Compositional Backwards Reachability for
Timed Automata

Ulrik Larsen
ulrikl@cs.auc.dk
Masters Thesis

Department of Computer Science
Aalborg University

June 20" 2002

Aalborg University

Department of Computer Science

«

Title:
Compositional Backwards Reachabil-
ity for Timed Automata

Semester:
Spring 2002, DAT6

Project Period:
February 1% 2002 to
June 20*" 2002

Author:
Ulrik Larsen

Supervisor:
Kim G. Larsen

Number of Pages:

89

Keywords:

Reachability, Compositional Back-
wards Reachability, Timed Au-

tomata, Verification, State-space ex-
plosion.

Abstract:

This report deals with the devel-
opment of a general framework for
Compositional Backwards Reacha-
bility (CBR) and with the verifi-
cation of reachability properties on
Timed Automata Networks (TAN).
The CBR method is developed on
the basis of a series of finer and
finer partitionings of the state-
space. Two different CBR algo-
rithms are presented and proven
correct. The domain of TAN, which
is a real-time model, is described.
The symbolic DBM-based analysis
of Timed Automata used in exist-
ing verification tools, like Uppaal is
explained. The second of the CBR
algorithms is applied to the domain
of TAN. Several extensions to the
domain are discussed, and a test im-
plementation of the basic method is
developed. This implementation is
used to obtain some experimental
results. Finally future work is dis-
cussed and a conclusion is drawn.

Preface

This Masters Thesis, was written at the research unit of Distributed Systems
and Semantics, Department of Computer Science, Aalborg University. It is a
further development of the Dat-5 report “Compositional Backwards Reach-
ability for Simple Timed Automata” [Lar02]. Two of the chapters from the
previous report have been included without substantial changes.

Acknowledgements

First and foremost, I would like to thank my supervisor Professor Kim G.
Larsen for his good advice and many suggestions throughout the project
period. Secondly, I would like to thank Gerd Behrmann for introducing me
to, and answering question about, the UPPAAL source code.

Ulrik Larsen

Contents

1 Introduction

1.1 Motivation
1.2 Related Work
1.3 Relation to Previous Report and Outline
2 CBR in General
2.1 Reachability Analysis L.
2.1.1 Forward
2.1.2 Backwards o
2.1.3 Combined
2.2 The CBR Concept
2.3 Partitioning oo
2.3.1 Central Theorems
2.4 CBR Algorithms
2.4.1 Simple Algorithm
2.4.2 Symbolic States
2.4.3 Symbolic State Algorithm
2.5 Differences from the Original CBR
3 Timed Automata (TA)
3.1 Informal Description
3.2 Preliminaries
3.3 Timed Automaton
3.4 Timed Automata Network
4 Symbolic Analysis of TA
4.1 Z0mes. e e
4.1.1 Operations on Zones
4.2 Difference Bounded Matrices
4.3 Symbolic Reachability
4.3.1 Algorithmso

10
11

13
13
14
14
15
15
17
20
26
26
28
30
33

35
35
36
37
38

4.3.2 Theorems
4.3.3 Correctness of Backwards Algorithm

5 Application of CBR on TA
5.1 Fulfilling the Requirements

6 Extensions
6.1 Integers
6.2 Invariants oo
6.3 Urgent Locations
6.4 Committed Locations
6.5 Urgent Channels

7 Implementation
71 CodeReuse
7.2 Focus of the Implementation
7.3 Dependency Analysis

8 Experimental Results
8.1 Performance Parameters
8.2 Test Cases
8.2.1 Fischer’s Mutual Exclusion Algorithm
8.2.2 Soldiers Problem
8.3 Conclusionon Tests

9 Conclusion
9.1 Future Work
9.2 Conclusion

10 Danish Resume

59
99

65
65
67
69
69
69

71
71
71
72

75
75
7
76
78
80

83
83
83

85

1 Introduction

This chapter first motivates the work by explaining the problem at hand.
After this the work is put into the context of related work. Finally the
relation to the previous report [Lar02] is described together with an outline
of the report.

1.1 Motivation

When trying to verify properties of parallel compositions of several compo-
nents, the main problem is the fact that the state-space grows exponentially
in the number of components, known as state-space explosion. When extend-
ing the models from discrete to timed models the state-space increases even
further in size. This report focuses on yet another way to handle the state-
space explosion problem in the presence of time. The underlying patented
method, called Compositional Backwards Reachability (CBR), was first pre-
sented in [LNAB'98] where it was developed for a discrete model called
state/event systems. The goal of this report is to continue the work from the
previous report of extending the CBR method to a new domain of problems,
namely verification of real-time models. When modeling continuous real-time
the state-space becomes not just larger but in fact infinite. However, the infi-
nite state-space can be reduced to a finite one by using symbolic techniques to
represent and manipulate certain relevant subsets of the state-space. These
subsets are known as Zones. This technique is well known, and implemented
in the verification tool UPPAAL [LPY97] that can verify safety and reachabil-
ity properties of real-time models described as Timed Automata (TA). In the
newest version UPPAAL one can also verify certain general liveness proper-
ties. In this report we combine the notion of Zones with the CBR method to
develop CBR for TA. UPPAAL is developed in cooperation between Aalborg
University and Uppsala university. The source code for UPPAAL has been
used as a basis in the development of a test implementation of the method
described in this report.

10 Introduction

1.2 Related Work

This section contains a discussion of related work. All the work mentioned
in this section deals in some way with handling the state-space explosion
problem. First we describe some techniques developed for verification of
discrete systems. After this we discuss how these methods can or has been
extended to apply to real-time systems. Some of the citations in this related
work section has been found in [Kat98] by Joost-Pieter Katoen.

The main inspiration for this project is the article [LNAB'98], in which
the CBR method is developed and applied to a discrete model. This, later
patented, method was developed specifically for the industrial verification
tool visualState™, which is used in the development of embedded systems.
In this tool a number of predefined checks is performed on the model entered
by the user. CBR outperformed not only the traditional forward analysis that
was implemented in the tool, but also the current state of the art symbolic
BDD-based methods. Models that could not be verified earlier because of
the state-space explosion, can be verified using CBR. The strength of CBR
is it’s compositionality, which is closely linked to the fact that it performs
backwards verification. This means that in many cases a much smaller part
of the state-space has to be checked before a solution is found.

When verifying continuous real-time models the state-spaces to be analyzed
are infinite. This can be handled by partitioning the continuous part of the
state-space into so-called regions. Regions are subsets of the state-space, such
that every pair of states form a region cannot be distinguished by the model.
If a region is split in two, the two parts would be indistinguishable by the
constraints and guards in the model. This creates a finite but very large state-
space. A better solution is to represent convex unions, so-called Zones, of such
regions. Theoretically there are even more Zones than regions, but a much
smaller number of these will ever be considered in practice during analysis
of real systems. The success of Zones depends on the efficient data-structure
Difference Bounded Matrices (DBMs) used to represent the Zones and the
efficient operations defined on this data-structure. This is the technology
implemented in the tools UPPAAL and Kronos [BDM198].

Another technique that has significantly increased the size of discrete sys-
tems that can be verified is the Binary Decision Diagram (BDD) technique
first introduced by Bryant [Bry86][K.L93]. The BDD technology has been
extended to Clock Difference Diagrams (CDDs) to apply to the verification of
real-time systems [BLP99]. It gives reduction in the size of the state-space
representation but not in the time used for verification.

Another technique to limit the state-space explosion problem is partial order
reduction [God96]. Many different but equivalent interleavings are considered

10

Introduction 11

at once, by only unfolding one of the interleavings, hereby reducing the state-
space explosion. Partial order reduction has also been attempted applied to
verification of real-time systems but without great success [Min99].

The first goal of this report is to generalize the CBR method such that it can
be applied to many possible domains. The second goal of this report is to
show the feasibility of creating a verification tool for Timed Automata (TA)
based on the compositional backwards method for reachability analysis. This
is done by combining the well known DBM technology with the CBR method
in a test implementation. This implementation is then used to obtain some
experimental data.

1.3 Relation to Previous Report and Outline

This section describes how this report is related to the previous report and
gives an outline of the following chapters. The work in this report can be seen
as an extension of the previous report, in which a generalization of the CBR
method was presented. After this the domain of Timed Automata (TA) was
described. Finally the CBR method was applied to the domain of TA. The
CBR framework developed in the former report was not general enough and
had to be adjusted, when applied to the domain of TA. Some parts of the
previous report has been included without substantial changes. This includes
chapters 3 and 4, and parts of chapter 5. This is the sections that describe
the domain of TA. The CBR framework, which is completely redesigned,
is presented in chapter 2. It generalizes the CBR method and shows the
correctness of two different CBR algorithms, each applicable to their own
type of domains. Chapter 3 defines the model of Timed Automata (TA).
The symbolic analysis of TA and the algorithm implemented in UPPAAL is
described in chapter 4. In chapter 5 we proceed to apply the CBR method
to the model of TA. Chapter 6 describes some extension to the model of TA,
and how these would effect the CBR for TA method. The development of
a test implementation of the CBR for TA method is described in chapter 7.
This test implementation is used to obtain some experimental results, which
are discussed in chapter 8. Future work and conclusion is included in chapter
9.

11

12

Introduction

12

2 CBR in General

In this chapter we will firstly describe what backwards reachability anal-
ysis is. After this we will describe the concept of compositional backwards
reachability (CBR). Section 2.3 contains the central definitions and theorems
needed for the CBR algorithm. Two versions of the CBR algorithm will be
presented, and the correctness of both will be proven. Finally the differences
between the original CBR method and the one developed in this report, are
described in section 2.5. In this section we also describe differences from the
framework developed in the previous report [Lar(2].

2.1 Reachability Analysis

In this section we describe the basic concept of reachability analysis. We
define reachability and reachability analysis on general transition systems,
where transition system is defined in the following manner.

Definition 2.1 : TRANSITION SYSTEM

(ST, —), where ST is a set of states (finite or infinite) and —C ST x ST
is a transition relation.

Each transition has a source state and a target state. The source state is the
first ST" component and the target state is the second ST" component. If we
have the transition (s,t) €— we write s — t. When writing a sequence of
transitions we write s; — so —» s3 instead of s; — s9, 59 — s3. We now
define what it means for a state to be reachable.

Definition 2.2 : REACHABILITY

Given a set of initial states Init C ST" and goal states Goal C ST we define
Goal to be reachable if there is a transition sequence

Sog —>S1 —> 89 —> ... —> Sp,

13

14 CBR in General

with sy € Init and s,, € Goal.

There are two fundamental ways of deciding reachability: Forward and back-
wards. The two methods can also be combined. We describe each of the
possibilities in the following three sections.

2.1.1 Forward

In the forward reachability analysis we start with the set of states I'nit and
iteratively compute the set of reachable states in steps as illustrated in figure
2.1.

State space

Dy

Figure 2.1: Forward Reachability Analysis

We use the following formulas to compute each new step:

Fn = Fn,1UPOST(Fn,1) for n >0

where for S C ST, Post(S) ={s'€ ST | Is € S.s — §'}.

If at any point F,, NGoal # () we know that we have a sequence of transitions
that can bring us from a state in Init to a state in Goal. Hence we terminate
with a positive answer. If we have F, = F,,; we have reached a fix point
and we know that no transitions can take us out of the set F,,. This leads
us to terminate the algorithm with the answer that, there is no sequence of
transitions that can bring us from Init to Goal.

2.1.2 Backwards

The main difference between forward and backwards reachability analysis is
the set of states that we start with. We again want to know if there is a
sequence of transitions that can bring us from a state in Init to a state in
Goal, but this time we start with Goal and compute the set of states that can

14

CBR in General 15

reach Goal. First the states that can reach Goal by taking one transition,
then two transitions, and so on. This is illustrated in figure 2.2.

State space

5 (5 (o)

Figure 2.2: Backwards Reachability Analysis

In forward analysis, we know that all the states we explore are reachable
states. In backwards analysis we can have both reachable and unreachable
states in our set of states. We use the following formulas to calculate the
steps:

By = Goal
Bn = anlupRE(anl)

where for S C ST, PRE(S) ={s € ST | 35’ € S.s — '}

Again we have two termination conditions. The algorithm terminates with
a positive answer if, at any point, B, and Init intersect. The algorithm
terminates with a negative answer if we reach a fix-point, B, = B,, 1.

2.1.3 Combined

The two previously described methods can be combined, by doing forward
and backwards reachability analysis in parallel. For each step we check for
intersection between the two sets F,, and B,,. If these two sets intersect in
a state s we know that we have a sequence of transitions leading from In:t
to s and a sequence of transitions leading from s to Goal, and hence Goal is
reachable from In:it. This method may give a faster positive answer but has
the same negative termination conditions as the other two methods. One of
the sets has to reach a fix-point in order for us to conclude that Goal cannot
be reached from Init.

2.2 The CBR Concept

In this section we will first give a short description of how CBR works. After
this we give some intuition about why the method was developed.

15

16 CBR in General

Compositional Backwards Reachability (CBR) is based on traditional back-
wards reachability as presented in the previous section. It consists of a num-
ber of steps, each resembling one run of the conventional backwards reacha-
bility analysis. The result of each step is an under-approximations of the set
of states that can reach Goal. After each step we check for intersection be-
tween the current under-approximation and I'nit. If the two sets intersect we
have found a path leading from some state in Init to some state in Goal, and
the algorithm terminates with a positive answer. If there is no intersection
we have to calculate a new and larger under-approximation. This process is
continued until the two sets intersect or the under-approximation no longer
is an under-approximation, but the full set of states that can reach Goal. If
the full set does not intersect with Init we know that no path exists from
Init to Goal and the algorithm terminates with a negative answer.

An important factor in the efficiency of the method is the fact that the end
result of one step can be used as the starting point of the next step. Figure
2.3 illustrates two such calculations of under-approximations. The end result
of the first step, shown in the top part of the figure, is used as the starting
point of the second step, shown in the bottom part of the figure.

State space

NewGoal = B,,

Figure 2.3: Calculation of two under-approximations.

This approach of stepwise under-approximation, was developed to cope with
very large systems, consisting of many components in parallel. In the original
domain of State/Event systems, each of the components, is in itself a transi-
tion system. The idea was, to only look at a subset of the components, and
see if this subset could reach Init backwards, without involving the other
components. If these components could not reach Init extra components
were taken into consideration, until all components, or rather a dependency

16

CBR in General 17

closed set of components, were considered. The original CBR method used
a concept of having an index set of the components. This index set was in-
creased to give larger and larger under-approximations. This concept will in
this report be replaced by a more general concept of partitioning the state-
space into finer and finer partitions. The concept of partitioning will be the
topic of the next section. The calculation of a series of under-approximations
can theoretically lead to slower negative termination, but more likely also to
a much faster positive termination. The efficiency of the method also de-
pends on the fact that, these under-approximations can be represented and
handled easily.

2.3 Partitioning

In this section we will develop the formal foundation for the CBR method.
The idea is to use a succession of finer and finer partitionings of the state-
space ST, to under-approximate the set of states that can reach Goal. By
refinement of the partitioning, hence enlarging the under-approximation, we
will get closer and closer to the full set of states that can reach Goal.
Intuitively partitioning can be described as splitting the state-space into a
number of disjoint parts. For some domain we will have an infinite number
of partitions in each partitioning. Formally we define a partitioning in the
following way.

Definition 2.3 : PARTITIONING

P = {St; | i € I} is a partitioning of the state-space ST if the following
three conditions hold:

1. U{St; |iel}=ST
2. Vi St; £ 0

3. St;NSt; =0 when ¢ # j

One can talk of one partitioning being finer than another. We define a partial
order on the set of all partitionings.

17

18 CBR in General

Definition 2.4 : ORDERING OF PARTITIONINGS

We say that P is finer than Q that is P C Q if
ViGIEIjEJ.StigSt;-

where P = {St; [i € [} and @ = {St} | j € J}

Figure 2.4 illustrates two partitionings P and Q where P is finer than Q.

State space D ——and—

Q_

Figure 2.4: Two partitionings P C Q

It is worth noticing that, because C is a partial order, not all pairs of parti-
tionings can be ordered. When using the CBR method, we will start with an
initial partitioning Py and from that create finer and finer partitionings, until
we have a partitioning, in which all states in each partition are bisimilar. This
final partitioning Psepe Will be defined later. The only requirement for the
initial partitioning is that Goal is Py sorted. The succession of partitionings
could be written as follows: Py 2 P 2 ... 3 P, 2 Paiabie

Now we define the notion of P-equivalence.

Definition 2.5 : P-EQUIVALENCE

s~pt < Vi(s € St; <= t e St;) where P ={St; |i €I}

The equivalence classes generated by a specific ~p equivalence, exactly fol-
lows the partitions of the corresponding partitioning P.

We say that a subset H of the state-space is P-sorted if, for the given par-
titioning P, no partition intersects both with H and the complement of H.
This is formally defined in the following way:

18

CBR in General 19

Definition 2.6 : P-SORTEDNESS

Let P ={St; | i € I} and let H C ST. We say that H is P-sorted if

Vs,s' € ST.s€e HNs~ps = s € H.

In correspondence with PRE(S) defined in section 2.1.2 we define the P-
sorted predecessors.

Definition 2.7 : PREp(H)

PREP(H) = {8 e ST | Vit ~p s.dt' e Ht — tl}

This means that if one state ¢ can take a transition into H, then every other
state that is ~p equivalent with £ must also be able to take a transition into
H, before this partition, ~p equivalence class, is included in PREp(H). We
illustrate this in figure 2.5. As this definition imposes an extra condition, in
comparison with the original PRE, it can only return a set of states that is
equal to, or smaller than, the set of states returned by the original predecessor
function. This means that we obtain an under-approximation.

State space

Figure 2.5: Illustration of PREp(H).

Here it is not necessary to require that H is P-sorted. This requirement will
be added when extending it to the PRE,(H) function, where it is needed
because H itself is included in the result.

This definition actually gives us one predecessor function for each partition-
ing P. We will in turn use each of these functions in our CBR algorithm as
we refine the partitionings.

Lemma 2.8
PREp(H) is P-sorted

19

20 CBR in General

The proof of lemma 2.8 is very simple.

Proofofoflemma 2.8 " = = = s s s 5 5 &8 8 8§ B §E B B H B N

We show that whenever s € PREp(H) and t ~p s then ¢t € PREp(H). Thus
we must show that u — ' for some v’ € H whenever u ~p t. Because ~p
is an equivalence relation, whenever we have that u ~p t (and t ~p s) we
can also conclude that u ~p s, and as s € PREp(H) it follows that indeed

u — u' for some v’ € H.
H H EH =& | | H H EH =& | | H H EH =& | | H H EH =& H H E E = H H E E =

The following lemma states that the PREp operation is monotonic with re-
gard to the input set.

Lemma 2.9

PREP(Hl) - PRE’]D(HZ) Zf Hl - H2

The proof of lemma 2.9 only uses the definition of PREp and the fact that
H, C H,.

Proofoflemma2.9 = = = s s s s s s 8 8 8 B B B HE B H H B
Let s € PREp(H;). Then t — t' for some t' € Hy, for all t ~p s. But as
Hy; DO H, we also have that ¢ — ¢’ for some t' € H, for all ¢ ~p s, and hence
s € PREp(Ha).

2.3.1 Central Theorems

In this section we will present the three central theorem: 2.15, 2.16, and
2.18. These theorems are needed in the construction of the CBR algorithm.
First we present lemmas 2.10 and 2.13, which are simpler versions of respec-
tively theorem 2.15 and theorem 2.16. After this the PRE} operation will be
introduced and the three final lemmas will be proved.

In all of the following we will use two partitionings P and Q. The partition-
ing P is finer than Q which can be expressed in the following way; P C Q.

Lemma 2.10
PrEg(H) C PrREp(H) where P & Q

20

CBR in General 21

Lemma 2.10 states that PREp(H) is monotonic with regard to how fine the
partitioning P is. If the partitioning becomes finer the resulting set can only
become larger. This follows the intuition that if we refine the partitioning
the under-approximation becomes better.

Proofoflemma2.1) = = = = = = = s = " ® B B B HE H B H H H
Let s € PREg(H). Then t — ¢’ for some t' € H, for all t ~g s. However
as P is a finer partitioning than Q, giving us ~pCn~g, we also have that
t — t' for some t' € H, for all t ~p s. Thus s € PREp(H).

@ B ®E B §E §E E E E E FE E ER R RN ER R R ER N E R R RN R B CBHN
For the next central lemma we need the following lemma.

Lemma 2.11

PrEp C PRE(H)

Lemma 2.11 states that any under-approximation of the set of predecessors
will be included in the full set of predecessors.

Proofoflemma 2.11 = = = = = = = s s " 8 B B B HE H B H H N
Assume s € PREp(H). Then t — t' with ¢ € H for all t ~p s. In particu-

lar, s — s’ for some s’ € H (because s ~p s). Then s € PRE(H).
@ B ®E B §E §E E E E E FE E ER R RN ER R R ER N E R R RN R B CBHN

For the next lemma we need a partitioning Pgape, With a certain property.
For this we first need to define the bisimulation Bgee, which depends on the
transition system and the set of goal states Goal.

Definition 2.12 : BISIMULATION Bgou

Baoa 1s a bisimulation if whenever (s,t) € Bgou then the following three
conditions hold:

1. s € Goal <= t € Goal
2. s — s =3t — A) € Baoa

3.t —t'=3ss — S A (S, 1) € Baoa

This defines all pairs of states that are bisimilar. We call a partitioning stable
if all states in each partitioning are bisimilar. This does not describe exactly

21

22 CBR in General

one partitioning. For a given domain, the requirement is that we find one
partitioning Pgpe with the give property. An example of a relation that
gives us a stable partitioning is the identity relation Id = {(s,s) | s € ST}.

Lemma 2.13

H)=PRre(H) where H is Psape sorted

P REpsta,ble (

Lemma 2.13 is needed in order to guarantee that, if we partition the state-
space down to bisimulation, we will get the same result as with traditional
backwards reachability analysis.

Proofoflemma2.13 " = = = = = = = @ # B B 0 B B B B H ®H N
We split the proof into two parts:

C: follows from lemma 2.11.

DO: Let s € PRE(H). Then s — s’ with s’ € H. Now let ¢t ~ 5. Thent — ¢’
for some t' with ¢’ ~ s’ (by definition of ~). But H was assumed to be
Pitanie sorted and hence t' € H. It follows that s € PREp H).

stable (

We now define the PRE}, operation and prove lemmas 2.10 and 2.13 in their
new form. Intuitively PRE} (H) is all the states that can reach H in exactly
n transitions. From this we define PRE}(H) to be all the states, that can
reach H in any number of transitions.

Definition 2.14 : PRE}(H)

For any given partitioning P we define PREL(H) as the union:
Pre,(H) = U PrE}(H)
n=0

where PRE} is defined recursively by the following formulas:

PrRE}(H) = H
Pre}T (H) = PRrEp(PRER(H))

and H is required to be P-sorted.

22

CBR in General 23

The above definition can also be applied to the original predecessor function
PRE(H) to obtain a definition of PRE"(H) and PRE*(H). The notation
PRE*(H) will be used in theorem 2.18 and PRE"(H) will be used in the
proof of theorem 2.18. For PREL(H) to be P-sorted we have to require that
H is P-sorted because H itself is included in PRE}(H).

The following theorem states that whenever we refine the partitioning we
will obtain an under-approximation that is a superset of the previous one.
The left side uses the coarser partitioning Q and this set is a subset of the
right side that uses the finer partitioning P.

Theorem 2.15
PRrREG(H) C PRER(H) where P C Q

The proof of theorem 2.15, which is an induction proof, uses lemma 2.10 and
lemma 2.9. Lemma 2.10 is similar to theorem 2.15 except for the stars, while
lemma 2.9 states that the PREp(H) operation is monotonic with regard to
the input set H.

Proofoftheorerm 2.15 = = = = = = = = = " E B E B B H B B ®
The theorem obviously follows from the from the fact that PREG(H) C
PRrEZ (H) for all n. We prove this by induction in n.

Basis n = 0: By the definition of PRE}, we can rewrite PREG(H) C PRE), (H)
to H C H which is obviously true.

Step: Assume PREG(H) C PRER(H) (IH) then

n+1 _ n
PREG"™ (H) = PREQ(PREG(H)) € by lemma 2.9 and (IH)
PREQ(PRER(H)) C by lemma 2.10
PrEp(PRER(H)) = PreERT(H).

Now we have proven that Vn.PREG(H) C PRER(H).
H BN

We now extend lemma 2.13 by replacing PREp,, ,,, with PREp —and PRE
with PRE".

Theorem 2.16
PrREp (H)=PRE"(H) where H is P-sorted

Theorem 2.16 now states that no matter how many backwards steps we take,
with the final partitioning Pgpe of the state-space, the result will never

23

24 CBR in General

differ from that obtained using the original predecessor function. The proof
for theorem 2.16 follows the structure of proof for theorem 2.15.

Proofoftheorem 2.16 = = = m = = = @ = § B § § B B B ®H H N
The theorem clearly follows from the fact that PrREL (H) = PRE"(H) for
all n. We prove this by induction in n.

Basis n = 0: By the definition of PRE}, we can rewrite PRE) (H) =
PrE’(H) to H = H which is obviously true.

Step: Assume PRE}, table(PRE"(H) (IH) then

PrRER

) =
stabl (H

(H)
e (PRER, (H)) = by lemma 2.13 and (IH)
PrEp(PREJ(H)) = PrERT(H).

PRrREp

Hence we have proved that PREp (H) = PRE"(H) holds for all n.

For the final central theorem we need an extended version of the monotonic-
ity lemma 2.9, which uses PRE} instead of PREp.

Lemma 2.17
PrEL(H,) C PRE,(Hs) when Hy C Hy

As for the previous proof, the proof of lemma 2.17 follows the structure of
the proof for theorem 2.15.

Proofoflemma2.17 " = = = = = = = = § @ B § B B B B ®H ®H ®
The lemma follows clearly from the fact that PRE% (H,) C PRER(H;) for all
n whenever H; C H,. We prove this by induction in n.

Basis n = 0: By the definition of PRE}, we can rewrite PREY(H;) = PRE), (Hy)
to Hy, C H, which is obviously true.

Step: Assume PRE}(H;) C PRE}(H,) (IH) then
Prep(H,) =
PRER(PRER(H))) < by monotonicity (lemma 2.9) and (IH)
PrEp(PRE)(H,y)) = PRERT (Ha).

This is exactly lemma 2.9 and hence we have proved that PRER(H;) C
PRE} (H2) holds for all n when H; C H,.

24

CBR in General 25

The following and final of the three central lemmas lets us reuse states that
has already been calculated. If one set of predecessors has been calculated us-
ing partitioning Q, it can be used as the starting point of the next calculation
using a finer partitioning P.

Theorem 2.18
PRrEp(H) = PRER(PREG(H)) where P C Q

The following proof consists of two parts, where the second of them once
again follows the structure of the proof for theorem 2.15.

Proofoftheorerm 2.18 = = = = = = = = = " E B E B B HE B B ®
We want to prove that PREL(H) = PRER(PREG(H)) for two partitionings
P and O where P C Q. We consider the two inclusions.

C: Obviously H C PREG(H) and PRE}, is monotonic with respect to the in-
put set according to lemma 2.17. Hence we can conclude that PREL(H) C
PRE}L(PREG(H)).

D: The inclusion follows from the fact that PREL(H) O PREL(PREG(H))
for all n. We prove this by induction in n.

Basis n = 0: In this case PRER(H) O PRE}(PRESH(H)) reduces to
PRE}(H) O PREG(H) which is exactly theorem 2.15.

Step: Assume PREL(H) O PREL(PREG(H)) (IH) then
PrRE}T(PREL(H)) =
PrEp(PRER(PREG(H))) < by monotonicity (lemma 2.9) and (IH)
PRrREp(PREL(H)) C PREL(H)
The last inclusion follows from the fact that we have a finite par-
titioning of the state-space. So PRE}(H) will converge within
finitely many steps.

Hence we have proved that Vn.PREL(H) O PREL(PREG(H)).
Having proved the two inclusions we can conclude the correctness of theorem

2.18.

Having proved the three central theorems 2.15, 2.16, and 2.18 we can now
give the CBR algorithm and prove the correctness of it.

25

26 CBR in General

2.4 CBR Algorithms

In this section we will present two versions of the CBR algorithm. The
first algorithm, which is also the simplest, resembles the original algorithm
from the paper [LNAB*98]. The second one is needed when only certain
subsets of the state-space can be represented efficiently. Such subsets are
called representable symbolic states and are explained in section 2.4.2. The
revised, second algorithm is described in the last subsection.

2.4.1 Simple Algorithm

In this section we present and prove the correctness of the simple CBR al-
gorithm. The algorithm is shown in figure 2.6. The input for the algorithm
is a transition system (S7,—) and two sets of states Goal and Init, such
that Goal and Init both are subsets of the state-space ST.

REACHABLE((ST, —), Goal, Init)
Select P such that Goal is P-sorted
R < Goal
repeat

Ryew < PREL(R)

/* Check for early positive termination. Theorem 2.15 */
if Init N R0 # 0 then return TRUE

/* Check for negative termination. Theorem 2.16 */
if P = Pgiune then return FALSE

P < P’ such that Pyune & P C P.
/* Reuse of previously computed states. Theorem 2.18 */

R+ R,ew
forever

Figure 2.6: Original CBR algorithm

The algorithm gives a formal definition of the procedure that was described
in section 2.2. First the initial partitioning is selected such that Goal is
P-sorted. After this Goal is assigned to R. The two variables R and R,

26

CBR in General 27

contain unions of partitions from the currently used partitioning P and any
of the previously used, coarser partitionings. In the top of the loop the new
contents of R, is calculated from R using the current partitioning. The
result is then tested for intersection with Init, for positive termination. If
we have reached the final partitioning Pgepe We terminate with a negative
answer, else we select a finer partitioning, that is still no finer than Pgype-
R, is then assigned to R and we start from the top again. The loop is
repeated until one of the two termination conditions is fulfilled.

Correctness

We want to conclude that the algorithm is correct. This consist of two parts;
concluding that it always terminates and that it terminates with the correct
answer.

To conclude that the algorithm always terminates we first need to conclude,
that we can only run through the loop finitely many times. This is guar-
anteed by having a finite number of partitionings that are used. This is a
requirement that must be taken care of for each domain to which the method
is applied. The finite number of partitions guarantee that we, at some point,
will end up with P = Py and terminate with a negative answer. Secondly
we require that PRER(R) can be computed effectively and hence always ter-
minates. If these two requirements are fulfilled, for the domain to which the
method is applied, we can conclude that the algorithm always terminates.

Now we will prove that the algorithm will terminate with the correct answer.
Throughout computation P assumes a sequence of values Py C Py C ... C

P = Pstapie- Similarly R,,.,, assumes a sequence of values RO, RL. ... R .
We claim that Vi.R!,,,, = PRE}, (Goal).

new

We prove this by induction in .

Basis ¢ = 0: The first time we enter the loop we have that R = Goal and
P = Po. Ryew is given to be exactly PREL(R) so RY),,, = PRE}, (Goal).

new

Step: Assume R}, = PRE} (Goal) (IH) then

new

n+1l * n
Rnew - PREPn_H (Rnew)

= PREp, , (PREp, (Goal)) by IH
= PREp,,, (Goal) by theorem 2.18 and P,,; C P,

By having shown this we can conclude by theorem 2.16 that for the final
partitioning P, = Psiapre We have Ry, = PREp (Goal) = PRE"(Goal).

new
So if there is a path leading from Init to Goal the check for intersection

27

28 CBR in General

Init N R,ep will guarantee that the algorithm terminates with a positive
answer. Now we need to argue that the algorithm cannot terminate with a
positive answer if there is no path. The only way the algorithm can terminate
with a positive answer is if R,., intersects with Init so by proving that
Vi.R! . C PRE*(Goal). This can be concluded from the previous proof and

new

theorem 2.15.

Requirements

The requirements that this algorithm enforces on a domain, to which it can
be applied, are the following; a transition system, with a stable partitioning
Pstavie, a finite sequence of partitionings of the state-space, and an efficiently
calculable predecessor function, for each partitioning.

For the algorithm to work efficiently there are some extra requirements.
Firstly the possibility of representing arbitrary unions of partitions efficiently,
such that the predecessor function can be computed directly on the repre-
sentation yielding a new union of partitions. Secondly an efficient way of
checking for intersection between such a representation and Init. Finally the
partitionings should be made in a sensible way, such that there is a chance,
that intersection can be obtained without always reaching the finest possible
partitioning Pgapre-

2.4.2 Symbolic States

The purpose of this section is to motivate the need for the revised algorithm
presented in the next section, and define the concept of representable sym-
bolic state, used in the revised algorithm.

In some domains, in particular the domain of Timed Automata, to which
we will apply the CBR method, it is only possible to efficiently represent
certain subsets of the state-space. We will call these subsets of the state-space
representable symbolic states RSS. Furthermore the predecessor function
operates on one such representable symbolic state at a time, and gives as
result a list of representable symbolic states. This does not directly fit the
framework of the simple algorithm, because the assumption here is that all
predecessors can be calculated in one step.

The idea is that the symbolic state represents a set of concrete states. There
is no restriction on how many concrete states a symbolic state can represent.
This depends entirely on the domain. In fact, in the domain of Timed Au-
tomata, each symbolic state represents an infinite set of symbolic states. A
set, of representable symbolic states must satisfy the following properties:

28

CBR in General 29

Assumption 2.19 : REPRESENTABLE SYMBOLIC STATES RSS

A set of representable states RSS C P(ST') must have the following charac-
teristics:

e 1SS must be finite.

e (Goal can be represented as a union of representable symbolic states.

Goal =) J;

el

such that J; € RSS and I is finite.

When using representable symbolic states we will need a predecessor function
that from one symbolic state J delivers as output a finite set of representable
symbolic states. In the following we formally state the obvious extra require-
ment that the output set of symbolic states must cover the set of states that
the original predecessor function would have given.

Assumption 2.20 : REQUIREMENTS FOR SYMPREp(J)

Given a symbolic state J € SST and a partitioning P the following must
hold:

SYMPRER(J) ={J1,..., Tm}
U

U7 € PreEp(7)

=1

For the final partitioning Pgupe the following must also hold:
SYMPREP&table (\7) = {jlv SRR an}
U

U ‘Z = PREPstable (‘7)
=1

29

30 CBR in General

REACHABLE((ST, —), Init, Goal)
Select P such that Goal is P-sorted
WAIT < Goal

repeat

PASSED := {}
repeat
begin

get symbolic state J from WAIT
if 7N Init # () then return TRUE
else if 7 € J' for all J' € PASSED then
begin
add J to PASSED
NEXT := SYMPREp(J)

for all J in NEXT do
put J to WAIT

end

end
until WaIt = {}
if P = Pgune then return FALSE
P < P’ such that Pyupne & P C P.
WAIT := PASSED

forever

Figure 2.7: Symbolic State CBR, algorithm

2.4.3 Symbolic State Algorithm

In this section we present a different version of the CBR algorithm using the
concept of representable symbolic states described in the previous section.
The input for the revised algorithm is much like the input of the original
one. Now the two arguments Goal and Init have to be subsets of the set of
representable symbolic states RSS.

Correctness

We want to conclude that the symbolic algorithm is correct. This, again con-
sists of two parts; concluding that it always terminates and that it terminates
with the correct answer.

30

CBR in General 31

This algorithm has two loops, with the one inside the other. We will call
these the inner and the outer loop respectively. The outer loop is a repeat-
forever loop, so the only way this loop can terminate is by the algorithm
finishing, by returning either true or false. We use the same argument as for
the simpler algorithm, that we have chosen a finite sequence of partitionings.
This guarantees that after a finite number of runs through the outer loop we
will eventually reach P = Pyyape, and the algorithm will terminate. We also
require that the inner loop terminates, in each iteration of the outer loop.
This can be guaranteed due to the fact that we have a finite number of rep-
resentable symbolic states. In the inner loop representable symbolic states
are removed from the waiting list and added to the passed list while every
representable symbolic state (RSS) that could reach this RSS are added to
the waiting list for later exploration. Once a representable symbolic state
has been added to the passed list, it will not be explored again. This process
continues until the waiting list is empty. If not earlier, this is at least guar-
anteed to happen when all representable symbolic states have been added to
the passed list. So we are guaranteed that the inner loop will always termi-
nate.

Now we turn to proving that the algorithm will terminate with the correct
answer when it terminates. Again we want to do this by induction. Just
after exiting the inner loop, where WAIT will always be empty, we will prove
that Goal C PASSED C PRE}, (Goal) for the current partitioning P, being
used. We do this by induction in n.

Basis n = 0: Just after exiting the inner loop for the first time the following
will hold:

PassED ={ J | T —5, J'ANJ' € Goal}

where J —p J' means that J € SYMPREp(J') (—% denotes as
usual the transitive and reflexive closure of —p). The passed list
here contains all the symbolic states needed to represent Goal and
all the symbolic states that can reach Goal using the partitioning Pj.
By iteratively applying the requirement for the symbolic predecessor
function stated in assumption 2.20, we can conclude that the following
holds:

Goal C PASSED C PRE}, (Goal)

Step: On entering the inner loop the waiting list will contain representable
symbolic states such that Goal € WAIT C PRE} (Goal), where P,

31

32 CBR in General

is the previous partitioning. All of these states will, after some it-
erations in the inner loop, be added to the passed list, such that
Goal C PASSED C PRE}, (Goal), this is the induction hypothesis (IH).
We now aim to prove that after exiting the inner loop the following will
hold:

Goal C PASSED C PRE;;HI(GOCLZ)

After exiting the inner loop we can clearly see that the following will
hold.

Passep ={ J | J —p,,, I ANJ' € PrE}p, (Goal)}

Again iteratively applying assumption 2.20 we can conclude the follow-
ing:
Goal C PASSED C PRE;;HH(Goal)

By having proved that Goal C PASSED C PRE}, (Goal) after each iteration
we can conclude that the passed list will always contain at least Goal and
it will never contain any states that cannot reach Goal. If any of the repre-
sentable symbolic states used to represent PASSED intersect with Init, the
algorithm would have terminated with a positive answer, when this state
was being explored. We will eventually reach the final partitioning Psqpie-
Because of the special assumption made for Pgipe, in assumption 2.20,
we can conclude that after the final iteration PASSED = PREp (Goal).
PRE} ;.(Goal) is by theorem 2.16 equal to PRE*(Goal). Hence after the
last run of the inner loop PASSED will contain representable symbolic states
that covers exactly all states that can reach Goal. This results in the fact
that if any of these states intersects with Init, the algorithm would have
terminated with a positive answer. Similarly the passed list does not contain
more than what can actually reach Goal, and hence the algorithm will never
terminate with a positive answer, when there is no path from I'nit to Goal.

Requirements

The requirements that this algorithm enforces on a domain, to which it can
be applied, are the following: A transition systems (ST, —), a finite set
of representable symbolic states RSS, and a symbolic predecessor function
SYMPRE that fulfills the requirement of assumption 2.20. Again we also
need a way in which to check for intersection between any representable
symbolic state J and In:it and inclusion between two representable symbolic
states. We also need sensible partitionings of the representable symbolic
state-space.

32

CBR in General 33

2.5 Differences from the Original CBR

This section describes the differences between the original CBR method,
[LNAB*98], and the CBR method presented in this report. It also describes
differences from the CBR method that was developed in the previous report
[Lar02].

The main difference is the concept on which the formal foundation is build.
The original paper uses an index set of machines that is gradually increased,
while we here use a partitioning of the state-space where the partitionings
are gradually refined. Despite this difference, the simple algorithm presented
in figure 2.6 closely resembles the original algorithm. The second algorithm
adds more generality to the method by allowing the use of symbolic states.
This makes the CBR method applicable to other types of domains. In the
previous report the CBR method was generalized by having more the one
index set, each representing one type of components. The back draw of this
method was that the CBR method could not be presented once and for all
and then applied to different domains. It had to be adjusted depending on
the types of the components being used in each domain.

An aspect of the original method that has been lost is dependency analy-
sis. In the original domain, a dependency analysis was performed on the
State/Event machines in order to determine if all of the machines where
needed in the analysis. If it could be concluded, that some of the machines
could in no way, effect the reachability of Goal, these machines could be ex-
cluded from the analysis. Thereby leading to a faster negative termination.
The concept of dependency analysis is not incorporated into the general CBR
method because it depends very much on the specific domain. The depen-
dency analysis works on components, and by analyzing what components
can influence the set of components that we start with, we can stop before
including all components. This would, in the new formalism, correspond to
stopping at a earlier partitioning than Pgpe. Maybe this kind of feature
could be added if extra information were added to the framework.

33

34

CBR in General

34

3 Timed Automata (TA)

This chapter contains the definition of networks of simple timed automata.
By simple timed automata we mean timed automata without invariants,
committed locations, urgency, and integers as are allowed in UPPAAL. First
we present an informal description of timed automata. After this we formally
describe the syntax and semantics of a single timed automaton. In the end
we describe the syntax and semantics of the parallel composition of several
time automata into a Timed Automata Network (TAN).

3.1 Informal Description

Timed automata are finite state automata extended with a number of real
valued clocks. Graphically a timed automaton can be depicted as nodes with
arrows going from one node to another when there is a transition. We write
constraints (also known as guards) at the origin of a transition and reset sets
at the destination of the transition. At the center of the arrow we write the
label.

S1

-O

c!

Figure 3.1: A simple automaton.

In figure 3.1 we have a very simple automaton with only two states and
one transition. The transition goes from the initial state SO to the state S1.
The initial state is marked with double circles. The guard consists of only
one atomic formula saying that the value of clock x should be less than 3.
Similarly only one clock is reset (x := 0). The label on the transition is ’c!’
this is the complement action of ’c¢?’, which means that this transition must
synchronize with an ’c?’ transition in another timed automaton. As in CCS

35

36 Timed Automata (TA)

[Mil89] we can also have transitions with no label, these transitions are in
fact 7 transitions that does not need to synchronize. Figure 3.1 illustration
was made using the graphical interface for UPPAAL.

3.2 Preliminaries

First we need some auxiliary definitions.

Definition 3.1 : ACTIONS

Let C'han be a finite set of channels, ranged over by c¢. We define Act to be
a finite set of actions ranged over by a. For each channel in C'han we define
two actions such that Act = {c! | ¢ € Chan} U {c? | ¢ € Chan}. We define a
complement operator ~ : Act — Act as ¢! = ¢? and ¢? = ¢!. We define A to
represent an infinite set of delay actions, A = {¢(d)|d € R}, where we use R
to stand for the non-negative reals. The special internal action is represented
by 7. We define the two sets Act, = Act Ut and A, = AUT.

Definition 3.2 : CLOCKS AND CONSTRAINTS

C'is a finite set of real valued clocks ranged over by z,y, z. A clock valuation
u: C' — R is a function that assigns to each clock a real non-negative value.
We also define R” to be the set of all clock valuations. We write u(x) to mean
the value of the clock x in the clock valuation u. We define two operations on
clock valuations: Reset and Delay. Reset where a set of clocks are set to zero:
u' = u[r — 0],7 C C defined by Vz € r.u/(z) =0,V € C\ ru(z) = u/(z).
Delay where all clocks are increased with the same value: v +d: C — R
where d € R, defined by Vo € C.(u+d)(z) = u(z) +d. We define B(C) to be
the set of all clock constraints (also known as guards) g ::= A|gA g where A
is an atomic formula of the form: z < nor x—y < n for <€ {<, >, <, >} and
n being a natural number. We write g(u) to mean that the clock constraint
¢ is true under the clock valuation w.

We extend the notion of transition system to a labelled transition system,
where each transition has a label.

36

Timed Automata (TA) 37

Definition 3.3 : LABELLED TRANSITION SYSTEM

A labelled transition system relates the triple (S, £, —) in the following
way. S is a set of states, L is a set of labels, and — is a set of transitions
—C SxLxS. If(S,a,5;) €e— we write S; 25 S,

We describe the semantics of timed automata in terms of a labelled transition
system.

3.3 Timed Automaton

In this section we define the syntax and semantics of a timed automaton.

Definition 3.4 : SYNTAX OF TIMED AUTOMATON

A simple timed automaton A over actions Act and clocks C' is defined by
the triple (L4,[%, F4) where L, is a set of locations, [§ € L, is the initial
location, and Ey C Ly x B(C) x Act, x 2¢ x L.

Definition 3.5 : SEMANTICS OF TIMED AUTOMATON

The semantics of a timed automaton A is a labelled transition system defined
by the triple (S4, L4, —>4) where the states are made up of a node and a
clock valuation: Sy = L4 x RY, the labels are the union £, = Act, UA, and
the transition relation is defined as:

o (lLu) 2y (I')if3g,r.(1, g,a,7,1') € Eq,u’ = [r +— OJu, and g(u)

o (Lu) s, (lu+d)

As an example to illustrate the semantics, we can look at the simple timed
automaton depicted in figure 3.1. The start state of this automaton is (sg, x =

0) from here it can, among many other delay transitions, take the following

€(2,5)

delay transition (sg,z = 0) (so,x = 2,5). From here it can take the

discrete transition (sg,z = 2,5) LN (s1,2 = 0) because x < 3, so the guard
is true.

37

38 Timed Automata (TA)

3.4 Timed Automata Network

We want to define how to make a parallel composition of several timed au-
tomata into a Timed Automata Network (TAN).

Definition 3.6 : SYNTAX OF TIMED AUTOMATA NETWORK

A TAN N over actions A and clocks C has the form:

where each A; is a timed automaton over actions Act and clocks C.

The clocks are all potentially global, but may in reality be local by being
used in only one automaton. In the definition of the semantics we need
some notation. We write [to mean a vector ly,ls,...,1, of locations in each
automaton.

Definition 3.7 : SEMANTICS OF TIMED AUTOMATA NETWORK

The semantics of a TAN N = (A;]...|A,) over actions Act and clocks C'is a
labelled transition system (Sy, Ly, —>n) where the states is a node in each
timed automaton and a clock valuation Sy = L; X ... x L, x RY, the labels
are L = A,, and the transition relation —y is defined by:

(l_: U’) L>N (l_;a U,) if Elgiari-(liagiaa’arial;) S EZ
Elgjarj'(lﬁgj)d) Tj:lg') € EJ
° gi(u), gj(u), v = [r; Ur; — Olu

for some 4,7 € {1,...,n} where i # j and a € Act.
(l_: U’) L>N (l_;a U,) if Elgi,ri-(li,gi,T, Tialylj) S EZ

gi(u),u = [r; = 0]u

VEk & {i}.l, = .

for some 7 € {1,...,n}

38

Timed Automata (TA) 39

The three types of transitions presented above can be described respectively
as synchronizing, private, and delay transitions. The first is synchronizing
because two timed automata synchronize by taking transitions labelled with
each others complement. The second is private because it involves only
one timed automaton. The third is a delay transition where all clocks are
increased by the same value.

S0

@ x<3 | x:=0 @
TO c? T1
O, O

Figure 3.2: Two simple timed automata S and 7'.

Again to illustrate the semantics we give an example. We have, in figure 3.2,
two simple timed automata that we combine into the system N = S| T.
The start state of the system is ((sg,tp),z = 0,y = 0). From this state we
could choose to delay for one time unit.

el
(50, 0), 2 = 0,y = 0) <L ((s0,t0), 0 = 1,y = 1)

From the new state we cannot take any discrete transitions because of the
guard y > 2. So we choose to delay again, this time with 1.5 time units.

(S0,t0), 2 = Ly = 1) <L (50, t0), @ = 2.5,y = 2.5)

Now we can take the discrete transition because the guards on both synchro-
nizing transitions are true.

((s0,t0), 7 = 2.5,y = 2.5) — ((s1,t1), 2 = 0,y = 2.5)

We notice that in the resulting state the clock x is set to zero.

39

40

Timed Automata (TA)

40

4 Symbolic Analysis of TA

The semantics given in chapter 3 yields an infinite state-space and the CBR
algorithm presented in chapter 2 needs a finite state-space in order to be
guaranteed to terminate. To reduce the infinite state-space to a finite state-
space we will represent groups of clock valuations as zones. This is done
in the same manner as for the verification tool UrPPAAL. We first define
the concept of zones and operations on zones that we need during symbolic
analysis. We then describe the data structure Difference Bounded Matrix
(DBM) used to represent zones and how the needed operations are realized
efficiently on DBMs. Finally we show how to perform both forward and
backwards symbolic analysis using the operations described.

4.1 Zones

We introduce zones in order to be able to handle a set of states simulta-
neously, in one symbolic state. A zone represents an infinite set of clock
valuations, it gives bounds on, both the difference between individual clocks,
and on the absolute value of clocks. Figure 4.1 illustrates the difference be-
tween a single clock valuation and a zone. In general symbolic states are
subsets of L; x ... x L, x R®. The symbolic states we use in this section
has the form ([, Z). A symbolic state (I, Z) represents all states of the form
(f; u) where u € Z. A zone is a set of clock valuations defined by a simple
constraint system which is defined in the same way as clock constraints in
section 3.2.

Definition 4.1 : SIMPLE CONSTRAINT SYSTEM

gr=xz=<nlrx—y<nlgAig

where <€ {<,>,<,>} and n € N. We use B(C') to represent the set of all
simple constraint systems over clocks C'.

41

42 Symbolic Analysis of TA

Figure 4.1 illustrates the difference between a single clock valuation and a
zone.

yuz{x»—)Q,yt—)?} yZ:{1§m§3,1§y§3}
31 31
2 + ° 2+
1+ 1+
0 b+—+—+—= 0 b+—+—+—u
0 1 2 3 0o 1 2 3
a) b)

Figure 4.1: a) Clock valuation. b) Zone

Now we have a way of representing a group of states as one symbolic state
(I, Z) and move on to defining useful operations on zones in order to be able
to define a symbolic transition relation.

4.1.1 Operations on Zones

We define five operations on zones that we need for the symbolic reachabil-
ity analysis. The Future and Reset operations are only needed for forward
analysis, and Past and F'ree are only needed for backward analysis while we
need C'onjunction for both. We remind that R is defined as the non-negative
reals. The five operations are defined as follows.

Future : Z" = {u+d|u€ZanddeR}
Past : zZ' = {u|3IdeRu+de Z}
Reset : resetfpy 7 = {u[r—0]|ue 7}

Free : freetpy7Z = {u|ufr—0]e 7}
Conjunction: ZNZ' = {u|uveZanduecZ'}

The operations are illustrated in figure 4.2. The first four operations are
illustrated by the effect they have on the example zone Z that is shown in
the upper left corner. The conjunction operator is illustrated with two other
zones Z, and Zs.

42

Symbolic Analysis of TA 43
Y Yy Yy Pt
8 T 8 1 8 T =7 .
| ’
Z !
6 T 6 6 T
4 T 4 4 T
2 T 2 2 T
0 I I —x 0 f f —T 0 f f —
0 2 4 6 0 2 4 6 0 2 4 6
Just a zone Past Future
y Yoo y
1 1
8 T - 8 T B 8 T
| | =
6 T - — - 6 T S 6 T
R 1
4+ 4+ = 41 ~
= lanz|
2 1 2+ | & 2 - |
reset /72 N e [(e
0 : {y}: —x 0 —x 0 I i —
0 2 4 6 0 2 4 6 0 2 4 6
Reset Free Conjunction

Figure 4.2: Operations on Zones

4.2 Difference Bounded Matrices

We need a data representation of zones and a definition of the five opera-
tions on this representation. A DBM is a matrix representation of a simple

constraint system.

Definition 4.2 : DIFFERENCE BOUNDED MATRIX

M {.To,ﬂfl,..

L} = (Z x {<,<}) U {+oc}

where xq is a special zero valued clock.

43

44 Symbolic Analysis of TA

For every pair of clocks it gives a comparison operator and a real value or co.
For each pair of clocks M (x;, x;) = (nij, <i;) represents that ; — x; <;; nyj,
where <;; is < or <. Figure 4.2 illustrates how a number in the matrix
represents a bound on the difference between two clocks. The operator is
represented by an extra bit stored along with each number. In figure 4.5 we
will as an example illustrate how the different zones shown in figure 4.2 can

be represented as DBMs.
Ly
Loy L1yeeey Xy, Ty

Zo

o

x (nij, <i;) - one entry

x; — T; <45 ny; - semantics of an entry

Figure 4.3: Illustration of a Difference Bounded Matrix.

In order to be able to define the operations we need to have the DBMs in a
canonical form. For the definition of the canonical form we need a definition
of the two operators + and < for pairs of the type (n, <), where n € Z and
<€ {<,<}. To do this we also define +, and <;, which operate on ‘<’ and
\<l‘

Definition 4.3 : 4+, OPERATOR FOR ‘<’ AND ‘<’

\<I_|_b\<l — \<I
\§,+b\<l — \<I
\<l+b\§/ — \<I
\SI_'_[)\S, — \Sl

Here we observe that anything but two <’s adds up to <. We can now define
+ on pairs of the type (n,<). This is simply done by adding the integers
and adding the < operators with the newly defined +;, operator.

(n1, <1) + (n2, <2) = (n1 + ng, <1 +p <2)

44

Symbolic Analysis of TA 45

Definition 4.4 : <, OPERATOR FOR ‘<’ AND ‘<’

\<I Sb \Sl
\<I Sb \<I
\Sl Sb \Sl

Both the operators are equal with themselves and ‘<’ is smaller than ‘<’.
Now we are ready to define < on pairs of the type (n,<). This is done as a
sort of lexicographic ordering. First the integers are considered, if these are
equal then the < operators are compared.

(n1,<1) < (N2, <2) =n1 < na V (ng =naA <1 '<' <y)

With the + and < operators defined we are ready to define the canonical
form.

Definition 4.5 : CANONICAL FORM

A DBM M is on canonical form if and only if Va;, 2, z;, € C' it is such that
M(.’L'Z', l‘j) + M(.’L’j, l‘k) Z M(.’L’Z, .’L'k)

We define the operations on DBMs in canonical form. The following functions
define the value of each entry in the resulting matrix, based on the input
matrix. The first four operations are illustrated in figure 4.4, these are the
operation that operate on a single matrix. The final operation, conjunction,
describes the resulting matrix in terms of two input matrices.

Past
M(z;,x;) z;#x
M) = { (0,(<) / T; = a:g
Future
M(x;,x5) x; # g
Reset
M(z;,2;) z,0; #x
reset) — (07 S) Ty =X
{.Z'}M(.’EZ, :EJ) N (0, S) .’L‘j =x A T; = X
+00 T =

46 Symbolic Analysis of TA

Free
M(z, ;) z,x; #x
free Loy M (z;, 25) = ¢ (0, <) T =90 \NT; =2
+o0 rp=xV (z; =2 Az # x0)
Conjunction

My (s, 25) My(xg,x;5) < My(xg, ;)

M M. .) — »] L) = iy Lj

(M A M) (i,) { My(z;, x;) otherwise

The implementation of four of the operators is illustrated in figure 4.4. The
gray areas represent that the values in this part of the matrix are left un-
changed. The values that are assigned to the changed areas can be read from
the definition of the operations.

Lj Ly
Loy L1yeeer Ly, Tp LoyLlyeeery Xy, Tpy
Ty 0---lolo--- Ty
T =, T1|oQ] -
Z; : : Z; A
T T |00
: .. e
Past Future
Zj T
Ty, X1, » L, y n T, T, y L, y I
) 0 Zo 0
o o0 T o0,
Ti - Ti
x|1010 --- 0 € |ocloo o0
: ool - : ool
Reset Free

Figure 4.4: Illustration of the Operations on DBMs.

The conjunction operator, which is not illustrated, combines two matrices.
For each entry in the matrix the values are compared and the smallest is
selected as the entry in the resulting matrix. Figure 4.5 illustrates all the
operations by use of the zones from figure 4.2. We only use the < operator
in these examples to keep it simpler.

46

Symbolic Analysis of TA

47

o T Y ‘ g T Y To T Y
Zo -2 -6 Zo 0 [0 Zo -2 -6
x| 4 -2 x| 4 -2 z | [0 -2
y| 8 6 y |8 6 y |0 6

Just a zone Past Future

Tog T Y ‘ To T Y Tog T Y
To -2 [0 To -2 [0 To -1 -2
r | 4 Tz | 4 -2 T | O 3
y | [0 [0l Yy y |5 4

Reset Free Al

Tog T Y Tog T Y
T -2 -1 T -2 =2
Tz | 6 5) T | O 3
y| 4 2 y| 4 2

Ly Conjunction

Figure 4.5: Illustration of the Operations on DBMs.

The matrices are no longer in the canonical form after the operations have
been performed. They are restored to canonical form by calculating the
shortest path closure. This can best be illustrated by viewing the matrix as
a graph. In figure 4.6 we calculate the canonical form for the matrix after
the Past operation. The values on the edges are given by taking the from
node as the row and the to node as the column. The shortest path closure is
calculated by checking for shorter paths between two nodes via other nodes.
In figure 4.6 only the edge from zy to y is changed. The new value is —2

because the path via the x node is —2 4+ 0 = —2.

() ()
00 G@

Figure 4.6: The shortest path closure of the Past matrix.

47

48 Symbolic Analysis of TA

In the algorithms presented we also need to check for inclusion. This is done
by comparing each pair of entries in the matrices. If for every pair of entries
the entry of matrix A is smaller then that of matrix B, then A is included
in B.

To guarantee termination we introduce a normalization operation. Initially
we have infinitely many Zones and cannot guarantee that the algorithm ter-
minates. Two clock valuations that cannot be distinguished in the model are
time-abstracted bisimilar, illustrated in figure 4.7. This means that when
the one can take a delay transition the other can also take a delay transition,
not necessarily with the same amount of delay and end up in a state that is
time-abstracted bisimilar with the end state of the first. The same is true
for discrete transitions. Knowing this we only need to represent one of such
time-abstracted bisimilar states. This is done by applying the normalization
operation to all Zones after each operation.

Y Y
| |
max—4-—-————-— :— - max—4-—————-— :— -

| |

| |

I I
i |

| |

' T ' x
>< »

< 3

S &

Figure 4.7: Tllustration of normalization. All clock valuations to the right
of the max line will have a point exactly on the max line that it is time-
abstracted bisimilar to. Such two points are illustrated on the left figure.
Therefor the Zone on the right figure can reach the same states as the figure
on the left.

First the maximum constant /N, used in the model or in the properties to
be checked, is found. Any integer lager than N can be replaced with oo
and all integers smaller than —/N can be replaced with —/N. This can be
done because it never will be compared to anything larger than itself. The
normalization is performed after each operation. When N is known we can
also calculate how many bits we need to represent each entry in the DBM.
The operation is described below.

Normalization
(—N,<) M(x’z’,l‘j) < (—N,<)
normy M (z;,x;) =< M(z;,z;) (=N, <) < M(z,2;) < (N, <)
+00 (=N, <) < M(x;, x))

48

Symbolic Analysis of TA 49

4.3 Symbolic Reachability

In this section we use the operations defined in section 4.1 to do symbolic
reachability analysis on networks of Timed Automata.

Definition 4.6 : FORWARD SYMBOLIC TRANSITION

We define two types of transition, in contrast to the three types defined
in the normal semantics. The first represents a delay action followed by a
single transition while the other is a delay followed by a synchronization. We
calculate the new zone by use of the operations that we have defined. In
both cases we first take the future operation on the original zone, after this
we conjunct it with the guard(s), and last reset the clocks defined by the
reset set(s).

(l_: Z) =y (17; Z') it 3gi,ri-(li, gis 710y) € B

7 = reset{ri}(Zf/\ gz)

Vk ¢ {i}.0, = I
for some ¢ € {1,...,n}
(l_: Z) —F (l_;, Z’) if Elgi,ri.(li,gi,a,ri,lg) € E;
ng,’l“j.(lj,gj,fl, Tj,l;-) S Ej
. 7= U (2 A gi A gj)
Vk & {i,j}.l;, =k

for some i,j € {1,...,n} where i # j and a € Act.

@ -

9i
7

Zf/\gi
T

@ 7=y na)

Figure 4.8: Tllustrates how Z' is calculated when taking one forward symbolic
transition.

49

50 Symbolic Analysis of TA

Definition 4.7 : BACKWARD SYMBOLIC TRANSITION

As with the forward symbolic transitions we define two transition rules. The
first represents a single transition followed by a delay action while the other
is a synchronization followed by a delay. It is worth noticing that the order is
not the same as for the forward symbolic transitions. This does not have any
impact on the reachable state-space. The essential thing is that we alternate
between discrete and delay actions. This results in that we have to take
the future operation on the initial location before checking for intersection
in the backwards algorithm. Here we start by using the past operation and
conjunct the result with the reset set(s). After this the clocks in the reset
set(s) are freed, this is then conjuncted with the guards.

(l_;, Z,) <~—B (l_; Z) if Elgi,ri.(li,gi,T, Ti,lg) € E;
Z = (free{,ri}(,ri VAN ZN)) A qg;
Vk & {i}.0 = I
for some ¢ € {1,...,n}

(l_;a Z,) <~—B (l_: Z) if Elgiari'(liagiaaarialg) S EZ
Hg],rj(l],g],d,rj,l;) S EJ
® 7 = (free{riUrj}(ri/\rj/\Z”))/\gi/\gj
Vk & {i, 5}l =i

for some 4,7 € {1,...,n} where i # j and a € Act.

© z=0"{r}rinz)) Ay,

Gi
f’““{ri}(m N ZM)
T N ZM

7"Z~ le

®

Figure 4.9: Illustrates how Z is calculated when taking one backwards sym-
bolic transition.

4.3.1 Algorithms

With the symbolic transition rules we define two similarly looking algorithms
presented in figures 4.10 and 4.11. First we describe the forward symbolic

50

Symbolic Analysis of TA 51

reachability algorithm. The algorithm has a passed-list (Passed) and a
waiting-list (Wait). Initially the passed list is empty and the waiting list
contains the initial state. For each cycle in the repeat-until loop one sym-
bolic state is removed from the waiting list. After having added all states,
that can be reached from it, to the waiting list, the state is itself added to
the passed list. This is continued until either; the waiting list is empty, or a
state is found, that intersects with Goal. The target that we want to check
if we can reach, Goal, is a set of symbolic states.

PAsSED := {}
WAIT := {(ly, Zo)}
repeat

begin

—

get (I, Z) from WAIT

if (I, Z) N Goal # () then return TRUE

else if Z ¢ 7' for all ([, Z') € PASSED then

begin
add (I, Z) to PASSED
NExT := {(I;, Z,) | (1, Z) =5 (I, Z;) N Z, # 0}
for all (Iy,Zy) in NEXT do

—

put (ly, Zy) to WAIT

end

end
until WAIT = {}
return FALSE

Figure 4.10: Algorithm for forward symbolic reachability analysis

The backwards symbolic reachability algorithm differs in three ways. Firstly
the waiting list is initialized to contain Goal in stead of the initial state.
Secondly there is tested for intersection with the initial state instead of Goal.
Thirdly the transition relation that is used to find new symbolic states, to
put in the waiting list, is <=p.

4.3.2 Theorems

In this section we present some theorems, and a single sample proof, needed
to argument for the correctness of the algorithms presented in the previous

ol

52 Symbolic Analysis of TA

PASSED := {}
WAIT := Goal
repeat
begin
get (I, Z) from WAIT
if (I,2)N (Iy, Zy) # 0 then return TRUE
else if Z ¢ Z' for all (I, Z') € PASSED then
begin
add (I, Z) to PASSED
NExT := {(I,, Z,) | (I, Z) <=5 (I, Z,) A Z, # 0}
for all (I, Zy) in NEXT do
put (l_;/, Zs/) to WAIT

end

end
until WAIT = {}
return FALSE

Figure 4.11: Algorithm for backwards symbolic reachability analysis

section. Correctness in the sense that the symbolic algorithm gives the cor-
rect result in terms of concrete reachability. Theorem 4.8 implies, by a simple
inductive argument, that if we have a sequence of symbolic transitions lead-
ing from the initial state to Bad we also have a sequence of concrete states
leading from the initial state to Bad.

Theorem 4.8

Forward: symbolic to concrete

(1,Z) =r (I, 2')
U
Vo' € Z'.3d,Ju € Z.(I, u)

ed) 7 5

Proofoftheoremm 4.8 ®" " = = = @ = " ®m B @ B B B B B H B ®
The proof can be split into two cases depending on how (f, 7)) = (f’, Z')is

52

Symbolic Analysis of TA 53

obtained. We only treat the first simple case. Thus we have from the right
side of the definition of the =5 transition relation that:

(liagiJTJ Tial;) S El

Zl — reset{,ri}(Zf/\ gz)
ko {i}.0, = 1,

for some ¢ € {1,...,n}

We assume that v’ € Z’. Thus for some u" € Z”A g; we have that u' = [r; —
0]u”. Then we also have for some u € Z and some d € R that v" = u+d. It
follows that (I, u) @, (Lu+d) = ().

7
4 /
4 /

7
Vs "
7 u//

) 7

ul

ZI
Figure 4.12: Illustration of proof of theorem 4.8

The relation between u, u', and u" in the proof of theorem 4.8 is illustrated
in figure 4.12. The theorem itself is illustrated in figure 4.13. Here we use
dashed arrows to illustrate 3 and full arrows to illustrate V. The same is true
for the illustration of the following theorems.

(1.2) === (. 2
W W

1
(o) “@> ="y 173

[~ v

Figure 4.13: Illustration of theorem 4.8

Theorem 4.9 states that if we have a sequence of concrete states leading from
the initial state to Bad we can match this with a sequence of symbolic states.

23

54 Symbolic Analysis of TA

Theorem 4.9

Forward: concrete to symbolic

VZue 2371, 72) = (I, 7)) A € Z'

Theorem 4.9 is illustrated in figure 4.14. We omit the proof which is similar
to that of theorem 4.8.

Figure 4.14: Illustration of theorem 4.9

In order to conclude that the forward symbolic reachability algorithm pre-
sented in figure 4.10 always terminates we need to ensure that there are only
finitely many reachable symbolic states. In fact exactly one is generated for
each transition that can be taken. We also want to conclude that when the
algorithm terminates it terminates with the correct answer. This we can con-
clude from the two theorems 4.9 and 4.8. If we find a sequence of symbolic
states that leads from the initial state to Bad there also exists a concrete se-
quence of states. On the other hand if we do not find a sequence of symbolic
states we can conclude that there is now sequence of concrete states leading
from the initial state to Bad.

In the following we present two theorems that state the exact same things as
theorems 4.8 and 4.9 only for the backward transition relation <=p. Since
the arrows goes in the other direction the states are not in the same order in
the top and bottom of the theorem. This also has the effect that the concrete
arrows in figure 4.15 and 4.16 goes from right to left.

54

Symbolic Analysis of TA 55

Theorem 4.10

Backward: symbolic to concrete

(F,2) <=5 (I, 2)
¢

e(d)

Yu e Z3d ' € Z'.(l,u) ———

(7,)

Figure 4.15: [llustration of theorem 4.10

Theorem 4.11

Backward: concrete to symbolic

Figure 4.16: Illustration of theorem 4.11

4.3.3 Correctness of Backwards Algorithm

We will use theorems 4.10 and 4.11 to prove the correctness of the algorithm
for symbolic backwards reachability with regard to reachability. This could

25

56 Symbolic Analysis of TA

be done in a similar fashion for the forward algorithm using theorem 4.8 and
4.9.

Theorem 4.12

The symbolic backwards reachability is partially correct with regard to
reachability. That is whenever the algorithm terminates it gives the cor-

rect answer.

We need some definitions for the proof of theorem 4.12.

Definition 4.13 : LEADS-TO OPERATOR

We write (I, u) ~ (7, ') if (Iu) -0y Ty A0y iy,
77 7l

We also write (I, u) ~ g if (I,u) ~ (I',) for some (I', ') € g.

Proofoftheorem 4.12 = = = = = = = = B B B B HE HE B B B B ®
We prove the partial correctness by splitting into two cases.

Case 1: Assume that the algorithm terminates with the answer TRUE. We
claim that whenever (I, Z) € PASSED and u € Z then (I, u) ~» Bad. To
see this note that if (f, Z) € PASSED then we have a symbolic sequence
of the form:

(Iad> Zad) <=5 (11, 21) <=5 (12, Z5) <=3 ... <= (I, 2)
Now applying theorem 4.10 repeatedly proves the claim.

It follows immediately from the proven claim that if ever an encountered
symbolic state intersects with INIT, (ly, Zp), then indeed there is a path from
INIT to some state in Bad.

Case 2: Assume that the algorithm terminates with the answer FALSE.
We claim that in this case (I,u) ~ Bad cannot hold for any state
(lﬁ7 u) € INIT. We prove this by contradiction. Assume on the contrary
that (I, u) ~» Bad for some state (I, u) € INIT. This is:

(I, u) NG AN COINY;

Then because of theorem 4.11 we have a symbolic sequence of the form:
(fBad, 7 Bad) <=8 (fl, 7)) <=s (l;, Zy) <=p ... <3 (E Z)

with (Iped; Ziea) C Bad and u € Z.

56

Symbolic Analysis of TA 57

But then (f, Z) must be present in the WAIT-list at some point during com-
putation and hence we would have obtained termination with the answer
TRUE in contradiction with the assumption.

For total correctness of the algorithm we observe that the algorithm termi-
nates due to the finiteness of the symbolic state-space, induced by normal-
ization.

A similar correctness proof could be given for symbolic forward reachability
algorithm.

o7

58

Symbolic Analysis of TA

28

5 Application of CBR on TA

In this section we apply the CBR method to the domain of Timed Automata
Network (TAN). We choose the symbolic CBR algorithm, from section 2.4.3,
because it exactly fits the domain.

5.1 Fulfilling the Requirements

We will in the following sections describe how the domain fits the require-
ments stated in section 2.4.3. Here we will introduce the CBR method for
timed automata, not unlike how it was introduced in the previous report
[Lar02]. At the same time we will show that this fits exactly within the
framework of the symbolic algorithm presented in section 2.4.3. To be able
to use only some of the components, automata and clocks, we define two
subsets: M C {1,...,n} an index subset of the timed automata and K C C'
a subset of clocks. We will base the partitioning of the state-space on an
equivalence derived from these two subsets.

Representable Symbolic States

First we define the representable symbolic states (RSS), which we are going
to use in the analysis. Firstly these states are symbolic in the representation
of the clock values, in the use of Zones, as described in chapter 4. Secondly
they are symbolic in the representation of the location vector. We introduce
a partial location vector, in which we only need to specify the location for
some components. The location of the rest of the components are represented
by a * (star) meaning that this automata can be in any of its locations. We
will refer to these states as double symbolic states since they can be symbolic
both in the use of zones and the representation of the discrete location. Again
such symbolic states will be subsets of L; x...x L, x R¢ as with the symbolic
states defined in section 4.1.

An M-sorted partial location vector only contains information about the
automata in M, and semanticly it represents the set of all location vectors
that agree with it with regard to the locations of all automata in M. For a

29

60 Application of CBR on TA

zone to be K-sorted it cannot include any constraints on clocks not included
in K.

Definition 5.1 : DOUBLE SYMBOLIC STATE

A double symbolic state (p, Z) consists of an M-sorted location vector pand
a K-sorted zone Z. For a given M C {1,...,n} an M-sorted location vector
is defined as follows:

L i€M p; e L;U{x}
7= (p1,--.,pn) Where { i¢ M p—

A K-sorted zone only contains constraints on clocks in K: Z € B(K).

By an M, K-sorted symbolic state we mean a double symbolic state where
the location vector is M-sorted and the zone is K-sorted. We notice that
a double symbolic state that is M, K-sorted for a given M and K also is
M, K-sorted for any larger M or K. We have that there are only finitely
many zones, given normalization. Given that we have also finitely many
automata and finitely many locations in each automata, we can only create
a finite number of different representable symbolic states. This was one of
the requirements of the symbolic CBR framework.

Partitioning of the State Space

We define the partitioning of the state-space on the basis of the M, K-
equivalence. First we define M-equivalence for the discrete part of the state
and K equivalence for the continuous part of the state.

Definition 5.2 : M-EQUIVALENCE

I=ul < Yie Ml =1

Definition 5.3 : K-EQUIVALENCE

u=gu < Vre Ku(z)=1u(z)

60

Application of CBR on TA 61

We define the M, K-equivalence in terms of the two other equivalences.

Definition 5.4 : M, K-EQUIVALENCE

We define M, K-equivalence in the following way:

(I, u) =M.K (") < I=pyandu =g u'

We partition the state-space based on the number of automata and clocks
included in the analysis. We start with a the subset of automata and clocks
needed to represent Goal. After this we gradually extend with more clocks
and automata. Since we have a finite amount of clocks and automata, we
will in a finite number of steps reach a point where all clocks and automata
are included. For each M, Kcombination we define a partitioning where all
states that are M, K-equivalent are in the same partition. When we have
included all clocks and automata the M, K-equivalence will correspond to
the identity relation I'd = {(s,s) | s € ST}. This will result in the fact that
the partitioning defined by this equivalence satisfies the property of being a
stable partitioning. The actual order in which to include the components,
does not affect the method in general. Different heuristics will be considered
in section 7.3. The partitioning induced by a given equivalence =, g, is
called Py, instead of writing P—,, .. If we have that M C M" and K C K'
then the equivalence induced by =j; g is finer than or equal to the one
induced by =)k, because M’ and K’ have more elements. In general the
following holds:

MCMAKCK' <— Pur gk & Pur g

Sorted Symbolic Predecessor

In this section we describe how to interpret a timed automata network (TAN)
as a global transition system. The concrete states where in section 3.4 in-
terpreted as a transition system. In this section we define how to interpret
a TAN as a transition system, where the states are double symbolic states.
We do this by defining a new transition relation the combines the calcu-
lation of the new zones from the <—p transition relation and the concept
of M, K-sortedness. The idea is to relate M, K-sorted symbolic states with
other M, K-sorted symbolic states. This means that we will only consider
taking transitions in automata specified by M and where the constraints on
the guards only range over clocks in K.

61

62 Application of CBR on TA

For the definition of the new transition relation we need some notation for
what it means for a concrete location vector [; to be included in a partial
location vector p;.

li=pi pi €Ly

li€pi<:>{true p; = *

Definition 5.5 : BACKWARD M, K-SORTED TRANSITION RELATION

The definition of the <= x transition relation is based on the <= transi-
tion relation and adds the concept of M-sorted location vectors and K-sorted

zones.
We know that 1;’ is M-sorted and that Z' is K-sorted.

(];’,Z,) <MK (ﬁ, Z) if Elgl € B(K),Elri.(li,gi,T, Ti,l;) € Ez
li = pi, I} € p;
° Z = (Iree{ri}(ri N Z") A gi
Vk & {i}.pl = px
for some i € M

(ﬁ)Z,) MK (ﬁ; Z) if Elgl € B(K)7E|ri-(liagiaaari7lg) € Ez
Elgj c B(K),HTj.(lj,gj,d, Tj,l;-) c Ej
li = Pi, l; Gp;, l] = Dy, l; Ep;
7z = (free{riUTj}(ri/\rj/\Z”))/\gi/\gj
Vk & {i, j}.pl = pr
for some ¢, j € M where ¢ # j and a € Act.

We need to prove that the new Z € B(K) and that p'is M-sorted. We can
conclude that Z € B(K) because the guards that are conjuncted are from
B(K). The clocks that are reset are also freed again, this means that they
will not bring Z out of B(K). We can also conclude that p’is M-sorted
because the index set remains the same.

We intend to prove the two assumptions made in assumption 2.20. In the
following we write PREj;x as a shorthand for PREp,, .. PREj x(H) is
defined as

{s|Vt=px s3It €HLt ANELCN '}

Here we stretch the original definition 2.7 of PRE, by taking both a discrete
and a delay step. The first line of each of the two assumptions can be
rewritten as follows:

SYMPRE « (P, Z') = {(p1, Z1), -, (s Zn)}

62

Application of CBR on TA 63

First assumption In order to prove that J (p;, Z;) C PREMyK(z;’,Z’),
we must show that whenever [€ p; and u € Z; then it follows that
(li; U) c PREMyK(p,, Z’)
Whenever [€ p; and u € Z; then

7 T €(d) TR

(l;,u) ———— (I',v")

for some ' € p and v' € Z.

Hence as (p;, Z;) is M, K-sorted it follows that (I;,u) € PREy g (p', Z').

Second assumption We already have the J_, (p;, Z;) C PREp,, ,,. (ﬁ’, Z"
and only need to show that ", (9, Z;) 2 PREp,,,, (p', Z') in order to
prove the equality. We have that Py is equal to the identity, so we
must show that every element in PRE;4(p/, Z') is in the set of symbolic

states returned by SYMPRE. We have that PRE4(p/, Z') = {s | ¥t =14

st e Ht Dy — 141 3¢ € Ht % ¢}, Since t has two

transitions, which can bring it into H, we can see from the definition
of <= i that there will exist a (p;, Z;) = t.

Check for Inclusion and Intersection

The symbolic CBR framework also requires that, we can check for inclusion
between two symbolic states, and check for intersection between a symbolic
state and Init. When performing inclusion checks between two double sym-
bolic state, we will first compare the partial location vectors. If the two
states does not agree in one of the automata where they both specify a spe-
cific location, then they neither intersect nor does the one include the other.
After this the zones are checked for intersection by the method described in
chapter 4.

Definition 5.6 : INCLUSION

One double symbolic state (1;’, Z') covers another (p, Z) if:
7, 2)C (W, 2) <= peprzcZ

ﬁgﬁ < Vie Mp;,=p,Vp,=x

The only type of intersection check performed is intersection with Init. This
is done first by checking if the partial location vector contains the location

63

64 Application of CBR on TA

vector of Init. After this we can perform an intersection check between the
two zones. Because of the fact that we take both a discrete and a delay step,
in each exploration step, we actually perform this intersection check with a
zone Z;,:;/, that is the future operation performed on the initial zone Z;,;,
where all clocks are zero.

In the previous section we have fulfilled the following requirements. A finite
number of representable symbolic states, and a way to check for inclusion and
intersection for such states. A finite sequence of partitionings, with a final
partitioning with the desired property. And a symbolic predecessor function,
in compliance with assumption 2.20. Having fulfilled all of the requirements
for the symbolic CBR framework, we can conclude the correctness of the
algorithm, when applied to the domain of TAN.

64

6 Extensions

This chapter describes certain extensions, which can be added to the model
of timed automata, and the effect that these have on the compositional back-
wards reachability analysis. The extensions are; integers, invariants, urgent
locations, urgent channels, and committed locations. We deal with exactly
these extension because they are the ones implemented in UrPPAAL. Each of
the extension will be described in the following sections.

6.1 Integers

In this section we will first describe how integers can be used in UPPAAL.
After this we will discuss the possibility of adding this to the CBR for TA
method. We choose integers with some simple operations, and show how the
CBR for TA method from chapter 5 can be extended.

In UPPAAL one can use both simple integers and arrays of integers. The inte-
gers can be used in guards, and in assignments. Examples of integer guards
are: L < 2) T == 4 and I <= L * 2. Similarly we can give some examples
of integer assignments: L := 2, I := L / 2, and L := L + 1. Both the
guards and assignments can contain addition, subtraction, multiplication,
and division. There is also a possibility of using a maximum and a minimum
function.

It would be possible to implement all of this in the CBR for TA method. A
suitable data structure could be binary decision diagrams (BDD). A BDD
could represent the possible values that an integer could have in a give sym-
bolic state. The complicated part is to calculate, which possible values, an
integer could have had before it was assign the current value. In the imple-
mentation described in chapter 7 we have chosen a simpler solution. We have
only two possible representations of an integer, either a concrete value or *
(star) denoting any possible value. We allow only certain simple guards and
assignments. The guards can only be of the form: L == 3. Where an integer
is tested for equality with a constant. This gives us the advantage that after
having taken a backwards step, with an integer guard on the transition, we
know the exact value of the integer. In the assignments we only allow the
use of, addition, subtraction, constants, and the integer to which the value is

65

66 Extensions

being assigned. Examples of such integer assignment are: L := 2, L := L +
1,and L := 1 - L. This makes it easier to calculate the value of the integer
prior to the assignment, because there always will be only one such value.
When taking a backwards discrete transition, the calculation of integer val-
ues is carried out in two steps. First we use the assignment to calculate an
intermediate value. Here we have four possible scenarios, illustrated by four
examples in figure 6.1.

* Not possible * 3
Any assignment, L=7 L=17 L:=L+1
* 2 7 4

Figure 6.1: Illustrates how we calculate the intermediate value of an integer
based on the value after the assignment and the assignment.

In the first case, if the integer can have any value after the assignment, it
could also have had any value before the assignment, because we use un-
bounded integers. In the second case, if the integer is assigned a constant
and it does not have this value after the assignment, then we know that this
transition cannot be taken into such a symbolic state. The third case illus-
trates the case where the integer has exactly the value that is assigned to
it. In this case we know nothing about the prior value of the integer, which
is then *. In the final case the integer has a concrete value and it is either
incremented or decremented in the assignment. In this case we can calculate
what value it must have had before the assignment. There actually exists
one last case. The case where we have no assignment. If this is the case, the
integers intermediate value is the same as the value after the assignment.
After having calculated the intermediate value, we must check if the inter-
mediate value agrees with the value in the guard. Here we only have three
cases, illustrated in figure 6.2.

In the first case if the intermediate value is %, we know that the assignment
could have been true. If the integer has a concrete value that is exactly the
same as in the guard we know that the guard was true. In both of these cases
we know that the value of the value of the integer must have been the value
in the guard. The last case represents where the intermediate value and the
value in the guard disagree. In this case the transition cannot lead us to the
symbolic state in question.

66

Extensions 67

3 3 Not possible
L==3 L==3 L==3
* 3 4

Figure 6.2: Illustrates how we calculate the value of the integer before the
guard, depending on the intermediate value of an integer.

When we want to extend the CBR for TA method with integers. First we
define the new representable symbolic states (RSS). The concrete states will
now have the form (/,7, Z) instead of the form (I, Z), where i = (i, ..., i)
with i, € Z. We limit guards to the form ¢ := ¢ where ¢ is a constant and
assignments to the form ¢ := d, where d is composed of the integer ¢ itself,
constants, addition and subtraction. The symbolic states will now have the
form (P, ¢, Z) instead of the form (p, Z), where ¢'is defined as partial location
vectors, just for integers. We also need an extra index set I C (iy,...,1iy,),
to range over the integers. With this we can define partial integer vector as
follows.

mel qn€ZU{x}

¢ = (q1,...,q,) where { mal qn—+

We will obtain new equivalences based on =, x and the equivalence of the
integer values. We will denote these new equivalences by =y i ;. The new
symbolic predecessor function <= i ; will be <=, x with the added con-
cept of integers.

6.2 Invariants

In this section we describe what invariants are, and possible solutions on
how to include them in the backwards reachability analysis. An invariant
is an upper bound on clock values in a given state. For each state we can
have a requirement that a set of clocks does not exceed some value. Having
invariants in the system changes the computation of the zones of the states
that can reach a current state. The problem lies in the fact that we can
no longer guarantee that we can delay indefinitely backwards. We illustrate
this fact by an example. In figure 6.3 we have two simple timed automata.
The system contains two invariants one in state A1 and one in state B1. The
problem arises from the fact that the system can time deadlock, meaning

67

68 Extensions

it can enter a state in which no further time can elapse. This happens if
first time elapses such that x == 7 and automata B takes a transition into
B3. After this time elapses such the y == 9. Now no more time can elapse
in state A1, because of the invariant. At the same time the one outgoing
transition is not enabled, hence we have a time deadlock.

_ X<=7
y<=9 X==7
Al B1 B3
a? al
A2 B2

Figure 6.3: Two simple timed automata A and B.

Time deadlock poses a problem for compositional backwards reachability
analysis. In order to detect if we are taking a backwards step over a time
deadlock, we have to consider all components. This strongly contradict the
compositionality. One possible solution to this problem is to restrict the
models on which the method works. We want models that cannot time
deadlock, which is described by the following property.

Definition 6.1 : No TIME DEADLOCK

V(p,v) that is reachable.
(0 v) o0 Ty S such that Tim (3 (d;)) = oo

n

We believe that the following syntactical properties ensures that a system
never time deadlocks:

e Fach state that has an invariant must have an outgoing tau transition
which is enabled when the invariant prevents any further delaying. If
no such tau transition exists one must be added that leads to a special
deadlock state.

e There may not be any cycles in the model in which time does not elapse.
This can be ensured by checking that, in each cycle there exists a clock
that is reset and later checked to be larger than a non-zero constant.

We have no proof of these assumptions and this is a very interesting area for
future work.

68

Extensions 69

6.3 Urgent Locations

A location in an automata can be specified as being urgent. No time can
elapse in the system while an automata is in an urgent location. Urgent
locations can simply be modeled by the use of invariants, so if we have a
solution for invariants we have also solved the problem of urgent locations.
An extra clock z, is added which is reset on all transitions going into the
urgent location. Then an invariant, which specifies that no time can elapse,
xy, <0, is added to the urgent location.

6.4 Committed Locations

A location in an automata can be specified as being committed. Similarly as
for urgent locations, no time can elapse when an automata is in a committed
location. There is also the extra requirement that no other automata may
take any transitions before the one automata has left the committed location.
Before the reachability analysis is started, the set of committed locations is
examined. Any committed location that has an outgoing tau-transition is
registered as well as any pair of committed locations that can synchronize.
Whenever in the backwards reachability analysis that we take a backwards
delay or discrete transition, we know that none of the automata not in M
could have been in any of the previously mentioned states or combinations of
states. If the committed location is in an automata in M we will treat them as
urgent locations. When we take a backwards step into a committed location
or a pair of committed locations, we cannot delay due to the invariants that
was added by the treatment as urgent locations. In addition to this we must
only look at transitions that can bring us out of the committed locations
again, when choosing the next discrete step.

6.5 Urgent Channels

An urgent channel is a channel on which the automata must synchronize as
soon as they are able to. As for the committed locations we must register all
pairs of states that can synchronize over an urgent channel before the reacha-
bility analysis begins. When such a pair is not included in M, we know when
we delay, that all the components outside of M cannot be in these location
combinations. For pairs of locations where the one automata is included in
M, and the other one is not, we must do the following. If the automata in M
isn’'t in the location that can synchronize over an urgent channel, we must
do nothing. On the other hand if it is in this exact location, we can conclude

69

70 Extensions

that the automata outside M, with which it could synchronize, isn’t in the
corresponding location.

70

7 Implementation

A test implementation of the CBR method was created in order to produce
some experimental results. This implementation will in the rest of the report
be known as CBR-VERIFYTA. In the next chapter the experimental results
from CBR-VERIFYTA will be compared with results from UppPAAL. This
chapter describes what the test implementation includes and how it was
implemented.

7.1 Code Reuse

The CBR test implementation is implemented in the programming language
C++. This is done in order to be able to use the UPPAAL source code as
a basis for the development of a test implementation of the CBR for TA
method. Firstly the parsers, both for the models and the verification prop-
erties, could be reused. This results in the fact that, the same models and
verification properties can be fed to both UpPPAAL and CBR-VERIFYTA. A
result of using the UPPAAL source code as a basis, was that there was no
real design faze. The UPPAAL source code was slowly replaced and changed
to transform it into CBR-VERIFYTA. The remaining sections will describe
parts of the implementation. We will only describe things that has not been
covered elsewhere in the report. Although the double symbolic states and
the symbolic predecessor function represents the main part of the implemen-
tation effort, they will not be described in this section. This is due to the
fact that they have already received thorough treatment.

7.2 Focus of the Implementation

Due to the limited time resources, we have in this project it wasn’t an option
to do a full implementation of the CBR method. The priority was on being
able to compare CBR and UPPAAL by being able to verify relevant proper-
ties on a set of models. The main deficiency of the implementation is it’s
inability to handle verification properties containing negations or properties
starting with A[]. The problem lies in the step where symbolic states are

71

72 Implementation

generated from the parsed property. If first the symbolic states has been
generated, there is no set of states, that we cannot check the reachability
of. In the implementation we also chose to implement simple integers as
described in section 6.1 because many of the models contains integers, and
only use them in such a simple fashion. A point where the method differs
from the algorithm, is that there is performed an extra inclusion check when
inserting a state into the waiting list, to avoid duplicate states in the waiting
list. This is inspired by UPPAAL, which does exactly the same, although it
is not described in the forward reachability algorithm of section 4.3.1.

7.3 Dependency Analysis

In this section we will first describe the purpose of the dependency analysis.
After this we consider how to perform the analysis on a timed automata
network (TAN). Finally we consider some heuristics for different orders in
which to include the components.

The dependency analysis is carried out in order to avoid doing unnecessary
work. If we can show that a number of components are dependently closed,
and that the property we intend to verify only concerns components from
within the dependency closed set, then we know that we only need to in-
clude the components from the dependency closed set, in order to check the
property. Having a dependency closed set means that no matter how the
components outside the set behave, they cannot affect the set of states, that
the dependency closed set can reach. This analysis is carried out before the
actual verification.

In a TAN we have three types of components; automata, clocks, and inte-
gers. These components depend on each other in different ways. First of all
automata can depend on each other by use of the same channel to commu-
nicate. All automata that write to a given channel a! depends on all the
automata that read from the channel a?. Likewise each reader of a channel
depend on every single writer to the same channel. Integers can only depend
on automata. An integer depends on the automata that assigns it a value
on one of it’s transitions. Likewise clocks only depend on automata that it
is resets by. Finally automata also depends on the integers and clocks used
in a guard on one of it’s transitions. Using these rules, we build a depen-
dency graph. Starting with the set of components used to represent Goal.
We simply add all the components that these components depend on. In
this way, when we have no more components to include, we have reached a
dependency closed system. This need not bee all components in the system.
As a heuristic for which components to add we have chosen a very simple

72

Implementation 73

one, of in each step adding all the components that the current components
depend directly on. In the implementation we already count the number of
dependent relationships between two components. So that for instance for
each reset of a clock appearing in an automata, the clock depends with one
point on the automata. These numbers gives some sort of representation of
how closely connected two components are. One could easily imagine this
being utilized in some form of heuristics where a certain number of point had
to be added for each step. Coming up with some good heuristics could be a
possible direction of future work.

73

74

Implementation

74

8 Experimental Results

In this chapter we will compare the performance of the CBR method (CBR-
VERIFYTA) against both full backwards reachability (FBR) and the algorithm
used in the UPPAAL tool. What we mean by FBR will be explained in section
8.2.1. We choose to compare CBR and UPPAAL in terms of the number of
inclusion checks and exploration steps because these are the most complex
operations of the algorithms. We do not want to measure the execution time,
because this will show the efficiency of the implementations instead of the
relative strength of the individual methods.

8.1 Performance Parameters

We choose inclusion checks and exploration steps, as performance parameters
because we believe them to be the dominant factors in the execution time.
Inclusion checks are performed in two locations in the algorithms. Before a
state is explored it is checked against the passed list to see if it has already
been explored. Inclusion checks are also performed when inserting a state into
the waiting list. Exploration steps represent the number of times a state is
explored, i.e. the number of times we look at one state and determine what
new states we can reach by a forward or a backwards step. The UPPAAL
version used in this section is 3.2 Beta 5 (3.1.68) of September 2001.

8.2 Test Cases

As test cases we choose the two problems also described in the previous
report: The soldiers problem and Fischer’s mutual exclusion algorithm. An-
other reason for choosing these problems is that they are standard problems
that are distributed as examples with UPPAAL, and the fact that they can
be scaled in size.

75

76 Experimental Results

8.2.1 Fischer’s Mutual Exclusion Algorithm

The purpose of Fischer’s mutual exclusion algorithm is to ensure that a
number of processes all can have access to a shared resource, but never at
the same time. In figure 8.1 we show a prototype for the processes in Fischer’s
algorithm. These prototypes are created using the graphical user interface
for UpPAAL. From this prototype we can save a system with the desired
number of processes. In each process the pid is then replaced by a unique
constant, not zero.

x>K,
cs |d::p|d C

Figure 8.1: Prototype for each process in Fischer’s algorithm.

We use Fischer’s mutual exclusion algorithm to test CBR against both Up-
PAAL and FBR. We verify a property that the first two processes can both
reach the critical section at the same time. This can be written as: E<>
(P1.cs and P2.cs). This property is never satisfied for a correct con-
structed Fischer’s algorithm, so in all the test cases the answer is NO. We
verify this property for different numbers of processes. The reason we do not
change the property to include all processes, is that if we did so the com-
positional aspect of the CBR method would not be tested. We achieve the
full backwards reachability method (FBR) method by rewriting the property
to all possible combinations of states that are covered by the symbolic state
generated by E<> (Pl.cs and P2.cs). By using CBR-VERIFYTA to verify
this new property, we are guaranteed that all components are included from
the start, and hence we get what corresponds to full backwards reachability
analysis. The FBR property for three processes is:

E<>((Pl1.cs and P2.cs)
and (P3.a or P3.b or P3.c or P3.cs)
and (id == 0 or id == 1 or id == 2 or id == 3))

This property is rewritten for each number of processes, by adding an extra
line for each process, and an extra possible value for id. For four processes
the property is:

76

Experimental Results 77

E<>((P1.cs and P2.cs)
and (P3.a or P3.b or P3.c or P3.cs)
and (P4.a or P4.b or P4.c or P4.cs)
and (id == 0 or id == 1 or id == 2 or id == 3 or id == 4))

Uppaal is tested both with and without an optimization option —a, which tells
it to detect inactive clocks. This option improves the performance of UrPPAAL
for the models in question. Table 8.1 contains the number of inclusion checks
performed by each method in verifying the property on models of different
size. Likewise table 8.2 contains the number exploration steps.

Inclusion Checks
processes | UpPAAL | UrpPAAL -a | FBR | CBR
2 81 66 39 27
3 967 593 344 | 393
4 14729 6850 | 2247 | 1197
5 275391 97077 | 12679 | 2818
6 6113281 1633538 | 65537 | 5556
Table 8.1: Inclusion checks. Fischer’s algorithm.
Exploration Steps
processes | UpPAAL | UrpPAAL -a | FBR | CBR
2 29 23 17 12
3 301 181 108 85
4 4121 1889 563 | 168
5 70381 24701 | 2658 | 283
6 1441885 387925 | 11833 | 430

Table 8.2: Exploration steps. Fischer’s algorithm.

From table 8.1 and 8.2 we can see that both FBR and CBR performs sig-
nificantly better than UPPAAL, both with and without the —-a option. CBR
also outperforms the FBR method. In table 8.3 and 8.4 we will calculate the
factor by which the number of operations grow when we increase the number
of components. We calculate this growth factor by dividing the number of
operations required for 3 processes with the number of operations required
for 2 processes, and so on. For both versions of UPPAAL the growth factor
increases as the number of processes increase, indication greater than expo-
nential growth. For both FBR and CBR the growth factor decreases as the

7

78 Experimental Results

number of processes grow, indicating sub exponential growth. The growth
is still far from linear. We cannot conclude that this will be the case for
all models, but for this particular case CBR-VERIFYTA has both the lowest
number of operations and the lowest growth factor. The only exception for
this is the growth from two to three processes, where FBR has a lower growth
factor.

Inclusion Checks
processes | UpPAAL | UrpPAAL -a | FBR | CBR
3/2 11.9 9.0 8.8 | 14.6
4/3 15.2 11.6 6.5 3.0
5/4 18.7 14.2 5.6 2.4
6/5 22.2 16.8 5.2 2.0

Table 8.3: Growth factor. Inclusion checks. Fischer’s algorithm.

Exploration Steps
processes | UPPAAL | UPPAAL -a | FBR | CBR
3/2 10.4 7.9 6.4 7.1
4/3 13.7 10.4 5.2 2.0
5/4 17.1 13.1 4.7 1.7
6/5 20.5 15.7 4.5 1.5

Table 8.4: Growth factor. Exploration steps. Fischer’s algorithm.

When verifying a property that cannot be satisfied UPPAAL will eventually
search the entire reachable state-space. This means that no matter what
unsatisfiable property we verify on the models used above, we will get the
exact same number of operations. On the other hand the efficiency of the
FBR and CBR methods is very dependent on the property we want to verify.

8.2.2 Soldiers Problem

We choose this problem for several reasons. It is compositional in nature, it
is distributed with UPPAAL and it was also analyzed in the previous report
[Lar02]. In the previous report it was remodeled compared to the version
distributed together with UpPAAL. Here we choose to include test data for
both models.

78

Experimental Results 79

The problem can be described as follows. A bunch of soldiers have to cross
a river over a narrow bridge, in the middle of the night. They have only
one torch, which they need to cross the bridge, at the same time the bridge
can only carry the weight of two of the soldiers at a time. This means that
when two soldiers have crossed the bridge one of them must walk back to the
original side with the torch. So a new pair of soldiers can cross the bridge.
The soldiers walk at different speeds across the bridge, and if two of them
cross the bridge together, they walk at the speed of the slowest of the two.
The usual question to solve is; can all the soldiers cross the bridge within X
time units?

unsafe L==0 u_ready u_over
@ -O
take! y>=delay
y:=0
release ! release!

y>= delay A\ L==1
N take!
over ready y:=0 safe

Figure 8.2: The Torch automata and the prototype for the Soldier automata.

In the version distributed with UPPAAL, shown in figure 8.2, the torch is
modeled by an automaton, and so is each of the soldiers. In the version from
the previous report, we modeled the location of the torch by an integer vari-
able with three values. When one or two soldiers begin their journey across
the bridge they change the value of the integer, such that no other soldiers
can cross the bridge. When they get to the other side they change the value
of the integer to reflect, on which side of the bridge the torch currently is
located. In this model we do not use prototypes but individual automata.
But the automata still resemble each other so much, that we have chosen to
show only one of them in figure 8.3.

In the following the problem is modeled with four soldiers, S1, S2, S3, and
S4. The four soldiers take respectively 5, 10, 20, and 25 time units to cross
the bridge. In table 8.5 we show the properties that will be tested on both
models. These properties will also be tested on UPPAAL, with the detect
inactive clocks option.

79

80 Experimental Results

Figure 8.3: Soldier4, one of the timed automata used in this example. On
this figure the transitions marked with two synchronization labels, e.g. go!
and go?, are actually two transitions with the same reset sets and guards.

The percentage columns in table 8.6 and 8.7 are calculate by dividing the
number of operations needed in the CBR method with the number of opera-
tions used in UPPAAL. The tables show that especially for the properties that
are not satisfied, UPPAAL uses a lot fewer operations. This is also the case
for the most complex property, property 8. It is only for the first two simple
properties that the CBR method is consistently better. The remodeled sol-
diers problem generally requires both less inclusion checks and exploration
steps. There is only one exception from this, which is the number of inclusion
checks required by the CBR method for property number 1. With this model
UPPAAL generally performs better than CBR-VERIFYTA.

8.3 Conclusion on Tests

The tests carried out in the previous section show varying results. In the
most extreme case, Fischer’s algorithm with six processes, where the CBR
method is best, UPPAAL uses 29.401% more inclusion checks and 90.215%
more exploration steps. These results are obtained by dividing the num-

80

Experimental Results 81
1 | E<> Si1.safe YES
2 | E<> S1.safe and S2.safe YES
3 | E<> S1.safe and S2.safe and S3.safe YES
4 | E<> S1.safe and S2.safe and S3.safe and S4.safe YES
5| E<> S2.safe and S3.safe and S4.safe and time <= 39 NO
6 | E<> S2.safe and S3.safe and S4.safe and time <= 60 YES
7 | E<> S1.safe and S2.safe and S3.safe and S4.safe and time <= 59 | NO
8 | E<> S1.safe and S2.safe and S3.safe and S4.safe and time <= 60 | YES

Table 8.5: Properties to be verified on soldiers problem.

Inclusion Checks Exploration Steps
Property | UppPAAL -a | CBR % | UppaAL -a | CBR %
1 139 21 15.1% 42 9 21.4%
2 226 7 34.1% 80 27 33.8%
3 876 898 | 102.5% 288 | 271 94.1%
4 1485 | 3724 | 250.8% 468 | 1057 | 225.9%
5 1709 | 26714 | 1563.1% 534 | 5869 | 1099.1%
6 892 | 1527 | 171.2% 204 | 465 | 158.2%
7 1707 | 9139 | 535.4% 532 | 2701 | 507.7%
8 1497 | 10445 | 697.7% 474 | 3103 | 654.6%

Table 8.6: Verification of different properties on the original model of the
soldiers problem. With UPPAAL -a option.

ber of operation used by UpPPAAL with the number of operations used by
CBR-VERIFYTA. In the case where CBR-VERIFYTA uses the most operations
compared to UPPAAL, it uses 1563% more inclusion checks and 1099% more
exploration steps. We can conclude that neither the one nor the other method
generally is better than the other. Which method that uses the fewest op-
erations depend both on the model and on the property to be verified. For
Fischer’s algorithm, where CBR always used fewer operations, it outperforms
UPPAAL by more than, what UPPAAL does for the Soldiers problem. The
conclusion is that CBR has considerable strengths, when applied to the do-
main of TAN, and it is worth doing some extra work to try and explore the
full potential of the method. It might be a possibility to develop heuristics
that can help choosing if forward or compositional backwards analysis is best
suited for a specific verification job. Another possibility would be to combine
forward analysis with CBR and check for intersection between the forward
and backwards reachable state-space. This method would properly perform

81

82 Experimental Results
Inclusion Checks Exploration Steps

Property | UPPAAL -a | CBR % | UppaAL -a | CBR %
1 49 30 61.2% 12 3 25.0%

2 55 33 60.0% 13 4 30.8%

3 249 | 646 | 259.4% 56 92 | 164.3%

4 436 | 3031 | 695.2% 96 | 441 | 459.4%

5 496 | 6189 | 1247.8% 113 | 1096 | 969.9%

6 227 | 810 | 356.8% 61| 128 | 209.8%

7 496 | 6598 | 1330.2% 113 | 1036 | 916.8%

8 447 | 6630 | 1483.2% 99 | 1043 | 1053.5%

Table 8.7: Verification of different properties on the remodeled soldiers prob-
lem. With UPPAAL -a option

worse for properties that cannot be satisfied, but might deliver better results

for properties that are true.

To perform a thorough test of different verification methods, we really need
a very broad spectra of real-world verification scenarios, instead of two clas-
sical verification examples. I spite of the limited test material we can still
conclude that CBR for TA is a potentially very efficient verification method.

82

9 Conclusion

In this chapter we will first discuss possible directions for future work. Finally
we will conclude on the different parts of the report.

9.1 Future Work

In this section we will describe several directions for future work.

The most important direction of future work, for the usefulness of the CBR
for TA method, is the extensions described in chapter 6. If the CBR for TA
method should be a serious competitor to UPPAAL, one would have to be
able to handle all of these extension. The major challenge lies in handling
invariants.

Another natural line of future work would also be to develop a full imple-
mentation of the CBR for TA method described in this report. A remaining
field of work is also to test the efficiency of different data structures to hold
the past and waiting list. This implementation should off cause include the
extensions if solutions are found on ways to handle invariants and so on.

A third option is to look into the possibility of combining CBR with other
verification methods. As mentioned in section 8.3 it would first of all be a
possibility to combine CBR with some form of forward reachability analysis.
Both by doing forward a backwards reachability analysis at the same time.
But also by creating some heuristics to determine whether the CBR method
or forward reachability analysis is best suited for a particular verification
task. Yet another possibility is to design heuristics for the order in which to
include the components in the analysis.

Finally one could apply the CBR method to some new domain. With the
new generalized framework, the CBR method should be directly applicable
to many useful domains, both discrete and real-time domains.

9.2 Conclusion

We have in this report succeeded in developing two versions of a more general
CBR framework. We have proven the correctness of the two accompanying

83

84 Conclusion

CBR algorithms. The one based on the original CBR, algorithm and the
other based on the concept of symbolic states. We specified what is required
of a domain for each of the two CBR methods to be applicable. We have as in
the previous report [Lar02] introduced the domain of Timed Automata (TA),
and the algorithm implemented in UrPPAAL. We apply the CBR method
to the domain of TA by fulfilling the requirements, and thereby without
having to reprove the correctness of the algorithm. Several extensions of the
domain were also considered. A test implementation has been developed and
experimental results have shown the potential of the CBR for TA method.
The experimental results show that the effectiveness of the method depends
on both the model and the property to be verified.

The conclusion of the report is that CBR for TA is a very powerful method
for some models, and the method is worth further investigation.

84

0 Danish Resume

Denne rapport beskaeftiger sig med udvikling af en metode til Kompositionel
Bagleens analyse af om tilstande kan nas. Denne metode hedder Compo-
sitional Backwards Reachability (CBR). I kapitel 2 beskrives den generelle
CBR metode, der baserer sig pa en finere og finere partitionering af til-
stands rummet. Forst introduceres en algoritme inspireret af den oprindelige
CBR algoritme fra [LNAB"98]. Herefter udvikles en lignende algoritme,
som baseres pa brugen af symbolske tilstande. Korrektheden af begge algo-
ritmer vises og betingelser opstilles for anvendelsen af metoden pa et givet
domaene. I kapitel 3 introduceres Tids Automater (Timed Automata (TA)).
I kapitel 4 forklares den analyse metode for TA, som bruges i veerktgjet Up-
PAAL. I kapitel 5 anvendes CBR metoden pa domanet TA ved at opfylde
betingelserne for den symbolske algoritme. I kapitel 6 diskuteres muligheder
for udvidelser af TA domaenet. Disse udvidelser betragtes da det netop er
dem, der er implementeret i veerktgjet UPPAAL. Herefter beskrives i kapitel
7 den test implementation, som er blevet udviklet med grundlag i kildekoden
fra UPPAAL. Denne implementation bliver i kapitel 8 sommenlignet med
blandt andet UPPAAL, for at undersgge CBR for TA metodens styrker og
svagheder. Til slut beskrives mulige retninger for fremtidigt arbejde og en
konklusion drages i kapitel 9.

85

86

Bibliography

[AD94]

[AL]

[BDM*98]

[Bey01]

[BLL198]

[BLP*99]

[Bry86]

(God96]

Rajeev Alur and David L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183-235, 1994.

Henrik R. Andersen and Kim G. Larsen. Kompositionel og trin-
vis analyse af tilstandssystemer baseret pa afhaengighedsanalyse.
Part of patent application.

M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and
S. Yovine. Kronos: A model-checking tool for real-time sys-
tems. In Proc. 1998 Computer-Aided Verification, CAV’98, vol-
ume 1427 of Lecture Notes in Computer Science, Vancouver,
Canada, June 1998. Springer-Verlag.

Dirk Beyer. Improvements in BDD-based reachability analysis
of timed automata. In FME, pages 318343, 2001.

Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Petters-
son, Yi Wang, and Carsten Weise. New Generation of UPPAAL.
In Int. Workshop on Software Tools for Technology Transfer,
June 1998.

G. Behrmann, K. Larsen, J. Pearson, C. Weise, and W. Yi.
Efficient Timed Reachability Analysis Using Clock Difference
Diagrams . In Proceedings of CAV99, pages 22-24. Springer
Verlag, 1999.

Randal E. Bryant. Graph-based algorithms for Boolean function
manipulation. IEEE Transactions on Computers, C-35(8):677—
691, August 1986.

Patrice Godefroid. Partial-order methods for the verification of
concurrent systems: an approach to the state-explosion problem,
volume 1032. Springer-Verlag Inc., New York, NY, USA, 1996.

87

[Kat98]

[K.L93]

[KLL*97]

[Lar02]

[LNAB*98]

[LPY95]

[LPY97]

[Mil89]

[Min99]

[Pet99)]

Joost-Pieter Katoen. Concepts, Algorithms, and Tools for
Model Checking. Lecture Notes of the Course ”Mechanised
Validation of Parallel Systems”, Friedrich-Alexander Universitét
Erlang-Niirnberg, 1998.

K.L. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, Norwell Massachusetts, 1993.

K. J. Kristoffersen, F. Laroussinie, K. G. Larsen, P. Pettersson,
and W. Yi. A compositional proof of a real-time mutual exclu-
sion protocol. In Proc. 7th Int. Joint Conf. Theory and Practice
of Software Development (TAPSOFT’97), Lille, France, Apr.
1997, volume 1214, pages 565-579. Springer, 1997.

Ulrik Larsen. Datb-report: Compositional backwards reachabil-
ity for simple timed automata. January 2002.

Jorn Lind-Nielsen, Henrik Reif Andersen, Gerd Behrmann, Hen-
rik Hulgaard, Kare Kristoffersen, and Kim G. Larsen. Veri-
fication of Large State/Event Systems using Compositionality
and Dependency Analysis. In TACAS’98 Tools and Algorithms
for the Construction and Analysis of Systems. Lecture Notes in
Computer Science, 1998.

Kim G. Larsen, Paul Pettersson, and Wang Yi. Compositional
and Symbolic Model-Checking of Real-Time Systems. In Proc.
of the 16th IEEE Real-Time Systems Symposium, pages 76-87.
[EEE Computer Society Press, December 1995.

Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a

Nutshell. Int. Journal on Software Tools for Technology Trans-
fer, 1(1-2):134-152, October 1997.

Robin Milner. Communication and Concurrency. Prentice Hall
International Series in Computer Science. Prentice Hall, 1989.

Marius Minea. Partial Order Reduction for Verification of
Timed Systems. PhD thesis, School of Computer Science
Carnegie Mellon University, December 1999.

Paul Pettersson. Modelling and Verification of Real-Time Sys-
tems Using Timed Automata: Theory and Practice. PhD thesis,
Department of Computer Systems, Uppsala University, 1999.

88

[YPDO4]

Wang Yi, Paul Pettersson, and Mats Daniels. Automatic Ver-
ification of Real-Time Communicating Systems By Constraint-
Solving. In Dieter Hogrefe and Stefan Leue, editors, Proc. of the

7th Int. Conf. on Formal Description Techniques, pages 223—
238. North—Holland, 1994.

89

