
Abstract

This report develops the theory of a modal process logic first introduced by
Kim Larsen and Bent Thomsen. The logic can be seen as an extension of
CCS and has an operational semantics upon which a preorder � on formulae
in the logic is defined. A denotational description originally put forward by
Kim Larsen and Bent Thomsen is examined, and it is shown to what extent
� explains the ordering introduced by this kind of semantic description. In
particular it is shown how the modal process logic semantically subsumes the
language of partial specifications also introduced by Kim Larsen and Bent
Thomsen. The static constructs of CCS are added to the logic, and a new
‘observational’ preorder � is introduced and used on three examples. Finally,
sound and complete proof systems are given for � and the equality defined
by the denotational semantics.
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Preface

This report was originally published under the same title as my M.Sc. thesis
in Computer Science from Aalborg University Center. Some minor correc-
tions have been made, but apart from these the text is unaltered.

References to literature in the bibliography (page 104) are written in
brackets as e.g. [Larsen 87]. Most proofs of theorems in this report are
found in the Appendix, beginning on page 90.
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Chapter 1

Introduction

In this report we develop the theory of the Modal Process Logic (MPL for
short), introduced by Kim Larsen and Bent Thomsen, and intended for speci-
fication of nondeterministic and concurrent systems [Larsen and Thomsen 88].
In this chapter we start out with a discussion of the use of and requirements
to mathematical models used in the specification of concurrent systems. We
discuss the pros and cons of process calculi and modal logic as specification
tools. This leads to a short presentation of MPL and a presentation of the
topics dealt with in the rest of the report.

1.1 Requirements to specification languages

Program development is the activity where people (try to) solve a problem
through the construction of an executable computer program. In an earlier
work on interactive programming tools [Bækgaard et al 87] we saw program
development as consisting of three major activities: An analysis of the prob-
lem, the design of a solution and the realization of the design through the
implementation of the program. The products of program development activ-
ities are various descriptions. We will call the products of the design activities
specifications and the products of the realization activities implementations.

The activities mentioned are of course not at all independent. The main
direction is, of course, from analysis through design towards the realization,
but a lot of feed-back is normal (and essential). An important activity which
may lead to a renewed design is a formal verification of the implementation.

The above description gives rise to a series of requirements to the lan-
guages used for specifications. In general, the requirement is that a specifi-
cation languages should support the steps taken towards an implementation
and the verification thereof. An important requirement is then that a spec-
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Chapter 1. Introduction 5

ification language must have a formal semantic description so that it itself
is precisely determined. This is essential in the development of the theory,
in verification, and in providing methods for automating aspects of program
development.

One should also be able to tell when and if an implementation satisfies a
specification. In the same vein, one should be able to compare the strength
of specifications through an imposed ordering, saying that one specification
is more concrete than another in the sense that it is more specific (i.e. re-
strictive) w.r.t. the implementations it permits. This will aid in a stepwise
refinement of the design towards an implementation. Such satisfiability and
refinement relations between specifications and implementations should be
decidable, since the decision procedures might form the basis for program-
ming tools. Another good tool when working with the ordering relations
would be sound and complete proof systems for these.

A specification language should be expressibly abstract; it must not put
unwanted restrictions on the possible implementations. When designing the
solution one should not have to worry too much about details in the imple-
mentation, details that may not be known.

Last but certainly not least, a specification should support compositional-
ity w.r.t. the implementation in design and verification. The designer should
be able to decompose a specification (and thus the problem to be solved)
into subspecifications that can be separately implemented and verified. It is
particularly important that the same kind of compositionality is available in
both the specification and implementation languages.

1.2 Specification languages for concurrency

For sequential systems the theories behind specification languages are already
relatively well-established, in part because of the results in theoretical com-
puter science aiming to establish semantic theories that specifically support
the design and verification of sequential systems. This is not the case when
we discuss concurrent systems, since the field of study is relatively new and
no unified theory exists. However, at least two main theories have emerged,
namely the various process calculi and the modal and temporal logics. One
should bear in mind that the theories so far have only been used on small ex-
amples and that it may be a long way until they can be used in realistic-size
specifications. Nevertheless, a theoretical development will provide us with
a lot of important insight which may later turn out useful in actual program
development. Well then, how do the process calculi and modal logics meet
our requirements from the previous section ?
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1.2.1 Process calculi as specification languages

Several process calculi have been proposed, inspired by the λ-calculus and re-
lated formalisms. One of the most important is Robin Milner’s CCS [Milner 80]
and its spin-offs [Milner 83]. Various equivalences between processes have
been proposed in order to capture various observational aspects of their be-
haviour; in CCS strong and weak bisimulation (∼ and ≈ , respectively).
These have been defined through a structural operational description of
CCS . Decision procedures for ∼ and ≈ exist and have been implemented
[Larsen 86]. (These decision procedures only work for finite-state processes.
Though a restrictive class, it is considered an important one in the study of
network protocols.)

The equivalences allow CCS itself to be used for specification purposes.
One simply says that an implementation p (written in CCS ) satisfies a spec-
ification F (also written in CCS ) iff p ∼ F (or p ≈ F ).
CCS is thus not abstract enough: The possible implementations with re-

spect to a specification are simply members of an equivalence class. Recently
Kim Larsen has shown how one can overcome this problem by relaxing the
equivalence conditions through a context-dependent equivalence [Larsen 86].
Still, this does not remove the fact that the language CCS is too concrete.
The only known, interesting orderings one can give on CCS -processes are,
in fact, equivalences.

On the other hand CCS supports compositionality in the structure of the
implementation through various process constructs with respect to which the
equivalences are congruence relations.

1.2.2 Modal logics as specification languages

The usefulness of modal/temporal logic as a program specification language
was first perceived by Amir Pnueli [Pnueli 77]. Temporal logic specifications
are logical formulae dealing with dynamic properties of programs such as
invariants (‘this holds throughout the execution’) and eventualities (‘this
will hold sometime during the execution’)

The semantics of temporal logic is normally given in terms of a Kripke-
style possible-worlds description where the possible worlds are the states in
a program execution. The semantics of temporal logic is denotational in
the sense that it describes the meaning of a formula through the meanings
of its immediate constituents. It is, however, not compositional w.r.t. the
structure of the implementations.

The programs satisfying a temporal logic specification are the ones for
which the formulae in the specification are valid in the start state. Temporal
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logic is very abstract and does not limit the possible implementation to one
single equivalence class.

One may define an ordering on modal logic formulae through use of the
logical implication ⊃, saying that specification F is a refinement of specifica-
tion G if F ⊃ G is a valid formula. This means that the refinement ordering
itself becomes part of the language. It also means that a decision proce-
dure for this ordering must check the validity of a logical formula. However,
validity-checking can be shown to be coNP-hard [Garey and Johnson 1979]
even for propositional modal logics.

A problem with temporal logic has often been that the implementation
language with which it has been used has been rather ad hoc. However, in
[Hennessy and Milner 85] Hennessy and Milner described a modal logic, now
known as Hennessy-Milner logic (or just HML), with CCS as the implemen-
tation language. They also gave a denotational semantics of their logic; the
meaning of a formula is a set of CCS -processes. The satisfiability relation
is written as |= p : F meaning that process p satisfies the HML specification
F . It turned out that the logic characterizes ∼ in that

p ∼ q ⇔ {∀F ∈M | |= p : F ⇔|= q : F} (1.1)

where M is the set of HML formulae.
Recently Kim Larsen showed [Larsen 87] how one, by extending the logic

with recursion, could express the properties normally considered in temporal
logic. He also gave sound and complete proof systems for this extended HML.

Based on this, Godskesen, Ingolfsdottir and Zeeberg showed that the
above modal characterization of∼ also holds in recursive HML [Godskesen et al 87].
Furthermore, they showed how one for an HML-formula F could generate a
CCS -process p such that |= p : F (if any such p exists) and how one for a
process p can generate a strongest formula Fp such that |= p : Fp. Finally
they showed how one for any given HML formula F and CCS -context C[ ]
can find another formula IC(F ) such that |= q : IC(F ) ⇔|= C[q] : F , i.e. a
property transformation from a specification and an unfinished implementa-
tion to a specification describing how to ‘finish’ the implementation. Thus
Hennessy-Milner logic supports compositionality.

All this shows that HML is indeed a very powerful specification language.
Besides, its theoretical foundation is very firm. However, the ordering of
HML specifications is still based on the denotational description and is thus
not useful for effective decision procedures.
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1.3 The Modal Process Logic

The Modal Process Logic (MPL) was introduced by Kim Larsen and Bent
Thomsen in [Larsen and Thomsen 88], based on earlier experience with so-
called partial specifications [Thomsen 87][Larsen and Thomsen 87]. They
were also inspired by the work of Graf and Sifakis [Graf and Sifakis 86] in
which the set of programs is seen as a subset of the set of specifications.

The original MPL is a simple extension of the regular expressions in
CCS in that it contains exactly the dynamic process constructs of that lan-
guage (action prefixing, nondeterminism and recursion). It is through the
process constructs that compositionality is sought. (The syntax of MPL,
along with the other theoretical concepts in this section, will be defined
formally in the chapters to come) The implementation language considered
consists of the processes of a process system with process constructs and
equivalences as for CCS .

The idea with MPL is that specifications are to describe the operational
behaviour of implementations in a precise way, This has lead to a structural
operational semantics (in the tradition of [Plotkin 81]) for MPL.

An MPL formula describes the transitions of possible CCS - implementa-
tions through its own transitions. One can specify two kinds of transitions,
the ones that all implementations must possess and the ones that some im-
plementations may have. In the operational semantics of MPL one uses
a labelled transition system with two transition relations indexed with the
modalities 2 and 3 , S = (Sp,Act,→3,→2) . 2 - transitions are the nec-
essary transitions, 3 -transitions the permissible ones. These modalities are
thus deontic 1 rather than temporal.

In the MPL language itself the action prefixing construct is correspond-
ingly augmented with modalities, so prefix-formulae can be of the form

a2.F meaning that any implementation satisfying this specification must
have a-transitions, all leading to implementations satisfying the speci-
fication F.

a3.F meaning that an implementation satisfying this specification may have
a-transitions, all leading to implementations satisfying the specification
F.

Specifications in MPL are ordered by means of a bisimulation-like pre-
order, � , often referred to as the refinement ordering. Loosely speaking,

1The kind of modal logic where 2 and 3 are interpreted as ‘it ought to be the
case that’ and ‘it is permissible for it to be the case that’ is called deontic logic
[Hughes and Creswell 84]
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F � G iff all transitions required by G are also required by F and result in
derived specifications that are still related by � and all transitions allowed
by F are also allowed by G with results of matching transitions also related
by � . One can also compare CCS - processes and MPL-formulae through
� simply by saying that all moves made by a process are both 2 - and 3 -
moves. One then has an operationally defined way of expressing ‘p satisfies
F ’.

Kim Larsen and Bent Thomsen also denotationally defined that ‘p satisfies
F ’. Their semantic description is HML-like in that the meaning of a formula
F , [[F ]], is a set of processes. It turns out that their semantic function has
the pleasant property that

[[F ]] = {p | p� F} (1.2)

showing that the two viewpoints are related.

1.4 Open problems in the theory of MPL

There are, however, several important open problems left in the theory of
MPL. These are the ones we set out to solve in this report:

• How good is the result on full abstractness (1.2) ? Since � , being a
preorder, is transitive, we get as a corollary that

F �G⇒ [[F ]] ⊆ [[G]]

Does the converse

[[F ]] ⊆ [[G]]⇒ F �G (1.3)

also hold ? It would be nice indeed for then [[ ]] would characterize the
refinement ordering completely.

• The partial specifications introduced in [Larsen and Thomsen 87] use
the same process constructs as MPL, except for the modalities. A
refinement ordering on partial specifications is defined, and it is also
called � . How are the two languages and their refinement orderings re-
lated ? Can we give a denotational description of partial specifications
having the same pleasant properties of full abstractness w.r.t. � ?
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• The process constructs introduced in [Larsen and Thomsen 88] are the
dynamic constructs of CCS and yield a language of regular specifica-
tions corresponding to the finite automata. In general, however, sys-
tems often have infinitely many states. This occurs for instance when
one introduces value passing or dynamically changing configurations,
A regular MPL is therefore not rich enough for the description of con-
current systems. How can one introduce static operators in MPL ?
Is � then still the optimal relation on specifications ? When static
constructs are introduced into CCS , one usually also introduces the
observational bisimulation, ≈ . What would an ‘observational � ’ look
like ?

• � is defined so that it resembles ∼ closely. Can we give sound and
complete proof systems for � like one can for ∼ [Milner 82] ?

• In [Graf and Sifakis 86] Graf and Sifakis introduce the Boolean connec-
tives of the propositional calculus into the language of regular CCS -
formulae. This extended language is given a denotational description
and a sound proof system for semantic equality is presented. What is
gained if we augment MPL with (one or more of) the Boolean connec-
tives ? What will the denotational semantics look like ? Can we give
a sound and complete proof system for semantic equality ? (The proof
system given in [Graf and Sifakis 86] is not shown to be complete) And
how about the the feasibility of operational semantics in a language
with logical connectives ?

• And last, but certainly not least : How can we use MPL for the speci-
fication of nondeterministic and concurrent systems ? How well are we
off using MPL instead of, say, CCS ?

1.5 Overview of the rest of the report

Chapter 2 deals with transition systems for describing the operational se-
mantics of specifications and processes. In particular, we define the notions
of bisimulation and refinement.

Chapter 3 contains a description of the syntax and operational semantics
of the languages for defining specifications and processes.

Chapter 4 starts out with a definition of the denotational semantics of
MPL. Counterexamples show that (1.3) does not hold in MPL. However, it
turns out that we can give a characterization of a class of counterexamples of
(1.3) in MPL. Then the language of partial specifications is related to MPL
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through a presentation of its operational and denotational semantics. We
show that (1.2) holds for the partial specifications as well as the converse
result (1.3).

Chapter 5 introduces static constructs into MPL and develops the theory
of a ‘weak � ’, illustrated with examples.

Chapter 6 gives proof systems for � for MPL’s with dynamic constructs
with or without recursion. Disjunction (∨) is introduced into MPL, and it
turns out that one can now give a sound and complete proof system for
semantic equality in a language without recursion or static constructs, based
on the results on full abstractness in Chapter 4.

Chapter 8 is the conclusion. We make a review of the goals achieved and
future work to be done.



Chapter 2

Transition systems as a model
of concurrency

In this chapter we introduce the concept of and notations for transition sys-
tems, used in the structural operational semantics of MPL and the language
used for describing implementations, a subset of CCS . We also define bisim-
ulation equivalence (∼) along with the refinement ordering (�). This should
show the reader the relatedness of the two concepts.

2.1 Labelled transition systems

The languages we will present next chapter describe the behaviour of con-
current systems through the set of actions they offer at any given instant.
This idea originates with Milner [Milner 80] and leads naturally to the use of
structural operational semantics as introduced by Plotkin [Plotkin 81], using
the concept of labelled transition systems:

Definition 2.1 A labelled transition system T = (Γ, Act,→) is a triple
where Γ is the set of states, Act is the set of actions and → is the transition
relation satisfying

→⊆ Γ× Act× Γ

Instead of writing (p, a, q) ∈→ one usually writes p
a→ q and interprets

this as ‘from state p we can perform an a-action leading to the state q’. q is
then called an a-derivation of p. One also uses the predicates ‘p

a→ ’ instead
of ‘∃q : p

a→ q’ and ‘p 6 a→ ’ instead of ‘¬∃q : p
a→ q’.

In this report we will often depict labelled transition systems as directed
graphs with labelled edges. Then the nodes correspond to the states and the
edges, being labelled with actions, correspond to the transitions.

12
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When modelling the behaviour of processes, we identify the state of a
process with the process itself. Γ is then the set of processes Pr and we refer
to the labelled transition system as a process system P = (Pr,Act,→) . One
then gives the operational semantics of a process language by exhibiting a
process system where the processes are the process expressions of the lan-
guage and the transition relation is defined as the least fixed point of a set
of rules and axioms called operational rules.

For MPL specification we will need a special kind of labelled transition
system. As revealed in Chapter 1, MPL specifications impose restrictions on
the possible implementations by telling which transitions possible implemen-
tations must have and which transitions they may have. Firstly, this means
that the action set in the new transition system must contain the actions in
the process system considered. Secondly, it means that we need two transi-
tion relations representing the different kinds of transitions: →2 describing
the required transitions and →3 describing the allowed transitions. This is
formalized as

Definition 2.2 A modal transition system S = (Sp,Act,→3,→2) is a
quadruple where Sp is the set of specifications, Act is the set of actions
and →3 and →2 are the modal transition relations satisfying

→2 ⊆ Sp× Act× Sp

→3 ⊆ Sp× Act× Sp

→2 ⊆ →3

The last condition reflects the intuition that all the transitions that an
implementation must have are also transitions that it may have.

As for ‘ordinary’ labelled transition systems we will use the notations
S

a→2 T and S
a→3 T , interpreted in the obvious way, and talk of T as an a2-

(or a3-) derivation of S. Often we will also need to talk about the transition
relations independently of their modalities. We then use an index for the
modalities, writing

S
a→m T, m ∈ {2,3}

When comparing processes and specifications, as will be done in the fol-
lowing, it is essential to note that processes can be seen as ‘fully determined’
specifications, so that we for any process system P = (Pr,Act,→) can
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define a derived modal transition system SP = (Pr,Act,→3,→2) where
→2 =→3 =→. Thus anything allowed is also required - no looseness.

In the development of the theory of � we shall at times impose a re-
striction on the modal transition systems considered, namely that they are
image-finite. This means that any specification has at most finitely many
derivations for any action. Since we have the restriction →2 ⊆ →3 this
amounts to

Definition 2.3 S = (Sp,Act,→3,→2) is image-finite iff the set of deriva-
tions

{T ∈ Sp | S a→3 T}

is finite for all S ∈ Sp and a ∈ Act.

2.2 Bisimulations and refinements

The refinement ordering � is a slight variation on the theme of bisimulation
equivalence, a notion we will also need in our theoretical development. The
concept of bisimulation was invented by David Park; longer introductions
to bisimulation than the one given here can be found in [Milner 83] and
[Larsen 86].

2.2.1 Bisimulation equivalence

In CCS the concept of bisimulation equivalence is the way of formalizing
the idea of ‘having the same operational behaviour as’. A bisimulation is a
binary relation on a process system expressing that any pair of processes in
the relation can ‘simulate each other’ in the following way:

Definition 2.4 A relation R ⊆ Pr×Pr on process system P = (Pr,Act,→
) is a bisimulation iff, whenever pRq, the following holds:

1. p
a→ p′ ⇒ ∃q′ : q a→ q′ ∧ p′Rq′

2. q
a→ q′ ⇒ ∃p′ : p a→ p′ ∧ p′Rq′

One way of defining bisimulation equivalence is now that processes p and
q are bisimulation equivalent iff there exists a bisimulation such that pRq. It
is easy to see that there is a largest bisimulation, for inherent in the above
definition is a functional B :
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Definition 2.5 The functional B : 2Pr×Pr → 2Pr×Pr is defined by
(p, q) ∈ B(R) iff

1. p
a→ p′ ⇒ ∃q′ : q a→ q′ ∧ p′Rq′

2. q
a→ q′ ⇒ ∃p′ : p a→ p′ ∧ p′Rq′

It is now easy to see that the following holds:

Proposition 2.1 R is a bisimulation iff R ⊆ B(R)

meaning that the bisimulations are exactly the post-fixed points of B .
B is easily seen to be a monotonic functional on the Boolean lattice (2Pr,⊆)
so that B by Tarski’s fixed point theorem has a maximal fixed point given
by the union of the post-fixed points. We can thus define the maximal
bisimulation ∼ as

∼=
⋃
{R |R ⊆ B(R)}

Then p and q are bisimulation equivalent according to the previous def-
inition iff p ∼ q. This gives us as a corollary the definition of ∼ that many
texts start out with:

Corollary 2.1 The relation ∼⊆ Pr×Pr on process system P = (Pr,Act,→
) satisfies

p ∼ q iff

1. p
a→ p′ ⇒ ∃q′ : q a→ q′ ∧ p′ ∼ q′

2. q
a→ q′ ⇒ ∃p′ : p a→ p′ ∧ p′ ∼ q′

If one now wants to prove that p ∼ q, we see by this short discussion that
all one needs is to exhibit a bisimulation R in the sense of Definition 2.4 such
that pRq. The proof of R being a bisimulation consists in showing that the
closure property of Proposition 2.1 holds.

This proof technique is sometimes called Park’s Induction Principle. In
what follows we will define our refinement orderings using the ideas sketched
above, namely defining the orderings as maximal fixed points of functionals
on relations, and use Park’s Induction Principle accordingly. Let us here
show its use by showing that ∼ is indeed an equivalence:

Proposition 2.2 ∼ is an equivalence relation on Pr.
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Proof: ∼ is reflexive, since {(p, p) | p ∈ Pr} is a bisimulation. ∼ is sym-
metric, since the transpose of a bisimulation R defined by

RT = {(q, p) | (p, q) ∈ R}

is again a bisimulation. ∼ is transitive, for if we define composition of
relations by

R1 ◦R2 = {(p, q) | ∃q1 : (p, q1) ∈ R1 ∧ (q1, q) ∈ R2}

we see that R1 ◦R2 is a bisimulation when R1 and R2 are. 2

Example 2.1 Let a process system be given by the transition diagram in
Figure 2.1:

p0 r
�

�
�	

@
@
@Rp1 p2

a ar r
�
�
��

A
A
AUr rp3 p4

�
�
��

A
A
AUr rp5 p6

b c c b

q0 r
?rq1
�
�
��

A
A
AUr rq2 q3

b c

a

Figure 2.1: Processes p0 and q0 satisfy p0 ∼ q0

Then p0 and q0 are bisimulation equivalent, for (p0, q0) ∈ R where

R = {(p0, q0), (p1, q1), (p3, q2), (p4, q3), (p2, q1), (p5, q3), (p6, q2)}

is a bisimulation.
2

2.2.2 Refinements

How would one define one MPL specification S as being more refined than an-
other specification T ? Intuitively speaking one might say that all transitions
allowed by S must also be allowed by T , the result of matching transitions
being also in the refinement relation. And conversely, all transitions required
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by T must also be required by S, the result of matching transitions being in
the refinement relation. Following [Larsen and Thomsen 88] we will define 1

the concept of refinement:

Definition 2.6 A relation R ⊆ Sp× Sp on a modal transition system S =
(Sp,Act,→3,→2) is a refinement iff whenever SRT the following holds:

1. S
a→3 S

′ ⇒ ∃T ′ : T a→3 T
′ ∧ S ′RT ′

2. T
a→2 T

′ ⇒ ∃S ′ : S a→2 S
′ ∧ S ′RT ′

The functional RE inherent in this definition is

Definition 2.7 The functional RE : 2Sp×Sp → 2Sp×Sp is defined by
(S, T ) ∈ RE(R) iff

1. S
a→3 S

′ ⇒ ∃T ′ : T a→3 T
′ ∧ S ′RT ′

2. T
a→2 T

′ ⇒ ∃S ′ : S a→2 S
′ ∧ S ′RT ′

Again it is easy to see that we are dealing with a monotonic functional,
this time over the Boolean lattice (2Sp×Sp,⊆) and that this implies that a
largest refinement, � , exists, being the union of all refinements. We then
have

Corollary 2.2 The relation � ⊆ Sp × Sp on a modal transition system
S = (Sp,Act,→3,→2) satisfies

S � T iff

1. S
a→3 S

′ ⇒ ∃T ′ : T a→3 T
′ ∧ S ′ � T ′

2. T
a→2 T

′ ⇒ ∃S ′ : S a→2 S
′ ∧ S ′ � T ′

� is the refinement relation we will investigate the properties of from
now on. One should note that whenever →2 = →3 (e.g. when the modal
transition system is derived from a process system) � reduces to ∼ in the
derived ‘ordinary’ labelled transition system.

� is the desired preorder on specifications:

Proposition 2.3 � is a preorder on Sp.

1. . . or refine??
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Proof: � is reflexive, since {(S, S) |S ∈ Sp} is a refinement. � is transitive,
since composition of refinements (defined as in the proof of Proposition 2.2)
again yields a refinement. 2

In this report we also need an equivalence on specifications. This we do
by simply defining the bisimulation equivalence on specifications, ' :

Definition 2.8 Let ' be the maximal relation ' ⊆ Sp × Sp on a modal
transition system S = (Sp,Act,→3,→2) satisfying

S ' T iff

1. S
a→m S

′ ⇒ ∃T ′ : T a→m T
′ ∧ S ′ ' T ′

2. T
a→m T

′ ⇒ ∃S ′ : S a→m S
′ ∧ S ′ ' T ′

where m ∈ {2,3}.

By the previous discussion it is obvious that such a relation exists. ' is
related to � in the obvious way:

Proposition 2.4

S ' T ⇒ S � T ∧ T � S

Proof: It is easy to see that both {(S, T ) | S ' T} and its transpose are
refinements. 2

One might ask why we did not simply use the equivalence ./ induced by
� , defined by S ./ T ⇔ S � T ∧ T � S. The reason is that this definition
does not guarantee that matching transitions w.r.t. � yield specifications
that are equivalent under ./ .

An alternative characterization of � , namely as the limit of a decreasing
chain of approximating relations is needed in Chapter 4. When the functional
RE is anti-continuous we can represent the maximal fixed point � as the limit
of such a chain:

Definition 2.9 A monotonic functional f : A→ A on a complete lattice is
anti-continuous iff we for all decreasing chains {Bi} have that

f(u∞i=1(Bi)) = u∞i=1f(Bi)

Lemma 2.1 Let A be a complete lattice with a maximal element, >, and let
the functional f : A → A be anti-continuous. Then f has a maximal fixed
point given by

FIX f = u∞i=0f
i(>)
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Proof: See Appendix. 2

A sufficient condition for anti-continuity of RE is image-finiteness:

Theorem 2.1 If the modal transition system S = (Sp,Act,→3,→2) is
image-finite, the refinement function RE is anti-continuous.

Proof: See Appendix. 2

Corollary 2.3 When the modal transition system S = (Sp,Act,→3,→2) is
image-finite, we have that

� =
⋂∞

i=0
RE i(Sp2)

Example 2.2 The least informative specification w.r.t. � is the ‘wild’ spec-
ification that allows all transitions, requiring none. This ‘unspecified’ spec-
ification U , which we will encounter often in this report, is completely de-
termined by U a→3 U for all a ∈ Act (i.e. U has no 2-transitions). We
have

S � U

for all S ∈ Sp, since {(S,U) | S ∈ Sp} is a refinement. This holds, since
S

a→3 S
′ implies that U a→3 U with (S ′,U) still in the relation. The second

condition in Definition 2.6 is vacuously satisfied. 2

Example 2.3 (From [Larsen and Thomsen 88])

��
��r
a 2

S

6
r U

3

b 6= a ��
��r
a 2

T

6
r U

3

b ∈ Act--

Figure 2.2: Modal transition diagrams for a-sender and -transmitter

An a-sender is any process which will never refuse to perform an a-action
as long as nothing else is attempted. Using the U -specification defined in
the previous example, we can give a modal transition system specifying the
behaviour of any a-sender (Figure 2.2). S

a→2 S
′ expresses that any a-sender

after an a-action still must be an a-sender. S
b→3U , for b 6= a, expresses that

if any other action is tried, the behaviour of the a-sender is unspecified.
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An a-transmitter is any process allowing an infinite series of a-transitions.
We can specify the a-transmitters by the modal transition system (also in
Figure 2.2). Here T

a→2 T says that a transmitter is still a transmitter after

some a-action. On the other hand, T
b→3U describes that an a-transmitter is

allowed to leave the series of a-transition whenever it feels like it, then being
unspecified. Intuitively, the concept of being an a-sender is a refinement of
the concept of being an a-transmitter. This is reflected by � , since we have

S � T

following from the fact that {(S, T ), (U ,U)} is a refinement. 2

As mentioned earlier, we can regard processes as fully determined specifi-
cations by using the derived modal transition system SP = (Pr,Act,→3,→2) .
We can then compare them with specifications under � by forming the dis-
joint union with the modal transition system S = (Sp,Act,→3,→2) , allow-
ing us to write

p� F

we will then say that p is an implementation of F .

Example 2.3 (continued) Take a look at the process diagrams in Figure 2.3
below:

��
��r�p1

a ��
��r�p2

a

-rb

��
��r�p3

a

-ra rp4

?r a

Figure 2.3: How many of these processes are a-senders or a-transmitters ?

Some of the processes are implementations of the specifications just con-
sidered. It is easy to see that p1 and p2 are implementations of the a-sender
specification, since {(p1, S)} and {(p2, S), (nil,U)} are refinements. By the
transitivity of � , it is clear that these processes are implementations of the
a-transmitter as well. On the other hand, p3 and p4 are not a-senders; p3 is
an a-transmitter, though, since {(p3, T ), (nil,U)} is a refinement. 2
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Example 2.4 Consider a general medium which receives information, later
releasing it. The medium is faulty, but honest - i.e., the medium may lose
information but then the user of the medium is informed of the loss.

If we here ignore the information content, talking only about the presence
or absence of information in terms of pulses, we can model the medium by a
process where reception of a pulse is modelled by a c-action and emission of
a pulse is modelled by an e-action. The medium informs its user of the loss
of a pulse by performing a d-action. How can we specify the class of such
processes ?

M0 M1 M2

� �
� 

� �
� 


?

6

?

6

e2

d3

c2

e2

d3

c3

�
� · · · · · ·� �

Figure 2.4: Modal transition diagram specifying a general medium.

A medium can be characterized by the number of pulses it is able to
contain at the same time, referred to as its capacity. The state of the medium
can be characterized by the number of pulses it is currently holding. A
necessary requirement of a medium is that it must be able to take in at least
one pulse and release it. Apart from that, a specification should not restrict
the capacity of the medium, for one may want a medium process with a
variable capacity.

Let us call a medium holding n pulses Mn. Then we expect M0
c→2 M1,

since a medium must be able to take in information. For n > 0 we only say
that Mn

c→3 Mn+1. However we demand Mn
e→2 Mn−1 for n > 0, since a

medium must always be able to output its information. The idea of being
faulty, but honest is of course not a requirement of a medium, so we specify

that Mn
d→3 Mn−1 for n > 0. This yields the modal transition diagram in

Figure 2.4. 2



Chapter 3

Languages for implementations
and specifications

In this chapter we present the syntax and structural operational semantics
for a regular MPL and a language for defining processes, a subset of CCS .

3.1 The process language

The implementations we consider form the class Pr of regular CCS -processes
without value-passing [Milner 82]. These behaviours correspond to the class
of finite automata.

3.1.1 Syntax of the process language

The language describing Pr contains the dynamic process constructs of CCS
(action prefixing, nondeterminism, and recursion) and has the abstract syn-
tax

p ::= nil | a.p1 | p1 + p2 | x | µx.p

In this report we shall follow the convention of using lowercase letters p,
q etc. to represent process expressions. A notational abbreviation which we
will also adapt is writing

∑n
i=1 pi instead of p1 + p2 + · · · pn. 1

Variables in the expressions should be thought of as ‘templates’ which
may be replaced by expressions through syntactic substitution. The intuition
behind the µ-operator is the usual in recursion, namely that of unfolding:

1This notation, also used in our treatment of MPL, is justified by the commutativity
and associativity of + under our operational semantics.

22
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All free occurrences of the recursion variable are expanded as the recursive
expression.

The formal definitions of the concepts of free variable and syntactic sub-
stitution are similar to those found in the λ-calculus [Stoy 77] since µ is just
another variable-binding operator (and the only such):

Definition 3.1 The set of free variables in an expression is given by the
function FVPr : Pr → 2V ar defined structurally on Pr by

FVPr(nil) = ∅
FVPr(a.p) = FVPr(p)

FVPr(p1 + pa) = FVPr(p1) ∪ FVPr(p2)

FVPr(x) = {x}
FVPr(µx.p) = FVPr(p) \ {x}

A variable z occurring in a process expression p such that z 6∈ FVPr(p), is
called bound. An expression containing only bound variables is called closed.

Substituting the process expression q for all free occurrences of variable
x in process expression p is denoted by p[q/x] and defined as follows:

Definition 3.2 (Substitution in the process language)
The substitution function p[q/x] : Pr× Pr× V ar → Pr is defined struc-

turally on p by

nil[q/x] = nil

(a.p1)[q/x] = a.(p1[q/x])

(p1 + p2)[q/x] = p1[q/x] + p2[q/x]

y[q/x] =

{
y if y 6= x
q if y = x

(µy.p1)[q/x] =


µy.p1 if y = x
µy.(p1[q/x]) if y 6= x and y 6∈ FVPr(q)
µz.((p1[z/y])[q/x]) if y 6= x and y ∈ FVPr(q)

where z is a variable such that z 6= x, z 6∈ FVPr(q) and z 6∈ FVPr(µy.p1)
and ‘=’ denotes syntactic equality up to renaming of bound variables.
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3.2 Operational semantics for the process lan-

guage

We can now give the operational semantics of our process language as a
process system whose processes are the process expressions Pr just defined.

Definition 3.3 (Operational semantics for process language) In the process
system P = (Pr,Act,→) the transition relation → is defined as the smallest
(w.r.t. ⊆) relation, →⊆ Pr × Act× Pr satisfying:

Action prefixing

a.p
a→ p

Nondeterminism

p
a→ p′

p+ q
a→ p′

q
a→ q′

p+ q
a→ q′

Recursion

p[µx.p/x]
a→ p′

µx.p
a→ p′

3.3 The regular MPL

We here only consider a regular Modal Process Logic, i.e. one with the dy-
namic process constructs mentioned in the previous section. In Chapter 5 we
introduce static constructs, and the operational semantics will be extended
accordingly. The set of regular MPL expressions will be called Sp.

3.3.1 Syntax of MPL

The MPL language also has the dynamic process constructs. The abstract
syntax is here

E ::= Nil | a2.E1 | a3.E1 | E1 + E2 | x | recx.E

As one can see, the syntax is almost the same as that of the process
language. To avoid confusion, though, we write ‘Nil ’ and ‘rec’ when referring
to inaction and recursion. MPL specifications2 will always be denoted by

2We will use the phrases ‘MPL specification’, ‘MPL expression’ and ‘MPL formula’
interchangeably
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uppercase letters, and the summation convention of writing
∑n
i=1 Ei instead

of E1 + E2 · · ·En is also applied.
The concept of free variables extends easily into MPL:

Definition 3.4 The set of free variables in an MPL expression is given by
the function FVSp : Sp→ 2V ar defined structurally on Sp by

FVSp(Nil) = ∅
FVSp(a2.E) = FVSp(E)

FVSp(a3.E) = FVSp(E)

FVSp(E1 + E2) = FVSp(E1) ∪ FVSp(E2)

FVSp(x) = {x}
FVSp(recx.E) = FVSp(E) \ {x}

As for process expressions, a variable z occurring in an MPL expression
E such that z 6∈ FVSp(E), is called bound. An expression containing only
bound variables is called closed.

Substituting the MPL expression F for all free occurrences of variable x
in process expression E is denoted by E[F/x] and defined as follows:

Definition 3.5 (Substitution in MPL)
The substitution function E[F/x] : Sp×Sp×V ar → Sp is defined struc-

turally on E by

Nil[F/x] = Nil

(a2.E1)[F/x] = a2.(E1[F/x])

(a3.E1)[F/x] = a3.(E1[F/x])

(E1 + E2)[F/x] = E1[F/x] + E2[F/x]

y[F/x] =

{
y if y 6= x
F if y = x

(recy.E1)[F/x] =


recy.E1 if y = x
recy.(E1[F/x]) if y 6= x and y 6∈ FVSp(F )
recz.((E1[z/y])[F/x]) if y 6= x and y ∈ FVSp(F )

where (as before) z is a variable such that z 6= x, z 6∈ FVSp(F ) and
z 6∈ FVSp(recy.E1) and ‘=’ denotes syntactic equality up to renaming of
bound variables.
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3.3.2 Operational semantics of MPL

The operational semantics of MPL only differs from the process semantics
in that we now use modal transition systems. The idea is that 2 -prefixing
yields 2 -transitions and 3 -prefixing yields 3 -transitions.

Definition 3.6 (Operational semantics for MPL) In the modal transition
system S = (Sp,Act,→3,→2) the transition relations →2 and →3 are de-
fined as the smallest (w.r.t. ⊆) pair of relations →m ⊆ Pr×Act×Pr , m ∈
{2,3} satisfying:

3 -prefixing

a3.E
a→3 E

2 -prefixing

a2.E
a→2 E

a2.E
a→3 E

Nondeterminism

E
a→m E

′

E + F
a→m E ′

F
a→m F

′

E + F
a→m F ′

Recursion

E[recx.E/x]
a→m E

′

recx.E
a→m E ′

where m ∈ {2,3}.

The above rules truly define a modal transition system:

Proposition 3.1 The relations →2 and →3 in Definition 3.6 satisfy

→2 ⊆ →3

Proof: A straightforward induction in the length of the inference used to
show that E

a→2 E
′. 2

We shall often restrict our attention to MPL expressions that are well-
guarded, since this (natural) restriction gives us a pleasant characterization
of the transitions of an MPL specification.
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Definition 3.7 The set of unguarded variables in an MPL expression is
given by the function UGSp : Sp→ V ar defined structurally by:

UGSp(Nil) = ∅
UGSp(a2.E) = ∅
UGSp(a3.E) = ∅

UGSp(E1 + E2) = UGSp(E1) ∪ UGSp(E2)

UGSp(x) = {x}
UGSp(recx.E) = UGSp(E) \ {x}

If we for a variable x in an expression E have x 6∈ UG(E) we say that x
is guarded in E. If UG(E) = ∅ (i.e. all variables in E are guarded), we say
that E is well-guarded.

Well-guardedness means that we cannot access the transitions made pos-
sible by the presence of variable without first performing a transition obtained
from the prefixing of an action. This is indicated in the following, important

Lemma 3.1 Whenever x is guarded in G ∈ Sp we have

G[F/x]
a→m E

if and only if

G
a→m G

′ and E = G′[F/x]

for some G′ (where m ∈ {3,2})

Proof: Induction in the length of inferences establishing G[F/x]
a→mE and

G
a→m G

′. For details, see Appendix. 2

As a corollary we can characterize rec:

Corollary 3.1 Whenever x is guarded in G

recx.G
a→m E

if and only if
G

a→m G
′ and E = G′[recx.G/x]

for some G′ (where m ∈ {3,2})
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Example 3.1 Assuming that the action set Act is finite, the specification U
introduced in Chapter 2 can be written as

U = recx.(
∑
a∈Act

a3.x)

For we have U b→m E iff (
∑
a∈Act a3.x)[U/x]

b→m E, which by the substi-
tution function, Corollary 3.1 and the operational rules for + and prefixing

gives us that U b→3 U for all b ∈ Act. 2

Example 3.2 Again under the assumption that Act is finite, the a-sender
introduced in Chapter 2, Example 2.3 can be written as

S = recx.(a2.x+
∑
b6=a

b3.U)

and the a-transmitter also from this example can be expressed as

T = recx.(a2.x+ U)

2

The above definitions of guardedness can of course also be given for the
process language in an entirely similar way. We also get identical properties
to the ones described for MPL (except for the modalities on the transitions)
for process expressions. We state the following without proof, since this is
entirely analogous to the one for Lemma 3.1:

Lemma 3.2 Whenever x is guarded in p ∈ Pr we have

p[q/x]
a→ r

iff

p
a→ p′ and r = p′[q/x]

for some p′.

Corollary 3.2 Whenever x is guarded in p

µx.p
a→ q

iff
p

a→ p′ and q = p′[µx.p/x]

for some p′.



Chapter 4

Full abstraction in the modal
process logic

In this chapter we present a denotational description of MPL, first given in
[Larsen and Thomsen 88]. We compare this description with the denota-
tional description of the STL tree logic in [Graf and Sifakis 86]. We also
discuss the result presented in [Larsen and Thomsen 88] on full abstractness
of the denotational semantics, how well the result applies to the partial spec-
ification language described in [Larsen and Thomsen 87] and its limitations.

4.1 Denotational semantics of MPL

The denotational description of MPL is denotational in the sense that the
meaning assigned to an expression is a function of the meanings of its immedi-
ate constituents. However, it does not involve domain theory, only simple set
theory. On the other hand, the description assumes the existence of a process
system, since the meaning of an MPL formula is a set of processes. In this
way the description is similar to the denotational descriptions of Hennessy-
Milner logic [Hennessy and Milner 85] and the STL in [Graf and Sifakis 86].

In [Graf and Sifakis 86] Graf and Sifakis require that a logic and its de-
scription be adequate in the following sense:

• The meaning of a formula in the logic must be a union of equivalence
classes of processes, so that equivalent processes satisfy the same for-
mulae.

• Any process can be described by a formula in the logic, so that we for
each equivalence class have a formula representing it.

29
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With respect to these requirements the semantic description of MPL is
adequate, as we shall see.

4.1.1 Semantic definitions

Our semantic algebra contains functions corresponding to process constructs
in MPL:

Definition 4.1 (Semantic algebra)
The semantic algebra consists of the functions

nil : → 2Pr

d 3e : Act× 2Pr → 2Pr

d 2e : Act× 2Pr → 2Pr

⊕ : 2Pr × 2Pr → 2Pr

defined by

nil = {p | p ∼ nil}

da3eU = {p | p b→ p′ ⇒ (b = a ∧ p′ ∈ U)}

da2eU = {p | p a→ ∧ p ∈ da3eU}
U ⊕ V = {p | ∃p1, p2.p1 ∈ U ∧ p2 ∈ V ∧ p ∼ p1 + p2}

where U, V ⊆ Pr.

In our further theoretical development it is important that these functions
are sufficiently nice:

Lemma 4.1 The functions of Definition 4.1 are monotonic and anticontin-
uous on the Boolean lattice (2Pr,⊆)

Proof: Monotonicity is obvious. For the proof of anticontinuity, see the
Appendix. 2

Since MPL expressions may contain variables, their denotations must
depend on an environment:

Definition 4.2 An environment σ is an element of the function space
E = V ar → 2Pr

We can now give the semantic equations:
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Definition 4.3 (Denotational semantics for MPL) Define for F ∈ Sp the
function [[ ]] : Sp→ (E → 2Pr) inductively by:

[[Nil]]σ = nil

[[x]]σ = σ(x)

[[a3.F ]]σ = da3e([[F ]]σ)

[[a2.F ]]σ = da2e([[F ]]σ)

[[F +G]]σ = [[F ]]σ ⊕ [[G]]σ

[[recx.F ]]σ = FIX U.([[F ]]σ{U/x})

where σ ∈ E and FIX is the maximal fixed point operator.

FIX is well-defined here, since [[ ]] is a monotonic function on the Boolean
lattice (2Pr,⊆) due to the monotonicity of the semantic algebra functions.

4.1.2 Adequacy of the semantics

The first part of the adequacy requirement stated earlier, namely that the
denotation of an MPL formula is a union of equivalence classes, falls right into
our laps. The result, of course, requires that the environment σ demands this
property of the variables. (This seems like a very reasonable requirement.)

Definition 4.4 A set U ⊆ Pr is said to be cue (closed under equivalence)
iff

p ∈ U ∧ q ∼ p⇒ q ∈ U

It is obvious that we have that if U is cue, it is the union of some equiv-
alence classes, i.e. U =

⋃
p∈S |p| for some set S ⊆ Pr. (Here |p| denotes the

equivalence class of p w.r.t. to ∼ ).
The property of being cue is preserved by union and intersection since

any two equivalence classes are either identical or disjoint. An environment
is called cue iff its images are cue:

Definition 4.5 An environment σ is cue iff we for all x ∈ V ar have that
σ(x) is cue.

Theorem 4.1 If σ ∈ E is cue, we have for any F ∈ Sp that [[F ]]σ is cue.

Proof: Structural induction on F.
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F = Nil: Obvious, since [[Nil]] = {p | p ∼ nil}.

F = x: By assumption, σ is cue.

F = F1 + F2: We have

[[F1]]σ ⊕ [[F2]]σ = {p | ∃p1 ∈ [[F1]]σ,∃p2 ∈ [[F2]]σ : p ∼ p1 + p2}
=

⋃
pi∈[[Fi]]

|p1 + p2|

which is of the desired form

F = a3.F1: We have

[[a3.F1]]σ = {p | p a→ p′ ⇒ b = a ∧ p′ ∈ [[F1]]σ}

Assume for p ∈ [[a3.F1]] that q ∼ p. Then q has the same derivations
as p and p

a→ p′ implies q
a→ q′ with p′ ∼ q′. By induction hypothesis

we then have q′ ∈ [[F1]], again implying q ∈ [[a3.F1]].

F = a2.F1: As for a3.F1.

F = recx.F1: Define G : 2Pr → 2Pr by G(U) = [[F1]]σ{U/x}. Then we have

[[recx.F1]]σ =
∞⋂
n=0

Gn(Pr)

If U is cue then, by induction hypothesis, G(U) is also cue. Since Pr
is clearly cue, and intersection preserves cue-ness, the result follows.

2

A nice consequence is that we have another characterization of the se-
mantics of a 2 -prefixed formula whenever our environment is cue:

Proposition 4.1 When σ ∈ E is cue we have

[[a2.F ]]σ = {p | p ∼
∑
i∈I

a.pi, I 6= ∅, pi ∈ [[F ]]σ}

Proof: Let S1 = {p | p ∼ ∑
i∈I a.p1, p1 ∈ [[F ]]σ} and S2 = [[a2.F ]]σ . It is

clear that S1 ⊆ S2. Now suppose p ∈ S2. Then the only possible derivations
are of the type p

a→ p′ with p′ ∈ [[F ]]σ. By Theorem 4.1 we have a pi ∈ [[F ]]σ
such that pi ∼ p′, yielding the proof. 2

(This is actually how [Graf and Sifakis 86] defined the semantics of pre-
fixing).

The second part of the adequacy requirement, that any process is in the
denotation of some MPL formula, is proved in subsection 4.2.2.
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4.2 Full abstractness of the denotational se-

mantics

In [Larsen and Thomsen 88] Kim Larsen and Bent Thomsen proved that the
denotational description just given was fully abstract w.r.t. � in that we
have

Theorem 4.2 Let G ∈ Sp be closed and well-guarded. Then

[[G]] = {p | p�G}

Proof: See [Larsen and Thomsen 88] 2

Note that this result does not depend on σ. Since � collapses to ∼ for
processes, this means that we have alternative versions of Theorem 4.1 and
Proposition 4.1 for closed MPL formulae, not depending on the cue-ness of
σ:

Corollary 4.1 For all closed F ∈ Sp [[F ]] is cue.

Corollary 4.2 For all closed F ∈ Sp

[[a2.F ]]σ = {p | p ∼
∑
i∈I

a.pi, I 6= ∅, pi ∈ [[F ]]σ}

Since � is transitive, we also have

Corollary 4.3 Let F and G be closed and well-guarded. Then

F �G⇒ [[F ]] ⊆ [[G]]

4.2.1 Limitations of the full abstractness

A compelling problem is now if we also have the converse of Corollary 4.3,
i.e.

[[F ]] ⊆ [[G]]⇒ F �G

for well-guarded F,G ? Unfortunately we do not.
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Example 4.1 Consider the formulae

F = a3.b3.Nil

G = a3.b2.Nil + a3.Nil

Then we do not have that F �G, for F
a→3 b3.Nil must be matched by

either G
a→3 b2.Nil or G

a→3Nil. But then we have, respectively, b2.Nil
b→2

while b3.Nil 6
b→2 or b3.Nil

b→3 while Nil 6 b→3 . On the other hand, since
the formulae are closed we get that

[[F ]] = [[G]] = {p | p ∼ nil ∨ p ∼ a.nil ∨ p ∼ a.b.nil ∨ p ∼ a.b.nil + a.nil}

2

Another counterexample is

Example 4.2

F = a2.b2.Nil + a2.Nil + a3.b3.Nil

G = a2.b2.Nil + a2.Nil

2

On the other hand, it turns out that we can define a relation 6�D stronger
than the negation of � , 6� , for which the desired property holds. i.e.
whenever F 6�DG we have F 6⊆ G.

There are two ways in which F 6�G may happen:

• Either F or G has a transition the other does not have.

• One specification has a transition that the other can only possibly
match in a way leading to specifications not related by � .

It is easily seen that we for 6� have

Proposition 4.2 The relation 6� ⊆ Sp × Sp on a modal transition system
S = (Sp,Act,→3,→2) is the least relation satisfying

S 6�T if one of these two conditions holds:

1. ∃a∃S ′ : S a→3 S
′ ∧ (T 6 a→3 ∨ (∀T ′ : T a→3 T

′ ⇒ S ′ 6�T ′))

2. ∃a∃T ′ a→2 T
′ ∧ (S ′ 6 a→2 ∨ (∀S ′ : S a→2 S

′ ⇒ S ′ 6�T ′))
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The definition of 6�D is somewhat stronger in that it essentially says that
the conclusion that F does not refine G is based on the information that
at some point one of the specifications has at most one transition of some
kind and this transition leads to a mismatch. We call such a mismatch
deterministic. Note that the mismatches in Examples 4.1 and 4.2 were not
deterministic; in Example 4.1 we thus had two a3-transitions each providing
a mismatch (and for two different reasons).

We define the relation, 6�D , as the union of a chain of relations, {6�D
m},

where F 6�D
mG if we observe the deterministic mismatch after at most m

transitions. This is inspired by [Larsen 86] in which Kim Larsen describes
parameterized bisimulation through (among other things) the negation of the
simulation preorder on processes, ≤.

Definition 4.6

6�D
0 = ∅

F 6�D
nG iff one of the following holds

1. ∃a∃F ′ : F a→3 F
′ ∧ (G 6 a→3 ∨ ((∃!G′ : G a→3 G

′) ∧
∀G′∃m < n : G

a→3 G
′ ⇒ F ′ 6�D

mG′))

2. ∃a∃F ′ : G a→2 G
′ ∧ (F 6 a→2 ∨ ((∃!F ′ : F a→2 F

′) ∧
∀F ′∃m < n : F

a→3 F
′ ⇒ F ′ 6�D

mG′))

6�D =
∞⋃
n

6�D
n

6�D is related to 6� in the obvious way:

Proposition 4.3

F 6�DG⇒ F 6�G

Proof: The theorem says that, if for some n, F 6�D
nG we have that F 6�G.

The proof is then a trivial induction in n. 2

We now claim that we have [[F ]] 6⊆ [[G]] ⇒ F 6�DG. In the proof we
need to construct two canonical implementations for F , p2(F ) and p3(F ),
preserving the 2 - and 3 -transitions of F , respectively. Then one shows
that p2(F ) 6∈ [[G]] or p3(F ) 6∈ [[G]], respectively. The constructions of p2 and
p3 are interesting in their own right; they will also be used to show that any
process satisfies some specification. We therefore describe the constructions
here:
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Definition 4.7 The syntactic transformation p2 : Sp→ Pr is defined struc-
turally by

p2(Nil) = nil

p2(a2.E) = a.p2(E)

p2(a3.E) = nil

p2(E1 + E2) = p2(E1) + p2(E2)

p2(recx.E) = µx.p2(E)

p2(x) = x

Thus, p2 simply leaves out all 3 -transitions. p2(F ) distributes w.r.t.
substitution in F in the following way:

Lemma 4.2 For all S, T ∈ Sp:

p2(S[T/x]) = p2(S)[p2(T )/x]

Proof: Structural induction on S. See Appendix. 2

Lemma 4.3 For all closed E ∈ Sp we have p2(E) ∈ [[E]]

Proof: By Theorem 4.2 it is enough to show that p2(E)�E. This, in turn,
follows directly from

p2(E)
a→ q ⇔ E

a→2 E
′ ∧ q = p2(E ′)

The proof is done by induction on the structure of E. See Appendix. 2

Note that the proof ensures that the process constructed has exactly the
2 -transitions of F .

p3 is defined almost as p2 :

Definition 4.8 The syntactic transformation p3 : Sp→ Pr is defined struc-
turally by

p3(Nil) = nil

p3(a2.E) = a.p3(E)

p3(a3.E) = a.p3(E)

p3(E1 + E2) = p3(E1) + p3(E2)

p3(recx.E) = µx.p3(E)

p3(x) = x
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p3 distributes over substitution exactly as p2 does:

Lemma 4.4 For all S, T ∈ Sp:

p3(S[T/x]) = p3(S)[p3(T )/x]

Proof: Structural induction on S. Except for S = a3.S
′, the proof is as for

p2 . In this case the proof is as for S = a2.S
′ in the proof for p2 . 2

We also have

Lemma 4.5 For all closed E ∈ Sp we have p3(E) ∈ [[E]]

Proof: By Theorem 4.2 it is enough to show that p2(E) � E. This we do
by showing that

{(p3(E), E) | E ∈ Sp}

is a refinement. This in turn amounts to showing that p3(E)
a→ q ⇒ E

a→3E
′

with q = p3(E ′) and E
a→3 E

′ ⇒ p3(E)
a→ q with q = p3(E ′). The proof

of this follows the same lines as the proof needed in the proof of Lemma 4.3
and is therefore omitted. 2

Note how the proof also showed that p3(F ) has exactly the 3 -transitions
of F .

Now we can finally state and prove

Theorem 4.3 For all closed F,G ∈ Sp we have

F 6�DG⇒ [[F ]] 6⊆ [[G]]

Proof: We show that

∀n : F 6�D
nG⇒ [[F ]] 6⊆ [[G]]

by induction on n. We again rely heavily on the fact that p ∈ [[F ]] is the
same as p� F .

n = 0: Vacuously satisfied.

Assuming for n = k: By the definition of 6�D
k, there are four cases to be

considered:

1. F
a→3 F

′ but G 6 a→3 : Then we have p3(F ) �F but not p3(F ) �G,
since p3(F ) has exactly the 3 -transitions of F . Hence p3(F ) 6∈ [[G]].
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2. F
a→3 F

′ , (∃!G′ : G a→3G
′)∧ (G

a→3G
′ ⇒ ∃m < k : F ′ 6�D

mG′) : By
induction hypothesis, we have a p′ such that p′ ∈ [[F ′]] and p′ 6∈ [[G′]].
Then a.p′+p3(F )�a2.F

′+F �F but a.p′+p3(F )6�G implying that a
distinguishing process is a.p′+ p3(F ). (Another distinguishing process
is a.p′ + p2(F ).)

3. G
a→2 G

′ but F 6 a→2 : Then we have p2(F )6�G since p2(F ) has
exactly the 2 -transitions of F .

4. G
a→2 G

′ , (∃!F ′ : F
a→2 F

′) ∧ (F
a→2 F

′ ⇒ ∃m < k : F ′ 6�D
mG′) :

By induction hypothesis we have a p′ such that p′ ∈ [[F ]] and p′ 6∈ [[G]].
Then the distinguishing process is a.p′ + p2(F ), for a.p′ + p2(F ) �

a2.F
′ + F � F but a.p′ + p2(F )6�G.

This completes the proof. 2

Example 4.3 Consider again the specification S of the a-sender and the
specification T of the a-transmitter from Example 2.3. It is easy to see that

T 6�D
2S

since T
a→3 U but the only match is S

a→3 S and U has no 2 -transitions
while S

a→2 . Theorem 4.3 now states that there must be a process p such
that p � T but p 6�S. An example of such a process is the p3-process from
Example 2.3, given by p3 = µx.(a.x+ a.nil). In fact, p3 = a.nil + p2(T ). 2

4.2.2 Adequacy revisited

The idea of canonical implementations can also be used to show the second
adequacy requirement to the semantic description of MPL, i.e. that any pro-
cess is satisfied by some specification, such that we for each equivalence class
have a formula representing it. For, given any process p, we can construct a
specification F2(p) by simply putting 2 ’s on the actions:

Definition 4.9 The syntactic transformation F2 : Pr → Sp is defined struc-
turally by

F2(nil) = Nil

F2(a.p) = a2.F2(p)

F2(p1 + p2) = F2(p1) + F2(p2)

F2(µx.p) = recx.F2(p)

F2(x) = x
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It is obvious that we have that all 3 -transitions of F2(p) must be due to
its 2 -transitions. It is also easy to see that F2 is the right-inverse of p2 :

Proposition 4.4 For all p ∈ Pr we have

p2(F2(p)) = p

Proof: A trivial structural induction on p. 2

F2(p) has exactly the transitions of p:

Proposition 4.5 F2(p)
a→m F

′ iff p
a→ p′ and F ′ = F2(p′).

Proof: Inductions in the lengths of inferences establishing F2(p)
a→mF

′ and
p

a→ p′, respectively. The proof is completely analogous to that of Lemma 4.3
and is therefore omitted. 2

and thus

Proposition 4.6 p� F2(p)

F2(p) is the specification leading to adequacy:

Theorem 4.4 For all p ∈ Pr there is an F ∈ Sp such that p�F and q�F
iff q ∼ p.

Proof: Choose F = F2(p). It is clear by Theorem 4.1 that if q ∼ p then
q�F2(p). For the if-part note that we by the previous proposition have that

{(p, q) | q � F2(p)}

is a bisimulation. For suppose p
a→ p′. Then F2(p)

a→m F2(p′). But then
q

a→ q′ with q′�F2(p′). Suppose q
a→ q′. Then F2(p)

a→m F
′ and q′�F ′. But

then p
a→ p′ with F ′ = F2(p′). 2

4.3 Denotational properties of partial speci-

fications

A predecessor to MPL is the language of partial specifications, conceived
by Bent Thomsen [Thomsen 87] and elaborated in [Larsen and Thomsen 87].
With the language comes an ordering on the partial specifications, also called
� . We will here show that the partial specifications form a sublanguage of
MPL, that the orderings coincide, and that one can give the language a
suitable denotational description such that we have

[[F ]] ⊆ [[G]]⇔ F �G
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4.3.1 The language of partial specifications

Partial specifications are thought of as process expressions with ‘holes’ in
them; one has an extra, unspecified process U . The presence of U indicates
that the behaviour of the process is not specified here. The abstract syntax
of the language of partial specifications, PPr, is that of the process language
in Chapter 3, augmented with U : 1

P ::= nil | a.P1 | P1 + P2 | x | µx.P | U

The operational semantics given by [Larsen and Thomsen 87] is that of
the process language in Chapter 3 , augmented with a rule for U , stating
that U has a special, ‘wild’ transition ∗, which it is always able to perform:

U ∗→U

The transition system is then PP = (PPr,Act ∪ {∗},→) .
The partial specification gives information about its implementations,

that is, the process expressions obtained by ‘filling the holes’ through re-
placing the U ’s with proper process expressions. For one knows that the
resulting implementation must have an a-transition at a certain place if the
partial specification had an a-transition at that place. Otherwise, in the
places in the partial specification where an U occurs, one can only say that
an implementation may have an a-transition.

Larsen and Thomsen use this intuition to define two new transition rela-
tions, →may,→must⊆ PPr × Act× PPr by

P
a→may P

′ ⇔∆ P
a→ P ′ ∨ P ∗→ P ′

P
a→must P

′ ⇔∆ P
a→ P ′

It should be obvious that PP = (PPr,Act,→must,→may) is a modal
transition system with →must=→2 and →may=→3.

Larsen and Thomsen now define what they call partial bisimulation:

Definition 4.10 A relation R ⊆ PPr × PPr on PP = (PPr,Act,→must

,→may) is a partial bisimulation iff whenever PRQ the following holds:

1. P
a→may P

′ ⇒ ∃Q′ : Q a→may Q
′ ∧ P ′RQ′

2. Q
a→must Q

′ ⇒ ∃P ′ : P a→must P
′ ∧ P ′RQ′

1We will denote partial specifications with capital letters P , Q etc.
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They then go on to say that there exists a largest partial bisimulation,
which they then call � . But what they have defined are just the refinements
on PP = (PPr,Act,→must,→may) and the largest such, so this indeed sub-
sumes our usual concept of � .

We can now give an operational semantics of partial specifications using
a modal transition system. The notions of free variables and substitution are
as for the process language with the obvious extensions that FVPPr(U) = ∅
and U [Q/x] = U .

Definition 4.11 (Operational semantics for partial specifications)
In SPP = (PPr,Act,→3,→2) the transition relations →2 and →3 are

defined as the smallest (w.r.t. ⊆) pair of relations→m ⊆ Pr×Act×Pr, m ∈
{2,3} satisfying:

‘Unspecification’

U a→3 U for all a ∈ Act

Prefixing

a.P
a→2 P

a.P
a→3 P

Nondeterminism

P
a→m P

′

P +Q
a→m P ′

Q
a→m Q

′

P +Q
a→m Q′

Recursion

P [µx.P/x]
a→m P

′

µx.P
a→m P ′

where m ∈ {2,3}.

It should be clear that this operational semantics yields the same transi-
tion relations as the old one:

Proposition 4.7 SPP = (PPr,Act,→3,→2) = (PPr,Act,→may,→must)

Proof: Inductions in the length of inferences establishing the transitions
using the two sets of operational rules. 2
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4.3.2 A denotational description of partial specifica-
tions

In the previous section we saw that the converse of Corollary 4.3 does not
hold in MPL in general. We gave a condition for F 6⊆ G by means of a
restricting relation, 6�D . Now we show how one by putting restrictions on
the language can get the converse of Corollary 4.3, namely by restricting
ourselves to the language of partial specifications.

Why can we see the partial specification language as a subset of MPL
? The process constructs in the partial specification language are the same.
One only notices the renamings of Nil and rec to nil and µ. We see from the
operational behaviour of the action prefixing construct a. that it corresponds
closely to the prefixing a2. in MPL. Finally, we see that the U has exactly
the behaviour of the U -specification we have mentioned in Chapters 2 and
3. It is therefore natural to give a denotational semantics reflecting this.

We use the same semantic algebra as before:

Definition 4.12 (Denotational semantics for partial specifications) Define
for P ∈ PPr the function [[ ]] : PPr → (E → 2Pr) inductively by:

[[U ]]σ = Pr

[[nil]]σ = nil

[[x]]σ = σ(x)

[[a.P ]]σ = da2e([[P ]]σ)

[[P +Q]]σ = [[P ]]σ ⊕ [[Q]]σ

[[µx.P ]]σ = FIX V.([[P ]]σ{V/x})

where σ ∈ E and FIX is the maximal fixed point operator.

4.3.3 A full abstractness result

We are now dealing with what can be thought of as simply a subset of MPL
with a slightly altered syntax. The notions of guardedness extend those
of MPL in the natural way by simply stating that UGPPr(U) = ∅. We
can therefore again call upon Theorem 4.2, getting that we for closed, well-
guarded P have

[[P ]] = {p | p� P} (4.1)

and that we for P and Q well-guarded have
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P �Q⇒ [[P ]] ⊆ [[Q]] (4.2)

One observes that this implies

Corollary 4.4

S ' T ⇒ [[S]] = [[T ]]

which we will be using a lot in the proof to come.
As already revealed, the converse of (4.2) holds with the denotational

description just given. To prove this, we need some lemmae, giving normal-
form-like equational characterizations of partial specifications and processes.
The proof of the latter is given in [Milner 82]. In establishing the former we
need these two propositions:

Proposition 4.8

µx.(P + x) ' µx.P

Proof: See [Thomsen 87]. 2

Proposition 4.9

µx.P ' P [µx.P/x]

Proof: Apparent from the operational rule for recursion. 2

Lemma 4.6 For any P ∈ PPr with free variables in {Y1, Y2, . . . , Yn}, there
exist expressions P1, . . . , Pr also with free variables in {Y1, Y2, . . . , Yn} such
that we have a system of r equations over ' of the form:

Pi '
M(i)∑
j=1

aijPf(i,j) +
N(i)∑
j=1

Yg(i,j) [+U ]

with P ' P1, f and g being index functions of type N×N→ N, and
[+U ] indicating the possible presence of a U . 2

Proof: Structural induction on P.

P = U : r = 1; the only equation is P1 ' U .

2If M(i) = 0 or N(i) = 0, this is the same as writing a nil.
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P = nil: r = 1; the only equation is P1 ' nil.

P = x: r = 1; the only equation is P1 ' x.

P = P ′ + P ′′: By induction hypothesis we have two systems of equations
with r′ and r′′ equations, respectively. Set r = r′ + r′′ + 1. For the
equations, take the union of the systems for P ′ and P ′′ adding the
equation

P1 ' rhs(P ′1) + rhs(P ′′1 )

where rhs(Q) is the right-hand side of the equation for Q with multiple
U ’s reduced to one U .

P = a.P ′: Suppose we have r′ equations for P ′. Then r = r′ + 1 and we
obtain the system of equations by adding

P1 ' a.P ′1

to the system of equations for P ′.

P = µx.P ′: Suppose we for P ′ have the equations

P ′i '
M(i)∑
j=1

aij.P
′
f(i,j) +

N(i)∑
j=1

Yg(i,j)[+x][+U ]

where 1 ≤ i ≤ r′. x may appear in the equations, since there may be
free occurrences of x in P ′. Now define

P ∗1 =∆
M(1)∑
j=1

a1jP
′
f(1,j) +

N(1)∑
j=1

Yg(i,j)[+U ]

By Propositions 4.8 and 4.9 we then have

P ' P ∗1 [P/x]

since either P ′ ' P ∗1 or P ′ ' P ∗1 + x.

Now set
Pi =∆ P ′i [P/x]

(1 ≤ i ≤ r). Substituting P for x in the right-hand sides of the P ′i -
equations, we then get

Pi '
M(i)∑
j=1

aijPf(i,j) +
N(i)∑
j=1

Yg(i,j)[+U ] (4.3)

[+
M(1)∑
j=1

a1jPf(1,j) +
M(1)∑
j=1

Yg(1,j)] (4.4)

which is a system of equations of the desired form.
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This completes the proof. 2

Lemma 4.7 ([Milner 82])
For any q ∈ Pr with free variables in {Y1, Y2, . . . , Yn}, there exist expres-

sions q1, . . . , qr also with free variables in {Y1, Y2, . . . , Yn} such that we have
a system of r equations over ∼ of the form:

qi ∼
m(i)∑
j=1

aijqf(i,j) +
n(i)∑
j=1

Yg(i,j)

with p ∼ q1, f and g being index functions of type N×N→ N.3

Another result in [Milner 82] states that whenever such a system of equa-
tions of processes is defined it has a unique solution.

Lemmae 4.6 and 4.7 can be used to describe when a process q lies in the
denotation of a partial specification P :

Lemma 4.8 Let q ∈ Pr and P ∈ PPr determine systems of equations as
given by Lemmae 4.6 and 4.7 of the forms

qi ∼
m(i)∑
j=1

aikqf(i,k) with q ∼ q1

and

Pi′ '
M(i′)∑
k=1

bi′kPg(i′,k)[+U ] with P ' P1

Then for any h, l we have

qh ∈ [[Pl]]

if and only if{
∀j ≤ m(h)∃k ≤M(l) : ahj = blk ∧ qf(h,j) ∈ [[Pg(l,k)]]
∀k ≤M(l)∃j ≤ m(k) : ahj = blk ∧ qf(h,j) ∈ [[Pg(l,k)]]

when U does not appear in the equation for Pl and

∀k ≤M(l)∃j ≤ m(i) : ahj = bik ∧ qf(h,j) ∈ [[Pg(l,k)]]

when U appears in the equation for Pl.

3As before, if m(i) = 0 or n(i) = 0, we interpret this as nil
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Proof: Straightforward; by Corollary 4.4 we have either

[[Pl]] = [[
M(l)∑
k=1

blkPg(l,k)]] (4.5)

or

[[Pl]] = [[
M(l)∑
k=1

blkPg(l,k) + U ]] (4.6)

Consider first (4.5). We then have

[[Pl]] =
M(l)⊕
k=1

dblk2e[[Pg(l,k)]]

= {p | ∀k ≤M(l)∃pk ∈ dblk2e[[Pg(l,k)]] : p ∼
M(l)∑
k=1

pk}

from which the lemma follows by the definition of d 2e. Consider then
(4.6). Along the same lines, we have

[[
M(l)∑
k=1

b1kPg(l,k)+U ]] = {p | ∃p′,∀k ≤M(l)∃pk ∈ dblk2e[[Fg(l,k)]] : p ∼
M(l)∑
k=1

pk+p
′}

from which we get the second case of the lemma. 2

We are now almost ready for the proof. Again the trick consists in devising
a canonical implementation scheme.

One of our basic assumptions is that the modal transition system SPP =
(PPr,Act,→3,→2) and the process system are image-finite, for as seen in
Chapter 2, we then have � =

⋂∞
n=0REn((PPr ∪ Pr)2).

Another basic assumption is that the set of actions used in the partial
specifications does not completely exhaust the set of actions used in the
processes, in that we assume the existence of an action d not demanded by

any specification, i.e. ∀P ∈ PPr : P 6 d→2 . The canonical implementation is
simply the partial specification with U ’s replaced by d.nil everywhere. More
formally, we have

Definition 4.13 The syntactic transformation qP : PPr → Pr is defined
structurally by

qP (U) = d.nil



Chapter 4. Full abstraction in the modal process logic 47

qP (nil) = nil

qP (a.P ) = a.qP (P )

qP (P1 + P2) = qP (P1) + qP (P2)

qP (µx.P1) = µx.qP (P1)

qP (x) = x

The transitions of the canonical implementation are given by

Lemma 4.9

qP (P )
a→ p′ ⇔ ∃P ′ : P a→2 P

′ ∧ p′ = qP (P ′)

for a 6= d and

qP (P )
d→ nil⇔ ∀a ∈ Act : P

a→3 U

Proof: Inductions in the length of the inferences establishing the transitions
concerned. The proof follows the lines of that of Lemma 4.3 and is therefore
omitted. 2

We now have that qP (P ) defines an implementation of P .

Lemma 4.10 For all closed P ∈ PPr

qP (P ) � P

Proof: By Lemma 4.9, {(qP (P ), P ) |P ∈ PPr} ∪ {(nil,U} is a refinement.
2

Now we can finally prove and state

Theorem 4.5 If SPP = (PPr,Act,→3,→2) and P = (Pr,Act,→) are
image-finite, we have for all closed P,Q ∈ PPr that

[[P ]] ⊆ [[Q]]⇒ P �Q

Proof: The proof is indirect, showing that P 6�Q⇒ [[P ]] 6⊆ [[Q]]. By image-
finiteness, this reduces to ∀n : (P,Q) 6∈ REn((PPr ∪ Pr)2) ⇒ [[P ]] 6⊆ [[Q]].
We prove this by showing that ∀n : (P,Q) 6∈ REn((PPr ∪ Pr)2)⇒ qP (P ) 6∈
[[Q]]. We proceed by induction:

n = 0: (P,Q) 6∈ RE0((PPr ∪ Pr)2) is impossible.
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Assuming for n = m: (P,Q) 6∈ REm+1(PPr) can happen in 4 ways (recall
Definition 4.2):

1. ∃a : P
a→3 ∧ Q 6

a→3 : By Lemma 4.6 we get the equation system
including the equations where P1 ' P and Q1 ' Q:

P1 '
M(1)∑
j=1

a1jPf(1,j)[+U ]

Q1 '
L(1)∑
k=1

b1kQf ′(1,k)

(Q cannot include a U , for then Q would possess any 3 -transition).
We get similar equations for qP (P ), one of them being 4

p1 ∼
m(1)∑
j=1

a′1jph(1,j)[+d.nil]

with p1 ∼ qP (P ) and thus p1 ∈ [[P ]].

If P
a→3 because of the presence of U , the term d.nil assures that

qP (P )
d→ while the equation for Q1 shows that Q 6 d→3 , implying that

qP (P ) 6∈ [[Q]]. Else, P
a→3 and Q 6 a→3 , with a = a1j for some j and

b1k 6= a1j for all k. The equation for p1 then implies that a = a′1j′ for
some j′. The ‘only-if’-condition in Lemma 4.8 fails to hold, and again
qP (P ) 6∈ [[Q]].

2. ∃a∃P ′ : P a→3P
′∧ (∀Q′ : Q a→3Q

′ ⇒ (P,Q) 6∈ REm((PPr ∪ Pr)2)):
The aforementioned systems of equations, where P ' P1 and Q ' Q1,
include the equations

P1 '
M(1)∑
j=1

a1jPf(1,j)[+U ]

Q1 '
L(1)∑
k=1

b1kQf ′(1,k)

As before, Q cannot include a U since it then would be able to match
any of P ’s transitions. Suppose first that P had a transition that Q

4There is really no term d.nil is this expression; strictly speaking the term is d.Pk with
an equation Pk '

∑0
j=0 akj .Pf(k,j)
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could not match because of the presence of a U in the equation for P1.
We then obtain the process equations for qP (P ), one of them being

p1 ∼
m(1)∑
j=1

a′1jph(1,j) + d.nil

where p1 ∼ qP (P ) �P . The result then follows as in the previous case.

Else, by induction hypothesis, whenever Q
a→3 Q

′ we always have that
qP (P ′) 6∈ [[Q′]]. But then we always have some k such that Qf ′(1,k) ' Q′,
implying that qP (P ′) 6∈ [[Qf ′(1,k)]]. Also, for any Qf ′(1,k) with b1k = a,

Qf ′(1,k) ' Q′ for some Q′ where Q
a→3Q

′. Now, by Lemma 4.9 we have

qP (P ) ∼
∑

{b,p′ | qP (P )
b→ p′,b6=a}

b.p′ +
∑

{qP (P ′) | qP (P )
a→ qP (P ′)}

a.qP (P ′)

which by Lemma 4.7 can be expanded into a system of equations. Since
qP (P ) ∈ [[Q]] if and only if we for these k have qP (P ′) ∈ [[Qf ′(1,k)]] (by
Lemma 4.8) we’re done.

3. ∃a : Q
a→2 ∧ P 6

a→2 : We have by Lemma 4.6 systems of equations
for P and Q such that

P1 '
M(1)∑
j=1

a1jPf(1,j)[+U ]

Q1 '
L(1)∑
k=1

b1kQf ′(1,k)[+U ]

with a b1k′ 6= a1j for all j. But, again constructing equations for qP (P ),
this implies that the ‘only if’-condition in Lemma 4.8 fails to holds,
and we’re done.

4. ∃a∃Q′ : Q a→2Q
′∧(∀P ′ : P a→2P

′ ⇒ (P ′, Q′) 6∈ REk((PPr ∪ Pr)2)):
Once again, Lemma 4.6 gives us systems of equations for P and Q such
that

P1 '
M(1)∑
j=1

a1jPf(1,j)[+U ]

Q1 '
L(1)∑
k=1

b1kQf ′(1,k)[+U ]
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This is as for subcase 2. By induction hypothesis, whenever P
a→2 P

′

we always have that qP (P ′) 6∈ [[Q′]]. But then we have a k such that
Qf ′(1,k) ' Q′, implying that qP (P ′) 6∈ [[Qf ′(1,k)]]. Also, for any Qf ′(1,k)

with b1k = a, Qf ′(1,k) ' Q′ for some Q′ where Q
a→2 Q

′. Again, we
obtain the process equation

qP (P ) ∼
∑

{b,p′ | qP (P )
b→ p′,b6=a}

b.p′ +
∑

{qP (P ′) | qP (P )
a→ qP (P ′)}

a.qP (P ′)

and, (also by the same argument as in subcase 2), the ‘if’-part in Lemma
4.8 fails to hold.

This completes the proof. 2

4.3.4 Consequences of the full abstractness

The above now gives us a way of finding ‘characteristic processes’ similar to
the ‘characteristic formulae’ in Hennessy-Milner logic. In [Godskesen et al 87]
Godskesen, Ingolfsdottir and Zeeberg show how one, for any given process
expression p can derive a logical formula Fp in Hennessy-Milner logic with
recursion such that

q ∼ p⇔ q |= Fp

where |= is the entailment relation in the logic. This entailment relation
is really just another notation for a denotational description in our sense,
and one could just as well write e.g.

q ∼ p⇔ q ∈ [[Fp]]

The process transform qP just defined has the property that qP (P ) ∈ [[P ]]
and P 6�Q⇒ qP (P ) 6∈ [[Q]], or equivalently, that qP (P ) ∈ [[Q]]⇒ P �Q. We
then have

Corollary 4.5 If SPP = (PPr,Act,→3,→2) and P = (Pr,Act,→) are
image-finite, we have for all closed P,Q ∈ PPr that

P �Q⇔ qP (P ) ∈ [[Q]]
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Fortunately, we cannot use this to say that qP determines some ‘strongest
implementation’ in the sense that qP (P ) ∈ [[P ]] and p ∈ [[P ]] ⇒ p ∼ qP (P ),
for not only could we choose any suitable action in the definition of qP and
still get a process in [[P ]]; the mere existence of U shows that specifications
are not limited to single equivalence classes.

Another consequence is that we can prove laws about � on partial spec-
ifications without establishing a refinement. For instance, we can prove that
� is a precongruence w.r.t. action prefixing:

Proposition 4.10

P �Q⇒ a.P � a.Q

Proof: We have P �Q iff [[P ]] ⊆ [[Q]]. But

[[a.P ]] = {p | p b→ p′ ⇒ b = a ∧ p′ ∈ [[P ]]}

which is clearly a subset of

[[a.Q]] = {p | p b→ p′ ⇒ b = a ∧ p′ ∈ [[Q]]}

whenever P ⊆ Q. 2

So why would one want � ? One good reasons for having � around is
that it is a polynomial-time decidable relation whenever we are dealing with
finite transition systems. In [Larsen and Thomsen 87] an implementation of
such a decision procedure is mentioned. On the other hand, ⊆ is nicer when
proving laws.

Yet another consequence of the full abstraction result is that we can
give a sound and complete proof system for semantic equality of finite MPL
specifications with disjunction. We will return to this in Chapter 6.



Chapter 5

Introducing static constructs

So far we have only considered a modal process logic incorporating dynamic
constructs. In this chapter we introduce static constructs into MPL. The
chapter starts out with definitions of static constructs and their behaviour.
The most important static construct is parallel composition. The use of it
motivates a new, ‘observational’ refinement relation on specifications, � ,
which we then set out to define. The remainder of the chapter consists of
three examples of the use of � .

5.1 Operational behaviour of static constructs

The dynamic process constructs - inaction, action prefixing, nondetermin-
ism, and recursion - yield a language which is essentially equivalent to finite
automata. This means that we are only able to describe finite-state be-
haviours; this is not always enough. For if we consider systems with value
passing or systems whose configuration changes dynamically, we no longer
have a finite-state behaviour.

Of course we could use other, richer theories, viz. for instance temporal
logic or Hennessy-Milner logic with recursion. However, MPL is different
in purpose from these in that it is a language which directly specifies the
operational behaviour of implementations. MPL can therefore be regarded
as a language of ‘not fully determined’ processes and should therefore contain
the same basic ingredients as the process language, which is here CCS .

This calls for the introduction of all the process constructs of CCS into
MPL. Among these are parallel composition and action restriction. It is
important to assure that � is a precongruence w.r.t. the static constructs,
since this will assure that a compositionality of the specifications w.r.t. their
structure exists.

52
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5.1.1 Parallel composition and action restriction

The most important static operators in CCS as described in [Milner 80] are
parallel composition and action restriction. The introduction of these results
in the need for some assumptions about the structure of the set of actions.
The set of possible actions in MPL is chosen similarly:

Let our modal transition system be S = (Sp,Act,→3,→2) . Then we
define Act to have the structure

Act = A ∪ A ∪ {τ}

The set A is called the set of co-names of A. We introduce the co-name
bijection (‘bar’):

: A↔ A

having the property that a = a, thus emphasizing the connection between
names and co-names. The function is extended to sets of actions in the
obvious way, i.e. S = {a | ∃b ∈ S : a = b}.

Informally one should think of a-actions as representing outputs and ‘un-
barred’ a-actions as actions representing inputs. The action τ is the analogue
of τ in CCS , representing internal communications.

The set of actions occurring in an MPL formula is called the sort of the
formula. It can be defined structurally by

Definition 5.1 The function Sort : Sp→ 2Act is defined structurally by

Sort(nil) = ∅
Sort(x) = ∅

Sort(a2.F ) = {a} ∪ Sort(F )

Sort(a3.F ) = {a} ∪ Sort(F )

Sort(F1 + F2) = Sort(F1) ∪ Sort(F2)

Sort(recx.F ) = Sort(F )

We sometimes also need to lump together names and co-names. This is
done using the naming functionNames defined byNames(a) = Names(a) =
a, which is also extended to sets in the obvious way.

When defining the ‖-construct in CCS this is done in terms of | and using
action-restriction to hide the ‘internal’ actions used for communication. We
therefore now define parallel composition, |, along with action restriction, in
a way similar to the definitions of parallel composition and action restriction
in CCS [Milner 80]:
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Definition 5.2 (Composition and restriction) Let S = (Sp,Act,→3,→2) be
the modal transition system where Sp is the language with the abstract syntax

E ::= Nil | a2.E1 | a3.E1 | E1 + E2 | x | recx.E | E1|E2 | E \ A

where A is interpreted as a set of actions and →2 and →3 are the least
relations satisfying the operational rules and axioms in Definition 3.6 plus

S
a→m S

′

S | T a→m S ′ | T
T

a→m T
′

S | T a→m S | T ′

S
a→m S

′ , T
a→m T

′

S | T τ→m S ′ | T ′

S
a→m S

′

S \ A a→m S ′ \ A
, a 6∈ A

where m ∈ {2,3}.

Notice that the semantic description above, just as is the case in CCS ,
does not reflect ‘true concurrency’, but resorts to an interleavings-view of
concurrency. The main reason for this is that we use CCS as our imple-
mentation language; since we use the same process constructs in MPL the
semantics should not be too different.

5.1.2 General static constructs

Parallel composition and action restriction are just special cases of the more
general idea of static constructs. The static constructs are called so because
they describe a fixed linkage structure between components.

All static constructs are similar in that they associate a combination
of actions performed by the components in the construct with an action
performed by the entire construct. One can thus regard a static construct as
being defined by a function over the set of actions. We introduce a special
no-action symbol, 0, not in Act, since we do not require that all components
contribute to the common action (as is the case in the description of | in
Definition 5.2, for instance). We define Act0 = Act ∪ {0}.

Assuming an n-ary partial function on actions, f : Actn0 → Act, any static
construct involving n components F1, . . . , Fn can now be written using the
notation

(F1, . . . , Fn)[f ]
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The operational rule for static constructs basically says that the com-
posite specification has a transition iff its components have the transitions
required by f :

Definition 5.3 (General static constructs) Let S = (Sp,Act,→3,→2) be
the modal transition system where Sp is the language with the abstract syntax

E ::= Nil | a2.E1 | a3.E1 | E1 + E2 | x | recx.E | (F1, . . . , Fn)[f ]

where f is interpreted as a function on Act0 and →2 and →3 are the
least relations satisfying the operational rules and axioms in Definitions 3.6
plus [

(Fi
ai→m F

′
i ) ∨ (Fi = F ′i ∧ ai = 0)

]
i≤n

(F1 . . . Fn)[f ]
a→m (F ′1 . . . F

′
n)[f ]

a � f(a1, . . . , an)

where m ∈ {2,3}, and a � f(a1, . . . , an) is true if f(a1, . . . , an) is de-
fined and has the value a and is false otherwise.

We can now define the constructs of the previous subsection by

S1 | S2 = (S1, S2)[fcomp]

where fcomp : Act20 ↪→ Act is defined by

fcomp(a, a) = τ

fcomp(0, a) = a

fcomp(a, 0) = a

Similarly, action restriction can be defined by

S \ A = S[fres]

where fres : Act0 ↪→ Act is defined by

fres(a) = a if a ∈ A

We will sometimes need the restricted parallel construct ‖ of CCS [Milner 80]
defined by

F ‖ G =∆ (F | G) \Names(Sort(F ) ∩ Sort(G))

where we simply remove all possible observation of the actions used in
communicating.

The following theorem shows that � is a precongruence w.r.t. static
constructs and that the introduction of these constructs preserve composi-
tionality:
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Theorem 5.1 (Compositionality) If Fi � Gi for i ≤ n, for any static con-
struct (. . .)[f ] we have

(F1, . . . , Fn)[f ] � (G1, . . . , Gn)[f ]

Proof: We show that the relation

{〈(F1 . . . , Fn)[f ], (G1, . . . , Gn)[f ]〉 | ∀i.Fi �Gi}

is a refinement. Suppose (F1, . . . , Fn)[f ]
a→3 (F ′1, . . . , F

′
n)[f ]. (These are

the only transitions possible according to the operational rule). By the op-
erational rule for static constructs we have a set S ⊆ {1, . . . , n} such that

Fj
aj→3F

′
j when j ∈ S and Fj

0→3Fj otherwise. But then we have for the same

S that Gj
aj→3G

′
j whenever j ∈ S with F ′j �G′j and Gj

0→3Gj otherwise. But
this implies that we also have
〈(F ′1, . . . , F ′n)[f ], (G′1, . . . , G

′
n)[f ]〉 in the relation. The other half of the proof,

concerning (G1, . . . , Gn)[f ]
a→2 (G′1, . . . , G

′
n)[f ], is similar. 2

Corollary 5.1 If F �G, we have for any S ∈ Sp that F | S �G | S.

5.1.3 Expansion theorems

In [Milner 80] an expansion theorem is given, allowing one to deduce the
possible transitions of a process expression obtained using parallel composi-
tion and action restriction. A similar theorem exists for the general static
constructs of MPL:

Theorem 5.2 (General expansion theorem)
For any n-ary static construct (. . .)[f ] we have

(F1, . . . , Fn)[f ] =D

∑
πf ((F1,...,Fn))

am.(F
′
1, . . . , F

′
n)[f ]

where πf ((F1, . . . , Fn)) is the set of possible derivations given by

{(am,(F ′1,...,F
′
n)) | ∃(a1,...,an): ((Fi

ai→m F ′i ) ∨ (ai=0 ∧ Fi=F ′i )),1≤i≤n ∧ f(a1,...,an)�am}

and =D is the direct equivalence 1of [Milner 80].

1S =D T means that S and T have the same modal transitions and that the results of
matching transitions are syntactically equal.
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Proof: Immediate from the operational rule. 2

We can now use this theorem to establish a specialized expansion theorem
concerning the derivations of a parallel composition of MPL specifications.
This expansion theorem also shows that concurrency here is explained by
nondeterministic interleavings.

Writing (F1 | . . . | Fn) is justified by the following properties:

Proposition 5.1 F | G ' G | F .

Proof: By the operational rule. 2

Proposition 5.2 (F | G) | H ' F | (G | H)

Proof: It is easy to see that {((R | S) | T,R | (S | T )) | R, S, T ∈ Sp} is a
bisimulation on S = (Sp,Act,→3,→2) . 2

Now we can prove

Theorem 5.3 For all F1, . . . , Fn we have

(F1 | . . . | Fn) '
∑

{(a,F ′i ) | ∃i:1≤i≤n∧Fi
a→m F ′i}

am.(F1 | . . . F ′i . . . | Fn)

+
∑

{(F ′i ,F
′
j) | ∃i,j:1≤i<j≤n∧Fi

a→m F ′i∧Fj
a→m F ′j}

τm.(F1 | . . . F ′i | . . . F ′j | Fn)

Proof: Induction in n. For n = 2 this is just Theorem 5.2 with f = fcomp.
For the full proof, see Appendix. 2

By first applying the above theorem and then Theorem 5.2 with f = fres
we can get

Corollary 5.2 For all F1, . . . , Fn we have

(F1 | . . . | Fn) \ A '
∑

{(a,F ′i ) | a 6∈A∧∃i:1≤i≤n∧Fi
a→m F ′i}

am.((F1 | . . . F ′i . . . | Fn) \ A)

+
∑

{(F ′i ,F
′
j) | a,a 6∈A∧∃i,j:1≤i<j≤n∧Fi

a→m F ′i∧Fj
a→m F ′j}

τm.((F1 | . . . F ′i | . . . F ′j | Fn) \ A)

giving a useful characterization of the transitions of a specification con-
structed using ‖.
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Figure 5.2: A 1-place buffer B

5.2 An observational refinement order

The introduction of static constructs also meant the introduction of the ac-
tion τ . The intuition behind this action is that it should be unobservable,
since it represents internal communications. � as defined in Chapter 3 does
not reflect this, which we will now see.

5.2.1 Motivation

The simple data link P in Figure 5.1 is described in [Parrow 85]. It lets
information pulses pass through one at a time. Information enters with
the a-action, the sender S transmits it to the medium M through a c-
communication. The medium may lose the message but then lets S know via
a d-communication. The medium transmits the information to the receiver R
which emits the information using a b-action and sends an acknowledge to S
using an f -communication. (This system may diverge in that the information
keeps getting lost by M and retransmitted by S).

Now consider the 1-place buffer B pictured in Figure 5.2.
The buffer lets in pulses on action a and emits them using a b.
One can see the buffer as an abstract description of the protocol, in
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that both systems essentially just take in pulses one at a time and release
them later. We want a refinement ordering disregarding the unobservable
behaviour, stating that

P �B

meaning that observationally, P is a more precise description than B.
The reader should now have noticed that the motivation is analogous

to the one leading to the introduction of observational equivalence (≈ ) in
[Milner 80].

5.2.2 Definition of the observational refinement order

As we shall see shortly, � is defined as � , using two ‘observational’ transition
relations on strings of actions, =⇒2 , =⇒3 ⊆ Sp× (Act \ {τ})∗ × Sp. This
definition will allow us to use Park’s Induction Principle when proving facts
about � .

The intuition behind =⇒2 , say, is that S
w

=⇒2 T if one by a sequence
of 2 -transitions corresponding to a string of actions, w, possibly interleaved
by arbitrary τ2-transitions from S can derive T . First we need to define the
concept of string derivations:

Definition 5.4 Let →∗2 ⊆ Sp × Act∗ × Sp be defined by S
w

→∗2 T iff
w = a1a2 . . . an, n ≥ 0 and there exist S0, S1, . . . , Sn ∈ Sp such that

S = S0
a1→2 S1

a2→2 · · ·Sn−1
an→2 Sn = T

→∗3 is defined similarly:

Definition 5.5 Let →∗3 ⊆ Sp × Act∗ × Sp be defined by S
w

→∗3 T iff
w = a1a2 . . . an, n ≥ 0 and there exist S0, S1, . . . , Sn ∈ Sp such that

S = S0
a1→3 S1

a2→3 · · ·Sn−1
an→3 Sn = T

In other words, →∗2 and →∗3 are the reflexive, transitive closures of

→2 and →3 . Also notice that we have S
ε

→∗m S, where ε is the empty
action string.

We now define a mapping which eliminates all τ -actions:

Definition 5.6 ˜ : Act→ (Act \ {τ})∗ is defined by

ã =

{
a if a 6= τ
ε if a = τ
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A result in algebra [Manes and Arbib 75] states that ˜ can be extended
to a unique homomorphism φ between the corresponding free monoids:

φ : (Act∗, ·, ε)→ ((Act \ {τ})∗, ·, ε)

We can now use this homomorphism to define the observational transition
relations:

Definition 5.7 For all S, T ∈ Sp we have

S
w

=⇒m T,w ∈ (Act \ {τ})∗

iff

∃u ∈ Act∗ : S
u

→∗m T ∧ w = φ(u)

and then in turn define the observational refinements by

Definition 5.8 A relation R ⊆ Sp × Sp on a modal transition system
S = (Sp,Act,→3,→2) is an observational refinement iff whenever SRT
the following holds for all w ∈ (Act \ {τ})∗:

1. S
w

=⇒3 S
′ ⇒ ∃T ′ : T w

=⇒3 T
′ ∧ S ′RT ′

2. T
w

=⇒2 T
′ ⇒ ∃S ′ : S w

=⇒2 S
′ ∧ S ′RT ′

The observational refinements are thus just the refinements on the ‘ob-
servational’ modal transition system SW = (Sp,Act, =⇒3 , =⇒3 ). This
implies that the sought largest observational refinement, � , exists and that

Proposition 5.3 The relation � ⊆ Sp × Sp on a modal transition system
S = (Sp,Act,→3,→2) satisfies

S � T iff

1. S
w

=⇒3 S
′ ⇒ ∃T ′ : T w

=⇒3 T
′ ∧ S ′ � T ′

2. T
w

=⇒2 T
′ ⇒ ∃S ′ : S w

=⇒2 S
′ ∧ S ′ � T ′

One may worry that, since the definition of observational refinements
deals with string transitions, it is not of much use in proofs concerning � .
However, it turns out that we can make do with action strings of length ≤ 1:

Proposition 5.4 R is an observational refinement iff whenever SRT

1. S
a→3 S

′ ⇒ ∃T ′ : T φ(a)
=⇒3 T

′ ∧ S ′RT ′
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2. T
a→2 T

′ ⇒ ∃S ′ : S φ(a)
=⇒2 S

′ ∧ S ′RT ′

Proof:

Only if: For a 6= τ this is obvious, since →m ⊆ =⇒m . For a = τ we have
that P

τ→m P
′ implies P

ε
=⇒m P

′ and we’re done.

If: For string derivations, this follows from successive applications of the
above. For, with w = a1a2 . . . an, n ≥ 0, w ∈ (Act \ {τ})∗, we have
S

w
=⇒m S

′ iff

S
τk1

→∗m S1
a→m S2

τk2

→∗m S3 · · ·
τkn

→∗m S ′

implying that

T
ε

=⇒m T1
a1=⇒m T2 · · ·

an=⇒m T
′

with (S, T ) ∈ R, (Si, Ti) ∈ R and (S ′, T ′) ∈ R. The other clause is
proved similarly.

This completes the proof. 2

Besides being of great use in the correctness proofs to follow, Proposition
5.4 shows how � is related to � :

Proposition 5.5 S � T ⇒ S � T

Proof: By Proposition 5.4, any refinement is also an observational refine-
ment, since φ(a) = a and S →m implies S =⇒m for a 6= τ . 2

Proposition 5.6 � is a preorder on Sp.

Proof: By Park’s Induction Principle, � is reflexive, since {(S, S) | S ∈
Sp} is an observational refinement. � is transitive, since the composition
(as defined in Chapter 2) of observational refinements again results in an
observational refinement. 2

Finally, note that our definition of � subsumes the definition of ≈ in e.g.
[Milner 83] since we in the derived SP = (Pr,Act,→3,→2) can describe the
observational transition relation on processes through the fact that =⇒3 =
=⇒2 = =⇒
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5.3 Examples of the use of observational re-

finement

The rest of the chapter is devoted to three examples of the use of � when
proving properties of MPL specifications obtained using static constructs.
The examples also show how one may apply the modalities when specifying
systems.

In what follows, for ease of notation we will relax the syntax of MPL a bit
so that we can write a specification as a set of (possibly mutually) recursive
definitions of identifiers such as

S =⇒ · · ·S · · ·T · · ·
T =⇒ · · ·S · · ·T · · ·

as is done in [Milner 80] instead of using the somewhat cumbersome rec-
notation. The ‘=⇒ ’ is chosen instead of the ‘⇐= ’ to indicate that we are
taking maximal fixed points when using recursion.

5.3.1 The 1-place buffer and data link

Consider again the buffer and data link from subsection 5.2.1. This example
was considered by Joachim Parrow in [Parrow 85]. He here showed that the
buffer B and a version of the data link, PJ , (incorporating a faulty medium)
when described in CCS satisfy

PJ ≈ B

Here we will show that we - as claimed in subsection 5.2.1 - have

P �B (5.1)

where P is an MPL specification, including among many others PJ as
a valid implementation. Thus our more general correctness proof of (5.1)
subsumes that of [Parrow 85]. Consider again the 1-place buffer (Figure
5.3).

The buffer B must be able to take in information through an a-action,
whereupon it must release it using a b-action. After that we still have a
1-place buffer. This is reflected in the specification

B =⇒ a2.b2.B
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Figure 5.3: A 1-place buffer
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Figure 5.4: The simple data link

The data link is described through S, M , and R (see Figure 5.4).
We have

P = S ‖M ‖ R

The sender S must admit information via an a-action and then emit it
on a c, thus communicating with M , then becoming a sender. The sender
must also be able to receive the acknowledgment sent by R, again becoming
a sender. Since the medium used may be faulty, a fault-handling capability
must be included, for when implementing the sender one may not know
whether the medium to be used is faulty or not; this calls for an exception
handler. Or one may consider re-implementing the data link, replacing a
(say) slow, non-faulty medium by a fast, slightly faulty one. For reasons of
modularity one should not be forced to redefine the sender. Since we assume
that the medium reports faults using a d-action, we get the specification

S =⇒ a2.c2.S
′

S ′ =⇒ f2.S [+d2.c2.S
′]

The part of the specification concerned with exception-handling is en-
closed in brackets.
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All implementations of the medium M must admit pulses on c and emit
them again with an e-action. We might thus specify a perfect medium Mp

as

Mp =⇒ c2.M
′
p

M ′
p =⇒ e2.Mp

Since we do not rule out the possibility of a faulty but honest M we
introduce an optional exception-handling part, which responds to a failure
by communicating with S by a d-action. But then the medium must be ready
for a retransmission at c. Again putting the exception-handler in brackets,
we get

M =⇒ c2.M
′

M ′ =⇒ e2.M
[
+d3.M

]
The perfect medium is of course a refinement (in the sense of Chapter 2)

of the possibly faulty medium, i.e. Mp � M , since {(Mp,M), (M ′
p,M

′)} is
easily seen to be a refinement.

The receiver R has no exception parts and is simply defined as any pro-
cess which must admit pulses on e and then emit them on b and send an
acknowledgment on f :

R =⇒ e2.b2.f2.R

Given the above MPL specifications, we can now show (5.1) through
exhibiting an observational refinement. Using the operational rules and the
expansion theorems, we see that the behaviour of the specifications is given
by the transition diagram in Figure 5.5. We have here named the sets as
follows:

Q1 =∆ (c2.S
′ ‖M ‖ R)

Q2 =∆ (S ′ ‖M ′ ‖ R)

Q3 =∆ (S ′ ‖M ‖ b2.f2.R)

Q4 =∆ (S ′ ‖M ‖ f2.R)

Observe that there is a τ -loop in the diagram for the data link, implying
possible divergence.

From the transition diagrams one can now see by using Proposition 5.4
that

{(P,B), (Q1, B
′), (Q2, B

′), (Q3, B
′), (Q4, B)}
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Figure 5.5: Data link and 1-place buffer

is the sought observational refinement. Take a look at (Q1, B
′), for in-

stance. Suppose that Q1
τ→3Q2 (the only 3 -transition possible here). Then

φ(τ) = ε, B′
ε

=⇒3 B
′, and we have (Q2, B

′) in the relation. And B′
b→2 B

can be matched by Q1

τ2b

→∗2Q4, implying that Q1
b

=⇒2Q4 with (Q4, B) again
in the relation.

Returning briefly to the ‘perfect’ medium, we saw that Mp�M . Theorem
5.1 then says that (S ‖ Mp ‖ R) � (S ‖ M ‖ R). This again means that we
have S ‖ Mp ‖ R � B, which is what we would expect - a data link with a
perfect medium should also be an implementation of the buffer. And since
both S ‖ Mp ‖ R and B possess only 2 -transitions, they can be regarded
as process expressions and � as ≈ , thus also establishing an observational
equivalence. (Along the same lines, we can prove Joachim Parrow’s original
result for a data link with a faulty medium.)

5.3.2 A restartable system

In his Ph.D. thesis [Prasad 87], K.V.S. Prasad motivates his theoretical work
with this simple example. Consider a system consisting of an essential system
- for simplicity we here use the 1-place buffer from the previous example -
a little demon making the essential system crash from time to time, and an
exception handler being evoked when the essential system has crashed. The
handler sets up a new essential system having the state of the old one. The
system is sketched in Figure 5.6. How can we describe the class of such
systems in MPL ??

The demon D is simply a process which may interrupt the essential sys-
tem through an f -action and then return to its demonic behaviour. This is
modelled by

D =⇒ f3.D
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Figure 5.6: A simple restartable system

The essential system Q contains the 1-place-buffer and possibly a part
that, when crashing with the demon on an f , stops the buffer behaviour,
evokes the handler and then kills the crashed system. The whole essential
system is thus

Q =⇒ a2.b2.Q [+f3.g2.Nil]

(Again, the part of the specification dealing with exceptional conditions
is put in brackets. Also notice that while we of course do not require that
the essential system responds to the demon, if it does, it must evoke the
handler.)

The handler H is a process that, upon receiving a g-signal from Q must
produce a new Q together with a new handler:

H =⇒ g2.(Q ‖ H)

The entire system, SF = (Q ‖ H ‖ D), should observationally refine our
1-place buffer, i.e. we want

SF �B (5.2)

It is here important to observe that this seemingly simple system has an
infinite number of states, for after a crash the entire system still holds the
remainders of the old essential system. For we have, apart from the ‘normal’
transition

SF
a→2 (b2.Q ‖ D ‖ H)
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followed by

(b2.Q ‖ D ‖ H)
b→2 (Q ‖ D ‖ H)

the ‘crash’ transition

SF
τ→3 (g2.Nil ‖ D ‖ H)

followed by

(g2.Nil ‖ D ‖ H)
τ→2 (Nil ‖ D ‖ (Q ‖ H))

If we denote Nil ‖ Nil · · · ‖ Nil n times by Niln we can name the states
as follows:

Sk is the system after k crashes, ready to receive on a
Sbk is the system after k crashes, ready to release on b
S ′k is the system right after the k + 1th crash

or, formally,

Sk = (Nilk ‖ D ‖ Q ‖ H)

Sbk = (Nilk ‖ D ‖ b2.Q ‖ H)

S ′k = (Nilk ‖ D ‖ g2.Nil ‖ g2.(Q ‖ H))

We then get the modal transition diagram in Figure 5.7.

S0

�


-Sb0
�
	�a2 b2

-τ3 S ′0 -τ2 S1

�


-Sb1
�
	�a2 b2

. . .

Figure 5.7: Modal transition diagram for restartable system

One again discovers the possibility of divergence, here not because of a
τ -cycle but because of the possibility of always ‘moving to the right’ in the
diagram. (The system repeatedly crashes and recovers!!). From Figures 5.7
and 5.5 we see that (5.2) holds, because of the observational refinement
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Figure 5.8: Specification of pulse buffer

{(Sk, B) | k ≥ 0} ∪ {(Sbk, B′) | k ≥ 0} ∪ {(S ′k, B) | k ≥ 0}

where SF = S0.

Suppose Sk
a→3S

b
k. Then B

a

→∗3B′, implying that B
a

=⇒3B
′, and (Sbk, B

′)

is in the relation. Or, if Sk
τ→3 S

′
k we have that B

ε

→∗3 B, implying that
B

ε
=⇒3 B and (S ′k, B) is in the relation. If B

a→2 B
′ we have Sk

a→2 S
b
k and

then Sk
a

=⇒2 S
b
k with (Sbk, B

′) in the relation.
The fact that (5.2) holds shows that any fault-tolerant system with a nil-

demon is also an implementation of the buffer and that any fault-tolerant
system where the demon is ignored also implements the buffer; not a very
surprising fact.

5.3.3 Generalized data link and buffer

As the final example we will generalize the buffer and data link presented
earlier in subsection 5.3.1 and show that the generalized data link observa-
tionally refines the general buffer. We here only consider the modal transition
diagrams, not giving explicit MPL formulae since they in this particular case
do not seem to aid in the understanding.

In [Larsen and Thomsen 88] Kim Larsen and Bent Thomsen showed how
one could describe a general buffer which may accumulate a number of pulses
before releasing them - see Figure 5.8. The specification says nothing about
the capacity of the buffer; a buffer may even not allow any information to
enter to begin with. But if a buffer has information pulses in it, it must
be able to release them. We assume again that we let in information on an
a-action and release it with a b-action. The state of a buffer is characterized
by the number of pulses it is holding; call a buffer with n pulses Bn. We then
get the modal transition diagram of Figure 5.8.

The actions of the data link are again as in the version considered in
subsection 5.3.1. However, we now allow larger classes of implementations
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for the components.
The state of a sender S can be characterized by the number of acknowl-

edgments still to be received, m, and the number of pulses still to be sent on
to the medium, n. If a sender in state Sm,n receives a pulse at a, it may let it
in, becoming Sm,n+1. Hence for m ≥ 0 we demand Sm,n

a→3 Sm+1,n+1 (there
is now one more acknowledgment to receive and one more message to send).
When it receives a fault-report from the medium on d it must respond to this.

Thus Sm,n
d→2 Sm,n+1. And when the sender receives an acknowledgement at

f it must respond by becoming Sm−1,n. Hence Sm,n
f→2 Sm−1,n. Finally, it is

essential that the sender must be able to send a pulse to the medium via c,

wherefore we have Sm,n
c→2 Sm,n−1.

This altogether leads to the modal transition diagram in Figure 5.9.

Sm,n
�
��6d2 a3

Sm−1,n

...
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.........

�
f2

· · ·
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...

......... ?
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?

......

......

......

...... · · · · · ·· · · · · ·

S0,n

Sm,n+1 Sm+1,n+1· · ·· · · · · ·

c2

· · · · · ·
c2

Figure 5.9: Modal transition diagram of the general sender

The medium M was described in Chapter 2, Example 2.4. The state of
the medium can be characterized by the number of pulses, l, it is holding. A
necessary requirement to a medium is that it must be able to take in at least
one pulse and release it, for otherwise we cannot guarantee that information
that has entered the data link can reach the receiver. Apart from that,
the specification does not restrict the capacity of the medium. This means

M0
c→2 M1 and Ml

c→3 Ml+1 for l > 0 . For all l > 0 we have Ml
e→2 Ml−1.

Since it is not essential that the medium is faulty, we have Ml
d→3 Ml−1 for

l > 0. Altogether this leaves us with the modal transition diagram in Figure
5.10.

The state of the general receiver R is characterized by the number of
acknowledgments, p it has yet to send to the sender using the f -action,



Chapter 5. Introducing static constructs 70

M0 M1 M2

� �
� 

� �
� 


?

6

?

6

e2

d3

c2

e2

d3

c3

�
� · · · · · ·� �

Figure 5.10: Modal transition diagram specifying a general medium.
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Figure 5.11: Modal transition diagram of the general receiver

and by the number of pulses, q, it has yet to emit on action b. As for the
medium, the receiver must be able to take in at least one information pulse
on e; otherwise we could not guarantee that information that has entered
the system can leave it. So we have Rp,0

e→2 Rp+1,1. For q > 0 we only let
Rp,q

e→3 Rp+1,q+1. Any information in the receiver must always be able to

leave on b, so we require Rp,q
b→2 Rp,q−1 for q > 0. And the receiver must be

able to send the acknowledgment, so we have Rp,q
f→2 Rp−1,q.

This gives us the modal transition diagram in Figure 5.11.
Now we have described the transition capabilities for generalized com-

ponents in a generalized data link. Next step is to show that a buffer Bk

containing k information pulses is an abstract description of a data link con-
taining k information pulses:

(S ‖M ‖ R)k �Bk (5.3)

What is a data link containing k pulses ? Answer: It is a system where
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the components altogether contain k pulses. In fact, one can see the data
link as consisting of three communicating buffers. We thus only consider
compositions Sm,n ‖Ml ‖ Rp,q where k = n+ l + q.

And

R = {(Sm,n ‖Ml ‖ Rp,q, Bk) | k = n+ l + q}

is indeed an observational refinement.
The operational rules (or the expansion theorems) yield information about

the data link transitions.
One type of transitions gives information about information entering the

data link. For n > 0 we get

Sm,n ‖Ml ‖ Rp,q
a→3 Sm+1,n+1 ‖Ml ‖ Rp,q

This transition says that we by performing an a may bring one more pulse
into the data link by placing it in the sender component.

Other transitions state that information can always leave the system when
the receiver is non-empty (q > 0):

Sm,n ‖Ml ‖ Rp,q
b→2 Sm,n ‖Ml ‖ Rp,q−1

All other transitions are unobservable. The sender and medium must be
able to communicate a pulse if there are no pulses in the medium and pulses
in the sender (l = 0, n > 0).

Sm,n ‖M0 ‖ Rp,q
τ→2 Sm,n−1 ‖M1 ‖ Rp,q

For l > 0, n > 0 we get

Sm,n ‖Ml ‖ Rp,q
τ→3 Sm,n−1 ‖Ml+1 ‖ Rp,q

Similarly, if there are no pulses in receiver and the medium is non-empty
(l > 0, q = 0), they must communicate a pulse:

Sm,n ‖Ml ‖ Rp,0
τ→2 Sm,n ‖Ml−1 ‖ Rp,1

For l > 0, q > 0 we get

Sm,n ‖Ml ‖ Rp,q
τ→3 Sm,n ‖Ml−1 ‖ Rp,q+1

If the medium reports a failure this must be because it lost a pulse (l > 0)
and then an unobservable communication may take place:
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Sm,n ‖Ml ‖ Rp,q
τ→3 Sm,n+1 ‖Ml−1 ‖ Rp,q

There must at any time be the possibility of the communication of an
acknowledgment from the receiver to the sender, if there are any to send
(m > 0, p > 0):

Sm,n ‖Ml ‖ Rp,q
τ→2 Sm−1,n ‖Ml ‖ Rp−1,q

The buffer transitions are

Bk
a→3 Bk+1

Bk
b→2 Bk−1

We now easily see why R is an observational refinement. For, with k =
n + l + q we have that (Sm,n ‖ Ml ‖ Rp,q)

a→3 (Sm+1,n+1 ‖ Ml ‖ Rp,q) can be
matched directly by Bk

a→3 Bk+1 and ((Sm+1,n+1 ‖ Ml ‖ Rp,q), Bk+1) ∈ R.
Else, if (Sm,n ‖Ml ‖ Rp,q)

τ→3 , these unobservable transitions always preserve
the size of n + l + q, as is easily seen, and can be matched by Bk

ε
=⇒3 Bk,

the results still in R.
Any b2-transition made by the buffer must be due to k > 0. This means

that at least one of n, l and q is non-zero, and thus we can by a series of
τ2-transitions (not changing n + l + q) and a final b2-transition match this
such that n+ l + q also decreases by one.

Notice that we in the above never used the sizes of m and p. This shows
that the acknowledgment capabilities of the sender and receiver were here
not essential to the specification. We might alternatively have marked the
transitions here as 3 -transitions or even left them out; we would still get
(5.3).

Actually, we also have that

RT = {(Bk, (Sm,n ‖Ml ‖ Rp,q) | k = n+ l + q}

is an observational refinement, meaning that the buffer also observation-
ally refines the data link ! This means that any buffer can be implemented
using components satisfying the specifications of the sender, medium, and
receiver considered here.

Moreover, the present result not only gives an alternative proof of the
simple data link and buffer introduced in subsection 5.2.1; it also shows how
even the data link not allowing any information to enter and the data link
with a very faulty medium (i.e. one that always loses its pulse thus performs
an infinite sequence of d-transitions) observationally implement a buffer.
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Proof systems

Wouldn’t it be nice if we could give sound and complete proof systems for
� and semantic equality ? Indeed it would, and in this chapter we present
such proof systems for certain subsets of MPL. The proof systems for � and
the soundness thereof turn out to be simple corollaries of results obtained by
Bent Thomsen in [Thomsen 87]. The proof system for semantic equality is
based on the result of full abstractness in Chapter 4.

6.1 Limitations of the proof systems

Unfortunately there is no sound and complete proof system for � in a modal
process logic with general static constructs. For, as already indicated, one
can reasonably view CCS as a subcalculus of MPL and ∼ as a special case
of � , and there exist no sound and complete proof systems for ∼ in a
CCS with static constructs. For, using static constructs, one can code any
Turing machine M and input string w as a CCS -expression pM,w such that
all moves of M are represented by internal (τ -)actions of pM,w and such that
the possible eventual halting is represented by a special success action d.
If we had a sound and complete proof system for ∼ the problem ‘Does M
diverge on input w ?’ would be r.e., since this would amount to proving

pM,w ∼ µx.(τ.x) (6.1)

A partial decision procedure would then consist in dovetailing through
all theorems of the hypothetical proof system until one found (6.1).

However, it turns out that one can give proof systems for subsets of
CCS , namely the classes of so-called finite and regular processes. We will
here consider the corresponding classes of MPL expressions.

73
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6.2 Proof systems for the refinement order

The proof systems for � are a direct consequence of results achieved by Bent
Thomsen [Thomsen 87] on so-called M -bisimulations and proof systems for
such relations. The application of these results also sheds light on the nature
of the concept of transitions with modalities.

6.2.1 M-bisimulations

M -bisimulations formed the original basis for the language of partial speci-
fications as described in Chapter 4. One simply imposes a preorder relation
on the action set, v , such that we for the ‘wild’ action ∗ have av∗ for
a ∈ Act. Based on this, Bent Thomsen gave his general characterization
of bisimulation-like orderings on transition systems with a preorder on the
action set. There are several intuitive reasons for imposing an ordering on
the action set; for instance one could interpret avb as ‘whatever a can do b
can do as well’. Or one could interpret avb as ‘a is better defined than b’ -
this is what we do here.

In what follows, we hence assume a transition system with an ordering
on the action set: Sv = (Sp, (Act,v),→). We first define the concept of
downwardsclosedness:

Definition 6.1 A set of actions M ⊆ Act is downwardsclosed iff ∀a ∈M :
bva⇒ b ∈M

M -bisimulation can now be defined relative to any downwardsclosed set
M :

Definition 6.2 ([Thomsen 87]) A relation R ⊆ Sp×Sp is an M -bisimulation
iff whenever pRq we have

1. p
a→ p′ ⇒ ∃q′∃b : q

b→ q′ ∧; avb ∧ p′Rq′

2. ∀a ∈M : q
a→ q′ ⇒ ∃p′∃b : p

a→ p′ ∧ bva ∧ p′Rq′

As usual, it is easy to see that there exists a largest M -bisimulation
vM for any given downwardsclosed M .

It now turns out that � is an M -bisimulation for a properly chosen M .
This should not surprise us, for there is nothing sacred about modal transition
systems. Any such system, S = (Sp,Act,→3,→2) , can be viewed as a
transition system with an ordering on the action set.

We translate any modal transition system S = (Sp,Act,→3,→2) to a
transition system with an ordered action set by simply letting an action be an
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ordered pair also containing a modality. Thus we get the derived transition
system Sv = (Sp, (Act × {2,3},v),→). The new actions are written with
the modality suffixed, and we write F

am→ F ′ instead of F
a→mF

′ (m ∈ {2,3}).
We reflect the requirement →2 ⊆ →3 by demanding that F

a2→ F ′ implies
F

a3→ F ′.
To determine the ordering on actions we simply say that, for any given a

we have a2va3. Intuitively we could say that 2 -actions are better defined
than 3 -actions. We then choose asM the 2 -actions, i.e. M = {a2|a ∈ Act}.
M and v can be visualized by the lattice diagram in Figure 6.1.

r r r
r r r
a3 b3 c3 f3

a2 b2 c2 f2

r
r· · · · · ·

�
�

�
�

M

Figure 6.1: The set M and the ordering of actions in our derived transition
system

It is obvious that M is downwardsclosed. We now have

Theorem 6.1 With M = {a2 | a2 ∈ Act×{2,3}} we have that vM in the
transition system Sv = (Sp, (Act× {2,3}),v),→) is the same as � in the
modal transition system S = (Sp,Act,→3,→2) .

Proof: We simply show that

{(F,G) | FvMG} (6.2)

is a refinement and that
{(F,G) | F �G} (6.3)

is an M -bisimulation.
For the proof of (6.2), suppose FvMG and F

a→3 F
′. This is equivalent

to F
a3→ F ′. By M -bisimulation, we get G

b→G′ and F ′vMG′ with a3vb.
But this implies G

a3→G′ and thus G
a→3 G′ with (F ′, G′) in the relation.

Conversely, suppose G
a→2 G

′. This is equivalent to G
a2→G′ and a2 ∈ M .
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By M -bisimulation this means F
b→ F ′ and F ′vMG′ with bva2. But this

implies F
a→2 F

′ with (F ′, G′) in the relation, and we’re done. The proof of
(6.3) is similar. 2

6.2.2 The proof systems

A main result in [Thomsen 87] is that one can give sound and complete proof
systems for vM . These proof systems, of course, work upon formulae of a
language, and in transferring the proof systems to work for MPL, we must
relate the languages. I.e., we must be sure that the languages of finite and
regular processes in [Thomsen 87] correspond semantically to the languages
of finite and regular MPL specifications, respectively. But this is easily seen
to be the case, since the structure on actions is nowhere of any importance
in the operational semantics given in [Thomsen 87] and since our operational
semantics of MPL as presented in Chapter 4 is the same for both modalities,
apart from the prefixing axioms (which determine the ordering!),

In the proof systems presented here, we have made a few, necessary syn-
tactic alterations :

� replaces vM

./ replaces =M

rec replaces µ

Nil replaces nil

Nil � a3.F replaces
b 6∈M

nilvMb.p

./ is here the equivalence induced by � , i.e. F ./ G iff F �G and G�F .
The rule for precongruence w.r.t. prefixing has become C1:

F1 � F2

am1 .F1 � a3.F2

,m1 ∈ {2,3}

And finally we have omitted the rule

p1vMp2

p1vNp2

, N ⊆M

since we are only interested in the M -bisimulation corresponding to � ,
where M is as fixed above.

Table 6.1 presents proof systems for � on the finite MPL specifications
(i.e. formulae constructed not using rec). Their syntax is
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E ::= a2.E | a3.E | E1 + E2 | Nil

In Table 6.2 we have the proof system for � for the regular MPL speci-
fications introduced in Chapter 2. Here a necessary observation is that the
definition of variable substitution used by [Thomsen 87] is exactly the same
as the one used in this report.

6.3 Proof systems for semantic equality

In [Graf and Sifakis 86] Graf and Sifakis present their so-called Synchroniza-
tion Tree Logic (STL). STL is a hybrid between the usual regular CCS -
processes (Pr) in this report and Hennessy-Milner logic with recursion [Larsen 87]
in that it contains the process constructs of the former, the logical connec-
tives of the latter, and a recursion operator, one main difference being that
STL allows prefixing with sets of guards. Graf and Sifakis gave a denota-
tional description resembling the one presented for MPL in this report (i.e.
the meaning of a formula is a set of processes in a process system). They also
presented a sound and complete proof system for non-recursive STL formula.

In Chapter 4 we discussed Graf and Sifakis’s requirements to a specifica-
tion language and found that MPL met these requirements. We therefore,
tentatively, introduce the disjunction ∨ into our language of finite MPL spec-
ifications to see what happens. It turns out that we can give a sound and
complete proof system for the set of finite (i.e. non-recursive) MPL formulae
with disjunction, whose abstract syntax is

E ::= a2.E | a3.E | E1 + E2 | E1 ∨ E2 | Nil

Call this language Sp∨ . We abbreviate the disjunction of n components
by

∨n
i=1 Fi, letting

∨1
i=1 Fi = F1.

We extend the semantic function from Definition 4.3 by simply adding

[[F ∨G]]σ = [[F ]]σ ∪ [[F ]]σ (6.4)

This is exactly as in [Graf and Sifakis 86], the intended meaning being
that any process satisfying F ∨ G satisfies either F or G. The extension
of course does not alter the facts of monotonicity and anticontinuity of [[ ]]
established in Chapter 4.

The idea of the completeness proof is to show how one can reduce any
such formula in Sp∨ to a conjunction of 2 -formulae. The 2 -formulae form
a subset of Sp, Sp2 , given by the syntax
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F ::= a2.E | E1 + E2 | Nil

From our discussion in Chapter 4 it should be obvious that Sp2 can be
regarded as a subset of the partial specification language, thus implying

Proposition 6.1 Whenever F,G ∈ Sp2 we have F �G⇔ [[F ]] ⊆ G.

It is also pretty obvious that the denotation of any 2 -formula is exactly
one equivalence class w.r.t. ∼ :

Proposition 6.2 F ∈ Sp2 ⇒ [[F ]] = {q | q ∼ p2(F )}

By Proposition 6.1 we can now give a proof system for semantic inclusion,
⊆, and thus also for semantic equality, ≡, defined by

Definition 6.3 We write
F ≡ G whenever [[F ]] = [[G]]
F ⊆ G whenever [[F ]] ⊆ [[G]]

Essentially the proof system is obtained through taking the proof system
for � for finite MPL specifications, replacing � with ⊆ and ./ with ≡, ex-
tending the system with appropriate rules and axioms for ∨ and rules and
axioms stating how the process constructs distribute over ∨.

The proof system is presented in Table 6.3. The rules D1 and D3 are
chosen so that they correspond to the rules D1 and D3 in the proof system
presented in [Graf and Sifakis 86].

The soundness of the proof system depends on the following propositions.
For proofs, see Appendix.

Proposition 6.3 (F1 ∨ F2) + F3 ≡ (F1 + F3) ∨ (F2 + F3)

Proposition 6.4 a3.F ≡ a2.F ∨Nil

Proposition 6.5 a2.(F1 ∨ F2) ≡ a2.F1 ∨ a2.F2 ∨ (a2.F1 + a2.F2)

Theorem 6.2 The proof system in Table 6.3 is sound.
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Proof: Axioms O1-O5 are obviously true by the corresponding properties
of set union. The soundness of D1-D3 follows from Propositions 6.3 to 6.5
above. P1-P4 state that set inclusion is a preorder, which is obvious. C1-C4
follow from the monotonicity of the functions⊕, d 3e, and d 2e as established
in Chapter 4. The soundness of S1-S4 follows from the soundness of the proof
system in 6.1 by Proposition 6.1. 2

In what follows, we shall write ` F whenever the formula F in Sp∨ is
provable in the proof system in Table 6.3.

It turns out that we can provably reduce any formula to an equivalent
disjunctive normal form:

Theorem 6.3 (Disjunctive Normal Form) For any formula G ∈ Sp∨, there
exist F1, . . . , Fn ∈ Sp2 such that

` G ≡
n∨
i=1

Fi

Proof: See Appendix. 2

(This should really not surprise us; we know that the 2 -formulae repre-
sent single equivalence classes, and in Theorem 4.1 and Corollary 4.1 we saw
that the denotation of any MPL formula is a union of equivalence classes.)

Semantic equality of such normal forms falls back on the semantic equality
of relevant components therein:

Proposition 6.6

m∨
i=1

fi ≡
n∨
j=1

gj

if and only if we have

∀j ≤ n∃i ≤ m : fi ≡ gj,∀i ≤ m∃j ≤ n : gj ≡ fi

where ∀i ≤ m : fi ∈ Sp2 and ∀j ≤ n : gj ∈ Sp2.

Proof: See Appendix. 2

Conversely, semantic equality of normal forms can be proved if semantic
equality of relevant components can be proved:

Proposition 6.7 If ∀i ≤ m∃j ≤ n :` Fi ≡ Gj and ∀j ≤ n∃i ≤ m :` Fi ≡
Gj we have

`
m∨
i=1

Fi ≡
n∨
j=1

Gj



Chapter 6. Proof systems 80

Proof: See Appendix. 2

This implies the completeness of the proof system:

Theorem 6.4 The proof system in Table 6.3 is complete.

Proof: Suppose F ≡ G. We must show that ` F ≡ G. By Theorem 6.3 we
have

` F ≡
m∨
i=1

Fi and ` G ≡
n∨
i=1

Gi

with all Fi, Gj ∈ Sp2. Theorem 6.2 now states that

F ≡
m∨
i=1

Fi and G ≡
n∨
i=1

Gi

But by Proposition 6.6 this means that for all j there is an i such that
Fi ≡ Gj and that for all i there is a j such that Gj ≡ Fi. For 2 -formulae this
is always the same as showing for any i that there is a j such that Fi ./ Gj

and for any j that there is a i such that Fi ./ Gj. The way we constructed our
proof system, we have embedded a translation of the proof system for � and
./ on finite MPL-formulae in it, so these equivalences over ./ are provable.
Thus for any i we have a j such that ` Fi ≡ Gj and for any j we have an i
such that ` Fi ≡ Gj. By Proposition 6.7 we then have ` ∨mi=1 Fi ≡

∨m
j=1 Gj,

completing the proof. 2

Example 6.1 Remember Example 4.1 ? Now we can use our proof system
in Table 6.3 to show that

a3.b3.Nil ≡ a3.b2.Nil + a3.Nil

With reference to the rules and axioms in the proof system we get the re-
ductions

F ≡ a3.b3.Nil

(D2) ≡ a2.b3.Nil ∨Nil
(D2) ≡ a2.(b2.Nil ∨Nil) ∨Nil
(D3) ≡ a2.b2.Nil ∨ a2.Nil ∨ (a2.b2.Nil + a2.Nil) ∨Nil

and
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G ≡ a3.b2.Nil + a3.Nil

(D2) ≡ a2.b2.Nil ∨Nil + (a2.Nil ∨Nil)
(D1) ≡ (a2.b2.Nil + (a2.Nil ∨Nil)) ∨ (Nil + (a2.Nil ∨Nil))

(D1,S4) ≡ (a2.b2.Nil + a2.Nil) ∨ a2.b2.Nil ∨Nil ∨ a2.Nil ∨Nil
(O1) ≡ a2.b2.Nil ∨ a2.Nil ∨ (a2.b2.Nil + a2.Nil) ∨Nil

2

Also notice that the disjunctive normal form obtained in Theorem 6.3
together with Proposition 6.6 in principle yield a decision procedure for ≡ if
one exists for � . For we can, given any two formulae in Sp∨ , F and G,
obtain their normal forms and for all i check if there is a j such that Fi ./ Gj

for some pair of terms in the disjunctive normal form. This can be done
through the repeated use of an algorithm for � . In the same way we then
for all j test for all pairs if there is an i such that Fi ./ Gj for a pair of normal
form terms. Unfortunately, one can see from the proof of Theorem 6.3 that
the number of terms in the disjunctive normal form is roughly exponential in
the number of ∨’s in the original formulae, so the decision algorithm sketched
here is inherently exponential.
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SUM S1 F1 + (F2 + F3) ./ (F1 + F2) + F3

S2 F1 + F2 ./ F2 + F1

S3 F1 + F1 ./ F1

S4 F1 +Nil ./ F1

PREORD P1 F � F

P2
F1 � F2, F2 � F3

F1 � F3

P3
F1 � F2, F2 � F1

F1 ./ F2

P4
F1 ./ F2

F1 � F2, F2 � F1

PRECONG C1
F1 � F2

am1 .F1 � a3.F2

, m1∈{2,3}

C2
F1 � F2

a2.F1 � a2.F2

C3
F1 � F2, F3 � F4

F1 + F3 � F2 + F4

PREFIX PF1 Nil � a3.F

Table 6.1: Proof system for � on finite MPL specifications
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SUM S1 F1 + (F2 + F3) ./ (F1 + F2) + F3

S2 F1 + F2 ./ F2 + F1

S3 F1 + F1 ./ F1

S4 F1 +Nil ./ F1

PREORD P1 F � F

P2
F1 � F2, F2 � F3

F1 � F3

P3
F1 � F2, F2 � F1

F1 ./ F2

P4
F1 ./ F2

F1 � F2, F2 � F1

PRECONG C1
F1 � F2, F3 � F4

F1[F3/x] � F2[F4/x]

C2
F1 � F2

recx.F1 � recx.F2

REC R1 recx.F ./ F [recx.F/x]
R2 recx.F ./ recy.F [y/x], y 6∈ FVSp(F )
R3 recx.(F + x) ./ recx.F

R4
F1[F2/x] � F2

recx.F1 � F2

, x guarded in F1

R5
F2 � F1[F2/x]

F2 � recx.F1

PREFIX PF1 a2.F � a3.F
PF2 Nil � a3.F

Table 6.2: Proof system for � on regular MPL specifications
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OR O1 F ∨ F ≡ F
O2 F1 ∨ F2 ≡ F2 ∨ F1

O3 F1 ∨ (F2 ∨ F3) ≡ (F1 ∨ F2) ∨ F3

O4 F1 ⊆ F1 ∨ F2

O5
F1 ⊆ F2, F3 ⊆ F4

F1 ∨ F3 ⊆ F2 ∨ F4

DIST D1 (F1 ∨ F2) + F3 ≡ (F1 + F3) ∨ (F2 + F3)
D2 a3.F ≡ a2.F ∨Nil
D3 a2.(F1 ∨ F2) ≡ a2.F1 ∨ a2.F2 ∨ (a2.F1 + a2.F2)

SUM S1 F1 + (F2 + F3) ≡ (F1 + F2) + F3 , F1,F2∈Sp2

S2 F1 + F2 ≡ F2 + F1 , F1,F2∈Sp2

S3 F + F ≡ F F∈Sp2

S4 F +Nil ≡ F F∈Sp2

PREORD P1 F ⊆ F

P2
F1 ⊆ F2, F2 ⊆ F3

F1 ⊆ F3

P3
F1 ⊆ F2, F2 ⊆ F1

F1 ≡ F2

,

P4
F1 ≡ F2

F1 ⊆ F2, F2 ⊆ F1

PRECONG C1
F1 ⊆ F2

am1 .F1 ⊆ a3.F2

, m1∈{2,3}

C2
F1 ⊆ F2

a2.F1 ⊆ a2.F2

C3
F1 ⊆ F2, F3 ⊆ F4

F1 + F3 ⊆ F2 + F4

PREFIX PF1 Nil ⊆ a3.F

Table 6.3: Proof system for ≡ on finite MPL specifications with ∨
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Conclusion

We end the report with a summary of the main results presented in this
report, discuss their consequences, and present some ideas for further work.

7.1 Summary of main results

• In Chapter 2 we introduced the notions of modal transition system and
refinements, noting that a largest refinement � exists and that it is a
preorder.

• In Chapter 3 we introduced the Modal Process Logic, giving its syntax
and structural operational semantics.

• In Chapter 4 we presented a denotational description of MPL,[[ ]], stat-
ing that the denotation of an MPL formula is a set of CCS -processes.
Under certain reasonable conditions we showed that the denotation
of any formula was the union of some equivalence classes of processes
w.r.t. ∼ . We also gave a limiting condition stating how far the full
abstractness result of [Larsen and Thomsen 88] can be extended. The
original result states that

F �G⇒ [[F ]] ⊆ [[G]] (7.1)

Counterexamples showed that we could not obtain the reverse direction
of (7.1). However, we could characterize a class of counterexamples
through a relation 6�D having the property that

F 6�DG⇒ [[F ]] 6⊆ [[G]] (7.2)

85
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We also showed how the partial specification language from [Thomsen 87]
and [Larsen and Thomsen 87] can be viewed as a subset of MPL and
how we in fact for this subset of MPL have

F �G⇔ [[F ]] ⊆ [[G]] (7.3)

• In Chapter 5 we introduced the static process constructs of CCS into
MPL, considering both parallel composition and action restriction and
static constructs in general. This gave rise to the definition of an ob-
servational refinement ordering, � . We gave three examples of the
usefulness of this preorder.

• In Chapter 6 we used results from [Thomsen 87] in seeing how modal
transition systems could be seen as just ordinary transition systems
with a preorder on the action set. � is then just a special case of the
M -bisimulation vM of [Thomsen 87]. Based on this, we transferred the
general proof systems of vM to work for � . Relating MPL to the STL
in [Graf and Sifakis 86], we tentatively introduced disjunction (∨) into
MPL and showed how one, based on the proof systems for � and the
full abstractness result for partial specifications, could obtain a sound
and complete proof system for semantic equality in a subset of MPL
without recursion.

7.2 Discussion

The above results should of course be put in a wider perspective.

7.2.1 Full abstractness

It would be nice if we could characterize operationally exactly when [[F ]] ⊆
[[G]] based on knowledge of F and G. As seen by the non-existence of the
converse of (7.1) and the fact that the negation of 6�D is not � , this may be
difficult. Nevertheless (7.2) sheds light on a large class of counterexamples.

7.2.2 How to use 2 and 3

The three examples in Chapter 5 not only showed the usefulness of static
constructs in MPL seen in connection with � ; they also showed a possible
guidelines for using the modalities on the transitions:

One can use the modalities to distinguish between the essential parts and
the exception-handling parts of a system. The transitions raising exceptions
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are marked with 3 ’s , whereas the exception-handling transitions are marked
with 2 ’s. This idea is similar to one found in [Bækgaard et al 86], where it
was claimed that, for reasons of modularity, a programming language should
enforce the separation of the descriptions of exceptional and normal program
states.

7.2.3 Limitations of MPL

Another thing shown through the examples in Chapter 5 is that MPL should
be regarded as a modal process algebra rather than as a logic. The proof
techniques used and the orderings � and � are based on ideas derived from
the theory behind CCS , relying heavily on structural operational semantics.

In Chapter 5 we saw that the theory of MPL provided a specification
language stronger than CCS . One might now wonder if MPL is as strong as
Hennessy-Milner logic w.r.t. the compositionality introduced with the con-
cept of process contexts, namely viewing contexts as MPL property trans-
formers as was done in [Larsen 86] and [Godskesen et al 87]. Can we define
an MPL property transformation IC such that we for any MPL formula F
and CCS -context C[ ] have that p� IC(F ) iff C[p] �F ? Unfortunately, the
answer is no.

For suppose F = Nil. Then there are contexts such that C[p] 6�Nil, since
a CCS -context may be just a process expression of CCS . Suppose we ruled
out such ‘no-hole’ contexts. Then we might still always have C[p]6�Nil -
consider C[ ] = a.[ ]. This would imply that the denotation of Ia.[ ](Nil)
would be the empty set of processes, something which cannot be expressed
in MPL. It is well known that this is possible in Hennessy-Milner logic by
the presence of ff . One could of course introduce a ff -like construct in MPL
but it is rather hard to imagine what its operational interpretation (if any)
might be.

In this sense MPL resembles CCS , for the same arguments can be used
to show the impossibility of such a property transform for CCS . As a matter
of fact, one sees from the canonical implementation transforms p2(F ) and
p3(F ) from Chapter 4, that any MPL specification has an implementation.
Thus it is not possible to describe specifications that cannot be implemented;
some feel that a specification language should be strong enough to allow such
‘absurd’ specifications.

One could try extending the expressive power of MPL by adding genuine
logical connectives. However, the introduction of the Boolean connectives as
tried out in Chapter 6 did not come with an augmented operational descrip-
tion. This is due to the simple fact that neither the author nor his supervisor
could come up with an operational interpretation of ∨. On the other hand,
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the introduction of process constructs into Hennessy-Milner logic as tried
out by Sören Holmström in [Holmström 87] resulted in an intensional de-
notational description, putting constraints on the structure of the processes
to be found in a denotation. This is not a very convincing way in which to
combine process calculus and modal logic features.

Still, by the denotational description in Chapter 4 we can relate the
modalities of MPL to those of Hennessy-Milner logic as follows:

a3.F ≡ [a]F ∧
∧
b6=a

[b]ff

a2.F ≡ 〈a〉tt ∧ [a]F ∧
∧
b6=a

[b]ff

Here ≡ is semantic equality w.r.t. sets of processes. Alternatively we
could describe the Hennessy-Milner modalities in MPL as

〈a〉F ≡ a2.F + U

[a]F ≡ a3.F +
∑
b6=a

b3.U

It seems to the author that there is a wide conceptual gap between logic
and process algebra whose crossings are bound to result in certain deficien-
cies. The best thing is then to stick to the MPL which can be seen as an
extension of CCS for then we get an operationally defined, intuitively simple
ordering on specifications, properties of which can be proved using Park’s
Induction Principle. If one is to specify some system and does not find MPL
to be sufficiently expressive, one should use a modal logic (e.g. Hennessy-
Milner logic). But in general, one should of course choose whatever one feels
is the most appropriate formalism.

7.3 Ideas for further work

There is of course still a lot of work to be done in the theory of the modal
process logic (or modal process algebra). As we saw in Chapter 6, modal
transition systems could be viewed as just another case of an imposed struc-
ture on the action set, a topic dealt with in greater detail in [Thomsen 87].
It seems as if the development of a theory of MPL could take advantage of
this, for the idea of a structure on the action set is indeed very general. So
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further work on a theory of transition systems with a structure on the action
set is indeed important.

It would also be of great significance if we could give a truly domain-
theoretic characterization of � (and the M -bisimulations in general), along
the lines of [Abramsky 88] in which Abramsky shows how to give a fully ab-
stract denotational description of a so-called ‘bisimulation with divergence’.
Such a characterization would shed even more light on the nature of these
relations.

On a more practical note, we need to examine more examples of specifica-
tions and proofs using MPL, � and � . In more realistic settings a treatment
of value-passing is then inevitable.

And of great use in such verifications would be an automated decision
procedure for � implemented along the lines of the PROLOG system in
[Larsen 86].
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Appendix

In this appendix we give detailed proofs of theorems and lemmae stated
without proofs in the main part of this report.

A.1 Proofs from Chapter 2

We sometimes need to characterize � as the limit of a chain of approximating
relations. This holds, when the modal transition system considered, S =
(Sp,Act,→3,→2) , is image-finite. This implies the anti-continuity of the
functional RE .

Definition A.1 (Definition 2.9)
A monotonic functional f : A → A, where A is a complete lattice is

anti-continuous iff we for all decreasing chains {Bi} have that

f(u∞i=1(Bi)) = u∞i=1f(Bi)

Lemma A.1 (Lemma 2.1)
Let A be a complete lattice with a maximal element, > and let the func-

tional f : A→ A be anti-continuous. Then f has a maximal fixed point given
by

FIX f = u∞i=0f
i(>)

Proof: FIX f is a fixed point of f , since

f(FIX f) = f(u∞i=0f
i(>)) = u∞i=1f

i(>) = u∞i=0f
i(>)

(The last equality follows from the maximality of >)

90
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FIX f is maximal, since any other fixed point g by monotonicity of f
satisfies

∀i : f i(g) = g v f i(FIX f)

implying that g v FIX f . 2

Theorem A.1 (Theorem 2.1)
If the modal transition system S = (Sp,Act,→3,→2) is image-finite, the

refinement function RE is anti-continuous.

Proof: Suppose we have a decreasing chain in (2Sp×Sp,⊆): B0 ⊇ B1 ⊇
B2 . . .. We want to show that

RE(
⋂∞

i=0
Bi) =

⋂∞
i=0
RE(Bi)

SinceRE is monotonic, the⊆-direction follows. Suppose (F,G) ∈ RE(∩∞i=0Bi).
Then for all i there is a Bi such that

F
a→3 F

′ ⇒ ∃G′ : G a→3 G
′ ∧ (F ′, G′) ∈ Bi

But since →3 is image-finite and {Bi} is decreasing, some (F ′, G′) must
belong to infinitely many Bi and thus to ∩∞i=0Bi. Conversely, we have

G
a→2 G

′ ⇒ ∃F ′ : F a→3 F
′ ∧ (F ′, G′) ∈ Bi

and by the same argument that some (F ′, G′) ∈ ∩∞i=0Bi, altogether im-
plying the ⊇-direction.

2

Corollary A.1 (Corollary 2.3)
When the modal transition system S = (Sp,Act,→3,→2) is image-finite,

we have that

� =
⋂∞

i=0
RE i(Sp)
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A.2 Proofs from Chapter 3

With the following lemma it is easy to infer the behaviour of an MPL ex-
pression obtained using substituion.

Lemma A.2 (Lemma 3.1)
Whenever x is guarded in G ∈ Sp we have

G[F/x]
a→m E

if and only if

G
a→m G

′ and E = G′[F/x]

for some G′ (where M∈ {3,2})

Proof:

Only if: Induction in the length n of inferences establishing G[F/x]
a→mE

using the operational rules and axioms.

n = 1: We must have used one of the axioms for prefixing. We then have
G[F/x] = a2.E or G[F/x] = a3.E. Since x is assumed to be guarded
in G this means that G = a2.G

′ or G = a3.G
′ and E = G′[F/x]. This

implies the desired conclusion.

Assuming for n = k: The last rule used in the inference was either the rule
for + or the rule for rec.

Suppose we used the +-rule. Then G[F/x] = E1 + E2 and thus G =
G1 +G2 with E1 = G1[F/x] and E2 = G2[F/x]. x must be guarded in
both G1 and G2. By induction hypothesis we then have G[F/x]

a→m E
if E1

a→m E or E2
a→m E, E = G1[F/x] or E = G2[F/x] for some G′1 or

G′2.

Suppose we used the rec-rule. Then G[F/x] = recz.E1, meaning that
G must be of the form recy.G1. This can arise in three different ways,
by the substitution rule.

1. G = recx.E1: Then G[F/x]
a→m E implies by the rec-rule

E1[recx.E1/x][F/x]
a→m E

But E1[recx.E1/x][F/x] = E1[recx.E1/x] implying, again by the rec-
rule that recx.E1

a→m E, as desired.
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2. G = recy.G1 with y 6∈ FVSp(F ): Then E1 = G1[F/x]. We used the
rec-rule (as hypothesized) based on the information that

G1[F/x][recy.G1[F/x]/y]
a→m E

This, by induction hypothesis, yields the result desired, since we in this
case have

G1[F/x][recy.G1[F/x]/y] = G1[recy.G1/y][F/x]

3. G = recy.G1 with y ∈ FVSp(F ): NowG[F/x] = (recz.(G1[z/y])[F/x])
for a z, z 6∈ FVSp(F ). We used the rec-rule (as hypothesized) knowing
that

((G1[z/y])[F/x])[(recz.(G1[z/y][F/x])/z]
a→m E

But we have

((G1[z/y])[F/x])[(recz.(G1[z/y][F/x])/z] = (G1[(recz.G1[z/y])/y])[F/x]

again giving the desired result, since we consider MPL formulae equal
up to a renaming of bound variables.

If : Induction in the length of inferences establishing G
a→m G

′ using the
operational rules and axioms.

n = 1: We must have used the prefixing-rules. This means G = a2.G
′ or

G = a3.G
′. By the substitution rules we have a2.G

′[F/x]
a→2G

′[F/x] or
a2.G

′[F/x]
a→3G

′[F/x] or a2.G
′[F/x]

a→3G
′[F/x], in all cases resulting

in the desired conclusion.

Assuming for n = k: Again the last rule used in the inference was either the
rule for + or the rule for rec.

Suppose we used the rule for +. Then G = G1+G2 and either G1
a→mG

′

or G2
a→m G′. Substitution yields G[F/x] = G1[F/x] + G2[F/x]. By

induction hypothesis we then get G[F/x]
a→m G

′.

Suppose we used the rec-rule. This means G = recy.G1. There are
again three different cases to be considered.

1. G = recx.G1: Then G[F/x] = G. The last inference was then
based on the information that

G1[recx.G1/x]
a→m E
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assuming, by hypothesis,

G1[recx.G1/x]
a→m E[F/x]

which by the rec-rule gives the desired result.

2. G = recy.G1 with y 6∈ FVSp(F ): Then G[F/x] = recy.G1[F/x] and
the information concluding the inference was then

(G1[recy.G1/y])[F/x]
a→m E[F/x]

giving us
(G1[F/x])[recy.G1[F/x]/y]

a→m E[F/x]

(since y is not free in F ) which again yields the result by the rec-rule.

3. G = recy.G1 with y ∈ FVSp(F ): ThenG[F/x] = recz.((G1[z/y])[F/x])
for a new z, z 6∈ FVSp(F ). The information yielding the inference was
here

(G1[recy.G1/y])[F/x]
a→m E[F/x]

implying by the substitution rules that

(G1[z/y])[recz.G1[z/y]/z][F/x]
a→m E[F/x]

in turn leading to

(recy.G1)[F/x]
a→m E[F/x]

since we consider MPL expressions equal up to the renaming of bound
variables.

2

A.3 Proofs from Chapter 4

Definition A.2 (Definition 4.1)
The semantic algebra consists of the functions

nil : → 2Pr

d 3e : Act× 2Pr → 2Pr

d 2e : Act× 2Pr → 2Pr

⊕ : 2Pr × 2Pr → 2Pr
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defined by

nil = {p | p ∼ nil}

da3eU = {p | p b→ p′ ⇒ (b = a ∧ p′ ∈ U)}

da2eU = {p | p a→ ∧ p ∈ da3eU}
U ⊕ V = {p | ∃p1, p2.p1 ∈ U ∧ p2 ∈ V ∧ p ∼ p1 + p2}

where U, V ⊆ Pr.

Lemma A.3 (Lemma 4.1)
The functions of Definition A.2 are monotonic and anticontinuous on the

Boolean lattice (2Pr,⊆)

Proof: Monotonicity is obvious. Anticontinuity is shown below (one half is
already given by monotonicity):

⊕ : Since ⊕ clearly is commutative, we only need to show anti-continuity
in one argument, i.e. we show that we for a decreasing chain {Bi} for
all U ⊆ Sp have

U ⊕
⋂
i

Bi =
⋂
i

(U ⊕Bi)

But by the definition of ⊕, we have

U ⊕
⋂
i

Bi =
⋃

pU ∈ U
pB ∈ ∩iBi

|pU + pB|

where |p| denotes the equivalence class of p w.r.t. ∼ . We also have

⋂
i

(U ⊕Bi) =
⋂
i

⋃
pU ∈ U
pBi ∈ Bi

|pU + pBi|

Since equivalence classes are either identical or disjoint, the result fol-
lows.



Appendix A. Appendix 96

d 3e: Consider again a decreasing chain {Bi}. We then have

da3e
⋂
i

Bi = {p | p b→ p′ ⇒ b = a ∧ p′ ∈
⋂
i

Bi}

and ⋂
i

da3eBi = {p | ∀i : p
b→ p′ ⇒ b = a ∧ p′ ∈ Bi}

which are seen to coincide.

d 2e: Again the decreasing chain {Bi} comes in, giving

da2e
⋂
i

Bi = {p | p a→ ∧ p b→ p′ ⇒ b = a ∧ p′ ∈
⋂
i

Bi}

and ⋂
i

da3eBi = {p | ∀i : p
a→ ∧ p b→ p′ ⇒ b = a ∧ p′ ∈ Bi}

which coincide.

2

We need two canonical implementations in the proof of Theorem 4.3:

Definition A.3 (Definition 4.7)
The syntactic transformation p2 : Sp→ Pr is defined structurally by

p2(Nil) = nil

p2(a2.E) = a.p2(E)

p2(a3.E) = nil

p2(E1 + E2) = p2(E1) + p2(E2)

p2(recx.E) = µx.p2(E)

p2(x) = x

p2 distributes w.r.t. substitution in the following way:

Lemma A.4 (Lemma 4.2) For all S, T ∈ Sp:

p2(S[T/x]) = p2(S)[p2(T )/x]

Proof: Structural induction on S.
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S = Nil:

p2(Nil[T/x]) = p2(Nil) = nil

and
p2(Nil)[p2(T )/x] = nil[p2(T )/x] = nil

S = a3.S
′:

p2((a3.S
′)[T/x]) = nil

and
p2(a3.S

′)[p2(T )/x] = nil

.

S = a2.S
′:

p2((a2.S
′)[T/x]) = a.p2(S ′)[p2(T )/x]

and, by hypothesis,

p2(a2.S
′)[p2(T )/x] = a.p2(S ′)[p2(T )/x]

S = S1 + S2:

p2((S1 + S2)[T/x]) = p2(S1[T/x]) + p2(S2[T/x])

= p2(S1)[p2(T )/x] + p2(S2)[p2(T )/x]

= (p2(S1) + p2(S2))[p2(T )/x]

= p2(S)[p2(T )/x]

S = recy.S1: The substitution rule here gives us three subcases:

1. G = recx.G1: Then we have

p2((recx.S1)[T/x]) = p2(recx.S1) = µx.p2(S1)

and

p2(recx.S1)[p2(T )/x] = (µx.p2(S1))[p2(T )/x]

= µx.p2(S1)
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2. G = recy.G1 with y 6∈ FVSp(F ): We have

p2((recy.S1)[T/x]) = p2(recy.S1[T/x])

= µy.p2(S1[T/x])

= µy.(p2(S1)[p2(T )/x])

= (µy.p2(S1))[p2(T )/x]

= p2(S)[p2(T )/x]

3. G = recy.G1 with y ∈ FVSp(F ): Then

p2((recy.S1)[T/x]) = p2(recz.(S1[z/y])[T/x])

= µz.p2((S1[z/y])[T/x])

= µz.(p2(S1)[z/y])[p2(T )/x]

= p2(S)[p2(T )/x]

The last equation follows, since we consider formulae equal up to re-
naming of bound variables.

2

Lemma A.5 (Lemma 4.3)
For all closed E ∈ Sp we have p2(E) ∈ [[E]]

Proof: It is enough to show that p2(E) �E. This, in turn, follows directly
from

p2(E)
a→ ⇔ ∃E ′ : E a→2 E

′ ∧ q = p2(E ′)

The proof is done by structural induction on E:

E = Nil: Trivial.

E = a3.E1: Trivial, since neither p2(E) nor E has any 2 -transitions.

E = a2.E1: The only transition of p2(E) is p2(E)
a→ p2(E1). The only 2 -

transition of E is E
a→2 E1, and we’re done.

E = E1 + E2: p
2(E1 + E2)

a→ q′ iff p2(E1) + p2(E2)
a→ q′, which by the op-

erational rule for + means p2(E1)
a→ q′ or p2(E2)

a→ q′. The induction
hypothesis now yields E1

a→2 E
′ or E2

a→2 E
′ with q′ = p2(E), giving

the desired.
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E = recy.E1: We here use Lemmae 3.1 and 3.2 from Chapter 3. By the rec-
rule we have that µy.p2(E)

a→ q′ iff p2(E)[µy.p2(E)/y]
a→ q. By Lemma

3.2 this is equivalent to p2(E)
a→ q′ where q = q′[µy.p2(E)/y]. Induction

hypothesis gives us E
a→2 E

′ ∧ q′ = p2(E ′), which by Lemma 3.1 is
equivalent to E[recy.E/y]

a→2E
′[recy.e/y] with q = p2(E)[µx.p2(E)/x].

By Lemma 3.2 we then get E[recy.E/y]
a→2 E

′[recy.E/y] while we for
q have q = p2(E ′[recy.E/y]). We can then use the rec-rule, and this
ends the proof.

2

A.4 Proofs from Chapter 5

We prove the expansion theorem for parallel composition, based on the gen-
eral expansion theorem:

Theorem A.2 (Theorem 5.2)
For any n-ary static construct (. . .)[f ] we have

(F1, . . . , Fn)[f ] =D

∑
π(am,(F1,...,Fn))

am.(F
′
1, . . . , F

′
n)

where π(am, (F1, . . . , Fn)) is the set of possible derivations given by

{(am,(F ′1,...,F
′
n)) | ∃(a1,...,am): ((Fi

ai→m F ′i ) ∨ (ai=0 ∧ Fi=F ′i )),1≤i≤n ∧ f(a1,...,an)}

and =D is the direct equivalence of [Milner 80]

Proof: Immediate from the operational rule. 2

Theorem A.3 (Theorem 5.3) For all F1, . . . , Fn we have

(F1 | . . . | Fn) '
∑

{(am,F ′i ) | ∃i:1≤i≤n∧Fi
a→m F ′i}

am.(F1 | . . . F ′i . . . | Fn)

+
∑

{(F ′i ,F
′
j) | ∃i,j:1≤i,j≤n∧Fi

a→m F ′i∧Fj
a→m F ′j}

τm.(F1 | . . . F ′i | . . . F ′j | Fn)

Proof: Induction in n.

n = 2 This is just Theorem A.2.
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Assuming for n = k: We have

(S1 | S2 . . . | Sk | Sk+1) ' (S1 | S2 . . . | Sk) | Sk+1

' (
∑

{(am,S′i) | Si
a→m S′i,1≤i≤k}

am.(S1 | . . . S ′i | . . . Sk)

+
∑

{(S′i,S
′
j) | Si

a→m S′i ∧ Sj
a→m S′j ,1≤i,j≤k}

τm.(S1 | . . . S ′i | . . . S ′j | Sk)) | Sk+1

By Theorem A.2 we then get

(S1 | S2 . . . | Sk | Sk+1) '
∑

{(am,S′i) | Si
a→m S′i,1≤i≤k}

(am.(S1 | . . . S ′i | . . . Sk)) | Sk+1

+
∑

{(S′i,S
′
j) | Si

a→m S′i ∧ Sj
a→m S′j ,1≤i,j≤k}

(τm.(S1 | . . . S ′i | . . . S ′j | Sk)) | Sk+1

'
∑

{(am,S′i) | Si
a→m S′i,1≤i≤k+1}

am.(S1 | . . . S ′i | . . . Sk | Sk+1)

+∑
{(S′i,S

′
j) | Si

a→m S′i ∧ Sj
a→m S′j ,1≤i,j≤k+1}

τm.(S1 | . . . S ′i | . . . S ′j | Sk | Sk+1)

which completes the proof. 2

A.5 Proofs from Chapter 6

Proposition A.1 (Proposition 6.3)

(F1 ∨ F2) + F3 ≡ (F1 + F3) ∨ (F2 + F3)

Proof: We have

[[(F1 ∨ F2) + F3]] = {p | ∃p1 ∈ [[F1 ∨ F2]],∃p2 ∈ [[F3]] : p ∼ p1 + p2}
= {p | ∃p1 ∈ [[F1]],∃p2 ∈ [[F3]] : p ∼ p1 + p2}
∪{p | ∃p1 ∈ [[F2]],∃p2 ∈ [[F3]] : p ∼ p1 + p2}

= [[F1 + F3]] ∪ [[F2 + F3]]

establishing the proof. 2

Proposition A.2 (Proposition 6.4)

a3.F ≡ a2.F ∨Nil
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Proof:

[[a3.F ]] = {p | p b→ p′ ⇒ (b = a ∧ p′ ∈ [[F ]])}
[[a2.F ∨Nil]] = {p | p ∼ nil} ∪ {p | p a→ ∧ (p

a→ p′ ⇒ b = a ∧ p′ ∈ [[F ]])}

are seen to coincide, since p 6 b→ means p ∼ nil. 2

Proposition A.3 (Proposition 6.5)

a2.F1 ∨ F2 ≡ a2.F1 ∨ a2.F2 ∨ (a2.F1 + a2.F2)

Proof: We here have

[[a2.(F1 ∨ F2)]] = {p | p a→ ∧ (p
b→ p′ ⇒ (b = a ∧ p′ ∈ [[F1 ∨ F2]]))}

[[a2.Fi]] = {p | p a→ ∧ (p
b→ ⇒ (b = a ∧ p′ ∈ [[Fi]]))}, 1 ≤ i ≤ 2

[[a2.F1 + a2.F2]] = {p | ∃pi ∈ [[Fi]], 1 ≤ i ≤ 2 : (pi
a→ ∧ (p

b→ p′ ⇒
(b = a ∧ p′ ∈ [[Fi]]))) ∧ p ∼ p1 + p2}

2

In the following we refer to the rules and axioms of the proof system in
Table 6.3.

In the proof of Theorem A.4 we need these easily established lemmae con-
cerning the provability of semantic equality in Sp∨ . The lemmae generalize
proof rules D1-D3. Since the proofs all consist in induction in the size of
the disjunction using D1-D3 successively along with P1-P4 and C1-C3, the
proofs are omitted.

Lemma A.6

` (
n∨
i=1

Gi) +H ≡
n∨
i=1

(Gi +H)

Lemma A.7

` a2.
n∨
i=1

Gi ≡
∨
I∈K

(
∑
j∈I

a2.Gj)

where K = {I | I ⊆ {1, . . . , k}, I 6= ∅}.

Lemma A.8

` a3.
n∨
i=1

Gi ≡
∨
I∈K

(
∑
j∈I

a2.Gj)

where K = {I | I ⊆ {1, . . . , k}}
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Lemma A.9

`
n1∨
i=1

Gi +
n2∨
j=1

Hj ≡
n1∨
i=1

n2∨
j=1

(Gi +Hj)

Theorem A.4 (Theorem 6.3) For any G ∈ Sp∨, there exist F1, . . . , Fn ∈
Sp2 such that

` G ≡
n∨
i=1

Fi

Proof: A structural induction on G.

G = Nil: n = 1, F1 = Nil.

G = a2.G1: By induction hypotheses we have ` G1 ≡
∨k
i=1 F

′
i with F ′i ∈ Sp2.

By Lemma A.7 and we have by use of P2, P4, and C2 that

` a2.
k∨
i=1

F ′i ≡
∨
I∈K

(
∑
j∈I

a2.F
′
j)

where I ⊆ {1, . . . , k} with I 6= ∅. This is of the desired form.

G = a3.G1: As in the previous case, just use Lemma A.8 instead.

G = G1 ∨G2: Assume

` G1 ≡
n1∨
i=1

F1i and ` G2 ≡
n2∨
j=1

F2j

Then O5 used twice and P3 yield

` G ≡
n1+n2∨
i=1

Fi

which is an expression of the desired form.

G = G1 +G2: Assume as before

` G1 ≡
n1∨
i=1

F1i and ` G2 ≡
n2∨
j=1

F2j

Then, by C3 used twice, P3, and Lemma A.9 we get the desired result.
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This ends the proof. 2

Proposition A.4 (Proposition 6.6)

m∨
i=1

Fi ≡
n∨
j=1

Gj

if and only if
∀j∃i : Fi ≡ Gj,∀i∃j : Gj ≡ Fi

where ∀i, j : Fi, Gj ∈ Sp2.

Proof:

If: Obvious.

Only if: By Proposition 6.2 we have for all i that [[Fi]] = {p | p ∼ p2(Fi)}
and likewise for Gj. Since equivalence classes are either identical or
disjoint, this must mean that for all Fi we have a Gj such that Fi ≡ Gj.

2

Proposition A.5 (Proposition 6.7) If ∀i ≤ m∃j ≤ n : ` Fi ≡ Gj and
∀j ≤ n∃i ≤ m : ` Fi ≡ Gj we have

`
m∨
i=1

Fi ≡
n∨
j=1

Gj

Proof: By P3 we get that

∀i ≤ m∃j ≤ n : ` Fi ⊆ Gj and ∀j ≤ n∃i ≤ m : ` Gj ⊆ Fi

implying by O4 that

∀i ≤ m : ` Fi ⊆
n∨
j

Gj and ∀j ≤ n : ` Gj ⊆
m∨
i

Fi

which by repeated use of O5 and O1 yields

`
m∨
i=1

Fi ⊆
n∨
j=1

Gj and
n∨
j=1

Gj ⊆
m∨
i=1

Fi

which by P3 gives the desired result. 2
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