
Aalborg UniversitetDepartment of Computer Siene

Titel:Distributed CDD's- interfaing UppaalProjet period:DAT6,1. February 2002 -7 June 2002Group:Christian ThomsenRonnie KristensenSupervisor:Josva KleistNumber printed: 6

Abstrat:This projet desribes the design of a distributed imple-mentation of the CDD data struture. CDD's are relatedto BDD's but handles interval instead binary values. TheCDD is used in the real time veri�ation tool Uppaal tostore the symboli part of its states, these states onsists ofboth a disrete part and a symboli part. This distributionis onduted for the primary reason of allowing veri�ationof larger models. Besides designing the distribution of thedata struture, four operations working on the data stru-ture are designed. The semantis for the distributed datastruture is desribed, and some semanti proofs of impor-tant properties for the operations are given.The thesis tried to investigate, is whether using a singleCDD data struture, ompared to a number of smallerCDD's in a distributed veri�ation environment, an savesome memory by taking advantage of global sharing. Thatis, sharing in the symboli representation, aross several dis-rete states. Runtime is not onsidered as memory is theprimary bottlenek in veri�ation, the state spae takes upseveral GB in minutes.Finally tests are onduted to test the thesis, and to en-ounter the runtime penalty for these memory savings. Theresult shows that the memory saving were up to 70%, usinga single CDD distributed over 4 nodes, ompared to lettingthe 4 nodes holds four separate CDD's, this memory savingomes at a runtime penalty of 560-900%.Besides trying to save memory by distributing the CDDdata struture, some design were made to represent theCDD nodes as ompat as possible. The memory represen-tation saved up to 20% of memory ompared to the memoryrepresentation used in an existing implementation of theCDD data struture. The runtime penalty for this memorysaving is 50%.During the tests we disovered that the problem of memoryusage in Uppaal were not the storage of the symboli part,but storing the disrete part. In most timed automata mod-els, the disrete part takes up the majority of the used mem-ory. As we had foused on the distribution of the symbolipart, we were not able to verify larger models in the dis-tributed implementation, than on a single omputer node.In the last hapter some possible optimizations to the de-sign/implementation is disussed. This desription also in-ludes a disussion of whih part of this projet might beused for other projets, trying to distribute deision dia-gram data strutures. A possible data struture for storingthe disrete part of the states, is also desribed brie�y.

2

Resume
Dette projekt beskriver designet af en distribueret implementation af CDD datastrukturen.CDD'er er relateret til BDD'er men håndterer intervaller istedet for binære værdier. CDD'erbruges i real tids veri�ations værktøjet Uppaal til at gemme den symbolske del af de tilstandeder undersøges. Tilstande i Uppaal består af en diskret del og en symbolsk del. Distribuerin-gen er lavet med det primære formål at tillade veri�kation af større realtidsmodeller. Forudenat designe den distribuerede datastruktur, beskrives �re funktioner der arbejder på denne datastruktur. Efter designet beskrives semantikken for datastrukturen, samt for nogle vigtige egen-skaber for de designede funktioner.Teorien der efterprøves er om en enkelt distribueret CDD datastruktur, sammelignet med etantal mindre CDD'ere i et distribueret netværk, kan spare noget hukommelse, igennem deling afsymbolske tilstande mellem diskrete tilstande. For at spare så meget hukommelse som muligt, erhukommelses forbruget blevet overvejet igennem alle faser af designet, hvorved vi har aepteretet forøget tidsforbrug. Tidsforbrug er ikke taget i betragtning da hukommelse er den primærebegrænsning i veri�ering, tilstandsrummet kommer på minutter til at fylde gigabytes.Til sidst testes systemet for at se om teorien holder, og se hvilket forøget tidsforbrug distribuerin-gen medfører, igennem synkronisering osv. Resultaterne viser at der kan spares op til 70%hukommelse, ved at distribuere en CDD datastruktur over �re omputere, i forhold til at plaere�re CDD'ere på de samme �re omputere. Det forøgede tidsforbrug viste sig at ligge imellem560% og 900%.Foruden at spare hukommelse ved at distribuere CDD datastrukturen, er det også forsøgt at sparehukommelse ved at repræsentere CDD knuderne så kompakte som muligt. Hertil er der designettre forskellige knude repræsentationer. Den mest besparende knude repræsentation sparede 20%hukommelse i forhold til knude repræsentationen i en eksisterende CDD implementation. Detmaksimalt tilføjede tidsforbrug ved denne hukommelses repræsentation var 50%, men ved noglemodeller var det forøgede tidsforbrug minimalt, eller negativt (så vi sparede køretid).Under testen fandt vi ud af at det største problem ved hukommelsees forbruget i Uppaal, ikkevar at lagre den symbolske del, da denne kun optog en mindre del af det samlede hukommelsesforbrug. Da vi havde fokuseret på distribueringen af den symbolske del, blev vi ikke i stand tilat veri�ere større modeller, som var en del af vores vores formål.I det sidste kapitel diskutere vi nogle optimeringer der er mulige til designet/implementeringen.Beskrivelsen indeholder også en beskrivelse af hvilke dele af vores projekt der kan bruges i andreprojekter der forsøger at distribuere andre deision diagram data strukturerer. Til sidst beskrivesen datastruktur til at lagre den diskrete del tilstandene.

Christian Thomsen Ronnie Kristensen

Contents
1 Uppaal 31.1 Overview . 31.2 Uppaal Engine . 51.3 Data Strutures . 61.4 Versions of Uppaal . 92 Purpose 132.1 Approah . 132.2 Purpose . 143 Data Strutures 173.1 Syntax . 173.2 Operations . 223.3 Current Uppaal . 223.4 Mapping CDD's to set formulas . 233.5 Mapping DBM's to CDD's . 234 Design / Data strutures 254.1 Non Distributed Algorithms . 254.2 Distributing the Data Struture . 314.3 Communiation . 334.4 Operations . 344.5 Node Representation . 435 Semantis 495.1 Semantis of the Distribution . 495.2 Data Strutures . 505.3 Distribution . 515.4 Operations . 525.5 Union . 54

5.6 Semantis of Baktrae . 555.7 Reduing CDD's . 596 Cost Bene�t Analysis 616.1 Operations . 616.2 State Exploration . 626.3 Groups . 646.4 Memory Overhead . 647 Implementation 677.1 Uppaal interfae . 677.2 Use Pipelining . 687.3 Hash lists . 687.4 Distributed Garbage Colletion . 688 Test 718.1 Limitations of the Implementation . 718.2 Purpose of the test . 718.3 Premises . 728.4 Test desription . 748.5 Expeted Results . 748.6 Results and Analysis . 768.7 Summary . 839 Conlusion 8510 Future Work 8710.1 CDD Implementation of Waiting List . 8710.2 Distributing the Disrete part . 8810.3 Representing the Disrete Part as MTIDD . 8910.4 Pak Messages . 9110.5 CPU/Memory Load . 9210.6 Distributed Shared Memory . 92A Union/Redution Example 95ii

Introdution
During the last deade omputer aided veri�ation has established itself as a powerful tehniquefor verifying whether a given formal model satis�es ertain properties. In the last years toolshas been extended to the veri�ation of real-time systems, examples of suh tools are Uppaal[11℄and KRONOS[16℄.The major problem in omputer aided veri�ation is the memory onsumption aused by thestate spae exploration, as the spae usage in worst ase is exponential to the number of statesin the veri�ed system. System veri�ation size an easily reah multiply of GB in less than anhour on a standard omputer. There are several solutions to solving the state explosion problem,one is simply to buy a large mainframe omputer, but a omputer that is su�ient today mightbeome insu�ient tomorrow. Another problem to this approah is the ost, as large mainframeomputers are expensive ompared to standard ost of the shelf omputers. Using standardomputers though limits the memory usage to 4GB, for a 32 bit arhiteture. This leads toanother solution to the state exploration problem, that an be solved by utilizing the memoryon a network of workstations by distributing the veri�ation proess.Several approahes tries to solve this problem in a more algorithmi way by designing ompatdata strutures to store the states of the system being veri�ed. The best data struture so far forthe Uppaal veri�er has been the lok di�erene diagram (CDD) that report average saving of42% ompared to the standard used data struture being di�erene bounded matries (DBM).The ost for this saving is a modest inrease in runtime of 7%[4℄.This projet aims at allowing Uppaal to verify larger model using a Network Of Workstations(NOW). whih is done by distributing the CDD data struture.PremisesUppaal uses timed automata for verifying real time systems. A timed automata is a �nite au-tomata extended with variables and real valued loks. The states used by Uppaal is dividedinto three ategories:Loations This part of the state represent in whih loation the timed automata is in.Variables This part desribes the valuation of all variable in the timed automata.Zones This part represents the valuation of the loks in the timed automata.Loations and variables will in this report be denoted the disrete part of the state, and Zonesis referred to as either Zones or the symboli part of the state.This projet fous on representing the Zones part of the already searhed states in Uppaal. Thiswere hosen from the hypothesis that it were the zones that took up the main part of the memory.Many artiles report on trying to representing the zones as ompat as possible, example artiles

on suh is: [4℄, [10℄ and [9℄. Therefore we deided to try to distribute the zones as it seemed tohold the greatest problems with respet to memory. Later in this projet it has been revealedthat this is not the ase, as the disrete part normally uses the main part of the required memoryduring a veri�ation. As this fat was disovered late in the projet it has some in�uene onthe outome of the tests onduted in hapter 8. The report is strutured hronologially as theprojet went on, but in hapter 1 we give a more in depth explanation of why the symboli partdid not aount for the main part of the used memory.this were not the ase, and in hapter 8 we see what the onsequenes of only distributing thesymboli part of the state spae, and �nally in hapter 10 we disuss ideas on how this probleman be solved.Related WorkThe work in [4℄ desribe the use of the CDD data struture in the Uppaal engine, whih hasinspired this projet. Also the work in [3℄ on implementing a distributed version of Uppaal hasbeen inspiring for the work made in this projet.OutlineThe report is strutured as follows:First we give an introdution to Uppaal with a brief introdution to the used data strutures.After this the purpose of the projet is stated.Then a more in depth desription of lok di�erene diagrams and di�erene bounded matrieswith syntax is given.The designed algorithms will follow these desriptions.The semantis of the distributed data strutures are then desribed together with semantisproofs of the algorithms designed.After the semantis a ost/bene�t analysis is onduted to reason on the expeted memory/runtimeoverhead.After the ost bene�t analysis we desribe the implementation of the distributed CDD datastruture.This is followed by a test of the implementation with an analysis of the results.Finally we onlude on the projet followed by some perspetives on the projet.

2

Chapter 1UppaalThis hapter desribes the veri�ation tool Uppaal, �rst we give a general overview, followedby a desription of Timed Automata, hereafter a desription of the Uppaal engine inluding theused data strutures, is given . Finally di�erent versions of Uppaal are desribed.1.1 OverviewUppaal is a veri�ation tool for real time systems based on onstraint-solving. It is espeiallysuited for systems that an be modeled as a olletion of non-deterministi proesses with a �niteontrol struture and real valued loks. Typial appliation areas are: Real time ontrollers andommuniation protools where timing aspets are ritial. Uppaal an hek for reahabilityand invariant properties. The models used with Uppaal onsists of a network of timed automata(TA),[1℄, extended with integer variables. Uppaal inludes a graphial tool whih allows the userto draw timed automata and run simulations.1.1.1 Timed AutomataTimed automata has established itself as a standard for verifying real time systems. In thissubsetion we give an informal introdution to timed automata.
x � 4 x � 6y � 5^y := 0

x := 0y := 0
x � 2l0 l1

Figure 1.1: Timed automataFigure 1.1 shows a timed automata with two loations: l0 and l1 and the real valued loks xand y.A timed automata is a �nite state automaton extended with a �nite olletion of real valuedloks.A formal de�nition of TAs is:A timed automaton A is a 7 tuple < L; l0; E;C; loks; guard; I >� L is a �nite set of loations with l0 being the start loation.� E � L� L is a set of transitions between loations.� C is a �nite set of loks. (in the example x and y)

1.1 Overview� loks is a funtion that assigns eah transition with set of loks, to be reset to 0 whentaking the transition.� guard is a funtion that assigns eah transition with a lok onstraint (a guard) over C.A onstraint is over a set of loks and hold the following syntax: Xi �Xj � n or Xi � n,where Xi;Xj 2 C, �2 f<;�;� ; >g, and n is an integer.� I is a funtion that assigns an invariant over C to eah loation.To stay at a loation the invariant must be satis�ed, likewise for taking a transition, the guard onthe edge denoting the transition must be satis�ed. Invariane of a loation is desribed inside it,whereas guards for taking a transition is desribed on the edges in the graphial representationof the automaton.A state of a timed automata A is a pair (l;D) where l is the disrete part of A and D representthe values of all loks that A range over.If the TA in �gure 1.1 is in state (l0; f0; 0g) meaning that it is urrently at loation l0, with theloks x; y both having the value zero. It an stay in this loation letting time pass, as long asthe invariant of l0, being x � 4, is satis�ed, and at least one transition is possible: x � 2. Thetransition to l1 an only be taken when both the invariant of l1 and the guard on the transitionfrom l0 to l1 are satis�ed thus requiring that x � 2 ^ x � 6 ^ y � 5. When taking the transitionl0 to l1 the value of y is reset to zero.To use timed automata for reahability analysis Alur and Dill's region tehnique [1℄ is used inUppaal to represent the in�nite state spae of a TA as a �nite olletion of symboli states. Thesesymboli states will represent the lok onstraints of a system, and thus provide a onvex subsetof the Eulidean spae. We will refer to these onvex subsets as Zones with typial element Z.We de�ne a federation to be any �nite union of Zones, note that a federation is not neessarilyonvex see �gure 1.2, where the federation P is the non onvex union of the Zones Z1 and Z2,thus Zones are not losed under union.

1 2 3 4 5 6 7 81234
56 Y

X
Z1Z2P

Figure 1.2: Two onvex Zones, representingZ1 : (2 � x � 6 ^ 3 � y � 5 ^ �1 � x� y � 1)Z2 : (3 � x � 7 ^ 2 � y � 4 ^ 1 � x� y � 3)Federation P = Z1 [Z2A TA an be traversed by following edges that is not violating any onstraints in the destinationloation and the guards on the transition. Thus all reahable states l 2 L from a state l0 arethose: 4

Uppaal� that does not ontain any invariant that violates any loks onstraints,� that the transition from l0 to l does not have a guard that violates any loks onstraints.Note that l0 must be left before the invariants of this node is violated.When reahing a new loation the TA enters a new state, being (l;D), where l is the new disretestate (onsisting of the loation vetor and the values of all integer variables) and D is the setof all lok values representing the possible Zone.ConstraintsAs mentioned earlier onstraints may have the form:� Xi �Xj � n, or� Xi � nwhere Xi;Xj 2 C, �2 f<;�;�; >g, and n 2 N. In this subsetion we argue that only onstraintsof the form: Xi�Xj � n is neessary for simulating the others. First we will argue that Xi � nan be simulated by Xi � Xj � n. This is done by introduing a speial zero lok X0 whosevalue is always 0. Then Xi � n, may be simulated by Xi �X0 � n. Next we will argue that >and � an be simulated by < and � respetively. This is done by negation:� Xi �Xj > n , Xj �Xi < �n� Xi �Xj � n , Xj �Xi � � nThe last property to show is that Xi�Xj < n an be simulated by Xi�Xj � n, whih it annotbe in general, but it beomes possible as all guards and invariants only hek on integer values(n 2 N). The method used is by multiplying all onstraints by two on both sides, and if theinequality sign is < the bound is subtrated by one, that is the rules is translated to:� Xi �Xj < n ; 2 � (Xi �Xj) � 2 � n� 1� Xi �Xj � n ; 2 � (Xi �Xj) � 2 � n1.2 Uppaal EngineThe veri�ation engine of Uppaal is alled verifyta, it holds the responsibility for doing the atualveri�ation, that is reahability analysis and heking invariane properties.The verifyta is given a network of TAs and a formula to hek as input. For reahability analysisthe algorithm in �gure 1.3 is used, where ' is the formula for whih it should be ful�lled.This algorithm uses two lists, a Passed list and a Waiting list. The Passed list denotes all thestates seen so far, used to avoid exploring a state twie, and thus assuring termination when thetotal state spae has been searhed. The Waiting list is a queue of states waiting to be explored.The states held in these lists are of the form (l;D) where l denotes the disrete part, being avetor telling in whih disrete nodes all the TA's are in, together with the values of all variables5

1.3 Data Strutures1. Passed := fg2. WAITING := f(l0;D0)grepeatbegin3. get (l;D) from WAITING4. if (l;D) j= ' then return YES5. else if D * D0 for all (l;D0) 2 Passed thenbegin6. add (l;D) to Passed7. SUCC := f(ls;Ds) : (l;D); (ls;Ds) ^Ds 6= ;g8. for all (ls0 ;Ds0) in SUCC do9. put (ls0 ;Ds0) toWAITINGendend10. until WAITING = fg11. return NOFigure 1.3: An algorithm for symboli reahability analysis.of the TA's. D is a Zone representing the lok onstraints. The algorithm works as we startsout with an empty Passed list and with the initial state as the only state in the Waiting list(lines 1 and 2).We repeatedly takes a new state (l;D) from the Waiting list (line 3), heks if it satis�es theformulae ', if not we perform an inlusion test to see whether (l;D) has already been explored(line 5). If we fail the inlusion test (l;D) is added to the Passed list and all states that isreahable from (l;D) is added to the Waiting list (line 7). If we have searhed the entire statespae without �nding a state satisfying the formulae ', we return NO (line 10 and 11). Wean �invert� the algorithm by interhanging the YES and the NO (line 4 and 11), to obtain analgorithm that heks for invariants for the :' formulae:(:9 d 2 STATESPACE j d j= ') � (8 d 2 STATESPACE j d j= :')
1.3 Data StruturesThis setion desribes the data strutures used to represent the Passed list. As this list is usedto store previously explored state, it will at the end of a full state spae searh represent theentire symboli state spae, impliating that we must make this list as ompat as possible. Thefollowing subsetion desribes two data strutures used to make a ompat representation ofthis part of the Passed list, namely the di�erene bounded matries and lok di�erenediagrams. The algorithm in �gure 1.3 shows that there is a need for an e�ient inlusion teston the data struture holding the Passed list (line 5). Another ation that the data struturemust support is union of the Passed list with a new state (line 6)6

Uppaal1.3.1 Di�erene Bounded MatriesDi�erene bounded matries was �rst proposed in [5℄, later it were use for onstraint systems asthey an o�er a anonial representation of a suh.De�nitionA DBM representation of a onstraint system D is a weighted direted graph G = (V ,E) wherethe verties V desribes the loks in C and an additional zero vertex, that designates a lokwhose value is always zero. There is an edge E from x to y with weight m if there is a onstraintof the type x � y � m. Also there is an edge from x to the zero vertex with weight m if thereis a onstraint of the type x � m.DesriptionThe anonial representation that DBM's an o�er, is when they are losed. To desribe thelosedness of a onstraint system, we need to alulate the shortest path losure of the graphdesribing the onstraint system. Standard algorithms suh as Bellman-Ford an do this in O(n3)with n being the number verties in the graph (the number of loks in the onstraint system).

1 2 3 4 5 6 7 81234
56 Y

X
Z1Z2Z3

Figure 1.4: Three onvex Zones, representing by the losureZ1 : (2 � x � 6) ^ (3 � y � 5) ^ (�1 � x� y � 1)Z2 : (3 � x � 7) ^ (2 � y � 4) ^ (1 � x� y � 3)Z3 : (3 � x � 6) ^ (3 � y � 4) ^ (�1 � x� y � 3)The shortest path losure of a onstraint system ontains redundant onstraints, the onstraintfor �gure 1.4(Z1) ould be desribed only by the onstraints :(3 � y � 5) ^ (�1 � x� y � 1)meaning that the last onstraints for x is impliitly given by the others.As the inlusion test D � D0 runs in O(n) with n being the number of onstraints in D0, savingas few onstraints as possible is desirable.To do so, an O(n3) algorithm has been developed to alulate the shortest path redution, thatonverts a DBM in shortest path losure, to an equivalent redued system with a minimal numberof onstraints. The algorithm works essentially by saving all zero yles in the graph togetherwith the edges that interonnet these zero yles. The algorithm is desribed in [4℄.7

1.3 Data StruturesDBM's are limited as they only desribe onvex Zones. If the onstraint system D is inluded inthe union of more than one DBM as Z3 � (Z1 [Z2) in �gure 1.4. The inlusion tests Z3 � Z1and Z3 � Z2 will both fail despite the fat that Z3 already has been explored, partly in Z2 andpartly in Z1, thus foring redundant state exploration and redundant storing of Z3.Uppaal uses DBM's to store the symboli part of a state (the D part of the state (l;D)), thus forevery disrete state l there is a number of DBM's, that together desribes the searhed federationfor this disrete state. These DBM's are stored in the Passed list of �gure 1.3. The spae usedto store DBM's are O(n2) for the losed form. The average ase is a lot better for the DBM inits redued form, as most losed DBM's ontains redundant onstraints. [10℄ reports on savingsup to 97% for using redued DBM's instead of losed DBM's.
1.3.2 Clok Di�erene DiagramsIn this subsetion we present an informal desription of lok di�erene diagrams (CDD), whihis an extension to Redued Ordered Binary Deision Diagrams (ROBDD) presented by RandalE. Bryant in [6℄. CDD was �rst introdued by Larsen et al. in [8℄, as a data struture to storeonstraints in a onstraint system. In Uppaal CDD's are used to store the symboli part of thePassed list of the algorithm in �gure 1.3. The CDD data struture is greatly inspired by theIDD data struture desribed by [14℄.
De�nitionA CDD is a direted ayli graph T = (V;E) where V are verties of two kinds, either innernodes or terminal nodes.A lok onstraint is of the form Xi � Xj � m with Xi and Xj being real valued loks withinteger bound m. For any onstraint (Xi;Xj) is the type of the onstraint. Inner nodes has atype and a �nite number of suessor nodes eah representing an interval of reals with integerbounds referring to another CDD node. Terminal nodes are either true or false and have nosuessors. All types of nodes must be globally ordered meaning that when traversing a path in aCDD the types are inreasing, and no types will appear twie in the path. A reursive de�nitionof CDD's are :h(Xi;Xj); [I1; T1℄; : : : ; [In; Tn℄i where (Xi;Xj) is the type of the node, and Ii is an interval ofreals, and Ti is a CDD.The union of the intervals must be omplete, thus Si2f1;:::ng Ii = R The intervals must be disjointso 8Ii; Ij j i 6= j :Ii \ Ij = ;An example CDD is pitured in �gure 1.5, whih desribes the federation P = Z1[Z2 of �gure 1.2.An interval I = [a; b℄ for the type (Xi;Xj) represents the lok onstraint:Xi �Xj � a ^ Xj �Xi � b.Note that we omit all edges leading to false for simpliity reasons, this will apply to all �guresthrough out the report. 8

Uppaal

true

X-Y X-Y X-YY
[-1,1℄ [1,3℄[3,4℄[2;3[[-1,3℄℄4,5℄

Figure 1.5: The CDD for desribing the non onvex federation P = Z1 [Z2 of �gure 1.2 All edges not representedleads to the false node, these are omitted for simpliity.DesriptionA CDD desribes a federation meaning that the previously desribed problem of redundant stateexploration using DBM's an be eliminated. The inlusion test of the `Z3' Zone of �gure 1.4 willsueed as the shortest path losed onstraint system is desribed by (3 � x � 6) ^ (3 � y �4) ^ (�1 � (x� y) � 3), and these onstraints are all inluded in the CDD in �gure 1.5. Notethat there are no x CDD node represented, meaning that this node impliitly over R.CDD's allow sharing of lok onstraints over loation borders. That is if two zones from twodi�erent disrete states l and l0 share some ommon onstraints the CDD data struture allowsharing between these by giving the CDD several handles - namely one handle per disrete state.The memory usage of CDD are di�ult to reason about, as the sharing between handles are hardto foresee. Also the sharing within the same loation node is hard to foresee, theoretial the sizeis exponential. In the next setion we will state some experimental results about the memoryusage of CDD's ompared to redued DBM's, whih shows onsiderable memory-savings.1.4 Versions of UppaalThis setion gives an overview of the di�erent Uppaal versions that will be referred to in thisprojet.1.4.1 Sequential UppaalThere are two sequential version of Uppaal, one that implements the DBM data struture andone that implements the CDD data struture.� The basi version of Uppaal uses a shortest-path redued form of the DBM data struture[10℄.This implementation showed spae savings between 74% and 97%, ompared to an Uppaalimplementation using standard non redued DBM's.� In [4℄ Uppaal is tested with the CDD data struture, whih ompared to the shortest-pathredued form of the DBM's saves an additional 42% in average with moderate inrease inruntime (7%). 9

1.4 Versions of Uppaal1.4.2 Distributed Uppaal[3℄ present a distributed engine for Uppaal based on the DBM data struture for storing thesearhed states. This distributed Uppaal allowed verifying larger models by distributing thestate spae. The state spae is distributed in the following manner: (please refer to the algo-rithm in �gure: 1.3)Whenever a new state (ls0 ;Ds0) is found in line 8, the state is hashed to a spei� omputer noderesponsible for this state. When the node responsible for (ls0 ;Ds0) reeives this request, it simplyputs it into it's Waiting list, for later exploration and possible storage.Eah node holds a part of the global Passed list, this part ontains symboli onvex Zones forall disrete states whih the node is responsible for.The urrent distributed Uppaal uses DBM's for storage of the symboli part of the state spae.Using the CDD data struture would impliate that eah node holds a single CDD data strutureinstead of several lists of DBM's. This sheme allow two kind of sharing.� The CDD data struture holds the federation searhed instead of holding a set of Zones,this removes the problem of redundant state exploration as desribed earlier.� Two di�erent disrete states might share ommon onstraints. If suh two disrete stateswere loated on the same node the shared onstraints need only be stored one. But storedon two di�erent nodes will not lead to any spae redution.1.4.3 PremisesAs mentioned in the introdution a more in depth desription of why we hose to distribute theCDD data struture is given in this subsetion. The CDD data struture was hosen as it wasexpeted to aount for the main part of the memory memory used during a veri�ation, this wasderived from, as previously mentioned a lot of artiles on this topi, but also from the fat thatthe number of types in the CDD is quadrati to the number of loks, whereas the entries in adisrete state is linear to the number of loations and variables in the timed automata. Meaningthat omplexity wise it is to be expeted that the loks will aount for a higher memory usagethat the variables. This has not been the ase primarily from two reasons, �rst even though theloks are quadrati in size ompared to the variables and loations, the �normal� layout of aUppaal model make use of the same number of loations and variables as the quadrati size ofthe loks. Seondly the behavior of the Uppaal models it that there are many states where theloations and the variables di�er from other states but the loks values are the same, meaningthat the loations and variables are stored twie whereas the loks are only stored one.In hapter 8 we see what onsequenes this mismath between our interpretation of the Uppaalbehavior and the atual behavior gives.The report ontinues as if the problem still were the representation of the symboli part, untilhapter 8 were the onsequenes of our misinterpretation is given.10

Uppaal1.4.4 SummaryThe di�erent versions of Uppaal together indiates that it might be possible to verify largermodels if we an distribute the CDD data struture among several omputer nodes. In thisway we an utilize the larger amount of memory available in a network of workstations, and atthe same time take advantage of the memory savings that the sequential version shows. Againveri�ation is very memory intensive and not espeially CPU dependent, as the state spaeexplodes exponentially with the size of the model.After stating the used data strutures in Uppaal, together with the di�erent version, are weready to state the purpose of this projet.

11

1.4 Versions of Uppaal

12

Chapter 2PurposeThe purpose of this projet is to investigate what distributed omputing has to o�er in the veri-�ation of timed automata. As mentioned in the introdution formal veri�ation is very memoryintensive, therefore the main purpose of this projet is to utilize the larger amount of memoryavailable in a distributed system e�iently, in the area of formal veri�ation.
2.1 ApproahThe purpose of this projet is to distribute Uppaal to be able to verify larger models. Ourpurpose is inreased memory-savings in favor of inreased speed. Therefore this projet triesto design and implement a distributed CDD data struture for storing the symboli part of thePassed list stored by Uppaal.The CDD is distributed by partitioning the CDD and store di�erent partitions on di�erentomputer nodes. The urrent distributed Uppaal distributes the Passed list by distributingDBM's to omputer nodes, by hashing on the disrete part of the state. A single extendeddistributed Uppaal implementation using CDD's, is to use that same approah, by storing asingle CDD on eah node. A further improvement ould be to make a single CDD span allomputer nodes, there by arhive sharing between all disrete states.The di�erenes between the mentioned distribution possibilities of Uppaal is depited in �gure2.1

New state

Node II Node IINode IINode I Node I..................
Node IV(b)
Node IIINode IV(a)

Node III.........
Node I
Node IIINode IV()

Node III
Node I

(d)
Node II
Node IV

CDDShortes-path redued DBMFigure 2.1: Four approahes for distributing Uppaal.Figure (a) show the urrent distribution approah used.Figure (b) show an approah similar to the urrent distribution Uppaal version, but using the CDD data struture.Figure () show a CDD data struture distributed aross all nodes partiipating in the veri�ation.Figure (d) shows a hybrid between (b) and (), with more than one CDD, all spanning more than one node.

2.2 PurposeThe approah of using a single distributed CDD has some advantages as well as disadvantages,whih will be disussed in the following.Charateristis of a Single Distributed CDDGlobal Sharing The most obvious advantage of this approah is naturally that it allow sharingbetween all disrete states.Heterogeneous Another advantage of the distributed CDD approah ompared to the othertwo approahes is that the distributed CDD approah handles heterogeneous on�gurationsbetter. If e.g. some nodes has more memory than others speial hash funtions has to beimplemented in the urrent distributed Uppaal, whereas in the distributed CDD approahit is possible to implement runtime memory distribution by moving a CDD layer from oneomputer node to another.Dynami load sharing In the urrent distributed Uppaal only the omputer node responsiblefor a disrete state hold information about whih Zones has been explored, therefore suhstates have to be send to this omputer node. This may introdue a bottlenek problemif at a ertain time many states with the same hash value is found, then the responsibleomputer node beome a bottlenek. When using only one CDD, all omputer nodes anexplore all states whih means that tasks should only be send to other omputer nodeswhen these has an empty Waiting lists. If a omputer node beome a bottlenek, it maysimply distribute it's Waiting list to the other partiipating omputer nodes.Dereased salability A problem with the distributed CDD approah ompared to the otherdistribution approahes is that the distributed CDD approah might not sale to manyomputer nodes, it time performane might derease. The reason for this expeted dereasein speed performane is that whenever a new state should be explored an inlusion testmust be performed. To make a omplete inlusion test, CDD nodes on every omputernode must be searhed, that is at least k � 1 synhronization messages must be send foreah inlusion test in a system with k omputer nodes. The same ounts for union - whenthe state has been searhed it must be unioned into the existing CDD, this union alsoinvolve at least k� 1 synhronization messages. Further ost/bene�t analysis is ondutedin hapter 6.2.2 PurposeThe tests on the non distributed CDD version of Uppaal, showed signi�antly memory savingsbeing 42% ompared to the shortest path redued DBM version. This should also apply to thedistributed version, but as a derease in time performane is expeted due to the larger synhro-nization overhead introdued by the distributed CDD approah, we will try to �nd the trade o�for how many omputer nodes a distributed CDD should span. The assumptions is that the moreomputer nodes a CDD span the larger the overhead in synhronization is, but it gives possibilityof reduing the overall memory usage. On the ontrary, a CDD spanning fewer omputer nodesminimize the synhronization overhead, but does not allow maximum memory saving in form ofglobal sharing. Trying di�erent hybrid version as the one in �gure 2.1(d) is a way to �nd thistrade o�. This way it is possible to see how muh memory an be saved utilizing global sharing,and at whih runtime ost this memory-saving omes at. To summarize our purpose is:14

PurposeHow muh memory an be saved by global sharing through the CDD datastruture for saving the symboli part of the Passed list in formal veri�ationof timed automata. Find the relation ship between synhronization overhead/memory usage when using a hybrid CDD model where the number of CDD'sare ranging between one and the number of omputer nodes used.

15

2.2 Purpose

16

Chapter 3Data StruturesThis hapter desribes the data strutures whih are used in this projet, how they are used andsome syntax for these.This projet uses two main data strutures:CDD The main data struture in this projet is the CDD data struture, whih stores the sym-boli part of the Passed list in Uppaal. This data struture is to be distributed over allpartiipating omputer nodes, or within a group of omputer nodes.Most deision diagram data strutures holds a single handle (one node in the top of thegraph representing the value of the �rst variable in the variable ordering), but the CDDdata struture allow several handles to allow maximal sharing between ontrol states, �gure3.1 show an example on sharing between ontrol states using two handles.DBM All ommuniation with the Uppaal engine is via the DBM data struture. To performthe inlusion test (�gure 1.3 line 5) the DBM representation for the new state is onvertedinto its shortest path losure before the inlusion test is performed, as this desribes allonstraints that must be satis�ed for the inlusion test to sueed. When a state shouldbe unioned into the Passed list the same DBM is onverted into its shortest path reduedounter part(onverted to a CDD), before inserted into the CDD, as this DBM ontainsthe minimum required information for desribing the onstraint system.Handle ljY Y Handle li[2; 6℄[1; 4℄X X[2; 6℄[1; 4℄X-Y[�1; 0℄trueXZi = liY
Zj = lj

8642 2 4 6 8(a) (b)Figure 3.1: Example on sharing between two di�erent disrete states. The (a) part show two Zones Z1 and Z2belonging to two di�erent disrete states. Figure (b) show the CDD representing these two areas. This CDD hastwo handles, one for eah disrete state. As an be seen the two disrete states share CDD nodes.3.1 SyntaxBefore any other properties for the data strutures is given, some syntax is provided to supportfurther desriptions.

3.1 Syntax3.1.1 Clok Di�erene DiagramsThe CDD data struture is used to store the Passed list in Uppaal, that is the CDD data strutureonly holds the symboli part of the Passed list, with the disrete part given by handles into theCDD data struture.CDD's are used to store the onstraints (Xi�Xj � n) whih together spans the union of searhedZones for eah disrete state (a federation).The set of all onstraint for a given disrete loation l in a timed automata A, is denoted D,with typial element . A onstraint is a three-tuple (Xi;Xj ; n) for the onstraint Xi �Xj � nA CDD is a direted ayli graph (DAG), typially denoted T with two kinds of CDD nodes:Inner and terminal nodes. Terminal nodes represents the onstants true and false, while innernodes are assoiated with a type (Xi;Xj) where i; j 2 f0::ng; i 6= j1. Ars labeled with intervalbounds of the di�erene of the loks given by the type (Xi;Xj). An interval I = [a; b℄ for thetype (Xi;Xj) represents the lok onstraint Xi �Xj � a ^ Xj �Xi � b.Example CDD's are shown in �g. 3.2.

1X

1X

X2

X1

2X

X1

2X 2X 2X

X1

2X

2X 2XX1 X1

2X

X1

X2

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
� �
�
�

�
�
�

�
�
�
�

�
�
�
�

����

��

1 2 3 4 5 6

1

3
2

1 2 3 4 5 6

1

3
2

(a)

(b)

(c)

1 2 3 4 5 6

1

3
2

true

true

[1,3] [4,6]

[1,3]

]2,3[[3,4][1,2]

[1,3] [2,4]
[1,4]

- -

true

[0,2]

[0,1] [2,3]

[0,0] [-3,0]Figure 3.2: Three example CDD's. Intervals not shown impliitly leads to false; e.g. in (a) there are ars fromthe X1-node to false for the three intervals ℄�1; 1[; ℄3; 4[; and ℄6;1[.A type is a pair (Xi;Xj), whih orresponds to an inner node in the CDD. The set of all typesis written T , with typial element t. T is assumed to be equipped with a linear ordering � anda speial bottom element ?, in the same way as BDD's assume a given ordering on the booleanvariables. The bottom elements being false and true has the largest type, whereas the handlehas the smallest type.1Remember X0 is the zero lok always being zero. 18

Data StruturesA possible ordering ould be:� (Xi1 ;Xj1) � (Xi2 ;Xj2) if j1 < j2� (Xi1 ;Xj1) � (Xi2 ;Xj2) if j1 = j2 ^ i1 < i2.Let the funtion �rst(T : CDD) return the uppermost CDD node in the CDD T , being thehandle.I denotes the set of all non-empty, onvex, inter-bounded subsets of the real line. I ontains bothopen, losed and half-open intervals, whih is: ℄a; b[, [a; b℄, ℄a; b℄, and [a; b[. A typial element ofI is denoted I.Two intervals are named neighbored if they may be joined by union into a larger interval -overlapping intervals are alled neighbors too.An interval over for a CDD node ni is denoted I(ni), and desribes the intervals leaving ni.That is, an interval over is a set of intervals Ini = fI1; I2; : : : ; Ing. Eah interval in the intervalpartition Ij 2 I(ni) must be a subset of the total interval leaving ni. That is, for nodes havingtypes Xi�X0; i 6= 0, Ij � R+ , and for nodes having types Xi�Xj i; j 6= 0 Ij � R. Furthermorean interval partition must be omplete, i.e.,� If type(ni) = (Xi �X0) i 6= 0: SI2I(ni) I = R+� If type(ni) = (Xi �Xj) i; j 6= 0: SI2I(ni) I = RI(nX�Y) in �gure 3.1(b) would be: I(nX�Y) = f ℄ � 1; 0℄ ; ℄0;1[g, the last interval beingomitted in the �gure, as it leads to false.An interval partition is a disjoint interval over. That is, an interval over is an interval partitionif: 8j; k 2 f1 : : : ngjj 6= k : Ij \ Ik = ;An interval partition is ordered if the (lower/higher) bounds of all intervals build an inreasingsequene. An interval partition whih is ordered is named redued interval partition.I(i; j) denote the lok onstraint having type (i; j) whih restrits the value of Xi �Xj to theinterval I.Given a set of lok onstraints D and a valuation v, D(v) denote the boolean value derivedfrom replaing the loks in D by the values given by v.The prior two notations will be used jointly, i.e. I(i; j)(v) expresses the fat that v ful�lls theonstraint given by I and the type (i; j). v(t) de�nes the urrent value of the t type given bythe valuation v.We de�ne a CDD node as a n+1 tuple ht; [I1; T1℄ : : : [In; Tn℄i where t is the type, and suessorsT1 : : : Tn being CDD's (whih an be viewed as a CDD nodes, where �rst(Ti) is the handle ofthe suessor CDD), eah denoting the orresponding interval I1 : : : In.The set of all CDD nodes is denoted N with typial elements n;m.It should be noted from the previous disussion that a CDD and a CDD-node an be usedinterhangeable, as a CDD node and its suessors may be interpreted as a CDD. And a CDDmay be interpreted as a CDD node by using the handle.A CDD is a DAG onsisting of a set of nodes V � N and two funtions:19

3.1 Syntax� type : V ! T� su : V ! 2I�V suh that:V has exatly two terminal nodes alled true and false, where type(true) = type(false) =?and su(true) = su(false) = ;all other nodes n 2 V are inner nodes, whih have attributed a type type(n) 2 T anda �nite set of suessors su(n) = f(I1; n1); : : : ; (Ik; nk)g, where (Ii; ni) 2 I � V .n I��! m is shorthand for (I;m) 2 su(n).For eah inner node the following must hold:� the suessors are disjoint: 8(I;m); (I 0;m0) 2 su(n) either (I;m) = (I 0;m0) or I \ I 0 = ;,� the suessor set is an R-over: SfIj9m:n I��! mg = R,� the CDD is ordered: for all m, whenever n I��! m then type(n) � type(m).The CDD is assumed to be redued if the following holds:� it has maximal sharing: for all n;m 2 V whenever su(n) = su(m)^ type(n) = type(m)then n = m, that is no isomorphi sub CDD's an oexists in the CDD.� all intervals are maximal: whenever n I1��! m;n I2��! m then I1 = I2 or I1 [I2 =2 I.We de�ne the funtion hild : V � I ! V , suh that hild(n; I) to return the suessor node mof n where the edge going from n to m is labeled with the interval I. Thus for m = hild(n; I),then there exists a suessor to n so n I��! m.S-CDD'sWhen mapping a DBM to a CDD, the resulting CDD will be a CDD where all nodes only havea single suessor node not being the false node, thus to make semanti proofs easier we de�nea speial syntax here for suh a CDD, denoted S-CDD.S-CDD's are CDD where all nodes have a single suessor not leading to false, and where edgesleading to false is not represented. This means that the suessor does not form an R-over, inontrast to CDD's.We denote an S-CDD node as a 3 tuple hts; I; Tsi where ts 2 T is the type and I 2 I is theinterval overed, and Ts is the the suessor S-CDD node, that also an be interpreted as aS-CDD. Ns is the set of all S-CDD nodes, with typial element ns;ms.S-CDD's has a global linear ordering as CDD's, refer to previous setion for details. Again thebottom element the true node is onsidered the element with the largest type, and the handleto the S-CDD has the smallest type.A S-CDD is a DAG onsisting of a set of nodes Vs � Ns and two funtions:� type : Vs ! Ts 20

Data Strutures� su : Vs ! (I; ns), where I 2 I and ns 2 Ns suh that:Vs has exatly one terminal nodes alled true, where type(true) =?all other nodes ns = hts; I; Tsi 2 Vs are inner nodes, whih have attributed a typetype(ns) = ts, and a single suessor: su(hts; I; Tsi) = Ts. �rst(Ts) = ms is the node inTs with the smallest type, that is the handle.We de�ne hild(ns), ns 2 Ns to be the suessor node of ns in the S-CDD. All inner nodes hasa unique suessor node.We de�ne parent (ns) to be the parent of node ns. This method makes sense only for S-CDD'sas these has a unique parent, whih may not be the ase for ordinary CDD's.We de�ne Is�dd(ns) to be the interval leaving node ns.ns I��! ms is short hand for (I;ms) = su(ns).For eah inner node the following must hold:� the suessor does not form an R-over, otherwise the node should be omitted.� the S-CDD is linearly ordered: for all ms, whenever ns I��! ms then type(ns) � type(ms).� an S-CDD node has a unique parent and hild node.In the following part of the report, S-CDD is also referred to as single stringed CDD's.3.1.2 Di�erene Bounded MatriesThe following subsetion desribes the Di�erene Bounded Matries(DBM) data struture usedin the urrent distributed version of Uppaal. DBM's an be used for the same purpose as CDD's,that is desribe onstrains of the form Xi �Xj � n. The DBM data struture is best seen as adireted graph, with verties being the variables X0;X1; : : : ;Xn. For eah onstraint Xi�Xj � na direted edge goes from Xi to Xj with weight n. An advantage with DBM's ompared to CDD'sis that DBM's has a normal form whih simpli�es inlusion tests, to a test of syntati inlusioninstead of a test for semanti inlusion. The graph spanned by the onstraints is desribed bythe adjaeny-matrix representation in redued form.Only a single Zone Z an be desribed by a DBM, so if two Zones Z1 and Z2 are explored whereZ1 * Z2 ^ Z2 * Z1, then two DBM's has to be onstruted and stored. E.g. to represent theexplored state spae of �gure 3.2(a) on page 18, the two matries in table 3.1.2 has to be stored:X0 X1 X2 X0 X1 X2X0 0 6 6 0 12 6X1 -2 0 -8 0X2 -2 0 -2 0Table 3.1: DBM's for storing the state spae: (�2 � X2 � X0 � 6 ^ � 2 � X1 �X0 � 6 ^ �1 < X2 � X1 <1) [(�2 � X2 �X0 � 6 ^ � 8 � X1 �X0 � 12 ^ �1 < X2 �X1 <1)And after the representation of setion 1.1.1: (1 � X2�X0 � 3^1 � X1�X0 � 3^ �1 < X2�X1 <1)[(1 �X2 �X0 � 3 ^ 4 � X1 �X0 � 6 ^ �1 < X2 �X1 <1)21

3.2 Operations3.2 OperationsThere are two main operations whih is performed on the data strutures used by Uppaal, theseare:Inlusion test Before the Uppaal engine explores a new state it heks whether it previouslyhas been explored. This is done by storing all searhed states in the Passed list, and beforeexploring a new state it heks whether the newly found state is inluded in the Passedlist.Union Whenever a new state has been explored it is inserted into the Passed list, this is doneby a union of the Passed list and the newly explored state.The following desribes how inlusion test and union is performed in the DBM version of Uppaaland how they are performed using CDD's.3.3 Current UppaalThe urrent Uppaal version whih is based on the DBM data struture, holds the Passed list asa simple linked list of DBM's. That is whenever a new state has been explored a union betweenthe existing Passed list and the new DBM is performed, simply by adding the DBM to the linkedlist.To perform an inlusion test using the DBM data struture, eah DBM in the linked list is testedfor being a superset or equal to the newly found state. An algorithm for the inlusion test usingthe DBM data struture is shown in �gure: 3.3bool dbm_inlusion(d : newstate;L : PassedLIST)beginreturn Wfd � d0jd0 2 LgendFigure 3.3: Inlusion test using the DBM data struture. That d0 2 L, denoted that the state d and d0 has tohave the same disrete state.This algorithm does not reognize a Zone if this Zone is a subset of the union of two or moreZones, as shown in �gure 3.4 where the marked zone is a subset of the union of two other zones.
2X

X1

2

1 2 3 4 5 6

1

3 ��
��
��
��
��
��
��
��

Figure 3.4: If the three vertial Zones has been searhed, the horizontal marked Zone would not be aepted assearhed.
22

Data Strutures3.3.1 Using CDD's with UppaalBoth inlusion tests and union with new Zones is somewhat more ompliated using the CDDdata struture, but it o�ers better inlusion tests as CDD reognize that a Zone has been exploredif the union of two Zones makes a superset. The inlusion test is performed from the followingformula:Ts � T i� Ts \ T = Tswhere Ts is the new state as a S-CDD, and T is the Passed list represented as a CDD.When a new state has been explored the Zone explored has to be added to the explored statespae set the Passed list. Atually the urrent CDD implementation of Uppaal uses a di�erentapproah, as it heks for Ts � T i� Ts \ :T = ;.3.4 Mapping CDD's to set formulasThis setion provides another view on the CDD data representation, whih is used to proveproperties of the CDD data strutures in hapter 5. CDD's are used to desribe a federation inthe multi-dimensional spae spanned by the loks C. Therefore a CDD an be interpreted as aset of intervals on the di�erent oordinates.Let pt represent the number p of the type t 2 T , that is the set formula [2x; 4x℄ represent theinterval [2; 4℄ on the X oordinate. Then the area in �gure 3.1 on page 17, may be representedas the set formula: (([1y ; 4y℄ \ [1x; 4x℄) [([2y; 6y ℄ \ [2x; 6x℄)) \ [�1x�y; 0x�y℄This set formula an be generated from a CDD using the following reursive formula:CDDtoSET (dd 2 CDD)beginif dd = true return (R+)nif dd = false return ;else return S(I;m)2su(n)(I \ CDDtoSET (m))end3.5 Mapping DBM's to CDD'sAll ommuniation between the CDD data struture and Uppaal is done through the DBM datastruture. Whenever an inlusion test is performed (�gure 1.3 line 5) it is heked whetherthe shortest-path losure is ontained in the PASSED list. Whenever a new state should beinserted into the CDD, the shortest-path redued DBM is inserted. But before these operationsis onduted, it is preferable to know how to onvert DBM's into orresponding CDD's, asoperating on the same data struture is simpler. Note that an e�ient implementation shouldnot perform this onversion, it is merely a matter to use in semantis of algorithms proposedlater on.The struture of DBM's only allow two onstraints between any two loks: Xi �Xj � n andXj �Xi � m, where Xi;Xj 2 C and n;m 2 N. Therefore, for eah type (node in a CDD) t only23

3.5 Mapping DBM's to CDD'sa single interval may leave not leading to the false node, and as the CDD only starts in a singlepoint the CDD resulting from onverting a DBM into a CDD beomes a CDD where eah nodehas a single unique suessor - prior de�ned as a S-CDD. The result of this is that whenever aDBM is onverted into a CDD, the CDD is an S-CDD. See �gure 3.5.

X0
X2
X3

X2X3
[�2;�2℄[2; 2℄[4; 4℄
[�7;�1℄

(a)1
(b)

-225 -127 -24-433 X1 �X2X1 �X3
X1 X1 [3; 3℄

X2 �X3true
[�5; 1℄

Figure 3.5: Any DBM onverted into a CDD, beomes a S-CDD. The DBM of �gure (a) is onverted into theS-CDD of �gure (b).

24

Chapter 4Design / Data struturesThis hapter desribes the design of the algorithms, both the sequential and the distributed ones.After the desription of the algorithms the design of the CDD nodes is desribed.4.1 Non Distributed AlgorithmsIn this setion we desribe the algorithms that is used on ordinary CDD data strutures on asingle proessor arhiteture. These algorithms is our starting point when we distribute the datastrutures. The algorithms desribed is inlusion test and union (between an S-CDD and aCDD). This is followed by a desription of how CDD's are redued to ensure as muh sharing aspossible, but �rst we onsider how intervals are merged during the union operation.4.1.1 Merging intervalsWhenever two nodes with the same type has to be unioned, their intervals has to be merged. IfCDD node ni has intervals Ii1 : : : Iik , and CDD node nj has intervals Ij1 : : : Ijl , then the mergingof these intervals is the smallest number of intervals Ir1 : : : Irm , suh that 8I 0 2 fIr1 : : : Irmg;9Ii 2fIi1 : : : Iikg; Ij 2 fIj1 : : : IjlgjIi \ Ij = I 0. And the interval partition formed by Ir1 : : : Irm formsa redued interval partition.When the intervals are merged the new node is reated by letting the new CDD node have thesame type as the input nodes. One outgoing edges exists for eah interval in the merged intervalpartition, and the edge with interval Ir points to the union of the nodes nIi and nIj , where nIi= hild(ni; Ii) is the node referred to by node ni interval Ii, and nj = hild(nj ; Ij) is the nodereferred to by node nj, interval Ij, and Ii \ Ij = Ir.As all unions in this projet is only done between S-CDD's and CDD's, and it is known thatS-CDD only have one interval leaving eah node (not leading to false), the algorithm in �gure4.1 show how the intervals of a CDD node m 2 N , and S-CDD node ns 2 Ns is performed.The algorithm works as follows (�gure 4.1(a) might help):Line 3 assign Is to the interval leaving the S-CDD node ns. Line 4 reates a new empty set ofintervals, whih will beome the resulting redued interval partition. Line 6 to 16 iterates overall intervals leaving the CDD node m, and for eah interval the following is done:Line 6-7 handles if the two intervals I 0 and Is does not interset, then the interval I 0 is simplyadded to the resulting set I(merge), is is the ase for the interval (a; b) of I(m) in �gure 4.1(a),and result in the interval (a0; b0) in I(merge). Line 8-9 handles the same ase, only if the intervalIs is a subset of I 0, this is the ase for the interval (e; f) of I(m) in �gure 4.1(a), and result inthe interval (e0; f 0).Line 11-16 handles the ase where Is and I 0 isn't ; nor Is. Suh an intersetion an be done in5 di�erent ways as shown in �gure 4.1(b), by the Is intervals: Is1 , Is2 , Is3 , Is4 and Is5 . Line 11get the bounds from both intervals, whih is used in the if onditions in the following 5 lines.The following desribes how eah of the �ve intersetions is handled:Is1 [I0: This intersetion falls into the if onditions on line 14 and 16, and add (a;) and (; f)to I(merge).

4.1 Non Distributed Algorithms1:Redued_Interval_Partition merge_intervals(ns 2 Ns;m 2 N)2:begin3: Is = Is�dd(ns)4: I(merge) = ;5: foreah I 0 2 I(m)6: if I 0 \ Is = ; then7: I(merge) = I(merge) [I 08: else if I 0 \ Is = I 0 then9: I(merge) = I(merge) [I 010: else11: (a; b) = I 0; (; d) = Is12: if a < d ^ < a then I(merge) = I(merge) [(a; d)13: if a < then I(merge) = I(merge) [(a;)14: if a � ^ d � b then I(merge) = I(merge) [(; d)15: if a < ^ b < d then I(merge) = I(merge) [(; b)16: if d < b then I(merge) = I(merge) [(d; b)17: return I(merge)18:end Table 4.1: Algorithm for merging intervals.Is2 [I0: This intersetion falls into the if onditions on line 13 and 14, and add (a; d) and (d; f)to I(merge).Is3 [I0: This intersetion falls into the if onditions on line 12 and 16, and add (a; b) and (b; f)to I(merge).Is4 [I0: This intersetion falls into the if onditions on line 13, 14 and 16, and add (a;), (; d)and (d; f) to I(merge).Is5 [I0: This intersetion falls into the if onditions on line 13 and 15, and add (a; e) and (e; f)to I(merge).E.g. the merging of Is and I(m) of �gure 4.1(a) is shown as I(merge) of �gure 4.1(a).
a b c d f h ie g

a b c

(b)

d e fg’

(a)

a’ e’b’ c’ d’ f’ h’ i’

IsI(m)I(merge)
Is1 Is2Is3 Is4 Is5I 0

Figure 4.1: (a) shows an example to visualize why intervals must be merged and not just union the two sets ofintervals.(b) Visualize �ve of the seven di�erent ways two intervals an interset one another.26

Design / Data strutures4.1.2 UnionThe most basi operation of the CDD data struture is the reation of the CDD data stru-ture. The basi operation used in onstrution and in union is a funtion alled makenode(t 2T ; [I1; T1℄ : : : [In; Tn℄) whih for a given type, and suessor set either return an existing nodewhih hold the same properties, and if suh node does not exist reate and return a node withthe desribed properties. The operation is desribed by the algorithm in �gure 4.2. The opera-tion is important for keeping reduedness of the onstruted CDD.Note that the makenode relies on the redue method. The redue method is used to redue S,S being the suessor set[I1; T1℄ : : : [In; Tn℄, e.g. it has maximum sharing, no trivial edges andall intervals are maximal - that is redue ensures that S is a redued CDD, aording to thede�nition of reduedness in setion 3.1.11:CDD_Node makenode(t 2 T ; [I1; T1℄ : : : [In; Tn℄)2:begin3: // Denote [I1; T1℄ : : : [In; Tn℄ by S, the suessor (su) of the input desription4: redue(S)5: if (9n 2 V jtype(n) = t ^ su(n) = S) return n6: else V := V [fng // where n is a new node7: type := type [fn 7! tg;8: su = su [fn 7! Sg9: return n10:end Figure 4.2: Algorithm for the makenode operation.The algorithm for union is depited in �gure 4.3.1:CDD_Node union(ns 2 Ns;m 2 N)2:begin3: if ns = true _m = true then return true4: else if m = false then return ns5: else if type(ns) = type(m) then6: I(new) = merge_intervals(ns;m) // new is a new CDD node7: return makenode(type(m); f(I;m00) j8: I 2 I(new)9: I \ Is = ;) m00 = hild(m; I 0) j I 0 2 I(m) ^ I � I 010: I \ Is 6= ;) m00 = union(hild(ns); hild(m; I 0)) j I 0 2 I(m) ^ I � I 0g11: else if type(ns) � type(m) then (a; b) = Is12: return makenode(type(ns); f((�1; a0);m); (Is; union(hild(ns);m)); ((b0;1);m)g13: else if type(m) � type(ns) then14: return makenode(type(m); f(Ii; union(ns;m0))jm Ii��! m0g)15: endif16:end Figure 4.3: Algorithm for the union operation.
27

4.1 Non Distributed AlgorithmsLine 3-4 handles the trivial ases where either of the CDD/S-CDD onsists only of the true orfalse node.Line 5-10 handles the ase where two nodes of the same type has to be unioned, this is doneby merging their intervals. An example is given in �gure 4.4.[Line 6℄ merge the interval partition of the CDD node, and the interval of the S-CDDnode, as desribed in the previous setion.[Line 7℄ makes a all to makenode, with an request to make a new CDD node, withthe interval partition returned in line 6.[Line 8℄ Iterates over the interval in the interval partition I(new).[Line 9℄ If I interseted with Is is the empty set, then the hild of the interval I isunhanged.[Line 10℄ If I does interset with Is, then the hild of the interval I is the union of theprior node referred by I 0 unioned with the hild of the S-CDD node.Line 11-12 handles the ase where the type of the S-CDD is smaller then the type of the CDD.This is handles by reating a new CDD node with the same type is the S-CDD with threeintervals. One going from �1 to a0 whih must refer to the CDD node given as argument.One suessor with the same interval as the S-CDD referring to the union of the hild of theS-CDD and the CDD nodes given as argument. The last suessor being (b0;1) referringto the CDD nodes given as argument. a0 denotes the opposite bound than a, that is if a is[m, then a0 denotes m[, the same is the ase for b0, whih is opposite to b. An example isgiven in �gure 4.5.Line 13-14 Handles the ase where the type of the CDD is smaller than the type of the S-CDD.This is handles by substituting all the hildren of the CDD node with the union of the hildand the hild of the S-CDD node. An example is given in �gure 4.6.mm01 m02 m03 m0n
m0nm01 m03m02 [n0sm [�;1[℄15; 20℄[10; 15℄℄5� 10[℄�1; 5℄

℄�1; 5℄ ℄5� 10[[10; 20℄ [�;1[[nsn0s ℄5;15℄
m03 [n0s+

Figure 4.4: Show how union is performed on two nodes having the same type. The nodes to be unioned is marked,as well as the reated node.The way the CDD data struture is build bottom up on a single proessor arhiteture, usingthe makenode=redue , ensures that the CDD is always redued. This an only be done on asingle proessor arhiteture as a single all stak exist here. When using distributed omputingseveral all stak exists one on eah omputer node, and other ations has to be issued to ensurereduedness. We desribe these ation later, when the distribution sheme is desribed.28

Design / Data strutures
parent(m)

m
parent(ns)nsn0parent(m)

m m [n0s
[0;30℄

[0; 30℄℄ �1; 0[℄30;1[
[
+

Figure 4.5: Show how union is performed when the type of the S-CDD is smaller then the type of the CDD. Thenodes to be unioned is marked, as well as the reated node.
$parent(m)$

$parent(m)$

$parent(n_s)$mm01 m02 m03 m0n℄ �1; 5℄ ℄5 � 10[[10; 20℄ [�;1[[ns+m℄5 � 10[℄�1; 5℄ [�;1[m02 [ns m03 [nsm01 [ns m0n [ns[10; 20℄Figure 4.6: Show how union is performed when the type of the CDD is smaller then the type of the S-CDD. Thenodes to be unioned is marked, as well as the reated node.
29

4.1 Non Distributed AlgorithmsHash TableThe makenode() funtion whih has to searh weather an existing node with the same type andsuessors already exists before reating a new one, for this purpose a hash table is build so theexpression (9n 2 V jtype(n) = t ^ su(n) = S), an be performed in O(1) time. The hash tableis build so that the hash funtion aepts a type and a list of interval/suessors, and return alist of nodes in V satisfying that hash funtion.4.1.3 Inlusion TestThe next operation we desribe is the inlusion test.bool inlusion(passed : CDD_Node hek : S � CDD_Node)1: if passed = true return true2: if passed = false return false3: if type(passed) � type(hek) return Vfinlution(Ti; hek)jpassed Ii��! Tig4: if type(hek) � type(passed) return inlusion(passed; hild(hek))5: if type(passed) = type(hek) return6: V finlusion(passed0; hild (hek))j7: 9passed0 2 N ^ 9Ipassed 2 I:passed Ipassed������! passed0: Ipassed \ Ihek 6= ;gend Figure 4.7: Algorithm for the inlusion operation.This algorithm shown in �gure 4.7, works by simulating the hek S-CDD \ CDD = S-CDD,it is not intended to alulate the atual output of this intersetion, this would be of no use asthere are no normal forms for CDD's. Instead we simulate all traes from the handle that hasoverlapping intervals with the interval of the S-CDD, to see if we reah the true node in alltraes.line 1,2: These lines overs the trivial ases where the Passed list is either the false node orthe true node.line 3: If the type of the S-CDD node is larger than type of the passed node, this means that theS-CDD impliitly ontains a node with same type as the passed node, and this node oversR as its interval. Therefore all suessors of the CDD node passed, need be examined.line 4: If the type of the hek node is smaller than the type of the passed node, then the CDDimpliitly ontains a node with the same type as hek forming an R over, and learlythe hek node is inluded in this node. Therefore we an traverse further down the S-CDD making a reursive all with the passed and hild(hek). Remember that the hildfuntion for the S-CDD returns the unique suessor of the node given as argument.line 5,6,7: Here the types of the two nodes are idential, thus we reursively traverse the edgeswhere there are overlapping intervals with the interval from the S-CDD Ihek, to see if theentire interval Ihek is overed, that is leading to the true node.30

Design / Data strutures4.2 Distributing the Data StrutureIn this setion we desribe how we distribute the CDD data struture. Our primary goal isto allow Uppaal to verify larger models, by distributing the CDD data struture. Another lesssigni�ant goal is to minimize the ommuniation overhead to a minimum. As desribed inthe purpose, the purpose of this projet is two fold. First we wish to investigate how muhmemory an be saved by allowing sharing between all disrete states, and seondly how large isthe time/ommuniation overhead introdued. Before introduing the distributed algorithms weonsider what platform we aim our distribution at.4.2.1 Distribution PlatformWe onsider two main targets for distribution, either distributed shared memory or messagepassing. In message passing the ommuniation between omputer nodes is via messages ex-pliitly send to a spei� node, a well known standard MPI de�nes syntax and semantis forthe di�erent alls, thus libraries exits for varying arhitetures. In distributed shared memorythe entire memory area is transparently aessible by all proesses as it where loal memory.Shared memory libraries inlude Parallel Virtual Mahine and IVY among others. We need tosynhronize the union and inlusion operations, as we annot allow an inlusion operation to�overtake� a union operation, as it might see the �rst part of the union but not the last whihmight lead to inonsisteny, if the inlusion test tries to all a node whih is not onstruted yet,as it will be onstruted by the union it just �overtook�. Thus we need to either synhronize onsome level, either being eah node or possible at eah type level. This atually means that wesynhronize the entire struture, by introduing a large pipeline on all the omputer nodes. Eahomputer node must either perform inlusion/union operation or explore states in Uppaal. Wean hoose to either make this synhronization expliitly with mutex loks using the distributedshared memory model, or we an do this impliitly by using message passing as MPI guaranteesmessage ordering. We have hosen the later for several reasons: First e�ieny, as we expet itto be more e�ient to perform the pipeline impliitly than expliitly. Seondly the existing dis-tributed version of Uppaal uses MPI thus minimizing the hardware requirements of the urrentUppaal users. There are of ourse several advantages of using shared memory, one of them beingthat it is almost transparent to the programmer, thus easing the programming, but we onsiderthe previous mentioned arguments to out weight these advantages.4.2.2 Distributing Among NodesThe idea for distributing the CDD data struture is by distributing the CDD nodes among theomputer nodes and letting them ommuniate whenever an operation (inlusion test/ union)is to be performed.The �rst issue to onsider is how to distribute the CDD nodes. As we are not aware of other workdistributing the CDD data strutures, or the very alike IDD (Interval deision Diagrams [14℄)data strutures, it was investigated what work that previously has been done for distributing theBDD data struture, and the following distributing ideas were found:Horizontal The �rst approah enountered, were a horizontal distributing. In this approahall CDD nodes with the same type are guaranteed to stay at the same mahine node. The31

4.2 Distributing the Data Struturepartitioning is then horizontal as the name indiates. For an illustration of this idea pleaserefer to �gure: 4.8(a)Vertial This approah distributes the CDD vertially, by keeping a number of handles on eahomputer node, in the same way as the distributed version of Uppaal. Sharing between allloations beomes di�ult, as every time we reate a new CDD node all other omputernodes has to be asked whether they already has suh a node. Inlusion/union beomesdi�ult beause a trae from the handle to the true node may jump from omputer nodeto omputer node as many times as there are CDD nodes in this trae, whih may beexponential to the number of types. Figure 4.8(d) shows the idea of this approah.Groups Another approah is to partitioning the CDD arbitrary, both horizontal and vertially.But as an be seen from �gure 4.8(b), this may lead to ommuniation between vertiallydistributed CDD nodes. As were the ase for the vertial distribution approah.Distributed The last idea is borrowed from [12℄. This approah takes advantage from the fatthat the variable ordering of the types is very important for how muh sharing that anbe aomplished. The idea is that eah node hold a CDD, eah with di�erent variableorderings, then whenever an operation should be arried out, the explored Zone is sendto all omputer nodes. During the union operation the omputer node that aomplishmaximal sharing (need fewest new nodes to represent the new federation) stores the newzone, and all other nodes disharge the new zone.

New state

Node IVNode IIINode INode II
Node IV
Node IINode I
Node III

(d)

Node III

()

Node I

CDD

Node II
(b)

(a)Node IVNode III
Node I Node II

Figure 4.8: Di�erent approahes for distributing the CDD nodes among several distributed omputer nodes. (a)show a horizontal representation, (b) show an approah based on groupings, () shows an approah based onseveral distributed CDD's, and (d) shows the vertial distribution approahThe following desribes the advantages and disadvantages of the listed possibilities of distributingthe CDD data struture.Horizontal Using the approah of horizontal distribution, the number of messages for bothoperation (inlusion test and union) is the number of nodes partiipating in the operationexept one. Besides that the partitioning of CDD nodes among omputer nodes is simple,and a simple interfae may be kept. 32

Design / Data struturesGroups Unlike the approah of horizontal distribution, the approah using groups does not havea known number of messages for eah operation. If the partitioning is good, and the rightoperation is performed the number of messages is less than for the horizontal approah, butif unluky the number of messages might inrease exponential. Although the approah hassome advantages over the horizontal approah suh as: The approah might be easier toapply to a distributed shared memory environment, as the node reating/modifying a nodereates the nodes loally. Also the approah might result in a better memory distribution,as any number of CDD nodes might be moved from one omputer node to another - therebyreleasing a omputer node with less memory. Using the horizontal approah, only one layer(all nodes with the same type) may be transfered at runtime.Vertial This approah su�ers from the same as the previous approah, though in an even moreextreme sense.Distributed The approah using several CDD's to store the Passed list, is somewhat alike theexisting distributed Uppaal version. But instead of storing the newly explored state lo-ally, the state is stored at the node where it takes up least spae. [12℄ shows promisingresults using this approah for BDD's. Another advantage of this approah is the ease ofimplementation, as when a single mahine version has been implemented, the only ationto implement the distributed version, is to ommuniate new zones and synhronize on thesize added.Disadvantages of this approah is that it annot in general handle union of Zones (fed-erations). If the federation F1 = Z1 [Z2, where Z1 and Z2 are Zones loated on twodi�erent omputer nodes, then it is not possible to reognize that any subset of F1 hasbeen searhed. Another disadvantage is that muh time is wasted during the many unionson all nodes, most of whih is simply disharged.The approah hosen for this projet is the horizontal distribution as it o�ers the best salabilityin that the number of messages needed has an upper limit.4.3 CommuniationTo be able to perform the operations distributed, omputer nodes next to one another needto hold some referene to the nodes on the next omputer node. The following desribes this,where the upper omputer node is alled lient and the lower mahine node is alled server.Eah omputer node holds an array, whih is indexed equally on eah omputer node.Informations hold on the lient side is:� Referene ount: The lient need to know how many referenes goes into eah CDDnode at the server node, so that the array index an be deleted when the referene ountreahes zero. The referene ount is inreased whenever a CDD node points to the or-responding CDD node at the server. The referene ount only hanges during redutionof the distributed data struture, whih is done in another way than for the single nodeCDD data struture. The mehanism for reduing of the distributed CDD data strutureis desribed later in setion 4.4.3
33

4.4 OperationsOn the server side the array ontains:� Pointer: The server side is an array of pointers to CDD's node whih the array entryorresponds to.

Node 2

Node 1

Nodes with ordinary typeNodes with ordinary type
Nodes with ordinary typeNodes with ordinary type
Client side ommiation arrayServer side ommiation array

Figure 4.9: Show how the ommuniation between mahine nodes is done.The ommuniation layer, an be seen as an extra layer of CDD nodes, eah entry in the om-muniation layer is then seen as a CDD node, with a speial type tomm - not in the type setof the timed automata. The su() funtion only holds a single outgoing interval namely theinterval ℄�1;1[, thereby it an be seen that eah entry in the ommuniation layer may haveseveral in going edges, but only a single outgoing edge. Thus eah node referened on the nextomputer node an be uniquely identi�ed on both omputer nodes by the array index.4.4 OperationsIn the following subsetions we desribe how the union and inlusion test is performed in thedistributed CDD data struture, using the ommuniation interfae previously desribed.4.4.1 Distributed Inlusion TestThe algorithm for making the inlusion test in the single proessor CDD is desribed in setion4.1.3. The operation of the distributed version is similar, exept on one point:The single proessor version uses a depth �rst approah, if the same approah is used in thedistributed approah, many messages must be send between mahine nodes. Therefore theapproah taken is somewhat between depth �rst and breath �rst, at eah mahine node thedepth �rst approah is used until the ommuniation layer is reahed. Information about whih34

Design / Data struturesnodes at the next omputer node, that is part of the inlusion test, is then transfered (unlessthe inlusion test has already failed!), and only when the request fails on a node, or the requestreahes the bottom mahine node (holding the true CDD node) the �nal answer is found.That is, eah mahine node reeives a number of referenes for whih the inlusion test is tobe performed. Then a reursive depth �rst algorithm is run on these nodes, eah time reahingthe ommuniation layer appending the found entry in the ommuniation array to a list. If atany instane the inlusion test fails false is returned. If all inoming requests sueeds the listontaining array indexes is send to the next node. If all requests sueeds at the bottom nodetrue is returned.The inlusion test is always initiated on the omputer node holding the handle.Let E denote the list of CDD nodes ommuniated from the prior (lient) layer, and let E0 bethe list that should be passed on to the next omputer node. Then the algorithm in �gure 4.10illustrates how the distributed inlusion test is performed:1:distributed_inlusion(Ts : S � CDD ; E : [CDD ℄)2:begin3: E0 = ;4: foreah Ti 2 E do5: begin6: if Ti 2 Communiationlayer then7: E0 = E0 [Ti8: b = reursive_inlusion(Ti; Ts)9: if b = false return false10: end11: if not bottom layer pass E0 to next layer.12: else return true13:end1:bool reursive_inlusion(Ti : CDD; Ts : S � CDD)2:begin3: if Ti = true return true4: if Ti = false return false5: if type(Ti) � type(Ts) return Vfreursive_inlution(Tj ; Ts)jTi Ij��! Tjg6: if type(Ts) � type(Ti) return inlusion(Ti; su(Ts))7: if type(Ti) = type(Ts) then8: 8Tj 2 V:9Ij 2 IjTi Ij��! Tj ^ Ij \ Is 6= ;9: if Tj 2 ommuniation layer then10: E0 = E0 [Tj11: return true12: else return reursive_inlusion(Tj ; su(Ts))13:end Figure 4.10: Algorithm for distributed inlusion test.The reursive part of the distributed inlusion test as shown in the lower box of �gure 4.10 worksin the same depth �rst fashion as the non-distributed inlusion test does, the only di�erene isthe lines 9-11, where it is tested whether the examined CDD node, is a ommuniation node, andif this is the ase, it is added to the inlusion message and true is returned. True is returned35

4.4 Operationsas this node annot yet deide whether the S-CDD is inluded or not, and as only the bottomnode may give the �nal true reply this does not result in semanti faults.Whenever a distribution requests is send to a node, the distributed_inlusion methods, whih isshown in the upper box of �gure 4.10. It reeives a S-CDD, and a list of ommuniations indies,it makes a reursive all to reursie_inlusion for eah element in the ommuniation array, ifany of the reursive_inlusion fails it immediately known that the S-CDD annot be inludedin the CDD, and immediately returns false. If all reursive alls sueed, all nodes exept thebottom node send the inlusion request to the next node, and the bottom node simply returnstrue, as the S-CDD must be inluded in the CDD.4.4.2 Distributed UnionIn this subsetion we desribe how the distributed union operation is performed. The distributedunion operation is somewhat di�erent from the single proessor version. The single proessorversion uses the makenode operation whenever a new node is needed to ensure that the CDD isredued during the union, furthermore the single proessor version is performed in a reursivebottom up manner, so redution an be performed at reation time (redution an only be per-formed bottom up).The same mehanism an hardly be used in a distributed union, as the number of messages sendbetween two mahine nodes is not known and may be really large, as the reursion at least haveto traverse to the bottom true node, and during the reursion termination have to return tothe top node again. As shown in �gure 4.3 on page 27, the single proessor union operation allis depth �rst - that is, if at the top node, a merge is made whih splits in to more reursivealls, then the number of messages inreases exponentially, therefore another distributed unionoperation is designed.In priniple the distributed union works the same, but when union is alled with a type in theommuniation layer, an entry in the ommuniation array is alloated, and a pointer to thisentry is returned. Furthermore this entry is added to a message, whih is send to the server node(lower mahine node), when the reursion on the urrent node terminated for all traes. Whenthe next node reeives this message it ontinues the onstrution, and gives request to the nextnode et.During the onstrution of CDD nodes at eah mahine node, the nodes added/modi�ed is savedin a speial data struture (alled all stak from this point), this all stak is later used forreduing the CDD data struture - the redution operation is desribed in setion 4.4.3 later.One exeption to the previous rules, is the bottom mahine node (holding the true CDD node).The union on this omputer node is performed like the single proessor union operation, andmakes redution impliitly as we build the CDD bottom up here.CommuniationWhenever a mahine node has performed its union, it has to send a message to the lower levelmahine node. This message ontains the following information:ID Eah union request is given a unique id. The union operation uses this to uniquely identify36

Design / Data strutureswhih CDD-nodes has been modi�ed/added by this union operation - this information isused whenever a distributed redution is performed.S-CDD Naturally the S-CDD whih should be unioned need to be transfered. But S-CDD nodeswith type smaller than the least type on the destination omputer node an be omittedArray Entries Finally the entries in the ommuniation array whih need to be unioned withthe next node, is added to the message. The next node need this to union eah CDD-nodeorresponding to the entries in the ommuniation array with the S-CDD in the message.AlgorithmThe distributed algorithm for the union operation for a single node is shown in �gure 4.111:CDD_Node distributed_union(ns 2 Ns ;A � V)2:begin3: if ns = true then foreahn 2 A do n = true4: else5: foreah n 2 A j n 6= true6: if n = false then n = SCDDtoCDD(ns)7: else re_distributed_union(ns; n)8: SEND COMM9: endif10:end11:CDD_Node re_distributed_union(ns 2 Ns;m 2 N)12:begin13: if ns = true _m = true then return true14: else if m = false then return SCDDtoCDD(ns)15: else if type(m) = tomm return new_entry(COMM) + add to ommuniation layer.16: else if type(ns) = type(m) then17: I(new) = merge_intervals(ns;m)18: return makenode(type(m); f(I;m00) j19: I 2 I(new)20: I * Is) m00 = hild(m; I 0) j I 0 2 I(m) ^ I � I 021: I � Is) m00 = union(hild(ns); hild(m; I 0)) j I 0 2 I(m) ^ I � I 0 g22: else if type(ns) � type(m) then23: return makenode(type(ns); f(Is; union(hild(ns));m)g)24: else if type(m) � type(ns) then25: return makenode(type(m); f(Ii; union(ns;m0))jm Ii��! m0g)26: endif27:endFigure 4.11: Algorithm for the distributed_union operation. The SCDDtoCDD method onverts the S-CDDgiven as argument to a CDD desribing the same Zone, and return a handle to this CDD.The distributed union operation di�ers from the non-distributed union, in that the distributedunion works in stages, one stage for eah node. That is the CDD is not build from bottom andup, but bottom up on eah node. This again leads to a non redued CDD is onstruted, so37

4.4 Operationsa speial redution operation must be applied to arhive sharing, and thereby redue memoryusage.A demonstration of the union algorithm is provided later, where the distributed redution algo-rithm is also demonstrated.OptimizationsIn the following we desribe some optimizations to the union operation. Also a neessary oper-ation needed by the distributed redution is desribed.Call stak: As redution an only be performed bottom up, due to the nature of the redued-ness rules, the top node annot redue before the seond node has leaned up and so on.But the top node annot redue if is does not hold information about whih node it hasmodi�ed/added during the union. Therefore eah node builds a all stak during the on-strution of its CDD partition. The all stak is not a all stak in ommon sense, it isonly a list of added/modi�ed nodes, whih is heked during the redution phase. The allstak for a single union operation is kept in memory until a redution phase reahes thenode, or until an expliit requests ome to delete it. Eah all stak is assoiated with aunique id.Temporary Hash Tables: Is temporarily in the sense that it works on a `per operation basis'.Consider performing union between the CDD shown in �gure 4.12(a) with the S-CDDshown in �gure 4.12(b). To perform X0 [Y0 the following operations must be performed:X11 [Y1 and X12 [Y1, and for these to be unioned the following two operations must beperformed: X22 [Y2 and X22 [Y2, if nothing else is known X22 and Y2 may be performedtwie, resulting in twie the work on the union of the nodes below, therefore whenever aunion is performed the nodes are stored in a hash table, then the seond time a union isneeded the already performed union may be reused, this may redue the work.

Y2Y1
Y0X0X11 X12X21 X22 [1; 10℄[1; 2[[2; 2℄ [1; 2℄[0; 1[[1; 10℄ [1; 10℄ [1; 5℄[1; 5℄(a) (b)Figure 4.12: Shown a �gure where the temporary hash table might save some time, by making an earlier redution.

38

Design / Data struturesDistributed Hash Tables: Like the non distributed union operation the distributed unionoperation also depends on hash tables. Whereas the non distributed version uses hash tablesto reate the CDD, the hash table is only used by the last omputer node to reate reduedCDD nodes - but during the redution operating the hash table also need to be used by theother omputer nodes to ensure the reduedness properties of CDD's, so two isomorphisub CDD's are not build. In the distributed CDD data struture implementation, eahomputer node holds a hash table ontaining only the CDD nodes loated on this partiularomputer node. The entries in the hash table is the same as were the ase for the nondistributed hash table, as desribed on page 30.This is only possible as the horizontal distribution approah were hosen.
4.4.3 Distributed RedutionIn the non distributed union operation, the all stak and the hash table ensures that the CDDdata struture is always redued during the onstrution. This is not possible in the distributedunion operation, as the omputer nodes does not have a ommon all stak, and annot beonstruted bottom up as is the ase for the single proessor operation. Therefore the redutionmehanism for the distributed union operation is a little di�erent. First the union operation isperformed as desribed in the previous setion; when the request reahes the last mahine node,and this node reognizes that a CDD node to reate already exists, it reuses that node - just asin the single proessor ase. Furthermore it stores information about the reused CDD node. Iftwo or more nodes in the ommuniation layer beomes idential, this information is send to theprior omputer node, whih uses these informations to make a loal redution, and if this nodereognizes that the prior omputer node might make further redution - redution informationis send to the previous omputer node et.The desription of the distributed redution is split into three subsetions, �rst the mehanismfor the bottom mahine node is desribed. Then redution messages is desribed, and �nally theredution operation for all omputer nodes other than the bottom omputer node is desribed.
Bottom Computer NodeTo desribe how the distributed redution is performed a little syntax is introdued. Let theomputer nodes partiipating in the data struture be denoted by M1;M2; : : : ;Mn, and let the�rst type ontrolled by nodeMi be denoted by tMi . Finally let the ommuniation array betweennode Mi and Mi+1 be denoted by nommMi .When the bottom mahine node Mn performs the union operation it does so for eah entry inthe array nommi as instruted in the message from node Mn�1. During these union operationsit onsults a hash table of already onstruted node (just as were the ase in the single proessorunion), and whenever it disoverers that two nodes with type tMn are equal e.g. (type(nj) =type(ni) = tMn)^(su(ni) = su(nj)), then the prior nodeMn�1 may rediret all pointers fromni to nj, or the other way around. To do that a message ontaining the information hni = njiis send to mahine node Mn�1. 39

4.4 OperationsCommuniationDuring the distributed redution phase, messages is send from mahine nodeMi to mahine nodeMi�1, whenever node Mi �nds two or more nodes in ommuniation layer that are equal. Themessage send holds the following information:ID: First an ID is added to the message, this ID is equal to the ID of the union operationthat made the bottom node realize that two nodes in ommuniation layer nommMi�1 wereequal. This ID is used to aess the all stak reated during the union with id: ID, forfurther redution.Mathing nodes: Besides the ID information of whih CDD nodes are equal is send to theprior node.Loal RedutionLet the all stak of a omputer node be denoted by: CS = fns1 ; ns2 ; : : : ; nskg � V . Theloal redution algorithm for a omputer node Mi, Mi not being the bottom omputer node - isshown in �gure 4.13, with `s' being a all stak and `eq' being a message ontaining informationof nodes that are equal, and thus used for further leanup:1:void distributed_redution(s 2 CS ; eq 2 EQ)2:begin3: newEQ = ; // Message to send to Mi�14: foreah n 2 s do5: if 9(n I��! m) 2 su(n)where (nj ;m) 2 eq then6: su(n) = (su(n) � fn I��! mg) [fn I��! njg7: V = V �m8: if 9n0 2 V j type(n0) = type(n) ^ su(n0) = su(n) ^ n 6= n09: then eq = eq [hn0; ni10: if type(n) = tommi then11: newEQ = newEQ [hnp; ni j12: type(n) = type(np) ^ su(np) = nj13: if newEQ 6= ; then14: send newEQ to Mi�115:end Figure 4.13: Algorithm for distributed redution.The foreah loop ranging from line 4 to line 12, iterates over all CDD nodes in the all stak,build during the union operation with the same id, as this redution operation. During thisiteration it is heked whether any of the nodes reated during the union points to another nodereated during the union, whih has a semanti equal node. Information of suh two semantialequal nodes is given in the `eq ' set.Line 5 heks whether the urrent all stak node n, has a pointer pointing to the `m' node in aelement of the `eq ' set. If it has this pointer is redireted to the semanti equivalent CDD nodewhih in the pseudo ode is denoted by `nj', this is done in line 6. Line 7 removes the node40

Design / Data struturesm from the set of CDD nodes V . If the temporarily hash table, were not implemented, it isguaranteed that the CDD node `m' if only referened to by `n', but when the temporary hashtable is used several nodes from the all stak an referene a single node, but this problem ishandled by the referene ount of the node `m'.To see an example on the funtionality, please refer to �gure: 4.14, where the set h2;1i is in the`eq ' set. Then the pointer from node X2 is redireted from 2 to 1, and as no further CDD nodesreferene 2 this node an be deleted.If the all stak node `n' has been hanged by the previous lines, another node existing in theCDD `n0 2 V ' might beome syntati equivalent with n, if this is the ase, the set hn0; ni isadded to the `eq ' set, so that the redution operation on other omputer nodes, will see that `n0'is equivalent with `n', and hange it's pointer(s) from `n' to `n0', and delete `n'. This is handledby line 8 through 9. To see and example on this please refer to �gure 4.15, where X2 has justbeen made to point to 1, and has the same interval as node X1, this makes CDD node X1, andX2 syntati equivalent, and hX1;X2i is added to `eq '. When the foreah iteration reahedCDD node Z2, it disovers that X1 is equivalent with X2, and redirets it's pointer from X2 toX1, and delete node X2.To ensure that all nodes is removed it is important to keep the nodes in the all stak sorted,so that the nodes with the higher types, is run through the iteration before nodes with smallertypes (nodes with high types, is referened by nodes with smaller types). And redution anonly be performed bottom-up.Line 10 through 12, handles the ase when the loal redution reognizes that two nodes with the�rst type handled by omputer node Mi, then omputer node Mi�1 might use this informationto make further redution. To see an example on this, please refer to �gure 4.14, where the loweromputer node has reognized that node Y1 and Y2 is equivalent, and adds h2;1i to newEQ,whih is onsequently sent to the upper node. Note that in the �gure, the referene from 2 isredireted to point to Y1, to ensure that inlusion/union requests made before the loal redutionhas run in the prior node, still sueed (suh request might still ontain the ommuniation node2).Finally line 13 and 14 sends newEQ to the previous node, to initiate a loal redution there.This is what is impliitly done between the (a) and the (b) part of �gure 4.14.
Layer

X11 2 3 4 Communiation 1 2 3 4Y1 (b)(a) Y2Y1
X1 X2 X2

Figure 4.14: Redution: If two subtrees is equal one may be deleted and the other one used instead. Figure (a)show the situation before the redution request is send to the upper node. Node Y1 and Y2 has just reognizedto be syntati equal by the lower node. Figure (b) show the situation after the information 1omm = 2omm hasbeen send to the upper node, and this node has made a redution.
41

4.4 Operations
Layer

4

Z1 Z2 Z1 Z2X2X1 1 2 3 4 Communiation 1 2 3Y1Y1 (b)(a)
I1 I1 I1X1

Figure 4.15: Redution: The redution from �gure 4.14 lead to X1 and X2 beame syntati equivalent (a), andfurther redution made possible (b)ExampleAn example demonstrating the funtionality of the union operation using all stak and tem-porarily hash table. And the funtionality of the redution operation is given in appendix A4.4.4 Baktrae AlgorithmIn this setion we desribe the baktrae algorithm. The baktrae algorithm is used when theinlusion test fails, and before the union operation is started. The idea of the baktrae algorithmis to �nd a subpart of the CDD from the bottom element, the true node, that overs exatlythe same Zone as the orresponding nodes in the S-CDD that failed the inlusion test (see �gure4.16). The main purpose of the baktrae algorithm is optimization of memory usage during theunion operations, as we expet the baktrae algorithm to minimize the overall runtime stak,and thus to minimize the time spend in the redution phase. The CDD node found by thebaktrae operation may only be used when unioned with the false node.The baktrae algorithm works as follows:1:CDD_node Baktrae(ns 2 Ns; n 2 V)2:begin3: if type(n) = tserver_omm then send Baktrae request to Mi�14: if 9n0 2 V j type(n0) = type(ns)^5: 8(I;m) 2 su(n0)j(I = I(ns) ^m = n) _ (m = false) then6: return Baktrae(parent(ns);n 0)7: else return n8:endThe algorithm works as follows:Overall: The algorithm is initially alled with the true node and the S-CDD node with thelargest type, that is, the S-CDD node referring the true node.42

Design / Data strutures

truetrue
[1; 5℄[5; 10℄[1; 5℄[5; 10℄(a) (b)Figure 4.16: Example on the baktrae algorithm. The baktrae algorithm is run on the CDD (a), with theS-CDD (b) as argument. And the algorithm should return the marked path.The idea is to traverse the CDD bakwards, �nding a single stringed subparts of the CDDthat overs the exat same part of the Zone that the S-CDD overs. When this point isfound the union beomes easier as we an attah to this node when reahing a node withthe same type in the S-CDD, is this S-CDD node should be unioned with the false node.line 3: Line 3 heks whether a trae has been found up to the ommuniation array, if thatis the ase the baktrae request must be send to the previous node, to ontinue there.With the message the ommuniation entry id is send, so that the baktrae operation anontinue there starting at this node.line 4-5: The if ondition of line 4 and 5, heks whether there exists a node in the existingCDD, whih has exatly one interval, ranging over the same interval, and leading to aCDD node whih desribes the same sub zone as the hild to the S-CDD node given. Ifthat is the ase, the CDD node `n0' desribes the same zone as the S-CDD node ns, andthe reursion ontinues to see whether suh a trae also exists for the parent to ns, thisreursion is alled in line 6.line 7: If suh a node did not exist, the longest baktrae for the S-CDD, is the CDD node,whih this reursion were alled with (n), and this node is returned.4.5 Node RepresentationIn this setion we give an overview of the node representation in the CDD data struture. Weonsider the internal representation of nodes, as well as how to store nodes. First we onsiderhow to store nodes, and after this the internal representation is overed.Memory ManagementThe storage of the CDD nodes an be seen as simple memory management, as we have to alloatenodes (reating nodes) and dealloate nodes (when hanging nodes). The memory managementmust support a minimum of memory usage overhead, that is memory used only for memory43

4.5 Node Representationmanagement purposes. It should also favor e�ieny of the implementation, and if possiblesupport data loality to optimize ahe aesses, as it has been done in [13℄.Di�erent solution to store nodes is stated and disussed in the following:Segregated Keep an array of nodes for eah node size.Standard Alloate eah node separately using mallo.Loality Make speial memory management to enhane data loality.Segregated: A CDD onsists of inner nodes of variable size, as there an be an arbitrary �nitenumber of suessors to a node. This ompliates the storage of these nodes, as we annotuse an array as nodes di�er in size. Nodes having the same size ould be kept togetherusing a segregated memory alloation approah, by keeping a free list for eah node size -see [7℄ or [15℄[pp.36℄ for details. This might a�et data loality if nodes are aessed usingbreadth �rst searh patterns as this aesses nodes having the same type onseutively,but they might di�er in size, leading to di�erent loality for storage. Aessing nodes ina depth �rst manner, makes it almost impossible to enhane data loality as we annotsupport data loality for all paths in the CDD. Determine the ratio at whih they eah areused is not trakable as the Passed list is a dynami data struture, new information isadded all the time.Standard: Nodes ould also be individually alloated using mallo, but the algorithms laterin this hapter shows that we will enounter a high rate of hanging CDD nodes, thusrequiring to realloate the node when hanging them. The relative high ost of allingmallo, as it might involves a kernel trap, together with the high rate of hanging nodesleads to a high ost for this approah, memory wise the ost is also high due to the memoryused for headers internally in the memory management.Loality: The algorithms desribed in setion 4.1 are depth �rst on eah omputer node. Thusmaking a speial memory management to enhane data loality beomes di�ult, as manytraes share some nodes in the the CDD data struture. Whih of these traes that shouldbe given preedene to others traes, is di�ult as the data struture hanges all the timeas new zones are added.We onlude that the best memory management method for our purpose is the segregated ap-proah. This is based on the great number of alloation/dealloations needed, together with thatthe number of di�erent node sizes is expeted to be limited. One problem with this memorymanagement, is that eah blok need some header information about the nodes in this blok.These information is: size and free_elements, where free_elements should be a mehanism for�nding free elements in a heap way. This overhead introdued by the header argue for largebloks (thus minimizing the relative overhead), but the fat that nodes of size `x' annot bealloated in bloks with size `y', where x 6= y, argue for smaller bloks, the disussion of bloksizes is taken up later, as the size of the bloks is given another purpose.The free_elements item in the header, should provide a heap way of �nding an unused element.For this purpose a linked list approah is hosen. That is all free elements is put into a linkedlist of free elements, where the �rst 32 bits of the element is used to store a pointer (whih, whenalloated is used for real data), this way no memory is lost to hold this free list, only one headerfor the free list need to be stored in the header.44

Design / Data struturesNow bak to the disussion for the blok size. We have hosen to extend the segregated memorymanagement with an idea from the LISP interpreters [2℄, where data of the same size is storedin arrays that is aligned on a spei� memory boundary. If we align eah array at a 64k-byteboundary, meaning we alloate arrays of size 64k-bytes, then we an aess these bloks with 16bit pointers(0xXXXX0000), as the 16 least signi�ant bits always will be zero.As all elements we alloate is at least 13 bytes (explained later), a maximum of 5041 elementsan be alloated in a single blok. For addressing one of these 5041 elements we need only 13bits, and 16 bits for aessing the blok, leaving 3 bits in a 32 bit referene to other purposes.Using suh bits for other purposes than addressing is alled a tagged arhiteture.Examples of tagged arhitetures are the LISP mahine that uses tag bits for runtime determi-nation of data types.This leads to how we internally represent the nodes.4.5.1 Compat RepresentationIn this setion we desribe the possibilities of the internal representation of the CDD node. Inthe following we give the representation of a single CDD node.Eah node holds a pointer, whih has been added for time optimization purposes.This optimization is used for redution. Whenever a new node is reated it must be hekedwhether a CDD node already exists in the CDD data struture whih has the same syntatidesription. To do that all nodes has to be examined, to avoid that all nodes in the CDD datastruture need to be examined, all nodes is put in to a hash data struture. The pointer desribedis the used as a linked list in eah hash buket, this is an optimization (both runtime and memorywise) to hold an external over�ow buket. This pointer (the next-hash pointer) is not shown inthe �gures of CDD nodes, as it does not hold any semanti information.Minimum InformationTo minimize the memory usage when making the CDD data struture, we need to �nd theminimum required information and store this as ompat as possible. Obviously we need tostore the type of the CDD node and the referene ount, designating the number of parentnodes, together with all the intervals and referenes to other CDD nodes. Eah interval needsa pointer to the hild node and the bounds on the interval, but we need not represent edgesleading to the false node. Also �1 and 1 does not need expliit representation, as they anbe represented impliitly, as shown later.The intervals is bounded by integers of varying values, thus we try to represent them with as fewbits as possible, e.g. values between �128 to 127 should only be represented by one byte and soon, the most signi�ant bit being the sign bit.As desribed earlier the only operators we need to represent is �, as we an simulate all otherswith this, see setion 1.1.1. To summarize the basi idea is �rst to simulate >;� with <;� bynegation, we then multiply all bounds by 2 and simulate < with � by subtrating 1 from thestrit bounds.To avoid representing the false edges we design a data struture that an ontain the node type,referene ount, intervals and pointers jointly.A node onsists of �rst a �Node Header� followed by an arbitrary ombination of a �Interval45

4.5 Node Representationpointer� and an �Interval integer� see �gure 4.18. There an be two patterns of the �Intervalpointers� and �Interval integers�. A pointer is followed by either one or two integers, that againare followed by a pointer, see example in �gure 4.17:(a) represents the intervals ℄�1; 2[;ptr1, [2; 3[; false, [3; 12℄; ptr2, and ℄12;1[; false.(b) represents the intervals ℄�1; 1[; false, [1; 2[; ptr3, [2; 3[; ptr4, and [3;1[; false.
2 ptr3 5 7ptr4 (b)Nodeheader 5 24ptr26ptr1 (a)Nodeheader

Figure 4.17: Two examples of CDD nodes and their interval representationThe �rst element is a pointer if the interval starts at �1 otherwise an integer, likewise if thelast entry is a pointer the interval ends at 1.There two integers x, y following one another if the interval between x and y leads to false.Bits usedName: 20 9Node Header: 12 �agentryFirst
(e)

() (d)(b)(a)
(g) (h)(f)2:

3:
1:

Interval integerName:Bits used 8/16/24/32Integer(i)
Interval pointerName:Bits used 16 13 Size2 1�agtypeNext�agBloklistpointer Indexinblok

Size�agCountRefType

Figure 4.18: Three �gures representing the node layout, being the node header, node pointer and the node integer.The three di�erent items in 4.18 are desribed in detail below, we assume w.l.o.g that memorysegments are alloated on 64KB boundaries:Node Header: Represents the node type (a), referene ount(b) and some �ags (),(d). Thenode type (a) is represented by 20 bits meaning that we �only� an distinguish 220 di�erenttype of nodes. This might prove to be a limitation for very large TA1 models, but it aneasily be extended by adding more bits to represent the type. The referene ount in (b)an hold referenes of up to 512 parent nodes, this again might prove insu�ient, but againit an easily be extended. The �ag in () designates the size of the �rst entry, if this is aninteger, otherwise these bits are unused. The �ag in (d) designates the type of the �rstentry in the interval, the type an either be a pointer or an integer. If the �rst type isa pointer then the interval impliitly starts at �1, and ends at the integer following thepointer.1Timed Automata 46

Design / Data struturesInterval Pointer: Represents the layout of the node referene, with the blok pointer(e), theindex bits(f) and two �ags (g),(h). The blok pointer is the bits used for aessing theblok, as these are aligned at 64 K-bytes it is su�ient to use 16 bits here. The indexbits(f) are used to address whih entry in the array we are aessing, as the smallest blokwe store are :- A node header - 32 bits- One pointer, the interval impliitly starting at �1 - 32 bits- An integer of size 8 bits being in the interval [�127; 128℄.This sums up to a minimum node size of 9 bytes, plus a pointer for a hash list whihadds 4 bytes for a total of 13 bytes.The size �ag (g) onsists of two bits, that are used to designate the size of the next (possibletwo) integer(s). If the are more than one integer then they will need to be stored with thesize of the largest of them. The last �ag (h) designates whether the next two entries areboth integers or an integer and a new referene.Interval Integer: This is the interval integer, that an be four di�erent sizes, 1-4 bytes (size-�ag00, 01, 10, 11).When performing the redution, parent pointers would ome in quite handy, but the memoryusage in eah node will inrease dramatially as: The minimum node size was 13 bytes, addingone parent pointer at size 4 bytes, will inrease the memory usage by 413 �100 � 31 %, this beingthe best ase, as a node an have an arbitrary number of parents. This problems grows whennodes has more than one parent, then a list of parents has to be stored. Thus we onsider ita bad idea to store parent pointers, as the main purpose of this projet is to enhane memoryutilization to allow veri�ation of larger models.4.5.2 Node RepresentationsAs it is expeted that heking the type-�ag and the size-�ag might take up some time, aswell as the onverting between the di�erent size of integer representation. Three di�erent noderepresentations is implemented in this projet.Memory Representation 1 This is the same node representation as used in the urrent Up-paal version using the CDD data struture for its passed list. That is all integers isrepresented by 32-bits, and pointers to false is also represented, an example on suh anode is given in �gure 4.19(a).Memory Representation 2 This node representation introdue the type-�ag, by not repre-senting pointers leading to false. But all integers is still represented by 32-bits. An exampleon this representation is given in �gure 4.19(b).Memory Representation 3 In the last node representation implemented, we use all memoryminimizing tehniques. That is both the type-�ag as well as the size-�ag is used. Thismeans that pointers to false is not represented, and integers is represented by the leastnumber of bytes possible. An example on this representation is given in �gure 4.19().Implementing all three node representations also allow us to hek how muh memory is savedusing the alternative node representations. 47

4.5 Node Representation HashPointer
HashPointerHashPointerfalse falsePointer Pointer-20 19 560-20 Pointer 19 560 Pointerx-20 Pointer Pointer56019x2Headerx1HeaderxHeader (a) 36 bytes(b) 28 bytes() 21 bytesFigure 4.19: Show an example node in the three di�erent node representations implemented. `x�es in the �gureis the type-�ag, and small numbers in the header/pointers, is used to represent the size in bytes of the nextinteger(s). The node represented has the interval: ℄ �1;�10[; false, [�10; 9℄; Pointer1, ℄ � 10; 280[; false,and [280;1[; Pointer2. The sizes of the di�erent nodes, using the di�erent node representations is: MemoryRepresentation 1: 32 bytes, Memory Representation 2: 24 bytes, and Memory Representation 3: 17 bytes.4.5.3 SummaryTo summarize we implement three di�erent node representations, to see how muh memory anbe saved using di�erent node representations, and also to see at what runtime prize this memoryoptimization omes at.The distributed inlusion and union operations were designed almost as the non-distributedversions. The only di�erene is that whereas the non-distributed operations run depth �rst, thedistributed operations run depth �rst on eah node, before sending the request to the next om-puter node. Two additional operations were desribed: baktrae and redution. The baktraeould also be used in a non-distributed environment, its purpose were to redue the amount ofwork needed by the union operations, at it may use the found trae, whenever a union shouldbe performed with the false node. The last operation desribed were the redution operation,whih has to be implemented as the distributed union operation annot redue the CDD datastruture as it does not work in a global depth �rst fashion.

48

Chapter 5SemantisIn this hapter we present the semantis of seleted operations on the CDD data struture. Firstwe provide a proof that hanging the data struture into a distributed one does not hangethe semantis of the CDD. Seondly the semantis of ommon operations on our two main datastrutures are made, �nally semantis proofs for the algorithms desribed in the previous hapterare onduted.
5.1 Semantis of the DistributionThe distribution of the data struture desribes the partitioning of the data struture amongseveral omputer nodes. This is done horizontally for reasons desribed earlier, and additionalnodes are added to the data struture to provide a ommuniation layer between omputernodes. These extra nodes an be interpreted as CDD nodes with a speial type (tomm) withone outgoing edge not leading to the false node. This edge range over the interval `℄�1;1['.Thus we need to prove that the two CDD's in �gure 5.1 semantially desribes the same area.

true
=

(b)
I2C

A1 AnI1 In: : :BCD(a)
I2trueIR�over
IR�overCommuniation layer

Communiation layer
AnA1 : : :I1 In

Figure 5.1: Figure (a) shows a distributed CDD with ommuniation CDD nodes being node B and D, intervalIR�over is an interval forming an R � over. Figure (b) shows the equivalent CDD that desribes the samefederation as (a), as the redundant nodes B and D are omittedThe proof is simple as the reduedness properties of the CDD data struture already states thatnodes forming an R over an be omitted as they do not ontribute with any restritions to thefederation. Thus we an safely onlude that the two CDD's in �gure 5.1 semantially desribesthe same federation. As this applies to all CDD's we an w.l.o.g use the standard algorithmsemantis on the distributed CDD data struture to prove soundness and ompleteness of thealgorithms. This prove is extended when some semanti is de�ned for the CDD data struture.

5.2 Data Strutures5.2 Data StruturesThe two main data strutures for whih we give semantis are the ordinary CDD data strutureand the S-CDD data struture, where representing a Zone as the DBM's an be mapped diretlyto S-CDD's.Semantis for CDD'sEah CDD node is a (n+1) tuple ht; [I1; T1℄ : : : [In; Tn℄i 2 N , where t 2 T , Ii 2 I, and Ti 2 N ,where p 2 f1 : : : ng. Besides these inner nodes two terminal nodes exists:� true 2 N� false 2 NThe �rst operation for whih a semanti is desribed is traversal through the data struture givena lok valuation v 2 V:� [[true; v℄℄ = true� [[false; v℄℄ = false� [[ht; [I1; T1℄ : : : [In; Tn℄i; v℄℄ = [[Ti; v℄℄, where v(t) 2 IiThe �rst item states that no matter whih valuation is given to the true node, the result is true.The seond item states that no matter whih valuation is given to the false node, the result isfalse. The third item states that for a general CDD node, the result of the valuation is theresult of the valuation of the hild node Ti, where v(t) 2 Ii.The seond operation for whih semantis are desribed is what federation the CDD desribe:� [[true℄℄ = V� [[false℄℄ = ;� [[ht; [I1; T1℄ : : : [In; Tn℄i℄℄ = Sni=1fIit \ [[Ti℄℄g, where the notation Iit is based on the syntaxused in setion 3.4, and denotes the interval Ii restrited in the dimension of t.The �rst item desribe that all valuations is aepted by the true node. The seond itemdesribes that no valuations is aepted by the false node. And �nally, the third item desribesthe set of valuations aepted by a general CDD node. This is made from the union of all theset of valuations eah of it's suessors aept, where the set of valuations the suessor i aeptis Ii \ [[Ti℄℄.Semantis for S-CDD'sEah S-CDD node is a 3-tuple ht; I; Tsi 2 Ns, where t 2 T , I 2 I, and Ts 2 Ns. Besides innernodes, a single terminal S-CDD node exist: 50

Semantis� true 2 NsThe �rst operation for whih a semantis is desribed is traversal through the data struturegiven a lok valuation v 2 V:� [[true; v℄℄ = true� [[ht; I; Tsi℄℄ = v(t) 2 I ^ [[Ts; v℄℄The �rst item states that all valuations are aepted by the true S-CDD node. The seonditem states that a valuation is aepted by a S-CDD node if the value of the valuation for thistype v(t) is inluded in the interval for this node I, and if its single hild node also aepts thevaluation v.The seond operation for whih a semantis is desribed is whih federation an S-CDD desribes:� [[true℄℄ = V� [[ht; I; Tsi℄℄ = It \ [[Ts℄℄As where the ase for the CDD, all valuations are aepted by the true S-CDD node. The setof valuations aepted by the general S-CDD node, are the interval leaving it interseted by thevaluations aepted by it hild.5.3 DistributionBak to the proof that the semantis for the single proessor CDD data struture easily an bemapped to the distributed version.To distribute the CDD data struture additional ommuniation layers were added. If suh alayer is added between types ti and ti+1, then whenever a CDD node nsr with type ti or lesswants to refer to a node ndest with type ti+1 or higher, then this referene is made to point to aommuniation node nomm, whih only has a single suessor (℄�1;1[; ndest). In this setionwe show that the set of valuations desribed by node nsr is the same whether it refer ndestdiretly, or indiretly through nomm.For the following proof nsr denotes a CDD node with type ti�1 with a single suessor, withinterval I, leading diretly to ndest. And nsr0 denotes the same node, only it suessor pointsto nomm, whih again refers to ndest. Referring to the syntax used in setion 3.4 on page 23, weneed to prove that the set of valuations desribed by nsr is equivalent with the set of valuationsdesribed by nsr0, that is we need to prove that:[[nsr℄℄ = [[nsr0℄℄mI \ [[ndest℄℄ = I \ ℄�1;1[tomm \ [[ndest℄℄ (5.1)As eah type an be seen as a oordinate in a multi dimensional spae, and the type tomm isorthogonal to all other types, the intersetion with ℄�1;1[tomm is not a restrition to the setof valuations desribed by nsr0, and naturally an intersetion annot extend the set of valuationsdesribed by nsr0. 51

5.4 Operations5.4 OperationsThe operations that are performed on the used data strutures are inlusion test, baktrae,redution and union. The inlusion test must hek whether a S-CDD is inluded in a CDD.The union operation must perform union between a S-CDD and a CDD.The semanti proofs of the operations is based on set operations, that is, the set of valuationsdesribed by the CDD and S-CDD respetively. In the inlusion test it is argued that for a S-CDDto be inluded in a CDD, the interval of the CDD must be equal to or greater then the intervalof the S-CDD in all dimensions. That is for all types t, it must be true that: IS�CDDt � ICDDt ,where I(S)�CDDt denotes the interval in dimension t for the (S)-CDD.5.4.1 Inlusion TestThe semanti rules are1:I [[true � true℄℄ = trueII [[true � false℄℄ = falseIII [[ht; I; Tsi � false℄℄ = falseIV [[ht; I; Tsi � true℄℄ = trueV [[true � ht; [In; Tn℄ : : : [In; Tn℄i℄℄ = falseVI [[hts; I; Tsi � ht; [I1; T1℄ : : : [In; Tn℄i℄℄ = W8<: 1 : ts < t ^ [[Ts � ht; [I1; T1℄ : : : [In; Tn℄i℄℄2 : ts = t ^ Vf[[Ts � Tp℄℄ ; p 2 f1 : : : ng j I \ Ip 6= ;g3 : ts > t ^ Vf[[Ts � Tp℄℄ ; p 2 f1 : : : nggTo prove that this inlusion test is orret we prove that the semanti rules is sound and omplete.First for the soundness, we prove that the set of valuations desribed by the S-CDD are inludedin the set of valuations desribed by the CDD:Rule I: From the previous stated semantis, this rule states that V � V whih is trivially true.Rule II: This rule states that the federation overed by the true node of the S-CDD overs V,whereas the federation overed by the false node of the CDD overs ;, and learly V * ;,as V annot be false, and thereby desribe ;.Rule III: The federation overed by [[ht; I; Tsi℄℄ annot be empty (this would result in an emptyfederation, and thus not represented, due to the redution rules of S-CDD's and CDD's),and learly [[ht; I; Tsi℄℄ * ;.Rule IV: This rule is trivial, as any subset of V learly is a subset of V.Rule V: The semanti rule for S-CDD's de�nes the true node to over V, whereas the federationovered by ht; [I1; T1℄ : : : [In; Tn℄i annot over V as it would violate the reduedness rulesof the CDD data struture, therefore the S-CDD annot be inluded in the CDD.1The rules are read as [[S � CDD � CDD℄℄. 52

SemantisRule VI: We onsider the 3 sub ases separately,1: If the type ts of the S-CDD is smaller than the type t of the CDD, it means thatthe CDD impliitly ontains a node with type ts that overs R, and the argumentof Rule IV applies here. So for this type the S-CDD is inluded in the CDD as theorresponding type for the CDD is non existing thus forming an R-over. So wetraverse further down the S-CDD to hek if the hild node of the S-CDD is overedby the CDD node ht; [I1; T1℄ : : : [In; Tn℄i.2: If the two types are idential, we use the semanti set desription for the S-CDD andCDD to prove the semantis for the inlusion test :Showing S-CDD� CDD is equivalent to show that S-CDD\CDD = S-CDDFrom the semanti de�nition of whih Zone/federation the S-CDD and CDD desribesrespetively, we need to prove the following:(Is \ [[Ts℄℄) \ n[i=1fIit \ [[Ti℄℄g = Is \ [[Ts℄℄ (5.2)Whih an be rewritten as:Is \ [[Ts℄℄ \ (I1t \ [[T1℄℄ [: : : [Int \ [[Tn℄℄) = Is \ [[Ts℄℄ (5.3)m(Is \ (I1t [: : : [Int)) \ ([[Ts℄℄ \ ([[T1℄℄ [: : : [[[Tn℄℄)) = Is \ [[Ts℄℄ (5.4)(5.5)The next step taken, is to remove all suessors of the CDD node, whih intervalinterseted by Is equals ;, when removing the intervals, the hild nodes referred bythese are also removed, as these only matter for the set of valuations desribed if theedge leading to it has a non empty intersetion with Is.Is \ [p2f1:::ngfIpjIp \ Is 6= ;g \ [[Ts℄℄ \[p2f1:::ngf[[TpjIp \ Is 6= ;℄℄g = Is \ [[Ts℄℄ (5.6)From the syntati de�nition of the CDD, we know that the intervals of eah CDD-node must form an R-over Sni=1fIig = R, so the following must hold:Is � [p2f1:::ngfIpjIp \ Is 6= ;g (5.7)So it is known that for eq. 5.6 to hold it is su�ient for the following to hold:[[Ts℄℄ \ [p2f1:::ngf[[Tp℄℄ j Ip \ Is 6= ;g = [[Ts℄℄ (5.8)That is the question is bak to:[[hts; Is; Tsi � ht2; [I1; T1℄ : : : [In; Tn℄i℄℄ =^ f[[Ts � Tp℄℄ ; p 2 f1 : : : ng j Is \ Ip 6= ;g (5.9)53

5.5 Union for ts = t2.whih were our semanti de�nition.3: If the type ts of the S-CDD is larger than the type t of the CDD, then the S-CDDimpliitly ontains a node with type t that overs R. Therefore rule VI(2) an bereused here, but now all suessors of the CDD node need to be examined, as allintervals interseted by R 6= ;. To the semanti for this ase is:[[hts; Is; Tsi � ht; [I1; T1℄ : : : [In; Tn℄i℄℄ = ^p2f1:::ngf[[Ts � Tp℄℄g; for ts > tCompleteness of the inlusion testFor semanti rules to be omplete we need to prove that all syntati orret inputs are overedby some semanti rule.To do that we take the ross produt between the syntati legal input from the S-CDD (2 pos-sible syntati inputs), and the CDD (3 syntati inputs), yielding that there should be 6 rulesto over all possible inputs, see table below.S-CDDtruehts; I; Tsi � CDDfalsetrueht; [I1;T1℄ : : : [In;Tn℄i = Input: S-CDD CDD1 true true2 true false3 ht; I; Tsi true4 ht; I; Tsi false5 true ht; [I1; T1℄ : : : [In; Tn℄i6 ht; I; Tsi ht; [I1; T1℄ : : : [In; Tn℄iInput 1 through 5 is trivially overed by rule 1 through 5 in the semanti de�nition of theinlusion test.Input 6 is overed by rule 6 in the semanti de�nition, but as the rule here is subdivided, weonsider if the three sub rules together overs all possible legal inputs. The sub rules overs theases where: ts < t , ts = t and ts > tAs these three rules trivially overs all possible situations of the types, we onlude that allpossible legal input to the inlusion test is overed by a orresponding semanti rule yieldingompleteness.5.5 UnionThe semantis for the union between a S-CDD and a CDD is as follows, the rules are read as[[S � CDD [CDD℄℄:Rule I: [[true [true℄℄ = V 54

SemantisRule II: [[true [false℄℄ = VRule III: [[hts; I; Tsi [true℄℄ = VRule IV: [[hts; I; Tsi [false℄℄ = [[hts; I; Tsi℄℄Rule V: [[true [ht; [I1; T1℄ : : : [In; Tn℄i℄℄ = VRule VI: [[hts; I; Tsi [ht; [I1; T1℄ : : : [In; Tn℄i℄℄ = [[hts; I; Tsi℄℄ [[[ht; [I1; T1℄ : : : [In; Tn℄i℄℄To prove soundness of the union operation we prove eah of the preeding rules:Rule I: If both the existing CDD aepts all valuations, and a S-CDD that aepts all valuationsis unioned, learly all valuations is aepted by this union. [[true [true℄℄ = [[true℄℄ [[[true℄℄ = V [V = VRule II: The same argumentation holds as for Rule I only, here the CDD overs ;, but theS-CDD overs all valuations, so learly now all valuations is overed. [[true [false℄℄ =[[true℄℄ [[[false℄℄ = V [; = VRule III: When a CDD aepting everything is unioned with a S-CDD overing the federationF1 is unioned, the result is a CDD aepting. [[hts; I; Tsi [true℄℄ = [[hts; I; Tsi℄℄ [[[true℄℄ =[[hts; I; Tsi℄℄ [V = VRule IV: If an empty CDD, is unioned with a S-CDD aepting some valuation, the result-ing CDD must also aept the same valuation, and nothing else. [[hts; I; Tsi [false℄℄ =[[hts; I; Tsi℄℄ [[[false℄℄ = [[hts; I; Tsi℄℄ [; = [[hts; I; Tsi℄℄Rule V: If an S-CDD aepting all valuations is unioned with some CDD,the resulting CDDhave to aept everything. [[true[ht; [I1; T1℄ : : : [In; Tn℄i℄℄ = [[true℄℄[[[ht; [I1; T1℄ : : : [In; Tn℄i℄℄ =V [[[ht; [I1; T1℄ : : : [In; Tn℄i℄℄ = VRule VI: If a general S-CDD is unioned with a general CDD, the resulting CDD should aeptthe union between the two CDD data strutures. [[hts; I; Tsi [ht; [I1; T1℄ : : : [In; Tn℄i℄℄ =[[hts; I; Tsi℄℄ [[[ht; [I1; T1℄ : : : [In; Tn℄i℄℄The ompleteness of the union operation an be shown in a similar way as the ompletenessproof of the inlusion test.5.6 Semantis of BaktraeIn this setion we provide some semanti proofs of the baktrae algorithm.To summarize how the baktrae algorithm works, we try reursively to �nd nodes that oversexatly the same zone as the orresponding sub S-CDD we union with, we do this bottom upstarting at the true node. The Algorithm for the baktrae algorithm is provided in setion 4.4.4on page 42To prove the soundness of the baktrae algorithm we need to prove two things:55

5.6 Semantis of Baktrae1: First we need to prove what kind of nodes an be used for the baktrae algorithm, andthat reusing these nodes does not violate the semantis of the union, nor the reduednessproperties of the CDD data struture. To prove this the following need to be proven.- Restriting to searh among nodes with only one hild node is semantially orret.- That the found CDD nodes desribes the semantially orret valuation. That is thevaluation desribed by the sub S-CDD.- That the reuse of these nodes does not violate the reduedness properties of the CDD,data struture.2: That these found nodes annot be altered due to other union operations.5.6.1 Reuse of nodesWe will prove that it is not allowed to reuse a CDD node if it has more than one hild node notbeing the false node.
True
Y0Z0IY1True

Y0Z0True
Y0Z0 (b) ()(a) IZ1 =SIY0 IZ0IZ0 IY1IZ0IY0 IZ1Figure 5.2: (a) is a CDD, (b) is a S-CDD and () is the union of (a) and (b), when reusing node Z0 even thoughit have more than one hild di�erent from the false nodeIY0IY1 IZ0 IZ1

(e) (h)(g)(f)
Figure 5.3: (e) and (f) are the area overed by the CDD in �gure 5.2 (a), and (e),(f),(g) and (h) denotes the areaovered by the CDD in �gure 5.2(). The (h) area should have been omitted as it denotes the area impliitlyadded by reusing node Z0 in �gure 5.2In �gure 5.2 we union the CDD (a) with the S-CDD (b), in this union we allow reusing node Z0.The federation desribed by (a) is depited as box (e) and (f) in �gure 5.3.The Zone desribed by the S-CDD in �gure 5.2(b) is depited as box (g) in �gure 5.3, thus theunion of the the CDD and the S-CDD should provide a federation desribing box (e),(f) and (g).But reusing node Z0 as in this union forms a federation desribing all four boxes in �gure 5.3.Thus we onlude that it is not allowed to reuse a CDD node if it has more than one hild node,and none of these are the false node. Note that this is a speial ase that only applies when56

Semantisperforming union of a CDD and a S-CDD as this would not be the ase if both were CDD's astwo CDD node ould be isomorphi even though they have more than one hild node.From this proof we get that we only need to searh among nodes with one hild node, as usingothers impliitly will lead to inonsisteny.Also note that not being allowed to reuse a node with more that one hild only apply during thebaktrae algorithm. During the redution phase all nodes are allowed to be reused.5.6.2 Semantis of found CDD nodesIn this subsetion we will argue that it is semantially orret to reuse a single stringed part ofa CDD. A single stringed part of a CDD is a CDD node from whih there is only one trae tothe true node. The nodes are found as an exat math to the orresponding S-CDD node, andit is thus trivially to prove that they over the same Zone, as we only searh for nodes with onehild as desribed in the previous subsetion. Here we get that the found subpart of the CDDatually desribes the same Zone as the S-CDD that we union with.5.6.3 Redution of CDDAs no nodes are added or modi�ed by the baktrae algorithm, no reduedness properties an beviolated by running this algorithm. The properties might be violated when the following unionoperation uses the found baktrae node, and does not onstrut new nodes for itself - this mightlead to sub-optimal sharing.If the union did not use the CDD trae found by the baktrae operation, it would onstrutthe exat trae itself, as this is the only unique trae desribing the valuation, after this traewould have been onstruted the redution phase would redue the newly reated trae to theone that would have been found by the baktrae operation, so using the CDD node found bythe baktrae operations does not violate the reduedness properties of the CDD.5.6.4 Change nodesAfter the baktrae algorithm has run, and before the mathing2 union operation reahes thenode where the baktrae algorithm stopped, other union requests might reah the node. Toprevent these union operations from altering the found baktrae path, we prove that, if a nodehas two parents, or two di�erent paths leading to it, then it is not allowed to hange any suessornodes of the node having two parent nodes, as this would hange the valuation of both paths.We prove this by ontradition.In �gure 5.4 are three CDD's, () is the union of (a) and (b). Here we hange the Y0 node, eventhough it have two parents (X1 and X0).Before the union [[X0℄℄ desribes:[[X0℄℄ = IX0 \ [[Y0℄℄) [[X0℄℄ = IX0 \ IY0 \ [[Z0℄℄2The mathing union operation is the union operation started by the baktrae algorithm, and holds the sameunique `id' as the baktrae path found. 57

5.6 Semantis of BaktraeX1X0
(a) (b)IZ0Z0 IY1Y0 IX1X1 X0 X1IX1IX0 Y0IY0 IY1IZ0Z0True

=
()

IX0 IX1IY0 SIZ0Y0Z0True TrueFigure 5.4: (a) is a CDD, (b) is a S-CDD, () denotes a CDD that is the union of (a) and (b). Note thatIY0 \ IY1 = ;The union of �gure 5.4(a) and 5.4(b) is performed by adding an extra suessor from node Y0 toZ0 with interval IY1 .After the union [[X0℄℄ desribe:[[X0℄℄ = IX0 \ [[Y0℄℄) [[X0℄℄ = IX0 \ (IY0 [IY1) \ [[Z0℄℄As [[X0℄℄ still should desribe the same federation then, it must hold that:IX0 \ IY0 \ [[Z0℄℄ = IX0 \ (IY0 [IY1) \ [[Z0℄℄) IY0 = IY0 [IY1This is learly not possible as this implies that IY1 � IY0 and this is a ontradition to ; IY1\IY0 =;, and that neither of the intervals are allowed to be ; aording to the de�nition of CDD's. Fromthis proof we get that when a orret sub part of the CDD is found, it an safely be used as itwill not be hanged later. This is easily ensured by inreasing the ref_ount of the nodes whihwill be reused.To summarize what these three proofs provide:� It is not allowed to hange a node if it has more than one hild node and none of these arethe false node. This allows to onlude that in the baktrae algorithm we need only tosearh for nodes with one hild, as using other nodes would possible introdue inonsisteny.� We have argued that the semantis of reusing a single stringed part of a CDD found usingthe baktrae algorithm, desribes the same Zone as the orresponding part of the S-CDDyielding that the baktrae algorithm is sound.� It is not allowed to hange a node, that is hanging the I(node) set, if the node has morethan one parent. This allows us to onlude that if we have found a single stringed partof a CDD via baktrae searh from the true node, then this part annot be altered byanother union operation, as it will have more than one parent: the previous and the oneusing the baktrae algorithm.If a union operation on, say X0 of �gure 5.4(a), wants to hange node Y0, it has to makea opy of Y0 and hange the opy. 58

Semantis5.7 Reduing CDD'sWhenever a S-CDD is added to a CDD, some nodes may hold redundant information and must beredued, setion 3.1.1 desribed whih rules must apply for the CDD being redued, to summarizethese rules:� The CDD has maximum sharing: 8n;m 2 N | type(n) = type(m) . whenever su(n) =su(m)) n = m� All intervals are maximal: Whenever n I1��! m;n I2��! m, then I1 = I2 _ I1 [I2 6= ITo ensure that these properties holds, a redution is performed whenever a S-CDD has beenadded to the CDD. This is done by heking for violations of the prior two mentioned rules, andif any violations are found, they are orreted as follows:� If a violation to the �rst rule is found, one of the nodes n;m is hosen for deletion (say`n'), and all other nodes pointing to this node is redireted to point at the remaining node(node `m').� If a violation to the seond rule is found, the two onseutive intervals is substituted by annew suessor pointing to the same node, the suessor is given the interval I1 [I2.In this setion we prove that these operations does not alter the semantis of the CDD.� If node m 2 N and n 2 N is syntatially equivalent, the federation they over is triviallythe same. Therefore it is trivially allowable to interhange semanti equivalent nodes.� The federation overed by a node n 2 N is desribed by:[[ht; [I1; T1℄ : : : [In; Tn℄i℄℄ = Sni=1fIit \ [[Ti℄℄g,if Tk and Tk+1 is the same node, they desribe the same federation say [[Tk℄℄then (Ik \ [[Tk℄℄) [(Ik+1 \ [[Tk℄℄) = (Ik [Ik+1) \ [[Tk℄℄.The interval Ik [Ik+1 2 I, is now alled Ik, then the federation overed by n may berewritten as:[[ht; [I1; T1℄ : : : [In; Tn℄i℄℄ = Si2f1:::ngnk+1fIi \ [[Ti℄℄g, whih is equal to[[t; [I1; T1℄ : : : [(Ik [Ik+1) \ Tk℄; [Ik+2; Tk+2℄ : : : [In; Tn℄℄℄ as stated.5.7.1 CanonialUnfortunately the reduedness properties of CDD's is not as nie as for BDD's. A redued BDDmake a anonial representation of a binary formula, whereas a redued CDD does not makea anonial representation of a federation. To see why a redued CDD does not make up aanonial representation, onsider �gure: 5.5, here the three redued CDD's of (a), (b), and ()represent the same Zone, namely the one presented in �gure 5.5(d).As an be seen none of the nodes in the CDD's of �gure 5.5 does violate any of the reduednessrules.That CDD's are not anonial may result in that the CDD's build in this projet may not alwaystake up the same number of CDD node as the order in whih the S-CDD's is added might havean e�et on the onstrution/redution. 59

5.7 Reduing CDD's

2 4

2

4

X
Ytrue true true

XY �X Y YY �X Y �X
X X[1; 3℄[�1; 1℄ [0; 4℄ [0;1[[�1; 1℄ [�1; 1℄

[1; 3℄ [1; 3℄
(a) (b) () (d)Figure 5.5: Redued Ordered CDD's does not make a anonial representation for a onstraint system. The threeCDD's in (a), (b), and () represent the same Zone, namely the one presented in (d)

60

Chapter 6Cost Bene�t AnalysisIn this hapter we give a ost bene�t analysis for the di�erent operations that is performed onthe distributed CDD data struture. A purpose in our design were to minimize the numberof messages send for eah operation performed. First we analyzes the worst ase number ofmessages send for eah of the implemented operations in a Uppaal environment, thereafter theworst number of messages needed to explore a single state in Uppaal is analyzed, and �nallyit is analyzed how many messages an be saved by introduing groups. After having handledthe number of messages needed for doing various operations and verifying states in Uppaal ananalysis of the added memory overhead is provided.6.1 OperationsThe operations designed is the following:� Inlusion test� Baktrae� Union� RedutionThe following subsetion desribe the number of messages needed to run a single one of theseoperations. Figure 6.1 might help in understanding the analysis.
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

����
����
����

����
����
����

�
�
�

�
�
�

���
���
���

���
���
���

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
�� Node Mk

Node M1

Figure 6.1: A test setup onsisting of k omputer nodes, eah generating new states for exploration. Only theupper omputer node an initiate Inlusion Test and Union. And only the bottom omputer node an initiateBaktrae and Redution6.1.1 Inlusion TestWhenever Uppaal disovers a new state it heks whether the state has been explored beforeperformed through an inlusion test. The worst ase senario is that a omputer nodeMi di�erent

6.2 State Explorationfrom the top omputer node M1 disovers the state, then an inlusion request has to be send tothe top omputer node - that is one message. Then the top omputer node M1, initializes theinlusion test. Now the worst ase senario is that the inlusion request has to propagate to thebottom omputer node Mk, whih might sueed or fail. To propagate to the bottom omputernode k � 1 messages is needed. This gives a worst ase of k message for a single inlusion test.6.1.2 BaktraeWhenever an inlusion test fails on a omputer node, two ations takes plae: First, the failedstate is send to the Waiting list on a omputer node - that is one message. Seond, a baktraerequest is send to the bottom omputer node - that is two messages. The baktrae request anin worst ase propagate to the top omputer node, whih adds additional k � 1 messages. Thatis from the point were an inlusion test fails to the union is performed k + 1 messages is send.6.1.3 UnionWhenever a baktrae operation fails on a omputer node, a union request is send to the topomputer node - that is one messages. When the top omputer node M1 reeives the unionrequest it loates the handle and initializes the union operation. Most union requests mustpropagate to the bottom omputer node of the loal group to reah the true node, whih addsadditional k � 1 messages. Even if the baktrae algorithm propagated to a omputer node Mi,where i 6= k, the request might still propagate to the bottom omputer node, as the CDD nodereahed by baktrae is only used if the S-CDD is to be unioned with the false node. That is inthe worst ase senario, from a baktrae operations stops, to the union is performed k messagesis send.6.1.4 RedutionWhen a union requests terminates on a omputer node, most often Mk of the loal group. Thisomputer node has olleted redution information whih may result in a redution request tothe previous omputer node. Suh a redution request may propagate all the way to the topomputer node of the loal group. This gives that a redution operations in worst ase sendsk � 1 messages. Worst ase in this sense is only the worst ase of messages send, the higher therequests goes, the better sharing in the CDD data struture is given, yielding a better memoryutilization.6.2 State ExplorationIn this setion we use the prior operation osts to alulate the worst ase number of messagesneeded to be send to explore a state found by Uppaal. First Uppaal initializes an inlusionrequest - whih worst ase took k messages if this request failed on the bottom omputer node.If the request failed in the bottom omputer node, the state is send to the Waiting list on aomputer node - that is one additional message. But the baktrae requests need not be send,as it is already on the last node so the worst ase number of messages so far is k + 1 messages.62

Cost Bene�t AnalysisThen the baktrae request might propagate to the top omputer node, whih adds additionalk� 1 messages, if this is the ase, the union request need not be send to the top omputer nodeas it is already there. Now the union request need to propagate to the bottom omputer node,whih adds k� 1 messages, the baktrae an only be used by nodes, that is to be unioned withthe false node.Finally the redution operation adds additional k� 1 messages to the total number of messages.To summarize the total worst ase number of messages needed to be send to verify a single stateis: 4k � 2 messages.From the ost bene�t analysis of the union operation it an be seen that the number of messagesthe union request sends worst ase is una�eted of the baktrae operation. And if the baktraeoperation is disabled the worst number of messages send for eah disovered state is redued to:� Send inlusion request to top omputer node - 1 message� Propagate inursion request to bottom omputer node - k � 1 messages� Send state to a Waiting list on another omputer node - 1 message� Send union request to top omputer node - 1 message� Propagate union request to bottom omputer node - k � 1 messages� Propagate redution request to top omputer node - k � 1 messagesWhih sums up to 3k messages.The purpose of the baktrae operation were not to save overall used memory, but to savetemporary memory in form of all staks, and temporarily not redued CDD nodes. Furthermore the baktrae operation were made to save runtime, but as argued in the previous, O(k)more messages has to be send, and it might not even help the union operation terminate earlier,so the baktrae algorithm is not implemented - and thus not tested. Another argument fornot implementing the baktrae operation is that most of the advantage gained by the baktraeoperation is solved by the temporary hash table, desribed in setion 4.4.2. That is, it is expetedthat the little runtime advantage gained by the baktrae operation is lost due to the great numberof message needed to be send, worst ase. Further more the union request whih must followa baktrae must be delayed until the baktrae has �nished it work, this has the disadvantage,that the state has to be stored until the baktrae has terminated, and that inlusion test mightfail beause of this delay.The lowest number of messages whih need to be send for a single state is k�1 messages. This isthe ase when the inlusion test sueed. That is when a new state is found at the top omputernode at a group, and this request propagates to the bottom omputer node - whih is k � 1messages.In an extremum the lowest number of messages send is zero messages. This is the ase whenthe inlusion test sueed at the top omputer node. But as this ase were rarely seen in ourpreliminary tests, we argue that the best ase omplexity for a single state is k � 1 messages.63

6.3 Groups6.3 GroupsIf the number of groups used is di�erent from the number of omputer nodes used, then thesame ost bene�t analysis holds. In the analysis of the groups the number k is the number ofomputer nodes in the largest group. The urrent distributed Uppaal uses one omputer nodein eah group, worst ase this leads to 1 message. Namely sending the inlusion request to theorret omputer node. No requests must propagate as all operations are done loally.6.4 Memory OverheadAs a onsequene of adding ommuniation CDD nodes as desribed in setion 4.3, the distribu-tion of the data struture adds some memory overhead, whih a single proessor implementationwould not have. In this setion we desribe how large this overhead is, as well as how thisoverhead an be removed by using distributed shared memory.For this analysis some syntax is needed. Let tistart be the �rst type loated in omputer nodeMi, and let tiend be the last type loated on omputer node Mi. And let nr(t : T) return thenumber of nodes with type t. Let the omputer nodes range from M1 to Mk. Eah omputernode exept the top omputer node holds a lient ommuniation array, whih takes up 1 word ofmemory. Eah omputer node exept the bottom omputer node holds a server ommuniationarray whih also takes up 1 word of memory. That is the total number of words used forommuniations nodes in a group is:kXi=2(nr(tistart)) + k�1Xi=1(nr(tiend))Again if the extreme �one omputer node per group� the memory overhead added is:1Xi=2(nr(tistart)) + 0Xi=1(nr(tiend)) = 0So no memory overhead is added as expeted.From this analysis it an be seen that the fewer omputer nodes partiipating in a group, theless beomes the memory overhead added by ommuniation CDD nodes. Also it an be seenthat the higher the number of types handles by one omputer node, the less beomes the relativememory overhead used on ommuniation nodes, ompared to �real� CDD nodes.6.4.1 Distributed Shared MemoryA way to avoid the memory overhead introdued by the ommuniation nodes is to use distributedshared memory. Then the node when reeiving a state from Uppaal ould hose either:1. Do the inlusion test and union itself in the memory of all other nodes.2. Or when sending messages, add the pointer to the CDD node on the reeiving omputernode, in the request. 64

Cost Bene�t AnalysisBut as we have hosen to distribute the CDD data struture using the MPI interfae, to o�er amore ommon interfae to onform to the portability of Uppaal, we annot avoid the need forommuniation nodes.SummaryThe ost of eah of the four operations implemented is linear in the number of omputer nodespartiipating in the operation, whih annot be done more optimal when a horizontal distributingapproah has been hosen. Though the ost for verifying a single explored state takes the ostof 4k � 2, but by disabling the baktrae operation the ost were redued to 3k messages. Thisnumber of messages might introdue a onsiderable overhead in runtime. This is taken from thefat that analyzing a single state in Uppaal is a small task, and adding 3k messages for eah stateexplored might multiply the veri�ation time for eah state. But as the purpose of this projetis to allow veri�ation of larger models and to measure memory overhead from distributing, wedo not onsider this result obstruting for further investigation.

65

6.4 Memory Overhead

66

Chapter 7ImplementationIn this hapter we desribe what ation has been taken during the implementation to dereasethe amount of memory opied, and to optimize the runtime of the operations. Besides desribingthese ations, the interfae to Uppaal is desribed.7.1 Uppaal interfaeThis setion desribes the interfae between Uppaal and the implemented CDD data struturemade in this projet. The overall funtionality of Uppaal is depited in the pseudo ode of �gure1.3. To repeat:� While the Waiting list is not empty� Take a state from theWaiting list, and searh whether this states ful�lls the propertygiven.� Then hek whether this state has been explored before� If not �nd all suessors to the state and put these into the Waiting list.The version of Uppaal we interfae use a Passed -/WaitingList(PWList) interfae. So to interfaeUppaal this PWList interfae has to be implemented. This interfae onsists of two funtionswith the following desription:tryPut(state *ps) Whenever Uppaal �nds a new state it alls tryPut, whih must examinewhether the state `ps' is inluded in the Passed list. If the state is inluded the funtionreturns immediately, without any ation. If the state is not inluded, `ps' is inserted intothe Passed list and also into the Waiting list for further exploration.bool tryGet(state *ps) Whenever Uppaal has found all suessors for a state, it alls tryGetto get a new state. tryGet then redirets the pointer given to an element in the Waitinglist. If an element is found in the Waiting list the funtion must return true, and if nomore elements are available in the Waiting list false must be returned to signal Uppaalthat all states has been searhed.In our implementation theWaiting list is implemented as a FIFO linked list, therefore the tryGetall beomes simple. Simply rediret the `ps' pointer given to point to the �rst entry in the linkedlist.The tryPut all beomes somewhat more ompliated. The disrete state is hashed to a grouppartiipating in theBefore any of the tryGet/tryPut alls returns it is heked whether any inoming messages exists,being an inlusion/union/redution request. If any inoming messages exists these are proessedbefore returning.If the inlusion test initiated sueeds somewhere, the state is simply disharged. If the inlusiontest fails, two messages are send. First a union request is send to the top node of the loal group,then the state itself is send to a omputer node that will put this state in its Waiting list forfurther exploration.

7.2 Use Pipelining7.2 Use PipeliningWhenever a omputer node reeives a request for a CDD operation, either an inlusion requestor a union request, the state need to be inluded. To avoid opying the state at eah omputernode, the following bu�er management is implemented.Whenever a message arrives, the respetive operation is alled keeping the state in the messagebu�er, then whenever the request need to be propagated to the next omputer node, the samebu�er is reused to send the request, so that the state need not be opied. In this way severalmemory opy operations are saved for eah operation performed on the CDD data struture.This an be done as the union and inlusion operations are non destrutive to the state.7.3 Hash listsMany of the operations in the implementation has to searh for mathing items. E.g. whenever ahandle into the CDD data struture should be found, a list of disrete states with orrespondinghandles must be searhed for a math to �nd the orret handle. And during the redutionphase whenever a node is hanged, it is be examined whether there exist a node whih is syn-tati equivalent with the newly reated node, so that this node an be reused/shared.To redue the omplexity of the searh for a mathing item, both the list of disrete states, andall CDD nodes are inserted into a hash data struture. As more than one node might hash tothe same buket, buket over�ow is handled by adding the nodes to a linked list of nodes at eahhash bukets.This implies that either nodes annot be hanged, otherwise the node must be removed fromthe hash list. If is should be possible to remove an arbitrary element from a hash list, then thehash list should either be doubly linked - whih waste memory. Otherwise the hash list has tobe searhed to �nd the previous element in the hash list, to rediret its `next pointer ' to point tothe next element in the list - whih wastes time. Therefore it has been deided that is should notbe possible to hange a CDD-node (it is already not allowed to hange the size without movingit, beause of the segregated memory layout, see setion 4.5).7.4 Distributed Garbage ColletionIn our �rst implemented approah, the `ref_ount ' were updated at eah union and redutionrequest, but this led to a very large runtime penalty for eah operation performed, as the inreas-ing of a `ref_ount ' of one node, should result in an inrementation of the `ref_ount ' of eah ofthe suessors to the node. This might result in an exponential number of nodes whih shouldhave their `ref_ount ' inremented and some nodes `ref_ount ' should even be inremented bymore than one.The reason that the `ref_ount ', should be kept orret, has two purposes. First when the`ref_ount ' is deremented to zero, no nodes referenes the node, and the node an be deleted.Seondly a node may not be hanged if its `ref_ount ' is larger than one, due to the baktraeproof. But as nodes is never hanged anyway, due to the disussion in the previous setion, theseond purpose of the `ref_ount ' is not an issue anymore.68

ImplementationThis setion desribes a distributed garbage olletion sheme whih delete unused nodes in amore time e�ient way, by only deleting nodes when spae is needed.7.4.1 Mark and SweepThe hosen garbage olletion shema hosen is a mark and sweep algorithm, modi�ed to work ina distributed fashion. To help understand the algorithm refer to �gure 7.1. First the `ref_ount 'of all nodes not deleted yet (that is whih `used '-�ag is true), is set to 0. This is done bytraversing all the linked list from eah of the hash bukets. In the mark phase nodes referenedby a disrete handle are traversed reursively to update their `ref_ount ' to 1. This is done bythe following algorithm:1:void Mark(dd_handle 2 N)2:begin3: if (dd_handle.ref) = 0 then4: dd_handle.ref_ount := 15: foreah (I;m) 2 su(dd_handle)6: Mark(m)18:endThis algorithm ensures that the `ref_ount ' of all nodes referened by a disrete handle is setto 1. Finally the sweep phase is initiated. It sans the linked lists for eah hash buket, anddelete all nodes (by setting their `used '-�ag to false) that has `ref_ount = 0', and therefore notreferened.To distribute this algorithm, the sweep phase, noties whih elements in the ommuniation isused, and sends a message to the next omputer node, with this information. Then the nextomputer node uses the used entries in its ommuniation layer, as handles into the CDD datastruture and deletes all elements not referened by a used ommuniation entry. That is thesame algorithm is used, but the used entries in the ommuniation layer is used as handles.

69

7.4 Distributed Garbage Colletion

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���
���

Handles

Top node for a handleNon referened nodeHashBukets
(a)

(b)
Figure 7.1: (a) show how all nodes is plaed into a hash data struture, mentioned in the previous setion, it alsoshown how the handles for the disrete states referene these CDD nodes. (b) Show a simple CDD data struturewith two handles, and some unreferened nodes.

70

Chapter 8TestA number of tests are onduted to test the performane of the implemented system. Thishapter desribes the tests, how the test setup is and our expeted results. The atual resultsare presented with an analysis of these. Finally the analysis leads to a onlusion of the resultsarhived. But �rst we onsider what the onsequenes are for only distributing the symboli partand not the disrete part of the states in Uppaal.8.1 Limitations of the ImplementationThe implementation was designed and implemented with the expetation, that it would be thesymboli part of the state spae that would aount for the most memory used in the veri�ation.Therefore the disrete part was designed to be loated on the omputer node holding the handlesinto the CDD, as this gives faster aess to the handle.After our distributed implementation of the CDD data struture, and our preliminary testingbegun, we found that the part of the Passed list that took up the most memory is the disretepart, whih we had not foused on distributing. This disallows us to verify models that notalready ould be veri�ed on a single omputer node. In the Future Work setion 10.2 we disusshow the disrete part an be distributed by modifying the urrent implementation. We are stillable to test how large a memory redution we obtain from using a single distributed CDD insteadof several CDD's, one on eah omputer node, or in groups. The memory savings upon usingthe di�erent node representations an also be tested.8.2 Purpose of the testThe purpose of this projet is as stated in setion 2.2 to investigate how muh memory anbe saved using global sharing when storing the Passed list in veri�ation of timed automata.Furthermore the relationship between synhronization overhead/memory usage when using ahybrid CDD model, where the number of CDD's are ranging between one and the number ofomputer nodes used, is to be testedFurthermore we investigate how muh memory an be saved using the alternative node repre-sentations desribed in setion 4.5.1.All tests should show the memory savings as well the enountered runtime penalty. Whentesting the distributed versions we also display the number of send messages, as this indiatesthe synhronization overhead.The tests performed are as follows:Memory representation The �rst test performed measure the memory savings vs. timepenalty of the three node representations implemented.Distribution The seond test measures the time penalty introdued by distributing the datastruture, together with the memory usage.

8.3 PremisesGroups The purpose of the third test is to show how muh memory an be saved by globalsharing ompared to making groups. Furthermore it should show how large the timepenalty is for the memory saved.8.3 PremisesIn this setion we desribe the premises under whih the tests are onduted, both the hardwareplatform and the software used.8.3.1 Hardware platformDevelopment and performane tests are onduted on a luster of seven homogeneous dual 733MHz Pentium III Coppermine workstations running on Asus CLS motherboards with Server-Works LE hipset. The omputer nodes are interonneted by a 100 Mbit Ethernet LAN, on-neted by a Ciso System Catalyst 3500 Series swith. Eah omputer node is equipped with 2GB memory.The software on�guration were as follows: Debian GNU/Linux kernel 2.4.17, on�gured withSMP. The g ompiler used were version 2.95.2.8.3.2 Software premisesThe used version of Uppaal is 3.3.20, interfaed using a ombined Passed -/Waiting list.For performane tests the following modes are used:Daapo whih simulates the Daapo protool. It is the smallest model used, when veri�ed on asingle omputer node, it explores 53967 states, in 5.65 seonds.Busoupler whih is a simulation of bus oupling. When veri�ed on an single omputer nodeis explores 5288096 states, in 1701 seonds.Fisher This is a model of the Fisher protool, with 6 proesses eah trying to aess theritial setion. When veri�ed on a single omputer node, it explores 55674 states in 493seonds.The models used an be obtained by ontating Institute for Computer Siene at AalborgUniversity.Uppaal an be downloaded from http://www.uppaal.om.Finding a model that it ould be advantageous to distribute among several omputer nodes isnot possible as we only distribute the symboli part of the Passed list, meaning the the memoryusage of the omputer node that holds all the disrete states beomes a bottlenek memory wise.Thus we will not be able to verify larger models as stated in the purpose.The models is hosen, as these has been used for referene models in numerous Uppaal artiles.The number of explored states doumented in the previous list, is the number of states foundby Uppaal and given to our interfae through the tryPut all. That is, the number representthe number of inlusion test performed, whereas the number of unions/redutions is somewhatlower. 72

TestTests on single omputer nodes are deterministi and are thus only performed one.Tests on multiple omputer nodes are not deterministi, as two messages send from two di�erentomputer nodes to the same destination might arrive in any order. Therefore tests on multipleomputer nodes are performed 5 times, and averaged.Whenever tests is onduted on more than a single omputer node the ommuniation is doneusing the Message Passing Interfae (MPI), the MPI interfae used is LAM/MPI1.As distributing the veri�ation adds some non-determinism, the number of veri�ed states variesa little. In our tests the number of veri�ed states varied less that 2%, and are doumented.Types OrderingThe hosen ordering of the variables an be important for the possible sharing in the CDD datastruture, why the variable ordering is presented here. The hosen ordering is shown in a DBM,as the entry (Xi;Xj) and (Xj ;Xi), where i 6= j is represented by the same type, the entries isequal over the diagonal. Variables of the type (Xj � Xj) should always be zero, and are thusnever represented, and are therefore not given a type. The variable ordering hosen as follows:X0 X1 X2 X3 X4 X5X0 - 15 14 13 12 11X1 15 - 10 9 8 7X2 14 10 - 6 5 4X3 13 9 6 - 3 2X4 12 8 5 3 - 1X5 11 7 4 2 1 -This variable ordering is hosen from the idea, that the greatest sharing is loated where theondition is only based on the value of a single lok, and therefore the types of the form (Xj ;X0),is loated at the bottom were sharing is possible. Further work ould examine whih variableordering in the CDD data struture is best. The variable ordering is dependent on the modelveri�ed, but some guidelines ould possible be stated, from suh experiments. These experimentsan be onduted on a single proessor CDD implementation, as the results would map diretlyto a distributed implementation.8.3.3 Measured dataWhenever the memory usage of our implementation is to be measured, only the memory usagein the CDD data struture is measured. The memory usage of the Waiting list, and the disretestate spae is not measured, as these are not the fous in this projet. When the memory usageis doumented, the memory used when the veri�ation is �nished is measured.Whenever the time is measured, the total runtime of Uppaal is measured in seonds. That is,the onstant overhead of initialization/�nalization is also measured, whih is negligible.The CPU-load is measured as the perentage of the run time that eah omputer node is ative,and thus not bloking to reeive a message, when its Waiting list is empty.1www.lam-mpi.org 73

8.4 Test desriptionThe memory load is presented as the perentage of the CDD that the spei� omputer nodeholds.8.4 Test desriptionIn the following subsetions the test setup for eah test are desribed. It is desribed what ismeasured, how many omputer nodes partiipate in the test, and how many groups the test isperformed with.8.4.1 Node RepresentationThe �rst test performed is to measure how muh memory an be saved using the alternativenode representations desribed in setion 4.5.2. This test is only performed on a single omputernode, as it is assumed that the relative memory saving is only dependent on the model size. Wetest all three previously mentioned models. The results will be presented in a table showing theruntime and the memory usage for eah node representation.8.4.2 DistributionTo measure the overhead by distributing the CDD data struture, a series of tests is onduted,�rst on a single omputer node, then on two, three and four omputer nodes. The total memoryusage is measured in eah test to measure the memory overhead introdued by the ommuniationlayers.The primary purpose of the tests is to measure the time overhead introdued by ommuniation,and seondly to measure the load balaning between the di�erent omputer nodes. By loadbalaning we mean both proessor utilization and memory utilization. The optimal result wouldbe that eah omputer node always use 100% CPU time, and the memory usage being distributionevenly.8.4.3 GroupsThe primary purpose of this test, is to determine how muh spae savings that an be obtainedusing global sharing, and what runtime overhead is introdued by the ommuniation. This testuses 4 omputer nodes, �rst on�gured in four groups, then on�gured in two groups, and �nallyon�gured in a single group. The relative memory usage and spae requirements are ompared,with the total runtime for eah on�guration. This should allow us to measure the harateristisof using groups ompared to a single distributed CDD.8.5 Expeted ResultsThis setion is used to desribe whih expetations we have for the results, these expetations areused in the analysis of the results. These expetations are written before the atual tests are on-duted, but after some preliminary tests were performed, whih allow us to take ommuniationoverhead into onsiderations during the disussion of the expeted results.74

Test8.5.1 Node RepresentationDuring our preliminary tests on some small models, our observations were that ompared to theordinary node representation the seond node representation saved between 5% and 10%, thethird node presentation saved between 15% and 20% of memory. We expet that the relativememory saving for the seond node representation is somewhat onstant as a funtion of themodel size as the relative number of false intervals is expeted to be onstant. The third noderepresentation might save even more memory as we expet that the nodes get more intervals andthus more integers to represent ompared to the onstant overhead, to the node given by thenode header, whih is 8 bytes. This representation is very dependent on the spei� model, asthe values of the integers is di�erent between models.The time penalty introdued for the seond node representation is expeted to be rather mini-mal, as only heks on bits is introdued. The time penalty for the third node representation isexpeted to be somewhat larger, as integers has to be paked/unpaked in all omputer nodespartiipating in an inlusion/union. Additional the CDD nodes ontains pointers that not ne-essarily is word aligned, thus ompromising the portability as this does not work on most RISCarhitetures. Having pointers that are not word aligned means that the CPU has to feth twowords to get the pointer.8.5.2 DistributionThe distribution of the data struture is expeted to plae a onsiderable overhead to the ver-i�ation, as the number of messages send is large for eah state veri�ed. We also expet thetop omputer node to have a larger load than the others, mainly due to the problem of notdistributing the disrete part of the state spae. The ause is that the top omputer node hasto searh for the orret handle, before initiating any operations on the CDD.The memory usage is expeted to inrease slightly, as the ommuniation nodes also takes upspae.Clearly the more types a omputer node holds the fewer ommuniation nodes exists omparedto the number of CDD nodes in total - so distributing models with a large number of types ismore feasible (memory wise) than distributing models with few types.If models with a few types should be veri�ed distributed, other methods may be used, or eahomputer node, ould partiipate in a group for itself, whih totally eliminated the need forommuniation nodes - but also disables global sharing.The time omplexity for the used algorithms are expeted to range between the best and worstase omplexity presented previously in hapter 6.8.5.3 GroupsWe expet that the e�et of having global sharing will outrange the memory used for ommuni-ation layers.Compared to a single distributed CDD, the memory usage for more than one group is expetedto be larger as more CDD data strutures has to be onstruted whih annot share states.When using groups the runtime is expeted to derease with the number of omputer nodespartiipating in the groups. This derease in runtime is expeted as the number of send messages75

8.6 Results and Analysisis redued.8.6 Results and AnalysisIn the following setion we present the test results and the analysis of these.8.6.1 Node RepresentationFirst we present the results for the three di�erent node representations:Daapo:Representation Size in bytes Time in se Size index Time index1 302.596 5.65 1.00 1.002 279.232 5.81 0.92 1.033 225.866 5.96 0.75 1.05Busoupler:Representation Size in bytes Time in se Size index Time index1 12.602.672 1701 1.00 1.002 12.435.932 1803 0.98 1.063 10.193.851 2517 0.80 1.48Fisher - 6:Representation Size in bytes Time in se Size index Time index1 6.510.968 493 1.00 1.002 6.482.704 453 1.00 0.923 5.614.071 414 0.86 0.848.6.2 Analysis of Node RepresentationIn this subsetion we analyze the results for the three di�erent node representations.Representation 1This representation is the standard representation used by the urrent version of Uppaal, thusused for referening the two other representations.Representation 2The results for the seond representations, where edges to leading to false are omitted, showsonly a modest memory savings for small models, whereas for larger models the savings arenegligible. The inrease in runtime using representation 2 is only 2%, but as the savings arenegligible we onlude that there is no point in using this representation. Our expeted resultsfor this representation were that the memory savings would be onstant as a funtion of themodel size. This expetation was not orret, as it seems that for large models we obtain large76

Testnodes as there is a lot of sharing, meaning that the relative number of intervals leading to falseis redued.Representation 3For all models tested this representation saves between 14% and 25%, smaller for larger models,but as stated in the expeted results, will this representation be very dependent upon the spei�model, as the lok values of this model in�uenes greatly upon the memory usage. The inreasein runtime is as expeted greater than for the other representations being an inrease of 50%.For the Fisher protool this representation is surprisingly faster than the others, as the totalnumber of nodes in the CDD is the same, the only explanation is as the nodes beomes smallerdue to the ompatness of the third representation, there will be lesser ahe misses leading toinreased performane.8.6.3 DistributionFirst we present the memory usage for eah CDD-type in eah of the models in a non distributedCDD, in �gure 8.1, 8.2, and 8.3.
0

500

1000

1500

2000

2500

0 2 4 6 8 10 12 14

C
D

D
 n

od
es

Type

Distribution of CDD nodes between types

Figure 8.1: The distribution of CDD nodes between the di�erent types of the Daapo model
0

20000

40000

60000

80000

100000

120000

0 1 2 3 4 5 6 7 8 9

C
D

D
 n

od
es

Type

Distribution of CDD nodes between types

Figure 8.2: The distribution of CDD nodes between the di�erent types of the Busoupler model
77

8.6 Results and Analysis
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 5 10 15 20

C
D

D
 n

od
es

Type

Distribution of CDD nodes between types

Figure 8.3: The distribution of CDD nodes between the di�erent types of the Fisher - 6 modelThe results for the distributed tests are presented in tables, one table for one to four nodes, eahmodel represented separately. Node 1 is always the top omputer node.The following 4 tables holds the results for verifying the Daapo model on one to four nodes.For eah node, the runtime, memory usage, CPU Load, Memory load, and the number of sendmessages is doumented:Daapo one NodeNode Time Usage Memory Usage CPU Load Memory Load Send MessagesNode 1 5.65 302.508 100% 100% 0Daapo two NodesNode Time Usage Memory Usage CPU Load Memory Load Send MessagesNode 1 49.14 166888 100% 54% 96.117Node 2 49.14 142164 60% 46% 55.861Total 49.14 309.052 - 100% 151.978Daapo three NodesNode Time Usage Memory Usage CPU Load Memory Load Send MessagesNode 1 50.3 83880 100% 27% 121.308Node 2 50.3 173972 66% 56% 97.880Node 3 50.3 52812 40% 17% 61.523Total 50.3 310.664 - 100% 280.711Daapo four NodeNode Time Usage Memory Usage CPU Load Memory Load Send MessagesNode 1 47.7 82360 100% 26% 115.087Node 2 47.7 91864 65% 29% 94.919Node 3 47.7 120372 37% 38% 89.373Node 4 47.7 22172 26% 7% 44.190Total 47.7 316.768 - 100% 343.569
The following four tables douments the results for the Busoupler model, the same results asfor the Daapo model is presented:

78

TestBusoupler 1 NodeNode Time Usage Memory Usage CPU Load Memory Load Send MessagesNode 1 1701 12.602.672 100% 100% 0Busoupler two NodesNode Time Usage Memory Usage CPU Load Memory Load Send MessagesNode 1 9532 7.210.612 100% 54% 12.623.045Node 2 9532 6.142.372 61% 46% 6.354.126Total 9532 13.352.984 - 100% 18.977.171Busoupler three NodesNode Time Usage Memory Usage CPU Load Memory Load Send MessagesNode 1 9652 1.746.032 100% 13% 14.623.045Node 2 9652 9.670.352 64% 72% 10.388.128Node 3 9652 2.014.660 35% 15% 5.764.121Total 9652 13.431.044 - 100% 30.775.294Busoupler four NodesNode Time Usage Memory Usage CPU Load Memory Load Send MessagesNode 1 9572 538.184 100% 4% 16.523.948Node 2 9572 3.094.560 62% 23% 12.312.429Node 3 9572 9.149.140 45% 68% 7.354.264Node 4 9572 672.732 26% 5% 4.723.539Total 9572 13.454.616 100% 40923180
The �nal four tables in this setion doument the results arhived when verifying the Fishermodel on one to four omputer nodes:Fisher 1 NodeNode Time Usage Memory Usage CPU Load Memory Load Send MessagesNode 1 493 6.510.968 100% 100% 0Fisher 2 NodesNode Time Usage Memory Usage CPU Load Memory Load Send MessagesNode 1 4183 5.483.360 100% 81% 187.221Node 2 4183 1.286.220 63% 19% 70.538Total 4183 6.769.580 - 100% 257.759Fisher 3 NodesNode Time Usage Memory Usage CPU Load Memory Load Send MessagesNode 1 4213 3.015.220 100% 44% 187.678Node 2 4213 3.769.032 71% 55% 135.287Node 3 4213 68.528 12% 1% 72.846Total 4213 6.852.780 - 100% 395.811

79

8.6 Results and AnalysisFisher 4 NodesNode Time Usage Memory Usage CPU Load Memory Load Send MessagesNode 1 4451 1.041.532 100% 15% 174.606Node 2 4451 4.513.312 72% 65% 137.584Node 3 4451 1.319.280 23% 19% 138.964Node 4 4451 69.436 4% 1% 60.527Total 4451 6.943.560 - 100% 511.6818.6.4 Analysis of the Distribution ResultsIn the following we disuss the results arhived during the tests of the distributed data struture.The main fous is based on CPU/Memory load, and time penalty and memory overhead. Finallythe number of messages send, is ompared to the ost-bene�t analysis.Time PenaltyThe time penalty added by distributing the data struture, were almost una�eted by the numberof nodes used. We expet that the explanation for this is that the maximum number of messagessend by a single omputer node (the top node) only inrease slightly. Besides that more omputernodes partiipating in the exploration of states. The time penalty were between 560% and 900%whih is an aeptable ost as the fous in this projet were to save memory at a ertain runtimepenalty. The memory savings will be disussed later in setion 8.6.6.Besides the implementation is not optimized for runtime, only memory wise. E.g. it would bepossible to lower the total runtime by paking several requests in the same message. This wouldderease the total number of messages send, whih we expet to aount for some of the timepenalty. How suh requests should be paked is disussed in the Future Work, setion 10.4.Memory OverheadThe memory overhead added by distributing the data struture were between 4.3% and 6.7%.Models with larger symboli state spae often have a larger number of loks and therefore therelative memory overhead is dereased. We �nd the memory overhead found aeptable, as thenumber of loks in the used models is relatively small. This overhead is not expeted only tobe due to the ommuniation layer, but also that the CDD might be build di�erently, as thedistribution adds some non-determinism to whih order states are unioned with the CDD, asCDD's are not anonial - see setion 5.7.1.Additionally this memory overhead ould be redued to a minimum, by implementing the dis-tribution in a shared memory environment as disussed in setion 6.4.1, a protool for this isdisussed in 10.6CPU/Memory LoadDuring the tests the amount of used memory on eah omputer node, used for the CDD datastruture were measured. The memory load were not evenly distributed, the reason is that thenumber of CDD nodes in eah layer is not evenly distributed. This an be seen from the boxdiagrams in �gure 8.1, 8.2, and 8.3. 80

TestThis all for dynami memory load balaning, whih we disuss in Future Work, setion 10.5.The CPU load is also not evenly distributed. The top node is always the most loaded node, thisis due to the fat that it is this node that has to �nd the handle into the CDD data struture.We expet that the reason that the CPU load derease in the lower omputer nodes, is thatinlusion tests may fail earlier, and thus not burden the lower omputer nodes.Average ComplexityPreviously we have stated that the worst ase omplexity is 3k messages for eah state exploredwith k being the number of nodes partiipating, whereas the best ase omplexity for eah stateis k � 1 messages. First we note that the top node always is the node that aount for thelargest number of send messages. The reason for this is that the top node is responsible forsending states that has failed the inlusion test to a node - whih then put it into its Waitinglist. This might seem as a bottlenek but with the urrent version where the disrete part is notdistributed, then this is the only possible approah as the top node holds the disrete part whihalso has to be stored in the Waiting list. Alternatively the disrete part ould be inluded in allmessages introduing an overhead in the message size.The tests shows an average omplexity in the number of send messages per veri�ed state between1:5k for Daapo and 2:3k for Fisher, Busoupler being in the middle with a omplexity of 1:93k.These results is as we expeted between the best ase and worst ase omplexity. Daapo hasthe lowest omplexity whih we expet is due to an observation that almost all inlusion teststhat failed, did fail on the top omputer node, leading to a limited number of inlusion requestssend to other omputer nodes. This together with an observation of the redution only reahingthe top omputer node in a limited number of redutions gives the omplexity of 1:5. Fisherhas the highest omplexity as the opposite ase here is the ase being that almost all inlusiontests fails on another omputer node than the top omputer node. The ordering of the typesould in�uene on where the inlusion test fails, why suh a reordering may hange the averageomplexity.8.6.5 GroupsThe results for using groups is presented in the tables below, one for eah model with time, sendmessages, and memory usage. The number of used omputer nodes is four.Daapo:Nb of groups Time in se Total used memory in bytes Total nb of sent messages1 37.7 316.772 343.5692 25.2 554.352 171.5484 8.2 904.212 34.720Busoupler:Nb of groups Time in se Total used memory in bytes Total nb of sent messages1 9562 13.454.616 40.923.1802 5570 22.573.832 22.703.4714 1620 45.033.084 3.365.242
81

8.6 Results and AnalysisFisher:Nb of groups Time in se Total used memory in bytes Total nb of sent messages1 4451 6.943.560 511.6812 2721 10.634.604 276.8644 834 21.420.432 36.7588.6.6 Analysis of the Group ResultsIn this setion we disuss the results arhived from the tests using groups, where there are morethan one CDD to represent the Passed list, these CDD's may be loated on a single omputernode or span several omputer nodes.Memory UsageThe memory usage inreases as expeted when using more than one CDD. The maximum wouldbe that eah of the new CDD's takes just as muh spae up as the single distributed CDD. Thusfor the test results the extra memory usage for using 4 groups instead of one an maximum be ofa fator four. The tests report the extra memory usage for the three models to be between 2.9and 3.3 times as muh memory for using four groups instead of a single group. This is surprisingto see that the sharing between di�erent handles in the CDD is so large. The test using twogroups instead of a single group reports an inreased memory usage of between 1:5 and 1:75times as muh memory as the single group version. The inreased runtime seems to be linearlydependent upon the number of groups partiipating, the less omputer nodes in eah group thelower the runtime is.The memory usage when using groups is larger than expeted, thus it might not be an attratingalternative to use groups instead of a single distributed CDD, as the memory usage annot beestimated before the atual veri�ation has been arried out, and therefore the optimum numberof groups annot be estimated, whih might lead to a non terminating veri�ation if it runs outof memory.Using the CDD data struture in a distributed environment might waste memory if eah omputernode holds a separate CDD, as the sum of the memory onsumption of these CDD's will aountfor more memory than a single CDD.Time PenaltyThe time penalty seems to be linearly dependent on the number of groups used in storing theCDD, but we annot onlude this linearity as we only ondut tests with a limited number ofomputer nodes. The more nodes partiipating in the group the larger the time penalty. Wehad expeted the di�erene in runtime of two and one group to be larger, but from the resultswe onlude that one group is best for large models where memory usage is ritial. If memoryusage is non ritial, we reommend using the DBM data struture, as the CDD data strutureadds a runtime overhead, as reported in [4℄. 82

Test8.6.7 Additional results[4℄ report that the inlusion test using CDD's is better than the inlusion test using DBM's asCDD's desribe federations whereas DBM's desribe Zones. We have made the same observation,e.g. for the Busoupler model - using the DBM struture requires exploration of 7.2 millionstates. When using our implementation of the CDD data struture the model ould be veri�edin 5.3 million explorations.This improvement is onduted even though the DBM implementation of Uppaal used the priorityWaiting list, and we only implemented the Waiting list as a linked list.To see that the implementation of the Waiting list as a priority queue has advantages overthe linked list implementation, an be seen from the veri�ation of the of the Daapo model.Here the DBM Uppaal version with its priority Waiting queue veri�ed the model in 45005 stateexplorations, where our implementation explores 53957 states.8.7 SummaryThis setion summarizes the results arhived during the tests, and repeat the main onlusion.For the node representations up to 20% of memory were saved, at a maximum runtime ostof 50%, whih we onsider aeptable as the runtime were not onsidered during the design ofthese node representations. Memory representation 3 is only designed for running on non RISCarhitetures, as pointer may not be word aligned, but this ould be extended to run on RISCarhitetures at a ertain runtime ost. This runtime ost is expeted as the pointer onvertinghas to be performed in software.The thesis we tried to test were whether memory ould be saved by taking advantage of globalsharing. The results arhived during the group test, showed that nearly the same symboli stateshas to be explored for all disrete states, whih lead to a memory saving of 70% when building asingle CDD ompared to building 4 separate CDD's. But the runtime penalty introdued wereup to 900%.In the test of the distributed CDD we observed that the memory overhead introdued by om-muniation nodes, and building the CDD di�erently were aeptable, ranging from 4.3% to 6.7%.The runtime penalty introdued by the distribution, were onstant to the number of omputernodes partiipating in the veri�ation.The worst ase omplexity for eah veri�ed state were alulated to 3k messages, k being thenumber of omputer node partiipating. The measured omplexity were between 1:5k and 2:3k,whih might indiate that the inlusion test often failed on the upper omputer nodes, or thata large number of inlusion tests sueeded.The memory were not evenly distributed, whih indiate the need for a dynami memory loadbalaning. The CPU load were a�eted by this non even distribution of memory, but mostlyfrom the fat that the top omputer node holds all disrete states, as the number of disretestates is large, resulting in a large runtime penalty for searhing for the CDD handle.
83

8.7 Summary

84

Chapter 9ConlusionIn the onlusion we analyze the results arhived, whih knowledge an be used, and whihimprovements are possible to arhive further memory savings.Although it were disovered that the problem of storing the Passed list in Uppaal were notstoring the symboli part of the states, the results arhived are satisfying, as purpose were toinvestigate how muh memory ould be saved by global sharing.The global sharing arhived were almost linear to the number of omputer nodes used for theCDD data struture, the argument for this has to be that for almost all disrete states, thesame symboli states are explored. This fat, ould be used to make an even more ompatrepresentation of the Passed list, were the disrete and the symboli part of the Passed list isombined in the same data struture.The memory overhead added by the ommuniation layers was between 4.4% and 6.8% using fouromputer nodes whih seems reasonable. The relative memory savings for a single distributedCDD ompared to four groups on four mahines, was up to 70%.The runtime penalty introdued were between 560% and 900%, whih is aeptable taken intoonsiderations that we have not optimized with respet to runtime. If the distributed datastruture were redesigned to also take runtime optimizations into aount, the runtime penaltymight be redued, and if the great memory savings ould be kept, the data struture might proveinteresting. Possible runtime optimization is disussed in setion 10.4.Although the arhived results might not be used for the urrent Uppaal version, as the runtimepenalty added is to large and models with large symboli parts does not exist. Some of the ideasmight be used in the design of other distributed DD data strutures. Some of the ideas mightalso be used to design a distributed deision diagram(DD) data struture for storing the disretepart of the Passed list. If the sharing in suh a distributed data struture ould be as great as forthe symboli part, designing suh a DD data struture ould allow the veri�ation of very largemodels. But before suh an algorithm an be implemented a throughout design of the in�uenesof ombining the disrete and symboli part of the Passed list in the same data struture has tobe investigated. The possibly sharing in the disrete part also has to be investigated. In the nexthapter we give an example on how the disrete part ould be stored in a DD data struture.The alternative node representations designed and implemented showed that the used memoryusage ould be redued up to 20%, at an aeptable ost in runtime being at most 50%. If thedesign of the node representations were designed to optimize runtime as well as memory usage,the runtime might derease.As this projet makes a ontribution to omputer aided veri�ation, the data strutures andalgorithms designed must be semantially sound and omplete, why we have onduted severalsemanti proofs. First we proved that adding the ommuniation layer to the CDD does nothange the semantis of the CDD. This were used to simplify the proofs of the distributed algo-rithms, as it made a diret mapping between the non distributed algorithms and the distributed.The semanti proof eased the design of the distributed algorithms, whih are very similar to thenon distributed. The only exeption is the union algorithm, whih had to be extended with a re-dution algorithm - as redution an only be performed bottom up, and union must be performedtop down.The baktrae operation designed in setion 4.4.4, were not implemented, and thus not tested.The reason for not implementing this operation were that the baktrae algorithm worst ase

added k � 1 messages to the number of messages needed to explore a single state in Uppaal,whih we onsidered too expensive, for further arguments refer to setion 6.2. The results show-ing that the sharing possible from global sharing being so large, the baktrae might prove worse,as the number of CDD nodes having only one suessor might be very small, this an also be seenfrom the diagrams showing the distribution of CDD nodes for eah type, as there is a relativelysmall number of these nodes.Even though it might prove that the baktrae algorithm ould redue the runtime on somekinds of models, whih ould be investigated. This investigation ould easily be onduted on asingle proessor version of the CDD data struture, as the results would map to the distributedimplementation.The group test showed that the size of eah of the CDD's loated in groups almost had the samesize as the single CDD. This indiates that is advantageous to use a single CDD, as the size ofseveral CDD's using groups is almost as large as single CDD times the number of groups.The omplexity of the distributing the CDD, indiated that is it not advantageous to distributethem, if they an be loated on a single node. As all the timed automata model we haveenountered used most memory representing the disrete part. An approah to improve both theruntime and memory usage, would be to loate the symboli state spae on a single omputernode, and distribute the disrete part. This would allow global sharing between all disretestates, and redue ommuniation overhead.If a model with a symboli state spae that annot be loated on a single omputer node, thedistribution approah desribed in this projet might prove useful. Although this approah doesnot sale to more omputer nodes than the number of types in the CDD.

86

Chapter 10Future WorkIn this hapter we disuss whih improvements to the existing implementation an be made, toarhive further memory/runtime savings.10.1 CDD Implementation of Waiting ListIn the urrent implementation only the symboli part of the Passed list is represented as a CDD.We have not onduted tests showing how muh memory is saved by using CDD's ompared tothe use of DBM's for storing the Passed list, as mentioned in the purpose. A single proessorimplementations of Uppaal based on the CDD data struture have shown 42% memory savingsompared to storing the Passed list as shortest path redued DBM's. Therefore it is not unlikelythat storing the Waiting list as a CDD also ould save some memory in the representation of theWaiting list. Besides saving memory in the representation another advantage ould be arhived:When Uppaal takes a state out of the Waiting list, it expets a DBM, whih has been shown tobe equal to a S-CDD. If the two S-CDD's in �gure 10.1 is inserted into the Waiting list in theshown order, only the S-CDD of �gure 10.1(b) will be represented and thus veri�ed by Uppaal,this might lead to a faster termination of Uppaal, as fewer states might be examined.
2 4 6

2

4

6

4

2

4

6

2 6
X

Y
X

Y

true true[�1; 1℄[�2; 2℄
[1; 5℄ [2; 4℄[1; 5℄ [2; 4℄X � YYXX

X � YY
(a) (b)Figure 10.1: Example on how representing the Waiting list as a CDD might lead to fewer examined states forUppaal

10.2 Distributing the Disrete partIn the urrent implementation of Uppaal the Waiting list is implemented as a priority queuewhere states with a larger Zone are veri�ed �rst, followed by states with smaller Zones, thisleads to the same redution as for the Waiting list implemented as CDD, only in the DBMpriority queue elements must be inserted orretly leading to a linear searh, when using CDDfor storing the Waiting list this priority queue ould be implemented at a lower runtime ost.10.2 Distributing the Disrete partThe urrent implementation of the distributed CDD does not distribute the disrete part ofthe state spae, as stated previously. This setion omes with some guidelines for how suh adistribution ould be done using the urrent implementation. The urrent implementation storesall disrete states assoiated with handles into the CDD on the top omputer node. The problemwith distributing the disrete part is that we need it to �nd the handle into the CDD, as thesymboli state must be unioned with the handle mathing the disrete part.A possible distribution approah is desribed in the following algorithm:� A omputer node reeives a state from Uppaal� It �nds the omputer node responsible for this disrete part via a hash algorithm, andsends the state to this node.� The omputer node responsible for the disrete part reeives the state and uses the disretepart to �nd a handle into the CDD, and sends the symboli part along with the handle, anda mahine ID to the top node. Note that this omputer node has to synhronize with thetop omputer node on the handle, when it reeives a disrete part it has not seen before.� The top omputer node reeives the symboli state along with the handle whih it uses to�nd the node for whih it must perform an inlusion test of the state. The inlusion testis performed distributed as in the urrent implementation.� If the inlusion test sueeds no further ation has to be taken, if it fails a union requestis send to the top node, and the state is send to the node responsible for the state usingthe mahine ID.� The node responsible for the state reeives the state that failed the inlusion test andinserts it in its Waiting list for further exploration.The synhronization on the handle between the omputer node responsible for the disrete partand the top node, an be performed by letting the node holding the disrete part send a uniqueid that it generates itself, meaning that eah time the top omputer node reeives a state it an�nd the handle from the unique id. This will work as all nodes holds separate disrete parts,meaning that no synhronization on handles need to be performed between other nodes.This way to distribute the disrete part will add a omplexity of sending one additional message,leading to a new omplexity of 3k + 1 instead of 3k. We do not expet this extra messageto inrease the overall runtime muh, but additional test needs to be performed to verify thisthesis. The memory used to store the disrete part will in this way be evenly distributed, givena uniform hash algorithm. 88

Future Work10.3 Representing the Disrete Part as MTIDDDuring this projet we realized that the problem of storing the Passed list in formal veri�ation oftimed automata, is not storing the symboli part, but storing the disrete part, we have thoughtof a way to storing the disrete part of the Passed list. The disrete part of the Passed list isin this projet implemented in a hash list, that is a number of hash bukets, eah ontaining alinked list of disrete states, with eah disrete state a pointer is provided, whih is a pointer tothe handle in the CDD data struture whih should be used.In this setion we desribe how the disrete part of the Passed list possible ould be implementedusing a Multi Terminal Integer Deision Diagram (MTIDD). , whih possible ould save bothmemory as well as redue the runtime.We �rst desribe how the disrete part ould be stored using a MTIDD, then we argue why thispossibly ould save memory, and �nally we argue how this method of storing the disrete partould save some time.10.3.1 RepresentationThe disrete part of an Uppaal state onsists of two parts:Loation A timed automata model, onsists of a number of proesses possibly synhronizingwith eah other. Eah of these proesses an be in a number of di�erent loations. E.g. ifa proess simulates a train gate, it might have three states: open, losed, and ative. Theloation part of the disrete part onsists of a vetor designating whih loation eah of theproesses is urrently in. In the urrent Uppaal implementation eah proesses is allowedto have 64K di�erent loations. This information is stored as an array of integers.Variables Besides loations, synhronizations hannels, and loks, timed automata models arealso allowed to hold integer variables. The seond part of the disrete state in Uppaalstates is an array holding the value of eah of these integer variables.The disrete part is urrently stored as an array of integers. For eah loation vetor, the numberof di�erent variable assignments may be very large. In the urrent implementation the loationvetor is stored one for eah variable assignment, this redundant information ould be deletedrepresenting the disrete part as a MTIDD.That is the only information needed to be stored is an array of integers. For this purpose aMTIDD ould be used, then eah layer in the MTIDD, represent one entry in the array repre-senting a loation or an integer. Eah node holds a list of assignments to the loation/variableand a pointer to follow if this assignment is true. When the lowest layer has been reahed,the bottom node holds a handle into the CDD data struture. An example on a MTIDD datastruture holding the information:� f1; 1; 1; 45; 46g ; handle1� f1; 1; 2; 45; 46g ; handle2� f1; 1; 1; 45; 47g ; handle3� f1; 1; 1; 44; 46g ; handle4 89

10.3 Representing the Disrete Part as MTIDD� f2; 1; 1; 45; 46g ; handle5� f1; 1; 1; 45; 48g ; handle6Is presented in �gure 10.2(a)

(a)

1

1 1

1 1

2

2

44 45

46 46 47 48

45 45

46 46

(b)

1

1

1

2

2

44 45

46 47 48H4 H1 H3 H6 H2 H5
L1L2L3V1V2 V2 V2 V2V1 V1L3L2

H1 H3 H6
L1L2L3V1 V2

f1; 1; 45; 46g; H5f45; 46g; H2f46g; H4
Figure 10.2: (a) Multi Terminal Integer Deision Diagram, used for representing the disrete part of the Passedlist of Uppaal. (b) MTIDD representation of the disrete part using optimizations, using tagged arhiteture.In the �gure L1, L2, and L3 designates loations, V1 and V2 designated integer variables, and H1 : : : H6 designatedhandles into a CDD data struture.
10.3.2 Saving MemoryThe reason that it is expeted that the MTIDD data struture might save memory in the repre-sentation of the disrete part of the Passed list, is the same as the reason that other XDD datastrutures save memory, namely by only storing information one. But where most XDD datastrutures share data in the bottom elements, the MTIDD data struture used is only allowedto share information at the top of the data struture. E.g. the representation of the �rst threeintegers as f1; 1; 1g is only stored one, although used for four handles. One disadvantage ofthis representation is that a ertain overhead is added as eah node need to keep additionalinformation. This problem ours when the MTIDD holds a subpart of only a single string, thenthis representation might double the memory usage, as it an be ompared to represent an arrayas a linked list. If when onstruting a sub MTIDD with only a single terminal node, an array isinserted with the values of the remaining variables and a handle, some memory ould be saved.This memory optimization is showed in �gure 10.2, to known whether the suessor is a MTIDDnode or an array, a tagged arhiteture an be used, as the two least signi�ant bits are not usedin pointers, these an be used to represent whether the hild following the pointer is a MTIDDnode or an integer array. It would even be possible to use our alternative node representation3 to use a minimum number of bytes to store variables, whih possibly ould lead to furthermemory saving. 90

Future Work10.3.3 Saving TimeThe reason it is believed that representing the disrete part in a MTIDD might save some time,is that the amount of memory ompared is expeted to derease greatly. E.g. for verifyingBusoupler, whih is a relatively small model, over 1.5 million disrete states of size 160 bytesexists. The Busoupler model holds 16 proesses so the loation vetor onsists of 16 (16bit)integers, and the model holds 27 (32 bit) integer variables. That is the MTIDD holds 16+27 = 43layers, and only 43 MTIDD nodes, of di�erent size, has to be traversed.In the urrent implementation using a hashed linked list, the hash data struture holds 17609bukets. Then in the worst ase 1:5�10617609 = 85 disrete elements of size 160 bytes need be searhed.Therefore the amount of memory omparison needed using the MTIDD data struture mighteasily be somewhat smaller than the amount of memory omparison needed for the urrentimplementation, and it is expeted to be even better for larger models.If the size of the MTIDD nodes is large, it takes more runtime to �nd the handle, but a greatersharing is aomplished, and if the MTIDD nodes is small the time for �nding the handle is small,but so is the sharing. That is either is runtime saved ompared to the ordinary implementation,or else memory is saved.10.3.4 DistributingAs the disrete part of the Passed list is the part that takes up the main part of the memory usage,it would be interesting to distribute this MTIDD data struture, if it makes a more ompatrepresentation of the disrete part. Figure 10.2(a) show that the representation takes up themain part of the memory in the bottom part of the tree. This means that using a horizontaldistribution approah is not suitable, the vertial distribution approah, or the groups approahdesribed in setion 4.2.2 on page 31 might show to be more appropriate as traes never merge,therefore the maximum number of messages send an be redued to less than the number ofomputer nodes used.10.4 Pak MessagesIn the urrent implementation, some of the time penalty introdued is expeted to ome fromthe large number of messages send. In this setion we desribe how this number of messagesan be dereased without hanging the funtionality/semantis of the implemented system. Theidea is taken from the urrent distributed Uppaal version, whih pak a number of states beforesending them to another omputer node[3℄. That is, eah omputer node holds a bu�er for eahof the other omputer nodes, and whenever a messages should be send to another omputernode, it is plaed in the orresponding bu�er and when a ertain number of messages has beenadded to a bu�er it is send. The same approah might be used in the distribution of the CDD.Eah omputer node only propagates requests to the lower omputer node (for inlusion testand union), and to the upper omputer node (for redution). Therefore, for eah request typea single bu�er is kept, and send whenever it is full. To optimize this sheme a little union andredution request bu�ers, should be send before inlusion test requests, whih would possiblederease the number of inlusion test whih fail, and thereby redue the number of exploredstates. 91

10.5 CPU/Memory Load10.5 CPU/Memory LoadAnother problem our implementation su�ers from, is that the load distribution both with respetto CPU usage and memory usage is far from even. To solve this two approahes has to beimplemented, �rst and most important, the disrete part of the Passed list should be distributed,and seondly dynami memory load sharing should be implemented.An approah for distributing the disrete part of the Passed list has been disussed is the previous.For implementing dynami memory load sharing, it should be possible to move a layer of theCDD data struture from one omputer node to another, and still keeping all suessors orret,to be able to implement this, a design and possible a semanti analysis has to be performed.10.6 Distributed Shared MemoryIn the ost bene�t analysis we argue that the memory overhead introdued by the ommunia-tion nodes ould be removed by using distributed shared memory.In the last two projet we have investigated the apabilities of the Salable Coherent Interfae(SCI) network tehnology. The SCI tehnology o�ers a hardware based distributed shared mem-ory environment. The following disussion is based of the use of SCI for distributing the CDDdata struture.The distributed shared memory interfae o�ered by SCI, has very low lateny, and very highbandwidth (100-200MB/s) in writes, for reads the bandwidth is lowered to (4-5MB/s). Thereforethe protool designed should be based on writes and not reads. Of the two ideas mentioned in theost bene�t analysis setion 6.4.1, the idea where the global pointers is written to the next node,whih is then signaled to ontinue the request, might be the best approah, when SCI is used. Ifthe node disovering a state should make the inlusion test and the union itself, the operationsshould feth large amounts of memory from the other nodes, at the low speed. Therefore thesame ideas as in this projet should be used, only should the ommuniation protool be altered,and the ommuniation layers ould be omitted.

92

Bibliography
[1℄ Alur and Dill. Automata for modelling real-time systems. Leture Notes in ComputerSiene, LCNS 443, 1990.[2℄ R. Stallman B. Lewis, D. Laliberte and the GNUManual Group. GNU Emas Lisp RefereneManual., 1995.[3℄ Gerd Behrmann, Thomas Hune, and Frits Vaandrager. Distributed timed model heking- How the searh order matters. In Pro. of 12th International Conferene on ComputerAided Veri�ation, Leture Notes in Computer Siene, Chiago, Juli 2000. Springer-Verlag.[4℄ Gerd Behrmann, Kim Guldstrand Larsen, Justin Pearson, Carsten Weise, and Wang Yi.E�ient timed reahability analysis using lok di�erene diagrams. In Computer AidedVeri�ation, LCNS 1633, pages 341�353, 1999.[5℄ R. Bellmann. Dynami programming. Prineton University Press, 1957.[6℄ Randal E. Bryant. Graph-based algorithms for boolean funtion manipulation. IEEE Trans-ations on Cimputers, 8(C-35):677-691, 1986.[7℄ W. T. Comfort. Multiword list items. Communiations of the ACM,7(6), June 1964.[8℄ Kim G. Larsen et al. Clok di�erene diagrams. BRICS Report Series publiations, 1998.[9℄ Paul Pettersson Kim G. Larsen and Wang Yi. Uppaal: Status & develoments. -, 1997.[10℄ K. Larsen, F. Larsson, P. Pettersson, and W. Yi. E�ient veri�ation of real-time systems:Compat data struture and state-spae redution, 1997.[11℄ Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell. Int. Journal onSoftware Tools for Tehnology Transfer, 1(1�2):134�152, Otober 1997.[12℄ Amit Narayan, Jawahar Jain, M. Fujita, and A. Sangiovanni-Vinentelli. Partitioned rob-dds;a ompat, anonial and e�iently manipulable representation for boolean funtions.In Proeedings of the 1996 IEEE/ACM international onferene on Computer-aided design,pages 547�554. IEEE Computer Soiety Press, 1996.[13℄ Thies Rauhe Niels Klarlund. Bdd algorithms and ahe misses. BRICS Report Seriespubliations, 1996.[14℄ Karsten Strehl and Lothar Thiele. Symboli model heking using interval diagram teh-niques. Tehnial Report 40, Computer Engineering and Networks Lab (TIK), Swiss FederalInstitute of Tehnology (ETH) Zurih, Gloriastrasse 35, CH-8092 Zurih., 1998.[15℄ Paul R. Wilson, Mark S. Johnstone, Mihael Neely, and David Boles. Dynami storagealloation: A survey and ritial review. In 1995 International Workshop on Memory Man-agement, Kinross, Sotland, UK, 1995. Springer Verlag LNCS.[16℄ Sergio Yovine. Kronos: a veri�ation tool for real-time systems. -, 1997.

10.6 Distributed Shared Memory

94

Appendix AUnion/Redution ExampleThis appendix gives an example on �rst a union operation building a all stak, and using atemporarily hash table for a more e�ient onstrution. After the union has onstruted theunion of a S-CDD and a CDD, a redution is performed. The example run on two nodes, andwhenever a message is send from one omputer node to another the message ontent is alsoshown.

[0; 11℄
2 3 41 6 7 85 9
℄� 10;�2℄ [0;5℄ ℄5; 10[

℄10; 15℄ [2;10℄ [�10; 10℄
[2;10℄ [�10; 20℄
[0;11℄ [0; 1℄[0; 2℄ [0; 0℄

[0;10℄
[2;15℄
[�10;10℄
[0;11℄[0;2℄true

KJ
IHG
FE
DCB

A I
II
III
IV
V
VI

℄�1;1[℄�1;1[℄�1;1[

(a) (b)

℄� 4;�1[
[�1; 0[

Figure A.1: The two XDD data strutures that are going to be unioned in this example.Figure A.1 show a CDD and an S-CDD whih are going to be unioned, and thereafter redued.The baktrae algorithm is not used, at this makes it easier to illustrate the redution operation.During the operations it is assumed that all CDD nodes is referred by other CDD nodes notshown, so that these nodes annot be deleted.Figure A.2 show the situation after the union has �nished its operations at the top node. To

[0; 11℄ [0;11℄ [0; 1℄[0; 2℄ [0; 0℄true
KJ

IHG
1 2 3 5 6 7 8 9

A'
B C C' DD' N1

E E' N2 F F'
[0; 5℄ ℄5; 10[

[�10;10℄ [�10; 10℄[�10; 10℄ [�10; 10℄4 ℄10; 20℄[�10; 20℄ ℄10; 15℄[2; 15℄[2;10℄ [2;10℄ ℄10;15℄[2; 10℄ ℄10; 15℄ [2; 10℄
[10; 10℄℄� 10;�2℄

℄�4;�1[
[�1; 0[

Call stak = A0,C 0,D0,N1,E 0,N2,F 0Union Request = f(6; 5); (7; false); (9; 8)gTemp hash = f(A [I = A0); (C [II = C 0); (D [II = D0); (false [II = N1);(false [III = N2); (false [III = N2); (E [III = E 0); (F [III = F 0)gFigure A.2: Show the example after the union has �nished on node one, and send a union request to the nextnode.
96

Union/Redution Examplethe right of the CDD, the all stak and the temporary hash table is shown. The idea is that forall nodes whih need to be hanged is opied (and in the example renamed from X to X 0), andthis opy is then hanged to satisfy the requirements. To see the funtion of the temporary hashtable, note that the only suessor to node N1 is the union between false and III. The suessorof C 0, with interval ℄10; 15℄ is also the union between false and III, thus the node N2 is reused,without repeating the union. Node E0 is also reused by using the temporary hash table.The message send to the bottom omputer node is the following: f(6; 5); (7; NULL); (9; 8)g, has

true

1 2 3 5 6 7 8 9

A'
B C C' DD' N1

E E' N2 F F'
[10; 10℄[0; 5℄℄� 10;�2℄ ℄5; 10[

[�10;10℄ [�10; 10℄[�10; 10℄ [�10; 10℄4 ℄10; 20℄[�10; 20℄ ℄10; 15℄[2; 15℄[2;10℄ [2;10℄ ℄10;15℄[2; 10℄ ℄10; 15℄ [2; 10℄

G H H' N3 I I'
J N4 K K'

Callstak=A 0,C 0,D 0,N1 ,E 0,N2 ,F 0
[0;1℄[0;1℄[0;11℄[0;11℄ [0; 2℄

[0; 11℄ [0; 11℄ [0; 2℄ [0; 0℄ [0; 2℄℄
1; 11℄

℄�4;1[[�1; 0[

Figure A.3: Show the situation after the union on the bottom node, has reahed the bottom in it's reursion, andjust before it reursion starts build CDD nodes from bottom up.the following meaning. Union S-CDD (type IV 1) with the CDD-node referred to by ommu-niation array entry 5, and plae the result in ommuniation array entry 6. The (7; NULL),means union S-CDD (type IV) with false, and let ommuniation array entry 7 refer to it.Figure A.3 show the situation after the bottom node has performed it's union, but before it startreognizing that there is a possible sharing. (This situation does atually never exist, exept onthe all stak, but is shown as it gives a better understanding of the situation).1First type on next node 97

Whenever the bottom node builds a node in its union operation, it heks whether there exist

true

1 2 3 5 6 7 8 9

A'
B C C' DD' N1

E E' N2 F F'
[10; 10℄[0; 5℄℄� 10;�2℄ ℄5; 10[

[�10;10℄ [�10; 10℄[�10; 10℄ [�10; 10℄4 ℄10; 20℄[�10; 20℄ ℄10; 15℄[2; 15℄[2;10℄ [2;10℄ ℄10;15℄[2; 10℄ ℄10; 15℄ [2; 10℄

G H H' N3 I I'
J K

Callstak=A 0,C 0,D 0,N1 ,E 0,N2 ,F 0
[0;11℄ [0; 2℄

[0; 11℄ [0; 11℄ [0; 2℄ [0; 0℄

℄�4;1[[�1; 0[

[0;1℄[0; 11℄ [0; 11℄
Figure A.4: An intermediate situation during the redution on the bottom nodean equivalent CDD node, and if it does it use this node instead.E.g. whenever the nodes K 0, and N4 is reated, the runtime system reognizes that these nodesare equal to the already existing node J . N4 and K 0 is thus never reated, but all referenes tothese nodes, is redireted to J . This result in two neighboring intervals point to the same node(both suessors from I 0 points to J), and are thus merged and made to point to the same node,namely J . The situation after this is depited in �gure A.4. This lead to that the union/redutionoperation reognizes that node N3 and I 0 is equal to the existing node G, therefore N3 and I 0is deleted and all referenes to these nodes is redireted to node G, the same holds for nodeH 0 whih is equal to node H. As this reahes the ommuniation array, the redution requestfh6 = 5i; h7 = 1i; h9 = 1ig is send to the upper omputer node, the situation after the fullredution of the bottom node is shown in �gure A.5. As an be seen the pointer from 6, 7, and9 is kept, these pointers are kept if future inlusion/union request is propagated from the topomputer node to the bottom omputer node using these referenes, before the redution requestupdate the nodes at the top node. 98

Union/Redution Example

true

1 2 3 5 6 7 8 9

A'
B C C' DD' N1

E E' N2 F F'
[10; 10℄[0; 5℄ ℄5; 10[

[�10;10℄ [�10; 10℄[�10; 10℄ [�10; 10℄4 ℄10; 20℄[�10; 20℄ ℄10; 15℄[2; 15℄[2;10℄ [2;10℄ ℄10;15℄[2; 10℄ ℄10; 15℄ [2; 10℄

G I
J K[0;1℄[0;11℄ [0; 2℄ [0; 0℄

H[0;11℄

Callstak=A 0,C 0,D 0,N1 ,E 0,N2 ,F 0

RedutionRequest=f(6=5);(7=1);(9=1)g

℄� 10;�2℄
℄�4;�1[

[�1; 0[

Figure A.5: The situation after the full union/redution has �nished on the bottom node.

99

When the redution request reahes the top node, it parses the message, and redirets all

true

1 2 3 5 6 7 8 9

A'
B C C' DD' N1

E E' N2 F F'
[10; 10℄[0; 5℄ ℄5; 10[

[�10;10℄4 ℄� 10; 20℄[�10; 20℄ ℄10; 15℄[2; 15℄[2;10℄ [2;10℄ ℄10;15℄[2; 10℄ ℄10; 15℄ [2; 10℄

G I
J K[0;1℄[0;11℄ [0; 2℄ [0; 0℄

H[0;11℄

Callstak=A 0,C 0,D 0,N1 ,E 0,N2 ,F 0

RedutionRequest=f(6=5);(7=1);(9=1)g

℄� 10;�2℄
℄�4;�1[

[�1; 0[[�10; 10℄[�10; 10℄

Figure A.6: Show an intermediate situation of the redution on the top omputer node.pointers, referring to 7 and 9 to point to 1. And all pointers from 6 to point to 5, all nodes inthe all stak is searh for suh pointers to rediret. The situation after this is done is shown in�gure A.6. This redution result in that CDD node N2 and F 0 beome equivalent. Node E andE0 also beome equivalent, and are redued. Therefore all suessors previous referring node F 0is redireted to point to N2. The same is the ase with suessors referring E0 whih is rediretedto point to E. This redution lead to further redution, �gure A.7 show the �nal CDD after theunion/redution has �nished.
100

Union/Redution Example

N1DC

true

1 2 3 5 6 7 8 9

A'
B

4
G I
J K[0;1℄

H[0;11℄[0;11℄ [0; 2℄ [0; 0℄

[10; 10℄C'N2 FE
℄� 10;�2℄

℄�4;�1[[�1; 0[[2;10℄ [2; 10℄ ℄10;15℄ ℄10;15℄[2; 15℄[2; 10℄[�10; 20℄[�10; 10℄ [�10; 10℄
[0; 10[

Figure A.7: Show the �nal situation after the S-CDD and the CDD from �gure A.1 is unioned/redued

101

