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Four broadcast protocols as well as two
generic protocol extensions are simu-
lated in ns2. From the simulation res-
ults it is determined that broadcasting
via OLSR’s MPRs yields the best over-
all performance. Also, it is determined
that enforcing jitter on data traffic im-
proves the delivery rate.

The framework is applied to conduct
the simulations in this work, and sig-
nificantly reduces the manual work re-
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scenario parameters, to visualisation of
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Chapter 1

Introduction

This chapter introduces and motivates the work on simulation-based stud-
ies of broadcasting in Mobile Ad-hoc Networks (MANETS), documented in
the following chapters. Section 1.1 describes two major paradigms for organ-
isation of wireless networks: cellular networks and MANETS, and section 1.2
elaborates on the latter of these network types. Section 1.3 introduces the
subject of broadcasting in MANETS, and presents previous work conducted
to evaluate various broadcast protocols.

Sections 1.4 presents methods for scenario based protocol evaluation, and
section 1.5 describes how one such method, protocol simulation, can be ap-
plied to conduct extensive protocol evaluation with minimal effort.

Goals for this work are defined in section 1.6, and section 1.7 outlines the
remainder of this report.

1.1 Wireless Networks

Wireless data communication has been an active area of research during
the last two decades. In the eighties, work was conducted in the area of
packet radio networks, focusing primarily on military application of those
networks [JT87]. During the nineties, several new wireless networking tech-
nologies has emerged, and two extremes of wireless network types have be-
come apparent: Cellular Networks and MANETS.

Cellular networks, established using, e.g., GSM [GSM02] or GPRS [GPRO1],
consists of a grid of fixed interconnected stations. Communication between
mobile devices is established via the stations in the respective cells, even
when the mobile devices are within direct transmission range of each other.

MANETS, established using, e.g., IEEE 802.11 [soc99] or Bluetooth |Blu02|,
define the other extreme. MANETS are self-organising, autonomous systems
where nodes establish and maintain a wireless communication infrastructure
in an ad-hoc fashion, during operation of the network. MANETSs are inde-
pendent of any fixed network infrastructure, and devices may join, leave and
move around in the MANET at any time.
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1.2 Mobile Ad-hoc Networks

MANETS are applicable in situations where a set of wireless, communicating
devices are not all within direct transmission range of each other. Such
situations present themselves in several situations: when people bring along
their mobile computers, e.g., to conferences or collaborative meetings, when
carrying out work in remote locations and in rescue and military operations.

Furthermore, the autonomous, auto-configuring properties of MANET
routing protocols can be applied in wired network routers, to reduce the
work required to configure routes when the network topology is changed.

As MANETS are independent of fixed network infrastructures, the inher-
ent hierarchical structure known from wired networks is nonexistent. Two
devices in a MANET may communicate though they are not within trans-
mission range of each other, by having intermediate devices forward their
traffic. This functionality requires each physical unit in the MANET to act
as both a host and a router. This encapsulation hereafter referred to as a
node, as illustrated in figure 1.1.

MANET Node

Router

Figure 1.1: A MANET node, consisting of a host and a router contained in
the same physical unit.

Three communication patterns are observed in wired networks: unicast
communication between pairs of nodes, multicast where one node transmits
data destined for all nodes in a multicast group, and broadcast' [Bak95],
where one node transmits data to all other nodes in its local network.

Enabling these communication patterns in a MANET raise several issues,
among those are changes in the physical, data link and network layers of the
OSI protocol stack [LO02|. The remaining parts of this report will focus on
the issues and challenges related to the network layer, in particular those
related to the process of broadcasting in MANETS.

!The term “broadcast” does here loosely include both “Directed Broadcast” and “Lim-
ited Broadcast” [Bak95]



1.3 Broadcast Protocols 3

The following section presents an example of how two broadcast proto-
cols can achieve different amounts of bandwidth overhead involved in broad-
casting a message, and gives a presentation and evaluation of major works
conducted to evaluate different broadcast protocols.

1.3 Broadcast Protocols

Broadcast is utilised in three of the routing protocols [JMHJ02, PBRD02,
JMQ™02] currently being developed in the MANET working group [man02],
for the purpose of distributing control traffic. Furthermore, broadcast may
be used for transporting data for user applications.

For the purpose of this work, broadcast is defined as follows.

Broadcast: “the process of delivering a packet to every node within
the MANET under consideration.”

The fact that bandwidth is a constrained resource in MANETs |[CM99|
motivates the use of optimised broadcast protocols. The optimisations con-
sidered in this work are intended to reduce the bandwidth overhead and to
improve the probability of delivering a broadcast packet to all nodes in the
MANET. For the purpose of this work, bandwidth overhead is defined as
follows.

Bandwidth Overhead: “the number of unnecessary forwards in-
volved in delivery of a broadcast packet to all nodes in the MANET
under consideration.”

Observing that the wireless network medium may have inherent broadcast
capabilities, as those found in e.g. IEEE 802.11 networks, it is clear that in a
collision-free environment, a single broadcast message will be received by all
nodes within transmission range of the sender. Thus, by reducing the number
of transmissions required to cover all nodes in the network, the bandwidth
overhead of broadcasting a message can be reduced. One example of the
ideal reduction is illustrated in figure 1.2.

For the purpose of this work, the term “transmit” denotes the original
transmission of a packet. Nodes other than the originator is said to “forward”
the packet.

If all nodes receive the packet, eight forwards will occur, as illustrated
in figure 1.2b. This algorithm is denoted “Classic Flooding”. The minimal
overhead is achieved by letting only the nodes in the minimal connected dom-
inating set forward the message, in this situation generating two forwards,
as illustrated in figure 1.2c.
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O rLegend
O  MANET node
@ originating node
O @ forwarding node
— link
—= packet transmission
O or forward
@) (b) (©)

Figure 1.2: (a) An example MANET. (b) Classic Flooding generates 8 for-
wards. (c) Broadcast via nodes in the minimal connected dom-
inating set generates 2 forwards.

1.3.1 Related Work

With respect to the evaluation of MANET broadcast protocols, two works
stand out: [INTCS99| and [WC02|. The subjects and conclusions of these
works are presented below. Further, broadcast protocols are applied in
a number of unicast routing protocols developed in the MANET working
group [PBRD02, JMHJ02, JMQ™02].

e [NTCS99| considers the issues of redundant rebroadcasts, contention
and collision, as a whole referred to as “the broadcast storm problem”.

Through analysis, it is shown that the maximum additional coverage
which can be obtained by the first forward of a originated message is
61% of the area covered by the original transmission. By simulation, it
is shown that the expected additional coverage for a node quickly drops,
as the number of duplicate messages received by that node increases.
When receiving four or more duplicates, a node’s expected additional
coverage is below 0.05%. Furthermore, it is shown by analysis that
contention and collision are also likely to be present, adding further to
the broadcast storm problem.

Next, probability-based, distance-based, location-based and cluster-
based broadcast schemes are evaluated using a custom-built network
simulator. From the simulation results, it is concluded that the largest
reduction of redundant rebroadcasts are achieved by the location-based
protocols.

e [WCO02| define four classes of broadcast protocols: simple flooding,
probability based methods, area based methods and neighbour know-
ledge based methods.
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A performance comparison of protocol classes is conducted, using the
network simulator “ns2”. One protocol is selected to represent each
class. Furthermore, a worst-case bound is included, represented by the
Classic Flooding algorithm, and a theoretical best-case is represented
by flooding via the minimum connected dominating set in each simu-
lated node configuration.

The protocols are studied in static networks, mobile networks, con-
gested networks and a combination of the three, with the purpose of
pinpointing situations where the protocols perform well, and where im-
provements are possible.

This results of this work supports the conclusion in [NTCS99|, namely
that the location-based scheme yields better performance than the
probability and counter based schemes. Furthermore, it is concluded
that the neighbour knowledge based protocols yield even better per-
formance, and directions for future examinations of protocols in this
class are given.

The work of the MANET working group is targeted towards stabilisation
and standardisation of MANET routing protocols. Of the six MANET rout-
ing protocols currently having status as IETF drafts, DSR [JMHJ02| and
AODV [PBRDO02] use Classic Flooding as a broadcast mechanism. OLSR
uses multipoint relays (MPRs) to optimise the broadcast of control mes-
sages [JMQT02]. This technique is in the class of neighbour knowledge based
protocols.

Evaluation and comparison of the performance of these protocols have
been carried out in, e.g., [CHCB01, DPR00, Qay00, BMJ*98 JLH"99b].
These works evaluate the overall performance of the routing protocols. Ana-
lytical evaluations of the optimisation of OLSR by broadcasting via MPRs
is presented in [JL99, QVLO00|.

Evaluation of Related Work

The observations in [NTCS99| regarding the broadcast storm problem show
that reductions in the bandwidth overhead over the Classic Flooding ap-
proach are achievable by reducing the number of redundant forwards. The
simulation results presented in|[NTCS99| are problematic, as the behaviour
of the custom-built simulator is not specified in detail, thus not allowing for
comparison with results from other simulators in widespread use.

The comparison of broadcast protocol classes in [WC02] are based on
simulations of one or two protocols selected to be representative for each class.
The selection of protocols is based on considerations about the theoretical
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functionality of the protocols, and comparisons of previous simulation results,
obtained from different works which do not use the same simulation tools and
techniques.

Work conducted so far to evaluate and compare DSR, AODV and OLSR
has focused on the performance of the routing protocols as a whole. No known
large simulation based studies evaluate the performance of the broadcast
mechanisms applied in these routing protocols exist.

1.4 Scenario Based Protocol Evaluation

The development of routing protocols tailored for use in MANETSs is an
active area of research, embracing routing protocol specification and formal
proofs of correctness, as well as evaluation and comparison of the perform-
ance of various routing protocols. Scenario based evaluation is widely used
to evaluate and compare protocols, and three approaches to scenario based
evaluation exist: formal analysis, simulation and practical experiments.

1.4.1 Formal Analysis

Formal analysis of protocol performance as in [JL99, JVO00|, is a feasible
method to examine the communication and computation complexities of
routing protocols, isolated from the effects imposed by actual implement-
ations, network media characteristics and changing signal propagation con-
ditions. The protocol performance results obtained by formal analysis is thus
independent of network conditions.

Though not impossible, formal analysis becomes intractably complex and
time-consuming in complex scenarios. Hence, formal analysis has its limits
both with respect to the degree of realism and the complexity of the analysed
scenarios.

1.4.2 Simulation

Evaluation through simulation is performed using a software network simu-
lator providing a model of a network environment, in which routing protocols
can be implemented. Evaluation of a protocol is done by simulating the pro-
tocol operation in various scenarios, which defines node configurations and
movements, communication patterns and physical surroundings. The per-
formance of the protocol can be observed as its ability to route the traffic
generated in a scenario, and is measured as the actual network perform-
ance. E.g., packet delivery rates, path lengths and bandwidth consumption
achieved by the protocol.
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Current network simulation tools are restricted to evaluation of two-
dimensional scenarios, to keep the computations required by the network
environment model at a reasonable scale. The realism of the simulation res-
ults are limited by the accuracy of the simulators model of the real world.

1.4.3 Practical Experiments

Practical experiments is the third approach to evaluating MANET routing
protocols. Typically, such experiments are conducted by creating a set-up
of a number of nodes, e.g., notebooks equipped with IEEE 802.11 network
interfaces.

The performance of a routing protocol can be measured by observing
properties of the communication between nodes. The benefit of this method
is that it shows the performance of a real, specific implementation of a routing
protocol, and includes any effects imposed by network technology, physical
mobility and physical surroundings. The size of the scenarios that can be
constructed is constrained by the available equipment.

Naturally, conducting practical experiments implies great costs in merely
obtaining the necessary hardware. The definition of the scenarios in use can
be more or less specific: describing “three nodes in an office environment”
as opposed to “three nodes placed at certain coordinates in an otherwise
empty Faraday cage”. The latter allows for unknown factors to be present in
the environment, which leads to a reduced, but not necessarily unsatisfying,
degree of reproducibility.

1.4.4 Selection of A Method For Protocol Evaluation

The three approaches to scenario-based evaluation illustrate the tradeoff
between the desire to obtain reproducible evaluation results with foundation
in logical reasoning, and evaluating protocols in realistic scenarios, consider-
ing as many properties of a real-life environment as possible.

Formal analysis is constrained to simple scenarios, in environments that
do not describe the detailed characteristics of the wireless network. Practical
experiments, on the other hand, evaluate protocols in realistic environments,
at the expense of large experimental costs, and to some extent, reproducib-
ility of the results.

Simulators provide a tradeoff between formal analysis and practical ex-
periments, allowing for evaluation of larger and more complex scenarios than
formal analysis allows, at less than the cost involved practical experiments.
Hence, for the present work, network simulators are selected as the method
for performing scenario based protocol evaluations.
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1.5 Large-scale Simulation Based Studies

A comprehensive evaluation of a MANET routing protocol, with the goal of
demonstrating the overall protocol performance, should contain statistically
significant results, showing the protocol performance in a variety of scen-
arios. One method to ease the work required to conduct such evaluations
is described in section 1.5.1. Related work and existing tools to manage
large-scale simulation based protocol evaluations is presented and evaluated
in section 1.5.2.

1.5.1 A Simulation Machinery

With the desire for large-scale simulation based studies in mind, this section
describes a method to efficiently conduct such studies. Figure 1.3 illustrates
a “simulation machinery”, intended to automate the process of conducting
large amounts of simulations.

Simulation Machinery Results for
publication

— Scenario generation
— Parallelised simulation execution |— » [
— Result analysis and visualisation

Scenario
characteristics

Protocol
specifications

Figure 1.3: The simulation machinery.

The simulation machinery takes as input abstract scenario descriptions
and protocol implementations and, with little or no interaction, arrives at
a visual presentation of the simulation results. This is an efficient method
for conducting large amounts of simulations, potentially speeding up the
simulation process and minimising the amount of manual work involved.

Conducting a large amount of simulations based on the input of scenario
characteristics and protocol descriptions is a task that lends itself to auto-
mation. The large computational requirements involved with conducting the
simulations motivates parallelisation of the computationally intensive tasks
present in the machinery.

It is noticed that such a machinery must be able to support a wide range of
different simulation studies to be successful. Furthermore, a flexible, generic
simulation machinery is required to fulfil requirements set by different types
of simulations, while maintaining the role of an efficient aid for conducting
the simulations.
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Structuring such a simulation machinery as a simulation framework, provides
the requested flexibility: existing and new tools can be integrated, and in-
dividual tools in such a framework can be upgraded and replaced, without
influencing the other parts of the framework.

1.5.2 Related Work

This section will give an overview of the main works in the field of protocol
evaluation by simulation, emphasising on the simulations conducted in these
works, and leaving out the conclusions drawn from these simulations. First,
three major works in the field of simulation based studies are presented,
to identify the quantity of simulations conducted. Next, software tools for
conducting simulations are presented.

Simulation based studies

e |[CHCBO1| presents a scenario based evaluation of the OLSR protocol,
conducted using ns2. Scenarios of 50 nodes moving within an area of
1000 x 1000 m were simulated for a duration of 250 seconds, using one
fixed traffic load imposed on the network. By including and excluding
jitter on the control traffic of OLSR, and by using various hold-back
times for piggybacking control traffic, a total of 420 simulations are
defined to evaluate the two optimisations of OLSR.

e |[DPRO0| compares the performance of DSR and AODV through tree
sets of simulations, one set using 1500 x 300m / 50 node scenarios,
the other two using scenarios of 2200 x 600m / 100 nodes. Five ran-
dom scenarios are generated for each simulation set, and by varying
the number of traffic sources, the amount of mobility and the offered
network load, a total of 600 simulations (300 per protocol) are defined
to compare the two protocols.

e [JLH'99a| compares the performance of DSR, AODV and DSDV [PB94]
using five sets of simulations, of 1000 x 1000 and 1500300 m. Only one
scenario is generated for each set of simulations. By varying the offered
network load and the amount of mobility, a total of 123 simulations are
defined to compare the three protocols.

Tools for conducting simulations

The conduction of simulations encompasses both the network simulator and
auxiliary tools: scenario generators are used for automatic construction of
scenarios, and generic job scheduling systems are available for distribution of
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calculations. Existing tools for those purposes are shortly presented in the
following.

Simulators: Four network simulators are used to conduct the majority of
studies of routing protocols:

OpNet [opn02] is a commercial simulator, integrating the implement-
ation of protocols, specification of network scenarios, and conduction
of simulations in a graphical environment. No graphical user interfaces
are present for the other two simulators considered here, making OpNet
unique in this respect.

ns2 [pro02] has become the de-facto simulator applied in research work.
ns2 is open-source software, which gives free access to modify the com-
plete simulator source code, and to publish the modifications. A a wide
range of features are therefore present in or available for ns2, many of
them contributed by the simulator’s user community.

GloMoSim [glo02| is freely available for educational purposes, includ-
ing access to the simulator source code. Its use is observed in several
research works, but this simulator has a smaller user community, and
lacks the wide range of features present in ns2.

QualNet |[qua02]is a commercial simulator, derived from GloMoSim.
QualNet is characterised by a dedicated effort towards achieving a de-
tailed model of the physical and data link layers.

Scenario Generators: Along with the ns2 distribution comes separate util-
ities (setdest and cbrgen) for generating random node movement pat-
terns and random communication patterns. Together, they enable gen-
eration of simple scenarios. Another scenario generator, wsg [CHCBO1],
combines both features in the same tool.

Job Schedulers: The “Maui Scheduler” [SRDGO02]| is an advanced, generic
batch scheduling system intended for use on large clusters of machines.
Due to its large selection of advanced features, achieving a comprehens-
ive understanding of the scheduler and the required resource manager
software requires a large effort.

Evaluation of Related Work

Among the major works in simulation-based protocol evaluation, [CHCBO1|
presents by far the highest number of different scenarios for each set of scen-
ario parameters. This work, as well as [DPRO00|, uses automatic scenario gen-
eration. The largest number of simulations from which results are presented
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is 600, observed in [DPRO0|, but only in [CHCBO01] is the statistical signific-
ance of the results considered.

The need for conducting larger simulation-based studies is indeed present,
as statistical significant results are obviously preferable to single samples.
Nevertheless, the existing studies are all limited to presenting results from
a couple of hundreds simulations. One reason may be that little software is
presently available to aid the process of conducting simulations, and the lack
of integration between this software and the network simulator makes the
task of conducting simulations time-consuming and tedious.

Though several tools usable for conducting large quantities of simulations,
no known work exists that investigates the integration between these tools,
with the goal of aiding the conduction of simulations.

As it is more advanced than the two other tools presented, wsg is selected
for scenario generation. Of the four network simulators described, only ns2
is open source software. Due to the free availability, and the possibility of
reading, modifying and extending the source code, ns2 is selected as the
simulator for this work.

1.6 Goals

It has become clear that large scale simulation-based studies of MANET
broadcast protocols is yet to be published, and that a simulation framework
automating the simulation process can aid such a study. Addressing these
issues, the goals of this work are as follows:

e select a set of broadcast protocols and generic extensions that can
be implemented on standard MANET nodes with minimal intrusive
changes and requirements, and define a strategy for evaluating those
protocols,

e develop a simulation framework that automates execution of individual
simulations as well as parallel execution of large batches of simulations,

e evaluate the selected broadcast protocols, through an extensive simulation-
based study, using the developed simulation machinery to conduct the
simulations, and

e evaluate the simulation machinery as a method for automatic simu-
lation processing, based on the experiences gathered from using the
machinery to conduct simulations.
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1.7 Report Outline

The remains of this report are structured as follows: chapter 2 describes a
solution for the generic problem of eliminating duplicate packets that occurs
when using multicast and broadcast in MANETS.

Chapter 3 describes different classes of MANET broadcast protocols.
From one of these classes, a set of protocols is selected, and generic extensions
intended to improve their performance are proposed.

Chapter 4 describes the simulation framework which has been developed
to help conduct a simulation based study of the selected broadcast protocols
and extensions.

The selected broadcast protocols and extensions are evaluated in chapter 5,
and the simulation framework is evaluated in chapter 6.

Conclusions are drawn in chapter 7, which also presents directions for
future work.

1.8 Summary

Two major subjects are introduced in this chapter: MANETSs and simula-
tion based protocol evaluation. With the advances in wireless networking
technology, the construction of MANETS is possible. One of the challenges
that must be addressed to achieve good communication performance in a
MANET is the routing of traffic. An overview of the existing evaluations
and comparisons of routing protocols reveals that a comprehensive study of
neighbour-knowledge based broadcast protocols is yet to be conducted.

Scenario based protocol evaluation based on simulations present itself as
the most feasible way to conduct such a study, and a simulation machinery
to automate the simulation process is presented as a tool to aid such studies.

The next chapter describes a solution for the generic problem of elimin-
ating duplicate packets that occurs when using multicast and broadcast in
MANETS, being a prerequisite for the specification of broadcast protocols in
chapter 3.



Chapter 2

Duplicate Packet Elimination

This chapter addresses the issue of eliminating duplicate multicast and
broadcast packets, that appear in MANETS. Section 2.1 introduces the over-
all problem and approach to a solution. Section 2.2 elaborates on the cause
of nodes receiving duplicate packets. Section 2.3 proposes a solution to the
remedy the problem, using only the information present in the [Pv4 header,
and estimates the storage requirements put forth by this solution.

2.1 Introduction

The version 4 Internet Protocol [Joh81] (IPv4) was designed for use in wired
networks. The combination of the inherent broadcast capabilities present in
the wireless network medium, and the addressing scheme applied for mul-
ticast and broadcast, causes duplicate packets to be received during the for-
warding process.

Preventing the duplicates from appearing is an infeasible approach, as it
requires changes in the basic properties MANETS, i.e., removing the broad-
cast capabilities. This chapter investiagtes a feasible approach to addressing
the issue, namely to eliminate the duplicates.

2.2 The Cause of Duplicate Packets

Broadcast can be observed as an instance of multicast, using as destination
a group in which every node is member. This group may be addressed using
some reserved multicast IPv4 address, referred to as All-Manet-Nodes.

MANET nodes typically use the same wireless interface for receiving and
sending packets. When a node forwards a packet, the transmission is over-
heard by both the “next-hop” and “previous-hop” nodes, causing a duplicate
of the packet at the previous-hop node, as illustrated in figure 2.1a. Forward-
ing of packets on wired networks does not cause this problem, as packets are
forwarded through another interface than the one from which they were re-
ceived, as illustrated in figure 2.1b.

13
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Figure 2.1: (a) Duplicate packets appear when nodes share a broadcast me-
dia, and use only one interface. (b) In wired networks using
multiple interfaces the problem is avoided.

When a node transmits a packet on a broadcast media (regardless of
whether it is unicast, broadcast, or multicast) local filtering is required at the
receivers to determine whether or not the packet is intended for reception on
this node. For unicast the filtering is straightforward: the receiving interface
compares its own MAC address with that present in the MAC frame header
of a packet, and discards the packet silently if they mismatch.

When multicasting and broadcasting a packet, the destination in the
[Pv4 header and, correspondingly the MAC frames, is set to the multicast
or broadcast address. For multicast, the group members may accept the
packet, and non-member nodes can silently discard it. In case of broadcast,
all receiving nodes may accept the packet.

The trouble arise due to the combination of the broadcast nature of the
media, and the properties of the MAC addressing scheme: nodes may re-
ceive both the original transmission of a packet and subsequent forwards.
When forwarding a unicast packet, a new destination is used for the MAC
frames generated on forwarding, allowing duplicate packets to be discarded,
as illustrated in figure 2.2a.

When forwarding a multicast or broadcast packet, however, the destin-
ation address for the forwarded packet remains the same as in the original
transmission. As illustrated in figure 2.2b, the originator can discard the
duplicate packets by observing that its own address equals that in the origin-
ator field of the IPv4 header', but other receivers must consider additional
information to identify possible duplicate packets. The worst case appears
when duplicate packets are not dropped due to, e.g., collisions, and therefore
loops between two or more nodes, until its TTL reaches zero.

!Normally, the MAC layer filters the incoming packets before delivering them to the IP
layer [Ste94], but further filtering in the IP layer, based on the originator and destination
address of a packet, is possible.
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Figure 2.2: (a) Forwarding unicast packets using a shared broadcast media
enable nodes to eliminate duplicates at packets at the MAC layer.
(b) For multicast packets, duplicates cannot be eliminated at
the MAC layer. All nodes in this example are members of the
multicast group used.

Notice that the problem of duplicates occurs independently of multicast
and broadcast. As an example, the OLSR, AODV and DSR routing proto-
cols specify forwarding of packets sent to the Limited Broadcast IPv4 address
(255.255.255.255) to distribute control messages. These protocols solve the
problem individually, by duplicate elimination of control messages as part of
the routing protocol. The mechanism for eliminating duplicate messages is
independent of that for duplicate IPv4 packets, as duplicate messages are for-
warded by the routing protocols, resulting in generation of new IPv4 packets.
In this work, only elimination of duplicate IPv4 packets is considered.

2.3 Eliminating Duplicate Packets

Systems and applications developed for use in wired networks are not required
to deal with duplicate packets. Maintaining the functionality of these systems
when migrating to wireless network environments requires a general scheme
to be devised, which operates at a level below the application layer.

2.3.1 Approach For Duplicate Elimination

As described in section 2.2, it is necessary to use other information than
just the destination address of packets to determine if a given packet is a
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duplicate. [LO02| describes four solutions in two different categories, briefly
summarised here:

Duplicate elimination based on node addresses

These solutions depend on the ability to identify the node which sent the
packet, and consider this information during the decision of whether to for-
ward a packet.

e Inclusion of the address of the sender of a packet, in addition to the
already present originator address.

e Tunnelling of packets through unicast IP-in-IP tunnels that allows
nodes to identify the remote endpoint (and hence the sender) of re-
ceived packets.

Duplicate elimination based on packet identification

These solutions depend on the ability to uniquely identify packets or MAC
frames, and enable duplicate elimination by matching received packets or
frames, with a history of earlier receptions.

e Sequence numbering of IPv4 headers, by having the source node include
a sequence number in the [Pv4 header, and letting each node maintain
a history of sequence numbers of received packets.

e Sequence numbering of MAC frames: the sender of a MAC frame in-
cludes a sequence number, and each node maintains a history of se-
quence numbers.

In the following section, the solution of sequence numbering of IPv4 head-
ers is revised to operate solely on information already present in the IPv4
header.

2.3.2 Using The “IP Identification” Field

The technique, applied locally by each node to eliminate duplicate packets, is
based on principles of duplicate packet elimination in [LO02|. In the present
solution, the existing Identification and Fragment Offset fields of the IPv4
header are used instead of the IP sequence number introduced in [LO02],
thus avoiding additional information to be included in the IPv4 header.
The value of the 16-bit IP Identification field in the IPv4 header is incre-
mented each time a node generates a new IPv4 packet. In case fragmentation
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is required, all fragments of a packet have an identical value copied into the
[P Identification field. Each fragment of a packet has the “more fragments”
flag set, and the “Fragment Offset” field contains the offset of the present
fragment from the beginning of the original IPv4 packet [Ste94].

Each node holds a history of tuples of the form (Originator, Destination,
IP-Identification, Fragment-Offset ), one tuple for each multicast packet the
node has received.

When a node receives a multicast IPv4 packet, a lookup in the node’s
packet history is performed to determine whether the packet has been re-
ceived before. If this is the case, the packet is silently dropped. Otherwise,
an entry for the packet is added to the history, and the packet is further
processed for routing and/or delivery to applications.

2.3.3 Packet history size

As the history of received packets introduces storage requirements on each
node, it is relevant to estimate the amount of storage required. The following
scenario lets a node receive the maximum possible rate of unique packets per
channel in an IEEE 802.11 network:

e the receiver is equipped with a number of 802.11 wireless interfaces,
each operating at different of 11 Mbps channels,

e one traffic source for each different channel exists, and

e the bandwidth of each channel is consumed entirely by multicast [Pv4
packets with zero-length payload, destined for a single multicast group.

The packet rate for a single channel is now calculated. To simplify the
calculation, packet processing delay is not considered. This does, indeed, not
decrease the rate with which packets can be delivered, and hence handled by
the duplicate elimination process.

An empty IPv4 packet is mapped onto a single IEEE 802.11 MAC frame,
resulting in a total of 38 bytes to be transmitted (20 bytes IPv4 header, and 18
bytes MAC frame overhead). With an inter-frame gap of 92 psec, this results
in packets being transmitted at a rate of 8359 packets per second [soc99).

As no fragmentation is expected to be present due to the packet size of 38
bytes, the 16-bit IP Identification value will wrap after 7.84 seconds. Thus,
it does not make sense to store more than 7.84 seconds, or 65535 packets, of
history.

Each tuple of the format proposed in section 2.3.2, can be stored using 12
bytes, requiring a total of 767 KB for sequence number history per available
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channel. In addition to this, an overhead may be introduced by the data
structure used for the packet history.

2.4 Summary

Due to the procedure for mapping IPv4 multicast and broadcast addresses to
MAC addresses, the destination MAC address of these packets is not changed
during forwarding. Hence, duplicate elimination is required in situations
where a node receives duplicates of the same IPv4 packet.

A solution based on packet history enable duplicate elimination using the
information in the IPv4 header. Each node records tuples uniquely identi-
fying all received multicast and broadcast packets, and performs lookup in
this time-constrained history, discarding any packets received more than once
within the history timeout period. A worst-case calculation shows that the
proposed solution results in a maximum storage requirement for a single node
of 767 KB raw packet history information per available channel.

In the following chapter, broadcast protocols and generic protocol exten-
sions are selected for evaluation. The protocols all rely on duplicate elim-
ination to be performed, hence being obvious targets for application of the
solution just presented.



Chapter 3

MANET Broadcast Protocols

This chapter describes algorithms to perform broadcast in MANETS, and
presents the selection of broadcast protocols to be evaluated through the
simulation-based study described in chapter 5.

Section 3.1 introduces the overall problem, and section 3.2 presents a
generic broadcast algorithm which can be extended to accommodate the be-
haviour of any MANET broadcast algorithm. Section 3.3 present a selection
of broadcast protocols and generic extensions to be evaluated in this work.
The evaluation strategy described in section 3.4 estimates the number of sim-
ulations necessary for the evaluation, and section 3.5 summarises the chapter.

3.1 Introduction

Regarding a MANET as a directed graph (where nodes are vertices, and
links are edges), allows the problem of broadcasting a message to be restated
as “propagating a message from one vertex to the remaining vertices via the
available edges”.

Reductions in the bandwidth overhead of broadcasting can be achieved
by pruning the set of vertices through which a packet is forwarded. The
pruning can be done by a broadcast algorithm that determines a set of nodes
for broadcasting a packet. As illustrated in figure 1.2, an optimal reduction
of the bandwidth overhead is achieved by using the nodes in the minimal
connected dominating set for broadcasting [SK96, CL02, AWF02].

To be applicable in the context of MANETS, such an algorithm should op-
erate in a completely distributed fashion, using information available locally
at each node.

With the goal of increasing the probability of delivering a packet to all
nodes in the MANET, the broadcast protocols can be combined with several
generic extensions.

19
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3.2 A Generic Broadcast Algorithm

Packets intended for processing by a MANET broadcast algorithm must be
recognisable by their destination address. To avoid conflicts between the
semantics defined for the Limited and Directed Broadcast addresses for wired
networks, a specific address for broadcast in MANETS is introduced. This
address is denoted All-Manet-Nodes.

A generic algorithm for broadcast of packets can be specified as follows:

A node forwards a packet at most once within a limited amount of time,
if and only if the following conditions are fulfilled:
1. the packet is destined for the All-Manet-Nodes address, and

2. the packet has not been received (or alternatively, forwarded)
earlier, and

3. no other constraints specific to the forwarding algorithm in use
prevent the packet from being forwarded.

Notice that the time constraint present in the algorithm above, origin-
ates from use if the duplicate elimination mechanism described in chapter 2.
Each of the above conditions will be described in detail in the following sec-
tions 3.2.1- 3.2.3.

3.2.1 Condition 1: Addressing

Condition 1 states that a message which is to be broadcast must be destined
for the All-Manet-Nodes address. Introducing All-Manet-Nodes as an address
different from the Limited Broadcast address, requires the selection of the
correct address, to reach the intended set of receivers. Two solutions are
possible:

e applications are aware of the semantic difference between the Limited
Broadcast and All-Manet-Nodes addresses, and selects the correct one
according to their needs, or

e a mapping between the Limited Broadcast address and the All-Manet-
Nodes address is performed automatically, making every Limited Broad-
cast message reach all MANET nodes.

The first solution maintains the existing neighbourcast semantics of the
Limited Broadcast address, while the second solution effectively removes the
possibility for neighbourcast via the Limited Broadcast address. For the
purpose of this work, the first solution is selected.
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3.2.2 Condition 2: Duplicate Packets

Condition 2 of the generic algorithm allows two solutions to be applied for
eliminating duplicate packets, differing on whether duplicate packets are
eliminated if they have been received or forwarded before.

The first solution is denoted simple duplicate elimination, involving only
information about whether a packet has been received before. The second
solution, denoted eztended duplicate elimination, eliminates duplicate packets
using information about the forwarding status of the packets. By handling
one case differently, this solution allows more packets to be forwarded.

Consider the situation illustrated in figure 3.1: a packet which can tra-
verse two paths, a and b, to reach the same node, N. Path a delivers the
packet first, but due to a routing constraint in condition 3, N forwards the
packet only if it is received via path b. Here, the “previously forwarded”
information can be utilised: Though N has already received the packet, it
may still forward it, possibly reaching uncovered nodes.

Path a — Legend
@ @ O MANET node

- \Q @ originating node
Originator N | @ forwarding node

/ —= packet transmission
@ @ @ gr forward
Path b

Figure 3.1: Paths a and b both delivers a packet to node N. The packet via
path a arrives first, but only the packet travelling via path b may
be forwarded by N.

Information about whether the packet was previously forwarded can be
applied to determine whether the packet should be forwarded, resulting in
the decision process illustrated in figure 3.2 when a packet is received.

Q - — - - Duplicate Elimination- - - - o
@ ! )
;‘ /: Forwarded Ordinary I
= | _before? Network layer 3
- | Routing @
[ H c
g | mechanism T
) : =

Duplicate Elimination enabled network layer

Figure 3.2: Extended duplicate elimination, taking "previously forwarded"
information into account.
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In general, it is desirable to keep the amount of stateful information in
routers at a minimum, as maintenance and use of such information for the
purpose of forwarding decisions implies processing and storage overhead. The
introduction of duplicate elimination require MANET nodes to apply stateful
information when deciding the fate of packets, i.e., the history of packet
identifiers.

Furthermore, the situation handled by the extended duplicate elimination
scheme does not appear in all broadcast protocols. One property must be
present in the third condition in the generic broadcast algorithm is required,
namely that decision of forwarding a packet depends on the path traversed
by the packet so far. Hence, the simple duplicate elimination scheme will be
used for all the broadcast protocols evaluated in this work.

3.2.3 Condition 3: Protocol-specific Optimisations

Recalling figure 1.2, a broadcast protocol may reduce the number of forwards
required to broadcast a packet. Condition 3 of the generic algorithm leaves
room for exactly such protocol-specific optimisations, as any additional rules
may be added here.

3.3 Broadcast Protocols

As stated in section 1.6, one of the main goals of this work is to extensively
evaluate a set of broadcast protocols. The protocols should lend themselves
to implementation with a minimum of intrusion, and minimal system re-
quirements, apart from the capability to forward packets.

In the following sections, the protocols to be evaluated are selected. First
four different classes of broadcast protocols are described, to determine if
their system requirements can be fulfilled by the constraint of minimal intru-
sion and system requirements. With this background, the specific broadcast
protocols, and a set of generic extensions which will likewise be subject to
evaluation, are selected.

3.3.1 Protocol Classes

Four classes of MANET broadcast protocols are defined by [NTCS99, WC02].
A short description of the implementation requirements for each of the pro-
tocol classes is given. Following, one class of protocols is selected for further
examination.
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Probability based protocols apply a very simple scheme for achieving
broadcast: upon receiving a packet, the receiver forwards the packet
with probability p (0 < p < 1).

Picking a random value between 0 and 1 for each packet being forwar-
ded appears feasible at first sight. However the basic features, provided
by traditional router implementations — including those of MANET
nodes — negates this: a set of forwarding rules are applied to all re-
ceived packets, providing no “per-packet-configurable” rules.

Counter based protocols buffer received packets. During the buffering
period, the receiver counts the number of duplicates received for each
buffered packet. If the number of received duplicates is below some
threshold, the buffered packet is forwarded, otherwise it is silently dis-
carded.

Queues that store packets for immediate routing may be present, inten-
ded to buffer bursts of packets that arrive at a faster rate than they can
be processed — not for general-purpose use by routing protocols. Also,
buffering packets in transit exposes the sending and receiving applic-
ations to possible effects of the behaviour of the buffer, and increases
the end-to-end delay for each packet. Both effects may be harmful to
the performance experienced by the communicating applications.

Location and distance based protocols require information about the
locations and physical distance between nodes respectively, to calculate
the additional coverage achieved if a broadcast packet is forwarded.
Only if the coverage is above some threshold, the packet is forwarded.
The location or distance information can be retrieved by GPS, but the
requirement that all MANET nodes are equipped with GPS receivers
is undesired, both due to the cost, and because the GPS radio signals
cannot propagate in certain conditions, e.g., inside buildings.

An alternative method for calculating the distance between nodes is
proposed in [DRWT97]: a simple model for radio signal propagation is
applied to calculate the distance based on the received signal power.
This simple approach has limited fidelity, as radio signal propagation
depends highly on the physical surroundings, which are not described
expressed in the signal propagation model.

Neighbour knowledge based protocols require a method to retrieve to-
pology information about the network in which they operate. These
protocols rely on the actual connectivity in the MANET when deciding
to forward packets. Each node computes forwarding rules periodically
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from its local topology information, obtained through exchange of con-
trol messages between nodes.

Having computed forwarding rules, these are installed in the routing
table, where they remain until updated at a later point in time.

Standard MANET nodes do provide the necessary functionality for
neighbour knowledge based protocols to exchange control messages and
manipulate the node’s routing table.

The class of neighbour knowledge based protocols is the only class not
requiring additional hardware or router functionality than what is already
present on basic MANET nodes. Thus, protocols in this class of protocols is
considered for further examination.

3.3.2 Selecting Broadcast Protocols

This section concerns the selection of broadcast protocols. Through the ex-
amination of different protocol classes, it has become clear that the protocols
selected for evaluation in this work should be from the class of neighbour
knowledge protocols.

Several MANET routing protocols are based on neighbour knowledge.
Nodes using these protocols maintain a local base of network topology in-
formation, from which routes are calculated. Of these, only OLSR uses
broadcast to disseminate topology information. For this reason its broadcast
mechanism is subject for evaluation.

In addition to neighbour knowledge based protocols, other existing broad-
cast protocols, which do not suffer from implementation issues, are included,
to achieve a comprehensive comparison.

MPR Flooding

OLSR is the only proactive protocol utilising broadcast to keep the topology
information in the network up-to-date. It does so in an optimised fashion,
by selecting a subset of all nodes, the Multipoint Relay nodes, to perform
forwarding of a given broadcast packet. Using the MPR nodes to perform
data broadcast is certainly possible. Doing this, the broadcast protocol de-
noted “MPR Flooding” is obtained. The MPR Flooding protocol is derived
from the generic broadcast algorithm described in section 3.2 by adding as
condition 3:

“the packet is forwarded iff the receiving node has been selected as
MPR by the sender of the packet.”
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Determining the fate of a packet using this condition, requires information
about the IP address of the sender of each packet. This is not problematic
for OLSR messages, as the messages are broadcast via MPRs using Limited
Broadcast, originating new packets at each hop that the broadcast packets
traverse.

For arbitrary data packets, the IP header only provides information about
the originator. The sender address can be included as an IP Option field in
the IP header, and updated upon each forward of the packet.

Though possible, this is not a practical solution, since it requires changes
in the standard behaviour of the IP layer, and incurs additional processing
overhead when packets are forwarded. The Dominating Set Flooding pro-
tocol, described next, remedies this problem.

Dominating Set Flooding

Dominating Set Flooding provides a mechanism, equivalent to MPR Flooding
in terms of the set of forwarding nodes, while avoiding the requirement for
sender information in the IP header.

A dominating set of a MANET topology a set of nodes selected such
that every other node is adjacent to at least one node in this set. Observing
that OLSR performs periodic broadcast of TC messages using the MPR
optimisation is the key to achieving Dominating Set Flooding, as the set
of MPR nodes broadcasting a TC message sent by node N constitute a
dominating set.

Broadcasting data packets via this dominating set can be accomplished
by adding the following requirement as condition 3 of the generic broadcast
algorithm:

“the packet 1s forwarded iff the receiving node has forwarded the
last TC message originated by a certain node N.”

Various selections of N can be applied; what is crucial is:

e that the selected node is an MPR (otherwise it does not send TC
messages), and

e that all nodes agree upon the selection.

Two different ways of making the selection have been considered for the
purpose of this work:

1. Use the MPR with the lowest ID present in the MANET.

2. If the originator is an MPR itself, use its own ID. Otherwise, use the
lowest ID among the originator’s MPRs.
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The first solution makes all broadcast packets traverse a common shortest
path tree (SPT), concentrating the traffic load to that SPT. If the selected
tree is temporarily “broken”, this affects all broadcast operations.

Further, the SPT for the node with the lowest ID may not be the SPT
for the node which originates the data (see Appendix B for an example of
this situation).

In the second solution, packets originated at different nodes may traverse
different SPTs, so that outdated knowledge about one ID selection does not
influence broadcasts using other ID selections. Furthermore, the tree defined
by this ID selection will be a SPT rooted at the originator node, or that of
it’s MPRs which has the lowest ID.

Reverse Path Flooding

Reverse Path Forwarding [DM78] has been applied in wired networks, e.g.,
for the PIM multicast protocols |[pim02]. This protocol uses information
about shortest paths, provided by an underlying unicast routing protocol, to
make its forwarding decisions. Using Reverse Path Forwarding as a broad-
cast protocol, for the purpose of this work named “Reverse Path Flooding”,
is possible by adding the following as condition 3 in the generic broadcast
algorithm:

“the packet is forwarded iff it is recewved from the node selected as
next hop on the shortest path to the originator of the packet.”

The information about next hop nodes is provided by the unicast routes
computed by a unicast shortest-path routing protocol. For the purpose of
this work, OLSR is selected to provide unicast routing information.

Using Reverse Path Flooding in a MANET where shortest-path routes
have been established, and where no packet drops occur (an ideal situation),
all nodes will eventually receive a broadcast packet from the originator node
itself, or the node selected as next hop towards the originator. Hence, all
nodes will forward the packet, a situation which most likely includes unne-
cessary forwards [NTCS99].

Classic Flooding

The reactive MANET routing protocols DSR and AODV use broadcast to
disseminate control messages when discovery of new routes is required. Both
protocols use Classic Flooding to perform this task (see the example of Classic
Flooding in figure 1.2b).

Classic Flooding is not in the class of neighbour knowledge based broad-
cast protocols. However, it is included in this study, to cover the of broadcast
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protocols used in MANET routing protocols. For Classic Flooding, no addi-
tional constraints are added in condition 3 of the generic broadcast algorithm.
Only conditions 1 and 2 are applied for this protocol.

The previously selected broadcast protocols base their operation on the
topology information provided by OLSR. Being a proactive routing protocol,
OLSR specifies periodical transmission of messages, in order for each node
in the MANET to maintain its knowledge about the network topology.

This introduces a communication overhead which may influence the per-
formance of Classic Flooding, as the unicast and broadcast protocols must
share the available bandwidth. Therefore, the Classic Flooding protocol is
evaluated both as a stand-alone protocol, and in situations where also the
OLSR unicast protocol is used.

3.3.3 Protocol Extensions

In addition to the four protocols selected for evaluation, two extensions are
included. Each of these extensions can be used in conjunction with each of
the selected protocols.

Data Packet lJitter

|[CHCBO1| shows through simulations that adding a small, random amount
of jitter when forwarding OLSR control messages increases the delivery rate.
The jitter reduce the chance of collisions when packets are forwarded, hence
causing fewer packet drops. Assuming that the jitter may improve the de-
livery rate for data packets as well, the effect of using jitter of various scales
when forwarding data packets will be evaluated.

It is noticed that adding jitter when forwarding OLSR, control messages
lends itself to straightforward implementation: processing of OLSR control
messages is independent of the functionality of the network layer in the IP
stack. Adding jitter to data packets is less trivial: after the forwarding rules
has been configured, the network takes care of packet forwarding. Changes
must be made in the network layer to add generic support for jitter when
forwarding broadcast packets.

Multipacket Flooding

The goal of broadcast may be hard to fulfil under the presence of packet loss.
When broadcasting in a MANET subjected to small traffic loads, the idea
of using the additional available bandwidth to achieve a better delivery rate
can be realised.

Early versions of TBRPF specified the transmission of multiple copies of
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the same control message to increase the chance of reliable delivery [BOTO01].
This idea can be transferred to broadcast of data as well: to achieve better
delivery rate, at the cost of extra bandwidth consumption, multiple copies
of each originated packet may be sent by the originating node. To describe
this behaviour, the notion of “Multipacket Flooding” is introduced.

The Multipacket Flooding algorithm has one tunable parameter, the mul-
tipacket multiplier denoted m, and proceeds as follows when a node originates
a packet:

1. transmit the original packet, and immediately hereafter,

2. transmit m — 1 copies of the original packet,

This solution may result in excessive numbers of collisions when forward-
ing packets, as “bursts” of packets are sent across the network, and two nodes
sending such bursts at the same time is likely to cause a collision for each
sent packet.

3.3.4 Summary of selected protocols

Based on the criteria of straightforward integration in MANET nodes, four
broadcast protocols have been selected, and considerations regarding their
operation has been described. The protocols are as follows:

e Multipoint Relay Flooding,

e Dominating Set Flooding,

e Reverse Path Flooding, and

e Classic Flooding (with and without OLSR)

Furthermore, two extensions have been specified, to be evaluated in con-
junction with a selection of the broadcast protocols.

e Data Packet Jitter, and
e Multipacket Flooding
The following section describes the strategy for evaluating the protocols,

and presents an estimate of the number of simulations required to perform
the desired evaluation.
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3.4 Evaluation Strategy

In order to conduct an extensive simulation based study of the four selected
protocols, a strategy for achieving the desired results is presented. Two
parameters are, in turn, considered:

1. the conditions under which the protocols will be evaluated, defined by
a set of dimensions of a given granularity, and

2. the number of simulations required to present statistically significant
results for the protocols.

Based on the these parameters, the number of simulations to be conducted
can be estimated.

3.4.1 Dimensions and Granularity

The goal of simulation based study in this work is to evaluate the selec-
ted broadcast protocols in a wide variety of conditions. Several descriptive
scenario parameters, e.g., traffic load, number of nodes, scenario size and mo-
bility can be varied, to achieve scenarios that expose the broadcast protocols
to different conditions.

The simulations will be focused on evaluating the broadcast protocols in
a wide range of load conditions. One fixed, large scenario scenario size is
used, in which a fixed number of mobile nodes move around with random
mobility rate.

Variable load conditions

The traffic load imposed on each scenario will be generated using constant-
bit-rate (CBR) traffic sources. Varying load conditions are achieved by using
different numbers of streams and by varying the byte rate of each stream.
To achieve results from which tendencies of the protocol performance can
be observed, a variety of configurations for both the number of streams and
the stream byte rate will be evaluated. Several configurations of the tunable
parameter (the jitter interval or the multipacket multiplier) are simulated.
This allows the results to be compared with the corresponding results for the
non-extended broadcast protocols, to observe the effect of the extension.

Tuning of extensions

Each of the two extensions presented in section 3.3.3 has a tunable parameter.
An evaluation of the extensions will be performed as follows: the extension
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is combined with a selection of the broadcast protocols, and simulated in a
subset of the load conditions in which the original broadcast protocol has
been simulated.

3.4.2 Statistical Significance

Due to different node mobility and traffic patterns, each of the scenarios gen-
erated by wsg may yield different performance results. Therefore, a number
of random scenarios generated from identical parameter configurations are
simulated to achieve the average value of each sample point.

According to [Wag92|, a minimum sample size of 30 is necessary to achieve
representative averages for values of a population. For the purpose of this
work, 30 scenarios are simulated for each configuration of a broadcast pro-
tocol (possibly combined with one of the proposed extensions), number of
CBR streams, and stream byte rate.

3.4.3 Estimated Extent of Simulations

The number of simulations involved in the desired study is estimated by
deciding on the granularity of the variable parameters. For this purpose, the
following terms are defined:

Traffic source configuration: a selected number of nodes having active
CBR streams at any instant during the simulation.

Byte rate configuration: a selected rate with which the active CBR streams
transmit data.

Jitter interval configuration: « selected range limiting the values that can
be attained when selecting a random amount of jitter.

Multiplier configuration: a selected value of the tunable parameter “m”

in the multipacket flooding extension.

Table 3.1 illustrates the granularity of two variable parameters for the
simulations of the basic protocols. The numbers in this table results in a
total of 350 sample points, and with a sample size of 30, this yields a total
of 10.500 simulations.

Additionally, it is desired to examine whether the time-constrained du-
plicate elimination history size has any effect. It may be the case that some
duplicates go undetected if received after their information has timed out.
For this purpose, a total of 600 simulations are defined, as illustrated in
table 3.2.
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Protocol Traffic source | Byte rate
configurations | configurations

MPR Flooding 10 7

Dominating Set Flooding 10 7

Reverse Path Flooding 10 7

Classic Flooding 10 7

Classic Flooding with OLSR 10 7

Table 3.1: Estimated number of simulations for evaluation of the broadcast
protocols.

Protocol Traffic source | Byte rate
configurations | configurations

MPR Flooding 10 1

Dominating Set Flooding 10 1

Table 3.2: Estimated number of simulations for evaluation of duplicate elim-
ination.

Table 3.3 illustrates the granularity of the variable parameters for the
simulations of the jitter extension. 160 sample points are defined, for each
of which 30 simulations are conducted, yielding a total of 4.800 simulations.

Protocol Traffic source | Byte rate Jitter interval
configurations| configurations| configurations

DS Flooding & 10 1 8

Jitter Extension

Classic Flooding & | 10 1 8

Jitter Extension

Table 3.3: Estimated number of simulations for evaluation of the jitter ex-
tension.

Table 3.4 illustrates the granularity of the scenario parameters for the
Multipacket Flooding simulations. Defining a total of 180 sample points, each
being simulated in 30 scenarios, this test yields a total of 5400 simulations.

The four categories of simulations add up to 21.300 simulations in all.
This exceeds by far the numbers of simulations conducted in previous work
presenting simulation-based studies, and motivates an automated approach
to configuring and executing the simulations, and for visualising the results.
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Protocol Traffic source | Byte rate Multiplier
configurations | configurations| configurations

DS Flooding & 10 3 3

Multipacket Ext.

Classic Flooding & | 10 3 3

Multipacket Ext.

Table 3.4: Estimated number of simulations for evaluation of the multipacket
flooding extension.

3.5 Summary

The bandwidth overhead of broadcasting a packet to all nodes in a MANET
can be reduced by minimising the number of forwards required to deliver
the packet to all nodes in the MANET. This reduction is one of task of the
broadcast protocols considered in this chapter.

A generic broadcast algorithm provides the basis for specification of the
broadcast protocols to be evaluated in this work. Four classes of broadcast
protocols are described with focus on investigating their implementability,
and the class of neighbour knowledge based broadcast protocols is selected
for further examination.

Four broadcast protocols are selected for evaluation. The three are based
on neighbour knowledge, and the fourth being a traditional approach to
broadcasting, present in two of the existing unicast MANET routing proto-
cols.

Finally, an estimate of the number of simulations required to conduct the
study performed in this work is estimated. Conducting the large quantity
of simulations (21,300 in all) motivate minimising the work involved in con-
ducting the simulations. The development of a simulation framework for this
purpose, as suggested in section 1.5.1, is the subject of the next chapter.



Chapter 4

Simulation Framework

This chapter describes the simulation framework developed in this work,
intended to aid the conduction of extensive amounts of simulations. Sec-
tion 4.1 introduces the concept of a framework used to structure the de-
sired simulation. Section 4.2 gives an overview of the framework, and sec-
tion 4.3 describes its individual components. The chapter is summarised in
section 4.4.

4.1 Introduction

The framework developed in this work divides the simulation process into a
set, of well-defined stages, arranges the data storage required by each stage,
and integrates a set of applications specific to each stage, into a coherent
structure that allows each application to be exchanged individually if desired.

The following section gives an overview of the platform available for this
work, to clarify the requirements is put forth for portability.

4.2 Framework Overview

The simulation framework is divided into a set of discrete stages, and different
applications are applied to complete the tasks for each stage. Section 4.2.1
gives an overview of the platform on which the simulations in this work are
to be conducted. Section 4.2.2 describes the stages and their relation, and
section 4.2.3 describes the organisation of the data storage for these stages.

4.2.1 Simulation platform

Three classes of machines constiture the platform onto which the simulation
framework is applied. The classes are characterised by different architec-
tures, operating systems and storage organisation, as well as different usage
characteristics:

Cluster machines: a cluster of seven Linux/Intel machines with limited,
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shared disk storage in an isolated environment. The cluster is used
by a small number of other researchers and students. This category
delivers approximately half of the total computation resources.

Networked, shared machines: 15 Application servers and workstations
(Solaris/Sparc and Intel) with limited, shared disk storage. These ma-
chines are accessible to a large body of researchers and students. The
application servers are powerful, but occasionally very loaded. This
category delivers approximately one quarter of the total computation
resources

Independent machines: four Independent workstations (Linux/Intel) with
non-shared, larger disk storage, typically very lightly loaded. This cat-
egory delivers the remaining computation resources.

Notice that the environment is heterogeneous, with respect to both plat-
forms and usage characteristics, and provides limited disk and computational
resources. The requirement for portability influences the selection of lan-
guages for implementing the framework applications. Due to limited storage
and computation resources, considerations regarding data storage and saving
of possible recomputations are made during the framework design.

4.2.2 Simulation Stages

As illustrated in figure 4.1, the simulation framework consists of five main
classes of utilities, sharing a common data storage for reading and writing
their data. The five classes define five stages of the process leading from
abstract scenario descriptions to a set of results visualised as graphs.

Scenario Generation: The first stage converts abstract scenario descrip-
tions to a set of concrete scenarios which span the (multidimensional)
space of characteristics specified at the abstract level. This stage is
accomplished using a slightly modified version of wsg [CHCBO1].

Simulation: The second stage contains both the execution of individual
simulations, and the task of performing job control and scheduling on
the possibly large quantity of simulations. The network simulator ns2
is applied to conduct the simulations, and a custom job scheduling
system is developed to distribute the execution of simulations among
multiple machines.

Trace File Analysis: The third stage operates on the raw simulation out-
put (trace files). At this stage, operations are performed varying from
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Figure 4.1: The five stages of the simulation framework, and their inputs and
outputs. Above the dotted line are the stages generating the most
detailed level of results. Below the dotted line are the stages that
aggregate the results.

simple quantitative measures to applying advanced statistical tools, all
on the output of a single simulation. A tool maned Tafat (short for
TrAce File Analysis Tool) is developed to accomplish this stage.

Summary Generation: The fourth stage operates on the results of the
trace file analysis to generate summaries of the results of several simu-
lations having common characteristics. A tool named Sump (short for
SUMmary Processor) is developed to accomplish this stage.

Graph Generation: The fifth and final stage makes the summarised results
more accessible to users, by visualising all the results in graphs. A com-
prehensive set of graphs opens possibilities for discovering interesting
results not in the initial scope of interest. A tool named Grace (short
for GRAph Compilation Environment) is developed to accomplish this
task.

The scenario parameters are the input to the framework, and the graphs
are the output. However, the outputs of stages three, four, and five are a
gradual refinement of the simulator output in which each step adds overview
and accessibility at the expense of detail. Therefore, the combined outputs of
the last three stages are considered the final output of the framework, though
the graphs are the most human readable representation of the results.
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4.2.3 Data Storage

The organisation and selection of the data stored between the framework
stages illustrated in figure 4.1 must be structured to ensure flexibility, and
stored under consideration of the available processing and storage resources.
These issues are the subject of the present section.

Common file format

The output of trace file analysis shares many properties with the output
of summary generation. For this reason, these two stages share a common
output file format. This is convenient as it enables use of a common parser
front end for summary generation and graph generation stages.

It is desired that the files are easy to parse, and still human readable (i.e.,
not binary) to help debugging. To achieve this, a format is used where a file
consists of a number of lines, where each line consists of a number of fields
separated by colons (“:”). Also, a line may not depend upon the existence
or contents of other lines, i.e., all the context information necessary must be
present in the line itself. A line has the following structure:

<module>:<variable>:<meta-data>:<unit>:<data>

e <module> is the name of the statistics module that generated the data,
and <variable> is the name of a particular measure within the module.

e <unit> is a text string describing the unit of the data in this measure
(e.g. packets, bytes, seconds, etc.).

e <meta-data> and <data> are lists of tuples separated by bars (“1”),
each such tuple consists of a comma-separated list of fields, as follows:

<descriptor;, ... ,descriptor,,value>]|

The <data> field in the output of the trace file analysis usually consists
of a single “<descriptor,value>” tuple. The summary generator, on the
other hand, will need to compute aggregated values. Thus, the <data> field
tuples of the summary generator output lines are qualified with additional
descriptors, for example:

<descriptor,"avg",value>|<descriptor,"max",value>|
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Selecting data for permanent storage

After completion of all tasks in the framework, the user is supplied with
graphs displaying the results obtained by simulations of the initial abstract
scenario description.

It is not unlikely, that some of the results requires further inspection.
In such situations it would be advantageous to have as many intermediate
data available as possible, allowing the results to be inspected at more fine-
grained levels, or even allowing only part of the stages to be re-run. Finding
a reasonable set of intermediate files suitable for permanent storage involves
three considerations which will be described in turn.

The cost of generating and storing the results: Table 4.1 shows typ-
ical processing times and data volumes for each phase in the simulation
framework. From this table, it is observed that simulation is the most
heavy phase, both with respect to processing time and output data
volume. The remaining phases have requirements of relatively smaller
scales both with respect to data volumes and processing times.

Task Typical output Typical processing
data size time
Scenario generation | Hundreds of KB Seconds
Simulation Hundreds of MB - | Minutes —
Several GB several hours
Trace file analysis | Less than 100 KB Minutes
Summary generation | Less than 100 KB Seconds
Graph generation | Hundreds of KB Seconds

Table 4.1: Data volumes and processing times (estimated for a 500 MHz Pen-
tium IT PC) for conducting the phases of a single simulation.

Reproducibility of the results: It is observed that if a stage involves non-
deterministic behaviour (e.g., random without seeds), the output of
this stage cannot be recreated from its input. Hence, whenever non-
determinism occurs, it is necessary to store the intermediate files from
the stage involved or some subsequent stage. Among the applications
used for the framework in this work, only the scenario generator, wsg,
involves nondeterminism.

Information loss through aggregation: It may be desired to store data
before and after aggregating them. Figure 4.2 shows the data associated
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with a single simulation, and the ones aggregated from several simula-
tions. Results are aggregated in both the trace file analysis, summary
generation and graph generation phases.

Scenario Trace file Summary Graph
generation Simulation analysis generation generation
Scenario Trace file Result file
Scenario Scenario Trace file Result file Summary |l m  Graphs
parameters| files :

Scenario Trace file Result file

Fiol
TLL

Figure 4.2: Some data are associated with just one simulation, whereas others
are aggregated from multiple simulations.

With these considerations in mind, each file type present in the simulation
framework is now considered for permanent storage.

Scenario parameters: Though the scenario generator involves nondetermin-
ism, and thus the scenario parameters are insufficient to recreate the
simulation results, the scenario parameters are stored, as they are the
only non-simulation-specific data that exist before the simulator stage.
Furthermore, the scenario parameters provide an abstract description
of the conditions expressed in all scenarios of a set of simulations.

Scenarios: The scenarios are the origin of the results of a specific simula-
tion: simulating the exact same scenarios twice results in identical trace
files. As the scenario generator is nondeterministic, the scenarios are
necessary if the simulations need to be re-run. Hence, they are stored
permanently.

Trace files: Since all later stages are deterministic and aggregating, their
outputs can all be recreated from the trace files, and at a relatively low
cost (see table 4.1). However, with sizes ranging from hundreds of MB
to several GB, it is not practical to store the trace files.

Result files: The result files differs from the trace files in that instead of
logging events, events of each type are simply counted. The main loss
of information in the transition from a trace file to a result file is the
temporal dimension. The result files are selected for permanent storage,
as they are the closest representation of the trace file contents available.
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Summary files: When multiple simulations with identical scenario para-
meters are conducted, summary contain collect aggregated values, such
as average, maximum, minimum, etc. of the values in the result files.
It is not time consuming to generate summaries from the permanently
stored result files, but their small data volume allows them to be per-
manently stored without problems. For the purpose of this work, it is
selected to store the summary files.

Graphs: Graphs maintain a very low level of detail in order to present as
much information as condensed as possible to the user. The summary
data can not be generated from the graphs, speaking against storing
the graphs permanently storage. However, the graphs do not require
much disk space, and they are likely to be the most frequently accessed
presentation of the simulation results. Hence, the graphs are included
in the permanent storage.

Having considered the file types present in the simulation storage, only
the trace files are excluded from permanent storage, due to their large size:
each simulation generates trace files of up to several GB.

4.3 Framework Components

This section describes in further detail each application used in the simu-
lation framework which will is to be applied in this work. As described in
section 4.2.2, the scenario generator and simulator are modified versions of
existing applications [CHCBO01, LO02|. This section presents more elaborate
descriptions of the remaining tools, as they have been developed during this
work.

Notice that a separate description of the simulation scheduler is present
in section 4.3.3 for readability, although this tool rightly belongs to the sim-
ulation phase in the framework.

4.3.1 Scenario Generator

A slightly modified version of the scenario generator used in [LO02| is used
to generate the wireless broadcast scenarios. As the scenario generator is
divided into a front end and a back end, interfaced via a generic file format,
it is necessary to change only the back end to achieve scenarios that has the
syntax required to utilise the new wireless broadcast functionality required
for the simulations conducted in this work.

A set of shell scripts have been written to manage the procedure of quickly
setting up large sets of scenarios. A template for the scenario files (see
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figure 4.3a) is read by the scripts, and fields in the template are replaced
with values for, e.g., number of streams, stream byte rate, and so forth.
After all the fields have been substituted, the parameter file (see figure 4.3b)
is stored to disk. wsg generates the desired number of scenarios, typically
30, of the form exemplified in figure 4.3c. These scenarios are stored to disk,
ready to be simulated by ns2.

(a) # Node mobility (m/s)
node_speed <node_speed>
# Multicast stream byte rate (bytes/sec)
A .mcast_stream_byterate <mcast_stream_byterate>
# Average number of active multicast streams
A.mcast_stream_sends <mcast_stream_sends>

(b) # Node mobility (m/s)
node_speed 1-2
# Multicast stream byte rate (bytes/sec)
A.mcast_stream_byterate 2304
# Average number of active multicast streams
A .mcast_stream_sends 25

(c) set node_(42) [$ns_ nodel
$node_(42) set X_ 1093.049294
$node_(42) set Y_ 1353.005553
set wbc_(432) [new Agent/WBC/CBR]
$node_(42) attach-wbc-agent $wbc_(432) 0O
$ns_ at 245.8052008 "$wbc_(432) start
$ns_ at 255.8052008 "$wbc_(432) stop"

Figure 4.3: Examples of the contents of (a) scenario template files, (b) scen-
ario parameter files and (c) the scenario files generated by wsg.

4.3.2 Network Simulator

In order to carry out the intended simulations the simulator selected for this
work, ns2, must support network-wide broadcast (referred to just as “broad-
cast”) in wireless networks. The current version of, ns2 [pro02| supports only
limited broadcast, also denoted “neighbourcast”.

Successful broadcast of a packet in a wireless network results in the packet
being delivered to every node in the network. As described in section 2.2, this
process can be viewed as an instance of multicasting, using the All-Manet-
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Nodes multicast address as destination for broadcast packets independently
of the broadcast algorithm doing the packet forwarding.

Regarding broadcast as an instance of multicast is not only an abstract
convenience. In a multicast-enabled MANET, it is possible to actually carry
out broadcast as if it were multicast, at all layers below the network layer.
The network layer must be modified to recognise the All-Manet-Nodes ad-
dress, and subject packets destined for this address to broadcast routing
rather than multicast routing.

Network-wide broadcast in ns2

Multicast support in ns2 is a prerequisite for broadcast through multicast
to work. Multicast in wireless networks is, however, not supported by the
current version of ns2. The broadcast-capable version of ns2 used for this
work is based on the multicast-enabled version of ns2 developed in [LO02].
Here, support for wireless multicast was created by bridging the gap between
the two already supported features of wired multicast, and wireless unicast.

To fulfil the requirements for the simulations to be performed in this
work, further extensions to ns2 are created. The network layer is modified
to intercept packets addressed to the All-Manet-Nodes, and deliver these
packets to broadcast algorithms. These algorithms decide the fate of the
packet instead of subjecting it to multicast routing.

Furthermore, the generic packet routing infrastructure of ns2 is updated
contain special handling of packets destined for All-Manet-Nodes. Last, a set
of traffic agents that send traffic to the All-Manet-Nodes address is created
and integrated into the simulator.

Output from ns2

Figure 4.4 illustrates the trace file output generated by ns2 during a simula-
tion. All lines are timestamped according to the internal simulation clock of
ns2, and consist of a set of well-defined fields, from which information about
events in the simulation can be extracted.

r 0.701335726 _5_ MAC -- 2 udp 1024 [0 80000004 10 800] ---- [73:-1 -2147483644:0 249 0]
D 0.701335726 _5_ RTR dup 2 udp 1024 [0 80000004 10 800] ---- [73:-1 -2147483644:0 249 0]
r 0.701335731 _53_ MAC -- 2 udp 1024 [0 80000004 10 800] ---- [73:-1 -2147483644:0 249 0]

Figure 4.4: Example of trace file output from ns2.
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4.3.3 Job Scheduler

As described in section 4.2.3, the heaviest task with respect to computation
is the simulation stage. The extensive amount of simulations to be conducted
in this work, described in section 3.4.3, has motivated the development and
use of a simulation scheduler, to perform parallel execution of the large set
of simulations.

With the need for executing large batches of simulations on the plat-
form described in section 4.2.1, one central point of management that allows
automated job execution across the large number of machines is desired. A
simple scheduling system is implemented using Ruby [Mat02], to provide
exactly this functionality.

Scheduler structure

Figure 4.5 illustrates the structure of the scheduler, which consists of the
central point of management, the job manager, and a set of job servers run-
ning on remote machines.

Scheduled

Completed Jobs Job

jobs server
Job Manager

Job

server
£ — ;

Job | | Job Job

DB files server

Figure 4.5: Structure of the simulation scheduling system.

Via the interface of the job manager, the scheduler provides functionality
to establish and terminate connections to job servers, to manage the content
of the job manager’s job database, and to start and stop the scheduling of
pending jobs.

For each connected job server, the job manager possesses information
abut the effective user ID of the job server process, and schedules pending
jobs according to the number of available CPUs, job priority and user IDs.

Defining and scheduling jobs

The job scheduler performs scheduling on a common pool of jobs, where each
job consists of the information listed in table
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Field Contents

Command The command line which is executed on a job server when

line the job is scheduled.

CPU The number of CPUs which should be allocated when the

requirement job is scheduled

User A regular expression matching the user names under which
the job is allowed to be run

Host A regular expression matching host names of the job serv-
ers allowed to run the job

Priority Job priorities are integer valuesf in the range [—19...19],
inspired by UNIX process priorities (though completely
independent hereof): jobs with low priority values are
scheduled for execution before jobs with high values.

Table 4.2: Contents of a scheduler job.

Jobs are added to the job manager’s queue of pending jobs from text
files, containing one job definition per line. A job definition consists of a
comma-separated list of fields following the order listed in table 4.2, like
these example commands:

"'ns scenariol.tcl", 1, tue, *, O
"'ns scenario2.tcl", 1, tue, *, 1
"tafat -s test.tfa -t test-trace.tr", 1, cbaoth, *, O

Pending jobs are scheduled for execution according to the following simple
procedure, which is executed when a job server with at least one CPU not
allocated to execute a scheduled job is available.

1. From the set of all pending jobs, the set of jobs with potential to be
scheduled are selected as those having host and username expressions
matching those of the job server, and requiring at most the total num-
ber of idle CPUs on the server.

2. The set of potential jobs for scheduling is sorted according to the job
priorities, and the highest prioritised job is executed.

The scheduler provides a generic platform for executing shell commands.
This functionality lends itself to more than just executing ns2 simulations:
For example, file management tasks can be carried out in a convenient man-
ner across a number of computers, from one central location.
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4.3.4 Trace File Analyser

The product of running a simulation in ns2 is a trace file, which contains
timestamped information about a selection of events that occurred during
the simulation, including packet transmissions, receptions, collections, etc.
A dedicated application, Tafat, is developed to carry out the analysis of a
trace file by gathering information through a single pass over the trace file,
and writes it to a result file, of the form illustrated in figure 4.6.

forwards:pkt_fwd_rtr::packets:val,520934
forwards:pkt_send_agt::packets:val,23250
ifq_drops:ifq_drops: :packets:val,161335
ifq_drops:ifq_drop_rate: :pkt/s:val,537.783333
delay:pkt_delay_avg::seconds:val,22.8200
delay:pkt_hop_avg::hops:val,6.0357

Figure 4.6: Example of result file contents, generated by Tafat.

Before Tafat, awk [Rob02| and Ruby scripts were used to perform the
trace file analysis, but both were found to incur an unacceptable perform-
ance overhead. Furthermore, lack of modularity in the awk scripts made it
cumbersome to add new analysis scripts. Tafat is implemented in C) which
adds possibilities for more modular structures than awk, while still allowing
for performance optimisations over Ruby.

The primary objective of Tafat is achieving good performance, mainly by
using existing knowledge of the structure of a trace file to avoid needless input
parsing. The secondary objective is flexibility with respect to extending and
configuring the tool. This is achieved through modularity and simplicity in
design and implementation.

Structure of TAFAT

To address the requirement for modularity, the concept of erecutables is
introduced. An executable defines a private scope, an initialisation function,
a finalisation function, and a function that is executed once for each line in
the trace file (denoted a “trace line”). Executables can express dependencies
upon other executables, and may set functions or data at disposal for other
executables to use. Thereby, tasks that are common for several executables
may be extracted and placed in wutility executables, thereby being run only
once.

The executables have been divided into three groups: “pre-utils”, “ana-
lysis”, and “post-utils”. When an executable is initialised, it must specify in
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which group it belongs. The purpose of the grouping is to manage the order
in which a trace line is passed to executables, as certain utility executables
need to be run either before or after the analysis executables.

An example is the duplicate elimination utility. This utility, when it en-
counters a trace line regarding the reception of packet P by node NV, registers
that information. If an analysis executable subsequently asks whether (N, P)
is a duplicate, the duplicate elimination utility answers “yes”. Clearly, for the
first occurrence of (N, P) the answer must be “no”. Hence, it is important
that the duplicate elimination utility belongs in the “post-utils” group, being
run after the analysis executables.

Trace File Processing Flow

Figure 4.7 illustrates the flow of execution between the various components of
Tafat, during the analysis of trace file data. Notice that before the analysis is
started, all configuration of the trace file parsing module and the executables
have been carried out. After reading and processing the last line of a trace
file, all executables print their results to the result file.

. Executables

Buffered File Trace File Pre-utils Analyses Post-utils
Reader Parser ‘

Figure 4.7: Execution flow of Tafat during trace file analysis, illustrated by
the bold arrows.

Performance Considerations

To achieve good performance in terms of computation requirements, several
optimisations are applied. Some error tolerance has been sacrificed in the
trace file parser: the parser, operating at a line-by-line basis, assumes that
an input line has the correct format, and thus avoids many sanity checks.

This is a sound assumption, since errors in the trace file format would
be due to errors in the trace file generation code in ns2, hence requiring
corrections under all circumstances.

The parser is configured by the executables at run-time, so that only the
necessary fields in a trace line are extracted. Last, Tafat starts by reading a
script file identifying what executables should be activated, to avoid running
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unnecessary executables, and parsing the trace file fields required only by
unnecessary executables.

Furthermore, buffered reading of the input trace file is used. It has been
determined through experiments that a buffer size of 32 KB yields good I/0O
performance.

4.3.5 Summary Generator

From the result files, summary files are generated using Sump, the Summary
Processor. The generation of summary files distills the information from all
simulations of a sample point one step further, thereby achieving data that
are suitable for plotting in graphs. With the amount of results produced by
the simulations conducted in this work, summary generation is the key to
achieving useful graphical representation of the results.

The single most important goal for Sump is to conserve as much informa-
tion as possible, to ensure that the summary files can be used for a variety of
future examinations of the data. The task at hand is to generate one single
summary file that summarises the results for a group of common measures
present in all simulations in a single sample point. Referring to the spe-
cification of the file format for result files, measures from the result files are
classified in groups having common values of the fields:

<module>:<variable>:<meta-data>:<unit>

All of these fields are used to specify information that allows the data
associated with them to be interpreted in a particular way.

Summary Generation Output

Having collected all measures from the simulations performed in a single
sample point, the summary processor calculates the average, standard de-
viation, minimum and maximum, and cardinality (number of measures) for
each of the groups. This result is written to a summary file, using the same
data format as the result files. The only difference is that an extra descriptor
field is appended to the descriptor of the name of each data tuple, to indicate
the type of summary statistics. An example summary generated from the
result file from figure 4.6 is shown in figure 4.8.

4.3.6 Graph Generator

For a single measure, e.g., number of packet drops, one value for each sample
point is present in the summary files. These values are to be plotted in



4.3 Framework Components 47

forwards:pkt_fwd_rtr::packets:val,avg,539165.9000|val,min,502593.0000]|val,max,564779.0

..

forwards:pkt_send_agt::packets:val,avg,23250.0000|val,min,23250.0000]|val,max,23250.000

..

ifq_drops:ifq_drops::packets:val,avg,175867.4667|val,min,144223.0000|val,max,205429.00

..

ifq_drops:ifq_drop_rate::pkt/s:val,avg,586.2249|val,min,480.7433|val,max,684.7633]|val,

..

delay:pkt_delay_avg::seconds:val,avg,22.4239|val,min,17.6511|val,max,26.1643|val,stdde

..

delay:pkt_hop_avg: :hops:val,avg,6.3336|val,min,5.3914|val,max,7.0102|val,stddev,0.4554

..

Figure 4.8: Example of output from the summary generator, Sump (The lines
have been truncated to fit the page).

graphs, in order to present the simulation results in a form that is convenient
for comparison of large sets of values.

An graph generator, Grace, is developed for this purpose, to provide
a highly configurable environment for reading summary data and plotting
graphs.

The philosophy of Grace is that while data may be read from several
different sources, and it may be necessary to write them to different output
formats, it should be possible to organise all data from a batch of simulations
in one common storage structure (denoted a “sample space”), independent of
the organisation of data in, e.g., summary files. The data is then extracted
from the sample space for graph plotting. A set of simple queries enables
data extraction without bothering about the previous organisation of data
in summary files.

Phases of operation

Figure 4.9 illustrates the structure of Grace. Three separate phases, de-
scribed in turn, make up the graph generation as a whole: Configuration
parsing, input file reading and graph generation.

Configuration: The configuration phase sets up the sample space data
structure, and initialises the summary file parser and output gener-
ators.

Summary reading: The summary reading phase parses all data from the
summary files and stores it in the sample space. After parsing all files,
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Figure 4.9: Grace consists of the components in the dashed frame, and oper-
ation is divided in three phases: configuration, summary reading
and output generation.

a dump of the sample space may be written to disk, to avoid re-parsing
the summary files for later graph generation.

Output generation: The output generation phase activates the present
output modules, which extracts the required data from the sample
space and writes their output, e.g., Gnuplot graphs and LaTeX sum-
mary files to provide an overview of the graphs.

4.4 Summary

The structure, phases of operation and data storage for the simulation frame-
work has been defined. The separate tasks are solved by one or more applic-
ations, and allows individual applications to be replaced without influencing
the the remaining framework functionality.

An existing scenario generator (wsg) and network simulator (ns2) is ap-
plied in two of the five phases. Development of applications for the remaining
phases have been necessary to arrive at a complete framework. The structure
and operation of the applications developed to solve the remaining tasks has
been described.

Figure 4.10 illustrates the interaction between applications in the frame-
work, during the process that takes scenario parameters as input and pro-
duces result graphs as output.

The established simulation framework is applied to conduct the simula-
tions necessary for the protocol evaluation presented in the following chapter,
and chapter 6 presents an evaluation of the framework as a way of automating
the simulation process.
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Figure 4.10: Overview of the interaction between simulation framework ap-
plications.
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Chapter 5

Protocol Evaluation

In this chapter the performance of the four broadcast protocols and the
suggested extensions are evaluated through simulations. Section 5.1 states
the objectives for this chapter. Section 5.2 describes the set of metrics used
in the evaluations, and how they are computed. Section 5.3 lists the tests
that are conducted, and describes the general setup for the simulations. Sec-
tions 5.4 through 5.8 describe each of the tests in detail, and present the
results of the simulations. Section 5.9 evaluates and reflects upon the res-
ults, and finally section 5.10 summarises the essential aspects of the chapter.

5.1 Introduction

The purpose of the evaluation is to identify effective techniques for broad-
casting packets in a MANET. This is achieved by simulating four broadcast
protocols and two protocol extensions in a large amount of randomly gener-
ated scenarios.

The protocols and the extensions are those described in chapter 3. For
convenience, the protocol names are abbreviated as follows: Classic Flooding
(CF), MPR Flooding (MPRF), Dominating Set Flooding (DSF'), and Reverse
Path Flooding (RPF).

The term test is used to refer to a group of simulations and results re-
garding a specific overall goal. The results of five tests are documented in
this chapter:

Test 1: “Four Flooding Protocols” evaluates the four basic protocols

Test 2: “Classic Flooding With OLSR” examines the effect of the pres-
ence of OLSR control traffic on the Classic Flooding protocol.

Test 3: “Full-history Duplicate Elimination” identifies deficiencies in the
duplicate elimination scheme.

Test 4: “Data Packet Jitter” evaluates jitter as a scheme for avoiding
collisions.

ol
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Test 5: “Multipacket Flooding” evaluates multipacket flooding as a scheme
for increasing reliability.

From the results of test 1 the protocol that performs “best” is identified,
and this protocol will be used when conducting tests 3, 4 and 5. CF will also
be used as a reference for evaluating the results.

The reason why only one protocol (in addition to CF) is selected is primar-
ily to reduce the amount of simulations. For comparison purposes, the same
protocol is used in all tests.

5.2 Metrics

This section specifies the selection of overall metrics used in the protocols
evaluations.

The specified metrics are: effectiveness, delivery rate, end-to-end delay,
path length, and bandwidth consumption. After describing these metrics,
some general observations on average graphs are noted.

All simulations in this work use the same packet size. Hence, measuring
bytes or packets is interchangeable, as they are proportional. This fact is
used in some of the metrics.

5.2.1 Effectiveness

Effectiveness has been selected as the primary metric. For the evaluation
of the effectiveness of the protocols simulated in this work, effectiveness has
been defined to consist of two sub-measures: reliability and efficiency. The
following sections describe these two measures in turn, as well as how they
are computed. Then, effectiveness, as a function of reliability and efficiency,
is defined.

Reliability

In abstract terms reliability means:
“How much traffic is successfully delivered?”

To measure reliability, the number of uniquely delivered bytes in a simula-
tion is counted. Each sent byte is “delivered” at most once at each node, and
duplicates are not counted (see the definition of “delivery” in Appendix A).
To calculate the average percentage of nodes on which each byte was success-
fully delivered, this number is divided with the maximum possible number
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of delivered bytes, which is equal to the number of nodes in the network (n)
times the number of bytes originated. This yields the following formula:

delivered
r

n - originated

Both terms are expressed in bytes. m is the number of nodes in the
network. Notice that the formula is undefined when the number of originated
bytes is zero.

Note that this way reliability is not concerned with overhead of any kind,
but simply expresses that if a node sends a byte, then how many nodes can
in average be expected to receive the byte.

The reliability metric expresses how many percent of the nodes receive
each byte (or packet) that is sent.

Efficiency

In abstract terms efficiency means:
“How many deliveries are achieved per ‘bandwidth consumption’?”

The desired measure should issue a behaviour where more delivered bytes
per “bandwidth consumption” yields the better result. The tricky part is to
define a usable unit of bandwidth consumption.

Regarding bandwidth utilisation as being equivalent to “blocking” a node
from the network (i.e., it is unable to transmit or receive a packet), bandwidth
consumption can be measured as the sum of time where each node has been
blocked. A node is blocked when the media (the “ether”) is in use, which
occurs exactly whenever the node itself is either transmitting or receiving a
packet, or during a collision.

At this point, notice that when a node transmits a byte, it blocks itself
and all receivers exactly for the time required to send the byte (assuming a
802.11 broadcast /multicast where no RTS/CTS/ACK occurs). Since all such
time durations are equal, the bandwidth consumption may be measured in
bytes instead of time. Hence, one transmitted byte or one received byte is
equal to one unit of bandwidth consumption. This means that a transmission
with several receivers will, as desired, cause several simultaneous bandwidth
consumption units to be counted, and a transmission blocking many nodes is
measured as being more expensive than a transmission blocking few nodes.
So far, this yields the following formula:

delivered
e

- transmatted + recerved + collisions
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All four terms are expressed in bytes. Each collision is counted on all
the nodes blocked by the transmission. Notice that the formula is undefined
when the number of transmissions, receptions, and collisions are zero (i.e.,
the network is never accessed). Also notice that

The problem with this formula is that it exhibits an undesired ranking of
scenarios. More precisely, it does not differentiate scenarios with the desired
granularity. Ideally, the following should be satisfied:

Assume two scenarios, A and B. In A, a node transmits a packet resulting
in two deliveries. Scenario B is similar to A except in B the transmission
results in three extra deliveries. It is desired that a protocol yielding scenario
B should achieve a higher efficiency rating than a protocol yielding scenario
A.

This, however, is not the case with the efficiency formula just described,
as illustrated in table 5.1.

rd rd rd rdrd rd rdrd rd rd
.|
o.d o.d.t o.d.t o.d.t o.d.t
Originate (o) | 1 1 1 1 1
Delivery (d) | 1 2 3 4 5
Transmit (t) | 0 1 1 1 1
Receive (r) 0 1 1 3 4
Collision (¢) | 0 0 0 0 0
d
W Il/& 1 1 1 1
—o0 1 2 3 4
t+r+c n/a 2 3 4 5

Table 5.1: Favorising scenarios with many local deliveries results in a wrong
ranking of scenarios.

The source of the problem is that the formula really just checks whether
there is a one-to-one mapping between bandwidth consumption and deliver-
ies. This is commonly the case: On the originator there is one delivery, and
one transmission. On each receiver there is one delivery, and one reception.
Thus, each node involved has one unit of bandwidth consumption, and one
delivery.

To overcome this problem, a disequilibrium can be enforced by not count-
ing the delivery on the originator node. Thereby, to reach a high rating, it
is necessary for the protocol to cause as many receptions as possible (non-
duplicate ones, of course, to ensure a successive delivery).
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Notice that subtracting these “originator deliveries” does not alter the
result, because these deliveries always occur: There is no way (in ns2) to
prevent a byte from being delivered at the node where it was originated.
And since all the protocols are evaluated in identical scenarios, the same
number of bytes is originated, and thus the same number of deliveries will
be discarded.

This yields the following efficiency formula (see also table 5.1):

delivered — originated

e
transmaitted + received + collisions

All five terms are expressed in bytes. Again, the formula is undefined
when the denominator is zero (i.e., no network access occurs). Notice also
that the range of the formula is [0; 1]: It is not possible for the numerator to
become negative, since an originated byte will always cause a delivered byte
(at the originating node). And it is not possible for the numerator to become
larger than the denominator, as shown below:

For the numerator to be larger than the denominator it is necessary to
have a larger number of delivered bytes than originated bytes. But in order
to achieve these deliveries, at least one reception is required per delivery.
Thereby, the denominator will necessarily scale to at least the value of the
numerator.

The efficiency metric expresses how many percent of the “bandwidth con-
sumption units” result in a delivery

Weighing The Measures

The effectiveness measure, being composed of the reliability and the efficiency
of a protocol, still leaves undisclosed precisely how effectiveness is calculated
as a function of these two scores. Both the reliability and the efficiency
measure have values in the range [0;1], and it is desired that effectiveness
likewise has a score in the range [0; 1]. It is also desired that the effectiveness
formula allows for context-dependent scaling of the two component factors.
This is achieved with the following very general formula:

r +xe
z+1

Where x is the scaling factor introducing the difference in the weighings
of r and e.

The value of x could in some instances be calculated, and in other in-
stances be the result of subjective opinions on the importance of each of the
two factors.
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For the work in this report neither is the case. It is not possible to
calculate a value for x, and it is not desired to introduce subjective opinions.

The selected solution is to pick a value for x that yields an effectiveness
formula that “scales the two factors against each other”, that is, multiplies
them. Such a formula can be achieved from the general effectiveness formula
by using a proper selection of z:

r—re

T = yields E=r-e

re —e

This formula has the desired properties, and the scaling factor is removed.

5.2.2 Delivery Rate

The delivery rate expresses in average how many deliveries are achieved per
flooded packet, i.e., when a packet is sent, how many nodes will receive it?

The delivery rate will thus always be a value in the range [0;n|, where
n is the number of nodes in the network. This means that the delivery rate
measure is directly proportional (by a factor of n) to the reliability measure
of the effectiveness metric.

Since our simulations involve exactly 100 nodes, the delivery rate will
always be a value in the range [0;100], and is thus equal to the reliability
measure times 100. Thus, both measures are identical, only reliability is given
as a decimal (e.g., 0.35), whereas delivery rate is in percent (e.g., 35%).

5.2.3 Delay and Path Length

Two questions regarding deliveries arise after examining the delivery rate.
Delivery rate expresses how many deliveries are achieved, but it is also useful
to know when and where the deliveries occur.

To answer the when, the end-to-end delay in (seconds) is measured.

To answer the where, two measurements are performed regarding path
lengths: The average number of hops traversed by a packet when it is de-
livered, and the average number of deliveries of each packet that occur n
hops away from the source.

From these results it is possible to determine three things:

1. Which protocol provides the shortest delays?
2. How closely does a protocol approximate shortest paths?

3. How far away from the source does a protocol succeed in delivering
packets?
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5.2.4 Bandwidth Utilisation

The bandwidth utilisation is simply measured by counting how many bytes
per second are transmitted in the entire network. The amount of received
packets and collisions are also counted, but the term “bandwidth utilisation”
refers to the number of transmissions.

In addition to the raw transmission count, it is also counted how many
packets (again an average count) are forwarded in the entire network during
a whole simulation.

Notice that for these two metrics to be comparable with the same metrics
from other simulations, it is required that all the simulations involve the same
number of nodes, and use the same simulation time.

5.2.5 Average Graphs

In some instances it makes sense to present graphs plotting the average values
of a number of other graphs, in order to present results in a more compact
manner. These graphs are referred to as average graphs.

In this chapter, the majority of the graphs have “number of CBR streams”
as the z-axis, and show a tested property on the y-axis. Furthermore, this
property is tested in a number of load conditions, where the byte rate of
the streams is varied. This information requires a z-axis. It is selected not
to plot these results in 3-D graphs, as graphs tend to become increasingly
difficult to read when more dimensions are added.

Instead, the graph is broken up into multiple 2-D graphs; one for each byte
rate. These graphs are more easy to read than 3-D graphs when examining
the results from a particular byte rate. The price is that 2-D graphs do not
lend themselves well to overview — it is necessary to look at a different graph
for each byte rate.

In this case, one way of presenting such information is to calculate the
average for all byte rates at each stream-count, and plot them in a 2-D graph.
In such graphs the byte rate axis is said to have been marginalised out of the
graph. Marginalising the byte rate out of a graph has several consequences:

1. When the average of the results from a set of loads is calculated, it is
implicitly assumed that all the loads in the set are weighted equally
(i.e., a weight of 1).

2. An average graphs can only be compared with other average graphs
calculated based upon the same set of loads.

The reason for the second consequence is that even when two average
graphs are based on two sets of loads with the same load average, e.g., A =
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{1,2,5} and B = {1,3,4}, the average of the results might differ. If, for
example, the simulation results for the loads are those shown in table 5.2,

the result average for load set A is 4.3, while the result average for load set
BisT.

Load 11213415
Result |[2|5]8| 8|6

Table 5.2: The simulation results for loads 1, 2, 3, 4, and 5.

Average graphs are used frequently in this chapter in situations that sat-
isfy the two conditions stated by the listed consequences: all byte rates are
weighted equally (this is always the case in this work), and comparisons must
be based on the same set of byte rates.

A particular frequent use of average graphs is for the effectiveness metric
(and reliability and efficiency). The reason for applying average graphs for
the effectiveness metric is that the purpose of this metric is to provide one
graph that gives a quick overview of the performance of a protocol (bearing
in mind that not all factors are included in the effectiveness formula).

5.3 Simulation Setup

The simulations conducted consist of a number of nodes moving around freely
in a field of a given size with no obstacles. A number of these nodes are selec-
ted as data sources, emitting constant bit-rate (CBR) traffic. The selection
of sources is dynamic in a simulation, but the number of simultaneous data
sources remains fixed.

The movement pattern used is an instance of the random waypoint model,
in which a node selects a random direction, moves a random distance in that
direction at a randomly selected speed, waits for a randomly selected time
interval, and selects a new direction.

Node speed is not varied in the simulations in this work to limit the
number of simulations required. Testing the protocols under varying mobility
is a direction of future work.

The scenarios are generated using the random scenario generator wsg
described in section 4.3.1.

Table 5.3 lists the static parameters — the parameters that remain fixed
for all tests.

All tests are conducted with 10 different numbers of simultaneously active
CBR streams, which are: 5, 10, 15, 20, 25, 30, 40, 50, 75, and 100 streams.

Sections 5.4-5.8 describe these tests, and present the simulation results.
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Parameter Value

Field size 1400 x 1400 m
Number of nodes 100
Simulation time 300 seconds
Network capacity 2 Mb

Node movement 1-2 m/second
OLSR Hello message jitter | 0-0.5 seconds
OLSR TC message jitter 0-1.5 seconds
CBR stream duration 10 seconds

Table 5.3: Static parameters for all simulations.

5.4 Test 1: Four Flooding Protocols

The purpose of this test is to provide a thorough survey of the four flooding
protocols described in section 3. Based on this survey, the “best” protocol
will be selected for further studies with the described protocol extensions.

In this test, each protocol is evaluated in a range of different traffic con-
ditions. The static parameters of table 5.3 apply, and in addition the byte
rates of the CBR streams is varied over the values 192, 384, 768, 2304, 3805,
5760, and 7680 bytes per second (B/s).

The combinations of byte rates and stream-counts result in a total of
70 scenarios. A test consists of 30 samples, meaning 30 simulations of each
scenario per protocol, yielding 2100 simulations per protocol. With four
protocols, a total of 8400 simulations are required for the completion of this
test.

5.4.1 Expected Results

CF is expected to achieve a significantly higher delivery rate at low stream-
counts than at high stream-counts, but the delivery rate should drop quickly
as the stream-count increases. This is because CF is expected to saturate the
network quicker than the other protocols since all nodes forward all packets
immediately, causing a “broadcast storm” every time a packet is originated.

CF is still expected to be less reliable than the other protocols, particu-
larly at high stream-counts.

CF is also expected to be the least efficient protocol, as it can be expected
to cause many collisions.

The MPRF and DSF protocols are very similar, and hence they are ex-
pected to exhibit similar behaviours. The fact that DSF uses potentially
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older information than MPRF could prove a slight disadvantage.

It is expected that MPREF and DSF will achieve higher effectiveness than
the other protocols, because they are expected to achieve better results re-
garding both reliability and efficiency.

The RPF protocol is expected to perform better than CF because a node
does not forward the first reception of a flooded packet (like CF), but waits for
the packet from the shortest path. This causes RPF to lessen the “broadcast
storm” effect that is anticipated for CF. For the same reason, RPF is expected
to show longer packet delays. RPF should, however, obtain shorter-or-equal
paths when compared to CF.

Compared to DSF and MPRF, RPF is also expected to have shorter
average paths, but only because RPF is expected not to distribute packets
as far into the network as MPRF and DSF. There are two reasons for this:
First, MPRF and DSF limits the number of nodes that forward broadcasted
packets, whereas in RPF all nodes forward. Second, RPF does not provide
path redundancy.

5.4.2 Results

The primary metric used for this test is the effectiveness. In the follow-
ing sections the effectiveness (and the sub-metrics) are examined, followed
by a more detailed look at the delivery rate, path length, and bandwidth
consumption observed at selected loads.

Effectiveness

Figure 5.1 shows the average reliability. MPRF achieves the highest reliab-
ility at all stream-counts. The reliability of DSF is 7-9% lower than that
of MPRF, and CF is 16-30% lower than MPRF. RPF achieves the lowest
reliability, 42-62% lower than MPRF.

These results were not as expected. RPF is less reliable than expected,
whereas CF' is more reliable than expected. CF was expected to achieve the
lowest reliability by a large margin at high stream-counts, but CF is only
10-24% lower than DSF at all stream-counts.

Figure 5.2 illustrates the efficiency of each protocol. Clearly, there is a
big difference in the behaviours of the graphs. CF results in a nearly linear
graph, whereas the other protocols show increasing efficiency with increasing
number of streams. At 15 streams or less, CF is the most efficient protocol,
resulting in a 11-90% increase compared to MPRF, which in this section of
the graph has the second highest efficiency, and a 77-302% increase compared
to RPF (the lowest).
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As in the reliability graph, MPRF and DSF achieve similar results, and
MPRF achieves a 6-8% higher efficiency than DSF at all stream-counts.

RPF has the lowest efficiency at all stream-counts lower than 75, where
it surpasses CF. The RPF graphs is shaped similar to those of MPRF and
DSF, but RPF remains 24-50% lower than DSF at all stream-counts.

It is unexpected that CF achieves the best efficiency at low stream-counts,
as CF was believed to cause more traffic than any other protocol — also at
low stream-counts — and it was shown to provide fewer deliveries than MPRF
and DSF at all stream-counts.

Figure 5.3 shows the effectiveness of the protocols, calculated from the
reliability and efficiency results.

Effectiveness with varying number of streams
0.06

0.05 -

0.04
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Figure 5.3: Average effectiveness.

The behaviour of the CF graph stands out in effectiveness as well as in
efficiency. CF shows a continual decrease, while the other protocols show an
increase from 5 to 10 streams (RPF until 15 streams), and remains stable
until 50 streams, where MPRF and DSF begin to decrease.

At 15 streams or less, CF is the most effective protocol, with an advantage
of up to 48% over MPRF, which has the second highest value at these stream-
counts. Between 30 and 40 streams, CF drops below DSF, and at 100 streams
has dropped to 58% of DSF.
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An interesting observation is that CF’s advantage at low stream-counts
results from efficiency, and not reliability.

RPF has the lowest effectiveness at all stream-counts. At 5 streams RPF
is 76% lower than DSF, and at 100 streams, 53% lower.

The fact that MPRF and DSF show similar results for both reliability and
efficiency is reflected in effectiveness. As a result of having the highest value
in both reliability and efficiency, MPRF also has the highest effectiveness
value. At all stream-counts, MPRF is 14-18% higher than DSF.

Delivery Rate and Path Length

Figure 5.4 shows four things regarding the lowest load simulated: First, the
maximum delivery rate obtained by any protocol is 51% (by both MPRF
and CF). Second, RPF remains 53-64% lower than DSF at all stream-counts.
Third, MPRF has a 5-12% higher delivery rate than DSF. And fourth, CF
displays a peculiar peak to which no explanation has been found.

Average number of deliveries per packet, with varying number of streams
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Figure 5.4: Delivery rate at 192 B/s.

At 5 streams, CF is 38% lower than DSF, increasing to 15% higher than
DSF at 50 streams (and 6% higher than MPRF), after which CF drops to
18% lower than DSF.

Figure 5.5 shows the delivery rates at 768 B/s. Again, the maximum
delivery rate achieved is 51% by MPRF and CF. Also, a peak is appears



64 Protocol Evaluation

again in the CF graph. At 5 streams CF is 30% lower than DSF, increasing
to 18% higher than DSF at 15 streams, and then CF drops to 26% lower
than DSF at 100 streams.

Average number of deliveries per packet, with varying number of streams
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Figure 5.5: Delivery rate at 768 B/s.

RPF has the lowest delivery rate at all stream-counts except 100, where
it surpasses CF by 5%. At this point, RPF remains 22% lower than DSF. At
all stream-counts, DSF is 22-64% lower than DSF.

MPRF remains 6-11% higher than DSF at all stream-counts.

Figure 5.6 shows the delivery rate at 7680 B/s, which is the highest load
simulated. At this load condition, MPRF and DSF remain at a higher deliv-
ery rate than the two other protocols, MPRF achieving a 6-10% higher rate
than DSF.

At 5 streams, CF is 22% higher than RPF, and at 10 streams or more,
RPFlood is 4-19% higher than CF.

At 100 streams the maximum delivery rate (achieved by MPRF) is 4%,
and the lowest (CF) is 3%. As there are 100 nodes in the network, this can be
translated directly into 3-4 nodes receiving the packets, which is fewer than
the average 1-hop-neighbourhood size. Figure 5.7 confirms this observation
by showing that at 7680 B/s and with 100 streams, the average path length
varies from 1.1 hop (RPF) to 1.5 hops (CF).

Figure 5.7 also shows that at 7680 B/s CF has longer paths than any
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other protocol (38-317% longer than RPF, and 24-92% longer than MPRF),
meaning that CF succeeds in bringing packets further into the network.

Together with figure 5.7, figure 5.8 illustrates that RPF has the shortest
path lengths in all load /stream-count conditions.
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Figure 5.8: Average path length at 192 B/s.

This indicates either that RPF performs well in finding short paths, or
that nodes far away from the source do not receive packets at all, which
explains the low delivery rate. Figure 5.9 shows the average fraction of the
total number of delivered packets that are delivered at each distance (in hops)
from the source by each protocol. RPF stands out from the other protocols
by obtaining 41% of the deliveries at the immediate neighbours to the source.
DSF, MPRF, and CF obtains only 25%, 24%, and 22% respectively.

Figure 5.9 also indicates that some packets have traversed between 45
and 50 hops. From the result files it is found that the maximum path length
traversed by any packet in this test is 133 hops. Clearly, this should not be
possible in a network with only 100 nodes, and where duplicate elimination
ensures that any packet is forwarded at most once by each node. It will be
examined in test 2 whether this result is due duplicate packets that escape
the duplicate elimination.
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Figure 5.9: Average fraction of total deliveries registered at specific distances
(in hops) from the source.

Bandwidth Utilisation

Figure 5.10 is an average graph showing the bandwidth consumption for each
protocol. MPRF, DSF, and RPF achieve similar results, the distance from
CF to the nearest protocol varies from 117% with 5 streams to 30% with 100
streams.

5.4.3 Conclusions

MPRF has been shown the best average reliability result and efficiency result
(surpassed by CF in efficiency at 5-10 streams). As a result, MPRF also has
the best effectiveness (again, except at 5-10 streams). Second to MPRF is
DSF.

CF is found not to perform as poorly as expected compared to the other
protocols, especially, RPF is generally outperformed by CF, except in band-
width overhead.

Finally, the test has shown that none of the tested protocols achieve more
than a 51% delivery rate, and thus, although MPRF and DSF perform better
than CF, further improvements may be possible.
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Figure 5.10: Average UDP bandwidth consumption.

5.4.4 Summary

In this test, the four selected broadcast protocols have been simulated, and
MPREF has been found to overall perform better than the other protocols.
In particular when compared with RPF and CF. The DSF protocol showed
results that approximate MPRF well enough to select DSF as the protocol
that will be used in the other tests. The background for this selection is the
implementational difficulties involved with MPRF (requires changes to the
[P-stack). This cost has been found to outweigh the increased performance
displayed by MPRF.

5.5 Test 2: Classic Flooding with OLSR

In section 5.4 DSF, MPRF, and RPF were utilising an underlying imple-
mentation of the OLSR unicast routing protocol, suffering from an overhead
which was not present in the CF simulations. For completeness a test is de-
vised to determine the effects of OLSR traffic on CF, to be able to compare
the protocols on an “equal basis”, disregarding the presence of OLSR.

In this test the same scenarios are used as in Test 1, yielding 2100 simu-
lations.
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5.5.1 Expected Results

In low-load scenarios it can be expected that the extra traffic has little impact
on the transmission of data packets. As the network load increases, so will
the number of collisions caused by the presence of OLSR packets, resulting in
lower reliability because packets are lost when colliding (there is no collision
detection), and lower efficiency because both the increase in collisions itself,
and the decrease in reliability, causes a decrease in efficiency.

5.5.2 Results

The starting point is again the effectiveness metric. First, the reliability
metric and the efficiency metric are examined independently, followed by the
effectiveness metric. Last, the delivery rate and bandwidth utilisation are
examined.

Reliability

Figure 5.11 illustrates a 9-22% higher average reliability for CF+OLSR when
40 simultaneous streams or less are present in the network. With 50 streams
or more the gain is reduced to 1.4-3.0%. Reliability is calculated as the
average delivery rate. It is examined later in this section why adding extra
traffic improves the delivery rate of CF.

Efficiency

Figure 5.12 shows that in average, CF+OLSR achieves a much lower effi-
ciency with 40 streams or less. At 5 streams CF is more than 2.4 times as
efficient as CF-+OLSR. At 40 it is reduced to a 13% increase. Notice that
the efficiency graph of CF+OLSR behaves very differently from that of CF,
which remains comparatively stable at approximately 0.18.

The efficiency is calculated from several factors, which can be divided
into two groups: those concerning deliveries (the enumerator of the efficiency
formula), and those concerning bandwidth consumption (the denominator).
A decrease in efficiency must be reflected by either a smaller enumerator, a
larger denominator, or both.

A decreased enumerator (d — o) for CF+OLSR can only result from
CF+OLSR obtaining a large fraction of it’s deliveries at the originator (a
large o), since the reliability results (figure 5.11) show that CF+OLSR has a
larger total amount of deliveries (d) than CF. However, figure 5.13 illustrates
that this is not the case. CF and CF+OLSR deliver an almost identical frac-
tion of the deliveries at the originator, and in fact CF+OLSR obtains 2.4%
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less originator deliveries than CF. Hence, the decreased efficiency must be
the result of a larger denominator.

Fraction of packets delivered with varying path length
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Figure 5.13: Average fraction of total deliveries registered at specific distances
(in hops) from the source.

A larger denominator means a combination of larger amounts of trans-
missions, receptions, and collisions. Figure 5.14 illustrates the average band-
width utilisation measured in terms of transmissions. The figure shows that
difference between CF and CF+OLSR is 2.8% or less at all stream-counts.

Figures 5.15 and 5.16 show that at any stream-count, CF4+OLSR has
more packet receptions and more collisions than CF. With 40 streams or
less, CF+OLSR has 16-86% more receptions than CF, and 11-20% more
collisions.

These results cause the “expense” of the extra deliveries CF+OLSR achieves

to outweigh the number of extra deliveries, thereby decreasing the efficiency
of CF+OLSR.

Effectiveness

The reliability and efficiency results yield the effectiveness illustrated in fig-
ure 5.17. At 5 streams CF is 2.2 times more effective than CF+OLSR,
dropping to an advantage of 20% at 40 streams, and less than 5% at 75 and
100 streams.
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The reason for this behaviour is that while the delivery rate of CF+OLSR
is higher than that of CF, the expense per delivery is also higher, and the in-
crease in reliability is not large enough to outweigh the decrease in efficiency.

Delivery Rate

Figures 5.18, 5.19, and 5.20 show the delivery rates with stream byte rates
of 192, 768, and 7680 B/s respectively.

With 192 B/s and 25 simultaneous streams or less, CE4+OLSR shows a
significant advantage of 42-49%. From 30-40 streams a difference of 26-38%
is found, and at 50 streams and more, 2-6% more deliveries are found.

Delivery rate with varying number of streams
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Figure 5.18: Delivery rate at 192 B/s.

With 768 B/s per stream, only at 15 streams or less is a significant dif-
ference observed, where CF+OLSR achieves 9-42% more deliveries. At 20
streams or more, the difference drops to 0.6-3.0%

With 7680 B/s per stream CF-+OLSR also achieves more deliveries than
CF, but the difference is less than 2% at all stream-counts.

Bandwidth Consumption

The bandwidth consumption at byte rates of 192, 768, and 7680 B/s are
shown in figures 5.21 through 5.23.
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Figure 5.21 shows that at a byte rate of 192 B/s, and with 50 streams or
less, CF+OLSR transmits 24-45% more bytes than CF, but with 75 streams
or more, CF transmits 2-3% more bytes than CF+OLSR. Notice that the
graphs cross just as they begin to “flatten”. The flattening of the graphs
indicates an overload situation.
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Figure 5.21: bandwidth utilisation at 192 B/s.

Similar behaviour is found at 768 B/s (figure 5.22). The graphs cross
between 15 and 20 streams, and the same proportional differences as with
192 B/s are observed: before the crossing, CF+OLSR transmits 3-39% more
bytes than CF, and after the crossing, CF transmits up to 2% more bytes
than CF-+OLSR. Again, the graphs cross just as they begin to flatten.

At 7680 B/s (figure 5.23) CF makes more transmissions than CF+OLSR
at all stream-counts, but only 0.3-1.9%. The graphs indicate an overload
situation.

To sum up, adding OLSR traffic does not reduce the number of data
packets transmitted significantly. The reason is that only in low load condi-
tions does the OLSR traffic represent a noticeable fraction of the total traffic,
but at low loads there is bandwidth enough for both kinds of traffic. At high
loads the relatively small proportion of traffic that OLSR generates is not
enough to disturb the data traffic noticeably.
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CF+4+OLSR: Same bandwidth utilisation, but more deliveries

Comparing the average bandwidth graphs (5.14) with the average reliability
graphs (5.11) raises an interesting question regarding CF+OLSR: why does
CF+OLSR achieve more deliveries with the same amount of transmitted
packets'?

The question was, in part, answered when examining the efficiency, by
observing that CF+OLSR obtained the most received packets.

Another part of the answer is found in undetected duplicates. Figure 5.24
shows that 8-15% more undetected duplicate packets are received with CF
than with CF+OLSR. This means that out of the total bandwidth consump-
tion in CF and CF+OLSR respectively, a larger portion in CF are contributed
by (possibly spinning) duplicates, that is, packets that take up bandwidth,
but do not contribute deliveries.

Undetected duplicates with varying number of streams
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Undetected duplicates
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Streams
Figure 5.24: Average number of undetected duplicate packets.
This observation provides an answer for the question, but it also raises

another question: why do fewer undetected duplicates appear when extra
traffic is added? We have not been able to find an answer to this question.

!The graph shows transmitted bytes, but packets are equal-sized, so there is a direct
proportionality between transmitted bytes and transmitted packets
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5.5.3 Conclusions

Adding the control packet of overhead of OLSR does not reduce the band-
width capacity in terms of transmissions. There is, however, an increase in re-
cewved packets, which is also reflected in the delivery rate, making CF+OLSR
more reliable than CF.

The OLSR traffic causes more collisions to occur, which, together with
the extra receptions, cause the efficiency of CF-+OLSR to decrease, compared
to CF.

The efficiency decrease of CF+OLSR is larger than the reliability increase,
resulting in a decreased effectiveness.

Fewer undetected duplicate packets are observed with CF+OLSR than
with CF, allowing CF+OLSR to deliver more packets with the same band-
width.

5.5.4 Summary

In this test, OLSR carries out its transmission of control traffic, and config-
uration of unicast routes, consuming some of the shared bandwidth. It is
observed that the presence of OLSR traffic affect the performance of CF in
several ways.

The number of undetected duplicate packets decreases, meaning that a
larger fraction of the transmitted packets are unique, causing the measured
number of received packets to increase. The increase in received unique
packets contribute with additional deliveries, thus increasing the delivery
rate and hence the reliability.

Adding OLSR traffic causes causes collisions, which, along with the extra
packet receptions, decreases the efficiency. The efficiency decreases more
than the reliability increases, resulting in a lower effectiveness result when
OLSR traffic is present.

It remains unexplained why adding OLSR’s control traffic to the network
decreases the occurrences of undetected duplicate packets.

5.6 Test 3: Full History Duplicate Elimination

Duplicate elimination ensures that once a packet has been received (and
perhaps forwarded) by a node, that node will not process any subsequent
receptions of the same packet. The duplicate elimination scheme devised
in chapter 2 is time limited, however, meaning that if a packet is in transit
longer than the packet identifier remains in the duplicate elimination history,
the packet may be processed, and thus forwarded, several times by one node.
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The consequence when this happens is “noise” in the simulation results:
the results, although realistic, indicate drawbacks of the duplicate elimination
scheme, and not the flooding protocol.

The result files from test 1 (section 5.4) contain information about packets
that have traversed as many as 133 hops, which should not be possible as
there are only 100 nodes in the network. This indicates that duplicate packets
are present in the network.

To determine the frequency of this problem, a test is conducted where
the duplicate elimination history stores all received packet identifiers for the
full duration of the simulation.

This test is conducted on one byte rate (384 B/s) with CF and DSF,
yielding 600 simulations.

5.6.1 Expected Results

It is expected that the maximum number of hops traversed by any packet
decreases when enforcing full duplicate elimination. If this is the case, it
will indicate that the packets traversing more than 100 hops in test 1 are
duplicates.

5.6.2 Results

As expected, all duplicate receptions of packets are intercepted by duplicate
elimination in these tests — the number of undetected duplicates is zero in
all tested conditions.

The result files from this test contain information about packets that have
traversed up to 39 hops, showing that a large decrease compared with the
133 hops with 15 seconds duplicate history timeout.

5.7 Test 4: Jitter on Data Packets

The 802.11 MAC specification states that no RTS/CTS is performed when
transmitting broadcast and multicast packets. Consequently, if neighbour
nodes attempt to broadcast simultaneously, a collision will occur. A network
with broadcast/multicast traffic will be prone to many collisions.

Furthermore, when a node, N, is part of a unicast route, and N for-
wards the packet, the packet will usually be forward by at most one of N’s
neighbours.

If N forwards a broadcast packet, a subset of neighbours to N (as defined
by the broadcast protocol) will forward the packet. If some of these neigh-
bours are within transmission range, it is a possibility that some of them
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forward the packet at the same time, causing collisions.

One way to try to remedy this problem is to enforce jitter upon the
transmissions. Jitter means that the transmission is delayed for some short,
random time period. It has been shown in [CHCBO01]| that jitter has a positive
effect on OLSR control traffic. It is desired wish to investigate the effects of
enforcing jitter on flooding, and in particular, to investigate whether jitter
reduces the number of collisions in the network.

Jitter works by delaying the transmission for some randomly selected
delay between 0 and Max Jitter seconds. To get a broad perspective,
tests are conducted with several selections of Maz Jitter. The following
Maz_ Jitter values (in seconds) are tested: 0.002, 0.01, 0.05, and 0.1-0.9
with increments of 0.2 seconds.

The jitter test is conducted with 8 different values of max_jitter on two
protocols (CF and DSF), yielding 16 protocols. One byte rate is tested (768
B/s), amounting to 4800 simulations.

5.7.1 Expected Results

Adding jitter is expected to increase the end-to-end delay of broadcast oper-
ations, since a delay is manually enforced on every node on the path. Only
if jitter causes shorter paths to be used can the delay be reduced.

In low-load scenarios, enforcing jitter is expected to prevent some of the
collisions that occur due to the reasons just described. However, jitter will
leave vacant gaps in the ether when none of the nodes in a neighbourhood are
transmitting, because of the enforced waiting period. Therefore it is expected
that jitter reduces the effective bandwidth of the network, which is expected
to be visible in high-load scenarios.

Performance improvements resulting from applying jitter have already
been observed through simulations in the work described in [CHO1|. However,
these results were achieved by introducing jitter on the control traffic of
OLSR, which is very sparse compared even to the lowest traffic loads that
are simulated. According to the discussion above, this low traffic load should
lend itself well to jitter. Hence a performance increase of similar proportions
in these simulations is not expected.

5.7.2 Results

In accordance with the expected results, the delay will be examined first,
followed by the number of collisions. These metrics are expected to change
under influence of jitter. After that, the effectiveness is analysed.
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Delay

As expected, adding jitter causes additional delay proportional with the
amount of jitter introduced. This is illustrated by figures 5.25 and 5.26
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Figure 5.25: End-to-end delay with CF.

Collisions

Figures 5.27 and 5.28 show the number of collisions occurring. With both
protocols, jitter reduces the collisions at high stream-counts.

For CF the reduction is 5-8% by introducing jitter at 20 streams or more.
At less than 20 streams, jitter causes a 2-40% increase in collisions.

For DSF adding jitter reduces the collisions 8-11% at 25 streams or more.
At less than 25 streams, no significant changes are observed.

Effectiveness

Figures 5.29 and 5.30 show the reliability for CF and DSF.

For CF at 5 streams, jitter provides a reliability increase of 184%. This
increase drops to 2% at 15 streams, and at 20 streams or more, the difference
between CF with and without jitter is less than 1%.

For DSF, adding jitter increases the reliability at all stream-counts. At 5
streams DSF is 73% higher, and at 100 streams DSF is 4% higher.
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Figure 5.30: Reliability of DSF.

Figure 5.31 illustrates that adding jitter to CF decreases the efficiency
3-49%, whereas Figure 5.32 shows that adding jitter to DSF increases the
effectiveness 5-59% (at 40 streams or less). At more than 40 streams, DSF
is not affected by adding jitter.

The reliability and efficiency of CF and DSF with jitter results in the
effectiveness results show in figures 5.33 and 5.34.

For CF the effectiveness is only higher with jitter at 5 streams (45%). At
15 to 75 streams, CF without jitter is 2-28% higher.

For DSF the effectiveness is higher when jitter is used at all stream-counts.
The increase varies from 175% at 5 streams to 4% at 100 streams.

5.7.3 Conclusions

Adding jitter when forwarding broadcast data packets is shown to decrease
the amount of collisions that occur when 25 streams or more are active.

Also, jitter increases the delivery rate (reliability), particularly at low
loads. The largest increase is found with CF at 5 streams, where the delivery
rate is increased from 32% to 92%. For DSF at 5 streams, the delivery rate
is increased from 46% to 80%.

The primary cost of adding jitter is the associated end-to-delay. However,
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Figure 5.31: Efficiency of CF.
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it is observed that delay is the only metric where the amount of jitter is
important, and the lowest amount of jitter provides the same benefits as the
highest amount of jitter, while providing shorter end-to-end delays.

5.7.4 Summary

In this test the effect of adding jitter to broadcast data packets was examined,
and three primary observations are made:

1. Adding jitter decreases the occurrence of collisions.
2. With few streams jitter provides a significant increase in reliability.

3. Increasing the amount of jitter added does not increase the benefit of
jitter, but only adds to the end-to-end packet delay.

5.8 Test 5: Multipacket Flooding

A problem inherent in MANETS is reliability. The packet loss rate in a
MANET is higher than in wired networks [CM99]. We wish to investigate a
simple technique that might improve the reliability: sending multiple copies
of each packet. This approach will naturally incur a greater overhead (linear
in the number of packet copies), but how many additional successful deliveries
can, say, two extra copies of each packet buy?

If a node receives several copies of the same packet, only one is counted
as a successful delivery — the other ones are overhead.

To implement multipacket flooding two issues must be settled: First, how
many copies of each packet should be sent. Second, when should the packets
copies be sent? We have decided to test three packet multipliers (2, 3, and
5).

The test includes byte rates 192, 384, and 768, and the protocols CF and
DSF. This yields six protocols in three load conditions, amounting to 5400
simulations.

5.8.1 Expected Results

We expect that sending multiple copies of a packet in a low-load scenario will
result in more packets reaching their destinations, since the media should be
able to carry the extra packets. We do, however, expect the price of the
extra delivered packets to be high. In high-load scenarios the additional
traffic might only disturb the existing packet flow, causing collisions and
resulting in a decreased delivery rate.
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5.8.2 Results

The following sections describe the effectiveness metric, followed by an over-
view of the collisions and the bandwidth utilisation.

Effectiveness

Figures 5.35 and 5.36 show the reliability of CF and DSF with and without
multipacket flooding.
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Figure 5.35: Reliability of CF.

For CF, multipacket flooding decreases the reliability significantly at 15
streams or more, and the more copies that are sent, the lower the reliability.
At 5 and 10 streams, multipacket flooding (using a multiplier of 2) provides
up to a 13% better reliability.

DSF displays a similar behaviour, except that even at 5 and 10 streams,
multipacket flooding has a lower reliability than DSF without multipacket
flooding.

Figures 5.37 and 5.38 show the efficiency of CF and DSF with and without
multipacket flooding.

With 40 streams or less, CF without multipacket flooding shows the
highest efficiency. With more than 40 streams a multiplier of 2 provides
an efficiency increase of 7-19%.
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Figure 5.36: Reliability of DSF.

DSF has very different characteristics. At 40 streams or less, a multi-
plier of 5 provides an increase of 11-198%, but at 50 streams or more the
multipacket flooding multiplier with the highest efficiency (a multiplier of 2)
decreases efficiency by 4-22% compared to DSF without multipacket flooding.

The effectiveness graphs resulting from these reliabilities and efficiencies
are shown in figures 5.39 and 5.40.

What is interesting is that for CF in all conditions, multipacket flooding
decreases the effectiveness significantly, and the more packet copies that are
sent, the worse gets the effectiveness result.

With DSF multipacket flooding provides the best effectiveness at 15
streams and less, and at 5 streams the best effectiveness is found when trans-
mitting 5 copies of each packet, which provides a 107% increase.

Collisions

Figures 5.41 and 5.42 show the average number of collisions that occur with
CF and DSF. The figures illustrate that multipacket flooding causes colli-
sions.
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Figure 5.37: Efficiency of CF.
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Bandwidth Utilisation

Figures 5.43 and 5.44 show the average bandwidth utilisation for CF and
DSF with and without multipacket flooding. These figures illustrate that —
as expected — an increased multiplier results in increased bandwidth.
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Figure 5.43: Average bandwidth for CF.

5.8.3 Conclusions

It is observed that increasing the packet multiplier causes more collisions in
the network, and results in increased bandwidth utilisation.

In the majority of the tests, multipacket flooding lessens the reliability of
a protocol significantly.

The protocols achieve very different results regarding efficiency. With CF,
multipacket flooding can increase the efficiency at 50 streams or more, while
with DSF, multipacket flooding can increase the efficiency at 40 streams or
less.

Regarding effectiveness, multipacket flooding results in a significant de-
crease.
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Bandwidth utilisation with varying number of streams (DSF)
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Figure 5.44: Average bandwidth for DSF.

5.8.4 Summary

Multipacket flooding was expected to increase reliability, at least at low net-
work load conditions. This has been shown not to be the case. Multipacket
flooding decreases the reliability, and increases the bandwidth overhead.

5.9 Conclusions

Test 1 identifies MPRF as the protocol that achieves the best performance.
MPREF achieves both the highest delivery rate, the highest efficiency, and
the the highest effectiveness. RPF is found to have the lowest delivery rate
and effectiveness. DSF achieves results close to those of MPRF. The test
also reveals that none of the protocols yield a performance gain over CF that
suffices for using them for reliable data delivery.

Test 2 shows that the presence of OLSR control traffic in CF simulations
increases the reliability of the protocol. The reason has been found to be due
to fewer undetected duplicate packets. Also, the OLSR traffic adds collisions
to the network, causing the efficiency of CF to degrade in the presence of
OLSR.

Test 3 confirms that the packets which traverse paths longer than 100
hops may be undetected duplicate packets.
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Test 4 determines that jitter on broadcast data decreases the number of
collisions in the network, and increases the delivery rate. It is also shown
that increasing the amount of jitter does not yield further improvements.

Test 5 evaluates multipacket flooding as a mechanism for improving reli-
ability, and reveals that multipacket flooding does not yield improvements to
this end. Instead, multipacket flooding degrades the delivery rate, and adds
bandwidth overhead.

5.10 Summary

Five tests have been conducted to evaluate the performance of four broadcast
protocols, and two generic protocol extensions intended to reduce collisions
and improve reliability.

The tests have revealed that the MPREF protocol achieves the best over-
all results regarding delivery rate and bandwidth consumption. Also, the
maximum delivery rate achieved by any protocol is 51%. Applying jitter on
transmissions increases the delivery rate. In the best case observed, the de-
livery rate is increased from 38% to 92%.Multipacket flooding degrades the
performance of the protocol to which it is applied. The bandwidth overhead
is increased, and the reliability is decreased.

The next chapter evaluates the simulation framework, based on the ex-
periences gained in conducting the simulations.



Chapter 6

Simulation Framework Evaluation

This chapter evaluates the simulation framework, with respect to how
well it fulfils the task of automating the simulating process. Section 6.1
introduces the aspects which are evaluated. Section 6.2 evaluates individual
components of the framework. Section 6.3 presents issues discovered while
adapting the framework to work across multiple platforms, and section 6.4
documents the experiences with using the framework, gathered throughout
this work. Last, section 6.5 summarises the chapter.

6.1 Introduction

The simulation framework presented in chapter 4 has been developed and ap-
plied to conduct the simulations simulations presented in chapter 5. Through
this, experiences as to the performance and convenience of the framework has
been gathered

The purpose of the framework evaluation is to examine whether it fulfils
the goal it is intended for: automation of the simulation process. Three
aspects of the framework are evaluated: the individual components, the cross-
platform portability of the framework, and the general experiences gained
through using the framework for conducting simulations.

6.2 Evaluation of Individual Components

This section evaluates three of the framework applications are concerned: the
job scheduler, Tafat, and Grace. Also, the method applied for data storage
is evaluated.

Two of the framework applications, ns2 and Sump (the summary pro-
cessor), are not evaluated in detail. Evaluating the quality of ns2 as a net-
work simulator is outside the scope of this work. At this point it is noted
that ns2 has fulfilled its role as the network simulator in in the simulation
framework. As for Sump, it is noted that the tool fulfilled its purpose in the
framework, generating summaries of the result files.

97
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6.2.1 Job Scheduler

The scheduler has been used to schedule all of the simulations for this work,
distributed across 26 machines in three different locations. The functionality
present in the scheduler has proven sufficient for scheduling jobs among a set
of machines residing on the same local area network: on several occasions, a
set, of machines has been left unattended for days, while performing a large
batch of simulations.

During the use, a number of issues present in the current version of the
scheduler have been discovered, and ideas for future extensions has emerged.
The two major issues present in the current version of the scheduler are as
follows:

e Scheduling of jobs does not work between different hardware platforms.
The cause of this issue has not been exactly determined, but is very
likely related to the different byte order of the Intel and Sparc plat-
forms.

e The protocol used for network communication is not robust to network
failures: it is based on TCP connections between the job manager and
the job servers, and does not tolerate that these connections are broken
due to, e.g., network partitioninig.

Using an environment of both Intel and Sparc machines, the first issue
has been addressed by running a scheduler for each hardware platform. The
second issue has been addressed by running separate schedulers for each local
area network in use. In combination, these workarounds made it necessary
to run four separate schedulers, as illustrated in figure 6.1, where one could
ideally have been sufficient.

i é T intel Legend
B B P [ Host

NG @ Scheduler

Stand—-alone Cluster
workstations machines

Application servers
and networked
workstations

Figure 6.1: Four schedulers were necessary to keep simulations on all ma-
chines running.
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Obviously, the existing issues must be addressed to make the scheduler
capable of scheduling jobs across different hardware platforms, and tolerant
to network failures.

Naturally, the existing issues should be addressed to obtain a more robust
scheduling system, enabling cross-platform job scheduling. Further experi-
ence has revealed ideas for improvements that would add to the convenience
of the job scheduler:

e adding journaling to enforce “at-least-once” execution of jobs, and

e adding multi-user capabilities to manage the scheduling of jobs on
shared machines.

The scheduler has provided a considerable aid in the conduction of sim-
ulations in this work. The experiences with job scheduling motivates the
use of batch scheduling systems for conducting simulations, and an improved
version of the scheduler developed in this work will be suitable for such uses.

6.2.2 Trace File Analysis Tool

Tafat was implemented to suit all the trace file analysis requirements for the
simulations in this work. With the goals of performance and modularity in
mind, Tafat were intended to replace two other tools for trace file analysis:
one implemented in Ruby, providing modularity but suffering in performance,
the other implemented in awk, yielding acceptable performance, but lacking
modularity. The performance and modularity of Tafat will be evaluated
independently.

Performance evaluation

To evaluate the performance of Tafat, a comparison with the awk and Ruby
trace file analysis implementations is conducted. The comparison illustrates
the scalability of the three implementations, by observing their running time
on various sizes of trace files.

For the comparison, a trace file of 627 MB (6.467.300 lines) has been
generated by simulating one of the scenarios used for evaluating the MPR
Flooding protocol'. Trace files of this size are not uncommon for the simu-
lations in this work; the smallest trace files are around 130 MB, and some
simulations of some scenarios has been observed to generate trace files ex-
ceeding two GB.

!The common scenario parameters are as specified in section 5.3. The traffic load in
the evaluated scenario was generated by 50 streams of 2304 KB/sec each.
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The Tafat, awk and Ruby implementations provides different suites of
analysis modules. This evaluation measures the performance of each tool,
using only the modules for each implementation that provide a set of common
results.

Figure 6.2 shows the time spent executing user space processes for each
of the Tafat, awk and Ruby implementations, while performing trace file
analysis on inputs of different sizes. The results have been obtained using a
733 MHz Pentium III PC, reading the the tracefile from disk cache to avoid
disk I/O overhead.
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Figure 6.2: Scalability of trace file analysis tools.

From figure 6.2, it is observed that the Ruby implementation performs
significantly worse than both Tafat and the awk implementation. The awk im-
plementation is faster than Tafat for trace file sizes exceeding approximately
125 MB, and linearly when the file size is increased. the runnig time of Tafat
grows faster than linearly, ending at 414% of that of the awk implementation
at the maximum file size of 600 MB.

This result show that Tafat scales better than the Ruby implementation,
but for tracefiles larger than 125 MB, Tafat is outperformed by the awk
implementation.
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Modularity

The modular structure of Tafat is ensured by separating the functionality for
parsing trace files from the task of performing certain types of analysis on
the parsed data. The latter task is further divided into a number of modules
(called ezecutables). Ordered activation of these is ensured by grouping them
into the ordered sets: “pre-analysis”, “analysis” and “post-analysis”.

Comparing this solution with the object-oriented organisation present in
the Ruby implementation, it is observed that Tafat has achieved a corres-
ponding degree of modularity. The main differences between Tafat and the
Ruby implementation is the absence of object orientation in Tafat, and the
fact that memory management must be handled explicitly, a task solved
automatically by the Ruby interpreter.

Tafat is successful in providing the modularity necessary for implementing
executables that maintain their internal state independently, but at the same
time provides functionality for sharing the information collected by certain
executables among the remaining ones.

6.2.3 Graph Compilation Environment

Given a set of results from Tafat, Grace generates a standard set of graphs
from these results. Using the input and output modules described in sec-
tion 4.3.6, these standard graphs have been plotted for all the simulation
results produced in this work. Through the use of Grace, a printable overview
containing all the automatically generated graphs can be obtained through
the following steps:

1. define a configuration file describing the input for Grace,
2. run Grace, using this configuration file,

3. run KTEX on the output files of Grace, to obtain a printable postscript
file.

Although it is not regarded as being critical with respect to Grace’s func-
tionality, one notable issue of is that Grace’s memory usage grows large (ob-
servations show memory usages between 100 and 200 MB, depending on the
summary data for the graphs) when the summary data is stored in memory
for graph generation.

The existing interface between the sample space and the input/output
modules in Grace is simple, and does not do any sanity checks on queries for
storing or retrieving data. This simplicity requires considerable robustness of
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the input parsing, and of the output modules to retrieve the data correctly.
The existing version of Grace lacks robustness in both parts, resulting in
errors when generating graphs from a set of result files containing unexpected
or no values, or when using an erroneous configuration file.

The issue of robustness should be addressed to increase the usability of
the current version of Grace. As for the scheduler, several ideas for future
development have emerged during the use of Grace:

e development of a more advanced interface for the sample space to ease
the integration of new summary data formats and graph types,

e a more scalable approach to storing the sample space — possibly organ-
ised as a database stored on disk.

6.2.4 Data Storage

Despite the trace files from ns2 not being stored persistently, large quantities
of files are still stored by the current methods for generating computing
statistics, and plotting graphs. Scenario parameter files, scenarios, result
files, summary files and finally, graphs are stored to persistently.

A network-accessible Rsync data repository has been used for the pur-
pose of centralising file storage and enabling remote machines to access the
files. Organising the diverse set of different data into files has proven a dif-
ficult task. It has been solved by combining file and directory names to
obtain a hierarchical storage, where information about the contents of a file
is expressed by the path of the file, as, e.g., the following path of a result file:

/flooding-020325/results/load_192_40/load_192_40_MPRFlood_12.results

This path is result file is from the set of simulations called “flooding-
020325”, and contains results for the 12th simulation in a set of 30 scenarios,
all having 40 CBR streams sending transmitting 192 B/s each.

The semantics encoded in the directory and file names are reflected in the
applications and scripts that navigate the directory tree and read or write
the files. This dependency is undesirable, as changes in the file organisation
must be reflected in corresponding changes in the applications.

For future work, a more desirable solution would be to develop a “simu-
lation data storage API”, which unites the information about the contents of
a file with the contents themselves, and provides a layer of abstraction over
disk files, through which more advanced and efficient query techniques than
those possible by ordinary file system usage are possible.
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Summarising the evaluation of the data storage, network access to a cent-
ral data repository has proven practical when conducting simulations across
several machines in distinct locations. The current organisation of data the
repository is not sufficiently flexible for general use. One way of improving
the generality of the data storage, but its generality could be improved by
use of a general simulation data storage API

6.3 Portability Issues

The requirement for running common sets of simulations on both Intel /Linux,
Intel/Solaris and Sparc/Solaris machines has presented a few issues, which
will be shortly clarified in this section.

It is noted that the applications in the simulation framework has been
implemented in several programming languages: ns2 is implemented in C++
and Tcl, Tafat is implemented in C, whereas Ruby has been selected as
language for the scheduler, and for Sump and Grace. In addition, a suite of
shell scripts and makefiles automate several routine tasks.

One minor issue experienced while porting Tafat from Linux to Solaris
required a solution: Tafat uses the error reporting functionality provided by
GNU Libc library [MDO02|. This library is absent on the Solaris development
platform, which forced the implementation of a small piece of replacement
code used when compiling Tafat for Solaris.

The Tcl and Ruby code is interpreted, and as interpreters exist for both
Linux and Solaris, no problems with respect to either of these languages has
been experienced.

Differences in the possibilities for obtaining hardware status information
required some operating system specific code to be integrated in the sched-
uler. This enables job servers to automatically discover the number of CPUs
and amount memory present. On Linux machines, such information may
be obtained via the /proc hierarchy of the file system, while use of certain
executables, e.g., psrinfo is necessary on the Solaris machines.

Overall, only minor portability issues were experienced during the frame-
work development process, and solutions have been established to solve the
few issues that were observed.

6.4 Overall Experiences

In several situations, manual work was necessary for starting simulations.
This ought to be a simple and straightforward task, but a number of re-
appearing problems were present.
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Generality. If a script or an application is implemented to fit specific ma-
chines used for simulation, this is likely to cause problems. Code ap-
pearing in the framework are likely to be run at different machines at
some point during their “lifetime”. For this to be possible, generality
must be prioritised.

Robustness and verbosity. When the framework applications are used
for conducting several different sets of simulations, it is not unlikely
that at some point a situation occurs where one application is, e.g.,
provided with input which it cannot process. Robust applications are
desired if the errors are non-critical, so that the processing can con-
tinue. In case of critical errors, a verbose error message is desired, to
help locating the cause of the problem quickly.

Further, when unattended batches of simulations are executed, the fail-
ure of a single simulation should be logged for later investigation and
possible re-scheduling, but tolerated to the degree that the remaining
simulations can be completed.

Consistent Application Configuration. Some applications in the frame-
work, e.g. ns2 and Tafat, are configured partly at compile-time, by
editing the source code, and partly by supplying command line options
and configuration files when started. This leaves open the possibility
for errors to go undetected, due to accidental reuse of binaries compiled
with the wrong compile-time configuration.

To avoid such errors, a consistent pattern should be applied for applic-
ation configuration, preferably avoiding compile-time configuration to
the largest possible extent.

Version Control. It is important to have strict control of the different ver-
sions of the framework utilities, as some versions are not compatible,
and others contain bugs which makes them unusable. For this purpose,
“snapshots” of the code that has been used for production were created.

On several occasions, this system proved useful, as old versions of es-
pecially ns2 and Tafat were retrieved with the purpose of re-running
sets of simulations.

6.5 Summary

Using the simulation framework described in chapter 4, all the simulations for
the broadcast protocol evaluation presented in chapter 5 has been performed.
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The general experience gained through this work is, that the wide range
of conditions under which the framework must operate, require a generic,
easily configurable and robust set of applications to constitute a succesful
framework.

Further, the framework has reduced the manual work required to conduct
large quantities of simulations, as was the overall goal for its functionality.
None the less, the framework is still subject for future improvements.

The current data organisation is less flexible than could be desired, and
issues to be resolved exist for several applications in the framework. Also,
ideas for new improvements have emerged. Addressing those issues and ideas
would result in increased robustness and improved functionality of the frame-
work.



106 Simulation Framework Evaluation




Chapter 7

Conclusions

Two problems have been solved in this work: the selection, specification
and evaluation of MANET broadcast protocols, and the development and
use of a simulation framework to aid the simulation based evaluation of the
protocols.

Each of these solutions are concluded in the following: section 7.1 lists the
products of this work, and section 7.2 concludes on the results which have
been achieved. Section 7.3 gives directions for future work, and section 7.4
summarises the conclusions.

7.1 Products

This section gives an overview of the products established during this work,
divided in two categories: products established during specification and eval-
uation of MANET broadcast protocols, and products established during de-
velopment of the simulation framework.

7.1.1 Broadcast in MANETSs

Four broadcast protocols are selected for evaluation, all fulfilling the criteria
of requiring only the functionality present on basic MANET nodes. The
protocols are selected from existing MANET routing protocols, as well as
from the field of broadcasting in wired networks. Furthermore, two generic
protocol extensions are selected for evaluation. During the study of the
broadcast protocols and protocol extensions, the following products have
been established:

e a scheme for duplicate packet elimination is specified,

e simulations of the selected protocols and extensions have been conduc-
ted, and

e metrics for evaluating the protocols have been specified and applied.

107
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Additionally, the main results of the protocol evaluation is to appear on
WPMC 2002 [wpm02], in a paper co-authored by the authors of this work.

7.1.2 Simulation Framework

A simulation framework has been developed to reduce the manual work in-
volved when conducting simulations, by automating the simulation process.
The development of the framework encompasses the following products:

e modification of the existing scenario generator wsg [CHCBO1], to sup-
port scenario generation of MANET broadcast scenarios,

e modification of the existing network simulator ns2 [pro02|, to support
simulations using broadcast to all nodes in wireless networks, and im-
plementation of the selected broadcast protocols,

e development of a job scheduling system for distributed conduction of
simulations,

e development of Tafat, a trace file analysis tool,
e development of Sump, a result summary generator, and

e development of Grace, a graph generator.

7.2 Results

The main results of this work are the observed properties of the broadcast
protocols and extensions, leading to a set of conclusions about the perform-
ance and behaviour of each protocol, and the experience gained from de-
velopment and use of the simulation framework. Results for each part are
summarised in sections 7.2.1 and 7.2.2 respectively.

7.2.1 Broadcast Protocols

The four broadcast protocols, Classic Flooding, MPR Flooding, Dominating
Set Flooding, and Reverse Path Flooding have been simulated using the
simulation framework developed. From the simulation results, an evaluation
has been carried out, leading to the following conclusions:

Test 1 shows that MPR Flooding achieves the best results regarding re-
liability, efficiency and thus effectiveness. Dominating Set Flooding
achieves results similar to those of MPR Flooding. Due to the fact
that MPR Flooding has implementational disadvantages, Dominating
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Set Flooding is selected as the protocol used for further testing. Re-
verse Path Flooding is outperformed by all the other protocols with
respect to delivery rate and effectiveness. The highest delivery rate

achieved by any of the four basic protocols is 51%, which is achieved
by both MPR Flooding and Classic Flooding.

Test 2 shows that the presence of OLSR traffic in Classic Flooding simu-
lations increases the amount of collisions, increases the delivery rate,
and decreases the amount of undetected duplicate packets.

Test 3 simulates duplicate elimination with infinite history timeout, and
shows that the duplicate elimination scheme has a problem when the
history timeout is too low. A 15 second timeout is not sufficient to
capture all duplicate packets, which makes it possible for duplicate
packets to spin in the network until the T'TL reaches zero, introducing
bandwidth overhead.

Test 4 shows that applying jitter to the transmission of broadcast data leads
to a significant increase in reliability (the best observed case is an in-
crease from 38% to 92%), as a result of reducing the collisions in the
network. The minimum amount of jitter tested was 0.002 second, and
increasing the amount of jitter beyond this value does not increase
the reliability further, but contributes to longer end-to-end delays. It
is concluded that data jitter is a viable candidate for improving the
delivery rate, and for reducing the amount of collisions.

Test 5 shows that multipacket flooding degrades performance with respect
to reliability and bandwidth overhead, and is not a viable candidate
for improving the reliability of broadcast protocols.

The two major conclusions drawn from the tests are that MPR Flooding
achieves the best performance, and that jitter increases reliability.

7.2.2 Simulation Framework

The framework has been applied to conduct the 21,300 simulations from
which the results are presented in this work. Through generation of 30 scen-
arios for each set of scenario parameters, the chance of scenarios that favours
one protocol over another, thereby dominating the results, has been reduced.

All the simulations have been conducted on a platform of 26 machines
in three different locations connected by networks. The key to achieving
this parallelisation is the job scheduler, which provides a central point of
management for the execution of simulations.
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The current trace file analysis tool, written in C, provides better modular-
ity than what have previously been achieved using awk, and better perform-
ance than achieved by the Ruby implementation, which has similar modu-
larity properties.

A visual representation of the simulation results is a useful method for
quickly gaining an overview over tendencies expressed by large quantities of
results. The summary and graph generators enable automatic generation of
such a representation from the results of the trace file analysis.

The overall conclusion is, that the framework has been successful in re-
ducing the amount of work required to conduct simulations, and that such a
reduction is desirable with respect to conducting extensive, simulation based
protocol evaluations.

7.3 Future Work

The present work leaves topics to be addressed in the areas of both broad-
casting in MANETSs, and development of the simulation framework. This
section gives suggestions for future work within each of these topics.

7.3.1 Broadcast Protocols

The following directions for future work in the field of MANET broadcast
protocols are suggested:

Investigating open questions. Some questions raised from the simulation
results in this work remain unanswered and could be the subject for
further investigations. Some examples are mentioned in the following.

It is unanswered why a peak appears in many of the Classic Flooding
graphs in test 1 (e.g., figure 5.4).

Also, the question remains open why adding the control traffic of OLSR
to the Classic Flooding simulations results in decreases the number of
undetected duplicate packets.

Last, the minimum amount of jitter tested is 0.002 second, which is
shown to provide the same delivery rate increase as the other jitter
amounts tested (up to 0.9 second). It is also shown that the higher
jitter amounts result in higher end-to-end delays. A subject for fur-
ther investigation could be to determine the minimum amount of jitter
necessary to achieve the benefits observed in this work.

Testing other scenario parameters. Further simulations could be con-
ducted with different parameter settings, or adopting new parameters.
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For example, the effect of varying mobility has not been evaluated in
this work.

New protocols and extensions. A course of action could be to investig-
ate other broadcast protocols and other protocol extensions, to find or
construct a protocol that achieve higher delivery rates than the proto-
cols evaluated in this work.

7.3.2 Simulation Framework

The following directions for future work related to development of the simu-
lation framework are suggested:

Addressing current issues in the simulation framework. The current
issues present in the framework applications could be addressed, to im-
prove the overall robustness of the framework. Important tasks in this
respect are to address the network communication issues of the the job
scheduler, and to improve the robustness and flexibility of input /output
for Grace.

Simulation framework data storage. The file storage organisation used
in the framework could be changed, to provide a common API for data
access, available to all applications in the framework. Challenges in
this task include providing a cross-platform, cross-language, networked
solution with a performance matching that of the existing solution.

Scenario generation. Various new mobility models, with different prop-
erties than the random waypoint model, have been suggested. These
mobility models could be implemented in the scenario generator. Fur-
thermore, theoretical results on scenario node density calculation could
be integrated to ease the specification of scenarios. Related work on
both subjects are present in [Bet(02].

Job scheduling. The present job scheduler could be extended to enable
support for journaled scheduling, and allowing multiple users to share
a common set of job queues. To accomplish the latter, a change in
the current, single-user interactive interface to a set of shell commands
accessible to multiple users could be convenient.

Graph generation. The graph generator could benefit from a more con-
venient organisation of the data storage. If queries for certain data are
made possible, graphs could be generated by querying the data stor-
age directly from persistent storage. This could reduce the memory
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requirements for generating graphs, solving one immediate scalability
issue of the current implementation of Grace.

7.4 Summary

Two main problems have been considered in the present work: Protocol
evaluation through simulations, and development of a simulation framework
to aid the conduction of large amounts of simulations.

A set of MANET broadcast protocols and protocol extensions are evalu-
ated through an extensive simulation-based study. It is observed that none
of the protocols achieve delivery rates higher than 51%. MPR Flooding
outperforms the other protocols in terms of delivery rate, efficiency, and ef-
fectiveness, and is concluded to be the best of the tested protocols. Jitter
improves the delivery rate, and reduces the amount of collisions, and is so
concluded to be a viable candidate for improving the reliability of broadcast
protocols. Multipacket flooding, on the other hand, degrades the protocol
performance by decreasing the delivery rate and introducing bandwidth over-
head. Hence, multipacket flooding is not a viable candidate for broadcast
protocol improvement.

A simulation framework is developed and applied to automate the process
of conducting the simulations. The framework reduces the work of conduct-
ing the simulations considerably, and enables reductions in the simulation
time through parallel execution of computationally intensive tasks. It is con-
cluded that the automated approach to conducting simulations is preferable,
and that it has proven successful for the purpose of this work.
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Appendix

A Glossary

Bandwidth Consumption: A metric expressing the blocking of a node
involved in, or overhearing transmission or reception of a packet.

Bandwidth Overhead: A metric expressing the number of unnecessary
forwards involved in delivery of a broadcast packet to all nodes in the MANET
under consideration.

Bandwidth Utilisation: A metric expressing how many bytes per second
are transmitted in an entire MANET.

Broadcast: The process of delivering a packet to every node within the
MANET under consideration.

CBR Traffic source: Constant Bit-Rate traffic source.

Delivery: A reception of packet p on a node n, where n has not previously
received p (i.e., a delivery occurs at most once per node).

Destination: The final target for a given packet. May be one, multiple or
all nodes in the MANET.

Dominating Set: A set of vertices in a graph, such that every other vertex
in the graph is adjacent to at least one vertex in the dominating set.

Efficiency: A metric expressing how many percent of the consumed band-
width that result in packet deliveries.

Effectiveness: A metric weighing the efficiency and reliability metrics, with
the goal of expressing the performance of a protocol as one single number.

Forward: The action of re-sending a received packet, with the intention of
propagating the packet to other nodes.

Limited Broadcast: The process of delivering a packet to the immediate
neighbours of the originator.

113
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Link: The connection between two nodes in a MANET.
MANET: Mobile Ad-hoc Network.
MPR: Multipoint Relay.

MPR Flooding: Flooding of a packet using OLSRs MPR nodes for for-
warding.

Message: Information unit exchanged as, e.g., control traffic between nodes
running the OLSR protocol.

Multicast group: An abstraction of a set of nodes that participate in the
same multicast session. A multicast group has a number of members, and is
identified by a group address. All data sent to a multicast group is destined
to the group address.

Multicast: Communication between groups of computers. Multicast pack-
ets are sent once, addressed to a group of nodes.

Neighbour: A node X is the neighbour of the node Y if Y is within the
transmission range of node X.

Node: The encapsulation of a host and a router in a MANET.
OLSR node: A node running the Optimized Link State Routing protocol.

Originator: The node which originally created the first instance of a given
packet.

Packet: The unit of data exchanged between the network and data link
layer. A packet may contain a complete datagram, or a fragment thereof.

Proactive routing: Ongoing discovery and maintenance of routes to other
MANET nodes.

Reactive routing: On-demand discovery of routes to other MANET nodes.

Receiver: A node accepting a packet. The receiver may be different form
the destination node, i.e., an intermediate node on the path between origin-
ator and the destination.

Reliability: A metric expressing how many percent of all nodes in a MANET
receives each byte (or packet) that is broadcast.

Sample: The simulations necessary to draw all the graphs for a test, but
with only one simulation per sample point. l.e., one simulation for each
scenario parameter combination.

Scenario: A model of a MANET, possibly generated from a set of scenario
parameters, used for performing a simulating in, e.g., ns2.
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Scenario Parameters: Values that define a pattern for, e.g., communica-
tion patterns, node mobility and scenario size. Scenarios may be generated
automatically from scenario parameters.

Sender: The node which sends a packet. The sender may be a different
than the originator, when packets are forwarded.

Simulation: A single execution of ns2, with a given scenario as input.

Test: 30 samples of a set of scenarios generated from common scenario para-
meters, using a common protocol.

Topology Control (TC) message: A control message type used by OLSR
to communicate partial topology information among nodes.

Transmit: The action of sending a packet for the first time, conducted by
the originator.

Two-hop neighbour: A node X is the two-hop neighbour of a node Y if X
is the neighbour of one of X’s neighbours, and X is not a one-hop neighbour
of Y.

Two-hop neighbourhood: The set of all two-hop neighbours of a node.

Unicast: Transmission of packets from one single node to another.
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B Selection of Dominating Sets

Figure B1 illustrates how selection of a certain MPR node ID to be used for
Dominating Set Flooding, may result in delivery of packets via non-shortest
paths.

O\ Legend
(O  Non-MPR Node

$ T @® MPR Node

—= MPR selector relation
O——@ O
A B C

Figure B1: Example of non-shortest paths obtained via the dominating set
of a MANET.

In the tree traversed by the node B’s TC messages, only node D forwards
the TC messages. Although being an MPR, node E does not forward them,
as it has only recorded nodes F' and C as its MPR selectors.

Consider the situation where node F' broadcasts a packet, which is for-
warded by the MPRs that has previously forwarded TC messages for node
B. In this situation, the broadcast packet will traverse the path ¥ — D —
B — C, rather than being delivered via the shortest path to node C, namely
F—FEF—C.
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C Simulation Platform Details

This appendix contains details on the simulation platform used for conduct-
ing the simulations presented in this work. Appendix C.1 describes the hard-
ware platform, and section C.2 contains a calculating of the total execution
time of all the simulations.

C.1 Hardware Platform

Cluster Machines
sisterl 2xi386 P3 733 MHz | 2048 MB RAM
sister2 2xi386 P3 733 MHz | 2048 MB RAM
sister3 2xi386 P3 733 MHz | 2048 MB RAM
sisterd 2xi386 P3 733 MHz | 2048 MB RAM
sisterb 2xi386 P3 733 MHz | 2048 MB RAM
sister6 2xi386 P3 733 MHz | 2048 MB RAM
sister7 2xi386 P3 733 MHz | 2048 MB RAM
Application Servers
atto 2xsparcv9 296 MHz | 512 MB RAM
borg 4xsparcv9 450 MHz | 4096 MB RAM
luke 2xsparcv9 450 MHz | 2048 MB RAM
mega 2xi386 500 MHz 768 MB RAM
micro 2xsparcv9 296 MHz | 512 MB RAM
obiwan 2xsparcv9 296 MHz | 512 MB RAM
peta 2xsparcv9 450 MHz | 2048 MB RAM
pico 2xi386 1024 MHz 1152 MB RAM
tera 2xsparcv9 296 MHz | 1024 MB RAM
Shared-disk workstations:
bird29 1xi386 P3 1088 MHz | 256 MB RAM
bird30 1xi386 P3 1088 MHz | 256MB RAM
bird6 1xi386 P3 1088 MHz | 256 MB RAM
bladel 1xsparcv9 502 MHz | 256MB RAM
blade2 1xsparcv9 502 MHz | 256 MB RAM
blade3 1xsparcv9 502 MHz | 256MB RAM
Stand-alone workstations:
tuborg 1xi386 P3 996 MHz | 512MB RAM
carlsberg 1xi386 P3 863 MHz | 256 MB RAM
sybaris 1xi386 P3 448 MHz | 384 MB RAM
impression | 1xi386 P3 863 MHz | 878 MB RAM

Table C1: The machines present in the hardware platform used for the sim-
ulations conducted in this work.
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C.2 Total Simulation Time

This appendix presents a simple calculation of the quantity of CPU-time
spent for the simulations of this work.

The average simulation time of the simulations conducted in this work is
approximately 30 minutes. With a total of 21.300 simulation, this amounts
to 639.000 minutes, or 1.2 CPU-years of computation, on a CPU with average
capacity of the 46 CPUs which have been used for this work.

Distributing the computations across 46 CPUs, the ideal computation
time would be approximately 9.6 days could be achieved (assuming equal-
capacity CPUs). In this work, the simulations were conducted during ap-
proximately 25 days rather than 9.6 days. The reason for a longer simulation
time is that the machines were shared between multiple users, and due to
this, on many occasions heavily loaded.
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