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Abstra
t:This report deals with the devel-opment of a general framework forCompositional Ba
kwards Rea
ha-bility (CBR) and with the veri�-
ation of rea
hability properties onTimed Automata Networks (TAN).The CBR method is developed onthe basis of a series of �ner and�ner partitionings of the state-spa
e. Two di�erent CBR algo-rithms are presented and proven
orre
t. The domain of TAN, whi
his a real-time model, is des
ribed.The symboli
 DBM-based analysisof Timed Automata used in exist-ing veri�
ation tools, like Uppaal isexplained. The se
ond of the CBRalgorithms is applied to the domainof TAN. Several extensions to thedomain are dis
ussed, and a test im-plementation of the basi
 method isdeveloped. This implementation isused to obtain some experimentalresults. Finally future work is dis-
ussed and a 
on
lusion is drawn.
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1 Introdu
tionThis 
hapter �rst motivates the work by explaining the problem at hand.After this the work is put into the 
ontext of related work. Finally therelation to the previous report [Lar02℄ is des
ribed together with an outlineof the report.
1.1 MotivationWhen trying to verify properties of parallel 
ompositions of several 
ompo-nents, the main problem is the fa
t that the state-spa
e grows exponentiallyin the number of 
omponents, known as state-spa
e explosion. When extend-ing the models from dis
rete to timed models the state-spa
e in
reases evenfurther in size. This report fo
uses on yet another way to handle the state-spa
e explosion problem in the presen
e of time. The underlying patentedmethod, 
alled Compositional Ba
kwards Rea
hability (CBR), was �rst pre-sented in [LNAB+98℄ where it was developed for a dis
rete model 
alledstate/event systems. The goal of this report is to 
ontinue the work from theprevious report of extending the CBR method to a new domain of problems,namely veri�
ation of real-time models. When modeling 
ontinuous real-timethe state-spa
e be
omes not just larger but in fa
t in�nite. However, the in�-nite state-spa
e 
an be redu
ed to a �nite one by using symboli
 te
hniques torepresent and manipulate 
ertain relevant subsets of the state-spa
e. Thesesubsets are known as Zones. This te
hnique is well known, and implementedin the veri�
ation toolUppaal [LPY97℄ that 
an verify safety and rea
habil-ity properties of real-time models des
ribed as Timed Automata (TA). In thenewest version Uppaal one 
an also verify 
ertain general liveness proper-ties. In this report we 
ombine the notion of Zones with the CBR method todevelop CBR for TA. Uppaal is developed in 
ooperation between AalborgUniversity and Uppsala university. The sour
e 
ode for Uppaal has beenused as a basis in the development of a test implementation of the methoddes
ribed in this report. 9



10 Introdu
tion1.2 Related WorkThis se
tion 
ontains a dis
ussion of related work. All the work mentionedin this se
tion deals in some way with handling the state-spa
e explosionproblem. First we des
ribe some te
hniques developed for veri�
ation ofdis
rete systems. After this we dis
uss how these methods 
an or has beenextended to apply to real-time systems. Some of the 
itations in this relatedwork se
tion has been found in [Kat98℄ by Joost-Pieter Katoen.The main inspiration for this proje
t is the arti
le [LNAB+98℄, in whi
hthe CBR method is developed and applied to a dis
rete model. This, laterpatented, method was developed spe
i�
ally for the industrial veri�
ationtool visualStateTM, whi
h is used in the development of embedded systems.In this tool a number of prede�ned 
he
ks is performed on the model enteredby the user. CBR outperformed not only the traditional forward analysis thatwas implemented in the tool, but also the 
urrent state of the art symboli
BDD-based methods. Models that 
ould not be veri�ed earlier be
ause ofthe state-spa
e explosion, 
an be veri�ed using CBR. The strength of CBRis it's 
ompositionality, whi
h is 
losely linked to the fa
t that it performsba
kwards veri�
ation. This means that in many 
ases a mu
h smaller partof the state-spa
e has to be 
he
ked before a solution is found.When verifying 
ontinuous real-time models the state-spa
es to be analyzedare in�nite. This 
an be handled by partitioning the 
ontinuous part of thestate-spa
e into so-
alled regions. Regions are subsets of the state-spa
e, su
hthat every pair of states form a region 
annot be distinguished by the model.If a region is split in two, the two parts would be indistinguishable by the
onstraints and guards in the model. This 
reates a �nite but very large state-spa
e. A better solution is to represent 
onvex unions, so-
alled Zones, of su
hregions. Theoreti
ally there are even more Zones than regions, but a mu
hsmaller number of these will ever be 
onsidered in pra
ti
e during analysisof real systems. The su

ess of Zones depends on the eÆ
ient data-stru
tureDi�eren
e Bounded Matri
es (DBMs) used to represent the Zones and theeÆ
ient operations de�ned on this data-stru
ture. This is the te
hnologyimplemented in the tools Uppaal and Kronos [BDM+98℄.Another te
hnique that has signi�
antly in
reased the size of dis
rete sys-tems that 
an be veri�ed is the Binary De
ision Diagram (BDD) te
hnique�rst introdu
ed by Bryant [Bry86℄[K.L93℄. The BDD te
hnology has beenextended to Clo
k Di�eren
e Diagrams (CDDs) to apply to the veri�
ation ofreal-time systems [BLP+99℄. It gives redu
tion in the size of the state-spa
erepresentation but not in the time used for veri�
ation.Another te
hnique to limit the state-spa
e explosion problem is partial orderredu
tion [God96℄. Many di�erent but equivalent interleavings are 
onsidered10



Introdu
tion 11at on
e, by only unfolding one of the interleavings, hereby redu
ing the state-spa
e explosion. Partial order redu
tion has also been attempted applied toveri�
ation of real-time systems but without great su

ess [Min99℄.The �rst goal of this report is to generalize the CBR method su
h that it 
anbe applied to many possible domains. The se
ond goal of this report is toshow the feasibility of 
reating a veri�
ation tool for Timed Automata (TA)based on the 
ompositional ba
kwards method for rea
hability analysis. Thisis done by 
ombining the well known DBM te
hnology with the CBR methodin a test implementation. This implementation is then used to obtain someexperimental data.1.3 Relation to Previous Report and OutlineThis se
tion des
ribes how this report is related to the previous report andgives an outline of the following 
hapters. The work in this report 
an be seenas an extension of the previous report, in whi
h a generalization of the CBRmethod was presented. After this the domain of Timed Automata (TA) wasdes
ribed. Finally the CBR method was applied to the domain of TA. TheCBR framework developed in the former report was not general enough andhad to be adjusted, when applied to the domain of TA. Some parts of theprevious report has been in
luded without substantial 
hanges. This in
ludes
hapters 3 and 4, and parts of 
hapter 5. This is the se
tions that des
ribethe domain of TA. The CBR framework, whi
h is 
ompletely redesigned,is presented in 
hapter 2. It generalizes the CBR method and shows the
orre
tness of two di�erent CBR algorithms, ea
h appli
able to their owntype of domains. Chapter 3 de�nes the model of Timed Automata (TA).The symboli
 analysis of TA and the algorithm implemented in Uppaal isdes
ribed in 
hapter 4. In 
hapter 5 we pro
eed to apply the CBR methodto the model of TA. Chapter 6 des
ribes some extension to the model of TA,and how these would e�e
t the CBR for TA method. The development ofa test implementation of the CBR for TA method is des
ribed in 
hapter 7.This test implementation is used to obtain some experimental results, whi
hare dis
ussed in 
hapter 8. Future work and 
on
lusion is in
luded in 
hapter9.
11
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2 CBR in GeneralIn this 
hapter we will �rstly des
ribe what ba
kwards rea
hability anal-ysis is. After this we will des
ribe the 
on
ept of 
ompositional ba
kwardsrea
hability (CBR). Se
tion 2.3 
ontains the 
entral de�nitions and theoremsneeded for the CBR algorithm. Two versions of the CBR algorithm will bepresented, and the 
orre
tness of both will be proven. Finally the di�eren
esbetween the original CBR method and the one developed in this report, aredes
ribed in se
tion 2.5. In this se
tion we also des
ribe di�eren
es from theframework developed in the previous report [Lar02℄.2.1 Rea
hability AnalysisIn this se
tion we des
ribe the basi
 
on
ept of rea
hability analysis. Wede�ne rea
hability and rea
hability analysis on general transition systems,where transition system is de�ned in the following manner.De�nition 2.1 : Transition System(ST;�!), where ST is a set of states (�nite or in�nite) and �!� ST � STis a transition relation.Ea
h transition has a sour
e state and a target state. The sour
e state is the�rst ST 
omponent and the target state is the se
ond ST 
omponent. If wehave the transition (s; t) 2�! we write s �! t. When writing a sequen
e oftransitions we write s1 �! s2 �! s3 instead of s1 �! s2; s2 �! s3. We nowde�ne what it means for a state to be rea
hable.De�nition 2.2 : Rea
habilityGiven a set of initial states Init � ST and goal states Goal � ST we de�neGoal to be rea
hable if there is a transition sequen
es0 �! s1 �! s2 �! : : : �! sn13



14 CBR in Generalwith s0 2 Init and sn 2 Goal.There are two fundamental ways of de
iding rea
hability: Forward and ba
k-wards. The two methods 
an also be 
ombined. We des
ribe ea
h of thepossibilities in the following three se
tions.2.1.1 ForwardIn the forward rea
hability analysis we start with the set of states Init anditeratively 
ompute the set of rea
hable states in steps as illustrated in �gure2.1. State spa
eInit F1 F2 GoalFigure 2.1: Forward Rea
hability AnalysisWe use the following formulas to 
ompute ea
h new step:F0 = InitFn = Fn�1 [ Post(Fn�1) for n > 0where for S � ST; Post(S) = fs0 2 ST j 9s 2 S:s �! s0g.If at any point Fn\Goal 6= ; we know that we have a sequen
e of transitionsthat 
an bring us from a state in Init to a state in Goal. Hen
e we terminatewith a positive answer. If we have Fn = Fn+1 we have rea
hed a �x pointand we know that no transitions 
an take us out of the set Fn. This leadsus to terminate the algorithm with the answer that, there is no sequen
e oftransitions that 
an bring us from Init to Goal.2.1.2 Ba
kwardsThe main di�eren
e between forward and ba
kwards rea
hability analysis isthe set of states that we start with. We again want to know if there is asequen
e of transitions that 
an bring us from a state in Init to a state inGoal, but this time we start with Goal and 
ompute the set of states that 
an14



CBR in General 15rea
h Goal. First the states that 
an rea
h Goal by taking one transition,then two transitions, and so on. This is illustrated in �gure 2.2.State spa
eInit B2 B1 GoalFigure 2.2: Ba
kwards Rea
hability AnalysisIn forward analysis, we know that all the states we explore are rea
hablestates. In ba
kwards analysis we 
an have both rea
hable and unrea
hablestates in our set of states. We use the following formulas to 
al
ulate thesteps: B0 = GoalBn = Bn�1 [Pre(Bn�1)where for S � ST; Pre(S) = fs 2 ST j 9s0 2 S:s �! s0g.Again we have two termination 
onditions. The algorithm terminates witha positive answer if, at any point, Bn and Init interse
t. The algorithmterminates with a negative answer if we rea
h a �x-point, Bn = Bn�1.2.1.3 CombinedThe two previously des
ribed methods 
an be 
ombined, by doing forwardand ba
kwards rea
hability analysis in parallel. For ea
h step we 
he
k forinterse
tion between the two sets Fn and Bn. If these two sets interse
t ina state s we know that we have a sequen
e of transitions leading from Initto s and a sequen
e of transitions leading from s to Goal, and hen
e Goal isrea
hable from Init. This method may give a faster positive answer but hasthe same negative termination 
onditions as the other two methods. One ofthe sets has to rea
h a �x-point in order for us to 
on
lude that Goal 
annotbe rea
hed from Init.2.2 The CBR Con
eptIn this se
tion we will �rst give a short des
ription of how CBR works. Afterthis we give some intuition about why the method was developed.15



16 CBR in GeneralCompositional Ba
kwards Rea
hability (CBR) is based on traditional ba
k-wards rea
hability as presented in the previous se
tion. It 
onsists of a num-ber of steps, ea
h resembling one run of the 
onventional ba
kwards rea
ha-bility analysis. The result of ea
h step is an under-approximations of the setof states that 
an rea
h Goal. After ea
h step we 
he
k for interse
tion be-tween the 
urrent under-approximation and Init. If the two sets interse
t wehave found a path leading from some state in Init to some state in Goal, andthe algorithm terminates with a positive answer. If there is no interse
tionwe have to 
al
ulate a new and larger under-approximation. This pro
ess is
ontinued until the two sets interse
t or the under-approximation no longeris an under-approximation, but the full set of states that 
an rea
h Goal. Ifthe full set does not interse
t with Init we know that no path exists fromInit to Goal and the algorithm terminates with a negative answer.An important fa
tor in the eÆ
ien
y of the method is the fa
t that the endresult of one step 
an be used as the starting point of the next step. Figure2.3 illustrates two su
h 
al
ulations of under-approximations. The end resultof the �rst step, shown in the top part of the �gure, is used as the startingpoint of the se
ond step, shown in the bottom part of the �gure.State spa
eInit Bn � � � B1 GoalState spa
eInit NewGoal = BnU1Un � � �Figure 2.3: Cal
ulation of two under-approximations.This approa
h of stepwise under-approximation, was developed to 
ope withvery large systems, 
onsisting of many 
omponents in parallel. In the originaldomain of State/Event systems, ea
h of the 
omponents, is in itself a transi-tion system. The idea was, to only look at a subset of the 
omponents, andsee if this subset 
ould rea
h Init ba
kwards, without involving the other
omponents. If these 
omponents 
ould not rea
h Init extra 
omponentswere taken into 
onsideration, until all 
omponents, or rather a dependen
y16



CBR in General 17
losed set of 
omponents, were 
onsidered. The original CBR method useda 
on
ept of having an index set of the 
omponents. This index set was in-
reased to give larger and larger under-approximations. This 
on
ept will inthis report be repla
ed by a more general 
on
ept of partitioning the state-spa
e into �ner and �ner partitions. The 
on
ept of partitioning will be thetopi
 of the next se
tion. The 
al
ulation of a series of under-approximations
an theoreti
ally lead to slower negative termination, but more likely also toa mu
h faster positive termination. The eÆ
ien
y of the method also de-pends on the fa
t that, these under-approximations 
an be represented andhandled easily.2.3 PartitioningIn this se
tion we will develop the formal foundation for the CBR method.The idea is to use a su

ession of �ner and �ner partitionings of the state-spa
e ST , to under-approximate the set of states that 
an rea
h Goal. Byre�nement of the partitioning, hen
e enlarging the under-approximation, wewill get 
loser and 
loser to the full set of states that 
an rea
h Goal.Intuitively partitioning 
an be des
ribed as splitting the state-spa
e into anumber of disjoint parts. For some domain we will have an in�nite numberof partitions in ea
h partitioning. Formally we de�ne a partitioning in thefollowing way.De�nition 2.3 : PartitioningP = fSti j i 2 Ig is a partitioning of the state-spa
e ST if the followingthree 
onditions hold:1. SfSti j i 2 Ig = ST2. 8i Sti 6= ;3. Sti \ Stj = ; when i 6= j
One 
an talk of one partitioning being �ner than another. We de�ne a partialorder on the set of all partitionings. 17



18 CBR in GeneralDe�nition 2.4 : Ordering of PartitioningsWe say that P is �ner than Q that is P v Q if8i 2 I 9j 2 J : Sti � St0jwhere P = fSti j i 2 Ig and Q = fSt0j j j 2 JgFigure 2.4 illustrates two partitionings P and Q where P is �ner than Q.State spa
e QP and
Figure 2.4: Two partitionings P v QIt is worth noti
ing that, be
ause v is a partial order, not all pairs of parti-tionings 
an be ordered. When using the CBR method, we will start with aninitial partitioning P0 and from that 
reate �ner and �ner partitionings, untilwe have a partitioning, in whi
h all states in ea
h partition are bisimilar. This�nal partitioning Pstable will be de�ned later. The only requirement for theinitial partitioning is that Goal is P0 sorted. The su

ession of partitionings
ould be written as follows: P0 w P1 w : : : w Pn w PstableNow we de�ne the notion of P-equivalen
e.De�nition 2.5 : P-equivalen
es �P t () 8i:(s 2 Sti () t 2 Sti) where P = fSti j i 2 IgThe equivalen
e 
lasses generated by a spe
i�
 �P equivalen
e, exa
tly fol-lows the partitions of the 
orresponding partitioning P.We say that a subset H of the state-spa
e is P-sorted if, for the given par-titioning P, no partition interse
ts both with H and the 
omplement of H.This is formally de�ned in the following way:18



CBR in General 19De�nition 2.6 : P-sortednessLet P = fSti j i 2 Ig and let H � ST . We say that H is P-sorted if8s; s0 2 ST:s 2 H ^ s �P s0 ) s0 2 H:In 
orresponden
e with Pre(S) de�ned in se
tion 2.1.2 we de�ne the P-sorted prede
essors.De�nition 2.7 : PreP(H)PreP(H) = fs 2 ST j 8t �P s:9t0 2 H:t �! t0gThis means that if one state t 
an take a transition into H, then every otherstate that is �P equivalent with t must also be able to take a transition intoH, before this partition, �P equivalen
e 
lass, is in
luded in PreP(H). Weillustrate this in �gure 2.5. As this de�nition imposes an extra 
ondition, in
omparison with the original Pre, it 
an only return a set of states that isequal to, or smaller than, the set of states returned by the original prede
essorfun
tion. This means that we obtain an under-approximation.State spa
e�Ps t t0u u0 H� 9Figure 2.5: Illustration of PreP(H).Here it is not ne
essary to require that H is P-sorted. This requirement willbe added when extending it to the Pre�P(H) fun
tion, where it is neededbe
ause H itself is in
luded in the result.This de�nition a
tually gives us one prede
essor fun
tion for ea
h partition-ing P. We will in turn use ea
h of these fun
tions in our CBR algorithm aswe re�ne the partitionings.Lemma 2.8PreP(H) is P-sorted 19



20 CBR in GeneralThe proof of lemma 2.8 is very simple.Proof of of lemma 2.8 � � � � � � � � � � � � � � � � � � �We show that whenever s 2 PreP(H) and t �P s then t 2 PreP(H). Thuswe must show that u �! u0 for some u0 2 H whenever u �P t. Be
ause �Pis an equivalen
e relation, whenever we have that u �P t (and t �P s) we
an also 
on
lude that u �P s, and as s 2 PreP(H) it follows that indeedu �! u0 for some u0 2 H.� � � � � � � � � � � � � � � � � � � � � � � � � � � � �The following lemma states that the PreP operation is monotoni
 with re-gard to the input set.Lemma 2.9PreP(H1) � PreP(H2) if H1 � H2The proof of lemma 2.9 only uses the de�nition of PreP and the fa
t thatH1 � H2.Proof of lemma 2.9 � � � � � � � � � � � � � � � � � � � �Let s 2 PreP(H1). Then t �! t0 for some t0 2 H1, for all t �P s. But asH2 � H1 we also have that t �! t0 for some t0 2 H2 for all t �P s, and hen
es 2 PreP(H2).� � � � � � � � � � � � � � � � � � � � � � � � � � � � �2.3.1 Central TheoremsIn this se
tion we will present the three 
entral theorem: 2.15, 2.16, and2.18. These theorems are needed in the 
onstru
tion of the CBR algorithm.First we present lemmas 2.10 and 2.13, whi
h are simpler versions of respe
-tively theorem 2.15 and theorem 2.16. After this the Pre�P operation will beintrodu
ed and the three �nal lemmas will be proved.In all of the following we will use two partitionings P and Q. The partition-ing P is �ner than Q whi
h 
an be expressed in the following way; P v Q.Lemma 2.10PreQ(H) � PreP(H) where P v Q20



CBR in General 21Lemma 2.10 states that PreP(H) is monotoni
 with regard to how �ne thepartitioning P is. If the partitioning be
omes �ner the resulting set 
an onlybe
ome larger. This follows the intuition that if we re�ne the partitioningthe under-approximation be
omes better.Proof of lemma 2.10 � � � � � � � � � � � � � � � � � � � �Let s 2 PreQ(H). Then t �! t0 for some t0 2 H, for all t �Q s. Howeveras P is a �ner partitioning than Q, giving us �P��Q, we also have thatt �! t0 for some t0 2 H, for all t �P s. Thus s 2 PreP(H).� � � � � � � � � � � � � � � � � � � � � � � � � � � � �For the next 
entral lemma we need the following lemma.Lemma 2.11PreP � Pre(H)Lemma 2.11 states that any under-approximation of the set of prede
essorswill be in
luded in the full set of prede
essors.Proof of lemma 2.11 � � � � � � � � � � � � � � � � � � � �Assume s 2 PreP(H). Then t �! t0 with t0 2 H for all t �P s. In parti
u-lar, s �! s0 for some s0 2 H (be
ause s �P s). Then s 2 Pre(H).� � � � � � � � � � � � � � � � � � � � � � � � � � � � �For the next lemma we need a partitioning Pstable, with a 
ertain property.For this we �rst need to de�ne the bisimulation BGoal, whi
h depends on thetransition system and the set of goal states Goal.De�nition 2.12 : Bisimulation BGoalBGoal is a bisimulation if whenever (s; t) 2 BGoal then the following three
onditions hold:1. s 2 Goal () t 2 Goal2. s �! s0 ) 9t0:t �! t0 ^ (s0; t0) 2 BGoal3. t �! t0 ) 9s0:s �! s0 ^ (s0; t0) 2 BGoalThis de�nes all pairs of states that are bisimilar. We 
all a partitioning stableif all states in ea
h partitioning are bisimilar. This does not des
ribe exa
tly21



22 CBR in Generalone partitioning. For a given domain, the requirement is that we �nd onepartitioning Pstable with the give property. An example of a relation thatgives us a stable partitioning is the identity relation Id = f(s; s) j s 2 STg.Lemma 2.13PrePstable(H) = Pre(H) where H is Pstable sortedLemma 2.13 is needed in order to guarantee that, if we partition the state-spa
e down to bisimulation, we will get the same result as with traditionalba
kwards rea
hability analysis.Proof of lemma 2.13 � � � � � � � � � � � � � � � � � � � �We split the proof into two parts:�: follows from lemma 2.11.�: Let s 2 Pre(H). Then s �! s0 with s0 2 H. Now let t � s. Then t �! t0for some t0 with t0 � s0 (by de�nition of �). But H was assumed to bePstable sorted and hen
e t0 2 H. It follows that s 2 PrePstable(H).� � � � � � � � � � � � � � � � � � � � � � � � � � � � �We now de�ne the Pre�P operation and prove lemmas 2.10 and 2.13 in theirnew form. Intuitively PrenP(H) is all the states that 
an rea
h H in exa
tlyn transitions. From this we de�ne Pre�P(H) to be all the states, that 
anrea
h H in any number of transitions.De�nition 2.14 : Pre�P(H)For any given partitioning P we de�ne Pre�P(H) as the union:Pre�P(H) = 1[n=0PrenP(H)where PrenP is de�ned re
ursively by the following formulas:Pre0P(H) = HPren+1P (H) = PreP(PrenP(H))and H is required to be P-sorted. 22



CBR in General 23The above de�nition 
an also be applied to the original prede
essor fun
tionPre(H) to obtain a de�nition of Pren(H) and Pre�(H). The notationPre�(H) will be used in theorem 2.18 and Pren(H) will be used in theproof of theorem 2.18. For Pre�P(H) to be P-sorted we have to require thatH is P-sorted be
ause H itself is in
luded in Pre�P(H).The following theorem states that whenever we re�ne the partitioning wewill obtain an under-approximation that is a superset of the previous one.The left side uses the 
oarser partitioning Q and this set is a subset of theright side that uses the �ner partitioning P.Theorem 2.15Pre�Q(H) � Pre�P(H) where P v QThe proof of theorem 2.15, whi
h is an indu
tion proof, uses lemma 2.10 andlemma 2.9. Lemma 2.10 is similar to theorem 2.15 ex
ept for the stars, whilelemma 2.9 states that the PreP(H) operation is monotoni
 with regard tothe input set H.Proof of theorem 2.15 � � � � � � � � � � � � � � � � � � �The theorem obviously follows from the from the fa
t that PrenQ(H) �PrenP(H) for all n. We prove this by indu
tion in n.Basis n = 0: By the de�nition ofPrenP we 
an rewritePre0Q(H) � Pre0P(H)to H � H whi
h is obviously true.Step: Assume PrenQ(H) � PrenP(H) (IH) thenPren+1Q (H) = PreQ(PrenQ(H)) � by lemma 2:9 and (IH)PreQ(PrenP(H)) � by lemma 2:10PreP(PrenP(H)) = Pren+1P (H):Now we have proven that 8n:PrenQ(H) � PrenP(H).� � � � � � � � � � � � � � � � � � � � � � � � � � � � �We now extend lemma 2.13 by repla
ing PrePstable with Pre�Pstable and Prewith Pre�.Theorem 2.16Pre�Pstable(H) = Pre�(H) where H is P-sortedTheorem 2.16 now states that no matter how many ba
kwards steps we take,with the �nal partitioning Pstable of the state-spa
e, the result will never23



24 CBR in Generaldi�er from that obtained using the original prede
essor fun
tion. The prooffor theorem 2.16 follows the stru
ture of proof for theorem 2.15.Proof of theorem 2.16 � � � � � � � � � � � � � � � � � � �The theorem 
learly follows from the fa
t that PrenPstable(H) = Pren(H) forall n. We prove this by indu
tion in n.Basis n = 0: By the de�nition of PrenP we 
an rewrite Pre0Pstable(H) =Pre0(H) to H = H whi
h is obviously true.Step: Assume PrenPstable(H) = Pren(H) (IH) thenPren+1Pstable(H) =PrePstable(PrenPstable(H)) = by lemma 2:13 and (IH)PreP(PrenP(H)) = Pren+1P (H):Hen
e we have proved that PrenPstable(H) = Pren(H) holds for all n.� � � � � � � � � � � � � � � � � � � � � � � � � � � � �For the �nal 
entral theorem we need an extended version of the monotoni
-ity lemma 2.9, whi
h uses Pre�P instead of PreP .Lemma 2.17Pre�P(H1) � Pre�P(H2) when H1 � H2As for the previous proof, the proof of lemma 2.17 follows the stru
ture ofthe proof for theorem 2.15.Proof of lemma 2.17 � � � � � � � � � � � � � � � � � � � �The lemma follows 
learly from the fa
t that PrenP(H1) � PrenP(H2) for alln whenever H1 � H2. We prove this by indu
tion in n.Basis n = 0: By the de�nition ofPrenP we 
an rewritePre0P(H1) = Pre0P(H2)to H1 � H2 whi
h is obviously true.Step: Assume PrenP(H1) � PrenP(H2) (IH) thenPren+1P (H1) =PreP(PrenP(H1)) � by monotoni
ity (lemma 2:9) and (IH)PreP(PrenP(H2)) = Pren+1P (H2):This is exa
tly lemma 2.9 and hen
e we have proved that PrenP(H1) �PrenP(H2) holds for all n when H1 � H2.� � � � � � � � � � � � � � � � � � � � � � � � � � � � �24



CBR in General 25The following and �nal of the three 
entral lemmas lets us reuse states thathas already been 
al
ulated. If one set of prede
essors has been 
al
ulated us-ing partitioningQ, it 
an be used as the starting point of the next 
al
ulationusing a �ner partitioning P.Theorem 2.18Pre�P(H) = Pre�P(Pre�Q(H)) where P v QThe following proof 
onsists of two parts, where the se
ond of them on
eagain follows the stru
ture of the proof for theorem 2.15.Proof of theorem 2.18 � � � � � � � � � � � � � � � � � � �We want to prove that Pre�P(H) = Pre�P(Pre�Q(H)) for two partitioningsP and Q where P v Q. We 
onsider the two in
lusions.�: Obviously H � Pre�Q(H) and Pre�P is monotoni
 with respe
t to the in-put set a

ording to lemma 2.17. Hen
e we 
an 
on
lude thatPre�P(H) �Pre�P(Pre�Q(H)).�: The in
lusion follows from the fa
t that Pre�P(H) � PrenP(Pre�Q(H))for all n. We prove this by indu
tion in n.Basis n = 0: In this 
ase Pre�P(H) � Pre0P(Pre�Q(H)) redu
es toPre�P(H) � Pre�Q(H) whi
h is exa
tly theorem 2.15.Step: Assume Pre�P(H) � PrenP(Pre�Q(H)) (IH) thenPren+1P (Pre�Q(H)) =PreP(PrenP(Pre�Q(H))) � by monotoni
ity (lemma 2:9) and (IH)PreP(Pre�P(H)) � Pre�P(H)The last in
lusion follows from the fa
t that we have a �nite par-titioning of the state-spa
e. So Pre�P(H) will 
onverge within�nitely many steps.Hen
e we have proved that 8n:Pre�P(H) � PrenP(Pre�Q(H)).Having proved the two in
lusions we 
an 
on
lude the 
orre
tness of theorem2.18.� � � � � � � � � � � � � � � � � � � � � � � � � � � � �Having proved the three 
entral theorems 2.15, 2.16, and 2.18 we 
an nowgive the CBR algorithm and prove the 
orre
tness of it.25



26 CBR in General2.4 CBR AlgorithmsIn this se
tion we will present two versions of the CBR algorithm. The�rst algorithm, whi
h is also the simplest, resembles the original algorithmfrom the paper [LNAB+98℄. The se
ond one is needed when only 
ertainsubsets of the state-spa
e 
an be represented eÆ
iently. Su
h subsets are
alled representable symboli
 states and are explained in se
tion 2.4.2. Therevised, se
ond algorithm is des
ribed in the last subse
tion.2.4.1 Simple AlgorithmIn this se
tion we present and prove the 
orre
tness of the simple CBR al-gorithm. The algorithm is shown in �gure 2.6. The input for the algorithmis a transition system (ST;�!) and two sets of states Goal and Init, su
hthat Goal and Init both are subsets of the state-spa
e ST .Rea
hable((ST;�!); Goal; Init)Sele
t P su
h that Goal is P-sortedR GoalrepeatRnew  Pre�P(R)/* Che
k for early positive termination. Theorem 2.15 */if Init \ Rnew 6= ; then return TRUE/* Che
k for negative termination. Theorem 2.16 */if P = Pstable then return FALSEP  P 0 su
h that Pstable v P 0 v P:/* Reuse of previously 
omputed states. Theorem 2.18 */R Rnewforever Figure 2.6: Original CBR algorithmThe algorithm gives a formal de�nition of the pro
edure that was des
ribedin se
tion 2.2. First the initial partitioning is sele
ted su
h that Goal isP-sorted. After this Goal is assigned to R. The two variables R and Rnew26



CBR in General 27
ontain unions of partitions from the 
urrently used partitioning P and anyof the previously used, 
oarser partitionings. In the top of the loop the new
ontents of Rnew is 
al
ulated from R using the 
urrent partitioning. Theresult is then tested for interse
tion with Init, for positive termination. Ifwe have rea
hed the �nal partitioning Pstable we terminate with a negativeanswer, else we sele
t a �ner partitioning, that is still no �ner than Pstable.Rnew is then assigned to R and we start from the top again. The loop isrepeated until one of the two termination 
onditions is ful�lled.Corre
tnessWe want to 
on
lude that the algorithm is 
orre
t. This 
onsist of two parts;
on
luding that it always terminates and that it terminates with the 
orre
tanswer.To 
on
lude that the algorithm always terminates we �rst need to 
on
lude,that we 
an only run through the loop �nitely many times. This is guar-anteed by having a �nite number of partitionings that are used. This is arequirement that must be taken 
are of for ea
h domain to whi
h the methodis applied. The �nite number of partitions guarantee that we, at some point,will end up with P = Pstable and terminate with a negative answer. Se
ondlywe require that Pre�P(R) 
an be 
omputed e�e
tively and hen
e always ter-minates. If these two requirements are ful�lled, for the domain to whi
h themethod is applied, we 
an 
on
lude that the algorithm always terminates.Now we will prove that the algorithm will terminate with the 
orre
t answer.Throughout 
omputation P assumes a sequen
e of values P0 v P1 v : : : vPn = Pstable. SimilarlyRnew assumes a sequen
e of valuesR0new; R1new; : : : ; Rnnew.We 
laim that 8i:Rinew = Pre�Pi(Goal).We prove this by indu
tion in i.Basis i = 0: The �rst time we enter the loop we have that R = Goal andP = P0. Rnew is given to be exa
tly Pre�P(R) so R0new = Pre�P0(Goal).Step: Assume Rnnew = Pre�Pn(Goal) (IH) thenRn+1new = Pre�Pn+1(Rnnew)= Pre�Pn+1(Pre�Pn(Goal)) by IH= Pre�Pn+1(Goal) by theorem 2.18 and Pn+1 v PnBy having shown this we 
an 
on
lude by theorem 2.16 that for the �nalpartitioning Pn = Pstable we have Rnnew = Pre�Pstable(Goal) = Pre�(Goal).So if there is a path leading from Init to Goal the 
he
k for interse
tion27



28 CBR in GeneralInit \ Rnew will guarantee that the algorithm terminates with a positiveanswer. Now we need to argue that the algorithm 
annot terminate with apositive answer if there is no path. The only way the algorithm 
an terminatewith a positive answer is if Rnew interse
ts with Init so by proving that8i:Rinew � Pre�(Goal). This 
an be 
on
luded from the previous proof andtheorem 2.15.RequirementsThe requirements that this algorithm enfor
es on a domain, to whi
h it 
anbe applied, are the following; a transition system, with a stable partitioningPstable, a �nite sequen
e of partitionings of the state-spa
e, and an eÆ
iently
al
ulable prede
essor fun
tion, for ea
h partitioning.For the algorithm to work eÆ
iently there are some extra requirements.Firstly the possibility of representing arbitrary unions of partitions eÆ
iently,su
h that the prede
essor fun
tion 
an be 
omputed dire
tly on the repre-sentation yielding a new union of partitions. Se
ondly an eÆ
ient way of
he
king for interse
tion between su
h a representation and Init. Finally thepartitionings should be made in a sensible way, su
h that there is a 
han
e,that interse
tion 
an be obtained without always rea
hing the �nest possiblepartitioning Pstable.2.4.2 Symboli
 StatesThe purpose of this se
tion is to motivate the need for the revised algorithmpresented in the next se
tion, and de�ne the 
on
ept of representable sym-boli
 state, used in the revised algorithm.In some domains, in parti
ular the domain of Timed Automata, to whi
hwe will apply the CBR method, it is only possible to eÆ
iently represent
ertain subsets of the state-spa
e. We will 
all these subsets of the state-spa
erepresentable symboli
 states RSS. Furthermore the prede
essor fun
tionoperates on one su
h representable symboli
 state at a time, and gives asresult a list of representable symboli
 states. This does not dire
tly �t theframework of the simple algorithm, be
ause the assumption here is that allprede
essors 
an be 
al
ulated in one step.The idea is that the symboli
 state represents a set of 
on
rete states. Thereis no restri
tion on how many 
on
rete states a symboli
 state 
an represent.This depends entirely on the domain. In fa
t, in the domain of Timed Au-tomata, ea
h symboli
 state represents an in�nite set of symboli
 states. Aset of representable symboli
 states must satisfy the following properties:28



CBR in General 29Assumption 2.19 : Representable Symboli
 States RSSA set of representable states RSS � P(ST ) must have the following 
hara
-teristi
s:� RSS must be �nite.� Goal 
an be represented as a union of representable symboli
 states.Goal =[i2I Jisu
h that Ji 2 RSS and I is �nite.
When using representable symboli
 states we will need a prede
essor fun
tionthat from one symboli
 state J delivers as output a �nite set of representablesymboli
 states. In the following we formally state the obvious extra require-ment that the output set of symboli
 states must 
over the set of states thatthe original prede
essor fun
tion would have given.Assumption 2.20 : Requirements for SymPreP(J )Given a symboli
 state J 2 SST and a partitioning P the following musthold: SymPreP(J ) = fJ1; : : : ;Jmg+m[i=1Ji � PreP(J )For the �nal partitioning Pstable the following must also hold:SymPrePstable(J ) = fJ1; : : : ;Jmg+m[i=1Ji = PrePstable(J )29



30 CBR in GeneralRea
hable((ST;�!); Init; Goal)Sele
t P su
h that Goal is P-sortedWait GoalrepeatPassed := fgrepeatbeginget symboli
 state J from Waitif J \ Init 6= ; then return TRUEelse if J 6� J 0 for all J 0 2 Passed thenbeginadd J to PassedNext := SymPreP(J )for all J in Next doput J to Waitendenduntil Wait = fgif P = Pstable then return FALSEP  P 0 su
h that Pstable v P 0 v P:Wait := PassedforeverFigure 2.7: Symboli
 State CBR algorithm2.4.3 Symboli
 State AlgorithmIn this se
tion we present a di�erent version of the CBR algorithm using the
on
ept of representable symboli
 states des
ribed in the previous se
tion.The input for the revised algorithm is mu
h like the input of the originalone. Now the two arguments Goal and Init have to be subsets of the set ofrepresentable symboli
 states RSS.Corre
tnessWe want to 
on
lude that the symboli
 algorithm is 
orre
t. This, again 
on-sists of two parts; 
on
luding that it always terminates and that it terminateswith the 
orre
t answer. 30



CBR in General 31This algorithm has two loops, with the one inside the other. We will 
allthese the inner and the outer loop respe
tively. The outer loop is a repeat-forever loop, so the only way this loop 
an terminate is by the algorithm�nishing, by returning either true or false. We use the same argument as forthe simpler algorithm, that we have 
hosen a �nite sequen
e of partitionings.This guarantees that after a �nite number of runs through the outer loop wewill eventually rea
h P = Pstable, and the algorithm will terminate. We alsorequire that the inner loop terminates, in ea
h iteration of the outer loop.This 
an be guaranteed due to the fa
t that we have a �nite number of rep-resentable symboli
 states. In the inner loop representable symboli
 statesare removed from the waiting list and added to the passed list while everyrepresentable symboli
 state (RSS) that 
ould rea
h this RSS are added tothe waiting list for later exploration. On
e a representable symboli
 statehas been added to the passed list, it will not be explored again. This pro
ess
ontinues until the waiting list is empty. If not earlier, this is at least guar-anteed to happen when all representable symboli
 states have been added tothe passed list. So we are guaranteed that the inner loop will always termi-nate.Now we turn to proving that the algorithm will terminate with the 
orre
tanswer when it terminates. Again we want to do this by indu
tion. Justafter exiting the inner loop, whereWait will always be empty, we will provethat Goal � Passed � Pre�Pn(Goal) for the 
urrent partitioning Pn beingused. We do this by indu
tion in n.Basis n = 0: Just after exiting the inner loop for the �rst time the followingwill hold: Passed = f J j J �!�P0 J 0 ^ J 0 2 Goalgwhere J �!P J 0 means that J 2 SymPreP(J 0) (�!�P denotes asusual the transitive and re
exive 
losure of �!P). The passed listhere 
ontains all the symboli
 states needed to represent Goal andall the symboli
 states that 
an rea
h Goal using the partitioning P0.By iteratively applying the requirement for the symboli
 prede
essorfun
tion stated in assumption 2.20, we 
an 
on
lude that the followingholds: Goal � Passed � Pre�P0(Goal)Step: On entering the inner loop the waiting list will 
ontain representablesymboli
 states su
h that Goal � Wait � Pre�Pn(Goal), where Pn31



32 CBR in Generalis the previous partitioning. All of these states will, after some it-erations in the inner loop, be added to the passed list, su
h thatGoal � Passed � Pre�Pn(Goal), this is the indu
tion hypothesis (IH).We now aim to prove that after exiting the inner loop the following willhold: Goal � Passed � Pre�Pn+1(Goal)After exiting the inner loop we 
an 
learly see that the following willhold. Passed = f J j J �!�Pn+1 J 0 ^ J 0 2 Pre�Pn(Goal)gAgain iteratively applying assumption 2.20 we 
an 
on
lude the follow-ing: Goal � Passed � Pre�Pn+1(Goal)By having proved that Goal � Passed � Pre�Pn(Goal) after ea
h iterationwe 
an 
on
lude that the passed list will always 
ontain at least Goal andit will never 
ontain any states that 
annot rea
h Goal. If any of the repre-sentable symboli
 states used to represent Passed interse
t with Init, thealgorithm would have terminated with a positive answer, when this statewas being explored. We will eventually rea
h the �nal partitioning Pstable.Be
ause of the spe
ial assumption made for Pstable, in assumption 2.20,we 
an 
on
lude that after the �nal iteration Passed = Pre�Pstable(Goal).Pre�Pstable(Goal) is by theorem 2.16 equal to Pre�(Goal). Hen
e after thelast run of the inner loop Passed will 
ontain representable symboli
 statesthat 
overs exa
tly all states that 
an rea
h Goal. This results in the fa
tthat if any of these states interse
ts with Init, the algorithm would haveterminated with a positive answer. Similarly the passed list does not 
ontainmore than what 
an a
tually rea
h Goal, and hen
e the algorithm will neverterminate with a positive answer, when there is no path from Init to Goal.RequirementsThe requirements that this algorithm enfor
es on a domain, to whi
h it 
anbe applied, are the following: A transition systems (ST;�!), a �nite setof representable symboli
 states RSS, and a symboli
 prede
essor fun
tionSymPre that ful�lls the requirement of assumption 2.20. Again we alsoneed a way in whi
h to 
he
k for interse
tion between any representablesymboli
 state J and Init and in
lusion between two representable symboli
states. We also need sensible partitionings of the representable symboli
state-spa
e. 32



CBR in General 332.5 Di�eren
es from the Original CBRThis se
tion des
ribes the di�eren
es between the original CBR method,[LNAB+98℄, and the CBR method presented in this report. It also des
ribesdi�eren
es from the CBR method that was developed in the previous report[Lar02℄.The main di�eren
e is the 
on
ept on whi
h the formal foundation is build.The original paper uses an index set of ma
hines that is gradually in
reased,while we here use a partitioning of the state-spa
e where the partitioningsare gradually re�ned. Despite this di�eren
e, the simple algorithm presentedin �gure 2.6 
losely resembles the original algorithm. The se
ond algorithmadds more generality to the method by allowing the use of symboli
 states.This makes the CBR method appli
able to other types of domains. In theprevious report the CBR method was generalized by having more the oneindex set, ea
h representing one type of 
omponents. The ba
k draw of thismethod was that the CBR method 
ould not be presented on
e and for alland then applied to di�erent domains. It had to be adjusted depending onthe types of the 
omponents being used in ea
h domain.An aspe
t of the original method that has been lost is dependen
y analy-sis. In the original domain, a dependen
y analysis was performed on theState/Event ma
hines in order to determine if all of the ma
hines whereneeded in the analysis. If it 
ould be 
on
luded, that some of the ma
hines
ould in no way, e�e
t the rea
hability of Goal, these ma
hines 
ould be ex-
luded from the analysis. Thereby leading to a faster negative termination.The 
on
ept of dependen
y analysis is not in
orporated into the general CBRmethod be
ause it depends very mu
h on the spe
i�
 domain. The depen-den
y analysis works on 
omponents, and by analyzing what 
omponents
an in
uen
e the set of 
omponents that we start with, we 
an stop beforein
luding all 
omponents. This would, in the new formalism, 
orrespond tostopping at a earlier partitioning than Pstable. Maybe this kind of feature
ould be added if extra information were added to the framework.
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3 Timed Automata (TA)This 
hapter 
ontains the de�nition of networks of simple timed automata.By simple timed automata we mean timed automata without invariants,
ommitted lo
ations, urgen
y, and integers as are allowed in Uppaal. Firstwe present an informal des
ription of timed automata. After this we formallydes
ribe the syntax and semanti
s of a single timed automaton. In the endwe des
ribe the syntax and semanti
s of the parallel 
omposition of severaltime automata into a Timed Automata Network (TAN).3.1 Informal Des
riptionTimed automata are �nite state automata extended with a number of realvalued 
lo
ks. Graphi
ally a timed automaton 
an be depi
ted as nodes witharrows going from one node to another when there is a transition. We write
onstraints (also known as guards) at the origin of a transition and reset setsat the destination of the transition. At the 
enter of the arrow we write thelabel.
S0 S1

x < 3 x := 0

c!Figure 3.1: A simple automaton.In �gure 3.1 we have a very simple automaton with only two states andone transition. The transition goes from the initial state S0 to the state S1.The initial state is marked with double 
ir
les. The guard 
onsists of onlyone atomi
 formula saying that the value of 
lo
k x should be less than 3.Similarly only one 
lo
k is reset (x := 0). The label on the transition is '
!'this is the 
omplement a
tion of '
?', whi
h means that this transition mustsyn
hronize with an '
?' transition in another timed automaton. As in CCS35



36 Timed Automata (TA)[Mil89℄ we 
an also have transitions with no label, these transitions are infa
t � transitions that does not need to syn
hronize. Figure 3.1 illustrationwas made using the graphi
al interfa
e for Uppaal.3.2 PreliminariesFirst we need some auxiliary de�nitions.De�nition 3.1 : A
tionsLet Chan be a �nite set of 
hannels, ranged over by 
. We de�ne A
t to bea �nite set of a
tions ranged over by a. For ea
h 
hannel in Chan we de�netwo a
tions su
h that A
t = f
! j 
 2 Chang [ f
? j 
 2 Chang. We de�ne a
omplement operator � : A
t! A
t as �
! = 
? and �
? = 
!. We de�ne � torepresent an in�nite set of delay a
tions, � = f�(d)jd 2 Rg, where we use Rto stand for the non-negative reals. The spe
ial internal a
tion is representedby � . We de�ne the two sets A
t� = A
t [ � and �� = � [ � .
De�nition 3.2 : Clo
ks and ConstraintsC is a �nite set of real valued 
lo
ks ranged over by x; y; z. A 
lo
k valuationu : C ! R is a fun
tion that assigns to ea
h 
lo
k a real non-negative value.We also de�ne RC to be the set of all 
lo
k valuations. We write u(x) to meanthe value of the 
lo
k x in the 
lo
k valuation u. We de�ne two operations on
lo
k valuations: Reset and Delay. Reset where a set of 
lo
ks are set to zero:u0 = u[r 7! 0℄; r � C de�ned by 8x 2 r:u0(x) = 0; 8x 2 C n r:u(x) = u0(x).Delay where all 
lo
ks are in
reased with the same value: u + d : C ! Rwhere d 2 R; de�ned by 8x 2 C:(u+d)(x) = u(x)+d. We de�ne B(C) to bethe set of all 
lo
k 
onstraints (also known as guards) g ::= A j g^ g where Ais an atomi
 formula of the form: x � n or x�y � n for �2 f�;�; <;>g andn being a natural number. We write g(u) to mean that the 
lo
k 
onstraintg is true under the 
lo
k valuation u.We extend the notion of transition system to a labelled transition system,where ea
h transition has a label. 36



Timed Automata (TA) 37De�nition 3.3 : Labelled Transition SystemA labelled transition system relates the triple (S;L;�!) in the followingway. S is a set of states, L is a set of labels, and �! is a set of transitions�!� S � L� S. If (S1; �; S2) 2�! we write S1 ���! S2We des
ribe the semanti
s of timed automata in terms of a labelled transitionsystem.3.3 Timed AutomatonIn this se
tion we de�ne the syntax and semanti
s of a timed automaton.De�nition 3.4 : Syntax of Timed AutomatonA simple timed automaton A over a
tions A
t and 
lo
ks C is de�ned bythe triple (LA; l0A; EA) where LA is a set of lo
ations, l0A 2 LA is the initiallo
ation, and EA � LA � B(C)� A
t� � 2C � LA.
De�nition 3.5 : Semanti
s of Timed AutomatonThe semanti
s of a timed automaton A is a labelled transition system de�nedby the triple (SA;LA;�!A) where the states are made up of a node and a
lo
k valuation: SA = LA�RC , the labels are the union LA = A
t� [�, andthe transition relation is de�ned as:� (l; u) a��!A (l0; u0) if 9g; r:(l; g; a; r; l0) 2 EA; u0 = [r 7! 0℄u; and g(u)� (l; u) �(d)���!A (l; u+ d)As an example to illustrate the semanti
s, we 
an look at the simple timedautomaton depi
ted in �gure 3.1. The start state of this automaton is (s0; x =0) from here it 
an, among many other delay transitions, take the followingdelay transition (s0; x = 0) �(2;5)����! (s0; x = 2; 5). From here it 
an take thedis
rete transition (s0; x = 2; 5) a!��! (s1; x = 0) be
ause x < 3, so the guardis true. 37



38 Timed Automata (TA)3.4 Timed Automata NetworkWe want to de�ne how to make a parallel 
omposition of several timed au-tomata into a Timed Automata Network (TAN).De�nition 3.6 : Syntax of Timed Automata NetworkA TAN N over a
tions A and 
lo
ks C has the form:N = A1j : : : jAnwhere ea
h Ai is a timed automaton over a
tions A
t and 
lo
ks C.The 
lo
ks are all potentially global, but may in reality be lo
al by beingused in only one automaton. In the de�nition of the semanti
s we needsome notation. We write ~l to mean a ve
tor l1; l2; : : : ; ln of lo
ations in ea
hautomaton.De�nition 3.7 : Semanti
s of Timed Automata NetworkThe semanti
s of a TAN N = (A1j : : : jAn) over a
tions A
t and 
lo
ks C is alabelled transition system (SN ;LN ;�!N) where the states is a node in ea
htimed automaton and a 
lo
k valuation SN = L1 � : : :� Ln� RC , the labelsare L = �� , and the transition relation �!N is de�ned by:� (~l; u) ���!N (~l0; u0) if 9gi; ri:(li; gi; a; ri; l0i) 2 Ei9gj; rj:(lj; gj; �a; rj; l0j) 2 Ejgi(u); gj(u); u0 = [ri [ rj 7! 0℄u8k =2 fi; jg:l0k = lkfor some i; j 2 f1; : : : ; ng where i 6= j and a 2 A
t.� (~l; u) ���!N (~l0; u0) if 9gi; ri:(li; gi; �; ri; l0i) 2 Eigi(u); u0 = [ri 7! 0℄u8k =2 fig:l0k = lk.for some i 2 f1; : : : ; ng� (~l; u) �(d)���!N (~l; u+ d) 38



Timed Automata (TA) 39The three types of transitions presented above 
an be des
ribed respe
tivelyas syn
hronizing, private, and delay transitions. The �rst is syn
hronizingbe
ause two timed automata syn
hronize by taking transitions labelled withea
h others 
omplement. The se
ond is private be
ause it involves onlyone timed automaton. The third is a delay transition where all 
lo
ks arein
reased by the same value.
S0 S1

x < 3 x := 0

c!

T0 T1

y > 2

c?Figure 3.2: Two simple timed automata S and T .Again to illustrate the semanti
s we give an example. We have, in �gure 3.2,two simple timed automata that we 
ombine into the system N = S j T .The start state of the system is ((s0; t0); x = 0; y = 0). From this state we
ould 
hoose to delay for one time unit.((s0; t0); x = 0; y = 0) �(1)���! ((s0; t0); x = 1; y = 1)From the new state we 
annot take any dis
rete transitions be
ause of theguard y > 2. So we 
hoose to delay again, this time with 1:5 time units.((s0; t0); x = 1; y = 1) �(1:5)����! ((s0; t0); x = 2:5; y = 2:5)Now we 
an take the dis
rete transition be
ause the guards on both syn
hro-nizing transitions are true.((s0; t0); x = 2:5; y = 2:5) ���! ((s1; t1); x = 0; y = 2:5)We noti
e that in the resulting state the 
lo
k x is set to zero.
39
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4 Symboli
 Analysis of TAThe semanti
s given in 
hapter 3 yields an in�nite state-spa
e and the CBRalgorithm presented in 
hapter 2 needs a �nite state-spa
e in order to beguaranteed to terminate. To redu
e the in�nite state-spa
e to a �nite state-spa
e we will represent groups of 
lo
k valuations as zones. This is donein the same manner as for the veri�
ation tool Uppaal. We �rst de�nethe 
on
ept of zones and operations on zones that we need during symboli
analysis. We then des
ribe the data stru
ture Di�eren
e Bounded Matrix(DBM) used to represent zones and how the needed operations are realizedeÆ
iently on DBMs. Finally we show how to perform both forward andba
kwards symboli
 analysis using the operations des
ribed.4.1 ZonesWe introdu
e zones in order to be able to handle a set of states simulta-neously, in one symboli
 state. A zone represents an in�nite set of 
lo
kvaluations, it gives bounds on, both the di�eren
e between individual 
lo
ks,and on the absolute value of 
lo
ks. Figure 4.1 illustrates the di�eren
e be-tween a single 
lo
k valuation and a zone. In general symboli
 states aresubsets of L1 � : : : � Ln � RC . The symboli
 states we use in this se
tionhas the form (~l; Z). A symboli
 state (~l; Z) represents all states of the form(~l; u) where u 2 Z. A zone is a set of 
lo
k valuations de�ned by a simple
onstraint system whi
h is de�ned in the same way as 
lo
k 
onstraints inse
tion 3.2.De�nition 4.1 : Simple Constraint Systemg ::= x � n j x� y � n j g ^ gwhere �2 f�;�; <;>g and n 2 N . We use B(C) to represent the set of allsimple 
onstraint systems over 
lo
ks C.41



42 Symboli
 Analysis of TAFigure 4.1 illustrates the di�eren
e between a single 
lo
k valuation and azone.

0 1 2 30123 x
y u = fx 7! 2; y 7! 2g

a) 0 1 2 30123 x
y Z = f1 � x � 3; 1 � y � 3g

b)Figure 4.1: a) Clo
k valuation. b) ZoneNow we have a way of representing a group of states as one symboli
 state(~l; Z) and move on to de�ning useful operations on zones in order to be ableto de�ne a symboli
 transition relation.4.1.1 Operations on ZonesWe de�ne �ve operations on zones that we need for the symboli
 rea
habil-ity analysis. The Future and Reset operations are only needed for forwardanalysis, and Past and Free are only needed for ba
kward analysis while weneed Conjun
tion for both. We remind that R is de�ned as the non-negativereals. The �ve operations are de�ned as follows.Future : Z " = fu+ d j u 2 Z and d 2 RgPast : Z # = fu j 9d 2 R:u + d 2 ZgReset : resetfrgZ = fu[r 7! 0℄ j u 2 ZgFree : freefrgZ = fu j u[r 7! 0℄ 2 ZgConjun
tion : Z ^ Z 0 = fu j u 2 Z and u 2 Z 0gThe operations are illustrated in �gure 4.2. The �rst four operations areillustrated by the e�e
t they have on the example zone Z that is shown inthe upper left 
orner. The 
onjun
tion operator is illustrated with two otherzones Z1 and Z2. 42



Symboli
 Analysis of TA 43

0 2 4 6024
68

x
y Z

Just a zone 0 2 4 6024
68

x
y Z#

Past 0 2 4 6024
68

x
y Z"

Future

0 2 4 6024
68

x
y

resetfygZReset 0 2 4 6024
68

x
y

free fyg(reset f
ygZ)

Free 0 2 4 6024
68

x
y

Z1 ^ Z2
Conjun
tionFigure 4.2: Operations on Zones4.2 Di�eren
e Bounded Matri
esWe need a data representation of zones and a de�nition of the �ve opera-tions on this representation. A DBM is a matrix representation of a simple
onstraint system.De�nition 4.2 : Differen
e Bounded MatrixM : fx0; x1; : : : ; xng2 ! (Z� f<;�g) [ f+1gwhere x0 is a spe
ial zero valued 
lo
k.43



44 Symboli
 Analysis of TAFor every pair of 
lo
ks it gives a 
omparison operator and a real value or1.For ea
h pair of 
lo
ks M(xi; xj) = (nij;�ij) represents that xi � xj �ij nij,where �ij is < or �. Figure 4.2 illustrates how a number in the matrixrepresents a bound on the di�eren
e between two 
lo
ks. The operator isrepresented by an extra bit stored along with ea
h number. In �gure 4.5 wewill as an example illustrate how the di�erent zones shown in �gure 4.2 
anbe represented as DBMs.x0; x1; : : : ; x; : : : ; xnxjx0x1...x...xnxi . . .. . . . . .. . . (nij;�ij) - one entryxi � xj �ij nij - semanti
s of an entryFigure 4.3: Illustration of a Di�eren
e Bounded Matrix.In order to be able to de�ne the operations we need to have the DBMs in a
anoni
al form. For the de�nition of the 
anoni
al form we need a de�nitionof the two operators + and � for pairs of the type (n;�), where n 2 Z and�2 f<;�g. To do this we also de�ne +b and �b, whi
h operate on 8<0 and8�0.De�nition 4.3 : +b operator for 8<0 and 8�08<0 +b 8<0 = 8<08�0 +b 8<0 = 8<08<0 +b 8�0 = 8<08�0 +b 8�0 = 8�0Here we observe that anything but two �'s adds up to <. We 
an now de�ne+ on pairs of the type (n;�). This is simply done by adding the integersand adding the � operators with the newly de�ned +b operator.(n1;�1) + (n2;�2) = (n1 + n2;�1 +b �2)44



Symboli
 Analysis of TA 45De�nition 4.4 : �b operator for 8<0 and 8�08<0 �b 8�08<0 �b 8<08�0 �b 8�0Both the operators are equal with themselves and 8<0 is smaller than 8�0.Now we are ready to de�ne � on pairs of the type (n;�). This is done as asort of lexi
ographi
 ordering. First the integers are 
onsidered, if these areequal then the � operators are 
ompared.(n1;�1) � (n2;�2) = n1 < n2 _ (n1 = n2^ �1 8�0 �2)With the + and � operators de�ned we are ready to de�ne the 
anoni
alform.De�nition 4.5 : Canoni
al FormA DBM M is on 
anoni
al form if and only if 8xi; xj; xk 2 C it is su
h thatM(xi; xj) +M(xj ; xk) � M(xi; xk)We de�ne the operations on DBMs in 
anoni
al form. The following fun
tionsde�ne the value of ea
h entry in the resulting matrix, based on the inputmatrix. The �rst four operations are illustrated in �gure 4.4, these are theoperation that operate on a single matrix. The �nal operation, 
onjun
tion,des
ribes the resulting matrix in terms of two input matri
es.Past M#(xi; xj) = � M(xi; xj) xi 6= x0(0;�) xi = x0Future M"(xi; xj) = � M(xi; xj) xj 6= x0+1 xj = x0Reset resetfxgM(xi; xj) = 8>><>>: M(xi; xj) xi; xj 6= x(0;�) xi = x(0;�) xj = x ^ xi = x0+1 xj = x45



46 Symboli
 Analysis of TAFree freefxgM(xi; xj) = 8<: M(xi; xj) xi; xj 6= x(0;�) xi = x0 ^ xj = x+1 xi = x _ (xj = x ^ xi 6= x0)Conjun
tion(M1 ^M2)(xi; xj) = � M1(xi; xj) M1(xi; xj) � M2(xi; xj)M2(xi; xj) otherwiseThe implementation of four of the operators is illustrated in �gure 4.4. Thegray areas represent that the values in this part of the matrix are left un-
hanged. The values that are assigned to the 
hanged areas 
an be read fromthe de�nition of the operations.0 0 0: : : : : :x0; x1; : : : ; x; : : : ; xnxjx0x1...x...xnxi . . .. . . . . .. . .Past
111......
x0; x1; : : : ; x; : : : ; xnxjx0x1...x...xnxi . . .. . . . . .. . .Future

0 0 0: : : : : :01...1...
x0; x1; : : : ; x; : : : ; xnxjx0x1...x...xnxi . . .. . . . . .. . .Reset 11 : : : 1 : : :01...1...

x0; x1; : : : ; x; : : : ; xnxjx0x1...x...xnxi . . .. . . . . .. . .FreeFigure 4.4: Illustration of the Operations on DBMs.The 
onjun
tion operator, whi
h is not illustrated, 
ombines two matri
es.For ea
h entry in the matrix the values are 
ompared and the smallest issele
ted as the entry in the resulting matrix. Figure 4.5 illustrates all theoperations by use of the zones from �gure 4.2. We only use the � operatorin these examples to keep it simpler.46



Symboli
 Analysis of TA 47x0 x yx0 �2 �6x 4 �2y 8 6Just a zone x0 x yx0 0 0x 4 �2y 8 6Past x0 x yx0 �2 �6x 0 �2y 0 6Futurex0 x yx0 �2 0x 4 1y 0 0Reset x0 x yx0 �2 0x 4 �2y 1 1Free x0 x yx0 �1 �2x 5 3y 5 4Z1x0 x yx0 �2 �1x 6 5y 4 2Z2 x0 x yx0 �2 �2x 5 3y 4 2Conjun
tionFigure 4.5: Illustration of the Operations on DBMs.The matri
es are no longer in the 
anoni
al form after the operations havebeen performed. They are restored to 
anoni
al form by 
al
ulating theshortest path 
losure. This 
an best be illustrated by viewing the matrix asa graph. In �gure 4.6 we 
al
ulate the 
anoni
al form for the matrix afterthe Past operation. The values on the edges are given by taking the fromnode as the row and the to node as the 
olumn. The shortest path 
losure is
al
ulated by 
he
king for shorter paths between two nodes via other nodes.In �gure 4.6 only the edge from x0 to y is 
hanged. The new value is �2be
ause the path via the x node is �2 + 0 = �2.
x x0 y0 8-2046 x x0 y0 8-2-246Figure 4.6: The shortest path 
losure of the Past matrix.47



48 Symboli
 Analysis of TAIn the algorithms presented we also need to 
he
k for in
lusion. This is doneby 
omparing ea
h pair of entries in the matri
es. If for every pair of entriesthe entry of matrix A is smaller then that of matrix B, then A is in
ludedin B.To guarantee termination we introdu
e a normalization operation. Initiallywe have in�nitely many Zones and 
annot guarantee that the algorithm ter-minates. Two 
lo
k valuations that 
annot be distinguished in the model aretime-abstra
ted bisimilar, illustrated in �gure 4.7. This means that whenthe one 
an take a delay transition the other 
an also take a delay transition,not ne
essarily with the same amount of delay and end up in a state that istime-abstra
ted bisimilar with the end state of the �rst. The same is truefor dis
rete transitions. Knowing this we only need to represent one of su
htime-abstra
ted bisimilar states. This is done by applying the normalizationoperation to all Zones after ea
h operation.
x

y
max

max x
y

max
max

Figure 4.7: Illustration of normalization. All 
lo
k valuations to the rightof the max line will have a point exa
tly on the max line that it is time-abstra
ted bisimilar to. Su
h two points are illustrated on the left �gure.Therefor the Zone on the right �gure 
an rea
h the same states as the �gureon the left.First the maximum 
onstant N , used in the model or in the properties tobe 
he
ked, is found. Any integer lager than N 
an be repla
ed with 1and all integers smaller than �N 
an be repla
ed with �N . This 
an bedone be
ause it never will be 
ompared to anything larger than itself. Thenormalization is performed after ea
h operation. When N is known we 
analso 
al
ulate how many bits we need to represent ea
h entry in the DBM.The operation is des
ribed below.NormalizationnormNM(xi; xj) = 8<: (�N;<) M(xi; xj) � (�N;<)M(xi; xj) (�N;�) �M(xi; xj) � (N;�)+1 (�N;<) �M(xi; xj)48



Symboli
 Analysis of TA 494.3 Symboli
 Rea
habilityIn this se
tion we use the operations de�ned in se
tion 4.1 to do symboli
rea
hability analysis on networks of Timed Automata.De�nition 4.6 : Forward Symboli
 TransitionWe de�ne two types of transition, in 
ontrast to the three types de�nedin the normal semanti
s. The �rst represents a delay a
tion followed by asingle transition while the other is a delay followed by a syn
hronization. We
al
ulate the new zone by use of the operations that we have de�ned. Inboth 
ases we �rst take the future operation on the original zone, after thiswe 
onjun
t it with the guard(s), and last reset the 
lo
ks de�ned by thereset set(s).� (~l; Z) =)F (~l0; Z 0) if 9gi; ri:(li; gi; �; ri; l0i) 2 EiZ 0 = resetfrig(Z" ^ gi)8k 62 fig:l0k = lkfor some i 2 f1; : : : ; ng� (~l; Z) =)F (~l0; Z 0) if 9gi; ri:(li; gi; a; ri; l0i) 2 Ei9gj; rj:(lj; gj; �a; rj; l0j) 2 EjZ 0 = resetfri [ rjg(Z" ^ gi ^ gj)8k 62 fi; jg:l0k = lkfor some i; j 2 f1; : : : ; ng where i 6= j and a 2 A
t.ZZ"Z" ^ giZ 0 = resetfrig(Z" ^ gi)
li
l0i
giriFigure 4.8: Illustrates how Z 0 is 
al
ulated when taking one forward symboli
transition.

49



50 Symboli
 Analysis of TADe�nition 4.7 : Ba
kward Symboli
 TransitionAs with the forward symboli
 transitions we de�ne two transition rules. The�rst represents a single transition followed by a delay a
tion while the otheris a syn
hronization followed by a delay. It is worth noti
ing that the order isnot the same as for the forward symboli
 transitions. This does not have anyimpa
t on the rea
hable state-spa
e. The essential thing is that we alternatebetween dis
rete and delay a
tions. This results in that we have to takethe future operation on the initial lo
ation before 
he
king for interse
tionin the ba
kwards algorithm. Here we start by using the past operation and
onjun
t the result with the reset set(s). After this the 
lo
ks in the resetset(s) are freed, this is then 
onjun
ted with the guards.� (~l0; Z 0)(=B (~l; Z) if 9gi; ri:(li; gi; �; ri; l0i) 2 EiZ = (freefrig(ri ^ Z 0#)) ^ gi8k 62 fig:l0k = lkfor some i 2 f1; : : : ; ng� (~l0; Z 0)(=B (~l; Z) if 9gi; ri:(li; gi; a; ri; l0i) 2 Ei9gj; rj:(lj; gj; �a; rj; l0j) 2 EjZ = (freefri [ rjg(ri ^ rj ^ Z 0#)) ^ gi ^ gj8k 62 fi; jg:l0k = lkfor some i; j 2 f1; : : : ; ng where i 6= j and a 2 A
t.Z = (freefrig(ri ^ Z 0#)) ^ gifreefrig(ri ^ Z 0#)ri ^ Z 0#Z 0#Z 0
li
l0i
giriFigure 4.9: Illustrates how Z is 
al
ulated when taking one ba
kwards sym-boli
 transition.4.3.1 AlgorithmsWith the symboli
 transition rules we de�ne two similarly looking algorithmspresented in �gures 4.10 and 4.11. First we des
ribe the forward symboli
50



Symboli
 Analysis of TA 51rea
hability algorithm. The algorithm has a passed-list (Passed) and awaiting-list (Wait). Initially the passed list is empty and the waiting list
ontains the initial state. For ea
h 
y
le in the repeat-until loop one sym-boli
 state is removed from the waiting list. After having added all states,that 
an be rea
hed from it, to the waiting list, the state is itself added tothe passed list. This is 
ontinued until either; the waiting list is empty, or astate is found, that interse
ts with Goal. The target that we want to 
he
kif we 
an rea
h, Goal, is a set of symboli
 states.Passed := fgWait := f(~l0; Z0)grepeatbeginget (~l; Z) from Waitif (~l; Z) \Goal 6= ; then return TRUEelse if Z 6� Z 0 for all (~l; Z 0) 2 Passed thenbeginadd (~l; Z) to PassedNext := f(~ls; Zs) j (~l; Z) =)F (~ls; Zs) ^ Zs 6= ;gfor all (~ls0; Zs0) in Next doput (~ls0; Zs0) to Waitendenduntil Wait = fgreturn FALSEFigure 4.10: Algorithm for forward symboli
 rea
hability analysisThe ba
kwards symboli
 rea
hability algorithm di�ers in three ways. Firstlythe waiting list is initialized to 
ontain Goal in stead of the initial state.Se
ondly there is tested for interse
tion with the initial state instead of Goal.Thirdly the transition relation that is used to �nd new symboli
 states, toput in the waiting list, is (=B.4.3.2 TheoremsIn this se
tion we present some theorems, and a single sample proof, neededto argument for the 
orre
tness of the algorithms presented in the previous51
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 Analysis of TAPassed := fgWait := Goalrepeatbeginget (~l; Z) from Waitif (~l; Z) \ (~l0; Z0)" 6= ; then return TRUEelse if Z 6� Z 0 for all (~l; Z 0) 2 Passed thenbeginadd (~l; Z) to PassedNext := f(~ls; Zs) j (~l; Z)(=B (~ls; Zs) ^ Zs 6= ;gfor all (~ls0 ; Zs0) in Next doput (~ls0; Zs0) to Waitendenduntil Wait = fgreturn FALSEFigure 4.11: Algorithm for ba
kwards symboli
 rea
hability analysisse
tion. Corre
tness in the sense that the symboli
 algorithm gives the 
or-re
t result in terms of 
on
rete rea
hability. Theorem 4.8 implies, by a simpleindu
tive argument, that if we have a sequen
e of symboli
 transitions lead-ing from the initial state to Bad we also have a sequen
e of 
on
rete statesleading from the initial state to Bad.Theorem 4.8Forward: symboli
 to 
on
rete(~l; Z) =)F (~l0; Z 0)+8u0 2 Z 0:9d; 9u 2 Z:(~l; u) �(d)���! ���! (~l0; u0)
Proof of theorem 4.8 � � � � � � � � � � � � � � � � � � �The proof 
an be split into two 
ases depending on how (~l; Z) =)F (~l0; Z 0) is52
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 Analysis of TA 53obtained. We only treat the �rst simple 
ase. Thus we have from the rightside of the de�nition of the =)F transition relation that:(li; gi; �; ri; l0i) 2 EiZ 0 = resetfrig(Z" ^ gi)8k 62 fig:l0k = lkfor some i 2 f1; : : : ; ngWe assume that u0 2 Z 0. Thus for some u00 2 Z" ^ gi we have that u0 = [ri 7!0℄u00. Then we also have for some u 2 Z and some d 2 R that u00 = u+ d. Itfollows that (~l; u) �(d)���! (~l; u+ d) ���! (~l0; u0).� � � � � � � � � � � � � � � � � � � � � � � � � � � � �
Z u d u00 gu0� Z 0Figure 4.12: Illustration of proof of theorem 4.8The relation between u, u0, and u00 in the proof of theorem 4.8 is illustratedin �gure 4.12. The theorem itself is illustrated in �gure 4.13. Here we usedashed arrows to illustrate 9 and full arrows to illustrate 8. The same is truefor the illustration of the following theorems.(~l; Z) (~l0; Z 0)(~l; u) (~l0; u0)F�(d) �2 2 � 8� 9Figure 4.13: Illustration of theorem 4.8Theorem 4.9 states that if we have a sequen
e of 
on
rete states leading fromthe initial state to Bad we 
an mat
h this with a sequen
e of symboli
 states.53
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 Analysis of TATheorem 4.9Forward: 
on
rete to symboli
(~l; u) �(d)���! ���! (~l0; u0)+8Z:u 2 Z:9Z 0:(~l; Z) =)F (~l0; Z 0) ^ u0 2 Z 0
Theorem 4.9 is illustrated in �gure 4.14. We omit the proof whi
h is similarto that of theorem 4.8.(~l; Z) (~l0; Z 0)(~l; u) (~l0; u0)F�(d) �2 2 � 8� 9Figure 4.14: Illustration of theorem 4.9
In order to 
on
lude that the forward symboli
 rea
hability algorithm pre-sented in �gure 4.10 always terminates we need to ensure that there are only�nitely many rea
hable symboli
 states. In fa
t exa
tly one is generated forea
h transition that 
an be taken. We also want to 
on
lude that when thealgorithm terminates it terminates with the 
orre
t answer. This we 
an 
on-
lude from the two theorems 4.9 and 4.8. If we �nd a sequen
e of symboli
states that leads from the initial state to Bad there also exists a 
on
rete se-quen
e of states. On the other hand if we do not �nd a sequen
e of symboli
states we 
an 
on
lude that there is now sequen
e of 
on
rete states leadingfrom the initial state to Bad.In the following we present two theorems that state the exa
t same things astheorems 4.8 and 4.9 only for the ba
kward transition relation (=B. Sin
ethe arrows goes in the other dire
tion the states are not in the same order inthe top and bottom of the theorem. This also has the e�e
t that the 
on
retearrows in �gure 4.15 and 4.16 goes from right to left.54
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kward: symboli
 to 
on
rete(~l0; Z 0)(=B (~l; Z)+8u 2 Z:9d 9u0 2 Z 0:(~l; u) ���! �(d)���! (~l0; u0)
(~l0; Z 0) (~l; Z)(~l0; u0) (~l; u)B�(d) �2 2 � 8� 9Figure 4.15: Illustration of theorem 4.10Theorem 4.11Ba
kward: 
on
rete to symboli
(~l; u) ���! �(d)���! (~l0; u0)+8Z 0:u0 2 Z 0:9Z:(~l0; Z 0)(=B (~l; Z) ^ u 2 Z
(~l0; Z 0) (~l; Z)(~l0; u0) (~l; u)B�(d) �2 2 � 8� 9Figure 4.16: Illustration of theorem 4.11

4.3.3 Corre
tness of Ba
kwards AlgorithmWe will use theorems 4.10 and 4.11 to prove the 
orre
tness of the algorithmfor symboli
 ba
kwards rea
hability with regard to rea
hability. This 
ould55
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 Analysis of TAbe done in a similar fashion for the forward algorithm using theorem 4.8 and4.9.Theorem 4.12The symboli
 ba
kwards rea
hability is partially 
orre
t with regard torea
hability. That is whenever the algorithm terminates it gives the 
or-re
t answer.We need some de�nitions for the proof of theorem 4.12.De�nition 4.13 : Leads-to operatorWe write (~l; u); (~l0; u0) if (~l; u) ���! �(d1)����! : : : ���! �(dn)����! (~l0; u0).We also write (~l; u); g if (~l; u); (~l0; u0) for some (~l0; u0) 2 g.Proof of theorem 4.12 � � � � � � � � � � � � � � � � � � �We prove the partial 
orre
tness by splitting into two 
ases.Case 1: Assume that the algorithm terminates with the answer TRUE. We
laim that whenever (~l; Z) 2 Passed and u 2 Z then (~l; u); Bad. Tosee this note that if (~l; Z) 2 Passed then we have a symboli
 sequen
eof the form:(~lBad; ZBad)(=B (~l1; Z1)(=B (~l2; Z2)(=B : : :(=B (~l; Z)Now applying theorem 4.10 repeatedly proves the 
laim.It follows immediately from the proven 
laim that if ever an en
ounteredsymboli
 state interse
ts with Init, (~l0; Z0), then indeed there is a path fromInit to some state in Bad.Case 2: Assume that the algorithm terminates with the answer FALSE.We 
laim that in this 
ase (~l; u) ; Bad 
annot hold for any state(~l; u) 2 Init. We prove this by 
ontradi
tion. Assume on the 
ontrarythat (~l; u); Bad for some state (~l; u) 2 Init. This is:(~l; u) ���! �(d1)����! : : : ���! �(dn)����! BadThen be
ause of theorem 4.11 we have a symboli
 sequen
e of the form:(~lBad; ZBad)(=B (~l1; Z1)(=B (~l2; Z2)(=B : : :(=B (~l; Z)with (~lBad; ZBad) � Bad and u 2 Z.56
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 Analysis of TA 57But then (~l; Z) must be present in the Wait-list at some point during 
om-putation and hen
e we would have obtained termination with the answerTRUE in 
ontradi
tion with the assumption.� � � � � � � � � � � � � � � � � � � � � � � � � � � � �For total 
orre
tness of the algorithm we observe that the algorithm termi-nates due to the �niteness of the symboli
 state-spa
e, indu
ed by normal-ization.A similar 
orre
tness proof 
ould be given for symboli
 forward rea
habilityalgorithm.
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5 Appli
ation of CBR on TAIn this se
tion we apply the CBR method to the domain of Timed AutomataNetwork (TAN). We 
hoose the symboli
 CBR algorithm, from se
tion 2.4.3,be
ause it exa
tly �ts the domain.5.1 Ful�lling the RequirementsWe will in the following se
tions des
ribe how the domain �ts the require-ments stated in se
tion 2.4.3. Here we will introdu
e the CBR method fortimed automata, not unlike how it was introdu
ed in the previous report[Lar02℄. At the same time we will show that this �ts exa
tly within theframework of the symboli
 algorithm presented in se
tion 2.4.3. To be ableto use only some of the 
omponents, automata and 
lo
ks, we de�ne twosubsets: M � f1; : : : ; ng an index subset of the timed automata and K � Ca subset of 
lo
ks. We will base the partitioning of the state-spa
e on anequivalen
e derived from these two subsets.Representable Symboli
 StatesFirst we de�ne the representable symboli
 states (RSS), whi
h we are goingto use in the analysis. Firstly these states are symboli
 in the representationof the 
lo
k values, in the use of Zones, as des
ribed in 
hapter 4. Se
ondlythey are symboli
 in the representation of the lo
ation ve
tor. We introdu
ea partial lo
ation ve
tor, in whi
h we only need to spe
ify the lo
ation forsome 
omponents. The lo
ation of the rest of the 
omponents are representedby a � (star) meaning that this automata 
an be in any of its lo
ations. Wewill refer to these states as double symboli
 states sin
e they 
an be symboli
both in the use of zones and the representation of the dis
rete lo
ation. Againsu
h symboli
 states will be subsets of L1�: : :�Ln�RC as with the symboli
states de�ned in se
tion 4.1.An M -sorted partial lo
ation ve
tor only 
ontains information about theautomata in M , and semanti
ly it represents the set of all lo
ation ve
torsthat agree with it with regard to the lo
ations of all automata in M . For a59



60 Appli
ation of CBR on TAzone to be K-sorted it 
annot in
lude any 
onstraints on 
lo
ks not in
ludedin K.De�nition 5.1 : Double Symboli
 StateA double symboli
 state (~p; Z) 
onsists of an M -sorted lo
ation ve
tor ~p anda K-sorted zone Z. For a given M � f1; : : : ; ng an M -sorted lo
ation ve
toris de�ned as follows:~p = (p1; : : : ; pn) where � i 2M pi 2 Li [ f�gi =2M pi = �A K-sorted zone only 
ontains 
onstraints on 
lo
ks in K: Z 2 B(K).By an M;K-sorted symboli
 state we mean a double symboli
 state wherethe lo
ation ve
tor is M -sorted and the zone is K-sorted. We noti
e thata double symboli
 state that is M;K-sorted for a given M and K also isM;K-sorted for any larger M or K. We have that there are only �nitelymany zones, given normalization. Given that we have also �nitely manyautomata and �nitely many lo
ations in ea
h automata, we 
an only 
reatea �nite number of di�erent representable symboli
 states. This was one ofthe requirements of the symboli
 CBR framework.Partitioning of the State Spa
eWe de�ne the partitioning of the state-spa
e on the basis of the M;K-equivalen
e. First we de�ne M -equivalen
e for the dis
rete part of the stateand K equivalen
e for the 
ontinuous part of the state.De�nition 5.2 : M-equivalen
e~l =M ~l () 8i 2M:li = l0i
De�nition 5.3 : K-equivalen
eu =K u0 () 8x 2 K:u(x) = u0(x)60



Appli
ation of CBR on TA 61We de�ne the M;K-equivalen
e in terms of the two other equivalen
es.De�nition 5.4 : M;K-equivalen
eWe de�ne M;K-equivalen
e in the following way:(~l; u) =M;K (~l0; u0) () ~l =M ~l0 and u =K u0We partition the state-spa
e based on the number of automata and 
lo
ksin
luded in the analysis. We start with a the subset of automata and 
lo
ksneeded to represent Goal. After this we gradually extend with more 
lo
ksand automata. Sin
e we have a �nite amount of 
lo
ks and automata, wewill in a �nite number of steps rea
h a point where all 
lo
ks and automataare in
luded. For ea
h M;K
ombination we de�ne a partitioning where allstates that are M;K-equivalent are in the same partition. When we havein
luded all 
lo
ks and automata the M;K-equivalen
e will 
orrespond tothe identity relation Id = f(s; s) j s 2 STg. This will result in the fa
t thatthe partitioning de�ned by this equivalen
e satis�es the property of being astable partitioning. The a
tual order in whi
h to in
lude the 
omponents,does not a�e
t the method in general. Di�erent heuristi
s will be 
onsideredin se
tion 7.3. The partitioning indu
ed by a given equivalen
e =M;K, is
alled PM;K, instead of writing P=M;K . If we have that M �M 0 and K � K 0then the equivalen
e indu
ed by =M 0;K0 is �ner than or equal to the oneindu
ed by =M;K, be
ause M 0 and K 0 have more elements. In general thefollowing holds: M � M 0 ^K � K 0 () PM 0;K0 v PM;KSorted Symboli
 Prede
essorIn this se
tion we des
ribe how to interpret a timed automata network (TAN)as a global transition system. The 
on
rete states where in se
tion 3.4 in-terpreted as a transition system. In this se
tion we de�ne how to interpreta TAN as a transition system, where the states are double symboli
 states.We do this by de�ning a new transition relation the 
ombines the 
al
u-lation of the new zones from the (=B transition relation and the 
on
eptof M;K-sortedness. The idea is to relate M;K-sorted symboli
 states withother M;K-sorted symboli
 states. This means that we will only 
onsidertaking transitions in automata spe
i�ed by M and where the 
onstraints onthe guards only range over 
lo
ks in K.61



62 Appli
ation of CBR on TAFor the de�nition of the new transition relation we need some notation forwhat it means for a 
on
rete lo
ation ve
tor li to be in
luded in a partiallo
ation ve
tor pi. li 2 pi () � li = pi pi 2 Litrue pi = �De�nition 5.5 : Ba
kward M;K-sorted Transition RelationThe de�nition of the (=M;K transition relation is based on the(=B transi-tion relation and adds the 
on
ept ofM -sorted lo
ation ve
tors and K-sortedzones.We know that ~p0 is M -sorted and that Z 0 is K-sorted.� (~p0; Z 0)(=M;K (~p; Z) if 9gi 2 B(K); 9ri:(li; gi; �; ri; l0i) 2 Eili = pi, l0i 2 p0iZ = (freefrig(ri ^ Z 0#)) ^ gi8k =2 fig:p0k = pkfor some i 2 M
� (~p0; Z 0)(=M;K (~p; Z) if 9gi 2 B(K); 9ri:(li; gi; a; ri; l0i) 2 Ei9gj 2 B(K); 9rj:(lj; gj; �a; rj; l0j) 2 Ejli = pi, l0i 2 p0i, lj = pj, l0j 2 p0jZ = (freefri [ rjg(ri ^ rj ^ Z 0#)) ^ gi ^ gj8k =2 fi; jg:p0k = pkfor some i; j 2M where i 6= j and a 2 A
t.We need to prove that the new Z 2 B(K) and that ~p is M -sorted. We 
an
on
lude that Z 2 B(K) be
ause the guards that are 
onjun
ted are fromB(K). The 
lo
ks that are reset are also freed again, this means that theywill not bring Z out of B(K). We 
an also 
on
lude that ~p is M -sortedbe
ause the index set remains the same.We intend to prove the two assumptions made in assumption 2.20. In thefollowing we write PreM;K as a shorthand for PrePM;K . PreM;K(H) isde�ned as fs j 8t =M;K s:9t0 2 H:t ���! �(d)���! t0gHere we stret
h the original de�nition 2.7 of Pre, by taking both a dis
reteand a delay step. The �rst line of ea
h of the two assumptions 
an berewritten as follows:SymPreM;K(~p0; Z 0) = f(~p1; Z1); : : : ; ( ~pn; Zn)g62



Appli
ation of CBR on TA 63First assumption In order to prove that Sni=1(~pi; Zi) � PreM;K(~p0; Z 0),we must show that whenever ~l 2 ~pi and u 2 Zi then it follows that(~li; u) 2 PreM;K(~p0; Z 0).Whenever ~l 2 ~pi and u 2 Zi then(~li; u) ���! �(d)���! (~l0; v0)for some ~l0 2 ~p0 and v0 2 Z 0.Hen
e as (~pi; Zi) isM;K-sorted it follows that (~li; u) 2 PreM;K(~p0; Z 0).Se
ond assumption We already have the Sni=1(~pi; Zi) � PrePstable(~p0; Z 0)and only need to show that Sni=1(~pi; Zi) � PrePstable(~p0; Z 0) in order toprove the equality. We have that Pstable is equal to the identity, so wemust show that every element in PreId(~p0; Z 0) is in the set of symboli
states returned by SymPre. We have that PreId(~p0; Z 0) = fs j 8t =Ids:9t0 2 H:t ���! �(d)���! t0g = ft j 9t0 2 H:t ���! �(d)���! t0g. Sin
e t has twotransitions, whi
h 
an bring it into H, we 
an see from the de�nitionof (=M;K that there will exist a (~pi; Zi) = t.Che
k for In
lusion and Interse
tionThe symboli
 CBR framework also requires that, we 
an 
he
k for in
lusionbetween two symboli
 states, and 
he
k for interse
tion between a symboli
state and Init. When performing in
lusion 
he
ks between two double sym-boli
 state, we will �rst 
ompare the partial lo
ation ve
tors. If the twostates does not agree in one of the automata where they both spe
ify a spe-
i�
 lo
ation, then they neither interse
t nor does the one in
lude the other.After this the zones are 
he
ked for interse
tion by the method des
ribed in
hapter 4.De�nition 5.6 : In
lusionOne double symboli
 state (~p0; Z 0) 
overs another (~p; Z) if:(~p; Z) � (~p0; Z 0) () ~p v ~p0 ^ Z � Z 0~p v ~p0 () 8i 2M:pi = p0i _ p0i = �The only type of interse
tion 
he
k performed is interse
tion with Init. Thisis done �rst by 
he
king if the partial lo
ation ve
tor 
ontains the lo
ation63



64 Appli
ation of CBR on TAve
tor of Init. After this we 
an perform an interse
tion 
he
k between thetwo zones. Be
ause of the fa
t that we take both a dis
rete and a delay step,in ea
h exploration step, we a
tually perform this interse
tion 
he
k with azone Zinit", that is the future operation performed on the initial zone Zinit,where all 
lo
ks are zero.In the previous se
tion we have ful�lled the following requirements. A �nitenumber of representable symboli
 states, and a way to 
he
k for in
lusion andinterse
tion for su
h states. A �nite sequen
e of partitionings, with a �nalpartitioning with the desired property. And a symboli
 prede
essor fun
tion,in 
omplian
e with assumption 2.20. Having ful�lled all of the requirementsfor the symboli
 CBR framework, we 
an 
on
lude the 
orre
tness of thealgorithm, when applied to the domain of TAN.
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6 ExtensionsThis 
hapter des
ribes 
ertain extensions, whi
h 
an be added to the modelof timed automata, and the e�e
t that these have on the 
ompositional ba
k-wards rea
hability analysis. The extensions are; integers, invariants, urgentlo
ations, urgent 
hannels, and 
ommitted lo
ations. We deal with exa
tlythese extension be
ause they are the ones implemented in Uppaal. Ea
h ofthe extension will be des
ribed in the following se
tions.6.1 IntegersIn this se
tion we will �rst des
ribe how integers 
an be used in Uppaal.After this we will dis
uss the possibility of adding this to the CBR for TAmethod. We 
hoose integers with some simple operations, and show how theCBR for TA method from 
hapter 5 
an be extended.In Uppaal one 
an use both simple integers and arrays of integers. The inte-gers 
an be used in guards, and in assignments. Examples of integer guardsare: L < 2, I == 4, and I <= L * 2. Similarly we 
an give some examplesof integer assignments: L := 2, I := L / 2, and L := L + 1. Both theguards and assignments 
an 
ontain addition, subtra
tion, multipli
ation,and division. There is also a possibility of using a maximum and a minimumfun
tion.It would be possible to implement all of this in the CBR for TA method. Asuitable data stru
ture 
ould be binary de
ision diagrams (BDD). A BDD
ould represent the possible values that an integer 
ould have in a give sym-boli
 state. The 
ompli
ated part is to 
al
ulate, whi
h possible values, aninteger 
ould have had before it was assign the 
urrent value. In the imple-mentation des
ribed in 
hapter 7 we have 
hosen a simpler solution. We haveonly two possible representations of an integer, either a 
on
rete value or *(star) denoting any possible value. We allow only 
ertain simple guards andassignments. The guards 
an only be of the form: L == 3. Where an integeris tested for equality with a 
onstant. This gives us the advantage that afterhaving taken a ba
kwards step, with an integer guard on the transition, weknow the exa
t value of the integer. In the assignments we only allow theuse of, addition, subtra
tion, 
onstants, and the integer to whi
h the value is65



66 Extensionsbeing assigned. Examples of su
h integer assignment are: L := 2, L := L +1, and L := 1 - L. This makes it easier to 
al
ulate the value of the integerprior to the assignment, be
ause there always will be only one su
h value.When taking a ba
kwards dis
rete transition, the 
al
ulation of integer val-ues is 
arried out in two steps. First we use the assignment to 
al
ulate anintermediate value. Here we have four possible s
enarios, illustrated by fourexamples in �gure 6.1.
��Any assignment Not possible2L := 7 �7L := 7 34L := L + 1Figure 6.1: Illustrates how we 
al
ulate the intermediate value of an integerbased on the value after the assignment and the assignment.In the �rst 
ase, if the integer 
an have any value after the assignment, it
ould also have had any value before the assignment, be
ause we use un-bounded integers. In the se
ond 
ase, if the integer is assigned a 
onstantand it does not have this value after the assignment, then we know that thistransition 
annot be taken into su
h a symboli
 state. The third 
ase illus-trates the 
ase where the integer has exa
tly the value that is assigned toit. In this 
ase we know nothing about the prior value of the integer, whi
his then �. In the �nal 
ase the integer has a 
on
rete value and it is eitherin
remented or de
remented in the assignment. In this 
ase we 
an 
al
ulatewhat value it must have had before the assignment. There a
tually existsone last 
ase. The 
ase where we have no assignment. If this is the 
ase, theintegers intermediate value is the same as the value after the assignment.After having 
al
ulated the intermediate value, we must 
he
k if the inter-mediate value agrees with the value in the guard. Here we only have three
ases, illustrated in �gure 6.2.In the �rst 
ase if the intermediate value is �, we know that the assignment
ould have been true. If the integer has a 
on
rete value that is exa
tly thesame as in the guard we know that the guard was true. In both of these 
aseswe know that the value of the value of the integer must have been the valuein the guard. The last 
ase represents where the intermediate value and thevalue in the guard disagree. In this 
ase the transition 
annot lead us to thesymboli
 state in question. 66



Extensions 673L == 3� 3L == 33 Not possibleL == 34
Figure 6.2: Illustrates how we 
al
ulate the value of the integer before theguard, depending on the intermediate value of an integer.When we want to extend the CBR for TA method with integers. First wede�ne the new representable symboli
 states (RSS). The 
on
rete states willnow have the form (~l;~i; Z) instead of the form (~l; Z), where ~i = (i1; : : : ; in)with im 2 Z. We limit guards to the form i := 
 where 
 is a 
onstant andassignments to the form i := d, where d is 
omposed of the integer i itself,
onstants, addition and subtra
tion. The symboli
 states will now have theform (~p; ~q; Z) instead of the form (~p; Z), where ~q is de�ned as partial lo
ationve
tors, just for integers. We also need an extra index set I � (i1; : : : ; in),to range over the integers. With this we 
an de�ne partial integer ve
tor asfollows. ~qi = (q1; : : : ; qn) where � m 2 I qm 2 Z[ f�gm =2 I qm = �We will obtain new equivalen
es based on =M;K and the equivalen
e of theinteger values. We will denote these new equivalen
es by =M;K;I. The newsymboli
 prede
essor fun
tion (=M;K;I will be (=M;K with the added 
on-
ept of integers.6.2 InvariantsIn this se
tion we des
ribe what invariants are, and possible solutions onhow to in
lude them in the ba
kwards rea
hability analysis. An invariantis an upper bound on 
lo
k values in a given state. For ea
h state we 
anhave a requirement that a set of 
lo
ks does not ex
eed some value. Havinginvariants in the system 
hanges the 
omputation of the zones of the statesthat 
an rea
h a 
urrent state. The problem lies in the fa
t that we 
anno longer guarantee that we 
an delay inde�nitely ba
kwards. We illustratethis fa
t by an example. In �gure 6.3 we have two simple timed automata.The system 
ontains two invariants one in state A1 and one in state B1. Theproblem arises from the fa
t that the system 
an time deadlo
k, meaning67



68 Extensionsit 
an enter a state in whi
h no further time 
an elapse. This happens if�rst time elapses su
h that x == 7 and automata B takes a transition intoB3. After this time elapses su
h the y == 9. Now no more time 
an elapsein state A1, be
ause of the invariant. At the same time the one outgoingtransition is not enabled, hen
e we have a time deadlo
k.
A1

y <= 9

A2

a?

B1

x <= 7

B2

B3

a!

x == 7

Figure 6.3: Two simple timed automata A and B.Time deadlo
k poses a problem for 
ompositional ba
kwards rea
habilityanalysis. In order to dete
t if we are taking a ba
kwards step over a timedeadlo
k, we have to 
onsider all 
omponents. This strongly 
ontradi
t the
ompositionality. One possible solution to this problem is to restri
t themodels on whi
h the method works. We want models that 
annot timedeadlo
k, whi
h is des
ribed by the following property.De�nition 6.1 : No Time Deadlo
k8(~p; v) that is rea
hable:9(~l; v) ���! �(d1)����! ���! �(d2)����! :::::: su
h that limn!1( nXi=1 (di))!1We believe that the following synta
ti
al properties ensures that a systemnever time deadlo
ks:� Ea
h state that has an invariant must have an outgoing tau transitionwhi
h is enabled when the invariant prevents any further delaying. Ifno su
h tau transition exists one must be added that leads to a spe
ialdeadlo
k state.� There may not be any 
y
les in the model in whi
h time does not elapse.This 
an be ensured by 
he
king that, in ea
h 
y
le there exists a 
lo
kthat is reset and later 
he
ked to be larger than a non-zero 
onstant.We have no proof of these assumptions and this is a very interesting area forfuture work. 68



Extensions 696.3 Urgent Lo
ationsA lo
ation in an automata 
an be spe
i�ed as being urgent. No time 
anelapse in the system while an automata is in an urgent lo
ation. Urgentlo
ations 
an simply be modeled by the use of invariants, so if we have asolution for invariants we have also solved the problem of urgent lo
ations.An extra 
lo
k xu is added whi
h is reset on all transitions going into theurgent lo
ation. Then an invariant, whi
h spe
i�es that no time 
an elapse,xu � 0, is added to the urgent lo
ation.6.4 Committed Lo
ationsA lo
ation in an automata 
an be spe
i�ed as being 
ommitted. Similarly asfor urgent lo
ations, no time 
an elapse when an automata is in a 
ommittedlo
ation. There is also the extra requirement that no other automata maytake any transitions before the one automata has left the 
ommitted lo
ation.Before the rea
hability analysis is started, the set of 
ommitted lo
ations isexamined. Any 
ommitted lo
ation that has an outgoing tau-transition isregistered as well as any pair of 
ommitted lo
ations that 
an syn
hronize.Whenever in the ba
kwards rea
hability analysis that we take a ba
kwardsdelay or dis
rete transition, we know that none of the automata not in M
ould have been in any of the previously mentioned states or 
ombinations ofstates. If the 
ommitted lo
ation is in an automata inM we will treat them asurgent lo
ations. When we take a ba
kwards step into a 
ommitted lo
ationor a pair of 
ommitted lo
ations, we 
annot delay due to the invariants thatwas added by the treatment as urgent lo
ations. In addition to this we mustonly look at transitions that 
an bring us out of the 
ommitted lo
ationsagain, when 
hoosing the next dis
rete step.6.5 Urgent ChannelsAn urgent 
hannel is a 
hannel on whi
h the automata must syn
hronize assoon as they are able to. As for the 
ommitted lo
ations we must register allpairs of states that 
an syn
hronize over an urgent 
hannel before the rea
ha-bility analysis begins. When su
h a pair is not in
luded inM , we know whenwe delay, that all the 
omponents outside of M 
annot be in these lo
ation
ombinations. For pairs of lo
ations where the one automata is in
luded inM , and the other one is not, we must do the following. If the automata inMisn't in the lo
ation that 
an syn
hronize over an urgent 
hannel, we mustdo nothing. On the other hand if it is in this exa
t lo
ation, we 
an 
on
lude69



70 Extensionsthat the automata outside M , with whi
h it 
ould syn
hronize, isn't in the
orresponding lo
ation.
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7 ImplementationA test implementation of the CBR method was 
reated in order to produ
esome experimental results. This implementation will in the rest of the reportbe known as Cbr-verifyta. In the next 
hapter the experimental resultsfrom Cbr-verifyta will be 
ompared with results from Uppaal. This
hapter des
ribes what the test implementation in
ludes and how it wasimplemented.7.1 Code ReuseThe CBR test implementation is implemented in the programming languageC++. This is done in order to be able to use the Uppaal sour
e 
ode asa basis for the development of a test implementation of the CBR for TAmethod. Firstly the parsers, both for the models and the veri�
ation prop-erties, 
ould be reused. This results in the fa
t that, the same models andveri�
ation properties 
an be fed to both Uppaal and Cbr-verifyta. Aresult of using the Uppaal sour
e 
ode as a basis, was that there was noreal design faze. The Uppaal sour
e 
ode was slowly repla
ed and 
hangedto transform it into Cbr-verifyta. The remaining se
tions will des
ribeparts of the implementation. We will only des
ribe things that has not been
overed elsewhere in the report. Although the double symboli
 states andthe symboli
 prede
essor fun
tion represents the main part of the implemen-tation e�ort, they will not be des
ribed in this se
tion. This is due to thefa
t that they have already re
eived thorough treatment.7.2 Fo
us of the ImplementationDue to the limited time resour
es, we have in this proje
t it wasn't an optionto do a full implementation of the CBR method. The priority was on beingable to 
ompare CBR and Uppaal by being able to verify relevant proper-ties on a set of models. The main de�
ien
y of the implementation is it'sinability to handle veri�
ation properties 
ontaining negations or propertiesstarting with A[℄. The problem lies in the step where symboli
 states are71



72 Implementationgenerated from the parsed property. If �rst the symboli
 states has beengenerated, there is no set of states, that we 
annot 
he
k the rea
habilityof. In the implementation we also 
hose to implement simple integers asdes
ribed in se
tion 6.1 be
ause many of the models 
ontains integers, andonly use them in su
h a simple fashion. A point where the method di�ersfrom the algorithm, is that there is performed an extra in
lusion 
he
k wheninserting a state into the waiting list, to avoid dupli
ate states in the waitinglist. This is inspired by Uppaal, whi
h does exa
tly the same, although itis not des
ribed in the forward rea
hability algorithm of se
tion 4.3.1.7.3 Dependen
y AnalysisIn this se
tion we will �rst des
ribe the purpose of the dependen
y analysis.After this we 
onsider how to perform the analysis on a timed automatanetwork (TAN). Finally we 
onsider some heuristi
s for di�erent orders inwhi
h to in
lude the 
omponents.The dependen
y analysis is 
arried out in order to avoid doing unne
essarywork. If we 
an show that a number of 
omponents are dependently 
losed,and that the property we intend to verify only 
on
erns 
omponents fromwithin the dependen
y 
losed set, then we know that we only need to in-
lude the 
omponents from the dependen
y 
losed set, in order to 
he
k theproperty. Having a dependen
y 
losed set means that no matter how the
omponents outside the set behave, they 
annot a�e
t the set of states, thatthe dependen
y 
losed set 
an rea
h. This analysis is 
arried out before thea
tual veri�
ation.In a TAN we have three types of 
omponents; automata, 
lo
ks, and inte-gers. These 
omponents depend on ea
h other in di�erent ways. First of allautomata 
an depend on ea
h other by use of the same 
hannel to 
ommu-ni
ate. All automata that write to a given 
hannel a! depends on all theautomata that read from the 
hannel a?. Likewise ea
h reader of a 
hanneldepend on every single writer to the same 
hannel. Integers 
an only dependon automata. An integer depends on the automata that assigns it a valueon one of it's transitions. Likewise 
lo
ks only depend on automata that itis resets by. Finally automata also depends on the integers and 
lo
ks usedin a guard on one of it's transitions. Using these rules, we build a depen-den
y graph. Starting with the set of 
omponents used to represent Goal.We simply add all the 
omponents that these 
omponents depend on. Inthis way, when we have no more 
omponents to in
lude, we have rea
hed adependen
y 
losed system. This need not bee all 
omponents in the system.As a heuristi
 for whi
h 
omponents to add we have 
hosen a very simple72



Implementation 73one, of in ea
h step adding all the 
omponents that the 
urrent 
omponentsdepend dire
tly on. In the implementation we already 
ount the number ofdependent relationships between two 
omponents. So that for instan
e forea
h reset of a 
lo
k appearing in an automata, the 
lo
k depends with onepoint on the automata. These numbers gives some sort of representation ofhow 
losely 
onne
ted two 
omponents are. One 
ould easily imagine thisbeing utilized in some form of heuristi
s where a 
ertain number of point hadto be added for ea
h step. Coming up with some good heuristi
s 
ould be apossible dire
tion of future work.
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8 Experimental ResultsIn this 
hapter we will 
ompare the performan
e of the CBR method (Cbr-verifyta) against both full ba
kwards rea
hability (FBR) and the algorithmused in the Uppaal tool. What we mean by FBR will be explained in se
tion8.2.1. We 
hoose to 
ompare CBR and Uppaal in terms of the number ofin
lusion 
he
ks and exploration steps be
ause these are the most 
omplexoperations of the algorithms. We do not want to measure the exe
ution time,be
ause this will show the eÆ
ien
y of the implementations instead of therelative strength of the individual methods.
8.1 Performan
e ParametersWe 
hoose in
lusion 
he
ks and exploration steps, as performan
e parametersbe
ause we believe them to be the dominant fa
tors in the exe
ution time.In
lusion 
he
ks are performed in two lo
ations in the algorithms. Before astate is explored it is 
he
ked against the passed list to see if it has alreadybeen explored. In
lusion 
he
ks are also performed when inserting a state intothe waiting list. Exploration steps represent the number of times a state isexplored, i.e. the number of times we look at one state and determine whatnew states we 
an rea
h by a forward or a ba
kwards step. The Uppaalversion used in this se
tion is 3.2 Beta 5 (3.1.68) of September 2001.
8.2 Test CasesAs test 
ases we 
hoose the two problems also des
ribed in the previousreport: The soldiers problem and Fis
her's mutual ex
lusion algorithm. An-other reason for 
hoosing these problems is that they are standard problemsthat are distributed as examples with Uppaal, and the fa
t that they 
anbe s
aled in size. 75



76 Experimental Results8.2.1 Fis
her's Mutual Ex
lusion AlgorithmThe purpose of Fis
her's mutual ex
lusion algorithm is to ensure that anumber of pro
esses all 
an have a

ess to a shared resour
e, but never atthe same time. In �gure 8.1 we show a prototype for the pro
esses in Fis
her'salgorithm. These prototypes are 
reated using the graphi
al user interfa
efor Uppaal. From this prototype we 
an save a system with the desirednumber of pro
esses. In ea
h pro
ess the pid is then repla
ed by a unique
onstant, not zero.
a b

ccs

id== 0 x:= 0

x<=k

x:= 0,
id:= pid

id== 0

x:= 0

x>k, 
id==pid

x:= 0,
id:= 0Figure 8.1: Prototype for ea
h pro
ess in Fis
her's algorithm.We use Fis
her's mutual ex
lusion algorithm to test CBR against both Up-paal and FBR. We verify a property that the �rst two pro
esses 
an bothrea
h the 
riti
al se
tion at the same time. This 
an be written as: E<>(P1.
s and P2.
s). This property is never satis�ed for a 
orre
t 
on-stru
ted Fis
her's algorithm, so in all the test 
ases the answer is NO. Weverify this property for di�erent numbers of pro
esses. The reason we do not
hange the property to in
lude all pro
esses, is that if we did so the 
om-positional aspe
t of the CBR method would not be tested. We a
hieve thefull ba
kwards rea
hability method (FBR) method by rewriting the propertyto all possible 
ombinations of states that are 
overed by the symboli
 stategenerated by E<> (P1.
s and P2.
s). By using Cbr-verifyta to verifythis new property, we are guaranteed that all 
omponents are in
luded fromthe start, and hen
e we get what 
orresponds to full ba
kwards rea
habilityanalysis. The FBR property for three pro
esses is:E<>( (P1.
s and P2.
s)and (P3.a or P3.b or P3.
 or P3.
s)and (id == 0 or id == 1 or id == 2 or id == 3))This property is rewritten for ea
h number of pro
esses, by adding an extraline for ea
h pro
ess, and an extra possible value for id. For four pro
essesthe property is: 76



Experimental Results 77E<>( (P1.
s and P2.
s)and (P3.a or P3.b or P3.
 or P3.
s)and (P4.a or P4.b or P4.
 or P4.
s)and (id == 0 or id == 1 or id == 2 or id == 3 or id == 4))Uppaal is tested both with and without an optimization option -a, whi
h tellsit to dete
t ina
tive 
lo
ks. This option improves the performan
e of Uppaalfor the models in question. Table 8.1 
ontains the number of in
lusion 
he
ksperformed by ea
h method in verifying the property on models of di�erentsize. Likewise table 8.2 
ontains the number exploration steps.In
lusion Che
ks# pro
esses Uppaal Uppaal -a FBR CBR2 81 66 39 273 967 593 344 3934 14729 6850 2247 11975 275391 97077 12679 28186 6113281 1633538 65537 5556Table 8.1: In
lusion 
he
ks. Fis
her's algorithm.Exploration Steps# pro
esses Uppaal Uppaal -a FBR CBR2 29 23 17 123 301 181 108 854 4121 1889 563 1685 70381 24701 2658 2836 1441885 387925 11833 430Table 8.2: Exploration steps. Fis
her's algorithm.From table 8.1 and 8.2 we 
an see that both FBR and CBR performs sig-ni�
antly better than Uppaal, both with and without the -a option. CBRalso outperforms the FBR method. In table 8.3 and 8.4 we will 
al
ulate thefa
tor by whi
h the number of operations grow when we in
rease the numberof 
omponents. We 
al
ulate this growth fa
tor by dividing the number ofoperations required for 3 pro
esses with the number of operations requiredfor 2 pro
esses, and so on. For both versions of Uppaal the growth fa
torin
reases as the number of pro
esses in
rease, indi
ation greater than expo-nential growth. For both FBR and CBR the growth fa
tor de
reases as the77



78 Experimental Resultsnumber of pro
esses grow, indi
ating sub exponential growth. The growthis still far from linear. We 
annot 
on
lude that this will be the 
ase forall models, but for this parti
ular 
ase Cbr-verifyta has both the lowestnumber of operations and the lowest growth fa
tor. The only ex
eption forthis is the growth from two to three pro
esses, where FBR has a lower growthfa
tor. In
lusion Che
ks# pro
esses Uppaal Uppaal -a FBR CBR3/2 11.9 9.0 8.8 14.64/3 15.2 11.6 6.5 3.05/4 18.7 14.2 5.6 2.46/5 22.2 16.8 5.2 2.0Table 8.3: Growth fa
tor. In
lusion 
he
ks. Fis
her's algorithm.Exploration Steps# pro
esses Uppaal Uppaal -a FBR CBR3/2 10.4 7.9 6.4 7.14/3 13.7 10.4 5.2 2.05/4 17.1 13.1 4.7 1.76/5 20.5 15.7 4.5 1.5Table 8.4: Growth fa
tor. Exploration steps. Fis
her's algorithm.When verifying a property that 
annot be satis�ed Uppaal will eventuallysear
h the entire rea
hable state-spa
e. This means that no matter whatunsatis�able property we verify on the models used above, we will get theexa
t same number of operations. On the other hand the eÆ
ien
y of theFBR and CBR methods is very dependent on the property we want to verify.8.2.2 Soldiers ProblemWe 
hoose this problem for several reasons. It is 
ompositional in nature, itis distributed with Uppaal and it was also analyzed in the previous report[Lar02℄. In the previous report it was remodeled 
ompared to the versiondistributed together with Uppaal. Here we 
hoose to in
lude test data forboth models. 78



Experimental Results 79The problem 
an be des
ribed as follows. A bun
h of soldiers have to 
rossa river over a narrow bridge, in the middle of the night. They have onlyone tor
h, whi
h they need to 
ross the bridge, at the same time the bridge
an only 
arry the weight of two of the soldiers at a time. This means thatwhen two soldiers have 
rossed the bridge one of them must walk ba
k to theoriginal side with the tor
h. So a new pair of soldiers 
an 
ross the bridge.The soldiers walk at di�erent speeds a
ross the bridge, and if two of them
ross the bridge together, they walk at the speed of the slowest of the two.The usual question to solve is; 
an all the soldiers 
ross the bridge within Xtime units?
free1

free2

one

two

take? take?

L:= -L+1

release? release?

over ready safe

u_overu_readyunsafe

release !

y>= delay L== 1

y:= 0
take !

release !

y>= delay

L== 0

y:= 0

take !

Figure 8.2: The Tor
h automata and the prototype for the Soldier automata.In the version distributed with Uppaal, shown in �gure 8.2, the tor
h ismodeled by an automaton, and so is ea
h of the soldiers. In the version fromthe previous report, we modeled the lo
ation of the tor
h by an integer vari-able with three values. When one or two soldiers begin their journey a
rossthe bridge they 
hange the value of the integer, su
h that no other soldiers
an 
ross the bridge. When they get to the other side they 
hange the valueof the integer to re
e
t, on whi
h side of the bridge the tor
h 
urrently islo
ated. In this model we do not use prototypes but individual automata.But the automata still resemble ea
h other so mu
h, that we have 
hosen toshow only one of them in �gure 8.3.In the following the problem is modeled with four soldiers, S1, S2, S3, andS4. The four soldiers take respe
tively 5, 10, 20, and 25 time units to 
rossthe bridge. In table 8.5 we show the properties that will be tested on bothmodels. These properties will also be tested on Uppaal, with the dete
tina
tive 
lo
ks option. 79
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unsafe X

A

B

safeL == 0

L := 1,
y4 := 0

L == 0

L := 1, y4 := 0

go!

y4 >= 25

L := 2

off!

y4 >= 25

L := 0

off!

L == 2

y4 := 0,
L := 1

go!

y4 >= 25
L := 2

y4 >= delay

L := 0 L == 2

L := 1,
y4 := 0

L == 0

L := 1, y4 := 0

go?

y4 >= 25

L := 2

off?

L == 2

y4 := 0,
L := 1

go?

y4 >= 25

L := 0

off?

Figure 8.3: Soldier4, one of the timed automata used in this example. Onthis �gure the transitions marked with two syn
hronization labels, e.g. go!and go?, are a
tually two transitions with the same reset sets and guards.The per
entage 
olumns in table 8.6 and 8.7 are 
al
ulate by dividing thenumber of operations needed in the CBR method with the number of opera-tions used inUppaal. The tables show that espe
ially for the properties thatare not satis�ed, Uppaal uses a lot fewer operations. This is also the 
asefor the most 
omplex property, property 8. It is only for the �rst two simpleproperties that the CBR method is 
onsistently better. The remodeled sol-diers problem generally requires both less in
lusion 
he
ks and explorationsteps. There is only one ex
eption from this, whi
h is the number of in
lusion
he
ks required by the CBR method for property number 1. With this modelUppaal generally performs better than Cbr-verifyta.8.3 Con
lusion on TestsThe tests 
arried out in the previous se
tion show varying results. In themost extreme 
ase, Fis
her's algorithm with six pro
esses, where the CBRmethod is best, Uppaal uses 29.401% more in
lusion 
he
ks and 90.215%more exploration steps. These results are obtained by dividing the num-80



Experimental Results 811 E<> S1.safe YES2 E<> S1.safe and S2.safe YES3 E<> S1.safe and S2.safe and S3.safe YES4 E<> S1.safe and S2.safe and S3.safe and S4.safe YES5 E<> S2.safe and S3.safe and S4.safe and time <= 39 NO6 E<> S2.safe and S3.safe and S4.safe and time <= 60 YES7 E<> S1.safe and S2.safe and S3.safe and S4.safe and time <= 59 NO8 E<> S1.safe and S2.safe and S3.safe and S4.safe and time <= 60 YESTable 8.5: Properties to be veri�ed on soldiers problem.In
lusion Che
ks Exploration StepsProperty Uppaal -a CBR % Uppaal -a CBR %1 139 21 15.1% 42 9 21.4%2 226 77 34.1% 80 27 33.8%3 876 898 102.5% 288 271 94.1%4 1485 3724 250.8% 468 1057 225.9%5 1709 26714 1563.1% 534 5869 1099.1%6 892 1527 171.2% 294 465 158.2%7 1707 9139 535.4% 532 2701 507.7%8 1497 10445 697.7% 474 3103 654.6%Table 8.6: Veri�
ation of di�erent properties on the original model of thesoldiers problem. With Uppaal -a option.ber of operation used by Uppaal with the number of operations used byCbr-verifyta. In the 
ase where Cbr-verifyta uses the most operations
ompared to Uppaal, it uses 1563% more in
lusion 
he
ks and 1099% moreexploration steps. We 
an 
on
lude that neither the one nor the other methodgenerally is better than the other. Whi
h method that uses the fewest op-erations depend both on the model and on the property to be veri�ed. ForFis
her's algorithm, where CBR always used fewer operations, it outperformsUppaal by more than, what Uppaal does for the Soldiers problem. The
on
lusion is that CBR has 
onsiderable strengths, when applied to the do-main of TAN, and it is worth doing some extra work to try and explore thefull potential of the method. It might be a possibility to develop heuristi
sthat 
an help 
hoosing if forward or 
ompositional ba
kwards analysis is bestsuited for a spe
i�
 veri�
ation job. Another possibility would be to 
ombineforward analysis with CBR and 
he
k for interse
tion between the forwardand ba
kwards rea
hable state-spa
e. This method would properly perform81



82 Experimental ResultsIn
lusion Che
ks Exploration StepsProperty Uppaal -a CBR % Uppaal -a CBR %1 49 30 61.2% 12 3 25.0%2 55 33 60.0% 13 4 30.8%3 249 646 259.4% 56 92 164.3%4 436 3031 695.2% 96 441 459.4%5 496 6189 1247.8% 113 1096 969.9%6 227 810 356.8% 61 128 209.8%7 496 6598 1330.2% 113 1036 916.8%8 447 6630 1483.2% 99 1043 1053.5%Table 8.7: Veri�
ation of di�erent properties on the remodeled soldiers prob-lem. With Uppaal -a optionworse for properties that 
annot be satis�ed, but might deliver better resultsfor properties that are true.To perform a thorough test of di�erent veri�
ation methods, we really needa very broad spe
tra of real-world veri�
ation s
enarios, instead of two 
las-si
al veri�
ation examples. I spite of the limited test material we 
an still
on
lude that CBR for TA is a potentially very eÆ
ient veri�
ation method.
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9 Con
lusionIn this 
hapter we will �rst dis
uss possible dire
tions for future work. Finallywe will 
on
lude on the di�erent parts of the report.9.1 Future WorkIn this se
tion we will des
ribe several dire
tions for future work.The most important dire
tion of future work, for the usefulness of the CBRfor TA method, is the extensions des
ribed in 
hapter 6. If the CBR for TAmethod should be a serious 
ompetitor to Uppaal, one would have to beable to handle all of these extension. The major 
hallenge lies in handlinginvariants.Another natural line of future work would also be to develop a full imple-mentation of the CBR for TA method des
ribed in this report. A remaining�eld of work is also to test the eÆ
ien
y of di�erent data stru
tures to holdthe past and waiting list. This implementation should o� 
ause in
lude theextensions if solutions are found on ways to handle invariants and so on.A third option is to look into the possibility of 
ombining CBR with otherveri�
ation methods. As mentioned in se
tion 8.3 it would �rst of all be apossibility to 
ombine CBR with some form of forward rea
hability analysis.Both by doing forward a ba
kwards rea
hability analysis at the same time.But also by 
reating some heuristi
s to determine whether the CBR methodor forward rea
hability analysis is best suited for a parti
ular veri�
ationtask. Yet another possibility is to design heuristi
s for the order in whi
h toin
lude the 
omponents in the analysis.Finally one 
ould apply the CBR method to some new domain. With thenew generalized framework, the CBR method should be dire
tly appli
ableto many useful domains, both dis
rete and real-time domains.9.2 Con
lusionWe have in this report su

eeded in developing two versions of a more generalCBR framework. We have proven the 
orre
tness of the two a

ompanying83



84 Con
lusionCBR algorithms. The one based on the original CBR algorithm and theother based on the 
on
ept of symboli
 states. We spe
i�ed what is requiredof a domain for ea
h of the two CBR methods to be appli
able. We have as inthe previous report [Lar02℄ introdu
ed the domain of Timed Automata (TA),and the algorithm implemented in Uppaal. We apply the CBR methodto the domain of TA by ful�lling the requirements, and thereby withouthaving to reprove the 
orre
tness of the algorithm. Several extensions of thedomain were also 
onsidered. A test implementation has been developed andexperimental results have shown the potential of the CBR for TA method.The experimental results show that the e�e
tiveness of the method dependson both the model and the property to be veri�ed.The 
on
lusion of the report is that CBR for TA is a very powerful methodfor some models, and the method is worth further investigation.

84



10 Danish ResumeDenne rapport besk�ftiger sig med udvikling af en metode til KompositionelBagl�ns analyse af om tilstande kan n�as. Denne metode hedder Compo-sitional Ba
kwards Rea
hability (CBR). I kapitel 2 beskrives den generelleCBR metode, der baserer sig p�a en �nere og �nere partitionering af til-stands rummet. F�rst introdu
eres en algoritme inspireret af den oprindeligeCBR algoritme fra [LNAB+98℄. Herefter udvikles en lignende algoritme,som baseres p�a brugen af symbolske tilstande. Korrektheden af begge algo-ritmer vises og betingelser opstilles for anvendelsen af metoden p�a et givetdom�ne. I kapitel 3 introdu
eres Tids Automater (Timed Automata (TA)).I kapitel 4 forklares den analyse metode for TA, som bruges i v�rkt�jet Up-paal. I kapitel 5 anvendes CBR metoden p�a dom�net TA ved at opfyldebetingelserne for den symbolske algoritme. I kapitel 6 diskuteres mulighederfor udvidelser af TA dom�net. Disse udvidelser betragtes da det netop erdem, der er implementeret i v�rkt�jet Uppaal. Herefter beskrives i kapitel7 den test implementation, som er blevet udviklet med grundlag i kildekodenfra Uppaal. Denne implementation bliver i kapitel 8 sommenlignet medblandt andet Uppaal, for at unders�ge CBR for TA metodens styrker ogsvagheder. Til slut beskrives mulige retninger for fremtidigt arbejde og enkonklusion drages i kapitel 9.
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