
Compositional Ba
kwards Rea
hability forTimed AutomataUlrik Larsenulrikl�
s.au
.dkMasters ThesisDepartment of Computer S
ien
eAalborg UniversityJune 20th 2002

2

Aalborg UniversityDepartment of Computer S
ien
eTitle:Compositional Ba
kwards Rea
habil-ity for Timed AutomataSemester:Spring 2002, DAT6Proje
t Period:February 1st 2002 toJune 20th 2002Author:Ulrik LarsenSupervisor:Kim G. LarsenNumber of Pages:89Keywords:Rea
hability, Compositional Ba
k-wards Rea
hability, Timed Au-tomata, Veri�
ation, State-spa
e ex-plosion.

Abstra
t:This report deals with the devel-opment of a general framework forCompositional Ba
kwards Rea
ha-bility (CBR) and with the veri�-
ation of rea
hability properties onTimed Automata Networks (TAN).The CBR method is developed onthe basis of a series of �ner and�ner partitionings of the state-spa
e. Two di�erent CBR algo-rithms are presented and proven
orre
t. The domain of TAN, whi
his a real-time model, is des
ribed.The symboli
 DBM-based analysisof Timed Automata used in exist-ing veri�
ation tools, like Uppaal isexplained. The se
ond of the CBRalgorithms is applied to the domainof TAN. Several extensions to thedomain are dis
ussed, and a test im-plementation of the basi
 method isdeveloped. This implementation isused to obtain some experimentalresults. Finally future work is dis-
ussed and a
on
lusion is drawn.

3

4

Prefa
eThis Masters Thesis, was written at the resear
h unit of Distributed Systemsand Semanti
s, Department of Computer S
ien
e, Aalborg University. It is afurther development of the Dat-5 report \Compositional Ba
kwards Rea
h-ability for Simple Timed Automata" [Lar02℄. Two of the
hapters from theprevious report have been in
luded without substantial
hanges.A
knowledgementsFirst and foremost, I would like to thank my supervisor Professor Kim G.Larsen for his good advi
e and many suggestions throughout the proje
tperiod. Se
ondly, I would like to thank Gerd Behrmann for introdu
ing meto, and answering question about, the Uppaal sour
e
ode.
U l r i k L a r s e n

5

6

Contents
1 Introdu
tion 91.1 Motivation . 91.2 Related Work . 101.3 Relation to Previous Report and Outline 112 CBR in General 132.1 Rea
hability Analysis . 132.1.1 Forward . 142.1.2 Ba
kwards . 142.1.3 Combined . 152.2 The CBR Con
ept . 152.3 Partitioning . 172.3.1 Central Theorems . 202.4 CBR Algorithms . 262.4.1 Simple Algorithm . 262.4.2 Symboli
 States . 282.4.3 Symboli
 State Algorithm 302.5 Di�eren
es from the Original CBR 333 Timed Automata (TA) 353.1 Informal Des
ription . 353.2 Preliminaries . 363.3 Timed Automaton . 373.4 Timed Automata Network . 384 Symboli
 Analysis of TA 414.1 Zones . 414.1.1 Operations on Zones 424.2 Di�eren
e Bounded Matri
es 434.3 Symboli
 Rea
hability . 494.3.1 Algorithms . 507

4.3.2 Theorems . 514.3.3 Corre
tness of Ba
kwards Algorithm 555 Appli
ation of CBR on TA 595.1 Ful�lling the Requirements . 596 Extensions 656.1 Integers . 656.2 Invariants . 676.3 Urgent Lo
ations . 696.4 Committed Lo
ations . 696.5 Urgent Channels . 697 Implementation 717.1 Code Reuse . 717.2 Fo
us of the Implementation 717.3 Dependen
y Analysis . 728 Experimental Results 758.1 Performan
e Parameters . 758.2 Test Cases . 758.2.1 Fis
her's Mutual Ex
lusion Algorithm 768.2.2 Soldiers Problem . 788.3 Con
lusion on Tests . 809 Con
lusion 839.1 Future Work . 839.2 Con
lusion . 8310 Danish Resume 85

8

1 Introdu
tionThis
hapter �rst motivates the work by explaining the problem at hand.After this the work is put into the
ontext of related work. Finally therelation to the previous report [Lar02℄ is des
ribed together with an outlineof the report.
1.1 MotivationWhen trying to verify properties of parallel
ompositions of several
ompo-nents, the main problem is the fa
t that the state-spa
e grows exponentiallyin the number of
omponents, known as state-spa
e explosion. When extend-ing the models from dis
rete to timed models the state-spa
e in
reases evenfurther in size. This report fo
uses on yet another way to handle the state-spa
e explosion problem in the presen
e of time. The underlying patentedmethod,
alled Compositional Ba
kwards Rea
hability (CBR), was �rst pre-sented in [LNAB+98℄ where it was developed for a dis
rete model
alledstate/event systems. The goal of this report is to
ontinue the work from theprevious report of extending the CBR method to a new domain of problems,namely veri�
ation of real-time models. When modeling
ontinuous real-timethe state-spa
e be
omes not just larger but in fa
t in�nite. However, the in�-nite state-spa
e
an be redu
ed to a �nite one by using symboli
 te
hniques torepresent and manipulate
ertain relevant subsets of the state-spa
e. Thesesubsets are known as Zones. This te
hnique is well known, and implementedin the veri�
ation toolUppaal [LPY97℄ that
an verify safety and rea
habil-ity properties of real-time models des
ribed as Timed Automata (TA). In thenewest version Uppaal one
an also verify
ertain general liveness proper-ties. In this report we
ombine the notion of Zones with the CBR method todevelop CBR for TA. Uppaal is developed in
ooperation between AalborgUniversity and Uppsala university. The sour
e
ode for Uppaal has beenused as a basis in the development of a test implementation of the methoddes
ribed in this report. 9

10 Introdu
tion1.2 Related WorkThis se
tion
ontains a dis
ussion of related work. All the work mentionedin this se
tion deals in some way with handling the state-spa
e explosionproblem. First we des
ribe some te
hniques developed for veri�
ation ofdis
rete systems. After this we dis
uss how these methods
an or has beenextended to apply to real-time systems. Some of the
itations in this relatedwork se
tion has been found in [Kat98℄ by Joost-Pieter Katoen.The main inspiration for this proje
t is the arti
le [LNAB+98℄, in whi
hthe CBR method is developed and applied to a dis
rete model. This, laterpatented, method was developed spe
i�
ally for the industrial veri�
ationtool visualStateTM, whi
h is used in the development of embedded systems.In this tool a number of prede�ned
he
ks is performed on the model enteredby the user. CBR outperformed not only the traditional forward analysis thatwas implemented in the tool, but also the
urrent state of the art symboli
BDD-based methods. Models that
ould not be veri�ed earlier be
ause ofthe state-spa
e explosion,
an be veri�ed using CBR. The strength of CBRis it's
ompositionality, whi
h is
losely linked to the fa
t that it performsba
kwards veri�
ation. This means that in many
ases a mu
h smaller partof the state-spa
e has to be
he
ked before a solution is found.When verifying
ontinuous real-time models the state-spa
es to be analyzedare in�nite. This
an be handled by partitioning the
ontinuous part of thestate-spa
e into so-
alled regions. Regions are subsets of the state-spa
e, su
hthat every pair of states form a region
annot be distinguished by the model.If a region is split in two, the two parts would be indistinguishable by the
onstraints and guards in the model. This
reates a �nite but very large state-spa
e. A better solution is to represent
onvex unions, so-
alled Zones, of su
hregions. Theoreti
ally there are even more Zones than regions, but a mu
hsmaller number of these will ever be
onsidered in pra
ti
e during analysisof real systems. The su

ess of Zones depends on the eÆ
ient data-stru
tureDi�eren
e Bounded Matri
es (DBMs) used to represent the Zones and theeÆ
ient operations de�ned on this data-stru
ture. This is the te
hnologyimplemented in the tools Uppaal and Kronos [BDM+98℄.Another te
hnique that has signi�
antly in
reased the size of dis
rete sys-tems that
an be veri�ed is the Binary De
ision Diagram (BDD) te
hnique�rst introdu
ed by Bryant [Bry86℄[K.L93℄. The BDD te
hnology has beenextended to Clo
k Di�eren
e Diagrams (CDDs) to apply to the veri�
ation ofreal-time systems [BLP+99℄. It gives redu
tion in the size of the state-spa
erepresentation but not in the time used for veri�
ation.Another te
hnique to limit the state-spa
e explosion problem is partial orderredu
tion [God96℄. Many di�erent but equivalent interleavings are
onsidered10

Introdu
tion 11at on
e, by only unfolding one of the interleavings, hereby redu
ing the state-spa
e explosion. Partial order redu
tion has also been attempted applied toveri�
ation of real-time systems but without great su

ess [Min99℄.The �rst goal of this report is to generalize the CBR method su
h that it
anbe applied to many possible domains. The se
ond goal of this report is toshow the feasibility of
reating a veri�
ation tool for Timed Automata (TA)based on the
ompositional ba
kwards method for rea
hability analysis. Thisis done by
ombining the well known DBM te
hnology with the CBR methodin a test implementation. This implementation is then used to obtain someexperimental data.1.3 Relation to Previous Report and OutlineThis se
tion des
ribes how this report is related to the previous report andgives an outline of the following
hapters. The work in this report
an be seenas an extension of the previous report, in whi
h a generalization of the CBRmethod was presented. After this the domain of Timed Automata (TA) wasdes
ribed. Finally the CBR method was applied to the domain of TA. TheCBR framework developed in the former report was not general enough andhad to be adjusted, when applied to the domain of TA. Some parts of theprevious report has been in
luded without substantial
hanges. This in
ludes
hapters 3 and 4, and parts of
hapter 5. This is the se
tions that des
ribethe domain of TA. The CBR framework, whi
h is
ompletely redesigned,is presented in
hapter 2. It generalizes the CBR method and shows the
orre
tness of two di�erent CBR algorithms, ea
h appli
able to their owntype of domains. Chapter 3 de�nes the model of Timed Automata (TA).The symboli
 analysis of TA and the algorithm implemented in Uppaal isdes
ribed in
hapter 4. In
hapter 5 we pro
eed to apply the CBR methodto the model of TA. Chapter 6 des
ribes some extension to the model of TA,and how these would e�e
t the CBR for TA method. The development ofa test implementation of the CBR for TA method is des
ribed in
hapter 7.This test implementation is used to obtain some experimental results, whi
hare dis
ussed in
hapter 8. Future work and
on
lusion is in
luded in
hapter9.
11

12 Introdu
tion

12

2 CBR in GeneralIn this
hapter we will �rstly des
ribe what ba
kwards rea
hability anal-ysis is. After this we will des
ribe the
on
ept of
ompositional ba
kwardsrea
hability (CBR). Se
tion 2.3
ontains the
entral de�nitions and theoremsneeded for the CBR algorithm. Two versions of the CBR algorithm will bepresented, and the
orre
tness of both will be proven. Finally the di�eren
esbetween the original CBR method and the one developed in this report, aredes
ribed in se
tion 2.5. In this se
tion we also des
ribe di�eren
es from theframework developed in the previous report [Lar02℄.2.1 Rea
hability AnalysisIn this se
tion we des
ribe the basi

on
ept of rea
hability analysis. Wede�ne rea
hability and rea
hability analysis on general transition systems,where transition system is de�ned in the following manner.De�nition 2.1 : Transition System(ST;�!), where ST is a set of states (�nite or in�nite) and �!� ST � STis a transition relation.Ea
h transition has a sour
e state and a target state. The sour
e state is the�rst ST
omponent and the target state is the se
ond ST
omponent. If wehave the transition (s; t) 2�! we write s �! t. When writing a sequen
e oftransitions we write s1 �! s2 �! s3 instead of s1 �! s2; s2 �! s3. We nowde�ne what it means for a state to be rea
hable.De�nition 2.2 : Rea
habilityGiven a set of initial states Init � ST and goal states Goal � ST we de�neGoal to be rea
hable if there is a transition sequen
es0 �! s1 �! s2 �! : : : �! sn13

14 CBR in Generalwith s0 2 Init and sn 2 Goal.There are two fundamental ways of de
iding rea
hability: Forward and ba
k-wards. The two methods
an also be
ombined. We des
ribe ea
h of thepossibilities in the following three se
tions.2.1.1 ForwardIn the forward rea
hability analysis we start with the set of states Init anditeratively
ompute the set of rea
hable states in steps as illustrated in �gure2.1. State spa
eInit F1 F2 GoalFigure 2.1: Forward Rea
hability AnalysisWe use the following formulas to
ompute ea
h new step:F0 = InitFn = Fn�1 [Post(Fn�1) for n > 0where for S � ST; Post(S) = fs0 2 ST j 9s 2 S:s �! s0g.If at any point Fn\Goal 6= ; we know that we have a sequen
e of transitionsthat
an bring us from a state in Init to a state in Goal. Hen
e we terminatewith a positive answer. If we have Fn = Fn+1 we have rea
hed a �x pointand we know that no transitions
an take us out of the set Fn. This leadsus to terminate the algorithm with the answer that, there is no sequen
e oftransitions that
an bring us from Init to Goal.2.1.2 Ba
kwardsThe main di�eren
e between forward and ba
kwards rea
hability analysis isthe set of states that we start with. We again want to know if there is asequen
e of transitions that
an bring us from a state in Init to a state inGoal, but this time we start with Goal and
ompute the set of states that
an14

CBR in General 15rea
h Goal. First the states that
an rea
h Goal by taking one transition,then two transitions, and so on. This is illustrated in �gure 2.2.State spa
eInit B2 B1 GoalFigure 2.2: Ba
kwards Rea
hability AnalysisIn forward analysis, we know that all the states we explore are rea
hablestates. In ba
kwards analysis we
an have both rea
hable and unrea
hablestates in our set of states. We use the following formulas to
al
ulate thesteps: B0 = GoalBn = Bn�1 [Pre(Bn�1)where for S � ST; Pre(S) = fs 2 ST j 9s0 2 S:s �! s0g.Again we have two termination
onditions. The algorithm terminates witha positive answer if, at any point, Bn and Init interse
t. The algorithmterminates with a negative answer if we rea
h a �x-point, Bn = Bn�1.2.1.3 CombinedThe two previously des
ribed methods
an be
ombined, by doing forwardand ba
kwards rea
hability analysis in parallel. For ea
h step we
he
k forinterse
tion between the two sets Fn and Bn. If these two sets interse
t ina state s we know that we have a sequen
e of transitions leading from Initto s and a sequen
e of transitions leading from s to Goal, and hen
e Goal isrea
hable from Init. This method may give a faster positive answer but hasthe same negative termination
onditions as the other two methods. One ofthe sets has to rea
h a �x-point in order for us to
on
lude that Goal
annotbe rea
hed from Init.2.2 The CBR Con
eptIn this se
tion we will �rst give a short des
ription of how CBR works. Afterthis we give some intuition about why the method was developed.15

16 CBR in GeneralCompositional Ba
kwards Rea
hability (CBR) is based on traditional ba
k-wards rea
hability as presented in the previous se
tion. It
onsists of a num-ber of steps, ea
h resembling one run of the
onventional ba
kwards rea
ha-bility analysis. The result of ea
h step is an under-approximations of the setof states that
an rea
h Goal. After ea
h step we
he
k for interse
tion be-tween the
urrent under-approximation and Init. If the two sets interse
t wehave found a path leading from some state in Init to some state in Goal, andthe algorithm terminates with a positive answer. If there is no interse
tionwe have to
al
ulate a new and larger under-approximation. This pro
ess is
ontinued until the two sets interse
t or the under-approximation no longeris an under-approximation, but the full set of states that
an rea
h Goal. Ifthe full set does not interse
t with Init we know that no path exists fromInit to Goal and the algorithm terminates with a negative answer.An important fa
tor in the eÆ
ien
y of the method is the fa
t that the endresult of one step
an be used as the starting point of the next step. Figure2.3 illustrates two su
h
al
ulations of under-approximations. The end resultof the �rst step, shown in the top part of the �gure, is used as the startingpoint of the se
ond step, shown in the bottom part of the �gure.State spa
eInit Bn � � � B1 GoalState spa
eInit NewGoal = BnU1Un � � �Figure 2.3: Cal
ulation of two under-approximations.This approa
h of stepwise under-approximation, was developed to
ope withvery large systems,
onsisting of many
omponents in parallel. In the originaldomain of State/Event systems, ea
h of the
omponents, is in itself a transi-tion system. The idea was, to only look at a subset of the
omponents, andsee if this subset
ould rea
h Init ba
kwards, without involving the other
omponents. If these
omponents
ould not rea
h Init extra
omponentswere taken into
onsideration, until all
omponents, or rather a dependen
y16

CBR in General 17
losed set of
omponents, were
onsidered. The original CBR method useda
on
ept of having an index set of the
omponents. This index set was in-
reased to give larger and larger under-approximations. This
on
ept will inthis report be repla
ed by a more general
on
ept of partitioning the state-spa
e into �ner and �ner partitions. The
on
ept of partitioning will be thetopi
 of the next se
tion. The
al
ulation of a series of under-approximations
an theoreti
ally lead to slower negative termination, but more likely also toa mu
h faster positive termination. The eÆ
ien
y of the method also de-pends on the fa
t that, these under-approximations
an be represented andhandled easily.2.3 PartitioningIn this se
tion we will develop the formal foundation for the CBR method.The idea is to use a su

ession of �ner and �ner partitionings of the state-spa
e ST , to under-approximate the set of states that
an rea
h Goal. Byre�nement of the partitioning, hen
e enlarging the under-approximation, wewill get
loser and
loser to the full set of states that
an rea
h Goal.Intuitively partitioning
an be des
ribed as splitting the state-spa
e into anumber of disjoint parts. For some domain we will have an in�nite numberof partitions in ea
h partitioning. Formally we de�ne a partitioning in thefollowing way.De�nition 2.3 : PartitioningP = fSti j i 2 Ig is a partitioning of the state-spa
e ST if the followingthree
onditions hold:1. SfSti j i 2 Ig = ST2. 8i Sti 6= ;3. Sti \ Stj = ; when i 6= j
One
an talk of one partitioning being �ner than another. We de�ne a partialorder on the set of all partitionings. 17

18 CBR in GeneralDe�nition 2.4 : Ordering of PartitioningsWe say that P is �ner than Q that is P v Q if8i 2 I 9j 2 J : Sti � St0jwhere P = fSti j i 2 Ig and Q = fSt0j j j 2 JgFigure 2.4 illustrates two partitionings P and Q where P is �ner than Q.State spa
e QP and
Figure 2.4: Two partitionings P v QIt is worth noti
ing that, be
ause v is a partial order, not all pairs of parti-tionings
an be ordered. When using the CBR method, we will start with aninitial partitioning P0 and from that
reate �ner and �ner partitionings, untilwe have a partitioning, in whi
h all states in ea
h partition are bisimilar. This�nal partitioning Pstable will be de�ned later. The only requirement for theinitial partitioning is that Goal is P0 sorted. The su

ession of partitionings
ould be written as follows: P0 w P1 w : : : w Pn w PstableNow we de�ne the notion of P-equivalen
e.De�nition 2.5 : P-equivalen
es �P t () 8i:(s 2 Sti () t 2 Sti) where P = fSti j i 2 IgThe equivalen
e
lasses generated by a spe
i�
 �P equivalen
e, exa
tly fol-lows the partitions of the
orresponding partitioning P.We say that a subset H of the state-spa
e is P-sorted if, for the given par-titioning P, no partition interse
ts both with H and the
omplement of H.This is formally de�ned in the following way:18

CBR in General 19De�nition 2.6 : P-sortednessLet P = fSti j i 2 Ig and let H � ST . We say that H is P-sorted if8s; s0 2 ST:s 2 H ^ s �P s0) s0 2 H:In
orresponden
e with Pre(S) de�ned in se
tion 2.1.2 we de�ne the P-sorted prede
essors.De�nition 2.7 : PreP(H)PreP(H) = fs 2 ST j 8t �P s:9t0 2 H:t �! t0gThis means that if one state t
an take a transition into H, then every otherstate that is �P equivalent with t must also be able to take a transition intoH, before this partition, �P equivalen
e
lass, is in
luded in PreP(H). Weillustrate this in �gure 2.5. As this de�nition imposes an extra
ondition, in
omparison with the original Pre, it
an only return a set of states that isequal to, or smaller than, the set of states returned by the original prede
essorfun
tion. This means that we obtain an under-approximation.State spa
e�Ps t t0u u0 H� 9Figure 2.5: Illustration of PreP(H).Here it is not ne
essary to require that H is P-sorted. This requirement willbe added when extending it to the Pre�P(H) fun
tion, where it is neededbe
ause H itself is in
luded in the result.This de�nition a
tually gives us one prede
essor fun
tion for ea
h partition-ing P. We will in turn use ea
h of these fun
tions in our CBR algorithm aswe re�ne the partitionings.Lemma 2.8PreP(H) is P-sorted 19

20 CBR in GeneralThe proof of lemma 2.8 is very simple.Proof of of lemma 2.8 � � � � � � � � � � � � � � � � � � �We show that whenever s 2 PreP(H) and t �P s then t 2 PreP(H). Thuswe must show that u �! u0 for some u0 2 H whenever u �P t. Be
ause �Pis an equivalen
e relation, whenever we have that u �P t (and t �P s) we
an also
on
lude that u �P s, and as s 2 PreP(H) it follows that indeedu �! u0 for some u0 2 H.� �The following lemma states that the PreP operation is monotoni
 with re-gard to the input set.Lemma 2.9PreP(H1) � PreP(H2) if H1 � H2The proof of lemma 2.9 only uses the de�nition of PreP and the fa
t thatH1 � H2.Proof of lemma 2.9 �Let s 2 PreP(H1). Then t �! t0 for some t0 2 H1, for all t �P s. But asH2 � H1 we also have that t �! t0 for some t0 2 H2 for all t �P s, and hen
es 2 PreP(H2).� �2.3.1 Central TheoremsIn this se
tion we will present the three
entral theorem: 2.15, 2.16, and2.18. These theorems are needed in the
onstru
tion of the CBR algorithm.First we present lemmas 2.10 and 2.13, whi
h are simpler versions of respe
-tively theorem 2.15 and theorem 2.16. After this the Pre�P operation will beintrodu
ed and the three �nal lemmas will be proved.In all of the following we will use two partitionings P and Q. The partition-ing P is �ner than Q whi
h
an be expressed in the following way; P v Q.Lemma 2.10PreQ(H) � PreP(H) where P v Q20

CBR in General 21Lemma 2.10 states that PreP(H) is monotoni
 with regard to how �ne thepartitioning P is. If the partitioning be
omes �ner the resulting set
an onlybe
ome larger. This follows the intuition that if we re�ne the partitioningthe under-approximation be
omes better.Proof of lemma 2.10 �Let s 2 PreQ(H). Then t �! t0 for some t0 2 H, for all t �Q s. Howeveras P is a �ner partitioning than Q, giving us �P��Q, we also have thatt �! t0 for some t0 2 H, for all t �P s. Thus s 2 PreP(H).� �For the next
entral lemma we need the following lemma.Lemma 2.11PreP � Pre(H)Lemma 2.11 states that any under-approximation of the set of prede
essorswill be in
luded in the full set of prede
essors.Proof of lemma 2.11 �Assume s 2 PreP(H). Then t �! t0 with t0 2 H for all t �P s. In parti
u-lar, s �! s0 for some s0 2 H (be
ause s �P s). Then s 2 Pre(H).� �For the next lemma we need a partitioning Pstable, with a
ertain property.For this we �rst need to de�ne the bisimulation BGoal, whi
h depends on thetransition system and the set of goal states Goal.De�nition 2.12 : Bisimulation BGoalBGoal is a bisimulation if whenever (s; t) 2 BGoal then the following three
onditions hold:1. s 2 Goal () t 2 Goal2. s �! s0) 9t0:t �! t0 ^ (s0; t0) 2 BGoal3. t �! t0) 9s0:s �! s0 ^ (s0; t0) 2 BGoalThis de�nes all pairs of states that are bisimilar. We
all a partitioning stableif all states in ea
h partitioning are bisimilar. This does not des
ribe exa
tly21

22 CBR in Generalone partitioning. For a given domain, the requirement is that we �nd onepartitioning Pstable with the give property. An example of a relation thatgives us a stable partitioning is the identity relation Id = f(s; s) j s 2 STg.Lemma 2.13PrePstable(H) = Pre(H) where H is Pstable sortedLemma 2.13 is needed in order to guarantee that, if we partition the state-spa
e down to bisimulation, we will get the same result as with traditionalba
kwards rea
hability analysis.Proof of lemma 2.13 �We split the proof into two parts:�: follows from lemma 2.11.�: Let s 2 Pre(H). Then s �! s0 with s0 2 H. Now let t � s. Then t �! t0for some t0 with t0 � s0 (by de�nition of �). But H was assumed to bePstable sorted and hen
e t0 2 H. It follows that s 2 PrePstable(H).� �We now de�ne the Pre�P operation and prove lemmas 2.10 and 2.13 in theirnew form. Intuitively PrenP(H) is all the states that
an rea
h H in exa
tlyn transitions. From this we de�ne Pre�P(H) to be all the states, that
anrea
h H in any number of transitions.De�nition 2.14 : Pre�P(H)For any given partitioning P we de�ne Pre�P(H) as the union:Pre�P(H) = 1[n=0PrenP(H)where PrenP is de�ned re
ursively by the following formulas:Pre0P(H) = HPren+1P (H) = PreP(PrenP(H))and H is required to be P-sorted. 22

CBR in General 23The above de�nition
an also be applied to the original prede
essor fun
tionPre(H) to obtain a de�nition of Pren(H) and Pre�(H). The notationPre�(H) will be used in theorem 2.18 and Pren(H) will be used in theproof of theorem 2.18. For Pre�P(H) to be P-sorted we have to require thatH is P-sorted be
ause H itself is in
luded in Pre�P(H).The following theorem states that whenever we re�ne the partitioning wewill obtain an under-approximation that is a superset of the previous one.The left side uses the
oarser partitioning Q and this set is a subset of theright side that uses the �ner partitioning P.Theorem 2.15Pre�Q(H) � Pre�P(H) where P v QThe proof of theorem 2.15, whi
h is an indu
tion proof, uses lemma 2.10 andlemma 2.9. Lemma 2.10 is similar to theorem 2.15 ex
ept for the stars, whilelemma 2.9 states that the PreP(H) operation is monotoni
 with regard tothe input set H.Proof of theorem 2.15 � � � � � � � � � � � � � � � � � � �The theorem obviously follows from the from the fa
t that PrenQ(H) �PrenP(H) for all n. We prove this by indu
tion in n.Basis n = 0: By the de�nition ofPrenP we
an rewritePre0Q(H) � Pre0P(H)to H � H whi
h is obviously true.Step: Assume PrenQ(H) � PrenP(H) (IH) thenPren+1Q (H) = PreQ(PrenQ(H)) � by lemma 2:9 and (IH)PreQ(PrenP(H)) � by lemma 2:10PreP(PrenP(H)) = Pren+1P (H):Now we have proven that 8n:PrenQ(H) � PrenP(H).� �We now extend lemma 2.13 by repla
ing PrePstable with Pre�Pstable and Prewith Pre�.Theorem 2.16Pre�Pstable(H) = Pre�(H) where H is P-sortedTheorem 2.16 now states that no matter how many ba
kwards steps we take,with the �nal partitioning Pstable of the state-spa
e, the result will never23

24 CBR in Generaldi�er from that obtained using the original prede
essor fun
tion. The prooffor theorem 2.16 follows the stru
ture of proof for theorem 2.15.Proof of theorem 2.16 � � � � � � � � � � � � � � � � � � �The theorem
learly follows from the fa
t that PrenPstable(H) = Pren(H) forall n. We prove this by indu
tion in n.Basis n = 0: By the de�nition of PrenP we
an rewrite Pre0Pstable(H) =Pre0(H) to H = H whi
h is obviously true.Step: Assume PrenPstable(H) = Pren(H) (IH) thenPren+1Pstable(H) =PrePstable(PrenPstable(H)) = by lemma 2:13 and (IH)PreP(PrenP(H)) = Pren+1P (H):Hen
e we have proved that PrenPstable(H) = Pren(H) holds for all n.� �For the �nal
entral theorem we need an extended version of the monotoni
-ity lemma 2.9, whi
h uses Pre�P instead of PreP .Lemma 2.17Pre�P(H1) � Pre�P(H2) when H1 � H2As for the previous proof, the proof of lemma 2.17 follows the stru
ture ofthe proof for theorem 2.15.Proof of lemma 2.17 �The lemma follows
learly from the fa
t that PrenP(H1) � PrenP(H2) for alln whenever H1 � H2. We prove this by indu
tion in n.Basis n = 0: By the de�nition ofPrenP we
an rewritePre0P(H1) = Pre0P(H2)to H1 � H2 whi
h is obviously true.Step: Assume PrenP(H1) � PrenP(H2) (IH) thenPren+1P (H1) =PreP(PrenP(H1)) � by monotoni
ity (lemma 2:9) and (IH)PreP(PrenP(H2)) = Pren+1P (H2):This is exa
tly lemma 2.9 and hen
e we have proved that PrenP(H1) �PrenP(H2) holds for all n when H1 � H2.� �24

CBR in General 25The following and �nal of the three
entral lemmas lets us reuse states thathas already been
al
ulated. If one set of prede
essors has been
al
ulated us-ing partitioningQ, it
an be used as the starting point of the next
al
ulationusing a �ner partitioning P.Theorem 2.18Pre�P(H) = Pre�P(Pre�Q(H)) where P v QThe following proof
onsists of two parts, where the se
ond of them on
eagain follows the stru
ture of the proof for theorem 2.15.Proof of theorem 2.18 � � � � � � � � � � � � � � � � � � �We want to prove that Pre�P(H) = Pre�P(Pre�Q(H)) for two partitioningsP and Q where P v Q. We
onsider the two in
lusions.�: Obviously H � Pre�Q(H) and Pre�P is monotoni
 with respe
t to the in-put set a

ording to lemma 2.17. Hen
e we
an
on
lude thatPre�P(H) �Pre�P(Pre�Q(H)).�: The in
lusion follows from the fa
t that Pre�P(H) � PrenP(Pre�Q(H))for all n. We prove this by indu
tion in n.Basis n = 0: In this
ase Pre�P(H) � Pre0P(Pre�Q(H)) redu
es toPre�P(H) � Pre�Q(H) whi
h is exa
tly theorem 2.15.Step: Assume Pre�P(H) � PrenP(Pre�Q(H)) (IH) thenPren+1P (Pre�Q(H)) =PreP(PrenP(Pre�Q(H))) � by monotoni
ity (lemma 2:9) and (IH)PreP(Pre�P(H)) � Pre�P(H)The last in
lusion follows from the fa
t that we have a �nite par-titioning of the state-spa
e. So Pre�P(H) will
onverge within�nitely many steps.Hen
e we have proved that 8n:Pre�P(H) � PrenP(Pre�Q(H)).Having proved the two in
lusions we
an
on
lude the
orre
tness of theorem2.18.� �Having proved the three
entral theorems 2.15, 2.16, and 2.18 we
an nowgive the CBR algorithm and prove the
orre
tness of it.25

26 CBR in General2.4 CBR AlgorithmsIn this se
tion we will present two versions of the CBR algorithm. The�rst algorithm, whi
h is also the simplest, resembles the original algorithmfrom the paper [LNAB+98℄. The se
ond one is needed when only
ertainsubsets of the state-spa
e
an be represented eÆ
iently. Su
h subsets are
alled representable symboli
 states and are explained in se
tion 2.4.2. Therevised, se
ond algorithm is des
ribed in the last subse
tion.2.4.1 Simple AlgorithmIn this se
tion we present and prove the
orre
tness of the simple CBR al-gorithm. The algorithm is shown in �gure 2.6. The input for the algorithmis a transition system (ST;�!) and two sets of states Goal and Init, su
hthat Goal and Init both are subsets of the state-spa
e ST .Rea
hable((ST;�!); Goal; Init)Sele
t P su
h that Goal is P-sortedR GoalrepeatRnew Pre�P(R)/* Che
k for early positive termination. Theorem 2.15 */if Init \ Rnew 6= ; then return TRUE/* Che
k for negative termination. Theorem 2.16 */if P = Pstable then return FALSEP P 0 su
h that Pstable v P 0 v P:/* Reuse of previously
omputed states. Theorem 2.18 */R Rnewforever Figure 2.6: Original CBR algorithmThe algorithm gives a formal de�nition of the pro
edure that was des
ribedin se
tion 2.2. First the initial partitioning is sele
ted su
h that Goal isP-sorted. After this Goal is assigned to R. The two variables R and Rnew26

CBR in General 27
ontain unions of partitions from the
urrently used partitioning P and anyof the previously used,
oarser partitionings. In the top of the loop the new
ontents of Rnew is
al
ulated from R using the
urrent partitioning. Theresult is then tested for interse
tion with Init, for positive termination. Ifwe have rea
hed the �nal partitioning Pstable we terminate with a negativeanswer, else we sele
t a �ner partitioning, that is still no �ner than Pstable.Rnew is then assigned to R and we start from the top again. The loop isrepeated until one of the two termination
onditions is ful�lled.Corre
tnessWe want to
on
lude that the algorithm is
orre
t. This
onsist of two parts;
on
luding that it always terminates and that it terminates with the
orre
tanswer.To
on
lude that the algorithm always terminates we �rst need to
on
lude,that we
an only run through the loop �nitely many times. This is guar-anteed by having a �nite number of partitionings that are used. This is arequirement that must be taken
are of for ea
h domain to whi
h the methodis applied. The �nite number of partitions guarantee that we, at some point,will end up with P = Pstable and terminate with a negative answer. Se
ondlywe require that Pre�P(R)
an be
omputed e�e
tively and hen
e always ter-minates. If these two requirements are ful�lled, for the domain to whi
h themethod is applied, we
an
on
lude that the algorithm always terminates.Now we will prove that the algorithm will terminate with the
orre
t answer.Throughout
omputation P assumes a sequen
e of values P0 v P1 v : : : vPn = Pstable. SimilarlyRnew assumes a sequen
e of valuesR0new; R1new; : : : ; Rnnew.We
laim that 8i:Rinew = Pre�Pi(Goal).We prove this by indu
tion in i.Basis i = 0: The �rst time we enter the loop we have that R = Goal andP = P0. Rnew is given to be exa
tly Pre�P(R) so R0new = Pre�P0(Goal).Step: Assume Rnnew = Pre�Pn(Goal) (IH) thenRn+1new = Pre�Pn+1(Rnnew)= Pre�Pn+1(Pre�Pn(Goal)) by IH= Pre�Pn+1(Goal) by theorem 2.18 and Pn+1 v PnBy having shown this we
an
on
lude by theorem 2.16 that for the �nalpartitioning Pn = Pstable we have Rnnew = Pre�Pstable(Goal) = Pre�(Goal).So if there is a path leading from Init to Goal the
he
k for interse
tion27

28 CBR in GeneralInit \ Rnew will guarantee that the algorithm terminates with a positiveanswer. Now we need to argue that the algorithm
annot terminate with apositive answer if there is no path. The only way the algorithm
an terminatewith a positive answer is if Rnew interse
ts with Init so by proving that8i:Rinew � Pre�(Goal). This
an be
on
luded from the previous proof andtheorem 2.15.RequirementsThe requirements that this algorithm enfor
es on a domain, to whi
h it
anbe applied, are the following; a transition system, with a stable partitioningPstable, a �nite sequen
e of partitionings of the state-spa
e, and an eÆ
iently
al
ulable prede
essor fun
tion, for ea
h partitioning.For the algorithm to work eÆ
iently there are some extra requirements.Firstly the possibility of representing arbitrary unions of partitions eÆ
iently,su
h that the prede
essor fun
tion
an be
omputed dire
tly on the repre-sentation yielding a new union of partitions. Se
ondly an eÆ
ient way of
he
king for interse
tion between su
h a representation and Init. Finally thepartitionings should be made in a sensible way, su
h that there is a
han
e,that interse
tion
an be obtained without always rea
hing the �nest possiblepartitioning Pstable.2.4.2 Symboli
 StatesThe purpose of this se
tion is to motivate the need for the revised algorithmpresented in the next se
tion, and de�ne the
on
ept of representable sym-boli
 state, used in the revised algorithm.In some domains, in parti
ular the domain of Timed Automata, to whi
hwe will apply the CBR method, it is only possible to eÆ
iently represent
ertain subsets of the state-spa
e. We will
all these subsets of the state-spa
erepresentable symboli
 states RSS. Furthermore the prede
essor fun
tionoperates on one su
h representable symboli
 state at a time, and gives asresult a list of representable symboli
 states. This does not dire
tly �t theframework of the simple algorithm, be
ause the assumption here is that allprede
essors
an be
al
ulated in one step.The idea is that the symboli
 state represents a set of
on
rete states. Thereis no restri
tion on how many
on
rete states a symboli
 state
an represent.This depends entirely on the domain. In fa
t, in the domain of Timed Au-tomata, ea
h symboli
 state represents an in�nite set of symboli
 states. Aset of representable symboli
 states must satisfy the following properties:28

CBR in General 29Assumption 2.19 : Representable Symboli
 States RSSA set of representable states RSS � P(ST) must have the following
hara
-teristi
s:� RSS must be �nite.� Goal
an be represented as a union of representable symboli
 states.Goal =[i2I Jisu
h that Ji 2 RSS and I is �nite.
When using representable symboli
 states we will need a prede
essor fun
tionthat from one symboli
 state J delivers as output a �nite set of representablesymboli
 states. In the following we formally state the obvious extra require-ment that the output set of symboli
 states must
over the set of states thatthe original prede
essor fun
tion would have given.Assumption 2.20 : Requirements for SymPreP(J)Given a symboli
 state J 2 SST and a partitioning P the following musthold: SymPreP(J) = fJ1; : : : ;Jmg+m[i=1Ji � PreP(J)For the �nal partitioning Pstable the following must also hold:SymPrePstable(J) = fJ1; : : : ;Jmg+m[i=1Ji = PrePstable(J)29

30 CBR in GeneralRea
hable((ST;�!); Init; Goal)Sele
t P su
h that Goal is P-sortedWait GoalrepeatPassed := fgrepeatbeginget symboli
 state J from Waitif J \ Init 6= ; then return TRUEelse if J 6� J 0 for all J 0 2 Passed thenbeginadd J to PassedNext := SymPreP(J)for all J in Next doput J to Waitendenduntil Wait = fgif P = Pstable then return FALSEP P 0 su
h that Pstable v P 0 v P:Wait := PassedforeverFigure 2.7: Symboli
 State CBR algorithm2.4.3 Symboli
 State AlgorithmIn this se
tion we present a di�erent version of the CBR algorithm using the
on
ept of representable symboli
 states des
ribed in the previous se
tion.The input for the revised algorithm is mu
h like the input of the originalone. Now the two arguments Goal and Init have to be subsets of the set ofrepresentable symboli
 states RSS.Corre
tnessWe want to
on
lude that the symboli
 algorithm is
orre
t. This, again
on-sists of two parts;
on
luding that it always terminates and that it terminateswith the
orre
t answer. 30

CBR in General 31This algorithm has two loops, with the one inside the other. We will
allthese the inner and the outer loop respe
tively. The outer loop is a repeat-forever loop, so the only way this loop
an terminate is by the algorithm�nishing, by returning either true or false. We use the same argument as forthe simpler algorithm, that we have
hosen a �nite sequen
e of partitionings.This guarantees that after a �nite number of runs through the outer loop wewill eventually rea
h P = Pstable, and the algorithm will terminate. We alsorequire that the inner loop terminates, in ea
h iteration of the outer loop.This
an be guaranteed due to the fa
t that we have a �nite number of rep-resentable symboli
 states. In the inner loop representable symboli
 statesare removed from the waiting list and added to the passed list while everyrepresentable symboli
 state (RSS) that
ould rea
h this RSS are added tothe waiting list for later exploration. On
e a representable symboli
 statehas been added to the passed list, it will not be explored again. This pro
ess
ontinues until the waiting list is empty. If not earlier, this is at least guar-anteed to happen when all representable symboli
 states have been added tothe passed list. So we are guaranteed that the inner loop will always termi-nate.Now we turn to proving that the algorithm will terminate with the
orre
tanswer when it terminates. Again we want to do this by indu
tion. Justafter exiting the inner loop, whereWait will always be empty, we will provethat Goal � Passed � Pre�Pn(Goal) for the
urrent partitioning Pn beingused. We do this by indu
tion in n.Basis n = 0: Just after exiting the inner loop for the �rst time the followingwill hold: Passed = f J j J �!�P0 J 0 ^ J 0 2 Goalgwhere J �!P J 0 means that J 2 SymPreP(J 0) (�!�P denotes asusual the transitive and re
exive
losure of �!P). The passed listhere
ontains all the symboli
 states needed to represent Goal andall the symboli
 states that
an rea
h Goal using the partitioning P0.By iteratively applying the requirement for the symboli
 prede
essorfun
tion stated in assumption 2.20, we
an
on
lude that the followingholds: Goal � Passed � Pre�P0(Goal)Step: On entering the inner loop the waiting list will
ontain representablesymboli
 states su
h that Goal � Wait � Pre�Pn(Goal), where Pn31

32 CBR in Generalis the previous partitioning. All of these states will, after some it-erations in the inner loop, be added to the passed list, su
h thatGoal � Passed � Pre�Pn(Goal), this is the indu
tion hypothesis (IH).We now aim to prove that after exiting the inner loop the following willhold: Goal � Passed � Pre�Pn+1(Goal)After exiting the inner loop we
an
learly see that the following willhold. Passed = f J j J �!�Pn+1 J 0 ^ J 0 2 Pre�Pn(Goal)gAgain iteratively applying assumption 2.20 we
an
on
lude the follow-ing: Goal � Passed � Pre�Pn+1(Goal)By having proved that Goal � Passed � Pre�Pn(Goal) after ea
h iterationwe
an
on
lude that the passed list will always
ontain at least Goal andit will never
ontain any states that
annot rea
h Goal. If any of the repre-sentable symboli
 states used to represent Passed interse
t with Init, thealgorithm would have terminated with a positive answer, when this statewas being explored. We will eventually rea
h the �nal partitioning Pstable.Be
ause of the spe
ial assumption made for Pstable, in assumption 2.20,we
an
on
lude that after the �nal iteration Passed = Pre�Pstable(Goal).Pre�Pstable(Goal) is by theorem 2.16 equal to Pre�(Goal). Hen
e after thelast run of the inner loop Passed will
ontain representable symboli
 statesthat
overs exa
tly all states that
an rea
h Goal. This results in the fa
tthat if any of these states interse
ts with Init, the algorithm would haveterminated with a positive answer. Similarly the passed list does not
ontainmore than what
an a
tually rea
h Goal, and hen
e the algorithm will neverterminate with a positive answer, when there is no path from Init to Goal.RequirementsThe requirements that this algorithm enfor
es on a domain, to whi
h it
anbe applied, are the following: A transition systems (ST;�!), a �nite setof representable symboli
 states RSS, and a symboli
 prede
essor fun
tionSymPre that ful�lls the requirement of assumption 2.20. Again we alsoneed a way in whi
h to
he
k for interse
tion between any representablesymboli
 state J and Init and in
lusion between two representable symboli
states. We also need sensible partitionings of the representable symboli
state-spa
e. 32

CBR in General 332.5 Di�eren
es from the Original CBRThis se
tion des
ribes the di�eren
es between the original CBR method,[LNAB+98℄, and the CBR method presented in this report. It also des
ribesdi�eren
es from the CBR method that was developed in the previous report[Lar02℄.The main di�eren
e is the
on
ept on whi
h the formal foundation is build.The original paper uses an index set of ma
hines that is gradually in
reased,while we here use a partitioning of the state-spa
e where the partitioningsare gradually re�ned. Despite this di�eren
e, the simple algorithm presentedin �gure 2.6
losely resembles the original algorithm. The se
ond algorithmadds more generality to the method by allowing the use of symboli
 states.This makes the CBR method appli
able to other types of domains. In theprevious report the CBR method was generalized by having more the oneindex set, ea
h representing one type of
omponents. The ba
k draw of thismethod was that the CBR method
ould not be presented on
e and for alland then applied to di�erent domains. It had to be adjusted depending onthe types of the
omponents being used in ea
h domain.An aspe
t of the original method that has been lost is dependen
y analy-sis. In the original domain, a dependen
y analysis was performed on theState/Event ma
hines in order to determine if all of the ma
hines whereneeded in the analysis. If it
ould be
on
luded, that some of the ma
hines
ould in no way, e�e
t the rea
hability of Goal, these ma
hines
ould be ex-
luded from the analysis. Thereby leading to a faster negative termination.The
on
ept of dependen
y analysis is not in
orporated into the general CBRmethod be
ause it depends very mu
h on the spe
i�
 domain. The depen-den
y analysis works on
omponents, and by analyzing what
omponents
an in
uen
e the set of
omponents that we start with, we
an stop beforein
luding all
omponents. This would, in the new formalism,
orrespond tostopping at a earlier partitioning than Pstable. Maybe this kind of feature
ould be added if extra information were added to the framework.

33

34 CBR in General

34

3 Timed Automata (TA)This
hapter
ontains the de�nition of networks of simple timed automata.By simple timed automata we mean timed automata without invariants,
ommitted lo
ations, urgen
y, and integers as are allowed in Uppaal. Firstwe present an informal des
ription of timed automata. After this we formallydes
ribe the syntax and semanti
s of a single timed automaton. In the endwe des
ribe the syntax and semanti
s of the parallel
omposition of severaltime automata into a Timed Automata Network (TAN).3.1 Informal Des
riptionTimed automata are �nite state automata extended with a number of realvalued
lo
ks. Graphi
ally a timed automaton
an be depi
ted as nodes witharrows going from one node to another when there is a transition. We write
onstraints (also known as guards) at the origin of a transition and reset setsat the destination of the transition. At the
enter of the arrow we write thelabel.
S0 S1

x < 3 x := 0

c!Figure 3.1: A simple automaton.In �gure 3.1 we have a very simple automaton with only two states andone transition. The transition goes from the initial state S0 to the state S1.The initial state is marked with double
ir
les. The guard
onsists of onlyone atomi
 formula saying that the value of
lo
k x should be less than 3.Similarly only one
lo
k is reset (x := 0). The label on the transition is '
!'this is the
omplement a
tion of '
?', whi
h means that this transition mustsyn
hronize with an '
?' transition in another timed automaton. As in CCS35

36 Timed Automata (TA)[Mil89℄ we
an also have transitions with no label, these transitions are infa
t � transitions that does not need to syn
hronize. Figure 3.1 illustrationwas made using the graphi
al interfa
e for Uppaal.3.2 PreliminariesFirst we need some auxiliary de�nitions.De�nition 3.1 : A
tionsLet Chan be a �nite set of
hannels, ranged over by
. We de�ne A
t to bea �nite set of a
tions ranged over by a. For ea
h
hannel in Chan we de�netwo a
tions su
h that A
t = f
! j
 2 Chang [f
? j
 2 Chang. We de�ne a
omplement operator � : A
t! A
t as �
! =
? and �
? =
!. We de�ne � torepresent an in�nite set of delay a
tions, � = f�(d)jd 2 Rg, where we use Rto stand for the non-negative reals. The spe
ial internal a
tion is representedby � . We de�ne the two sets A
t� = A
t [� and �� = � [� .
De�nition 3.2 : Clo
ks and ConstraintsC is a �nite set of real valued
lo
ks ranged over by x; y; z. A
lo
k valuationu : C ! R is a fun
tion that assigns to ea
h
lo
k a real non-negative value.We also de�ne RC to be the set of all
lo
k valuations. We write u(x) to meanthe value of the
lo
k x in the
lo
k valuation u. We de�ne two operations on
lo
k valuations: Reset and Delay. Reset where a set of
lo
ks are set to zero:u0 = u[r 7! 0℄; r � C de�ned by 8x 2 r:u0(x) = 0; 8x 2 C n r:u(x) = u0(x).Delay where all
lo
ks are in
reased with the same value: u + d : C ! Rwhere d 2 R; de�ned by 8x 2 C:(u+d)(x) = u(x)+d. We de�ne B(C) to bethe set of all
lo
k
onstraints (also known as guards) g ::= A j g^ g where Ais an atomi
 formula of the form: x � n or x�y � n for �2 f�;�; <;>g andn being a natural number. We write g(u) to mean that the
lo
k
onstraintg is true under the
lo
k valuation u.We extend the notion of transition system to a labelled transition system,where ea
h transition has a label. 36

Timed Automata (TA) 37De�nition 3.3 : Labelled Transition SystemA labelled transition system relates the triple (S;L;�!) in the followingway. S is a set of states, L is a set of labels, and �! is a set of transitions�!� S � L� S. If (S1; �; S2) 2�! we write S1 ���! S2We des
ribe the semanti
s of timed automata in terms of a labelled transitionsystem.3.3 Timed AutomatonIn this se
tion we de�ne the syntax and semanti
s of a timed automaton.De�nition 3.4 : Syntax of Timed AutomatonA simple timed automaton A over a
tions A
t and
lo
ks C is de�ned bythe triple (LA; l0A; EA) where LA is a set of lo
ations, l0A 2 LA is the initiallo
ation, and EA � LA � B(C)� A
t� � 2C � LA.
De�nition 3.5 : Semanti
s of Timed AutomatonThe semanti
s of a timed automaton A is a labelled transition system de�nedby the triple (SA;LA;�!A) where the states are made up of a node and a
lo
k valuation: SA = LA�RC , the labels are the union LA = A
t� [�, andthe transition relation is de�ned as:� (l; u) a��!A (l0; u0) if 9g; r:(l; g; a; r; l0) 2 EA; u0 = [r 7! 0℄u; and g(u)� (l; u) �(d)���!A (l; u+ d)As an example to illustrate the semanti
s, we
an look at the simple timedautomaton depi
ted in �gure 3.1. The start state of this automaton is (s0; x =0) from here it
an, among many other delay transitions, take the followingdelay transition (s0; x = 0) �(2;5)����! (s0; x = 2; 5). From here it
an take thedis
rete transition (s0; x = 2; 5) a!��! (s1; x = 0) be
ause x < 3, so the guardis true. 37

38 Timed Automata (TA)3.4 Timed Automata NetworkWe want to de�ne how to make a parallel
omposition of several timed au-tomata into a Timed Automata Network (TAN).De�nition 3.6 : Syntax of Timed Automata NetworkA TAN N over a
tions A and
lo
ks C has the form:N = A1j : : : jAnwhere ea
h Ai is a timed automaton over a
tions A
t and
lo
ks C.The
lo
ks are all potentially global, but may in reality be lo
al by beingused in only one automaton. In the de�nition of the semanti
s we needsome notation. We write ~l to mean a ve
tor l1; l2; : : : ; ln of lo
ations in ea
hautomaton.De�nition 3.7 : Semanti
s of Timed Automata NetworkThe semanti
s of a TAN N = (A1j : : : jAn) over a
tions A
t and
lo
ks C is alabelled transition system (SN ;LN ;�!N) where the states is a node in ea
htimed automaton and a
lo
k valuation SN = L1 � : : :� Ln� RC , the labelsare L = �� , and the transition relation �!N is de�ned by:� (~l; u) ���!N (~l0; u0) if 9gi; ri:(li; gi; a; ri; l0i) 2 Ei9gj; rj:(lj; gj; �a; rj; l0j) 2 Ejgi(u); gj(u); u0 = [ri [rj 7! 0℄u8k =2 fi; jg:l0k = lkfor some i; j 2 f1; : : : ; ng where i 6= j and a 2 A
t.� (~l; u) ���!N (~l0; u0) if 9gi; ri:(li; gi; �; ri; l0i) 2 Eigi(u); u0 = [ri 7! 0℄u8k =2 fig:l0k = lk.for some i 2 f1; : : : ; ng� (~l; u) �(d)���!N (~l; u+ d) 38

Timed Automata (TA) 39The three types of transitions presented above
an be des
ribed respe
tivelyas syn
hronizing, private, and delay transitions. The �rst is syn
hronizingbe
ause two timed automata syn
hronize by taking transitions labelled withea
h others
omplement. The se
ond is private be
ause it involves onlyone timed automaton. The third is a delay transition where all
lo
ks arein
reased by the same value.
S0 S1

x < 3 x := 0

c!

T0 T1

y > 2

c?Figure 3.2: Two simple timed automata S and T .Again to illustrate the semanti
s we give an example. We have, in �gure 3.2,two simple timed automata that we
ombine into the system N = S j T .The start state of the system is ((s0; t0); x = 0; y = 0). From this state we
ould
hoose to delay for one time unit.((s0; t0); x = 0; y = 0) �(1)���! ((s0; t0); x = 1; y = 1)From the new state we
annot take any dis
rete transitions be
ause of theguard y > 2. So we
hoose to delay again, this time with 1:5 time units.((s0; t0); x = 1; y = 1) �(1:5)����! ((s0; t0); x = 2:5; y = 2:5)Now we
an take the dis
rete transition be
ause the guards on both syn
hro-nizing transitions are true.((s0; t0); x = 2:5; y = 2:5) ���! ((s1; t1); x = 0; y = 2:5)We noti
e that in the resulting state the
lo
k x is set to zero.
39

40 Timed Automata (TA)

40

4 Symboli
 Analysis of TAThe semanti
s given in
hapter 3 yields an in�nite state-spa
e and the CBRalgorithm presented in
hapter 2 needs a �nite state-spa
e in order to beguaranteed to terminate. To redu
e the in�nite state-spa
e to a �nite state-spa
e we will represent groups of
lo
k valuations as zones. This is donein the same manner as for the veri�
ation tool Uppaal. We �rst de�nethe
on
ept of zones and operations on zones that we need during symboli
analysis. We then des
ribe the data stru
ture Di�eren
e Bounded Matrix(DBM) used to represent zones and how the needed operations are realizedeÆ
iently on DBMs. Finally we show how to perform both forward andba
kwards symboli
 analysis using the operations des
ribed.4.1 ZonesWe introdu
e zones in order to be able to handle a set of states simulta-neously, in one symboli
 state. A zone represents an in�nite set of
lo
kvaluations, it gives bounds on, both the di�eren
e between individual
lo
ks,and on the absolute value of
lo
ks. Figure 4.1 illustrates the di�eren
e be-tween a single
lo
k valuation and a zone. In general symboli
 states aresubsets of L1 � : : : � Ln � RC . The symboli
 states we use in this se
tionhas the form (~l; Z). A symboli
 state (~l; Z) represents all states of the form(~l; u) where u 2 Z. A zone is a set of
lo
k valuations de�ned by a simple
onstraint system whi
h is de�ned in the same way as
lo
k
onstraints inse
tion 3.2.De�nition 4.1 : Simple Constraint Systemg ::= x � n j x� y � n j g ^ gwhere �2 f�;�; <;>g and n 2 N . We use B(C) to represent the set of allsimple
onstraint systems over
lo
ks C.41

42 Symboli
 Analysis of TAFigure 4.1 illustrates the di�eren
e between a single
lo
k valuation and azone.

0 1 2 30123 x
y u = fx 7! 2; y 7! 2g

a) 0 1 2 30123 x
y Z = f1 � x � 3; 1 � y � 3g

b)Figure 4.1: a) Clo
k valuation. b) ZoneNow we have a way of representing a group of states as one symboli
 state(~l; Z) and move on to de�ning useful operations on zones in order to be ableto de�ne a symboli
 transition relation.4.1.1 Operations on ZonesWe de�ne �ve operations on zones that we need for the symboli
 rea
habil-ity analysis. The Future and Reset operations are only needed for forwardanalysis, and Past and Free are only needed for ba
kward analysis while weneed Conjun
tion for both. We remind that R is de�ned as the non-negativereals. The �ve operations are de�ned as follows.Future : Z " = fu+ d j u 2 Z and d 2 RgPast : Z # = fu j 9d 2 R:u + d 2 ZgReset : resetfrgZ = fu[r 7! 0℄ j u 2 ZgFree : freefrgZ = fu j u[r 7! 0℄ 2 ZgConjun
tion : Z ^ Z 0 = fu j u 2 Z and u 2 Z 0gThe operations are illustrated in �gure 4.2. The �rst four operations areillustrated by the e�e
t they have on the example zone Z that is shown inthe upper left
orner. The
onjun
tion operator is illustrated with two otherzones Z1 and Z2. 42

Symboli
 Analysis of TA 43

0 2 4 6024
68

x
y Z

Just a zone 0 2 4 6024
68

x
y Z#

Past 0 2 4 6024
68

x
y Z"

Future

0 2 4 6024
68

x
y

resetfygZReset 0 2 4 6024
68

x
y

free fyg(reset f
ygZ)

Free 0 2 4 6024
68

x
y

Z1 ^ Z2
Conjun
tionFigure 4.2: Operations on Zones4.2 Di�eren
e Bounded Matri
esWe need a data representation of zones and a de�nition of the �ve opera-tions on this representation. A DBM is a matrix representation of a simple
onstraint system.De�nition 4.2 : Differen
e Bounded MatrixM : fx0; x1; : : : ; xng2 ! (Z� f<;�g) [f+1gwhere x0 is a spe
ial zero valued
lo
k.43

44 Symboli
 Analysis of TAFor every pair of
lo
ks it gives a
omparison operator and a real value or1.For ea
h pair of
lo
ks M(xi; xj) = (nij;�ij) represents that xi � xj �ij nij,where �ij is < or �. Figure 4.2 illustrates how a number in the matrixrepresents a bound on the di�eren
e between two
lo
ks. The operator isrepresented by an extra bit stored along with ea
h number. In �gure 4.5 wewill as an example illustrate how the di�erent zones shown in �gure 4.2
anbe represented as DBMs.x0; x1; : : : ; x; : : : ; xnxjx0x1...x...xnxi (nij;�ij) - one entryxi � xj �ij nij - semanti
s of an entryFigure 4.3: Illustration of a Di�eren
e Bounded Matrix.In order to be able to de�ne the operations we need to have the DBMs in a
anoni
al form. For the de�nition of the
anoni
al form we need a de�nitionof the two operators + and � for pairs of the type (n;�), where n 2 Z and�2 f<;�g. To do this we also de�ne +b and �b, whi
h operate on 8<0 and8�0.De�nition 4.3 : +b operator for 8<0 and 8�08<0 +b 8<0 = 8<08�0 +b 8<0 = 8<08<0 +b 8�0 = 8<08�0 +b 8�0 = 8�0Here we observe that anything but two �'s adds up to <. We
an now de�ne+ on pairs of the type (n;�). This is simply done by adding the integersand adding the � operators with the newly de�ned +b operator.(n1;�1) + (n2;�2) = (n1 + n2;�1 +b �2)44

Symboli
 Analysis of TA 45De�nition 4.4 : �b operator for 8<0 and 8�08<0 �b 8�08<0 �b 8<08�0 �b 8�0Both the operators are equal with themselves and 8<0 is smaller than 8�0.Now we are ready to de�ne � on pairs of the type (n;�). This is done as asort of lexi
ographi
 ordering. First the integers are
onsidered, if these areequal then the � operators are
ompared.(n1;�1) � (n2;�2) = n1 < n2 _ (n1 = n2^ �1 8�0 �2)With the + and � operators de�ned we are ready to de�ne the
anoni
alform.De�nition 4.5 : Canoni
al FormA DBM M is on
anoni
al form if and only if 8xi; xj; xk 2 C it is su
h thatM(xi; xj) +M(xj ; xk) � M(xi; xk)We de�ne the operations on DBMs in
anoni
al form. The following fun
tionsde�ne the value of ea
h entry in the resulting matrix, based on the inputmatrix. The �rst four operations are illustrated in �gure 4.4, these are theoperation that operate on a single matrix. The �nal operation,
onjun
tion,des
ribes the resulting matrix in terms of two input matri
es.Past M#(xi; xj) = � M(xi; xj) xi 6= x0(0;�) xi = x0Future M"(xi; xj) = � M(xi; xj) xj 6= x0+1 xj = x0Reset resetfxgM(xi; xj) = 8>><>>: M(xi; xj) xi; xj 6= x(0;�) xi = x(0;�) xj = x ^ xi = x0+1 xj = x45

46 Symboli
 Analysis of TAFree freefxgM(xi; xj) = 8<: M(xi; xj) xi; xj 6= x(0;�) xi = x0 ^ xj = x+1 xi = x _ (xj = x ^ xi 6= x0)Conjun
tion(M1 ^M2)(xi; xj) = � M1(xi; xj) M1(xi; xj) � M2(xi; xj)M2(xi; xj) otherwiseThe implementation of four of the operators is illustrated in �gure 4.4. Thegray areas represent that the values in this part of the matrix are left un-
hanged. The values that are assigned to the
hanged areas
an be read fromthe de�nition of the operations.0 0 0: : : : : :x0; x1; : : : ; x; : : : ; xnxjx0x1...x...xnxiPast
111......
x0; x1; : : : ; x; : : : ; xnxjx0x1...x...xnxiFuture

0 0 0: : : : : :01...1...
x0; x1; : : : ; x; : : : ; xnxjx0x1...x...xnxiReset 11 : : : 1 : : :01...1...

x0; x1; : : : ; x; : : : ; xnxjx0x1...x...xnxiFreeFigure 4.4: Illustration of the Operations on DBMs.The
onjun
tion operator, whi
h is not illustrated,
ombines two matri
es.For ea
h entry in the matrix the values are
ompared and the smallest issele
ted as the entry in the resulting matrix. Figure 4.5 illustrates all theoperations by use of the zones from �gure 4.2. We only use the � operatorin these examples to keep it simpler.46

Symboli
 Analysis of TA 47x0 x yx0 �2 �6x 4 �2y 8 6Just a zone x0 x yx0 0 0x 4 �2y 8 6Past x0 x yx0 �2 �6x 0 �2y 0 6Futurex0 x yx0 �2 0x 4 1y 0 0Reset x0 x yx0 �2 0x 4 �2y 1 1Free x0 x yx0 �1 �2x 5 3y 5 4Z1x0 x yx0 �2 �1x 6 5y 4 2Z2 x0 x yx0 �2 �2x 5 3y 4 2Conjun
tionFigure 4.5: Illustration of the Operations on DBMs.The matri
es are no longer in the
anoni
al form after the operations havebeen performed. They are restored to
anoni
al form by
al
ulating theshortest path
losure. This
an best be illustrated by viewing the matrix asa graph. In �gure 4.6 we
al
ulate the
anoni
al form for the matrix afterthe Past operation. The values on the edges are given by taking the fromnode as the row and the to node as the
olumn. The shortest path
losure is
al
ulated by
he
king for shorter paths between two nodes via other nodes.In �gure 4.6 only the edge from x0 to y is
hanged. The new value is �2be
ause the path via the x node is �2 + 0 = �2.
x x0 y0 8-2046 x x0 y0 8-2-246Figure 4.6: The shortest path
losure of the Past matrix.47

48 Symboli
 Analysis of TAIn the algorithms presented we also need to
he
k for in
lusion. This is doneby
omparing ea
h pair of entries in the matri
es. If for every pair of entriesthe entry of matrix A is smaller then that of matrix B, then A is in
ludedin B.To guarantee termination we introdu
e a normalization operation. Initiallywe have in�nitely many Zones and
annot guarantee that the algorithm ter-minates. Two
lo
k valuations that
annot be distinguished in the model aretime-abstra
ted bisimilar, illustrated in �gure 4.7. This means that whenthe one
an take a delay transition the other
an also take a delay transition,not ne
essarily with the same amount of delay and end up in a state that istime-abstra
ted bisimilar with the end state of the �rst. The same is truefor dis
rete transitions. Knowing this we only need to represent one of su
htime-abstra
ted bisimilar states. This is done by applying the normalizationoperation to all Zones after ea
h operation.
x

y
max

max x
y

max
max

Figure 4.7: Illustration of normalization. All
lo
k valuations to the rightof the max line will have a point exa
tly on the max line that it is time-abstra
ted bisimilar to. Su
h two points are illustrated on the left �gure.Therefor the Zone on the right �gure
an rea
h the same states as the �gureon the left.First the maximum
onstant N , used in the model or in the properties tobe
he
ked, is found. Any integer lager than N
an be repla
ed with 1and all integers smaller than �N
an be repla
ed with �N . This
an bedone be
ause it never will be
ompared to anything larger than itself. Thenormalization is performed after ea
h operation. When N is known we
analso
al
ulate how many bits we need to represent ea
h entry in the DBM.The operation is des
ribed below.NormalizationnormNM(xi; xj) = 8<: (�N;<) M(xi; xj) � (�N;<)M(xi; xj) (�N;�) �M(xi; xj) � (N;�)+1 (�N;<) �M(xi; xj)48

Symboli
 Analysis of TA 494.3 Symboli
 Rea
habilityIn this se
tion we use the operations de�ned in se
tion 4.1 to do symboli
rea
hability analysis on networks of Timed Automata.De�nition 4.6 : Forward Symboli
 TransitionWe de�ne two types of transition, in
ontrast to the three types de�nedin the normal semanti
s. The �rst represents a delay a
tion followed by asingle transition while the other is a delay followed by a syn
hronization. We
al
ulate the new zone by use of the operations that we have de�ned. Inboth
ases we �rst take the future operation on the original zone, after thiswe
onjun
t it with the guard(s), and last reset the
lo
ks de�ned by thereset set(s).� (~l; Z) =)F (~l0; Z 0) if 9gi; ri:(li; gi; �; ri; l0i) 2 EiZ 0 = resetfrig(Z" ^ gi)8k 62 fig:l0k = lkfor some i 2 f1; : : : ; ng� (~l; Z) =)F (~l0; Z 0) if 9gi; ri:(li; gi; a; ri; l0i) 2 Ei9gj; rj:(lj; gj; �a; rj; l0j) 2 EjZ 0 = resetfri [rjg(Z" ^ gi ^ gj)8k 62 fi; jg:l0k = lkfor some i; j 2 f1; : : : ; ng where i 6= j and a 2 A
t.ZZ"Z" ^ giZ 0 = resetfrig(Z" ^ gi)
li
l0i
giriFigure 4.8: Illustrates how Z 0 is
al
ulated when taking one forward symboli
transition.

49

50 Symboli
 Analysis of TADe�nition 4.7 : Ba
kward Symboli
 TransitionAs with the forward symboli
 transitions we de�ne two transition rules. The�rst represents a single transition followed by a delay a
tion while the otheris a syn
hronization followed by a delay. It is worth noti
ing that the order isnot the same as for the forward symboli
 transitions. This does not have anyimpa
t on the rea
hable state-spa
e. The essential thing is that we alternatebetween dis
rete and delay a
tions. This results in that we have to takethe future operation on the initial lo
ation before
he
king for interse
tionin the ba
kwards algorithm. Here we start by using the past operation and
onjun
t the result with the reset set(s). After this the
lo
ks in the resetset(s) are freed, this is then
onjun
ted with the guards.� (~l0; Z 0)(=B (~l; Z) if 9gi; ri:(li; gi; �; ri; l0i) 2 EiZ = (freefrig(ri ^ Z 0#)) ^ gi8k 62 fig:l0k = lkfor some i 2 f1; : : : ; ng� (~l0; Z 0)(=B (~l; Z) if 9gi; ri:(li; gi; a; ri; l0i) 2 Ei9gj; rj:(lj; gj; �a; rj; l0j) 2 EjZ = (freefri [rjg(ri ^ rj ^ Z 0#)) ^ gi ^ gj8k 62 fi; jg:l0k = lkfor some i; j 2 f1; : : : ; ng where i 6= j and a 2 A
t.Z = (freefrig(ri ^ Z 0#)) ^ gifreefrig(ri ^ Z 0#)ri ^ Z 0#Z 0#Z 0
li
l0i
giriFigure 4.9: Illustrates how Z is
al
ulated when taking one ba
kwards sym-boli
 transition.4.3.1 AlgorithmsWith the symboli
 transition rules we de�ne two similarly looking algorithmspresented in �gures 4.10 and 4.11. First we des
ribe the forward symboli
50

Symboli
 Analysis of TA 51rea
hability algorithm. The algorithm has a passed-list (Passed) and awaiting-list (Wait). Initially the passed list is empty and the waiting list
ontains the initial state. For ea
h
y
le in the repeat-until loop one sym-boli
 state is removed from the waiting list. After having added all states,that
an be rea
hed from it, to the waiting list, the state is itself added tothe passed list. This is
ontinued until either; the waiting list is empty, or astate is found, that interse
ts with Goal. The target that we want to
he
kif we
an rea
h, Goal, is a set of symboli
 states.Passed := fgWait := f(~l0; Z0)grepeatbeginget (~l; Z) from Waitif (~l; Z) \Goal 6= ; then return TRUEelse if Z 6� Z 0 for all (~l; Z 0) 2 Passed thenbeginadd (~l; Z) to PassedNext := f(~ls; Zs) j (~l; Z) =)F (~ls; Zs) ^ Zs 6= ;gfor all (~ls0; Zs0) in Next doput (~ls0; Zs0) to Waitendenduntil Wait = fgreturn FALSEFigure 4.10: Algorithm for forward symboli
 rea
hability analysisThe ba
kwards symboli
 rea
hability algorithm di�ers in three ways. Firstlythe waiting list is initialized to
ontain Goal in stead of the initial state.Se
ondly there is tested for interse
tion with the initial state instead of Goal.Thirdly the transition relation that is used to �nd new symboli
 states, toput in the waiting list, is (=B.4.3.2 TheoremsIn this se
tion we present some theorems, and a single sample proof, neededto argument for the
orre
tness of the algorithms presented in the previous51

52 Symboli
 Analysis of TAPassed := fgWait := Goalrepeatbeginget (~l; Z) from Waitif (~l; Z) \ (~l0; Z0)" 6= ; then return TRUEelse if Z 6� Z 0 for all (~l; Z 0) 2 Passed thenbeginadd (~l; Z) to PassedNext := f(~ls; Zs) j (~l; Z)(=B (~ls; Zs) ^ Zs 6= ;gfor all (~ls0 ; Zs0) in Next doput (~ls0; Zs0) to Waitendenduntil Wait = fgreturn FALSEFigure 4.11: Algorithm for ba
kwards symboli
 rea
hability analysisse
tion. Corre
tness in the sense that the symboli
 algorithm gives the
or-re
t result in terms of
on
rete rea
hability. Theorem 4.8 implies, by a simpleindu
tive argument, that if we have a sequen
e of symboli
 transitions lead-ing from the initial state to Bad we also have a sequen
e of
on
rete statesleading from the initial state to Bad.Theorem 4.8Forward: symboli
 to
on
rete(~l; Z) =)F (~l0; Z 0)+8u0 2 Z 0:9d; 9u 2 Z:(~l; u) �(d)���! ���! (~l0; u0)
Proof of theorem 4.8 � � � � � � � � � � � � � � � � � � �The proof
an be split into two
ases depending on how (~l; Z) =)F (~l0; Z 0) is52

Symboli
 Analysis of TA 53obtained. We only treat the �rst simple
ase. Thus we have from the rightside of the de�nition of the =)F transition relation that:(li; gi; �; ri; l0i) 2 EiZ 0 = resetfrig(Z" ^ gi)8k 62 fig:l0k = lkfor some i 2 f1; : : : ; ngWe assume that u0 2 Z 0. Thus for some u00 2 Z" ^ gi we have that u0 = [ri 7!0℄u00. Then we also have for some u 2 Z and some d 2 R that u00 = u+ d. Itfollows that (~l; u) �(d)���! (~l; u+ d) ���! (~l0; u0).� �
Z u d u00 gu0� Z 0Figure 4.12: Illustration of proof of theorem 4.8The relation between u, u0, and u00 in the proof of theorem 4.8 is illustratedin �gure 4.12. The theorem itself is illustrated in �gure 4.13. Here we usedashed arrows to illustrate 9 and full arrows to illustrate 8. The same is truefor the illustration of the following theorems.(~l; Z) (~l0; Z 0)(~l; u) (~l0; u0)F�(d) �2 2 � 8� 9Figure 4.13: Illustration of theorem 4.8Theorem 4.9 states that if we have a sequen
e of
on
rete states leading fromthe initial state to Bad we
an mat
h this with a sequen
e of symboli
 states.53

54 Symboli
 Analysis of TATheorem 4.9Forward:
on
rete to symboli
(~l; u) �(d)���! ���! (~l0; u0)+8Z:u 2 Z:9Z 0:(~l; Z) =)F (~l0; Z 0) ^ u0 2 Z 0
Theorem 4.9 is illustrated in �gure 4.14. We omit the proof whi
h is similarto that of theorem 4.8.(~l; Z) (~l0; Z 0)(~l; u) (~l0; u0)F�(d) �2 2 � 8� 9Figure 4.14: Illustration of theorem 4.9
In order to
on
lude that the forward symboli
 rea
hability algorithm pre-sented in �gure 4.10 always terminates we need to ensure that there are only�nitely many rea
hable symboli
 states. In fa
t exa
tly one is generated forea
h transition that
an be taken. We also want to
on
lude that when thealgorithm terminates it terminates with the
orre
t answer. This we
an
on-
lude from the two theorems 4.9 and 4.8. If we �nd a sequen
e of symboli
states that leads from the initial state to Bad there also exists a
on
rete se-quen
e of states. On the other hand if we do not �nd a sequen
e of symboli
states we
an
on
lude that there is now sequen
e of
on
rete states leadingfrom the initial state to Bad.In the following we present two theorems that state the exa
t same things astheorems 4.8 and 4.9 only for the ba
kward transition relation (=B. Sin
ethe arrows goes in the other dire
tion the states are not in the same order inthe top and bottom of the theorem. This also has the e�e
t that the
on
retearrows in �gure 4.15 and 4.16 goes from right to left.54

Symboli
 Analysis of TA 55Theorem 4.10Ba
kward: symboli
 to
on
rete(~l0; Z 0)(=B (~l; Z)+8u 2 Z:9d 9u0 2 Z 0:(~l; u) ���! �(d)���! (~l0; u0)
(~l0; Z 0) (~l; Z)(~l0; u0) (~l; u)B�(d) �2 2 � 8� 9Figure 4.15: Illustration of theorem 4.10Theorem 4.11Ba
kward:
on
rete to symboli
(~l; u) ���! �(d)���! (~l0; u0)+8Z 0:u0 2 Z 0:9Z:(~l0; Z 0)(=B (~l; Z) ^ u 2 Z
(~l0; Z 0) (~l; Z)(~l0; u0) (~l; u)B�(d) �2 2 � 8� 9Figure 4.16: Illustration of theorem 4.11

4.3.3 Corre
tness of Ba
kwards AlgorithmWe will use theorems 4.10 and 4.11 to prove the
orre
tness of the algorithmfor symboli
 ba
kwards rea
hability with regard to rea
hability. This
ould55

56 Symboli
 Analysis of TAbe done in a similar fashion for the forward algorithm using theorem 4.8 and4.9.Theorem 4.12The symboli
 ba
kwards rea
hability is partially
orre
t with regard torea
hability. That is whenever the algorithm terminates it gives the
or-re
t answer.We need some de�nitions for the proof of theorem 4.12.De�nition 4.13 : Leads-to operatorWe write (~l; u); (~l0; u0) if (~l; u) ���! �(d1)����! : : : ���! �(dn)����! (~l0; u0).We also write (~l; u); g if (~l; u); (~l0; u0) for some (~l0; u0) 2 g.Proof of theorem 4.12 � � � � � � � � � � � � � � � � � � �We prove the partial
orre
tness by splitting into two
ases.Case 1: Assume that the algorithm terminates with the answer TRUE. We
laim that whenever (~l; Z) 2 Passed and u 2 Z then (~l; u); Bad. Tosee this note that if (~l; Z) 2 Passed then we have a symboli
 sequen
eof the form:(~lBad; ZBad)(=B (~l1; Z1)(=B (~l2; Z2)(=B : : :(=B (~l; Z)Now applying theorem 4.10 repeatedly proves the
laim.It follows immediately from the proven
laim that if ever an en
ounteredsymboli
 state interse
ts with Init, (~l0; Z0), then indeed there is a path fromInit to some state in Bad.Case 2: Assume that the algorithm terminates with the answer FALSE.We
laim that in this
ase (~l; u) ; Bad
annot hold for any state(~l; u) 2 Init. We prove this by
ontradi
tion. Assume on the
ontrarythat (~l; u); Bad for some state (~l; u) 2 Init. This is:(~l; u) ���! �(d1)����! : : : ���! �(dn)����! BadThen be
ause of theorem 4.11 we have a symboli
 sequen
e of the form:(~lBad; ZBad)(=B (~l1; Z1)(=B (~l2; Z2)(=B : : :(=B (~l; Z)with (~lBad; ZBad) � Bad and u 2 Z.56

Symboli
 Analysis of TA 57But then (~l; Z) must be present in the Wait-list at some point during
om-putation and hen
e we would have obtained termination with the answerTRUE in
ontradi
tion with the assumption.� �For total
orre
tness of the algorithm we observe that the algorithm termi-nates due to the �niteness of the symboli
 state-spa
e, indu
ed by normal-ization.A similar
orre
tness proof
ould be given for symboli
 forward rea
habilityalgorithm.

57

58 Symboli
 Analysis of TA

58

5 Appli
ation of CBR on TAIn this se
tion we apply the CBR method to the domain of Timed AutomataNetwork (TAN). We
hoose the symboli
 CBR algorithm, from se
tion 2.4.3,be
ause it exa
tly �ts the domain.5.1 Ful�lling the RequirementsWe will in the following se
tions des
ribe how the domain �ts the require-ments stated in se
tion 2.4.3. Here we will introdu
e the CBR method fortimed automata, not unlike how it was introdu
ed in the previous report[Lar02℄. At the same time we will show that this �ts exa
tly within theframework of the symboli
 algorithm presented in se
tion 2.4.3. To be ableto use only some of the
omponents, automata and
lo
ks, we de�ne twosubsets: M � f1; : : : ; ng an index subset of the timed automata and K � Ca subset of
lo
ks. We will base the partitioning of the state-spa
e on anequivalen
e derived from these two subsets.Representable Symboli
 StatesFirst we de�ne the representable symboli
 states (RSS), whi
h we are goingto use in the analysis. Firstly these states are symboli
 in the representationof the
lo
k values, in the use of Zones, as des
ribed in
hapter 4. Se
ondlythey are symboli
 in the representation of the lo
ation ve
tor. We introdu
ea partial lo
ation ve
tor, in whi
h we only need to spe
ify the lo
ation forsome
omponents. The lo
ation of the rest of the
omponents are representedby a � (star) meaning that this automata
an be in any of its lo
ations. Wewill refer to these states as double symboli
 states sin
e they
an be symboli
both in the use of zones and the representation of the dis
rete lo
ation. Againsu
h symboli
 states will be subsets of L1�: : :�Ln�RC as with the symboli
states de�ned in se
tion 4.1.An M -sorted partial lo
ation ve
tor only
ontains information about theautomata in M , and semanti
ly it represents the set of all lo
ation ve
torsthat agree with it with regard to the lo
ations of all automata in M . For a59

60 Appli
ation of CBR on TAzone to be K-sorted it
annot in
lude any
onstraints on
lo
ks not in
ludedin K.De�nition 5.1 : Double Symboli
 StateA double symboli
 state (~p; Z)
onsists of an M -sorted lo
ation ve
tor ~p anda K-sorted zone Z. For a given M � f1; : : : ; ng an M -sorted lo
ation ve
toris de�ned as follows:~p = (p1; : : : ; pn) where � i 2M pi 2 Li [f�gi =2M pi = �A K-sorted zone only
ontains
onstraints on
lo
ks in K: Z 2 B(K).By an M;K-sorted symboli
 state we mean a double symboli
 state wherethe lo
ation ve
tor is M -sorted and the zone is K-sorted. We noti
e thata double symboli
 state that is M;K-sorted for a given M and K also isM;K-sorted for any larger M or K. We have that there are only �nitelymany zones, given normalization. Given that we have also �nitely manyautomata and �nitely many lo
ations in ea
h automata, we
an only
reatea �nite number of di�erent representable symboli
 states. This was one ofthe requirements of the symboli
 CBR framework.Partitioning of the State Spa
eWe de�ne the partitioning of the state-spa
e on the basis of the M;K-equivalen
e. First we de�ne M -equivalen
e for the dis
rete part of the stateand K equivalen
e for the
ontinuous part of the state.De�nition 5.2 : M-equivalen
e~l =M ~l () 8i 2M:li = l0i
De�nition 5.3 : K-equivalen
eu =K u0 () 8x 2 K:u(x) = u0(x)60

Appli
ation of CBR on TA 61We de�ne the M;K-equivalen
e in terms of the two other equivalen
es.De�nition 5.4 : M;K-equivalen
eWe de�ne M;K-equivalen
e in the following way:(~l; u) =M;K (~l0; u0) () ~l =M ~l0 and u =K u0We partition the state-spa
e based on the number of automata and
lo
ksin
luded in the analysis. We start with a the subset of automata and
lo
ksneeded to represent Goal. After this we gradually extend with more
lo
ksand automata. Sin
e we have a �nite amount of
lo
ks and automata, wewill in a �nite number of steps rea
h a point where all
lo
ks and automataare in
luded. For ea
h M;K
ombination we de�ne a partitioning where allstates that are M;K-equivalent are in the same partition. When we havein
luded all
lo
ks and automata the M;K-equivalen
e will
orrespond tothe identity relation Id = f(s; s) j s 2 STg. This will result in the fa
t thatthe partitioning de�ned by this equivalen
e satis�es the property of being astable partitioning. The a
tual order in whi
h to in
lude the
omponents,does not a�e
t the method in general. Di�erent heuristi
s will be
onsideredin se
tion 7.3. The partitioning indu
ed by a given equivalen
e =M;K, is
alled PM;K, instead of writing P=M;K . If we have that M �M 0 and K � K 0then the equivalen
e indu
ed by =M 0;K0 is �ner than or equal to the oneindu
ed by =M;K, be
ause M 0 and K 0 have more elements. In general thefollowing holds: M � M 0 ^K � K 0 () PM 0;K0 v PM;KSorted Symboli
 Prede
essorIn this se
tion we des
ribe how to interpret a timed automata network (TAN)as a global transition system. The
on
rete states where in se
tion 3.4 in-terpreted as a transition system. In this se
tion we de�ne how to interpreta TAN as a transition system, where the states are double symboli
 states.We do this by de�ning a new transition relation the
ombines the
al
u-lation of the new zones from the (=B transition relation and the
on
eptof M;K-sortedness. The idea is to relate M;K-sorted symboli
 states withother M;K-sorted symboli
 states. This means that we will only
onsidertaking transitions in automata spe
i�ed by M and where the
onstraints onthe guards only range over
lo
ks in K.61

62 Appli
ation of CBR on TAFor the de�nition of the new transition relation we need some notation forwhat it means for a
on
rete lo
ation ve
tor li to be in
luded in a partiallo
ation ve
tor pi. li 2 pi () � li = pi pi 2 Litrue pi = �De�nition 5.5 : Ba
kward M;K-sorted Transition RelationThe de�nition of the (=M;K transition relation is based on the(=B transi-tion relation and adds the
on
ept ofM -sorted lo
ation ve
tors and K-sortedzones.We know that ~p0 is M -sorted and that Z 0 is K-sorted.� (~p0; Z 0)(=M;K (~p; Z) if 9gi 2 B(K); 9ri:(li; gi; �; ri; l0i) 2 Eili = pi, l0i 2 p0iZ = (freefrig(ri ^ Z 0#)) ^ gi8k =2 fig:p0k = pkfor some i 2 M
� (~p0; Z 0)(=M;K (~p; Z) if 9gi 2 B(K); 9ri:(li; gi; a; ri; l0i) 2 Ei9gj 2 B(K); 9rj:(lj; gj; �a; rj; l0j) 2 Ejli = pi, l0i 2 p0i, lj = pj, l0j 2 p0jZ = (freefri [rjg(ri ^ rj ^ Z 0#)) ^ gi ^ gj8k =2 fi; jg:p0k = pkfor some i; j 2M where i 6= j and a 2 A
t.We need to prove that the new Z 2 B(K) and that ~p is M -sorted. We
an
on
lude that Z 2 B(K) be
ause the guards that are
onjun
ted are fromB(K). The
lo
ks that are reset are also freed again, this means that theywill not bring Z out of B(K). We
an also
on
lude that ~p is M -sortedbe
ause the index set remains the same.We intend to prove the two assumptions made in assumption 2.20. In thefollowing we write PreM;K as a shorthand for PrePM;K . PreM;K(H) isde�ned as fs j 8t =M;K s:9t0 2 H:t ���! �(d)���! t0gHere we stret
h the original de�nition 2.7 of Pre, by taking both a dis
reteand a delay step. The �rst line of ea
h of the two assumptions
an berewritten as follows:SymPreM;K(~p0; Z 0) = f(~p1; Z1); : : : ; (~pn; Zn)g62

Appli
ation of CBR on TA 63First assumption In order to prove that Sni=1(~pi; Zi) � PreM;K(~p0; Z 0),we must show that whenever ~l 2 ~pi and u 2 Zi then it follows that(~li; u) 2 PreM;K(~p0; Z 0).Whenever ~l 2 ~pi and u 2 Zi then(~li; u) ���! �(d)���! (~l0; v0)for some ~l0 2 ~p0 and v0 2 Z 0.Hen
e as (~pi; Zi) isM;K-sorted it follows that (~li; u) 2 PreM;K(~p0; Z 0).Se
ond assumption We already have the Sni=1(~pi; Zi) � PrePstable(~p0; Z 0)and only need to show that Sni=1(~pi; Zi) � PrePstable(~p0; Z 0) in order toprove the equality. We have that Pstable is equal to the identity, so wemust show that every element in PreId(~p0; Z 0) is in the set of symboli
states returned by SymPre. We have that PreId(~p0; Z 0) = fs j 8t =Ids:9t0 2 H:t ���! �(d)���! t0g = ft j 9t0 2 H:t ���! �(d)���! t0g. Sin
e t has twotransitions, whi
h
an bring it into H, we
an see from the de�nitionof (=M;K that there will exist a (~pi; Zi) = t.Che
k for In
lusion and Interse
tionThe symboli
 CBR framework also requires that, we
an
he
k for in
lusionbetween two symboli
 states, and
he
k for interse
tion between a symboli
state and Init. When performing in
lusion
he
ks between two double sym-boli
 state, we will �rst
ompare the partial lo
ation ve
tors. If the twostates does not agree in one of the automata where they both spe
ify a spe-
i�
 lo
ation, then they neither interse
t nor does the one in
lude the other.After this the zones are
he
ked for interse
tion by the method des
ribed in
hapter 4.De�nition 5.6 : In
lusionOne double symboli
 state (~p0; Z 0)
overs another (~p; Z) if:(~p; Z) � (~p0; Z 0) () ~p v ~p0 ^ Z � Z 0~p v ~p0 () 8i 2M:pi = p0i _ p0i = �The only type of interse
tion
he
k performed is interse
tion with Init. Thisis done �rst by
he
king if the partial lo
ation ve
tor
ontains the lo
ation63

64 Appli
ation of CBR on TAve
tor of Init. After this we
an perform an interse
tion
he
k between thetwo zones. Be
ause of the fa
t that we take both a dis
rete and a delay step,in ea
h exploration step, we a
tually perform this interse
tion
he
k with azone Zinit", that is the future operation performed on the initial zone Zinit,where all
lo
ks are zero.In the previous se
tion we have ful�lled the following requirements. A �nitenumber of representable symboli
 states, and a way to
he
k for in
lusion andinterse
tion for su
h states. A �nite sequen
e of partitionings, with a �nalpartitioning with the desired property. And a symboli
 prede
essor fun
tion,in
omplian
e with assumption 2.20. Having ful�lled all of the requirementsfor the symboli
 CBR framework, we
an
on
lude the
orre
tness of thealgorithm, when applied to the domain of TAN.

64

6 ExtensionsThis
hapter des
ribes
ertain extensions, whi
h
an be added to the modelof timed automata, and the e�e
t that these have on the
ompositional ba
k-wards rea
hability analysis. The extensions are; integers, invariants, urgentlo
ations, urgent
hannels, and
ommitted lo
ations. We deal with exa
tlythese extension be
ause they are the ones implemented in Uppaal. Ea
h ofthe extension will be des
ribed in the following se
tions.6.1 IntegersIn this se
tion we will �rst des
ribe how integers
an be used in Uppaal.After this we will dis
uss the possibility of adding this to the CBR for TAmethod. We
hoose integers with some simple operations, and show how theCBR for TA method from
hapter 5
an be extended.In Uppaal one
an use both simple integers and arrays of integers. The inte-gers
an be used in guards, and in assignments. Examples of integer guardsare: L < 2, I == 4, and I <= L * 2. Similarly we
an give some examplesof integer assignments: L := 2, I := L / 2, and L := L + 1. Both theguards and assignments
an
ontain addition, subtra
tion, multipli
ation,and division. There is also a possibility of using a maximum and a minimumfun
tion.It would be possible to implement all of this in the CBR for TA method. Asuitable data stru
ture
ould be binary de
ision diagrams (BDD). A BDD
ould represent the possible values that an integer
ould have in a give sym-boli
 state. The
ompli
ated part is to
al
ulate, whi
h possible values, aninteger
ould have had before it was assign the
urrent value. In the imple-mentation des
ribed in
hapter 7 we have
hosen a simpler solution. We haveonly two possible representations of an integer, either a
on
rete value or *(star) denoting any possible value. We allow only
ertain simple guards andassignments. The guards
an only be of the form: L == 3. Where an integeris tested for equality with a
onstant. This gives us the advantage that afterhaving taken a ba
kwards step, with an integer guard on the transition, weknow the exa
t value of the integer. In the assignments we only allow theuse of, addition, subtra
tion,
onstants, and the integer to whi
h the value is65

66 Extensionsbeing assigned. Examples of su
h integer assignment are: L := 2, L := L +1, and L := 1 - L. This makes it easier to
al
ulate the value of the integerprior to the assignment, be
ause there always will be only one su
h value.When taking a ba
kwards dis
rete transition, the
al
ulation of integer val-ues is
arried out in two steps. First we use the assignment to
al
ulate anintermediate value. Here we have four possible s
enarios, illustrated by fourexamples in �gure 6.1.
��Any assignment Not possible2L := 7 �7L := 7 34L := L + 1Figure 6.1: Illustrates how we
al
ulate the intermediate value of an integerbased on the value after the assignment and the assignment.In the �rst
ase, if the integer
an have any value after the assignment, it
ould also have had any value before the assignment, be
ause we use un-bounded integers. In the se
ond
ase, if the integer is assigned a
onstantand it does not have this value after the assignment, then we know that thistransition
annot be taken into su
h a symboli
 state. The third
ase illus-trates the
ase where the integer has exa
tly the value that is assigned toit. In this
ase we know nothing about the prior value of the integer, whi
his then �. In the �nal
ase the integer has a
on
rete value and it is eitherin
remented or de
remented in the assignment. In this
ase we
an
al
ulatewhat value it must have had before the assignment. There a
tually existsone last
ase. The
ase where we have no assignment. If this is the
ase, theintegers intermediate value is the same as the value after the assignment.After having
al
ulated the intermediate value, we must
he
k if the inter-mediate value agrees with the value in the guard. Here we only have three
ases, illustrated in �gure 6.2.In the �rst
ase if the intermediate value is �, we know that the assignment
ould have been true. If the integer has a
on
rete value that is exa
tly thesame as in the guard we know that the guard was true. In both of these
aseswe know that the value of the value of the integer must have been the valuein the guard. The last
ase represents where the intermediate value and thevalue in the guard disagree. In this
ase the transition
annot lead us to thesymboli
 state in question. 66

Extensions 673L == 3� 3L == 33 Not possibleL == 34
Figure 6.2: Illustrates how we
al
ulate the value of the integer before theguard, depending on the intermediate value of an integer.When we want to extend the CBR for TA method with integers. First wede�ne the new representable symboli
 states (RSS). The
on
rete states willnow have the form (~l;~i; Z) instead of the form (~l; Z), where ~i = (i1; : : : ; in)with im 2 Z. We limit guards to the form i :=
 where
 is a
onstant andassignments to the form i := d, where d is
omposed of the integer i itself,
onstants, addition and subtra
tion. The symboli
 states will now have theform (~p; ~q; Z) instead of the form (~p; Z), where ~q is de�ned as partial lo
ationve
tors, just for integers. We also need an extra index set I � (i1; : : : ; in),to range over the integers. With this we
an de�ne partial integer ve
tor asfollows. ~qi = (q1; : : : ; qn) where � m 2 I qm 2 Z[f�gm =2 I qm = �We will obtain new equivalen
es based on =M;K and the equivalen
e of theinteger values. We will denote these new equivalen
es by =M;K;I. The newsymboli
 prede
essor fun
tion (=M;K;I will be (=M;K with the added
on-
ept of integers.6.2 InvariantsIn this se
tion we des
ribe what invariants are, and possible solutions onhow to in
lude them in the ba
kwards rea
hability analysis. An invariantis an upper bound on
lo
k values in a given state. For ea
h state we
anhave a requirement that a set of
lo
ks does not ex
eed some value. Havinginvariants in the system
hanges the
omputation of the zones of the statesthat
an rea
h a
urrent state. The problem lies in the fa
t that we
anno longer guarantee that we
an delay inde�nitely ba
kwards. We illustratethis fa
t by an example. In �gure 6.3 we have two simple timed automata.The system
ontains two invariants one in state A1 and one in state B1. Theproblem arises from the fa
t that the system
an time deadlo
k, meaning67

68 Extensionsit
an enter a state in whi
h no further time
an elapse. This happens if�rst time elapses su
h that x == 7 and automata B takes a transition intoB3. After this time elapses su
h the y == 9. Now no more time
an elapsein state A1, be
ause of the invariant. At the same time the one outgoingtransition is not enabled, hen
e we have a time deadlo
k.
A1

y <= 9

A2

a?

B1

x <= 7

B2

B3

a!

x == 7

Figure 6.3: Two simple timed automata A and B.Time deadlo
k poses a problem for
ompositional ba
kwards rea
habilityanalysis. In order to dete
t if we are taking a ba
kwards step over a timedeadlo
k, we have to
onsider all
omponents. This strongly
ontradi
t the
ompositionality. One possible solution to this problem is to restri
t themodels on whi
h the method works. We want models that
annot timedeadlo
k, whi
h is des
ribed by the following property.De�nition 6.1 : No Time Deadlo
k8(~p; v) that is rea
hable:9(~l; v) ���! �(d1)����! ���! �(d2)����! :::::: su
h that limn!1(nXi=1 (di))!1We believe that the following synta
ti
al properties ensures that a systemnever time deadlo
ks:� Ea
h state that has an invariant must have an outgoing tau transitionwhi
h is enabled when the invariant prevents any further delaying. Ifno su
h tau transition exists one must be added that leads to a spe
ialdeadlo
k state.� There may not be any
y
les in the model in whi
h time does not elapse.This
an be ensured by
he
king that, in ea
h
y
le there exists a
lo
kthat is reset and later
he
ked to be larger than a non-zero
onstant.We have no proof of these assumptions and this is a very interesting area forfuture work. 68

Extensions 696.3 Urgent Lo
ationsA lo
ation in an automata
an be spe
i�ed as being urgent. No time
anelapse in the system while an automata is in an urgent lo
ation. Urgentlo
ations
an simply be modeled by the use of invariants, so if we have asolution for invariants we have also solved the problem of urgent lo
ations.An extra
lo
k xu is added whi
h is reset on all transitions going into theurgent lo
ation. Then an invariant, whi
h spe
i�es that no time
an elapse,xu � 0, is added to the urgent lo
ation.6.4 Committed Lo
ationsA lo
ation in an automata
an be spe
i�ed as being
ommitted. Similarly asfor urgent lo
ations, no time
an elapse when an automata is in a
ommittedlo
ation. There is also the extra requirement that no other automata maytake any transitions before the one automata has left the
ommitted lo
ation.Before the rea
hability analysis is started, the set of
ommitted lo
ations isexamined. Any
ommitted lo
ation that has an outgoing tau-transition isregistered as well as any pair of
ommitted lo
ations that
an syn
hronize.Whenever in the ba
kwards rea
hability analysis that we take a ba
kwardsdelay or dis
rete transition, we know that none of the automata not in M
ould have been in any of the previously mentioned states or
ombinations ofstates. If the
ommitted lo
ation is in an automata inM we will treat them asurgent lo
ations. When we take a ba
kwards step into a
ommitted lo
ationor a pair of
ommitted lo
ations, we
annot delay due to the invariants thatwas added by the treatment as urgent lo
ations. In addition to this we mustonly look at transitions that
an bring us out of the
ommitted lo
ationsagain, when
hoosing the next dis
rete step.6.5 Urgent ChannelsAn urgent
hannel is a
hannel on whi
h the automata must syn
hronize assoon as they are able to. As for the
ommitted lo
ations we must register allpairs of states that
an syn
hronize over an urgent
hannel before the rea
ha-bility analysis begins. When su
h a pair is not in
luded inM , we know whenwe delay, that all the
omponents outside of M
annot be in these lo
ation
ombinations. For pairs of lo
ations where the one automata is in
luded inM , and the other one is not, we must do the following. If the automata inMisn't in the lo
ation that
an syn
hronize over an urgent
hannel, we mustdo nothing. On the other hand if it is in this exa
t lo
ation, we
an
on
lude69

70 Extensionsthat the automata outside M , with whi
h it
ould syn
hronize, isn't in the
orresponding lo
ation.

70

7 ImplementationA test implementation of the CBR method was
reated in order to produ
esome experimental results. This implementation will in the rest of the reportbe known as Cbr-verifyta. In the next
hapter the experimental resultsfrom Cbr-verifyta will be
ompared with results from Uppaal. This
hapter des
ribes what the test implementation in
ludes and how it wasimplemented.7.1 Code ReuseThe CBR test implementation is implemented in the programming languageC++. This is done in order to be able to use the Uppaal sour
e
ode asa basis for the development of a test implementation of the CBR for TAmethod. Firstly the parsers, both for the models and the veri�
ation prop-erties,
ould be reused. This results in the fa
t that, the same models andveri�
ation properties
an be fed to both Uppaal and Cbr-verifyta. Aresult of using the Uppaal sour
e
ode as a basis, was that there was noreal design faze. The Uppaal sour
e
ode was slowly repla
ed and
hangedto transform it into Cbr-verifyta. The remaining se
tions will des
ribeparts of the implementation. We will only des
ribe things that has not been
overed elsewhere in the report. Although the double symboli
 states andthe symboli
 prede
essor fun
tion represents the main part of the implemen-tation e�ort, they will not be des
ribed in this se
tion. This is due to thefa
t that they have already re
eived thorough treatment.7.2 Fo
us of the ImplementationDue to the limited time resour
es, we have in this proje
t it wasn't an optionto do a full implementation of the CBR method. The priority was on beingable to
ompare CBR and Uppaal by being able to verify relevant proper-ties on a set of models. The main de�
ien
y of the implementation is it'sinability to handle veri�
ation properties
ontaining negations or propertiesstarting with A[℄. The problem lies in the step where symboli
 states are71

72 Implementationgenerated from the parsed property. If �rst the symboli
 states has beengenerated, there is no set of states, that we
annot
he
k the rea
habilityof. In the implementation we also
hose to implement simple integers asdes
ribed in se
tion 6.1 be
ause many of the models
ontains integers, andonly use them in su
h a simple fashion. A point where the method di�ersfrom the algorithm, is that there is performed an extra in
lusion
he
k wheninserting a state into the waiting list, to avoid dupli
ate states in the waitinglist. This is inspired by Uppaal, whi
h does exa
tly the same, although itis not des
ribed in the forward rea
hability algorithm of se
tion 4.3.1.7.3 Dependen
y AnalysisIn this se
tion we will �rst des
ribe the purpose of the dependen
y analysis.After this we
onsider how to perform the analysis on a timed automatanetwork (TAN). Finally we
onsider some heuristi
s for di�erent orders inwhi
h to in
lude the
omponents.The dependen
y analysis is
arried out in order to avoid doing unne
essarywork. If we
an show that a number of
omponents are dependently
losed,and that the property we intend to verify only
on
erns
omponents fromwithin the dependen
y
losed set, then we know that we only need to in-
lude the
omponents from the dependen
y
losed set, in order to
he
k theproperty. Having a dependen
y
losed set means that no matter how the
omponents outside the set behave, they
annot a�e
t the set of states, thatthe dependen
y
losed set
an rea
h. This analysis is
arried out before thea
tual veri�
ation.In a TAN we have three types of
omponents; automata,
lo
ks, and inte-gers. These
omponents depend on ea
h other in di�erent ways. First of allautomata
an depend on ea
h other by use of the same
hannel to
ommu-ni
ate. All automata that write to a given
hannel a! depends on all theautomata that read from the
hannel a?. Likewise ea
h reader of a
hanneldepend on every single writer to the same
hannel. Integers
an only dependon automata. An integer depends on the automata that assigns it a valueon one of it's transitions. Likewise
lo
ks only depend on automata that itis resets by. Finally automata also depends on the integers and
lo
ks usedin a guard on one of it's transitions. Using these rules, we build a depen-den
y graph. Starting with the set of
omponents used to represent Goal.We simply add all the
omponents that these
omponents depend on. Inthis way, when we have no more
omponents to in
lude, we have rea
hed adependen
y
losed system. This need not bee all
omponents in the system.As a heuristi
 for whi
h
omponents to add we have
hosen a very simple72

Implementation 73one, of in ea
h step adding all the
omponents that the
urrent
omponentsdepend dire
tly on. In the implementation we already
ount the number ofdependent relationships between two
omponents. So that for instan
e forea
h reset of a
lo
k appearing in an automata, the
lo
k depends with onepoint on the automata. These numbers gives some sort of representation ofhow
losely
onne
ted two
omponents are. One
ould easily imagine thisbeing utilized in some form of heuristi
s where a
ertain number of point hadto be added for ea
h step. Coming up with some good heuristi
s
ould be apossible dire
tion of future work.

73

74 Implementation

74

8 Experimental ResultsIn this
hapter we will
ompare the performan
e of the CBR method (Cbr-verifyta) against both full ba
kwards rea
hability (FBR) and the algorithmused in the Uppaal tool. What we mean by FBR will be explained in se
tion8.2.1. We
hoose to
ompare CBR and Uppaal in terms of the number ofin
lusion
he
ks and exploration steps be
ause these are the most
omplexoperations of the algorithms. We do not want to measure the exe
ution time,be
ause this will show the eÆ
ien
y of the implementations instead of therelative strength of the individual methods.
8.1 Performan
e ParametersWe
hoose in
lusion
he
ks and exploration steps, as performan
e parametersbe
ause we believe them to be the dominant fa
tors in the exe
ution time.In
lusion
he
ks are performed in two lo
ations in the algorithms. Before astate is explored it is
he
ked against the passed list to see if it has alreadybeen explored. In
lusion
he
ks are also performed when inserting a state intothe waiting list. Exploration steps represent the number of times a state isexplored, i.e. the number of times we look at one state and determine whatnew states we
an rea
h by a forward or a ba
kwards step. The Uppaalversion used in this se
tion is 3.2 Beta 5 (3.1.68) of September 2001.
8.2 Test CasesAs test
ases we
hoose the two problems also des
ribed in the previousreport: The soldiers problem and Fis
her's mutual ex
lusion algorithm. An-other reason for
hoosing these problems is that they are standard problemsthat are distributed as examples with Uppaal, and the fa
t that they
anbe s
aled in size. 75

76 Experimental Results8.2.1 Fis
her's Mutual Ex
lusion AlgorithmThe purpose of Fis
her's mutual ex
lusion algorithm is to ensure that anumber of pro
esses all
an have a

ess to a shared resour
e, but never atthe same time. In �gure 8.1 we show a prototype for the pro
esses in Fis
her'salgorithm. These prototypes are
reated using the graphi
al user interfa
efor Uppaal. From this prototype we
an save a system with the desirednumber of pro
esses. In ea
h pro
ess the pid is then repla
ed by a unique
onstant, not zero.
a b

ccs

id== 0 x:= 0

x<=k

x:= 0,
id:= pid

id== 0

x:= 0

x>k,
id==pid

x:= 0,
id:= 0Figure 8.1: Prototype for ea
h pro
ess in Fis
her's algorithm.We use Fis
her's mutual ex
lusion algorithm to test CBR against both Up-paal and FBR. We verify a property that the �rst two pro
esses
an bothrea
h the
riti
al se
tion at the same time. This
an be written as: E<>(P1.
s and P2.
s). This property is never satis�ed for a
orre
t
on-stru
ted Fis
her's algorithm, so in all the test
ases the answer is NO. Weverify this property for di�erent numbers of pro
esses. The reason we do not
hange the property to in
lude all pro
esses, is that if we did so the
om-positional aspe
t of the CBR method would not be tested. We a
hieve thefull ba
kwards rea
hability method (FBR) method by rewriting the propertyto all possible
ombinations of states that are
overed by the symboli
 stategenerated by E<> (P1.
s and P2.
s). By using Cbr-verifyta to verifythis new property, we are guaranteed that all
omponents are in
luded fromthe start, and hen
e we get what
orresponds to full ba
kwards rea
habilityanalysis. The FBR property for three pro
esses is:E<>((P1.
s and P2.
s)and (P3.a or P3.b or P3.
 or P3.
s)and (id == 0 or id == 1 or id == 2 or id == 3))This property is rewritten for ea
h number of pro
esses, by adding an extraline for ea
h pro
ess, and an extra possible value for id. For four pro
essesthe property is: 76

Experimental Results 77E<>((P1.
s and P2.
s)and (P3.a or P3.b or P3.
 or P3.
s)and (P4.a or P4.b or P4.
 or P4.
s)and (id == 0 or id == 1 or id == 2 or id == 3 or id == 4))Uppaal is tested both with and without an optimization option -a, whi
h tellsit to dete
t ina
tive
lo
ks. This option improves the performan
e of Uppaalfor the models in question. Table 8.1
ontains the number of in
lusion
he
ksperformed by ea
h method in verifying the property on models of di�erentsize. Likewise table 8.2
ontains the number exploration steps.In
lusion Che
ks# pro
esses Uppaal Uppaal -a FBR CBR2 81 66 39 273 967 593 344 3934 14729 6850 2247 11975 275391 97077 12679 28186 6113281 1633538 65537 5556Table 8.1: In
lusion
he
ks. Fis
her's algorithm.Exploration Steps# pro
esses Uppaal Uppaal -a FBR CBR2 29 23 17 123 301 181 108 854 4121 1889 563 1685 70381 24701 2658 2836 1441885 387925 11833 430Table 8.2: Exploration steps. Fis
her's algorithm.From table 8.1 and 8.2 we
an see that both FBR and CBR performs sig-ni�
antly better than Uppaal, both with and without the -a option. CBRalso outperforms the FBR method. In table 8.3 and 8.4 we will
al
ulate thefa
tor by whi
h the number of operations grow when we in
rease the numberof
omponents. We
al
ulate this growth fa
tor by dividing the number ofoperations required for 3 pro
esses with the number of operations requiredfor 2 pro
esses, and so on. For both versions of Uppaal the growth fa
torin
reases as the number of pro
esses in
rease, indi
ation greater than expo-nential growth. For both FBR and CBR the growth fa
tor de
reases as the77

78 Experimental Resultsnumber of pro
esses grow, indi
ating sub exponential growth. The growthis still far from linear. We
annot
on
lude that this will be the
ase forall models, but for this parti
ular
ase Cbr-verifyta has both the lowestnumber of operations and the lowest growth fa
tor. The only ex
eption forthis is the growth from two to three pro
esses, where FBR has a lower growthfa
tor. In
lusion Che
ks# pro
esses Uppaal Uppaal -a FBR CBR3/2 11.9 9.0 8.8 14.64/3 15.2 11.6 6.5 3.05/4 18.7 14.2 5.6 2.46/5 22.2 16.8 5.2 2.0Table 8.3: Growth fa
tor. In
lusion
he
ks. Fis
her's algorithm.Exploration Steps# pro
esses Uppaal Uppaal -a FBR CBR3/2 10.4 7.9 6.4 7.14/3 13.7 10.4 5.2 2.05/4 17.1 13.1 4.7 1.76/5 20.5 15.7 4.5 1.5Table 8.4: Growth fa
tor. Exploration steps. Fis
her's algorithm.When verifying a property that
annot be satis�ed Uppaal will eventuallysear
h the entire rea
hable state-spa
e. This means that no matter whatunsatis�able property we verify on the models used above, we will get theexa
t same number of operations. On the other hand the eÆ
ien
y of theFBR and CBR methods is very dependent on the property we want to verify.8.2.2 Soldiers ProblemWe
hoose this problem for several reasons. It is
ompositional in nature, itis distributed with Uppaal and it was also analyzed in the previous report[Lar02℄. In the previous report it was remodeled
ompared to the versiondistributed together with Uppaal. Here we
hoose to in
lude test data forboth models. 78

Experimental Results 79The problem
an be des
ribed as follows. A bun
h of soldiers have to
rossa river over a narrow bridge, in the middle of the night. They have onlyone tor
h, whi
h they need to
ross the bridge, at the same time the bridge
an only
arry the weight of two of the soldiers at a time. This means thatwhen two soldiers have
rossed the bridge one of them must walk ba
k to theoriginal side with the tor
h. So a new pair of soldiers
an
ross the bridge.The soldiers walk at di�erent speeds a
ross the bridge, and if two of them
ross the bridge together, they walk at the speed of the slowest of the two.The usual question to solve is;
an all the soldiers
ross the bridge within Xtime units?
free1

free2

one

two

take? take?

L:= -L+1

release? release?

over ready safe

u_overu_readyunsafe

release !

y>= delay L== 1

y:= 0
take !

release !

y>= delay

L== 0

y:= 0

take !

Figure 8.2: The Tor
h automata and the prototype for the Soldier automata.In the version distributed with Uppaal, shown in �gure 8.2, the tor
h ismodeled by an automaton, and so is ea
h of the soldiers. In the version fromthe previous report, we modeled the lo
ation of the tor
h by an integer vari-able with three values. When one or two soldiers begin their journey a
rossthe bridge they
hange the value of the integer, su
h that no other soldiers
an
ross the bridge. When they get to the other side they
hange the valueof the integer to re
e
t, on whi
h side of the bridge the tor
h
urrently islo
ated. In this model we do not use prototypes but individual automata.But the automata still resemble ea
h other so mu
h, that we have
hosen toshow only one of them in �gure 8.3.In the following the problem is modeled with four soldiers, S1, S2, S3, andS4. The four soldiers take respe
tively 5, 10, 20, and 25 time units to
rossthe bridge. In table 8.5 we show the properties that will be tested on bothmodels. These properties will also be tested on Uppaal, with the dete
tina
tive
lo
ks option. 79

80 Experimental Results
unsafe X

A

B

safeL == 0

L := 1,
y4 := 0

L == 0

L := 1, y4 := 0

go!

y4 >= 25

L := 2

off!

y4 >= 25

L := 0

off!

L == 2

y4 := 0,
L := 1

go!

y4 >= 25
L := 2

y4 >= delay

L := 0 L == 2

L := 1,
y4 := 0

L == 0

L := 1, y4 := 0

go?

y4 >= 25

L := 2

off?

L == 2

y4 := 0,
L := 1

go?

y4 >= 25

L := 0

off?

Figure 8.3: Soldier4, one of the timed automata used in this example. Onthis �gure the transitions marked with two syn
hronization labels, e.g. go!and go?, are a
tually two transitions with the same reset sets and guards.The per
entage
olumns in table 8.6 and 8.7 are
al
ulate by dividing thenumber of operations needed in the CBR method with the number of opera-tions used inUppaal. The tables show that espe
ially for the properties thatare not satis�ed, Uppaal uses a lot fewer operations. This is also the
asefor the most
omplex property, property 8. It is only for the �rst two simpleproperties that the CBR method is
onsistently better. The remodeled sol-diers problem generally requires both less in
lusion
he
ks and explorationsteps. There is only one ex
eption from this, whi
h is the number of in
lusion
he
ks required by the CBR method for property number 1. With this modelUppaal generally performs better than Cbr-verifyta.8.3 Con
lusion on TestsThe tests
arried out in the previous se
tion show varying results. In themost extreme
ase, Fis
her's algorithm with six pro
esses, where the CBRmethod is best, Uppaal uses 29.401% more in
lusion
he
ks and 90.215%more exploration steps. These results are obtained by dividing the num-80

Experimental Results 811 E<> S1.safe YES2 E<> S1.safe and S2.safe YES3 E<> S1.safe and S2.safe and S3.safe YES4 E<> S1.safe and S2.safe and S3.safe and S4.safe YES5 E<> S2.safe and S3.safe and S4.safe and time <= 39 NO6 E<> S2.safe and S3.safe and S4.safe and time <= 60 YES7 E<> S1.safe and S2.safe and S3.safe and S4.safe and time <= 59 NO8 E<> S1.safe and S2.safe and S3.safe and S4.safe and time <= 60 YESTable 8.5: Properties to be veri�ed on soldiers problem.In
lusion Che
ks Exploration StepsProperty Uppaal -a CBR % Uppaal -a CBR %1 139 21 15.1% 42 9 21.4%2 226 77 34.1% 80 27 33.8%3 876 898 102.5% 288 271 94.1%4 1485 3724 250.8% 468 1057 225.9%5 1709 26714 1563.1% 534 5869 1099.1%6 892 1527 171.2% 294 465 158.2%7 1707 9139 535.4% 532 2701 507.7%8 1497 10445 697.7% 474 3103 654.6%Table 8.6: Veri�
ation of di�erent properties on the original model of thesoldiers problem. With Uppaal -a option.ber of operation used by Uppaal with the number of operations used byCbr-verifyta. In the
ase where Cbr-verifyta uses the most operations
ompared to Uppaal, it uses 1563% more in
lusion
he
ks and 1099% moreexploration steps. We
an
on
lude that neither the one nor the other methodgenerally is better than the other. Whi
h method that uses the fewest op-erations depend both on the model and on the property to be veri�ed. ForFis
her's algorithm, where CBR always used fewer operations, it outperformsUppaal by more than, what Uppaal does for the Soldiers problem. The
on
lusion is that CBR has
onsiderable strengths, when applied to the do-main of TAN, and it is worth doing some extra work to try and explore thefull potential of the method. It might be a possibility to develop heuristi
sthat
an help
hoosing if forward or
ompositional ba
kwards analysis is bestsuited for a spe
i�
 veri�
ation job. Another possibility would be to
ombineforward analysis with CBR and
he
k for interse
tion between the forwardand ba
kwards rea
hable state-spa
e. This method would properly perform81

82 Experimental ResultsIn
lusion Che
ks Exploration StepsProperty Uppaal -a CBR % Uppaal -a CBR %1 49 30 61.2% 12 3 25.0%2 55 33 60.0% 13 4 30.8%3 249 646 259.4% 56 92 164.3%4 436 3031 695.2% 96 441 459.4%5 496 6189 1247.8% 113 1096 969.9%6 227 810 356.8% 61 128 209.8%7 496 6598 1330.2% 113 1036 916.8%8 447 6630 1483.2% 99 1043 1053.5%Table 8.7: Veri�
ation of di�erent properties on the remodeled soldiers prob-lem. With Uppaal -a optionworse for properties that
annot be satis�ed, but might deliver better resultsfor properties that are true.To perform a thorough test of di�erent veri�
ation methods, we really needa very broad spe
tra of real-world veri�
ation s
enarios, instead of two
las-si
al veri�
ation examples. I spite of the limited test material we
an still
on
lude that CBR for TA is a potentially very eÆ
ient veri�
ation method.

82

9 Con
lusionIn this
hapter we will �rst dis
uss possible dire
tions for future work. Finallywe will
on
lude on the di�erent parts of the report.9.1 Future WorkIn this se
tion we will des
ribe several dire
tions for future work.The most important dire
tion of future work, for the usefulness of the CBRfor TA method, is the extensions des
ribed in
hapter 6. If the CBR for TAmethod should be a serious
ompetitor to Uppaal, one would have to beable to handle all of these extension. The major
hallenge lies in handlinginvariants.Another natural line of future work would also be to develop a full imple-mentation of the CBR for TA method des
ribed in this report. A remaining�eld of work is also to test the eÆ
ien
y of di�erent data stru
tures to holdthe past and waiting list. This implementation should o�
ause in
lude theextensions if solutions are found on ways to handle invariants and so on.A third option is to look into the possibility of
ombining CBR with otherveri�
ation methods. As mentioned in se
tion 8.3 it would �rst of all be apossibility to
ombine CBR with some form of forward rea
hability analysis.Both by doing forward a ba
kwards rea
hability analysis at the same time.But also by
reating some heuristi
s to determine whether the CBR methodor forward rea
hability analysis is best suited for a parti
ular veri�
ationtask. Yet another possibility is to design heuristi
s for the order in whi
h toin
lude the
omponents in the analysis.Finally one
ould apply the CBR method to some new domain. With thenew generalized framework, the CBR method should be dire
tly appli
ableto many useful domains, both dis
rete and real-time domains.9.2 Con
lusionWe have in this report su

eeded in developing two versions of a more generalCBR framework. We have proven the
orre
tness of the two a

ompanying83

84 Con
lusionCBR algorithms. The one based on the original CBR algorithm and theother based on the
on
ept of symboli
 states. We spe
i�ed what is requiredof a domain for ea
h of the two CBR methods to be appli
able. We have as inthe previous report [Lar02℄ introdu
ed the domain of Timed Automata (TA),and the algorithm implemented in Uppaal. We apply the CBR methodto the domain of TA by ful�lling the requirements, and thereby withouthaving to reprove the
orre
tness of the algorithm. Several extensions of thedomain were also
onsidered. A test implementation has been developed andexperimental results have shown the potential of the CBR for TA method.The experimental results show that the e�e
tiveness of the method dependson both the model and the property to be veri�ed.The
on
lusion of the report is that CBR for TA is a very powerful methodfor some models, and the method is worth further investigation.

84

10 Danish ResumeDenne rapport besk�ftiger sig med udvikling af en metode til KompositionelBagl�ns analyse af om tilstande kan n�as. Denne metode hedder Compo-sitional Ba
kwards Rea
hability (CBR). I kapitel 2 beskrives den generelleCBR metode, der baserer sig p�a en �nere og �nere partitionering af til-stands rummet. F�rst introdu
eres en algoritme inspireret af den oprindeligeCBR algoritme fra [LNAB+98℄. Herefter udvikles en lignende algoritme,som baseres p�a brugen af symbolske tilstande. Korrektheden af begge algo-ritmer vises og betingelser opstilles for anvendelsen af metoden p�a et givetdom�ne. I kapitel 3 introdu
eres Tids Automater (Timed Automata (TA)).I kapitel 4 forklares den analyse metode for TA, som bruges i v�rkt�jet Up-paal. I kapitel 5 anvendes CBR metoden p�a dom�net TA ved at opfyldebetingelserne for den symbolske algoritme. I kapitel 6 diskuteres mulighederfor udvidelser af TA dom�net. Disse udvidelser betragtes da det netop erdem, der er implementeret i v�rkt�jet Uppaal. Herefter beskrives i kapitel7 den test implementation, som er blevet udviklet med grundlag i kildekodenfra Uppaal. Denne implementation bliver i kapitel 8 sommenlignet medblandt andet Uppaal, for at unders�ge CBR for TA metodens styrker ogsvagheder. Til slut beskrives mulige retninger for fremtidigt arbejde og enkonklusion drages i kapitel 9.

85

86

Bibliography[AD94℄ Rajeev Alur and David L. Dill. A theory of timed automata.Theoreti
al Computer S
ien
e, 126(2):183{235, 1994.[AL℄ Henrik R. Andersen and Kim G. Larsen. Kompositionel og trin-vis analyse af tilstandssystemer baseret p�a afh�ngighedsanalyse.Part of patent appli
ation.[BDM+98℄ M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, andS. Yovine. Kronos: A model-
he
king tool for real-time sys-tems. In Pro
. 1998 Computer-Aided Veri�
ation, CAV'98, vol-ume 1427 of Le
ture Notes in Computer S
ien
e, Van
ouver,Canada, June 1998. Springer-Verlag.[Bey01℄ Dirk Beyer. Improvements in BDD-based rea
hability analysisof timed automata. In FME, pages 318{343, 2001.[BLL+98℄ Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Petters-son, Yi Wang, and Carsten Weise. New Generation of Uppaal.In Int. Workshop on Software Tools for Te
hnology Transfer,June 1998.[BLP+99℄ G. Behrmann, K. Larsen, J. Pearson, C. Weise, and W. Yi.EÆ
ient Timed Rea
hability Analysis Using Clo
k Di�eren
eDiagrams . In Pro
eedings of CAV99, pages 22{24. SpringerVerlag, 1999.[Bry86℄ Randal E. Bryant. Graph-based algorithms for Boolean fun
tionmanipulation. IEEE Transa
tions on Computers, C-35(8):677{691, August 1986.[God96℄ Patri
e Godefroid. Partial-order methods for the veri�
ation of
on
urrent systems: an approa
h to the state-explosion problem,volume 1032. Springer-Verlag In
., New York, NY, USA, 1996.87

[Kat98℄ Joost-Pieter Katoen. Con
epts, Algorithms, and Tools forModel Che
king. Le
ture Notes of the Course "Me
hanisedValidation of Parallel Systems", Friedri
h-Alexander Universit�atErlang-N�urnberg, 1998.[K.L93℄ K.L. M
Millan. Symboli
 Model Che
king. Kluwer A
ademi
Publishers, Norwell Massa
husetts, 1993.[KLL+97℄ K. J. Kristo�ersen, F. Laroussinie, K. G. Larsen, P. Pettersson,and W. Yi. A
ompositional proof of a real-time mutual ex
lu-sion proto
ol. In Pro
. 7th Int. Joint Conf. Theory and Pra
ti
eof Software Development (TAPSOFT'97), Lille, Fran
e, Apr.1997, volume 1214, pages 565{579. Springer, 1997.[Lar02℄ Ulrik Larsen. Dat5-report: Compositional ba
kwards rea
habil-ity for simple timed automata. January 2002.[LNAB+98℄ J�rn Lind-Nielsen, Henrik Reif Andersen, Gerd Behrmann, Hen-rik Hulgaard, K�are Kristo�ersen, and Kim G. Larsen. Veri-�
ation of Large State/Event Systems using Compositionalityand Dependen
y Analysis. In TACAS'98 Tools and Algorithmsfor the Constru
tion and Analysis of Systems. Le
ture Notes inComputer S
ien
e, 1998.[LPY95℄ Kim G. Larsen, Paul Pettersson, and Wang Yi. Compositionaland Symboli
 Model-Che
king of Real-Time Systems. In Pro
.of the 16th IEEE Real-Time Systems Symposium, pages 76{87.IEEE Computer So
iety Press, De
ember 1995.[LPY97℄ Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in aNutshell. Int. Journal on Software Tools for Te
hnology Trans-fer, 1(1{2):134{152, O
tober 1997.[Mil89℄ Robin Milner. Communi
ation and Con
urren
y. Prenti
e HallInternational Series in Computer S
ien
e. Prenti
e Hall, 1989.[Min99℄ Marius Minea. Partial Order Redu
tion for Veri�
ation ofTimed Systems. PhD thesis, S
hool of Computer S
ien
eCarnegie Mellon University, De
ember 1999.[Pet99℄ Paul Pettersson. Modelling and Veri�
ation of Real-Time Sys-tems Using Timed Automata: Theory and Pra
ti
e. PhD thesis,Department of Computer Systems, Uppsala University, 1999.88

[YPD94℄ Wang Yi, Paul Pettersson, and Mats Daniels. Automati
 Ver-i�
ation of Real-Time Communi
ating Systems By Constraint-Solving. In Dieter Hogrefe and Stefan Leue, editors, Pro
. of the7th Int. Conf. on Formal Des
ription Te
hniques, pages 223{238. North{Holland, 1994.

89

