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Abstrat:This report deals with the devel-opment of a general framework forCompositional Bakwards Reaha-bility (CBR) and with the veri�-ation of reahability properties onTimed Automata Networks (TAN).The CBR method is developed onthe basis of a series of �ner and�ner partitionings of the state-spae. Two di�erent CBR algo-rithms are presented and provenorret. The domain of TAN, whihis a real-time model, is desribed.The symboli DBM-based analysisof Timed Automata used in exist-ing veri�ation tools, like Uppaal isexplained. The seond of the CBRalgorithms is applied to the domainof TAN. Several extensions to thedomain are disussed, and a test im-plementation of the basi method isdeveloped. This implementation isused to obtain some experimentalresults. Finally future work is dis-ussed and a onlusion is drawn.
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1 IntrodutionThis hapter �rst motivates the work by explaining the problem at hand.After this the work is put into the ontext of related work. Finally therelation to the previous report [Lar02℄ is desribed together with an outlineof the report.
1.1 MotivationWhen trying to verify properties of parallel ompositions of several ompo-nents, the main problem is the fat that the state-spae grows exponentiallyin the number of omponents, known as state-spae explosion. When extend-ing the models from disrete to timed models the state-spae inreases evenfurther in size. This report fouses on yet another way to handle the state-spae explosion problem in the presene of time. The underlying patentedmethod, alled Compositional Bakwards Reahability (CBR), was �rst pre-sented in [LNAB+98℄ where it was developed for a disrete model alledstate/event systems. The goal of this report is to ontinue the work from theprevious report of extending the CBR method to a new domain of problems,namely veri�ation of real-time models. When modeling ontinuous real-timethe state-spae beomes not just larger but in fat in�nite. However, the in�-nite state-spae an be redued to a �nite one by using symboli tehniques torepresent and manipulate ertain relevant subsets of the state-spae. Thesesubsets are known as Zones. This tehnique is well known, and implementedin the veri�ation toolUppaal [LPY97℄ that an verify safety and reahabil-ity properties of real-time models desribed as Timed Automata (TA). In thenewest version Uppaal one an also verify ertain general liveness proper-ties. In this report we ombine the notion of Zones with the CBR method todevelop CBR for TA. Uppaal is developed in ooperation between AalborgUniversity and Uppsala university. The soure ode for Uppaal has beenused as a basis in the development of a test implementation of the methoddesribed in this report. 9



10 Introdution1.2 Related WorkThis setion ontains a disussion of related work. All the work mentionedin this setion deals in some way with handling the state-spae explosionproblem. First we desribe some tehniques developed for veri�ation ofdisrete systems. After this we disuss how these methods an or has beenextended to apply to real-time systems. Some of the itations in this relatedwork setion has been found in [Kat98℄ by Joost-Pieter Katoen.The main inspiration for this projet is the artile [LNAB+98℄, in whihthe CBR method is developed and applied to a disrete model. This, laterpatented, method was developed spei�ally for the industrial veri�ationtool visualStateTM, whih is used in the development of embedded systems.In this tool a number of prede�ned heks is performed on the model enteredby the user. CBR outperformed not only the traditional forward analysis thatwas implemented in the tool, but also the urrent state of the art symboliBDD-based methods. Models that ould not be veri�ed earlier beause ofthe state-spae explosion, an be veri�ed using CBR. The strength of CBRis it's ompositionality, whih is losely linked to the fat that it performsbakwards veri�ation. This means that in many ases a muh smaller partof the state-spae has to be heked before a solution is found.When verifying ontinuous real-time models the state-spaes to be analyzedare in�nite. This an be handled by partitioning the ontinuous part of thestate-spae into so-alled regions. Regions are subsets of the state-spae, suhthat every pair of states form a region annot be distinguished by the model.If a region is split in two, the two parts would be indistinguishable by theonstraints and guards in the model. This reates a �nite but very large state-spae. A better solution is to represent onvex unions, so-alled Zones, of suhregions. Theoretially there are even more Zones than regions, but a muhsmaller number of these will ever be onsidered in pratie during analysisof real systems. The suess of Zones depends on the eÆient data-strutureDi�erene Bounded Matries (DBMs) used to represent the Zones and theeÆient operations de�ned on this data-struture. This is the tehnologyimplemented in the tools Uppaal and Kronos [BDM+98℄.Another tehnique that has signi�antly inreased the size of disrete sys-tems that an be veri�ed is the Binary Deision Diagram (BDD) tehnique�rst introdued by Bryant [Bry86℄[K.L93℄. The BDD tehnology has beenextended to Clok Di�erene Diagrams (CDDs) to apply to the veri�ation ofreal-time systems [BLP+99℄. It gives redution in the size of the state-spaerepresentation but not in the time used for veri�ation.Another tehnique to limit the state-spae explosion problem is partial orderredution [God96℄. Many di�erent but equivalent interleavings are onsidered10



Introdution 11at one, by only unfolding one of the interleavings, hereby reduing the state-spae explosion. Partial order redution has also been attempted applied toveri�ation of real-time systems but without great suess [Min99℄.The �rst goal of this report is to generalize the CBR method suh that it anbe applied to many possible domains. The seond goal of this report is toshow the feasibility of reating a veri�ation tool for Timed Automata (TA)based on the ompositional bakwards method for reahability analysis. Thisis done by ombining the well known DBM tehnology with the CBR methodin a test implementation. This implementation is then used to obtain someexperimental data.1.3 Relation to Previous Report and OutlineThis setion desribes how this report is related to the previous report andgives an outline of the following hapters. The work in this report an be seenas an extension of the previous report, in whih a generalization of the CBRmethod was presented. After this the domain of Timed Automata (TA) wasdesribed. Finally the CBR method was applied to the domain of TA. TheCBR framework developed in the former report was not general enough andhad to be adjusted, when applied to the domain of TA. Some parts of theprevious report has been inluded without substantial hanges. This inludeshapters 3 and 4, and parts of hapter 5. This is the setions that desribethe domain of TA. The CBR framework, whih is ompletely redesigned,is presented in hapter 2. It generalizes the CBR method and shows theorretness of two di�erent CBR algorithms, eah appliable to their owntype of domains. Chapter 3 de�nes the model of Timed Automata (TA).The symboli analysis of TA and the algorithm implemented in Uppaal isdesribed in hapter 4. In hapter 5 we proeed to apply the CBR methodto the model of TA. Chapter 6 desribes some extension to the model of TA,and how these would e�et the CBR for TA method. The development ofa test implementation of the CBR for TA method is desribed in hapter 7.This test implementation is used to obtain some experimental results, whihare disussed in hapter 8. Future work and onlusion is inluded in hapter9.
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2 CBR in GeneralIn this hapter we will �rstly desribe what bakwards reahability anal-ysis is. After this we will desribe the onept of ompositional bakwardsreahability (CBR). Setion 2.3 ontains the entral de�nitions and theoremsneeded for the CBR algorithm. Two versions of the CBR algorithm will bepresented, and the orretness of both will be proven. Finally the di�erenesbetween the original CBR method and the one developed in this report, aredesribed in setion 2.5. In this setion we also desribe di�erenes from theframework developed in the previous report [Lar02℄.2.1 Reahability AnalysisIn this setion we desribe the basi onept of reahability analysis. Wede�ne reahability and reahability analysis on general transition systems,where transition system is de�ned in the following manner.De�nition 2.1 : Transition System(ST;�!), where ST is a set of states (�nite or in�nite) and �!� ST � STis a transition relation.Eah transition has a soure state and a target state. The soure state is the�rst ST omponent and the target state is the seond ST omponent. If wehave the transition (s; t) 2�! we write s �! t. When writing a sequene oftransitions we write s1 �! s2 �! s3 instead of s1 �! s2; s2 �! s3. We nowde�ne what it means for a state to be reahable.De�nition 2.2 : ReahabilityGiven a set of initial states Init � ST and goal states Goal � ST we de�neGoal to be reahable if there is a transition sequenes0 �! s1 �! s2 �! : : : �! sn13



14 CBR in Generalwith s0 2 Init and sn 2 Goal.There are two fundamental ways of deiding reahability: Forward and bak-wards. The two methods an also be ombined. We desribe eah of thepossibilities in the following three setions.2.1.1 ForwardIn the forward reahability analysis we start with the set of states Init anditeratively ompute the set of reahable states in steps as illustrated in �gure2.1. State spaeInit F1 F2 GoalFigure 2.1: Forward Reahability AnalysisWe use the following formulas to ompute eah new step:F0 = InitFn = Fn�1 [ Post(Fn�1) for n > 0where for S � ST; Post(S) = fs0 2 ST j 9s 2 S:s �! s0g.If at any point Fn\Goal 6= ; we know that we have a sequene of transitionsthat an bring us from a state in Init to a state in Goal. Hene we terminatewith a positive answer. If we have Fn = Fn+1 we have reahed a �x pointand we know that no transitions an take us out of the set Fn. This leadsus to terminate the algorithm with the answer that, there is no sequene oftransitions that an bring us from Init to Goal.2.1.2 BakwardsThe main di�erene between forward and bakwards reahability analysis isthe set of states that we start with. We again want to know if there is asequene of transitions that an bring us from a state in Init to a state inGoal, but this time we start with Goal and ompute the set of states that an14



CBR in General 15reah Goal. First the states that an reah Goal by taking one transition,then two transitions, and so on. This is illustrated in �gure 2.2.State spaeInit B2 B1 GoalFigure 2.2: Bakwards Reahability AnalysisIn forward analysis, we know that all the states we explore are reahablestates. In bakwards analysis we an have both reahable and unreahablestates in our set of states. We use the following formulas to alulate thesteps: B0 = GoalBn = Bn�1 [Pre(Bn�1)where for S � ST; Pre(S) = fs 2 ST j 9s0 2 S:s �! s0g.Again we have two termination onditions. The algorithm terminates witha positive answer if, at any point, Bn and Init interset. The algorithmterminates with a negative answer if we reah a �x-point, Bn = Bn�1.2.1.3 CombinedThe two previously desribed methods an be ombined, by doing forwardand bakwards reahability analysis in parallel. For eah step we hek forintersetion between the two sets Fn and Bn. If these two sets interset ina state s we know that we have a sequene of transitions leading from Initto s and a sequene of transitions leading from s to Goal, and hene Goal isreahable from Init. This method may give a faster positive answer but hasthe same negative termination onditions as the other two methods. One ofthe sets has to reah a �x-point in order for us to onlude that Goal annotbe reahed from Init.2.2 The CBR ConeptIn this setion we will �rst give a short desription of how CBR works. Afterthis we give some intuition about why the method was developed.15



16 CBR in GeneralCompositional Bakwards Reahability (CBR) is based on traditional bak-wards reahability as presented in the previous setion. It onsists of a num-ber of steps, eah resembling one run of the onventional bakwards reaha-bility analysis. The result of eah step is an under-approximations of the setof states that an reah Goal. After eah step we hek for intersetion be-tween the urrent under-approximation and Init. If the two sets interset wehave found a path leading from some state in Init to some state in Goal, andthe algorithm terminates with a positive answer. If there is no intersetionwe have to alulate a new and larger under-approximation. This proess isontinued until the two sets interset or the under-approximation no longeris an under-approximation, but the full set of states that an reah Goal. Ifthe full set does not interset with Init we know that no path exists fromInit to Goal and the algorithm terminates with a negative answer.An important fator in the eÆieny of the method is the fat that the endresult of one step an be used as the starting point of the next step. Figure2.3 illustrates two suh alulations of under-approximations. The end resultof the �rst step, shown in the top part of the �gure, is used as the startingpoint of the seond step, shown in the bottom part of the �gure.State spaeInit Bn � � � B1 GoalState spaeInit NewGoal = BnU1Un � � �Figure 2.3: Calulation of two under-approximations.This approah of stepwise under-approximation, was developed to ope withvery large systems, onsisting of many omponents in parallel. In the originaldomain of State/Event systems, eah of the omponents, is in itself a transi-tion system. The idea was, to only look at a subset of the omponents, andsee if this subset ould reah Init bakwards, without involving the otheromponents. If these omponents ould not reah Init extra omponentswere taken into onsideration, until all omponents, or rather a dependeny16



CBR in General 17losed set of omponents, were onsidered. The original CBR method useda onept of having an index set of the omponents. This index set was in-reased to give larger and larger under-approximations. This onept will inthis report be replaed by a more general onept of partitioning the state-spae into �ner and �ner partitions. The onept of partitioning will be thetopi of the next setion. The alulation of a series of under-approximationsan theoretially lead to slower negative termination, but more likely also toa muh faster positive termination. The eÆieny of the method also de-pends on the fat that, these under-approximations an be represented andhandled easily.2.3 PartitioningIn this setion we will develop the formal foundation for the CBR method.The idea is to use a suession of �ner and �ner partitionings of the state-spae ST , to under-approximate the set of states that an reah Goal. Byre�nement of the partitioning, hene enlarging the under-approximation, wewill get loser and loser to the full set of states that an reah Goal.Intuitively partitioning an be desribed as splitting the state-spae into anumber of disjoint parts. For some domain we will have an in�nite numberof partitions in eah partitioning. Formally we de�ne a partitioning in thefollowing way.De�nition 2.3 : PartitioningP = fSti j i 2 Ig is a partitioning of the state-spae ST if the followingthree onditions hold:1. SfSti j i 2 Ig = ST2. 8i Sti 6= ;3. Sti \ Stj = ; when i 6= j
One an talk of one partitioning being �ner than another. We de�ne a partialorder on the set of all partitionings. 17



18 CBR in GeneralDe�nition 2.4 : Ordering of PartitioningsWe say that P is �ner than Q that is P v Q if8i 2 I 9j 2 J : Sti � St0jwhere P = fSti j i 2 Ig and Q = fSt0j j j 2 JgFigure 2.4 illustrates two partitionings P and Q where P is �ner than Q.State spae QP and
Figure 2.4: Two partitionings P v QIt is worth notiing that, beause v is a partial order, not all pairs of parti-tionings an be ordered. When using the CBR method, we will start with aninitial partitioning P0 and from that reate �ner and �ner partitionings, untilwe have a partitioning, in whih all states in eah partition are bisimilar. This�nal partitioning Pstable will be de�ned later. The only requirement for theinitial partitioning is that Goal is P0 sorted. The suession of partitioningsould be written as follows: P0 w P1 w : : : w Pn w PstableNow we de�ne the notion of P-equivalene.De�nition 2.5 : P-equivalenes �P t () 8i:(s 2 Sti () t 2 Sti) where P = fSti j i 2 IgThe equivalene lasses generated by a spei� �P equivalene, exatly fol-lows the partitions of the orresponding partitioning P.We say that a subset H of the state-spae is P-sorted if, for the given par-titioning P, no partition intersets both with H and the omplement of H.This is formally de�ned in the following way:18



CBR in General 19De�nition 2.6 : P-sortednessLet P = fSti j i 2 Ig and let H � ST . We say that H is P-sorted if8s; s0 2 ST:s 2 H ^ s �P s0 ) s0 2 H:In orrespondene with Pre(S) de�ned in setion 2.1.2 we de�ne the P-sorted predeessors.De�nition 2.7 : PreP(H)PreP(H) = fs 2 ST j 8t �P s:9t0 2 H:t �! t0gThis means that if one state t an take a transition into H, then every otherstate that is �P equivalent with t must also be able to take a transition intoH, before this partition, �P equivalene lass, is inluded in PreP(H). Weillustrate this in �gure 2.5. As this de�nition imposes an extra ondition, inomparison with the original Pre, it an only return a set of states that isequal to, or smaller than, the set of states returned by the original predeessorfuntion. This means that we obtain an under-approximation.State spae�Ps t t0u u0 H� 9Figure 2.5: Illustration of PreP(H).Here it is not neessary to require that H is P-sorted. This requirement willbe added when extending it to the Pre�P(H) funtion, where it is neededbeause H itself is inluded in the result.This de�nition atually gives us one predeessor funtion for eah partition-ing P. We will in turn use eah of these funtions in our CBR algorithm aswe re�ne the partitionings.Lemma 2.8PreP(H) is P-sorted 19



20 CBR in GeneralThe proof of lemma 2.8 is very simple.Proof of of lemma 2.8 � � � � � � � � � � � � � � � � � � �We show that whenever s 2 PreP(H) and t �P s then t 2 PreP(H). Thuswe must show that u �! u0 for some u0 2 H whenever u �P t. Beause �Pis an equivalene relation, whenever we have that u �P t (and t �P s) wean also onlude that u �P s, and as s 2 PreP(H) it follows that indeedu �! u0 for some u0 2 H.� � � � � � � � � � � � � � � � � � � � � � � � � � � � �The following lemma states that the PreP operation is monotoni with re-gard to the input set.Lemma 2.9PreP(H1) � PreP(H2) if H1 � H2The proof of lemma 2.9 only uses the de�nition of PreP and the fat thatH1 � H2.Proof of lemma 2.9 � � � � � � � � � � � � � � � � � � � �Let s 2 PreP(H1). Then t �! t0 for some t0 2 H1, for all t �P s. But asH2 � H1 we also have that t �! t0 for some t0 2 H2 for all t �P s, and henes 2 PreP(H2).� � � � � � � � � � � � � � � � � � � � � � � � � � � � �2.3.1 Central TheoremsIn this setion we will present the three entral theorem: 2.15, 2.16, and2.18. These theorems are needed in the onstrution of the CBR algorithm.First we present lemmas 2.10 and 2.13, whih are simpler versions of respe-tively theorem 2.15 and theorem 2.16. After this the Pre�P operation will beintrodued and the three �nal lemmas will be proved.In all of the following we will use two partitionings P and Q. The partition-ing P is �ner than Q whih an be expressed in the following way; P v Q.Lemma 2.10PreQ(H) � PreP(H) where P v Q20



CBR in General 21Lemma 2.10 states that PreP(H) is monotoni with regard to how �ne thepartitioning P is. If the partitioning beomes �ner the resulting set an onlybeome larger. This follows the intuition that if we re�ne the partitioningthe under-approximation beomes better.Proof of lemma 2.10 � � � � � � � � � � � � � � � � � � � �Let s 2 PreQ(H). Then t �! t0 for some t0 2 H, for all t �Q s. Howeveras P is a �ner partitioning than Q, giving us �P��Q, we also have thatt �! t0 for some t0 2 H, for all t �P s. Thus s 2 PreP(H).� � � � � � � � � � � � � � � � � � � � � � � � � � � � �For the next entral lemma we need the following lemma.Lemma 2.11PreP � Pre(H)Lemma 2.11 states that any under-approximation of the set of predeessorswill be inluded in the full set of predeessors.Proof of lemma 2.11 � � � � � � � � � � � � � � � � � � � �Assume s 2 PreP(H). Then t �! t0 with t0 2 H for all t �P s. In partiu-lar, s �! s0 for some s0 2 H (beause s �P s). Then s 2 Pre(H).� � � � � � � � � � � � � � � � � � � � � � � � � � � � �For the next lemma we need a partitioning Pstable, with a ertain property.For this we �rst need to de�ne the bisimulation BGoal, whih depends on thetransition system and the set of goal states Goal.De�nition 2.12 : Bisimulation BGoalBGoal is a bisimulation if whenever (s; t) 2 BGoal then the following threeonditions hold:1. s 2 Goal () t 2 Goal2. s �! s0 ) 9t0:t �! t0 ^ (s0; t0) 2 BGoal3. t �! t0 ) 9s0:s �! s0 ^ (s0; t0) 2 BGoalThis de�nes all pairs of states that are bisimilar. We all a partitioning stableif all states in eah partitioning are bisimilar. This does not desribe exatly21



22 CBR in Generalone partitioning. For a given domain, the requirement is that we �nd onepartitioning Pstable with the give property. An example of a relation thatgives us a stable partitioning is the identity relation Id = f(s; s) j s 2 STg.Lemma 2.13PrePstable(H) = Pre(H) where H is Pstable sortedLemma 2.13 is needed in order to guarantee that, if we partition the state-spae down to bisimulation, we will get the same result as with traditionalbakwards reahability analysis.Proof of lemma 2.13 � � � � � � � � � � � � � � � � � � � �We split the proof into two parts:�: follows from lemma 2.11.�: Let s 2 Pre(H). Then s �! s0 with s0 2 H. Now let t � s. Then t �! t0for some t0 with t0 � s0 (by de�nition of �). But H was assumed to bePstable sorted and hene t0 2 H. It follows that s 2 PrePstable(H).� � � � � � � � � � � � � � � � � � � � � � � � � � � � �We now de�ne the Pre�P operation and prove lemmas 2.10 and 2.13 in theirnew form. Intuitively PrenP(H) is all the states that an reah H in exatlyn transitions. From this we de�ne Pre�P(H) to be all the states, that anreah H in any number of transitions.De�nition 2.14 : Pre�P(H)For any given partitioning P we de�ne Pre�P(H) as the union:Pre�P(H) = 1[n=0PrenP(H)where PrenP is de�ned reursively by the following formulas:Pre0P(H) = HPren+1P (H) = PreP(PrenP(H))and H is required to be P-sorted. 22



CBR in General 23The above de�nition an also be applied to the original predeessor funtionPre(H) to obtain a de�nition of Pren(H) and Pre�(H). The notationPre�(H) will be used in theorem 2.18 and Pren(H) will be used in theproof of theorem 2.18. For Pre�P(H) to be P-sorted we have to require thatH is P-sorted beause H itself is inluded in Pre�P(H).The following theorem states that whenever we re�ne the partitioning wewill obtain an under-approximation that is a superset of the previous one.The left side uses the oarser partitioning Q and this set is a subset of theright side that uses the �ner partitioning P.Theorem 2.15Pre�Q(H) � Pre�P(H) where P v QThe proof of theorem 2.15, whih is an indution proof, uses lemma 2.10 andlemma 2.9. Lemma 2.10 is similar to theorem 2.15 exept for the stars, whilelemma 2.9 states that the PreP(H) operation is monotoni with regard tothe input set H.Proof of theorem 2.15 � � � � � � � � � � � � � � � � � � �The theorem obviously follows from the from the fat that PrenQ(H) �PrenP(H) for all n. We prove this by indution in n.Basis n = 0: By the de�nition ofPrenP we an rewritePre0Q(H) � Pre0P(H)to H � H whih is obviously true.Step: Assume PrenQ(H) � PrenP(H) (IH) thenPren+1Q (H) = PreQ(PrenQ(H)) � by lemma 2:9 and (IH)PreQ(PrenP(H)) � by lemma 2:10PreP(PrenP(H)) = Pren+1P (H):Now we have proven that 8n:PrenQ(H) � PrenP(H).� � � � � � � � � � � � � � � � � � � � � � � � � � � � �We now extend lemma 2.13 by replaing PrePstable with Pre�Pstable and Prewith Pre�.Theorem 2.16Pre�Pstable(H) = Pre�(H) where H is P-sortedTheorem 2.16 now states that no matter how many bakwards steps we take,with the �nal partitioning Pstable of the state-spae, the result will never23



24 CBR in Generaldi�er from that obtained using the original predeessor funtion. The prooffor theorem 2.16 follows the struture of proof for theorem 2.15.Proof of theorem 2.16 � � � � � � � � � � � � � � � � � � �The theorem learly follows from the fat that PrenPstable(H) = Pren(H) forall n. We prove this by indution in n.Basis n = 0: By the de�nition of PrenP we an rewrite Pre0Pstable(H) =Pre0(H) to H = H whih is obviously true.Step: Assume PrenPstable(H) = Pren(H) (IH) thenPren+1Pstable(H) =PrePstable(PrenPstable(H)) = by lemma 2:13 and (IH)PreP(PrenP(H)) = Pren+1P (H):Hene we have proved that PrenPstable(H) = Pren(H) holds for all n.� � � � � � � � � � � � � � � � � � � � � � � � � � � � �For the �nal entral theorem we need an extended version of the monotoni-ity lemma 2.9, whih uses Pre�P instead of PreP .Lemma 2.17Pre�P(H1) � Pre�P(H2) when H1 � H2As for the previous proof, the proof of lemma 2.17 follows the struture ofthe proof for theorem 2.15.Proof of lemma 2.17 � � � � � � � � � � � � � � � � � � � �The lemma follows learly from the fat that PrenP(H1) � PrenP(H2) for alln whenever H1 � H2. We prove this by indution in n.Basis n = 0: By the de�nition ofPrenP we an rewritePre0P(H1) = Pre0P(H2)to H1 � H2 whih is obviously true.Step: Assume PrenP(H1) � PrenP(H2) (IH) thenPren+1P (H1) =PreP(PrenP(H1)) � by monotoniity (lemma 2:9) and (IH)PreP(PrenP(H2)) = Pren+1P (H2):This is exatly lemma 2.9 and hene we have proved that PrenP(H1) �PrenP(H2) holds for all n when H1 � H2.� � � � � � � � � � � � � � � � � � � � � � � � � � � � �24



CBR in General 25The following and �nal of the three entral lemmas lets us reuse states thathas already been alulated. If one set of predeessors has been alulated us-ing partitioningQ, it an be used as the starting point of the next alulationusing a �ner partitioning P.Theorem 2.18Pre�P(H) = Pre�P(Pre�Q(H)) where P v QThe following proof onsists of two parts, where the seond of them oneagain follows the struture of the proof for theorem 2.15.Proof of theorem 2.18 � � � � � � � � � � � � � � � � � � �We want to prove that Pre�P(H) = Pre�P(Pre�Q(H)) for two partitioningsP and Q where P v Q. We onsider the two inlusions.�: Obviously H � Pre�Q(H) and Pre�P is monotoni with respet to the in-put set aording to lemma 2.17. Hene we an onlude thatPre�P(H) �Pre�P(Pre�Q(H)).�: The inlusion follows from the fat that Pre�P(H) � PrenP(Pre�Q(H))for all n. We prove this by indution in n.Basis n = 0: In this ase Pre�P(H) � Pre0P(Pre�Q(H)) redues toPre�P(H) � Pre�Q(H) whih is exatly theorem 2.15.Step: Assume Pre�P(H) � PrenP(Pre�Q(H)) (IH) thenPren+1P (Pre�Q(H)) =PreP(PrenP(Pre�Q(H))) � by monotoniity (lemma 2:9) and (IH)PreP(Pre�P(H)) � Pre�P(H)The last inlusion follows from the fat that we have a �nite par-titioning of the state-spae. So Pre�P(H) will onverge within�nitely many steps.Hene we have proved that 8n:Pre�P(H) � PrenP(Pre�Q(H)).Having proved the two inlusions we an onlude the orretness of theorem2.18.� � � � � � � � � � � � � � � � � � � � � � � � � � � � �Having proved the three entral theorems 2.15, 2.16, and 2.18 we an nowgive the CBR algorithm and prove the orretness of it.25



26 CBR in General2.4 CBR AlgorithmsIn this setion we will present two versions of the CBR algorithm. The�rst algorithm, whih is also the simplest, resembles the original algorithmfrom the paper [LNAB+98℄. The seond one is needed when only ertainsubsets of the state-spae an be represented eÆiently. Suh subsets arealled representable symboli states and are explained in setion 2.4.2. Therevised, seond algorithm is desribed in the last subsetion.2.4.1 Simple AlgorithmIn this setion we present and prove the orretness of the simple CBR al-gorithm. The algorithm is shown in �gure 2.6. The input for the algorithmis a transition system (ST;�!) and two sets of states Goal and Init, suhthat Goal and Init both are subsets of the state-spae ST .Reahable((ST;�!); Goal; Init)Selet P suh that Goal is P-sortedR GoalrepeatRnew  Pre�P(R)/* Chek for early positive termination. Theorem 2.15 */if Init \ Rnew 6= ; then return TRUE/* Chek for negative termination. Theorem 2.16 */if P = Pstable then return FALSEP  P 0 suh that Pstable v P 0 v P:/* Reuse of previously omputed states. Theorem 2.18 */R Rnewforever Figure 2.6: Original CBR algorithmThe algorithm gives a formal de�nition of the proedure that was desribedin setion 2.2. First the initial partitioning is seleted suh that Goal isP-sorted. After this Goal is assigned to R. The two variables R and Rnew26



CBR in General 27ontain unions of partitions from the urrently used partitioning P and anyof the previously used, oarser partitionings. In the top of the loop the newontents of Rnew is alulated from R using the urrent partitioning. Theresult is then tested for intersetion with Init, for positive termination. Ifwe have reahed the �nal partitioning Pstable we terminate with a negativeanswer, else we selet a �ner partitioning, that is still no �ner than Pstable.Rnew is then assigned to R and we start from the top again. The loop isrepeated until one of the two termination onditions is ful�lled.CorretnessWe want to onlude that the algorithm is orret. This onsist of two parts;onluding that it always terminates and that it terminates with the orretanswer.To onlude that the algorithm always terminates we �rst need to onlude,that we an only run through the loop �nitely many times. This is guar-anteed by having a �nite number of partitionings that are used. This is arequirement that must be taken are of for eah domain to whih the methodis applied. The �nite number of partitions guarantee that we, at some point,will end up with P = Pstable and terminate with a negative answer. Seondlywe require that Pre�P(R) an be omputed e�etively and hene always ter-minates. If these two requirements are ful�lled, for the domain to whih themethod is applied, we an onlude that the algorithm always terminates.Now we will prove that the algorithm will terminate with the orret answer.Throughout omputation P assumes a sequene of values P0 v P1 v : : : vPn = Pstable. SimilarlyRnew assumes a sequene of valuesR0new; R1new; : : : ; Rnnew.We laim that 8i:Rinew = Pre�Pi(Goal).We prove this by indution in i.Basis i = 0: The �rst time we enter the loop we have that R = Goal andP = P0. Rnew is given to be exatly Pre�P(R) so R0new = Pre�P0(Goal).Step: Assume Rnnew = Pre�Pn(Goal) (IH) thenRn+1new = Pre�Pn+1(Rnnew)= Pre�Pn+1(Pre�Pn(Goal)) by IH= Pre�Pn+1(Goal) by theorem 2.18 and Pn+1 v PnBy having shown this we an onlude by theorem 2.16 that for the �nalpartitioning Pn = Pstable we have Rnnew = Pre�Pstable(Goal) = Pre�(Goal).So if there is a path leading from Init to Goal the hek for intersetion27



28 CBR in GeneralInit \ Rnew will guarantee that the algorithm terminates with a positiveanswer. Now we need to argue that the algorithm annot terminate with apositive answer if there is no path. The only way the algorithm an terminatewith a positive answer is if Rnew intersets with Init so by proving that8i:Rinew � Pre�(Goal). This an be onluded from the previous proof andtheorem 2.15.RequirementsThe requirements that this algorithm enfores on a domain, to whih it anbe applied, are the following; a transition system, with a stable partitioningPstable, a �nite sequene of partitionings of the state-spae, and an eÆientlyalulable predeessor funtion, for eah partitioning.For the algorithm to work eÆiently there are some extra requirements.Firstly the possibility of representing arbitrary unions of partitions eÆiently,suh that the predeessor funtion an be omputed diretly on the repre-sentation yielding a new union of partitions. Seondly an eÆient way ofheking for intersetion between suh a representation and Init. Finally thepartitionings should be made in a sensible way, suh that there is a hane,that intersetion an be obtained without always reahing the �nest possiblepartitioning Pstable.2.4.2 Symboli StatesThe purpose of this setion is to motivate the need for the revised algorithmpresented in the next setion, and de�ne the onept of representable sym-boli state, used in the revised algorithm.In some domains, in partiular the domain of Timed Automata, to whihwe will apply the CBR method, it is only possible to eÆiently representertain subsets of the state-spae. We will all these subsets of the state-spaerepresentable symboli states RSS. Furthermore the predeessor funtionoperates on one suh representable symboli state at a time, and gives asresult a list of representable symboli states. This does not diretly �t theframework of the simple algorithm, beause the assumption here is that allpredeessors an be alulated in one step.The idea is that the symboli state represents a set of onrete states. Thereis no restrition on how many onrete states a symboli state an represent.This depends entirely on the domain. In fat, in the domain of Timed Au-tomata, eah symboli state represents an in�nite set of symboli states. Aset of representable symboli states must satisfy the following properties:28



CBR in General 29Assumption 2.19 : Representable Symboli States RSSA set of representable states RSS � P(ST ) must have the following hara-teristis:� RSS must be �nite.� Goal an be represented as a union of representable symboli states.Goal =[i2I Jisuh that Ji 2 RSS and I is �nite.
When using representable symboli states we will need a predeessor funtionthat from one symboli state J delivers as output a �nite set of representablesymboli states. In the following we formally state the obvious extra require-ment that the output set of symboli states must over the set of states thatthe original predeessor funtion would have given.Assumption 2.20 : Requirements for SymPreP(J )Given a symboli state J 2 SST and a partitioning P the following musthold: SymPreP(J ) = fJ1; : : : ;Jmg+m[i=1Ji � PreP(J )For the �nal partitioning Pstable the following must also hold:SymPrePstable(J ) = fJ1; : : : ;Jmg+m[i=1Ji = PrePstable(J )29



30 CBR in GeneralReahable((ST;�!); Init; Goal)Selet P suh that Goal is P-sortedWait GoalrepeatPassed := fgrepeatbeginget symboli state J from Waitif J \ Init 6= ; then return TRUEelse if J 6� J 0 for all J 0 2 Passed thenbeginadd J to PassedNext := SymPreP(J )for all J in Next doput J to Waitendenduntil Wait = fgif P = Pstable then return FALSEP  P 0 suh that Pstable v P 0 v P:Wait := PassedforeverFigure 2.7: Symboli State CBR algorithm2.4.3 Symboli State AlgorithmIn this setion we present a di�erent version of the CBR algorithm using theonept of representable symboli states desribed in the previous setion.The input for the revised algorithm is muh like the input of the originalone. Now the two arguments Goal and Init have to be subsets of the set ofrepresentable symboli states RSS.CorretnessWe want to onlude that the symboli algorithm is orret. This, again on-sists of two parts; onluding that it always terminates and that it terminateswith the orret answer. 30



CBR in General 31This algorithm has two loops, with the one inside the other. We will allthese the inner and the outer loop respetively. The outer loop is a repeat-forever loop, so the only way this loop an terminate is by the algorithm�nishing, by returning either true or false. We use the same argument as forthe simpler algorithm, that we have hosen a �nite sequene of partitionings.This guarantees that after a �nite number of runs through the outer loop wewill eventually reah P = Pstable, and the algorithm will terminate. We alsorequire that the inner loop terminates, in eah iteration of the outer loop.This an be guaranteed due to the fat that we have a �nite number of rep-resentable symboli states. In the inner loop representable symboli statesare removed from the waiting list and added to the passed list while everyrepresentable symboli state (RSS) that ould reah this RSS are added tothe waiting list for later exploration. One a representable symboli statehas been added to the passed list, it will not be explored again. This proessontinues until the waiting list is empty. If not earlier, this is at least guar-anteed to happen when all representable symboli states have been added tothe passed list. So we are guaranteed that the inner loop will always termi-nate.Now we turn to proving that the algorithm will terminate with the orretanswer when it terminates. Again we want to do this by indution. Justafter exiting the inner loop, whereWait will always be empty, we will provethat Goal � Passed � Pre�Pn(Goal) for the urrent partitioning Pn beingused. We do this by indution in n.Basis n = 0: Just after exiting the inner loop for the �rst time the followingwill hold: Passed = f J j J �!�P0 J 0 ^ J 0 2 Goalgwhere J �!P J 0 means that J 2 SymPreP(J 0) (�!�P denotes asusual the transitive and reexive losure of �!P). The passed listhere ontains all the symboli states needed to represent Goal andall the symboli states that an reah Goal using the partitioning P0.By iteratively applying the requirement for the symboli predeessorfuntion stated in assumption 2.20, we an onlude that the followingholds: Goal � Passed � Pre�P0(Goal)Step: On entering the inner loop the waiting list will ontain representablesymboli states suh that Goal � Wait � Pre�Pn(Goal), where Pn31



32 CBR in Generalis the previous partitioning. All of these states will, after some it-erations in the inner loop, be added to the passed list, suh thatGoal � Passed � Pre�Pn(Goal), this is the indution hypothesis (IH).We now aim to prove that after exiting the inner loop the following willhold: Goal � Passed � Pre�Pn+1(Goal)After exiting the inner loop we an learly see that the following willhold. Passed = f J j J �!�Pn+1 J 0 ^ J 0 2 Pre�Pn(Goal)gAgain iteratively applying assumption 2.20 we an onlude the follow-ing: Goal � Passed � Pre�Pn+1(Goal)By having proved that Goal � Passed � Pre�Pn(Goal) after eah iterationwe an onlude that the passed list will always ontain at least Goal andit will never ontain any states that annot reah Goal. If any of the repre-sentable symboli states used to represent Passed interset with Init, thealgorithm would have terminated with a positive answer, when this statewas being explored. We will eventually reah the �nal partitioning Pstable.Beause of the speial assumption made for Pstable, in assumption 2.20,we an onlude that after the �nal iteration Passed = Pre�Pstable(Goal).Pre�Pstable(Goal) is by theorem 2.16 equal to Pre�(Goal). Hene after thelast run of the inner loop Passed will ontain representable symboli statesthat overs exatly all states that an reah Goal. This results in the fatthat if any of these states intersets with Init, the algorithm would haveterminated with a positive answer. Similarly the passed list does not ontainmore than what an atually reah Goal, and hene the algorithm will neverterminate with a positive answer, when there is no path from Init to Goal.RequirementsThe requirements that this algorithm enfores on a domain, to whih it anbe applied, are the following: A transition systems (ST;�!), a �nite setof representable symboli states RSS, and a symboli predeessor funtionSymPre that ful�lls the requirement of assumption 2.20. Again we alsoneed a way in whih to hek for intersetion between any representablesymboli state J and Init and inlusion between two representable symbolistates. We also need sensible partitionings of the representable symbolistate-spae. 32



CBR in General 332.5 Di�erenes from the Original CBRThis setion desribes the di�erenes between the original CBR method,[LNAB+98℄, and the CBR method presented in this report. It also desribesdi�erenes from the CBR method that was developed in the previous report[Lar02℄.The main di�erene is the onept on whih the formal foundation is build.The original paper uses an index set of mahines that is gradually inreased,while we here use a partitioning of the state-spae where the partitioningsare gradually re�ned. Despite this di�erene, the simple algorithm presentedin �gure 2.6 losely resembles the original algorithm. The seond algorithmadds more generality to the method by allowing the use of symboli states.This makes the CBR method appliable to other types of domains. In theprevious report the CBR method was generalized by having more the oneindex set, eah representing one type of omponents. The bak draw of thismethod was that the CBR method ould not be presented one and for alland then applied to di�erent domains. It had to be adjusted depending onthe types of the omponents being used in eah domain.An aspet of the original method that has been lost is dependeny analy-sis. In the original domain, a dependeny analysis was performed on theState/Event mahines in order to determine if all of the mahines whereneeded in the analysis. If it ould be onluded, that some of the mahinesould in no way, e�et the reahability of Goal, these mahines ould be ex-luded from the analysis. Thereby leading to a faster negative termination.The onept of dependeny analysis is not inorporated into the general CBRmethod beause it depends very muh on the spei� domain. The depen-deny analysis works on omponents, and by analyzing what omponentsan inuene the set of omponents that we start with, we an stop beforeinluding all omponents. This would, in the new formalism, orrespond tostopping at a earlier partitioning than Pstable. Maybe this kind of featureould be added if extra information were added to the framework.

33



34 CBR in General
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3 Timed Automata (TA)This hapter ontains the de�nition of networks of simple timed automata.By simple timed automata we mean timed automata without invariants,ommitted loations, urgeny, and integers as are allowed in Uppaal. Firstwe present an informal desription of timed automata. After this we formallydesribe the syntax and semantis of a single timed automaton. In the endwe desribe the syntax and semantis of the parallel omposition of severaltime automata into a Timed Automata Network (TAN).3.1 Informal DesriptionTimed automata are �nite state automata extended with a number of realvalued loks. Graphially a timed automaton an be depited as nodes witharrows going from one node to another when there is a transition. We writeonstraints (also known as guards) at the origin of a transition and reset setsat the destination of the transition. At the enter of the arrow we write thelabel.
S0 S1

x < 3 x := 0

c!Figure 3.1: A simple automaton.In �gure 3.1 we have a very simple automaton with only two states andone transition. The transition goes from the initial state S0 to the state S1.The initial state is marked with double irles. The guard onsists of onlyone atomi formula saying that the value of lok x should be less than 3.Similarly only one lok is reset (x := 0). The label on the transition is '!'this is the omplement ation of '?', whih means that this transition mustsynhronize with an '?' transition in another timed automaton. As in CCS35



36 Timed Automata (TA)[Mil89℄ we an also have transitions with no label, these transitions are infat � transitions that does not need to synhronize. Figure 3.1 illustrationwas made using the graphial interfae for Uppaal.3.2 PreliminariesFirst we need some auxiliary de�nitions.De�nition 3.1 : AtionsLet Chan be a �nite set of hannels, ranged over by . We de�ne At to bea �nite set of ations ranged over by a. For eah hannel in Chan we de�netwo ations suh that At = f! j  2 Chang [ f? j  2 Chang. We de�ne aomplement operator � : At! At as �! = ? and �? = !. We de�ne � torepresent an in�nite set of delay ations, � = f�(d)jd 2 Rg, where we use Rto stand for the non-negative reals. The speial internal ation is representedby � . We de�ne the two sets At� = At [ � and �� = � [ � .
De�nition 3.2 : Cloks and ConstraintsC is a �nite set of real valued loks ranged over by x; y; z. A lok valuationu : C ! R is a funtion that assigns to eah lok a real non-negative value.We also de�ne RC to be the set of all lok valuations. We write u(x) to meanthe value of the lok x in the lok valuation u. We de�ne two operations onlok valuations: Reset and Delay. Reset where a set of loks are set to zero:u0 = u[r 7! 0℄; r � C de�ned by 8x 2 r:u0(x) = 0; 8x 2 C n r:u(x) = u0(x).Delay where all loks are inreased with the same value: u + d : C ! Rwhere d 2 R; de�ned by 8x 2 C:(u+d)(x) = u(x)+d. We de�ne B(C) to bethe set of all lok onstraints (also known as guards) g ::= A j g^ g where Ais an atomi formula of the form: x � n or x�y � n for �2 f�;�; <;>g andn being a natural number. We write g(u) to mean that the lok onstraintg is true under the lok valuation u.We extend the notion of transition system to a labelled transition system,where eah transition has a label. 36



Timed Automata (TA) 37De�nition 3.3 : Labelled Transition SystemA labelled transition system relates the triple (S;L;�!) in the followingway. S is a set of states, L is a set of labels, and �! is a set of transitions�!� S � L� S. If (S1; �; S2) 2�! we write S1 ���! S2We desribe the semantis of timed automata in terms of a labelled transitionsystem.3.3 Timed AutomatonIn this setion we de�ne the syntax and semantis of a timed automaton.De�nition 3.4 : Syntax of Timed AutomatonA simple timed automaton A over ations At and loks C is de�ned bythe triple (LA; l0A; EA) where LA is a set of loations, l0A 2 LA is the initialloation, and EA � LA � B(C)� At� � 2C � LA.
De�nition 3.5 : Semantis of Timed AutomatonThe semantis of a timed automaton A is a labelled transition system de�nedby the triple (SA;LA;�!A) where the states are made up of a node and alok valuation: SA = LA�RC , the labels are the union LA = At� [�, andthe transition relation is de�ned as:� (l; u) a��!A (l0; u0) if 9g; r:(l; g; a; r; l0) 2 EA; u0 = [r 7! 0℄u; and g(u)� (l; u) �(d)���!A (l; u+ d)As an example to illustrate the semantis, we an look at the simple timedautomaton depited in �gure 3.1. The start state of this automaton is (s0; x =0) from here it an, among many other delay transitions, take the followingdelay transition (s0; x = 0) �(2;5)����! (s0; x = 2; 5). From here it an take thedisrete transition (s0; x = 2; 5) a!��! (s1; x = 0) beause x < 3, so the guardis true. 37



38 Timed Automata (TA)3.4 Timed Automata NetworkWe want to de�ne how to make a parallel omposition of several timed au-tomata into a Timed Automata Network (TAN).De�nition 3.6 : Syntax of Timed Automata NetworkA TAN N over ations A and loks C has the form:N = A1j : : : jAnwhere eah Ai is a timed automaton over ations At and loks C.The loks are all potentially global, but may in reality be loal by beingused in only one automaton. In the de�nition of the semantis we needsome notation. We write ~l to mean a vetor l1; l2; : : : ; ln of loations in eahautomaton.De�nition 3.7 : Semantis of Timed Automata NetworkThe semantis of a TAN N = (A1j : : : jAn) over ations At and loks C is alabelled transition system (SN ;LN ;�!N) where the states is a node in eahtimed automaton and a lok valuation SN = L1 � : : :� Ln� RC , the labelsare L = �� , and the transition relation �!N is de�ned by:� (~l; u) ���!N (~l0; u0) if 9gi; ri:(li; gi; a; ri; l0i) 2 Ei9gj; rj:(lj; gj; �a; rj; l0j) 2 Ejgi(u); gj(u); u0 = [ri [ rj 7! 0℄u8k =2 fi; jg:l0k = lkfor some i; j 2 f1; : : : ; ng where i 6= j and a 2 At.� (~l; u) ���!N (~l0; u0) if 9gi; ri:(li; gi; �; ri; l0i) 2 Eigi(u); u0 = [ri 7! 0℄u8k =2 fig:l0k = lk.for some i 2 f1; : : : ; ng� (~l; u) �(d)���!N (~l; u+ d) 38



Timed Automata (TA) 39The three types of transitions presented above an be desribed respetivelyas synhronizing, private, and delay transitions. The �rst is synhronizingbeause two timed automata synhronize by taking transitions labelled witheah others omplement. The seond is private beause it involves onlyone timed automaton. The third is a delay transition where all loks areinreased by the same value.
S0 S1

x < 3 x := 0

c!

T0 T1

y > 2

c?Figure 3.2: Two simple timed automata S and T .Again to illustrate the semantis we give an example. We have, in �gure 3.2,two simple timed automata that we ombine into the system N = S j T .The start state of the system is ((s0; t0); x = 0; y = 0). From this state weould hoose to delay for one time unit.((s0; t0); x = 0; y = 0) �(1)���! ((s0; t0); x = 1; y = 1)From the new state we annot take any disrete transitions beause of theguard y > 2. So we hoose to delay again, this time with 1:5 time units.((s0; t0); x = 1; y = 1) �(1:5)����! ((s0; t0); x = 2:5; y = 2:5)Now we an take the disrete transition beause the guards on both synhro-nizing transitions are true.((s0; t0); x = 2:5; y = 2:5) ���! ((s1; t1); x = 0; y = 2:5)We notie that in the resulting state the lok x is set to zero.
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4 Symboli Analysis of TAThe semantis given in hapter 3 yields an in�nite state-spae and the CBRalgorithm presented in hapter 2 needs a �nite state-spae in order to beguaranteed to terminate. To redue the in�nite state-spae to a �nite state-spae we will represent groups of lok valuations as zones. This is donein the same manner as for the veri�ation tool Uppaal. We �rst de�nethe onept of zones and operations on zones that we need during symbolianalysis. We then desribe the data struture Di�erene Bounded Matrix(DBM) used to represent zones and how the needed operations are realizedeÆiently on DBMs. Finally we show how to perform both forward andbakwards symboli analysis using the operations desribed.4.1 ZonesWe introdue zones in order to be able to handle a set of states simulta-neously, in one symboli state. A zone represents an in�nite set of lokvaluations, it gives bounds on, both the di�erene between individual loks,and on the absolute value of loks. Figure 4.1 illustrates the di�erene be-tween a single lok valuation and a zone. In general symboli states aresubsets of L1 � : : : � Ln � RC . The symboli states we use in this setionhas the form (~l; Z). A symboli state (~l; Z) represents all states of the form(~l; u) where u 2 Z. A zone is a set of lok valuations de�ned by a simpleonstraint system whih is de�ned in the same way as lok onstraints insetion 3.2.De�nition 4.1 : Simple Constraint Systemg ::= x � n j x� y � n j g ^ gwhere �2 f�;�; <;>g and n 2 N . We use B(C) to represent the set of allsimple onstraint systems over loks C.41



42 Symboli Analysis of TAFigure 4.1 illustrates the di�erene between a single lok valuation and azone.

0 1 2 30123 x
y u = fx 7! 2; y 7! 2g

a) 0 1 2 30123 x
y Z = f1 � x � 3; 1 � y � 3g

b)Figure 4.1: a) Clok valuation. b) ZoneNow we have a way of representing a group of states as one symboli state(~l; Z) and move on to de�ning useful operations on zones in order to be ableto de�ne a symboli transition relation.4.1.1 Operations on ZonesWe de�ne �ve operations on zones that we need for the symboli reahabil-ity analysis. The Future and Reset operations are only needed for forwardanalysis, and Past and Free are only needed for bakward analysis while weneed Conjuntion for both. We remind that R is de�ned as the non-negativereals. The �ve operations are de�ned as follows.Future : Z " = fu+ d j u 2 Z and d 2 RgPast : Z # = fu j 9d 2 R:u + d 2 ZgReset : resetfrgZ = fu[r 7! 0℄ j u 2 ZgFree : freefrgZ = fu j u[r 7! 0℄ 2 ZgConjuntion : Z ^ Z 0 = fu j u 2 Z and u 2 Z 0gThe operations are illustrated in �gure 4.2. The �rst four operations areillustrated by the e�et they have on the example zone Z that is shown inthe upper left orner. The onjuntion operator is illustrated with two otherzones Z1 and Z2. 42
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ConjuntionFigure 4.2: Operations on Zones4.2 Di�erene Bounded MatriesWe need a data representation of zones and a de�nition of the �ve opera-tions on this representation. A DBM is a matrix representation of a simpleonstraint system.De�nition 4.2 : Differene Bounded MatrixM : fx0; x1; : : : ; xng2 ! (Z� f<;�g) [ f+1gwhere x0 is a speial zero valued lok.43



44 Symboli Analysis of TAFor every pair of loks it gives a omparison operator and a real value or1.For eah pair of loks M(xi; xj) = (nij;�ij) represents that xi � xj �ij nij,where �ij is < or �. Figure 4.2 illustrates how a number in the matrixrepresents a bound on the di�erene between two loks. The operator isrepresented by an extra bit stored along with eah number. In �gure 4.5 wewill as an example illustrate how the di�erent zones shown in �gure 4.2 anbe represented as DBMs.x0; x1; : : : ; x; : : : ; xnxjx0x1...x...xnxi . . .. . . . . .. . . (nij;�ij) - one entryxi � xj �ij nij - semantis of an entryFigure 4.3: Illustration of a Di�erene Bounded Matrix.In order to be able to de�ne the operations we need to have the DBMs in aanonial form. For the de�nition of the anonial form we need a de�nitionof the two operators + and � for pairs of the type (n;�), where n 2 Z and�2 f<;�g. To do this we also de�ne +b and �b, whih operate on 8<0 and8�0.De�nition 4.3 : +b operator for 8<0 and 8�08<0 +b 8<0 = 8<08�0 +b 8<0 = 8<08<0 +b 8�0 = 8<08�0 +b 8�0 = 8�0Here we observe that anything but two �'s adds up to <. We an now de�ne+ on pairs of the type (n;�). This is simply done by adding the integersand adding the � operators with the newly de�ned +b operator.(n1;�1) + (n2;�2) = (n1 + n2;�1 +b �2)44



Symboli Analysis of TA 45De�nition 4.4 : �b operator for 8<0 and 8�08<0 �b 8�08<0 �b 8<08�0 �b 8�0Both the operators are equal with themselves and 8<0 is smaller than 8�0.Now we are ready to de�ne � on pairs of the type (n;�). This is done as asort of lexiographi ordering. First the integers are onsidered, if these areequal then the � operators are ompared.(n1;�1) � (n2;�2) = n1 < n2 _ (n1 = n2^ �1 8�0 �2)With the + and � operators de�ned we are ready to de�ne the anonialform.De�nition 4.5 : Canonial FormA DBM M is on anonial form if and only if 8xi; xj; xk 2 C it is suh thatM(xi; xj) +M(xj ; xk) � M(xi; xk)We de�ne the operations on DBMs in anonial form. The following funtionsde�ne the value of eah entry in the resulting matrix, based on the inputmatrix. The �rst four operations are illustrated in �gure 4.4, these are theoperation that operate on a single matrix. The �nal operation, onjuntion,desribes the resulting matrix in terms of two input matries.Past M#(xi; xj) = � M(xi; xj) xi 6= x0(0;�) xi = x0Future M"(xi; xj) = � M(xi; xj) xj 6= x0+1 xj = x0Reset resetfxgM(xi; xj) = 8>><>>: M(xi; xj) xi; xj 6= x(0;�) xi = x(0;�) xj = x ^ xi = x0+1 xj = x45



46 Symboli Analysis of TAFree freefxgM(xi; xj) = 8<: M(xi; xj) xi; xj 6= x(0;�) xi = x0 ^ xj = x+1 xi = x _ (xj = x ^ xi 6= x0)Conjuntion(M1 ^M2)(xi; xj) = � M1(xi; xj) M1(xi; xj) � M2(xi; xj)M2(xi; xj) otherwiseThe implementation of four of the operators is illustrated in �gure 4.4. Thegray areas represent that the values in this part of the matrix are left un-hanged. The values that are assigned to the hanged areas an be read fromthe de�nition of the operations.0 0 0: : : : : :x0; x1; : : : ; x; : : : ; xnxjx0x1...x...xnxi . . .. . . . . .. . .Past
111......
x0; x1; : : : ; x; : : : ; xnxjx0x1...x...xnxi . . .. . . . . .. . .Future

0 0 0: : : : : :01...1...
x0; x1; : : : ; x; : : : ; xnxjx0x1...x...xnxi . . .. . . . . .. . .Reset 11 : : : 1 : : :01...1...

x0; x1; : : : ; x; : : : ; xnxjx0x1...x...xnxi . . .. . . . . .. . .FreeFigure 4.4: Illustration of the Operations on DBMs.The onjuntion operator, whih is not illustrated, ombines two matries.For eah entry in the matrix the values are ompared and the smallest isseleted as the entry in the resulting matrix. Figure 4.5 illustrates all theoperations by use of the zones from �gure 4.2. We only use the � operatorin these examples to keep it simpler.46



Symboli Analysis of TA 47x0 x yx0 �2 �6x 4 �2y 8 6Just a zone x0 x yx0 0 0x 4 �2y 8 6Past x0 x yx0 �2 �6x 0 �2y 0 6Futurex0 x yx0 �2 0x 4 1y 0 0Reset x0 x yx0 �2 0x 4 �2y 1 1Free x0 x yx0 �1 �2x 5 3y 5 4Z1x0 x yx0 �2 �1x 6 5y 4 2Z2 x0 x yx0 �2 �2x 5 3y 4 2ConjuntionFigure 4.5: Illustration of the Operations on DBMs.The matries are no longer in the anonial form after the operations havebeen performed. They are restored to anonial form by alulating theshortest path losure. This an best be illustrated by viewing the matrix asa graph. In �gure 4.6 we alulate the anonial form for the matrix afterthe Past operation. The values on the edges are given by taking the fromnode as the row and the to node as the olumn. The shortest path losure isalulated by heking for shorter paths between two nodes via other nodes.In �gure 4.6 only the edge from x0 to y is hanged. The new value is �2beause the path via the x node is �2 + 0 = �2.
x x0 y0 8-2046 x x0 y0 8-2-246Figure 4.6: The shortest path losure of the Past matrix.47



48 Symboli Analysis of TAIn the algorithms presented we also need to hek for inlusion. This is doneby omparing eah pair of entries in the matries. If for every pair of entriesthe entry of matrix A is smaller then that of matrix B, then A is inludedin B.To guarantee termination we introdue a normalization operation. Initiallywe have in�nitely many Zones and annot guarantee that the algorithm ter-minates. Two lok valuations that annot be distinguished in the model aretime-abstrated bisimilar, illustrated in �gure 4.7. This means that whenthe one an take a delay transition the other an also take a delay transition,not neessarily with the same amount of delay and end up in a state that istime-abstrated bisimilar with the end state of the �rst. The same is truefor disrete transitions. Knowing this we only need to represent one of suhtime-abstrated bisimilar states. This is done by applying the normalizationoperation to all Zones after eah operation.
x

y
max

max x
y

max
max

Figure 4.7: Illustration of normalization. All lok valuations to the rightof the max line will have a point exatly on the max line that it is time-abstrated bisimilar to. Suh two points are illustrated on the left �gure.Therefor the Zone on the right �gure an reah the same states as the �gureon the left.First the maximum onstant N , used in the model or in the properties tobe heked, is found. Any integer lager than N an be replaed with 1and all integers smaller than �N an be replaed with �N . This an bedone beause it never will be ompared to anything larger than itself. Thenormalization is performed after eah operation. When N is known we analso alulate how many bits we need to represent eah entry in the DBM.The operation is desribed below.NormalizationnormNM(xi; xj) = 8<: (�N;<) M(xi; xj) � (�N;<)M(xi; xj) (�N;�) �M(xi; xj) � (N;�)+1 (�N;<) �M(xi; xj)48



Symboli Analysis of TA 494.3 Symboli ReahabilityIn this setion we use the operations de�ned in setion 4.1 to do symbolireahability analysis on networks of Timed Automata.De�nition 4.6 : Forward Symboli TransitionWe de�ne two types of transition, in ontrast to the three types de�nedin the normal semantis. The �rst represents a delay ation followed by asingle transition while the other is a delay followed by a synhronization. Wealulate the new zone by use of the operations that we have de�ned. Inboth ases we �rst take the future operation on the original zone, after thiswe onjunt it with the guard(s), and last reset the loks de�ned by thereset set(s).� (~l; Z) =)F (~l0; Z 0) if 9gi; ri:(li; gi; �; ri; l0i) 2 EiZ 0 = resetfrig(Z" ^ gi)8k 62 fig:l0k = lkfor some i 2 f1; : : : ; ng� (~l; Z) =)F (~l0; Z 0) if 9gi; ri:(li; gi; a; ri; l0i) 2 Ei9gj; rj:(lj; gj; �a; rj; l0j) 2 EjZ 0 = resetfri [ rjg(Z" ^ gi ^ gj)8k 62 fi; jg:l0k = lkfor some i; j 2 f1; : : : ; ng where i 6= j and a 2 At.ZZ"Z" ^ giZ 0 = resetfrig(Z" ^ gi)
li
l0i
giriFigure 4.8: Illustrates how Z 0 is alulated when taking one forward symbolitransition.

49



50 Symboli Analysis of TADe�nition 4.7 : Bakward Symboli TransitionAs with the forward symboli transitions we de�ne two transition rules. The�rst represents a single transition followed by a delay ation while the otheris a synhronization followed by a delay. It is worth notiing that the order isnot the same as for the forward symboli transitions. This does not have anyimpat on the reahable state-spae. The essential thing is that we alternatebetween disrete and delay ations. This results in that we have to takethe future operation on the initial loation before heking for intersetionin the bakwards algorithm. Here we start by using the past operation andonjunt the result with the reset set(s). After this the loks in the resetset(s) are freed, this is then onjunted with the guards.� (~l0; Z 0)(=B (~l; Z) if 9gi; ri:(li; gi; �; ri; l0i) 2 EiZ = (freefrig(ri ^ Z 0#)) ^ gi8k 62 fig:l0k = lkfor some i 2 f1; : : : ; ng� (~l0; Z 0)(=B (~l; Z) if 9gi; ri:(li; gi; a; ri; l0i) 2 Ei9gj; rj:(lj; gj; �a; rj; l0j) 2 EjZ = (freefri [ rjg(ri ^ rj ^ Z 0#)) ^ gi ^ gj8k 62 fi; jg:l0k = lkfor some i; j 2 f1; : : : ; ng where i 6= j and a 2 At.Z = (freefrig(ri ^ Z 0#)) ^ gifreefrig(ri ^ Z 0#)ri ^ Z 0#Z 0#Z 0
li
l0i
giriFigure 4.9: Illustrates how Z is alulated when taking one bakwards sym-boli transition.4.3.1 AlgorithmsWith the symboli transition rules we de�ne two similarly looking algorithmspresented in �gures 4.10 and 4.11. First we desribe the forward symboli50



Symboli Analysis of TA 51reahability algorithm. The algorithm has a passed-list (Passed) and awaiting-list (Wait). Initially the passed list is empty and the waiting listontains the initial state. For eah yle in the repeat-until loop one sym-boli state is removed from the waiting list. After having added all states,that an be reahed from it, to the waiting list, the state is itself added tothe passed list. This is ontinued until either; the waiting list is empty, or astate is found, that intersets with Goal. The target that we want to hekif we an reah, Goal, is a set of symboli states.Passed := fgWait := f(~l0; Z0)grepeatbeginget (~l; Z) from Waitif (~l; Z) \Goal 6= ; then return TRUEelse if Z 6� Z 0 for all (~l; Z 0) 2 Passed thenbeginadd (~l; Z) to PassedNext := f(~ls; Zs) j (~l; Z) =)F (~ls; Zs) ^ Zs 6= ;gfor all (~ls0; Zs0) in Next doput (~ls0; Zs0) to Waitendenduntil Wait = fgreturn FALSEFigure 4.10: Algorithm for forward symboli reahability analysisThe bakwards symboli reahability algorithm di�ers in three ways. Firstlythe waiting list is initialized to ontain Goal in stead of the initial state.Seondly there is tested for intersetion with the initial state instead of Goal.Thirdly the transition relation that is used to �nd new symboli states, toput in the waiting list, is (=B.4.3.2 TheoremsIn this setion we present some theorems, and a single sample proof, neededto argument for the orretness of the algorithms presented in the previous51



52 Symboli Analysis of TAPassed := fgWait := Goalrepeatbeginget (~l; Z) from Waitif (~l; Z) \ (~l0; Z0)" 6= ; then return TRUEelse if Z 6� Z 0 for all (~l; Z 0) 2 Passed thenbeginadd (~l; Z) to PassedNext := f(~ls; Zs) j (~l; Z)(=B (~ls; Zs) ^ Zs 6= ;gfor all (~ls0 ; Zs0) in Next doput (~ls0; Zs0) to Waitendenduntil Wait = fgreturn FALSEFigure 4.11: Algorithm for bakwards symboli reahability analysissetion. Corretness in the sense that the symboli algorithm gives the or-ret result in terms of onrete reahability. Theorem 4.8 implies, by a simpleindutive argument, that if we have a sequene of symboli transitions lead-ing from the initial state to Bad we also have a sequene of onrete statesleading from the initial state to Bad.Theorem 4.8Forward: symboli to onrete(~l; Z) =)F (~l0; Z 0)+8u0 2 Z 0:9d; 9u 2 Z:(~l; u) �(d)���! ���! (~l0; u0)
Proof of theorem 4.8 � � � � � � � � � � � � � � � � � � �The proof an be split into two ases depending on how (~l; Z) =)F (~l0; Z 0) is52



Symboli Analysis of TA 53obtained. We only treat the �rst simple ase. Thus we have from the rightside of the de�nition of the =)F transition relation that:(li; gi; �; ri; l0i) 2 EiZ 0 = resetfrig(Z" ^ gi)8k 62 fig:l0k = lkfor some i 2 f1; : : : ; ngWe assume that u0 2 Z 0. Thus for some u00 2 Z" ^ gi we have that u0 = [ri 7!0℄u00. Then we also have for some u 2 Z and some d 2 R that u00 = u+ d. Itfollows that (~l; u) �(d)���! (~l; u+ d) ���! (~l0; u0).� � � � � � � � � � � � � � � � � � � � � � � � � � � � �
Z u d u00 gu0� Z 0Figure 4.12: Illustration of proof of theorem 4.8The relation between u, u0, and u00 in the proof of theorem 4.8 is illustratedin �gure 4.12. The theorem itself is illustrated in �gure 4.13. Here we usedashed arrows to illustrate 9 and full arrows to illustrate 8. The same is truefor the illustration of the following theorems.(~l; Z) (~l0; Z 0)(~l; u) (~l0; u0)F�(d) �2 2 � 8� 9Figure 4.13: Illustration of theorem 4.8Theorem 4.9 states that if we have a sequene of onrete states leading fromthe initial state to Bad we an math this with a sequene of symboli states.53



54 Symboli Analysis of TATheorem 4.9Forward: onrete to symboli(~l; u) �(d)���! ���! (~l0; u0)+8Z:u 2 Z:9Z 0:(~l; Z) =)F (~l0; Z 0) ^ u0 2 Z 0
Theorem 4.9 is illustrated in �gure 4.14. We omit the proof whih is similarto that of theorem 4.8.(~l; Z) (~l0; Z 0)(~l; u) (~l0; u0)F�(d) �2 2 � 8� 9Figure 4.14: Illustration of theorem 4.9
In order to onlude that the forward symboli reahability algorithm pre-sented in �gure 4.10 always terminates we need to ensure that there are only�nitely many reahable symboli states. In fat exatly one is generated foreah transition that an be taken. We also want to onlude that when thealgorithm terminates it terminates with the orret answer. This we an on-lude from the two theorems 4.9 and 4.8. If we �nd a sequene of symbolistates that leads from the initial state to Bad there also exists a onrete se-quene of states. On the other hand if we do not �nd a sequene of symbolistates we an onlude that there is now sequene of onrete states leadingfrom the initial state to Bad.In the following we present two theorems that state the exat same things astheorems 4.8 and 4.9 only for the bakward transition relation (=B. Sinethe arrows goes in the other diretion the states are not in the same order inthe top and bottom of the theorem. This also has the e�et that the onretearrows in �gure 4.15 and 4.16 goes from right to left.54



Symboli Analysis of TA 55Theorem 4.10Bakward: symboli to onrete(~l0; Z 0)(=B (~l; Z)+8u 2 Z:9d 9u0 2 Z 0:(~l; u) ���! �(d)���! (~l0; u0)
(~l0; Z 0) (~l; Z)(~l0; u0) (~l; u)B�(d) �2 2 � 8� 9Figure 4.15: Illustration of theorem 4.10Theorem 4.11Bakward: onrete to symboli(~l; u) ���! �(d)���! (~l0; u0)+8Z 0:u0 2 Z 0:9Z:(~l0; Z 0)(=B (~l; Z) ^ u 2 Z
(~l0; Z 0) (~l; Z)(~l0; u0) (~l; u)B�(d) �2 2 � 8� 9Figure 4.16: Illustration of theorem 4.11

4.3.3 Corretness of Bakwards AlgorithmWe will use theorems 4.10 and 4.11 to prove the orretness of the algorithmfor symboli bakwards reahability with regard to reahability. This ould55



56 Symboli Analysis of TAbe done in a similar fashion for the forward algorithm using theorem 4.8 and4.9.Theorem 4.12The symboli bakwards reahability is partially orret with regard toreahability. That is whenever the algorithm terminates it gives the or-ret answer.We need some de�nitions for the proof of theorem 4.12.De�nition 4.13 : Leads-to operatorWe write (~l; u); (~l0; u0) if (~l; u) ���! �(d1)����! : : : ���! �(dn)����! (~l0; u0).We also write (~l; u); g if (~l; u); (~l0; u0) for some (~l0; u0) 2 g.Proof of theorem 4.12 � � � � � � � � � � � � � � � � � � �We prove the partial orretness by splitting into two ases.Case 1: Assume that the algorithm terminates with the answer TRUE. Welaim that whenever (~l; Z) 2 Passed and u 2 Z then (~l; u); Bad. Tosee this note that if (~l; Z) 2 Passed then we have a symboli sequeneof the form:(~lBad; ZBad)(=B (~l1; Z1)(=B (~l2; Z2)(=B : : :(=B (~l; Z)Now applying theorem 4.10 repeatedly proves the laim.It follows immediately from the proven laim that if ever an enounteredsymboli state intersets with Init, (~l0; Z0), then indeed there is a path fromInit to some state in Bad.Case 2: Assume that the algorithm terminates with the answer FALSE.We laim that in this ase (~l; u) ; Bad annot hold for any state(~l; u) 2 Init. We prove this by ontradition. Assume on the ontrarythat (~l; u); Bad for some state (~l; u) 2 Init. This is:(~l; u) ���! �(d1)����! : : : ���! �(dn)����! BadThen beause of theorem 4.11 we have a symboli sequene of the form:(~lBad; ZBad)(=B (~l1; Z1)(=B (~l2; Z2)(=B : : :(=B (~l; Z)with (~lBad; ZBad) � Bad and u 2 Z.56



Symboli Analysis of TA 57But then (~l; Z) must be present in the Wait-list at some point during om-putation and hene we would have obtained termination with the answerTRUE in ontradition with the assumption.� � � � � � � � � � � � � � � � � � � � � � � � � � � � �For total orretness of the algorithm we observe that the algorithm termi-nates due to the �niteness of the symboli state-spae, indued by normal-ization.A similar orretness proof ould be given for symboli forward reahabilityalgorithm.
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5 Appliation of CBR on TAIn this setion we apply the CBR method to the domain of Timed AutomataNetwork (TAN). We hoose the symboli CBR algorithm, from setion 2.4.3,beause it exatly �ts the domain.5.1 Ful�lling the RequirementsWe will in the following setions desribe how the domain �ts the require-ments stated in setion 2.4.3. Here we will introdue the CBR method fortimed automata, not unlike how it was introdued in the previous report[Lar02℄. At the same time we will show that this �ts exatly within theframework of the symboli algorithm presented in setion 2.4.3. To be ableto use only some of the omponents, automata and loks, we de�ne twosubsets: M � f1; : : : ; ng an index subset of the timed automata and K � Ca subset of loks. We will base the partitioning of the state-spae on anequivalene derived from these two subsets.Representable Symboli StatesFirst we de�ne the representable symboli states (RSS), whih we are goingto use in the analysis. Firstly these states are symboli in the representationof the lok values, in the use of Zones, as desribed in hapter 4. Seondlythey are symboli in the representation of the loation vetor. We introduea partial loation vetor, in whih we only need to speify the loation forsome omponents. The loation of the rest of the omponents are representedby a � (star) meaning that this automata an be in any of its loations. Wewill refer to these states as double symboli states sine they an be symboliboth in the use of zones and the representation of the disrete loation. Againsuh symboli states will be subsets of L1�: : :�Ln�RC as with the symbolistates de�ned in setion 4.1.An M -sorted partial loation vetor only ontains information about theautomata in M , and semantily it represents the set of all loation vetorsthat agree with it with regard to the loations of all automata in M . For a59



60 Appliation of CBR on TAzone to be K-sorted it annot inlude any onstraints on loks not inludedin K.De�nition 5.1 : Double Symboli StateA double symboli state (~p; Z) onsists of an M -sorted loation vetor ~p anda K-sorted zone Z. For a given M � f1; : : : ; ng an M -sorted loation vetoris de�ned as follows:~p = (p1; : : : ; pn) where � i 2M pi 2 Li [ f�gi =2M pi = �A K-sorted zone only ontains onstraints on loks in K: Z 2 B(K).By an M;K-sorted symboli state we mean a double symboli state wherethe loation vetor is M -sorted and the zone is K-sorted. We notie thata double symboli state that is M;K-sorted for a given M and K also isM;K-sorted for any larger M or K. We have that there are only �nitelymany zones, given normalization. Given that we have also �nitely manyautomata and �nitely many loations in eah automata, we an only reatea �nite number of di�erent representable symboli states. This was one ofthe requirements of the symboli CBR framework.Partitioning of the State SpaeWe de�ne the partitioning of the state-spae on the basis of the M;K-equivalene. First we de�ne M -equivalene for the disrete part of the stateand K equivalene for the ontinuous part of the state.De�nition 5.2 : M-equivalene~l =M ~l () 8i 2M:li = l0i
De�nition 5.3 : K-equivaleneu =K u0 () 8x 2 K:u(x) = u0(x)60



Appliation of CBR on TA 61We de�ne the M;K-equivalene in terms of the two other equivalenes.De�nition 5.4 : M;K-equivaleneWe de�ne M;K-equivalene in the following way:(~l; u) =M;K (~l0; u0) () ~l =M ~l0 and u =K u0We partition the state-spae based on the number of automata and loksinluded in the analysis. We start with a the subset of automata and loksneeded to represent Goal. After this we gradually extend with more loksand automata. Sine we have a �nite amount of loks and automata, wewill in a �nite number of steps reah a point where all loks and automataare inluded. For eah M;Kombination we de�ne a partitioning where allstates that are M;K-equivalent are in the same partition. When we haveinluded all loks and automata the M;K-equivalene will orrespond tothe identity relation Id = f(s; s) j s 2 STg. This will result in the fat thatthe partitioning de�ned by this equivalene satis�es the property of being astable partitioning. The atual order in whih to inlude the omponents,does not a�et the method in general. Di�erent heuristis will be onsideredin setion 7.3. The partitioning indued by a given equivalene =M;K, isalled PM;K, instead of writing P=M;K . If we have that M �M 0 and K � K 0then the equivalene indued by =M 0;K0 is �ner than or equal to the oneindued by =M;K, beause M 0 and K 0 have more elements. In general thefollowing holds: M � M 0 ^K � K 0 () PM 0;K0 v PM;KSorted Symboli PredeessorIn this setion we desribe how to interpret a timed automata network (TAN)as a global transition system. The onrete states where in setion 3.4 in-terpreted as a transition system. In this setion we de�ne how to interpreta TAN as a transition system, where the states are double symboli states.We do this by de�ning a new transition relation the ombines the alu-lation of the new zones from the (=B transition relation and the oneptof M;K-sortedness. The idea is to relate M;K-sorted symboli states withother M;K-sorted symboli states. This means that we will only onsidertaking transitions in automata spei�ed by M and where the onstraints onthe guards only range over loks in K.61



62 Appliation of CBR on TAFor the de�nition of the new transition relation we need some notation forwhat it means for a onrete loation vetor li to be inluded in a partialloation vetor pi. li 2 pi () � li = pi pi 2 Litrue pi = �De�nition 5.5 : Bakward M;K-sorted Transition RelationThe de�nition of the (=M;K transition relation is based on the(=B transi-tion relation and adds the onept ofM -sorted loation vetors and K-sortedzones.We know that ~p0 is M -sorted and that Z 0 is K-sorted.� (~p0; Z 0)(=M;K (~p; Z) if 9gi 2 B(K); 9ri:(li; gi; �; ri; l0i) 2 Eili = pi, l0i 2 p0iZ = (freefrig(ri ^ Z 0#)) ^ gi8k =2 fig:p0k = pkfor some i 2 M
� (~p0; Z 0)(=M;K (~p; Z) if 9gi 2 B(K); 9ri:(li; gi; a; ri; l0i) 2 Ei9gj 2 B(K); 9rj:(lj; gj; �a; rj; l0j) 2 Ejli = pi, l0i 2 p0i, lj = pj, l0j 2 p0jZ = (freefri [ rjg(ri ^ rj ^ Z 0#)) ^ gi ^ gj8k =2 fi; jg:p0k = pkfor some i; j 2M where i 6= j and a 2 At.We need to prove that the new Z 2 B(K) and that ~p is M -sorted. We anonlude that Z 2 B(K) beause the guards that are onjunted are fromB(K). The loks that are reset are also freed again, this means that theywill not bring Z out of B(K). We an also onlude that ~p is M -sortedbeause the index set remains the same.We intend to prove the two assumptions made in assumption 2.20. In thefollowing we write PreM;K as a shorthand for PrePM;K . PreM;K(H) isde�ned as fs j 8t =M;K s:9t0 2 H:t ���! �(d)���! t0gHere we streth the original de�nition 2.7 of Pre, by taking both a disreteand a delay step. The �rst line of eah of the two assumptions an berewritten as follows:SymPreM;K(~p0; Z 0) = f(~p1; Z1); : : : ; ( ~pn; Zn)g62



Appliation of CBR on TA 63First assumption In order to prove that Sni=1(~pi; Zi) � PreM;K(~p0; Z 0),we must show that whenever ~l 2 ~pi and u 2 Zi then it follows that(~li; u) 2 PreM;K(~p0; Z 0).Whenever ~l 2 ~pi and u 2 Zi then(~li; u) ���! �(d)���! (~l0; v0)for some ~l0 2 ~p0 and v0 2 Z 0.Hene as (~pi; Zi) isM;K-sorted it follows that (~li; u) 2 PreM;K(~p0; Z 0).Seond assumption We already have the Sni=1(~pi; Zi) � PrePstable(~p0; Z 0)and only need to show that Sni=1(~pi; Zi) � PrePstable(~p0; Z 0) in order toprove the equality. We have that Pstable is equal to the identity, so wemust show that every element in PreId(~p0; Z 0) is in the set of symbolistates returned by SymPre. We have that PreId(~p0; Z 0) = fs j 8t =Ids:9t0 2 H:t ���! �(d)���! t0g = ft j 9t0 2 H:t ���! �(d)���! t0g. Sine t has twotransitions, whih an bring it into H, we an see from the de�nitionof (=M;K that there will exist a (~pi; Zi) = t.Chek for Inlusion and IntersetionThe symboli CBR framework also requires that, we an hek for inlusionbetween two symboli states, and hek for intersetion between a symbolistate and Init. When performing inlusion heks between two double sym-boli state, we will �rst ompare the partial loation vetors. If the twostates does not agree in one of the automata where they both speify a spe-i� loation, then they neither interset nor does the one inlude the other.After this the zones are heked for intersetion by the method desribed inhapter 4.De�nition 5.6 : InlusionOne double symboli state (~p0; Z 0) overs another (~p; Z) if:(~p; Z) � (~p0; Z 0) () ~p v ~p0 ^ Z � Z 0~p v ~p0 () 8i 2M:pi = p0i _ p0i = �The only type of intersetion hek performed is intersetion with Init. Thisis done �rst by heking if the partial loation vetor ontains the loation63



64 Appliation of CBR on TAvetor of Init. After this we an perform an intersetion hek between thetwo zones. Beause of the fat that we take both a disrete and a delay step,in eah exploration step, we atually perform this intersetion hek with azone Zinit", that is the future operation performed on the initial zone Zinit,where all loks are zero.In the previous setion we have ful�lled the following requirements. A �nitenumber of representable symboli states, and a way to hek for inlusion andintersetion for suh states. A �nite sequene of partitionings, with a �nalpartitioning with the desired property. And a symboli predeessor funtion,in ompliane with assumption 2.20. Having ful�lled all of the requirementsfor the symboli CBR framework, we an onlude the orretness of thealgorithm, when applied to the domain of TAN.
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6 ExtensionsThis hapter desribes ertain extensions, whih an be added to the modelof timed automata, and the e�et that these have on the ompositional bak-wards reahability analysis. The extensions are; integers, invariants, urgentloations, urgent hannels, and ommitted loations. We deal with exatlythese extension beause they are the ones implemented in Uppaal. Eah ofthe extension will be desribed in the following setions.6.1 IntegersIn this setion we will �rst desribe how integers an be used in Uppaal.After this we will disuss the possibility of adding this to the CBR for TAmethod. We hoose integers with some simple operations, and show how theCBR for TA method from hapter 5 an be extended.In Uppaal one an use both simple integers and arrays of integers. The inte-gers an be used in guards, and in assignments. Examples of integer guardsare: L < 2, I == 4, and I <= L * 2. Similarly we an give some examplesof integer assignments: L := 2, I := L / 2, and L := L + 1. Both theguards and assignments an ontain addition, subtration, multipliation,and division. There is also a possibility of using a maximum and a minimumfuntion.It would be possible to implement all of this in the CBR for TA method. Asuitable data struture ould be binary deision diagrams (BDD). A BDDould represent the possible values that an integer ould have in a give sym-boli state. The ompliated part is to alulate, whih possible values, aninteger ould have had before it was assign the urrent value. In the imple-mentation desribed in hapter 7 we have hosen a simpler solution. We haveonly two possible representations of an integer, either a onrete value or *(star) denoting any possible value. We allow only ertain simple guards andassignments. The guards an only be of the form: L == 3. Where an integeris tested for equality with a onstant. This gives us the advantage that afterhaving taken a bakwards step, with an integer guard on the transition, weknow the exat value of the integer. In the assignments we only allow theuse of, addition, subtration, onstants, and the integer to whih the value is65



66 Extensionsbeing assigned. Examples of suh integer assignment are: L := 2, L := L +1, and L := 1 - L. This makes it easier to alulate the value of the integerprior to the assignment, beause there always will be only one suh value.When taking a bakwards disrete transition, the alulation of integer val-ues is arried out in two steps. First we use the assignment to alulate anintermediate value. Here we have four possible senarios, illustrated by fourexamples in �gure 6.1.
��Any assignment Not possible2L := 7 �7L := 7 34L := L + 1Figure 6.1: Illustrates how we alulate the intermediate value of an integerbased on the value after the assignment and the assignment.In the �rst ase, if the integer an have any value after the assignment, itould also have had any value before the assignment, beause we use un-bounded integers. In the seond ase, if the integer is assigned a onstantand it does not have this value after the assignment, then we know that thistransition annot be taken into suh a symboli state. The third ase illus-trates the ase where the integer has exatly the value that is assigned toit. In this ase we know nothing about the prior value of the integer, whihis then �. In the �nal ase the integer has a onrete value and it is eitherinremented or deremented in the assignment. In this ase we an alulatewhat value it must have had before the assignment. There atually existsone last ase. The ase where we have no assignment. If this is the ase, theintegers intermediate value is the same as the value after the assignment.After having alulated the intermediate value, we must hek if the inter-mediate value agrees with the value in the guard. Here we only have threeases, illustrated in �gure 6.2.In the �rst ase if the intermediate value is �, we know that the assignmentould have been true. If the integer has a onrete value that is exatly thesame as in the guard we know that the guard was true. In both of these aseswe know that the value of the value of the integer must have been the valuein the guard. The last ase represents where the intermediate value and thevalue in the guard disagree. In this ase the transition annot lead us to thesymboli state in question. 66



Extensions 673L == 3� 3L == 33 Not possibleL == 34
Figure 6.2: Illustrates how we alulate the value of the integer before theguard, depending on the intermediate value of an integer.When we want to extend the CBR for TA method with integers. First wede�ne the new representable symboli states (RSS). The onrete states willnow have the form (~l;~i; Z) instead of the form (~l; Z), where ~i = (i1; : : : ; in)with im 2 Z. We limit guards to the form i :=  where  is a onstant andassignments to the form i := d, where d is omposed of the integer i itself,onstants, addition and subtration. The symboli states will now have theform (~p; ~q; Z) instead of the form (~p; Z), where ~q is de�ned as partial loationvetors, just for integers. We also need an extra index set I � (i1; : : : ; in),to range over the integers. With this we an de�ne partial integer vetor asfollows. ~qi = (q1; : : : ; qn) where � m 2 I qm 2 Z[ f�gm =2 I qm = �We will obtain new equivalenes based on =M;K and the equivalene of theinteger values. We will denote these new equivalenes by =M;K;I. The newsymboli predeessor funtion (=M;K;I will be (=M;K with the added on-ept of integers.6.2 InvariantsIn this setion we desribe what invariants are, and possible solutions onhow to inlude them in the bakwards reahability analysis. An invariantis an upper bound on lok values in a given state. For eah state we anhave a requirement that a set of loks does not exeed some value. Havinginvariants in the system hanges the omputation of the zones of the statesthat an reah a urrent state. The problem lies in the fat that we anno longer guarantee that we an delay inde�nitely bakwards. We illustratethis fat by an example. In �gure 6.3 we have two simple timed automata.The system ontains two invariants one in state A1 and one in state B1. Theproblem arises from the fat that the system an time deadlok, meaning67



68 Extensionsit an enter a state in whih no further time an elapse. This happens if�rst time elapses suh that x == 7 and automata B takes a transition intoB3. After this time elapses suh the y == 9. Now no more time an elapsein state A1, beause of the invariant. At the same time the one outgoingtransition is not enabled, hene we have a time deadlok.
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y <= 9

A2

a?

B1

x <= 7

B2

B3

a!

x == 7

Figure 6.3: Two simple timed automata A and B.Time deadlok poses a problem for ompositional bakwards reahabilityanalysis. In order to detet if we are taking a bakwards step over a timedeadlok, we have to onsider all omponents. This strongly ontradit theompositionality. One possible solution to this problem is to restrit themodels on whih the method works. We want models that annot timedeadlok, whih is desribed by the following property.De�nition 6.1 : No Time Deadlok8(~p; v) that is reahable:9(~l; v) ���! �(d1)����! ���! �(d2)����! :::::: suh that limn!1( nXi=1 (di))!1We believe that the following syntatial properties ensures that a systemnever time deadloks:� Eah state that has an invariant must have an outgoing tau transitionwhih is enabled when the invariant prevents any further delaying. Ifno suh tau transition exists one must be added that leads to a speialdeadlok state.� There may not be any yles in the model in whih time does not elapse.This an be ensured by heking that, in eah yle there exists a lokthat is reset and later heked to be larger than a non-zero onstant.We have no proof of these assumptions and this is a very interesting area forfuture work. 68



Extensions 696.3 Urgent LoationsA loation in an automata an be spei�ed as being urgent. No time anelapse in the system while an automata is in an urgent loation. Urgentloations an simply be modeled by the use of invariants, so if we have asolution for invariants we have also solved the problem of urgent loations.An extra lok xu is added whih is reset on all transitions going into theurgent loation. Then an invariant, whih spei�es that no time an elapse,xu � 0, is added to the urgent loation.6.4 Committed LoationsA loation in an automata an be spei�ed as being ommitted. Similarly asfor urgent loations, no time an elapse when an automata is in a ommittedloation. There is also the extra requirement that no other automata maytake any transitions before the one automata has left the ommitted loation.Before the reahability analysis is started, the set of ommitted loations isexamined. Any ommitted loation that has an outgoing tau-transition isregistered as well as any pair of ommitted loations that an synhronize.Whenever in the bakwards reahability analysis that we take a bakwardsdelay or disrete transition, we know that none of the automata not in Mould have been in any of the previously mentioned states or ombinations ofstates. If the ommitted loation is in an automata inM we will treat them asurgent loations. When we take a bakwards step into a ommitted loationor a pair of ommitted loations, we annot delay due to the invariants thatwas added by the treatment as urgent loations. In addition to this we mustonly look at transitions that an bring us out of the ommitted loationsagain, when hoosing the next disrete step.6.5 Urgent ChannelsAn urgent hannel is a hannel on whih the automata must synhronize assoon as they are able to. As for the ommitted loations we must register allpairs of states that an synhronize over an urgent hannel before the reaha-bility analysis begins. When suh a pair is not inluded inM , we know whenwe delay, that all the omponents outside of M annot be in these loationombinations. For pairs of loations where the one automata is inluded inM , and the other one is not, we must do the following. If the automata inMisn't in the loation that an synhronize over an urgent hannel, we mustdo nothing. On the other hand if it is in this exat loation, we an onlude69



70 Extensionsthat the automata outside M , with whih it ould synhronize, isn't in theorresponding loation.
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7 ImplementationA test implementation of the CBR method was reated in order to produesome experimental results. This implementation will in the rest of the reportbe known as Cbr-verifyta. In the next hapter the experimental resultsfrom Cbr-verifyta will be ompared with results from Uppaal. Thishapter desribes what the test implementation inludes and how it wasimplemented.7.1 Code ReuseThe CBR test implementation is implemented in the programming languageC++. This is done in order to be able to use the Uppaal soure ode asa basis for the development of a test implementation of the CBR for TAmethod. Firstly the parsers, both for the models and the veri�ation prop-erties, ould be reused. This results in the fat that, the same models andveri�ation properties an be fed to both Uppaal and Cbr-verifyta. Aresult of using the Uppaal soure ode as a basis, was that there was noreal design faze. The Uppaal soure ode was slowly replaed and hangedto transform it into Cbr-verifyta. The remaining setions will desribeparts of the implementation. We will only desribe things that has not beenovered elsewhere in the report. Although the double symboli states andthe symboli predeessor funtion represents the main part of the implemen-tation e�ort, they will not be desribed in this setion. This is due to thefat that they have already reeived thorough treatment.7.2 Fous of the ImplementationDue to the limited time resoures, we have in this projet it wasn't an optionto do a full implementation of the CBR method. The priority was on beingable to ompare CBR and Uppaal by being able to verify relevant proper-ties on a set of models. The main de�ieny of the implementation is it'sinability to handle veri�ation properties ontaining negations or propertiesstarting with A[℄. The problem lies in the step where symboli states are71



72 Implementationgenerated from the parsed property. If �rst the symboli states has beengenerated, there is no set of states, that we annot hek the reahabilityof. In the implementation we also hose to implement simple integers asdesribed in setion 6.1 beause many of the models ontains integers, andonly use them in suh a simple fashion. A point where the method di�ersfrom the algorithm, is that there is performed an extra inlusion hek wheninserting a state into the waiting list, to avoid dupliate states in the waitinglist. This is inspired by Uppaal, whih does exatly the same, although itis not desribed in the forward reahability algorithm of setion 4.3.1.7.3 Dependeny AnalysisIn this setion we will �rst desribe the purpose of the dependeny analysis.After this we onsider how to perform the analysis on a timed automatanetwork (TAN). Finally we onsider some heuristis for di�erent orders inwhih to inlude the omponents.The dependeny analysis is arried out in order to avoid doing unneessarywork. If we an show that a number of omponents are dependently losed,and that the property we intend to verify only onerns omponents fromwithin the dependeny losed set, then we know that we only need to in-lude the omponents from the dependeny losed set, in order to hek theproperty. Having a dependeny losed set means that no matter how theomponents outside the set behave, they annot a�et the set of states, thatthe dependeny losed set an reah. This analysis is arried out before theatual veri�ation.In a TAN we have three types of omponents; automata, loks, and inte-gers. These omponents depend on eah other in di�erent ways. First of allautomata an depend on eah other by use of the same hannel to ommu-niate. All automata that write to a given hannel a! depends on all theautomata that read from the hannel a?. Likewise eah reader of a hanneldepend on every single writer to the same hannel. Integers an only dependon automata. An integer depends on the automata that assigns it a valueon one of it's transitions. Likewise loks only depend on automata that itis resets by. Finally automata also depends on the integers and loks usedin a guard on one of it's transitions. Using these rules, we build a depen-deny graph. Starting with the set of omponents used to represent Goal.We simply add all the omponents that these omponents depend on. Inthis way, when we have no more omponents to inlude, we have reahed adependeny losed system. This need not bee all omponents in the system.As a heuristi for whih omponents to add we have hosen a very simple72



Implementation 73one, of in eah step adding all the omponents that the urrent omponentsdepend diretly on. In the implementation we already ount the number ofdependent relationships between two omponents. So that for instane foreah reset of a lok appearing in an automata, the lok depends with onepoint on the automata. These numbers gives some sort of representation ofhow losely onneted two omponents are. One ould easily imagine thisbeing utilized in some form of heuristis where a ertain number of point hadto be added for eah step. Coming up with some good heuristis ould be apossible diretion of future work.
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8 Experimental ResultsIn this hapter we will ompare the performane of the CBR method (Cbr-verifyta) against both full bakwards reahability (FBR) and the algorithmused in the Uppaal tool. What we mean by FBR will be explained in setion8.2.1. We hoose to ompare CBR and Uppaal in terms of the number ofinlusion heks and exploration steps beause these are the most omplexoperations of the algorithms. We do not want to measure the exeution time,beause this will show the eÆieny of the implementations instead of therelative strength of the individual methods.
8.1 Performane ParametersWe hoose inlusion heks and exploration steps, as performane parametersbeause we believe them to be the dominant fators in the exeution time.Inlusion heks are performed in two loations in the algorithms. Before astate is explored it is heked against the passed list to see if it has alreadybeen explored. Inlusion heks are also performed when inserting a state intothe waiting list. Exploration steps represent the number of times a state isexplored, i.e. the number of times we look at one state and determine whatnew states we an reah by a forward or a bakwards step. The Uppaalversion used in this setion is 3.2 Beta 5 (3.1.68) of September 2001.
8.2 Test CasesAs test ases we hoose the two problems also desribed in the previousreport: The soldiers problem and Fisher's mutual exlusion algorithm. An-other reason for hoosing these problems is that they are standard problemsthat are distributed as examples with Uppaal, and the fat that they anbe saled in size. 75



76 Experimental Results8.2.1 Fisher's Mutual Exlusion AlgorithmThe purpose of Fisher's mutual exlusion algorithm is to ensure that anumber of proesses all an have aess to a shared resoure, but never atthe same time. In �gure 8.1 we show a prototype for the proesses in Fisher'salgorithm. These prototypes are reated using the graphial user interfaefor Uppaal. From this prototype we an save a system with the desirednumber of proesses. In eah proess the pid is then replaed by a uniqueonstant, not zero.
a b

ccs

id== 0 x:= 0

x<=k

x:= 0,
id:= pid

id== 0

x:= 0

x>k, 
id==pid

x:= 0,
id:= 0Figure 8.1: Prototype for eah proess in Fisher's algorithm.We use Fisher's mutual exlusion algorithm to test CBR against both Up-paal and FBR. We verify a property that the �rst two proesses an bothreah the ritial setion at the same time. This an be written as: E<>(P1.s and P2.s). This property is never satis�ed for a orret on-struted Fisher's algorithm, so in all the test ases the answer is NO. Weverify this property for di�erent numbers of proesses. The reason we do nothange the property to inlude all proesses, is that if we did so the om-positional aspet of the CBR method would not be tested. We ahieve thefull bakwards reahability method (FBR) method by rewriting the propertyto all possible ombinations of states that are overed by the symboli stategenerated by E<> (P1.s and P2.s). By using Cbr-verifyta to verifythis new property, we are guaranteed that all omponents are inluded fromthe start, and hene we get what orresponds to full bakwards reahabilityanalysis. The FBR property for three proesses is:E<>( (P1.s and P2.s)and (P3.a or P3.b or P3. or P3.s)and (id == 0 or id == 1 or id == 2 or id == 3))This property is rewritten for eah number of proesses, by adding an extraline for eah proess, and an extra possible value for id. For four proessesthe property is: 76



Experimental Results 77E<>( (P1.s and P2.s)and (P3.a or P3.b or P3. or P3.s)and (P4.a or P4.b or P4. or P4.s)and (id == 0 or id == 1 or id == 2 or id == 3 or id == 4))Uppaal is tested both with and without an optimization option -a, whih tellsit to detet inative loks. This option improves the performane of Uppaalfor the models in question. Table 8.1 ontains the number of inlusion heksperformed by eah method in verifying the property on models of di�erentsize. Likewise table 8.2 ontains the number exploration steps.Inlusion Cheks# proesses Uppaal Uppaal -a FBR CBR2 81 66 39 273 967 593 344 3934 14729 6850 2247 11975 275391 97077 12679 28186 6113281 1633538 65537 5556Table 8.1: Inlusion heks. Fisher's algorithm.Exploration Steps# proesses Uppaal Uppaal -a FBR CBR2 29 23 17 123 301 181 108 854 4121 1889 563 1685 70381 24701 2658 2836 1441885 387925 11833 430Table 8.2: Exploration steps. Fisher's algorithm.From table 8.1 and 8.2 we an see that both FBR and CBR performs sig-ni�antly better than Uppaal, both with and without the -a option. CBRalso outperforms the FBR method. In table 8.3 and 8.4 we will alulate thefator by whih the number of operations grow when we inrease the numberof omponents. We alulate this growth fator by dividing the number ofoperations required for 3 proesses with the number of operations requiredfor 2 proesses, and so on. For both versions of Uppaal the growth fatorinreases as the number of proesses inrease, indiation greater than expo-nential growth. For both FBR and CBR the growth fator dereases as the77



78 Experimental Resultsnumber of proesses grow, indiating sub exponential growth. The growthis still far from linear. We annot onlude that this will be the ase forall models, but for this partiular ase Cbr-verifyta has both the lowestnumber of operations and the lowest growth fator. The only exeption forthis is the growth from two to three proesses, where FBR has a lower growthfator. Inlusion Cheks# proesses Uppaal Uppaal -a FBR CBR3/2 11.9 9.0 8.8 14.64/3 15.2 11.6 6.5 3.05/4 18.7 14.2 5.6 2.46/5 22.2 16.8 5.2 2.0Table 8.3: Growth fator. Inlusion heks. Fisher's algorithm.Exploration Steps# proesses Uppaal Uppaal -a FBR CBR3/2 10.4 7.9 6.4 7.14/3 13.7 10.4 5.2 2.05/4 17.1 13.1 4.7 1.76/5 20.5 15.7 4.5 1.5Table 8.4: Growth fator. Exploration steps. Fisher's algorithm.When verifying a property that annot be satis�ed Uppaal will eventuallysearh the entire reahable state-spae. This means that no matter whatunsatis�able property we verify on the models used above, we will get theexat same number of operations. On the other hand the eÆieny of theFBR and CBR methods is very dependent on the property we want to verify.8.2.2 Soldiers ProblemWe hoose this problem for several reasons. It is ompositional in nature, itis distributed with Uppaal and it was also analyzed in the previous report[Lar02℄. In the previous report it was remodeled ompared to the versiondistributed together with Uppaal. Here we hoose to inlude test data forboth models. 78



Experimental Results 79The problem an be desribed as follows. A bunh of soldiers have to rossa river over a narrow bridge, in the middle of the night. They have onlyone torh, whih they need to ross the bridge, at the same time the bridgean only arry the weight of two of the soldiers at a time. This means thatwhen two soldiers have rossed the bridge one of them must walk bak to theoriginal side with the torh. So a new pair of soldiers an ross the bridge.The soldiers walk at di�erent speeds aross the bridge, and if two of themross the bridge together, they walk at the speed of the slowest of the two.The usual question to solve is; an all the soldiers ross the bridge within Xtime units?
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Figure 8.2: The Torh automata and the prototype for the Soldier automata.In the version distributed with Uppaal, shown in �gure 8.2, the torh ismodeled by an automaton, and so is eah of the soldiers. In the version fromthe previous report, we modeled the loation of the torh by an integer vari-able with three values. When one or two soldiers begin their journey arossthe bridge they hange the value of the integer, suh that no other soldiersan ross the bridge. When they get to the other side they hange the valueof the integer to reet, on whih side of the bridge the torh urrently isloated. In this model we do not use prototypes but individual automata.But the automata still resemble eah other so muh, that we have hosen toshow only one of them in �gure 8.3.In the following the problem is modeled with four soldiers, S1, S2, S3, andS4. The four soldiers take respetively 5, 10, 20, and 25 time units to rossthe bridge. In table 8.5 we show the properties that will be tested on bothmodels. These properties will also be tested on Uppaal, with the detetinative loks option. 79
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unsafe X

A

B

safeL == 0

L := 1,
y4 := 0

L == 0

L := 1, y4 := 0

go!

y4 >= 25

L := 2

off!

y4 >= 25

L := 0

off!

L == 2

y4 := 0,
L := 1

go!

y4 >= 25
L := 2

y4 >= delay

L := 0 L == 2

L := 1,
y4 := 0

L == 0

L := 1, y4 := 0

go?

y4 >= 25

L := 2

off?

L == 2

y4 := 0,
L := 1

go?

y4 >= 25

L := 0

off?

Figure 8.3: Soldier4, one of the timed automata used in this example. Onthis �gure the transitions marked with two synhronization labels, e.g. go!and go?, are atually two transitions with the same reset sets and guards.The perentage olumns in table 8.6 and 8.7 are alulate by dividing thenumber of operations needed in the CBR method with the number of opera-tions used inUppaal. The tables show that espeially for the properties thatare not satis�ed, Uppaal uses a lot fewer operations. This is also the asefor the most omplex property, property 8. It is only for the �rst two simpleproperties that the CBR method is onsistently better. The remodeled sol-diers problem generally requires both less inlusion heks and explorationsteps. There is only one exeption from this, whih is the number of inlusionheks required by the CBR method for property number 1. With this modelUppaal generally performs better than Cbr-verifyta.8.3 Conlusion on TestsThe tests arried out in the previous setion show varying results. In themost extreme ase, Fisher's algorithm with six proesses, where the CBRmethod is best, Uppaal uses 29.401% more inlusion heks and 90.215%more exploration steps. These results are obtained by dividing the num-80



Experimental Results 811 E<> S1.safe YES2 E<> S1.safe and S2.safe YES3 E<> S1.safe and S2.safe and S3.safe YES4 E<> S1.safe and S2.safe and S3.safe and S4.safe YES5 E<> S2.safe and S3.safe and S4.safe and time <= 39 NO6 E<> S2.safe and S3.safe and S4.safe and time <= 60 YES7 E<> S1.safe and S2.safe and S3.safe and S4.safe and time <= 59 NO8 E<> S1.safe and S2.safe and S3.safe and S4.safe and time <= 60 YESTable 8.5: Properties to be veri�ed on soldiers problem.Inlusion Cheks Exploration StepsProperty Uppaal -a CBR % Uppaal -a CBR %1 139 21 15.1% 42 9 21.4%2 226 77 34.1% 80 27 33.8%3 876 898 102.5% 288 271 94.1%4 1485 3724 250.8% 468 1057 225.9%5 1709 26714 1563.1% 534 5869 1099.1%6 892 1527 171.2% 294 465 158.2%7 1707 9139 535.4% 532 2701 507.7%8 1497 10445 697.7% 474 3103 654.6%Table 8.6: Veri�ation of di�erent properties on the original model of thesoldiers problem. With Uppaal -a option.ber of operation used by Uppaal with the number of operations used byCbr-verifyta. In the ase where Cbr-verifyta uses the most operationsompared to Uppaal, it uses 1563% more inlusion heks and 1099% moreexploration steps. We an onlude that neither the one nor the other methodgenerally is better than the other. Whih method that uses the fewest op-erations depend both on the model and on the property to be veri�ed. ForFisher's algorithm, where CBR always used fewer operations, it outperformsUppaal by more than, what Uppaal does for the Soldiers problem. Theonlusion is that CBR has onsiderable strengths, when applied to the do-main of TAN, and it is worth doing some extra work to try and explore thefull potential of the method. It might be a possibility to develop heurististhat an help hoosing if forward or ompositional bakwards analysis is bestsuited for a spei� veri�ation job. Another possibility would be to ombineforward analysis with CBR and hek for intersetion between the forwardand bakwards reahable state-spae. This method would properly perform81



82 Experimental ResultsInlusion Cheks Exploration StepsProperty Uppaal -a CBR % Uppaal -a CBR %1 49 30 61.2% 12 3 25.0%2 55 33 60.0% 13 4 30.8%3 249 646 259.4% 56 92 164.3%4 436 3031 695.2% 96 441 459.4%5 496 6189 1247.8% 113 1096 969.9%6 227 810 356.8% 61 128 209.8%7 496 6598 1330.2% 113 1036 916.8%8 447 6630 1483.2% 99 1043 1053.5%Table 8.7: Veri�ation of di�erent properties on the remodeled soldiers prob-lem. With Uppaal -a optionworse for properties that annot be satis�ed, but might deliver better resultsfor properties that are true.To perform a thorough test of di�erent veri�ation methods, we really needa very broad spetra of real-world veri�ation senarios, instead of two las-sial veri�ation examples. I spite of the limited test material we an stillonlude that CBR for TA is a potentially very eÆient veri�ation method.
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9 ConlusionIn this hapter we will �rst disuss possible diretions for future work. Finallywe will onlude on the di�erent parts of the report.9.1 Future WorkIn this setion we will desribe several diretions for future work.The most important diretion of future work, for the usefulness of the CBRfor TA method, is the extensions desribed in hapter 6. If the CBR for TAmethod should be a serious ompetitor to Uppaal, one would have to beable to handle all of these extension. The major hallenge lies in handlinginvariants.Another natural line of future work would also be to develop a full imple-mentation of the CBR for TA method desribed in this report. A remaining�eld of work is also to test the eÆieny of di�erent data strutures to holdthe past and waiting list. This implementation should o� ause inlude theextensions if solutions are found on ways to handle invariants and so on.A third option is to look into the possibility of ombining CBR with otherveri�ation methods. As mentioned in setion 8.3 it would �rst of all be apossibility to ombine CBR with some form of forward reahability analysis.Both by doing forward a bakwards reahability analysis at the same time.But also by reating some heuristis to determine whether the CBR methodor forward reahability analysis is best suited for a partiular veri�ationtask. Yet another possibility is to design heuristis for the order in whih toinlude the omponents in the analysis.Finally one ould apply the CBR method to some new domain. With thenew generalized framework, the CBR method should be diretly appliableto many useful domains, both disrete and real-time domains.9.2 ConlusionWe have in this report sueeded in developing two versions of a more generalCBR framework. We have proven the orretness of the two aompanying83



84 ConlusionCBR algorithms. The one based on the original CBR algorithm and theother based on the onept of symboli states. We spei�ed what is requiredof a domain for eah of the two CBR methods to be appliable. We have as inthe previous report [Lar02℄ introdued the domain of Timed Automata (TA),and the algorithm implemented in Uppaal. We apply the CBR methodto the domain of TA by ful�lling the requirements, and thereby withouthaving to reprove the orretness of the algorithm. Several extensions of thedomain were also onsidered. A test implementation has been developed andexperimental results have shown the potential of the CBR for TA method.The experimental results show that the e�etiveness of the method dependson both the model and the property to be veri�ed.The onlusion of the report is that CBR for TA is a very powerful methodfor some models, and the method is worth further investigation.
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10 Danish ResumeDenne rapport besk�ftiger sig med udvikling af en metode til KompositionelBagl�ns analyse af om tilstande kan n�as. Denne metode hedder Compo-sitional Bakwards Reahability (CBR). I kapitel 2 beskrives den generelleCBR metode, der baserer sig p�a en �nere og �nere partitionering af til-stands rummet. F�rst introdueres en algoritme inspireret af den oprindeligeCBR algoritme fra [LNAB+98℄. Herefter udvikles en lignende algoritme,som baseres p�a brugen af symbolske tilstande. Korrektheden af begge algo-ritmer vises og betingelser opstilles for anvendelsen af metoden p�a et givetdom�ne. I kapitel 3 introdueres Tids Automater (Timed Automata (TA)).I kapitel 4 forklares den analyse metode for TA, som bruges i v�rkt�jet Up-paal. I kapitel 5 anvendes CBR metoden p�a dom�net TA ved at opfyldebetingelserne for den symbolske algoritme. I kapitel 6 diskuteres mulighederfor udvidelser af TA dom�net. Disse udvidelser betragtes da det netop erdem, der er implementeret i v�rkt�jet Uppaal. Herefter beskrives i kapitel7 den test implementation, som er blevet udviklet med grundlag i kildekodenfra Uppaal. Denne implementation bliver i kapitel 8 sommenlignet medblandt andet Uppaal, for at unders�ge CBR for TA metodens styrker ogsvagheder. Til slut beskrives mulige retninger for fremtidigt arbejde og enkonklusion drages i kapitel 9.
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