Aalborg Universitet

Department of Computer Science

Titel:

Distributed CDD’s
- interfacing Uppaal

Project period:
DAT®,
1. February 2002 -
7 June 2002

Group:
Christian Thomsen
Ronnie Kristensen

Supervisor:
Josva Kleist

Number printed: 6

Abstract:

This project describes the design of a distributed imple-
mentation of the CDD data structure. CDD’s are related
to BDD’s but handles interval instead binary values. The
CDD is used in the real time verification tool Uppaal to
store the symbolic part of its states, these states consists of
both a discrete part and a symbolic part. This distribution
is conducted for the primary reason of allowing verification
of larger models. Besides designing the distribution of the
data structure, four operations working on the data struc-
ture are designed. The semantics for the distributed data
structure is described, and some semantic proofs of impor-
tant properties for the operations are given.

The thesis tried to investigate, is whether using a single
CDD data structure, compared to a number of smaller
CDD’s in a distributed verification environment, can save
some memory by taking advantage of global sharing. That
is, sharing in the symbolic representation, across several dis-
crete states. Runtime is not considered as memory is the
primary bottleneck in verification, the state space takes up
several GB in minutes.

Finally tests are conducted to test the thesis, and to en-
counter the runtime penalty for these memory savings. The
result shows that the memory saving were up to 70%, using
a single CDD distributed over 4 nodes, compared to letting
the 4 nodes holds four separate CDD’s, this memory saving
comes at a runtime penalty of 560-900%.

Besides trying to save memory by distributing the CDD
data structure, some design were made to represent the
CDD nodes as compact as possible. The memory represen-
tation saved up to 20% of memory compared to the memory
representation used in an existing implementation of the
CDD data structure. The runtime penalty for this memory
saving is 50%.

During the tests we discovered that the problem of memory
usage in Uppaal were not the storage of the symbolic part,
but storing the discrete part. In most timed automata mod-
els, the discrete part takes up the majority of the used mem-
ory. As we had focused on the distribution of the symbolic
part, we were not able to verify larger models in the dis-
tributed implementation, than on a single computer node.
In the last chapter some possible optimizations to the de-
sign/implementation is discussed. This description also in-
cludes a discussion of which part of this project might be
used for other projects, trying to distribute decision dia-
gram data structures. A possible data structure for storing
the discrete part of the states, is also described briefly.

Resume

Dette projekt beskriver designet af en distribueret implementation af CDD datastrukturen.
CDD’er er relateret til BDD’er men handterer intervaller istedet for binzere vaerdier. CDD’er
bruges i real tids verifications veerktgjet Uppaal til at gemme den symbolske del af de tilstande
der undersgges. Tilstande i Uppaal bestar af en diskret del og en symbolsk del. Distribuerin-
gen er lavet med det primere formal at tillade verifikation af stgrre realtidsmodeller. Foruden
at designe den distribuerede datastruktur, beskrives fire funktioner der arbejder p& denne data
struktur. Efter designet beskrives semantikken for datastrukturen, samt for nogle vigtige egen-
skaber for de designede funktioner.

Teorien der efterprgves er om en enkelt distribueret CDD datastruktur, sammelignet med et
antal mindre CDD’ere i et distribueret netveerk, kan spare noget hukommelse, igennem deling af
symbolske tilstande mellem diskrete tilstande. For at spare s& meget hukommelse som muligt, er
hukommelses forbruget blevet overvejet igennem alle faser af designet, hvorved vi har accepteret
et forgget tidsforbrug. Tidsforbrug er ikke taget i betragtning da hukommelse er den primeere
begraensning i verificering, tilstandsrummet kommer p& minutter til at fylde gigabytes.

Til sidst testes systemet for at se om teorien holder, og se hvilket forgget tidsforbrug distribuerin-
gen medfgrer, igennem synkronisering osv. Resultaterne viser at der kan spares op til 70%
hukommelse, ved at distribuere en CDD datastruktur over fire computere, i forhold til at placere
fire CDD’ere pa de samme fire computere. Det forggede tidsforbrug viste sig at ligge imellem
560% og 900%.

Foruden at spare hukommelse ved at distribuere CDD datastrukturen, er det ogsa forsggt at spare
hukommelse ved at reprasentere CDD knuderne sa kompakte som muligt. Hertil er der designet
tre forskellige knude repraesentationer. Den mest besparende knude repraesentation sparede 20%
hukommelse i forhold til knude repraesentationen i en eksisterende CDD implementation. Det
maksimalt tilfgjede tidsforbrug ved denne hukommelses repraesentation var 50%, men ved nogle
modeller var det forggede tidsforbrug minimalt, eller negativt (sd vi sparede koretid).

Under testen fandt vi ud af at det storste problem ved hukommelsees forbruget i Uppaal, ikke
var at lagre den symbolske del, da denne kun optog en mindre del af det samlede hukommelses
forbrug. Da vi havde fokuseret pa distribueringen af den symbolske del, blev vi ikke i stand til
at verificere storre modeller, som var en del af vores vores formal.

I det sidste kapitel diskutere vi nogle optimeringer der er mulige til designet/implementeringen.
Beskrivelsen indeholder ogsé en beskrivelse af hvilke dele af vores projekt der kan bruges i andre
projekter der forsgger at distribuere andre decision diagram data strukturerer. Til sidst beskrives
en datastruktur til at lagre den diskrete del tilstandene.

Christian Thomsen Ronnie Kristensen

Contents

1 Uppaal
1.1 OVerview o o e
1.2 Uppaal Engine
1.3 Data Structures
1.4 Versions of Uppaal
2 Purpose
2.1 Approach e e
2.2 Purpose

3 Data Structures

3.1 Syntax . ..o e
3.2 Operations
3.3 Current Uppaal
3.4 Mapping CDD’s to set formulas L Lo
3.5 Mapping DBM’sto CDD’s

4 Design / Data structures

4.1 Non Distributed Algorithms L
4.2 Distributing the Data Structure oL
4.3 Communication L e
4.4 Operations
4.5 Node Representation L

5 Semantics

5.1 Semantics of the Distribution 0oL
5.2 Data Structures L
5.3 Distributiono
5.4 Operations e

5.5 Union e

o o ot w W

5.6 Semantics of Backtrace

5.7 Reducing CDD’s

6 Cost Benefit Analysis

6.1 Operations e
6.2 State Exploration L
6.3 Groups. e
6.4 Memory Overhead

7 Implementation

7.1 Uppaal interface
7.2 Use Pipelining
7.3 Hashlists e
7.4 Distributed Garbage Collection L.
8 Test
8.1 Limitations of the Implementation
8.2 Purpose of thetest
8.3 Premises
8.4 Test description L
8.5 Expected Results
8.6 Resultsand Analysis
8.7 Summary e

9 Conclusion

10 Future Work
10.1 CDD Implementation of Waiting List
10.2 Distributing the Discrete part
10.3 Representing the Discrete Part as MTIDD
10.4 Pack Messages L
10.5 CPU/Memory Load
10.6 Distributed Shared Memory oo

A Union/Reduction Example

61
61
62
64
64

67
67
68
68
68

71
71
71
72
74
74
76
83

85

87
87
88
89
91
92
92

95

Introduction

During the last decade computer aided verification has established itself as a powerful technique
for verifying whether a given formal model satisfies certain properties. In the last years tools
has been extended to the verification of real-time systems, examples of such tools are Uppaal[11]
and KRONOSJ[16].

The major problem in computer aided verification is the memory consumption caused by the
state space exploration, as the space usage in worst case is exponential to the number of states
in the verified system. System verification size can easily reach multiply of GB in less than an
hour on a standard computer. There are several solutions to solving the state explosion problem,
one is simply to buy a large mainframe computer, but a computer that is sufficient today might
become insufficient tomorrow. Another problem to this approach is the cost, as large mainframe
computers are expensive compared to standard cost of the shelf computers. Using standard
computers though limits the memory usage to 4GB, for a 32 bit architecture. This leads to
another solution to the state exploration problem, that can be solved by utilizing the memory
on a network of workstations by distributing the verification process.

Several approaches tries to solve this problem in a more algorithmic way by designing compact
data structures to store the states of the system being verified. The best data structure so far for
the Uppaal verifier has been the clock difference diagram (CDD) that report average saving of
42% compared to the standard used data structure being difference bounded matrices (DBM).
The cost for this saving is a modest increase in runtime of 7%|4].

This project aims at allowing Uppaal to verify larger model using a Network Of Workstations
(NOW). which is done by distributing the CDD data structure.

Premises

Uppaal uses timed automata for verifying real time systems. A timed automata is a finite au-
tomata extended with variables and real valued clocks. The states used by Uppaal is divided
into three categories:

Locations This part of the state represent in which location the timed automata is in.
Variables This part describes the valuation of all variable in the timed automata.

Zones This part represents the valuation of the clocks in the timed automata.

Locations and variables will in this report be denoted the discrete part of the state, and Zones

is referred to as either Zones or the symbolic part of the state.

This project focus on representing the Zones part of the already searched states in Uppaal. This
were chosen from the hypothesis that it were the zones that took up the main part of the memory.
Many articles report on trying to representing the zones as compact as possible, example articles

on such is: [4], [L0] and [9]. Therefore we decided to try to distribute the zones as it seemed to
hold the greatest problems with respect to memory. Later in this project it has been revealed
that this is not the case, as the discrete part normally uses the main part of the required memory
during a verification. As this fact was discovered late in the project it has some influence on
the outcome of the tests conducted in chapter 8. The report is structured chronologically as the
project went on, but in chapter 1 we give a more in depth explanation of why the symbolic part
did not account for the main part of the used memory.

this were not the case, and in chapter 8 we see what the consequences of only distributing the
symbolic part of the state space, and finally in chapter 10 we discuss ideas on how this problem
can be solved.

Related Work

The work in [4] describe the use of the CDD data structure in the Uppaal engine, which has
inspired this project. Also the work in [3] on implementing a distributed version of Uppaal has
been inspiring for the work made in this project.

Outline

The report is structured as follows:

First we give an introduction to Uppaal with a brief introduction to the used data structures.
After this the purpose of the project is stated.

Then a more in depth description of clock difference diagrams and difference bounded matrices
with syntax is given.

The designed algorithms will follow these descriptions.

The semantics of the distributed data structures are then described together with semantics
proofs of the algorithms designed.

After the semantics a cost/benefit analysis is conducted to reason on the expected memory /runtime
overhead.

After the cost benefit analysis we describe the implementation of the distributed CDD data
structure.

This is followed by a test of the implementation with an analysis of the results.

Finally we conclude on the project followed by some perspectives on the project.

Uppaal Chapter 1

This chapter describes the verification tool Uppaal, first we give a general overview, followed
by a description of Timed Automata, hereafter a description of the Uppaal engine including the
used data structures, is given . Finally different versions of Uppaal are described.

1.1 Overview

Uppaal is a verification tool for real time systems based on constraint-solving. It is especially
suited for systems that can be modeled as a collection of non-deterministic processes with a finite
control structure and real valued clocks. Typical application areas are: Real time controllers and
communication protocols where timing aspects are critical. Uppaal can check for reachability
and invariant properties. The models used with Uppaal consists of a network of timed automata
(TA),[1], extended with integer variables. Uppaal includes a graphical tool which allows the user
to draw timed automata and run simulations.

1.1.1 Timed Automata

Timed automata has established itself as a standard for verifying real time systems. In this
subsection we give an informal introduction to timed automata.

z:=0
y:=0

Figure 1.1: Timed automata

Figure 1.1 shows a timed automata with two locations: Iy and /3 and the real valued clocks z
and y.

A timed automata is a finite state automaton extended with a finite collection of real valued
clocks.

A formal definition of TAs is:
A timed automaton A is a 7 tuple < L,ly, E, C, clocks, guard, I >

— L is a finite set of locations with [y being the start location.
— EF C L x L is a set of transitions between locations.

— (' is a finite set of clocks. (in the example z and y)

1.1 Overview

— clocks is a function that assigns each transition with set of clocks, to be reset to 0 when
taking the transition.

— guard is a function that assigns each transition with a clock constraint (a guard) over C.
A constraint is over a set of clocks and hold the following syntax: X; — X; ~n or X; ~n,
where X;, X; € C, ~€ {<,<,>,>}, and n is an integer.

— I is a function that assigns an invariant over C to each location.

To stay at a location the invariant must be satisfied, likewise for taking a transition, the guard on
the edge denoting the transition must be satisfied. Invariance of a location is described inside it,
whereas guards for taking a transition is described on the edges in the graphical representation
of the automaton.

A state of a timed automata A is a pair (I, D) where [is the discrete part of A and D represent
the values of all clocks that A range over.

If the TA in figure 1.1 is in state (I, {0,0}) meaning that it is currently at location Iy, with the
clocks z,y both having the value zero. It can stay in this location letting time pass, as long as
the invariant of [y, being x < 4, is satisfied, and at least one transition is possible: < 2. The
transition to /; can only be taken when both the invariant of [; and the guard on the transition
from [y to [; are satisfied thus requiring that x <2 Az < 6 A y < 5. When taking the transition
lp to I the value of y is reset to zero.

To use timed automata for reachability analysis Alur and Dill’s region technique [1] is used in
Uppaal to represent the infinite state space of a TA as a finite collection of symbolic states. These
symbolic states will represent the clock constraints of a system, and thus provide a convex subset
of the Euclidean space. We will refer to these convex subsets as Zones with typical element Z.
We define a federation to be any finite union of Zones, note that a federation is not necessarily
convex see figure 1.2, where the federation P is the non convex union of the Zones Z; and Z,
thus Zones are not closed under union.

Y
6

N

Figure 1.2: Two convex Zones, representing
Z1:(2<z<6A3<y<bhA-1<z—y<1l)
Zy:(3<z<TA2<y<4AnNl1<z—y<3
Federation P = Z1 U Z>

A TA can be traversed by following edges that is not violating any constraints in the destination
location and the guards on the transition. Thus all reachable states [€ L from a state [’ are
those:

Uppaal

— that does not contain any invariant that violates any clocks constraints,

— that the transition from I’ to I does not have a guard that violates any clocks constraints.

Note that I’ must be left before the invariants of this node is violated.

When reaching a new location the TA enters a new state, being (I, D), where [is the new discrete
state (consisting of the location vector and the values of all integer variables) and D is the set
of all clock values representing the possible Zone.

Constraints
As mentioned earlier constraints may have the form:

o X;—Xj~mn,or

OXZ'NTL

where X;, X; € C, ~€ {<,<,>,>}, and n € N. In this subsection we argue that only constraints
of the form: X; — X; < n is necessary for simulating the others. First we will argue that X; ~n
can be simulated by X; — X; ~ n. This is done by introducing a special zero clock Xy whose
value is always 0. Then X; ~ n, may be simulated by X; — Xy ~ n. Next we will argue that >
and > can be simulated by < and < respectively. This is done by negation:

oXi—Xj>n<:>Xj—Xi<—n

OXi—XjZTL@Xj—XiS —-n

The last property to show is that X; — X; < n can be simulated by X; — X; < n, which it cannot
be in general, but it becomes possible as all guards and invariants only check on integer values
(n € N). The method used is by multiplying all constraints by two on both sides, and if the
inequality sign is < the bound is subtracted by one, that is the rules is translated to:

o X;—X;<n~2-(X;-X;)<2-n-1

o X;—X;<n~2-(X;-X;)<2n

1.2 Uppaal Engine

The verification engine of Uppaal is called verifyta, it holds the responsibility for doing the actual
verification, that is reachability analysis and checking invariance properties.

The verifyta is given a network of TAs and a formula to check as input. For reachability analysis
the algorithm in figure 1.3 is used, where ¢ is the formula for which it should be fulfilled.

This algorithm uses two lists, a Passed list and a Waiting list. The Passed list denotes all the
states seen so far, used to avoid exploring a state twice, and thus assuring termination when the
total state space has been searched. The Waiting list is a queue of states waiting to be explored.
The states held in these lists are of the form (I, D) where [denotes the discrete part, being a
vector telling in which discrete nodes all the TA’s are in, together with the values of all variables

1.3 Data Structures

1. Passed = {}
2. WAITING := {(ly, Do)}
repeat
begin
3. get (I, D) from WAITING
4. if (I,D) = ¢ then return YES
5. else if D ¢ D' for all (I,D') € Passed then
begin
6. add (I, D) to Passed
7. SUCC :={(ls,Ds) : (I, D) ~ (ls,Ds) AN Dg # 0}
8. for all (Iy,Dy) in SUCC do
9. put (Ig,Ds)toWAITING

end

end
10. until WAITING = {}
11. return NO

Figure 1.3: An algorithm for symbolic reachability analysis.

of the TA’s. D is a Zone representing the clock constraints. The algorithm works as we starts
out with an empty Passed list and with the initial state as the only state in the Waiting list
(lines 1 and 2).

We repeatedly takes a new state (I, D) from the Waiting list (line 3), checks if it satisfies the
formulae ¢, if not we perform an inclusion test to see whether (I, D) has already been explored
(line 5). If we fail the inclusion test (/,D) is added to the Passed list and all states that is
reachable from (I, D) is added to the Waiting list (line 7). If we have searched the entire state
space without finding a state satisfying the formulae ¢, we return NO (line 10 and 11). We
can “invert” the algorithm by interchanging the YES and the NO (line 4 and 11), to obtain an
algorithm that checks for invariants for the —¢ formulae:

(-3d € STATESPACE |d |= ¢) = (Vd € STATESPACE |d = —)

1.3 Data Structures

This section describes the data structures used to represent the Passed list. As this list is used
to store previously explored state, it will at the end of a full state space search represent the
entire symbolic state space, implicating that we must make this list as compact as possible. The
following subsection describes two data structures used to make a compact representation of
this part of the Passed list, namely the difference bounded matrices and clock difference
diagrams. The algorithm in figure 1.3 shows that there is a need for an efficient inclusion test
on the data structure holding the Passed list (line 5). Another action that the data structure
must support is union of the Passed list with a new state (line 6)

Uppaal

1.3.1 Difference Bounded Matrices

Difference bounded matrices was first proposed in [5], later it were use for constraint systems as
they can offer a canonical representation of a such.

Definition

A DBM representation of a constraint system D is a weighted directed graph G = (V,E) where
the vertices V' describes the clocks in C' and an additional zero vertex, that designates a clock
whose value is always zero. There is an edge E from z to y with weight m if there is a constraint
of the type z — y < m. Also there is an edge from z to the zero vertex with weight m if there
is a constraint of the type x < m.

Description

The canonical representation that DBM’s can offer, is when they are closed. To describe the
closedness of a constraint system, we need to calculate the shortest path closure of the graph
describing the constraint system. Standard algorithms such as Bellman-Ford can do this in O(n?)
with n being the number vertices in the graph (the number of clocks in the constraint system).

Y
6
5
Zy

4
Zg/

3
Za

2

1

1 2 3 4 5 6 7 8

Figure 1.4: Three convex Zones, representing by the closure
Zi:2<s<O)AB<y<HA(-l<z-y<l)
Z,:(3<e<TNAQR<y<4HA(1<z—y<3)
Zy:(3<e<6)A(B<y<4) A(-1<z—y<3)

The shortest path closure of a constraint system contains redundant constraints, the constraint
for figure 1.4(Z;) could be described only by the constraints :

B<y<H) A (-1<z-y<1)

meaning that the last constraints for x is implicitly given by the others.

As the inclusion test D C D’ runs in O(n) with n being the number of constraints in D', saving
as few constraints as possible is desirable.

To do so, an O(n3) algorithm has been developed to calculate the shortest path reduction, that
converts a DBM in shortest path closure, to an equivalent reduced system with a minimal number
of constraints. The algorithm works essentially by saving all zero cycles in the graph together
with the edges that interconnect these zero cycles. The algorithm is described in [4].

1.3 Data Structures

DBM’s are limited as they only describe convex Zones. If the constraint system D is included in
the union of more than one DBM as Z3 C (Z; U Z3) in figure 1.4. The inclusion tests Z3 C Z;
and Z3 C Zo will both fail despite the fact that Zs already has been explored, partly in Zs and
partly in Z;, thus forcing redundant state exploration and redundant storing of Zs.

Uppaal uses DBM’s to store the symbolic part of a state (the D part of the state (I, D)), thus for
every discrete state [there is a number of DBM’s, that together describes the searched federation
for this discrete state. These DBM’s are stored in the Passed list of figure 1.3. The space used
to store DBM’s are O(n?) for the closed form. The average case is a lot better for the DBM in
its reduced form, as most closed DBM’s contains redundant constraints. [10] reports on savings
up to 97% for using reduced DBM’s instead of closed DBM’s.

1.3.2 Clock Difference Diagrams

In this subsection we present an informal description of clock difference diagrams (CDD), which
is an extension to Reduced Ordered Binary Decision Diagrams (ROBDD) presented by Randal
E. Bryant in [6]. CDD was first introduced by Larsen et al. in [8], as a data structure to store
constraints in a constraint system. In Uppaal CDD’s are used to store the symbolic part of the
Passed list of the algorithm in figure 1.3. The CDD data structure is greatly inspired by the
IDD data structure described by [14].

Definition

A CDD is a directed acyclic graph T' = (V, E) where V are vertices of two kinds, either inner
nodes or terminal nodes.

A clock constraint is of the form X; — X; < m with X; and X, being real valued clocks with
integer bound m. For any constraint (X;, X;) is the type of the constraint. Inner nodes has a
type and a finite number of successor nodes each representing an interval of reals with integer
bounds referring to another CDD node. Terminal nodes are either true or false and have no
successors. All types of nodes must be globally ordered meaning that when traversing a path in a
CDD the types are increasing, and no types will appear twice in the path. A recursive definition
of CDD’s are :

((Xi,X,), 1, Th), ..., [, Ty]) where (X;,X;) is the type of the node, and I; is an interval of
reals, and Tj is a CDD.

The union of the intervals must be complete, thus |J;c {1,..n} I; = R The intervals must be disjoint
SO VIi,IjH £5.L;NIj =10

An example CDD is pictured in figure 1.5, which describes the federation P = Z1UZ> of figure 1.2.

An interval I = [a;b] for the type (X, X;) represents the clock constraint:
XZ'—XjSG, /\Xj—XiS b.

Note that we omit all edges leading to false for simplicity reasons, this will apply to all figures
through out the report.

Uppaal

Figure 1.5: The CDD for describing the non convex federation P = Z1 U Z» of figure 1.2 All edges not represented
leads to the false node, these are omitted for simplicity.

Description

A CDD describes a federation meaning that the previously described problem of redundant state
exploration using DBM’s can be eliminated. The inclusion test of the ‘Z3” Zone of figure 1.4 will
succeed as the shortest path closed constraint system is described by (3 <z < 6) A 3 <y <
4) A (=1 < (z —y) < 3), and these constraints are all included in the CDD in figure 1.5. Note
that there are no CDD node represented, meaning that this node implicitly cover R.

CDD’s allow sharing of clock constraints over location borders. That is if two zones from two
different discrete states [and I’ share some common constraints the CDD data structure allow
sharing between these by giving the CDD several handles - namely one handle per discrete state.

The memory usage of CDD are difficult to reason about, as the sharing between handles are hard
to foresee. Also the sharing within the same location node is hard to foresee, theoretical the size
is exponential. In the next section we will state some experimental results about the memory
usage of CDD’s compared to reduced DBM’s, which shows considerable memory-savings.

1.4 Versions of Uppaal

This section gives an overview of the different Uppaal versions that will be referred to in this
project.

1.4.1 Sequential Uppaal

There are two sequential version of Uppaal, one that implements the DBM data structure and
one that implements the CDD data structure.

— The basic version of Uppaal uses a shortest-path reduced form of the DBM data structure[10].
This implementation showed space savings between 74% and 97%, compared to an Uppaal
implementation using standard non reduced DBM’s.

— In [4] Uppaal is tested with the CDD data structure, which compared to the shortest-path
reduced form of the DBM’s saves an additional 42% in average with moderate increase in
runtime (7%).

1.4 Versions of Uppaal

1.4.2 Distributed Uppaal

[3] present a distributed engine for Uppaal based on the DBM data structure for storing the
searched states. This distributed Uppaal allowed verifying larger models by distributing the
state space. The state space is distributed in the following manner: (please refer to the algo-
rithm in figure: 1.3)

Whenever a new state (Iy, Dy) is found in line 8, the state is hashed to a specific computer node
responsible for this state. When the node responsible for (I, D) receives this request, it simply
puts it into it’s Waiting list, for later exploration and possible storage.

Each node holds a part of the global Passed list, this part contains symbolic convex Zones for
all discrete states which the node is responsible for.

The current distributed Uppaal uses DBM’s for storage of the symbolic part of the state space.
Using the CDD data structure would implicate that each node holds a single CDD data structure
instead of several lists of DBM’s. This scheme allow two kind of sharing.

— The CDD data structure holds the federation searched instead of holding a set of Zones,
this removes the problem of redundant state exploration as described earlier.

— Two different discrete states might share common constraints. If such two discrete states
were located on the same node the shared constraints need only be stored once. But stored
on two different nodes will not lead to any space reduction.

1.4.3 Premises

As mentioned in the introduction a more in depth description of why we chose to distribute the
CDD data structure is given in this subsection. The CDD data structure was chosen as it was
expected to account for the main part of the memory memory used during a verification, this was
derived from, as previously mentioned a lot of articles on this topic, but also from the fact that
the number of types in the CDD is quadratic to the number of clocks, whereas the entries in a
discrete state is linear to the number of locations and variables in the timed automata. Meaning
that complexity wise it is to be expected that the clocks will account for a higher memory usage
that the variables. This has not been the case primarily from two reasons, first even though the
clocks are quadratic in size compared to the variables and locations, the “normal” layout of a
Uppaal model make use of the same number of locations and variables as the quadratic size of
the clocks. Secondly the behavior of the Uppaal models it that there are many states where the
locations and the variables differ from other states but the clocks values are the same, meaning
that the locations and variables are stored twice whereas the clocks are only stored once.

In chapter 8 we see what consequences this mismatch between our interpretation of the Uppaal
behavior and the actual behavior gives.

The report continues as if the problem still were the representation of the symbolic part, until
chapter 8 were the consequences of our misinterpretation is given.

10

Uppaal

1.4.4 Summary

The different versions of Uppaal together indicates that it might be possible to verify larger
models if we can distribute the CDD data structure among several computer nodes. In this
way we can utilize the larger amount of memory available in a network of workstations, and at
the same time take advantage of the memory savings that the sequential version shows. Again
verification is very memory intensive and not especially CPU dependent, as the state space
explodes exponentially with the size of the model.

After stating the used data structures in Uppaal, together with the different version, are we
ready to state the purpose of this project.

11

1.4 Versions of Uppaal

12

Purpose Chapter 2

The purpose of this project is to investigate what distributed computing has to offer in the veri-
fication of timed automata. As mentioned in the introduction formal verification is very memory
intensive, therefore the main purpose of this project is to utilize the larger amount of memory
available in a distributed system efficiently, in the area of formal verification.

2.1 Approach

The purpose of this project is to distribute Uppaal to be able to verify larger models. Our
purpose is increased memory-savings in favor of increased speed. Therefore this project tries
to design and implement a distributed CDD data structure for storing the symbolic part of the
Passed list stored by Uppaal.

The CDD is distributed by partitioning the CDD and store different partitions on different
computer nodes. The current distributed Uppaal distributes the Passed list by distributing
DBM’s to computer nodes, by hashing on the discrete part of the state. A single extended
distributed Uppaal implementation using CDD’s, is to use that same approach, by storing a
single CDD on each node. A further improvement could be to make a single CDD span all
computer nodes, there by archive sharing between all discrete states.

The differences between the mentioned distribution possibilities of Uppaal is depicted in figure
2.1

Node I Node I

Eém
g

Node IT Node II

E@%
3

Node III Node II1

:
3

Node IV Node IV

i
3

(a)
X New state
Shortes-path reduced DBM

Q CDD

Figure 2.1: Four approaches for distributing Uppaal.

Figure (a) show the current distribution approach used.

Figure (b) show an approach similar to the current distribution Uppaal version, but using the CDD data structure.
Figure (c) show a CDD data structure distributed across all nodes participating in the verification.

Figure (d) shows a hybrid between (b) and (c), with more than one CDD, all spanning more than one node.

2.2 Purpose

The approach of using a single distributed CDD has some advantages as well as disadvantages,
which will be discussed in the following.

Characteristics of a Single Distributed CDD

Global Sharing The most obvious advantage of this approach is naturally that it allow sharing
between all discrete states.

Heterogeneous Another advantage of the distributed CDD approach compared to the other
two approaches is that the distributed CDD approach handles heterogeneous configurations
better. If e.g. some nodes has more memory than others special hash functions has to be
implemented in the current distributed Uppaal, whereas in the distributed CDD approach
it is possible to implement runtime memory distribution by moving a CDD layer from one
computer node to another.

Dynamic load sharing In the current distributed Uppaal only the computer node responsible
for a discrete state hold information about which Zones has been explored, therefore such
states have to be send to this computer node. This may introduce a bottleneck problem
if at a certain time many states with the same hash value is found, then the responsible
computer node become a bottleneck. When using only one CDD, all computer nodes can
explore all states which means that tasks should only be send to other computer nodes
when these has an empty Waiting lists. If a computer node become a bottleneck, it may
simply distribute it’s Waiting list to the other participating computer nodes.

Decreased scalability A problem with the distributed CDD approach compared to the other
distribution approaches is that the distributed CDD approach might not scale to many
computer nodes, it time performance might decrease. The reason for this expected decrease
in speed performance is that whenever a new state should be explored an inclusion test
must be performed. To make a complete inclusion test, CDD nodes on every computer
node must be searched, that is at least k& — 1 synchronization messages must be send for
each inclusion test in a system with k£ computer nodes. The same counts for union - when
the state has been searched it must be unioned into the existing CDD, this union also
involve at least k — 1 synchronization messages. Further cost/benefit analysis is conducted
in chapter 6.

2.2 Purpose

The tests on the non distributed CDD version of Uppaal, showed significantly memory savings
being 42% compared to the shortest path reduced DBM version. This should also apply to the
distributed version, but as a decrease in time performance is expected due to the larger synchro-
nization overhead introduced by the distributed CDD approach, we will try to find the trade off
for how many computer nodes a distributed CDD should span. The assumptions is that the more
computer nodes a CDD span the larger the overhead in synchronization is, but it gives possibility
of reducing the overall memory usage. On the contrary, a CDD spanning fewer computer nodes
minimize the synchronization overhead, but does not allow maximum memory saving in form of
global sharing. Trying different hybrid version as the one in figure 2.1(d) is a way to find this
trade off. This way it is possible to see how much memory can be saved utilizing global sharing,
and at which runtime cost this memory-saving comes at. To summarize our purpose is:

14

Purpose

How much memory can be saved by global sharing through the CDD data
structure for saving the symbolic part of the Passed list in formal verification
of timed automata. Find the relation ship between synchronization overhead/
memory usage when using o hybrid CDD model where the number of CDD’s
are ranging between one and the number of computer nodes used.

15

2.2 Purpose

16

Data Structures Chapter 3

This chapter describes the data structures which are used in this project, how they are used and
some syntax for these.
This project uses two main data structures:

CDD The main data structure in this project is the CDD data structure, which stores the sym-

bolic part of the Passed list in Uppaal. This data structure is to be distributed over all
participating computer nodes, or within a group of computer nodes.
Most decision diagram data structures holds a single handle (one node in the top of the
graph representing the value of the first variable in the variable ordering), but the CDD
data structure allow several handles to allow maximal sharing between control states, figure
3.1 show an example on sharing between control states using two handles.

DBM All communication with the Uppaal engine is via the DBM data structure. To perform
the inclusion test (figure 1.3 line 5) the DBM representation for the new state is converted
into its shortest path closure before the inclusion test is performed, as this describes all
constraints that must be satisfied for the inclusion test to succeed. When a state should
be unioned into the Passed list the same DBM is converted into its shortest path reduced
counter part(converted to a CDD), before inserted into the CDD, as this DBM contains
the minimum required information for describing the constraint system.

f—landle l;

[Y] [Y)eHandle l;
o Y [1; 4] [2; 6]
6 Zi=1; [X] [X]
4 1;4] 2; 6]
= 0:0
2 4 6 8 -
(a) (b)

Figure 3.1: Example on sharing between two different discrete states. The (a) part show two Zones Z:1 and Z»
belonging to two different discrete states. Figure (b) show the CDD representing these two areas. This CDD has
two handles, one for each discrete state. As can be seen the two discrete states share CDD nodes.

3.1 Syntax

Before any other properties for the data structures is given, some syntax is provided to support
further descriptions.

3.1 Syntax

3.1.1 Clock Difference Diagrams

The CDD data structure is used to store the Passed list in Uppaal, that is the CDD data structure
only holds the symbolic part of the Passed list, with the discrete part given by handles into the
CDD data structure.

CDD’s are used to store the constraints (X; —X; < n) which together spans the union of searched
Zones for each discrete state (a federation).

The set of all constraint for a given discrete location ! in a timed automata A, is denoted D,
with typical element c¢. A constraint is a three-tuple (X;, X;,n) for the constraint X; — X; <n

A CDD is a directed acyclic graph (DAG), typically denoted T with two kinds of CDD nodes:
Inner and terminal nodes. Terminal nodes represents the constants true and false, while inner
nodes are associated with a type (X;, X;) where 7,5 € {0..n},7 # j'. Arcs labeled with interval
bounds of the difference of the clocks given by the type (X;, X;). An interval I = [a;b] for the
type (X;, X;) represents the clock constraint X; — X; <a A X; — X; < b.

Example CDD’s are shown in fig. 3.2.

X,

P N W

x
N

= N W

= N W

123456 X,
©

Figure 3.2: Three example CDD’s. Intervals not shown implicitly leads to false; e.g. in (a) there are arcs from
the X1-node to false for the three intervals | — o0, 1[,]3, 4], and 6, cof.

A type is a pair (X;, X;), which corresponds to an inner node in the CDD. The set of all types
is written 7, with typical element t. 7 is assumed to be equipped with a linear ordering C and
a special bottom element L, in the same way as BDD’s assume a given ordering on the boolean
variables. The bottom elements being false and true has the largest type, whereas the handle
has the smallest type.

'Remember X is the zero clock always being zero.

18

Data Structures

A possible ordering could be:

- (Xi17Xj1) L (XiQ’XjZ) if J1 < J2

- (Xi17Xj1) C (XiQanz) if J1=J2 Nip < ig.

Let the function first(T : CDD) return the uppermost CDD node in the CDD T, being the
handle.

7 denotes the set of all non-empty, convex, inter-bounded subsets of the real line. Z contains both
open, closed and half-open intervals, which is: |a,b|, [a,b],]a,b], and [a,b]. A typical element of
T is denoted I.

Two intervals are named neighbored if they may be joined by union into a larger interval -
overlapping intervals are called neighbors too.

An interval cover for a CDD node n; is denoted I(n;), and describes the intervals leaving n.
That is, an interval cover is a set of intervals I,,, = {I1, Is,...,I,}. Each interval in the interval
partition I; € I(n;) must be a subset of the total interval leaving n;. That is, for nodes having
types X; — Xo, 1 # 0, I; C RT, and for nodes having types X; — X, i,j # 0 I; C R. Furthermore
an interval partition must be complete, i.e.,

— If type(n;) = (Xi — Xo) ¢ # 0: Ujeqn I = Rt

3

— If type(n;) = (Xi — Xj) 4,5 # 0: Uregn,) I =R

I(nx_y) in figure 3.1(b) would be: I(nx_y) = {] — 00;0];]0;00[}, the last interval being
omitted in the figure, as it leads to false.

An interval partition is a disjoint interval cover. That is, an interval cover is an interval partition
if:
Viske{l...n}j#k:I;NI;=0

An interval partition is ordered if the (lower/higher) bounds of all intervals build an increasing
sequence. An interval partition which is ordered is named reduced interval partition.

I(i,7) denote the clock constraint having type (¢,7) which restricts the value of X; — X to the
interval I.

Given a set of clock constraints D and a valuation v, D(v) denote the boolean value derived
from replacing the clocks in D by the values given by v.

The prior two notations will be used jointly, i.e. I(i,7)(v) expresses the fact that v fulfills the
constraint given by I and the type (i,7). v(t) defines the current value of the ¢ type given by
the valuation v.

We define a CDD node as a n+ 1 tuple (¢, [11,T1]...[I,,T}]) where ¢ is the type, and successors
Ty ...T, being CDD’s (which can be viewed as a CDD nodes, where first(T;) is the handle of
the successor CDD), each denoting the corresponding interval I; ... I,,.

The set of all CDD nodes is denoted N with typical elements n,m.

It should be noted from the previous discussion that a CDD and a CDD-node can be used
interchangeable, as a CDD node and its successors may be interpreted as a CDD. And a CDD
may be interpreted as a CDD node by using the handle.

A CDD is a DAG consisting of a set of nodes V' C AN and two functions:

19

3.1 Syntax

— type: V =T

— suce: V — 22XV guch that:

V has exactly two terminal nodes called true and false, where type(true) = type(false) =L
and succ(true) = succ(false) = ()

all other nodes n € V' are inner nodes, which have attributed a type type(n) € T and
a finite set of successors succ(n) = {(I1,n1),..., (Ig,nk)}, where (I;,n;) € Z x V.

n s m is shorthand for (I,m) € succ(n).
For each inner node the following must hold:

— the successors are disjoint: V(I,m), (I',m') € suce(n) either (I,m) = (I',m') or INI' =0,
— the successor set is an R-cover: (J{I|Im.n L m} =R,

— the CDD is ordered: for all m, whenever n L m then type(n) C type(m).
The CDD is assumed to be reduced if the following holds:

— it has maximal sharing: for all n,m € V whenever succ(n) = succ(m) Atype(n) = type(m)
then n = m, that is no isomorphic sub CDD’s can coexists in the CDD.

. . I I
— all intervals are maximal: whenever n —— m,n “Zsmthen 1 =L or LU ¢ T

We define the function child : V- x Z — V, such that child(n,I) to return the successor node m
of n where the edge going from n to m is labeled with the interval I. Thus for m = child(n,I),

. I
then there exists a successor to n so n — m.

S-CDD'’s

When mapping a DBM to a CDD, the resulting CDD will be a CDD where all nodes only have
a single successor node not being the false node, thus to make semantic proofs easier we define
a special syntax here for such a CDD, denoted S-CDD.

S-CDD’s are CDD where all nodes have a single successor not leading to false, and where edges
leading to false is not represented. This means that the successor does not form an R-cover, in
contrast to CDD’s.

We denote an S-CDD node as a 3 tuple (t,,1,Ts) where t; € T is the type and I € T is the
interval covered, and T is the the successor S-CDD node, that also can be interpreted as a
S-CDD. N is the set of all S-CDD nodes, with typical element n, ms.

S-CDD’s has a global linear ordering as CDD’s, refer to previous section for details. Again the
bottom element the true node is considered the element with the largest type, and the handle
to the S-CDD has the smallest type.

A S-CDD is a DAG consisting of a set of nodes Vi C N and two functions:

— type : Vs — T

20

Data Structures

— succ: Vs — (I,ng), where I € T and ng € Ny such that:
Vs has exactly one terminal nodes called true, where type(true) =L

all other nodes ny = (ts,1,Ts) € V, are inner nodes, which have attributed a type
type(ns) = ts, and a single successor: succ({ts, I,Ts)) = Ts. first(Ts) = ms is the node in
T, with the smallest type, that is the handle.

We define child(ng), ns € Ns to be the successor node of ng in the S-CDD. All inner nodes has
a unique successor node.

We define parent(ns) to be the parent of node ng. This method makes sense only for S-CDD’s
as these has a unique parent, which may not be the case for ordinary CDD’s.

We define Iy .44(ns) to be the interval leaving node ng.

N N myg is short hand for (I, ms) = succ(ng).
For each inner node the following must hold:

— the successor does not form an R-cover, otherwise the node should be omitted.

— the S-CDD is linearly ordered: for all mg, whenever ng N ms then type(ns) C type(ms).

— an S-CDD node has a unique parent and child node.

In the following part of the report, S-CDD is also referred to as single stringed CDD’s.

3.1.2 Difference Bounded Matrices

The following subsection describes the Difference Bounded Matrices(DBM) data structure used
in the current distributed version of Uppaal. DBM’s can be used for the same purpose as CDD’s,
that is describe constrains of the form X; — X; < n. The DBM data structure is best seen as a
directed graph, with vertices being the variables Xo, X1, ..., X,,. For each constraint X; —X; <n
a directed edge goes from X; to X; with weight n. An advantage with DBM’s compared to CDD’s
is that DBM’s has a normal form which simplifies inclusion tests, to a test of syntactic inclusion
instead of a test for semantic inclusion. The graph spanned by the constraints is described by
the adjacency-matrix representation in reduced form.

Only a single Zone Z can be described by a DBM, so if two Zones Z; and Zy are explored where
Zy & Zy N Zy ¢ Zy, then two DBM’s has to be constructed and stored. E.g. to represent the
explored state space of figure 3.2(a) on page 18, the two matrices in table 3.1.2 has to be stored:

Xo | X1 | Xo || Xo | X1 | Xo
Xo 0 6 6 0| 12 6
X, -2 0 -8 0
X5 -2 0 -2 0

Table 3.1: DBM’s for storing the state space: (—2 < Xo —Xp <6A —2< X1 —Xo<6A —00< Xo—X; <
OO)U(—2SX2—XOS6/\ —8< X1 —Xo<I12AN —c0< Xy — X <OO)

And after the representation of section 1.1.1: (1 < Xo —Xg <3A1< X1 —Xp<3A—00< Xo— X1 <o0)U(1<
Xo—Xo<3AN4< X1 —Xo<6A —OO<X2—X1<OO)

21

3.2 Operations

3.2 Operations

There are two main operations which is performed on the data structures used by Uppaal, these
are:

Inclusion test Before the Uppaal engine explores a new state it checks whether it previously
has been explored. This is done by storing all searched states in the Passed list, and before
exploring a new state it checks whether the newly found state is included in the Passed
list.

Union Whenever a new state has been explored it is inserted into the Passed list, this is done
by a union of the Passed list and the newly explored state.

The following describes how inclusion test and union is performed in the DBM version of Uppaal
and how they are performed using CDD'’s.

3.3 Current Uppaal

The current Uppaal version which is based on the DBM data structure, holds the Passed list as
a simple linked list of DBM’s. That is whenever a new state has been explored a union between
the existing Passed list and the new DBM is performed, simply by adding the DBM to the linked
list.

To perform an inclusion test using the DBM data structure, each DBM in the linked list is tested
for being a superset or equal to the newly found state. An algorithm for the inclusion test using
the DBM data structure is shown in figure: 3.3

bool dbm__inclusion(d : newstate; L : Passed LIST)
begin

return \/{d C d'|d’ € L}
end

Figure 3.3: Inclusion test using the DBM data structure. That d’ € L, denoted that the state d and d' has to
have the same discrete state.

This algorithm does not recognize a Zone if this Zone is a subset of the union of two or more
Zones, as shown in figure 3.4 where the marked zone is a subset of the union of two other zones.

Xy

= N W
|

123456 X,

Figure 3.4: If the three vertical Zones has been searched, the horizontal marked Zone would not be accepted as
searched.

22

Data Structures

3.3.1 Using CDD’s with Uppaal

Both inclusion tests and union with new Zones is somewhat more complicated using the CDD
data structure, but it offers better inclusion tests as CDD recognize that a Zone has been explored
if the union of two Zones makes a superset. The inclusion test is performed from the following
formula:

T, CT iff TsNT =T

where T is the new state as a S-CDD, and T is the Passed list represented as a CDD.

When a new state has been explored the Zone explored has to be added to the explored state
space set the Passed list. Actually the current CDD implementation of Uppaal uses a different
approach, as it checks for Ty, C T iff T, N =T = ().

3.4 Mapping CDD'’s to set formulas

This section provides another view on the CDD data representation, which is used to prove
properties of the CDD data structures in chapter 5. CDD’s are used to describe a federation in
the multi-dimensional space spanned by the clocks C. Therefore a CDD can be interpreted as a
set of intervals on the different coordinates.

Let p; represent the number p of the type ¢ € T, that is the set formula [2,;4,] represent the
interval [2;4] on the X coordinate. Then the area in figure 3.1 on page 17, may be represented
as the set formula:

(([1y5 4y] N [1g;45]) U ([221; Gy] N [22;64])) N [_Oox—y§ Oa:—y]

This set formula can be generated from a CDD using the following recursive formula:

CDDtoSET (cdd € CDD)
begin
if cdd = true return (R*)"
if cdd = false return ()
else return {J; ..\ e uce(n) (I N CDDtoSET (m))

end

3.5 Mapping DBM’s to CDD’s

All communication between the CDD data structure and Uppaal is done through the DBM data
structure. Whenever an inclusion test is performed (figure 1.3 line 5) it is checked whether
the shortest-path closure is contained in the PASSED list. Whenever a new state should be
inserted into the CDD, the shortest-path reduced DBM is inserted. But before these operations
is conducted, it is preferable to know how to convert DBM’s into corresponding CDD’s, as
operating on the same data structure is simpler. Note that an efficient implementation should
not perform this conversion, it is merely a matter to use in semantics of algorithms proposed
later on.

The structure of DBM’s only allow two constraints between any two clocks: X; — X; < n and
X; — X; <'m, where X;, X; € C and n,m € N. Therefore, for each type (node in a CDD) ¢ only

23

3.5 Mapping DBM's to CDD's

a single interval may leave not leading to the false node, and as the CDD only starts in a single
point the CDD resulting from converting a DBM into a CDD becomes a CDD where each node
has a single unique successor - prior defined as a S-CDD. The result of this is that whenever a
DBM is converted into a CDD, the CDD is an S-CDD. See figure 3.5.

Figure 3.5: Any DBM converted into a CDD, becomes a S-CDD. The DBM of figure (a) is converted into the
S-CDD of figure (b).

24

Design / Data structures Chapter 4

This chapter describes the design of the algorithms, both the sequential and the distributed ones.
After the description of the algorithms the design of the CDD nodes is described.

4.1 Non Distributed Algorithms

In this section we describe the algorithms that is used on ordinary CDD data structures on a
single processor architecture. These algorithms is our starting point when we distribute the data
structures. The algorithms described is inclusion test and union (between an S-CDD and a
CDD). This is followed by a description of how CDD’s are reduced to ensure as much sharing as
possible, but first we consider how intervals are merged during the union operation.

4.1.1 Merging intervals

Whenever two nodes with the same type has to be unioned, their intervals has to be merged. If
CDD node n; has intervals I;, ... I;,, and CDD node n; has intervals I, ... I;,, then the merging
of these intervals is the smallest number of intervals I, ... I, , such that VI' € {I,, ... I, },3I; €

{L, ... L}, I € {1, ... I[; }/I; N I; = I'. And the interval partition formed by I, ...I, forms
a reduced interval partition.

When the intervals are merged the new node is created by letting the new CDD node have the
same type as the input nodes. One outgoing edges exists for each interval in the merged interval
partition, and the edge with interval I, points to the union of the nodes ny; and nj,, where np,
= child(n;, I;) is the node referred to by node n; interval I;, and n; = child(n;, I;) is the node
referred to by node n;j, interval I, and I; N I; = I,.

As all unions in this project is only done between S-CDD’s and CDD’s, and it is known that
S-CDD only have one interval leaving each node (not leading to false), the algorithm in figure
4.1 show how the intervals of a CDD node m € N, and S-CDD node ng; € N; is performed.

The algorithm works as follows (figure 4.1(a) might help):

Line 3 assign I to the interval leaving the S-CDD node ng. Line 4 creates a new empty set of
intervals, which will become the resulting reduced interval partition. Line 6 to 16 iterates over
all intervals leaving the CDD node m, and for each interval the following is done:

Line 6-7 handles if the two intervals I’ and I; does not intersect, then the interval I’ is simply
added to the resulting set I(merge), is is the case for the interval (a,b) of I(m) in figure 4.1(a),
and result in the interval (a’,0’) in I(merge). Line 8-9 handles the same case, only if the interval
I, is a subset of I', this is the case for the interval (e, f) of I(m) in figure 4.1(a), and result in
the interval (', f').

Line 11-16 handles the case where I, and I’ isn’t ® nor I;. Such an intersection can be done in
5 different ways as shown in figure 4.1(b), by the I, intervals: Iy, Is,, Is,, Is, and I5,. Line 11
get the bounds from both intervals, which is used in the if conditions in the following 5 lines.
The following describes how each of the five intersections is handled:

I, UT': This intersection falls into the if conditions on line 14 and 16, and add (a,c) and (¢, f)
to I(merge).

4.1 Non Distributed Algorithms

1:Reduced _Interval _Partition merge intervals(ns € Ng,m € N)

2:begin

3: Iy = I, caq(ns)

4: I(merge) =0

5: foreach I' € I(m)

6: if I'NI; =0 then

7: I(merge) = I(merge) UI'

8: else if I' NI, = I then

9: I(merge) = I(merge) UI'
10: else
11: (a,b) =TI, (¢c,d) = I
12: if a < dAc < athen I(merge) = I(merge) U (a,d)
13: ifa<c then I(merge) = I(merge) U (a,c)
14: if a <cAd<bthen I(merge) = I(merge) U (c,d)
15: if a < cAb< dthen I(merge) = I(merge) U (c,b)
16: ifd<bd then I(merge) = I(merge) U (d, b)
17: return I(merge)

18:end

Table 4.1: Algorithm for merging intervals.

I, UT': This intersection falls into the if conditions on line 13 and 14, and add (a,d) and (d, f)
to I(merge).

I, UT': This intersection falls into the if conditions on line 12 and 16, and add (a, b) and (b, f)
to I(merge).

I, UT': This intersection falls into the if conditions on line 13, 14 and 16, and add (a, ¢), (c,d)
and (d, f) to I(merge).

I, UT': This intersection falls into the if conditions on line 13 and 15, and add (a,€) and (e, f)
to I(merge).

E.g. the merging of I, and I(m) of figure 4.1(a) is shown as I(merge) of figure 4.1(a).

L — Li: @ I

L L |
I(m) | 1 1 . |
a b c def h i I I |L[54 L
| Ll Lo | Bl |
I(merge) | T T | I
a b ¢ derf g n i’ abec de f
@ (b)

Figure 4.1: (a) shows an example to visualize why intervals must be merged and not just union the two sets of
intervals.
(b) Visualize five of the seven different ways two intervals can intersect one another.

26

Design / Data structures

4.1.2 Union

The most basic operation of the CDD data structure is the creation of the CDD data struc-
ture. The basic operation used in construction and in union is a function called makenode(t €
T,[11,T1]...[In,Ty]) which for a given type, and successor set either return an existing node
which hold the same properties, and if such node does not exist create and return a node with
the described properties. The operation is described by the algorithm in figure 4.2. The opera-
tion is important for keeping reducedness of the constructed CDD.

Note that the makenode relies on the reduce method. The reduce method is used to reduce S,
S being the successor set[I1,T1]... [I,,Ty], e.g. it has maximum sharing, no trivial edges and
all intervals are maximal - that is reduce ensures that S is a reduced CDD, according to the
definition of reducedness in section 3.1.1

1:CDD _Node makenode(t € T,[11,Ti]... [In, Ty])
2:begin
3: // Denote [I1,T1]...[In,Ty] by S, the successor (succ) of the input description
4: reduce(S)
5: if (In € V|type(n) =t A succ(n) = S) return n
6: else V:=V U{n} // where n is a new node
7: type := type U {n > t};
8: succ = succ U {n — S}
9: return n
10:end

Figure 4.2: Algorithm for the makenode operation.

The algorithm for union is depicted in figure 4.3.

1:CDD_Node union(ns € Ng,m € N)
2:begin

3: if ny = true V. m = true then return true
4: else if m = false then return ng
5: else if type(ns) = type(m) then
6: I(new) = merge_intervals(ng,m) // new is a new CDD node
7: return makenode (type(m),{(I,m") |
8: I € I(new)
9: INI;=0=m"=childim,I')|I' e Im) NI C I
10: INI; # 0= m" = union(child(ns),child(m,I')) | I' € I(m)ANI C I'}
11: else if type(ns) C type(m) then (a,b) = I
12: return makenode(type(ns), {((—oo,a’), m), (I, union(child(ns), m)), ((b',00),m)}
13: else if type(m) C type(ns) then
14: return makenode(type(m), {(L;, union(ns,m'))|m LN m'})
15: endif
16:end

Figure 4.3: Algorithm for the union operation.

27

4.1 Non Distributed Algorithms

Line

Line

Line

Line

3-4 handles the trivial cases where either of the CDD/S-CDD consists only of the true or
false node.

5-10 handles the case where two nodes of the same type has to be unioned, this is done
by merging their intervals. An example is given in figure 4.4.

[Line 6] merge the interval partition of the CDD node, and the interval of the S-CDD
node, as described in the previous section.

[Line 7] makes a call to makenode, with an request to make a new CDD node, with
the interval partition returned in line 6.

[Line 8] Iterates over the interval in the interval partition I(new).

[Line 9] If I intersected with I is the empty set, then the child of the interval I is
unchanged.

[Line 10| If I does intersect with I, then the child of the interval I is the union of the
prior node referred by I' unioned with the child of the S-CDD node.

11-12 handles the case where the type of the S-CDD is smaller then the type of the CDD.
This is handles by creating a new CDD node with the same type is the S-CDD with three
intervals. One going from —oo to @’ which must refer to the CDD node given as argument.
One successor with the same interval as the S-CDD referring to the union of the child of the
S-CDD and the CDD nodes given as argument. The last successor being (b'; 00) referring
to the CDD nodes given as argument. a’ denotes the opposite bound than a, that is if a is
[m, then o’ denotes m[, the same is the case for b, which is opposite to b. An example is
given in figure 4.5.

13-14 Handles the case where the type of the CDD is smaller than the type of the S-CDD.
This is handles by substituting all the children of the CDD node with the union of the child
and the child of the S-CDD node. An example is given in figure 4.6.

Figure 4.4: Show how union is performed on two nodes having the same type. The nodes to be unioned is marked,
as well as the created node.

The way the CDD data structure is build bottom up on a single processor architecture, using
the makenode/reduce, ensures that the CDD is always reduced. This can only be done on a
single processor architecture as a single call stack exist here. When using distributed computing
several call stack exists one on each computer node, and other actions has to be issued to ensure
reducedness. We describe these action later, when the distribution scheme is described.

28

Design / Data structures

pav‘ent(}b) Earent(ns)

C

Figure 4.5: Show how union is performed when the type of the S-CDD is smaller then the type of the CDD. The
nodes to be unioned is marked, as well as the created node.

D) B B

Figure 4.6: Show how union is performed when the type of the CDD is smaller then the type of the S-CDD. The
nodes to be unioned is marked, as well as the created node.

29

4.1 Non Distributed Algorithms

Hash Table

The makenode() function which has to search weather an existing node with the same type and
successors already exists before creating a new one, for this purpose a hash table is build so the
expression (In € Vitype(n) =t A succ(n) = S), can be performed in O(1) time. The hash table
is build so that the hash function accepts a type and a list of interval/successors, and return a
list of nodes in V satisfying that hash function.

4.1.3 Inclusion Test

The next operation we describe is the inclusion test.

bool inclusion(passed : CDD _Node check : S — CDD __Node)
1: if passed = true return true
if passed = false return false

2
3: if type(passed) C type(check) return A{inclution(T;, check)|passed LN T;}
4: if type(check) C type(passed) return inclusion(passed, child(check))

5 if type(passed) = type(check) return
6 N {inclusion(passed', child(check))|
7

I aSSeE
: dpassed € N A Ipgsseq € L.passed _passed passed'. Ingssed N Icheck # 0}
end

Figure 4.7: Algorithm for the inclusion operation.

This algorithm shown in figure 4.7, works by simulating the check S-CDD N CDD = S-CDD,
it is not intended to calculate the actual output of this intersection, this would be of no use as
there are no normal forms for CDD’s. Instead we simulate all traces from the handle that has
overlapping intervals with the interval of the S-CDD, to see if we reach the true node in all
traces.

line 1,2: These lines covers the trivial cases where the Passed list is either the false node or
the true node.

line 3: If the type of the S-CDD node is larger than type of the passed node, this means that the
S-CDD implicitly contains a node with same type as the passed node, and this node covers
R as its interval. Therefore all successors of the CDD node passed, need be examined.

line 4: If the type of the check node is smaller than the type of the passed node, then the CDD
implicitly contains a node with the same type as check forming an R cover, and clearly
the check node is included in this node. Therefore we can traverse further down the S-
CDD making a recursive call with the passed and child(check). Remember that the child
function for the S-CDD returns the unique successor of the node given as argument.

line 5,6,7: Here the types of the two nodes are identical, thus we recursively traverse the edges
where there are overlapping intervals with the interval from the S-CDD I peck, to see if the
entire interval I .peqr is covered, that is leading to the true node.

30

Design / Data structures

4.2 Distributing the Data Structure

In this section we describe how we distribute the CDD data structure. Our primary goal is
to allow Uppaal to verify larger models, by distributing the CDD data structure. Another less
significant goal is to minimize the communication overhead to a minimum. As described in
the purpose, the purpose of this project is two fold. First we wish to investigate how much
memory can be saved by allowing sharing between all discrete states, and secondly how large is
the time/communication overhead introduced. Before introducing the distributed algorithms we
consider what platform we aim our distribution at.

4.2.1 Distribution Platform

We consider two main targets for distribution, either distributed shared memory or message
passing. In message passing the communication between computer nodes is via messages ex-
plicitly send to a specific node, a well known standard MPI defines syntax and semantics for
the different calls, thus libraries exits for varying architectures. In distributed shared memory
the entire memory area is transparently accessible by all processes as it where local memory.
Shared memory libraries include Parallel Virtual Machine and IVY among others. We need to
synchronize the union and inclusion operations, as we cannot allow an inclusion operation to
“overtake” a wunion operation, as it might see the first part of the union but not the last which
might lead to inconsistency, if the inclusion test tries to call a node which is not constructed yet,
as it will be constructed by the union it just “overtook”. Thus we need to either synchronize on
some level, either being each node or possible at each type level. This actually means that we
synchronize the entire structure, by introducing a large pipeline on all the computer nodes. Each
computer node must either perform inclusion/union operation or explore states in Uppaal. We
can choose to either make this synchronization explicitly with mutex locks using the distributed
shared memory model, or we can do this implicitly by using message passing as MPI guarantees
message ordering. We have chosen the later for several reasons: First efficiency, as we expect it
to be more efficient to perform the pipeline implicitly than explicitly. Secondly the existing dis-
tributed version of Uppaal uses MPI thus minimizing the hardware requirements of the current
Uppaal users. There are of course several advantages of using shared memory, one of them being
that it is almost transparent to the programmer, thus easing the programming, but we consider
the previous mentioned arguments to out weight these advantages.

4.2.2 Distributing Among Nodes

The idea for distributing the CDD data structure is by distributing the CDD nodes among the
computer nodes and letting them communicate whenever an operation (inclusion test/ union)
is to be performed.

The first issue to consider is how to distribute the CDD nodes. As we are not aware of other work
distributing the CDD data structures, or the very alike IDD (Interval decision Diagrams [14])
data structures, it was investigated what work that previously has been done for distributing the
BDD data structure, and the following distributing ideas were found:

Horizontal The first approach encountered, were a horizontal distributing. In this approach
all CDD nodes with the same type are guaranteed to stay at the same machine node. The

31

4.2 Distributing the Data Structure

partitioning is then horizontal as the name indicates. For an illustration of this idea please
refer to figure: 4.8(a)

Vertical This approach distributes the CDD vertically, by keeping a number of handles on each
computer node, in the same way as the distributed version of Uppaal. Sharing between all
locations becomes difficult, as every time we create a new CDD node all other computer
nodes has to be asked whether they already has such a node. Inclusion/union becomes
difficult because a trace from the handle to the true node may jump from computer node
to computer node as many times as there are CDD nodes in this trace, which may be
exponential to the number of types. Figure 4.8(d) shows the idea of this approach.

Groups Another approach is to partitioning the CDD arbitrary, both horizontal and vertically.
But as can be seen from figure 4.8(b), this may lead to communication between vertically
distributed CDD nodes. As were the case for the vertical distribution approach.

Distributed The last idea is borrowed from [12]. This approach takes advantage from the fact
that the variable ordering of the types is very important for how much sharing that can
be accomplished. The idea is that each node hold a CDD, each with different variable
orderings, then whenever an operation should be carried out, the explored Zone is send
to all computer nodes. During the union operation the computer node that accomplish
maximal sharing (need fewest new nodes to represent the new federation) stores the new
zone, and all other nodes discharge the new zone.

Node I Node I Node III Node I Node I Node II Node III
X X R X
2 L] (B GBS | B

ch'clelilf:" Nod,e I »‘:(_Novéi'e v Node II
K s X s || B v X
IR | % ::Eﬁjw X Q
X o X X X

Noaem (b) = Node ITI

&

i 2

Nogé;‘: IV & Node IV
- V4 <
X X

(a) (c)

X New state
{>cop

Figure 4.8: Different approaches for distributing the CDD nodes among several distributed computer nodes. (a)
show a horizontal representation, (b) show an approach based on groupings, (c) shows an approach based on
several distributed CDD’s, and (d) shows the vertical distribution approach

The following describes the advantages and disadvantages of the listed possibilities of distributing
the CDD data structure.

Horizontal Using the approach of horizontal distribution, the number of messages for both
operation (inclusion test and union) is the number of nodes participating in the operation
except one. Besides that the partitioning of CDD nodes among computer nodes is simple,
and a simple interface may be kept.

32

Design / Data structures

Groups Unlike the approach of horizontal distribution, the approach using groups does not have
a known number of messages for each operation. If the partitioning is good, and the right
operation is performed the number of messages is less than for the horizontal approach, but
if unlucky the number of messages might increase exponential. Although the approach has
some advantages over the horizontal approach such as: The approach might be easier to
apply to a distributed shared memory environment, as the node creating/modifying a node
creates the nodes locally. Also the approach might result in a better memory distribution,
as any number of CDD nodes might be moved from one computer node to another - thereby
releasing a computer node with less memory. Using the horizontal approach, only one layer
(all nodes with the same type) may be transfered at runtime.

Vertical This approach suffers from the same as the previous approach, though in an even more
extreme sense.

Distributed The approach using several CDD’s to store the Passed list, is somewhat alike the

existing distributed Uppaal version. But instead of storing the newly explored state lo-
cally, the state is stored at the node where it takes up least space. [12] shows promising
results using this approach for BDD’s. Another advantage of this approach is the ease of
implementation, as when a single machine version has been implemented, the only action
to implement the distributed version, is to communicate new zones and synchronize on the
size added.
Disadvantages of this approach is that it cannot in general handle union of Zones (fed-
erations). If the federation Fy = Z1 U Zy, where Z; and Zy are Zones located on two
different computer nodes, then it is not possible to recognize that any subset of F} has
been searched. Another disadvantage is that much time is wasted during the many unions
on all nodes, most of which is simply discharged.

The approach chosen for this project is the horizontal distribution as it offers the best scalability
in that the number of messages needed has an upper limit.

4.3 Communication

To be able to perform the operations distributed, computer nodes next to one another need
to hold some reference to the nodes on the next computer node. The following describes this,
where the upper computer node is called client and the lower machine node is called server.
Each computer node holds an array, which is indexed equally on each computer node.
Informations hold on the client side is:

— Reference count: The client need to know how many references goes into each CDD
node at the server node, so that the array index can be deleted when the reference count
reaches zero. The reference count is increased whenever a CDD node points to the cor-
responding CDD node at the server. The reference count only changes during reduction
of the distributed data structure, which is done in another way than for the single node
CDD data structure. The mechanism for reducing of the distributed CDD data structure
is described later in section 4.4.3

33

4.4 Operations

On the server side the array contains:

— Pointer: The server side is an array of pointers to CDD’s node which the array entry
corresponds to.

Nodes with ordinary type

Nodes with ordinary type [\] [/ \ / J Node 1
Client side commication array
[} [} [} A A A A A [} <
----------- I e 1 TR] B Rl 1 I B I
vy Y vy v v v Y Y Y
Server side commication array

Nodes with ordinary type|)) I)] > Noge2

\
Nodes with ordinary tpel) () J(J []

Figure 4.9: Show how the communication between machine nodes is done.

The communication layer, can be seen as an extra layer of CDD nodes, each entry in the com-
munication layer is then seen as a CDD node, with a special type fcomm - not in the type set
of the timed automata. The succ() function only holds a single outgoing interval namely the
interval | — oo; oo[, thereby it can be seen that each entry in the communication layer may have
several in going edges, but only a single outgoing edge. Thus each node referenced on the next
computer node can be uniquely identified on both computer nodes by the array index.

4.4 Operations

In the following subsections we describe how the union and inclusion test is performed in the
distributed CDD data structure, using the communication interface previously described.

4.4.1 Distributed Inclusion Test

The algorithm for making the inclusion test in the single processor CDD is described in section
4.1.3. The operation of the distributed version is similar, except on one point:

The single processor version uses a depth first approach, if the same approach is used in the
distributed approach, many messages must be send between machine nodes. Therefore the
approach taken is somewhat between depth first and breath first, at each machine node the
depth first approach is used until the communication layer is reached. Information about which

34

Design / Data structures

nodes at the next computer node, that is part of the inclusion test, is then transfered (unless
the inclusion test has already failed!), and only when the request fails on a node, or the request
reaches the bottom machine node (holding the true CDD node) the final answer is found.
That is, each machine node receives a number of references for which the inclusion test is to
be performed. Then a recursive depth first algorithm is run on these nodes, each time reaching
the communication layer appending the found entry in the communication array to a list. If at
any instance the inclusion test fails false is returned. If all incoming requests succeeds the list
containing array indexes is send to the next node. If all requests succeeds at the bottom node
true is returned.

The inclusion test is always initiated on the computer node holding the handle.

Let E denote the list of CDD nodes communicated from the prior (client) layer, and let E' be
the list that should be passed on to the next computer node. Then the algorithm in figure 4.10
illustrates how the distributed inclusion test is performed:

1:distributed _inclusion(Ts : S — CDD, E : [CDD])
2:begin
3: E' =10
4: foreach T; € E do
5: begin
6: if T; € Communicationlayer then
7: E' =F UT,
8: b = recursive_inclusion(T;, Ty)
9: if b = false return false
10: end
11: if not bottom layer pass E’ to next layer.
12: else return true
13:end
1:bool recursive inclusion(T; : CDD, Ts: S — CDD)
2:begin
3: if T; = true return true
4. if T; = false return false
5: if type(T;) C type(Ts) return A{recursive_inclution(T};,T)|T; b, T;}
6: if type(Ts) C type(T;) return inclusion(T;, succ(Ty))
7: if type(T;) = type(Ts) then
8: VTjEV.E]IjE.ﬂTi —I]—>Tj/\1jﬂfs7é®
9: if T; € communication layer then
10: E'=FE'U Tj
11: return true
12: else return recursive _inclusion(Tj, succ(Ty))
13:end

Figure 4.10: Algorithm for distributed inclusion test.

The recursive part of the distributed inclusion test as shown in the lower box of figure 4.10 works
in the same depth first fashion as the non-distributed inclusion test does, the only difference is
the lines 9-11, where it is tested whether the examined CDD node, is a communication node, and
if this is the case, it is added to the inclusion message and true is returned. True is returned

35

4.4 Operations

as this node cannot yet decide whether the S-CDD is included or not, and as only the bottom
node may give the final true reply this does not result in semantic faults.

Whenever a distribution requests is send to a node, the distributed inclusion methods, which is
shown in the upper box of figure 4.10. It receives a S-CDD, and a list of communications indices,
it makes a recursive call to recursice _inclusion for each element in the communication array, if
any of the recursive inclusion fails it immediately known that the S-CDD cannot be included
in the CDD, and immediately returns false. If all recursive calls succeed, all nodes except the
bottom node send the inclusion request to the next node, and the bottom node simply returns
true, as the S-CDD must be included in the CDD.

4.4.2 Distributed Union

In this subsection we describe how the distributed union operation is performed. The distributed
unton operation is somewhat different from the single processor version. The single processor
version uses the makenode operation whenever a new node is needed to ensure that the CDD is
reduced during the union, furthermore the single processor version is performed in a recursive
bottom up manner, so reduction can be performed at creation time (reduction can only be per-
formed bottom up).

The same mechanism can hardly be used in a distributed union, as the number of messages send
between two machine nodes is not known and may be really large, as the recursion at least have
to traverse to the bottom true node, and during the recursion termination have to return to
the top node again. As shown in figure 4.3 on page 27, the single processor union operation call
is depth first - that is, if at the top node, a merge is made which splits in to more recursive
calls, then the number of messages increases exponentially, therefore another distributed union
operation is designed.

In principle the distributed union works the same, but when union is called with a type in the
communication layer, an entry in the communication array is allocated, and a pointer to this
entry is returned. Furthermore this entry is added to a message, which is send to the server node
(lower machine node), when the recursion on the current node terminated for all traces. When
the next node receives this message it continues the construction, and gives request to the next
node etc.

During the construction of CDD nodes at each machine node, the nodes added/modified is saved
in a special data structure (called call stack from this point), this call stack is later used for
reducing the CDD data structure - the reduction operation is described in section 4.4.3 later.

One exception to the previous rules, is the bottom machine node (holding the true CDD node).
The union on this computer node is performed like the single processor union operation, and
makes reduction implicitly as we build the CDD bottom up here.

Communication

Whenever a machine node has performed its union, it has to send a message to the lower level
machine node. This message contains the following information:

ID Each union request is given a unique id. The unton operation uses this to uniquely identify

36

Design / Data structures

which CDD-nodes has been modified/added by this union operation - this information is
used whenever a distributed reduction is performed.

S-CDD Naturally the S-CDD which should be unioned need to be transfered. But S-CDD nodes
with type smaller than the least type on the destination computer node can be omitted

Array Entries Finally the entries in the communication array which need to be unioned with
the next node, is added to the message. The next node need this to union each CDD-node
corresponding to the entries in the communication array with the S-CDD in the message.

Algorithm

The distributed algorithm for the union operation for a single node is shown in figure 4.11

1:CDD_Node distributed _union(ns € Ns, A C V)

2:begin
3: if ng = true then foreachn € A do n = true
4: else
5: foreach n € A | n # true
6: if n = false then n = SCDDtoCDD(n,)
7: else rec_ distributed _union(ns,n)
8: SEND COMM
9: endif
10:end
11:CDD _Node rec_distributed _union(ns € Ns,m € N)
12:begin
13: if ngy = true V. m = true then return true
14: else if m = false then return SCDDtoCDD (ny)
15: else if type(m) = teomm return new entry(COM M) + add to communication layer.
16: else if type(ns) = type(m) then
17: I(new) = merge__intervals(ns, m)
18: return makenode(type(m),{(L,m") |
19: I € I(new)
20: I ¢ I, = m" = childim,I')|I' € Im) NI C T
21: I C I, = m" = union(child(ns), child(m,I')) | I' e Im) NI CI'}
22: else if type(n,) C type(m) then
23: return makenode(type(ns), {(Is, union(child(ns)),m)})
24: else if type(m) C type(ns) then
25: return makenode (type(m), {(I;, union(ns,m'))|m N m'})
26: endif
27:end

Figure 4.11: Algorithm for the distributed union operation. The SCDDtoCDD method converts the S-CDD
given as argument to a CDD describing the same Zone, and return a handle to this CDD.

The distributed union operation differs from the non-distributed union, in that the distributed
union works in stages, one stage for each node. That is the CDD is not build from bottom and
up, but bottom up on each node. This again leads to a non reduced CDD is constructed, so

37

4.4 Operations

a special reduction operation must be applied to archive sharing, and thereby reduce memory
usage.

A demonstration of the union algorithm is provided later, where the distributed reduction algo-
rithm is also demonstrated.

Optimizations

In the following we describe some optimizations to the union operation. Also a necessary oper-
ation needed by the distributed reduction is described.

Call stack: As reduction can only be performed bottom up, due to the nature of the reduced-
ness rules, the top node cannot reduce before the second node has cleaned up and so on.
But the top node cannot reduce if is does not hold information about which node it has
modified /added during the union. Therefore each node builds a call stack during the con-
struction of its CDD partition. The call stack is not a call stack in common sense, it is
only a list of added/modified nodes, which is checked during the reduction phase. The call
stack for a single union operation is kept in memory until a reduction phase reaches the
node, or until an explicit requests come to delete it. Each call stack is associated with a
unique id.

Temporary Hash Tables: Is temporarily in the sense that it works on a ‘per operation basis’.
Consider performing union between the CDD shown in figure 4.12(a) with the S-CDD
shown in figure 4.12(b). To perform Xy U Y} the following operations must be performed:
X171 UY7 and X192 UY7, and for these to be unioned the following two operations must be
performed: Xgo U Yy and Xgo U Yy, if nothing else is known X9 and Y5 may be performed
twice, resulting in twice the work on the union of the nodes below, therefore whenever a
union is performed the nodes are stored in a hash table, then the second time a union is
needed the already performed union may be reused, this may reduce the work.

[1;2]
i
[1;10]
Ys
[1;5]

(a) (b)

Figure 4.12: Shown a figure where the temporary hash table might save some time, by making an earlier reduction.

38

Design / Data structures

Distributed Hash Tables: Like the non distributed union operation the distributed wunion
operation also depends on hash tables. Whereas the non distributed version uses hash tables
to create the CDD, the hash table is only used by the last computer node to create reduced
CDD nodes - but during the reduction operating the hash table also need to be used by the
other computer nodes to ensure the reducedness properties of CDD’s, so two isomorphic
sub CDD’s are not build. In the distributed CDD data structure implementation, each
computer node holds a hash table containing only the CDD nodes located on this particular
computer node. The entries in the hash table is the same as were the case for the non
distributed hash table, as described on page 30.

This is only possible as the horizontal distribution approach were chosen.

4.4.3 Distributed Reduction

In the non distributed union operation, the call stack and the hash table ensures that the CDD
data structure is always reduced during the construction. This is not possible in the distributed
union operation, as the computer nodes does not have a common call stack, and cannot be
constructed bottom up as is the case for the single processor operation. Therefore the reduction
mechanism for the distributed union operation is a little different. First the union operation is
performed as described in the previous section; when the request reaches the last machine node,
and this node recognizes that a CDD node to create already exists, it reuses that node - just as
in the single processor case. Furthermore it stores information about the reused CDD node. If
two or more nodes in the communication layer becomes identical, this information is send to the
prior computer node, which uses these informations to make a local reduction, and if this node
recognizes that the prior computer node might make further reduction - reduction information
is send to the previous computer node etc.

The description of the distributed reduction is split into three subsections, first the mechanism
for the bottom machine node is described. Then reduction messages is described, and finally the
reduction operation for all computer nodes other than the bottom computer node is described.

Bottom Computer Node

To describe how the distributed reduction is performed a little syntax is introduced. Let the
computer nodes participating in the data structure be denoted by M, Mo, ..., M,, and let the
first type controlled by node M; be denoted by ¢y;. Finally let the communication array between
node M; and M;; be denoted by Tecommy, -

When the bottom machine node M,, performs the union operation it does so for each entry in
the array ncomm,; as instructed in the message from node M,,_;. During these union operations
it consults a hash table of already constructed node (just as were the case in the single processor
union), and whenever it discoverers that two nodes with type 57, are equal e.g. (type(n;) =
type(n;) = tu,) A(succ(n;) = suce(nj)), then the prior node M, _; may redirect all pointers from
n; to nj, or the other way around. To do that a message containing the information (n; = n;)
is send to machine node M,,_.

39

4.4 Operations

Communication

During the distributed reduction phase, messages is send from machine node M; to machine node
M;_1, whenever node M; finds two or more nodes in communication layer that are equal. The
message send holds the following information:

ID: First an ID is added to the message, this ID is equal to the ID of the wunion operation
that made the bottom node realize that two nodes in communication layer Ncommy,,_, Were
equal. This ID is used to access the call stack created during the union with id: ID, for
further reduction.

Matching nodes: Besides the ID information of which CDD nodes are equal is send to the
prior node.

Local Reduction

Let the call stack of a computer node be denoted by: CS = {n¢s;,Nesyy- -+, Mes, b C V. The
local reduction algorithm for a computer node M;, M; not being the bottom computer node - is
shown in figure 4.13, with ‘cs’ being a call stack and ‘eq’ being a message containing information
of nodes that are equal, and thus used for further cleanup:

1:void distributed _reduction(cs € CS, eq € EQ)
2:begin
3: newEQ = // Message to send to M;_;
4: foreach n € cs do
5: if 3(n N m) € succ(n) where (nj,m) € eq then
6: succ(n) = (suce(n) —{n N m}) U{n N n;}
7: V=V-m
8: if In' € V |type(n') = type(n) A succ(n') = succ(n) An #n'
9: then eq = eqU (n',n)
10: if type(n) = tecomm, then
11: newE(Q = newEQ U (ny,n) |
12: type(n) = type(n,) A succ(ny) = n;
13: if newEQ # () then
14: send newFEQ to M;_q
15:end

Figure 4.13: Algorithm for distributed reduction.

The foreach loop ranging from line 4 to line 12, iterates over all CDD nodes in the call stack,
build during the union operation with the same id, as this reduction operation. During this
iteration it is checked whether any of the nodes created during the union points to another node
created during the union, which has a semantic equal node. Information of such two semantical
equal nodes is given in the ‘eq’ set.

Line 5 checks whether the current call stack node n, has a pointer pointing to the ‘m’ node in a
element of the ‘eq’ set. If it has this pointer is redirected to the semantic equivalent CDD node
which in the pseudo code is denoted by ‘n;’, this is done in line 6. Line 7 removes the node

40

Design / Data structures

m from the set of CDD nodes V. If the temporarily hash table, were not implemented, it is
guaranteed that the CDD node ‘m’ if only referenced to by ‘n’, but when the temporary hash
table is used several nodes from the call stack can reference a single node, but this problem is
handled by the reference count of the node ‘m’.

To see an example on the functionality, please refer to figure: 4.14, where the set (2,1) is in the
‘eq’ set. Then the pointer from node Xy is redirected from 2 to 1, and as no further CDD nodes
reference 2 this node can be deleted.

If the call stack node ‘n’ has been changed by the previous lines, another node existing in the
CDD ‘n/ € V’ might become syntactic equivalent with n, if this is the case, the set (n',n) is
added to the ‘eq’ set, so that the reduction operation on other computer nodes, will see that ‘n”’
is equivalent with ‘n’, and change it’s pointer(s) from ‘n’ to ‘n’’, and delete ‘n’. This is handled
by line 8 through 9. To see and example on this please refer to figure 4.15, where X2 has just
been made to point to 1, and has the same interval as node Xy, this makes CDD node X7, and
Xy syntactic equivalent, and (X7, Xs) is added to ‘eq’. When the foreach iteration reached
CDD node Zs, it discovers that X; is equivalent with X3, and redirects it’s pointer from Xy to
X1, and delete node Xs.

To ensure that all nodes is removed it is important to keep the nodes in the call stack sorted,
so that the nodes with the higher types, is run through the iteration before nodes with smaller
types (nodes with high types, is referenced by nodes with smaller types). And reduction can
only be performed bottom-up.

Line 10 through 12, handles the case when the local reduction recognizes that two nodes with the
first type handled by computer node M;, then computer node M;_; might use this information
to make further reduction. To see an example on this, please refer to figure 4.14, where the lower
computer node has recognized that node Y7 and Y3 is equivalent, and adds (2,1) to newEQ,
which is consequently sent to the upper node. Note that in the figure, the reference from 2 is
redirected to point to Y1, to ensure that inclusion /union requests made before the local reduction
has run in the prior node, still succeed (such request might still contain the communication node
2).

Finally line 13 and 14 sends newFE(Q to the previous node, to initiate a local reduction there.
This is what is implicitly done between the (a) and the (b) part of figure 4.14.

> J=))=

1 2 3 4| Communicatipn 1 2 3 4
Layer

Y1 Y> Y1

(a) (b)

Figure 4.14: Reduction: If two subtrees is equal one may be deleted and the other one used instead. Figure (a)
show the situation before the reduction request is send to the upper node. Node Y7 and Y> has just recognized
to be syntactic equal by the lower node. Figure (b) show the situation after the information lcomm = 2comm has
been send to the upper node, and this node has made a reduction.

41

4.4 Operations

Y
N
-
—
Y
N
[V
—
Y

(=)

5

1 2 3 4] Communication 1 2 3 4
Layer

R
s
~—
R
&
~—
a

(a) (b)

Figure 4.15: Reduction: The reduction from figure 4.14 lead to X; and X» became syntactic equivalent (a), and
further reduction made possible (b)

Example

An example demonstrating the functionality of the union operation using call stack and tem-
porarily hash table. And the functionality of the reduction operation is given in appendix A

4.4.4 Backtrace Algorithm

In this section we describe the backtrace algorithm. The backtrace algorithm is used when the
inclusion test fails, and before the union operation is started. The idea of the backtrace algorithm
is to find a subpart of the CDD from the bottom element, the true node, that covers exactly
the same Zone as the corresponding nodes in the S-CDD that failed the inclusion test (see figure
4.16). The main purpose of the backtrace algorithm is optimization of memory usage during the
union operations, as we expect the backtrace algorithm to minimize the overall runtime stack,
and thus to minimize the time spend in the reduction phase. The CDD node found by the
backtrace operation may only be used when unioned with the false node.

The backtrace algorithm works as follows:

1:CDD _node Backtrace(ns € Ng,n € V)

2:begin

3 if type(n) = tserver comm then send Backtrace request to M;
4 if 3n’ € V| type(n') = type(ns) A

5 V(I,m) € succ(n')|(I = I(ns) ANm =n)V (m = false) then
6: return Backtrace(parent(ng), n')

7 else return n

8:

end

The algorithm works as follows:

Overall: The algorithm is initially called with the true node and the S-CDD node with the
largest type, that is, the S-CDD node referring the true node.

42

Design / Data structures

)
[1; 5] [1; 5]
o

D D

5; 10] 5; 10]
true true
(b)

(a)

Figure 4.16: Example on the backtrace algorithm. The backtrace algorithm is run on the CDD (a), with the
S-CDD (b) as argument. And the algorithm should return the marked path.

The idea is to traverse the CDD backwards, finding a single stringed subparts of the CDD
that covers the exact same part of the Zone that the S-CDD covers. When this point is
found the union becomes easier as we can attach to this node when reaching a node with
the same type in the S-CDD, is this S-CDD node should be unioned with the false node.

line 3: Line 3 checks whether a trace has been found up to the communication array, if that
is the case the backtrace request must be send to the previous node, to continue there.
With the message the communication entry id is send, so that the backtrace operation can
continue there starting at this node.

line 4-5: The if condition of line 4 and 5, checks whether there exists a node in the existing
CDD, which has exactly one interval, ranging over the same interval, and leading to a
CDD node which describes the same sub zone as the child to the S-CDD node given. If
that is the case, the CDD node ‘n”” describes the same zone as the S-CDD node ng, and
the recursion continues to see whether such a trace also exists for the parent to ng, this
recursion is called in line 6.

line 7: If such a node did not exist, the longest backtrace for the S-CDD, is the CDD node,
which this recursion were called with (n), and this node is returned.

4.5 Node Representation

In this section we give an overview of the node representation in the CDD data structure. We
consider the internal representation of nodes, as well as how to store nodes. First we consider
how to store nodes, and after this the internal representation is covered.

Memory Management

The storage of the CDD nodes can be seen as simple memory management, as we have to allocate
nodes (creating nodes) and deallocate nodes (when changing nodes). The memory management
must support a minimum of memory usage overhead, that is memory used only for memory

43

4.5 Node Representation

management purposes. It should also favor efficiency of the implementation, and if possible
support data locality to optimize cache accesses, as it has been done in [13].

Different solution to store nodes is stated and discussed in the following:

Segregated Keep an array of nodes for each node size.
Standard Allocate each node separately using malloc.

Locality Make special memory management to enhance data locality.

Segregated: A CDD consists of inner nodes of variable size, as there can be an arbitrary finite
number of successors to a node. This complicates the storage of these nodes, as we cannot
use an array as nodes differ in size. Nodes having the same size could be kept together
using a segregated memory allocation approach, by keeping a free list for each node size -
see |7] or |15]|pp.36] for details. This might affect data locality if nodes are accessed using
breadth first search patterns as this accesses nodes having the same type consecutively,
but they might differ in size, leading to different locality for storage. Accessing nodes in
a depth first manner, makes it almost impossible to enhance data locality as we cannot
support data locality for all paths in the CDD. Determine the ratio at which they each are
used is not trackable as the Passed list is a dynamic data structure, new information is
added all the time.

Standard: Nodes could also be individually allocated using malloc, but the algorithms later
in this chapter shows that we will encounter a high rate of changing CDD nodes, thus
requiring to reallocate the node when changing them. The relative high cost of calling
malloc, as it might involves a kernel trap, together with the high rate of changing nodes
leads to a high cost for this approach, memory wise the cost is also high due to the memory
used for headers internally in the memory management.

Locality: The algorithms described in section 4.1 are depth first on each computer node. Thus
making a special memory management to enhance data locality becomes difficult, as many
traces share some nodes in the the CDD data structure. Which of these traces that should
be given precedence to others traces, is difficult as the data structure changes all the time
as new zones are added.

We conclude that the best memory management method for our purpose is the segregated ap-
proach. This is based on the great number of allocation/deallocations needed, together with that
the number of different node sizes is expected to be limited. One problem with this memory
management, is that each block need some header information about the nodes in this block.
These information is: size and free elements, where free elements should be a mechanism for
finding free elements in a cheap way. This overhead introduced by the header argue for large
blocks (thus minimizing the relative overhead), but the fact that nodes of size ‘z’ cannot be
allocated in blocks with size ‘y’, where z # y, argue for smaller blocks, the discussion of block
sizes is taken up later, as the size of the blocks is given another purpose.

The free elements item in the header, should provide a cheap way of finding an unused element.
For this purpose a linked list approach is chosen. That is all free elements is put into a linked
list of free elements, where the first 32 bits of the element is used to store a pointer (which, when
allocated is used for real data), this way no memory is lost to hold this free list, only one header
for the free list need to be stored in the header.

44

Design / Data structures

Now back to the discussion for the block size. We have chosen to extend the segregated memory
management with an idea from the LISP interpreters [2|, where data of the same size is stored
in arrays that is aligned on a specific memory boundary. If we align each array at a 64k-byte
boundary, meaning we allocate arrays of size 64k-bytes, then we can access these blocks with 16
bit pointers(0zXXXX0000), as the 16 least significant bits always will be zero.

As all elements we allocate is at least 13 bytes (explained later), a maximum of 5041 elements
can be allocated in a single block. For addressing one of these 5041 elements we need only 13
bits, and 16 bits for accessing the block, leaving 3 bits in a 32 bit reference to other purposes.
Using such bits for other purposes than addressing is called a tagged architecture.

Examples of tagged architectures are the LISP machine that uses tag bits for runtime determi-
nation of data types.

This leads to how we internally represent the nodes.

4.5.1 Compact Representation

In this section we describe the possibilities of the internal representation of the CDD node. In
the following we give the representation of a single CDD node.

Each node holds a pointer, which has been added for time optimization purposes.

This optimization is used for reduction. Whenever a new node is created it must be checked
whether a CDD node already exists in the CDD data structure which has the same syntactic
description. To do that all nodes has to be examined, to avoid that all nodes in the CDD data
structure need to be examined, all nodes is put in to a hash data structure. The pointer described
is the used as a linked list in each hash bucket, this is an optimization (both runtime and memory
wise) to hold an external overflow bucket. This pointer (the nezt-hash pointer) is not shown in
the figures of CDD nodes, as it does not hold any semantic information.

Minimum Information

To minimize the memory usage when making the CDD data structure, we need to find the
minimum required information and store this as compact as possible. Obviously we need to
store the type of the CDD node and the reference count, designating the number of parent
nodes, together with all the intervals and references to other CDD nodes. Each interval needs
a pointer to the child node and the bounds on the interval, but we need not represent edges
leading to the false node. Also —oo and oo does not need explicit representation, as they can
be represented implicitly, as shown later.

The intervals is bounded by integers of varying values, thus we try to represent them with as few
bits as possible, e.g. values between —128 to 127 should only be represented by one byte and so
on, the most significant bit being the sign bit.

As described earlier the only operators we need to represent is <, as we can simulate all others
with this, see section 1.1.1. To summarize the basic idea is first to simulate >, > with <, < by
negation, we then multiply all bounds by 2 and simulate < with < by subtracting 1 from the
strict bounds.

To avoid representing the false edges we design a data structure that can contain the node type,
reference count, intervals and pointers jointly.
A node consists of first a “Node Header” followed by an arbitrary combination of a “Interval

45

4.5 Node Representation

pointer” and an “Interval integer” see figure 4.18. There can be two patterns of the “Interval
pointers” and “Interval integers”. A pointer is followed by either one or two integers, that again
are followed by a pointer, see example in figure 4.17:
(a) represents the intervals | — oo; 2[~ptrl, [2;3[~ false, [3;12] ~ ptr2, and]12; co[~ false.
(b) represents the intervals | — oo; 1|~ false, [1;2[~ ptr3, [2;3[~ ptr4, and [3; co[~ false.

Node
header ptrl 5 6 ptr2} 24
Node
header 2 ptr3] 5 ptr4| 7

(b)

Figure 4.17: Two examples of CDD nodes and their interval representation

The first element is a pointer if the interval starts at —oo otherwise an integer, likewise if the
last entry is a pointer the interval ends at oo.
There two integers z, y following one another if the interval between = and y leads to false.

Node Header:

Bits used| 20 9 2 1
1: Type| Ref | Size | First
Name: yp Count| flag entry
flag
(@ (b)) (o) (d)
Interval pointer
Bits used| 16 13 2
2_ Block |[Index |gjze | Next
. Name: list in a type
pointer| block | 728 | a0
(e) ® (& ()
Interval integer
Bits used| 8/16/24/32
3: Name: Integer

(i)

Figure 4.18: Three figures representing the node layout, being the node header, node pointer and the node integer.

The three different items in 4.18 are described in detail below, we assume w.l.0o.g that memory
segments are allocated on 64KB boundaries:

Node Header: Represents the node type (a), reference count(b) and some flags (c),(d). The
node type (a) is represented by 20 bits meaning that we “only” can distinguish 22° different
type of nodes. This might prove to be a limitation for very large TA! models, but it can
easily be extended by adding more bits to represent the type. The reference count in (b)
can hold references of up to 512 parent nodes, this again might prove insufficient, but again
it can easily be extended. The flag in (c) designates the size of the first entry, if this is an
integer, otherwise these bits are unused. The flag in (d) designates the type of the first
entry in the interval, the type can either be a pointer or an integer. If the first type is
a pointer then the interval implicitly starts at —oo, and ends at the integer following the

pointer.

!'Timed Automata

46

Design / Data structures

Interval Pointer: Represents the layout of the node reference, with the block pointer(e), the
index bits(f) and two flags (g),(h). The block pointer is the bits used for accessing the
block, as these are aligned at 64 K-bytes it is sufficient to use 16 bits here. The index
bits(f) are used to address which entry in the array we are accessing, as the smallest block
we store are :

- A node header - 32 bits
- One pointer, the interval implicitly starting at —oo - 32 bits

- An integer of size 8 bits being in the interval [—127;128].

This sums up to a minimum node size of 9 bytes, plus a pointer for a hash list which
adds 4 bytes for a total of 13 bytes.

The size flag (g) consists of two bits, that are used to designate the size of the next (possible
two) integer(s). If the are more than one integer then they will need to be stored with the
size of the largest of them. The last flag (h) designates whether the next two entries are
both integers or an integer and a new reference.

Interval Integer: This is the interval integer, that can be four different sizes, 1-4 bytes (size-flag
00, 01, 10, 11).

When performing the reduction, parent pointers would come in quite handy, but the memory
usage in each node will increase dramatically as: The minimum node size was 13 bytes, adding
one parent pointer at size 4 bytes, will increase the memory usage by 11‘3 %100 =~ 31 %, this being
the best case, as a node can have an arbitrary number of parents. This problems grows when
nodes has more than one parent, then a list of parents has to be stored. Thus we consider it
a bad idea to store parent pointers, as the main purpose of this project is to enhance memory
utilization to allow verification of larger models.

4.5.2 Node Representations

As it is expected that checking the type-flag and the size-flag might take up some time, as
well as the converting between the different size of integer representation. Three different node
representations is implemented in this project.

Memory Representation 1 This is the same node representation as used in the current Up-
paal version using the CDD data structure for its passed list. That is all integers is
represented by 32-bits, and pointers to false is also represented, an example on such a
node is given in figure 4.19(a).

Memory Representation 2 This node representation introduce the type-flag, by not repre-
senting pointers leading to false. But all integers is still represented by 32-bits. An example
on this representation is given in figure 4.19(b).

Memory Representation 3 In the last node representation implemented, we use all memory
minimizing techniques. That is both the type-flag as well as the size-flag is used. This
means that pointers to false is not represented, and integers is represented by the least
number of bytes possible. An example on this representation is given in figure 4.19(c).

Implementing all three node representations also allow us to check how much memory is saved
using the alternative node representations.

47

4.5 Node Representation

Header ggisrﬁer false -20 Pointer] 19 false 560 Pointer
(a) 36 bytes
Headeg(Il;lgisr?ter -20 Pointe}l(r 19 560 Pointer|

(b) 28 bytes

X| Hash |4 .. X R
Heauder1 Pointer| § P01nte2r 19 | 560| Pointer

(c) 21 bytes

Figure 4.19: Show an example node in the three different node representations implemented. ‘x”es in the figure
is the type-flag, and small numbers in the header/pointers, is used to represent the size in bytes of the next
integer(s). The node represented has the interval: | — co; —10[~ false, [—10; 9] ~> Pointerl, | — 10; 280[~ false,
and [280; co[~ Pointer2. The sizes of the different nodes, using the different node representations is: Memory
Representation 1: 32 bytes, Memory Representation 2: 24 bytes, and Memory Representation 3: 17 bytes.

4.5.3 Summary

To summarize we implement three different node representations, to see how much memory can
be saved using different node representations, and also to see at what runtime prize this memory
optimization comes at.

The distributed inclusion and wunion operations were designed almost as the non-distributed
versions. The only difference is that whereas the non-distributed operations run depth first, the
distributed operations run depth first on each node, before sending the request to the next com-
puter node. Two additional operations were described: backtrace and reduction. The backtrace
could also be used in a non-distributed environment, its purpose were to reduce the amount of
work needed by the union operations, at it may use the found trace, whenever a union should
be performed with the false node. The last operation described were the reduction operation,
which has to be implemented as the distributed union operation cannot reduce the CDD data
structure as it does not work in a global depth first fashion.

48

Semantics Chapter 5

In this chapter we present the semantics of selected operations on the CDD data structure. First
we provide a proof that changing the data structure into a distributed one does not change
the semantics of the CDD. Secondly the semantics of common operations on our two main data
structures are made, finally semantics proofs for the algorithms described in the previous chapter
are conducted.

5.1 Semantics of the Distribution

The distribution of the data structure describes the partitioning of the data structure among
several computer nodes. This is done horizontally for reasons described earlier, and additional
nodes are added to the data structure to provide a communication layer between computer
nodes. These extra nodes can be interpreted as CDD nodes with a special type (tcomm) with
one outgoing edge not leading to the false node. This edge range over the interval ‘] — oo; oo[.
Thus we need to prove that the two CDD’s in figure 5.1 semantically describes the same area.

Communication layer (B)

IR—cover

o)

I
Communication layer CD:) I

I]R —cover

true true

(a) (b)

Figure 5.1: Figure (a) shows a distributed CDD with communication CDD nodes being node B and D, interval
IR _cover 1s an interval forming an R — cover. Figure (b) shows the equivalent CDD that describes the same
federation as (a), as the redundant nodes B and D are omitted

The proof is simple as the reducedness properties of the CDD data structure already states that
nodes forming an R cover can be omitted as they do not contribute with any restrictions to the
federation. Thus we can safely conclude that the two CDD’s in figure 5.1 semantically describes
the same federation. As this applies to all CDD’s we can w..o.g use the standard algorithm
semantics on the distributed CDD data structure to prove soundness and completeness of the
algorithms. This prove is extended when some semantic is defined for the CDD data structure.

5.2 Data Structures

5.2 Data Structures

The two main data structures for which we give semantics are the ordinary CDD data structure
and the S-CDD data structure, where representing a Zone as the DBM’s can be mapped directly
to S-CDD’s.

Semantics for CDD’s

Each CDD node is a (n+1) tuple (t,[[1,T1]...[In,Tn]) € N, where t € T, I; € Z, and T; € N,
where p € {1...n}. Besides these inner nodes two terminal nodes exists:

— true e N/

— false e N/
The first operation for which a semantic is described is traversal through the data structure given
a clock valuation v € V:

— [true,v] = true

— [false,v] = false

— [, [I1,TY] . . . [In, T})), v] = [T3,v], where v(t) € I;
The first item states that no matter which valuation is given to the true node, the result is true.
The second item states that no matter which valuation is given to the false node, the result is

false. The third item states that for a general CDD node, the result of the valuation is the
result of the valuation of the child node T;, where v(t) € I;.

The second operation for which semantics are described is what federation the CDD describe:

— [true] =V
— [false] =0

— [, [, 1) - . (L, Tw])] = Uiy {5, N [T3]}, where the notation I;, is based on the syntax
used in section 3.4, and denotes the interval I; restricted in the dimension of ¢.

The first item describe that all valuations is accepted by the true node. The second item
describes that no valuations is accepted by the false node. And finally, the third item describes
the set of valuations accepted by a general CDD node. This is made from the union of all the
set of valuations each of it’s successors accept, where the set of valuations the successor ¢ accept
is I; N [[ﬂ]]

Semantics for S-CDD’s

Each S-CDD node is a 3-tuple (t,I,Ts) € Ny, where t € T, I € Z, and Ty € N;. Besides inner
nodes, a single terminal S-CDD node exist:

50

Semantics

— true € N,

The first operation for which a semantics is described is traversal through the data structure
given a clock valuation v € V:

— [true,v] = true

— [(t, I,Ts)] = v(t) € I A [Ts,0]

The first item states that all valuations are accepted by the true S-CDD node. The second
item states that a valuation is accepted by a S-CDD node if the value of the valuation for this
type v(t) is included in the interval for this node I, and if its single child node also accepts the
valuation v.

The second operation for which a semantics is described is which federation an S-CDD describes:

— [true] =V
- [[(tv I, Ts>]] =LIN [[Ts]]

As where the case for the CDD, all valuations are accepted by the true S-CDD node. The set
of valuations accepted by the general S-CDD node, are the interval leaving it intersected by the
valuations accepted by it child.

5.3 Distribution

Back to the proof that the semantics for the single processor CDD data structure easily can be
mapped to the distributed version.

To distribute the CDD data structure additional communication layers were added. If such a
layer is added between types t; and t;41, then whenever a CDD node ng,. with type ¢; or less
wants to refer to a node nge5 with type ¢;41 or higher, then this reference is made to point to a
communication node 7¢ymm, which only has a single successor (] — 0o; 00[, Tgest). In this section
we show that the set of valuations described by node ng.. is the same whether it refer nges
directly, or indirectly through ncomm.-

For the following proof ns.. denotes a CDD node with type ¢; 1 with a single successor, with
interval I, leading directly to ngess- And ng. denotes the same node, only it successor points
t0 Ncomm, Which again refers to nges;. Referring to the syntax used in section 3.4 on page 23, we
need to prove that the set of valuations described by ng¢ is equivalent with the set of valuations
described by n4.o, that is we need to prove that:

[[nsrc]] = [[nsrc’]]

<~

In [[ndest]] = 1IN]_OO;OO[tcomm N [[ndest]]
(5.1)

As each type can be seen as a coordinate in a multi dimensional space, and the type teomm iS
orthogonal to all other types, the intersection with | — 00; 00[t,omm is not a restriction to the set
of valuations described by ng., and naturally an intersection cannot extend the set of valuations
described by mgpcr.

51

5.4 Operations

5.4 Operations

The operations that are performed on the used data structures are inclusion test, backtrace,
reduction and wnion. The inclusion test must check whether a S-CDD is included in a CDD.
The wunion operation must perform union between a S-CDD and a CDD.

The semantic proofs of the operations is based on set operations, that is, the set of valuations
described by the CDD and S-CDD respectively. In the inclusion test it is argued that for a S-CDD
to be included in a CDD, the interval of the CDD must be equal to or greater then the interval
of the S-CDD in all dimensions. That is for all types ¢, it must be true that: I,;ngDD C IFPP,

where It(s)_CDD denotes the interval in dimension ¢ for the (S)-CDD.

5.4.1 Inclusion Test

The semantic rules are!:

I [true C true] = true
IT [true C false] = false
III [(¢t,I,Ts) C false] = false
IV [(t,1,Ts) C true] = true
V [true C (t,[I,, T3] ... [In, Tn])] = false

L:ty <tAN[Ts C (¢, [N, Th]...[1n, Tn])]
VI [(ts, I, Ts) C (¢, [, Th) . I, T)] =V 2:ts =t A N{[Ts CT],pe{l...n}|INI, #0}
3:ts >tANMNITsCT],pe{l...n}}

To prove that this inclusion test is correct we prove that the semantic rules is sound and complete.
First for the soundness, we prove that the set of valuations described by the S-CDD are included
in the set of valuations described by the CDD:

Rule I: From the previous stated semantics, this rule states that ¥V C V which is trivially true.

Rule II: This rule states that the federation covered by the true node of the S-CDD covers V,
whereas the federation covered by the false node of the CDD covers @, and clearly V ¢ 0,
as V cannot be false, and thereby describe 0.

Rule III: The federation covered by [(t,I,Ts)] cannot be empty (this would result in an empty
federation, and thus not represented, due to the reduction rules of S-CDD’s and CDD’s),
and clearly [(¢,1,T5)] € 0.

Rule IV: This rule is trivial, as any subset of V clearly is a subset of V.

Rule V: The semantic rule for S-CDD’s defines the true node to cover V, whereas the federation
covered by (t,[I1,T1]...[In,Ty]) cannot cover V as it would violate the reducedness rules
of the CDD data structure, therefore the S-CDD cannot be included in the CDD.

'The rules are read as [S — CDD C CDD].

52

Semantics

Rule VI: We consider the 3 sub cases separately,

1: If the type ts of the S-CDD is smaller than the type ¢ of the CDD, it means that
the CDD implicitly contains a node with type ts that covers R, and the argument
of Rule IV applies here. So for this type the S-CDD is included in the CDD as the
corresponding type for the CDD is non existing thus forming an R-cover. So we
traverse further down the S-CDD to check if the child node of the S-CDD is covered
by the CDD node (¢, [I1,T4]. .. [In, Ty])-

2: If the two types are identical, we use the semantic set description for the S-CDD and
CDD to prove the semantics for the inclusion test:
Showing S-CDD C CDD is equivalent to show that S-CDD NCDD = S-CDD
From the semantic definition of which Zone/federation the S-CDD and CDD describes

respectively, we need to prove the following:
(LN [T 0 (L nIT = LT (5.2)
i=1

Which can be rewritten as:

I,N[Ts N (L, Nn[N]U ... UL, N[T,]) = I;N][T] (5.3)

=

(Is N (Ilt u...u Int)) N ([[Ts]] n ([[Tl]] u...u [[Tn]])) = I;n [[Ts]] (54)

(5.5)

The next step taken, is to remove all successors of the CDD node, which interval
intersected by I equals (), when removing the intervals, the child nodes referred by

these are also removed, as these only matter for the set of valuations described if the
edge leading to it has a non empty intersection with I5.

Ln | {LILnL #0301 N
pe{l...n}

U {[[TP|IP NI # Q)]]} = I;N[T4] (5.6)

pe{l..n}

From the syntactic definition of the CDD, we know that the intervals of each CDD-
node must form an R-cover |J;_,{/;} =R, so the following must hold:

I, ¢ | Bl #0} (5.7)

pe{l..n}

So it is known that for eq. 5.6 to hold it is sufficient for the following to hold:

[In U L] LNL#0} = [T.] (5.8)

pe{l..n}

That is the question is back to:

[(ts I, To) © (t2, (1L Th) - [y Tul)] = NUITs € T), p € {1...n} [I, N I, # 0} (5.9)

53

5.5 Union

for ts = to.

which were our semantic definition.

3: If the type ts of the S-CDD is larger than the type ¢ of the CDD, then the S-CDD
implicitly contains a node with type ¢ that covers R. Therefore rule VI(2) can be
reused here, but now all successors of the CDD node need to be examined, as all
intervals intersected by R # (). To the semantic for this case is:

[{ts, [, Ty) C (&, [0, T4 [, T = N\ AITs C T}, fort, >t
pe{l..n}

Completeness of the inclusion test

For semantic rules to be complete we need to prove that all syntactic correct inputs are covered
by some semantic rule.

To do that we take the cross product between the syntactic legal input from the S-CDD (2 pos-
sible syntactic inputs), and the CDD (3 syntactic inputs), yielding that there should be 6 rules
to cover all possible inputs, see table below.

Input: S-CDD CDD

1 true true

S-CDD f('ja]l)s]z 2 true false
true X true = 3 (t,I,Ts) true
(ts, I, Ts) [0 Th] . [L: To)) 4 (t,1,Ts) false
5 true (¢,[L,T1]...[In, Ty])
6 (t,I,T5> <t’ [IlaTl]"'[InaTnD

Input 1 through 5 is trivially covered by rule 1 through 5 in the semantic definition of the
incluston test.

Input 6 is covered by rule 6 in the semantic definition, but as the rule here is subdivided, we
consider if the three sub rules together covers all possible legal inputs. The sub rules covers the
cases where:

ty<t, ty=tandt, >t
As these three rules trivially covers all possible situations of the types, we conclude that all

possible legal input to the inclusion test is covered by a corresponding semantic rule yielding
completeness.

5.5 Union

The semantics for the union between a S-CDD and a CDD is as follows, the rules are read as
[S—CDDUCDD]:

Rule I: [true Utrue] =V

54

Semantics

Rule II: [true U false] =V

Rule IIT: [(ts,I,Ts) Utrue] =V

Rule IV: [(t5,1,T) U false] = [(ts, I, Ts)]
Rule V: [trueU (¢, [[;,Th]...[In, Tu))] =V

Rule VI: [[(tsa Ia TS) U <ta [IlaTl] Tt [In,TnD]] = [[(tsa Ia TS)]] U [[<t7 [Ille] T [ITU Tn]>]]
To prove soundness of the union operation we prove each of the preceding rules:

Rule I: If both the existing CDD accepts all valuations, and a S-CDD that accepts all valuations
is unioned, clearly all valuations is accepted by this union. [true U true| = [true] U
[true] =V UV =YV

Rule IT: The same argumentation holds as for Rule I only, here the CDD covers (), but the
S-CDD covers all valuations, so clearly now all valuations is covered. [true U false] =
[true] U [false] =V U) =V

Rule ITI: When a CDD accepting everything is unioned with a S-CDD covering the federation
F) is unioned, the result is a CDD accepting. [(ts,I,Ts) U true] = [(ts, [,Ts)] U [true] =
[(ts, [, Ts)] UV =V

Rule I'V: If an empty CDD, is unioned with a S-CDD accepting some valuation, the result-
ing CDD must also accept the same valuation, and nothing else. [(ts,1,Ts) U false] =
[(ts, I, Ts)] U[false] = [(ts, I, Ts)] U D = [{ts, I, Ts)]

Rule V: If an S-CDD accepting all valuations is unioned with some CDD,the resulting CDD
have to accept everything. [trueU(t,[I1,T1]... Iy, T,])] = [true]U[(t, [I1,T]. .. [In, Tn])] =
VU, [, Th]... [In, TR])] =V

Rule VI: If a general S-CDD is unioned with a general CDD, the resulting CDD should accept
the union between the two CDD data structures. [(ts,I,Ts) U (¢,[I1,T1]... [In, Th])] =
[(ts, I, Ts)] U [{t, [I1, 4] .. [In, T0])]

The completeness of the union operation can be shown in a similar way as the completeness
proof of the inclusion test.

5.6 Semantics of Backtrace

In this section we provide some semantic proofs of the backtrace algorithm.

To summarize how the backtrace algorithm works, we try recursively to find nodes that covers
exactly the same zone as the corresponding sub S-CDD we union with, we do this bottom up
starting at the true node. The Algorithm for the backtrace algorithm is provided in section 4.4.4
on page 42

To prove the soundness of the backtrace algorithm we need to prove two things:

55

5.6 Semantics of Backtrace

1: First we need to prove what kind of nodes can be used for the backtrace algorithm, and
that reusing these nodes does not violate the semantics of the union, nor the reducedness
properties of the CDD data structure. To prove this the following need to be proven.

- Restricting to search among nodes with only one child node is semantically correct.

- That the found CDD nodes describes the semantically correct valuation. That is the
valuation described by the sub S-CDD.

- That the reuse of these nodes does not violate the reducedness properties of the CDD,
data structure.

2: That these found nodes cannot be altered due to other union operations.
5.6.1 Reuse of nodes

We will prove that it is not allowed to reuse a CDD node if it has more than one child node not
being the false node.

o)))

Iy, Iv, Iy, Iy,
(] Vv (=] - 2
Iz, Iz, Iz, Iz, Iz,
True True True

(a) (b) (©)

Figure 5.2: (a) is a CDD, (b) is a S-CDD and (c) is the union of (a) and (b), when reusing node Zp even though
it have more than one child different from the false node

Iy, | | © | ()
Iy, | | ®) | | ® |
Iz, I,

Figure 5.3: (e) and (f) are the area covered by the CDD in figure 5.2 (a), and (e),(f),(g) and (h) denotes the area
covered by the CDD in figure 5.2(c). The (h) area should have been omitted as it denotes the area implicitly
added by reusing node Zp in figure 5.2

In figure 5.2 we union the CDD (a) with the S-CDD (b), in this union we allow reusing node Zj.
The federation described by (a) is depicted as box (e) and (f) in figure 5.3.

The Zone described by the S-CDD in figure 5.2(b) is depicted as box (g) in figure 5.3, thus the
union of the the CDD and the S-CDD should provide a federation describing box (e),(f) and (g).
But reusing node Zj as in this union forms a federation describing all four boxes in figure 5.3.

Thus we conclude that it is not allowed to reuse a CDD node if it has more than one child node,
and none of these are the false node. Note that this is a special case that only applies when

56

Semantics

performing union of a CDD and a S-CDD as this would not be the case if both were CDD’s as
two CDD node could be isomorphic even though they have more than one child node.

From this proof we get that we only need to search among nodes with one child node, as using
others implicitly will lead to inconsistency.

Also note that not being allowed to reuse a node with more that one child only apply during the
backtrace algorithm. During the reduction phase all nodes are allowed to be reused.

5.6.2 Semantics of found CDD nodes

In this subsection we will argue that it is semantically correct to reuse a single stringed part of
a CDD. A single stringed part of a CDD is a CDD node from which there is only one trace to
the true node. The nodes are found as an exact match to the corresponding S-CDD node, and
it is thus trivially to prove that they cover the same Zone, as we only search for nodes with one
child as described in the previous subsection. Here we get that the found subpart of the CDD
actually describes the same Zone as the S-CDD that we union with.

5.6.3 Reduction of CDD

As no nodes are added or modified by the backtrace algorithm, no reducedness properties can be
violated by running this algorithm. The properties might be violated when the following union
operation uses the found backtrace node, and does not construct new nodes for itself - this might
lead to sub-optimal sharing.

If the union did not use the CDD trace found by the backtrace operation, it would construct
the exact trace itself, as this is the only unique trace describing the valuation, after this trace
would have been constructed the reduction phase would reduce the newly created trace to the
one that would have been found by the backtrace operation, so using the CDD node found by
the backtrace operations does not violate the reducedness properties of the CDD.

5.6.4 Change nodes

After the backtrace algorithm has run, and before the matching? union operation reaches the
node where the backtrace algorithm stopped, other union requests might reach the node. To
prevent these union operations from altering the found backtrace path, we prove that, if a node
has two parents, or two different paths leading to it, then it is not allowed to change any successor
nodes of the node having two parent nodes, as this would change the valuation of both paths.

We prove this by contradiction.

In figure 5.4 are three CDD’s, (c) is the union of (a) and (b). Here we change the Yj node, even
though it have two parents (X; and Xj).

Before the union [X(] describes:

[Xo] = Ix, N [Yo] = [Xo] = Ix, N Iy, N [Z0]

2The matching union operation is the union operation started by the backtrace algorithm, and holds the same
unique ‘id’ as the backtrace path found.

57

5.6 Semantics of Backtrace

Figure 5.4: (a) is a CDD, (b) is a S-CDD, (c) denotes a CDD that is the union of (a) and (b). Note that
Iyy,NIy, =0

The union of figure 5.4(a) and 5.4(b) is performed by adding an extra successor from node Y to
Zo with interval Iy, .

After the union [X] describe:
[Xo] = Ix, N [Yo] = [Xo] = Ix, N (Iy, U Iyv;) N [Zo]

As [Xo] still should describe the same federation then, it must hold that:

IXO N Iyo N [[Zg]] = IXO N (IYO U Iyl) N [[Zo]] = IYO = Iyo U Iyl

This is clearly not possible as this implies that Iy; C Iy, and this is a contradiction to ; Iy, NIy, =
(), and that neither of the intervals are allowed to be () according to the definition of CDD’s. From
this proof we get that when a correct sub part of the CDD is found, it can safely be used as it
will not be changed later. This is easily ensured by increasing the ref count of the nodes which
will be reused.

To summarize what these three proofs provide:

e [t is not allowed to change a node if it has more than one child node and none of these are
the false node. This allows to conclude that in the backtrace algorithm we need only to
search for nodes with one child, as using other nodes would possible introduce inconsistency.

e We have argued that the semantics of reusing a single stringed part of a CDD found using
the backtrace algorithm, describes the same Zone as the corresponding part of the S-CDD
yielding that the backtrace algorithm is sound.

e It is not allowed to change a node, that is changing the I(node) set, if the node has more
than one parent. This allows us to conclude that if we have found a single stringed part
of a CDD via backtrace search from the true node, then this part cannot be altered by
another union operation, as it will have more than one parent: the previous and the one
using the backtrace algorithm.

If a wnion operation on, say Xy of figure 5.4(a), wants to change node Yj, it has to make
a copy of Yy and change the copy.

58

Semantics

5.7 Reducing CDD'’s

Whenever a S-CDD is added to a CDD, some nodes may hold redundant information and must be
reduced, section 3.1.1 described which rules must apply for the CDD being reduced, to summarize
these rules:

e The CDD has maximum sharing: Vn,m € N | type(n) = type(m) . whenever succ(n) =
succ(m) = n=m

. . I I
e All intervals are maximal: Whenever n —— m,n =2 m,then I = LV Ul #7

To ensure that these properties holds, a reduction is performed whenever a S-CDD has been
added to the CDD. This is done by checking for violations of the prior two mentioned rules, and
if any violations are found, they are corrected as follows:

e If a violation to the first rule is found, one of the nodes n,m is chosen for deletion (say
‘n’), and all other nodes pointing to this node is redirected to point at the remaining node
(node ‘m’).

e If a violation to the second rule is found, the two consecutive intervals is substituted by an
new successor pointing to the same node, the successor is given the interval I; U I5.

In this section we prove that these operations does not alter the semantics of the CDD.

e If node m € N and n € N is syntactically equivalent, the federation they cover is trivially
the same. Therefore it is trivially allowable to interchange semantic equivalent nodes.

e The federation covered by a node n € N is described by:
[, 111, 1) . [T)] = Ui {2, 0 [T
if Ty, and T4 is the same node, they describe the same federation say [T}]
then (Ix N [Tk]) U (Tk+1 0 [Tk]) = (e U T y1) N [Tk]-
The interval Iy U Ix+1 € Z, is now called Iy, then the federation covered by m may be
rewritten as:
[, 112, T2) - (1 Ta)) = Usegs nypyien (s N ITY, which s equal to
[[t, [Il, Tl] . [(Ik U Ik+1) N Tk], [Ik+2,Tk+2] . [In,Tn]]] as stated.

5.7.1 Canonical

Unfortunately the reducedness properties of CDD’s is not as nice as for BDD’s. A reduced BDD
make a canonical representation of a binary formula, whereas a reduced CDD does not make
a canonical representation of a federation. To see why a reduced CDD does not make up a
canonical representation, consider figure: 5.5, here the three reduced CDD’s of (a), (b), and (c)
represent the same Zone, namely the one presented in figure 5.5(d).

As can be seen none of the nodes in the CDD’s of figure 5.5 does violate any of the reducedness
rules.

That CDD’s are not canonical may result in that the CDD’s build in this project may not always
take up the same number of CDD node as the order in which the S-CDD’s is added might have
an effect on the construction/reduction.

59

5.7 Reducing CDD's

=) =) (=
[1;3] (1; 3] (1; 3] Y

EE3 I E E GED E

[-1;1] [0; 4]

(] (o) (o) 2
[~1;1] [~1;1] X
true true 2 4

(a) (b) (c) ()

Figure 5.5: Reduced Ordered CDD’s does not make a canonical representation for a constraint system. The three
CDD’s in (a), (b), and (c) represent the same Zone, namely the one presented in (d)

60

Cost Benefit Analysis Chapter 6

In this chapter we give a cost benefit analysis for the different operations that is performed on
the distributed CDD data structure. A purpose in our design were to minimize the number
of messages send for each operation performed. First we analyzes the worst case number of
messages send for each of the implemented operations in a Uppaal environment, thereafter the
worst number of messages needed to explore a single state in Uppaal is analyzed, and finally
it is analyzed how many messages can be saved by introducing groups. After having handled
the number of messages needed for doing various operations and verifying states in Uppaal an
analysis of the added memory overhead is provided.

6.1 Operations

The operations designed is the following:

— Inclusion test
— Backtrace
— Union

— Reduction

The following subsection describe the number of messages needed to run a single one of these
operations. Figure 6.1 might help in understanding the analysis.

Node M,

Node M,

Figure 6.1: A test setup consisting of k computer nodes, each generating new states for exploration. Only the
upper computer node can initiate Inclusion Test and Union. And only the bottom computer node can initiate
Backtrace and Reduction

6.1.1 Inclusion Test

Whenever Uppaal discovers a new state it checks whether the state has been explored before
performed through an inclusion test. The worst case scenario is that a computer node M; different

6.2 State Exploration

from the top computer node M; discovers the state, then an inclusion request has to be send to
the top computer node - that is one message. Then the top computer node M, initializes the
wncluston test. Now the worst case scenario is that the inclusion request has to propagate to the
bottom computer node My, which might succeed or fail. To propagate to the bottom computer
node k£ — 1 messages is needed. This gives a worst case of k message for a single inclusion test.

6.1.2 Backtrace

Whenever an inclusion test fails on a computer node, two actions takes place: First, the failed
state is send to the Waiting list on a computer node - that is one message. Second, a backtrace
request is send to the bottom computer node - that is two messages. The backtrace request can
in worst case propagate to the top computer node, which adds additional k¥ — 1 messages. That
is from the point were an inclusion test fails to the union is performed k + 1 messages is send.

6.1.3 Union

Whenever a backtrace operation fails on a computer node, a union request is send to the top
computer node - that is one messages. When the top computer node M; receives the union
request it locates the handle and initializes the wunion operation. Most union requests must
propagate to the bottom computer node of the local group to reach the true node, which adds
additional k& — 1 messages. Even if the backtrace algorithm propagated to a computer node M;,
where 7 # k, the request might still propagate to the bottom computer node, as the CDD node
reached by backtrace is only used if the S-CDD is to be unioned with the false node. That is in
the worst case scenario, from a backtrace operations stops, to the union is performed k messages
is send.

6.1.4 Reduction

When a union requests terminates on a computer node, most often My, of the local group. This
computer node has collected reduction information which may result in a reduction request to
the previous computer node. Such a reduction request may propagate all the way to the top
computer node of the local group. This gives that a reduction operations in worst case sends
k — 1 messages. Worst case in this sense is only the worst case of messages send, the higher the
requests goes, the better sharing in the CDD data structure is given, yielding a better memory
utilization.

6.2 State Exploration

In this section we use the prior operation costs to calculate the worst case number of messages
needed to be send to explore a state found by Uppaal. First Uppaal initializes an inclusion
request - which worst case took k messages if this request failed on the bottom computer node.
If the request failed in the bottom computer node, the state is send to the Waiting list on a
computer node - that is one additional message. But the backtrace requests need not be send,
as it is already on the last node so the worst case number of messages so far is k + 1 messages.

62

Cost Benefit Analysis

Then the backtrace request might propagate to the top computer node, which adds additional
k — 1 messages, if this is the case, the union request need not be send to the top computer node
as it is already there. Now the union request need to propagate to the bottom computer node,
which adds k£ — 1 messages, the backtrace can only be used by nodes, that is to be unioned with
the false node.

Finally the reduction operation adds additional k£ — 1 messages to the total number of messages.
To summarize the total worst case number of messages needed to be send to verify a single state
is: 4k — 2 messages.

From the cost benefit analysis of the union operation it can be seen that the number of messages
the union request sends worst case is unaffected of the backtrace operation. And if the backtrace
operation is disabled the worst number of messages send for each discovered state is reduced to:

Send inclusion request to top computer node - 1 message

— Propagate incursion request to bottom computer node - £ — 1 messages

Send state to a Waiting list on another computer node - 1 message
— Send wunion request to top computer node - 1 message
— Propagate unton request to bottom computer node - £ — 1 messages

— Propagate reduction request to top computer node - £ — 1 messages

Which sums up to 3k messages.

The purpose of the backtrace operation were not to save overall used memory, but to save
temporary memory in form of call stacks, and temporarily not reduced CDD nodes. Further
more the backtrace operation were made to save runtime, but as argued in the previous, O(k)
more messages has to be send, and it might not even help the union operation terminate earlier,
so the backtrace algorithm is not implemented - and thus not tested. Another argument for
not implementing the backtrace operation is that most of the advantage gained by the backtrace
operation is solved by the temporary hash table, described in section 4.4.2. That is, it is expected
that the little runtime advantage gained by the backtrace operation is lost due to the great number
of message needed to be send, worst case. Further more the union request which must follow
a backtrace must be delayed until the backtrace has finished it work, this has the disadvantage,
that the state has to be stored until the backtrace has terminated, and that inclusion test might
fail because of this delay.

The lowest number of messages which need to be send for a single state is K — 1 messages. This is
the case when the inclusion test succeed. That is when a new state is found at the top computer
node at a group, and this request propagates to the bottom computer node - which is & — 1
messages.

In an extremum the lowest number of messages send is zero messages. This is the case when
the inclusion test succeed at the top computer node. But as this case were rarely seen in our
preliminary tests, we argue that the best case complexity for a single state is & — 1 messages.

63

6.3 Groups

6.3 Groups

If the number of groups used is different from the number of computer nodes used, then the
same cost benefit analysis holds. In the analysis of the groups the number £ is the number of
computer nodes in the largest group. The current distributed Uppaal uses one computer node
in each group, worst case this leads to 1 message. Namely sending the inclusion request to the
correct computer node. No requests must propagate as all operations are done locally.

6.4 Memory Overhead

As a consequence of adding communication CDD nodes as described in section 4.3, the distribu-
tion of the data structure adds some memory overhead, which a single processor implementation
would not have. In this section we describe how large this overhead is, as well as how this
overhead can be removed by using distributed shared memory.

For this analysis some syntax is needed. Let ¢;, ., be the first type located in computer node
M;, and let t;_, be the last type located on computer node M;. And let nr(t : T) return the
number of nodes with type t. Let the computer nodes range from M; to M. Each computer
node except the top computer node holds a client communication array, which takes up 1 word of
memory. Each computer node except the bottom computer node holds a server communication
array which also takes up 1 word of memory. That is the total number of words used for
communications nodes in a group is:

k -1

Y (i) +) (nr(ti,,,)

1=2 1

B

-
Il

Again if the extreme “one computer node per group” the memory overhead added is:

1 0

S0 (tr)) + Y (0 (Hi,,,.) = 0

1=2 =1
So no memory overhead is added as expected.

From this analysis it can be seen that the fewer computer nodes participating in a group, the
less becomes the memory overhead added by communication CDD nodes. Also it can be seen
that the higher the number of types handles by one computer node, the less becomes the relative
memory overhead used on communication nodes, compared to “real” CDD nodes.

6.4.1 Distributed Shared Memory

A way to avoid the memory overhead introduced by the communication nodes is to use distributed
shared memory. Then the node when receiving a state from Uppaal could chose either:

1. Do the inclusion test and union itself in the memory of all other nodes.

2. Or when sending messages, add the pointer to the CDD node on the receiving computer
node, in the request.

64

Cost Benefit Analysis

But as we have chosen to distribute the CDD data structure using the MPI interface, to offer a
more common interface to conform to the portability of Uppaal, we cannot avoid the need for
communication nodes.

Summary

The cost of each of the four operations implemented is linear in the number of computer nodes
participating in the operation, which cannot be done more optimal when a horizontal distributing
approach has been chosen. Though the cost for verifying a single explored state takes the cost
of 4k — 2, but by disabling the backtrace operation the cost were reduced to 3k messages. This
number of messages might introduce a considerable overhead in runtime. This is taken from the
fact that analyzing a single state in Uppaal is a small task, and adding 3%k messages for each state
explored might multiply the verification time for each state. But as the purpose of this project
is to allow verification of larger models and to measure memory overhead from distributing, we
do not consider this result obstructing for further investigation.

65

6.4 Memory Overhead

66

Implementation Chapter 7

In this chapter we describe what action has been taken during the implementation to decrease
the amount of memory copied, and to optimize the runtime of the operations. Besides describing
these actions, the interface to Uppaal is described.

7.1 Uppaal interface

This section describes the interface between Uppaal and the implemented CDD data structure
made in this project. The overall functionality of Uppaal is depicted in the pseudo code of figure
1.3. To repeat:

e While the Waiting list is not empty

e Take a state from the Waiting list, and search whether this states fulfills the property
given.

e Then check whether this state has been explored before
e If not find all successors to the state and put these into the Waiting list.

The version of Uppaal we interface use a Passed-/ WaitingList(PWList) interface. So to interface
Uppaal this PWList interface has to be implemented. This interface consists of two functions
with the following description:

tryPut(state *ps) Whenever Uppaal finds a new state it calls tryPut, which must examine
whether the state ‘ps’ is included in the Passed list. If the state is included the function
returns immediately, without any action. If the state is not included, ‘ps’ is inserted into
the Passed list and also into the Waiting list for further exploration.

bool tryGet(state *ps) Whenever Uppaal has found all successors for a state, it calls tryGet
to get a new state. tryGet then redirects the pointer given to an element in the Waiting
list. If an element is found in the Waiting list the function must return true, and if no
more elements are available in the Waiting list false must be returned to signal Uppaal
that all states has been searched.

In our implementation the Waiting list is implemented as a FIFO linked list, therefore the tryGet
call becomes simple. Simply redirect the ‘ps’ pointer given to point to the first entry in the linked
list.

The tryPut call becomes somewhat more complicated. The discrete state is hashed to a group
participating in the

Before any of the tryGet /tryPut calls returns it is checked whether any incoming messages exists,
being an inclusion /union /reduction request. If any incoming messages exists these are processed
before returning.

If the inclusion test initiated succeeds somewhere, the state is simply discharged. If the inclusion
test fails, two messages are send. First a union request is send to the top node of the local group,
then the state itself is send to a computer node that will put this state in its Waiting list for
further exploration.

7.2 Use Pipelining

7.2 Use Pipelining

Whenever a computer node receives a request for a CDD operation, either an inclusion request
or a unton request, the state need to be included. To avoid copying the state at each computer
node, the following buffer management is implemented.

Whenever a message arrives, the respective operation is called keeping the state in the message
buffer, then whenever the request need to be propagated to the next computer node, the same
buffer is reused to send the request, so that the state need not be copied. In this way several
memory copy operations are saved for each operation performed on the CDD data structure.
This can be done as the union and inclusion operations are non destructive to the state.

7.3 Hash lists

Many of the operations in the implementation has to search for matching items. E.g. whenever a
handle into the CDD data structure should be found, a list of discrete states with corresponding
handles must be searched for a match to find the correct handle. And during the reduction
phase whenever a node is changed, it is be examined whether there exist a node which is syn-
tactic equivalent with the newly created node, so that this node can be reused/shared.

To reduce the complexity of the search for a matching item, both the list of discrete states, and
all CDD nodes are inserted into a hash data structure. As more than one node might hash to
the same bucket, bucket overflow is handled by adding the nodes to a linked list of nodes at each
hash buckets.

This implies that either nodes cannot be changed, otherwise the node must be removed from
the hash list. If is should be possible to remove an arbitrary element from a hash list, then the
hash list should either be doubly linked - which waste memory. Otherwise the hash list has to
be searched to find the previous element in the hash list, to redirect its ‘next pointer’ to point to
the next element in the list - which wastes time. Therefore it has been decided that is should not
be possible to change a CDD-node (it is already not allowed to change the size without moving
it, because of the segregated memory layout, see section 4.5).

7.4 Distributed Garbage Collection

In our first implemented approach, the ‘ref count’ were updated at each union and reduction
request, but this led to a very large runtime penalty for each operation performed, as the increas-
ing of a ‘ref count’ of one node, should result in an incrementation of the ‘ref count’ of each of
the successors to the node. This might result in an exponential number of nodes which should
have their ‘ref count’ incremented and some nodes ‘ref count’ should even be incremented by
more than once.

The reason that the ‘ref count’, should be kept correct, has two purposes. First when the
‘ref count’ is decremented to zero, no nodes references the node, and the node can be deleted.
Secondly a node may not be changed if its ‘ref count’ is larger than one, due to the backtrace
proof. But as nodes is never changed anyway, due to the discussion in the previous section, the
second purpose of the ‘ref count’ is not an issue anymore.

68

Implementation

This section describes a distributed garbage collection scheme which delete unused nodes in a
more time efficient way, by only deleting nodes when space is needed.

7.4.1 Mark and Sweep

The chosen garbage collection schema chosen is a mark and sweep algorithm, modified to work in
a distributed fashion. To help understand the algorithm refer to figure 7.1. First the ‘ref count’
of all nodes not deleted yet (that is which ‘used’-flag is true), is set to 0. This is done by
traversing all the linked list from each of the hash buckets. In the mark phase nodes referenced
by a discrete handle are traversed recursively to update their ‘ref count’ to 1. This is done by
the following algorithm:

1:v0id Mark(cdd _handle € N)
2:begin
if (cdd_handle.ref) = 0 then
cdd_handle.ref count :=1
foreach (I, m) € succ(cdd_handle)
Mark(m)

QO O Ok W

18:end

This algorithm ensures that the ‘ref count’ of all nodes referenced by a discrete handle is set
to 1. Finally the sweep phase is initiated. It scans the linked lists for each hash bucket, and
delete all nodes (by setting their ‘used’-flag to false) that has ‘ref count = (0, and therefore not
referenced.

To distribute this algorithm, the sweep phase, notices which elements in the communication is
used, and sends a message to the next computer node, with this information. Then the next
computer node uses the used entries in its communication layer, as handles into the CDD data
structure and deletes all elements not referenced by a used communication entry. That is the
same algorithm is used, but the used entries in the communication layer is used as handles.

69

7.4 Distributed Garbage Collection

Handles

Hash Buckets

(b)

—>(() Top node for a handle

e Gl o D
—(= = . Non referenced node

(a)

Figure 7.1: (a) show how all nodes is placed into a hash data structure, mentioned in the previous section, it also
shown how the handles for the discrete states reference these CDD nodes. (b) Show a simple CDD data structure

with two handles, and some unreferenced nodes.

70

TeSt Chapter 8

A number of tests are conducted to test the performance of the implemented system. This
chapter describes the tests, how the test setup is and our expected results. The actual results
are presented with an analysis of these. Finally the analysis leads to a conclusion of the results
archived. But first we consider what the consequences are for only distributing the symbolic part
and not the discrete part of the states in Uppaal.

8.1 Limitations of the Implementation

The implementation was designed and implemented with the expectation, that it would be the
symbolic part of the state space that would account for the most memory used in the verification.
Therefore the discrete part was designed to be located on the computer node holding the handles
into the CDD, as this gives faster access to the handle.

After our distributed implementation of the CDD data structure, and our preliminary testing
begun, we found that the part of the Passed list that took up the most memory is the discrete
part, which we had not focused on distributing. This disallows us to verify models that not
already could be verified on a single computer node. In the Future Work section 10.2 we discuss
how the discrete part can be distributed by modifying the current implementation. We are still
able to test how large a memory reduction we obtain from using a single distributed CDD instead
of several CDD’s, one on each computer node, or in groups. The memory savings upon using
the different node representations can also be tested.

8.2 Purpose of the test

The purpose of this project is as stated in section 2.2 to investigate how much memory can
be saved using global sharing when storing the Passed list in verification of timed automata.
Furthermore the relationship between synchronization overhead/memory usage when using a
hybrid CDD model, where the number of CDD’s are ranging between one and the number of
computer nodes used, is to be tested

Furthermore we investigate how much memory can be saved using the alternative node repre-
sentations described in section 4.5.1.

All tests should show the memory savings as well the encountered runtime penalty. When
testing the distributed versions we also display the number of send messages, as this indicates
the synchronization overhead.

The tests performed are as follows:

Memory representation The first test performed measure the memory savings vs. time
penalty of the three node representations implemented.

Distribution The second test measures the time penalty introduced by distributing the data
structure, together with the memory usage.

8.3 Premises

Groups The purpose of the third test is to show how much memory can be saved by global
sharing compared to making groups. Furthermore it should show how large the time
penalty is for the memory saved.

8.3 Premises

In this section we describe the premises under which the tests are conducted, both the hardware
platform and the software used.

8.3.1 Hardware platform

Development and performance tests are conducted on a cluster of seven homogeneous dual 733
MHz Pentium III Coppermine workstations running on Asus CLS motherboards with Server-
Works LE chipset. The computer nodes are interconnected by a 100 Mbit Ethernet LAN, con-
nected by a Cisco System Catalyst 3500 Series switch. Each computer node is equipped with 2
GB memory.

The software configuration were as follows: Debian GNU /Linux kernel 2.4.17, configured with
SMP. The gcc compiler used were version 2.95.2.

8.3.2 Software premises

The used version of Uppaal is 3.3.20, interfaced using a combined Passed-/ Waiting list.

For performance tests the following modes are used:

Dacapo which simulates the Dacapo protocol. It is the smallest model used, when verified on a
single computer node, it explores 53967 states, in 5.65 seconds.

Buscoupler which is a simulation of bus coupling. When verified on an single computer node
is explores 5288096 states, in 1701 seconds.

Fisher This is a model of the Fischer protocol, with 6 processes each trying to access the
critical section. When verified on a single computer node, it explores 55674 states in 493
seconds.

The models used can be obtained by contacting Institute for Computer Science at Aalborg
University.
Uppaal can be downloaded from http://www.uppaal.com.

Finding a model that it could be advantageous to distribute among several computer nodes is
not possible as we only distribute the symbolic part of the Passed list, meaning the the memory
usage of the computer node that holds all the discrete states becomes a bottleneck memory wise.
Thus we will not be able to verify larger models as stated in the purpose.

The models is chosen, as these has been used for reference models in numerous Uppaal articles.
The number of explored states documented in the previous list, is the number of states found
by Uppaal and given to our interface through the tryPut call. That is, the number represent
the number of inclusion test performed, whereas the number of unions/reductions is somewhat
lower.

72

Test

Tests on single computer nodes are deterministic and are thus only performed once.

Tests on multiple computer nodes are not deterministic, as two messages send from two different
computer nodes to the same destination might arrive in any order. Therefore tests on multiple
computer nodes are performed 5 times, and averaged.

Whenever tests is conducted on more than a single computer node the communication is done
using the Message Passing Interface (MPI), the MPI interface used is LAM/MPI!.

As distributing the verification adds some non-determinism, the number of verified states varies
a little. In our tests the number of verified states varied less that 2%, and are documented.

Types Ordering

The chosen ordering of the variables can be important for the possible sharing in the CDD data
structure, why the variable ordering is presented here. The chosen ordering is shown in a DBM,
as the entry (X;, X;) and (X, X;), where ¢ # j is represented by the same type, the entries is
equal over the diagonal. Variables of the type (X; — X;) should always be zero, and are thus
never represented, and are therefore not given a type. The variable ordering chosen as follows:

Xo | X1 | Xo| X3 | Xy | X5
Xo - 15 (14 | 13 | 12 | 11
X7 | 15 - 10 9 8 7
Xo | 14 | 10 - 6 5 4
X3 | 13 9 6 3 2
Xy | 12 8 5 3 - 1
Xs |11 |7 4] 2] 1] -

This variable ordering is chosen from the idea, that the greatest sharing is located where the
condition is only based on the value of a single clock, and therefore the types of the form (X, Xy),
is located at the bottom were sharing is possible. Further work could examine which variable
ordering in the CDD data structure is best. The variable ordering is dependent on the model
verified, but some guidelines could possible be stated, from such experiments. These experiments
can be conducted on a single processor CDD implementation, as the results would map directly
to a distributed implementation.

8.3.3 Measured data

Whenever the memory usage of our implementation is to be measured, only the memory usage
in the CDD data structure is measured. The memory usage of the Waiting list, and the discrete
state space is not measured, as these are not the focus in this project. When the memory usage
is documented, the memory used when the verification is finished is measured.

Whenever the time is measured, the total runtime of Uppaal is measured in seconds. That is,
the constant overhead of initialization /finalization is also measured, which is negligible.

The CPU-load is measured as the percentage of the run time that each computer node is active,
and thus not blocking to receive a message, when its Waiting list is empty.

'www.lam-mpi.org

73

8.4 Test description

The memory load is presented as the percentage of the CDD that the specific computer node
holds.

8.4 Test description

In the following subsections the test setup for each test are described. It is described what is
measured, how many computer nodes participate in the test, and how many groups the test is
performed with.

8.4.1 Node Representation

The first test performed is to measure how much memory can be saved using the alternative
node representations described in section 4.5.2. This test is only performed on a single computer
node, as it is assumed that the relative memory saving is only dependent on the model size. We
test all three previously mentioned models. The results will be presented in a table showing the
runtime and the memory usage for each node representation.

8.4.2 Distribution

To measure the overhead by distributing the CDD data structure, a series of tests is conducted,
first on a single computer node, then on two, three and four computer nodes. The total memory
usage is measured in each test to measure the memory overhead introduced by the communication
layers.

The primary purpose of the tests is to measure the time overhead introduced by communication,
and secondly to measure the load balancing between the different computer nodes. By load
balancing we mean both processor utilization and memory utilization. The optimal result would
be that each computer node always use 100% CPU time, and the memory usage being distribution
evenly.

8.4.3 Groups

The primary purpose of this test, is to determine how much space savings that can be obtained
using global sharing, and what runtime overhead is introduced by the communication. This test
uses 4 computer nodes, first configured in four groups, then configured in two groups, and finally
configured in a single group. The relative memory usage and space requirements are compared,
with the total runtime for each configuration. This should allow us to measure the characteristics
of using groups compared to a single distributed CDD.

8.5 Expected Results

This section is used to describe which expectations we have for the results, these expectations are
used in the analysis of the results. These expectations are written before the actual tests are con-
ducted, but after some preliminary tests were performed, which allow us to take communication
overhead into considerations during the discussion of the expected results.

74

Test

8.5.1 Node Representation

During our preliminary tests on some small models, our observations were that compared to the
ordinary node representation the second node representation saved between 5% and 10%, the
third node presentation saved between 15% and 20% of memory. We expect that the relative
memory saving for the second node representation is somewhat constant as a function of the
model size as the relative number of false intervals is expected to be constant. The third node
representation might save even more memory as we expect that the nodes get more intervals and
thus more integers to represent compared to the constant overhead, to the node given by the
node header, which is 8 bytes. This representation is very dependent on the specific model, as
the values of the integers is different between models.

The time penalty introduced for the second node representation is expected to be rather mini-
mal, as only checks on bits is introduced. The time penalty for the third node representation is
expected to be somewhat larger, as integers has to be packed/unpacked in all computer nodes
participating in an inclusion /union. Additional the CDD nodes contains pointers that not nec-
essarily is word aligned, thus compromising the portability as this does not work on most RISC
architectures. Having pointers that are not word aligned means that the CPU has to fetch two
words to get the pointer.

8.5.2 Distribution

The distribution of the data structure is expected to place a considerable overhead to the ver-
ification, as the number of messages send is large for each state verified. We also expect the
top computer node to have a larger load than the others, mainly due to the problem of not
distributing the discrete part of the state space. The cause is that the top computer node has
to search for the correct handle, before initiating any operations on the CDD.

The memory usage is expected to increase slightly, as the communication nodes also takes up
space.

Clearly the more types a computer node holds the fewer communication nodes exists compared
to the number of CDD nodes in total - so distributing models with a large number of types is
more feasible (memory wise) than distributing models with few types.

If models with a few types should be verified distributed, other methods may be used, or each
computer node, could participate in a group for itself, which totally eliminated the need for
communication nodes - but also disables global sharing.

The time complexity for the used algorithms are expected to range between the best and worst
case complexity presented previously in chapter 6.

8.5.3 Groups

We expect that the effect of having global sharing will outrange the memory used for communi-
cation layers.

Compared to a single distributed CDD, the memory usage for more than one group is expected
to be larger as more CDD data structures has to be constructed which cannot share states.

When using groups the runtime is expected to decrease with the number of computer nodes
participating in the groups. This decrease in runtime is expected as the number of send messages

75

8.6 Results and Analysis

is reduced.

8.6 Results and Analysis

In the following section we present the test results and the analysis of these.

8.6.1

Node Representation

First we present the results for the three different node representations:

Dacapo:
Representation | Size in bytes | Time in sec | Size index | Time index
1 302.596 5.65 1.00 1.00
2 279.232 5.81 0.92 1.03
3 225.866 5.96 0.75 1.05
Buscoupler:
Representation | Size in bytes | Time in sec | Size index | Time index
1 12.602.672 1701 1.00 1.00
2 12.435.932 1803 0.98 1.06
3 10.193.851 2517 0.80 1.48
Fisher - 6:
Representation | Size in bytes | Time in sec | Size index | Time index
1 6.510.968 493 1.00 1.00
2 6.482.704 453 1.00 0.92
3 5.614.071 414 0.86 0.84

8.6.2 Analysis of Node Representation

In this subsection we analyze the results for the three different node representations.

Representation 1

This representation is the standard representation used by the current version of Uppaal, thus

used for referencing the two other representations.

Representation 2

The results for the second representations, where edges to leading to false are omitted, shows
only a modest memory savings for small models, whereas for larger models the savings are
negligible. The increase in runtime using representation 2 is only 2%, but as the savings are
negligible we conclude that there is no point in using this representation. Our expected results
for this representation were that the memory savings would be constant as a function of the
model size. This expectation was not correct, as it seems that for large models we obtain large

76

Test

nodes as there is a lot of sharing, meaning that the relative number of intervals leading to false
is reduced.

Representation 3

For all models tested this representation saves between 14% and 25%, smaller for larger models,
but as stated in the expected results, will this representation be very dependent upon the specific
model, as the clock values of this model influences greatly upon the memory usage. The increase
in runtime is as expected greater than for the other representations being an increase of 50%.
For the Fisher protocol this representation is surprisingly faster than the others, as the total
number of nodes in the CDD is the same, the only explanation is as the nodes becomes smaller
due to the compactness of the third representation, there will be lesser cache misses leading to
increased performance.

8.6.3 Distribution

First we present the memory usage for each CDD-type in each of the models in a non distributed
CDD, in figure 8.1, 8.2, and 8.3.

Distribution of CDD nodes between types
2500

2000

1500

CDD nodes

1000

500

0
0 2 4 6 8 10 12 14

Type
Figure 8.1: The distribution of CDD nodes between the different types of the Dacapo model

Distribution of CDD nodes between types

120000

100000 I

80000

60000

CDD nodes

40000

20000

0
0 1 2 3 4 5 6 7 8 9

Type
Figure 8.2: The distribution of CDD nodes between the different types of the Buscoupler model

77

8.6 Results and Analysis

CDD nodes

Distribution of CDD nodes between types

50000

45000
40000
35000
30000
25000
20000
15000
10000
5000
0

0 5

10 15

Type

20

Figure 8.3: The distribution of CDD nodes between the different types of the Fischer - 6 model

The results for the distributed tests are presented in tables, one table for one to four nodes, each
model represented separately. Node 1 is always the top computer node.

The following 4 tables holds the results for verifying the Dacapo model on one to four nodes.
For each node, the runtime, memory usage, CPU Load, Memory load, and the number of send

messages is documented:
Dacapo one Node

Node | Time Usage | Memory Usage | CPU Load | Memory Load | Send Messages
Node 1 | 5.65 302.508 100% 100% 0
Dacapo two Nodes
Node | Time Usage | Memory Usage | CPU Load | Memory Load | Send Messages
Node 1 | 49.14 166888 100% 54% 96.117
Node 2 | 49.14 142164 60% 46% 55.861
Total 49.14 309.052 - 100% 151.978
Dacapo three Nodes
Node | Time Usage | Memory Usage | CPU Load | Memory Load | Send Messages
Node 1 | 50.3 83880 100% 27% 121.308
Node 2 | 50.3 173972 66% 56% 97.880
Node 3 | 50.3 52812 40% 17% 61.523
Total 50.3 310.664 - 100% 280.711
Dacapo four Node
Node | Time Usage | Memory Usage | CPU Load | Memory Load | Send Messages
Node 1 | 47.7 82360 100% 26% 115.087
Node 2 | 47.7 91864 65% 29% 94.919
Node 3 | 47.7 120372 37% 38% 89.373
Node 4 | 47.7 22172 26% 7% 44.190
Total 47.7 316.768 - 100% 343.569

The following four tables documents the results for the Buscoupler model, the same results as
for the Dacapo model is presented:

78

Test

Buscoupler 1 Node

Node | Time Usage | Memory Usage | CPU Load | Memory Load | Send Messages

Node 1 | 1701 12.602.672 100% 100% 0
Buscoupler two Nodes

Node | Time Usage | Memory Usage | CPU Load | Memory Load | Send Messages

Node 1 | 9532 7.210.612 100% 54% 12.623.045

Node 2 | 9532 6.142.372 61% 46% 6.354.126

Total 9532 13.352.984 - 100% 18.977.171
Buscoupler three Nodes

Node | Time Usage | Memory Usage | CPU Load | Memory Load | Send Messages

Node 1 | 9652 1.746.032 100% 13% 14.623.045

Node 2 | 9652 9.670.352 64% 2% 10.388.128

Node 3 | 9652 2.014.660 35% 15% 5.764.121

Total 9652 13.431.044 - 100% 30.775.294
Buscoupler four Nodes

Node | Time Usage | Memory Usage | CPU Load | Memory Load | Send Messages

Node 1 | 9572 538.184 100% 4% 16.523.948

Node 2 | 9572 3.094.560 62% 23% 12.312.429

Node 3 | 9572 9.149.140 45% 68% 7.354.264

Node 4 | 9572 672.732 26% 5% 4.723.539

Total 9572 13.454.616 100% 40923180

The final four tables in this section document the results archived when verifying the Fischer
model on one to four computer nodes:

Fischer 1 Node
Node | Time Usage | Memory Usage | CPU Load | Memory Load | Send Messages
Node 1 | 493 6.510.968 100% 100% 0
Fischer 2 Nodes
Node | Time Usage | Memory Usage | CPU Load | Memory Load | Send Messages
Node 1 | 4183 5.483.360 100% 81% 187.221
Node 2 | 4183 1.286.220 63% 19% 70.538
Total 4183 6.769.580 - 100% 257.759
Fischer 3 Nodes
Node | Time Usage | Memory Usage | CPU Load | Memory Load | Send Messages
Node 1 | 4213 3.015.220 100% 44% 187.678
Node 2 | 4213 3.769.032 1% 55% 135.287
Node 3 | 4213 68.528 12% 1% 72.846
Total 4213 6.852.780 - 100% 395.811

79

8.6 Results and Analysis

Fischer 4 Nodes

Node | Time Usage | Memory Usage | CPU Load | Memory Load | Send Messages
Node 1 | 4451 1.041.532 100% 15% 174.606

Node 2 | 4451 4.513.312 2% 65% 137.584

Node 3 | 4451 1.319.280 23% 19% 138.964

Node 4 | 4451 69.436 4% 1% 60.527

Total 4451 6.943.560 - 100% 511.681

8.6.4 Analysis of the Distribution Results

In the following we discuss the results archived during the tests of the distributed data structure.
The main focus is based on CPU/Memory load, and time penalty and memory overhead. Finally
the number of messages send, is compared to the cost-benefit analysis.

Time Penalty

The time penalty added by distributing the data structure, were almost unaffected by the number
of nodes used. We expect that the explanation for this is that the maximum number of messages
send by a single computer node (the top node) only increase slightly. Besides that more computer
nodes participating in the exploration of states. The time penalty were between 560% and 900%
which is an acceptable cost as the focus in this project were to save memory at a certain runtime
penalty. The memory savings will be discussed later in section 8.6.6.

Besides the implementation is not optimized for runtime, only memory wise. E.g. it would be
possible to lower the total runtime by packing several requests in the same message. This would
decrease the total number of messages send, which we expect to account for some of the time
penalty. How such requests should be packed is discussed in the Future Work, section 10.4.

Memory Overhead

The memory overhead added by distributing the data structure were between 4.3% and 6.7%.
Models with larger symbolic state space often have a larger number of clocks and therefore the
relative memory overhead is decreased. We find the memory overhead found acceptable, as the
number of clocks in the used models is relatively small. This overhead is not expected only to
be due to the communication layer, but also that the CDD might be build differently, as the
distribution adds some non-determinism to which order states are unioned with the CDD, as
CDD’s are not canonical - see section 5.7.1.

Additionally this memory overhead could be reduced to a minimum, by implementing the dis-
tribution in a shared memory environment as discussed in section 6.4.1, a protocol for this is
discussed in 10.6

CPU/Memory Load

During the tests the amount of used memory on each computer node, used for the CDD data
structure were measured. The memory load were not evenly distributed, the reason is that the
number of CDD nodes in each layer is not evenly distributed. This can be seen from the box
diagrams in figure 8.1, 8.2, and 8.3.

80

Test

This call for dynamic memory load balancing, which we discuss in Future Work, section 10.5.
The CPU load is also not evenly distributed. The top node is always the most loaded node, this
is due to the fact that it is this node that has to find the handle into the CDD data structure.
We expect that the reason that the CPU load decrease in the lower computer nodes, is that
inclusion tests may fail earlier, and thus not burden the lower computer nodes.

Average Complexity

Previously we have stated that the worst case complexity is 3k messages for each state explored
with k£ being the number of nodes participating, whereas the best case complexity for each state
is k — 1 messages. First we note that the top node always is the node that account for the
largest number of send messages. The reason for this is that the top node is responsible for
sending states that has failed the inclusion test to a node - which then put it into its Waiting
list. This might seem as a bottleneck but with the current version where the discrete part is not
distributed, then this is the only possible approach as the top node holds the discrete part which
also has to be stored in the Waiting list. Alternatively the discrete part could be included in all
messages introducing an overhead in the message size.

The tests shows an average complexity in the number of send messages per verified state between
1.5k for Dacapo and 2.3k for Fischer, Buscoupler being in the middle with a complexity of 1.93k.
These results is as we expected between the best case and worst case complexity. Dacapo has
the lowest complexity which we expect is due to an observation that almost all inclusion tests
that failed, did fail on the top computer node, leading to a limited number of inclusion requests
send to other computer nodes. This together with an observation of the reduction only reaching
the top computer node in a limited number of reductions gives the complexity of 1.5. Fischer
has the highest complexity as the opposite case here is the case being that almost all inclusion
tests fails on another computer node than the top computer node. The ordering of the types
could influence on where the inclusion test fails, why such a reordering may change the average
complexity.

8.6.5 Groups

The results for using groups is presented in the tables below, one for each model with time, send
messages, and memory usage. The number of used computer nodes is four.

Dacapo:
Nb of groups | Time in sec | Total used memory in bytes | Total nb of sent messages
1 37.7 316.772 343.569
2 25.2 554.352 171.548
4 8.2 904.212 34.720
Buscoupler:
Nb of groups | Time in sec | Total used memory in bytes | Total nb of sent messages
1 9562 13.454.616 40.923.180
2 5570 22.573.832 22.703.471
4 1620 45.033.084 3.365.242

81

8.6 Results and Analysis

Fischer:
Nb of groups | Time in sec | Total used memory in bytes | Total nb of sent messages
1 4451 6.943.560 511.681
2 2721 10.634.604 276.864
4 834 21.420.432 36.758

8.6.6 Analysis of the Group Results

In this section we discuss the results archived from the tests using groups, where there are more
than one CDD to represent the Passed list, these CDD’s may be located on a single computer
node or span several computer nodes.

Memory Usage

The memory usage increases as expected when using more than one CDD. The maximum would
be that each of the new CDD’s takes just as much space up as the single distributed CDD. Thus
for the test results the extra memory usage for using 4 groups instead of one can maximum be of
a factor four. The tests report the extra memory usage for the three models to be between 2.9
and 3.3 times as much memory for using four groups instead of a single group. This is surprising
to see that the sharing between different handles in the CDD is so large. The test using two
groups instead of a single group reports an increased memory usage of between 1.5 and 1.75
times as much memory as the single group version. The increased runtime seems to be linearly
dependent upon the number of groups participating, the less computer nodes in each group the
lower the runtime is.

The memory usage when using groups is larger than expected, thus it might not be an attracting
alternative to use groups instead of a single distributed CDD, as the memory usage cannot be
estimated before the actual verification has been carried out, and therefore the optimum number
of groups cannot be estimated, which might lead to a non terminating verification if it runs out
of memory.

Using the CDD data structure in a distributed environment might waste memory if each computer
node holds a separate CDD, as the sum of the memory consumption of these CDD’s will account
for more memory than a single CDD.

Time Penalty

The time penalty seems to be linearly dependent on the number of groups used in storing the
CDD, but we cannot conclude this linearity as we only conduct tests with a limited number of
computer nodes. The more nodes participating in the group the larger the time penalty. We
had expected the difference in runtime of two and one group to be larger, but from the results
we conclude that one group is best for large models where memory usage is critical. If memory
usage is non critical, we recommend using the DBM data structure, as the CDD data structure
adds a runtime overhead, as reported in [4].

82

Test

8.6.7 Additional results

[4] report that the inclusion test using CDD’s is better than the inclusion test using DBM’s as
CDD’s describe federations whereas DBM’s describe Zones. We have made the same observation,
e.g. for the Buscoupler model - using the DBM structure requires exploration of 7.2 million
states. When using our implementation of the CDD data structure the model could be verified
in 5.3 million explorations.

This improvement is conducted even though the DBM implementation of Uppaal used the priority
Waiting list, and we only implemented the Waiting list as a linked list.

To see that the implementation of the Waiting list as a priority queue has advantages over
the linked list implementation, can be seen from the verification of the of the Dacapo model.
Here the DBM Uppaal version with its priority Waiting queue verified the model in 45005 state
explorations, where our implementation explores 53957 states.

8.7 Summary

This section summarizes the results archived during the tests, and repeat the main conclusion.
For the node representations up to 20% of memory were saved, at a maximum runtime cost
of 50%, which we consider acceptable as the runtime were not considered during the design of
these node representations. Memory representation 3 is only designed for running on non RISC
architectures, as pointer may not be word aligned, but this could be extended to run on RISC
architectures at a certain runtime cost. This runtime cost is expected as the pointer converting
has to be performed in software.

The thesis we tried to test were whether memory could be saved by taking advantage of global
sharing. The results archived during the group test, showed that nearly the same symbolic states
has to be explored for all discrete states, which lead to a memory saving of 70% when building a
single CDD compared to building 4 separate CDD’s. But the runtime penalty introduced were
up to 900%.

In the test of the distributed CDD we observed that the memory overhead introduced by com-
munication nodes, and building the CDD differently were acceptable, ranging from 4.3% to 6.7%.
The runtime penalty introduced by the distribution, were constant to the number of computer
nodes participating in the verification.

The worst case complexity for each verified state were calculated to 3k messages, k£ being the
number of computer node participating. The measured complexity were between 1.5k and 2.3k,
which might indicate that the inclusion test often failed on the upper computer nodes, or that
a large number of inclusion tests succeeded.

The memory were not evenly distributed, which indicate the need for a dynamic memory load
balancing. The CPU load were affected by this non even distribution of memory, but mostly
from the fact that the top computer node holds all discrete states, as the number of discrete
states is large, resulting in a large runtime penalty for searching for the CDD handle.

83

8.7 Summary

84

Conclusion Chapter 9

In the conclusion we analyze the results archived, which knowledge can be used, and which
improvements are possible to archive further memory savings.

Although it were discovered that the problem of storing the Passed list in Uppaal were not
storing the symbolic part of the states, the results archived are satisfying, as purpose were to
investigate how much memory could be saved by global sharing.

The global sharing archived were almost linear to the number of computer nodes used for the
CDD data structure, the argument for this has to be that for almost all discrete states, the
same symbolic states are explored. This fact, could be used to make an even more compact
representation of the Passed list, were the discrete and the symbolic part of the Passed list is
combined in the same data structure.

The memory overhead added by the communication layers was between 4.4% and 6.8% using four
computer nodes which seems reasonable. The relative memory savings for a single distributed
CDD compared to four groups on four machines, was up to 70%.

The runtime penalty introduced were between 560% and 900%, which is acceptable taken into
considerations that we have not optimized with respect to runtime. If the distributed data
structure were redesigned to also take runtime optimizations into account, the runtime penalty
might be reduced, and if the great memory savings could be kept, the data structure might prove
interesting. Possible runtime optimization is discussed in section 10.4.

Although the archived results might not be used for the current Uppaal version, as the runtime
penalty added is to large and models with large symbolic parts does not exist. Some of the ideas
might be used in the design of other distributed DD data structures. Some of the ideas might
also be used to design a distributed decision diagram(DD) data structure for storing the discrete
part of the Passed list. If the sharing in such a distributed data structure could be as great as for
the symbolic part, designing such a DD data structure could allow the verification of very large
models. But before such an algorithm can be implemented a throughout design of the influences
of combining the discrete and symbolic part of the Passed list in the same data structure has to
be investigated. The possibly sharing in the discrete part also has to be investigated. In the next
chapter we give an example on how the discrete part could be stored in a DD data structure.

The alternative node representations designed and implemented showed that the used memory
usage could be reduced up to 20%, at an acceptable cost in runtime being at most 50%. If the
design of the node representations were designed to optimize runtime as well as memory usage,
the runtime might decrease.

As this project makes a contribution to computer aided verification, the data structures and
algorithms designed must be semantically sound and complete, why we have conducted several
semantic proofs. First we proved that adding the communication layer to the CDD does not
change the semantics of the CDD. This were used to simplify the proofs of the distributed algo-
rithms, as it made a direct mapping between the non distributed algorithms and the distributed.
The semantic proof eased the design of the distributed algorithms, which are very similar to the
non distributed. The only exception is the union algorithm, which had to be extended with a re-
duction algorithm - as reduction can only be performed bottom up, and union must be performed
top down.

The backtrace operation designed in section 4.4.4, were not implemented, and thus not tested.
The reason for not implementing this operation were that the backtrace algorithm worst case

added k£ — 1 messages to the number of messages needed to explore a single state in Uppaal,
which we considered too expensive, for further arguments refer to section 6.2. The results show-
ing that the sharing possible from global sharing being so large, the backtrace might prove worse,
as the number of CDD nodes having only one successor might be very small, this can also be seen
from the diagrams showing the distribution of CDD nodes for each type, as there is a relatively
small number of these nodes.

Even though it might prove that the backirace algorithm could reduce the runtime on some
kinds of models, which could be investigated. This investigation could easily be conducted on a
single processor version of the CDD data structure, as the results would map to the distributed
implementation.

The group test showed that the size of each of the CDD’s located in groups almost had the same
size as the single CDD. This indicates that is advantageous to use a single CDD, as the size of
several CDD’s using groups is almost as large as single CDD times the number of groups.

The complexity of the distributing the CDD, indicated that is it not advantageous to distribute
them, if they can be located on a single node. As all the timed automata model we have
encountered used most memory representing the discrete part. An approach to improve both the
runtime and memory usage, would be to locate the symbolic state space on a single computer
node, and distribute the discrete part. This would allow global sharing between all discrete
states, and reduce communication overhead.

If a model with a symbolic state space that cannot be located on a single computer node, the
distribution approach described in this project might prove useful. Although this approach does
not scale to more computer nodes than the number of types in the CDD.

86

Future Work Chapter 10

In this chapter we discuss which improvements to the existing implementation can be made, to
archive further memory/runtime savings.

10.1 CDD Implementation of Waiting List

In the current implementation only the symbolic part of the Passed list is represented as a CDD.
We have not conducted tests showing how much memory is saved by using CDD’s compared to
the use of DBM'’s for storing the Passed list, as mentioned in the purpose. A single processor
implementations of Uppaal based on the CDD data structure have shown 42% memory savings
compared to storing the Passed list as shortest path reduced DBM’s. Therefore it is not unlikely
that storing the Waiting list as a CDD also could save some memory in the representation of the
Waiting list. Besides saving memory in the representation another advantage could be archived:
When Uppaal takes a state out of the Waiting list, it expects a DBM, which has been shown to
be equal to a S-CDD. If the two S-CDD’s in figure 10.1 is inserted into the Waiting list in the
shown order, only the S-CDD of figure 10.1(b) will be represented and thus verified by Uppaal,
this might lead to a faster termination of Uppaal, as fewer states might be examined.

Ay Y
6 < 6l

Figure 10.1: Example on how representing the Waiting list as a CDD might lead to fewer examined states for
Uppaal

10.2 Distributing the Discrete part

In the current implementation of Uppaal the Waiting list is implemented as a priority queue
where states with a larger Zone are verified first, followed by states with smaller Zones, this
leads to the same reduction as for the Waiting list implemented as CDD, only in the DBM
priority queue elements must be inserted correctly leading to a linear search, when using CDD
for storing the Waiting list this priority queue could be implemented at a lower runtime cost.

10.2 Distributing the Discrete part

The current implementation of the distributed CDD does not distribute the discrete part of
the state space, as stated previously. This section comes with some guidelines for how such a
distribution could be done using the current implementation. The current implementation stores
all discrete states associated with handles into the CDD on the top computer node. The problem
with distributing the discrete part is that we need it to find the handle into the CDD, as the
symbolic state must be unioned with the handle matching the discrete part.

A possible distribution approach is described in the following algorithm:

A computer node receives a state from Uppaal

e It finds the computer node responsible for this discrete part via a hash algorithm, and
sends the state to this node.

e The computer node responsible for the discrete part receives the state and uses the discrete
part to find a handle into the CDD, and sends the symbolic part along with the handle, and
a machine ID to the top node. Note that this computer node has to synchronize with the
top computer node on the handle, when it receives a discrete part it has not seen before.

e The top computer node receives the symbolic state along with the handle which it uses to
find the node for which it must perform an inclusion test of the state. The inclusion test
is performed distributed as in the current implementation.

e If the inclusion test succeeds no further action has to be taken, if it fails a union request
is send to the top node, and the state is send to the node responsible for the state using
the machine ID.

e The node responsible for the state receives the state that failed the inclusion test and
inserts it in its Waiting list for further exploration.

The synchronization on the handle between the computer node responsible for the discrete part
and the top node, can be performed by letting the node holding the discrete part send a unique
id that it generates itself, meaning that each time the top computer node receives a state it can
find the handle from the unique id. This will work as all nodes holds separate discrete parts,
meaning that no synchronization on handles need to be performed between other nodes.

This way to distribute the discrete part will add a complexity of sending one additional message,
leading to a new complexity of 3k + 1 instead of 3k. We do not expect this extra message
to increase the overall runtime much, but additional test needs to be performed to verify this
thesis. The memory used to store the discrete part will in this way be evenly distributed, given
a uniform hash algorithm.

88

Future Work

10.3 Representing the Discrete Part as MTIDD

During this project we realized that the problem of storing the Passed list in formal verification of
timed automata, is not storing the symbolic part, but storing the discrete part, we have thought
of a way to storing the discrete part of the Passed list. The discrete part of the Passed list is
in this project implemented in a hash list, that is a number of hash buckets, each containing a
linked list of discrete states, with each discrete state a pointer is provided, which is a pointer to
the handle in the CDD data structure which should be used.

In this section we describe how the discrete part of the Passed list possible could be implemented
using a Multi Terminal Integer Decision Diagram (MTIDD). , which possible could save both
memory as well as reduce the runtime.

We first describe how the discrete part could be stored using a MTIDD, then we argue why this
possibly could save memory, and finally we argue how this method of storing the discrete part
could save some time.

10.3.1 Representation

The discrete part of an Uppaal state consists of two parts:

Location A timed automata model, consists of a number of processes possibly synchronizing
with each other. Each of these processes can be in a number of different locations. E.g. if
a process simulates a train gate, it might have three states: open, closed, and active. The
location part of the discrete part consists of a vector designating which location each of the
processes is currently in. In the current Uppaal implementation each processes is allowed
to have 64K different locations. This information is stored as an array of integers.

Variables Besides locations, synchronizations channels, and clocks, timed automata models are
also allowed to hold integer variables. The second part of the discrete state in Uppaal
states is an array holding the value of each of these integer variables.

The discrete part is currently stored as an array of integers. For each location vector, the number
of different variable assignments may be very large. In the current implementation the location
vector is stored once for each variable assignment, this redundant information could be deleted
representing the discrete part as a MTIDD.

That is the only information needed to be stored is an array of integers. For this purpose a
MTIDD could be used, then each layer in the MTIDD, represent one entry in the array repre-
senting a location or an integer. Each node holds a list of assignments to the location/variable
and a pointer to follow if this assignment is true. When the lowest layer has been reached,
the bottom node holds a handle into the CDD data structure. An example on a MTIDD data
structure holding the information:

e {1,1,1,45,46} ~ handle;
e {1,1,2,45,46} ~ handley
e {1,1,1,45,47} ~ handles

e {1,1,1,44,46} ~ handley

89

10.3 Representing the Discrete Part as MTIDD

e {2,1,1,45,46} ~ handles

e {1,1,1,45,48} ~ handleg

Is presented in figure 10.2(a)

() () ()

@ (b)

Figure 10.2: (a) Multi Terminal Integer Decision Diagram, used for representing the discrete part of the Passed
list of Uppaal. (b) MTIDD representation of the discrete part using optimizations, using tagged architecture.

In the figure L1, L2, and L3 designates locations, Vi and V> designated integer variables, and H; ... Hg designated
handles into a CDD data structure.

10.3.2 Saving Memory

The reason that it is expected that the MTIDD data structure might save memory in the repre-
sentation of the discrete part of the Passed list, is the same as the reason that other XDD data
structures save memory, namely by only storing information once. But where most XDD data
structures share data in the bottom elements, the MTIDD data structure used is only allowed
to share information at the top of the data structure. E.g. the representation of the first three
integers as {1,1,1} is only stored once, although used for four handles. One disadvantage of
this representation is that a certain overhead is added as each node need to keep additional
information. This problem occurs when the MTIDD holds a subpart of only a single string, then
this representation might double the memory usage, as it can be compared to represent an array
as a linked list. If when constructing a sub MTIDD with only a single terminal node, an array is
inserted with the values of the remaining variables and a handle, some memory could be saved.
This memory optimization is showed in figure 10.2, to known whether the successor is a MTIDD
node or an array, a tagged architecture can be used, as the two least significant bits are not used
in pointers, these can be used to represent whether the child following the pointer is a MTIDD
node or an integer array. It would even be possible to use our alternative node representation
3 to use a minimum number of bytes to store variables, which possibly could lead to further
memory saving.

90

Future Work

10.3.3 Saving Time

The reason it is believed that representing the discrete part in a MTIDD might save some time,
is that the amount of memory compared is expected to decrease greatly. E.g. for verifying
Buscoupler, which is a relatively small model, over 1.5 million discrete states of size 160 bytes
exists. The Buscoupler model holds 16 processes so the location vector consists of 16 (16bit)
integers, and the model holds 27 (32 bit) integer variables. That is the MTIDD holds 16+27 = 43
layers, and only 43 MTIDD nodes, of different size, has to be traversed.

In the current implementation using a hashed linked list, the hash data structure holds 17609
buckets. Then in the worst case 1@*(;%%6 = 85 discrete elements of size 160 bytes need be searched.
Therefore the amount of memory comparison needed using the MTIDD data structure might
easily be somewhat smaller than the amount of memory comparison needed for the current
implementation, and it is expected to be even better for larger models.

If the size of the MTIDD nodes is large, it takes more runtime to find the handle, but a greater
sharing is accomplished, and if the MTIDD nodes is small the time for finding the handle is small,
but so is the sharing. That is either is runtime saved compared to the ordinary implementation,
or else memory is saved.

10.3.4 Distributing

As the discrete part of the Passed list is the part that takes up the main part of the memory usage,
it would be interesting to distribute this MTIDD data structure, if it makes a more compact
representation of the discrete part. Figure 10.2(a) show that the representation takes up the
main part of the memory in the bottom part of the tree. This means that using a horizontal
distribution approach is not suitable, the vertical distribution approach, or the groups approach
described in section 4.2.2 on page 31 might show to be more appropriate as traces never merge,
therefore the maximum number of messages send can be reduced to less than the number of
computer nodes used.

10.4 Pack Messages

In the current implementation, some of the time penalty introduced is expected to come from
the large number of messages send. In this section we describe how this number of messages
can be decreased without changing the functionality /semantics of the implemented system. The
idea is taken from the current distributed Uppaal version, which pack a number of states before
sending them to another computer node|3|. That is, each computer node holds a buffer for each
of the other computer nodes, and whenever a messages should be send to another computer
node, it is placed in the corresponding buffer and when a certain number of messages has been
added to a buffer it is send. The same approach might be used in the distribution of the CDD.
Each computer node only propagates requests to the lower computer node (for inclusion test
and union), and to the upper computer node (for reduction). Therefore, for each request type
a single buffer is kept, and send whenever it is full. To optimize this scheme a little union and
reduction request buffers, should be send before inclusion test requests, which would possible
decrease the number of inclusion test which fail, and thereby reduce the number of explored
states.

91

10.5 CPU/Memory Load

10.5 CPU/Memory Load

Another problem our implementation suffers from, is that the load distribution both with respect
to CPU usage and memory usage is far from even. To solve this two approaches has to be
implemented, first and most important, the discrete part of the Passed list should be distributed,
and secondly dynamic memory load sharing should be implemented.

An approach for distributing the discrete part of the Passed list has been discussed is the previous.
For implementing dynamic memory load sharing, it should be possible to move a layer of the
CDD data structure from one computer node to another, and still keeping all successors correct,
to be able to implement this, a design and possible a semantic analysis has to be performed.

10.6 Distributed Shared Memory

In the cost benefit analysis we argue that the memory overhead introduced by the communica-
tion nodes could be removed by using distributed shared memory.

In the last two project we have investigated the capabilities of the Scalable Coherent Interface
(SCI) network technology. The SCI technology offers a hardware based distributed shared mem-
ory environment. The following discussion is based of the use of SCI for distributing the CDD
data structure.

The distributed shared memory interface offered by SCI, has very low latency, and very high
bandwidth (100-200MB/s) in writes, for reads the bandwidth is lowered to (4-5MB/s). Therefore
the protocol designed should be based on writes and not reads. Of the two ideas mentioned in the
cost benefit analysis section 6.4.1, the idea where the global pointers is written to the next node,
which is then signaled to continue the request, might be the best approach, when SCI is used. If
the node discovering a state should make the inclusion test and the union itself, the operations
should fetch large amounts of memory from the other nodes, at the low speed. Therefore the
same ideas as in this project should be used, only should the communication protocol be altered,
and the communication layers could be omitted.

92

Bibliography

[1]

[11]

[12]

[13]

[14]

[15]

[16]

Alur and Dill. Automata for modelling real-time systems. Lecture Notes in Computer
Science, LONS 443, 1990.

R. Stallman B. Lewis, D. Laliberte and the GNU Manual Group. GNU Emacs Lisp Reference
Manual., 1995.

Gerd Behrmann, Thomas Hune, and Frits Vaandrager. Distributed timed model checking
- How the search order matters. In Proc. of 12th International Conference on Computer
Aided Verification, Lecture Notes in Computer Science, Chicago, Juli 2000. Springer-Verlag.

Gerd Behrmann, Kim Guldstrand Larsen, Justin Pearson, Carsten Weise, and Wang Yi.
Efficient timed reachability analysis using clock difference diagrams. In Computer Aided
Verification, LCNS 1633, pages 341-353, 1999.

R. Bellmann. Dynamic programming. Princeton University Press, 1957.

Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans-
actions on Cimputers, 8(C-35):677-691, 1986.

W. T. Comfort. Multiword list items. Communications of the ACM,7(6), June 1964.
Kim G. Larsen et al. Clock difference diagrams. BRICS Report Series publications, 1998.
Paul Pettersson Kim G. Larsen and Wang Yi. Uppaal: Status & develoments. -, 1997.

K. Larsen, F. Larsson, P. Pettersson, and W. Yi. Efficient verification of real-time systems:
Compact data structure and state-space reduction, 1997.

Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a Nutshell. Int. Journal on
Software Tools for Technology Transfer, 1(1-2):134-152, October 1997.

Amit Narayan, Jawahar Jain, M. Fujita, and A. Sangiovanni-Vincentelli. Partitioned rob-
dds;a compact, canonical and efficiently manipulable representation for boolean functions.
In Proceedings of the 1996 IEEE/ACM international conference on Computer-aided design,
pages 547-554. IEEE Computer Society Press, 1996.

Thies Rauhe Niels Klarlund. Bdd algorithms and cache misses. BRICS Report Series
publications, 1996.

Karsten Strehl and Lothar Thiele. Symbolic model checking using interval diagram tech-
niques. Technical Report 40, Computer Engineering and Networks Lab (TIK), Swiss Federal
Institute of Technology (ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich., 1998.

Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. Dynamic storage
allocation: A survey and critical review. In 1995 International Workshop on Memory Man-
agement, Kinross, Scotland, UK, 1995. Springer Verlag LNCS.

Sergio Yovine. Kronos: a verification tool for real-time systems. -, 1997.

10.6 Distributed Shared Memory

94

Union /Reduction Example Appendix A

This appendix gives an example on first a union operation building a call stack, and using a
temporarily hash table for a more efficient construction. After the union has constructed the
union of a S-CDD and a CDD, a reduction is performed. The example run on two nodes, and
whenever a message is send from one computer node to another the message content is also
shown.

[—10; 10]

Figure A.1: The two XDD data structures that are going to be unioned in this example.

Figure A.1 show a CDD and an S-CDD which are going to be unioned, and thereafter reduced.
The backtrace algorithm is not used, at this makes it easier to illustrate the reduction operation.
During the operations it is assumed that all CDD nodes is referred by other CDD nodes not
shown, so that these nodes cannot be deleted.

Figure A.2 show the situation after the union has finished its operations at the top node. To

—
|
“
|

Union Request = {(6,5), (7, false), (9, 8)}

Call stack = A",C'",D',N,E" Ny, F"

Temp hash = {(AUI=A"),(CUIl=C"),(DUII =D'),(false U II = N;),
(false U 11 = Ny), (false U III = Ny), (B U 1] = E'), (F UIII = F")}

Figure A.2: Show the example after the union has finished on node one, and send a union request to the next
node.

96

Union/Reduction Example

the right of the CDD, the call stack and the temporary hash table is shown. The idea is that for
all nodes which need to be changed is copied (and in the example renamed from X to X'), and
this copy is then changed to satisfy the requirements. To see the function of the temporary hash
table, note that the only successor to node Ny is the union between false and I11. The successor
of C', with interval]10; 15] is also the union between false and III, thus the node Nj is reused,
without repeating the union. Node E' is also reused by using the temporary hash table.

The message send to the bottom computer node is the following: {(6,5), (7, NULL),(9,8)}, has

&

<3

(B JCC(D)M) o
N =1 > [2; 15] :Q

a ' 10; 15] E
1 F)(F)
S z

Figure A.3: Show the situation after the union on the bottom node, has reached the bottom in it’s recursion, and
just before it recursion starts build CDD nodes from bottom up.

the following meaning. Union S-CDD (type IV') with the CDD-node referred to by commu-
nication array entry 5, and place the result in communication array entry 6. The (7, NULL),
means union S-CDD (type I'V) with false, and let communication array entry 7 refer to it.
Figure A.3 show the situation after the bottom node has performed it’s union, but before it start
recognizing that there is a possible sharing. (This situation does actually never exist, except on
the call stack, but is shown as it gives a better understanding of the situation).

'First type on next node

97

Whenever the bottom node builds a node in its union operation, it checks whether there exist

e

e JCn)l J1 JCr)

Figure A.4: An intermediate situation during the reduction on the bottom node

an equivalent CDD node, and if it does it use this node instead.

E.g. whenever the nodes K', and Ny is created, the runtime system recognizes that these nodes
are equal to the already existing node J. Ny and K' is thus never created, but all references to
these nodes, is redirected to J. This result in two neighboring intervals point to the same node
(both successors from I’ points to J), and are thus merged and made to point to the same node,
namely J. The situation after this is depicted in figure A.4. This lead to that the union /reduction
operation recognizes that node N3 and I’ is equal to the existing node G, therefore N3 and I’
is deleted and all references to these nodes is redirected to node G, the same holds for node
H' which is equal to node H. As this reaches the communication array, the reduction request
{(6 =5),(T = 1),(9 = 1)} is send to the upper computer node, the situation after the full
reduction of the bottom node is shown in figure A.5. As can be seen the pointer from 6, 7, and
9 is kept, these pointers are kept if future inclusion/union request is propagated from the top
computer node to the bottom computer node using these references, before the reduction request
update the nodes at the top node.

98

Union/Reduction Example

AN HINGTONY — PRIs [1RD

{(1=6)(1=12)‘(c =9)} = 1sonboy] uononpay

[0; 11]

Figure A.5: The situation after the full union/reduction has finished on the bottom node.

99

When the reduction request reaches the top node, it parses the message, and redirects all

WA ONC AN (DY RIS (1D

{(1=6)(1=21) (¢ =9)} = 1sonboy] uonoNpay

Figure A.6: Show an intermediate situation of the reduction on the top computer node.

pointers, referring to 7 and 9 to point to 1. And all pointers from 6 to point to 5, all nodes in
the call stack is search for such pointers to redirect. The situation after this is done is shown in
figure A.6. This reduction result in that CDD node N and F’ become equivalent. Node F and
E' also become equivalent, and are reduced. Therefore all successors previous referring node F”
is redirected to point to Ny. The same is the case with successors referring E’ which is redirected
to point to E. This reduction lead to further reduction, figure A.7 show the final CDD after the
union /reduction has finished.

100

Union/Reduction Example

[0; 1]

Figure A.7: Show the final situation after the S-CDD and the CDD from figure A.1 is unioned/reduced

101

