
AALBORG UNIVERSITY

Department of Computer Science

KDE master group

RBOT -
An Intelligent agent in the Unreal game environment

4th Semester project (final project)

Rimantas Benetis

10 July 2002

 2

Aalborg University
Department of Computer Science

Title:

 RBOT (Intelligent agent in Unreal game environment)

Subject:

 Decision Support Systems

Project group:

 E1-121

Participants:

 Rimantas Benetis

Supervisor:

 Tomas Kocka

Time of Writing:

 28 April 2002 – 12 July 2002

Copies:

4

Pages:

 90

Synopsis:

This project presents an intelligent
agent called Rbot. The Rbot is an
Unreal Tournament game
opponent, which uses the Bayesian
Networks for making decisions.
The agent is implemented using the
Java language. Two design
approaches of creating influence
diagrams presented. The
performance results against a built-
in Unreal Tournament bot and
human player are presented.
Conclusions about usability and
performance of Bayesian networks
in real-time game environment
presented.

 3

Preface

This project is submitted for a course in Decision Support Systems at Department of
Computer Science at the faculty of Engineering and Science, July 2002 by
Knowledge and Engineering master group. The main purpose of this project was to
explore the use of Bayesian networks in real-time games. The game chosen was
Unreal Tournament (UT). In order to test Bayesian networks in UT game an agent
utilizing Bayesian networks was created.

Rimantas Benetis

 4

Abstract

The real time environment can be very complex and it could be impossible to predict
all of the possible states of the environment. In order to act effectively agents in such
environments need to be able to adapt to the changes. This project addresses agents in
the real time environments. This project makes a contribution to the field of Decision
Support Systems.
First the project introduces the environment, which was created for an agent to be
tested in. The whole platform for testing agents in real time environment is presented.
Second the description of the first semester work is presented. It introduces the first
approach to create the influence diagram for an agent. Then it shows the performance
results of the agent, which uses influence diagram created by using first approach.
The problems that could arise by using such approach are presented.
Third the project introduces a second approach of creating influence diagrams. It
gives a description how the agent can be created and what problems might arise and
how they can be solved. This project also includes the detailed description of the
agent that was created for an Unreal Tournament game environment.
The test results prove that the influence diagrams can be used efficiently in real time
environment. This is proved by applying the methods described in a real time
environment.

Acknowledgements

I would like to thank many people for their support, encouragement during my years
as a graduate student in Aalborg University.
First of all this project took a great deal of time not only for myself but also for my
two supervisors Jiří Vomlel (previous semester) and Tomas Kocka (last semester).
They both helped me with the research and gave me many advices and helped this
project to be as it is now.
I would also like to thank my censors that also gave me valuable comments on my
previous projects.

 5

Contents

Chapter 1 Introduction... 10
Chapter 2 Related Work .. 11

2.1 Soar Quakebot ... 11
2.1.1 Quakebot prediction.. 11
2.1.2 Quakebot prediction application.. 12

2.2 Learning Models of Other Agents Using Influence Diagrams 13
2.3 Other projects .. 14

Chapter 3 Theory... 15
3.1 Bayesian networks... 15
3.2 Fractional updating .. 16
3.3 Decision diagrams ... 18
3.4 Decision strategies ... 19
3.5 Influence diagrams... 22
3.6 Parent divorcing... 24
3.7 Structure learning .. 26

3.7.1 PC Algorithm.. 27
Chapter 4 Environment Description... 31

4.1 The Game - Unreal Tournament... 31
4.1.1 Game types ... 32
4.1.2 Opponents... 32
4.1.3 Items... 33
4.1.4 Weapons ... 33
4.1.5 Powerups .. 35
4.1.6 Actions of a bot... 36

4.2 Gamebots platform .. 37
4.3 Architecture of Rbot .. 38

4.3.1 Communication module .. 39
4.3.2 Structure of Bot module .. 39
4.3.3 Structure of Rbot brain.. 39

Chapter 5 Previous Semester Work ... 43
5.1 Idea behind .. 43
5.2 Model .. 45

5.2.1 Prediction of an enemy action ... 45
5.2.2 Decision making ... 47

5.3 Tests and Performance of Rbot .. 49
5.3.1 Rbot against UT bot .. 50
5.3.2 Rbot against Rbot.. 53
5.3.3 Human against Rbot.. 56

5.4 Discussion ... 56
5.4.1 Prediction.. 56
5.4.2 Decision.. 57
5.4.3 Implementation ... 57

Chapter 6 New Rbot .. 58
6.1 First semester approach.. 58
6.2 New approach.. 58

6.2.1 Introduction .. 58

 6

6.2.2 Implementation ... 59
6.3 New decision cycle .. 61
6.4 Construction .. 62

6.4.1 Learning ... 63
6.4.2 Initial influence diagram ... 65

6.5 Optimisation .. 66
6.5.1 Future optimisation ... 67

6.6 Detail description... 67
6.6.1 The description of variables used in final influence diagram of the Rbot . 67
6.6.2 Explanation of actions that are implemented for the Rbot........................ 69
6.6.3 The final influence diagram used in the Rbot .. 71

Chapter 7 Test Results... 72
7.1 Test setup .. 72
7.2 Rbot versus UT bot.. 72
7.3 Detailed game analysis of the Rbot vs. UT bot... 78

7.3.1 Strategy 1.. 79
7.3.2 Strategy 2.. 79

7.4 Rbot versus Human.. 82
7.5 Detailed analysis of the game the Rbot vs. Human... 82
7.6 Result conclusions ... 83

Chapter 8 Conclusions and Future Work ... 85
8.1 Conclusions ... 85
8.2 What was done .. 85
8.3 Future work ... 86

Bibliography ... 88
Appendix A... 90

 7

Table of Figures

Figure 1 Partial operator hierarchy... 11
Figure 2 Decision model of defence unit B2 .. 13
Figure 3 Simple Bayesian network example .. 15
Figure 4 Node C with parents A and B .. 17
Figure 5 Simple decision diagram example.. 19
Figure 6 An example of a tree describing a simple decision strategy........................ 19
Figure 7 tree representing decision strategy with values entered 21
Figure 8 Results when solving a tree from Figure 7 ... 21
Figure 9 Example decision diagram with two decisions ... 22
Figure 10 An extended example of Figure 5 (information links added) 22
Figure 11 Example of a simple influence diagram with two actions 23
Figure 12 Example of influence diagram with three time slices 24
Figure 13 Network without divorcing .. 24
Figure 14 Network with parents X4 and X5 divorced .. 25
Figure 15 Network with 3 hidden nodes .. 26
Figure 16 Traces of step 1 and step 2... 28
Figure 17 error type 1 example .. 29
Figure 18 error type 2 example .. 29
Figure 19 The view of 3D environment ... 31
Figure 20 The view from player’s perspective ... 32
Figure 21 Movement of a player; a) move right/left; b) move forward/backward; c)

rotate left/right (picture shows a player from above); 37
Figure 22 The organization of the Gamebot platform software. 38
Figure 23 Structure of Rbot ... 39
Figure 24 Structure of Rbot’s brain.. 40
Figure 25 Rbots decision cycle .. 45
Figure 26 Three tine slices for prediction (prediction network) 47
Figure 27 influence diagram used in the Rbot's decision making 49
Figure 28 Rbot versus Rbot ... 54
Figure 29 Rbot with learning versus Rbot without learning...................................... 55
Figure 30 Utility change of the Rbot.. 55
Figure 31 Influence diagram with two time slices .. 59
Figure 32 Data flow from environment in the Rbot.. 61
Figure 33 the new Rbots decision cycle ... 62
Figure 34 a simple influence diagram to test the conditions 63
Figure 35 Initial influence diagram of the Rbot.. 65
Figure 36 divorcing of health, armor, weapon and ammo nodes............................... 66
Figure 37 future optimisation... 67
Figure 38 the final influence diagram used in the Rbot .. 71
Figure 39 generation 0 Rbot versus UT bot.. 74
Figure 40 generation 1 Rbot versus UT bot.. 74
Figure 41 generation 2 Rbot versus UT bot.. 75
Figure 42 generation 3 Rbot versus UT bot.. 75
Figure 43 generation 4 Rbot versus UT bot.. 76
Figure 44 strategy 1... 78
Figure 45 strategy 2... 79
Figure 46 The change of score increase using strategy 1 .. 80

 8

Figure 47 the change of score increase using strategy 2 ... 81
Figure 48 action count of different generation Rbot ... 81
Figure 49 Rbot (no fading) against Human player.. 82
Figure 50 Rbot (with fading) against Human player... 83

 9

Index of Tables

Table 1 An example conditional probability table.. 16
Table 2 Conditional probability table... 20
Table 3 Utility values .. 20
Table 4 Weapon properties .. 35
Table 5 Ammo types, ammo number and which weapon uses them......................... 35
Table 6 Players initial state.. 36
Table 7 The meaning of observable variables .. 46
Table 8 The meaning of nodes in decision part influence diagram 48
Table 9 Rbots sample size ... 50
Table 10 The final score of the Rbot.. 50
Table 11 Rbot's actions expected utility depending on enemy's strategy................... 56
Table 12 human player against the Rbot and the UT bot .. 56
Table 13 time taken to propagate evidence .. 67
Table 14 the explanation of the influence diagram nodes ... 69
Table 15 explanation of the possible Rbots actions .. 70
Table 16 Rbots sample size ... 76
Table 17 final score of the Rbot... 76
Table 18 Score change for Rbot and UT bot .. 77
Table 19 final score difference between the Rbot and UT bot 77
Table 20 average score using different strategies ... 80
Table 21 human player against the Rbot and UT bot.. 82

 10

Chapter 1 Introduction

During the past decade the games evolved together with the hardware. They got more
complicated and so had to evolve the computer opponents. In order to make computer
opponent more like a human player the artificial intelligence was used. As in the old
games the behavior of the computer opponents could be coded only using the if-then
rules then the current games needs them to adapt to the play of the human player to
provide the interesting game play. Several kinds of game types can be pointed out
(you can find more detailed description in [1]):

• Turn based strategy games. The example of such a game could be the checkers
or any other board game where the moves are made in turns and the game
rules are known for every player. The alpha-beta search is usually used in such
games.

• Real time strategy (RTS). Such games are more complicated then the turn
based strategy as the movements are done while time elapses and their order is
not known to the opponent. Also the resource management and a path finding
algorithms are often used in such games.

• First person shooter (FPS). These games try to model the environment itself.
Only the goal is given and there are no rules how the players reach their goal.
The AI in such games has to be very advanced to be able to compete with
humans.

We will concentrate on the FPS type of game as it gives a very wide area of the
research. The game is very dynamic and the changes are made in real time. The first
games of such type (Wolfenstein, Doom, etc.) did not have any complicated AI and
the difficulty of the game depended only on the number of opponents and their
damage caused to you. The newer games such as the Unreal Tournament (UT) and
Quake 3 already tries to provide computer opponents (bots), which are capable to
mimic the human behavior. They are able to go for the powerups, get better weapons
and even try to ambush you. Although even having such complicated scripts bots is
not a match to the human player. The problem is that they do not try to evaluate their
moves and do not adapt to a changing environment. This means that after a human
player discovers the weak spot of a bot it will be able to successfully exploit it for the
rest of the time. The ability of a bot to judge its own actions would enable it to change
its strategy to the different one and prevent human player exploiting the weak points.
The adaptability could also help in the areas where users are able to change the
environment as the script creators are not able to foresee all of the possible changes
that could be done to the environment and code them into the scripts. There is a good
description of different games and what kind of AI they use at [2].

So the task of this project is to explore the Bayesian networks (BN), which are a very
powerful tool for decision-making, and try to apply them in the domain of FPS. The
goal also would be to suggest some kind of general approach when addressing such
kind of problems. In order to prove that the BN does help to improve the efficiency of
the bot the tests has to be carried out. To be able perform those tests the testing
platform has to be done.

 11

Chapter 2 Related Work
This chapter contains the description of the related work that has been done in the
similar area of research to this project. First we give the description of a Quakebot [3]
project. Then we present the project, which shows that the opponent can be modeled
by using the influence diagrams.

2.1 Soar Quakebot

The Quakebot uses Soar engine (Soar is a general cognitive architecture for
developing systems that exhibit intelligent behavior) for making and executing
decisions – selecting the next thing the system should do and then executing it. The
basic objects in Soar are called operators. An operator consists of primitive actions
(the actions that can not be divided into smaller actions, such as move, turn, shoot or
wait), internal actions (remembering something), or more abstract goals to be
achieved (get-item) that must dynamically be decomposed into primitive actions.
Those actions are implemented by multiple if-then rules, which are fired parallel and
sequence to implement single operator.

 Attack Wander Collect-powerups Explore

Get-item

Goto-item Go-through-door

Face-item Move-to-item Stop-moving Notice-item missing

Figure 1 Partial operator hierarchy

Figure 1 shows organization of operators that were decomposed into primitive
actions.

The Soar engine does not use any predefined ordering to determine which operator
should be selected or applied. Instead all the operators that match defined rules are
fired in parallel to change working memory by either adding or removing declarative
structures.

2.1.1 Quakebot prediction

The Quakebots approach to prediction is to create an internal representation that
mimics enemy’s internal state based on bots observation of the enemy. Then the bot
uses the information about enemy and tries to make a decision what it would do if it
were in enemy’s place.

Using this approach the bot may get either useful information or it could get uncertain
information. Useful information may be that the enemy bot will pass through a certain

 12

point and the uncertainty appears when several such points exist (the Quekebot will
not know which point the enemy will pick to pass through).

Prediction is used to set ambush or deny enemy power-up. The bot did not try to
predict enemy continuously as it takes too much time and it may happen that by the
time the prediction is made it becomes useless. Bot did not predict when no
information about the enemy was available or it already knew what to do. Quakebot
starts prediction only when it sees enemy bot and enemy is facing away from
Quakebot. When enemy bot faces Quakebot then Quakebot stops its predictions so
that is not caught napping (making a prediction).

The Quakebot creates an internal representation of enemy’s state and then it uses its
own knowledge what it would do if it were in the enemy’s state to predict enemy’s
actions. It is assumed that Quakebot’s and enemy’s sets of actions are the same. A
prediction terminates when a bot comes to a point where uncertainty appears (for
example, several exits exists in a room and the Quakebot does not know which one
will the enemy choose).

2.1.2 Quakebot prediction application

The prediction is useful only when there is ability to use it (the information received
from a prediction may put bot in a better situation then the opponent). Quakebot
concentrates on getting to a certain room first, setting an ambush and getting to a
specific powerup first. To make these predictions three operators are used: hunt,
ambush and deny-powerups. When a prediction is made that the enemy will be in a
certain room where Quakebot can get faster the hunt mode is applied and the bot is
sent to the correct room. If it predicts that enemy will exit a certain door the ambush is
selected and it move a bot towards that door to set an ambush (Quakebot waits around
the corner and tries to shoot enemy in the back). Deny-powerups is selected when
enemy is predicted to pick up a powerup that the bot can get first.

Quakebot also makes use of Soars engines mechanism called chunking. Chunking
creates rules that test the aspects of the situation that were relevant during the
generation of a result. In other words it tries to remember which conditions should
hold in order to get the same result. It means that when the Quakebot gets into the
same situation where calculations were already performed and saved the prediction
will be calculated instantly.

One of the biggest weaknesses of Quakebot is that it assumes that enemy would
behave the same way as Quakebot would under equal conditions. In a real game
scenario such an assumption is not true as the enemy may take different actions. In
such a case it might be a good idea to adapt to the enemy’s actions.

Another point is to use the probabilities in cases where there is an uncertainty (when
several exits exist in same room). The fact that an enemy bot can be predicting and
adapting to your own bots actions should also be taken into account. In such cases we
need to make decisions under uncertainty because enemy state and strategy are not
fully disclosed or observed. One of the possibilities is to use Bayesian networks as
they have good performance under uncertainties.

 13

The approach of introducing some prior strategies as hunt, ambush will also be used
in Rbot. The strategies will be used in a prediction and in a decision of Rbot.

2.2 Learning Models of Other Agents Using Influence
Diagrams
Some work was done with using influence diagrams in multi-agent system (MAS).
The MAS is the system where several agents try to reach some defined goal. The
knowledge about the other agent might not be known or it can change during the time.
This means that the agents, which are capable to adapt to the changes, has the
advantage against the agents with fixed strategies. The paper “Learning Models of
Other Agents Using Influence Diagrams” [4] makes use of the influence diagram to
model other agents. They use influence diagram to model agents in following
scenario: two bases defend against missile attack. There are two incoming missiles.
Each of defense bases can launch only one interceptor. The purpose is to minimize the
damage of incoming missiles when there is no communication between two defense
bases. The influence diagram in such system helps the agent to predict another agent’s
actions and choose the action, which will minimize the damage inflicted by a missile.
They also give an influence diagram, which can be used for selecting a best action
(Figure 1).

Figure 2 Decision model of defence unit B2

The authors also present what kind of possible problems we might encounter when
environment changes and the influence diagram must be updated three main
inaccuracies might occur:

• The utility function of another agent might change. Then we only need to learn
the new utility function of another agent.

 14

• The probability distributions in the model might be inaccurate. We must learn
the new probability distributions from the observations.

• The structure of the influence might be incorrect. We must learn the new
structure that fits the observation data.

2.3 Other projects

There are also some other projects, which proposes different learning techniques in a
real time environment. One of them is using information from an expert to learn the
actions and the conditions under which those actions should be carried out [5].
Another project is an agent interaction in real time environment when communication
is uncertain [6]. The learning process in that paper is described as learning by stages.
First we learn the easy personal tasks (performing some movement) then we learn
more complicated tasks (as a teamwork).

 15

Chapter 3 Theory

3.1 Bayesian networks

First I would like to give a short introduction to Bayesian networks. You can find a
good description in [7].

Definition of Bayesian network:

Bayesian network consists of the following.

• A set of variables and a set of directed edges between variables.

• Each variable has a finite set of mutually exclusive states.

• The variables together with directed edges form a directed acyclic graph
(DAG). (A directed graph is acyclic if there is no directed path nAA →→L1
s.t. nAA =1).

• To each variable A with parents nBB ,,1 K there is attached the potential table
),,|(1 nBBAP K .

B

C

D A E

Figure 3 Simple Bayesian network example

In Figure 3 a simple example of Bayesian network is presented. It has nodes A, B, C,
D, E and it has relationships that A influences node B and C, B and C influences D, D
influences E. Each node may represent some property from the real world and may
have several mutually exclusive states. A directed edge may represent a relationship
between nodes. The relation is expressed as a conditional probability table assigned to
a node. In Figure 3 conditional probability tables are assigned to nodes B, C, D and E.
The list of probability tables for model in Figure 3 is:

)|(),,|(),|(),|(),(DEPCBDPACPABPAP .

An example of conditional probability table for node B is:

 16

P(B|A) a1 … ai
b1 P(b1|a1) … P(b1|ai)
... … … …
bj P(bj|a1) … P(bi|ai)

Table 1 An example conditional probability table

Probability table contains values of probability)|(ij abP for all conditions of states
where ai denotes the i-th state of node A and bj represents j-th state of node B. If a
node (node A in Figure 3) does not have any parents a prior probability table is
assigned to it with values P(ai).

Let us consider situation, which is reflected by B, C, D and E nodes. As we can see
the nodes B and C influences D which then influences node E. So we can say that
nodes B and C influence the node E only through node D. But if a state of node D is
known then the nodes B and C no longer have influence on node E. In such case we
say that node E is d-separated from B and C given D. The other situation is nodes A,
B and C and it is called diverging connection. Nodes B and C will be d-separated
only when node A is instantiated (when we know the state of variable than we say it is
instantiated). And the nodes B, C and D for a situation called converging connection.
In converging connection nodes B and C are d-separated when there is no evidence
for node D or its descendants else they are not d-separated.

Definition of d-separation:

Two variables A and B in a causal network are d-separated if for all paths between A
and B there is intermediate variable V such that either

• The connection is serial or diverging and V is instantiated

Or

• The connection is converging and neither V nor any of V’s descendants have
received evidence

The importance of d-separation is that it reduces the number of calculations that has
to be carried out in a Bayesian network.

A Bayesian network is constructed to reflect some part of real world prior to any
observations. Information, which can be derived from the network, is called belief and
it is a probability that a certain node is in a certain state. Having a network we may
observe some events, which could change our beliefs. These observations are called
evidence. Evidence may be entered into the Bayesian network and propagated (which
means recalculation of the probabilities. The new probabilities of variables given
evidence are calculated).

3.2 Fractional updating

A way to model uncertainty about a conditional probability table is to modify the
table every time new evidence is received. Fractional updating [7] can be used for this
purpose.

 17

A

B

C D

Figure 4 Node C with parents A and B

Suppose we have the network given in Figure 4. Node C has conditional probability
distribution),|(BACP . First assumption we have to make is that the uncertainty
about probability values of different variables is independent (global independence).
And that uncertainty about probability values of the same node for different parent
configurations is independent (local independence). Since the local independence
assumption is made, we may consider each parent configuration (ai,bj) for node C
independently. If node C has k states, then the current probability distribution would
be

),...,,(),|(21 kji xxxbaCP =

Let s be a positive number, which expresses our certainty about the distribution, it is
called sample size. Then the probability distribution can be written as

=

s
n

s
n

s
nbaCP k

ji ,...,,),|(21

here ki
s
nx i

i ,...,1, == .

If we get a new case e with A = ai, B = bi and C = c1. Then 1: 11 += nn and 1: += ss ,
and probabilities are updated as follows

;
1

;;
1

;
1

)1(2
2

1
1 +

=
+

=
+
+

=
s
nx

s
nx

s
nx k

kL (1)

If we get a case with A = ai, B = bi, but for C we only have distribution
),,(),,|()|(1 kji yyebaCPeCP K== then we can not work with integer counts and

we update kkk ynn +=: and 1: += ss then we get

1+
+

=
s

ynx kk
k (2)

 18

In general we get a case with () zebaP ji =|, . Then zss +=: . To update the counts
we use the distribution () ()kji yyyebaCP ,...,,,,| 21= . As the sample size is only
increased with z we take kkk zynn +=: and we get

zs
zynx ii

k +
+

= (3)

By using this approach and receiving evidence our network adapts to the evidence
received. After some time new evidence with different finding will not change our
belief much (as we can see from formula (3) the larger is the count s the larger must
be n to cause a noticeable change.). In order to evade past experience influencing our
model too much we use fading factor. The fading factor can take values from interval
(0,1]. Before updating our beliefs we multiply sample size s and case count ni by
fading factor q so that we get

iii zyqnnsqs +=+= :;1:

The fading factor is useful where environment is dynamic and changes are fast. It is
not useful where environment is static and we do not get incorrect data.

3.3 Decision diagrams

A Bayesian network represents a model for a part of the world. It consists of certain
variables and relationships between them. Sometimes we want Bayesian networks to
help us make some decisions. To represent decision problem graphically we must
extend Bayesian network with new types of nodes.

1. Decision nodes. It has rectangle shape.

2. Utility nodes. It has diamond shape.

Decision node has states that represent actions that we can take. Utility node has
outcomes (utilities) of a given parent configuration.

Let us present an example of extended Bayesian network.

 19

Bot

Outcome

Enemy

A

Utility

Figure 5 Simple decision diagram example

As we can see from Figure 5 there are two new nodes. One of them is decision node
(labeled A) and second one is utility node (labeled Utility). Now suppose Figure 5
represents bots reasoning. The bot can observe its own state and partially observe
enemy state and then it should choose the action (let us say bot has two options either
to retreat or fight), which would maximize its survival probability. The utility node
represents possible outcome in real values (let us say that if bot survives its utility is 1
if it dies then it is 0). Having this information we can calculate the expected utility of
action ai using the following formula:

∑=
Outcome

ii evidenceaOutcomePOutcmeUaEU),|()()(

After evaluating expected utilities for all possible actions that bot can take we choose
an action, which yields the highest utility.

3.4 Decision strategies

A classical way of representing decision scenarios with several decisions is a tree. Let
us give an example:

A

O

O

U 1

U 2

U 3

U 4

f ig h t

re tre a t

P (O = liv e | p a (O),e))

P (O = d ie | p a (O) ,e))

P (O = liv e | p a (O),e))

P (O = d ie | p a(O) ,e))

Figure 6 An example of a tree describing a simple decision strategy

 20

In Figure 6 a decision strategy of a previous example is presented (the variable
Outcome is abbreviated O). As we can see here we can take only two actions fight or
retreat. EU(fight) should present the expected utility of action fight. That is:

),|()(),|()()(eFightAdieOPdieUefightAliveOPliveUfightEU ==+===

The e in this formula is the evidence that may change our belief of Outcome. In
Figure 5 the variables Enemy and Bot may change probability of Outcome so e
represents evidence received from those variables.

To better understand the way the calculation of decision strategy we will use an
example.

Let us assume that tables for Figure 5 are

P(Outcome|Action,e) fight retreat
Live 0.65 0.4
Die 0.35 0.6

Table 2 Conditional probability table

U(Outcome)
live 1
die 0

Table 3 Utility values

The decision strategy is solved by “rolling back”. We start with the nodes, which has
only leaves as their children. If node A is a chance node, the expected utility for A is
calculated:

∑
∈

→=
)(

)()()(
AchildrenC

CApCUAEU

Here)(CAp → denotes probability of a link from node A to node C. And C is a child
of A. And)(CU is a utility value attached to a child C.

If the node is a decision node D: each child of D has a (expected) utility attached, then
we choose the child with maximal expected utility and attach the value to D.

 21

A

O u tc o m e

O u tc o m e

1

0

1

0

f ig h t

re tre a t

0 .3 5

0 .6

0 .6 5

0 .4

Figure 7 tree representing decision strategy with values entered

After having a tree and parameters for nodes we can start calculating from bottom up.

A

O u tc o m e

O u tc o m e

1

0

1

0

0 .6 5

0 .4

0 .3 5

0 .6

0 .6 5

0 .4

0 .6 5

0 .4

Figure 8 Results when solving a tree from Figure 7

Because the tree in Figure 7 is very simple only few calculations has to be done. After
having results we should pick the path from tree, which yields highest expected
utility. The path in Figure 8 is highlighted and it yields the highest expected utility of
0.65.

There is also possibility to have several decision nodes in our decision model. An
example of such model is presented in Figure 9 (truncated tree branches are marked
with dots). In Figure 9 the bot models following situation. A Bot noticed an enemy
bot but enemy it is too far to observe its position vector (where bot is facing) so our
bot must make a decision if it wants to approach or stay at current location. The
decision it makes will influence the correctness of the observation of an enemy. After
the observation is done the bot must choose the action to take against the enemy.
After all actions are done the outcome can be observed.

 22

A

O u tco m e

O u tco m e

1

0

1

0

A p p ro ach

S tay

D

S ho o t

S neak

L ive

D ie

L ive

D ie
…

E nem y

F acing

…
N o t fac ing

Figure 9 Example decision diagram with two decisions

3.5 Influence diagrams

Some of the decision scenarios can form a symmetrical tree for some decision
strategy. That is the decision order must be the same in all paths. Sometimes some
information is received prior of making a decision. To represent which observations
can be made before a decision we extend the graph with information links. In similar
way we extend the graph with precedence link (we add a link between decisions were
the edge would be directed from earlier decision to later one). The resulting graph is
called influence diagram and an example is shown in Figure 10. Influence diagram is
a compact representation of decision strategy for symmetric decision scenarios.

Bot

Outcome

Enemy

A

Utility

Figure 10 An extended example of Figure 5 (information links added)

The links from Enemy and Bot to A means that information about Bot and Enemy are
known before taking decision A and are called information links.

An influence diagram may have several decision nodes. An example of influence
diagram with two decision nodes is presented in Figure 11.

 23

A O u tco m e

U tility

D

E nem y
sta te

B o t sta te

E nem y
p o s it io n2

E nem y
p o sit io n

Figure 11 Example of a simple influence diagram with two actions

The formal definition of influence diagrams is presented below. This definition is
taken from [7].

Syntax

An Influence diagram consists of a directed acyclic graph over chance nodes, decision
nodes, and utility nodes with the following structural properties

• there is a directed path comprising all decision nodes,

• the utility nodes have no children.

For the quantitative specification we require that

• the decision nodes and the chance nodes have a finite set of mutually
exclusive states,

• the utility nodes have no states,

• to each chance node A is attached a conditional probability table
))(|(ApaAP , and

• to each utility node U is attached a real valued function over pa(U).

Definitions:

• A policy for a decision Di is a mapping σi, which for any configuration of the
past of Di yields a decision for Di. That is

iiii DIDDI ∈−−),,...,,(1110σ

here I0 is a set of chance nodes observed prior to any decision, Ii is a set of
chance nodes observed after Di is taken and before Di+1 is taken, and Di is a
decision node.

• A strategy for an influence diagram is a set of policies, one for each decision.

 24

• A solution to an influence diagram is a strategy maximizing the expected
utility.

There may be a need to find a strategy while time elapses. In such cases an influence
diagram with several time slices must be created. In Figure 12 the example of an
influence diagram with three time slices is presented. In the example S stands for
state, O for observation, A for action and U for utility. In this example a bot may
observe its enemies state and then take some actions that may change the state of an
enemy. Those actions are made while time elapses and are relevant for future.

S1

O1 A1

U1

S2

O2 A2

U2

S3

O3 A3

U3

Figure 12 Example of influence diagram with three time slices

The calculation of influence diagram is similar to the calculation of decision strategy.
In principle we can unfold the influence diagram out to a tree representing decision
strategy and then use a technique for calculating those trees.

3.6 Parent divorcing

Sometimes by creating a model we may get a model similar to the one in Figure 13. It
may also contain more parents for node Y. If we would need to specify parameters of

)5,4,3,2,1|(XXXXXYP we would have to gather a lot of knowledge about this
dependence. You might also use a database to extract the parameters but then you will
need a lot of cases describing this relationship.

X1 X2 X3 X4

Y

X5

Figure 13 Network without divorcing

 25

Suppose each of the nodes in Figure 13 has 3 states then the size of conditional
probability table of a node Y becomes 36 = 729. It becomes for expert an impossible
task to specify such a probability table. Suppose we take distribution from database
then we need a database to have around 7000 cases. To handle such problems we
divorce parents.

Parent divorcing is possible only in some cases when we can encode the same
probability distribution)5,4,3,2,1|(XXXXXYP by the other model in Figure 14.

X1 X2 X3 X4

Y

X5

A

Figure 14 Network with parents X4 and X5 divorced

In this model we divorced parents X4 and X5 of a node Y and introduced a new
(hidden) node A. This model can always encode the same)5,4,3,2,1|(XXXXXYP
if the 54 XXA ⋅= (cardinality of |A| is same as the product of |X4| and |X5|
cardinalities). In such case the),3,2,1|(AXXXYP will still have the same size as

)5,4,3,2,1|(XXXXXYP . However in some cases the lower cardinality of |A| can
be enough. This means that we can use less states in node A and reduce the size of
conditional probability table of a node Y.

This method was described in [7]. It is often used in the context of noisy OR, AND or
similar functions where it reduces the cardinality of |A| to 2. It works best in cases
where this technique can be applied many times and it would result in a graph where
each node has at most two parents. Then the Figure 13 could be changed into Figure
15.

 26

X1 X2 X3 X4

Y

X5

A B

C

Figure 15 Network with 3 hidden nodes

In such case (if all the nodes has 3 states) the number of configurations for which the
expert must give (or must be learned from database) a probability distribution is
reduced to 27 + 27 + 27 + 27 = 108 which is much smaller then the previous one of
729.

3.7 Structure learning

Sometimes when creating the structure we might already posses some test data. In
order to test some properties of data or prove some dependencies we might want to
find these properties or dependencies from the data we already posses. For such cases
structure learning is used. This approach enables us to learn the structure that best
represents the given data. Two main approaches are used for structure learning. One
of them is by using scoring function and another is by testing the independencies in
data.

The first approach is to use a scoring function, which evaluates the structure (how
well it fits the data given). To find the best structure we must try to evaluate different
kinds of the structures with the same evaluation function. The structure with the best
score describes the given data best. Usually methods that reduce the search space are
used [8].

The second approach is to construct the network. One way is to use the PC algorithm
described in [9]. This algorithm is used in Hugin API, which is used in this project.

Both of these approaches are NP complete problems. And it is proved that both of
them would find the best solution given that the data is consistent and all of the
independencies can be recognized from the data.

 27

3.7.1 PC Algorithm

The PC algorithm is very similar to the SGS [9]. This algorithm takes the data as an
input and then produces the structure, which reflects the data given. The algorithm
can be divided into three steps:

1. Produce the complete graph on vertex set given by data.

2. “Thin” the graph by testing for d-separation.

3. Orient the graph.

Suppose we have a data received from graph (Figure 16 (a)). If we run PC algorithm
following actions will be carried out.

In the first step we make a complete graph. That is the graph should contain the edges
from any vertex to any other (Figure 16 (b)).

In the next test we must test for d-separation of the variables. The procedure starts
“thinning” the graph by removing edges with zero order conditional independence,
then first order conditional independence and so on. The set of variables conditioned
on need only to be a subset of the set of variables adjacent to one or the other of
variables conditioned. In Figure 16 (b) the following independence test should be
carried out (an order of independence means the size of conditioning set. 0 order
means that the conditioning set is empty):

0 order:
A ╨ B\{ø}
A ╨ C\{ø}
B ╨ C\{ø}

After zero order independence tests we will not be able to remove any edges so the
graph will stay the same.

1st order:
A ╨ C\{B} – this independence must be true if the data is correct and enable to
remove edge A-C
A ╨ B\{C}
B ╨ C\{A}

After performing first order independence tests we will get a graph that is showed in
Figure 16 (d).

After having the final undirected graph we must orient the edges. In order to orient
them we must find the “colliders”. This means finding the converging connections.
This test must be carried out for all triples of vertices A, B, C such that pairs A, B and
B, C are adjacent to each other in a resulting graph but pair A, C is not adjacent. If A
and C becomes dependant given B then we must orient edges towards B else we must
orient edges in such way that they do not collide on B. The independence tests are not

 28

performed again in PC algorithm. We use the tests, which were performed in previous
step.

A

B

C A

B

C

A

B

C

(a) (b)

(c)

Figure 16 Traces of step 1 and step 2

The following meta code for the PC algorithm is taken from [9]:

Let Adjacencies(C, A) be the set of vertices adjacent to A in a directed acyclic graph
C. (In the algorithm, the graph C is continually updated, so Adjacencies(C, A) is
constantly changing as the algorithm progresses.)

1) Form the complete undirected graph C on the vertex set V.
2) n = 0

repeat
 repeat

select an ordered pair of variables X and Y that are adjacent in
C such that Adjacencies(C, X)\{Y} has cardinality greater that
or equal to n, and subset S of Adjacencies(C, X)\{Y} of
cardinality n, and if X and Y are d-separated given S delete
edge X – Y from C and record S in Sepset(X, Y) and Sepset(Y,
X);

until all ordered pairs of adjacent variables X and Y such that
Adjacencies(C, X)\{Y} has cardinality greater than or equal to n and
all subsets S of Adjacencies(C, X)\{Y}of cardinality n have been
tested for d-separation;

 n = n +1;
until for each ordered pair of adjacent vertices X, Y, Adjacencies(C, X)\{y} is
of cardinality less than n.

3) For each triple of vertices X, Y, Z such that the pair X, Y and pair Y, Z are
each adjacent in C but pair X, Z are not adjacent in C, orient X – Y – Z as

 X -> Y <- Z if and only if Y is not in Sepset(X, Z).
 repeat

If A -> B, B and C are adjacent, A and C are not adjacent, and there is
no arrowhead at B, then orient B – C as B-> C.

 29

If there is a directed path from A to B, and an edge between A and B,
then orient A – B as A -> B.

 until no more edges can be oriented.
In theory, the PC algorithm is not stable in both steps 2) and 3) but in practice step 2)
proved to be more reliable than 3).

Lets discuss some example and show where errors may occur. Suppose we have a
graph presented in Figure 17 after performing 0 order independence tests.

A B C

D

Figure 17 error type 1 example

By testing 1st order independence test in such graph will need to test the independence
D ╨ C\{A}. If this test would give the result that it is true then the algorithm will
remove the D – C edge. As we can see in the graph the A cannot separate D and C.
This would lead to the incorrect removal of the edge.

The other kind of error can occur in the edge orientation step (3). Suppose we get the
undirected graph presented in Figure 18 after performing step 2 of the algorithm. And
we have independencies which are A ╨ B\{ø}, A ╨ C\{ø} and B ╨ C\{D}.

 A B C

D

Figure 18 error type 2 example

When orienting edges we have 3 triples BDC, ADB and ADC. When performing 3rd
step of the algorithm we find out that AB should converge on D, AC should converge
on D but BC should not converge. As we can see there is no way to satisfy those
conditions.

To solve first kind problems the PC* algorithm could be used. Suppose we have two
adjacent variables A and B. If they are conditionally independent given Pa(A) or
given Pa(B) then they are independent given a subset of Pa(A) or given a subset Pa(B)
consisting only of variables lying on undirected paths between A and B. Then it is
enough only to test for conditional independence of A and B given subsets of
variables adjacent to A or B that are on undirected paths between A and B. The
drawback of this algorithm is that it must keep the record of all undirected paths in the
graph it considers at that stage. Usually it is unfeasible for large graphs as the number

 30

of undirected paths is typically large. But the PC algorithm could be used until the
graph becomes sparse enough and then switch to PC* algorithm.

 31

Chapter 4 Environment Description
In this chapter a short description of the Unreal Tournament (UT) game, Gamebots
platform and architecture of the Rbot is presented. Only main aspects that are
important for the project are described. More information about UT game or
Gamebots platform can be found at [10] and [11].

4.1 The Game - Unreal Tournament

The Unreal Tournament is a game that belongs to a 3D shooter class. In such games a
player controls some kind of an object (may be a human, robot, vehicle) ant the
information to a player is presented as if it was looking thought the objects “eyes”.
The players itself is residing in a 3D world. The example of a players view is
presented in Figure 20 and the example of 3D world surrounding player in Figure 19.
The UT is a complex and high dynamic game. The game has different types of games,
which are described in section 4.1.1. The 3D environment where player resides is
encoded as a map. Maps can be changed by a player and they can vary in their size
and their complexity. To be able to play a game the opponents are required. The
opponents can be computer controlled (AI) or human controlled.

Figure 19 The view of 3D environment

 32

Figure 20 The view from player’s perspective

4.1.1 Game types

There are several types of games in UT. There are three basic types that differ in
goals. Most of other game types are usually derived from these three, which are
described below:

Death match: The purpose in this game type is to be able to kill opponents as many
times as possible. The limiting factor can be either the number of kills (the kill are
also called frags) or the time limit can be specified. The winner becomes the player
that has most kills.

Domination: In this game type players are divided into teams. Each teams purpose is
to capture and defend certain points in the map. Each such point controlled is
generating points for the team which posses it. The team which collects the defined
number of points or which has the most of them when time runs out wins.

Capture the flag (CTF): In this game type the players are divided into two teams.
The point is given when a team gets enemies flag and brings it back to their own
home base. To get a point their own flag must be in their home base (as the other team
can also steal the flag and try to bring to their home base). The team that first gets the
defined number of points wins.

4.1.2 Opponents

The opponent in UT games is either the computer controlled (AI) players or the other
human players connected through LAN or Internet. The AI controlled bots in UT can

 33

be considered to be a strong opponent and make a game challenging. The AI of UT
bots is state automaton but still sometimes the behavior can be very similar to the
behavior of a human player. Such behavior is achieved by “cheating” as the bot may
use the information that is not available to a human player (positions of items,
positions of other players, the exact aiming). The different AI difficulty can be set
which changes the field of view (FOV) angle, the aiming error, and speed of a bot.

4.1.3 Items

The certain properties describe the state of a player. Those properties are health,
armor, weapon and ammo. In order to be able to kill an opponent player must be in a
good state. The more health and armor it has the more damage it can withstand before
death. To cause more damage player must gather different types of weapons and then
use them. Each weapons has different characteristics such as speed, damage, rate of
fire, recoil and etc. Exact specifications of weapons and powerups (health, armor,
etc.) will be described in sections 4.1.4 and 4.1.5.

4.1.4 Weapons

As it was mentioned before the weapons in UT have different properties. Each of
those properties makes a weapon useful in different situations. One of the
classification property could be the speed of a projectile the weapon fires. Those
could be classified as:

Instant damage: Weapons belonging to this class would cause damage as soon as it
is fired. So if the aiming is correct the damage is inflicted to a target.

Non-instant damage: The weapons in this class usually fires some kind of a
projectile, which is traveling at some given speed. The target may perform some
evasive actions while projectile is traveling thus avoiding it.

The other classification could be done by the damage the weapon makes.

Explosive damage: The weapons of this class usually are non-instant damage, which
fire a projectile that explodes upon impact with an object (like opponent, wall, crate)
and the damage done depends on a distance from explosion center. (Real world
example would be grenades).

Non-explosive damage: These kinds of weapons must hit the target directly to cause
damage. (Real world example would be bullets).

Each of the weapons may have a secondary fire mode, which may be different from
the primary (example could be Flak cannon which is able to fire like shotgun or
launch grenades). The short description of various weapons available in UT is given
below.

Impact hammer: A close combat weapon. Primary fire mode inflicts medium
damage. If targeting the wall player may be damaged due to recoil. The secondary
damage is fatal to an enemy if the weapon is loaded enough (player must hold a
certain amount of time the fire key until the weapon reaches its maximum power).
This weapon does not have ammo and is always available to a player.

 34

Enforcer: This is the initial weapon of a player. It has a good accuracy but makes low
damage. It has also a slow rate of fire. The secondary fire mode increases the fire rate
but decreases accuracy, so this fire mode is useful only in short ranges. The damage
done buy this weapon is low.

Double enforcer: If player already posses one enforcer it is able to pick up second
one and use them both at the same time.

Shock rifle: The fire rate is slow but it inflicts a medium damage. It is instant damage
weapon. The secondary mode shoots plasma balls, which are slow but inflict high
damage.

Bio rifle: This weapon fires toxic waste, which inflicts damage after some player
touches it (also the shooter). The projectile speed is slow, but it does not vanish if
missed. It stays on the ground (or wall) for some time and then explodes damaging
nearby players. The secondary fire allows accumulating those projectiles and firing
several of them at once. After secondary fire those accumulated projectiles are spread
in an area.

Pulse blaster: This weapon is a rapid-fire weapon. Each its projectile is causing only
low damage but the high rate of fire compensates for it. The secondary fire can be
used as a beam weapon, which causes damage to anyone in its path, but the distance
of the beam is limited.

Sniper rifle: An instant fire weapon, which has low rate of fire but is fatal if head is
hit.

Ripper: This weapon shoots razor sharp blades, which may bounce off the wall and
hit the shooter. The speed of those blades is high and if head is hit instant death
accrues. The secondary fire makes the discs explode upon impact.

Minigun: This weapon uses the same ammo as enforcer, but the fire rate is extremely
fast. The secondary fire does not differ from the primary fire.

Flak cannon: The weapon shoots the particles as a shotgun. Particles are fast and
cause high damage. But the particles disperse with the distance making this weapon
effective only from close ranges. The secondary fire shoots the grenades, which
explode on impact causing damage. Flack cannon can be seen in Figure 20.

Rocket launcher: This weapon fires rockets, which has a high damage and high
medium speed. The secondary fire mode enables shooter to drop those rockets as
grenades, which explode after some time.

The following tables will summarize the properties of these weapons.

Weapon Damage Speed* Explosive State of
eWeapon and

Weapon
variables

Impact hammer 24 Infinite No 0
Enforcer 17 Infinite No 0

 35

Double enforcer 2x17 Infinite No 0
Shock rifle 40 Infinite No 1
Bio rifle 20 840 Yes 1
Pulse blaster 20 1450 No 1
Sniper rifle 45, 100, kill** Infinite No 2
Ripper 30 1300 No 1
Minigun 17 Infinite No 2
Flak cannon 6x16 2500 No 2
Rocket launcher 75 900 Yes 2

Table 4 Weapon properties

* Speed is given in UT measure values. ** Depending on a place you hit (legs,
torso, head)

Ammo type Ammo
number

For
weapon

State of Ammo variable

Shock core 10 Shock rifle
Biosludge
ammo

50 Bio rifle

Pulse cell 25 Pulse
blaster

Rifle rounds 25 Sniper rifle
Razor
blades

25 Ripper

Bullets 50 Minigun,
enforcer

Flak shell 10 Flak cannon
Rocket pack 12 Rocket

launcher

There are three states of ammo which are:
Low, Medium and Full
They are calculated as follows:
(Ap - Ammo percentage, Ba – Ammo that
bot carries, Ma – Max amount of ammo
that bot can have)
Ap = (Ba / Ma) * 100
Then:
if Ap is less than 10% then the state is Low
if Ap is less than 50% but more then 10%
than the state is medium
if Ap is between 50% and 100% then the
state is full

Table 5 Ammo types, ammo number and which weapon uses them

After picking up a weapon it will never be loaded with maximum number of ammo so
the player must search for ammunition and pick it up. The types of ammo are
presented in Table 5.

4.1.5 Powerups

The player dies when its health reaches 0. In order to increase health player must
search for health packs. The main list is presented below:

Health pack: Increases players’ health by 20 points to no more than 100 points.

Health vial: Increases players’ health by 5 points to a maximum of 199 points.

Keg O’ health: Increases players’ health by 100 points to a maximum of 199 points.

In additional to health player may have armor. It provides protection from some of the
damage received. Armor is also counted in points and each time the damage occurs
the number of points is reduced.

 36

Below is the list of the main armor types:

Thigh pads: Provides 50 points of armor for a player. Protects from only 50 percent
of damage.

Body armor: Provides 100 points of armor for a player. Protects from only 75
percent of damage.

Shield belt: Provides 150 points of armor for a player. Protects from 100 percent of
damage.

In the beginning or after the death players are given initial status, which is given in
the table below.

Weapons Enforcer and Impact hammer
Health 100
Ammo 50
Armor 0

Table 6 Players initial state

4.1.6 Actions of a bot

The player in UT may perform certain actions. Humans control its player by using
keyboard and mouse. The movement in a level can be performed only on solid
surfaces such as floor, crate and barrel. The player may damage or kill itself if it falls
from a certain height. There are two criteria for movement: one of them is moving
vector and another is focus vector. Focus means where player is looking and targeting
its weapon. Example would be movement backwards, when bot is moving backwards
but looking into opposite direction of the movement. A few main actions can be
pointed out:

Move forwards/backwards: The movement is performed forward or backwards from
current players position.

Move right/left: The movement is performed right or left from current players
position.

Rotate right/left: The player rotates to the left or to the right.

Start shoot/stop shoot: The player starts shooting its current weapon until stop shoot
action is received. The weapon fires to the focus location of a player.

The actions of a movement can be combined. For example the player may move
forward and turn at the same time. The figure explaining actions is given below.

 37

a)

c)

b)

Figure 21 Movement of a player; a) move right/left; b) move forward/backward; c) rotate
left/right (picture shows a player from above);

4.2 Gamebots platform

The Gamebots platform was created to provide AI researchers with flexible, dynamic,
real time environment and to enable to use the UT engine without knowing how to
program in the Unreal script language. The platform supports multiple agents. The
Gamebots platform is a modification for UT game and it supports main game types
such as death match, domination and capture the flag. It enables to create AI agents
for a very popular game called UT (thus using AI agents for real applications).

The Gambot platform enables to control a player through TCP/IP sockets. This
feature enables designers to use any kind of programming language that are capable
of handling TCP/IP sockets. The Gamebot platform “wraps” the messages from UT
game sent to a player and redirects them through sockets. This enables for player to
receive information about environment it is in. It will also listen on a socket for an
action to perform (the designer is responsible of sending which actions to perform).

The messages that are passed to and from Gamebot platform are text strings. The
Gamebots platform has three kinds of messages:

Synchronous: These messages are generated at some time intervals (the interval may
be set in properties of the game). Mostly they include sensory information about
current environment. The interval used for Rbot was 0.1s (interval may fluctuate
when a computer is slower).

Asynchronous: These messages can be received at any time during the game. They
usually contain information about some events that happen (bot hears the noise, bot
receives damage, etc.)

Action messages: These messages are sent to the Gamebot platform at any time. They
contain the actions that bot should take.

The Figure 22 presents the organization of Gamebot platform. The human players are
handled by UT engine itself but Bot application is serviced by Gamebot platform.
From the diagram we can see that Gamebot platform must reside in the same
computer where UT engine is run, but Bot applications may be run on any computer

 38

that has a network connection to a computer, which is running UT engine with
Gamebots platform.

TC
P/IP

Unreal Tournament
engine

Gamebots platform

Socket

Socket

Human
client

Bot
application

Bot
application

Human
client

Socket

Socket

Figure 22 The organization of the Gamebot platform software.

4.3 Architecture of Rbot

In this section we describe the main components of the Rbot client program. We can
distinguish three main components that make up Rbot:

1. Connection module.

2. Bot module.

3. Brain module (the whole brain module structure is given in Figure 24).

All of these modules were developed with extensibility and reusability in mind. Each
of those modules can be reused in other client (Simple example is given in appendix
A). The hierarchical structure is presented in Figure 24.

The most important part of the Rbot is its brain module as it is the part, which enables
our bot to make sensible actions. The Rbots brain is itself divided into several
modules, which enables us to extend brains capabilities easily.

The structure of Rbot is presented in Figure 23.

 39

Rbot

Unreal game

Gamebot
platform

TCP/IP
Communication

module

Brain
module

Bot module

Parsed
messages

Raw data

Figure 23 Structure of Rbot

4.3.1 Communication module

This module is responsible for all communication processes. It makes a connection to
the Gamebot platform, makes sure the connection is open. Communication module
waits for the messages to come and after receiving them it feeds those messages (they
come as text strings) to a Bot module. This part of Rbot can be reused in other clients,
which use network connections. Other clients do not necessarily need to connect to
the Gamebots platform.

4.3.2 Structure of Bot module

This module is responsible for retrieving and classifying messages received by the
communication module from the gamebots platform. It is also responsible for creating
messages, which will be sent to the gamebots platform (this ensures, that we cannot
send a message that is not supported by the gamebots platform. New types of
messages are easily updateable). Bot module also works as a dispatcher of newly
received messages to other modules, which are registered as receivers. This approach
enables messages to be received in a distinct way. For example module A (Brain
module in Figure 23) wants to receive only message PLR (PLR is a message type
which carries information about a player) from the gamebots platform, then module A
registers as a receiver of PLR message and when that message is received by the bot
module, message PLR will be sent to module A and others which are also registered
as receivers of PLR message. The bot module can be reused in all gamebots platform
clients. In Rbot case Rbot brain module is responsible for receiving and interpreting
messages from gamebots platform.

4.3.3 Structure of Rbot brain

In this section we present the structure of Rbot brain. The main task of winning the
game is distributed into smaller tasks. The part of software responsible for decisions
taken by Rbot is called the Rbot brain. First, Rbot’s brain was divided into modules,
which more or less are responsible for different tasks, such as the path finding, target
notification, evasion. The split of Rbot’s brain into modules enables us to concentrate
on each part of the brain without thinking about the whole problem. Another
advantage of such structure is to save the computing time by switching modules on or

 40

off when they are not needed. For example, if we have no targets there is no need to
do evasive tricks or search for a path for the retreat. There is one important element in
this structure, which is the Rbot reflex. The Rbot reflex module is responsible for all
low level functions such as walk to a location, or shoot at a location. In the reflex
module we code the behavior that is carried out when a decision from the brain comes
(if a task is complicated it can take some time to find a decision). This kind of
structure ensures that at least some measures will be taken until the decision arrives.

Rbot’s brain structure is shown in Figure 24.The detailed description how the Rbot
chooses its actions will be described in Chapter 6. Bayesian networks will be used for
the decision-making.

The structure of Rbot brain was inspired by [12].

Exploration
brain

Target
brain

Evasion
brain

Threat
brain

Status brain

Bot brain

Rbot reflex
Rbot brain

Figure 24 Structure of Rbot’s brain

Event driven module is a module that is activated by a certain type of a message from
the Gamebot platform. The module does not perform any computation while no
messages are received. The modules that are event driven:

• Target brain

• Threat brain

Other modules are turned on or off when needed by Bot brain module.

The following sections will explain what each module is responsible for.

Exploration brain module

The exploration brain module is one of the most important parts of Rbots brain. As
the modules name implies it is used to explore and memorize the environment our
Rbot is in. This module takes care of finding nodes to explore. The module also
creates paths to various items and domination points. This module itself does not

 41

make the Rbot to move, but it provides a place where to move for Rbot brain module,
which handles movement of the Rbot.

For path finding my version of the A* algorithm is used [13]. The pseudo code of the
algorithm is presented below. The input is two nodes source and destination and the
output is the shortest path from the source node to the destination node.

1. We have empty R and Q sets (R is a set for the closed nodes and Q is a set for
the open nodes).

2. We have nodes source and destination.
3. Add all nodes reachable from the source node to Q set. Mark their distance

from source node (Euclidian distance is used as the nodes can be reach by
moving in straight line).

4. Assign currentNode to null (no current node).
5. Add source node to R list.
6. While Q set is not empty
7. {
8. Select the next node from Q list that has the lowest Euclidean distance from

the destination node plus the current distance from a source node assigned to
it. Assign that node to the current node. This means that the nodes that are
nearest to the destination point will be explored first and as soon a shorter path
appears algorithm will pick the node with shorter path.

9. If currentNode is equal to the destination node return the path (we keep a
record of a node from which this node is reached so we only need to backtrack
back to the source node and we’ll get a path) and break from while loop.

10. Add current node to R list and remove it from Q list.
11. Add all the reachable nodes from current node to Q list and mark their

distances from source node. For example we have nodes A and B and A has
marked distance from source node, so the distance of B node from the source
will be d(source, A) + d(A,B) = d(source, B)

12. }
13. We did not find the path (path may not exist at all).

A very good description of A* algorithm was written by Amit J. Patel from Stanford
University [14].

The module is also responsible for finding nearest weapon spot, health spot, and
domination point.

Target brain module

The target brain module is responsible for selecting a target. Targets are selected only
if there is any in Rbots field of view. If there are multiple targets in the field of view
then the random target that is received from the Gamebots platform is selected (in our
case only one opponent is used so it is selected every time it gets into field of view of
the Rbot). After the target is selected module notifies Rbot brain module and provides
it with the coordinates of a target. This module is event driven and it notifies Rbot
brain module only when information about target is received.

Evasion brain module

 42

The evasion brain module is responsible for performing evasion moves, when the
target is available and Rbot decides to attack it. The evasion is also used when the
target is in sight and Rbot is retreating. Given the destination and current Rbots
location this module returns a spot near its current location leading towards the
destination. It means that Rbot will not run in a direct line but rather deviate from
course randomly or it will move around one point if the destination is the same as the
current location. These movements enable Rbot to evade some of projectiles fired at
it. In our case the evasion brain module is only used when fighting.

Threat brain module

The threat brain module is responsible for notifying the Rbot brain module when there
is a possible threat near. Threat brain also provides the Rbot with the vector pointing
from the Rbot to the direction of a threat. Such threats can be received by examining
messages like (HRN – hear noise). Threat module notifies Rbot brain module when it
hears noise made by other bots (direction vector of coming noise is given) and if the
Rbot is shot at (the vector facing the opposite direction from current Rbots pointing
vector is given). Threat brain module was used only for the first semester project.

Status brain module

The status brain module is responsible for gathering statistical data, as how many
times the Rbot died, how much damage it made, what is the score, etc. This
information is saved every 10 seconds for first semester project and every 25 tics for
the second semester project to synchronize with actions. Later this data are used for
performance results. The information from the status brain module is not used in
decision-making. This information may be used in a future version of Rbot.

 43

Chapter 5 Previous Semester Work

This chapter includes the work done during the first semester. We present a short
description of a previous semester project and then present some results. Later the
discussion follows which describes which are the weak parts that should be changed.
Some points are given which were solved in this report.

This chapter includes only the Idea, which was behind, and the results from previous
report. The theory part is shared between these projects. The Rbot in this chapter is
assumed to be the previous version of Rbot.

5.1 Idea behind

Because the UT environment is highly dynamic and the observation of all the
environment variables or the opponent is not complete and not always possible some
methods for predicting the environment state had to be used. Also as the behaviour of
the opponent is not known and is not fully observed it needs to be predicted. The
Bayesian networks were chosen to perform those observations and predictions.

As the time elapses during the game the opponent might change its strategies and the
ability to adapt is also required. Also the Rbot should be able to choose a best action
based on the predicted state of the environment and the opponent. Influence diagrams
can handle all of these tasks (of predicting and choosing the appropriate action).

The task was divided into two subtasks: prediction and decision.

Because the UT is a real time game the prediction and decision parts has to be
performed in certain intervals.

In order to be able to predict enemies’ action, the environment should be observed
(and Rbot should have some kind of memory about previous observations). Also the
prediction should not take place all the time, as it would consume computational
resources. Rbot should not try to predict the enemy when it has no knowledge about
it. The prediction should also be skipped when Rbot already knows what to do (for
example, enemy attacks Rbot as soon as it sees it). So the following conditions should
be met before Rbot starts making a predicion:

• The enemy is in Rbots sight

• The enemy does not engage Rbot

If while Rbot is observing the enemy starts attacking Rbot then the observation is
abandoned and Rbot engages enemy too. If all the conditions for prediction are met
then Rbot gathers information about enemy (observes) and use the information to
make a prediction.

Rbot also makes a decision which action it should take. For making a decision it does
not necessarily require an enemy to be in sight. If there is no enemy in sight the
decision will be made without entering information about enemy (except enemy
controlled domination points as this can be observed always). In Figure 25 the
decision cycle of Rbot is presented. Let us explain it more deeply.

 44

First of all the Rbot senses the environment. It collects the information about its
current state and the state of the visible environment. If the enemy is present and it
meets the conditions for prediction then Rbot observes it for 15 game tics (during 1
game tick the Rbot receives information about environment 1 time). If observation
was successful (observation was not cancelled due to an attack) then Rbot enters the
evidence it collected into the prediction network and propagation is done. Then the
result from prediction network is entered into the decision network. After the result
from prediction network is entered into decision network the prediction network is
adapted. The action that yields the highest utility in the decision network is selected.
After the action is selected the Rbot performs it and the state of a bot after the action
is recorded and stored. If while performing the action Rbot engages the enemy it will
resume the same action after a fight. After the game finishes all the information about
the outcomes of an actions is entered to a decision network and the network is
adapted.

 45

Sense
environment

Is the bot
in sight?

Try to predict
bots strategy

Pick the best
action

Pick the best
action

Perform the
action

Save outcome
of an action to
environment

Update
network

After the game
update outcomes

of an action

Yes No

Figure 25 Rbots decision cycle

5.2 Model

For each task (prediction and decision) the Bayesian network is created. In this
description those networks will be described separately but in the real application to
ease up the coding both of the networks are merged and used as one.

5.2.1 Prediction of an enemy action

The enemy actions are assumed to be a high level actions (the example could be “pick
the inventory near me”). There is no possibility to guess what the enemy is doing only
looking at its current state. We need to remember what it was doing some time ago. In
order to be able to enter that information we use time slices. In our prediction part
three time slices were used (experiments showed that three slices are enough to be
able adequately predict the action of the enemy. They approximately take 1.5 second
time interval.). As the evidence seven variables are observed which are presented in

 46

Table 7. The variables “distChng”, “event”, and “Rotation” are the ones that describe
which action the enemy bot is performing. The actions of the enemy are represented
in variable “eStrategy”. The variables “eStrategy” probability table is adapted (the
probability tables of other variables are not adapted), because we are interested how
environment influences enemies’ actions. The adaptation takes place each time the
successful (15 of data about enemy is received) observation is made. The index to a
node name means the time slice number (the higher the number the later observation
is done. Example A and A_1 would mean that first A was observed and then A_1).

Node
name

Meaning States

domCtrl Number of domination points controlled by the
enemy bot

0, 1, 2, 3

eWeapon Type of the weapon the enemy is carrying 0, 1, 2
Dist2Dom Enemy’s distance to the domination point Low, High (low means

closer than 500 units)
Dist2Inv Enemy’s distance to the inventory point Same states as

Dist2Dom
distChng Enemy’s distance change (the distance between

last location observed and the current location)
No change, small
change (walking),
large change (running)

event Did any event happened (such as the item
pickup or the domination pickup)

No event, Dom
change, Item pickup

Rotation Did the bot rotate or is it steady Stable (moving
without rotation),
random (the enmy bot
is turning)

eStrategy The strategy of the opponent bot Hunt, Ambush, Camp,
Roam, Unknown

Table 7 The meaning of observable variables

Three time slices are presented in Figure 26. As the adaptation takes place the only
interesting conditional probability table is attached to a node “strategy_2”. Only tables
attached to “eStrategy”, “eStrategy_1” and “eStrategy_2” is adapted. The tables used
in “eStrategy” and “eStrategy_1” should be equivalent to the table used in
“eStrategy_2” because we want same conditional probabilities in all time slices. To
make tables equivalent first we must marginalize “eStrategy_1” out for use of the
table in node “eStrategy_1”and then marginalize “eStartegy” for use in first slice.
When adapting “eStrategy_2” the fading factor of 0.9 is used.

 47

Figure 26 Three tine slices for prediction (prediction network)

5.2.2 Decision making

The part of the decision network that is used to make a decision which action Rbot
should take can be represented as an influence diagram and is presented in Figure 27.
The node “eStrategy_2” is a copy of a node “eStrategy_2” in prediction network and
thus it contains the same table as the one in prediction network. The current Rbot state
is entered into the decision network and the action, which yields the best utility, is
chosen. After the chosen action is completed the state of Rbot is taken and saved for a

 48

later use. The adaptation of this part is made after the game has ended and the
information that is received is used only in a next game. Another possibility would be
to update as soon as we get the information, but then it would be hard to find out how
the learning affects Rbot’s performance.

Node name Meaning States
myDom,
myDomAfter

Number of domination points controlled by the
Rbot

0, 1, 2, 3

eWeapon_2 Type of the weapon the enemy is carrying.
This node is copied from prediction part.

0, 1, 2

domCtrl_2 Number of domination points controlled by
enemy bot. This node is copied from
prediction part

0, 1, 2, 3

Kill Did the Rbot kill the enemy Yes, no
scoreChange How did the score change during the action

execution
Increase, none,
decrease

Action What action the Rbot should make or what
action the Rbot performed.

Hunt, Camp,
GetDomination,
GetWeapon,
GetHealth,
Roam, Ambush

Health, Armor,
Weapon, Ammo

All of these nodes has 3 states and describes
the current state of Rbot. The nodes with index
_n mean the state of the Rbot during next time
slice.

0, 1 and 2
0 = poor
1 = normal
2 = good

Strategy_2 The strategy of the opponent bot. This node is
a copy from prediction part.

Hunt, Ambush,
Camp, Roam,
Unknown

DominationUtility The table for this domination is:
myDomAfter 0 1 2 3
DominationUtility 0 0.5 1 1.5

StaminaUtility The table for stamina utility is:
StaminaAfter Poor Normal Good
StaminaUtility 0 0.2 0.3

KillUtility Table for kill utility is
Kill Yes No
KillUtility 0.2 0

StrengthUtility Table for strength utility is:
StrengthAfter Poor Normal Good
StrengthUtility 0 0.1 0.2

ScoreUtility Table for Score utility is:
ScoreChange Increase Decrease None
ScoreUtility 0.5 0 0.3

Table 8 The meaning of nodes in decision part influence diagram

Bellow the influence diagram of Decision part is given.

 49

Figure 27 influence diagram used in the Rbot's decision making

5.3 Tests and Performance of Rbot

We carried out a number of experiments to see whether adaptation of Bayesian
networks improves Rbots results. First we tested the Rbot against the built in UT bot.
Then we tested Rbot against Rbot and at the end we tested Rbot against Human
player, to see how does Rbot adapt.

 50

5.3.1 Rbot against UT bot

The UT bots are well known to the 3D shooter players of their strength (ability to
fight) and human like acting. The UT bot does not learn or adapt to an enemy so its
strength is constant. This gives us a good opponent for testing our rbot’s ability to
adapt and as the UT bot does not evolve during the game play it can be used as a
benchmark. First of all the Rbot with no knowledge about the UT bot is run to see
how it performs against UT bot. We expected it would perform worse than the UT bot
because its fighting routine is not efficient and some information is not available to
Rbot. Later we expect Rbot to improve its performance by using more efficient
strategies thus enabling to accumulate more points even when it is much weaker at the
combat. By watching the games that Rbot played against the UT bot we noticed that
after few generations the Rbot’s strategy changed. Instead of involving in a fight with
the UT bot, Rbot preferred to get a domination point. Such behavior could be
explained that Rbot was bad at fighting the UT bot. As we can see the latest Rbot
(generation 3) was clearly ahead of UT bot.

The choice of a correct action depends on a number of samples available (The sample
is one of the specific observation cases. It contains information about bots initial state
and the state after a certain action was chosen). Usually the bot receives average of 75
samples during one game. The table bellow shows how many samples were available
for the bots of each generation.

Rbot type Sample size
Generation 0 (no learning) 0
Generation 1 75
Generation 2 160
Generation 3 241

Table 9 Rbots sample size

The table bellow shows the final score of the Rbot. Mean was calculated as:

n

x
i

i∑
=µ

The variance was calculated as:

1

)(2

−

−
=
∑

n

x
i

i µ
σ

Here ix is the sample result and µ is average result and n = 10.

Rbot type µ±σ
Generation 0 (no learning) 80.58 ± 12.52
Generation 1 94.78 ± 13.68
Generation 2 100.57 ± 13.82
Generation 3 100.70 ± 13.36

Table 10 The final score of the Rbot

 51

Below the graphs representing Rbots and UT bots score during the game. The options
for the game were:

• Score limit 999

• Time limit 5 minutes

• Map: DOM-Stalwart

Ten tests for each generation Rbot were carried out.

Rbot (no learning) VS UT bot

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Round

Po
in

ts
 a

cc
um

ul
at

ed

Rbot average UT bot average

Rbot (generation 1) vs UT bot

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Round

Sc
or

e

Rbot (Generation 1) UT bot

 52

Rbot (generation 2) vs UT bot

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Round

Sc
or

e

Rbot (generation 2) UT bot

Rbot (generation 3) vs UT bot

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Round

Sc
or

e

Rbot (generation 3) UT bot

 53

Final score difference between Rbot and Ut bot

-30

-20

-10

0

10

20

30

1

Sc
or

e
in

ce
re

as
e

Rbot (no learning) Rbot (generation 1) Rbot (generation 2)
Rbot (generation 3) Rbot (generation 4)

The prediction accuracy (number of correct predictions about enemy’s strategy) of
Rbot during this test was 69%. This shows that we should use more variables to
describe enemy’s actions to improve the prediction accuracy. This result is not very
accurate as it is received only from 20 observations.

5.3.2 Rbot against Rbot

The next test was done Rbot versus Rbot. This was carried out to ensure that Rbot is
capable to adapt not only to a UT bot but also to other player. The probabilities of
enemy’s strategy and the probabilities of which action would yield best-expected
utility were monitored in this test. Ten tests for each generation Rbot were carried out.
The score limit and the time limit were the same as for the previous tests.

The states of variable “eStrategy_2” are different than the states for the “Action”. This
means some of the actions are described by the same variable state in “eStrategy_2”.
The actions “getHealth”, “getDomination”, “getWeapon” and “Roam” are reduced to
the enemy strategy “Roam”. All of them have the common behavior such as moving
toward some location (where domination point, health, weapon, etc. exists). This
movement by Rbot is identified as the “Roam” action.

 54

Rbot vs. Rbot

0

20

40

60

80

100

120

1 2 3 4 5

Rbot generation

Sc
or

e

Rbot (A) Rbot (B)

Figure 28 Rbot versus Rbot

As we can see in Figure 28 the Rbots are adapting to each other. The second
generation Rbot(A) was loosing with a large score difference but after adaptation it
was capable to reduce the difference and even win. The score fluctuates as the Rbots
are adapting to each other. The Rbot(A) during first generation was able to
successfully kill Rbot(B) several times. This increased the probability of the “Hunt”
action and by using it in a second generation was not able to stop Rbot(B) from
controlling domination points.

In Figure 29 one of the Rbot was allowed to adapt and the other was always using the
same conditional probabilities (uniform distribution). As we can see from the graph
the learning Rbot gains advantage over non-learning and then maintains it.

 55

Rbot (with learning) vs. Rbot w/o learning

0

20

40

60

80

100

120

140

1 2 3 4 5

Generation

Sc
or

e

Rbot (w/o learning) Rbot (with learning)

Figure 29 Rbot with learning versus Rbot without learning

In Figure 30 the change of expected utility of Rbot as it adapts is shown. The Rbot
may have different strategies for different state configurations so we will present only
some of them. The fixed values of Rbots states are taken (Health=4; Armor=0;
Ammo=0; Weapon=0; domPoints=1; enemyDomination=0). As we can see the utility
of action get domination does not change much as it is the primary goal of the Rbot
and at given state Rbot owns only 1 of 3 domination points but the utilities of other
actions does change (we can see from the graph that hunt utility decreases and roam
increases).

Rbots utility change

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5

Generation

U
til

ity

Hunt Ambush Camp GetDomination GetWeapon GetHealth Roam

Figure 30 Utility change of the Rbot

 56

 Enemy’s strategy
Rbot’s action Hunt Ambush Camp Roam Unknown
Hunt 1.863 1.463 1.565 1.756 1.797
Ambush 1.601 1.654 1.594 1.794 1.624
Camp 1.584 1.746 1.689 1.846 1.616
GetDomination 1.599 1.524 1.548 1.628 1.799
GetWeapon 1.574 1.548 1.566 1.537 1.462
GetHealth 1.850 1.885 1.850 1.757 1.783
Roam 1.801 1.821 1.816 1.764 1.735

Table 11 Rbot's actions expected utility depending on enemy's strategy

Table 11 shows how the enemy’s strategy affects Rbot’s decision. Here the following
state is taken:

Health = 4; Armor =0; Weapon = Type 2; Ammo=Low;Domination points=2; Enemy
domination points = 1;

The prediction accuracy of Rbot during this test was 49%. Such low number was
caused due to a technical error in the Gamebots platform, because the Rbot is not
capable of slow movement and action “camp” depends of the speed of movement.
The prediction result is not very accurate as it is received only from 20 observations.

5.3.3 Human against Rbot

In this test The Rbot was playing against Human. As the Human player was the
project author and possessed the good knowledge about UT bot and Rbot. Human
player due to its ability to adapt to an enemy and to employ new strategies won all of
the games. After playing a several games it could be observed that UT bot was much
more hard to kill but easy to win due to its poor strategy on the other hand the Rbot
was much easier to kill (the fight routine of the Rbot was not the main issue) but it
was harder in a strategic sense (the Rbot tried to claim more domination points rather
than fight this made human player also to go for domination points). Ten games with
each bot type were played. As we can see in Table 12 neither the Rbot nor the UT bot
are able to beat humans yet.

Enemy Human score Enemy score
UT bot 122 42
Rbot (generation 5) 117 49

Table 12 human player against the Rbot and the UT bot

5.4 Discussion

This section will describe the problems encountered with previous version of Rbot.
The main issues will be mentioned and in the next chapter most of the solutions will
be given and then the new performance results presented.

5.4.1 Prediction

One of the problems was observed with the prediction. It was not very accurate. The
problem is that the tables in nodes “eStrategy_1” and “eStrategy_2” have too many

 57

parents. The table size for “eStrategy_1” is 600 and the table size for “eStrategy_2” is
3000. This means that the huge amount of information is needed to change the beliefs.
It seems that the Rbot was making a prediction of an enemy only from prior
probabilities and the data that was received during the game did not affect the
probability distributions much.

The second problem with the prediction is that usually the enemy is encountered only
several times during one game. This means only small amount is available to Rbot.
Also the encounters are very short (we used ~1.5sec for information collection) and
during this short period it is very hard to predict the real strategy of an enemy. It may
happen that we detect only the small part of some strategy, which may reassemble
totally different strategy thus making a wrong prediction.

Also as it was mentioned before the number of nodes describing some enemy strategy
was too small. This means that the strategies of an enemy are not described fully. This
inaccurate representation causes wrong predictions.

5.4.2 Decision

There could be several problems with the decision part pointed out. One of the
problems is the utility functions. There are five utilities used in making the decision.
The only clear utility function is for domination points as domination points directly
affect the final score. All of the other functions are not known. Each of those utility
functions is defined by an expert and do not change over the time. There could be that
those utility functions are not correct or change over time (if another bot is learning).
In such cases the Rbot will start making bad decisions based on the wrong utility
functions.

There is also a problem of a bot learning its own utility function. Learning opponent’s
utility function can be done by observing its actions. The different problem arises with
learning your own utility function as the actions has to be selected before outcome can
be observed. This means that to learn your own utility function you must try different
combinations of the actions several times for different environment configurations.
This could be a whole research to find the efficient way of learning your own utility
function as the human player can learn its own utilities rather quickly.

5.4.3 Implementation

The next problem could be encountered in implementation of the actions. The Rbot
has the defined set of actions, which are high level. Those actions were taken by
observing the human players play and generalizing what strategies are most
frequently used. The action is performed until it is finished. For example the action
“getDomination” would make the Rbot to go to the nearest uncontrolled domination
point. The distance to it may vary and the state during this action may change, but the
implementation would not allow the Rbot to change its current action and it will be
carried out until it is finished. Also the engagement of the enemy was also hard coded.
This means that the Rbot will always attack the enemy if it is in sight and close to the
Rbot or if an enemy decided to engage. Such approach disables the ability for the
Rbot to change its action.

 58

Chapter 6 New Rbot
This chapter describes the work done in the second semester of the project. It starts by
a short review of the first approach and its problems. Then we introduce a new more
principled approach, which bases the decision part on influence diagrams as well as
the previous approach. However the influence diagram has a structure of Dynamic
Bayesian network which is learned from data and further optimized using expert
knowledge. Moreover it uses just one kind of utility node, which is directly related to
the goal of the game. Thus there is no uncertainty in this utility.

6.1 First semester approach

In previous semester Rbot decision were made based on influence diagram. Because
the Rbot was taking into account only the current state of the game several utility
functions had to be used to enable the Rbot to pick different actions under different
conditions. Several main influencing factors were introduced such as killing the
opponent, getting more health or getting better weapon. An expert introduced all of
these functions. All those functions except the scoring function are not clear in UT
environment. An expert presented only averaged functions, which might not
necessarily be true. Usually in such cases some kind of utility function learning is
used to be able to change the utilities.

The positive thing about the previous approach was that it used a prediction of the
enemy but later it showed to be not precise and problems with prediction are
described in 5.4.

6.2 New approach

6.2.1 Introduction

In this semester project the decision was made to leave the same overall structure. In
order to cope with the problems, which arose in previous semester, some changes had
to be made. We took the more principal approach to construction of the influence
diagram. Because the scoring in the game is well known we base the utility only on it.
The approach, which was used in previous project, would not be good in this case as
the Rbot would only chose action which increases the utility (action go to
domination). In order to enable the Rbot to “look” into the future we have to use
dynamic Bayesian networks. The Figure 31 shows a simplified version of the
influence diagram with two time slices (slices are separated by dashed line). This
means that when making the decision the Rbot will think about the next action as
well. This would enable the Rbot to pick action with lower payoff if the next action
could yield large payoff.

 59

U U

State State

Action

CDom CDom CDom

Action

Figure 31 Influence diagram with two time slices

In order to support such influence diagram the execution of the actions had to be
changed. We also learned the structure of the influence diagram from the data and
then used expert knowledge to improve it considering practical aspects of the
implementation as well.

Because some work was already done during the previous semester the problems that
arisen were also addressed. The whole design was divided into several parts, which
include:

• Implementation of the Rbots actions and perception of the game

• Construction of the influence diagram which will be used in decision making

• Optimization of the influence diagram

Each of these parts will be described in different sections.

The examination of the results from the previous projects revealed that the decision
part has the most impact on the Rbots performance. In this project the main focus will
be the decision part.

6.2.2 Implementation

In the UT game there are only basic actions that include movement to some direction,
turning and shooting. All of these actions are low-level actions and cannot be used as
encoded actions in the influence diagram. In order to be able to encode a sensible
action, which could give us a certain changes in the environment some basic strategies
had to be implemented. The human behavior was observed and several main high-
level actions were extracted:

1. Hunt. The strategy, which is used only when opponent, is visible and includes
making evasive maneuvers from incoming projectiles from opponent and
shooting at it.

2. Get health. This strategy makes bot to move and pick up appropriate health
items (different health items act differently).

 60

3. Get weapon. This strategy includes going and picking up weapons or ammo
for those weapons.

4. Camp. This strategy includes walking about a certain point (usually
domination) and preventing enemy opponent to reach it.

5. Ambush. This strategy makes a bot to move to a certain point, which is not
easily visible, but near the path to some important point (such as domination
point) and wait there until enemy tries to pass then engage it.

6. Get domination. This strategy simply moves a bot to the uncontrolled
domination point.

There are several ways to implement such high level actions. One of them was used in
previous project. It included performing the action until it is successful. This means
that the actions could be of the different length as the items can be in different places
and the time to get to them would be different. To know those lengths of the actions in
advance is impossible. Because the use of time slice approach for creating influence
diagram such method could not be used any more as the intervals between time slices
must be equal.

In order to make all actions of the same lengths they had to be synchronous. For
measuring the time of each action the UT clock was used. The UT provides Rbot with
synchronous messages at a certain intervals, which could be used as a clock “tick”. In
such case each action would be allowed to perform only a certain amount of time. The
time interval has to be chosen such that the Rbot should be capable to perform some
change on the environment. The time interval of the actions for Rbot was chosen to be
of 25 “ticks” and it was determined by changing its length and observing the actions
of the Rbot. It approximately takes 2.5 seconds. If the interval chosen would be too
short the information received in the beginning of an action would be the same and if
it were too long then some of the information could be overlooked. The other reason
for choosing the fixed time actions was to enable the Rbot to change its mind when
environment changes. The example could be when the Rbot is traveling to the certain
point and suddenly it senses that the health or weapon is nearby that it could change
its action to pick that item and continue on a previous course. This scenario would not
be possible with previous implementation as the actions are performed until they are
successful (this would make the Rbot to ignore any changes in environment and
continue to its destination point).

The other implementation change was to remove the prediction part from the design.
The reason for that is that the encounters are not that common in UT game when
playing two players. Second reason was that the data that can be gathered about an
enemy is not able to define the action of that enemy because the enemy may have
totally different set of possible actions and the set of actions provided by the UT game
is very small and low level (such as turn left, turn right, move forward and etc.). This
means that the prediction cannot be carried out correctly. The possibility to access
some currently hidden data could give at least some generalized bot state by
observing the exterior of a bot (such that it is bleeding or very good shape) and could
enable us to start predicting the enemy bot state. This is not implemented in the
Gamebots platform. Instead of the opponent modeling we added the simple
information when the opponent is in sight and close or near. The other possibility for

 61

creating the prediction part could be made from a long term observations of an enemy
such as encounter rate, places of encounter and similar information.

Figure 32 shows how the information flows from environment to the Rbot. The
decision making is carried our each 25 cycles.

Real
environment

Interpreter Environment
state

Internal state

Decision
making

External
actions

Rbot
architecture

Sensor
messages

Strategy
primitives

Figure 32 Data flow from environment in the Rbot

6.3 New decision cycle

Because the implementation of the execution of actions in the Rbot changed so did the
decision cycle. The prediction part was removed and the decision part was changed.
Currently the Rbot makes a decision for its action and executes it but only for a fixed
period of time. This period is 25 tics (~2.5sec). After the time for current action
elapses the Rbot select the action again. The only exception is if the Rbot encounters
the enemy bot. Then the current action is stopped immediately even it still has some
time and the Rbot chooses again. The reason this is done is that the Rbot could engage
enemy at once if it decides so and not wonder for some time and only then decide to
fight. This gives the Rbot better chance for killing enemy if it decides to fight as soon
as the enemy bot appears in sight.

The information about the Rbots state and the action with its outcome is saved. The
fractional updating of the influence diagram is performed only after the game ends.

The decision cycle of the Rbot is presented in Figure 33.

 62

Sense

environment

Select the best
action

Perform the
action

Is enemy bot
in sight?

Did 25 tics
passed?

Save outcome
of an action

After the game ends
use saved information

to update influence
diagram

Yes

Yes

No

No

Figure 33 the new Rbots decision cycle

6.4 Construction

There are several ways to construct an influence diagram. One of them is that the
expert is able to determine the relationships between variables and creates the
influence diagram representing the given problem. Another way is to learn the
structure only from data that is given. Both of these ways have same drawbacks. In
the first approach the expert might not know all of the aspects of the problem and
miss some important relationships. The next problem with the expert is that he is not
able to cover the very complex problems where the variable number is very big and it
becomes very hard to identify all of the relationships between them. The problem with
learning the structure from the data is that the data might not contain the complete set
of possible cases. This means that the structure learned will have some links missing.

 63

The third approach would be to combine previously described methods together. The
expert could examine the structure that was learned from the data and add or remove
some relationships based on its experience. Expert would also be able check whether
some relations hold true by using the structure learning.

The approach to create the structure only based on expert was used in the first
semester project. For the second semester the learning of the structure combined with
the expert knowledge was used.

6.4.1 Learning

First of all before learning took place some important relationships that had to be
tested were noted. They included the following relationships:

• Bots state affecting bots score

• Bots actions affecting bots state

This means that the Rbots score must depend on the actions taken by the Rbot and the
state of the Rbot. If there would be no relationship between the Rbots actions and the
score so it means that the Rbot can make the random actions and get the same score.
The next relationship that the score also depends on the state of the Rbot is also
important because if were not important then the Rbot would always make one action
which affects the score. And by observing the human play we can see that several
strategies are used (for example the human would pick the health if the state is bad or
go for the better weapon if its near). If the Rbots state is also affecting the Rbots score
then the actions of the Rbot should also influence state of the Rbot. Such relationship
would make the Rbot to carry out some different actions than the one that influences
the score.

So here are the necessary conditions to enable the second approach to work:

a) The Rbots actions should have an influence on the final score
b) The Rbots state should also have the influence on the final score

First of all we needed to make sure that these conditions are really enough to enable
the Rbot to pick different actions. To test them we created a simple network only with
a few nodes. This network is given in Figure 34.

Figure 34 a simple influence diagram to test the conditions

 64

Then we adapted the network with some typical behavior of the Rbot and checked
whether changing the Rbots state or the actions the expected utilities change.

After performing some test on the simple influence diagram (Figure 34) we found that
both of the conditions presented above were fulfilled because:

a) After changing the action the expected utilities changed and so did the
probabilities for a state (in second time slice).

b) Changing the state of the Rbot (first time slice) had effect on the expected
utilities.

 To test these conditions and probably to find some other relationships the learning
algorithms on a real data acquired from the Rbot were used. Two tools were used. B-
Course [15] and Hugin [16]. The B-Course came up to be not useful in our case as the
time limitation for calculation prevented to find the good model.

The Hugin proved to be useful and confirmed that the relationship between bots state
and number of domination points it possesses exists. It also proved that certain actions
influences Rbots state (for example if the action would be go for weapon then the
probability that the weapon in next time slice will be higher). Also some additional
links were found. Those include a link between health and armor (This can be
explained that usually the armor is reduced to 0 before health decreases to 0. This
means that if we have some armor then it means that we probably have good health).
Also the links if the Rbot die then its state is affected were found.

After using the structure learning some edges relevant to the UT game were found.
They included the dependence of the distances between health powerups and weapons
or domination points. Such edges were removed by expert because they are true only
for the one map used in our experiments. Some of the links like dependence of the
armor given action were not present due to the incomplete data and they were added
by an expert.

After performing structure learning and applying expert knowledge the initial
influence diagram was constructed. The initial structure included only two time slices.
No more time slices were introduced because it took much time to propagate the
network.

 65

6.4.2 Initial influence diagram

Figure 35 Initial influence diagram of the Rbot

 66

6.5 Optimisation

After creating an initial diagram the test of propagation showed that it takes too much
time to complete it. In order to reduce the time taken to compute such diagram some
optimization was done. First we should concentrate on the nodes with the most
parents. As we can see in Figure 35 the node Cdom_1 and Cdom_2 have the most
parents. The technique called parent divorcing (3.6) can be used to reduce the size of
parents. We divorce health and armor nodes and weapon and ammo. Both of these
node pairs are related to each other and describe the Rbots strength and stamina. As
the armor is counted as the percentage of the hit points it can be treated as hit points.
This means that a state were bot has a good health is equal to the state when bot has
normal health and some armor. This enables us to divorce health and armor nodes by
introducing hidden node stamina. The same holds for the weapon and ammo. If the
bot has a good weapon but low ammo it can be treated as weak weapon with a lot of
ammo as the amount of possible damage to the enemy is the same. This enables us to
divorce weapon and armor nodes by introducing hidden node strength. As both
strength and stamina describes the state of the bot they can also be divorced with
hidden variable BotState. The divorcing is shown in Figure 36.

 Health

Armor

Ammo

Weapon
Strength

BotState

Stamina
CDom_1

Figure 36 divorcing of health, armor, weapon and ammo nodes

The reason is that the bot with good stamina but poor strength is almost at the same
condition when it has a normal stamina but a good strength. This divorcing reduces
the number of “CDom_1” and “CDom_2” parents from 8 to 5 and reducing table size
from 82944 (in some cases the Hugin would throw an out of memory exception) to
1152. The values for hidden nodes were learned using EM algorithm. This reduction
does not only reduce the size of conditional table but it also increases the speed of
adaptation.

After reducing parent number of “CDom_1” and “CDom_2” still the propagation time
was not acceptable. The usage of such model made the Rbot just to stand and
calculate the actions instead of doing them. To reduce the computation time of an
influence diagram the parent number of “Action” and “Action_1” node was reduced.
Because the children of “Health”, “Weapon”, “Armor” and “Ammo” has fixed
conditional probability tables and so does the their child node “BotState” we can use
the link from “BotState” to “Action” and thus reduce by 3 parents. This reduction
made the propagation to last less than 1sec, which is low enough.

 67

The following table shows the time taken to compute the influence diagram after
optimizations.

Influence diagram Time
No optimisation 2.7s
Parent divorcing 2.6s
Parent reduction 120ms

Table 13 time taken to propagate evidence

6.5.1 Future optimisation

For future optimization the nodes with most parents should be addressed first. An
observation from a data can be made that the Cdom_1 is very dependant from Cdom.
We can also note that usually the domination point increases only by 1 point. This
enables to make following change where part of the change (for slice 1) is presented
in Figure 37. In this figure the node Increase can have three states for increase in
score, decrease of score and for no change. The data for Increase node can be received
by observing environment. This would save the number of cases from 1152 to 912.

 CDom_1 CDom

distDomination

Enemy

BotState

Action

Increse

Figure 37 future optimisation

The other optimisation should be done to the Health_1, Armor_1, Weapon_1 and
Ammo_1 (in all time slices) as they have the most parents. The parent divorcing could
be used (3.6).

6.6 Detail description

This section will have a detailed description of each node in the network and a figure
of the final influence diagram used in the Rbot.

6.6.1 The description of variables used in final influence diagram
of the Rbot

In the Table 14 we explain the meaning of each node of the final influence diagram. It
also contains the names of the node states and short description what it means. The

 68

index “_n” means that those nodes belong to the different time slice. The nodes with
no index means the current time.

Node States Description
Good
Normal

Health, Health_1

Poor

This node represents the state of Rbots health.
The health values are translated in the
following way.
If health state is:
(0..50] = Poor
(50..100] = Normal
(100..199] = Good

Good
Normal

Armor, Armor_1

Poor

This node represents the state of Rbots Armor.
The armor values are translated in the
following way.
If armor state is:
0 = Poor
(0..25] = Normal
more than 25 = Good

Good
Normal

Weapon,
Weapon_1

Poor

This node represents what kind of weapon
Rbot is carrying. The weapons are translated
in the following way.
Low damage weapons (like enforcer, impact
hammer) = Poor
Medium damage or rapid fire (like pulse gun,
shock gun) = Normal
High damage or explosive (like flak cannon,
UT_Eightball) = Good

0 Ammo, Ammo_1
1

This node represents Rbots ammo state and is
translated as:
Less than 10% of max available ammo = 0
Else = 1

0
1
2

CDom, CDom_1

3

This node represents how many domination
points the Rbot is controlling. The state name
represents the number of domination points.
Because the Rbot was tested in the
environment where max number of
domination points is 3 it has only 4 states (1
state for 0 domination points)

Near distDomination,
distDomination_1 Far

This node represent the Euclidian distance
measured in UT units to the nearest
domination point and is translated as follows.
Less than 500 units = Near
Else = Far
The reason for choosing 500 units is that the
experiments showed that this is the average
distance that can be covered by Rbot during
the time while strategy is executed.

Near distHealth,
distHealth_1 Far

Same as distDomination except the distance to
nearest health or armor (see Action node for
more information)

 69

Near distWeapon,
distWeapon_1 Far

Same as distDomination except the distance to
nearest weapon or ammo for that weapon (see
Action node for more information)

Far
Near

Enemy, Enemy_1

Unknown

This node represents the distance to the
enemy if it is in sight. If the enemy is not in
sight state unknown is used else if
Distance to enemy > 500 = Far
Distance to enemy <= 500 = Near

Yes Die
No

This node represents if the Rbot died.

Yes Kill
No

This node represents if the Rbot killed its
enemy

Camp
GetHealth
GetWeapon
GetDomination
Ambush

Action, Action_1

Hunt

This node represents the actions that the Rbot
is capable to make or already made.
More detailed explanation how actions are
carried out see Table 15.

U1, U2 Utility node This node represents the utility function of
Rbot. The utility function is very simple. It
depends only on number of domination points
the Rbot possesses.
Dom 0 1 2 3
Utility 0 1 2 3

Table 14 the explanation of the influence diagram nodes

The nodes “Stamina”, “Strength” and “BotState” were introduced after performing
parent divorcing in optimisation step. Those nodes are fixed and do not change over
time (no fractional updating is performed on them).

6.6.2 Explanation of actions that are implemented for the Rbot

The Table 15 gives the explanation how each action is performed in the Rbot.

Action name Description
Camp While performing this action the Rbot picks a random node from a

set, which includes all controlled or neutral domination points and
moves there. After arriving to the point that was selected the Rbot
starts walking around that point. In case the camp node is reached
and enemy is in sight it also starts firing upon enemy.

GetDomination This action picks the closest uncontrolled domination point and
moves the Rbot there. If no uncontrolled domination points are
present no action is taken (the Rbot stands still).

GetHealth During this action the Rbot goes picks up the nearest health or
armour. The nearest health is picked. The health must be of such
type that it would increase health of the Rbot (for example if Rbot
has 50 health the health vial and medbox and armour will be
considered but if Rbot has 100 health only health vial and armour
will be considered as medbox is able to increase the Rbots health

 70

to 100 units only).
GetWeapon During this action the Rbot will try to get a better weapon or

ammo for a current weapon whichever is closer.
Ambush During this action the Rbot will try to go to the spot which is not

visible by enemy or if the enemy is not in sight the Rbot will go to
a spot that is near domination point but not reachable directly (the
point will be near domination point but not visible from that
point). After reaching that point the Rbot will wait for an enemy
and as soon as it appears the Rbot will start shooting.

Hunt The hunt action starts fight with an enemy if it is in sight else the
Rbot will wait for an enemy to appear at the location where hunt
action started.

Table 15 explanation of the possible Rbots actions

 71

6.6.3 The final influence diagram used in the Rbot

Figure 38 the final influence diagram used in the Rbot

 72

Chapter 7 Test Results
This chapter contains the description of the experiments that we performed. First we
describe the test setup and then we present the results of experiments. We compare
the Rbot to the UT bot and human using the achieved score and we investigate in
detail two main strategies developed by the Rbot. We end with conclusions.

7.1 Test setup

The tests were run on 566Mhz Intel Celeron machine. All of the software was run on
a single machine. The software needed includes:

• Unreal Tournament game – an application which provides us with the testing
environment

• Gamebots platform (modified) – a modification for UT which provides a
communication with UT application

• Java 1.3 – a programming language and a run time environment

• Hugin API 5.3 – a tool for handling the influence diagram operations like
updating, finding optimal decision.

The DOM-Stalwart map for UT was used for each game. The time limit for the game
was set to 5 minutes and the score limit was set to 999. The rules are the same as in
UT domination game type.

All of the results are the averaged from several games. The mean is calculated using
following formula:

n

x
i

i∑
=µ

The variance was calculated as:

1

)(2

−

−
=
∑

n

x
i

i µ
σ

Here ix is the sample result and µ is average result.

The number of games (n) will be stated in each test.

7.2 Rbot versus UT bot

The UT bots are well known to the 3D shooter players of their strength (ability to
fight) and human like behaviour. The UT bot is written in UT scripting language and
does not include any special AI routine. It is not capable of learning thus it can be
considered that its strength is always the same. This property of UT bot gives us a

 73

good opponent for testing Rbots ability to adapt to the environment and opponent.
Because the UT bot does not evolve it can be used as a benchmark.

This test should show that the Rbot is capable to adapt to the environment after
receiving information about its own actions. In order to show this ability several tests
must be run. First test includes the Rbot with uniform prior distributions (all the
actions gives the same utility). Such probability distributions will make Rbot to make
random actions. By making the random actions the Rbot is not expected to win the
game. Later the information received from a game will be used to update the Rbots
network and we will call that Rbot generation 1 (first Rbot will be called generation
0). The test should be carried out until there will be no improvement in difference
between the Rbots and UT bots score.

Several approaches of the getting the next generation Rbot were used. The following
approach was selected:

• Perform 10 games with the generation 0 Rbot

• Use information from 10 games to update the network and get generation 1

• Perform 10 games with the generation 1 Rbot

• Use the information from each game from previous step to create 10
generation 2 Rbots. Perform games with 10 generation 2 Rbots

• The information received from the games is used to create 10 next generation
Rbots.

• 4 Generations showed to be enough

The reason for using all the information from 10 games in the beginning is that the
data received from 1 game is not enough to correctly update initial network. The
observation was made that some Rbots were making the wrong decision. Of cause the
wrong decision is fixed during the later games but then it takes more time to adapt. If
we provide the Rbot with enough prior data its decision become more reasonable.
Around 1300 cases were used to update the initial Rbot. Later each game produced
around 132 cases.

The other approach was to use always all the information received from 10 test
games. This approach causes faster adaptation to the environment but the scores are
similar.

Figures below will show the scores of each generation Rbot versus UT bot.

 74

0

20

40

60

80

100

120

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

12
7

Action

Sc
or

e

Rbot UT bot

Figure 39 generation 0 Rbot versus UT bot

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Round

Sc
or

e

Rbot UT Bot

Figure 40 generation 1 Rbot versus UT bot

 75

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Round

Sc
or

e

Rbot UT Bot

Figure 41 generation 2 Rbot versus UT bot

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Round

Sc
or

e

Rbot UT Bot

Figure 42 generation 3 Rbot versus UT bot

 76

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Round

Sc
or

e

Rbot UT Bot

Figure 43 generation 4 Rbot versus UT bot

The decision quality depends on the number of samples that are available for updating
the influence diagram. The more cases Rbot gets the better its performance and the
Table 16 shows that.

Rbot type Sample size used
Generation 0 0
Generation 1 1321
Generation 2 1453
Generation 3 1585
Generation 4 1717

Table 16 Rbots sample size

The reason why the later generations does not need such a high number of samples
than the generation 1 is that after getting some insight about good decisions Rbots
makes more sensible decisions and only few situations causes to change its belief
about a best action.

The final Rbots results with their variance are presented in Table 17.

Rbot type µ±σ
Generation 0 71.2799 ± 20.3961
Generation 1 107.3195 ± 10.9483
Generation 2 112.6794 ± 6.6833
Generation 3 112.7794 ± 5.7952
Generation 4 112.6594 ± 8.3169

Table 17 final score of the Rbot

The next picture will show how the Rbots score changes compared to the UT bots
score.

 77

0

20

40

60

80

100

120

Gen0 Gen1 Gen2 Gen3 Gen4

Rbot type

Sc
or

e

Rbot UT bot

Table 18 Score change for Rbot and UT bot

The next chart shows how did the score difference of Rbot and the UT bot changes as
Rbot evolves.

-30

-20

-10

0

10

20

30

40

50

60

Gen0 Gen1 Gen2 Gen3 Gen4

Sc
or

e

Score difference

Table 19 final score difference between the Rbot and UT bot

As we can see from the charts presented above the Rbot is capable to win against the
UT bot already after it gets information about the first game. Later only some
improvement can be detected and then the score difference stabilises and has only
small fluctuations. The reason for reaching the stable point is that the Rbot is not
capable to keep all three points all the time and even killing opponent he reappears in
another place where he can take a domination point.

 78

The results also show that the experience is very important in the beginning. The
reason for this is that the UT bot does not change its strategy and the more
information the Rbot has the better choice of the decision it can make. No fading was
used when testing against the UT bot but later the results will show that fading has
some influence on the results when playing against opponent, which changes its
strategy.

7.3 Detailed game analysis of the Rbot vs. UT bot

In order to check whether the Rbot is making sensible decision a detailed observation
of several games were performed. The actions taken by the Rbot were also recorded.
The results showed that Rbot is not just trying to get a domination point all the time.

By watching the games two different strategies evolved.

The figure Figure 44 and Figure 45 presents the frequency of an actions that are
performed during the game by generation 4 Rbot.

0
10
20
30
40
50
60
70
80

Ambu
sh

Cam
p

GetD
om

ina
tio

n

GetH
ea

lth

GetW
ea

po
n

Hun
t

Action

C
ou

nt

Figure 44 strategy 1

 79

0
5

10
15
20
25
30
35
40

Ambu
sh

Cam
p

GetD
om

ina
tio

n

GetH
ea

lth

GetW
ea

po
n

Hun
t

Action

C
ou

nt

Figure 45 strategy 2

7.3.1 Strategy 1

In Figure 44 the frequencies of actions of the first strategy are presented. By
observing the Rbot the strategy includes following main actions:

• Go for domination until Rbot has two of them

• After controlling 2 domination points go for a health.

This causes Rbot to pick two of domination points and then pick up the items that
increases its health. The other actions are caused only when the opponent is seen.
What happens is that usually the UT bot would protect only 1 domination point and
will not wonder around. After the Rbot gets 2 domination points by going to the
health it manages to stay clear of the enemy and accumulate points.

7.3.2 Strategy 2

In Figure 45 the frequencies of actions of the second strategy are presented. By
observing the Rbot different behaviour was found. In this strategy Rbot has following
main actions:

• Go for domination points until 2 acquired

• Go for third domination point if no enemy in sight

• If enemy is seen and weapon is close get the better weapon

• If enemy is seen and no weapons or health around fight the enemy

• If close to domination point just go for it

 80

This strategy makes Rbot to go for two domination points and then try to get the third
one. It usually involves fighting so the action to pick better weapon if it is near is
reasonable. If Rbot is lucky then it will be able to pick the third domination point.

The average scores received by using strategy 1 and strategy 2:

Strategy Score
Strategy 1 112.0794
Strategy 2 113.2394

Table 20 average score using different strategies

However by checking the final scores using those strategies (presented in Table 20)
we can see that the difference between them is very small. This is because when the
Rbot does not engage the opponent there is no chance to kill him and the score
steadily increases. In strategy 2 the Rbot is more likely to engage another bot and
possibly kill him. This makes opponent to appear in another position of the map and
get the nearest domination point thus again decreasing Rbots number of controlled
points. Such behaviour would also cause opponent to move more thus get more
domination points.

The figures below show how the score increase between Rbot and UT bot changes
using different strategies.

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

G
etD

om
ination

G
etH

ealth

G
etW

eapon

G
etD

om
ination

G
etH

ealth

G
etD

om
ination

G
etH

ealth

G
etH

ealth

G
etD

om
ination

A
m

bush

G
etD

om
ination

G
etD

om
ination

H
unt

G
etD

om
ination

G
etH

ealth

G
etD

om
ination

C
am

p

G
etH

ealth

G
etH

ealth

G
etH

ealth

G
etH

ealth

G
etH

ealth

G
etH

ealth

G
etH

ealth

G
etH

ealth

G
etH

ealth

G
etH

ealth

G
etH

ealth

Figure 46 The change of score increase using strategy 1

 81

-1

-0.5

0

0.5

1

1.5

2

G
etW

eapon

G
etW

eapon

A
m

bush

G
etW

eapon

G
etD

om
ination

G
etW

eapon

G
etW

eapon

G
etW

eapon

H
unt

G
etW

eapon

C
am

p

H
unt

G
etW

eapon

H
unt

G
etD

om
ination

A
m

bush

G
etD

om
ination

G
etW

eapon

A
m

bush

G
etD

om
ination

A
m

bush

G
etH

ealth

G
etW

eapon

H
unt

C
am

p

C
am

p

C
am

p

C
am

p

C
am

p

H
unt

G
etD

om
ination

Figure 47 the change of score increase using strategy 2

As we can see from Figure 46 and Figure 47 that the strategy 1 gives a steady increase
in points after two domination points are captured and that the strategy 2 does not
give a steady increase but is capable of giving higher increase during some points
(capture of 3 domination points).

The Rbot, which used all of the information from previous games, did not learn
strategy 1 but it learned strategy that is similar to strategy 2.

The number of action counts while the Rbot evolves is presented in Figure 48.

0

10

20

30

40

50

60

70

80

90

100

Gen0 Gen1 Gen2 Gen3 Gen4

C
ou

nt

Ambush Camp GetDomination GetHealth GetWeapon Hunt

Figure 48 action count of different generation Rbot

 82

7.4 Rbot versus Human

This test was carried out against human player. The human player was the author of
this project and posses a good knowledge about the UT bot and a good knowledge
about the Rbot. The human player should be able to adapt to the enemy strategy
quickly. Five games were played against UT bot and against the Rbot. The Rbot was
taken of the 5th generation. That is first the human player played against 1st, 2nd …
until 5th generation then 5 games against 5th generation Rbot. Also the tests were done
without using fading and with using fading of 0.9.

During those games it was observed that the Rbot was more strategic player than the
UT bot and made a game more difficult. Although the UT bot was much more
advanced when fighting. The results of those tests are presented in (scores are average
from 5 games).

Enemy type Human score Enemy score
UT bot 122 42
Rbot (5th generation no fading) 111 54
Rbot (5th generation with fading) 105 57

Table 21 human player against the Rbot and UT bot

As we can see from final result that the fading did have influence on the score. The
reason is that the initial probability tables were learned from ~1320 cases of the
games that were played by the Rbot against UT bot and not the human player. As the
strategy is different the fading was able to reduce the influence of those cases and
enabled the Rbot to choose better decisions.

7.5 Detailed analysis of the game the Rbot vs. Human

The following figures show the frequency of the different Rbot actions when playing
against the human player.

0

10

20

30

40

50

60

70

Ambu
sh

Cam
p

GetD
om

ina
tio

n

GetH
ea

lth

GetW
ea

po
n

Hun
t

C
ou

nt

Figure 49 Rbot (no fading) against Human player

 83

0

20

40

60

80

100

120

Ambu
sh

Cam
p

GetD
om

ina
tio

n

GetW
ea

po
n

Hun
t

C
ou

nt

Figure 50 Rbot (with fading) against Human player

After examining the play of the Rbot one strategy could be pointed out and it is:

• Go to the domination point.

• If enemy is in sight then try to kill it.

The other actions of the Rbot could not improve its performance as the Human player
was much stronger in fight and did not stand in one place. Increasing the health or
getting the better weapons did not increase Rbots chances to survive considerably thus
this strategy to go for domination point and shoot when possible (shooting does stop
the human player from recapturing the domination point for a while) seem to be
reasonable. And from Figure 50 we can see that the Rbot with fading did learn such
strategy faster than the Rbot without fading.

7.6 Result conclusions

The results showed that the new type of the Rbot does outperform the older one in all
aspects.

After performing the test of Rbot against UT bot we can see that the current Rbot
(generation 4) won the game 112.65 against 58.96 (previous semester Rbot
(generation 4) 101.80 against 76.20). We also described that typically one of two
strategies evolved. Both of those strategies make sense in the context of the
considered game. But after examining results we can say that the 1st strategy evolved
only specifically for the UT bot. The strategy 1 exploits the weak point of UT bots
play, which is to guard one domination point and rarely go for others. The different
action execution than the previous Rbot showed that the strategies of the Rbot can be
more complicated and change as the environment changes (previous semester Rbot
would choose the strategy and would continue with it even if it becomes not the best
one).

 84

After tests against Human the current Rbot also performed better than the previous
Rbot (current Rbot 57 against 105 and the previous semester Rbot 49 against 117).
We could also observe that the Rbots strategy learned against Human is similar to the
second strategy learned against the UT bots except some actions like get weapon and
camp were very rare. This could be explained that the better weapon did not influence
the fight against the Human and camping action also includes some fighting. It was
also harder to play against the current Rbot that the previous version of the Rbot.

Further improvement of actions (low level implementation like path finding, fighting,
evasion) could lead to even better results. Moreover the Rbot is currently not capable
to use all the information that is available to the human player, thanks to limited
capabilities of the UT game. Also adding the capability to remember the position of
the enemy could improve the evasion and improve score. The additional timeslices
could also enable the Rbot to learn even more complicated strategies.

 85

Chapter 8 Conclusions and Future Work

8.1 Conclusions

Fully functional agent for UT game was created. Although the Rbot is not capable to
win against the human player it proved to be better than the currently built in UT bot.
The results also show that the Rbot is capable to learn a strategy and use it
successfully and in case of a bad choice it is capable to learn a different one. Even
without predicting the enemy the Rbot is capable to show intelligent behavior. It also
proves that Bayesian networks are very powerful tool for a decision making if used
correctly. Because the Bayesian networks are not very frequently used in real time
environment it is very hard to compare with other works done. The problem addressed
in this project was to explore how would it be possible to apply Bayesian networks in
the real time environment. Although the Bayesian networks does not fit in such places
as the fighting in the game because the behavior is very erratic and short term it still
fits very well in creating the long term strategy of the agent. We think that the aim of
the project, which is to show that it is possible to apply the Bayesian, networks even
in highly dynamic environment and that an agent exploiting Bayesian network is able
to adapt to the environment and make sensible actions, was achieved. Because the
project was done for two semesters two creation techniques and their results were
presented. The results also proved that the second design was more successful and is
more general for such kind of problems.

Some problems were also observed when creating the Bayesian networks. They tend
to become very complicated very quickly so some optimization is necessary. Also the
selection of observable variables must be chosen very carefully as there are too many
variables to take into account in games like UT. The correct selection of the variables
will give a structure, which is more sensitive to the environment and gives better
decisions.

8.2 What was done

In order to be able to communicate with the UT environment the whole structure
based on the Gamebots had to be created. The communication between Gamebots
platform was created with reusability in mind. The whole platform for testing AI
based on any Bayesian network was created.

The next target was to explore the way to put the influence diagram to work. Two
ways of constructing the influence diagram for the Rbot decision making were
proposed. One approach was to use the information about the current situation of the
Rbot and use several utilities to make the Rbot choose different strategies under
different conditions. The second approach was more general which also employed the
structure learning algorithms to help the expert to create the influence diagram. The
dynamic Bayesian network approach was chosen and only one well-defined utility
function used. The problems that arose were discussed and their solution given.

After introducing the two different influence diagrams the tests were carried out to
test their performance. Several tests were run to check the efficiency of those two
approaches. The conclusions that can be done from the tests were presented in
previous chapter. The tests were done against the built in bots of the UT game and

 86

against the human player. The ability to adapt to the non-learning opponent was
presented. Also the test results shows that the Rbot is much better than the UT bot.
Also the results show that the Rbot is capable to reach similar results against the UT
bots as the human player (human score 122 against 42 and the Rbot result 112 against
58). The further improvement of low level actions such as path finding or fighting
algorithm could reduce the score difference even more.

Also the author learned how to address such problems and explored the drawbacks or
the advantages of the different approaches such as the usage of dynamic Bayesian
networks, application of the structure learning, Bayesian network optimization.

8.3 Future work

After making this project some ideas were still left unimplemented. Some of them are
easy to apply and some of them need further investigation. The straightforward ones
are:

One of the improvements could be done to the path finding algorithm. The
observation of the human play shows that by executing some strategy the human
player while moving to a certain point is capable to route its path through nearby
items and pick them up without being distracted from the strategy he is performing.
One way to do this is to use some distance modifier in the path finding algorithm to
make the path to go through the nearby items. Also the Rbot should not use always
the same path, as the human is capable to learn which way the Rbot will move and set
up a successful ambush.

The other improvement could be done in the fighting algorithm. Currently the
implementation is very simple and does not make a good challenge. It would be nice
to use the UT fighting routine, as it is fairly good (however it is currently impossible)
or possibly applying approach suggested by [17].

The other future work would need bigger changes and more research to be done. First
of all the drawback of the Rbot is that it does not try to predict the enemy. The first
semester work tried to predict the enemy but the efficiency was not very good. Some
other approach then the one presented in the first semester work must be used. The
opponent should be monitored through out the whole game to find out if it is moving
around all of the level or it likes some certain spots. This could be done by recording
the last places it was seen and use that information to predict its strategy.

The next observation that was done by testing the Rbot was that if it selects some
action as the good one (mistakenly) it will continue to do it for some time (until the
fractional updating with fading will show that it is not the best action). In order to
prevent such problems some randomization into the Rbots actions can be added. It
would also make it more unpredictable. One way of doing it could be to use some
probabilities based on the expected utility of that action. The other way could be
instead of using fixed probability number in the conditional probability table to use
the distribution for it, which would cause the expected utility to change, and different
actions would be selected. The problem with the randomization could arise in the
execution of the actions. Because the action is performed for some fixed time too high
randomization would prevent the Rbot to complete the action. Thus it would be

 87

desirable to have this random changes correlated in time in order to achieve consistent
(and utility gaining) behavior.

 88

Bibliography

[1] John E. Laird and Michael van Lent (2001). Human-Level AI’s Killer Application
Interactive Computer Games. Article from AI Magazine Summer 2001: 15-25.

[2] Game AI Page, http://www.gameai.com, 2002.

[3] John E. Laird (2000). It Knows What You're Going to Do: Adding Anticipation to
a Quakebot. Agents 2001 conference. An earlier version first appeared in the AAAI
2000 Spring Symposium Series: Artificial Intelligence and Interactive Entertainment,
March 2000: AAAI Tech.Report SS-00-02.

[4] Dicky Suryadi and Piotr J. Gmytrasiewicz (1999). Learning Models of Other
Agents Using Influence Diagrams. Department of Computer Science and
Engineering, University of Texas at Arlington 1999.

[5] Michael van Lent, John Laird (1999). Learning Performance Knowledge by
Observation. International Conference on Machine Learning, June, 1999.

[6] Peter Stone (1998). Layered Learning in Multi-Agent Systems, Ph.D. Thesis,
Computer Science Department, School of Computer Science, Carnegie Mellon
University, December 1998.

[7] Finn V. Jensen (2001). Bayesian Networks and Decision Graphs. Springer Verlag,
New York.

[8] David Maxwell Chickering (2002). Optimal Structure Identification with Greedy
Search. Microsoft Research, 2002.

[9] Sprites Peter, C. Glymour, and R. Scheines (1993). Causation, Prediction and
Search. Lecture Notes in Statistics 81. Springer Verlag, New York.

[10] Planet Unreal Page, http://www.planetunreal.com/, 2002.

[11] Gamebots platform page, http://www.planetunreal.com/gamebots/, 2002.

[12] Brian Mayoh on behalf of Eric Bonabeau, Swarm Intelligence, EVALife
workshop 2001 (http://www.evalife.dk).

 [13] N. J. Nilsson (1982), Principles of Artificial Inteligence, Springer Verlag. Berlin,
1982.

[14] Amit’s Thoughts on Path-Finding (2002),
http://theory.stanford.edu/~amitp/GameProgramming/

[15] B-Course (2002). Complex Systems Computation Group, Department of
Computer Science, University of Helsinki (http://b-course.cs.helsinki.fi/), Version
1.0.2.

 89

[16] Hugin (2002). Hugin API reference manual. Hugin Expert A/S
(http://www.hugin.com), Aalborg, Version 5.3.

[17] Jens Dalgaard Nielsen and Jørn Holm (2002). Genetic Programming – Applied to
a Real Time Game Domain. Aalborg University, 2002.

 90

Appendix A

The whole code for communication with the Gamebot platform was written.
A simple code for creating a bot that uses gamebots platform is given below.

import rbot.client.*;

public class Yourbot extends Bot implements DistinctMessageListener {

 public Yourbot(String name, int team) {
 super(name, team);
 init();
 }
 public Yourbot() {
 super();
 init();
 }
 public void init() {

addListener(this, Message.GET_ALL); //Shows that we want to receive
//all messages from gamebots
//platform

 //Add initialization of your bot here
 }
 public void distinctMessage(Message msg) {
 //Add handling of messages here
 if (Message.getType() == Message.ASYN_HRN) {
 //Code below will be executed after receiving message HRN
 //For sending a message do the following
 Properties prop = new Properties();
 prop.addProperty(“Location”,”1,1,1”);
 Message ourmsg = new Message(Message.SHOOT, prop);
 sendMessage(ourmsg);
 //The obove 4 lines would make bot to shoot at location 1,1,1

}
 }
}

This is all code that you need to write in order to be able to receive parsed messages
from Gamebots platform. Sending messages to the Gamebots platform is made by
calling the Bot class method (it is inherited by Yourbot class) sendMessage(Message
msg);

