Transitions between the added locations must be enablexttatrcpoints in time so
that the updates occur at times when the control prograns pledl environment for
that value. The updates of the variable then must set the ejual to that specified
for a continuous update of the duration since the last update

The disadvantage of the approach described above is thatefkbrt is required to

add the locations needed. These locations must be basedamalysis of the com-
munication pattern between the control program and ther@mvient. Thus, if the

timing of this interaction is altered, a modification of theveonment model is re-

quired. Finally, some control programs poll their enviramts so often that the ap-
proach becomes inapplicable.

Hybrid Automata. We now consider a formalism in which the continuous updates a
modelled explicitly as so-callefiows The formalism, known ablybrid Automata
consist of the following ([HHWT97]):

e Variables.A set of variables with values in the real domain.

e Control Modes. A named entity which describe the possible states of the au-
tomaton. At all times, one and only one mode in an automatauctise

In each mode, 8ow expression describes the continuous updates of the set of
variables over time. These expressions define the demstv the variables,
where a derivatived of a variablex describes the update performed xfor
each unit of time passed.

A mode also contains anvariant expression, representing one or more inter-
vals in the real-valued domain for each variable. In orderafgiven mode to
be active, the valuation of the variables must allow theriava expressions for
each variable to evaluate to true. In other words, the valoaif each variable
must be within the specified intervals.

Finally, aninitial condition expression defines which modes can potentially be
initially active. As with invariant expression, the initiaonditions represent
intervals in the real-valued domain, which the initial \ation of the variables
must satisfy in order for the mode to be a potentially initial

e Control Jumps.A control jump represents a transition from one mode to an-
other. It is represented by an edge between two modes, dhkesburceand

page 40

Analysis 4.2 Formal Specification of Environments

target modes. A jump from the source mode to the target mode can be per
formed if the source mode is the active mode and the jumgnabled The
criteria for enablednes are described after the introdnabf edge decorations.

The edges are decorated by so-cajledp conditionswhich are expressions in
terms of the variables. Like invariant and initial conditiexpressions they re-
strict the set of valuations allowing a jump between the s@and target modes
to be performed.

In addition to jump conditions, edged are labelled with astrameevent These

events are used for internal synchronisation between twoase automata. In
order for a jump to be made in one automaton, another autonmatet be in

a mode from where a jump with the same event can be performiee juimps

must me performed synchronously, that is, without progoessf time between
the two jumps.

Three requirements must be met for a jump to be enabled. , Frstguard

expression of the jump must evaluate to true. Second, ifuhmjis decorated
by an event, some automaton must be able to synchronise ene¢hé Finally,

the invariant expression of the target mode must be satigfieuder for the

mode to be allowed to become active.

Using Hybrid Automata, the continuous changes in the enmrent can be modelled
explicitly. The flow expression of the modes perform the surdus changes, and the
jumps constitute sporadic changes in the environment. Dhérwous updates are
supported through the derivatives defined in flow conditions

Hybrid Automata are often used for model-checking controgpams. As is the case
when model-checking Timed Automata, the behaviour of theremment must be

modelled as automata in order to interact with the controgpam automaton during
validation. This interaction is modelled using events ewihg the environment to
react to actuations from the control program and vice versa.

In figure 4.2, two automata modelling the barrel environn@esented in figure 4.1
are presented. Since we are only interested in describidehaviour of the envi-
ronment, no control program automaton has been specifiedrefdre, an external
entity is required in order to control the environment. Tigiglear from the fact that
the automata cannot synchronise on the evEMtSTART andEV_STOP. In section
4.2.3, we will elaborate on this distinction between events

The automata of figure 4.2 share a varialledlenoting the water level of the barrel.
The first automaton, modelling the pump, has 5 modes (seesfiy@ (a)). They
describe whether the pump is on, off, overheated, suspehaktb an error, or on but
without a flow of water. The initial mode is off, from where tagtomaton may enter
the modes on and suspended. These jumps are triggerediesyilny the receipt of
events from other entities.

If, for example, arEV_START event is received, the on mode becomes the active mode
of the pump automaton. In this mode, the water level of theraata decreases by
the rate given by the flow expression. The mode is left onlymwigher arEV_STOP

page 41

Analysis

4.2 Formal Specification of Environments

) EV_START overflow

EV_STOP

e s -
(suspended] EV_STOP no flow —> filling
=1 h =0.001
t <1000 10<h< 100

EV_ERR

EV_START h—10

EV_ERR EV_OK

(overheated (empty (cleaning

(@) (b)

Figure 4.2:The environment of the barrel example modelled in Hybrid Automata

page 42

Analysis 4.2 Formal Specification of Environments

or andEV_ERR event is observed. In the latter case, the pump enters amiediate
mode, no flow, at which point the control program has one sgt@emit theeV_STCP
signal. Otherwise, the pump enters its overheated moderagmg that the pump
has been destroyed. This mode may also be entered if theotpndgrams tries to
start the pump while in the suspended mode.

The automaton modelling the barrel is given in figure 4.2 (lis initial mode is
filling, where the water level of the barrel continuouslyses. The water level must
be between 10 and 100 units — otherwise the barrel is eitheidered empty or an
overflow occurs. Finally, while filling, th&V_ERR event may be issued if the pipes
are congested by dirt.

The two automata perform internal synchronisations onEth&X andEV_ERR sig-
nals. As earlier mentioned, th®/ START andEV_STOP signals are considered exter-
nal, so the automata cannot synchronise on them.

Notice that the pump automaton may be in the on mode at the siav@as the barrel
automaton is in the filling mode. These both contain flow esgimns involving the
height of the water level. In such cases, the sum of the flowesgons is used —
in this case yieldind’ = —0.005. Also, in modes where the derivative defined on a
variable is zero, we do not write it on the mode.

Since Hybrid Automata offer the best explicit modelling pbsadic and continuous changes,
we choose to base our formal representations of envirorsranthis formalism. We shall,
however, introduce some modifications making them suitedsleur simulation purpose.

4.2.2 Preliminary Simulation Considerations

Before describing the modifications of the Hybrid Automata,shall make an initial choice
of how to perform the simulation of the models. This decidigfuences the modifications
necessary to the definition of Hybrid Automata. Thus, it isleaefore the modifications
are introduced. A detailed description of the simulatioprapch is given in section 4.3.

In order to simulate a Hybrid Automata, it is necessary tontaén the current modes and
variable valuations during run-time. Furthermore, thea$gtossible next states of the envi-
ronment must be calculated from the flow and invariant exgioes on the active mode as
well as the guard expression of the possible transitionsthtg, we consider two different
solutions:

o Interaction with a model-checketUsing this approach, the model of the environ-
ment is maintained by a model-checker. An example of a modetker for Hybrid
Automata isHyTech([HHWT97]). The set of next states can be calculated by the
reachabilityalgorithm applied by that model-checker.

o Code generated from Hybrid Automat&Vith this approach, the simulation is per-
formed by running code. The flow, invariant, and guard exgcs are given in
terms of executable code, which manipulates a set of vasabith a numeric type.

page 43

4.2 Formal Specification of Environments Analysis

The main advantage of interacting with a model-checkeras &m existing tool is applied.
Thereby, the effort of implementing data structures to rrammthe model and functionality
to perform some of the required operations can be avoideihgusmodel-checker does,
however, impose restrictions on the complexity of the flowariant, and guard expressions
allowed. For example, with generated code, these expressay involve the invocation of
generic functions — which is not supported by current madielekers.

We decide to perform simulation by generating executabtie ¢mm the Hybrid Automata.
We find that the added ability to express the environmenwsueable compared to the extra
effort required to implement the functionality for maimaig and simulating the models.

4.2.3 Modifications of Hybrid Automata for Simulation

In order to suit our purpose of simulation, we introduce s@wrensions and restrictions
to the notion of Hybrid Automata. The extensions are maintyoduced in order to allow
communication between the environment and control progitaring simulation. The re-
strictions are mainly introduced in order to limit the comity of the simulation algorithm.

In order to allow the environment to interact by signallirgtation and stimulation events
alike), we categorise the events by which jumps can be dexbmato two classes:

o Internal events.The internal events are used for synchronisation betwetomaia
in the usual manner, as described in section 4.2.1. For deanmpfigure 4.2, the
EV_ERR andEV_(X events are internal to the model.

o External events External events are used for interaction with the controigpam.
The external events are further divided into the categarsfeactuation eventgnd
stimulation eventsWhen a jump is decorated by an actuation event, this eveat mu
be received from the control program in order for the jumpecebabled. Stimulation
events, on the other hand, do not influence whether a jumplsed or not. However,
when a jump decorated by a stimulation event is performezlgiven event must be
emitted to the control program. TH& START andEV_STOP events of figure 4.2 are
examples of external events.

The distinction between input and output events is wellvkmdrom the so-called Input/-
Output Automata, used for model-based testing (see settibB). As a limitation to the
project scope, we shall assume that the models of the em@ondo not involve internal
synchronisation by the use of internal events.

When Hybrid Automata are used for model-checking, someicésns are imposed on the
flow expressions in order to be able to calculate the set ahagale next states. One such
restrictions is thathe variables [...] evolve along a differentiable curffelHWT97] pp. 4).
For our simulation purposes, we shall disregard this regoént and introduce another.

We shall refer to the added requirementa@sal invariance The requirement states that, for
sufficiently small intervals of time, the evaluation of thwariant of a mode is consistent.
Consider an invariant expressionR" — B and a non-negative intege, Further, assume

that two points in timet; andt, wheret, —t; < 9, are given. If the invariant expression

page 44

Analysis 4.2 Formal Specification of Environments

evaluates to the same boolean valoeatt; andt,, we say that flow expression is locally
invariant in the interval = [t,tp] if and only if for allt € I, the invariant evaluates to

The added requirement to the flow and invariant expressiém@smoode is that, for some
given 9, all flow expressions must be locally invariant. The ratientr this restriction
is that, during simulation, it is imperative to be able to fihé amount of time (less than
or equal tod) an automaton can remain in its active mode. By the assumptidocal
invariance, this calculation can be performed using a pisaarch algorithm.

Since physical time is assumed never to stop, we shall redoat a model of an environ-
ment always allows time to progress. In other words, a dekdlothe environment is not
allowed to occur. If there is a chance that an environment deayllock in case the control
program misses an actuation, this must be modelled explinithe automata by adding a
so-callederror mode For example, the overheated mode of the pump automaton give
figure 4.2 (a) is an error mode. If the mode was omitted, anaéimérol program failed to
send theEV_STOP signal within one second after the error was signalled, therenment
would deadlock.

As a final restriction, we shall allow the automata to haveyamie initial mode. This
mode is given explicitly by decorating it with anitial label. The variables are assigned
default values, which must satisfy the invariant exprassibthe initial mode. Variables
may also be assigned tparameterdabel, which means that the initial value of the variable
can optionally be given as an argument.

Though the modifications above distinct the automata usesirfaulation from Hybrid Au-
tomata, we shall refer to them as Hybrid Automata throughloeremainder of this report.
In the following, we present how the environment of the degrample can be modelled as
one of these modified automata.

Example

In figure 4.3, we present a hybrid automaton of the barrelrenment with a distinction
between input and output events. Events prefixed by thegstiih are inputs from the
control programs, that is, control program actuations.ri&v@refixed by "o:" represent the
requirement to stimulate the control program by the giveengv

Since internal synchronisation between automata is ngbastgd, the automata for the
pump and environment are merged into a single automaton. @msequence, some of
the modes of the earlier model are merged. For example, thgimg mode represents
two modes, filling and on, in figure 4.2. Similarly, the repespresents the two modes
suspended and cleaning.

Several automata for describing an environment are suggdnbwever, if only they do not
rely on internal synchronisation.

Notice that the overlap between guard expressions andamiaon their source modes have
been relaxed. For example, transition from the filling mawthe overflow mode is allowed

to occur in the interval between @and 100. This relaxation is introduced because the
height of the water level is represented by a real-valuedbbr during simulation. Since
the representation of this variable is not precise, it isessary to allow the transition to
occur within some interval.

page 45

4.3 Simulation Analysis

overflow

c:=0 fillin repair
h:=50 9 P
> it EV_START

overheated

i: EV_START i: EV_STOP
h>90| |h<20

H = —0.005
h>9.9

i EV_STOP

no flow

Figure 4.3: The environment of the barrel example modelled as a single modified Hybrid
Automaton

4.3 Simulation

As earlier stated, the overall goal of formalising the dgdimn of the environment is to
allow a simulation to performed. During this simulationgthktate of the environment is
observed, and, if an undesirable situation is reached, eh&ra program is assumed to
be incorrect. As described in section 4.2.2, we have chas@erform this simulation by
generating executable code from the environment models.

In this and the following sections, we shall describe howsineulation is performed. We
first decide between two different simulation algorithmbieTnain difference between these
approaches are the accuracy of the interaction with theagmogram. Afterwards, we de-
scribe how updates of the environment are performed. Insedt4 we consider different
strategies texplorethe environment, that is, obtain a good coverage of its hebavFi-
nally, in section 4.5, we explain how validation can be penfed in terms of the states of
the environment.

During runtime, the interaction between the environmenmt @@ control program requires
the environment to accept actuations from the environnenit stimuli events, and support
the polling of the values of variables. Naturally, the ugdat the environment must occur
concurrently with the execution of the control programse Tommunication between the
environment and control program must adhere to two requerém

o Actuations force jumpsWhen a control program actuates on its surrounding, it is
imperative that a reaction in the environment occurs if aeassible. Otherwise, an

page 46

Analysis 4.3 Simulation

error that arises from a missing signal cannot be distirigadsfrom an error arising
from adiscardedreaction. If, on the other hand, a discarding of a signal ogagt

occur due to an error in a physical component, it must be eitlgplimodelled in the
automaton describing the behaviour of that component.

o No added delays when pollingvhen the control program needs to poll the environ-
ment for the value of some entity, the delay from the time aictvithe poll request
occurs to the value is returned should be no longer than the iti takes to read the
value of the variable. If an unbounded delay could occur dube polling of some
entity, a deadline for the process performing the poll cqubdentially be broken.
Specifically, this means that no overhead in delay must beseg by the update of
the environment. Aurrentvalue of a variable must always be immediately available.

When the environment is performing an update, there wiliiably be a period of time

in which the environment is in a state where it cannot be gollénfortunately, when the

control program sends a request to poll the value of somabfayiit is necessary to perform
an update. Hence, the requirement that no delay must be edgmyspolling cannot be met.
In order to solve this problem, we represent the continueotugon of the environment by

discrete points. The state of the environment is only ugblatecertain points in time, and
then remains fixed until the next update is performed.

The discrete representation of the environment allows tlg@ment to work on a copy of
the environment while the control program interacts with thost recent iteration. When
the update has been performed, the resulting iterationeoétivironment is made the active
one. This discrete representation introduces an inacgumabe values obtained by polling.
However, given short update times, this inaccuracy candregiarded. We therefore choose
to operate with a periodic update of the environment, wheeeperiod of the update task is
sufficiently long to perform the update while, at the sameetishort enough not to introduce
too much inaccuracy.

In chapter 5, we describe how the validation approach sugder this chapter can be
implemented in the inquisitor framework, presented in ¢daR. In this framework, logical
time can be stopped while the update of an environment i©paed. Thus, the length
of the update does not constitute a problem, since the timianges of control program
processes are not effected. Because of this, the issue wirgnshat the simulation period
is sufficiently long to perform updates is not considerechim$cope of this project.

In figure 4.4 (a), an example interaction between a simulatedronment and a control
program is given. Aftet; time units, the environment stimulates the control progiam
some event. It then waits foy time units, unless an actuation from the environment trigige
the need for an update. In the figure, such an actuation ddastioccur aftets time units
(t3 < t2). With the periodic update approach (see figure 4.4 (b)yatitins and stimulation
events must instead be buffered — since they cannot be lthatébitrary times during an
update.

Using the buffering solution described above, all stimutiitied by the control program
will occur when the active iteration of the environment iswobed. When actuation events
are received, they are stored along with their time of o@nwe. The update procedure,

page 47

4.3 Simulation Analysis

control . control .
simulator simulator
program program
T T update T update
wait(ty)
t1 + -<-—— stimulate Y update L+ buffer output
wait(tp)
0+ --—— stimulate update
1+t + actuate —» ¥ update t1+t3+ actuate —» buffer input
wait(ts)
y Y Y
t14+t34+t5+ L update 20t update

(a) (b)

Figure 4.4:The aperiodic (a) and periodic (b) approaches to simulation

described in the following section, must comply to the reguient that actuations events
force jumps if possible — and that the changes in the enviemtrare performed at the time
of their occurrence.

4.3.1 The Update Procedure

In this section, we describe how the periodic updates of te@@ment are performed. We
shall refer to the period), at which an update is performed as #imulation period The
update task performed periodically is referred to asipdate round At the beginning of
the update round, a (possibly empty) set of time-stampaghtioh events is available. At
the end of a round, a (possibly empty) set of stimulation ®/etust be emitted.

The task that must be performed during each update roundiisct@ way to distribute the
o time units passed since the last round. This is achievedlbgtgm flow and jump actions
in the environment. The simulation round is finished whengin@ of the flows that have
been performed equals the simulation period.

Jump, which are enabled by events present in the actuatiemt gector have precedence.
Thus, if in at least one automaton a jump labelled by a actnaventtanbe taken, itmust
be. Furthermore, in order to comply with the requirement #uation event must cause
changes in environment state at the time of their occurremflew in the current modes of
the automata may be required.

By the approach described above, the changes in the envérrsaused by actuation events
are registered as having occurred at the actual time. Tiedelbing validation, the control
program is never penalised by the fact that an update mayccat befored time units after
the emission of a signal.

page 48

Analysis 4.4 Exploration Strategies

4.4 Exploration Strategies

The previous section described how the formal specificatadran environment can be used
to simulate the behaviour on an actual environment. In theilsition, some limitations
are imposed by the interaction with control programs. Havea lot offreedomin the
exploration of the model still remains. When an automatan some mode, and no jump
decorated by an input event is enabled, there will often bleoéce between performing a
flow in the current mode, or performing a jump to another. i§ilecided to stay, the length
of the flow must be decided. If, on the hand, a jump is chosenugt be decided which of
the enabled jumps to pursue.

We refer to an algorithm for choosing whether to perform flawvgumps during simulation
as anexploration strategy Certainly, the behaviour of the environment during thewsim
lation is dependent on the strategy employed. A good coeeddghe behaviour of the
environment is a precondition for a thorough validation abatrol program. Thus, the aim
of an exploration strategy is to lead to a good coverage oétiv@onment model.

In the following, we describe a number of different explaratstrategies that can be ap-
plied. The strategies are divided into two classes; Thogerdguire historical data about
the choices previously made, and those that do not:

o Non-historical strategies

e RandomA simple strategy is to always choose a random action. Tharddge
of this strategy is that all possible behaviours of an emvrirent is obtainable.
On the other hand, there is no guarantee that a good coveraghieved.

e Jump and flow eagekVith these strategies, the simulation either tries to stay i
the same mode as long as possible (flow eager), or performa@\thenever
possible (jump eager). The coverage of these strategiegarkin terms of the
continuous and sporadic changes in the environment. Tteefuather charac-
terised by their relatively high degree of determinism. sTimay be exploited
for making special-purpose environments for testing djmebehaviours of the
environment.

o Historical strategies

e Mode and jump coverag®y storing information about the frequency by which
each jump has been performed and how much time has beenspachi mode,
a goal for an exploration strategy could be to try to obtams@quilibrium. For
example, it could be desired that an equal amount of timeéstsp all modes
or that all jumps are performed an equal amount of time. Ofsmusince the
signals received from the control program are uncontré#labo guarantee can
be made that this aim can be fulfilled.

In the event that the testing team has a priori knowledge taxehaviours that
are likely to cause the control program to faileightson the modes and jumps
can be used to guide the exploration performed by this gfyateor example, a
low weight on mode is interpreted as a request to spend a ahmwtint of time

page 49

4.5 Validation Analysis

there, and conversely a high weight is interpreted as a stdoestay longer.
Similarly, a high weight on a jump should yield a higher proitity that the
jump is performed when enabled.

e Value-based.By observing the values taken by the variables of the autamat
during a simulation, choices could be made with the purpésbiining some
value-coverage. For example, the domains of the varialoef de partitioned,
and a coverage aim could be that all partitions of all vagalitad been repre-
sented by some valuation of the variables during validatkeor this strategy, a
manual partitioning of the variables is required.

From the descriptions of exploration strategies aboves itlear that each strategy has
strengths and weaknesses. Hence, no single strategy catlaeed superior to all others.

One solution to this problem could be to use a combinatiortrategies — either simulta-

neously or by changing the strategy during runtime. In otdeallow a change between

strategies, it is necessary to store historical infornmafior all the strategies. This may

induce a large overhead, which could considerably incréfasdime consumed by each
simulation round.

4.5 Validation

As stated in the project scope, our main focus in this prageon simulating environments
from formal descriptions. Consequently, the validatiopart described in the following
section allows only relatively simple requirements to lzgext and checked during runtime.

As is customary for runtime validation, we consider the feappgs during an execution as a
trace of events. In our case, the events of a trace consisbdéchanges. The requirements
for the system are formalised into properties expressimgtditions in the allowed traces.
Thus, a safety requirement can be expressed as the absamteraig some mode. Liveness
requirements can be expressed by requiring some mode ttuellgrbe entered.

As earlier mentioned, timing requirements for the contragvam are modelled as error
modes in the environment. Thus, properties of control @owy including time can be
modelled simply by a safety property stating that a specificranode is never reached.
We have therefore chosen to focus on the implementationfefysaroperties.

For this purpose, we introduce a simple way to restrict thewadd traces. We shall refer to
these restrictions asode constraintsA mode constraint consists of twnode properties
which refer to a mode of some automaton and are satisfied iiipgluuntime, the active
mode is the referenced mode. The general form of a mode eamisis:

If some mode propertp; is satisfiedhen some mode propertg, must be satisfied.

The above definition allows constraints on the modes of [gu@mpositions of automata.
At any time during the simulation, one and only one mode ivaah each automaton. Thus,
in fact, the trace of an execution consists of a sequencet®béactive modes, referred to
assupermodes. A mode property expresses that some mode of a givematan is active,
whereas a mode constraint restricts the super modes allowed

page 50

Design Crnprent)

In this chapter we describe how the validation approacheptesl in the previous chapter
has been implemented in the Inquisitor framework (presemechapter 3). We start out
by giving an overview of the validation process and the sxt&on between the runtime
components. We then proceed to present how executable sagmerated from Hybrid
Automata and how the simulation and validation is perform&thally, the status of the
implementation and some suggested improvements are peesen

5.1 Overview of the validation process

An illustration of the validation approach is given in figusel. The validation process
consists of 4 stages; the informal, formal, executable,@mtlusion stages. These stages
and the transitions between them are described below:

informal stage informal informal
- requirements description

l formalisation

A

Y
formal stage formal) = formal
lormal stage properties model

g [‘
S v executable code |

° 1) ‘

! validator f|-------c----- : |

v | y :
‘ i control |

executable stage | environment l |
‘ . I

l explorer |- : :

execution : :
(validation) N)

A\

conclusion stage error

Figure 5.1:The validation process

page 51

5.2 Component Architecture Design

o The informal stage.At this stage, only informal descriptions of the behaviofir o
the environment and the required properties exist. Thesdilaaly to be part of the
requirement specification of the control program.

o The formal stageBy the process of formalisation, formal models and propsrére
created from the informal environment descriptions andiiregnents. The entities of
the environment are modelled as Hybrid Automata, and theirements are stated
as mode constraint properties. The formalisation procesaiiried out manually by
the validation team.

o The executable stagd=rom the formal representations of the environment and the
properties, executable code is generated. The code geddratn the hybrid au-
tomata is used for simulating the environment during thédedion. In addition to
interacting with the control program, the simulated erwireent interacts with an
explorer component, which employs one of the exploration strategresented in
section 4.4. The code generated from the set of propertiBsedea set of mode
constraints that are checked by tredidator component.

o The conclusion stagd-or the actual validation, the generated code is executdd wi
the two possible outcomes that an error was found or than mo @as found. To
emphasise that it cannot be concluded that no error is ecwdan the control program
though none was found, we have called the conclusion statestead ofno errors
For similar reasons, this conclusion can only be obtainei@tginating the validation
process — either by a timeout or from some coverage requiteme

The actual validation is carried out at runtime by executimg control program in parallel
with the simulated environment. In the next section, we diesthe responsibilities of each
of the component present at runtime (at the executable)stagethe interaction between
them.

5.2 Component Architecture

The component architecture at the executable stage dedcaibove is repeated in figure
5.2, decorated with labels describing the interaction ketwthem. Each of the components
(including the control program) are active entities. Theiemment, validator, and explorer
execute as inquisitors, since the time they spend execstiagld not influence the timing
scopes in the control program. In the following section weatiée the responsibilities of
each component.

5.2.1 Component Responsibilities

The central component is the environment, which is geneérten the Hybrid Automata
specification. As will be clear from the description of thisngration in section 5.3, the
structure of the automata will be maintained in the gendratele. The main responsibility
of the environment component is to act as data for the otheponents and perform the

page 52

Design 5.2 Component Architecture

validator check poll(automaton,variable)
-~ actuate(event)

- control
e program

error environment

- . stimulate(event
update(milliseconds, actuations) ()

explorer

Figure 5.2:The interaction between the components

flow(milliseconds)
jump(transitions)

actions they dictate. The environment component is alsporesble for initiating each
simulation round periodically.

The actions dictated by other components include receiiagvents actuated by the con-
trol program and acting as a pseudo sensor entity that thieot@mograms can poll. The
events from the control program must be time-stamped inrdodee effectuated at the right
time during the following simulation round. It also invok/@erforming the flow and jump
updates chosen by the explorer — possibly involving stitiereof the control program. The
responsibility of the explorer component will be elabodate later in this section. Finally,
the environment must act and report on errors found by theatr component.

The responsibility of the validator component is to monitoe state of the environment
— ensuring that all properties are satisfied. These cheekpeanformed at the request of
the environment each time a change in the environment hagredc Notice that, as a
consequence of the fact that updates of the environment ognbe performed by the
environment itself (not directly by the control progrant)ese checks are performed only
during the simulation rounds.

Each of the properties have a textual description. If a ptyge found not to be satisfied
during simulation, this is reported back to the environmélite environment then reports
the error and, in the current implementation, terminatesetkecution with aerror conclu-
sion state.

The explorer has the responsibility of choosing the upd#ias the environment carries
out. At the start of each simulation round, the environmefdrims the explorer to choose
the updates to perform. For this purpose, a vector of theasions received during the
simulation period is given as well the maximum time allowed@ow. An update can consist
of either a flow, a jump, or a flow followed by a jump in case a $iion decorated with an
actuation event is enabled.

If a jump or a flow shorter than the remaining simulation tirmelhosen, the environment
must re-inform the explorer to choose another update. Timisgulure is repeated until the
simulation round is over —that is, the sum of all flows equaitgth of the simulation period.

page 53

5.2 Component Architecture Design

During this procedure the validator performs a check eatle tan update has occurred.
Furthermore, any stimulation events are buffered by tha@emment and emitted at the end
of the round.

5.2.2 Component Interaction during Simulation

Having defined the responsibilities of the components aadriteraction between the en-
vironment and each of the other components, we proceed twilbdeshe order of the inter-
action during the simulation procedure. The environmembgonent controls the explorer
and validator components. That is, these components oclynte schedulable after a no-
tification from the environments. When they have perfornieeirttasks they notify the
environment and wait for notification.

physical logical control _)
time time program €nvironment explorer validator
T periodn
actuate
—
round n I
| —
- I
:I: 1 »
T ! I
period n+1 -— 1
stimulate
\J

Figure 5.3:The order of the interaction between components during simulation

The components execute in the following order (see figurg 5.3

1. Control program executiorBetween each simulation round, the control program ex-
ecutes. During the execution, the control program may &etoa the environment.
As earlier mentioned, these actuation events are timepsdrand stored in the envi-
ronment.

2. A simulation round. The control program executes until the periodic environmen
thread becomes schedulable. Since the environment is aisiiwg thread, it has
the highest priority and, consequently, the control progia preempted. At this
point, logical time stops since an inquisitor thread bec®rmaning. The environment
must now be updated with a maximum flody,equal to the simulation period. The

page 54

Design 5.3 The Environment Component

simulation round is carried out by repeating the followirgaasithm until d equals
zero:

() Notify the explorer to perform an update spending at masilliseconds;
(b) Wait for the explorer to notify;

(c) Perform the flow and/or jumps specified by the explorer.ff@uthe stimuli
events associated with jumps;

(d) Notify the validator to check whether all the propertégs satisfied,;
(e) Wait for the validator to notify and report an error if aperty is not satisfied;

() Subtract the flow-time of the update performed fr@m If no flow was per-
formed,d remains unchanged.

(g) If dis larger than zero, repeat the above procedure.

3. Emitting signals. After the simulation round, the buffered stimuli events areit-
ted. After this, no inquisition threads are schedulablethgocontrol program again
becomes running and logical time starts to progress.

In the following sections we present the design of the thregiisition components, the
environment, the explorer, and the validator.

5.3 The Environment Component

As described in section 5.1, the environment is generata frybrid automata and acts
as data for the other components. The component’s threasgonsible for notifying the
explorer and validator components when they should exepetéorm the updates chosen
by the explorer, and inform about errors reported by thededdr.

In this section we shall first describe how the Hybrid Autoanatodels are specified by tex-

tual descriptions. We then give an overview of how execetabbe is generated from these
descriptions, and explain how simulation and validatiosupported in the environment

component.

5.3.1 Model Specification

The Hybrid Automata describing the behaviour of the envinent are specified in the eX-
tensible Mark-up Language (XML) format. The structure ofesavironment description is
given by a document type definition (see appendix A.1).

We have chosen to describe the specification of an environimean example. For this
purpose, reconsider the barrel example given in sectio3 44 partial description of this
system is given in figure 5.4.

The environment consists of number of events, automatarestdntiations. In the barrel
example, the environment is named "BarrelEnvironmentt] there are two input and two
output events, named "EV_START", "EV_STOP" etc. In the egi@monly one automaton,
"Barrel", is defined. This barrel automaton has a singlealde, "height" with a default

page 55

5.3 The Environment Component Design

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE envi ronnment SYSTEM "eha. dtd">
<envi ronment nane="Barrel Envi ronment " >
<event |abel ="EV_START" type="INPUT"/>
<event |abel ="EV_STOP" type="I1NPUT"/>
<event |abel ="EV_ERR' type="QUTPUT"/>
<event |abel ="EV_OK" type="QUTPUT"/>
<aut omaton nane="Barrel" dynami c="fal se">
<var name="height" defaul tval ="0" paraneter="true"/>
<node name="filling" initial="true">
<updat e>nme. height = me.height + nillis * 0.001; </ updat e>
<invariant>ne. height & t;= 100</invariant>
</ node>
<node nane="punping" initial="fal se">
<updat e>nme. height = me.height - nillis * 0.005; </ updat e>
<invariant>me. hei ght > 9.9</invariant>
</ node>
<node nane="overflow' initial="false">
<invariant>true</invariant>

</ mode>
<transition>
<source node="filling"/>

<target node="punping"/>
<guar d>ne. hei ght > ; =90</ guar d>
<wei ght >1</ wei ght >
<i nput >EV_START</ i nput >
</transition>
<transition>
<source node="punpi ng"/>
<target node="filling"/>
<guar d>me. hei ght & t; 20</guard>
<wei ght >1</ wei ght >
<i nput >EV_STOP</ i nput >
</transition>
<transition>
<source node="filling"/>
<target node="overflow'/>
<guar d>ne. hei ght > ; = 99. 9</ guar d>
<wei ght >1</ wei ght >
</transition>
</ aut omat on>
<instantiation>Barrel (50)</instantiation>
</ envi ronnent >

Figure 5.4:Partial textual description of the environment presented in section 4.2.3

page 56

Design 5.3 The Environment Component

value of 0. The variable is a parameter since it has the pdearatribute set to "true”. This
means an initial value for the variable must be given as anmaegmt when an automaton is
instantiated.

The automaton further consist of a number of modes and tramsEach mode has a unique
name and a parameter specifying whether the mode is thalinmibde of the automaton
in which it is defined or not. Furthermore, Java expressiangléws (named updates in
the XML description) and invariants are defined. Note thdiereas invariant expressions
are required, flow expressions are not. For example, no flgwession is defined in the
overflow mode. The rationale for this will be explained ints@t 5.3.2.

Transitions consist of a source mode and a target mode, kéthenced by their unique
names. They also include a weight for use with exploratigo@ihms requiring them (see
section 4.4). Furthermore, they contain a guard given byva &apression and possibly
a stimulation or actuation event — but not both (see secti@arB}} Note that stimulation
events are called inputs in the specification and actuatomsalled outputs.

The final definition in the environment is the instantiatidrihee automata described above.
With the current implementation it is only possible to hawe anstance of each automaton
(see section 5.6). In the example, an instance of the bartefreaton is created — with the
initial value of the height variable set to 50.

5.3.2 Code Generation

Given a textual description of an environment, the next stdép generate executable code
to simulate that environment. During simulation the ermim@nt must perform two tasks:
One, interact with other components, and two, update isaibrding to the expressions
associated with modes and jumps. The basic interactios,tasich as receiving actuation
events from the environment and informing the explorer tdgeen a simulation round do
not differ from one environment to another. Neither doesdtractural relations between
an environment and an automaton, and in turn, the automatodss and transitions.

When generating executable code from the Hybrid Automatatake advantage of the
similarities of the models described above. Each of thetiestof a Hybrid Automaton
are mapped on to a Java class, as illustrated in figure 5.5EfMie onment class extends
thel nqui si tor class in order to ensure that logical time does not progrésnwipdates
of the environment are performed. The Environment consists list of instances of the
Aut omat a class as well as a list dvent instances. Théut onat on class holds a list of
Mbde instances which in turn holds a list of outgoing transition eachTr ansi tion
instance, a source and a target mode are associated. FRuotleeran event (stimulation or
actuation depending on the type given in Bvent instance) and a weight field is included
intheTransition

Although much of the underlying structure is identical tbrabdels, the variables, events,
modes (including flow and invariant expressions), and jufimEsuding guard expressions)
are not. These model-specific parts are implemented byadjs#eg the classes of the envi-
ronment (see figure 5.5). In fact, most of these classes atarddabstract(those whose
names are given in italics), since it does not make sensetantiate the base classes.

page 57

Design

5.3 The Environment Component

Inquisitor

Environment

Vector events
Vector automata

double pollValue(Automaton, var)
void actuate(String event)

void stimulate(String event)

void run()

input
output

Automaton

Vector modes
Mode active

void flow(int millis)
void jump(Transition transition)

Event

0.1

Mode

Vector transitions

void flow(Automaton au, int ms)
boolean invariant(Automaton au)

2

0..%

String event
- int type

Transition

Mode source
Mode target
Event event
int weight

boolean enabled(Vector events)
boolean guard(Automaton au)

Figure 5.5:Diagram of the target classes of the code generation

page 58

Design 5.4 The Exploration Component

The code generated performs the task of defining descendhttie abstract classes and
instantiate them. In the following, we shall explain howstlworks by use of the barrel
example for which a textual description in XML was given inuig 5.4. A complete listing
of the generated code is given in section A.2.

A descendant for th&nvi ronnent class, calledarr el Envi ronnent is generated. This
class performs the task of instantiating the events defiasedyell as the Barrel object.
Next, code for theBarrel class is generated. This class specialisesAthemat on class
with a field namedhei ght of typedoubl e (that is, a double precision real-valued number).
Furthermore, for each mode and transition specified in tihenaaton definition, an instance
of ananonymousglass are generated.

In the case of modes, the anonymous class generated cohtainwmethods,f| ow and

i nvariant. Thefl ow method updates the variables of an automaton passed by engjum
according to the expression given in the textual speciicaths earlier mentioned, this up-
date need not occur in all modes. Tihevar i ant methods, on the other hand, must contain
some expression that evaluates to either true or false esyonding to théool ean return
value of its declaration (see 5.5). Similarly, tpear d method of the anonymous descen-
dant of Transi ti on returns a boolean value designating whether the guardigfisdtfor
the automaton passed by argument or not.

5.3.3 Simulation and Validation Support

Regarding interaction with other components during ruetithe various classes of the en-
vironment offer methods that fulfil the purpose. In #ni r onment class, théPol | Val ue(
String automaton, String variable) method allows the control program to poll the
value of some variable in an automaton for its current valliee control program may
also invoke thesti nul ate(String event) method, thereby actuating the given event on
the environment. Analogously, the environment (which isative object) may invoke the
stimulate(String event) method in order to give the control program some stimuli.

The run() method of the environment performs the interaction (syocisation) with

the instances of théxpl orer andVal i dat or classes. These two classes specialise the
I nqui si tor class and are therefore active objects. The tasks theyrpevid! be described

in sections 5.4 and 5.5, respectively.

Once the explorer component has chosen whether to perforawadljump, or both, the
environment invokes thid ow(i nt ns) orj unp(Transition transition) methods, de-
fined on the abstract clagst omat on, on each of the automaton instances. After doing so,
it notifies the validator to perform the validation task aegarts any errors returned.

5.4 The Exploration Component

The active object of the exploration component is the absttassExpl orer (see figure
5.6). The run method of this class participates in synclsiadion with theEnvi r onnent
instance. In order to choose an action for the environmepetéorm, a descendant of the
Expl orer class must implement tlehoose() method. This method typically employs one
of the exploration strategies described in section 4.4.

page 59

Design

5.4 The Exploration Component

flow
jump
both

Inquisitor

AN

Explorer

Environement

Environment env

Vector JumpData
- int action

int flow

Constraint

Validator

boolean satisfied
Vector constraints

int getAction()

int getFlow()

int getJumpData()

int maxFlow()

SMap enabled(Vector events)
void choose()

void run()

Property ifClause
Property thenClause
String description

1
2

Property

0..%

boolean satisfied()

N

boolean isSatisfied()
String getUnsatisfied()
void run()

JumpData

TrueProperty

String automaton
String transition
TimedEvent te

boolean satisfied()

ModeProperty

String Automaton
Strng mode
boolean negate

boolean satisfied()

Figure 5.6:Class diagram relating the validation, environment, and exploration components.

page 60

Design 5.5 Validation

In order to help this decision, two methodgrt edMap enabl ed(Vector events) and
int maxFl ow() are made available by the abstract class. el ow() method investi-
gates the current configuration of the automata and retb$nhgest amount of millisec-
onds that all automata can flow in their current modes. By $lseimption of local invariance
(see section 4.2.3) this can be calculated using a binargtsepaproach.

TheSortedMap enabl ed(Vector events) returns a set ofunpDat a instances, describ-
ing which transitions in which automata can be taken. Sinoeps involving actuation
events from the control program must be performed at the timte occurrence of the
actuation, they may be associated with an instande médEvent . ClassTi medEvent spe-
cialises clasg&vent with aRel ati veTi me instance designating the time of the occurrence
relative to the simulation period. ThRinpDat a are sorted ascendingly by their time of
occurrence. Instances without an associdietdEvent are inserted at the end of the set.

Thechoose() method must set the desired update action to either flow, jumpoth. If

a flow is selected, thget Fl ow() method must return the length of the flow. If a jump is
selected, thget JunpDat a() method must return a list dunpDat a objects instructing the
environment thread which jumps to take. Furthermore, ifékplorer cannot find a valid
update it must enter a special deadlock state, not illustret the figure.

5.5 Validation

In this section we describe how the mode constraints predentsection 4.5 are imple-
mented as Java classes, and how they are checked by theiaralihe main class of the
validator component is the inquisitor descendafal,i dat or (see figure 5.6). Theoi d
run() method of this class interacts with the environment — perfog checks of all con-
straints when notified by the environment. When executidarns to theEnvi r onment
thread, thebool ean i sSati sfied() method must return true if and only if all constraints
are satisfied. If one or more constraints are not satisfiedStthi ng get Unsati sfi ed()
method can be invoked to get a textual description of thegencountered.

Constraints are represented by instances of the @asst rai nt. This class encapsu-
lates the if and then clause fields, represented by instaridbs Pr operty interface. The
latter interface has a single methddpl ean sati sfied() that must return a value corre-
sponding to the validity of the property. The simplest clasplementing this interface is
TrueProperty, whosesati sfied() method always returris ue.

For specifying that an automaton is either in a given stateoby theMbdePr operty class
can be used. In this class, tBeri ng aut omat on andString node fields describe which
state of a given automaton the property refers to. Ifrtbgat e field is set tof al se, the
satisfied() method returnsrue if an only if the automata is in the given mode. If, on
the other hand, the value aggat e is true, the method returnsr ue if and only if the
automaton is currently not in the specified mode.

When checking whether a constraint is satisfied Ve dat or checks if the property field

i f O ause is satisfied. Ifitis, the property referenced by thenC ause field must also be.
If the latter property is not satisfied, the constraint iskemro, and an error must be reported.
If, on the other hand, thief Cl ause is not satisfied, no requirements for theenCl ause
exist.

page 61

5.6 Implementation Status Design

5.6 Implementation Status

The current implementation employs a simple exploratiogatsgy, specifically, that by
which the explorer chooses to stay in each mode as long a#lgosd his strategy was
implemented due to its deterministic behaviour. In the rabdpter, we carry out a case
study, which, among other purposes, serves as a test of filerimanted functionality. The
deterministic behaviour of the chosen exploration stiatagilitates easier debugging than
strategies with a more nondeterministic behaviour.

some limitations in the current implementation should b&edo One of them is, that no
generation from a textual description of the mode condsaiised for validation is avail-
able. The implication is that the constraints instancestmmesinstantiated by manually
written Java code. Also, since the inquisitor framework doet support the automatic
instrumentation of Java byte-code, the extra code must beiafiy inserted.

page 62

Case StUdy CHAPTER6

In this chapter we shall perform a case study in which we madeanvironment as Hybrid
Automata and execute the generated code in parallel withtaaig@rogram while observing

a number of properties. This case study is conducted foetreasons. One, to exemplify
the validation method described in the previous chapte,sacond to serve as a test of the
implemented parts of it. Finally, we hope to identify sonmresgths and weaknesses of the
approach from this practical work.

The case we shall study involves a bridge over Oddesund imadinth-western Jutland,
Denmark. We first describe the components and operatiortsedfridge. We then model
the environment as Hybrid Automata and state the propertisgms of the modes of these
automata. Next, we construct a control program that per$aim operations of the bridge.
For testing, we introduce errors into this control programd axecute it in parallel with the
simulated environment. We then hope to be able to detect #resrs during runtime.

6.1 The Bridge over Oddesund

The bridge over Oddesund is a so-calbascule bridgelt opens by sinking a counterpoise,
thereby lifting the footway into the air. This allows ships gass under the bridge. The
bridge is depicted in figure 6.1. In addition to ships passinder the bridge, cars and trains
cross the bridge. Thus, a system for holding back the cargraim$ when the bridge is up
is necessary. It is this logic that the control program o$ ttase study will perform. We
shall refer to the entity controlling the operations at theldgee as thecontroller whether
consisting of a control program, or, as is currently the cadauman operator.

=Immm)
I ———

Figure 6.1:The Bridge over Oddesund.

The components of the bridge that we shall consider parteo$ylstem are:
o A bridge basculeThe bridge opens and closes by raising and lowering the bgscu
respectively;

o A set of rails.The trains pass the bridge via a single set of rails. Ensuhagonly
one train is on the rails at the same time is performed exiigrtmthe environment
described here;

page 63

6.2 Operation of the Bridge Case Study

o A set of barriers stopping road traffi@efore the bridge can start moving toward its
upward position, a set of barriers located on the bridge treeside of the bascule
are lowered in order to stop cars from passing the bridge;

o Control lights for the trains.Control lights for trains passing the bridge are placed
some distance before the bridge. These tell the train dbetkehether to stop or pass
the bridge;

o Interaction with shipsWhen a ship approaches the bridge, it must issue a request for
the bridge to be opened. When allowed to pass, the bridgeeiseapand a grant for
passing is sent to the ship. With the current operation obtfdge, this communica-
tion is performed via radio.

It should be noted that the above description is only parfiaiong the parts excluded is an
extra set of barriers used to stop traffic from one directidgrewa wide load must pass the
narrow bridge from the other side. Furthermore, a large remobsafety relays are used for
ensuring that a flow of current exist in all electrical comeots in the surrounding. These
include the barriers and warning lights on and before thédyar The relays trigger alarms
when a malfunction is observed.

We find, however, that the parts considered above consttusgppropriately complex sys-
tem for our testing purposes. As further restrictions, wallsdissume that trains only arrive
from one direction, and that ships only approach the bridgmfone side. In the follow-
ing section we shall describe the operation of the bridgeyirsg as a refinement of the
environment and a requirement specification of the contr@dmam.

6.2 Operation of the Bridge

In this section we turn our attention to how the bridge is apsnl. Specifically, we describe
how incoming trains and ships are handled by the controfiénebridge, trains, and ships.
This includes the communication between them as well asdtiens they perform. An
aerial overview of the entities of the environment is giveffigure 6.2 along with distances
from sensors and signals to the bridge.

6.2.1 Incoming Trains

An incoming train is detected by the controller with the aidaosensor placed so that
the trains position can be detected when it is between twceagid kilometers before the
bridge. This sensor can be polled in order to obtain the 'gr@istance to the bridge. By the
time the train passes the signal 1.5 kilometers from thegeridhe bridge controller must
have switched on the signal in order for the train to pass titge. Otherwise the train will
stop 500 meters before the bridge waiting for the signal. {ff&ie travels at 80 kilometers
per hour until the 500 meter mark from which it travels at Soikieters per hour.

Once the train has passed the bridge, it enters a sensomiegsa@tching from 200 to 500
meters after the bridge. When the controller detects thatithin has entered this zone,
it may be concluded that the train has passed the bridge.r tii® point, the train may

increase its speed to 80 kilometers per hour.

page 64

Case Study 6.3 Modelling the Environment

1km-d--- _Q ________ in range
250m - - ___D____ - - - wait
signal stop
train : I bridge

:qjll||||||I|||i|||iHi||||i|||||::i;

I | | | I
2km 1.5km 500 m A
sensoring interval
sensoring interval Q (200-500m)
(2-8km) 100m--f---¥-----4-- passed

Figure 6.2:An aerial view of the bridge parts

6.2.2 Incoming Ships

When a ship is within 1 kilometer of the bridge, it enters tbenenunication range. At this
point, it must contact the bridge controller by issuing aues} for opening the bridge. The
bridge controller must respond with either a grant or denthsf request. In case a deny is
issued, the ship must wait 250 meters from the bridge for atgoapass under the bridge.

We assume that a ship approaches the bridge with a velodityeba 3 and 5 meters per
second when between the 1 kilometer and the 250 meter marken the latter mark it
proceeds to pass the bridge at between 2 and 3 meters pedsastren the ship is 100
meters on the other side of the bridge it issues a signal tbridge controller that it has
passed the bridge.

6.2.3 Opening the Bridge

The bridge must be opened and closed in correspondenceheitfignals given to the ships.
Before a grant signal is sent to the ship, the bridge must ba.opimilarly, the bridge is not

allowed to close before the ship has issued its passed signghermore, the bridge must
send signals in order for the barriers to lower and raise. ¥éeiime that the barriers raise
and lower within 10 seconds. We also assume the presencasgrdbat send signals when
the bridge is fully opened and closed respectively. The gatace of opening and closing
the bridge is given in table 6.1 below.

6.3 Modelling the Environment

In this section we describe how we have modelled the enviesrtrdescribed above as
Hybrid Automata. These automata will be used for statingpituperties that we wish to

page 65

6.3 Modelling the Environment Case Study

Description Done
1 | Lower the barriers after 10 seconds
2 | Open the bridge when signal received
3 | Send a grant signal to the ship| immediately
4 | Wait for passed signal when signal received
5 | Close the bridge when signal received
6 | Raise the barriers after 10 seconds

Table 6.1: The procedure of opening the bridge

hold in the next section. Furthermore, code generated fl@ae models will be used for
the validation of the erroneous control programs in seddién

The environment modelling consists of four Hybrid Automegpresenting the bridge, the
barriers, the trains, and the ships. We describe these ataanmdividually. In this section,

the input and output signals given in the figures are reldtvéne environment. Thus, an
input in the figure corresponds to an actuation signal by trrol program. The textual

description is listed in section A.3.

6.3.1 The Bridge Hybrid Automaton

The Hybrid Automaton for the bridge is depicted in figure GtZonsists of the four modes
down, raising, up, and lowering. A variablgeg, represents the angle of the bridge bascule
from its closed position. The bridge is initially closed. Ul thedeg variable is set to 0 and
the initial mode is down. The bridge automaton remains ig fasition until it receives an
EV_BRI DGE_RAI SE input signal from the control program. It then jumps to itsirag mode,

at which the angle from the closed position increases until@st 80 degrees.

When the angle is between 79 and 80 degrees, a jump to the up most be carried
out. As mentioned in the previous section, the bridge wiréiy stop raising, and the
EV_BRI DGE_UP signal is offered to the control program. Similarly, whenEh BRI DGE_
LOVER signal is received, the bridge starts to lower. This prosaettil the angle is between
zero and one degrees. At this point #é BRI DGE_DOM stimuli is emitted.

6.3.2 The Barrier Hybrid Automaton

Although the actual environment consists of four barrieéosiog the road for traffic from
both directions, we shall assume that these behave idiéyticel thereby can be modelled
as a single automaton. This automaton, presented in figdrasgidentical in structure to
the bridge automaton presented above. Like the bridge aitonthe barrier automaton has
four modes, denoting its current position and a single éeialeg, representing its degree
relative to the initial position, up.

Furthermore, it reacts to actuation signa®y/ (BAR LONER and EV_BAR RAI SE) from the
control program for jumping between the non-moving (up andm) and moving modes
(lowering and raising). The major difference lies in thetfdoat no signals are emitted when
the barrier jumps from the moving modes to the non-movingsorkhe rationale for this

page 66

Case Study 6.3 Modelling the Environment

deg:=0

guard: deg< 1 ‘ lowering
_ output: EV_BRIDGE_DOWN [om0 o 0 e

b inv: deg> 0

input: EV_BRIDGE_RAISE input: EV_BRIDGE_LOWER

(raising up
flow: ded = 0.005

inv: deg< 80

4

guard: deg> 79
output: EV_BRIDGE_UP

Figure 6.3:The bridge Hybrid Automaton

is that we wish to introduce the need for a timer in the corproigram. The barriers will
spend 9 seconds on closing and opening, which allows theat@mbgram to conclude that
the barriers are either up or down within the 10 seconds fiteersignals, as specified in the
previous section.

deg:=0

raising
flow: ded = —0.01
inv: deg> 0

up

guard: deg< 1

A

input: EV_BAR_LOWER input: EV_BAR_RAISE

- e
(lowering down
flow: ded = 0.01 >
inv: deg< 90 guard: deg> 89 L

Figure 6.4:The barrier Hybrid Automaton

6.3.3 The Train Hybrid Automaton

According to the specification of incoming trains given ictien 6.2.1, the control program
can observe a train no sooner than when it reaches a sengoned kilometers before the
bridge, and no later than when it passes the sensoring zénmeters after. Therefore, the

page 67

6.3 Modelling the Environment Case Study

trains are sporadic entities which could be modelled usyrgchic creation. We have cho-
sen not to do so, primarily because the current implememtatoes not allow for dynamic
creation. A second reason is that we assume the presencenoisabne train at a time —
whereby the advantages of dynamic creation is limited.

(passed
d := 10000 guard: d > 10000 flow: d’ = 0.02
inv: d < 12000
(far A
flow: d’ = —0.02 guard: d < —199
inv: d > 8000

guard: d > 1500 p
input: EV_CLEAR

flow: d' = —0.015
/—> inv: d > —200

input: EV_CLEAR

cleared

guard: d > 7999

(approach

flow: d = —0.02
inv: d > 500

stopped

guard: d <501

Figure 6.5:The train Hybrid Automaton

The Hybrid Automaton for the incoming trains is depicted igufie 6.5. The automaton
contains five modes: far, approach, cleared, stopped, asgk@a A variabled, denotes

the distance to the bridge. The initial mode is far, in whibk train remains until eight
kilometers from the bridge. A jump is then made to the apgnaaode, from which a jump
to the cleared mode can be made if and only EVaCLEAR signal is received from the
control program before the train passes the 1.5 kilometekmiathis is not the case, the
train will be forced to stop 500 meters before the bridge twgifor theEV_CLEAR signal.

Once the train is cleared to pass the bridge, it proceedseatueced speed until 200 meters
after the bridge, at which point it enters the passed modgelfiad chosen to use dynamic
creation for trains, this would have been the final mode fertthin automata. However,
in order to allow more than one train to ever pass the bridghoumt dynamic creation, we
introduce a cycle in the automaton. The train will remainhia passed mode until between
10 and 12 kilometers away from the bridge, at which it re-enits far mode.

6.3.4 The Ship Hybrid Automaton

Like the trains, ships could be naturally modelled as sporadtities. However, for the
same reasons we did not model incoming trains using dynaraeation, we shall not use
dynamic creation in the modelling of ships. The single awtmm for modelling ships is
shown in figure 6.6.

page 68

Case Study 6.4 The Control Program

As in the train automaton, the ship’s distance to the bridgepresented by a variablek,
Initially, the ship is in the far mode, in which it stays urtie distance is 1000 meters. It
then takes a jump to the in range mode, wherely d N RANGE stimuli is emitted. The
automaton stays in this mode until eitheEa DENY or EV_GRANT signal is received from
the control program. If a grant signal is received, the simfees the granted mode, where
it stays until it is 250 meters before the bridge. If, on thkesthand, the ship is denied
passage, it enters a denied state, in which it stays urttiéed grant signal is received or
the distance to the bridge is 250 meters. In the first casderethe granted mode, in the
latter it enters a waiting mode.

From the granted mode, the ship enters the passing mode wiseB50 meters from the
bridge. If in waiting mode, the ship enters the passing maudg when a grant signal is
received. When the passing mode is left, 100 meters aftaingasinder the open bridge,
theEV_PASSED signal is emitted and the passed mode is entered. Here $ staiy between

2 and 3 kilometers away, yielding a cyclic behaviour of stgpsilar to that of the train

automaton.

6.4 The Control Program

In this section we describe the control program used foratpeg the bridge. We shall first
describe its design in terms of a state diagram, and thereptbto describe the implemen-
tation. In addition to this, we describe a number of mutatitimat we introduce into the
control program. These mutated versions of the control farogwill be used for validation
in section 6.5.

6.4.1 Design

The control program is built around the state diagram itatsd in figure 6.7. Transitions
between states are triggered by events in the environmehtey obtained by polling, and
timers. At some transitions, a signal is sent to the enviremnm order to actuate according
to the given situation.

Initially, the control program is in state closed. This d&sothat the bridge is closed, but
can be opened if a ship comes into range and sends a requeby. gblling, it is found
that a train is approaching, the cleared signal is sent tdrée and the control program
switches to the train state, from which the bridge cannotpg®ned. It remains in this state
until either the train has passed the bridge or a ship regtiegtass under the bridge. In the
first case, the control program returns to the closed statthe latter, it sends a deny signal
to the ship and switches to a state denoting that a ship isngddr a grant.

From the closed and ship request states the bridge can beapas described in section
6.2.3, the first step of this procedure is to lower the basriefhis is done by sending a
signal to the environment, after which the control progrdarts a timer that triggers after
10 seconds. When the timer triggers, é BRI DGE_RAI SE signal is sent to the bridge.
When the environment emits thi&/ BRI DGE_UP it can be assumed that the bridge is up,
and theEV_SH P_GRANT signal is given to the ship. When tii% SH P_PASSED signal is
received, the bridge is closed and the barriers are loweyeal irocedure analogue to that
of opening.

page 69

Case Study

6.4 The Control Program

guard: d > 2000

Y

passed

[far) granted
_ | flow: d" =-0.01 flow: d’ = —0.004
inv: d > 1000 inv: d > 250 guard: d < 251
2
guard: d < 1001 input: EV_GRANT input: EV._GRANT
v
f in range) denied f passing
flow: d' = —0.004 » flow: d' = —0.004 flow: d’ = —0.002
inv: d > 250 input: EV_DENY [inwv: d> 250 inv: d > —-100
guard: d < 251
v
waiting input: EV_GRANT

Figure 6.6:The ship Hybrid Automaton

guard: d < —99 L

output: EV_PASSED

flow: d’ = 0.05
inv: d < 3000

page 70

Case Study 6.4 The Control Program

train(true)

ship(true)

train(false)
barrier(true)

bridge(true)

train(false)

barrier(false)

bar raise

bridge(false)

closing

ship(false)

ship(true)

Figure 6.7:The state diagram of the control program

6.4.2 Implementation

The implementation of the control program is centred arothn&CPSt at e class, partially
listed in figure 6.8. It contains an integer fiekt,at e, that holds the current state and a
boolean fieldt rain, that is assigned the value true if a train is recognised emhnilthe
procedure of opening and closing the bridge. The latteateiallows the control program
to clear an approaching train once the bridge has been clds$esl functionality, however,
is not described in the following.

The class has three methods which are invoked by activetshjgen a change in state has
been observed. Their signatures podl i ¢ voi d train(bool ean incom ng), public
voi d bridge(bool ean open), andpublic void barrier(bool ean up). Notice that
only the method body of the first of these is shown in figure 6.8.

The operation performed by the active objects is to obsetvenvactions occur in the en-
vironment. They then invoke the methods on @RSt at e instance in order to reflect the
change in state. The pattern of method invocation is depictéigure 6.8.

As an example of an active object, consider the class nPol | er presented in figure
6.9. This class performs a periodic task with the purposesobgnising the events that
a train reaches one of the sensoring zones on either sidesdbrttige. It invokes the
trai n(bool ean inconm ng) method in the instance @PSt at e with atrue parameter
value if a train is approaching andfal se parameter value if the train has passed the
bridge.

Intherun() method of thelrai nPol | er class, the last polled value of the train’s distance
to the bridge is used to decide whether the train is approgctiie bridge (incoming) or

page 71

6.4 The Control Program Case Study

import javax.realtime. *;
i nport environnent. *;

public class CPStat ef
/* define states as constants */
public static final int CP_CLOSED = 0;
public static final int CP_TRAIN = 1;
public static final int CP_TRAIN REQ = 2;
public static final int CP_OPENING = 3;
public static final int CP_OPEN = 4;
public static final int CP_CLOSING = 5;
public static final int CP_BAR LOAERI NG = 6;
public static final int CP_BAR RAISING = 7;
public static final int CP_BAR DOM = 8;
public static final int CP_BAR UP = 9;

private static final int BAR WAIT = 1100; // ms -- change at speedup
private boolean train = fal se;

private int state = CP_CLOSED

private Qbject lock = null;

public void train(bool ean inconing){
this.train = inconing;
Real ti meThread. current Real ti neThread(). begi nSynchroni zati on(| ock);
synchroni zed(| ock) {
i f(incomng){
if(this.state == CP_CLOSED){
this.state = CP_TRAIN
Abstract Envi ronment . i nstance(). act uat e("EV_TRAI N _CLEARED");

}
}
el se{
if(this.state == CP_TRAIN){this.state = CP_CLCSED; }
if(this.state == CP_TRAIN REQ{
this.state = CP_BAR LONERI NG
Abst ract Envi ronment . i nstance() . act uat e("EV_BAR_ LONER") ;
[* start a timer that inforns cp when barrier is down */
AsyncEvent Handl er aeh = new BarrierHandl er(fal se, this);
OneShot Tiner t = new OneShot Ti mer (new Rel ati veTi me(BAR VAIT),
aeh);
t.start();
}
}

}

Real ti meThread. current Real ti neThread() . endSynchroni zati on(l ock);

Figure 6.8:Part of the CPState class maintaining control program state information

page 72

Case Study 6.4 The Control Program

public class TrainPoller extends RealtimeThread{

CPState state = null;

private static final int POLL_ PERICD = 100; // poll every 100 ns
private static final double DI ST_APPROACH FROM = 8000. 0;

private static final double DI ST_APPROACH TO = 2000. 0;

private static final double DI ST_PASSED FROM = -100. 0;

private static final double DI ST PASSED TO = -200. 0;

private boolean train = fal se;
private bool ean inconing = true;
private double last = -1;

public TrainPoller(CPState state){
super (new PriorityParanmeters(PrioritySchedul er.instance().getNornPriority()
new Peri odi cParamet er s(new Absol ut eTi me(Abst ract Envi ronnment . START_TI
new Rel ativeTi me(POLL_PERIQD), null, null, ...

),
);’

this.state = state;

}

public void run(){
awai t Rel ease()

doubl e dist;

whi | e(true){
di st = Abstract Environnent.instance().pollVal ue("Train", "distance");
if(last 1= -1){

if(last > dist){inconing = true;}
el se{inconing = fal se;}

}
last = dist;
if(train){
i f((dist <= DIST_PASSED FROM && (dist >= DI ST PASSED TO && !incomi ng){
train = fal se;
state.train(fal se);
}
}
el se{
i f((dist <= DIST_APPROACH FROM && (dist >= DI ST_APPROACH TO) && incomi ng){
train = true;
state.train(true);
}
}

wai t For Next Period();

Figure 6.9:The class used for polling for polling for trains

page 73

6.4 The Control Program Case Study

not. This is necessary because the Hybrid Automaton madettains in the environment
is cyclic (see section 6.3.3). As a consequence the distantiee bridge is within the
interval twice per cycle — whereas the train is in fact onlp@aching once.

We now return our focus to th€PSt at e class. When thérai n(bool ean i ncom ng)
method is called with a parameter valuetoiue, the train is cleared only if the bridge is
closed. This is done by invoking tlaet uat e(String event) method on the instantiated
environment. The state is then changed to denote that faicattnain has been cleared.

If, on the other hand, the value of the incoming variablieaisse, the state is set to closed if
no ship is waiting. Otherwise, the bridge opening proceduimitiated by sending a signal
to the environment to lower the bars. Furthermore, a timstasted which, at the time of
triggering, will inform the control program that the bamseare down in fashion similar to
the event that a train is approaching.

Several threads invoke methods on the shared instan@®Sbfate. This may lead to

concurrent updates of the state in the control program. Asmmgte could be that the
Trai nPol | er instance invokes thier ai n(bool ean inconi ng) at the time the handler for
the event that bridge has been closed is executing. Thusyefieods for updating the cur-
rent state are synchronised in order to obtain atomicityidédhat we have included the in-
vocations of théegi nSynchroni zati on(Qbj ect 0) andendSynchroni zati on((hj ect

0) in the listing. As mentioned in section 3.1, these are reguto obtain the behaviour
described in the Real-Time Specification for Java.

6.4.3 Control Program Mutations

Based on the implementation described above, we have dré&aie mutated control pro-
grams. These version have the potential to actuate on th@ement in a manner leading
to an undesirable situation. We first describe these simstas properties in terms of the
mode constraints presented in section 4.5.

Properties

For the purpose of validating the four control programs dbsd in section 6.4.3 a number
of environment properties that are required to hold are eded’hese include safety prop-
erties stating that not accidents occur in the environmEramples of such properties are
that no train ever crosses the bridge while it is not closedlthat the bridge never starts to
raise before the barriers are lowered. In addition, we thioe the requirement that no train
should ever have to stop.

We state three such requirements that we have found to stdficecognising that undesir-
able situations arise using the erroneous control prograimsse are presented below:

o Ship not granted when train clearedlhat is, if a train is cleared, no ship is ever
granted. Stated in the mode constraint properties sugpbstéhe current implemen-
tation, this corresponds to: Train in mode cleared impligsShip in mode granted.

o Barriers down when bridge raisingVhen the bridge is opening, the barriers must be
down. Corresponds to: Bridge in mode raising implies Basria mode down.

page 74

Case Study 6.5 Validation

o Never train stoppedThe simple requirement that a train is never stopped tregssla
to: true implies not Train in mode stopped.

Mutations

The four control programs which we shall use for validatiemtains one of the mutations:

o Early raising of the bridge.According to the procedure for opening the bridge, the
barriers can be assumed to be lowered ten seconds aftera bigs been sent to
them. In this implementation, the control program waitsdoly eight seconds.

o Missing detection of trains when bridge op&ihen the bridge is open, a train cannot
be cleared. However, a cleared signal must be sent once idhgelis closed. The
error introduced here is that if a train is approaching wthle bridge is up, it is never
cleared.

o Sending wrong signal to shipdf a train is cleared, requests from ships should be
denied. In this version, the control program may mistakeseiyd the wrong signal in
this situation. That is, a ship is granted to pass under tidg®mlthough it cannot be
opened. The error is implemented so that, each time a shiphis tienied, there is a
certain probability that the grant signal is sent. For thigdetion we have chosen the
two probabilities 0.1 and 0.9.

o Missing detection of train having passed the bridgehe control program detects
that a train has passed the bridge when it enters the polting after the bridge. By
increasing the period of the polling thread, we introducesk that the train is not
detected after passing the bridge.

6.5 Validation

Having defined our control program and the environment inclwhwe wish it to control,
we now continue to perform the validation of the mutated mmrgrograms. The properties
stated in the previous section are used to try to detectserror

6.5.1 Execution and Results

The four erroneous control programs were executed in ghnaith the code generated from
the Hybrid Automata. The environment was explored with ttrategy currently imple-
mented, that is, the approach where the environment staglsrimodes as long as possible.

The properties listed in section 6.4.3 are implementedgutie classe€onstrai nt and
the descendants of thirRe operty interface. As an example, the constraint stating that the
barriers must be down when the bridge is raising is listedguarg 6.10.

With the given modelling of the environment, it takes an asmnable amount of time for
the entities in the environment to approach the bridge. dfoee, the idea of speeding up

page 75

6.6 Conclusions on the Case Study Case Study

constraint = new Constraint(env,
“Barriers::down when Bridge::raising",
new ModeProperty("Bridge", "raising", false),
new ModeProperty("Barrier", "down", false));
env. addConstraint (constraint);

Figure 6.10:The constraint that barriers must be down when the bridge is raising stated in
Java code

the simulation was appealing. A similar approach has begiedzout for model checking
in Uppaal ([HLOZ2]).

A speed-up requires both the environment and the contr@rpro to execute at a faster
pace, which requires adaption of the timing scopes as wall fast enough test platform
to allow the control program to finish its tasks within the néeadlines. The latter turned
out not to constitute a problem, as the load of the system achihe tests were conducted
was very low.

No support for performing speed-ups is provided by the ettecdramework — and it must
therefore be done manually. In the environment, this idyascomplished by multiplying
all coefficients of the flows by some factor — in this case wesehd0. In the control
program, only one of the tasks depends on time, namely ther titarted to inform the
control program when the barriers are either down or up. Végetiore divide the time
waited by this timer by ten in order to match the faster envinent.

Since some of the errors introduced are not determinidtie,control programs were ex-
ecuted 8 times in order to observe the variation in validatioirations. The results are
presented in table 6.2.

In all executions, an error was found. In most cases, thesame found within four minutes
— except in the implementation where a wrong signal is pgssint to a ship. However,
this is to be expected due to the nondeterministic naturkisiisbehaviour.

6.6 Conclusions on the Case Study

From the validation performed of the case study in the previgections, we conclude that
the approach of validating control programs in simulatedrenments is successful. We
also conclude that the current implementation of the vébdaapproach in the inquisitor
framework works. However, a problem regarding polling timeisnment for the current
value of some variable leads to problems when sporadiciestiire modelled by cyclic
automata.

We also conclude that speeding up the validation procegslisdesirable and possible. We
therefore mention it in the future work presented in chater

page 76

)) abed

Control Program

| Violated Property

H #1

| #2

| #3

\#4

| #5

| #6

\#7

| #8

| Avg.

Early raising of the
bridge

Barriers down when
bridge raising

67s

68 s

67s

68 s

68 s

68 s

66 s

68 s

67.5s

Missing detection of]
trains when bridge
open

Never train stopped

188 s

188 s

186 s

187 s

188 s

188 s

187 s

188 s

1785s

Sending wrong signal Not ship granted wher

to ships (probability
0.1)

train cleared

I

31ls

31ls

1703 s

1073 s

197 s

196 s

197 s

1169 s

574.6 s

Sending wrong signal Not ship granted wher

to ships (probability
0.9)

train cleared

I

198 s

199 s

31s

31s

31ls

31ls

31ls

31ls

72.9s

Missing detection of]
train having passed th

D

bridge

Never train stopped

188 s

188 s

186 s

187 s

188 s

188 s

187 s

188 s

1785s

Table 6.2:The results of 8 execution of each control program. The property mentioned is that broken by the given run.

Apms ase)d

Apn1S ase) ay) uo suoISN|aU0D 9°9

6.6 Conclusions on the Case Study Case Study

page 78

Conclusion ——¢

As computing hardware becomes smaller and more powerfuljsage for so-calledm-

bedded systemacreases. Such systems are embedded into special-pulposes and
interact with other entities. Often, these entities makewpnvironmenthat must becon-

trolled by the embedded system. That is, the embedded system actoasd program
which must keep its surrounding environment safe.

A special characteristic about such systems is that they aficorporateeal-time require-

ments In order to behave correctly, the interaction between thetrol program and its
environment must occur at the right time. A typical examgiswch timing constraints is
that the control program mustactto somestimuli from the environment within a fixed
interval of time.

Many of the systems described above are commonly used tmtent/ironments in which
errors have fatal consequences. Others are shipped indaaygities, making errors hard
and expensive to correct. Thus, a lot of effort is spealtdating such systems for errors
before they are put into use. Similarly, a large amount cdaesh is conducted with the aim
of improving the methods for validating embedded real-tBystems.

In this project, we investigate a validation method base&xatuting the control program
and observing its behaviour. Research in such techniquresyrk asrun-time validation
has enjoyed increasing attention recently ([KiQ1] and [HP0O]). We have identified two
shortcomings in current run-time validation techniquethwegard to the validation of em-
bedded real-time systems. One, support for real-time sysie relatively limited, and two,
the control programs must be executed in their actual enmients.

We propose a method that allows an embedded real-time systbmvalidated in &imu-
lated environment. The environment is represented by a formairgemn of its possible
behaviour. This approach is commonly used in model checgiagtices, where models
of the control program interacts with models of the enviremta Themodelof the envi-
ronment incorporates the timing requirements imposed ercémtrol program, thereby in-
creasing the support for validation of control programdwréal-time constraints. A further
contribution is that the validation is performed in termgtad behaviour of the environment,
rather than that of the control program, which allows a higbeel of abstraction from the
implementation.

Based on analysis of the generic behaviour and communicattterns of environments,

we have found the notion dflybrid Automatato be suitable for formally representations
of environments. We have, however, introduced a number dfifications to the general

theory, in order to support simulation and interaction vatimtrol programs.

We have presented an approach to performing environmenilaiion based on formal
models of the allowed environment behaviour. Using thisreggh, generated code simu-
lating the environment is executed in parallel with the calnprogram. In order to obtain

page 79

7.1 Future Work Conclusion

an interestingcoverageof the possible environment behaviour, we have considezeelral
strategiesto exploring the environment models.

Furthermore, we have suggested an approach by which regemts on the behaviour of
the control program can be stated in terms of simple comggam the behaviour of the en-
vironment. Specifically, the specification of real-time staints is supported by modelling
in the environment. Thereby, errors in the control progravhdther timing-related or not)
can be found by observing the state of the environment dutinime.

In order to investigate the feasibility of the proposed méthwve have implemented a pro-
totype and carried out a case study. This case study exeasylifé process of formalisation
and validation. The results of the validation performedvgleacouraging results.

7.1 Future Work

In this section, we present a number of possible future erdraents to the work presented
in this report. Some are directly related to improving thelagability of the method, others
show how the method can be applied in a greater perspective.

o Applicability-related extensionsn this project, we have not considered the dynamic
creations of entities in the environment. Since such aaatin fact do occur in
environments, a more intuitive modelling can be accomplishy supporting them.

It is suggested that the dynamic creation is mapped on to mdicoupdate of the
environment. Thereby, dynamic entities can be created byng ffrom one mode to
another.

Another way to increase the applicability of the method isriplement generic sup-
port for speeding up the validation process. A manual waytoease the speed of
the validation was used in the case. In a more generic settiegspeed-up could
be supported by the Inquisitor Framework. For example, Beding up the pro-

gression of logical time by some factor, all timing scopethim control program and

environment could be easily changed by the given factor.

The last applicability improvement we shall consider is tsualise the interaction
between the control program and the environment during Isitiom. Thereby, the
testing team would have an easier job identifying the flavhadontrol program.

o Validating external control programd.he prototype presented in this report supports
the validation of real-time systems in a setting where lagtone can be stopped.
Thus, the time spent by the simulator for updating the envirent is not limited by
the length of the simulation period.

In a more realistic setting, the control program is execuegpecialised hardware.
By implementing a stub for interaction with the simulatedissnment, such control
programs could be validated even though they are executedseparate processing
unit. In order to accomplish this, however, a limit on thedispent for updating the
environment during simulation must be adhered to.

page 80

Conclusion 7.1 Future Work

o Control program specificationsBy assuming the presence of a specification of the
control program, a couple of enhancements to the validatiethod can be imple-
mented. First, the knowledge about the control program @amided to obtain a
greater coverage of its possible behaviour. The knowledgy aso be used to iden-
tify critical states in the control program. Such knowledgay in turn be used to
decide the simulation of the environment.

A second use of the control program specification is to oleserivether the imple-

mentation behaves in accordance with the specificationekXample, the conformity

criterion used for model-based testing could be used. Ttemdrd knowledge about
the control program may be useful for better debugging stpp@r example, when

an error in the environment occurs, the actions of the coptagram can be deduced
from the model. If a conformity error occurred before theoelin the environment,

it is likely that the implementation does not conform to tpedfication. Otherwise,

the specification of the control program may in fact allow g¢iveen behaviour.

A third use of the control program specification is to perfamodel-check of the
control program alongside the environment models. For gtenif the control pro-
gram specification was given as a Hybrid Automata the HyTeotighchecker could
be used. In order to allow model checking, however, the ussilictions on the
environment automata must be applied.

page 81

7.1 Future Work Conclusion

page 82

Source Code Listings e A

This appendix includes the source code listings referraterreport.

A.1 Document Type Definition

The environment specification must be described in XML fildseaaing to the following
format:

<! ELEMENT environnent (event*, automaton+, instantiationt)>
<I ATTLI ST environment nane CDATA #REQUI RED>
<l ELEMENT event EMPTY>
<I ATTLI ST event |abel CDATA #REQUI RED
type CDATA #REQUI RED>
<! ELEMENT automaton (var*, paran¥, node+, transition*)>
<I ATTLI ST aut omat on name CDATA #REQUI RED
dynam ¢ CDATA #REQUI RED>

< ELEMENT var EMPTY>
< ATTLI ST var nane CDATA #REQU RED

def aul tval CDATA #REQUI RED

paranet er CDATA #REQUI RED>
<! ELEMENT node (update?, invariant*)>
<! ATTLI ST node nanme CDATA #REQU RED

initial CDATA #REQUI RED>
<l ELEMENT transition (source, target, guard*, weight, input?, output?, update?)>
<I'ELEMENT source EMPTY>
<I ATTLI ST source node CDATA #REQUI RED>
< ELEMENT target EMPTY>
<! ATTLI ST target node CDATA #REQU RED>
<! ELEMENT updat e (#PCDATA)>
<I'ELEMENT i nvariant (#PCDATA)>
<I ELEMENT guard (#PCDATA) >
<I ELEMENT wei ght (#PCDATA) >
<l ELEMENT i nput (#PCDATA) >
<! ELEMENT out put (#PCDATA) >
<! ELEMENT instantiation (#PCDATA)>

A.2 Partial Barrel Environment Source

This section lists the source code generated from the papéification of the barrel envi-
ronment in section 5.3.1.

A.2.1 The Barrel Environment Class
TheBarrel Envi ronment class is defined as follows:

page 83

A.2 Partial Barrel Environment Source Source Code Listings

/'l package environment. gener at ed;
inport environnent.*;
public class Barrel Environment extends AbstractEnvironment {
public Barrel Environnment () {
super ("Barrel Environnent");
addEvent ("EV_START", Event.|NPUT);
addEvent ("EV_STOP", Event.|NPUT);
addEvent ("EV_ERR', Event.QUTPUT);
addEvent ("EV_OK", Event.QUTPUT);

addAut omat a(new Barrel (50));

A.2.2 The Barrel Class

TheBarrel class is defined as follows:

/'l package environnent. generat ed;

inport environnent.*;

public class Barrel extends AbstractAutomata {
public double h = 0;

public Barrel (int h) {
super ("Barrel", false);

/* instance initialization */
this.h = h;

/* addi ng nodes */
addMode(new Abstract Mbde(this, "filling") {

public void update(AbstractAutomata me, int mllis) {
((Barrel) ne).height = ((Barrel) me).height + mllis * 0.001;

}

, true);
((Abstract Mode) nodes. get ("filling"))
.addl nvari ant (new Abstract Eval uation(this) {

public bool ean eval uate(Abstract Automata ne) {
return ((Barrel) ne).height <= 100;
}

}
)i
addMbde(new Abstract Mbde(this, "punping") {
public void update(AbstractAutomata ne, int nmillis) {
((Barrel) ne).height = ((Barrel) ne).height - millis * 0.005;
}
}
, false);
((Abstract Mbde) nodes. get (" punpi ng"))

.addl nvari ant (new Abstract Eval uation(this) {

page 84

Source Code Listings A.2 Partial Barrel Environment Source

public bool ean eval uat e(Abstract Aut omata ne) {
return ((Barrel) ne).height > 9.9;
}

addMode(new Abstract Mbde(this, "overflow') {

public void update(AbstractAutomata ne, int nmillis) {
1

}

, false);

((Abstract Mbde) nodes. get ("overflow'))
.addl nvari ant (new Abstract Eval uation(this) {
public bool ean eval uat e(Abstract Automata ne) {
return true;
}

}
)s

/* adding transitions */
addTransi ti on(new Abstract Transition("transition_0", ((AbstractMde)modes.get("filling"))
, ((Abstract Mode) nodes. get (" punpi ng"))
) Ao
public void update() {
}
}
)

((Abstract Transition)transitions.get("transition_0"))
.addCGuar d(new Abstract Eval uation(this) {
public bool ean eval uat e(Abstract Aut omata ne) {
return ((Barrel) ne).height >=90;
}

}
)

((Abstract Transition)transitions.get("transition_0"))
.set I nput Event (Abstract Envi ronnent . i nstance(). get Event ByLabel ("EV_START"));

((Abstract Transition)transitions.get("transition_0"))
.set i ght (1);

addTransi ti on(new Abstract Transition("transition_1", ((AbstractMde)nmodes.get("punping"))
, ((Abstract Mde)nodes. get ("filling"))

public void update() {
1

}

)i

((Abstract Transition)transitions.get("transition_1"))
.addCGuar d(new Abstract Eval uation(this) {
public bool ean eval uat e(Abstract Automata ne) {
return ((Barrel) ne).height < 20;
}

page 85

A.3 The Bridge Environment Specification Source Code Listings

((Abstract Transition)transitions.get("transition_1"))
. set | nput Event (Abstract Envi ronnent . i nstance(). get Event ByLabel ("EV_STOP"));

((Abstract Transition)transitions.get("transition_1"))
.set i ght (1);

addTransi tion(new Abstract Transition("transition_2", ((AbstractMde)modes.get("filling"))
, ((Abstract Mode) nodes. get ("overflow'))

public void update() {
1

}

)i

((Abstract Transition)transitions.get("transition_2"))
.addCGuar d(new Abstract Eval uation(this) {
public bool ean eval uat e(Abstract Automata ne) {
return ((Barrel) ne).height >= 99.9;
}

}
)s

((Abstract Transition)transitions.get("transition_2"))
.set Wi ght (1);

A.3 The Bridge Environment Specification

The specification of the bridge environment is as follows:

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE envi ronnent SYSTEM “eha. dtd">
<envi ronment nane="Bri dgeEnvironnent">
<event |abel ="EV_BRI DGE_RAI SE" type="1NPUT"/>
<event |abel ="EV_BRI DGE_LOWER" type="I1NPUT"/>
<event |abel ="EV_TRAIN_CLEARED" type="|NPUT"/>
<event |abel ="EV_SH P_DENY" type="|NPUT"/>
<event |abel ="EV_SH P_GRANT" type="1NPUT"/>
<event |abel ="EV_SH P_REQUEST" type="QUTPUT"/>
<event |abel ="EV_SH P_PASSED" type="QUTPUT"/>
<event |abel ="EV_BRI DGE_OPEN' type="QUTPUT"/>
<event |abel ="EV_BRI DGE_CLOSED' type="CQUTPUT"/ >
<event |abel ="EV_BAR RAI SE" type="INPUT"/>
<event |abel ="EV_BAR LONER' type="INPUT"/>
<event |abel ="EV_RAIL_DETACH' type="1NPUT"/>
<event |abel ="EV_RAI L_ATTACH" type="1NPUT"/>
<aut omat on nane="Bridge" dynami c="fal se">
<var nane="degree" defaul tval ="0" paraneter="fal se"/>
<node nanme="down" initial="true">
<invariant>true</invariant>
</ node>
<node nanme="raising" initial="false">
<updat e>me. degree = ne.degree + mllis * 0.05; </ updat e>
<invariant >ne. degree & t;= 80</invariant>
</ node>
<node name="up" initial ="fal se">
<invariant>true</invariant>
</ node>
<node nane="|owering" initial="false">
<updat e>me. degree = ne.degree - mllis * 0.05; </ updat e>

page 86

Source Code Listings

A.3 The Bridge Environment Specification

<i nvari ant >ne. degree > = 0</invariant>
</ node>
<transition>

<source node="down"/>

<target node="raising"/>

<guar d>t rue</ guar d>

<wei ght >1</ wei ght >

<i nput >EV_BRI DGE_RAI SE</ i nput >
</transition>
<transition>

<source node="rai sing"/>

<target mode="up"/>

<guar d>ne. degree >= 79 </guard>

<wei ght >1</ wei ght >

<out put >EV_BRI DGE_OPEN</ out put >
</transition>
<transition>

<source node="up"/>

<target mode="|owering"/>

<guar d>t rue</ guar d>

<wei ght >1</ wei ght >

<i nput >EV_BRI DGE_LOVWER</ i nput >
</transition>
<transition>

<source node="| owering"/>

<target node="down"/>

<guar d>ne. degree >= 0 </guard>

<wei ght >1</ wei ght >

<out put >EV_BRI DGE_CLOSED</ out put >
</transition>

</ aut omat on>
<aut omat on name="Train" dynam c="fal se">

<var nane="di stance" defaul tval ="10000" paraneter="true"/>
<mode nane="far" initial ="true">
<updat e>ne. di stance = ne.distance - mllis * 0.2; </ update>
<i nvari ant >ne. di stance > = 8000</invari ant >
</ node>
<node nane="approaching" initial="fal se">
<updat e>me. di stance = ne.distance - mllis * 0.2; </ update>
<invariant >ne. di stance >= 500</invariant >
</ node>
<node name="stopped" initial="false">
<invariant>true</invariant>
</ node>
<nmode nane="cl eared" initial="false">
<updat e>me. di stance = nme.distance - mllis * 0.15; </ update>
<i nvari ant >ne. di stance >=-200</invariant>
</ node>
<node name="passed" initial="false">
<updat e>ne. di stance = ne.distance + mllis * 0.2;</update>
<invariant>ne. di stance & t;=12000</i nvari ant >
</ node>
<transition>
<source node="far"/>
<target mode="approaching"/>
<guar d>ne. di stance > ;= 7999</ guar d>
<wei ght >1</ wei ght >
</transition>
<transition>
<sour ce nmode="approaching"/>
<target node="stopped"/>
<guar d>ne. di stance & t; = 501</ guard>
<wei ght >1</ wei ght >
</transition>

page 87

A.3 The Bridge Environment Specification Source Code Listings

<transition>
<source node="approaching"/>
<target node="cl eared"/>
<guar d>ne. di stance > = 1500</ guar d>
<wei ght >1</ wei ght >
<i nput >EV_TRAI N_CLEARED</ i nput >
</transition>
<transition>
<source node="st opped"/ >
<target node="cleared"/>
<guar d>t rue</ guar d>
<wei ght >1</ wei ght >
<i nput >EV_TRAI N_CLEARED</ i nput >
</transition>
<transition>
<source node="cl eared"/>
<target node="passed"/>
<guar d>ne. di stance &l t;= -199</guard>
<wei ght >1</ wei ght >
</transition>
<transition>
<source node="passed"/>
<target rmode="far"/>
<guar d>ne. di stance >= 10000</ guar d>
<wei ght >1</ wei ght >
</transition>
</ aut omat on>
<aut omat on name="Shi p" dynami c="fal se">
<var nane="di stance" defaul tval ="2000" paraneter="true"/>
<nmode nane="far" initial ="true">
<updat e>ne. di stance = ne.distance - mllis * 0.1;</update>
<invariant >ne. di stance >=999</i nvariant >
</ node>
<node nanme="inrange" initial ="fal se">
<updat e>me. di stance = nme.distance - mllis * 0.04; </ update>
<i nvariant >(ne. di stance >=250)</invariant>
</ node>
<node nane="granted" initial ="fal se">
<updat e>me. di stance = nme.distance - mllis * 0.04; </ update>
<invariant >ne. di stance > =250</i nvariant >
</ node>
<node nane = "denied" initial="false">
<updat e>ne. di stance = nme.distance - mllis * 0.04; </ updat e>
<invariant >ne. di stance > =250</i nvariant >
</ node>
<node name="waiting" initial="false">
<invariant>true</invariant>
</ node>
<node name="passing" initial="false">
<updat e>ne. di stance = nme.distance - mllis * 0.02; </ updat e>
<invariant >ne. di stance >= -100</invariant>
</ node>
<node name="passed" initial="false">
<updat e>ne. di stance = ne.distance + mllis * 0.5;</update>
<i nvariant >ne. di stance & t;=3000</invariant >
</ node>
<transition>
<source node="far"/>
<target node="inrange"/>
<guar d>ne. di stance & t; =1000</ guar d>
<wei ght >1</ wei ght >
<out put >EV_SHI P_REQUEST</ out put >
</transition>
<transition>

page 88

Source Code Listings A.3 The Bridge Environment Specification

<source node="i nrange"/ >
<target node="granted"/>
<guar d>t r ue</ guar d>
<wei ght >1</ wei ght >
<i nput >EV_SHI P_GRANT</ i nput >
</transition>
<transition>
<source node="i nrange"/ >
<target node="denied"/>
<guar d>t r ue</ guar d>
<wei ght >1</ wei ght >
<i nput >EV_SHI P_DENY</ i nput >
</transition>
<transition>
<sour ce node="deni ed"/>
<target node="waiting"/>
<guar d>ne. di stance & t;= 251</guard>
<wei ght >1</ wei ght >
</transition>
<transition>
<source node="granted"/>
<target node="passing"/>
<guar d>ne. di stance & t;= 251</guard>
<wei ght >1</ wei ght >
</transition>
<transition>
<source node="waiting"/>
<target node="passing"/>
<guar d>t rue</ guar d>
<wei ght >1</ wei ght >
<i nput >EV_SHI P_GRANT</ i nput >
</transition>
<transition>
<source node="passing"/>
<target node="passed"/>
<guar d>ne. di stance &l t;= -99</guard>
<wei ght >1</ wei ght >
<out put >EV_SHI P_PASSED</ out put >
</transition>
<transition>
<source node="passed"/>
<target rmode="far"/>
<guar d>ne. di stance > = 2000</ guar d>
<wei ght >1</ wei ght >
</transition>
</ aut omat on>
<autommt on name="Barrier" dynamc="fal se">
<var nane="degree" defaul tval ="0" paraneter="fal se"/>
<node name="up" initial ="true">
<invariant>true</invariant>
</ node>
<node nanme="|owering" initial="false">
<updat e>me. degree = ne.degree + mllis * 0.1; </ update>
<invariant >ne. degree & t;= 90</invariant>
</ node>
<nmode nane="down" initial ="fal se">
<invariant>true</invariant>
</ node>
<node nanme="raising" initial="false">
<updat e>me. degree = ne.degree - mllis * 0.1; </ update>
<i nvari ant >ne. degree > = 0</invariant>
</ node>
<transition>
<source node="up"/>

page 89

A.3 The Bridge Environment Specification Source Code Listings

<target node="|owering"/>
<guar d>t rue</ guar d>
<wei ght >1</ wei ght >
<i nput >EV_BAR_LONER</ i nput >
</transition>
<transition>
<sour ce mode="1|owering"/>
<target node="down"/>
<guar d>ne. degree >= 89 </guard>
<wei ght >1</ wei ght >
</transition>
<transition>
<source node="down"/>
<target node="raising"/>
<guar d>t rue</ guar d>
<wei ght >1</ wei ght >
<i nput >EV_BAR_RAI SE</i nput >
</transition>
<transition>
<source node="rai sing"/>
<target mode="up"/>
<guard>ne. degree & t;= 1 </guard>
<wei ght >1</ wei ght >
</transition>
</ aut omat on>
<aut omat on name="Rails" dynam c="fal se">
<var nane="di stance" defaul tval ="0" paraneter="fal se"/>
<node nane="attached" initial="true">
<invariant>true</invariant>
</ node>
<node nane="detaching" initial="false">
<updat e>ne. di stance = ne.distance + mllis * 0.1; </ update>
<invariant >ne. di stance & t;= 20</invariant>
</ node>
<node nane="detached" initial="fal se">
<invariant>true</invariant>
</ node>
<node nane="attaching" initial="false">
<updat e>ne. di stance = ne.distance - mllis * 0.1; </ update>
<invariant >ne. di stance >= 0</invariant>
</ node>
<transition>
<source node="attached"/>
<target mode="detaching"/>
<guar d>t rue</ guar d>
<wei ght >1</ wei ght >
<i nput >EV_RAI L_DETACH</ i nput >
</transition>
<transition>
<source node="detaching"/>
<target node="detached"/>
<guar d>ne. di stance >= 19.9 </guard>
<wei ght >1</ wei ght >
</transition>
<transition>
<source node="detached"/>
<target node="attaching"/>
<guar d>t r ue</ guar d>
<wei ght >1</ wei ght >
<i nput >EV_RAI L_ATTACH</ i nput >
</transition>
<transition>
<source node="attaching"/>
<target node="attached"/>

page 90

Source Code Listings A.3 The Bridge Environment Specification

<guar d>ne. di stance & t;= 0.1 </ guard>
<wei ght >1</ wei ght >
</transition>
</ aut omat on>
<instantiation>Bridge()</instantiation>
<instantiation>Train(10000)</instantiation>
<instantiation>Shi p(2000)</instantiation>
<instantiation>Barrier()</instantiation>
<instantiation>Rails()</instantiation>
</ envi ronment >

page 91

A.3 The Bridge Environment Specification Source Code Listings

page 92

Bibliography

[AD94]

[BWO1]

[CDH*00]

[Chr02]

[CSL*87]

[DH99]

[DHJ*00]

[dVTO0]

[HHWT97]

[HLO2]

[Hol97]

[Hol00]

Rajeev Alur and David L. Dill. A theory of timed autortea Theoretical
Computer Scien¢el 26(2):183-235, 1994.

Alan Burns and Andy Wellings.Real-Time Systems and Programming Lan-
guages Addison Wesley, 2001.

James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shdvabach, Co-
rina S. Pasareanu, Robby, and Hongjun Zheng. Banderacemgdinite-state
models from java source code. limernational Conference on Software Engi-
neering pages 439-448, 2000.

Anders B. Christense.he Inquisitor Framework — A Framework for Valida-
tion of Real-Time SystemAalborg University, Technical Report, 2002.

D. Cornhill, L. Sha, L. Lehoczky, J. Rajkumar, and H. TdeRuLimitations of
Ada real-time schedulingProceedings of the International Workshop on Real
Time Ada Issues, ACM Ada Letters, 1987.

Matthew B. Dwyer and John Hatcliff. Slicing softwai@ model construction.
In Partial Evaluation and Semantic-Based Program Manipolatpages 105—
118, 1999.

M. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. PasareR. Visser, and
H. Zheng. Tool-supported program abstraction for finiggestverification,
2000.

René G. de Vries and Jan Tretmans. On-the-fly confmte testing using
spin. Software Tools for Technology Transfé(4):382—-393, March 2000.

Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wdrg- HYTECH: A
model checker for hybrid systemdnternational Journal on Software Tools
for Technology Transfed (1-2):110-122, 1997.

Martijn Hendriks and Kim G. Larsen. Exact accelevatiof real-time model
checking. 2002.

Gerard J. Holzmann. The spin model checkEEE Trans. on Software Engi-
neering 23(5):279-295, May 1997.

G. J. Holzmann. Software model checking. Marktalmef, Germany, 2000.

page 93

BIBLIOGRAPHY BIBLIOGRAPHY

[HPOO]

[JCTG6]

[KKL +01]

[LPY97]

[RTJO2]

[Yov97]

page 94

Klaus Havelund and Thomas Pressburger. Model chggkiva programs us-
ing java pathfinder.International Journal on Software Tools for Technology
Transfer 2(4), April 2000.

J. C. Fernandez, C. Jard, T. Jeron, and G. Viho. dJsmthe-fly verification
techniques for the generation of test suites. In Rajeeva@idrThomas A. Hen-
zinger, editorsProceedings of the Eighth International Conference on Com-
puter Aided Verification CAWolume 1102, pages 348-359, New Brunswick,
NJ, USA, / 1996. Springer Verlag.

Moonjoo Kim, Sampath Kannan, Insup Lee, Oleg Sokolsky Blahesh
Viswanathan. Java-mac: a run-time assurance tool for jepgrgms. In Klaus
Havelund and Grigore Rosu, editoEectronic Notes in Theoretical Computer
Sciencevolume 55. Elsevier Science Publishers, 2001.

Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaah inutshell. Int.
Journal on Software Tools for Technology TransfH1-2):134-152, October
1997.

The Real-Time Java Export Group RTJEGhe Real-Time Specification for
Java Addison Wesley, 2002.

Sergio Yovine. Kronos: A verification tool for reéilne systems.Journal of
Software Tools for Technology Transfé(1-2), Oct 1997.

