
Aalborg UniversitetDepartment of Computer S
ien
e

Titel:Distributed CDD's- interfa
ing UppaalProje
t period:DAT6,1. February 2002 -7 June 2002Group:Christian ThomsenRonnie KristensenSupervisor:Josva KleistNumber printed: 6

Abstra
t:This proje
t des
ribes the design of a distributed imple-mentation of the CDD data stru
ture. CDD's are relatedto BDD's but handles interval instead binary values. TheCDD is used in the real time veri�
ation tool Uppaal tostore the symboli
 part of its states, these states
onsists ofboth a dis
rete part and a symboli
 part. This distributionis
ondu
ted for the primary reason of allowing veri�
ationof larger models. Besides designing the distribution of thedata stru
ture, four operations working on the data stru
-ture are designed. The semanti
s for the distributed datastru
ture is des
ribed, and some semanti
 proofs of impor-tant properties for the operations are given.The thesis tried to investigate, is whether using a singleCDD data stru
ture,
ompared to a number of smallerCDD's in a distributed veri�
ation environment,
an savesome memory by taking advantage of global sharing. Thatis, sharing in the symboli
 representation, a
ross several dis-
rete states. Runtime is not
onsidered as memory is theprimary bottlene
k in veri�
ation, the state spa
e takes upseveral GB in minutes.Finally tests are
ondu
ted to test the thesis, and to en-
ounter the runtime penalty for these memory savings. Theresult shows that the memory saving were up to 70%, usinga single CDD distributed over 4 nodes,
ompared to lettingthe 4 nodes holds four separate CDD's, this memory saving
omes at a runtime penalty of 560-900%.Besides trying to save memory by distributing the CDDdata stru
ture, some design were made to represent theCDD nodes as
ompa
t as possible. The memory represen-tation saved up to 20% of memory
ompared to the memoryrepresentation used in an existing implementation of theCDD data stru
ture. The runtime penalty for this memorysaving is 50%.During the tests we dis
overed that the problem of memoryusage in Uppaal were not the storage of the symboli
 part,but storing the dis
rete part. In most timed automata mod-els, the dis
rete part takes up the majority of the used mem-ory. As we had fo
used on the distribution of the symboli
part, we were not able to verify larger models in the dis-tributed implementation, than on a single
omputer node.In the last
hapter some possible optimizations to the de-sign/implementation is dis
ussed. This des
ription also in-
ludes a dis
ussion of whi
h part of this proje
t might beused for other proje
ts, trying to distribute de
ision dia-gram data stru
tures. A possible data stru
ture for storingthe dis
rete part of the states, is also des
ribed brie�y.

2

Resume
Dette projekt beskriver designet af en distribueret implementation af CDD datastrukturen.CDD'er er relateret til BDD'er men håndterer intervaller istedet for binære værdier. CDD'erbruges i real tids veri�
ations værktøjet Uppaal til at gemme den symbolske del af de tilstandeder undersøges. Tilstande i Uppaal består af en diskret del og en symbolsk del. Distribuerin-gen er lavet med det primære formål at tillade veri�kation af større realtidsmodeller. Forudenat designe den distribuerede datastruktur, beskrives �re funktioner der arbejder på denne datastruktur. Efter designet beskrives semantikken for datastrukturen, samt for nogle vigtige egen-skaber for de designede funktioner.Teorien der efterprøves er om en enkelt distribueret CDD datastruktur, sammelignet med etantal mindre CDD'ere i et distribueret netværk, kan spare noget hukommelse, igennem deling afsymbolske tilstande mellem diskrete tilstande. For at spare så meget hukommelse som muligt, erhukommelses forbruget blevet overvejet igennem alle faser af designet, hvorved vi har a

epteretet forøget tidsforbrug. Tidsforbrug er ikke taget i betragtning da hukommelse er den primærebegrænsning i veri�
ering, tilstandsrummet kommer på minutter til at fylde gigabytes.Til sidst testes systemet for at se om teorien holder, og se hvilket forøget tidsforbrug distribuerin-gen medfører, igennem synkronisering osv. Resultaterne viser at der kan spares op til 70%hukommelse, ved at distribuere en CDD datastruktur over �re
omputere, i forhold til at pla
ere�re CDD'ere på de samme �re
omputere. Det forøgede tidsforbrug viste sig at ligge imellem560% og 900%.Foruden at spare hukommelse ved at distribuere CDD datastrukturen, er det også forsøgt at sparehukommelse ved at repræsentere CDD knuderne så kompakte som muligt. Hertil er der designettre forskellige knude repræsentationer. Den mest besparende knude repræsentation sparede 20%hukommelse i forhold til knude repræsentationen i en eksisterende CDD implementation. Detmaksimalt tilføjede tidsforbrug ved denne hukommelses repræsentation var 50%, men ved noglemodeller var det forøgede tidsforbrug minimalt, eller negativt (så vi sparede køretid).Under testen fandt vi ud af at det største problem ved hukommelsees forbruget i Uppaal, ikkevar at lagre den symbolske del, da denne kun optog en mindre del af det samlede hukommelsesforbrug. Da vi havde fokuseret på distribueringen af den symbolske del, blev vi ikke i stand tilat veri�
ere større modeller, som var en del af vores vores formål.I det sidste kapitel diskutere vi nogle optimeringer der er mulige til designet/implementeringen.Beskrivelsen indeholder også en beskrivelse af hvilke dele af vores projekt der kan bruges i andreprojekter der forsøger at distribuere andre de
ision diagram data strukturerer. Til sidst beskrivesen datastruktur til at lagre den diskrete del tilstandene.

Christian Thomsen Ronnie Kristensen

Contents
1 Uppaal 31.1 Overview . 31.2 Uppaal Engine . 51.3 Data Stru
tures . 61.4 Versions of Uppaal . 92 Purpose 132.1 Approa
h . 132.2 Purpose . 143 Data Stru
tures 173.1 Syntax . 173.2 Operations . 223.3 Current Uppaal . 223.4 Mapping CDD's to set formulas . 233.5 Mapping DBM's to CDD's . 234 Design / Data stru
tures 254.1 Non Distributed Algorithms . 254.2 Distributing the Data Stru
ture . 314.3 Communi
ation . 334.4 Operations . 344.5 Node Representation . 435 Semanti
s 495.1 Semanti
s of the Distribution . 495.2 Data Stru
tures . 505.3 Distribution . 515.4 Operations . 525.5 Union . 54

5.6 Semanti
s of Ba
ktra
e . 555.7 Redu
ing CDD's . 596 Cost Bene�t Analysis 616.1 Operations . 616.2 State Exploration . 626.3 Groups . 646.4 Memory Overhead . 647 Implementation 677.1 Uppaal interfa
e . 677.2 Use Pipelining . 687.3 Hash lists . 687.4 Distributed Garbage Colle
tion . 688 Test 718.1 Limitations of the Implementation . 718.2 Purpose of the test . 718.3 Premises . 728.4 Test des
ription . 748.5 Expe
ted Results . 748.6 Results and Analysis . 768.7 Summary . 839 Con
lusion 8510 Future Work 8710.1 CDD Implementation of Waiting List . 8710.2 Distributing the Dis
rete part . 8810.3 Representing the Dis
rete Part as MTIDD . 8910.4 Pa
k Messages . 9110.5 CPU/Memory Load . 9210.6 Distributed Shared Memory . 92A Union/Redu
tion Example 95ii

Introdu
tion
During the last de
ade
omputer aided veri�
ation has established itself as a powerful te
hniquefor verifying whether a given formal model satis�es
ertain properties. In the last years toolshas been extended to the veri�
ation of real-time systems, examples of su
h tools are Uppaal[11℄and KRONOS[16℄.The major problem in
omputer aided veri�
ation is the memory
onsumption
aused by thestate spa
e exploration, as the spa
e usage in worst
ase is exponential to the number of statesin the veri�ed system. System veri�
ation size
an easily rea
h multiply of GB in less than anhour on a standard
omputer. There are several solutions to solving the state explosion problem,one is simply to buy a large mainframe
omputer, but a
omputer that is su�
ient today mightbe
ome insu�
ient tomorrow. Another problem to this approa
h is the
ost, as large mainframe
omputers are expensive
ompared to standard
ost of the shelf
omputers. Using standard
omputers though limits the memory usage to 4GB, for a 32 bit ar
hite
ture. This leads toanother solution to the state exploration problem, that
an be solved by utilizing the memoryon a network of workstations by distributing the veri�
ation pro
ess.Several approa
hes tries to solve this problem in a more algorithmi
 way by designing
ompa
tdata stru
tures to store the states of the system being veri�ed. The best data stru
ture so far forthe Uppaal veri�er has been the
lo
k di�eren
e diagram (CDD) that report average saving of42%
ompared to the standard used data stru
ture being di�eren
e bounded matri
es (DBM).The
ost for this saving is a modest in
rease in runtime of 7%[4℄.This proje
t aims at allowing Uppaal to verify larger model using a Network Of Workstations(NOW). whi
h is done by distributing the CDD data stru
ture.PremisesUppaal uses timed automata for verifying real time systems. A timed automata is a �nite au-tomata extended with variables and real valued
lo
ks. The states used by Uppaal is dividedinto three
ategories:Lo
ations This part of the state represent in whi
h lo
ation the timed automata is in.Variables This part des
ribes the valuation of all variable in the timed automata.Zones This part represents the valuation of the
lo
ks in the timed automata.Lo
ations and variables will in this report be denoted the dis
rete part of the state, and Zonesis referred to as either Zones or the symboli
 part of the state.This proje
t fo
us on representing the Zones part of the already sear
hed states in Uppaal. Thiswere
hosen from the hypothesis that it were the zones that took up the main part of the memory.Many arti
les report on trying to representing the zones as
ompa
t as possible, example arti
les

on su
h is: [4℄, [10℄ and [9℄. Therefore we de
ided to try to distribute the zones as it seemed tohold the greatest problems with respe
t to memory. Later in this proje
t it has been revealedthat this is not the
ase, as the dis
rete part normally uses the main part of the required memoryduring a veri�
ation. As this fa
t was dis
overed late in the proje
t it has some in�uen
e onthe out
ome of the tests
ondu
ted in
hapter 8. The report is stru
tured
hronologi
ally as theproje
t went on, but in
hapter 1 we give a more in depth explanation of why the symboli
 partdid not a

ount for the main part of the used memory.this were not the
ase, and in
hapter 8 we see what the
onsequen
es of only distributing thesymboli
 part of the state spa
e, and �nally in
hapter 10 we dis
uss ideas on how this problem
an be solved.Related WorkThe work in [4℄ des
ribe the use of the CDD data stru
ture in the Uppaal engine, whi
h hasinspired this proje
t. Also the work in [3℄ on implementing a distributed version of Uppaal hasbeen inspiring for the work made in this proje
t.OutlineThe report is stru
tured as follows:First we give an introdu
tion to Uppaal with a brief introdu
tion to the used data stru
tures.After this the purpose of the proje
t is stated.Then a more in depth des
ription of
lo
k di�eren
e diagrams and di�eren
e bounded matri
eswith syntax is given.The designed algorithms will follow these des
riptions.The semanti
s of the distributed data stru
tures are then des
ribed together with semanti
sproofs of the algorithms designed.After the semanti
s a
ost/bene�t analysis is
ondu
ted to reason on the expe
ted memory/runtimeoverhead.After the
ost bene�t analysis we des
ribe the implementation of the distributed CDD datastru
ture.This is followed by a test of the implementation with an analysis of the results.Finally we
on
lude on the proje
t followed by some perspe
tives on the proje
t.

2

Chapter 1UppaalThis
hapter des
ribes the veri�
ation tool Uppaal, �rst we give a general overview, followedby a des
ription of Timed Automata, hereafter a des
ription of the Uppaal engine in
luding theused data stru
tures, is given . Finally di�erent versions of Uppaal are des
ribed.1.1 OverviewUppaal is a veri�
ation tool for real time systems based on
onstraint-solving. It is espe
iallysuited for systems that
an be modeled as a
olle
tion of non-deterministi
 pro
esses with a �nite
ontrol stru
ture and real valued
lo
ks. Typi
al appli
ation areas are: Real time
ontrollers and
ommuni
ation proto
ols where timing aspe
ts are
riti
al. Uppaal
an
he
k for rea
habilityand invariant properties. The models used with Uppaal
onsists of a network of timed automata(TA),[1℄, extended with integer variables. Uppaal in
ludes a graphi
al tool whi
h allows the userto draw timed automata and run simulations.1.1.1 Timed AutomataTimed automata has established itself as a standard for verifying real time systems. In thissubse
tion we give an informal introdu
tion to timed automata.
x � 4 x � 6y � 5^y := 0

x := 0y := 0
x � 2l0 l1

Figure 1.1: Timed automataFigure 1.1 shows a timed automata with two lo
ations: l0 and l1 and the real valued
lo
ks xand y.A timed automata is a �nite state automaton extended with a �nite
olle
tion of real valued
lo
ks.A formal de�nition of TAs is:A timed automaton A is a 7 tuple < L; l0; E;C;
lo
ks; guard; I >� L is a �nite set of lo
ations with l0 being the start lo
ation.� E � L� L is a set of transitions between lo
ations.� C is a �nite set of
lo
ks. (in the example x and y)

1.1 Overview�
lo
ks is a fun
tion that assigns ea
h transition with set of
lo
ks, to be reset to 0 whentaking the transition.� guard is a fun
tion that assigns ea
h transition with a
lo
k
onstraint (a guard) over C.A
onstraint is over a set of
lo
ks and hold the following syntax: Xi �Xj � n or Xi � n,where Xi;Xj 2 C, �2 f<;�;� ; >g, and n is an integer.� I is a fun
tion that assigns an invariant over C to ea
h lo
ation.To stay at a lo
ation the invariant must be satis�ed, likewise for taking a transition, the guard onthe edge denoting the transition must be satis�ed. Invarian
e of a lo
ation is des
ribed inside it,whereas guards for taking a transition is des
ribed on the edges in the graphi
al representationof the automaton.A state of a timed automata A is a pair (l;D) where l is the dis
rete part of A and D representthe values of all
lo
ks that A range over.If the TA in �gure 1.1 is in state (l0; f0; 0g) meaning that it is
urrently at lo
ation l0, with the
lo
ks x; y both having the value zero. It
an stay in this lo
ation letting time pass, as long asthe invariant of l0, being x � 4, is satis�ed, and at least one transition is possible: x � 2. Thetransition to l1
an only be taken when both the invariant of l1 and the guard on the transitionfrom l0 to l1 are satis�ed thus requiring that x � 2 ^ x � 6 ^ y � 5. When taking the transitionl0 to l1 the value of y is reset to zero.To use timed automata for rea
hability analysis Alur and Dill's region te
hnique [1℄ is used inUppaal to represent the in�nite state spa
e of a TA as a �nite
olle
tion of symboli
 states. Thesesymboli
 states will represent the
lo
k
onstraints of a system, and thus provide a
onvex subsetof the Eu
lidean spa
e. We will refer to these
onvex subsets as Zones with typi
al element Z.We de�ne a federation to be any �nite union of Zones, note that a federation is not ne
essarily
onvex see �gure 1.2, where the federation P is the non
onvex union of the Zones Z1 and Z2,thus Zones are not
losed under union.

1 2 3 4 5 6 7 81234
56 Y

X
Z1Z2P

Figure 1.2: Two
onvex Zones, representingZ1 : (2 � x � 6 ^ 3 � y � 5 ^ �1 � x� y � 1)Z2 : (3 � x � 7 ^ 2 � y � 4 ^ 1 � x� y � 3)Federation P = Z1 [Z2A TA
an be traversed by following edges that is not violating any
onstraints in the destinationlo
ation and the guards on the transition. Thus all rea
hable states l 2 L from a state l0 arethose: 4

Uppaal� that does not
ontain any invariant that violates any
lo
ks
onstraints,� that the transition from l0 to l does not have a guard that violates any
lo
ks
onstraints.Note that l0 must be left before the invariants of this node is violated.When rea
hing a new lo
ation the TA enters a new state, being (l;D), where l is the new dis
retestate (
onsisting of the lo
ation ve
tor and the values of all integer variables) and D is the setof all
lo
k values representing the possible Zone.ConstraintsAs mentioned earlier
onstraints may have the form:� Xi �Xj � n, or� Xi � nwhere Xi;Xj 2 C, �2 f<;�;�; >g, and n 2 N. In this subse
tion we argue that only
onstraintsof the form: Xi�Xj � n is ne
essary for simulating the others. First we will argue that Xi � n
an be simulated by Xi � Xj � n. This is done by introdu
ing a spe
ial zero
lo
k X0 whosevalue is always 0. Then Xi � n, may be simulated by Xi �X0 � n. Next we will argue that >and �
an be simulated by < and � respe
tively. This is done by negation:� Xi �Xj > n , Xj �Xi < �n� Xi �Xj � n , Xj �Xi � � nThe last property to show is that Xi�Xj < n
an be simulated by Xi�Xj � n, whi
h it
annotbe in general, but it be
omes possible as all guards and invariants only
he
k on integer values(n 2 N). The method used is by multiplying all
onstraints by two on both sides, and if theinequality sign is < the bound is subtra
ted by one, that is the rules is translated to:� Xi �Xj < n ; 2 � (Xi �Xj) � 2 � n� 1� Xi �Xj � n ; 2 � (Xi �Xj) � 2 � n1.2 Uppaal EngineThe veri�
ation engine of Uppaal is
alled verifyta, it holds the responsibility for doing the a
tualveri�
ation, that is rea
hability analysis and
he
king invarian
e properties.The verifyta is given a network of TAs and a formula to
he
k as input. For rea
hability analysisthe algorithm in �gure 1.3 is used, where ' is the formula for whi
h it should be ful�lled.This algorithm uses two lists, a Passed list and a Waiting list. The Passed list denotes all thestates seen so far, used to avoid exploring a state twi
e, and thus assuring termination when thetotal state spa
e has been sear
hed. The Waiting list is a queue of states waiting to be explored.The states held in these lists are of the form (l;D) where l denotes the dis
rete part, being ave
tor telling in whi
h dis
rete nodes all the TA's are in, together with the values of all variables5

1.3 Data Stru
tures1. Passed := fg2. WAITING := f(l0;D0)grepeatbegin3. get (l;D) from WAITING4. if (l;D) j= ' then return YES5. else if D * D0 for all (l;D0) 2 Passed thenbegin6. add (l;D) to Passed7. SUCC := f(ls;Ds) : (l;D); (ls;Ds) ^Ds 6= ;g8. for all (ls0 ;Ds0) in SUCC do9. put (ls0 ;Ds0) toWAITINGendend10. until WAITING = fg11. return NOFigure 1.3: An algorithm for symboli
 rea
hability analysis.of the TA's. D is a Zone representing the
lo
k
onstraints. The algorithm works as we startsout with an empty Passed list and with the initial state as the only state in the Waiting list(lines 1 and 2).We repeatedly takes a new state (l;D) from the Waiting list (line 3),
he
ks if it satis�es theformulae ', if not we perform an in
lusion test to see whether (l;D) has already been explored(line 5). If we fail the in
lusion test (l;D) is added to the Passed list and all states that isrea
hable from (l;D) is added to the Waiting list (line 7). If we have sear
hed the entire statespa
e without �nding a state satisfying the formulae ', we return NO (line 10 and 11). We
an �invert� the algorithm by inter
hanging the YES and the NO (line 4 and 11), to obtain analgorithm that
he
ks for invariants for the :' formulae:(:9 d 2 STATESPACE j d j= ') � (8 d 2 STATESPACE j d j= :')
1.3 Data Stru
turesThis se
tion des
ribes the data stru
tures used to represent the Passed list. As this list is usedto store previously explored state, it will at the end of a full state spa
e sear
h represent theentire symboli
 state spa
e, impli
ating that we must make this list as
ompa
t as possible. Thefollowing subse
tion des
ribes two data stru
tures used to make a
ompa
t representation ofthis part of the Passed list, namely the di�eren
e bounded matri
es and
lo
k di�eren
ediagrams. The algorithm in �gure 1.3 shows that there is a need for an e�
ient in
lusion teston the data stru
ture holding the Passed list (line 5). Another a
tion that the data stru
turemust support is union of the Passed list with a new state (line 6)6

Uppaal1.3.1 Di�eren
e Bounded Matri
esDi�eren
e bounded matri
es was �rst proposed in [5℄, later it were use for
onstraint systems asthey
an o�er a
anoni
al representation of a su
h.De�nitionA DBM representation of a
onstraint system D is a weighted dire
ted graph G = (V ,E) wherethe verti
es V des
ribes the
lo
ks in C and an additional zero vertex, that designates a
lo
kwhose value is always zero. There is an edge E from x to y with weight m if there is a
onstraintof the type x � y � m. Also there is an edge from x to the zero vertex with weight m if thereis a
onstraint of the type x � m.Des
riptionThe
anoni
al representation that DBM's
an o�er, is when they are
losed. To des
ribe the
losedness of a
onstraint system, we need to
al
ulate the shortest path
losure of the graphdes
ribing the
onstraint system. Standard algorithms su
h as Bellman-Ford
an do this in O(n3)with n being the number verti
es in the graph (the number of
lo
ks in the
onstraint system).

1 2 3 4 5 6 7 81234
56 Y

X
Z1Z2Z3

Figure 1.4: Three
onvex Zones, representing by the
losureZ1 : (2 � x � 6) ^ (3 � y � 5) ^ (�1 � x� y � 1)Z2 : (3 � x � 7) ^ (2 � y � 4) ^ (1 � x� y � 3)Z3 : (3 � x � 6) ^ (3 � y � 4) ^ (�1 � x� y � 3)The shortest path
losure of a
onstraint system
ontains redundant
onstraints, the
onstraintfor �gure 1.4(Z1)
ould be des
ribed only by the
onstraints :(3 � y � 5) ^ (�1 � x� y � 1)meaning that the last
onstraints for x is impli
itly given by the others.As the in
lusion test D � D0 runs in O(n) with n being the number of
onstraints in D0, savingas few
onstraints as possible is desirable.To do so, an O(n3) algorithm has been developed to
al
ulate the shortest path redu
tion, that
onverts a DBM in shortest path
losure, to an equivalent redu
ed system with a minimal numberof
onstraints. The algorithm works essentially by saving all zero
y
les in the graph togetherwith the edges that inter
onne
t these zero
y
les. The algorithm is des
ribed in [4℄.7

1.3 Data Stru
turesDBM's are limited as they only des
ribe
onvex Zones. If the
onstraint system D is in
luded inthe union of more than one DBM as Z3 � (Z1 [Z2) in �gure 1.4. The in
lusion tests Z3 � Z1and Z3 � Z2 will both fail despite the fa
t that Z3 already has been explored, partly in Z2 andpartly in Z1, thus for
ing redundant state exploration and redundant storing of Z3.Uppaal uses DBM's to store the symboli
 part of a state (the D part of the state (l;D)), thus forevery dis
rete state l there is a number of DBM's, that together des
ribes the sear
hed federationfor this dis
rete state. These DBM's are stored in the Passed list of �gure 1.3. The spa
e usedto store DBM's are O(n2) for the
losed form. The average
ase is a lot better for the DBM inits redu
ed form, as most
losed DBM's
ontains redundant
onstraints. [10℄ reports on savingsup to 97% for using redu
ed DBM's instead of
losed DBM's.
1.3.2 Clo
k Di�eren
e DiagramsIn this subse
tion we present an informal des
ription of
lo
k di�eren
e diagrams (CDD), whi
his an extension to Redu
ed Ordered Binary De
ision Diagrams (ROBDD) presented by RandalE. Bryant in [6℄. CDD was �rst introdu
ed by Larsen et al. in [8℄, as a data stru
ture to store
onstraints in a
onstraint system. In Uppaal CDD's are used to store the symboli
 part of thePassed list of the algorithm in �gure 1.3. The CDD data stru
ture is greatly inspired by theIDD data stru
ture des
ribed by [14℄.
De�nitionA CDD is a dire
ted a
y
li
 graph T = (V;E) where V are verti
es of two kinds, either innernodes or terminal nodes.A
lo
k
onstraint is of the form Xi � Xj � m with Xi and Xj being real valued
lo
ks withinteger bound m. For any
onstraint (Xi;Xj) is the type of the
onstraint. Inner nodes has atype and a �nite number of su

essor nodes ea
h representing an interval of reals with integerbounds referring to another CDD node. Terminal nodes are either true or false and have nosu

essors. All types of nodes must be globally ordered meaning that when traversing a path in aCDD the types are in
reasing, and no types will appear twi
e in the path. A re
ursive de�nitionof CDD's are :h(Xi;Xj); [I1; T1℄; : : : ; [In; Tn℄i where (Xi;Xj) is the type of the node, and Ii is an interval ofreals, and Ti is a CDD.The union of the intervals must be
omplete, thus Si2f1;:::ng Ii = R The intervals must be disjointso 8Ii; Ij j i 6= j :Ii \ Ij = ;An example CDD is pi
tured in �gure 1.5, whi
h des
ribes the federation P = Z1[Z2 of �gure 1.2.An interval I = [a; b℄ for the type (Xi;Xj) represents the
lo
k
onstraint:Xi �Xj � a ^ Xj �Xi � b.Note that we omit all edges leading to false for simpli
ity reasons, this will apply to all �guresthrough out the report. 8

Uppaal

true

X-Y X-Y X-YY
[-1,1℄ [1,3℄[3,4℄[2;3[[-1,3℄℄4,5℄

Figure 1.5: The CDD for des
ribing the non
onvex federation P = Z1 [Z2 of �gure 1.2 All edges not representedleads to the false node, these are omitted for simpli
ity.Des
riptionA CDD des
ribes a federation meaning that the previously des
ribed problem of redundant stateexploration using DBM's
an be eliminated. The in
lusion test of the `Z3' Zone of �gure 1.4 willsu

eed as the shortest path
losed
onstraint system is des
ribed by (3 � x � 6) ^ (3 � y �4) ^ (�1 � (x� y) � 3), and these
onstraints are all in
luded in the CDD in �gure 1.5. Notethat there are no x CDD node represented, meaning that this node impli
itly
over R.CDD's allow sharing of
lo
k
onstraints over lo
ation borders. That is if two zones from twodi�erent dis
rete states l and l0 share some
ommon
onstraints the CDD data stru
ture allowsharing between these by giving the CDD several handles - namely one handle per dis
rete state.The memory usage of CDD are di�
ult to reason about, as the sharing between handles are hardto foresee. Also the sharing within the same lo
ation node is hard to foresee, theoreti
al the sizeis exponential. In the next se
tion we will state some experimental results about the memoryusage of CDD's
ompared to redu
ed DBM's, whi
h shows
onsiderable memory-savings.1.4 Versions of UppaalThis se
tion gives an overview of the di�erent Uppaal versions that will be referred to in thisproje
t.1.4.1 Sequential UppaalThere are two sequential version of Uppaal, one that implements the DBM data stru
ture andone that implements the CDD data stru
ture.� The basi
 version of Uppaal uses a shortest-path redu
ed form of the DBM data stru
ture[10℄.This implementation showed spa
e savings between 74% and 97%,
ompared to an Uppaalimplementation using standard non redu
ed DBM's.� In [4℄ Uppaal is tested with the CDD data stru
ture, whi
h
ompared to the shortest-pathredu
ed form of the DBM's saves an additional 42% in average with moderate in
rease inruntime (7%). 9

1.4 Versions of Uppaal1.4.2 Distributed Uppaal[3℄ present a distributed engine for Uppaal based on the DBM data stru
ture for storing thesear
hed states. This distributed Uppaal allowed verifying larger models by distributing thestate spa
e. The state spa
e is distributed in the following manner: (please refer to the algo-rithm in �gure: 1.3)Whenever a new state (ls0 ;Ds0) is found in line 8, the state is hashed to a spe
i�

omputer noderesponsible for this state. When the node responsible for (ls0 ;Ds0) re
eives this request, it simplyputs it into it's Waiting list, for later exploration and possible storage.Ea
h node holds a part of the global Passed list, this part
ontains symboli

onvex Zones forall dis
rete states whi
h the node is responsible for.The
urrent distributed Uppaal uses DBM's for storage of the symboli
 part of the state spa
e.Using the CDD data stru
ture would impli
ate that ea
h node holds a single CDD data stru
tureinstead of several lists of DBM's. This s
heme allow two kind of sharing.� The CDD data stru
ture holds the federation sear
hed instead of holding a set of Zones,this removes the problem of redundant state exploration as des
ribed earlier.� Two di�erent dis
rete states might share
ommon
onstraints. If su
h two dis
rete stateswere lo
ated on the same node the shared
onstraints need only be stored on
e. But storedon two di�erent nodes will not lead to any spa
e redu
tion.1.4.3 PremisesAs mentioned in the introdu
tion a more in depth des
ription of why we
hose to distribute theCDD data stru
ture is given in this subse
tion. The CDD data stru
ture was
hosen as it wasexpe
ted to a

ount for the main part of the memory memory used during a veri�
ation, this wasderived from, as previously mentioned a lot of arti
les on this topi
, but also from the fa
t thatthe number of types in the CDD is quadrati
 to the number of
lo
ks, whereas the entries in adis
rete state is linear to the number of lo
ations and variables in the timed automata. Meaningthat
omplexity wise it is to be expe
ted that the
lo
ks will a

ount for a higher memory usagethat the variables. This has not been the
ase primarily from two reasons, �rst even though the
lo
ks are quadrati
 in size
ompared to the variables and lo
ations, the �normal� layout of aUppaal model make use of the same number of lo
ations and variables as the quadrati
 size ofthe
lo
ks. Se
ondly the behavior of the Uppaal models it that there are many states where thelo
ations and the variables di�er from other states but the
lo
ks values are the same, meaningthat the lo
ations and variables are stored twi
e whereas the
lo
ks are only stored on
e.In
hapter 8 we see what
onsequen
es this mismat
h between our interpretation of the Uppaalbehavior and the a
tual behavior gives.The report
ontinues as if the problem still were the representation of the symboli
 part, until
hapter 8 were the
onsequen
es of our misinterpretation is given.10

Uppaal1.4.4 SummaryThe di�erent versions of Uppaal together indi
ates that it might be possible to verify largermodels if we
an distribute the CDD data stru
ture among several
omputer nodes. In thisway we
an utilize the larger amount of memory available in a network of workstations, and atthe same time take advantage of the memory savings that the sequential version shows. Againveri�
ation is very memory intensive and not espe
ially CPU dependent, as the state spa
eexplodes exponentially with the size of the model.After stating the used data stru
tures in Uppaal, together with the di�erent version, are weready to state the purpose of this proje
t.

11

1.4 Versions of Uppaal

12

Chapter 2PurposeThe purpose of this proje
t is to investigate what distributed
omputing has to o�er in the veri-�
ation of timed automata. As mentioned in the introdu
tion formal veri�
ation is very memoryintensive, therefore the main purpose of this proje
t is to utilize the larger amount of memoryavailable in a distributed system e�
iently, in the area of formal veri�
ation.
2.1 Approa
hThe purpose of this proje
t is to distribute Uppaal to be able to verify larger models. Ourpurpose is in
reased memory-savings in favor of in
reased speed. Therefore this proje
t triesto design and implement a distributed CDD data stru
ture for storing the symboli
 part of thePassed list stored by Uppaal.The CDD is distributed by partitioning the CDD and store di�erent partitions on di�erent
omputer nodes. The
urrent distributed Uppaal distributes the Passed list by distributingDBM's to
omputer nodes, by hashing on the dis
rete part of the state. A single extendeddistributed Uppaal implementation using CDD's, is to use that same approa
h, by storing asingle CDD on ea
h node. A further improvement
ould be to make a single CDD span all
omputer nodes, there by ar
hive sharing between all dis
rete states.The di�eren
es between the mentioned distribution possibilities of Uppaal is depi
ted in �gure2.1

New state

Node II Node IINode IINode I Node I..................
Node IV(b)
Node IIINode IV(a)

Node III.........
Node I
Node IIINode IV(
)

Node III
Node I

(d)
Node II
Node IV

CDDShortes-path redu
ed DBMFigure 2.1: Four approa
hes for distributing Uppaal.Figure (a) show the
urrent distribution approa
h used.Figure (b) show an approa
h similar to the
urrent distribution Uppaal version, but using the CDD data stru
ture.Figure (
) show a CDD data stru
ture distributed a
ross all nodes parti
ipating in the veri�
ation.Figure (d) shows a hybrid between (b) and (
), with more than one CDD, all spanning more than one node.

2.2 PurposeThe approa
h of using a single distributed CDD has some advantages as well as disadvantages,whi
h will be dis
ussed in the following.Chara
teristi
s of a Single Distributed CDDGlobal Sharing The most obvious advantage of this approa
h is naturally that it allow sharingbetween all dis
rete states.Heterogeneous Another advantage of the distributed CDD approa
h
ompared to the othertwo approa
hes is that the distributed CDD approa
h handles heterogeneous
on�gurationsbetter. If e.g. some nodes has more memory than others spe
ial hash fun
tions has to beimplemented in the
urrent distributed Uppaal, whereas in the distributed CDD approa
hit is possible to implement runtime memory distribution by moving a CDD layer from one
omputer node to another.Dynami
 load sharing In the
urrent distributed Uppaal only the
omputer node responsiblefor a dis
rete state hold information about whi
h Zones has been explored, therefore su
hstates have to be send to this
omputer node. This may introdu
e a bottlene
k problemif at a
ertain time many states with the same hash value is found, then the responsible
omputer node be
ome a bottlene
k. When using only one CDD, all
omputer nodes
anexplore all states whi
h means that tasks should only be send to other
omputer nodeswhen these has an empty Waiting lists. If a
omputer node be
ome a bottlene
k, it maysimply distribute it's Waiting list to the other parti
ipating
omputer nodes.De
reased s
alability A problem with the distributed CDD approa
h
ompared to the otherdistribution approa
hes is that the distributed CDD approa
h might not s
ale to many
omputer nodes, it time performan
e might de
rease. The reason for this expe
ted de
reasein speed performan
e is that whenever a new state should be explored an in
lusion testmust be performed. To make a
omplete in
lusion test, CDD nodes on every
omputernode must be sear
hed, that is at least k � 1 syn
hronization messages must be send forea
h in
lusion test in a system with k
omputer nodes. The same
ounts for union - whenthe state has been sear
hed it must be unioned into the existing CDD, this union alsoinvolve at least k� 1 syn
hronization messages. Further
ost/bene�t analysis is
ondu
tedin
hapter 6.2.2 PurposeThe tests on the non distributed CDD version of Uppaal, showed signi�
antly memory savingsbeing 42%
ompared to the shortest path redu
ed DBM version. This should also apply to thedistributed version, but as a de
rease in time performan
e is expe
ted due to the larger syn
hro-nization overhead introdu
ed by the distributed CDD approa
h, we will try to �nd the trade o�for how many
omputer nodes a distributed CDD should span. The assumptions is that the more
omputer nodes a CDD span the larger the overhead in syn
hronization is, but it gives possibilityof redu
ing the overall memory usage. On the
ontrary, a CDD spanning fewer
omputer nodesminimize the syn
hronization overhead, but does not allow maximum memory saving in form ofglobal sharing. Trying di�erent hybrid version as the one in �gure 2.1(d) is a way to �nd thistrade o�. This way it is possible to see how mu
h memory
an be saved utilizing global sharing,and at whi
h runtime
ost this memory-saving
omes at. To summarize our purpose is:14

PurposeHow mu
h memory
an be saved by global sharing through the CDD datastru
ture for saving the symboli
 part of the Passed list in formal veri�
ationof timed automata. Find the relation ship between syn
hronization overhead/memory usage when using a hybrid CDD model where the number of CDD'sare ranging between one and the number of
omputer nodes used.

15

2.2 Purpose

16

Chapter 3Data Stru
turesThis
hapter des
ribes the data stru
tures whi
h are used in this proje
t, how they are used andsome syntax for these.This proje
t uses two main data stru
tures:CDD The main data stru
ture in this proje
t is the CDD data stru
ture, whi
h stores the sym-boli
 part of the Passed list in Uppaal. This data stru
ture is to be distributed over allparti
ipating
omputer nodes, or within a group of
omputer nodes.Most de
ision diagram data stru
tures holds a single handle (one node in the top of thegraph representing the value of the �rst variable in the variable ordering), but the CDDdata stru
ture allow several handles to allow maximal sharing between
ontrol states, �gure3.1 show an example on sharing between
ontrol states using two handles.DBM All
ommuni
ation with the Uppaal engine is via the DBM data stru
ture. To performthe in
lusion test (�gure 1.3 line 5) the DBM representation for the new state is
onvertedinto its shortest path
losure before the in
lusion test is performed, as this des
ribes all
onstraints that must be satis�ed for the in
lusion test to su

eed. When a state shouldbe unioned into the Passed list the same DBM is
onverted into its shortest path redu
ed
ounter part(
onverted to a CDD), before inserted into the CDD, as this DBM
ontainsthe minimum required information for des
ribing the
onstraint system.Handle ljY Y Handle li[2; 6℄[1; 4℄X X[2; 6℄[1; 4℄X-Y[�1; 0℄trueXZi = liY
Zj = lj

8642 2 4 6 8(a) (b)Figure 3.1: Example on sharing between two di�erent dis
rete states. The (a) part show two Zones Z1 and Z2belonging to two di�erent dis
rete states. Figure (b) show the CDD representing these two areas. This CDD hastwo handles, one for ea
h dis
rete state. As
an be seen the two dis
rete states share CDD nodes.3.1 SyntaxBefore any other properties for the data stru
tures is given, some syntax is provided to supportfurther des
riptions.

3.1 Syntax3.1.1 Clo
k Di�eren
e DiagramsThe CDD data stru
ture is used to store the Passed list in Uppaal, that is the CDD data stru
tureonly holds the symboli
 part of the Passed list, with the dis
rete part given by handles into theCDD data stru
ture.CDD's are used to store the
onstraints (Xi�Xj � n) whi
h together spans the union of sear
hedZones for ea
h dis
rete state (a federation).The set of all
onstraint for a given dis
rete lo
ation l in a timed automata A, is denoted D,with typi
al element
. A
onstraint is a three-tuple (Xi;Xj ; n) for the
onstraint Xi �Xj � nA CDD is a dire
ted a
y
li
 graph (DAG), typi
ally denoted T with two kinds of CDD nodes:Inner and terminal nodes. Terminal nodes represents the
onstants true and false, while innernodes are asso
iated with a type (Xi;Xj) where i; j 2 f0::ng; i 6= j1. Ar
s labeled with intervalbounds of the di�eren
e of the
lo
ks given by the type (Xi;Xj). An interval I = [a; b℄ for thetype (Xi;Xj) represents the
lo
k
onstraint Xi �Xj � a ^ Xj �Xi � b.Example CDD's are shown in �g. 3.2.

1X

1X

X2

X1

2X

X1

2X 2X 2X

X1

2X

2X 2XX1 X1

2X

X1

X2

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
� �
�
�

�
�
�

�
�
�
�

�
�
�
�

����

��

1 2 3 4 5 6

1

3
2

1 2 3 4 5 6

1

3
2

(a)

(b)

(c)

1 2 3 4 5 6

1

3
2

true

true

[1,3] [4,6]

[1,3]

]2,3[[3,4][1,2]

[1,3] [2,4]
[1,4]

- -

true

[0,2]

[0,1] [2,3]

[0,0] [-3,0]Figure 3.2: Three example CDD's. Intervals not shown impli
itly leads to false; e.g. in (a) there are ar
s fromthe X1-node to false for the three intervals ℄�1; 1[; ℄3; 4[; and ℄6;1[.A type is a pair (Xi;Xj), whi
h
orresponds to an inner node in the CDD. The set of all typesis written T , with typi
al element t. T is assumed to be equipped with a linear ordering � anda spe
ial bottom element ?, in the same way as BDD's assume a given ordering on the booleanvariables. The bottom elements being false and true has the largest type, whereas the handlehas the smallest type.1Remember X0 is the zero
lo
k always being zero. 18

Data Stru
turesA possible ordering
ould be:� (Xi1 ;Xj1) � (Xi2 ;Xj2) if j1 < j2� (Xi1 ;Xj1) � (Xi2 ;Xj2) if j1 = j2 ^ i1 < i2.Let the fun
tion �rst(T : CDD) return the uppermost CDD node in the CDD T , being thehandle.I denotes the set of all non-empty,
onvex, inter-bounded subsets of the real line. I
ontains bothopen,
losed and half-open intervals, whi
h is: ℄a; b[, [a; b℄, ℄a; b℄, and [a; b[. A typi
al element ofI is denoted I.Two intervals are named neighbored if they may be joined by union into a larger interval -overlapping intervals are
alled neighbors too.An interval
over for a CDD node ni is denoted I(ni), and des
ribes the intervals leaving ni.That is, an interval
over is a set of intervals Ini = fI1; I2; : : : ; Ing. Ea
h interval in the intervalpartition Ij 2 I(ni) must be a subset of the total interval leaving ni. That is, for nodes havingtypes Xi�X0; i 6= 0, Ij � R+ , and for nodes having types Xi�Xj i; j 6= 0 Ij � R. Furthermorean interval partition must be
omplete, i.e.,� If type(ni) = (Xi �X0) i 6= 0: SI2I(ni) I = R+� If type(ni) = (Xi �Xj) i; j 6= 0: SI2I(ni) I = RI(nX�Y) in �gure 3.1(b) would be: I(nX�Y) = f ℄ � 1; 0℄ ; ℄0;1[g, the last interval beingomitted in the �gure, as it leads to false.An interval partition is a disjoint interval
over. That is, an interval
over is an interval partitionif: 8j; k 2 f1 : : : ngjj 6= k : Ij \ Ik = ;An interval partition is ordered if the (lower/higher) bounds of all intervals build an in
reasingsequen
e. An interval partition whi
h is ordered is named redu
ed interval partition.I(i; j) denote the
lo
k
onstraint having type (i; j) whi
h restri
ts the value of Xi �Xj to theinterval I.Given a set of
lo
k
onstraints D and a valuation v, D(v) denote the boolean value derivedfrom repla
ing the
lo
ks in D by the values given by v.The prior two notations will be used jointly, i.e. I(i; j)(v) expresses the fa
t that v ful�lls the
onstraint given by I and the type (i; j). v(t) de�nes the
urrent value of the t type given bythe valuation v.We de�ne a CDD node as a n+1 tuple ht; [I1; T1℄ : : : [In; Tn℄i where t is the type, and su

essorsT1 : : : Tn being CDD's (whi
h
an be viewed as a CDD nodes, where �rst(Ti) is the handle ofthe su

essor CDD), ea
h denoting the
orresponding interval I1 : : : In.The set of all CDD nodes is denoted N with typi
al elements n;m.It should be noted from the previous dis
ussion that a CDD and a CDD-node
an be usedinter
hangeable, as a CDD node and its su

essors may be interpreted as a CDD. And a CDDmay be interpreted as a CDD node by using the handle.A CDD is a DAG
onsisting of a set of nodes V � N and two fun
tions:19

3.1 Syntax� type : V ! T� su

 : V ! 2I�V su
h that:V has exa
tly two terminal nodes
alled true and false, where type(true) = type(false) =?and su

(true) = su

(false) = ;all other nodes n 2 V are inner nodes, whi
h have attributed a type type(n) 2 T anda �nite set of su

essors su

(n) = f(I1; n1); : : : ; (Ik; nk)g, where (Ii; ni) 2 I � V .n I��! m is shorthand for (I;m) 2 su

(n).For ea
h inner node the following must hold:� the su

essors are disjoint: 8(I;m); (I 0;m0) 2 su

(n) either (I;m) = (I 0;m0) or I \ I 0 = ;,� the su

essor set is an R-
over: SfIj9m:n I��! mg = R,� the CDD is ordered: for all m, whenever n I��! m then type(n) � type(m).The CDD is assumed to be redu
ed if the following holds:� it has maximal sharing: for all n;m 2 V whenever su

(n) = su

(m)^ type(n) = type(m)then n = m, that is no isomorphi
 sub CDD's
an
oexists in the CDD.� all intervals are maximal: whenever n I1��! m;n I2��! m then I1 = I2 or I1 [I2 =2 I.We de�ne the fun
tion
hild : V � I ! V , su
h that
hild(n; I) to return the su

essor node mof n where the edge going from n to m is labeled with the interval I. Thus for m =
hild(n; I),then there exists a su

essor to n so n I��! m.S-CDD'sWhen mapping a DBM to a CDD, the resulting CDD will be a CDD where all nodes only havea single su

essor node not being the false node, thus to make semanti
 proofs easier we de�nea spe
ial syntax here for su
h a CDD, denoted S-CDD.S-CDD's are CDD where all nodes have a single su

essor not leading to false, and where edgesleading to false is not represented. This means that the su

essor does not form an R-
over, in
ontrast to CDD's.We denote an S-CDD node as a 3 tuple hts; I; Tsi where ts 2 T is the type and I 2 I is theinterval
overed, and Ts is the the su

essor S-CDD node, that also
an be interpreted as aS-CDD. Ns is the set of all S-CDD nodes, with typi
al element ns;ms.S-CDD's has a global linear ordering as CDD's, refer to previous se
tion for details. Again thebottom element the true node is
onsidered the element with the largest type, and the handleto the S-CDD has the smallest type.A S-CDD is a DAG
onsisting of a set of nodes Vs � Ns and two fun
tions:� type : Vs ! Ts 20

Data Stru
tures� su

 : Vs ! (I; ns), where I 2 I and ns 2 Ns su
h that:Vs has exa
tly one terminal nodes
alled true, where type(true) =?all other nodes ns = hts; I; Tsi 2 Vs are inner nodes, whi
h have attributed a typetype(ns) = ts, and a single su

essor: su

(hts; I; Tsi) = Ts. �rst(Ts) = ms is the node inTs with the smallest type, that is the handle.We de�ne
hild(ns), ns 2 Ns to be the su

essor node of ns in the S-CDD. All inner nodes hasa unique su

essor node.We de�ne parent (ns) to be the parent of node ns. This method makes sense only for S-CDD'sas these has a unique parent, whi
h may not be the
ase for ordinary CDD's.We de�ne Is�
dd(ns) to be the interval leaving node ns.ns I��! ms is short hand for (I;ms) = su

(ns).For ea
h inner node the following must hold:� the su

essor does not form an R-
over, otherwise the node should be omitted.� the S-CDD is linearly ordered: for all ms, whenever ns I��! ms then type(ns) � type(ms).� an S-CDD node has a unique parent and
hild node.In the following part of the report, S-CDD is also referred to as single stringed CDD's.3.1.2 Di�eren
e Bounded Matri
esThe following subse
tion des
ribes the Di�eren
e Bounded Matri
es(DBM) data stru
ture usedin the
urrent distributed version of Uppaal. DBM's
an be used for the same purpose as CDD's,that is des
ribe
onstrains of the form Xi �Xj � n. The DBM data stru
ture is best seen as adire
ted graph, with verti
es being the variables X0;X1; : : : ;Xn. For ea
h
onstraint Xi�Xj � na dire
ted edge goes from Xi to Xj with weight n. An advantage with DBM's
ompared to CDD'sis that DBM's has a normal form whi
h simpli�es in
lusion tests, to a test of synta
ti
 in
lusioninstead of a test for semanti
 in
lusion. The graph spanned by the
onstraints is des
ribed bythe adja
en
y-matrix representation in redu
ed form.Only a single Zone Z
an be des
ribed by a DBM, so if two Zones Z1 and Z2 are explored whereZ1 * Z2 ^ Z2 * Z1, then two DBM's has to be
onstru
ted and stored. E.g. to represent theexplored state spa
e of �gure 3.2(a) on page 18, the two matri
es in table 3.1.2 has to be stored:X0 X1 X2 X0 X1 X2X0 0 6 6 0 12 6X1 -2 0 -8 0X2 -2 0 -2 0Table 3.1: DBM's for storing the state spa
e: (�2 � X2 � X0 � 6 ^ � 2 � X1 �X0 � 6 ^ �1 < X2 � X1 <1) [(�2 � X2 �X0 � 6 ^ � 8 � X1 �X0 � 12 ^ �1 < X2 �X1 <1)And after the representation of se
tion 1.1.1: (1 � X2�X0 � 3^1 � X1�X0 � 3^ �1 < X2�X1 <1)[(1 �X2 �X0 � 3 ^ 4 � X1 �X0 � 6 ^ �1 < X2 �X1 <1)21

3.2 Operations3.2 OperationsThere are two main operations whi
h is performed on the data stru
tures used by Uppaal, theseare:In
lusion test Before the Uppaal engine explores a new state it
he
ks whether it previouslyhas been explored. This is done by storing all sear
hed states in the Passed list, and beforeexploring a new state it
he
ks whether the newly found state is in
luded in the Passedlist.Union Whenever a new state has been explored it is inserted into the Passed list, this is doneby a union of the Passed list and the newly explored state.The following des
ribes how in
lusion test and union is performed in the DBM version of Uppaaland how they are performed using CDD's.3.3 Current UppaalThe
urrent Uppaal version whi
h is based on the DBM data stru
ture, holds the Passed list asa simple linked list of DBM's. That is whenever a new state has been explored a union betweenthe existing Passed list and the new DBM is performed, simply by adding the DBM to the linkedlist.To perform an in
lusion test using the DBM data stru
ture, ea
h DBM in the linked list is testedfor being a superset or equal to the newly found state. An algorithm for the in
lusion test usingthe DBM data stru
ture is shown in �gure: 3.3bool dbm_in
lusion(d : newstate;L : PassedLIST)beginreturn Wfd � d0jd0 2 LgendFigure 3.3: In
lusion test using the DBM data stru
ture. That d0 2 L, denoted that the state d and d0 has tohave the same dis
rete state.This algorithm does not re
ognize a Zone if this Zone is a subset of the union of two or moreZones, as shown in �gure 3.4 where the marked zone is a subset of the union of two other zones.
2X

X1

2

1 2 3 4 5 6

1

3 ��
��
��
��
��
��
��
��

Figure 3.4: If the three verti
al Zones has been sear
hed, the horizontal marked Zone would not be a

epted assear
hed.
22

Data Stru
tures3.3.1 Using CDD's with UppaalBoth in
lusion tests and union with new Zones is somewhat more
ompli
ated using the CDDdata stru
ture, but it o�ers better in
lusion tests as CDD re
ognize that a Zone has been exploredif the union of two Zones makes a superset. The in
lusion test is performed from the followingformula:Ts � T i� Ts \ T = Tswhere Ts is the new state as a S-CDD, and T is the Passed list represented as a CDD.When a new state has been explored the Zone explored has to be added to the explored statespa
e set the Passed list. A
tually the
urrent CDD implementation of Uppaal uses a di�erentapproa
h, as it
he
ks for Ts � T i� Ts \ :T = ;.3.4 Mapping CDD's to set formulasThis se
tion provides another view on the CDD data representation, whi
h is used to proveproperties of the CDD data stru
tures in
hapter 5. CDD's are used to des
ribe a federation inthe multi-dimensional spa
e spanned by the
lo
ks C. Therefore a CDD
an be interpreted as aset of intervals on the di�erent
oordinates.Let pt represent the number p of the type t 2 T , that is the set formula [2x; 4x℄ represent theinterval [2; 4℄ on the X
oordinate. Then the area in �gure 3.1 on page 17, may be representedas the set formula: (([1y ; 4y℄ \ [1x; 4x℄) [([2y; 6y ℄ \ [2x; 6x℄)) \ [�1x�y; 0x�y℄This set formula
an be generated from a CDD using the following re
ursive formula:CDDtoSET (
dd 2 CDD)beginif
dd = true return (R+)nif
dd = false return ;else return S(I;m)2su

(n)(I \ CDDtoSET (m))end3.5 Mapping DBM's to CDD'sAll
ommuni
ation between the CDD data stru
ture and Uppaal is done through the DBM datastru
ture. Whenever an in
lusion test is performed (�gure 1.3 line 5) it is
he
ked whetherthe shortest-path
losure is
ontained in the PASSED list. Whenever a new state should beinserted into the CDD, the shortest-path redu
ed DBM is inserted. But before these operationsis
ondu
ted, it is preferable to know how to
onvert DBM's into
orresponding CDD's, asoperating on the same data stru
ture is simpler. Note that an e�
ient implementation shouldnot perform this
onversion, it is merely a matter to use in semanti
s of algorithms proposedlater on.The stru
ture of DBM's only allow two
onstraints between any two
lo
ks: Xi �Xj � n andXj �Xi � m, where Xi;Xj 2 C and n;m 2 N. Therefore, for ea
h type (node in a CDD) t only23

3.5 Mapping DBM's to CDD'sa single interval may leave not leading to the false node, and as the CDD only starts in a singlepoint the CDD resulting from
onverting a DBM into a CDD be
omes a CDD where ea
h nodehas a single unique su

essor - prior de�ned as a S-CDD. The result of this is that whenever aDBM is
onverted into a CDD, the CDD is an S-CDD. See �gure 3.5.

X0
X2
X3

X2X3
[�2;�2℄[2; 2℄[4; 4℄
[�7;�1℄

(a)1
(b)

-225 -127 -24-433 X1 �X2X1 �X3
X1 X1 [3; 3℄

X2 �X3true
[�5; 1℄

Figure 3.5: Any DBM
onverted into a CDD, be
omes a S-CDD. The DBM of �gure (a) is
onverted into theS-CDD of �gure (b).

24

Chapter 4Design / Data stru
turesThis
hapter des
ribes the design of the algorithms, both the sequential and the distributed ones.After the des
ription of the algorithms the design of the CDD nodes is des
ribed.4.1 Non Distributed AlgorithmsIn this se
tion we des
ribe the algorithms that is used on ordinary CDD data stru
tures on asingle pro
essor ar
hite
ture. These algorithms is our starting point when we distribute the datastru
tures. The algorithms des
ribed is in
lusion test and union (between an S-CDD and aCDD). This is followed by a des
ription of how CDD's are redu
ed to ensure as mu
h sharing aspossible, but �rst we
onsider how intervals are merged during the union operation.4.1.1 Merging intervalsWhenever two nodes with the same type has to be unioned, their intervals has to be merged. IfCDD node ni has intervals Ii1 : : : Iik , and CDD node nj has intervals Ij1 : : : Ijl , then the mergingof these intervals is the smallest number of intervals Ir1 : : : Irm , su
h that 8I 0 2 fIr1 : : : Irmg;9Ii 2fIi1 : : : Iikg; Ij 2 fIj1 : : : IjlgjIi \ Ij = I 0. And the interval partition formed by Ir1 : : : Irm formsa redu
ed interval partition.When the intervals are merged the new node is
reated by letting the new CDD node have thesame type as the input nodes. One outgoing edges exists for ea
h interval in the merged intervalpartition, and the edge with interval Ir points to the union of the nodes nIi and nIj , where nIi=
hild(ni; Ii) is the node referred to by node ni interval Ii, and nj =
hild(nj ; Ij) is the nodereferred to by node nj, interval Ij, and Ii \ Ij = Ir.As all unions in this proje
t is only done between S-CDD's and CDD's, and it is known thatS-CDD only have one interval leaving ea
h node (not leading to false), the algorithm in �gure4.1 show how the intervals of a CDD node m 2 N , and S-CDD node ns 2 Ns is performed.The algorithm works as follows (�gure 4.1(a) might help):Line 3 assign Is to the interval leaving the S-CDD node ns. Line 4
reates a new empty set ofintervals, whi
h will be
ome the resulting redu
ed interval partition. Line 6 to 16 iterates overall intervals leaving the CDD node m, and for ea
h interval the following is done:Line 6-7 handles if the two intervals I 0 and Is does not interse
t, then the interval I 0 is simplyadded to the resulting set I(merge), is is the
ase for the interval (a; b) of I(m) in �gure 4.1(a),and result in the interval (a0; b0) in I(merge). Line 8-9 handles the same
ase, only if the intervalIs is a subset of I 0, this is the
ase for the interval (e; f) of I(m) in �gure 4.1(a), and result inthe interval (e0; f 0).Line 11-16 handles the
ase where Is and I 0 isn't ; nor Is. Su
h an interse
tion
an be done in5 di�erent ways as shown in �gure 4.1(b), by the Is intervals: Is1 , Is2 , Is3 , Is4 and Is5 . Line 11get the bounds from both intervals, whi
h is used in the if
onditions in the following 5 lines.The following des
ribes how ea
h of the �ve interse
tions is handled:Is1 [I0: This interse
tion falls into the if
onditions on line 14 and 16, and add (a;
) and (
; f)to I(merge).

4.1 Non Distributed Algorithms1:Redu
ed_Interval_Partition merge_intervals(ns 2 Ns;m 2 N)2:begin3: Is = Is�
dd(ns)4: I(merge) = ;5: forea
h I 0 2 I(m)6: if I 0 \ Is = ; then7: I(merge) = I(merge) [I 08: else if I 0 \ Is = I 0 then9: I(merge) = I(merge) [I 010: else11: (a; b) = I 0; (
; d) = Is12: if a < d ^
 < a then I(merge) = I(merge) [(a; d)13: if a <
 then I(merge) = I(merge) [(a;
)14: if a �
 ^ d � b then I(merge) = I(merge) [(
; d)15: if a <
 ^ b < d then I(merge) = I(merge) [(
; b)16: if d < b then I(merge) = I(merge) [(d; b)17: return I(merge)18:end Table 4.1: Algorithm for merging intervals.Is2 [I0: This interse
tion falls into the if
onditions on line 13 and 14, and add (a; d) and (d; f)to I(merge).Is3 [I0: This interse
tion falls into the if
onditions on line 12 and 16, and add (a; b) and (b; f)to I(merge).Is4 [I0: This interse
tion falls into the if
onditions on line 13, 14 and 16, and add (a;
), (
; d)and (d; f) to I(merge).Is5 [I0: This interse
tion falls into the if
onditions on line 13 and 15, and add (a; e) and (e; f)to I(merge).E.g. the merging of Is and I(m) of �gure 4.1(a) is shown as I(merge) of �gure 4.1(a).
a b c d f h ie g

a b c

(b)

d e fg’

(a)

a’ e’b’ c’ d’ f’ h’ i’

IsI(m)I(merge)
Is1 Is2Is3 Is4 Is5I 0

Figure 4.1: (a) shows an example to visualize why intervals must be merged and not just union the two sets ofintervals.(b) Visualize �ve of the seven di�erent ways two intervals
an interse
t one another.26

Design / Data stru
tures4.1.2 UnionThe most basi
 operation of the CDD data stru
ture is the
reation of the CDD data stru
-ture. The basi
 operation used in
onstru
tion and in union is a fun
tion
alled makenode(t 2T ; [I1; T1℄ : : : [In; Tn℄) whi
h for a given type, and su

essor set either return an existing nodewhi
h hold the same properties, and if su
h node does not exist
reate and return a node withthe des
ribed properties. The operation is des
ribed by the algorithm in �gure 4.2. The opera-tion is important for keeping redu
edness of the
onstru
ted CDD.Note that the makenode relies on the redu
e method. The redu
e method is used to redu
e S,S being the su

essor set[I1; T1℄ : : : [In; Tn℄, e.g. it has maximum sharing, no trivial edges andall intervals are maximal - that is redu
e ensures that S is a redu
ed CDD, a

ording to thede�nition of redu
edness in se
tion 3.1.11:CDD_Node makenode(t 2 T ; [I1; T1℄ : : : [In; Tn℄)2:begin3: // Denote [I1; T1℄ : : : [In; Tn℄ by S, the su

essor (su

) of the input des
ription4: redu
e(S)5: if (9n 2 V jtype(n) = t ^ su

(n) = S) return n6: else V := V [fng // where n is a new node7: type := type [fn 7! tg;8: su

 = su

 [fn 7! Sg9: return n10:end Figure 4.2: Algorithm for the makenode operation.The algorithm for union is depi
ted in �gure 4.3.1:CDD_Node union(ns 2 Ns;m 2 N)2:begin3: if ns = true _m = true then return true4: else if m = false then return ns5: else if type(ns) = type(m) then6: I(new) = merge_intervals(ns;m) // new is a new CDD node7: return makenode(type(m); f(I;m00) j8: I 2 I(new)9: I \ Is = ;) m00 =
hild(m; I 0) j I 0 2 I(m) ^ I � I 010: I \ Is 6= ;) m00 = union(
hild(ns);
hild(m; I 0)) j I 0 2 I(m) ^ I � I 0g11: else if type(ns) � type(m) then (a; b) = Is12: return makenode(type(ns); f((�1; a0);m); (Is; union(
hild(ns);m)); ((b0;1);m)g13: else if type(m) � type(ns) then14: return makenode(type(m); f(Ii; union(ns;m0))jm Ii��! m0g)15: endif16:end Figure 4.3: Algorithm for the union operation.
27

4.1 Non Distributed AlgorithmsLine 3-4 handles the trivial
ases where either of the CDD/S-CDD
onsists only of the true orfalse node.Line 5-10 handles the
ase where two nodes of the same type has to be unioned, this is doneby merging their intervals. An example is given in �gure 4.4.[Line 6℄ merge the interval partition of the CDD node, and the interval of the S-CDDnode, as des
ribed in the previous se
tion.[Line 7℄ makes a
all to makenode, with an request to make a new CDD node, withthe interval partition returned in line 6.[Line 8℄ Iterates over the interval in the interval partition I(new).[Line 9℄ If I interse
ted with Is is the empty set, then the
hild of the interval I isun
hanged.[Line 10℄ If I does interse
t with Is, then the
hild of the interval I is the union of theprior node referred by I 0 unioned with the
hild of the S-CDD node.Line 11-12 handles the
ase where the type of the S-CDD is smaller then the type of the CDD.This is handles by
reating a new CDD node with the same type is the S-CDD with threeintervals. One going from �1 to a0 whi
h must refer to the CDD node given as argument.One su

essor with the same interval as the S-CDD referring to the union of the
hild of theS-CDD and the CDD nodes given as argument. The last su

essor being (b0;1) referringto the CDD nodes given as argument. a0 denotes the opposite bound than a, that is if a is[m, then a0 denotes m[, the same is the
ase for b0, whi
h is opposite to b. An example isgiven in �gure 4.5.Line 13-14 Handles the
ase where the type of the CDD is smaller than the type of the S-CDD.This is handles by substituting all the
hildren of the CDD node with the union of the
hildand the
hild of the S-CDD node. An example is given in �gure 4.6.mm01 m02 m03 m0n
m0nm01 m03m02 [n0sm [�;1[℄15; 20℄[10; 15℄℄5� 10[℄�1; 5℄

℄�1; 5℄ ℄5� 10[[10; 20℄ [�;1[[nsn0s ℄5;15℄
m03 [n0s+

Figure 4.4: Show how union is performed on two nodes having the same type. The nodes to be unioned is marked,as well as the
reated node.The way the CDD data stru
ture is build bottom up on a single pro
essor ar
hite
ture, usingthe makenode=redu
e , ensures that the CDD is always redu
ed. This
an only be done on asingle pro
essor ar
hite
ture as a single
all sta
k exist here. When using distributed
omputingseveral
all sta
k exists one on ea
h
omputer node, and other a
tions has to be issued to ensureredu
edness. We des
ribe these a
tion later, when the distribution s
heme is des
ribed.28

Design / Data stru
tures
parent(m)

m
parent(ns)nsn0parent(m)

m m [n0s
[0;30℄

[0; 30℄℄ �1; 0[℄30;1[
[
+

Figure 4.5: Show how union is performed when the type of the S-CDD is smaller then the type of the CDD. Thenodes to be unioned is marked, as well as the
reated node.
$parent(m)$

$parent(m)$

$parent(n_s)$mm01 m02 m03 m0n℄ �1; 5℄ ℄5 � 10[[10; 20℄ [�;1[[ns+m℄5 � 10[℄�1; 5℄ [�;1[m02 [ns m03 [nsm01 [ns m0n [ns[10; 20℄Figure 4.6: Show how union is performed when the type of the CDD is smaller then the type of the S-CDD. Thenodes to be unioned is marked, as well as the
reated node.
29

4.1 Non Distributed AlgorithmsHash TableThe makenode() fun
tion whi
h has to sear
h weather an existing node with the same type andsu

essors already exists before
reating a new one, for this purpose a hash table is build so theexpression (9n 2 V jtype(n) = t ^ su

(n) = S),
an be performed in O(1) time. The hash tableis build so that the hash fun
tion a

epts a type and a list of interval/su

essors, and return alist of nodes in V satisfying that hash fun
tion.4.1.3 In
lusion TestThe next operation we des
ribe is the in
lusion test.bool in
lusion(passed : CDD_Node
he
k : S � CDD_Node)1: if passed = true return true2: if passed = false return false3: if type(passed) � type(
he
k) return Vfin
lution(Ti;
he
k)jpassed Ii��! Tig4: if type(
he
k) � type(passed) return in
lusion(passed;
hild(
he
k))5: if type(passed) = type(
he
k) return6: V fin
lusion(passed0;
hild (
he
k))j7: 9passed0 2 N ^ 9Ipassed 2 I:passed Ipassed������! passed0: Ipassed \ I
he
k 6= ;gend Figure 4.7: Algorithm for the in
lusion operation.This algorithm shown in �gure 4.7, works by simulating the
he
k S-CDD \ CDD = S-CDD,it is not intended to
al
ulate the a
tual output of this interse
tion, this would be of no use asthere are no normal forms for CDD's. Instead we simulate all tra
es from the handle that hasoverlapping intervals with the interval of the S-CDD, to see if we rea
h the true node in alltra
es.line 1,2: These lines
overs the trivial
ases where the Passed list is either the false node orthe true node.line 3: If the type of the S-CDD node is larger than type of the passed node, this means that theS-CDD impli
itly
ontains a node with same type as the passed node, and this node
oversR as its interval. Therefore all su

essors of the CDD node passed, need be examined.line 4: If the type of the
he
k node is smaller than the type of the passed node, then the CDDimpli
itly
ontains a node with the same type as
he
k forming an R
over, and
learlythe
he
k node is in
luded in this node. Therefore we
an traverse further down the S-CDD making a re
ursive
all with the passed and
hild(
he
k). Remember that the
hildfun
tion for the S-CDD returns the unique su

essor of the node given as argument.line 5,6,7: Here the types of the two nodes are identi
al, thus we re
ursively traverse the edgeswhere there are overlapping intervals with the interval from the S-CDD I
he
k, to see if theentire interval I
he
k is
overed, that is leading to the true node.30

Design / Data stru
tures4.2 Distributing the Data Stru
tureIn this se
tion we des
ribe how we distribute the CDD data stru
ture. Our primary goal isto allow Uppaal to verify larger models, by distributing the CDD data stru
ture. Another lesssigni�
ant goal is to minimize the
ommuni
ation overhead to a minimum. As des
ribed inthe purpose, the purpose of this proje
t is two fold. First we wish to investigate how mu
hmemory
an be saved by allowing sharing between all dis
rete states, and se
ondly how large isthe time/
ommuni
ation overhead introdu
ed. Before introdu
ing the distributed algorithms we
onsider what platform we aim our distribution at.4.2.1 Distribution PlatformWe
onsider two main targets for distribution, either distributed shared memory or messagepassing. In message passing the
ommuni
ation between
omputer nodes is via messages ex-pli
itly send to a spe
i�
 node, a well known standard MPI de�nes syntax and semanti
s forthe di�erent
alls, thus libraries exits for varying ar
hite
tures. In distributed shared memorythe entire memory area is transparently a

essible by all pro
esses as it where lo
al memory.Shared memory libraries in
lude Parallel Virtual Ma
hine and IVY among others. We need tosyn
hronize the union and in
lusion operations, as we
annot allow an in
lusion operation to�overtake� a union operation, as it might see the �rst part of the union but not the last whi
hmight lead to in
onsisten
y, if the in
lusion test tries to
all a node whi
h is not
onstru
ted yet,as it will be
onstru
ted by the union it just �overtook�. Thus we need to either syn
hronize onsome level, either being ea
h node or possible at ea
h type level. This a
tually means that wesyn
hronize the entire stru
ture, by introdu
ing a large pipeline on all the
omputer nodes. Ea
h
omputer node must either perform in
lusion/union operation or explore states in Uppaal. We
an
hoose to either make this syn
hronization expli
itly with mutex lo
ks using the distributedshared memory model, or we
an do this impli
itly by using message passing as MPI guaranteesmessage ordering. We have
hosen the later for several reasons: First e�
ien
y, as we expe
t itto be more e�
ient to perform the pipeline impli
itly than expli
itly. Se
ondly the existing dis-tributed version of Uppaal uses MPI thus minimizing the hardware requirements of the
urrentUppaal users. There are of
ourse several advantages of using shared memory, one of them beingthat it is almost transparent to the programmer, thus easing the programming, but we
onsiderthe previous mentioned arguments to out weight these advantages.4.2.2 Distributing Among NodesThe idea for distributing the CDD data stru
ture is by distributing the CDD nodes among the
omputer nodes and letting them
ommuni
ate whenever an operation (in
lusion test/ union)is to be performed.The �rst issue to
onsider is how to distribute the CDD nodes. As we are not aware of other workdistributing the CDD data stru
tures, or the very alike IDD (Interval de
ision Diagrams [14℄)data stru
tures, it was investigated what work that previously has been done for distributing theBDD data stru
ture, and the following distributing ideas were found:Horizontal The �rst approa
h en
ountered, were a horizontal distributing. In this approa
hall CDD nodes with the same type are guaranteed to stay at the same ma
hine node. The31

4.2 Distributing the Data Stru
turepartitioning is then horizontal as the name indi
ates. For an illustration of this idea pleaserefer to �gure: 4.8(a)Verti
al This approa
h distributes the CDD verti
ally, by keeping a number of handles on ea
h
omputer node, in the same way as the distributed version of Uppaal. Sharing between alllo
ations be
omes di�
ult, as every time we
reate a new CDD node all other
omputernodes has to be asked whether they already has su
h a node. In
lusion/union be
omesdi�
ult be
ause a tra
e from the handle to the true node may jump from
omputer nodeto
omputer node as many times as there are CDD nodes in this tra
e, whi
h may beexponential to the number of types. Figure 4.8(d) shows the idea of this approa
h.Groups Another approa
h is to partitioning the CDD arbitrary, both horizontal and verti
ally.But as
an be seen from �gure 4.8(b), this may lead to
ommuni
ation between verti
allydistributed CDD nodes. As were the
ase for the verti
al distribution approa
h.Distributed The last idea is borrowed from [12℄. This approa
h takes advantage from the fa
tthat the variable ordering of the types is very important for how mu
h sharing that
anbe a

omplished. The idea is that ea
h node hold a CDD, ea
h with di�erent variableorderings, then whenever an operation should be
arried out, the explored Zone is sendto all
omputer nodes. During the union operation the
omputer node that a

omplishmaximal sharing (need fewest new nodes to represent the new federation) stores the newzone, and all other nodes dis
harge the new zone.

New state

Node IVNode IIINode INode II
Node IV
Node IINode I
Node III

(d)

Node III

(
)

Node I

CDD

Node II
(b)

(a)Node IVNode III
Node I Node II

Figure 4.8: Di�erent approa
hes for distributing the CDD nodes among several distributed
omputer nodes. (a)show a horizontal representation, (b) show an approa
h based on groupings, (
) shows an approa
h based onseveral distributed CDD's, and (d) shows the verti
al distribution approa
hThe following des
ribes the advantages and disadvantages of the listed possibilities of distributingthe CDD data stru
ture.Horizontal Using the approa
h of horizontal distribution, the number of messages for bothoperation (in
lusion test and union) is the number of nodes parti
ipating in the operationex
ept one. Besides that the partitioning of CDD nodes among
omputer nodes is simple,and a simple interfa
e may be kept. 32

Design / Data stru
turesGroups Unlike the approa
h of horizontal distribution, the approa
h using groups does not havea known number of messages for ea
h operation. If the partitioning is good, and the rightoperation is performed the number of messages is less than for the horizontal approa
h, butif unlu
ky the number of messages might in
rease exponential. Although the approa
h hassome advantages over the horizontal approa
h su
h as: The approa
h might be easier toapply to a distributed shared memory environment, as the node
reating/modifying a node
reates the nodes lo
ally. Also the approa
h might result in a better memory distribution,as any number of CDD nodes might be moved from one
omputer node to another - therebyreleasing a
omputer node with less memory. Using the horizontal approa
h, only one layer(all nodes with the same type) may be transfered at runtime.Verti
al This approa
h su�ers from the same as the previous approa
h, though in an even moreextreme sense.Distributed The approa
h using several CDD's to store the Passed list, is somewhat alike theexisting distributed Uppaal version. But instead of storing the newly explored state lo-
ally, the state is stored at the node where it takes up least spa
e. [12℄ shows promisingresults using this approa
h for BDD's. Another advantage of this approa
h is the ease ofimplementation, as when a single ma
hine version has been implemented, the only a
tionto implement the distributed version, is to
ommuni
ate new zones and syn
hronize on thesize added.Disadvantages of this approa
h is that it
annot in general handle union of Zones (fed-erations). If the federation F1 = Z1 [Z2, where Z1 and Z2 are Zones lo
ated on twodi�erent
omputer nodes, then it is not possible to re
ognize that any subset of F1 hasbeen sear
hed. Another disadvantage is that mu
h time is wasted during the many unionson all nodes, most of whi
h is simply dis
harged.The approa
h
hosen for this proje
t is the horizontal distribution as it o�ers the best s
alabilityin that the number of messages needed has an upper limit.4.3 Communi
ationTo be able to perform the operations distributed,
omputer nodes next to one another needto hold some referen
e to the nodes on the next
omputer node. The following des
ribes this,where the upper
omputer node is
alled
lient and the lower ma
hine node is
alled server.Ea
h
omputer node holds an array, whi
h is indexed equally on ea
h
omputer node.Informations hold on the
lient side is:� Referen
e
ount: The
lient need to know how many referen
es goes into ea
h CDDnode at the server node, so that the array index
an be deleted when the referen
e
ountrea
hes zero. The referen
e
ount is in
reased whenever a CDD node points to the
or-responding CDD node at the server. The referen
e
ount only
hanges during redu
tionof the distributed data stru
ture, whi
h is done in another way than for the single nodeCDD data stru
ture. The me
hanism for redu
ing of the distributed CDD data stru
tureis des
ribed later in se
tion 4.4.3
33

4.4 OperationsOn the server side the array
ontains:� Pointer: The server side is an array of pointers to CDD's node whi
h the array entry
orresponds to.

Node 2

Node 1

Nodes with ordinary typeNodes with ordinary type
Nodes with ordinary typeNodes with ordinary type
Client side
ommi
ation arrayServer side
ommi
ation array

Figure 4.9: Show how the
ommuni
ation between ma
hine nodes is done.The
ommuni
ation layer,
an be seen as an extra layer of CDD nodes, ea
h entry in the
om-muni
ation layer is then seen as a CDD node, with a spe
ial type t
omm - not in the type setof the timed automata. The su

() fun
tion only holds a single outgoing interval namely theinterval ℄�1;1[, thereby it
an be seen that ea
h entry in the
ommuni
ation layer may haveseveral in going edges, but only a single outgoing edge. Thus ea
h node referen
ed on the next
omputer node
an be uniquely identi�ed on both
omputer nodes by the array index.4.4 OperationsIn the following subse
tions we des
ribe how the union and in
lusion test is performed in thedistributed CDD data stru
ture, using the
ommuni
ation interfa
e previously des
ribed.4.4.1 Distributed In
lusion TestThe algorithm for making the in
lusion test in the single pro
essor CDD is des
ribed in se
tion4.1.3. The operation of the distributed version is similar, ex
ept on one point:The single pro
essor version uses a depth �rst approa
h, if the same approa
h is used in thedistributed approa
h, many messages must be send between ma
hine nodes. Therefore theapproa
h taken is somewhat between depth �rst and breath �rst, at ea
h ma
hine node thedepth �rst approa
h is used until the
ommuni
ation layer is rea
hed. Information about whi
h34

Design / Data stru
turesnodes at the next
omputer node, that is part of the in
lusion test, is then transfered (unlessthe in
lusion test has already failed!), and only when the request fails on a node, or the requestrea
hes the bottom ma
hine node (holding the true CDD node) the �nal answer is found.That is, ea
h ma
hine node re
eives a number of referen
es for whi
h the in
lusion test is tobe performed. Then a re
ursive depth �rst algorithm is run on these nodes, ea
h time rea
hingthe
ommuni
ation layer appending the found entry in the
ommuni
ation array to a list. If atany instan
e the in
lusion test fails false is returned. If all in
oming requests su

eeds the list
ontaining array indexes is send to the next node. If all requests su

eeds at the bottom nodetrue is returned.The in
lusion test is always initiated on the
omputer node holding the handle.Let E denote the list of CDD nodes
ommuni
ated from the prior (
lient) layer, and let E0 bethe list that should be passed on to the next
omputer node. Then the algorithm in �gure 4.10illustrates how the distributed in
lusion test is performed:1:distributed_in
lusion(Ts : S � CDD ; E : [CDD ℄)2:begin3: E0 = ;4: forea
h Ti 2 E do5: begin6: if Ti 2 Communi
ationlayer then7: E0 = E0 [Ti8: b = re
ursive_in
lusion(Ti; Ts)9: if b = false return false10: end11: if not bottom layer pass E0 to next layer.12: else return true13:end1:bool re
ursive_in
lusion(Ti : CDD; Ts : S � CDD)2:begin3: if Ti = true return true4: if Ti = false return false5: if type(Ti) � type(Ts) return Vfre
ursive_in
lution(Tj ; Ts)jTi Ij��! Tjg6: if type(Ts) � type(Ti) return in
lusion(Ti; su

(Ts))7: if type(Ti) = type(Ts) then8: 8Tj 2 V:9Ij 2 IjTi Ij��! Tj ^ Ij \ Is 6= ;9: if Tj 2
ommuni
ation layer then10: E0 = E0 [Tj11: return true12: else return re
ursive_in
lusion(Tj ; su

(Ts))13:end Figure 4.10: Algorithm for distributed in
lusion test.The re
ursive part of the distributed in
lusion test as shown in the lower box of �gure 4.10 worksin the same depth �rst fashion as the non-distributed in
lusion test does, the only di�eren
e isthe lines 9-11, where it is tested whether the examined CDD node, is a
ommuni
ation node, andif this is the
ase, it is added to the in
lusion message and true is returned. True is returned35

4.4 Operationsas this node
annot yet de
ide whether the S-CDD is in
luded or not, and as only the bottomnode may give the �nal true reply this does not result in semanti
 faults.Whenever a distribution requests is send to a node, the distributed_in
lusion methods, whi
h isshown in the upper box of �gure 4.10. It re
eives a S-CDD, and a list of
ommuni
ations indi
es,it makes a re
ursive
all to re
ursi
e_in
lusion for ea
h element in the
ommuni
ation array, ifany of the re
ursive_in
lusion fails it immediately known that the S-CDD
annot be in
ludedin the CDD, and immediately returns false. If all re
ursive
alls su

eed, all nodes ex
ept thebottom node send the in
lusion request to the next node, and the bottom node simply returnstrue, as the S-CDD must be in
luded in the CDD.4.4.2 Distributed UnionIn this subse
tion we des
ribe how the distributed union operation is performed. The distributedunion operation is somewhat di�erent from the single pro
essor version. The single pro
essorversion uses the makenode operation whenever a new node is needed to ensure that the CDD isredu
ed during the union, furthermore the single pro
essor version is performed in a re
ursivebottom up manner, so redu
tion
an be performed at
reation time (redu
tion
an only be per-formed bottom up).The same me
hanism
an hardly be used in a distributed union, as the number of messages sendbetween two ma
hine nodes is not known and may be really large, as the re
ursion at least haveto traverse to the bottom true node, and during the re
ursion termination have to return tothe top node again. As shown in �gure 4.3 on page 27, the single pro
essor union operation
allis depth �rst - that is, if at the top node, a merge is made whi
h splits in to more re
ursive
alls, then the number of messages in
reases exponentially, therefore another distributed unionoperation is designed.In prin
iple the distributed union works the same, but when union is
alled with a type in the
ommuni
ation layer, an entry in the
ommuni
ation array is allo
ated, and a pointer to thisentry is returned. Furthermore this entry is added to a message, whi
h is send to the server node(lower ma
hine node), when the re
ursion on the
urrent node terminated for all tra
es. Whenthe next node re
eives this message it
ontinues the
onstru
tion, and gives request to the nextnode et
.During the
onstru
tion of CDD nodes at ea
h ma
hine node, the nodes added/modi�ed is savedin a spe
ial data stru
ture (
alled
all sta
k from this point), this
all sta
k is later used forredu
ing the CDD data stru
ture - the redu
tion operation is des
ribed in se
tion 4.4.3 later.One ex
eption to the previous rules, is the bottom ma
hine node (holding the true CDD node).The union on this
omputer node is performed like the single pro
essor union operation, andmakes redu
tion impli
itly as we build the CDD bottom up here.Communi
ationWhenever a ma
hine node has performed its union, it has to send a message to the lower levelma
hine node. This message
ontains the following information:ID Ea
h union request is given a unique id. The union operation uses this to uniquely identify36

Design / Data stru
tureswhi
h CDD-nodes has been modi�ed/added by this union operation - this information isused whenever a distributed redu
tion is performed.S-CDD Naturally the S-CDD whi
h should be unioned need to be transfered. But S-CDD nodeswith type smaller than the least type on the destination
omputer node
an be omittedArray Entries Finally the entries in the
ommuni
ation array whi
h need to be unioned withthe next node, is added to the message. The next node need this to union ea
h CDD-node
orresponding to the entries in the
ommuni
ation array with the S-CDD in the message.AlgorithmThe distributed algorithm for the union operation for a single node is shown in �gure 4.111:CDD_Node distributed_union(ns 2 Ns ;A � V)2:begin3: if ns = true then forea
hn 2 A do n = true4: else5: forea
h n 2 A j n 6= true6: if n = false then n = SCDDtoCDD(ns)7: else re
_distributed_union(ns; n)8: SEND COMM9: endif10:end11:CDD_Node re
_distributed_union(ns 2 Ns;m 2 N)12:begin13: if ns = true _m = true then return true14: else if m = false then return SCDDtoCDD(ns)15: else if type(m) = t
omm return new_entry(COMM) + add to
ommuni
ation layer.16: else if type(ns) = type(m) then17: I(new) = merge_intervals(ns;m)18: return makenode(type(m); f(I;m00) j19: I 2 I(new)20: I * Is) m00 =
hild(m; I 0) j I 0 2 I(m) ^ I � I 021: I � Is) m00 = union(
hild(ns);
hild(m; I 0)) j I 0 2 I(m) ^ I � I 0 g22: else if type(ns) � type(m) then23: return makenode(type(ns); f(Is; union(
hild(ns));m)g)24: else if type(m) � type(ns) then25: return makenode(type(m); f(Ii; union(ns;m0))jm Ii��! m0g)26: endif27:endFigure 4.11: Algorithm for the distributed_union operation. The SCDDtoCDD method
onverts the S-CDDgiven as argument to a CDD des
ribing the same Zone, and return a handle to this CDD.The distributed union operation di�ers from the non-distributed union, in that the distributedunion works in stages, one stage for ea
h node. That is the CDD is not build from bottom andup, but bottom up on ea
h node. This again leads to a non redu
ed CDD is
onstru
ted, so37

4.4 Operationsa spe
ial redu
tion operation must be applied to ar
hive sharing, and thereby redu
e memoryusage.A demonstration of the union algorithm is provided later, where the distributed redu
tion algo-rithm is also demonstrated.OptimizationsIn the following we des
ribe some optimizations to the union operation. Also a ne
essary oper-ation needed by the distributed redu
tion is des
ribed.Call sta
k: As redu
tion
an only be performed bottom up, due to the nature of the redu
ed-ness rules, the top node
annot redu
e before the se
ond node has
leaned up and so on.But the top node
annot redu
e if is does not hold information about whi
h node it hasmodi�ed/added during the union. Therefore ea
h node builds a
all sta
k during the
on-stru
tion of its CDD partition. The
all sta
k is not a
all sta
k in
ommon sense, it isonly a list of added/modi�ed nodes, whi
h is
he
ked during the redu
tion phase. The
allsta
k for a single union operation is kept in memory until a redu
tion phase rea
hes thenode, or until an expli
it requests
ome to delete it. Ea
h
all sta
k is asso
iated with aunique id.Temporary Hash Tables: Is temporarily in the sense that it works on a `per operation basis'.Consider performing union between the CDD shown in �gure 4.12(a) with the S-CDDshown in �gure 4.12(b). To perform X0 [Y0 the following operations must be performed:X11 [Y1 and X12 [Y1, and for these to be unioned the following two operations must beperformed: X22 [Y2 and X22 [Y2, if nothing else is known X22 and Y2 may be performedtwi
e, resulting in twi
e the work on the union of the nodes below, therefore whenever aunion is performed the nodes are stored in a hash table, then the se
ond time a union isneeded the already performed union may be reused, this may redu
e the work.

Y2Y1
Y0X0X11 X12X21 X22 [1; 10℄[1; 2[[2; 2℄ [1; 2℄[0; 1[[1; 10℄ [1; 10℄ [1; 5℄[1; 5℄(a) (b)Figure 4.12: Shown a �gure where the temporary hash table might save some time, by making an earlier redu
tion.

38

Design / Data stru
turesDistributed Hash Tables: Like the non distributed union operation the distributed unionoperation also depends on hash tables. Whereas the non distributed version uses hash tablesto
reate the CDD, the hash table is only used by the last
omputer node to
reate redu
edCDD nodes - but during the redu
tion operating the hash table also need to be used by theother
omputer nodes to ensure the redu
edness properties of CDD's, so two isomorphi
sub CDD's are not build. In the distributed CDD data stru
ture implementation, ea
h
omputer node holds a hash table
ontaining only the CDD nodes lo
ated on this parti
ular
omputer node. The entries in the hash table is the same as were the
ase for the nondistributed hash table, as des
ribed on page 30.This is only possible as the horizontal distribution approa
h were
hosen.
4.4.3 Distributed Redu
tionIn the non distributed union operation, the
all sta
k and the hash table ensures that the CDDdata stru
ture is always redu
ed during the
onstru
tion. This is not possible in the distributedunion operation, as the
omputer nodes does not have a
ommon
all sta
k, and
annot be
onstru
ted bottom up as is the
ase for the single pro
essor operation. Therefore the redu
tionme
hanism for the distributed union operation is a little di�erent. First the union operation isperformed as des
ribed in the previous se
tion; when the request rea
hes the last ma
hine node,and this node re
ognizes that a CDD node to
reate already exists, it reuses that node - just asin the single pro
essor
ase. Furthermore it stores information about the reused CDD node. Iftwo or more nodes in the
ommuni
ation layer be
omes identi
al, this information is send to theprior
omputer node, whi
h uses these informations to make a lo
al redu
tion, and if this nodere
ognizes that the prior
omputer node might make further redu
tion - redu
tion informationis send to the previous
omputer node et
.The des
ription of the distributed redu
tion is split into three subse
tions, �rst the me
hanismfor the bottom ma
hine node is des
ribed. Then redu
tion messages is des
ribed, and �nally theredu
tion operation for all
omputer nodes other than the bottom
omputer node is des
ribed.
Bottom Computer NodeTo des
ribe how the distributed redu
tion is performed a little syntax is introdu
ed. Let the
omputer nodes parti
ipating in the data stru
ture be denoted by M1;M2; : : : ;Mn, and let the�rst type
ontrolled by nodeMi be denoted by tMi . Finally let the
ommuni
ation array betweennode Mi and Mi+1 be denoted by n
ommMi .When the bottom ma
hine node Mn performs the union operation it does so for ea
h entry inthe array n
ommi as instru
ted in the message from node Mn�1. During these union operationsit
onsults a hash table of already
onstru
ted node (just as were the
ase in the single pro
essorunion), and whenever it dis
overers that two nodes with type tMn are equal e.g. (type(nj) =type(ni) = tMn)^(su

(ni) = su

(nj)), then the prior nodeMn�1 may redire
t all pointers fromni to nj, or the other way around. To do that a message
ontaining the information hni = njiis send to ma
hine node Mn�1. 39

4.4 OperationsCommuni
ationDuring the distributed redu
tion phase, messages is send from ma
hine nodeMi to ma
hine nodeMi�1, whenever node Mi �nds two or more nodes in
ommuni
ation layer that are equal. Themessage send holds the following information:ID: First an ID is added to the message, this ID is equal to the ID of the union operationthat made the bottom node realize that two nodes in
ommuni
ation layer n
ommMi�1 wereequal. This ID is used to a

ess the
all sta
k
reated during the union with id: ID, forfurther redu
tion.Mat
hing nodes: Besides the ID information of whi
h CDD nodes are equal is send to theprior node.Lo
al Redu
tionLet the
all sta
k of a
omputer node be denoted by: CS = fn
s1 ; n
s2 ; : : : ; n
skg � V . Thelo
al redu
tion algorithm for a
omputer node Mi, Mi not being the bottom
omputer node - isshown in �gure 4.13, with `
s' being a
all sta
k and `eq' being a message
ontaining informationof nodes that are equal, and thus used for further
leanup:1:void distributed_redu
tion(
s 2 CS ; eq 2 EQ)2:begin3: newEQ = ; // Message to send to Mi�14: forea
h n 2
s do5: if 9(n I��! m) 2 su

(n)where (nj ;m) 2 eq then6: su

(n) = (su

(n) � fn I��! mg) [fn I��! njg7: V = V �m8: if 9n0 2 V j type(n0) = type(n) ^ su

(n0) = su

(n) ^ n 6= n09: then eq = eq [hn0; ni10: if type(n) = t
ommi then11: newEQ = newEQ [hnp; ni j12: type(n) = type(np) ^ su

(np) = nj13: if newEQ 6= ; then14: send newEQ to Mi�115:end Figure 4.13: Algorithm for distributed redu
tion.The forea
h loop ranging from line 4 to line 12, iterates over all CDD nodes in the
all sta
k,build during the union operation with the same id, as this redu
tion operation. During thisiteration it is
he
ked whether any of the nodes
reated during the union points to another node
reated during the union, whi
h has a semanti
 equal node. Information of su
h two semanti
alequal nodes is given in the `eq ' set.Line 5
he
ks whether the
urrent
all sta
k node n, has a pointer pointing to the `m' node in aelement of the `eq ' set. If it has this pointer is redire
ted to the semanti
 equivalent CDD nodewhi
h in the pseudo
ode is denoted by `nj', this is done in line 6. Line 7 removes the node40

Design / Data stru
turesm from the set of CDD nodes V . If the temporarily hash table, were not implemented, it isguaranteed that the CDD node `m' if only referen
ed to by `n', but when the temporary hashtable is used several nodes from the
all sta
k
an referen
e a single node, but this problem ishandled by the referen
e
ount of the node `m'.To see an example on the fun
tionality, please refer to �gure: 4.14, where the set h2;1i is in the`eq ' set. Then the pointer from node X2 is redire
ted from 2 to 1, and as no further CDD nodesreferen
e 2 this node
an be deleted.If the
all sta
k node `n' has been
hanged by the previous lines, another node existing in theCDD `n0 2 V ' might be
ome synta
ti
 equivalent with n, if this is the
ase, the set hn0; ni isadded to the `eq ' set, so that the redu
tion operation on other
omputer nodes, will see that `n0'is equivalent with `n', and
hange it's pointer(s) from `n' to `n0', and delete `n'. This is handledby line 8 through 9. To see and example on this please refer to �gure 4.15, where X2 has justbeen made to point to 1, and has the same interval as node X1, this makes CDD node X1, andX2 synta
ti
 equivalent, and hX1;X2i is added to `eq '. When the forea
h iteration rea
hedCDD node Z2, it dis
overs that X1 is equivalent with X2, and redire
ts it's pointer from X2 toX1, and delete node X2.To ensure that all nodes is removed it is important to keep the nodes in the
all sta
k sorted,so that the nodes with the higher types, is run through the iteration before nodes with smallertypes (nodes with high types, is referen
ed by nodes with smaller types). And redu
tion
anonly be performed bottom-up.Line 10 through 12, handles the
ase when the lo
al redu
tion re
ognizes that two nodes with the�rst type handled by
omputer node Mi, then
omputer node Mi�1 might use this informationto make further redu
tion. To see an example on this, please refer to �gure 4.14, where the lower
omputer node has re
ognized that node Y1 and Y2 is equivalent, and adds h2;1i to newEQ,whi
h is
onsequently sent to the upper node. Note that in the �gure, the referen
e from 2 isredire
ted to point to Y1, to ensure that in
lusion/union requests made before the lo
al redu
tionhas run in the prior node, still su

eed (su
h request might still
ontain the
ommuni
ation node2).Finally line 13 and 14 sends newEQ to the previous node, to initiate a lo
al redu
tion there.This is what is impli
itly done between the (a) and the (b) part of �gure 4.14.
Layer

X11 2 3 4 Communi
ation 1 2 3 4Y1 (b)(a) Y2Y1
X1 X2 X2

Figure 4.14: Redu
tion: If two subtrees is equal one may be deleted and the other one used instead. Figure (a)show the situation before the redu
tion request is send to the upper node. Node Y1 and Y2 has just re
ognizedto be synta
ti
 equal by the lower node. Figure (b) show the situation after the information 1
omm = 2
omm hasbeen send to the upper node, and this node has made a redu
tion.
41

4.4 Operations
Layer

4

Z1 Z2 Z1 Z2X2X1 1 2 3 4 Communi
ation 1 2 3Y1Y1 (b)(a)
I1 I1 I1X1

Figure 4.15: Redu
tion: The redu
tion from �gure 4.14 lead to X1 and X2 be
ame synta
ti
 equivalent (a), andfurther redu
tion made possible (b)ExampleAn example demonstrating the fun
tionality of the union operation using
all sta
k and tem-porarily hash table. And the fun
tionality of the redu
tion operation is given in appendix A4.4.4 Ba
ktra
e AlgorithmIn this se
tion we des
ribe the ba
ktra
e algorithm. The ba
ktra
e algorithm is used when thein
lusion test fails, and before the union operation is started. The idea of the ba
ktra
e algorithmis to �nd a subpart of the CDD from the bottom element, the true node, that
overs exa
tlythe same Zone as the
orresponding nodes in the S-CDD that failed the in
lusion test (see �gure4.16). The main purpose of the ba
ktra
e algorithm is optimization of memory usage during theunion operations, as we expe
t the ba
ktra
e algorithm to minimize the overall runtime sta
k,and thus to minimize the time spend in the redu
tion phase. The CDD node found by theba
ktra
e operation may only be used when unioned with the false node.The ba
ktra
e algorithm works as follows:1:CDD_node Ba
ktra
e(ns 2 Ns; n 2 V)2:begin3: if type(n) = tserver_
omm then send Ba
ktra
e request to Mi�14: if 9n0 2 V j type(n0) = type(ns)^5: 8(I;m) 2 su

(n0)j(I = I(ns) ^m = n) _ (m = false) then6: return Ba
ktra
e(parent(ns);n 0)7: else return n8:endThe algorithm works as follows:Overall: The algorithm is initially
alled with the true node and the S-CDD node with thelargest type, that is, the S-CDD node referring the true node.42

Design / Data stru
tures

truetrue
[1; 5℄[5; 10℄[1; 5℄[5; 10℄(a) (b)Figure 4.16: Example on the ba
ktra
e algorithm. The ba
ktra
e algorithm is run on the CDD (a), with theS-CDD (b) as argument. And the algorithm should return the marked path.The idea is to traverse the CDD ba
kwards, �nding a single stringed subparts of the CDDthat
overs the exa
t same part of the Zone that the S-CDD
overs. When this point isfound the union be
omes easier as we
an atta
h to this node when rea
hing a node withthe same type in the S-CDD, is this S-CDD node should be unioned with the false node.line 3: Line 3
he
ks whether a tra
e has been found up to the
ommuni
ation array, if thatis the
ase the ba
ktra
e request must be send to the previous node, to
ontinue there.With the message the
ommuni
ation entry id is send, so that the ba
ktra
e operation
an
ontinue there starting at this node.line 4-5: The if
ondition of line 4 and 5,
he
ks whether there exists a node in the existingCDD, whi
h has exa
tly one interval, ranging over the same interval, and leading to aCDD node whi
h des
ribes the same sub zone as the
hild to the S-CDD node given. Ifthat is the
ase, the CDD node `n0' des
ribes the same zone as the S-CDD node ns, andthe re
ursion
ontinues to see whether su
h a tra
e also exists for the parent to ns, thisre
ursion is
alled in line 6.line 7: If su
h a node did not exist, the longest ba
ktra
e for the S-CDD, is the CDD node,whi
h this re
ursion were
alled with (n), and this node is returned.4.5 Node RepresentationIn this se
tion we give an overview of the node representation in the CDD data stru
ture. We
onsider the internal representation of nodes, as well as how to store nodes. First we
onsiderhow to store nodes, and after this the internal representation is
overed.Memory ManagementThe storage of the CDD nodes
an be seen as simple memory management, as we have to allo
atenodes (
reating nodes) and deallo
ate nodes (when
hanging nodes). The memory managementmust support a minimum of memory usage overhead, that is memory used only for memory43

4.5 Node Representationmanagement purposes. It should also favor e�
ien
y of the implementation, and if possiblesupport data lo
ality to optimize
a
he a

esses, as it has been done in [13℄.Di�erent solution to store nodes is stated and dis
ussed in the following:Segregated Keep an array of nodes for ea
h node size.Standard Allo
ate ea
h node separately using mallo
.Lo
ality Make spe
ial memory management to enhan
e data lo
ality.Segregated: A CDD
onsists of inner nodes of variable size, as there
an be an arbitrary �nitenumber of su

essors to a node. This
ompli
ates the storage of these nodes, as we
annotuse an array as nodes di�er in size. Nodes having the same size
ould be kept togetherusing a segregated memory allo
ation approa
h, by keeping a free list for ea
h node size -see [7℄ or [15℄[pp.36℄ for details. This might a�e
t data lo
ality if nodes are a

essed usingbreadth �rst sear
h patterns as this a

esses nodes having the same type
onse
utively,but they might di�er in size, leading to di�erent lo
ality for storage. A

essing nodes ina depth �rst manner, makes it almost impossible to enhan
e data lo
ality as we
annotsupport data lo
ality for all paths in the CDD. Determine the ratio at whi
h they ea
h areused is not tra
kable as the Passed list is a dynami
 data stru
ture, new information isadded all the time.Standard: Nodes
ould also be individually allo
ated using mallo
, but the algorithms laterin this
hapter shows that we will en
ounter a high rate of
hanging CDD nodes, thusrequiring to reallo
ate the node when
hanging them. The relative high
ost of
allingmallo
, as it might involves a kernel trap, together with the high rate of
hanging nodesleads to a high
ost for this approa
h, memory wise the
ost is also high due to the memoryused for headers internally in the memory management.Lo
ality: The algorithms des
ribed in se
tion 4.1 are depth �rst on ea
h
omputer node. Thusmaking a spe
ial memory management to enhan
e data lo
ality be
omes di�
ult, as manytra
es share some nodes in the the CDD data stru
ture. Whi
h of these tra
es that shouldbe given pre
eden
e to others tra
es, is di�
ult as the data stru
ture
hanges all the timeas new zones are added.We
on
lude that the best memory management method for our purpose is the segregated ap-proa
h. This is based on the great number of allo
ation/deallo
ations needed, together with thatthe number of di�erent node sizes is expe
ted to be limited. One problem with this memorymanagement, is that ea
h blo
k need some header information about the nodes in this blo
k.These information is: size and free_elements, where free_elements should be a me
hanism for�nding free elements in a
heap way. This overhead introdu
ed by the header argue for largeblo
ks (thus minimizing the relative overhead), but the fa
t that nodes of size `x'
annot beallo
ated in blo
ks with size `y', where x 6= y, argue for smaller blo
ks, the dis
ussion of blo
ksizes is taken up later, as the size of the blo
ks is given another purpose.The free_elements item in the header, should provide a
heap way of �nding an unused element.For this purpose a linked list approa
h is
hosen. That is all free elements is put into a linkedlist of free elements, where the �rst 32 bits of the element is used to store a pointer (whi
h, whenallo
ated is used for real data), this way no memory is lost to hold this free list, only one headerfor the free list need to be stored in the header.44

Design / Data stru
turesNow ba
k to the dis
ussion for the blo
k size. We have
hosen to extend the segregated memorymanagement with an idea from the LISP interpreters [2℄, where data of the same size is storedin arrays that is aligned on a spe
i�
 memory boundary. If we align ea
h array at a 64k-byteboundary, meaning we allo
ate arrays of size 64k-bytes, then we
an a

ess these blo
ks with 16bit pointers(0xXXXX0000), as the 16 least signi�
ant bits always will be zero.As all elements we allo
ate is at least 13 bytes (explained later), a maximum of 5041 elements
an be allo
ated in a single blo
k. For addressing one of these 5041 elements we need only 13bits, and 16 bits for a

essing the blo
k, leaving 3 bits in a 32 bit referen
e to other purposes.Using su
h bits for other purposes than addressing is
alled a tagged ar
hite
ture.Examples of tagged ar
hite
tures are the LISP ma
hine that uses tag bits for runtime determi-nation of data types.This leads to how we internally represent the nodes.4.5.1 Compa
t RepresentationIn this se
tion we des
ribe the possibilities of the internal representation of the CDD node. Inthe following we give the representation of a single CDD node.Ea
h node holds a pointer, whi
h has been added for time optimization purposes.This optimization is used for redu
tion. Whenever a new node is
reated it must be
he
kedwhether a CDD node already exists in the CDD data stru
ture whi
h has the same synta
ti
des
ription. To do that all nodes has to be examined, to avoid that all nodes in the CDD datastru
ture need to be examined, all nodes is put in to a hash data stru
ture. The pointer des
ribedis the used as a linked list in ea
h hash bu
ket, this is an optimization (both runtime and memorywise) to hold an external over�ow bu
ket. This pointer (the next-hash pointer) is not shown inthe �gures of CDD nodes, as it does not hold any semanti
 information.Minimum InformationTo minimize the memory usage when making the CDD data stru
ture, we need to �nd theminimum required information and store this as
ompa
t as possible. Obviously we need tostore the type of the CDD node and the referen
e
ount, designating the number of parentnodes, together with all the intervals and referen
es to other CDD nodes. Ea
h interval needsa pointer to the
hild node and the bounds on the interval, but we need not represent edgesleading to the false node. Also �1 and 1 does not need expli
it representation, as they
anbe represented impli
itly, as shown later.The intervals is bounded by integers of varying values, thus we try to represent them with as fewbits as possible, e.g. values between �128 to 127 should only be represented by one byte and soon, the most signi�
ant bit being the sign bit.As des
ribed earlier the only operators we need to represent is �, as we
an simulate all otherswith this, see se
tion 1.1.1. To summarize the basi
 idea is �rst to simulate >;� with <;� bynegation, we then multiply all bounds by 2 and simulate < with � by subtra
ting 1 from thestri
t bounds.To avoid representing the false edges we design a data stru
ture that
an
ontain the node type,referen
e
ount, intervals and pointers jointly.A node
onsists of �rst a �Node Header� followed by an arbitrary
ombination of a �Interval45

4.5 Node Representationpointer� and an �Interval integer� see �gure 4.18. There
an be two patterns of the �Intervalpointers� and �Interval integers�. A pointer is followed by either one or two integers, that againare followed by a pointer, see example in �gure 4.17:(a) represents the intervals ℄�1; 2[;ptr1, [2; 3[; false, [3; 12℄; ptr2, and ℄12;1[; false.(b) represents the intervals ℄�1; 1[; false, [1; 2[; ptr3, [2; 3[; ptr4, and [3;1[; false.
2 ptr3 5 7ptr4 (b)Nodeheader 5 24ptr26ptr1 (a)Nodeheader

Figure 4.17: Two examples of CDD nodes and their interval representationThe �rst element is a pointer if the interval starts at �1 otherwise an integer, likewise if thelast entry is a pointer the interval ends at 1.There two integers x, y following one another if the interval between x and y leads to false.Bits usedName: 20 9Node Header: 12 �agentryFirst
(e)

(
) (d)(b)(a)
(g) (h)(f)2:

3:
1:

Interval integerName:Bits used 8/16/24/32Integer(i)
Interval pointerName:Bits used 16 13 Size2 1�agtypeNext�agBlo
klistpointer Indexinblo
k

Size�agCountRefType

Figure 4.18: Three �gures representing the node layout, being the node header, node pointer and the node integer.The three di�erent items in 4.18 are des
ribed in detail below, we assume w.l.o.g that memorysegments are allo
ated on 64KB boundaries:Node Header: Represents the node type (a), referen
e
ount(b) and some �ags (
),(d). Thenode type (a) is represented by 20 bits meaning that we �only�
an distinguish 220 di�erenttype of nodes. This might prove to be a limitation for very large TA1 models, but it
aneasily be extended by adding more bits to represent the type. The referen
e
ount in (b)
an hold referen
es of up to 512 parent nodes, this again might prove insu�
ient, but againit
an easily be extended. The �ag in (
) designates the size of the �rst entry, if this is aninteger, otherwise these bits are unused. The �ag in (d) designates the type of the �rstentry in the interval, the type
an either be a pointer or an integer. If the �rst type isa pointer then the interval impli
itly starts at �1, and ends at the integer following thepointer.1Timed Automata 46

Design / Data stru
turesInterval Pointer: Represents the layout of the node referen
e, with the blo
k pointer(e), theindex bits(f) and two �ags (g),(h). The blo
k pointer is the bits used for a

essing theblo
k, as these are aligned at 64 K-bytes it is su�
ient to use 16 bits here. The indexbits(f) are used to address whi
h entry in the array we are a

essing, as the smallest blo
kwe store are :- A node header - 32 bits- One pointer, the interval impli
itly starting at �1 - 32 bits- An integer of size 8 bits being in the interval [�127; 128℄.This sums up to a minimum node size of 9 bytes, plus a pointer for a hash list whi
hadds 4 bytes for a total of 13 bytes.The size �ag (g)
onsists of two bits, that are used to designate the size of the next (possibletwo) integer(s). If the are more than one integer then they will need to be stored with thesize of the largest of them. The last �ag (h) designates whether the next two entries areboth integers or an integer and a new referen
e.Interval Integer: This is the interval integer, that
an be four di�erent sizes, 1-4 bytes (size-�ag00, 01, 10, 11).When performing the redu
tion, parent pointers would
ome in quite handy, but the memoryusage in ea
h node will in
rease dramati
ally as: The minimum node size was 13 bytes, addingone parent pointer at size 4 bytes, will in
rease the memory usage by 413 �100 � 31 %, this beingthe best
ase, as a node
an have an arbitrary number of parents. This problems grows whennodes has more than one parent, then a list of parents has to be stored. Thus we
onsider ita bad idea to store parent pointers, as the main purpose of this proje
t is to enhan
e memoryutilization to allow veri�
ation of larger models.4.5.2 Node RepresentationsAs it is expe
ted that
he
king the type-�ag and the size-�ag might take up some time, aswell as the
onverting between the di�erent size of integer representation. Three di�erent noderepresentations is implemented in this proje
t.Memory Representation 1 This is the same node representation as used in the
urrent Up-paal version using the CDD data stru
ture for its passed list. That is all integers isrepresented by 32-bits, and pointers to false is also represented, an example on su
h anode is given in �gure 4.19(a).Memory Representation 2 This node representation introdu
e the type-�ag, by not repre-senting pointers leading to false. But all integers is still represented by 32-bits. An exampleon this representation is given in �gure 4.19(b).Memory Representation 3 In the last node representation implemented, we use all memoryminimizing te
hniques. That is both the type-�ag as well as the size-�ag is used. Thismeans that pointers to false is not represented, and integers is represented by the leastnumber of bytes possible. An example on this representation is given in �gure 4.19(
).Implementing all three node representations also allow us to
he
k how mu
h memory is savedusing the alternative node representations. 47

4.5 Node Representation HashPointer
HashPointerHashPointerfalse falsePointer Pointer-20 19 560-20 Pointer 19 560 Pointerx-20 Pointer Pointer56019x2Headerx1HeaderxHeader (a) 36 bytes(b) 28 bytes(
) 21 bytesFigure 4.19: Show an example node in the three di�erent node representations implemented. `x�es in the �gureis the type-�ag, and small numbers in the header/pointers, is used to represent the size in bytes of the nextinteger(s). The node represented has the interval: ℄ �1;�10[; false, [�10; 9℄; Pointer1, ℄ � 10; 280[; false,and [280;1[; Pointer2. The sizes of the di�erent nodes, using the di�erent node representations is: MemoryRepresentation 1: 32 bytes, Memory Representation 2: 24 bytes, and Memory Representation 3: 17 bytes.4.5.3 SummaryTo summarize we implement three di�erent node representations, to see how mu
h memory
anbe saved using di�erent node representations, and also to see at what runtime prize this memoryoptimization
omes at.The distributed in
lusion and union operations were designed almost as the non-distributedversions. The only di�eren
e is that whereas the non-distributed operations run depth �rst, thedistributed operations run depth �rst on ea
h node, before sending the request to the next
om-puter node. Two additional operations were des
ribed: ba
ktra
e and redu
tion. The ba
ktra
e
ould also be used in a non-distributed environment, its purpose were to redu
e the amount ofwork needed by the union operations, at it may use the found tra
e, whenever a union shouldbe performed with the false node. The last operation des
ribed were the redu
tion operation,whi
h has to be implemented as the distributed union operation
annot redu
e the CDD datastru
ture as it does not work in a global depth �rst fashion.

48

Chapter 5Semanti
sIn this
hapter we present the semanti
s of sele
ted operations on the CDD data stru
ture. Firstwe provide a proof that
hanging the data stru
ture into a distributed one does not
hangethe semanti
s of the CDD. Se
ondly the semanti
s of
ommon operations on our two main datastru
tures are made, �nally semanti
s proofs for the algorithms des
ribed in the previous
hapterare
ondu
ted.
5.1 Semanti
s of the DistributionThe distribution of the data stru
ture des
ribes the partitioning of the data stru
ture amongseveral
omputer nodes. This is done horizontally for reasons des
ribed earlier, and additionalnodes are added to the data stru
ture to provide a
ommuni
ation layer between
omputernodes. These extra nodes
an be interpreted as CDD nodes with a spe
ial type (t
omm) withone outgoing edge not leading to the false node. This edge range over the interval `℄�1;1['.Thus we need to prove that the two CDD's in �gure 5.1 semanti
ally des
ribes the same area.

true
=

(b)
I2C

A1 AnI1 In: : :BCD(a)
I2trueIR�
over
IR�
overCommuni
ation layer

Communi
ation layer
AnA1 : : :I1 In

Figure 5.1: Figure (a) shows a distributed CDD with
ommuni
ation CDD nodes being node B and D, intervalIR�
over is an interval forming an R �
over. Figure (b) shows the equivalent CDD that des
ribes the samefederation as (a), as the redundant nodes B and D are omittedThe proof is simple as the redu
edness properties of the CDD data stru
ture already states thatnodes forming an R
over
an be omitted as they do not
ontribute with any restri
tions to thefederation. Thus we
an safely
on
lude that the two CDD's in �gure 5.1 semanti
ally des
ribesthe same federation. As this applies to all CDD's we
an w.l.o.g use the standard algorithmsemanti
s on the distributed CDD data stru
ture to prove soundness and
ompleteness of thealgorithms. This prove is extended when some semanti
 is de�ned for the CDD data stru
ture.

5.2 Data Stru
tures5.2 Data Stru
turesThe two main data stru
tures for whi
h we give semanti
s are the ordinary CDD data stru
tureand the S-CDD data stru
ture, where representing a Zone as the DBM's
an be mapped dire
tlyto S-CDD's.Semanti
s for CDD'sEa
h CDD node is a (n+1) tuple ht; [I1; T1℄ : : : [In; Tn℄i 2 N , where t 2 T , Ii 2 I, and Ti 2 N ,where p 2 f1 : : : ng. Besides these inner nodes two terminal nodes exists:� true 2 N� false 2 NThe �rst operation for whi
h a semanti
 is des
ribed is traversal through the data stru
ture givena
lo
k valuation v 2 V:� [[true; v℄℄ = true� [[false; v℄℄ = false� [[ht; [I1; T1℄ : : : [In; Tn℄i; v℄℄ = [[Ti; v℄℄, where v(t) 2 IiThe �rst item states that no matter whi
h valuation is given to the true node, the result is true.The se
ond item states that no matter whi
h valuation is given to the false node, the result isfalse. The third item states that for a general CDD node, the result of the valuation is theresult of the valuation of the
hild node Ti, where v(t) 2 Ii.The se
ond operation for whi
h semanti
s are des
ribed is what federation the CDD des
ribe:� [[true℄℄ = V� [[false℄℄ = ;� [[ht; [I1; T1℄ : : : [In; Tn℄i℄℄ = Sni=1fIit \ [[Ti℄℄g, where the notation Iit is based on the syntaxused in se
tion 3.4, and denotes the interval Ii restri
ted in the dimension of t.The �rst item des
ribe that all valuations is a

epted by the true node. The se
ond itemdes
ribes that no valuations is a

epted by the false node. And �nally, the third item des
ribesthe set of valuations a

epted by a general CDD node. This is made from the union of all theset of valuations ea
h of it's su

essors a

ept, where the set of valuations the su

essor i a

eptis Ii \ [[Ti℄℄.Semanti
s for S-CDD'sEa
h S-CDD node is a 3-tuple ht; I; Tsi 2 Ns, where t 2 T , I 2 I, and Ts 2 Ns. Besides innernodes, a single terminal S-CDD node exist: 50

Semanti
s� true 2 NsThe �rst operation for whi
h a semanti
s is des
ribed is traversal through the data stru
turegiven a
lo
k valuation v 2 V:� [[true; v℄℄ = true� [[ht; I; Tsi℄℄ = v(t) 2 I ^ [[Ts; v℄℄The �rst item states that all valuations are a

epted by the true S-CDD node. The se
onditem states that a valuation is a

epted by a S-CDD node if the value of the valuation for thistype v(t) is in
luded in the interval for this node I, and if its single
hild node also a

epts thevaluation v.The se
ond operation for whi
h a semanti
s is des
ribed is whi
h federation an S-CDD des
ribes:� [[true℄℄ = V� [[ht; I; Tsi℄℄ = It \ [[Ts℄℄As where the
ase for the CDD, all valuations are a

epted by the true S-CDD node. The setof valuations a

epted by the general S-CDD node, are the interval leaving it interse
ted by thevaluations a

epted by it
hild.5.3 DistributionBa
k to the proof that the semanti
s for the single pro
essor CDD data stru
ture easily
an bemapped to the distributed version.To distribute the CDD data stru
ture additional
ommuni
ation layers were added. If su
h alayer is added between types ti and ti+1, then whenever a CDD node nsr
 with type ti or lesswants to refer to a node ndest with type ti+1 or higher, then this referen
e is made to point to a
ommuni
ation node n
omm, whi
h only has a single su

essor (℄�1;1[; ndest). In this se
tionwe show that the set of valuations des
ribed by node nsr
 is the same whether it refer ndestdire
tly, or indire
tly through n
omm.For the following proof nsr
 denotes a CDD node with type ti�1 with a single su

essor, withinterval I, leading dire
tly to ndest. And nsr
0 denotes the same node, only it su

essor pointsto n
omm, whi
h again refers to ndest. Referring to the syntax used in se
tion 3.4 on page 23, weneed to prove that the set of valuations des
ribed by nsr
 is equivalent with the set of valuationsdes
ribed by nsr
0, that is we need to prove that:[[nsr
℄℄ = [[nsr
0℄℄mI \ [[ndest℄℄ = I \ ℄�1;1[t
omm \ [[ndest℄℄ (5.1)As ea
h type
an be seen as a
oordinate in a multi dimensional spa
e, and the type t
omm isorthogonal to all other types, the interse
tion with ℄�1;1[t
omm is not a restri
tion to the setof valuations des
ribed by nsr
0, and naturally an interse
tion
annot extend the set of valuationsdes
ribed by nsr
0. 51

5.4 Operations5.4 OperationsThe operations that are performed on the used data stru
tures are in
lusion test, ba
ktra
e,redu
tion and union. The in
lusion test must
he
k whether a S-CDD is in
luded in a CDD.The union operation must perform union between a S-CDD and a CDD.The semanti
 proofs of the operations is based on set operations, that is, the set of valuationsdes
ribed by the CDD and S-CDD respe
tively. In the in
lusion test it is argued that for a S-CDDto be in
luded in a CDD, the interval of the CDD must be equal to or greater then the intervalof the S-CDD in all dimensions. That is for all types t, it must be true that: IS�CDDt � ICDDt ,where I(S)�CDDt denotes the interval in dimension t for the (S)-CDD.5.4.1 In
lusion TestThe semanti
 rules are1:I [[true � true℄℄ = trueII [[true � false℄℄ = falseIII [[ht; I; Tsi � false℄℄ = falseIV [[ht; I; Tsi � true℄℄ = trueV [[true � ht; [In; Tn℄ : : : [In; Tn℄i℄℄ = falseVI [[hts; I; Tsi � ht; [I1; T1℄ : : : [In; Tn℄i℄℄ = W8<: 1 : ts < t ^ [[Ts � ht; [I1; T1℄ : : : [In; Tn℄i℄℄2 : ts = t ^ Vf[[Ts � Tp℄℄ ; p 2 f1 : : : ng j I \ Ip 6= ;g3 : ts > t ^ Vf[[Ts � Tp℄℄ ; p 2 f1 : : : nggTo prove that this in
lusion test is
orre
t we prove that the semanti
 rules is sound and
omplete.First for the soundness, we prove that the set of valuations des
ribed by the S-CDD are in
ludedin the set of valuations des
ribed by the CDD:Rule I: From the previous stated semanti
s, this rule states that V � V whi
h is trivially true.Rule II: This rule states that the federation
overed by the true node of the S-CDD
overs V,whereas the federation
overed by the false node of the CDD
overs ;, and
learly V * ;,as V
annot be false, and thereby des
ribe ;.Rule III: The federation
overed by [[ht; I; Tsi℄℄
annot be empty (this would result in an emptyfederation, and thus not represented, due to the redu
tion rules of S-CDD's and CDD's),and
learly [[ht; I; Tsi℄℄ * ;.Rule IV: This rule is trivial, as any subset of V
learly is a subset of V.Rule V: The semanti
 rule for S-CDD's de�nes the true node to
over V, whereas the federation
overed by ht; [I1; T1℄ : : : [In; Tn℄i
annot
over V as it would violate the redu
edness rulesof the CDD data stru
ture, therefore the S-CDD
annot be in
luded in the CDD.1The rules are read as [[S � CDD � CDD℄℄. 52

Semanti
sRule VI: We
onsider the 3 sub
ases separately,1: If the type ts of the S-CDD is smaller than the type t of the CDD, it means thatthe CDD impli
itly
ontains a node with type ts that
overs R, and the argumentof Rule IV applies here. So for this type the S-CDD is in
luded in the CDD as the
orresponding type for the CDD is non existing thus forming an R-
over. So wetraverse further down the S-CDD to
he
k if the
hild node of the S-CDD is
overedby the CDD node ht; [I1; T1℄ : : : [In; Tn℄i.2: If the two types are identi
al, we use the semanti
 set des
ription for the S-CDD andCDD to prove the semanti
s for the in
lusion test :Showing S-CDD� CDD is equivalent to show that S-CDD\CDD = S-CDDFrom the semanti
 de�nition of whi
h Zone/federation the S-CDD and CDD des
ribesrespe
tively, we need to prove the following:(Is \ [[Ts℄℄) \ n[i=1fIit \ [[Ti℄℄g = Is \ [[Ts℄℄ (5.2)Whi
h
an be rewritten as:Is \ [[Ts℄℄ \ (I1t \ [[T1℄℄ [: : : [Int \ [[Tn℄℄) = Is \ [[Ts℄℄ (5.3)m(Is \ (I1t [: : : [Int)) \ ([[Ts℄℄ \ ([[T1℄℄ [: : : [[[Tn℄℄)) = Is \ [[Ts℄℄ (5.4)(5.5)The next step taken, is to remove all su

essors of the CDD node, whi
h intervalinterse
ted by Is equals ;, when removing the intervals, the
hild nodes referred bythese are also removed, as these only matter for the set of valuations des
ribed if theedge leading to it has a non empty interse
tion with Is.Is \ [p2f1:::ngfIpjIp \ Is 6= ;g \ [[Ts℄℄ \[p2f1:::ngf[[TpjIp \ Is 6= ;℄℄g = Is \ [[Ts℄℄ (5.6)From the synta
ti
 de�nition of the CDD, we know that the intervals of ea
h CDD-node must form an R-
over Sni=1fIig = R, so the following must hold:Is � [p2f1:::ngfIpjIp \ Is 6= ;g (5.7)So it is known that for eq. 5.6 to hold it is su�
ient for the following to hold:[[Ts℄℄ \ [p2f1:::ngf[[Tp℄℄ j Ip \ Is 6= ;g = [[Ts℄℄ (5.8)That is the question is ba
k to:[[hts; Is; Tsi � ht2; [I1; T1℄ : : : [In; Tn℄i℄℄ =^ f[[Ts � Tp℄℄ ; p 2 f1 : : : ng j Is \ Ip 6= ;g (5.9)53

5.5 Union for ts = t2.whi
h were our semanti
 de�nition.3: If the type ts of the S-CDD is larger than the type t of the CDD, then the S-CDDimpli
itly
ontains a node with type t that
overs R. Therefore rule VI(2)
an bereused here, but now all su

essors of the CDD node need to be examined, as allintervals interse
ted by R 6= ;. To the semanti
 for this
ase is:[[hts; Is; Tsi � ht; [I1; T1℄ : : : [In; Tn℄i℄℄ = ^p2f1:::ngf[[Ts � Tp℄℄g; for ts > tCompleteness of the in
lusion testFor semanti
 rules to be
omplete we need to prove that all synta
ti

orre
t inputs are
overedby some semanti
 rule.To do that we take the
ross produ
t between the synta
ti
 legal input from the S-CDD (2 pos-sible synta
ti
 inputs), and the CDD (3 synta
ti
 inputs), yielding that there should be 6 rulesto
over all possible inputs, see table below.S-CDDtruehts; I; Tsi � CDDfalsetrueht; [I1;T1℄ : : : [In;Tn℄i = Input: S-CDD CDD1 true true2 true false3 ht; I; Tsi true4 ht; I; Tsi false5 true ht; [I1; T1℄ : : : [In; Tn℄i6 ht; I; Tsi ht; [I1; T1℄ : : : [In; Tn℄iInput 1 through 5 is trivially
overed by rule 1 through 5 in the semanti
 de�nition of thein
lusion test.Input 6 is
overed by rule 6 in the semanti
 de�nition, but as the rule here is subdivided, we
onsider if the three sub rules together
overs all possible legal inputs. The sub rules
overs the
ases where: ts < t , ts = t and ts > tAs these three rules trivially
overs all possible situations of the types, we
on
lude that allpossible legal input to the in
lusion test is
overed by a
orresponding semanti
 rule yielding
ompleteness.5.5 UnionThe semanti
s for the union between a S-CDD and a CDD is as follows, the rules are read as[[S � CDD [CDD℄℄:Rule I: [[true [true℄℄ = V 54

Semanti
sRule II: [[true [false℄℄ = VRule III: [[hts; I; Tsi [true℄℄ = VRule IV: [[hts; I; Tsi [false℄℄ = [[hts; I; Tsi℄℄Rule V: [[true [ht; [I1; T1℄ : : : [In; Tn℄i℄℄ = VRule VI: [[hts; I; Tsi [ht; [I1; T1℄ : : : [In; Tn℄i℄℄ = [[hts; I; Tsi℄℄ [[[ht; [I1; T1℄ : : : [In; Tn℄i℄℄To prove soundness of the union operation we prove ea
h of the pre
eding rules:Rule I: If both the existing CDD a

epts all valuations, and a S-CDD that a

epts all valuationsis unioned,
learly all valuations is a

epted by this union. [[true [true℄℄ = [[true℄℄ [[[true℄℄ = V [V = VRule II: The same argumentation holds as for Rule I only, here the CDD
overs ;, but theS-CDD
overs all valuations, so
learly now all valuations is
overed. [[true [false℄℄ =[[true℄℄ [[[false℄℄ = V [; = VRule III: When a CDD a

epting everything is unioned with a S-CDD
overing the federationF1 is unioned, the result is a CDD a

epting. [[hts; I; Tsi [true℄℄ = [[hts; I; Tsi℄℄ [[[true℄℄ =[[hts; I; Tsi℄℄ [V = VRule IV: If an empty CDD, is unioned with a S-CDD a

epting some valuation, the result-ing CDD must also a

ept the same valuation, and nothing else. [[hts; I; Tsi [false℄℄ =[[hts; I; Tsi℄℄ [[[false℄℄ = [[hts; I; Tsi℄℄ [; = [[hts; I; Tsi℄℄Rule V: If an S-CDD a

epting all valuations is unioned with some CDD,the resulting CDDhave to a

ept everything. [[true[ht; [I1; T1℄ : : : [In; Tn℄i℄℄ = [[true℄℄[[[ht; [I1; T1℄ : : : [In; Tn℄i℄℄ =V [[[ht; [I1; T1℄ : : : [In; Tn℄i℄℄ = VRule VI: If a general S-CDD is unioned with a general CDD, the resulting CDD should a

eptthe union between the two CDD data stru
tures. [[hts; I; Tsi [ht; [I1; T1℄ : : : [In; Tn℄i℄℄ =[[hts; I; Tsi℄℄ [[[ht; [I1; T1℄ : : : [In; Tn℄i℄℄The
ompleteness of the union operation
an be shown in a similar way as the
ompletenessproof of the in
lusion test.5.6 Semanti
s of Ba
ktra
eIn this se
tion we provide some semanti
 proofs of the ba
ktra
e algorithm.To summarize how the ba
ktra
e algorithm works, we try re
ursively to �nd nodes that
oversexa
tly the same zone as the
orresponding sub S-CDD we union with, we do this bottom upstarting at the true node. The Algorithm for the ba
ktra
e algorithm is provided in se
tion 4.4.4on page 42To prove the soundness of the ba
ktra
e algorithm we need to prove two things:55

5.6 Semanti
s of Ba
ktra
e1: First we need to prove what kind of nodes
an be used for the ba
ktra
e algorithm, andthat reusing these nodes does not violate the semanti
s of the union, nor the redu
ednessproperties of the CDD data stru
ture. To prove this the following need to be proven.- Restri
ting to sear
h among nodes with only one
hild node is semanti
ally
orre
t.- That the found CDD nodes des
ribes the semanti
ally
orre
t valuation. That is thevaluation des
ribed by the sub S-CDD.- That the reuse of these nodes does not violate the redu
edness properties of the CDD,data stru
ture.2: That these found nodes
annot be altered due to other union operations.5.6.1 Reuse of nodesWe will prove that it is not allowed to reuse a CDD node if it has more than one
hild node notbeing the false node.
True
Y0Z0IY1True

Y0Z0True
Y0Z0 (b) (
)(a) IZ1 =SIY0 IZ0IZ0 IY1IZ0IY0 IZ1Figure 5.2: (a) is a CDD, (b) is a S-CDD and (
) is the union of (a) and (b), when reusing node Z0 even thoughit have more than one
hild di�erent from the false nodeIY0IY1 IZ0 IZ1

(e) (h)(g)(f)
Figure 5.3: (e) and (f) are the area
overed by the CDD in �gure 5.2 (a), and (e),(f),(g) and (h) denotes the area
overed by the CDD in �gure 5.2(
). The (h) area should have been omitted as it denotes the area impli
itlyadded by reusing node Z0 in �gure 5.2In �gure 5.2 we union the CDD (a) with the S-CDD (b), in this union we allow reusing node Z0.The federation des
ribed by (a) is depi
ted as box (e) and (f) in �gure 5.3.The Zone des
ribed by the S-CDD in �gure 5.2(b) is depi
ted as box (g) in �gure 5.3, thus theunion of the the CDD and the S-CDD should provide a federation des
ribing box (e),(f) and (g).But reusing node Z0 as in this union forms a federation des
ribing all four boxes in �gure 5.3.Thus we
on
lude that it is not allowed to reuse a CDD node if it has more than one
hild node,and none of these are the false node. Note that this is a spe
ial
ase that only applies when56

Semanti
sperforming union of a CDD and a S-CDD as this would not be the
ase if both were CDD's astwo CDD node
ould be isomorphi
 even though they have more than one
hild node.From this proof we get that we only need to sear
h among nodes with one
hild node, as usingothers impli
itly will lead to in
onsisten
y.Also note that not being allowed to reuse a node with more that one
hild only apply during theba
ktra
e algorithm. During the redu
tion phase all nodes are allowed to be reused.5.6.2 Semanti
s of found CDD nodesIn this subse
tion we will argue that it is semanti
ally
orre
t to reuse a single stringed part ofa CDD. A single stringed part of a CDD is a CDD node from whi
h there is only one tra
e tothe true node. The nodes are found as an exa
t mat
h to the
orresponding S-CDD node, andit is thus trivially to prove that they
over the same Zone, as we only sear
h for nodes with one
hild as des
ribed in the previous subse
tion. Here we get that the found subpart of the CDDa
tually des
ribes the same Zone as the S-CDD that we union with.5.6.3 Redu
tion of CDDAs no nodes are added or modi�ed by the ba
ktra
e algorithm, no redu
edness properties
an beviolated by running this algorithm. The properties might be violated when the following unionoperation uses the found ba
ktra
e node, and does not
onstru
t new nodes for itself - this mightlead to sub-optimal sharing.If the union did not use the CDD tra
e found by the ba
ktra
e operation, it would
onstru
tthe exa
t tra
e itself, as this is the only unique tra
e des
ribing the valuation, after this tra
ewould have been
onstru
ted the redu
tion phase would redu
e the newly
reated tra
e to theone that would have been found by the ba
ktra
e operation, so using the CDD node found bythe ba
ktra
e operations does not violate the redu
edness properties of the CDD.5.6.4 Change nodesAfter the ba
ktra
e algorithm has run, and before the mat
hing2 union operation rea
hes thenode where the ba
ktra
e algorithm stopped, other union requests might rea
h the node. Toprevent these union operations from altering the found ba
ktra
e path, we prove that, if a nodehas two parents, or two di�erent paths leading to it, then it is not allowed to
hange any su

essornodes of the node having two parent nodes, as this would
hange the valuation of both paths.We prove this by
ontradi
tion.In �gure 5.4 are three CDD's, (
) is the union of (a) and (b). Here we
hange the Y0 node, eventhough it have two parents (X1 and X0).Before the union [[X0℄℄ des
ribes:[[X0℄℄ = IX0 \ [[Y0℄℄) [[X0℄℄ = IX0 \ IY0 \ [[Z0℄℄2The mat
hing union operation is the union operation started by the ba
ktra
e algorithm, and holds the sameunique `id' as the ba
ktra
e path found. 57

5.6 Semanti
s of Ba
ktra
eX1X0
(a) (b)IZ0Z0 IY1Y0 IX1X1 X0 X1IX1IX0 Y0IY0 IY1IZ0Z0True

=
(
)

IX0 IX1IY0 SIZ0Y0Z0True TrueFigure 5.4: (a) is a CDD, (b) is a S-CDD, (
) denotes a CDD that is the union of (a) and (b). Note thatIY0 \ IY1 = ;The union of �gure 5.4(a) and 5.4(b) is performed by adding an extra su

essor from node Y0 toZ0 with interval IY1 .After the union [[X0℄℄ des
ribe:[[X0℄℄ = IX0 \ [[Y0℄℄) [[X0℄℄ = IX0 \ (IY0 [IY1) \ [[Z0℄℄As [[X0℄℄ still should des
ribe the same federation then, it must hold that:IX0 \ IY0 \ [[Z0℄℄ = IX0 \ (IY0 [IY1) \ [[Z0℄℄) IY0 = IY0 [IY1This is
learly not possible as this implies that IY1 � IY0 and this is a
ontradi
tion to ; IY1\IY0 =;, and that neither of the intervals are allowed to be ; a

ording to the de�nition of CDD's. Fromthis proof we get that when a
orre
t sub part of the CDD is found, it
an safely be used as itwill not be
hanged later. This is easily ensured by in
reasing the ref_
ount of the nodes whi
hwill be reused.To summarize what these three proofs provide:� It is not allowed to
hange a node if it has more than one
hild node and none of these arethe false node. This allows to
on
lude that in the ba
ktra
e algorithm we need only tosear
h for nodes with one
hild, as using other nodes would possible introdu
e in
onsisten
y.� We have argued that the semanti
s of reusing a single stringed part of a CDD found usingthe ba
ktra
e algorithm, des
ribes the same Zone as the
orresponding part of the S-CDDyielding that the ba
ktra
e algorithm is sound.� It is not allowed to
hange a node, that is
hanging the I(node) set, if the node has morethan one parent. This allows us to
on
lude that if we have found a single stringed partof a CDD via ba
ktra
e sear
h from the true node, then this part
annot be altered byanother union operation, as it will have more than one parent: the previous and the oneusing the ba
ktra
e algorithm.If a union operation on, say X0 of �gure 5.4(a), wants to
hange node Y0, it has to makea
opy of Y0 and
hange the
opy. 58

Semanti
s5.7 Redu
ing CDD'sWhenever a S-CDD is added to a CDD, some nodes may hold redundant information and must beredu
ed, se
tion 3.1.1 des
ribed whi
h rules must apply for the CDD being redu
ed, to summarizethese rules:� The CDD has maximum sharing: 8n;m 2 N | type(n) = type(m) . whenever su

(n) =su

(m)) n = m� All intervals are maximal: Whenever n I1��! m;n I2��! m, then I1 = I2 _ I1 [I2 6= ITo ensure that these properties holds, a redu
tion is performed whenever a S-CDD has beenadded to the CDD. This is done by
he
king for violations of the prior two mentioned rules, andif any violations are found, they are
orre
ted as follows:� If a violation to the �rst rule is found, one of the nodes n;m is
hosen for deletion (say`n'), and all other nodes pointing to this node is redire
ted to point at the remaining node(node `m').� If a violation to the se
ond rule is found, the two
onse
utive intervals is substituted by annew su

essor pointing to the same node, the su

essor is given the interval I1 [I2.In this se
tion we prove that these operations does not alter the semanti
s of the CDD.� If node m 2 N and n 2 N is synta
ti
ally equivalent, the federation they
over is triviallythe same. Therefore it is trivially allowable to inter
hange semanti
 equivalent nodes.� The federation
overed by a node n 2 N is des
ribed by:[[ht; [I1; T1℄ : : : [In; Tn℄i℄℄ = Sni=1fIit \ [[Ti℄℄g,if Tk and Tk+1 is the same node, they des
ribe the same federation say [[Tk℄℄then (Ik \ [[Tk℄℄) [(Ik+1 \ [[Tk℄℄) = (Ik [Ik+1) \ [[Tk℄℄.The interval Ik [Ik+1 2 I, is now
alled Ik, then the federation
overed by n may berewritten as:[[ht; [I1; T1℄ : : : [In; Tn℄i℄℄ = Si2f1:::ngnk+1fIi \ [[Ti℄℄g, whi
h is equal to[[t; [I1; T1℄ : : : [(Ik [Ik+1) \ Tk℄; [Ik+2; Tk+2℄ : : : [In; Tn℄℄℄ as stated.5.7.1 Canoni
alUnfortunately the redu
edness properties of CDD's is not as ni
e as for BDD's. A redu
ed BDDmake a
anoni
al representation of a binary formula, whereas a redu
ed CDD does not makea
anoni
al representation of a federation. To see why a redu
ed CDD does not make up a
anoni
al representation,
onsider �gure: 5.5, here the three redu
ed CDD's of (a), (b), and (
)represent the same Zone, namely the one presented in �gure 5.5(d).As
an be seen none of the nodes in the CDD's of �gure 5.5 does violate any of the redu
ednessrules.That CDD's are not
anoni
al may result in that the CDD's build in this proje
t may not alwaystake up the same number of CDD node as the order in whi
h the S-CDD's is added might havean e�e
t on the
onstru
tion/redu
tion. 59

5.7 Redu
ing CDD's

2 4

2

4

X
Ytrue true true

XY �X Y YY �X Y �X
X X[1; 3℄[�1; 1℄ [0; 4℄ [0;1[[�1; 1℄ [�1; 1℄

[1; 3℄ [1; 3℄
(a) (b) (
) (d)Figure 5.5: Redu
ed Ordered CDD's does not make a
anoni
al representation for a
onstraint system. The threeCDD's in (a), (b), and (
) represent the same Zone, namely the one presented in (d)

60

Chapter 6Cost Bene�t AnalysisIn this
hapter we give a
ost bene�t analysis for the di�erent operations that is performed onthe distributed CDD data stru
ture. A purpose in our design were to minimize the numberof messages send for ea
h operation performed. First we analyzes the worst
ase number ofmessages send for ea
h of the implemented operations in a Uppaal environment, thereafter theworst number of messages needed to explore a single state in Uppaal is analyzed, and �nallyit is analyzed how many messages
an be saved by introdu
ing groups. After having handledthe number of messages needed for doing various operations and verifying states in Uppaal ananalysis of the added memory overhead is provided.6.1 OperationsThe operations designed is the following:� In
lusion test� Ba
ktra
e� Union� Redu
tionThe following subse
tion des
ribe the number of messages needed to run a single one of theseoperations. Figure 6.1 might help in understanding the analysis.
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

����
����
����

����
����
����

�
�
�

�
�
�

���
���
���

���
���
���

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
�� Node Mk

Node M1

Figure 6.1: A test setup
onsisting of k
omputer nodes, ea
h generating new states for exploration. Only theupper
omputer node
an initiate In
lusion Test and Union. And only the bottom
omputer node
an initiateBa
ktra
e and Redu
tion6.1.1 In
lusion TestWhenever Uppaal dis
overs a new state it
he
ks whether the state has been explored beforeperformed through an in
lusion test. The worst
ase s
enario is that a
omputer nodeMi di�erent

6.2 State Explorationfrom the top
omputer node M1 dis
overs the state, then an in
lusion request has to be send tothe top
omputer node - that is one message. Then the top
omputer node M1, initializes thein
lusion test. Now the worst
ase s
enario is that the in
lusion request has to propagate to thebottom
omputer node Mk, whi
h might su

eed or fail. To propagate to the bottom
omputernode k � 1 messages is needed. This gives a worst
ase of k message for a single in
lusion test.6.1.2 Ba
ktra
eWhenever an in
lusion test fails on a
omputer node, two a
tions takes pla
e: First, the failedstate is send to the Waiting list on a
omputer node - that is one message. Se
ond, a ba
ktra
erequest is send to the bottom
omputer node - that is two messages. The ba
ktra
e request
anin worst
ase propagate to the top
omputer node, whi
h adds additional k � 1 messages. Thatis from the point were an in
lusion test fails to the union is performed k + 1 messages is send.6.1.3 UnionWhenever a ba
ktra
e operation fails on a
omputer node, a union request is send to the top
omputer node - that is one messages. When the top
omputer node M1 re
eives the unionrequest it lo
ates the handle and initializes the union operation. Most union requests mustpropagate to the bottom
omputer node of the lo
al group to rea
h the true node, whi
h addsadditional k � 1 messages. Even if the ba
ktra
e algorithm propagated to a
omputer node Mi,where i 6= k, the request might still propagate to the bottom
omputer node, as the CDD noderea
hed by ba
ktra
e is only used if the S-CDD is to be unioned with the false node. That is inthe worst
ase s
enario, from a ba
ktra
e operations stops, to the union is performed k messagesis send.6.1.4 Redu
tionWhen a union requests terminates on a
omputer node, most often Mk of the lo
al group. This
omputer node has
olle
ted redu
tion information whi
h may result in a redu
tion request tothe previous
omputer node. Su
h a redu
tion request may propagate all the way to the top
omputer node of the lo
al group. This gives that a redu
tion operations in worst
ase sendsk � 1 messages. Worst
ase in this sense is only the worst
ase of messages send, the higher therequests goes, the better sharing in the CDD data stru
ture is given, yielding a better memoryutilization.6.2 State ExplorationIn this se
tion we use the prior operation
osts to
al
ulate the worst
ase number of messagesneeded to be send to explore a state found by Uppaal. First Uppaal initializes an in
lusionrequest - whi
h worst
ase took k messages if this request failed on the bottom
omputer node.If the request failed in the bottom
omputer node, the state is send to the Waiting list on a
omputer node - that is one additional message. But the ba
ktra
e requests need not be send,as it is already on the last node so the worst
ase number of messages so far is k + 1 messages.62

Cost Bene�t AnalysisThen the ba
ktra
e request might propagate to the top
omputer node, whi
h adds additionalk� 1 messages, if this is the
ase, the union request need not be send to the top
omputer nodeas it is already there. Now the union request need to propagate to the bottom
omputer node,whi
h adds k� 1 messages, the ba
ktra
e
an only be used by nodes, that is to be unioned withthe false node.Finally the redu
tion operation adds additional k� 1 messages to the total number of messages.To summarize the total worst
ase number of messages needed to be send to verify a single stateis: 4k � 2 messages.From the
ost bene�t analysis of the union operation it
an be seen that the number of messagesthe union request sends worst
ase is una�e
ted of the ba
ktra
e operation. And if the ba
ktra
eoperation is disabled the worst number of messages send for ea
h dis
overed state is redu
ed to:� Send in
lusion request to top
omputer node - 1 message� Propagate in
ursion request to bottom
omputer node - k � 1 messages� Send state to a Waiting list on another
omputer node - 1 message� Send union request to top
omputer node - 1 message� Propagate union request to bottom
omputer node - k � 1 messages� Propagate redu
tion request to top
omputer node - k � 1 messagesWhi
h sums up to 3k messages.The purpose of the ba
ktra
e operation were not to save overall used memory, but to savetemporary memory in form of
all sta
ks, and temporarily not redu
ed CDD nodes. Furthermore the ba
ktra
e operation were made to save runtime, but as argued in the previous, O(k)more messages has to be send, and it might not even help the union operation terminate earlier,so the ba
ktra
e algorithm is not implemented - and thus not tested. Another argument fornot implementing the ba
ktra
e operation is that most of the advantage gained by the ba
ktra
eoperation is solved by the temporary hash table, des
ribed in se
tion 4.4.2. That is, it is expe
tedthat the little runtime advantage gained by the ba
ktra
e operation is lost due to the great numberof message needed to be send, worst
ase. Further more the union request whi
h must followa ba
ktra
e must be delayed until the ba
ktra
e has �nished it work, this has the disadvantage,that the state has to be stored until the ba
ktra
e has terminated, and that in
lusion test mightfail be
ause of this delay.The lowest number of messages whi
h need to be send for a single state is k�1 messages. This isthe
ase when the in
lusion test su

eed. That is when a new state is found at the top
omputernode at a group, and this request propagates to the bottom
omputer node - whi
h is k � 1messages.In an extremum the lowest number of messages send is zero messages. This is the
ase whenthe in
lusion test su

eed at the top
omputer node. But as this
ase were rarely seen in ourpreliminary tests, we argue that the best
ase
omplexity for a single state is k � 1 messages.63

6.3 Groups6.3 GroupsIf the number of groups used is di�erent from the number of
omputer nodes used, then thesame
ost bene�t analysis holds. In the analysis of the groups the number k is the number of
omputer nodes in the largest group. The
urrent distributed Uppaal uses one
omputer nodein ea
h group, worst
ase this leads to 1 message. Namely sending the in
lusion request to the
orre
t
omputer node. No requests must propagate as all operations are done lo
ally.6.4 Memory OverheadAs a
onsequen
e of adding
ommuni
ation CDD nodes as des
ribed in se
tion 4.3, the distribu-tion of the data stru
ture adds some memory overhead, whi
h a single pro
essor implementationwould not have. In this se
tion we des
ribe how large this overhead is, as well as how thisoverhead
an be removed by using distributed shared memory.For this analysis some syntax is needed. Let tistart be the �rst type lo
ated in
omputer nodeMi, and let tiend be the last type lo
ated on
omputer node Mi. And let nr(t : T) return thenumber of nodes with type t. Let the
omputer nodes range from M1 to Mk. Ea
h
omputernode ex
ept the top
omputer node holds a
lient
ommuni
ation array, whi
h takes up 1 word ofmemory. Ea
h
omputer node ex
ept the bottom
omputer node holds a server
ommuni
ationarray whi
h also takes up 1 word of memory. That is the total number of words used for
ommuni
ations nodes in a group is:kXi=2(nr(tistart)) + k�1Xi=1(nr(tiend))Again if the extreme �one
omputer node per group� the memory overhead added is:1Xi=2(nr(tistart)) + 0Xi=1(nr(tiend)) = 0So no memory overhead is added as expe
ted.From this analysis it
an be seen that the fewer
omputer nodes parti
ipating in a group, theless be
omes the memory overhead added by
ommuni
ation CDD nodes. Also it
an be seenthat the higher the number of types handles by one
omputer node, the less be
omes the relativememory overhead used on
ommuni
ation nodes,
ompared to �real� CDD nodes.6.4.1 Distributed Shared MemoryA way to avoid the memory overhead introdu
ed by the
ommuni
ation nodes is to use distributedshared memory. Then the node when re
eiving a state from Uppaal
ould
hose either:1. Do the in
lusion test and union itself in the memory of all other nodes.2. Or when sending messages, add the pointer to the CDD node on the re
eiving
omputernode, in the request. 64

Cost Bene�t AnalysisBut as we have
hosen to distribute the CDD data stru
ture using the MPI interfa
e, to o�er amore
ommon interfa
e to
onform to the portability of Uppaal, we
annot avoid the need for
ommuni
ation nodes.SummaryThe
ost of ea
h of the four operations implemented is linear in the number of
omputer nodesparti
ipating in the operation, whi
h
annot be done more optimal when a horizontal distributingapproa
h has been
hosen. Though the
ost for verifying a single explored state takes the
ostof 4k � 2, but by disabling the ba
ktra
e operation the
ost were redu
ed to 3k messages. Thisnumber of messages might introdu
e a
onsiderable overhead in runtime. This is taken from thefa
t that analyzing a single state in Uppaal is a small task, and adding 3k messages for ea
h stateexplored might multiply the veri�
ation time for ea
h state. But as the purpose of this proje
tis to allow veri�
ation of larger models and to measure memory overhead from distributing, wedo not
onsider this result obstru
ting for further investigation.

65

6.4 Memory Overhead

66

Chapter 7ImplementationIn this
hapter we des
ribe what a
tion has been taken during the implementation to de
reasethe amount of memory
opied, and to optimize the runtime of the operations. Besides des
ribingthese a
tions, the interfa
e to Uppaal is des
ribed.7.1 Uppaal interfa
eThis se
tion des
ribes the interfa
e between Uppaal and the implemented CDD data stru
turemade in this proje
t. The overall fun
tionality of Uppaal is depi
ted in the pseudo
ode of �gure1.3. To repeat:� While the Waiting list is not empty� Take a state from theWaiting list, and sear
h whether this states ful�lls the propertygiven.� Then
he
k whether this state has been explored before� If not �nd all su

essors to the state and put these into the Waiting list.The version of Uppaal we interfa
e use a Passed -/WaitingList(PWList) interfa
e. So to interfa
eUppaal this PWList interfa
e has to be implemented. This interfa
e
onsists of two fun
tionswith the following des
ription:tryPut(state *ps) Whenever Uppaal �nds a new state it
alls tryPut, whi
h must examinewhether the state `ps' is in
luded in the Passed list. If the state is in
luded the fun
tionreturns immediately, without any a
tion. If the state is not in
luded, `ps' is inserted intothe Passed list and also into the Waiting list for further exploration.bool tryGet(state *ps) Whenever Uppaal has found all su

essors for a state, it
alls tryGetto get a new state. tryGet then redire
ts the pointer given to an element in the Waitinglist. If an element is found in the Waiting list the fun
tion must return true, and if nomore elements are available in the Waiting list false must be returned to signal Uppaalthat all states has been sear
hed.In our implementation theWaiting list is implemented as a FIFO linked list, therefore the tryGet
all be
omes simple. Simply redire
t the `ps' pointer given to point to the �rst entry in the linkedlist.The tryPut
all be
omes somewhat more
ompli
ated. The dis
rete state is hashed to a groupparti
ipating in theBefore any of the tryGet/tryPut
alls returns it is
he
ked whether any in
oming messages exists,being an in
lusion/union/redu
tion request. If any in
oming messages exists these are pro
essedbefore returning.If the in
lusion test initiated su

eeds somewhere, the state is simply dis
harged. If the in
lusiontest fails, two messages are send. First a union request is send to the top node of the lo
al group,then the state itself is send to a
omputer node that will put this state in its Waiting list forfurther exploration.

7.2 Use Pipelining7.2 Use PipeliningWhenever a
omputer node re
eives a request for a CDD operation, either an in
lusion requestor a union request, the state need to be in
luded. To avoid
opying the state at ea
h
omputernode, the following bu�er management is implemented.Whenever a message arrives, the respe
tive operation is
alled keeping the state in the messagebu�er, then whenever the request need to be propagated to the next
omputer node, the samebu�er is reused to send the request, so that the state need not be
opied. In this way severalmemory
opy operations are saved for ea
h operation performed on the CDD data stru
ture.This
an be done as the union and in
lusion operations are non destru
tive to the state.7.3 Hash listsMany of the operations in the implementation has to sear
h for mat
hing items. E.g. whenever ahandle into the CDD data stru
ture should be found, a list of dis
rete states with
orrespondinghandles must be sear
hed for a mat
h to �nd the
orre
t handle. And during the redu
tionphase whenever a node is
hanged, it is be examined whether there exist a node whi
h is syn-ta
ti
 equivalent with the newly
reated node, so that this node
an be reused/shared.To redu
e the
omplexity of the sear
h for a mat
hing item, both the list of dis
rete states, andall CDD nodes are inserted into a hash data stru
ture. As more than one node might hash tothe same bu
ket, bu
ket over�ow is handled by adding the nodes to a linked list of nodes at ea
hhash bu
kets.This implies that either nodes
annot be
hanged, otherwise the node must be removed fromthe hash list. If is should be possible to remove an arbitrary element from a hash list, then thehash list should either be doubly linked - whi
h waste memory. Otherwise the hash list has tobe sear
hed to �nd the previous element in the hash list, to redire
t its `next pointer ' to point tothe next element in the list - whi
h wastes time. Therefore it has been de
ided that is should notbe possible to
hange a CDD-node (it is already not allowed to
hange the size without movingit, be
ause of the segregated memory layout, see se
tion 4.5).7.4 Distributed Garbage Colle
tionIn our �rst implemented approa
h, the `ref_
ount ' were updated at ea
h union and redu
tionrequest, but this led to a very large runtime penalty for ea
h operation performed, as the in
reas-ing of a `ref_
ount ' of one node, should result in an in
rementation of the `ref_
ount ' of ea
h ofthe su

essors to the node. This might result in an exponential number of nodes whi
h shouldhave their `ref_
ount ' in
remented and some nodes `ref_
ount ' should even be in
remented bymore than on
e.The reason that the `ref_
ount ', should be kept
orre
t, has two purposes. First when the`ref_
ount ' is de
remented to zero, no nodes referen
es the node, and the node
an be deleted.Se
ondly a node may not be
hanged if its `ref_
ount ' is larger than one, due to the ba
ktra
eproof. But as nodes is never
hanged anyway, due to the dis
ussion in the previous se
tion, these
ond purpose of the `ref_
ount ' is not an issue anymore.68

ImplementationThis se
tion des
ribes a distributed garbage
olle
tion s
heme whi
h delete unused nodes in amore time e�
ient way, by only deleting nodes when spa
e is needed.7.4.1 Mark and SweepThe
hosen garbage
olle
tion s
hema
hosen is a mark and sweep algorithm, modi�ed to work ina distributed fashion. To help understand the algorithm refer to �gure 7.1. First the `ref_
ount 'of all nodes not deleted yet (that is whi
h `used '-�ag is true), is set to 0. This is done bytraversing all the linked list from ea
h of the hash bu
kets. In the mark phase nodes referen
edby a dis
rete handle are traversed re
ursively to update their `ref_
ount ' to 1. This is done bythe following algorithm:1:void Mark(
dd_handle 2 N)2:begin3: if (
dd_handle.ref) = 0 then4:
dd_handle.ref_
ount := 15: forea
h (I;m) 2 su

(
dd_handle)6: Mark(m)18:endThis algorithm ensures that the `ref_
ount ' of all nodes referen
ed by a dis
rete handle is setto 1. Finally the sweep phase is initiated. It s
ans the linked lists for ea
h hash bu
ket, anddelete all nodes (by setting their `used '-�ag to false) that has `ref_
ount = 0', and therefore notreferen
ed.To distribute this algorithm, the sweep phase, noti
es whi
h elements in the
ommuni
ation isused, and sends a message to the next
omputer node, with this information. Then the next
omputer node uses the used entries in its
ommuni
ation layer, as handles into the CDD datastru
ture and deletes all elements not referen
ed by a used
ommuni
ation entry. That is thesame algorithm is used, but the used entries in the
ommuni
ation layer is used as handles.

69

7.4 Distributed Garbage Colle
tion

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���
���

Handles

Top node for a handleNon referen
ed nodeHashBu
kets
(a)

(b)
Figure 7.1: (a) show how all nodes is pla
ed into a hash data stru
ture, mentioned in the previous se
tion, it alsoshown how the handles for the dis
rete states referen
e these CDD nodes. (b) Show a simple CDD data stru
turewith two handles, and some unreferen
ed nodes.

70

Chapter 8TestA number of tests are
ondu
ted to test the performan
e of the implemented system. This
hapter des
ribes the tests, how the test setup is and our expe
ted results. The a
tual resultsare presented with an analysis of these. Finally the analysis leads to a
on
lusion of the resultsar
hived. But �rst we
onsider what the
onsequen
es are for only distributing the symboli
 partand not the dis
rete part of the states in Uppaal.8.1 Limitations of the ImplementationThe implementation was designed and implemented with the expe
tation, that it would be thesymboli
 part of the state spa
e that would a

ount for the most memory used in the veri�
ation.Therefore the dis
rete part was designed to be lo
ated on the
omputer node holding the handlesinto the CDD, as this gives faster a

ess to the handle.After our distributed implementation of the CDD data stru
ture, and our preliminary testingbegun, we found that the part of the Passed list that took up the most memory is the dis
retepart, whi
h we had not fo
used on distributing. This disallows us to verify models that notalready
ould be veri�ed on a single
omputer node. In the Future Work se
tion 10.2 we dis
usshow the dis
rete part
an be distributed by modifying the
urrent implementation. We are stillable to test how large a memory redu
tion we obtain from using a single distributed CDD insteadof several CDD's, one on ea
h
omputer node, or in groups. The memory savings upon usingthe di�erent node representations
an also be tested.8.2 Purpose of the testThe purpose of this proje
t is as stated in se
tion 2.2 to investigate how mu
h memory
anbe saved using global sharing when storing the Passed list in veri�
ation of timed automata.Furthermore the relationship between syn
hronization overhead/memory usage when using ahybrid CDD model, where the number of CDD's are ranging between one and the number of
omputer nodes used, is to be testedFurthermore we investigate how mu
h memory
an be saved using the alternative node repre-sentations des
ribed in se
tion 4.5.1.All tests should show the memory savings as well the en
ountered runtime penalty. Whentesting the distributed versions we also display the number of send messages, as this indi
atesthe syn
hronization overhead.The tests performed are as follows:Memory representation The �rst test performed measure the memory savings vs. timepenalty of the three node representations implemented.Distribution The se
ond test measures the time penalty introdu
ed by distributing the datastru
ture, together with the memory usage.

8.3 PremisesGroups The purpose of the third test is to show how mu
h memory
an be saved by globalsharing
ompared to making groups. Furthermore it should show how large the timepenalty is for the memory saved.8.3 PremisesIn this se
tion we des
ribe the premises under whi
h the tests are
ondu
ted, both the hardwareplatform and the software used.8.3.1 Hardware platformDevelopment and performan
e tests are
ondu
ted on a
luster of seven homogeneous dual 733MHz Pentium III Coppermine workstations running on Asus CLS motherboards with Server-Works LE
hipset. The
omputer nodes are inter
onne
ted by a 100 Mbit Ethernet LAN,
on-ne
ted by a Cis
o System Catalyst 3500 Series swit
h. Ea
h
omputer node is equipped with 2GB memory.The software
on�guration were as follows: Debian GNU/Linux kernel 2.4.17,
on�gured withSMP. The g

ompiler used were version 2.95.2.8.3.2 Software premisesThe used version of Uppaal is 3.3.20, interfa
ed using a
ombined Passed -/Waiting list.For performan
e tests the following modes are used:Da
apo whi
h simulates the Da
apo proto
ol. It is the smallest model used, when veri�ed on asingle
omputer node, it explores 53967 states, in 5.65 se
onds.Bus
oupler whi
h is a simulation of bus
oupling. When veri�ed on an single
omputer nodeis explores 5288096 states, in 1701 se
onds.Fisher This is a model of the Fis
her proto
ol, with 6 pro
esses ea
h trying to a

ess the
riti
al se
tion. When veri�ed on a single
omputer node, it explores 55674 states in 493se
onds.The models used
an be obtained by
onta
ting Institute for Computer S
ien
e at AalborgUniversity.Uppaal
an be downloaded from http://www.uppaal.
om.Finding a model that it
ould be advantageous to distribute among several
omputer nodes isnot possible as we only distribute the symboli
 part of the Passed list, meaning the the memoryusage of the
omputer node that holds all the dis
rete states be
omes a bottlene
k memory wise.Thus we will not be able to verify larger models as stated in the purpose.The models is
hosen, as these has been used for referen
e models in numerous Uppaal arti
les.The number of explored states do
umented in the previous list, is the number of states foundby Uppaal and given to our interfa
e through the tryPut
all. That is, the number representthe number of in
lusion test performed, whereas the number of unions/redu
tions is somewhatlower. 72

TestTests on single
omputer nodes are deterministi
 and are thus only performed on
e.Tests on multiple
omputer nodes are not deterministi
, as two messages send from two di�erent
omputer nodes to the same destination might arrive in any order. Therefore tests on multiple
omputer nodes are performed 5 times, and averaged.Whenever tests is
ondu
ted on more than a single
omputer node the
ommuni
ation is doneusing the Message Passing Interfa
e (MPI), the MPI interfa
e used is LAM/MPI1.As distributing the veri�
ation adds some non-determinism, the number of veri�ed states variesa little. In our tests the number of veri�ed states varied less that 2%, and are do
umented.Types OrderingThe
hosen ordering of the variables
an be important for the possible sharing in the CDD datastru
ture, why the variable ordering is presented here. The
hosen ordering is shown in a DBM,as the entry (Xi;Xj) and (Xj ;Xi), where i 6= j is represented by the same type, the entries isequal over the diagonal. Variables of the type (Xj � Xj) should always be zero, and are thusnever represented, and are therefore not given a type. The variable ordering
hosen as follows:X0 X1 X2 X3 X4 X5X0 - 15 14 13 12 11X1 15 - 10 9 8 7X2 14 10 - 6 5 4X3 13 9 6 - 3 2X4 12 8 5 3 - 1X5 11 7 4 2 1 -This variable ordering is
hosen from the idea, that the greatest sharing is lo
ated where the
ondition is only based on the value of a single
lo
k, and therefore the types of the form (Xj ;X0),is lo
ated at the bottom were sharing is possible. Further work
ould examine whi
h variableordering in the CDD data stru
ture is best. The variable ordering is dependent on the modelveri�ed, but some guidelines
ould possible be stated, from su
h experiments. These experiments
an be
ondu
ted on a single pro
essor CDD implementation, as the results would map dire
tlyto a distributed implementation.8.3.3 Measured dataWhenever the memory usage of our implementation is to be measured, only the memory usagein the CDD data stru
ture is measured. The memory usage of the Waiting list, and the dis
retestate spa
e is not measured, as these are not the fo
us in this proje
t. When the memory usageis do
umented, the memory used when the veri�
ation is �nished is measured.Whenever the time is measured, the total runtime of Uppaal is measured in se
onds. That is,the
onstant overhead of initialization/�nalization is also measured, whi
h is negligible.The CPU-load is measured as the per
entage of the run time that ea
h
omputer node is a
tive,and thus not blo
king to re
eive a message, when its Waiting list is empty.1www.lam-mpi.org 73

8.4 Test des
riptionThe memory load is presented as the per
entage of the CDD that the spe
i�

omputer nodeholds.8.4 Test des
riptionIn the following subse
tions the test setup for ea
h test are des
ribed. It is des
ribed what ismeasured, how many
omputer nodes parti
ipate in the test, and how many groups the test isperformed with.8.4.1 Node RepresentationThe �rst test performed is to measure how mu
h memory
an be saved using the alternativenode representations des
ribed in se
tion 4.5.2. This test is only performed on a single
omputernode, as it is assumed that the relative memory saving is only dependent on the model size. Wetest all three previously mentioned models. The results will be presented in a table showing theruntime and the memory usage for ea
h node representation.8.4.2 DistributionTo measure the overhead by distributing the CDD data stru
ture, a series of tests is
ondu
ted,�rst on a single
omputer node, then on two, three and four
omputer nodes. The total memoryusage is measured in ea
h test to measure the memory overhead introdu
ed by the
ommuni
ationlayers.The primary purpose of the tests is to measure the time overhead introdu
ed by
ommuni
ation,and se
ondly to measure the load balan
ing between the di�erent
omputer nodes. By loadbalan
ing we mean both pro
essor utilization and memory utilization. The optimal result wouldbe that ea
h
omputer node always use 100% CPU time, and the memory usage being distributionevenly.8.4.3 GroupsThe primary purpose of this test, is to determine how mu
h spa
e savings that
an be obtainedusing global sharing, and what runtime overhead is introdu
ed by the
ommuni
ation. This testuses 4
omputer nodes, �rst
on�gured in four groups, then
on�gured in two groups, and �nally
on�gured in a single group. The relative memory usage and spa
e requirements are
ompared,with the total runtime for ea
h
on�guration. This should allow us to measure the
hara
teristi
sof using groups
ompared to a single distributed CDD.8.5 Expe
ted ResultsThis se
tion is used to des
ribe whi
h expe
tations we have for the results, these expe
tations areused in the analysis of the results. These expe
tations are written before the a
tual tests are
on-du
ted, but after some preliminary tests were performed, whi
h allow us to take
ommuni
ationoverhead into
onsiderations during the dis
ussion of the expe
ted results.74

Test8.5.1 Node RepresentationDuring our preliminary tests on some small models, our observations were that
ompared to theordinary node representation the se
ond node representation saved between 5% and 10%, thethird node presentation saved between 15% and 20% of memory. We expe
t that the relativememory saving for the se
ond node representation is somewhat
onstant as a fun
tion of themodel size as the relative number of false intervals is expe
ted to be
onstant. The third noderepresentation might save even more memory as we expe
t that the nodes get more intervals andthus more integers to represent
ompared to the
onstant overhead, to the node given by thenode header, whi
h is 8 bytes. This representation is very dependent on the spe
i�
 model, asthe values of the integers is di�erent between models.The time penalty introdu
ed for the se
ond node representation is expe
ted to be rather mini-mal, as only
he
ks on bits is introdu
ed. The time penalty for the third node representation isexpe
ted to be somewhat larger, as integers has to be pa
ked/unpa
ked in all
omputer nodesparti
ipating in an in
lusion/union. Additional the CDD nodes
ontains pointers that not ne
-essarily is word aligned, thus
ompromising the portability as this does not work on most RISCar
hite
tures. Having pointers that are not word aligned means that the CPU has to fet
h twowords to get the pointer.8.5.2 DistributionThe distribution of the data stru
ture is expe
ted to pla
e a
onsiderable overhead to the ver-i�
ation, as the number of messages send is large for ea
h state veri�ed. We also expe
t thetop
omputer node to have a larger load than the others, mainly due to the problem of notdistributing the dis
rete part of the state spa
e. The
ause is that the top
omputer node hasto sear
h for the
orre
t handle, before initiating any operations on the CDD.The memory usage is expe
ted to in
rease slightly, as the
ommuni
ation nodes also takes upspa
e.Clearly the more types a
omputer node holds the fewer
ommuni
ation nodes exists
omparedto the number of CDD nodes in total - so distributing models with a large number of types ismore feasible (memory wise) than distributing models with few types.If models with a few types should be veri�ed distributed, other methods may be used, or ea
h
omputer node,
ould parti
ipate in a group for itself, whi
h totally eliminated the need for
ommuni
ation nodes - but also disables global sharing.The time
omplexity for the used algorithms are expe
ted to range between the best and worst
ase
omplexity presented previously in
hapter 6.8.5.3 GroupsWe expe
t that the e�e
t of having global sharing will outrange the memory used for
ommuni-
ation layers.Compared to a single distributed CDD, the memory usage for more than one group is expe
tedto be larger as more CDD data stru
tures has to be
onstru
ted whi
h
annot share states.When using groups the runtime is expe
ted to de
rease with the number of
omputer nodesparti
ipating in the groups. This de
rease in runtime is expe
ted as the number of send messages75

8.6 Results and Analysisis redu
ed.8.6 Results and AnalysisIn the following se
tion we present the test results and the analysis of these.8.6.1 Node RepresentationFirst we present the results for the three di�erent node representations:Da
apo:Representation Size in bytes Time in se
 Size index Time index1 302.596 5.65 1.00 1.002 279.232 5.81 0.92 1.033 225.866 5.96 0.75 1.05Bus
oupler:Representation Size in bytes Time in se
 Size index Time index1 12.602.672 1701 1.00 1.002 12.435.932 1803 0.98 1.063 10.193.851 2517 0.80 1.48Fisher - 6:Representation Size in bytes Time in se
 Size index Time index1 6.510.968 493 1.00 1.002 6.482.704 453 1.00 0.923 5.614.071 414 0.86 0.848.6.2 Analysis of Node RepresentationIn this subse
tion we analyze the results for the three di�erent node representations.Representation 1This representation is the standard representation used by the
urrent version of Uppaal, thusused for referen
ing the two other representations.Representation 2The results for the se
ond representations, where edges to leading to false are omitted, showsonly a modest memory savings for small models, whereas for larger models the savings arenegligible. The in
rease in runtime using representation 2 is only 2%, but as the savings arenegligible we
on
lude that there is no point in using this representation. Our expe
ted resultsfor this representation were that the memory savings would be
onstant as a fun
tion of themodel size. This expe
tation was not
orre
t, as it seems that for large models we obtain large76

Testnodes as there is a lot of sharing, meaning that the relative number of intervals leading to falseis redu
ed.Representation 3For all models tested this representation saves between 14% and 25%, smaller for larger models,but as stated in the expe
ted results, will this representation be very dependent upon the spe
i�
model, as the
lo
k values of this model in�uen
es greatly upon the memory usage. The in
reasein runtime is as expe
ted greater than for the other representations being an in
rease of 50%.For the Fisher proto
ol this representation is surprisingly faster than the others, as the totalnumber of nodes in the CDD is the same, the only explanation is as the nodes be
omes smallerdue to the
ompa
tness of the third representation, there will be lesser
a
he misses leading toin
reased performan
e.8.6.3 DistributionFirst we present the memory usage for ea
h CDD-type in ea
h of the models in a non distributedCDD, in �gure 8.1, 8.2, and 8.3.
0

500

1000

1500

2000

2500

0 2 4 6 8 10 12 14

C
D

D
 n

od
es

Type

Distribution of CDD nodes between types

Figure 8.1: The distribution of CDD nodes between the di�erent types of the Da
apo model
0

20000

40000

60000

80000

100000

120000

0 1 2 3 4 5 6 7 8 9

C
D

D
 n

od
es

Type

Distribution of CDD nodes between types

Figure 8.2: The distribution of CDD nodes between the di�erent types of the Bus
oupler model
77

8.6 Results and Analysis
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 5 10 15 20

C
D

D
 n

od
es

Type

Distribution of CDD nodes between types

Figure 8.3: The distribution of CDD nodes between the di�erent types of the Fis
her - 6 modelThe results for the distributed tests are presented in tables, one table for one to four nodes, ea
hmodel represented separately. Node 1 is always the top
omputer node.The following 4 tables holds the results for verifying the Da
apo model on one to four nodes.For ea
h node, the runtime, memory usage, CPU Load, Memory load, and the number of sendmessages is do
umented:Da
apo one NodeNode Time Usage Memory Usage CPU Load Memory Load Send MessagesNode 1 5.65 302.508 100% 100% 0Da
apo two NodesNode Time Usage Memory Usage CPU Load Memory Load Send MessagesNode 1 49.14 166888 100% 54% 96.117Node 2 49.14 142164 60% 46% 55.861Total 49.14 309.052 - 100% 151.978Da
apo three NodesNode Time Usage Memory Usage CPU Load Memory Load Send MessagesNode 1 50.3 83880 100% 27% 121.308Node 2 50.3 173972 66% 56% 97.880Node 3 50.3 52812 40% 17% 61.523Total 50.3 310.664 - 100% 280.711Da
apo four NodeNode Time Usage Memory Usage CPU Load Memory Load Send MessagesNode 1 47.7 82360 100% 26% 115.087Node 2 47.7 91864 65% 29% 94.919Node 3 47.7 120372 37% 38% 89.373Node 4 47.7 22172 26% 7% 44.190Total 47.7 316.768 - 100% 343.569
The following four tables do
uments the results for the Bus
oupler model, the same results asfor the Da
apo model is presented:

78

TestBus
oupler 1 NodeNode Time Usage Memory Usage CPU Load Memory Load Send MessagesNode 1 1701 12.602.672 100% 100% 0Bus
oupler two NodesNode Time Usage Memory Usage CPU Load Memory Load Send MessagesNode 1 9532 7.210.612 100% 54% 12.623.045Node 2 9532 6.142.372 61% 46% 6.354.126Total 9532 13.352.984 - 100% 18.977.171Bus
oupler three NodesNode Time Usage Memory Usage CPU Load Memory Load Send MessagesNode 1 9652 1.746.032 100% 13% 14.623.045Node 2 9652 9.670.352 64% 72% 10.388.128Node 3 9652 2.014.660 35% 15% 5.764.121Total 9652 13.431.044 - 100% 30.775.294Bus
oupler four NodesNode Time Usage Memory Usage CPU Load Memory Load Send MessagesNode 1 9572 538.184 100% 4% 16.523.948Node 2 9572 3.094.560 62% 23% 12.312.429Node 3 9572 9.149.140 45% 68% 7.354.264Node 4 9572 672.732 26% 5% 4.723.539Total 9572 13.454.616 100% 40923180
The �nal four tables in this se
tion do
ument the results ar
hived when verifying the Fis
hermodel on one to four
omputer nodes:Fis
her 1 NodeNode Time Usage Memory Usage CPU Load Memory Load Send MessagesNode 1 493 6.510.968 100% 100% 0Fis
her 2 NodesNode Time Usage Memory Usage CPU Load Memory Load Send MessagesNode 1 4183 5.483.360 100% 81% 187.221Node 2 4183 1.286.220 63% 19% 70.538Total 4183 6.769.580 - 100% 257.759Fis
her 3 NodesNode Time Usage Memory Usage CPU Load Memory Load Send MessagesNode 1 4213 3.015.220 100% 44% 187.678Node 2 4213 3.769.032 71% 55% 135.287Node 3 4213 68.528 12% 1% 72.846Total 4213 6.852.780 - 100% 395.811

79

8.6 Results and AnalysisFis
her 4 NodesNode Time Usage Memory Usage CPU Load Memory Load Send MessagesNode 1 4451 1.041.532 100% 15% 174.606Node 2 4451 4.513.312 72% 65% 137.584Node 3 4451 1.319.280 23% 19% 138.964Node 4 4451 69.436 4% 1% 60.527Total 4451 6.943.560 - 100% 511.6818.6.4 Analysis of the Distribution ResultsIn the following we dis
uss the results ar
hived during the tests of the distributed data stru
ture.The main fo
us is based on CPU/Memory load, and time penalty and memory overhead. Finallythe number of messages send, is
ompared to the
ost-bene�t analysis.Time PenaltyThe time penalty added by distributing the data stru
ture, were almost una�e
ted by the numberof nodes used. We expe
t that the explanation for this is that the maximum number of messagessend by a single
omputer node (the top node) only in
rease slightly. Besides that more
omputernodes parti
ipating in the exploration of states. The time penalty were between 560% and 900%whi
h is an a

eptable
ost as the fo
us in this proje
t were to save memory at a
ertain runtimepenalty. The memory savings will be dis
ussed later in se
tion 8.6.6.Besides the implementation is not optimized for runtime, only memory wise. E.g. it would bepossible to lower the total runtime by pa
king several requests in the same message. This wouldde
rease the total number of messages send, whi
h we expe
t to a

ount for some of the timepenalty. How su
h requests should be pa
ked is dis
ussed in the Future Work, se
tion 10.4.Memory OverheadThe memory overhead added by distributing the data stru
ture were between 4.3% and 6.7%.Models with larger symboli
 state spa
e often have a larger number of
lo
ks and therefore therelative memory overhead is de
reased. We �nd the memory overhead found a

eptable, as thenumber of
lo
ks in the used models is relatively small. This overhead is not expe
ted only tobe due to the
ommuni
ation layer, but also that the CDD might be build di�erently, as thedistribution adds some non-determinism to whi
h order states are unioned with the CDD, asCDD's are not
anoni
al - see se
tion 5.7.1.Additionally this memory overhead
ould be redu
ed to a minimum, by implementing the dis-tribution in a shared memory environment as dis
ussed in se
tion 6.4.1, a proto
ol for this isdis
ussed in 10.6CPU/Memory LoadDuring the tests the amount of used memory on ea
h
omputer node, used for the CDD datastru
ture were measured. The memory load were not evenly distributed, the reason is that thenumber of CDD nodes in ea
h layer is not evenly distributed. This
an be seen from the boxdiagrams in �gure 8.1, 8.2, and 8.3. 80

TestThis
all for dynami
 memory load balan
ing, whi
h we dis
uss in Future Work, se
tion 10.5.The CPU load is also not evenly distributed. The top node is always the most loaded node, thisis due to the fa
t that it is this node that has to �nd the handle into the CDD data stru
ture.We expe
t that the reason that the CPU load de
rease in the lower
omputer nodes, is thatin
lusion tests may fail earlier, and thus not burden the lower
omputer nodes.Average ComplexityPreviously we have stated that the worst
ase
omplexity is 3k messages for ea
h state exploredwith k being the number of nodes parti
ipating, whereas the best
ase
omplexity for ea
h stateis k � 1 messages. First we note that the top node always is the node that a

ount for thelargest number of send messages. The reason for this is that the top node is responsible forsending states that has failed the in
lusion test to a node - whi
h then put it into its Waitinglist. This might seem as a bottlene
k but with the
urrent version where the dis
rete part is notdistributed, then this is the only possible approa
h as the top node holds the dis
rete part whi
halso has to be stored in the Waiting list. Alternatively the dis
rete part
ould be in
luded in allmessages introdu
ing an overhead in the message size.The tests shows an average
omplexity in the number of send messages per veri�ed state between1:5k for Da
apo and 2:3k for Fis
her, Bus
oupler being in the middle with a
omplexity of 1:93k.These results is as we expe
ted between the best
ase and worst
ase
omplexity. Da
apo hasthe lowest
omplexity whi
h we expe
t is due to an observation that almost all in
lusion teststhat failed, did fail on the top
omputer node, leading to a limited number of in
lusion requestssend to other
omputer nodes. This together with an observation of the redu
tion only rea
hingthe top
omputer node in a limited number of redu
tions gives the
omplexity of 1:5. Fis
herhas the highest
omplexity as the opposite
ase here is the
ase being that almost all in
lusiontests fails on another
omputer node than the top
omputer node. The ordering of the types
ould in�uen
e on where the in
lusion test fails, why su
h a reordering may
hange the average
omplexity.8.6.5 GroupsThe results for using groups is presented in the tables below, one for ea
h model with time, sendmessages, and memory usage. The number of used
omputer nodes is four.Da
apo:Nb of groups Time in se
 Total used memory in bytes Total nb of sent messages1 37.7 316.772 343.5692 25.2 554.352 171.5484 8.2 904.212 34.720Bus
oupler:Nb of groups Time in se
 Total used memory in bytes Total nb of sent messages1 9562 13.454.616 40.923.1802 5570 22.573.832 22.703.4714 1620 45.033.084 3.365.242
81

8.6 Results and AnalysisFis
her:Nb of groups Time in se
 Total used memory in bytes Total nb of sent messages1 4451 6.943.560 511.6812 2721 10.634.604 276.8644 834 21.420.432 36.7588.6.6 Analysis of the Group ResultsIn this se
tion we dis
uss the results ar
hived from the tests using groups, where there are morethan one CDD to represent the Passed list, these CDD's may be lo
ated on a single
omputernode or span several
omputer nodes.Memory UsageThe memory usage in
reases as expe
ted when using more than one CDD. The maximum wouldbe that ea
h of the new CDD's takes just as mu
h spa
e up as the single distributed CDD. Thusfor the test results the extra memory usage for using 4 groups instead of one
an maximum be ofa fa
tor four. The tests report the extra memory usage for the three models to be between 2.9and 3.3 times as mu
h memory for using four groups instead of a single group. This is surprisingto see that the sharing between di�erent handles in the CDD is so large. The test using twogroups instead of a single group reports an in
reased memory usage of between 1:5 and 1:75times as mu
h memory as the single group version. The in
reased runtime seems to be linearlydependent upon the number of groups parti
ipating, the less
omputer nodes in ea
h group thelower the runtime is.The memory usage when using groups is larger than expe
ted, thus it might not be an attra
tingalternative to use groups instead of a single distributed CDD, as the memory usage
annot beestimated before the a
tual veri�
ation has been
arried out, and therefore the optimum numberof groups
annot be estimated, whi
h might lead to a non terminating veri�
ation if it runs outof memory.Using the CDD data stru
ture in a distributed environment might waste memory if ea
h
omputernode holds a separate CDD, as the sum of the memory
onsumption of these CDD's will a

ountfor more memory than a single CDD.Time PenaltyThe time penalty seems to be linearly dependent on the number of groups used in storing theCDD, but we
annot
on
lude this linearity as we only
ondu
t tests with a limited number of
omputer nodes. The more nodes parti
ipating in the group the larger the time penalty. Wehad expe
ted the di�eren
e in runtime of two and one group to be larger, but from the resultswe
on
lude that one group is best for large models where memory usage is
riti
al. If memoryusage is non
riti
al, we re
ommend using the DBM data stru
ture, as the CDD data stru
tureadds a runtime overhead, as reported in [4℄. 82

Test8.6.7 Additional results[4℄ report that the in
lusion test using CDD's is better than the in
lusion test using DBM's asCDD's des
ribe federations whereas DBM's des
ribe Zones. We have made the same observation,e.g. for the Bus
oupler model - using the DBM stru
ture requires exploration of 7.2 millionstates. When using our implementation of the CDD data stru
ture the model
ould be veri�edin 5.3 million explorations.This improvement is
ondu
ted even though the DBM implementation of Uppaal used the priorityWaiting list, and we only implemented the Waiting list as a linked list.To see that the implementation of the Waiting list as a priority queue has advantages overthe linked list implementation,
an be seen from the veri�
ation of the of the Da
apo model.Here the DBM Uppaal version with its priority Waiting queue veri�ed the model in 45005 stateexplorations, where our implementation explores 53957 states.8.7 SummaryThis se
tion summarizes the results ar
hived during the tests, and repeat the main
on
lusion.For the node representations up to 20% of memory were saved, at a maximum runtime
ostof 50%, whi
h we
onsider a

eptable as the runtime were not
onsidered during the design ofthese node representations. Memory representation 3 is only designed for running on non RISCar
hite
tures, as pointer may not be word aligned, but this
ould be extended to run on RISCar
hite
tures at a
ertain runtime
ost. This runtime
ost is expe
ted as the pointer
onvertinghas to be performed in software.The thesis we tried to test were whether memory
ould be saved by taking advantage of globalsharing. The results ar
hived during the group test, showed that nearly the same symboli
 stateshas to be explored for all dis
rete states, whi
h lead to a memory saving of 70% when building asingle CDD
ompared to building 4 separate CDD's. But the runtime penalty introdu
ed wereup to 900%.In the test of the distributed CDD we observed that the memory overhead introdu
ed by
om-muni
ation nodes, and building the CDD di�erently were a

eptable, ranging from 4.3% to 6.7%.The runtime penalty introdu
ed by the distribution, were
onstant to the number of
omputernodes parti
ipating in the veri�
ation.The worst
ase
omplexity for ea
h veri�ed state were
al
ulated to 3k messages, k being thenumber of
omputer node parti
ipating. The measured
omplexity were between 1:5k and 2:3k,whi
h might indi
ate that the in
lusion test often failed on the upper
omputer nodes, or thata large number of in
lusion tests su

eeded.The memory were not evenly distributed, whi
h indi
ate the need for a dynami
 memory loadbalan
ing. The CPU load were a�e
ted by this non even distribution of memory, but mostlyfrom the fa
t that the top
omputer node holds all dis
rete states, as the number of dis
retestates is large, resulting in a large runtime penalty for sear
hing for the CDD handle.
83

8.7 Summary

84

Chapter 9Con
lusionIn the
on
lusion we analyze the results ar
hived, whi
h knowledge
an be used, and whi
himprovements are possible to ar
hive further memory savings.Although it were dis
overed that the problem of storing the Passed list in Uppaal were notstoring the symboli
 part of the states, the results ar
hived are satisfying, as purpose were toinvestigate how mu
h memory
ould be saved by global sharing.The global sharing ar
hived were almost linear to the number of
omputer nodes used for theCDD data stru
ture, the argument for this has to be that for almost all dis
rete states, thesame symboli
 states are explored. This fa
t,
ould be used to make an even more
ompa
trepresentation of the Passed list, were the dis
rete and the symboli
 part of the Passed list is
ombined in the same data stru
ture.The memory overhead added by the
ommuni
ation layers was between 4.4% and 6.8% using four
omputer nodes whi
h seems reasonable. The relative memory savings for a single distributedCDD
ompared to four groups on four ma
hines, was up to 70%.The runtime penalty introdu
ed were between 560% and 900%, whi
h is a

eptable taken into
onsiderations that we have not optimized with respe
t to runtime. If the distributed datastru
ture were redesigned to also take runtime optimizations into a

ount, the runtime penaltymight be redu
ed, and if the great memory savings
ould be kept, the data stru
ture might proveinteresting. Possible runtime optimization is dis
ussed in se
tion 10.4.Although the ar
hived results might not be used for the
urrent Uppaal version, as the runtimepenalty added is to large and models with large symboli
 parts does not exist. Some of the ideasmight be used in the design of other distributed DD data stru
tures. Some of the ideas mightalso be used to design a distributed de
ision diagram(DD) data stru
ture for storing the dis
retepart of the Passed list. If the sharing in su
h a distributed data stru
ture
ould be as great as forthe symboli
 part, designing su
h a DD data stru
ture
ould allow the veri�
ation of very largemodels. But before su
h an algorithm
an be implemented a throughout design of the in�uen
esof
ombining the dis
rete and symboli
 part of the Passed list in the same data stru
ture has tobe investigated. The possibly sharing in the dis
rete part also has to be investigated. In the next
hapter we give an example on how the dis
rete part
ould be stored in a DD data stru
ture.The alternative node representations designed and implemented showed that the used memoryusage
ould be redu
ed up to 20%, at an a

eptable
ost in runtime being at most 50%. If thedesign of the node representations were designed to optimize runtime as well as memory usage,the runtime might de
rease.As this proje
t makes a
ontribution to
omputer aided veri�
ation, the data stru
tures andalgorithms designed must be semanti
ally sound and
omplete, why we have
ondu
ted severalsemanti
 proofs. First we proved that adding the
ommuni
ation layer to the CDD does not
hange the semanti
s of the CDD. This were used to simplify the proofs of the distributed algo-rithms, as it made a dire
t mapping between the non distributed algorithms and the distributed.The semanti
 proof eased the design of the distributed algorithms, whi
h are very similar to thenon distributed. The only ex
eption is the union algorithm, whi
h had to be extended with a re-du
tion algorithm - as redu
tion
an only be performed bottom up, and union must be performedtop down.The ba
ktra
e operation designed in se
tion 4.4.4, were not implemented, and thus not tested.The reason for not implementing this operation were that the ba
ktra
e algorithm worst
ase

added k � 1 messages to the number of messages needed to explore a single state in Uppaal,whi
h we
onsidered too expensive, for further arguments refer to se
tion 6.2. The results show-ing that the sharing possible from global sharing being so large, the ba
ktra
e might prove worse,as the number of CDD nodes having only one su

essor might be very small, this
an also be seenfrom the diagrams showing the distribution of CDD nodes for ea
h type, as there is a relativelysmall number of these nodes.Even though it might prove that the ba
ktra
e algorithm
ould redu
e the runtime on somekinds of models, whi
h
ould be investigated. This investigation
ould easily be
ondu
ted on asingle pro
essor version of the CDD data stru
ture, as the results would map to the distributedimplementation.The group test showed that the size of ea
h of the CDD's lo
ated in groups almost had the samesize as the single CDD. This indi
ates that is advantageous to use a single CDD, as the size ofseveral CDD's using groups is almost as large as single CDD times the number of groups.The
omplexity of the distributing the CDD, indi
ated that is it not advantageous to distributethem, if they
an be lo
ated on a single node. As all the timed automata model we haveen
ountered used most memory representing the dis
rete part. An approa
h to improve both theruntime and memory usage, would be to lo
ate the symboli
 state spa
e on a single
omputernode, and distribute the dis
rete part. This would allow global sharing between all dis
retestates, and redu
e
ommuni
ation overhead.If a model with a symboli
 state spa
e that
annot be lo
ated on a single
omputer node, thedistribution approa
h des
ribed in this proje
t might prove useful. Although this approa
h doesnot s
ale to more
omputer nodes than the number of types in the CDD.

86

Chapter 10Future WorkIn this
hapter we dis
uss whi
h improvements to the existing implementation
an be made, toar
hive further memory/runtime savings.10.1 CDD Implementation of Waiting ListIn the
urrent implementation only the symboli
 part of the Passed list is represented as a CDD.We have not
ondu
ted tests showing how mu
h memory is saved by using CDD's
ompared tothe use of DBM's for storing the Passed list, as mentioned in the purpose. A single pro
essorimplementations of Uppaal based on the CDD data stru
ture have shown 42% memory savings
ompared to storing the Passed list as shortest path redu
ed DBM's. Therefore it is not unlikelythat storing the Waiting list as a CDD also
ould save some memory in the representation of theWaiting list. Besides saving memory in the representation another advantage
ould be ar
hived:When Uppaal takes a state out of the Waiting list, it expe
ts a DBM, whi
h has been shown tobe equal to a S-CDD. If the two S-CDD's in �gure 10.1 is inserted into the Waiting list in theshown order, only the S-CDD of �gure 10.1(b) will be represented and thus veri�ed by Uppaal,this might lead to a faster termination of Uppaal, as fewer states might be examined.
2 4 6

2

4

6

4

2

4

6

2 6
X

Y
X

Y

true true[�1; 1℄[�2; 2℄
[1; 5℄ [2; 4℄[1; 5℄ [2; 4℄X � YYXX

X � YY
(a) (b)Figure 10.1: Example on how representing the Waiting list as a CDD might lead to fewer examined states forUppaal

10.2 Distributing the Dis
rete partIn the
urrent implementation of Uppaal the Waiting list is implemented as a priority queuewhere states with a larger Zone are veri�ed �rst, followed by states with smaller Zones, thisleads to the same redu
tion as for the Waiting list implemented as CDD, only in the DBMpriority queue elements must be inserted
orre
tly leading to a linear sear
h, when using CDDfor storing the Waiting list this priority queue
ould be implemented at a lower runtime
ost.10.2 Distributing the Dis
rete partThe
urrent implementation of the distributed CDD does not distribute the dis
rete part ofthe state spa
e, as stated previously. This se
tion
omes with some guidelines for how su
h adistribution
ould be done using the
urrent implementation. The
urrent implementation storesall dis
rete states asso
iated with handles into the CDD on the top
omputer node. The problemwith distributing the dis
rete part is that we need it to �nd the handle into the CDD, as thesymboli
 state must be unioned with the handle mat
hing the dis
rete part.A possible distribution approa
h is des
ribed in the following algorithm:� A
omputer node re
eives a state from Uppaal� It �nds the
omputer node responsible for this dis
rete part via a hash algorithm, andsends the state to this node.� The
omputer node responsible for the dis
rete part re
eives the state and uses the dis
retepart to �nd a handle into the CDD, and sends the symboli
 part along with the handle, anda ma
hine ID to the top node. Note that this
omputer node has to syn
hronize with thetop
omputer node on the handle, when it re
eives a dis
rete part it has not seen before.� The top
omputer node re
eives the symboli
 state along with the handle whi
h it uses to�nd the node for whi
h it must perform an in
lusion test of the state. The in
lusion testis performed distributed as in the
urrent implementation.� If the in
lusion test su

eeds no further a
tion has to be taken, if it fails a union requestis send to the top node, and the state is send to the node responsible for the state usingthe ma
hine ID.� The node responsible for the state re
eives the state that failed the in
lusion test andinserts it in its Waiting list for further exploration.The syn
hronization on the handle between the
omputer node responsible for the dis
rete partand the top node,
an be performed by letting the node holding the dis
rete part send a uniqueid that it generates itself, meaning that ea
h time the top
omputer node re
eives a state it
an�nd the handle from the unique id. This will work as all nodes holds separate dis
rete parts,meaning that no syn
hronization on handles need to be performed between other nodes.This way to distribute the dis
rete part will add a
omplexity of sending one additional message,leading to a new
omplexity of 3k + 1 instead of 3k. We do not expe
t this extra messageto in
rease the overall runtime mu
h, but additional test needs to be performed to verify thisthesis. The memory used to store the dis
rete part will in this way be evenly distributed, givena uniform hash algorithm. 88

Future Work10.3 Representing the Dis
rete Part as MTIDDDuring this proje
t we realized that the problem of storing the Passed list in formal veri�
ation oftimed automata, is not storing the symboli
 part, but storing the dis
rete part, we have thoughtof a way to storing the dis
rete part of the Passed list. The dis
rete part of the Passed list isin this proje
t implemented in a hash list, that is a number of hash bu
kets, ea
h
ontaining alinked list of dis
rete states, with ea
h dis
rete state a pointer is provided, whi
h is a pointer tothe handle in the CDD data stru
ture whi
h should be used.In this se
tion we des
ribe how the dis
rete part of the Passed list possible
ould be implementedusing a Multi Terminal Integer De
ision Diagram (MTIDD). , whi
h possible
ould save bothmemory as well as redu
e the runtime.We �rst des
ribe how the dis
rete part
ould be stored using a MTIDD, then we argue why thispossibly
ould save memory, and �nally we argue how this method of storing the dis
rete part
ould save some time.10.3.1 RepresentationThe dis
rete part of an Uppaal state
onsists of two parts:Lo
ation A timed automata model,
onsists of a number of pro
esses possibly syn
hronizingwith ea
h other. Ea
h of these pro
esses
an be in a number of di�erent lo
ations. E.g. ifa pro
ess simulates a train gate, it might have three states: open,
losed, and a
tive. Thelo
ation part of the dis
rete part
onsists of a ve
tor designating whi
h lo
ation ea
h of thepro
esses is
urrently in. In the
urrent Uppaal implementation ea
h pro
esses is allowedto have 64K di�erent lo
ations. This information is stored as an array of integers.Variables Besides lo
ations, syn
hronizations
hannels, and
lo
ks, timed automata models arealso allowed to hold integer variables. The se
ond part of the dis
rete state in Uppaalstates is an array holding the value of ea
h of these integer variables.The dis
rete part is
urrently stored as an array of integers. For ea
h lo
ation ve
tor, the numberof di�erent variable assignments may be very large. In the
urrent implementation the lo
ationve
tor is stored on
e for ea
h variable assignment, this redundant information
ould be deletedrepresenting the dis
rete part as a MTIDD.That is the only information needed to be stored is an array of integers. For this purpose aMTIDD
ould be used, then ea
h layer in the MTIDD, represent one entry in the array repre-senting a lo
ation or an integer. Ea
h node holds a list of assignments to the lo
ation/variableand a pointer to follow if this assignment is true. When the lowest layer has been rea
hed,the bottom node holds a handle into the CDD data stru
ture. An example on a MTIDD datastru
ture holding the information:� f1; 1; 1; 45; 46g ; handle1� f1; 1; 2; 45; 46g ; handle2� f1; 1; 1; 45; 47g ; handle3� f1; 1; 1; 44; 46g ; handle4 89

10.3 Representing the Dis
rete Part as MTIDD� f2; 1; 1; 45; 46g ; handle5� f1; 1; 1; 45; 48g ; handle6Is presented in �gure 10.2(a)

(a)

1

1 1

1 1

2

2

44 45

46 46 47 48

45 45

46 46

(b)

1

1

1

2

2

44 45

46 47 48H4 H1 H3 H6 H2 H5
L1L2L3V1V2 V2 V2 V2V1 V1L3L2

H1 H3 H6
L1L2L3V1 V2

f1; 1; 45; 46g; H5f45; 46g; H2f46g; H4
Figure 10.2: (a) Multi Terminal Integer De
ision Diagram, used for representing the dis
rete part of the Passedlist of Uppaal. (b) MTIDD representation of the dis
rete part using optimizations, using tagged ar
hite
ture.In the �gure L1, L2, and L3 designates lo
ations, V1 and V2 designated integer variables, and H1 : : : H6 designatedhandles into a CDD data stru
ture.
10.3.2 Saving MemoryThe reason that it is expe
ted that the MTIDD data stru
ture might save memory in the repre-sentation of the dis
rete part of the Passed list, is the same as the reason that other XDD datastru
tures save memory, namely by only storing information on
e. But where most XDD datastru
tures share data in the bottom elements, the MTIDD data stru
ture used is only allowedto share information at the top of the data stru
ture. E.g. the representation of the �rst threeintegers as f1; 1; 1g is only stored on
e, although used for four handles. One disadvantage ofthis representation is that a
ertain overhead is added as ea
h node need to keep additionalinformation. This problem o

urs when the MTIDD holds a subpart of only a single string, thenthis representation might double the memory usage, as it
an be
ompared to represent an arrayas a linked list. If when
onstru
ting a sub MTIDD with only a single terminal node, an array isinserted with the values of the remaining variables and a handle, some memory
ould be saved.This memory optimization is showed in �gure 10.2, to known whether the su

essor is a MTIDDnode or an array, a tagged ar
hite
ture
an be used, as the two least signi�
ant bits are not usedin pointers, these
an be used to represent whether the
hild following the pointer is a MTIDDnode or an integer array. It would even be possible to use our alternative node representation3 to use a minimum number of bytes to store variables, whi
h possibly
ould lead to furthermemory saving. 90

Future Work10.3.3 Saving TimeThe reason it is believed that representing the dis
rete part in a MTIDD might save some time,is that the amount of memory
ompared is expe
ted to de
rease greatly. E.g. for verifyingBus
oupler, whi
h is a relatively small model, over 1.5 million dis
rete states of size 160 bytesexists. The Bus
oupler model holds 16 pro
esses so the lo
ation ve
tor
onsists of 16 (16bit)integers, and the model holds 27 (32 bit) integer variables. That is the MTIDD holds 16+27 = 43layers, and only 43 MTIDD nodes, of di�erent size, has to be traversed.In the
urrent implementation using a hashed linked list, the hash data stru
ture holds 17609bu
kets. Then in the worst
ase 1:5�10617609 = 85 dis
rete elements of size 160 bytes need be sear
hed.Therefore the amount of memory
omparison needed using the MTIDD data stru
ture mighteasily be somewhat smaller than the amount of memory
omparison needed for the
urrentimplementation, and it is expe
ted to be even better for larger models.If the size of the MTIDD nodes is large, it takes more runtime to �nd the handle, but a greatersharing is a

omplished, and if the MTIDD nodes is small the time for �nding the handle is small,but so is the sharing. That is either is runtime saved
ompared to the ordinary implementation,or else memory is saved.10.3.4 DistributingAs the dis
rete part of the Passed list is the part that takes up the main part of the memory usage,it would be interesting to distribute this MTIDD data stru
ture, if it makes a more
ompa
trepresentation of the dis
rete part. Figure 10.2(a) show that the representation takes up themain part of the memory in the bottom part of the tree. This means that using a horizontaldistribution approa
h is not suitable, the verti
al distribution approa
h, or the groups approa
hdes
ribed in se
tion 4.2.2 on page 31 might show to be more appropriate as tra
es never merge,therefore the maximum number of messages send
an be redu
ed to less than the number of
omputer nodes used.10.4 Pa
k MessagesIn the
urrent implementation, some of the time penalty introdu
ed is expe
ted to
ome fromthe large number of messages send. In this se
tion we des
ribe how this number of messages
an be de
reased without
hanging the fun
tionality/semanti
s of the implemented system. Theidea is taken from the
urrent distributed Uppaal version, whi
h pa
k a number of states beforesending them to another
omputer node[3℄. That is, ea
h
omputer node holds a bu�er for ea
hof the other
omputer nodes, and whenever a messages should be send to another
omputernode, it is pla
ed in the
orresponding bu�er and when a
ertain number of messages has beenadded to a bu�er it is send. The same approa
h might be used in the distribution of the CDD.Ea
h
omputer node only propagates requests to the lower
omputer node (for in
lusion testand union), and to the upper
omputer node (for redu
tion). Therefore, for ea
h request typea single bu�er is kept, and send whenever it is full. To optimize this s
heme a little union andredu
tion request bu�ers, should be send before in
lusion test requests, whi
h would possiblede
rease the number of in
lusion test whi
h fail, and thereby redu
e the number of exploredstates. 91

10.5 CPU/Memory Load10.5 CPU/Memory LoadAnother problem our implementation su�ers from, is that the load distribution both with respe
tto CPU usage and memory usage is far from even. To solve this two approa
hes has to beimplemented, �rst and most important, the dis
rete part of the Passed list should be distributed,and se
ondly dynami
 memory load sharing should be implemented.An approa
h for distributing the dis
rete part of the Passed list has been dis
ussed is the previous.For implementing dynami
 memory load sharing, it should be possible to move a layer of theCDD data stru
ture from one
omputer node to another, and still keeping all su

essors
orre
t,to be able to implement this, a design and possible a semanti
 analysis has to be performed.10.6 Distributed Shared MemoryIn the
ost bene�t analysis we argue that the memory overhead introdu
ed by the
ommuni
a-tion nodes
ould be removed by using distributed shared memory.In the last two proje
t we have investigated the
apabilities of the S
alable Coherent Interfa
e(SCI) network te
hnology. The SCI te
hnology o�ers a hardware based distributed shared mem-ory environment. The following dis
ussion is based of the use of SCI for distributing the CDDdata stru
ture.The distributed shared memory interfa
e o�ered by SCI, has very low laten
y, and very highbandwidth (100-200MB/s) in writes, for reads the bandwidth is lowered to (4-5MB/s). Thereforethe proto
ol designed should be based on writes and not reads. Of the two ideas mentioned in the
ost bene�t analysis se
tion 6.4.1, the idea where the global pointers is written to the next node,whi
h is then signaled to
ontinue the request, might be the best approa
h, when SCI is used. Ifthe node dis
overing a state should make the in
lusion test and the union itself, the operationsshould fet
h large amounts of memory from the other nodes, at the low speed. Therefore thesame ideas as in this proje
t should be used, only should the
ommuni
ation proto
ol be altered,and the
ommuni
ation layers
ould be omitted.

92

Bibliography
[1℄ Alur and Dill. Automata for modelling real-time systems. Le
ture Notes in ComputerS
ien
e, LCNS 443, 1990.[2℄ R. Stallman B. Lewis, D. Laliberte and the GNUManual Group. GNU Ema
s Lisp Referen
eManual., 1995.[3℄ Gerd Behrmann, Thomas Hune, and Frits Vaandrager. Distributed timed model
he
king- How the sear
h order matters. In Pro
. of 12th International Conferen
e on ComputerAided Veri�
ation, Le
ture Notes in Computer S
ien
e, Chi
ago, Juli 2000. Springer-Verlag.[4℄ Gerd Behrmann, Kim Guldstrand Larsen, Justin Pearson, Carsten Weise, and Wang Yi.E�
ient timed rea
hability analysis using
lo
k di�eren
e diagrams. In Computer AidedVeri�
ation, LCNS 1633, pages 341�353, 1999.[5℄ R. Bellmann. Dynami
 programming. Prin
eton University Press, 1957.[6℄ Randal E. Bryant. Graph-based algorithms for boolean fun
tion manipulation. IEEE Trans-a
tions on Cimputers, 8(C-35):677-691, 1986.[7℄ W. T. Comfort. Multiword list items. Communi
ations of the ACM,7(6), June 1964.[8℄ Kim G. Larsen et al. Clo
k di�eren
e diagrams. BRICS Report Series publi
ations, 1998.[9℄ Paul Pettersson Kim G. Larsen and Wang Yi. Uppaal: Status & develoments. -, 1997.[10℄ K. Larsen, F. Larsson, P. Pettersson, and W. Yi. E�
ient veri�
ation of real-time systems:Compa
t data stru
ture and state-spa
e redu
tion, 1997.[11℄ Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell. Int. Journal onSoftware Tools for Te
hnology Transfer, 1(1�2):134�152, O
tober 1997.[12℄ Amit Narayan, Jawahar Jain, M. Fujita, and A. Sangiovanni-Vin
entelli. Partitioned rob-dds;a
ompa
t,
anoni
al and e�
iently manipulable representation for boolean fun
tions.In Pro
eedings of the 1996 IEEE/ACM international
onferen
e on Computer-aided design,pages 547�554. IEEE Computer So
iety Press, 1996.[13℄ Thies Rauhe Niels Klarlund. Bdd algorithms and
a
he misses. BRICS Report Seriespubli
ations, 1996.[14℄ Karsten Strehl and Lothar Thiele. Symboli
 model
he
king using interval diagram te
h-niques. Te
hni
al Report 40, Computer Engineering and Networks Lab (TIK), Swiss FederalInstitute of Te
hnology (ETH) Zuri
h, Gloriastrasse 35, CH-8092 Zuri
h., 1998.[15℄ Paul R. Wilson, Mark S. Johnstone, Mi
hael Neely, and David Boles. Dynami
 storageallo
ation: A survey and
riti
al review. In 1995 International Workshop on Memory Man-agement, Kinross, S
otland, UK, 1995. Springer Verlag LNCS.[16℄ Sergio Yovine. Kronos: a veri�
ation tool for real-time systems. -, 1997.

10.6 Distributed Shared Memory

94

Appendix AUnion/Redu
tion ExampleThis appendix gives an example on �rst a union operation building a
all sta
k, and using atemporarily hash table for a more e�
ient
onstru
tion. After the union has
onstru
ted theunion of a S-CDD and a CDD, a redu
tion is performed. The example run on two nodes, andwhenever a message is send from one
omputer node to another the message
ontent is alsoshown.

[0; 11℄
2 3 41 6 7 85 9
℄� 10;�2℄ [0;5℄ ℄5; 10[

℄10; 15℄ [2;10℄ [�10; 10℄
[2;10℄ [�10; 20℄
[0;11℄ [0; 1℄[0; 2℄ [0; 0℄

[0;10℄
[2;15℄
[�10;10℄
[0;11℄[0;2℄true

KJ
IHG
FE
DCB

A I
II
III
IV
V
VI

℄�1;1[℄�1;1[℄�1;1[

(a) (b)

℄� 4;�1[
[�1; 0[

Figure A.1: The two XDD data stru
tures that are going to be unioned in this example.Figure A.1 show a CDD and an S-CDD whi
h are going to be unioned, and thereafter redu
ed.The ba
ktra
e algorithm is not used, at this makes it easier to illustrate the redu
tion operation.During the operations it is assumed that all CDD nodes is referred by other CDD nodes notshown, so that these nodes
annot be deleted.Figure A.2 show the situation after the union has �nished its operations at the top node. To

[0; 11℄ [0;11℄ [0; 1℄[0; 2℄ [0; 0℄true
KJ

IHG
1 2 3 5 6 7 8 9

A'
B C C' DD' N1

E E' N2 F F'
[0; 5℄ ℄5; 10[

[�10;10℄ [�10; 10℄[�10; 10℄ [�10; 10℄4 ℄10; 20℄[�10; 20℄ ℄10; 15℄[2; 15℄[2;10℄ [2;10℄ ℄10;15℄[2; 10℄ ℄10; 15℄ [2; 10℄
[10; 10℄℄� 10;�2℄

℄�4;�1[
[�1; 0[

Call sta
k = A0,C 0,D0,N1,E 0,N2,F 0Union Request = f(6; 5); (7; false); (9; 8)gTemp hash = f(A [I = A0); (C [II = C 0); (D [II = D0); (false [II = N1);(false [III = N2); (false [III = N2); (E [III = E 0); (F [III = F 0)gFigure A.2: Show the example after the union has �nished on node one, and send a union request to the nextnode.
96

Union/Redu
tion Examplethe right of the CDD, the
all sta
k and the temporary hash table is shown. The idea is that forall nodes whi
h need to be
hanged is
opied (and in the example renamed from X to X 0), andthis
opy is then
hanged to satisfy the requirements. To see the fun
tion of the temporary hashtable, note that the only su

essor to node N1 is the union between false and III. The su

essorof C 0, with interval ℄10; 15℄ is also the union between false and III, thus the node N2 is reused,without repeating the union. Node E0 is also reused by using the temporary hash table.The message send to the bottom
omputer node is the following: f(6; 5); (7; NULL); (9; 8)g, has

true

1 2 3 5 6 7 8 9

A'
B C C' DD' N1

E E' N2 F F'
[10; 10℄[0; 5℄℄� 10;�2℄ ℄5; 10[

[�10;10℄ [�10; 10℄[�10; 10℄ [�10; 10℄4 ℄10; 20℄[�10; 20℄ ℄10; 15℄[2; 15℄[2;10℄ [2;10℄ ℄10;15℄[2; 10℄ ℄10; 15℄ [2; 10℄

G H H' N3 I I'
J N4 K K'

Callsta
k=A 0,C 0,D 0,N1 ,E 0,N2 ,F 0
[0;1℄[0;1℄[0;11℄[0;11℄ [0; 2℄

[0; 11℄ [0; 11℄ [0; 2℄ [0; 0℄ [0; 2℄℄
1; 11℄

℄�4;1[[�1; 0[

Figure A.3: Show the situation after the union on the bottom node, has rea
hed the bottom in it's re
ursion, andjust before it re
ursion starts build CDD nodes from bottom up.the following meaning. Union S-CDD (type IV 1) with the CDD-node referred to by
ommu-ni
ation array entry 5, and pla
e the result in
ommuni
ation array entry 6. The (7; NULL),means union S-CDD (type IV) with false, and let
ommuni
ation array entry 7 refer to it.Figure A.3 show the situation after the bottom node has performed it's union, but before it startre
ognizing that there is a possible sharing. (This situation does a
tually never exist, ex
ept onthe
all sta
k, but is shown as it gives a better understanding of the situation).1First type on next node 97

Whenever the bottom node builds a node in its union operation, it
he
ks whether there exist

true

1 2 3 5 6 7 8 9

A'
B C C' DD' N1

E E' N2 F F'
[10; 10℄[0; 5℄℄� 10;�2℄ ℄5; 10[

[�10;10℄ [�10; 10℄[�10; 10℄ [�10; 10℄4 ℄10; 20℄[�10; 20℄ ℄10; 15℄[2; 15℄[2;10℄ [2;10℄ ℄10;15℄[2; 10℄ ℄10; 15℄ [2; 10℄

G H H' N3 I I'
J K

Callsta
k=A 0,C 0,D 0,N1 ,E 0,N2 ,F 0
[0;11℄ [0; 2℄

[0; 11℄ [0; 11℄ [0; 2℄ [0; 0℄

℄�4;1[[�1; 0[

[0;1℄[0; 11℄ [0; 11℄
Figure A.4: An intermediate situation during the redu
tion on the bottom nodean equivalent CDD node, and if it does it use this node instead.E.g. whenever the nodes K 0, and N4 is
reated, the runtime system re
ognizes that these nodesare equal to the already existing node J . N4 and K 0 is thus never
reated, but all referen
es tothese nodes, is redire
ted to J . This result in two neighboring intervals point to the same node(both su

essors from I 0 points to J), and are thus merged and made to point to the same node,namely J . The situation after this is depi
ted in �gure A.4. This lead to that the union/redu
tionoperation re
ognizes that node N3 and I 0 is equal to the existing node G, therefore N3 and I 0is deleted and all referen
es to these nodes is redire
ted to node G, the same holds for nodeH 0 whi
h is equal to node H. As this rea
hes the
ommuni
ation array, the redu
tion requestfh6 = 5i; h7 = 1i; h9 = 1ig is send to the upper
omputer node, the situation after the fullredu
tion of the bottom node is shown in �gure A.5. As
an be seen the pointer from 6, 7, and9 is kept, these pointers are kept if future in
lusion/union request is propagated from the top
omputer node to the bottom
omputer node using these referen
es, before the redu
tion requestupdate the nodes at the top node. 98

Union/Redu
tion Example

true

1 2 3 5 6 7 8 9

A'
B C C' DD' N1

E E' N2 F F'
[10; 10℄[0; 5℄ ℄5; 10[

[�10;10℄ [�10; 10℄[�10; 10℄ [�10; 10℄4 ℄10; 20℄[�10; 20℄ ℄10; 15℄[2; 15℄[2;10℄ [2;10℄ ℄10;15℄[2; 10℄ ℄10; 15℄ [2; 10℄

G I
J K[0;1℄[0;11℄ [0; 2℄ [0; 0℄

H[0;11℄

Callsta
k=A 0,C 0,D 0,N1 ,E 0,N2 ,F 0

Redu
tionRequest=f(6=5);(7=1);(9=1)g

℄� 10;�2℄
℄�4;�1[

[�1; 0[

Figure A.5: The situation after the full union/redu
tion has �nished on the bottom node.

99

When the redu
tion request rea
hes the top node, it parses the message, and redire
ts all

true

1 2 3 5 6 7 8 9

A'
B C C' DD' N1

E E' N2 F F'
[10; 10℄[0; 5℄ ℄5; 10[

[�10;10℄4 ℄� 10; 20℄[�10; 20℄ ℄10; 15℄[2; 15℄[2;10℄ [2;10℄ ℄10;15℄[2; 10℄ ℄10; 15℄ [2; 10℄

G I
J K[0;1℄[0;11℄ [0; 2℄ [0; 0℄

H[0;11℄

Callsta
k=A 0,C 0,D 0,N1 ,E 0,N2 ,F 0

Redu
tionRequest=f(6=5);(7=1);(9=1)g

℄� 10;�2℄
℄�4;�1[

[�1; 0[[�10; 10℄[�10; 10℄

Figure A.6: Show an intermediate situation of the redu
tion on the top
omputer node.pointers, referring to 7 and 9 to point to 1. And all pointers from 6 to point to 5, all nodes inthe
all sta
k is sear
h for su
h pointers to redire
t. The situation after this is done is shown in�gure A.6. This redu
tion result in that CDD node N2 and F 0 be
ome equivalent. Node E andE0 also be
ome equivalent, and are redu
ed. Therefore all su

essors previous referring node F 0is redire
ted to point to N2. The same is the
ase with su

essors referring E0 whi
h is redire
tedto point to E. This redu
tion lead to further redu
tion, �gure A.7 show the �nal CDD after theunion/redu
tion has �nished.
100

Union/Redu
tion Example

N1DC

true

1 2 3 5 6 7 8 9

A'
B

4
G I
J K[0;1℄

H[0;11℄[0;11℄ [0; 2℄ [0; 0℄

[10; 10℄C'N2 FE
℄� 10;�2℄

℄�4;�1[[�1; 0[[2;10℄ [2; 10℄ ℄10;15℄ ℄10;15℄[2; 15℄[2; 10℄[�10; 20℄[�10; 10℄ [�10; 10℄
[0; 10[

Figure A.7: Show the �nal situation after the S-CDD and the CDD from �gure A.1 is unioned/redu
ed

101

