

DEPARTMENT OF COMPUTER SCIENCEAALBORG UNIVERSITYTitle: Geneti Programming - Applied to a Real Time Game DomainTheme: Arti�ial Intelligene in Computer GamesProjet Term: DAT6 / F10SE, February 2002 - June 2002Projet Group: E1-119a
Partiipants:Jørn Holmgekko�s.au.dkJens Dalgaard Nielsendalgaard�s.au.dkSupervisor:Dr. Jose M. Peñajmp�s.au.dk

AbstratIn the �eld of Geneti Programming, the phe-nomenon of bloat is a ommon ause of dereasedperformane in the searh proess, as it is typiallyaompanied by loss of diversity and premature on-vergene. As the solutions grow rapidly in size, thegeneti operators like standard sub-tree swappingrossover and sub-tree mutation loose their originale�et of exploitation and exploration, and furtherimprovement of the urrent solutions is only seldomobservable.In this thesis we use Geneti Programming to evolvelose ombat strategies for agents in the game of Un-real Tournament. The work presented in Holm andNielsen (2002) is used as the framework for this the-sis.We propose four di�erent extensions to the basi Ge-neti Programming algorithm, in order to gain on-trol over the growth in average size of the solutions,and to improve the geneti operators, with respetto maintenane of diversity.In onlusion we �nd that a guidane of the ge-neti operators to be applied within e�etive ode,shows good performane. A diret pressure that re-wards unique solutions and punishes ommon solu-tions shows good performane and an insigni�antdegree of bloat.
Number Printed: 6Number of Pages: 119Finished: 6th June 2002

This thesis may not be published in any way or form without permission from the projet group.Copyright summer 2002, projet group E1-119a, Aalborg University

INSTITUT FOR DATALOGIAALBORG UNIVERSITETTitel: Genetisk Programmering - Anvendt indenfor et sandtids Spil DomæneTema: Kunstig Intelligens i omputer spilProjekt Periode: DAT6 / F10SE, Februar 2002 - Juni 2002Projektgruppe: E1-119a
Gruppemedlemmer:Jørn Holmgekko�s.au.dkJens Dalgaard Nielsendalgaard�s.au.dkVejleder:Dr. Jose M. Peñajmp�s.au.dk

SynopsisIndenfor det Genetiske Programmerings paradigmeer "bloat" fænomenet en normal årsag til nedsatpræstation i søgeproessen, da det typisk er ledsagetaf nedsat diversitet og tidlig konvergens. Da løs-ningerne gror hurtigt i størrelse, mister de genetiskeoperatorer; krydsning og mutation, deres origi-nale undersøgelse og udnyttelse e�ekt, og yderligereforbedring af de øjeblikkelige løsninger ses kunsjældent.I denne tese bruger vi Genetisk Programmering tilat udvikle nærkamps strategier for agenter i spilletUnreal Tournament. Sto�et præsenteret i Holm andNielsen (2002) bliver brugt som basis for denne tese.Vi foreslår �re forskellige udvidelser af den normaleGenetiske Programmerings algoritme, med formåletat kontrollere den gennemsnitlige vækst i størrelse afløsningerne og forbedre de genetiske operatorer medhenblik på diversitets opretholdelse.Vi konkluderer at de genetiske operatorer med fordelkan anvendes på den e�ektive del af koden. Et di-rekte pres der belønner unikke løsninger og stra�eralmindelige løsninger viser også gode resultater ogdesuden en ubetydelig grad af "bloat".
Antal Eksemplarer: 6Antal Sider: 119Afsluttet: 6. Juni 2002

Denne tese må ikke udgives hverken helt eller delvist uden tilladelse fra projektgruppen. Copyright sommer 2002, projektgruppe E1-119a, Aalborg Universitet

PrefaeThis master thesis serves as doumentation of the work done by projetgroup E1-119a during the DAT6/F10SE semester, spring 2002. The projetwas developed in the Researh Unit of Deision Support Systems at theDepartment of Computer Siene at Aalborg University, Denmark.By onvention, itations follow the syntax of: �Last-name (year)�, throughoutthis thesis, and further information an be found in the bibliography at page119.The work presented in this thesis, is ontinued from our previous work pre-sented in Holm and Nielsen (2002).The thesis is divided into three parts. Part I ontains an introdution toour problem domain. The basi onepts of Geneti Algorithms and GenetiProgramming are presented, and a summary of the most important �ndingsof Holm and Nielsen (2002) is inluded. Additionally, part I ontains a moredetailed analysis of the previous results, onluding in a spei� problemde�nition stating four di�erent extensions to the basi geneti programmingalgorithm. Part II presents the design of the four di�erent extensions to-gether with a presentation of related work. Part III presents results andproposes di�erent topis that should be pursued in the future.AknowledgmentsWe aknowledge Unreal Tournament as a registered trademark of Epi Games,In.We would like to thank Rimantas Benetis for providing useful modi�ationsto the Gamebots module.We would like to thank our supervisor Dr. Jose M. Peña for being our mentorand mahatma.
Jørn Holm Jens Dalgaard Nielsen

v

ContentsI Problem Analysis 11 Introdution 31.1 Motivation . 31.1.1 The Investment Priniple 31.1.2 Oam's Razor . 41.2 Problem Spae . 42 The Environment and the Domain 72.1 Unreal Tournament - The Game 72.1.1 Game Types . 72.1.2 Opponents in Unreal Tournament 82.1.3 Items In Unreal Tournament 92.1.4 The Players Initial Condition 132.1.5 Controlling a Player 132.2 The Gamebots Domain . 142.2.1 The Features . 142.2.2 The Gamebots System 142.2.3 The Gamebots Interation Protool 153 Evolutionary Algorithms 173.1 Introdution . 173.1.1 Searh Strategies . 173.2 Geneti Algorithms . 193.2.1 The Basi Loop of Evolution 193.2.2 Ensuring Convergene 223.2.3 Maintaining diversity 233.2.4 The Fitness Funtion 283.3 Geneti Programming . 313.3.1 Geneti Operators and Parse Trees 313.3.2 The Basi Building Bloks F and T 334 Summary of previous work 354.1 Previous Goals . 354.2 Language Design . 354.2.1 The Most Basi Skills 364.2.2 The More O�ensive Skills 37vii

viii CONTENTS4.2.3 Higher Level Skills . 384.3 Designing the Algorithm . 394.3.1 Initial Population . 414.3.2 Fitness Funtions . 444.4 Geneti Operators . 474.4.1 Seletion . 474.4.2 Reprodution . 484.4.3 Crossover . 484.4.4 Mutation . 484.4.5 Replaement . 494.4.6 Island Approah . 494.5 Tests . 494.5.1 Parameters of the Evolution 494.5.2 Performane Tests . 505 Problem de�nition 535.1 Projet Spae . 535.2 Analysis of Previous Results 535.2.1 Popular Briks And Building Bloks 545.2.2 The Flower of The Tree 545.2.3 The Withered Leaves 555.2.4 Causes of growth of non-exeuted ode 625.2.5 E�ets of ode growth 635.3 Projet Goals . 64II Our Approah 676 System Modi�ations 697 Size Ranking 717.1 The Bloat Phenomenon . 717.2 Previous E�orts . 727.2.1 Primitive Parsimony Pressure 727.2.2 Adaptive Parsimony Pressure 737.2.3 Expliitly De�ning Introns 737.3 Our Approah . 748 Diversity Ranking 758.1 Our Approah . 76

CONTENTS ix8.1.1 Measuring Common Size 769 Enhaned Context Free Grammar 819.1 Motivation . 819.2 Our Approah . 819.2.1 Context Free Grammars 829.2.2 The Enhanements . 8210 Exeuted Path Guided Operators 8710.1 Considerations . 8710.2 Similar work . 8710.2.1 Crossover and Redundany 8810.2.2 The Marking Method 8910.3 Our Approah . 90III Results and Conlusion 9311 Tests and Results 9511.1 Parameters of the Evolution 9511.2 Results . 9511.2.1 The BASIC run . 9711.2.2 Size Ranking . 10411.2.3 Diversity Ranking . 10411.2.4 Enhaned Context Free Grammar 10611.2.5 Exeuted Path Guided Operators 10912 Conlusion and Future Work 11312.1 Summary of Results . 11312.2 Failures . 11412.3 Suesses . 11412.4 Future Work . 11412.4.1 Agent Spei� Extensions 11412.4.2 System spei� Extensions 116Bibliography 119A Node Frequenies 123B New Node Frequenies 131C Language Referene 133

List of Figures2.1 Some of the UT environment seen from above. 82.2 Two players in a lose enounter. 92.3 The three manouevres a player in UT an perform; (a) Strafeleft/right, (b) Move forward/bakward, () Turn left/right. . . 132.4 The friendly Gamebots theme - with wizards, friendly soundsand magi looking weapons, like the bubblewand - altogetherlooking harmless. 152.5 A sketh of the general organization of the Gamebots software(opied from Adobbati et al. (2001), used with permission). . 153.1 Fitness landsape given by Akley's funtion. This funtionis ommonly used for benhmarking GAs. 183.2 Generation loop . 193.3 Examples of the rossover and mutation operators in ation. . 213.4 A population limbing a loal optimum, and without mutationwould be doomed to reah premature onvergene. 233.5 Figure (a) shows an example of 5 islands onneted aordingto the ring topology. Figure (b) shows 9 islands onneted inthe mesh topology. The mesh loops, giving a toroidal struture. 263.6 A snapshot of a population of �ve subpopulations (blak, red,yellow, green and blue) evolving. This is not empirial data,but this is what we expet of the island priniple. A-E are theindividuals that reently migrated. 273.7 Organization of subpopulations in the MDPGA. The neigh-borhood of sub-population a and are shown as dotted irles.Subpopulation b is a ommon neighbor to both a and 273.8 The all-against-all ompetitive �tness approah, and up tour-nament �tness approah, (a) and (b) respetively. The ap-proahes were previously presented by Axelrod (1987) andAngeline and Pollak (1994). 293.9 A o-evolutionary environment onstituted by two parallelpopulations, as used by Hillis (1992). 303.10 Crossover and mutation applied to parse trees. 324.1 The enemy movement as pereived by the golden (upper) bot.Distintions between leftward/rightward and forward/bakwarddepited in (a) and (b) respetively. Arrows of the same olorwithin the same sub�gure orresponds to diretions of move-ment that yield the same result. 384.2 The use of relative destination points when stra�ng. Theoordinatesystem relative to the red bot is rotated as the botmoves, and the point of destination (x',y') then hanges dy-namially (with respet to global oordinates), as depited inthe hange of (a) to (b). 39xi

xii LIST OF FIGURES4.3 Extended generation loop . 404.4 The map designed to serve as battle ground. 464.5 The histogram of the results from pitting one bot against alone of itself. As expeted the density is higher loser to 0,but noise is learly present. 484.6 The di�erene between the UT bot and the di�erent genera-tions of the 3rd island 1st run. Notie that the evolved botsgradually improve the performane against the UT bot. . . . 515.1 Distribution of language onstruts for the population of the1st run. 565.2 Distribution of language onstruts for the population of the2nd run. 575.3 Distribution of language onstruts for the population of the3rd run. 585.4 The �ttest individual from the 4th island, 60th generation,3rd run has been pitted against 7 di�erent enemies. Exeutednodes is olored, and all nodes has been tagged with the pro-portion of exeutions. 595.5 The �ttest individual from the 1st island, 60th generation, 3rdrun has been pitted against 7 di�erent enemies. The exeutednodes is olored, �gure (a) shows the result of 6 out of the 7mathes, �gure (b) shows the result of the last test. 605.6 The �ttest individual from the 6th island, 10th generation, 3rdrun has been pitted against 7 di�erent enemies. The exeutednodes is olored, �gure (a) shows the result from 6 out of the7 mathes, �gure (b) shows the results of the last test. 605.7 The evolution of average size for the 3 test runs. 605.8 A global intron in a parse tree is typially aused by redundantsensor-heks. 615.9 A loal intron in a parse tree is aused by a spei� on�gu-ration of the test ase, and hene is dependent on the urrenttest ase. 627.1 The 6 di�erent �tness lasses, produed by our tournamentbased �tness funtion, when applied to a population of 32individuals, with �tness dereasing from left to right. 748.1 Two trees are ompared, exeuted nodes are olored. A mathof size 4 has been enirled. 768.2 Two trees are ompared, exeuted nodes are olored. A mathof size 5 has been enirled. 779.1 In (a) a randomly generated tree is depited. Notie the se-mantial equivalene with the tree depited in (b) whih isreognized by our CFG. 82

LIST OF FIGURES xiii9.2 A tree generated randomly depited in (a). When using theE-CFG for tree generation a semantial equivalent tree existsas an be seen in (b). The tree is generated using the newE-CFG prog-2 rule the rule should not onstrain the solutionspae. 849.3 An if-less-than funtion always exeuting the same branhis depited in (a). The two exeutable branhes both have use-less sensor nodes as instrution, depited in (b). An if-less-thanfuntion ating as a prog-3, depited in (). 859.4 During tree generation a wait funtion deides its hild byusing its parent's grammar rule. In (b) the wait node has de-ided to be a ation terminal aording to the prog-2 gram-mar rule. 8510.1 The olored subtree has still not been exeuted. This latentsubtree ould be exeuted in a subsequent evaluation. 9011.1 Performane(a) and size(b) graphs for the BASIC run. 9811.2 Evolution of size of individuals from generation 52 through 56. 9911.3 In (a) a good building blok is depited. In (b) two treesseleted for rossover, with rossover-points marked by theblak dots are depited. In () the two o�spring resultingfrom that rossover are depited. These three �gures depitsthe beginning of an aumulation of good building-bloks ina still growing tree. Two later generation individuals seletedfor rossover (d), and the o�spring produed by hoosing theblak dots as ut-points (e). 10011.4 Performane(a) and size(b) graphs for the SR run. 10311.5 Performane(a) and size(b) graphs for the DR run. 10511.6 Performane(a) and size(b) graphs for the E-CFG run. 10711.7 Frequeny of node usage during the E-CFG run. 10811.8 Performane(a) and size(b) graphs for the EPGO run. 110A.1 The frequeny of node usage on island 1 (�g. a-b), 2 (�g. -d)and 3 (�g. e-f) of the 1st run. 123A.2 The frequeny of node usage on island 4 (�g. a-b), 5 (�g. -d)and 6 (�g. e-f) of the 1st run. 124A.3 The frequeny of node usage on island 7 (�g. a-b) of the 1strun. 125A.4 The frequeny of node usage on island 1 (�g. a-b) and 2 (�g.-d) of the 2nd run. 125A.5 The frequeny of node usage on island 3 (�g. a-b), 4 (�g. -d)and 5 (�g. e-f) of the 2nd run. 126A.6 The frequeny of node usage on island 6 (�g. a-b) and 7 (�g.-d) of the 2nd run. 127A.7 The frequeny of node usage on island 1 (�g. a-b) of the 3rdrun. 127

xiv LIST OF FIGURESA.8 The frequeny of node usage on island 2 (�g. a-b), 3 (�g -d)and 4(e-f) of the 3rd run. 128A.9 The frequeny of node usage on island 5 (�g. a-b), 6 (�g. -d)and 7(�g. e-f) of the 3rd run. 129B.1 Funtions and terminals used during the BASIC evolution. . . 131B.2 Funtions and terminals used during the evolution using theE-CFG. 131B.3 Funtions and terminals used during the evolution using EPGO.132B.4 Funtions and terminals used during the evolution using SR. . 132B.5 Funtions and terminals used during the evolution using DR. 132

List of Tables2.1 The weapon harateristis. Notie that in�nite veloity meansinstant damage. The veloity is measured in UT-units. 112.2 Ammunition pakets, number of rounds in a paket and theweapon it belongs to. 124.1 The most ommon tree generation algorithm, GROW 424.2 The alphabet of the CFG. The funtions are assigned upper-ase letters in the leftmost box and the terminals are assignedlowerase letters in the rightmost box. 434.3 The CFG of the onstrained syntati rules for ustom treegeneration . 444.4 The di�erent parameters used in the 1st, 2nd and 3rd run,respetively. 504.5 The results of the mathes between bots from the 1st run, 6thisland and the UT bot. 514.6 The results of the experimental test between humans, an UTbot and two evolved bots from the 3rd run and 3rd island. . . 528.1 Algorithm for �nding the largest subtree math within to sub-trees. 788.2 Algorithm for mathing subtrees. 799.1 The alphabet of the E-CFG. The funtions are assigned upper-ase letters in the leftmost box and the terminals are assignedlowerase letters in the rightmost box. 839.2 The E-CFG of the onstrained syntati rules for ustom treegeneration, rossover and mutation. 8611.1 The di�erent parameters used in all runs. 9611.2 The winner from generation 55 of the BASIC run. 10111.3 Two ommon building bloks extrated from the winner ofgeneration 55 of the E-CFG run. 10111.4 The best individual from the 9th (the leftmost) and 10th (therightmost) generation . 10211.5 Two ommon building bloks from the BASIC run. 109C.1 Terminal referene . 134C.2 Funtion referene the # olumn ontains the number of ar-guments required by the funtion. 135
xv

Part IProblem AnalysisThis part is intended as doumentation of the proess of analyzing theproblem domain and will onlude in a de�nition of the goals of thisprojet. In hapter 1 we brie�y introdues some onepts that will mo-tivate the further analysis. Chapter 2 introdues the spei� problemdomain of the game Unreal Tournament, and presents the extension pro-vided by the Gamebots module. Chapter 3 presents the basi theory ofGeneti Algorithms and Geneti Programming neessary for understand-ing our system. Chapter 4 presents a summary of our previous work re-ported in Holm and Nielsen (2002). Finally hapter 5 onludes this partby narrowing the problem spae and de�ning the goals of this projet.

1 Introdution�The only real voyage of disovery onsistsnot in seeking new landsapes but in havingnew eyes.�,Marel Proust.Evolutionary Algorithms are one of the more promising branhes of mod-ern Computer Siene and Arti�ial Intelligene in partiular. Not that theideas and onepts are modern them self, in essene the ore priniples stemsfrom the famous Charles Darwin and his work from 1859: �On the Originof Speies by Means of Natural Seletion, or the Preservation of FavouredRaes in the Struggle for Life�. Later in history, when digital omputershad been invented and had beome more ommon to the professional si-enti� ommunity, the ideas and priniples �rst proposed by Darwin wereput into a more pratial use. John Holland is often referred to as one ofthe inventors of Evolutionary Algorithms, and espeially he gets the honorfor the invention of Geneti Algorithms. The ideas of Holland (1992) �rstpublished in 1975, has led to a variety of appliations within the broad �eldof algorithms for solving optimization problems. In the later years the �eldof Geneti Programming, mostly redited to Koza (1992), has seured itsfoothold within the ommunity of Arti�ial Intelligene.From this brief historial survey we move on to motivate the general fousof this thesis.1.1 MotivationSome everlasting obstales to evolutionary optimization exists, and in thisthesis we fous on some of these obstales, or more preisely on ways tobypass these obstales. Before going into tehnial details about the ontentsof this thesis, we will inlude a re�etion over The Investment Priniplepresented by Minsky (1988), as it very niely presents the essene of what isthe fous of this thesis. Also, we �nd it reasonable to mention the prinipleof Oam's Razor, in order to put work presented in this thesis in a broaderperspetive.1.1.1 The Investment PrinipleThe investment priniple as stated by Minsky (1988) is:�Our oldest ideas have unfair advantages over those that ome later.The earlier we learn a skill, the more methods we an aquire for using it.Eah new idea must then ompete against the larger mass of skills the oldideas have aumulated.�Minsky (1988) argues that natural evolution is a good example of a proessbeing enslaved by the investment priniple. That is, good skills that weredeveloped in the early stages of the evolution, is hard to hange without3

4 Introdutiondestroying the good properties of other skills that might have been buildupon this initially good skill. E.g. the plaement of the brain in the headis a property inherited by our oldest anestors hundreds of millions of yearsold, and the omplexity of properties build upon this early idea makes itimpossible for evolution to ever hange it, without destroying other essentialproperties. However, if we were to design the woodpeker anatomy fromsrath, we ould probably ome up with other plaements of the brain thatwould serve the purpose at least as well.In a wider sense, this re�etion illustrates the harateristi of most searhstrategies based on natural evolution, namely that they are inherently short-sighted. That is, properties emerge with the expetation of an immediatebene�t, and not beause of long term planning of omplex properties. Ratherthan designing some property from srath, existing properties are ombinedin new on�gurations.1.1.2 Oam's RazorWilliam of Okham was a philosopher and ontroversial theologian of the14th entury, widely thought of as one of the most in�uential of his time. Heis speially known for the medieval rule of parsimony, originally formulatedas: �Pluralitas non est ponenda sine neesitate.�In more modern English, this is often translated to �Pluralities should notbe posited without neessity�. This priniple is one of the ornerstones ofmany sienti� disiplines, espeially when developing models of naturalphenomenon and physial proesses. Models of high omplexity is typiallyless general than models of low omplexity. The more omplex the model,the more details it has aptured, and hene it beomes fragile to otherwiseinsigni�ant hanges. We an onnet this to the investment priniple de-sribed above. As evolution ontinually onstruts solutions to �t the urrentenvironment by pathing up and reombining old ideas, the evolved solutionsbeome more and more omplex, and hene more and more speialized. Thisphenomenon is evident for most spies in nature. That is, most spies arehighly speialized to bene�t from the environment in whih they exist, ormore spei�, the environment in whih their anestors existed.We have now argued that evolution does not inherently obey the prinipleof Oam's Razor.1.2 Problem SpaeThe problem spae of this thesis, is de�ned to be within the appliation ofthe Geneti Programming paradigm to a real time omputer game. Theexperiments and results reported in this thesis builds upon work previouslyreported by Holm and Nielsen (2002).In the previous setions, we argued that one inherent property of evolutionis the bias toward favoring old ideas over new ones. We should realize thatthis property an be damaging to the evolution, if the early ideas are not op-timal for solving the urrent problem. If these sub-optimal ideas gain strong

1.2 Problem Spae 5foothold in an entire population, leaving no room for further developmentand improvement, the evolution is said to have onverged prematurely.We will postpone further narrowing of the problem spae until the spei�domain has been introdued in hapter 2. Also we will summarize our pre-vious work and results in hapter 4. In hapter 5 we will onlude this partof the thesis in an analysis of the previous results, and a detailed problemde�nition.

2 The Environment andthe Domain�Joshua: An interesting game - theonly winning move is not to play�,From the movie, War Games.This hapter serves as a brief introdution to the Unreal Tournament (UT)environment (the following setion), and the Gamebots domain (setion 2.2).We will only over topis relevant to the ore of the projet; follows the es-sential harateristis of UT and Gamebots. For a more general and detailedinformation on these visit Epi-Games et al. (2001) and Gamebot-Projet(2001).2.1 Unreal Tournament - The GameUnreal Tournament is a game belonging to the lass of 3D 1st person shoot-ers. In this lass of games agents an move around in a 3D environment, see�gure 2.1 and �gure 2.2. The player ontrols an avatar in the game and hisomputer sreen displays the world through the avatar's eyes as a humanvisually pereive a 3D world (1st person perspetive). UT is a fast, omplexand dynami game domain. It o�ers a broad set of game types, eg. DeathMath, Domination and Capture the Flag, whih is further desribed in se-tion 2.1.1. In addition, multiple di�erent world maps, varied both in sizeand semblane, are available as indiated in J. Gerstmann (1999). Eah ofthese game types requires a number of opponents, whih an be AI or humanontrolled opponents. The AI ontrolled opponents in UT, will be desribedin setion 2.1.2.2.1.1 Game TypesThere are several possible game types available in UT. Most of these, are mu-tations of the three (probably) most popular game types whih are desribedbelow:Death Math: Kill as many ompetitors as possible and try to avoid beingkilled by them. The player who reahes the frag 1 limit �rst (or hasthe most frags when the time limit is reahed) is the winner.Domination: Two teams or more, �ght for possession of several ontrol pointssattered throughout the map. To take a ontrol point, a player simplytouhes it, and that ontrol point is now owned by that player's team.When a team owns a ontrol point, their sore inreases steadily untilthe other team touhes the ontrol point.1UT term for kill. 7

8 The Environment and the Domain

Figure 2.1: Some of the UT environment seen from above.
Capture the Flag: The players are divided into two teams. Eah team has abase with a �ag that they must defend. Points are sored for a teamwhen a team member aptures the opposing team's �ag, by bringingit bak to the team's base while their own �ag is safely ontained inthe home base.Common to all these game types is that players respawn at random loationswhen killed.2.1.2 Opponents in Unreal TournamentIn UT the player an play against the built-in botsor other players onnet-ing through LAN's or the Internet. The AI ontrolled bots in UT is by manypeople onsidered to be formidable opponents. They an be extremely hardto beat and to a ertain level their behavior an be oneived as that of ahuman. The strength of the bots is only partly due to leverly programmedsripts. Sine the bots aess information hidden to the human player (eg.player positions, though not visible in the line of sight), they have an ad-vantage ompared to human players. The UT environment is using built-innoise as default when aiming - meaning that even perfet aim at an oppo-nent, will not guarantee hitting the opponent. The noise varies dependingon the weapon used. The bots gain an advantage when inreasing their skilllevel, beause their aiming noise will be redued, whih is not the ase forthe human player.

2.1 Unreal Tournament - The Game 9

Figure 2.2: Two players in a lose enounter.2.1.3 Items In Unreal TournamentTo sueed in any of the di�erent game types - let it be Domination, DeathMath or Capture the Flag - it is an asset to be superior in ombat againstan enemy. To master this ability, one should be able to perform a numberof ations at the right time. Some of these ations are listed below:� Pik up health.� Pik up armor.� Pik up weapons.� Pik up ammunition.� Initiate o�ensive or defensive movement patterns.� Choose an appropriate weapon.� Aim with the hosen weapon.� Exeute a strategy (ombine and plan possible ations).As an be seen above, some of the mentioned ations involve the presene ofhealth, armor, weapons and ammunition. These items will be desribed inthe following setions. The basi elements of motion ontrol for movementwill be desribed in setion 2.1.5

10 The Environment and the DomainWeaponsThere are various weapons available in UT. All the weapons have distintattributes whih make them more or less useful depending on the situationin whih they are used. Some of the weapon attributes are general enoughto ategorize into di�erent lasses. The �rst lassi�ation is instant weaponsopposed to non-instant weapons:Instant weapons: These weapons hit the enemy with negligible delay, heneimpossible for the enemy to dodge.Non-instant weapons: These weapons �re with slower bullets or rokets whihare visible and an be dodged.And the seond lassi�ation is volatile weapons opposed to projetile weapons:Volatile weapons: These weapons �res with explosives whih on impat with asolid surfae or player explode. The damage taken by a player dereaseswith distane to the enter of impat.Projetile weapon: These weapons �res with projetiles or similar and areonly dangerous if they hit the target.The harateristis of the various kind of weapons an be seen in the listbelow:Impat Hammer: Close ombat weapon whih �res slowly and in�it a mediumamount of damage. This weapon does not use any kind of ammuni-tion. When �red against solid objets, the weapon an damage theinstigator. The player is equipped with this weapon at the start of agame.Chain Saw: Close ombat weapon whih in�its ontinually damage when inontat with the enemy.Enforer: The basi weapon in UT. This handgun is aurate on medium toshort range distanes. The weapon has a slow �ring rate. The weaponis in�iting instant but low damage.Double Enforer: When a player piks up a seond enforer he is given thepossibility to utilize them both at the same time, by arrying one ineah hand.Shok Ri�e: This ri�e �res slowly but aurate, also on medium and longdistanes. It in�its medium damage instantly.Bio Ri�e: This weapon �res lumps of sludge whih glom onto solid surfaes.It then explodes after a short time or when touhed by a player (alsothe instigator), ausing a medium amount of damage. The weapon�res at a medium rate, has lose to medium range and the lumps are�ying slowly.

2.1 Unreal Tournament - The Game 11Weapon type Damage Veloity VolatileImpat Hammer N/A 0 NoChain Saw N/A 0 NoEnforer 17 1 NoDouble Enforer 2�17 1 NoShok Ri�e 40 1 NoBio Ri�e 40 800 YesPulse Blaster 20 1450 NoSniper Ri�e N/A 1 NoRipper 30 1200 NoMinigun 17 1 NoFlak Cannon 16 2500 YesRoket Launher 75 900 YesTable 2.1: The weapon harateristis. Notie that in�nite veloity means instantdamage. The veloity is measured in UT-units.Pulse Blaster: Fires rapid low damaging projetiles at a high rate of �re.This weapon is usually used as a medium range weapon.Sniper Ri�e: This ri�e has a very slowly rate of �re. But, it is very aurateand hits instantly in�iting a high level of damage. When the projetilehits the opponent's head it kills instantaneously. A piture of the sniperri�e an be found on �gure 2.2.Ripper: The Ripper �res sharp blades whih an riohet o� solid surfaes.The blades are an when rioheting in�it damage on the instigatorwhen areless. The blades is moving with high speed and an killinstantly if they hit a player's head, else they will in�it medium tolow damage. The Ripper is �ring at a medium rate.Minigun: This weapon is �ring the same projetiles as the Enforer, but ata very rate of �re. If not used with are this weapon an run out ofammo in seonds, but an also redue the enemy's health in seonds.Flak Cannon: This weapon works virtually as a real life shotgun. It �reshunks of jagged metal whih, like the razor blades from the Ripper,an riohet. The loser it is �red against the enemy, the more damageit in�its. In lose enounter one shot is often enough to kill the enemy.Roket Launher: This weapon launhes roket-propelled grenades that ex-plodes on impat. The grenades are moving slowly, but in�it a mediumamount of splash damage on impat with solid surfaes, and a highamount of damage when hitting the enemy. The exploding grenadesan hurt the instigator if he �res against a nearby solid surfae.Table 2.1 shows the spei� attributes for eah weapon.

12 The Environment and the DomainAmmo type Rounds Fits toShok Core 10 Shok Ri�eBiosludge Ammo 50 Bio Ri�ePulse Cell 25 Pulse BlasterRi�e Rounds 25 Sniper Ri�eRazor Blades 25 RipperBullets 50 Enforer & MinigunFlak Shells 10 Flak CannonRoket Pak 12 Roket LaunherTable 2.2: Ammunition pakets, number of rounds in a paket and the weapon itbelongs to.AmmunitionInitially a weapon is loaded with a default amount of ammunition. Everyplayer has room for additional ammo and he an aquire this by piking upammunition. Di�erent weapons require di�erent ammunition - the di�erenttypes an be observed in table 2.2.HealthAll players in a UT game starts with 100 initial health points. When theplayer reahes zero, he dies and respawns at some random spawning point.To avoid death in UT, a player an pik up di�erent kinds of health pakets.These are listed in the following:Health Vial: Eah health vial gives the player 5 health points, to a maximumof 199.Health Pak: Replenishes 20 points of health, up to a maximum of 100.Keg O' Health: Gives the player 100 health points, to a maximum of 199.ArmorBesides the possibility to pik up health to avoid death, a player also hasthe option to pik up armor. Armor provides the player with armor pointsof whih he initially has zero. The maximum of armor points a player anretain is 150. Besides providing the player with armor points, the di�erenttypes of armor protet the player in di�erent ways. The harateristis ofthe three armor types an be found below:Thigh Pads: Provide the player with 50 armour points. They will absorb aperentage of all damage dealt a player, until they wear away.Body Armor: Provide the player with 100 armour points. It absorbs a signif-iant amount of, though not all the damage dealt to the player.

2.1 Unreal Tournament - The Game 13

(a) (b) ()Figure 2.3: The three manouevres a player in UT an perform; (a) Strafe left/right,(b) Move forward/bakward, () Turn left/right.Shield Belt: This is the most powerful defensive devie and provides theplayer with 150 armor points. The shield belt absorbs all damageuntil it is destroyed.2.1.4 The Players Initial ConditionWhen a player enters a game of UT, no matter the type, he will o�set at aninitial ondition of health, armor, equipment, et. The initial values are asfollows: Weapons Impat Hammer & EnforerAmmo Bullets pak (50)Health 100Armor 02.1.5 Controlling a PlayerA player who manouevre an UT agent has a set of ommands available hean ontrol by his keyboard and mouse. The set is given by the followingdesription:Strafe Right/Left: These two ommands will ause the player to move side-ways, either left or right, as an be seen in �gure 2.3(a).Move Forward/Bakward: These two ommands will ause the player to runforward or bakwards as an be seen in �gure 2.3(b).Turn Left/Right: These two ommands will ause the player to turn right orleft and will also hange the point he is faing. This is beause theplayer is not able to turn his head. This movement an be seen in�gure 2.3().Shoot: This ommand will ause the player to �re the weapon he is holdingin the present moment. He will aim in the diretion he is faing.These four kinds of basi ontrol ommands an be exeuted in parallel.As an example a player an strafe while turning against a �xed point and

14 The Environment and the Domainshooting - the UT term for these spei� parallel ations is irle stra�ngwhile shooting.2.2 The Gamebots DomainGamebots is a modi�ation to UT and is brie�y desribed in this setion. Formore detailed information on the Gamebots domain please visit Gamebot-Projet (2001).2.2.1 The FeaturesThe Gamebots domain was reated to provide AI researhers with a dynami,�exible and hallenging environment. It supports multiagent researh and isrelatively2 platform independent. The most apparent features are summa-rized in the following list:� Supports some of the most important game types in UT; Capture theFlag and Domination. New game types an be added.� Applies the same �exibility as UT. This inludes the UT-sript lan-guage whih an be used to extend the range of game types, items,environments, et.� Provides a more friendly looking environment - The Magi Wizardtheme; for an example look at �gure 2.4.� Makes it possible to do researh within the �eld of human-AI ollabo-ration and ompetition.� Publily available at Gamebot-Projet (2001).� Is built on a very popular game, whih makes it interesting for otherpeople than the usual researher. This leaves a hane to gather abroad ommunity working on similar tasks and share experienes.2.2.2 The Gamebots SystemThe Gamebots system allows players in a UT game to be ontrolled bynetwork sokets onneted to lients that an be ontrolled by an appliation.It is thereby possible for an appliation running a player to send ations,whih should be exeuted by the player in the game. The appliation alsogain information about the game state, whih makes it possible to plan thenext ation. In this way both remote ontrolled AI players, human playersand the built-in UT bots an play at the same time, in the same game.Players must master advaned AI apabilities to ahieve the aims of the gametypes, this inlude path planning, memorizing the harateristis of the 3Denvironment (items, paths, et.) and strategi planning.2UT and Gamebots is ported to at least Linux, Windows and Ma.

2.2 The Gamebots Domain 15

Figure 2.4: The friendly Gamebots theme - with wizards, friendly sounds and magilooking weapons, like the bubblewand - altogether looking harmless.
Bot

Client

Gamebots
module

UT
server

Gamebots ServerNetwork

Host 2

Host 3

Host 1

Client
Human

Client
Human

Bot
Client

Bot
Client

Socket

Socket

Socket

Socket

SocketFigure 2.5: A sketh of the general organization of the Gamebots software (opiedfrom Adobbati et al. (2001), used with permission).2.2.3 The Gamebots Interation ProtoolThe Gamebots interation protool is a text based protool of single-linemessages between the server and the gamebots modi�ation. The gamebotsserver sends sensory information messages to the bots ontaining the ur-rent state of the UT world. The bots operate in the environment by sendingation messages bak to the server. There are two kinds of messages; syn-hronous and asynhronous. The synhronous messages inlude things likevisual updates and status of the bot itself. As the name implies they ome ata regular interval. The asynhronous messages are typial events whih areexpeted to happen less frequently, eg. if another player is visible or messagesabout inoming �re. The ation ommands are for example the movement

16 The Environment and the Domainommands desribed in setion 2.1.5. A more detailed desription an befound at Gamebot-Projet (2001).

3 EvolutionaryAlgorithms�It would be nie to be perfet: meanwhilewe an only strive to improve�,David E. Goldberg.Geneti algorithms and geneti programming are non-deterministi or stohas-ti heuristi searh algorithms belonging to the paradigm of evolutionaryalgorithms. The main goal of this hapter is to introdue the onept of GP,but as this an be seen as a relaxation of GAs we will give a brief introdu-tion to GA and thereafter GP. A brief survey of evolutionary algorithms andproblems suited for them will introdue this hapter.3.1 IntrodutionLet us start by looking at how an optimization problem is de�ned and howsuh a problem an be solved. An optimization problem is de�ned by apair (
; F) where
 is the spae of solutions over whih the optimizationis performed (i.e. the searh spae) and F is the funtion to be optimized(i.e. the �tness funtion or objetive funtion), and measures the goodnessof every solution in the searh spae. Then: F :
 ! R. Note that
an be �nite, in�nite, or de�ned aording to ompliate restritions and Fmay be multimodal, non-di�erentiable, or de�ned aording to ompliaterestritions.The objetive is to �nd a solution (or, alternatively, solutions) z� 2
 suhthat: F (z�) � F (z) for all z 2
 in the ase of maximization, or F (z�) �F (z) for all z 2
 in the ase of minimization. A visual example of a �tnesslandsape an be seen in �gure 3.1.3.1.1 Searh StrategiesWhen we want to solve a optimization problem, e.g. maximization of Ak-ley's 1 funtion depited in �gure 3.1, we have to onsider some kind of searhstrategy. The hoie of searh strategy an depend on problem omplexity,available omputation power and various other parameters. A number ofsearh strategies are available and a rough lassi�ation of these is skethedbelow:� Brute fore (e.g., depth-�rst)� Heuristi:� Deterministi (e.g., hill-limbing)1F (z) = F (z1; z2) = e 12 P2i=1 os(2�zi)+20e�0:2p 12 P2i=1 z2i �e�20, where �3 � z1; z2 �3. 17

18 Evolutionary Algorithms
-3

-2
-1

0
1

2
3 -3

-2
-1

0
1

2
3

-12

-10

-8

-6

-4

-2

0

Figure 3.1: Fitness landsape given by Akley's funtion. This funtion is ommonlyused for benhmarking GAs.� Non-deterministi or stohasti (e.g., evolutionary algorithms).So a generi proedure for solving any optimization problem is: Searh forthe point of the searh spae with the best objetive funtion value by usingan appropriate searh strategy for exploring the searh spae.Aording to Heitkötter and Beasley (1994) an evolutionary algorithm (EA)is an umbrella term used to desribe omputer-based optimization problemsolving systems whih use omputational models of evolutionary proessesas key elements in their design and implementation. Some ommon types ofEAs are:� Geneti algorithms.� Evolutionary programming.� Evolution strategies.� Geneti programming.In short, EAs is a lass of algorithms designed for searhing in very big searh-spaes. Although simplisti from a biologist's viewpoint, these algorithmsare su�iently omplex to provide robust (good performane aross a varietyof problem types) and powerful adaptive searh mehanisms. Basially, twosteps are ommon to most types of EA:1. Exploitation of known solutions.2. Exploration of new solutions.In the �rst step, the best solutions of a small set of known solutions areseleted in a proess inspired by natural seletion, i.e. �survival-of-the-�ttest�. These seleted solutions are exploited by onstrution of new so-lutions through reombination. Intuitively, this step might be thought ofas a sense of small steps towards better solutions is exerised. This step isgenerally a tradeo� between random variation and strutured variation. Inthe seond step, new solutions are explored by reating new solutions fromvariations of the known solutions. Intuitively, this step aims to perform long

3.2 Geneti Algorithms 19jumps in the searh spae in order to explore areas that, otherwise, remainunexplored. If the new solutions are reated totally at random, the e�ienyof the algorithm might be undesirably low. On the other hand, if the solu-tions are reated in a totally strutured manner the algorithm might not beable to �nd satisfying solutions.3.2 Geneti AlgorithmsAs indiretly stated in the quote introduing this hapter, we an not expetalways to reah perfetion, and hene, we should onentrate on improving.This is the entral idea and driving fore in evolutionary omputation andGeneti Algorithms (GA). Inspired by natural seletion and natural evolu-tion, GAs e�iently searh through very large searh spaes by moving aset of solutions (a population) to new regions with an expetation of im-provement. In the following we will desribe how GA sueed by doing justthat.3.2.1 The Basi Loop of EvolutionBefore going into details, let us examine the main loop in GA, as depitedin �gure 3.2. The starting point of the loop in �gure 3.2 is the population in
Evaluation

of
individuals

Selection by

by mutation and
Reproduction

crossover

fittest principle
survival−of−the−

Figure 3.2: The loop of evolution.the leftmost irle. This population is our urrent population, and moving tothe topmost irle we evaluate eah individual in our population with respetto some prede�ned �tness funtion. After doing so, we are able to performseletion aording to the priniple of �survival-of-the-�ttest�. Seletion anbe implemented in numerous ways, and we mention only the most ommonlyused:Roulette Wheel Seletion (RWS): Eah individual is assigned a probability ofbeing seleted proportional to its atual �tness. Formally the proba-bility Pi of individual i being seleted is:Pi = FiPj2Pop Fj ; (3.1)

20 Evolutionary Algorithmswhere Pop is the population and Fj is the �tness of individual j. Nowthe individual with the highest �tness will have the highest probabilityof being seleted for reprodution.Rank Based Seletion (RBS): If the population ontains some superindivid-ual 2 then this individual will be dominant in RWS. This is generallyundesirable, for reasons explained in setion 3.2.2. Instead of using theatual �tness when spinning the roulette wheel, we ould map the raw�tness of an individual to the ranking of that individual relative to therest of the population. So the best individual gets a ranked �tness ofN , (where N is the size of the population), the seond best gets N � 1and so forth. The probability Pi of individual i being seleted is now:Pi = RiPNj=0N � j = 2 �RiN(N + 1) ; (3.2)where Ri is the ranked �tness of individual i. Now no superindividualan dominate the seletion.Tournament Based Seletion (TBS): This method works by randomly pullingtwo (or more) individuals out of the population and then seleting the�ttest. So, the probability of individual i being seleted is omputedby multiplying the probability of the individual being pulled out atrandom with the probability that a less �t individual being pulled.With a tournament-size of two we get the probability Pi of individuali being seleted: Pi = 2N �1� N �RiN � 1 � ; (3.3)where Ri is the ranked �tness of individual i and N is the size of thepopulation.TBS ompared to RBS allows superindividuals a higher level of dominane,but still not to the extend of RWS. As an example, a superindividual in apopulation of size 10 has the probability of approximately 18% using RBS and20% using TBS. Furthermore, the least �t individual an never be seletedusing TBS.The last step of the evolution, is the proess of generating the next populationfrom the set of individuals seleted for reprodution, and the bottom irle in�gure 3.2 ontains the typial operators for doing just that, namely mutationand rossover. From applying these geneti operators to the subset of thepopulation that was seleted in the previous step, a new population emergesand the loop is ready to start a new yle. Many di�erent types of rossoverand mutation has been investigated throughout the years, the most primitiveand probably most ommonly used being the one-point rossover and one-point mutation. These basi operators are depited in �gure 3.3 and amongsta few other ommonly used operators are desribed below:2A superindividual is an individual with a �tness several degrees of magnitude higherthan the seond most �t individual in the population.

3.2 Geneti Algorithms 21
Mutation

Crossover

���
���
���
���

����
����
����

����
����
����

��
��
��
��

���
���
���

���
���
���

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

����
����
����
����
����
����
����

����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

Figure 3.3: Examples of the rossover and mutation operators in ation.One-point Crossover: As shown in �gure 3.3, we need two distint individu-als as parents. One random ut-point is hosen, and two o�spring areonstruted by reombining the four piees into two new distint indi-viduals. The o�spring are added to the next population. The rossoverativity is part of the exploitation phase.Two-point Crossover: This approah is exatly like the one-point rossovermethod, using two ut-points instead of one. That is, three pieesfrom eah parent should be reombined into two o�spring.Uniform Crossover: A randomly generated mask identi�es the ut-points thatshould be used. This mask is typially implemented as just a randomlygenerated array of bits with a length equal to the number of possibleut-points. Based on the value in this array ut-points are either usedor not used.Single-point Mutation: The property at a randomly seleted mutation-pointof the individual is mutated to reate one o�spring. In doing that wemight destroy the good properties that made us selet this individualin the �rst plae. On the other hand we might as well improve theindividual by hanging some bad property to a better one. And evenmore important, mutation is the only way new genes an be introduedin the population, and thereby keeping a level of diversity3. No matterwhat happened, this new individual is added to the next population.In �gure 3.3, the head of the individual is mutated to reate the newindividual. The mutation ativity is part of the exploration phase.Gaussian Mutation: Instead of mutating a property totally at random, themutation operator hooses the new value of the property based on aGaussian distribution around the urrent value.Many other methods for rossover and mutation exists, we have just men-tioned a few.So, the population of individuals in the next generation is �rst of all om-posed of o�spring produed by the geneti operators, thereby replaing indi-3In setions 3.2.2 and 3.2.3 we disuss the existene of diversity in a population.

22 Evolutionary Algorithmsviduals in the population of the urrent generation. In some ases, however,it might be possible that individuals generated by the rossover and muta-tion operators do not desribe valid solutions to the problem. In that ase,it is typial to do one of three things:1. Introdue a repair operator that either randomly or systematiallymodi�es invalid solutions until they desribe valid solutions.2. Severely penalize invalid solutions during evaluation.3. Disard invalid solutions.When implementing GAs, you would typially use a bit string representationof your individuals. As an example onsider this senario:You want to maximize the value of an integer variable x in the interval[1..32℄, and your �tness funtion is f(x) = px. It su�es to use a bitstring of length 5 to desribe all points in the searh spae, integers in therange [1..32℄. Of ourse this searh spae is so small that you ould eas-ily hek all 32 elements and determine the global optimum, but this isjust an example. You would then start out with a population of randomlygenerated individuals, say: {[00110℄[10011℄[01111℄...}. And �tness would beomputed by omputing the square-root of the binary value: f([00110℄) = p6= 2.45. Crossover with the randomly hosen ut-point equal to two wouldbe: [001|10℄[100|11℄![00111℄[10010℄. Mutation would be just to �ip somerandomly hosen bit, i.e.:[01111℄![01110℄In this setion we have only inluded the most ommon and basi methodsfor rossover and mutation. These are good for the purpose of explanation,and others are typially modi�ations of or extensions to these basi ideas.3.2.2 Ensuring ConvergeneWe stated earlier in this setion that GAs perform a searh in some largesearh spae. Therefore it is reasonable to ask the question: an we be sureto �nd what we are looking for? 4. The answer is: No, not if the searhspae is too large to searh by brute fore. But we an ensure that if we visitthe best individual in the searh spae (the global optimum), then we willkeep that individual. This is ensured by adding the onept of elitism to theloop in �gure 3.2, whih means that the best individual of a generation isopied (without modi�ation) to the next generation.Apart from the insurane of keeping the globally best individual if visited,keeping the best individual has an immediate advantage if the �tness funtionis simple and with few optima. If only a few optima exist, then why not tryto limb one as soon as on is found?A side-e�et of adding elitism is that the algorithm in general will onvergefaster to some optimum, and you run the risk that this optimum is not theglobal optimum but some loal optimum. This situation is often referred toas premature onvergene. Figure 3.4 shows a population, and their loationin a �tness spae. This population is in danger of onverging prematurely at4We are looking for the best individual in searh spae, remember?

3.2 Geneti Algorithms 23
Fitness

IndividualFigure 3.4: A population limbing a loal optimum, and without mutation would bedoomed to reah premature onvergene.a loal optimum, that is, evolution omes to a halt, and the global optimum isnever reahed. Only by mutation will some o�spring be able to �nd anotheroptimum. In setion 3.2.3 we will disuss methods (other than mutation)for maintaining diversity in the population in order to redue the risk ofpremature onvergene.Elitism is not neessarily a bad thing. As we argued above, it speeds up theevolution that guides the population towards some optimum. And if you arejust interested in �nding a good solution fast, but the perfet solution is notof speial interest to you, then you ould enhane performane of your GAby adding elitism. You might even onsider to opy the two or three bestindividuals to the next generation, to further speed things up.It is possible to investigate the onvergene properties of GA with a moreformal approah than the one taken in this thesis. It has previously beendone, famous examples are Building Blok Hypothesis by Goldberg (1989)or the seminal Shema Theorem by Holland (1992). Shemata are genotypetemplates that de�ne a subset of the searh spae. A shema is enodedin the same language used for enoding solutions with the addition of aspeial don't are symbol #. So, if we enode solutions using �xed lengthbit strings, an example of a shema ould be [00#1#℄, and this shema issampled by the individuals [00010℄,[00011℄,[00110℄ and [00111℄. The order ofa shema is the number of �xed positions (non-# symbols) and the de�ninglength of a shema is the distane in positions between the �rst and the last�xed position of the shema. For instane the shema [0###1#℄ has order2 and de�ning length 4. The Shema Theorem states that short low ordershemata whih is sampled by �t individuals will rapidly spread throughoutthe population. The Building Blok Hypothesis states that late generationindividuals samples many suh short low order shemata, and hene areomposed from many small and good building bloks.3.2.3 Maintaining diversityWe need to explore new areas of the searh spae and not exploit a knownoptima for too long, in order not to get trapped in a loal optimum. As a sidee�et the searh is slowed down, that is, onvergene will be delayed. This isvery important for omplex domains in whih �tness funtions have multipleloal optima, as the risk of onverging prematurely is generally higher for a

24 Evolutionary Algorithmshigher number of optima.A lot of di�erent ways to maintain diversity within the population of GAexists, and in the following setions a few of these will be desribed. Asa oarse lassi�ation, we an speak of nihing and non-nihing tehniques.They di�er only in the formulation of subpopulations and the promotion ofthese, whih is more expliit in the nihing tehniques, while in the non-nihing tehniques it is only an impliit side-e�et.SharingGoldberg (1989) desribes a nihing tehnique that dynamially divides thepopulation into subpopulations of appropriate size. The name Sharing referto the fat that �tness is shared among individuals that are lose to eahother. That is, �tness is regarded as a limited resoure that individualsmust share. Raw �tness fraw is alulated for all individuals as usual, and inaddition a sharing fator for all pairs of individuals s(i; j) is alulated. Thenthe e�etive �tness feff is onstruted by dividing fraw with the aumulatedsharing fator, formulated in equation (3.4).feff (i) = fraw(i)Pj2Pop s(i; j) (3.4)In equation (3.4), Pop is the population. The sharing funtion maps adistane measure d(i; j) to a sharing fator in the interval [0::1℄. As a rule ofthumb, the maximum sharing fator should our between two individualsif they have the minimum possible distane to eah other, e.g. identialindividuals i and j should have s(i; j) = 1. For a population of size N , atotal of N(N�1)2 distanes must be omputed to totally order the population,and hene this alulation an not be allowed to be very expensive.The aim of this tehnique is to avoid the situation where all individuals in thepopulation oupies the same peak in the �tness landsape. By investigatingequation (3.4) it is obvious that the greater the peak, the more individualsan be allowed to inhabit it.CrowdingThis ommonly used non-nihing tehnique is one of the earliest of its kind,�rst proposed by De Jong (1975). Using this tehnique, generations are notlearly bounded but rather a steady state model is used, in whih generationsoverlap. A proportion of the population (referred to as the generation gapG) is hosen to reprodue, and the new o�spring replaes existing individualsaording to some sheme. A ommon sheme is to extrat a sample set ofsize CF (rowding fator) from the population. An o�spring then replaes themember from the sample set that is most similar to the o�spring. The e�etof this approah is intuitively that, as o�spring replae individuals aordingto similarity, subpopulations or spies ould be expeted to emerge. Thenumber of spies that we would expet to emerge is of ourse ontrolled byCF, De Jong (1975) had suess with CF values of 2 and 3 leaving room fora few spies to evolve.

3.2 Geneti Algorithms 25Restrited MatingRestrited mating an be seen as a variation of the rowding method de-sribed above. It is a non-nihing tehnique that only impliitly promotesdisperse populations by putting up a restrition of mating aording to somesheme. A typial sheme is to only allow individuals to mate if they arewithin some distane to eah other. As mentioned by Goldberg (1989), thisrequirement ould be relaxed so that it is only required as long as improve-ment in �tness is the result. When no improvement is measured, inbreedingis rejeted in favor of ross-breeding.Like the tehnique of sharing desribed above, this sheme ould be imple-mented by alulating an expliit distane measure for any two seleted in-dividuals before allowing them to reprodue. Another implementation ouldbe to let all individuals arry a mating template, and when the template ofindividual i is mathed by individual j, then i is allowed to mate with indi-vidual j. To be more spei�, the individual is divided into a funtional partand a template part. The funtional part, being the part used for assigninga �tness value to the individual. And the template is then used only for�nding good mates. However, the template part should still undergo genetireombination together with the funtional part, and thereby good skills for�nding mates would also be rewarded.The aim of restrited mating is to avoid stillborn individuals that also ouldhave a lethal impat on the evolutionary proess itself.The Island PrinipleThe island priniple is atually not just one method, but rather a olletionof methods where subpopulation expliitly (sometimes even physially) areevolved in parallel. Most of the methods has been developed mainly fordistributing the GA, but the methods also holds the inviting property ofintroduing an extended level of diversity 5 into the population. The meth-ods (like everything else in GA) is inspired by natural evolution in whihyou do not see one global population evolving as a unity. Instead numeroussubpopulations evolve in parallel 6 and, from time to time, individuals mi-grate from one population to another, thereby spreading its inherited genesto new areas. In GA we therefore an do similarly. The initial populationis split up into X subpopulations, and the loop of evolution (see �gure 3.2)is started on eah subpopulation. From time to time some migration shouldtake plae, aording to some topology. Fernández et al. (2001) suggest thetwo ommonly used topologies depited in �gure 3.5. Figure 3.5a shows aring topology, in whih individuals migrate only in one diretion ontraryto the mesh topology, in whih individuals have a hoie of four diretionswhen migrating.The migration ould either proeed in some random order allowing popu-lations to grow and shrink. But we are not interested in ending up with5E.g. see Fernández et al. (2001).6These parallel evolving subpopulations are (in nature) often based upon di�erent�tness funtions. That is, a strategy might be suessful on the south pole, but may failin Afria.

26 Evolutionary Algorithms
4

5

1

2

3

(a)
2 3

5 6

8 9

1

4

7

2 3

4

7

8 9

1

1

6

9

7

3

(b)Figure 3.5: Figure (a) shows an example of 5 islands onneted aording to thering topology. Figure (b) shows 9 islands onneted in the mesh topology. The meshloops, giving a toroidal struture.just a few (possibly one) inhabited islands, this would eliminate the wholeidea. Assigning a probability of migration (PM) to eah individual whih isproportional to the size of the population inhabiting that island will makeindividuals �ee from overpopulated islands, and by limiting the number ofmigrations per generation, you would over time approximate an even dis-tribution of the number of individuals on eah island. Another approahis to have a �xed deterministi migration shema, and thereby keeping thepopulation sizes stati. Using the ring topology, it would be obvious to justlet one individual migrate eah generation.If you implement elitism and are afraid that the evolution will su�er frompremature onvergene, then a possible approah ould be to let PM beproportional to the �tness of the individual. This ensures that the bestindividual will migrate more often than other individuals and hene, not beable to dominate one spei� subpopulation. It is of ourse true, that suha superindividual then just as well ould dominate the total population bymoving around spreading its genes in every subpopulation on its way. Butit will take appreiable more generations for it to do so, as it never stays formore than a few generations in the same subpopulation. And it is likely toenounter a subpopulation in whih some individual is more �t, and henewill no longer be subjet to elitism.The evolution that we expet by applying the island priniple, ould be de-sribe by the snapshot of a population of �ve subpopulations shown in �gure3.6. In �gure 3.6 we see that there are typially more than one subpopulationpresent at a spei� peak. This is what will happen if the best individualof a subpopulation is fored to migrate. As a subpopulation onverges toa loal optimum it is generally guided by the best individual in the popu-lation, as this is the individual that will be seleted for reprodution mostoften. But as the best individual is replaed by migration every one in awhile, the whole population will generally shift diretion, and ideally searhall loal optima on its way. Here is a senario, based on �gure 3.6: Theislands are onneted aording to the ring topology, and the order is blak,

3.2 Geneti Algorithms 27
Individual

Fitness

A

B
C

D
E

Figure 3.6: A snapshot of a population of �ve subpopulations (blak, red, yellow,green and blue) evolving. This is not empirial data, but this is what we expet ofthe island priniple. A-E are the individuals that reently migrated.red, yellow, green and blue. Every seond generation the best individual ofan island migrates to the next island. The individuals A-E has just migratedto a new island. A was the best individual of the blak island, but now theblak island exhanged A for E, and the population of the blak island willnow move towards E, as this is the new best individual. In doing this, thepopulation will visit some of the mountain tops on the way.Massive Distributed Parallel Geneti AlgorithmAs desribed by Shumeet (1992), the Massive Distributed Parallel GenetiAlgorithm (MDPGA) is a kind of ompromise between the single globalpopulation approah, and an island approah. As the name suggests, it wasmainly developed for distributing GAs, but it is nonetheless interesting wheninvestigating diversity and onvergene properties in populations.As in the basi island approah, several small populations are maintained,but the individuals are organized in a mesh struture as depited in �gure 3.7.In the approah desribed by Shumeet (1992), eah subpopulation ontains
a b c

Figure 3.7: Organization of subpopulations in the MDPGA. The neighborhood ofsub-population a and are shown as dotted irles. Subpopulation b is a ommonneighbor to both a and .10 individuals. After the initial populations have been randomly generated,the algorithm proeeds in eah generation as follows:

28 Evolutionary Algorithms1. Selet two individuals for reprodution.2. Produe two o�springs, and inlude these in the next population.3. When all of your eight neighbor populations have progressed to thisstep, lone one randomly hosen individual from eah of your eightneighbors, and inlude this lone in your next population.4. Disard your old population and initiate the next generation.You an still identify islands in this approah, but the borders are blurredbeause of the heavy migration between the relatively small subpopulations.But sine many suh small subpopulations exist, fast global onvergene isnot likely to our. Genes are slowly distributed throughout the network,and unique solutions will emerge in subpopulations that are far apart, whilelose sub-populations will derive similar solutions. Shumeet (1992) used amodest form of elitist seletion in whih the most �t individual of a sub-population replaes the least �t individual of the same subpopulation in thenext generation. The extent of overlap in this approah is also investigatedin Shumeet (1992), and the approah presented here is the one with themost overlap. The danger of using extensive overlapping is (from a diver-sity/onvergene property point of view) that you end up with one globalpopulation, and nothing has hanged from the basi GA, i.e. no diversitymaintenane. The other extreme is to allow only a minimum of overlapping,whih e�iently slows down evolution, as genes are only spread in a fewdiretions at a time. This allows for a high level of diversity.The most improvement is of ourse obtained when implemented on largeluster mahines as the topology of the subpopulations is inviting to thesearhitetures. With the heavy ommuniation taking plae in the MDPGA,it is diretly designed for lurative implementations for MIMD 7 mahines,whih is also emphasized by Shumeet (1992). The island priniple witha lower rate of migration is more suited for an heterogeneous distributedsystem with lower bandwidth.3.2.4 The Fitness FuntionThe ativity of designing the �tness funtion should of ourse be given pro-found attention, as this parameter will guide the evolution more than any-thing else. In this setion we will present a number of o-evolutionary ap-proahes. Most of the referenes given exempli�es these approahes in thedomain of GP, but they are not spei� to GP and ould be used in GA aswell.The optimal solution to the task you are optimizing is not known, and inaddition it might not be possible to guarantee that it will sore maximum�tness. That is, if you try to evolve a strategy for a ertain game, the �tnessfuntion that assesses a given individual against all valid strategies wouldintuitively be able to evolve good strategies. However, apart from very simplegames, it is typially not possible to onstrut all possible strategies for this�tness funtion, and hene we need another approah. Koza (1992) presents7Multible InstrutionMultible Data.

3.2 Geneti Algorithms 29

(a)
Winner

(b)Figure 3.8: The all-against-all ompetitive �tness approah, and up tournament�tness approah, (a) and (b) respetively. The approahes were previously presentedby Axelrod (1987) and Angeline and Pollak (1994).a number of examples in whih programs solve well de�ned engineering taskssuh as a boolean 11-multiplexer funtion. Also the well known arti�ial antproblem that evolves a roboti ation plan for an arti�ial ant that triesto �nd as muh food as possible in as short period of time as possible ispresented by Koza (1992). They are all evolved using a traditional �tnessmeasure. With traditional �tness measure, we understand a �tness funtionthat produes the same �tness for the same individual, independently of therest of the population, that is, an absolute �tness. As argued in Angeline andPollak (1994), this traditional �tness measure is not likely to perform wellfor very omplex tasks. Instead a ompetitive approah in whih individualsare evaluated relative to the rest of the population is suggested. Angelineand Pollak (1994) investigate three di�erent ompetitive �tness funtions,two of whih were previously used by Axelrod (1987) and Hillis (1992). Thepriniple of these two methods an be seen in �gure 3.8(a) and 3.8(b).All-Against-All Tournament Fitness
Axelrod (1987) used the all-against-all approah (see �gure 3.8(a)) to evolvestrategies for the iterated Prisoners Dilemma. Using this method, the �tnessof an individual is based upon that individuals' performane against all otherindividuals in the entire population. With this strategy and a populationsize of N we need: NXi=1 N � i = N(N � 1)2 ; (3.5)ompetitions in order to determine �tness of all individuals in the population.The obvious drawbak of this approah is the extensive omputation due tothe high amount of ompetitions. The advantage is that a total ordering ofall individuals relative to the population is obtained.

30 Evolutionary AlgorithmsCup Tournament Based FitnessIt is not always required to have a total ordering as desribed above or theamount of ompetitions might be an unaeptable overhead. If this is trueyou might onsider to implement a up tournament based �tness. Angelineand Pollak (1994) used up tournament based �tness (see �gure 3.8(b))to evolve strategies for the simple Ti Ta Toe game. The up tournamentpairs individuals randomly two and two, and the winner proeeds to the nextround. If the number of individuals in a round is odd, one randomly hosenindividual is given a free pass to the next round. This an (and generallyshould) be avoided by hoosing the size of the population to be 2k for some k.The tournament proeeds until you have a winner, whih is then the �ttestindividual in the population. Atually, this is a binary searh for the �ttestindividual, and the amount of ompetitions in a population of size N is:dlog2(N)eXi=1 �N2i � = N � 1: (3.6)The relatively small omputation overhead when ompared to all-against-all tournament (desribed above), is the paramount advantage of the uptournament approah. The ordering of the individuals will not be total,or even orret. First of all, the ordering only ensures you that the most �tindividual is found. The looser in the �nal round is ordered seond plae, butthe globally seond best individual might by hane have been paired withthe globally best individual in the �rst round, and therefore ordered equallywith the least �t individuals. This is the main disadvantage of tournament�tness.Co-Evolution FitnessA third approah that avoids the use of traditional
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

Figure 3.9: A o-evolutionary environ-ment onstituted bytwo parallel popula-tions, as used by Hillis(1992).

�tness measures is o-evolution. Koza (1991) presentsthe onept of o-evolution in EA as a proess inwhih the environment of one population is onsti-tuted by one or more population(s), evolving in par-allel. The environment of the parallel population(s)is of ourse onstituted by all other parallel popula-tions. Individuals from the �rst generations will ingeneral be highly un�t when ompared to an absoluteoptimal solution, and �tness-values assigned relativeto the urrent environment are used.Hillis (1992) used the o-evolution strategy (see �g-ure 3.9), in whih individuals are assessed against anindividual from a parallel population. This is bestexplained with the example below.Assume that our individuals are evolved to lassifytextstrings, then we reate two populations namelya population of lassi�ers and a population of text-strings. Now, these two

3.3 Geneti Programming 31populations evolve in parallel, and �tness are assigned to them by paringtwo individuals, one lassi�er and one text-string. The lassi�er is of ourseassigned �tness proportional to how aurate it lassi�es the text-string, andthe text-string is assigned the inverse value. With 2N individuals (ountingthe parallel population also) we need N ompetitions. If we onsider theexample above, one seeming disadvantage of this approah is the fat thatthe �ttest lassi�er of some generation might just have been luky to havebeen paired with a partiularly easy string. However, we should not penalizeluk, rather leave it up to evolution to weed out the bad genes from thepopulation. The real disadvantage is that you need to maintain a populationof test examples together with your main population. The advantage of thisapproah in ontrary to approahes that use a �xed set of test ases, is thatyou do not speialize your individuals to some prede�ned set of test ases,but rather you fore your system to �nd general solutions.3.3 Geneti ProgrammingIn the previous setions of this hapter, we have introdued the basi prini-ples in GA, along with some more advaned but ommonly used extensions.One of the major disadvantages of GA is that it uses �xed length enodingsfor solutions. Geneti programming is basially a relaxed GA allowing vari-able length enodings. In order to establish this relaxation, amongst otheradjustments, a rede�nition of the geneti operators is required. It is obvi-ous, that with this enhanement, GP is more �exible towards the spei�formulation of a solution than GA.The �eld of GP is relatively new, and the presentation given in this setionis based upon the work by Koza (1992), as it ontains one of the mostomprehensive introdutions to GP.One of the most important onsiderations is the de�nition of the languagefrom whih our individuals will be built. The language is union of the setsT (the set of all terminals) and F (the set of all funtions). To reate anindividual elements from the two sets are ombined to onstrut a parse tree.The leafs of suh a parse tree are of ourse elements of T , while the innernodes are elements of F . In the following setions we will desribe how toapply geneti operators to individuals represented as parse trees, disuss howto onstrut T and F and last disuss the �tness funtion.3.3.1 Geneti Operators and Parse TreesThe parse tree representation is often hosen throughout the literature, andit has numerous advantages over e.g. higher-level soure ode or low-levelbinary mahine ode. The problem you fae with both alternatives to parsetrees is the same: it is hard e�iently to ensure that only syntatially orretprograms are onstruted by rossover and mutation. Even when applyingthese operators to parse trees results in syntatially orret trees, we stillhave to hek that all data types are orret for the di�erent funtions inour tree, unless we require T and F to satisfy the losure property, statedby Koza (1992).Property 3.3.1 (The Closure Property) The losure property requires

32 Evolutionary Algorithmsthat eah of the funtions in F be able to aept, as its arguments, any valueand data type that may possibly be returned by any funtion in F and anyvalue and data type that may possibly be assumed by any terminal in T .We will onsider how to satisfy this property in setion 3.3.2, for now let usassume that we have no problems with de�ning T and F .As an example, let us use the following F and T that, obviously, satisfyproperty 3.3.1: T = f1; 2; 3; 4gF = f+;�gIn �gure 3.10 examples of subtree-swapping rossover and subtree mutationapplied to parse trees built from these T and F are shown. In the remainderof this thesis, whenever we talk about rossover and mutation in GP, we un-derstand subtree-swapping rossover and subtree mutation, unless otherwisestated. As in GAs, many di�erent inarnations of the basi geneti operators
32

14 1

3

3

4

mutation

crossover

31

3

1

2

41

Figure 3.10: Crossover and mutation applied to parse trees.exist. Below we have desribed some of these:Subtree-swapping Crossover: After two individuals have been seleted for re-prodution, a random ut-point being a node in the tree is hosen,independently for them both. In ontrary to GAs, this ut-point neednot be ommon to the parents, as GP individuals generally di�er inboth shape and size. When ut-points have been hosen, the two sub-trees with root at the ut-points are exhanged, produing the twoo�spring.Context preserving Crossover: The hosen ut-point must be ommon to theparents. That is, the path from the root to the ut-point must be thesame for both parents. Apart from this onstraint on the hosen ut-point, this operator swaps subtrees like the above mentioned method.Subtree Mutation: A random ut-point is hosen, and the subtree with rootat the ut-point is exhanged with a randomly generated subtree. In�gure 3.10 the randomly generated subtree is a tree onsisting of onlythe terminal node with value 1.Point Mutation: A single node (funtion or terminal) is hosen for mutation.Only the node is mutated, that is, any subtree(s) below this node

3.3 Geneti Programming 33remains unhanged, whih means that a node of the same order (samenumber of hildren) must be hosen as replaement for the original.3.3.2 The Basi Building Bloks F and TKoza (1992) presents some useful rules of thumb when designing F and Tto satisfy the losure property (property 3.3.1). In this setion we try toprovide an overview of some of the most appliable rules.Every funtion in F must be arefully examined in order to satisfy the lo-sure property. If ommon arithmeti operations are inluded in F , then wemight need to rede�ne them to be proteted against invalid arguments. Forexample, if division by zero is possible, we might rede�ne the division op-erator to return zero when division by zero is attempted. Alternatively weould hoose to return undefined when invalid arguments are provided, andthen all funtions would have to be able to aept this new undefined valueas argument.Conditional operators normally operate on boolean values, but this might beunaeptable in some spei� problem domains. The onditional operatorsould be modi�ed in one of these ways:Numerial valued logi: All omparative operators (<, >, =, et.) are modi-�ed to return a numerial value instead of true and false, for example1 and -1 respetively.Rede�nition of omparative operators: Instead of returning a boolean value,the omparative operators aept two additional arguments, and exe-ute one of them based on the result of the omparison. That is, theequals operator should aept four arguments, so we have:equals(arg1,arg2,true-branh,false-branh) instead ofequals(arg1,arg2).And the semanti would of ourse be to exeute true-branh if arg1is equal to arg2, and exeute false-branh otherwise.Rede�nition of branhing operators: The ommon branhing operators ouldbe rede�ned to hek on some ondition external to the program, typi-ally some sensory information. In this way no general branhing on-struts should be inluded in F , but only speialized branhing fun-tions. For instane the sensory information enemy-in-reah shouldnot be aessed diretly like:if(enemy-in-reah, then-branh, else-branh)rather it should be enapsulated in a funtion like:if-enemy-in-reah(then-branh, else-branh)that aepts two arguments then-branh and else-branh. Based onthe value of the external sensor variable enemy-in-reah the funtionexeutes either then-branh or else-branh.It should be noted that Montana (1993) proposes a method for StronglyTyped Geneti Programming (STGP) in whih the losure property is totally

34 Evolutionary Algorithmsrelaxed. Montana (1993) uses stati type-heking when onstruting theparse trees to ensure the orret types of data.Koza (1992) identi�es another important property that must be satis�ed inorder for the system to be able to evolve good solutions. In Koza (1992) thisproperty is stated as follows:Property 3.3.2 (The Su�ieny Property) The su�ieny property re-quires that F and T be apable of expressing a solution to the problem.It is obvious that the ability to express the solution to the problem, usingthe given F and T , is a reasonable requirement. However, often it is noteasy to realize what set of funtions and terminals will provide universal andsu�ient expressive power. Therefore one should onsider the introdutionof extraneous funtions and terminals. The impat on the performane ofthe system is hard to predit. In general numerous extraneous funtions willalmost ertainly degrade the performane of the GP system, as the searhspae ontains idential individuals. On the other hand, it may produesolutions whih are more suitable for human understanding. Consider asystem searhing for a boolean funtion as a solution to a problem. Now,F={AND, NOT} is universal as any boolean funtion an be implementedusing only the AND and NOT operators. This may be a good hoie if you aredesigning iruit board layouts, but you may prefer a funtion set as F={IF,AND, OR, NOT} in order to get a solution whih is more intuitive to humans.One way to hek if the su�ieny property is satis�ed, is to try to onstruta known solution to the problem with the F and T . If this is possible, thenyou know that one solution is possible. And if you did not design F andT towards expressing this spei� solution, then hanes are that it is alsopossible to express other solutions.

4 Summary of previouswork �When your work speaks for itself, don'tinterrupt.�,Henry J. Kaiser.This hapter serves as a presentation of our previous results, inluding themethods used and the approah taken. It was thoroughly desribed in Holmand Nielsen (2002) and hene, this hapter an safely be skipped, should thereader be familiar with our earlier work. The justi�ation of the di�erenthoies made will be held at a minimum, as it is not the purpose of thishapter to justify and argue for the hoies, but rather it is to summarizethe methods and design issues.4.1 Previous GoalsThe goals in Holm and Nielsen (2002) were stated as follows:� To build a bot by means of evolutionary methods, and more spei�allythe GP paradigm. That is, a system that allows our bots to evolvethrough generations must be implemented.� The system should be designed in a fashion that makes the evolution-ary proess, to some extent, immune to many of the known problemsonneted with the appliation of evolutionary methods.� The bot should be benhmarked against the UT bot that omes withthe environment, e.g. the UT bot or some similar bot. Also, it shouldbe evaluated by human experiened players. The buildin bot providesa good benhmark test, as it has at least as muh information at itsservie as does our bot. Also, it has to work under the same onditionsas our bot. That is, parameters like maximum speed of movement andaiming noise will be the same, whih is not always true for a humanplayer.In the reminder of this hapter, we will summarize our attempt to reahthese goals.4.2 Language DesignThis setion desribes the language developed for desribing strategies, andit is omposed by the two sets F and T - the set of funtions and terminals,respetively. The language is designed without general purpose in mind,rather it is designed for the spei� domain of Gamebots as desribed inhapter 2. 35

36 Summary of previous work4.2.1 The Most Basi SkillsFirst of all, there are some basi skills that are intuitively useful, and shouldtherefore be inluded. The most basi being primitive movement ommands,as desribed in setion 2.1.5. These inlude the following:(move-forward)(move-bakward)(turn-left)(turn-right)(strafe-left)(strafe-right).The most basi sensory informations provided for a player or a bot inludethe basi medial ondition and ondition of equipment. We therefore inludethe terminals listed below:(health)(ammo)(armor).These terminals assume the values of health, ammo for the urrent weapon(mapped to the range [0..200℄) and armor of the bot in the game. Healthand armor are already in the range [0..200℄ and need not be mapped.We want the bot to be able to evolve its own pereption of what onditionsare good and what onditions are bad 1, therefore we inlude the generalbranhing struture:(if-less-than arg1 arg2 arg3 arg4).The semantis of this funtion is, of ourse, that based on the boolean valueof the omparison (<) of arg1 and arg2, either the value of arg3 or arg4 isassumed. We ould also inlude funtions like (if-greater-than arg1 arg2arg3 arg4) and (if-equals arg1 arg2 arg3 arg4), but this would not addto the expressiveness of the language and is therefore not inluded.We add the possibility to represent onstant integer values from the range[0..200℄. This is done by adding the terminal:(onst x)where x is replaed by an integer value from the range [0..200℄. The followingbranhing funtions are inluded:(if-health-in-reah arg1 arg2)1What value of health is onsidered low, what value is onsidered high, et.

4.2 Language Design 37(if-armor-in-reah arg1 arg2)(if-ammo-in-reah arg1 arg2)(if-weapon-in-reah arg1 arg2).These funtions enable the bot to take di�erent ations depending on whethersome item is in reah. As a side e�et, the bot will pik up the item inquestion if it is in reah, in addition to exeuting arg1.4.2.2 The More Offensive SkillsWhen onsidering lose ombat, one of the main objets of interest should beyour enemy, as this objet an be the soure to either your glorious vitoryor your su�ering defeat. So, by introduing the funtion:(if-enemy-in-sight arg1 arg2)we enable our bot to di�erentiate between situations where the enemy hasbeen spotted, and situations where the enemy is not in sight.In order to bene�ially use the (if-enemy-in-sight) funtion to defeat yourenemy, we add the two terminals:(fae-enemy)(shoot).The (fae-enemy) automatially rotates the bot to fae the enemy if theenemy is in sight, and otherwise does nothing. The funtion assumes thevalue 200 if the enemy was in sight, and 0 otherwise. The (shoot) terminalommands the bot to �re a shot with the urrent weapon and the terminalassumes the onstant value 0.The following terminal assumes a value equivalent to an estimate of theurrent damage taken by the enemy. It has max-value 200 and minimum0, and it dereases over time to 0, as it is reasonable to assume the enemypiking up health pakets over time. We inlude the terminal:(enemy-damage).In order to ompare weapons, the following terminals are inluded:(my-weapon)(enemy-weapon).These terminals assume values ranging from 0 to 200, aording to theweapon urrently used by either the bot or the enemy. This enables strategiesto ompare weapons, and take di�erent ations aordingly.(if-enemy-move-left arg1 arg2)(if-enemy-move-right arg1 arg2)

38 Summary of previous work
(a) (b)Figure 4.1: The enemy movement as pereived by the golden (upper) bot. Dis-tintions between leftward/rightward and forward/bakward depited in (a) and (b)respetively. Arrows of the same olor within the same sub�gure orresponds todiretions of movement that yield the same result.(if-enemy-move-away arg1 arg2)(if-enemy-losing-in arg1 arg2)(if-enemy-is-stati arg1 arg2).These funtions enable strategies to hange aording to the relative diretionof the enemy. They all exeute and assume the value of arg1 if the enemyis in sight and has the respetive diretion of movement. Otherwise theyexeute and assume the value of arg2. The distintion between di�erentrelative enemy movements are depited in �gure 4.1.The spei� movement of the enemy might not always be of interest if youare too far from your enemy. Therefore we add the terminal:(enemy-distane).This terminal will at any time assume an integer value in the range of [0..200℄orresponding to the distane to the enemy, or 0 if the enemy is not withinsight.4.2.3 Higher Level SkillsAs mentioned previously in setion 2.1.5, it is ommon to ombine di�erentations in a series of parallel ations, like (strafe-left) and (fae-enemy)resulting in a irular movement with the enemy as enter. This ombinationof movements is ommon to all players of UT, novie as well as master.It therefore seems reasonable for us to inlude spei� terminals and onefuntion for this movement:(irle-strafe-left)(irle-strafe-right)(strafe-relative arg1 arg2).

4.3 Designing the Algorithm 39
y

x

(x’,y’)

Y

X(a)
y

x

Y

X

(x’,y’)

(b)Figure 4.2: The use of relative destination points when stra�ng. The oordinate-system relative to the red bot is rotated as the bot moves, and the point of destination(x',y') then hanges dynamially (with respet to global oordinates), as depited inthe hange of (a) to (b).The two terminals ommands the bot to strafe in a irular path while main-taining fae towards the enemy. The funtion (strafe-relative arg1 arg2)is a bit more ompliated. It ommands the bot to move to the point (x0; y0)dynamially alulated by equation 4.1 and equation 4.2:x0 = xenemy + (os(�) � u� sin(�) � v) (4.1)y0 = yenemy + (sin(�) � u� os(�) � v) (4.2)where (xenemy; yenemy) is the loation of the enemy, u is the value assumedby arg1, v is the value assumed by arg2 and � is the yaw 2 orientation ofthe enemy. That is, the point (u; v) is transformed from a loal oordinate-system inserted on top of the enemy (the enemy loated at (100,100)), to theglobal oordinatesystem. This is depited in �gure 4.2(a) and �gure 4.2(b).As the last element, we add a funtion that enables strategies to put morefuntions and terminals in sequene:(prog-2 arg1 arg2).This funtion evaluates �rst arg1, then arg2 and �nally assumes the valueof arg2.4.3 Designing the AlgorithmThe ommon GA/GP yle was desribed in setion 3.2.1 in �gure 3.2. Inthis setion it will be extended, with the steps we �nd feasible for the devel-opment of suessful genetially programmed bots. The spei� operatorsand methods hosen, will be desribed inluding minimal justi�ation. Aswith every topi overed in this hapter, extensive justi�ation, argumen-tation and disussion of the deisions made is found in Holm and Nielsen(2002). The di�erent steps of the extended GA/GP yle in �gure 4.3 arebrie�y desribed in the following enumerated list:2In terms of Yaw, Pith and Roll systems, the Yaw omponent desribes the rotationabout the Z-axis.

40 Summary of previous work
Genetic

operators

Genetic
operators

Genetic
operators

Assessment
of initial

population

Generation
of initial

population

Island 2

Island 7

Evaluation

Selection3

4

5

6

6

4

5 Selection

Evaluation

Evaluation4

6

3
Selection5

3

1

2

Island 1

Figure 4.3: The extended loop of evolution.1. The initial population is generated by either the ustom tree generatoror the random tree generator. The tree generators are desribed insetion 4.3.1. There are no limit to the size of the initial population,sine it is going to be redued by the assessment step 2.2. The assessment funtion is implemented to ensure a ertain level ofquality in the run of the �rst generation in the extended GA/GP yle.The assessment funtion will remove individuals whih an not satisfya basi set of onstraints, these are desribed in setion 4.3.2. The as-sessment funtion assesses individuals muh faster than the evaluationfuntion.3. The population used in the extended GA/GP yle onsists of 224 in-dividuals evenly divided into 7 subpopulations. This yields a subpop-ulation size of 32. Every subpopulation will then run its own GA/GPyle. This ould be done in parallel if implemented on a multiproes-sor system.4. Every subpopulation is hereafter evaluated by the ompetitive evalua-tion funtion desribed in setion 4.3.2.

4.3 Designing the Algorithm 415. When all the subpopulations have been evaluated, it is time to seletindividuals for the di�erent geneti operations whih have to be per-formed before the extended GA/GP yle is ready to repeat itself. Thetournament seletion method is used for this and is desribed in setion4.4.1.6. The last step is to apply the geneti operators on the seleted individu-als. The hosen methods for this are desribed in setion 4.4.2, setion4.4.3 and setion 4.4.4. When this is done the algorithm will loop byjumping to step 3.Notie that migration between the subpopulations will our with a regularinterval as an be seen in �gure 4.3. These six steps will be addressed furtherin the following setions.4.3.1 Initial PopulationThe generation of the initial population for the extended GA/GP yle is animportant step. The foundation of the searh in the spae of possible solu-tions is, to a ertain degree 3, limited to the set of all possible ombinationsof the individuals onstituting the initial population.This topi is also onneted to the geneti operators; mutation and rossover,more on that in setion 4.4.3 and setion 4.4.4. As mentioned by Yu (2001),strongly typed Geneti Programming (STGP) is a way to limit the spae ofpossible trees. We have applied a slightly di�erent method for a ustom treegeneration and it is desribed in setion 4.3.1.Another important fator in this step is the size of the population, andwe have hosen it to be 224 divided into 7 subpopulations or islands of 32individuals eah.Tree GeneratorsTo generate an initial population, and to reate the subtrees used in the mu-tation operator, we need an algorithm for tree generation. For this purposewe have adopted the traditional tree generation algorithm, GROW in Koza(1992), whih is desribed and motivated in the following setion. GROWhas shown serious weaknesses in more simple experiments. As a onsequenewe have designed a ustom tree generation algorithm based upon the theoryon STGP, as desribed by Yu (2001).The Random Tree Generator The ommon tree generation algorithm,GROW, is used to generate trees for the initial population and the subtreesused by the mutation operator. The algorithm uses a set, S, of funtions andterminals to plae as nodes in the tree. It hooses all the nodes randomlyfrom S, until the hosen maximum depth is reahed. The algorithm works ina reursive manner by seleting a root and then all itself to �nd desendentsto the urrently seleted node until a terminal is seleted or the maximumdepth is reahed. The algorithm is shown in table 4.1.3Of ourse mutation an reintrodue funtions and terminals in the population.

42 Summary of previous workAlgorithm GROWD = maximum depth;S = funtions F and terminals T;grow(depth d) {if (d = D) {return random terminal from T;}else {get random element s from S;if (s 2 T) {return s;}else {for (eah argument a of s) {a = grow(d+1);}return s;}}}Table 4.1: The most ommon tree generation algorithm, GROWThe obvious advantage of GROW is that it is easy to implement and runsin linear time. Still some disadvantages remains, and as mentioned by Luke(2000), GROW has the three main weaknesses:� It selets between all the possible funtions and terminals with equalprobability, whih in some ases an be undesirable.� It does not allow any ontrol over the tree strutures, exept for thesize.� It does not reate trees with a �xed or average tree size or depth (thisweakness is mentioned as the most signi�ant).The Custom Tree Generator By introduing the ustom tree generatorwe will also introdue an abstration of typed GP. Yu (2001) states that thereare two auses to prefer STGP:� STGP removes the losure requirement and thereby inreases the ap-pliability of GP.� STGP helps GP searhing for problem solutions using type informa-tion.

4.3 Designing the Algorithm 43F NamesA prog-2B if-less-thanC relative-movementD if-health-in-reahE if-ammo-in-reahF if-armor-in-reahG if-weapon-in-reahH if-bumpI if-enemy-in-sightJ if-enemy-move-leftK if-enemy-move-rightL if-enemy-move-awayM if-enemy-losing-inN if-enemy-is-stati

T Namesa healthb my-weapon ammod armore enemy-weaponf enemy-damageg enemy-distaneh fae-enemyi turn-leftj turn-rightk strafe-leftl strafe-rightm irle-strafe-leftn irle-strafe-righto shootp move-forwardq move-bakwardr onstTable 4.2: The alphabet of the CFG. The funtions are assigned upperase lettersin the leftmost box and the terminals are assigned lowerase letters in the rightmostbox.With the hosen funtion and terminal set we desribe and motivate in se-tion 4.2, we need not remove the losure requirement - this eliminates the�rst motive for STGP. But it might be possible to redue the tree searhspae. When examining the funtion and terminal set, we �nd it sensibleto redue the set of possible arguments for ertain funtions. Koza (1992)made the �rst attempt to introdue types to GP with what he desribedas onstrained syntati strutures. That is, the trees onstituting the indi-viduals in the population must obey some speial problem spei� rules ofonstrution. When adopting this system of onstrained syntati strutureshe mentioned some issues whih should be onsidered:� The initial population must inherit the de�ned onstrained syntatistruture.� Geneti operators, suh as mutation and rossover, that alter and re-ate individuals, must produe trees that also preserve the onstrainedsyntati struture.In our problem, a onstrained syntati struture is just another way to per-eive STGP. A onvenient way to desribe the onstrained syntati stru-ture is through a Context Free Grammar (CFG). We have designed suh agrammar and the alphabet of the grammar, representing the funtions andterminals of our language, is desribed in table 9.1.

44 Summary of previous workS ! Fset j asetA ! aset asetB ! sset sset Fset Fset j sset sset Fset asetB ! sset sset aset Fset j sset sset aset asetC ! r rIset ! Fset Fset j aset Fset j Fset aset j aset asetTable 4.3: The CFG of the onstrained syntati rules for ustom tree generationWe will now explain a number of sets, whih will be used in the grammar.The "funtion" set Fset = fA::Ngonsists of all the funtions from our funtion and terminal set.The "if" set Iset = fD::Ngonsists of all the funtions being if onstrutions exept if-less-thanwhih di�er in that it uses two of its arguments for evaluation.The "ation" set aset = fh::qgonsists of all terminals whih auses some kind of bot ation when exeuted.The "sensor" set sset = fa::gg S frgonsists of all terminals representing game information and the onstantterminal.The omplete CFG is observable in table 4.3.4.3.2 Fitness FuntionsWe designed two funtions; the assessment funtion and the evaluation fun-tion. They will be desribed in the following two setions.

4.3 Designing the Algorithm 45Assessment FuntionThe assessment funtion was designed to ensure a ertain quality in the �rstgeneration and should therefore only evaluate the initial population.To do this we deided to let an UT bot play every individual and thenmeasure their survival time and any damage they would do against it. Thehosen measure of �tness will over most of the funtions and terminals;survival time will reward good defensive behavior suh as preserving healthand maneuvering - damage given will reward good o�ensive behavior suhas faing the opponent and shoot at him. The two numbers are given equalimportane, meaning that maximum survival time will yield 50 perent ofthe maximum �tness and the same applies for damage. Two elements ensurethat individuals will be assessed rapidly. Firstly, when the UT bot kills anindividual, it will end the individual's assessment. Seondly, if an individualdoes not move for a given short interval of time, it will end the individual'sassessment.Evaluation FuntionThe evaluation funtion will evaluate every individual in every generation.Hene, this funtion is one of the key elements to sueed in �nding a solutionto our problem. The following issues have been addressed in the quest forbuilding an appropriate �tness funtion:1. We are dealing with a omplex problem and for suh a problem it anbe di�ult for the population to evolve if no preautions have beentaken.2. Due to the dynami nature of the domain it would be preferable thatthe evolved bots are not speialized to ertain situations and an bee�ient and e�etive against various types of opponents.3. The aim, i.e. to evolve a bot for ombat situations, should be keptin mind. That is, the environment should mirror a typial ombatsenario as muh as possible.4. We want relative fast evaluation times, sine we an expet to runa onsiderable number of generations before a satisfying solution isreahed (if ever). When taking the population size of 224 individualsinto aount, it should be obvious that every seond saved for evalua-tion of an individual will be important.These issues address onsiderations whih should be done and problemswhih are to be dealt with.We will use a ompetitive �tness funtion, sine this type of funtion dealswith several of the issues mentioned. Firstly, this type of funtion deals withthe omplexity of the problem and the typial aftermath of building �tnessfuntions to these kind of problems 4.4For further reading see Luke (1998) or Nol� and Floreano (2000).

46 Summary of previous work

AFigure 4.4: The map designed to serve as battle ground.Seondly, a ompetitive �tness funtion failitates the desire to evolve botssuperior against various kinds of strategies.Lastly, we an adopt the up tournament based �tness funtion, desribedin hapter 3 and previously presented by Angeline and Pollak (1994), whihan help us in reduing the number of evaluations per generation and heneredue total evaluation time.When dealing with these issues, another element to onsider is the hoie ofenvironment in whih the bots are going to ompete. It would be preferableto use a dynami environment whih should re�et the distintive surround-ings of typial ombat senarios. One way of doing this (and maybe thebest), would be to swith maps one in a while, when running the algorithm.This would avoid speialization of the bots for ertain maps and insteadevolve bots with more general strategies. Due to the time onstraints of thisprojet and sine it has proven di�ult to implement this feature, we havebeen fored to look at alternatives to this approah. In �gure 4.4 a skethof the map we have used is depited. The sale and dimensions of the mapdepited in �gure 4.4 and the real map is not kept, but the general nature ofthe real map is kept. The map is irular and without any orridors or stair-ases, so minimal path �nding and navigation is required. All four di�erentlasses of items desribed in setion 2.1.3 are present, that is: weapons, �rstaid kits, ammunition and armor. The spawning points are loated on a irlearound the enter of the map, and bots are spawned with orientation towardsthe enter, as shown in �gure 4.4.To determine a �tness of eah individual, all we need, when using the uptournament based ompetitive �tness funtion, is a way to determine a win-ner when a pair of bots are ompeting. For doing this, it seems obvious tohoose the bot with the highest number of frags as the winner, hene thiswill be the primary deision fator. If the sore in frags should be even, theamount of damage given is ompared and should the math still be a draw,the individual with the least suiides wins. As a last resort, the winner isfound by oin toss. The way of determining the �tness of individuals ouldraise the following question: does this method not just seem too simple for

4.4 Geneti Operators 47suh a omplex problem domain? As the quote in the beginning of this hap-ter implies, simpliity an be a virtue and the parameters of this approahare no simpler than still adequate to determine the winner of ompeting in-dividuals. In addition the map has been designed to help early individualsto obtain a nonzero �tness value.The onept of �tness noise was also onsidered under the design of theevaluation funtion. This issue is disussed in the next setion.Fitness NoiseSome domains are deterministi, meaning that no noise is present. By noise,we mean elements whih an produe di�erent outomes in idential situa-tions. Noise is often introdued to make a game domain less preditable or tosimulate the omplexity of real life. For instane, as explained in hapter 2,UT introdues noise when a player shoots at a target. The amount of noisein the domain is interesting to us, beause it should be taken into aountwhen designing the GP algorithm, partiulary the evaluation funtion, andwhen onluding on the results. When we designed the evaluation funtion,and hose the up tournament based �tness funtion, we hypothesized thatnoise in the domain would not have any notieable in�uene on the evolution.This is due to the fat that, a ompetitive �tness funtion is noisy in itself,beause the �tness from an evaluation of the individuals not neessarily yieldtheir atual �tness.After the evolution was started, we performed a test to on�rm or a�rm oursuspiion of the �tness noise. A randomly hosen best individual from oneof the late generations was set to ompete against a lone of itself, in 100games where every game lasted 60 seonds. Figure 4.5 depit the frequenywith whih results of the mathes was observed, yielding a histogram. Asan be seen in �gure 4.5 the noise of the ompetitions is obvious, though theresults is far from random as the density is learly higher, near to zero.
4.4 Geneti OperatorsThe geneti operators adopted or designed for our problem will be desribedin the following setions.4.4.1 SeletionAs explained in hapter 3, the hoie of seletion operator will in�uenethe seletion pressure in the population. We have already argued that wewant to keep a relative low seletion pressure. We have therefore hosenthe tournament seletion operator whih is suited for this and an easily beadjusted by altering the tournament size, whih we have hosen to be as lowas possible; namely two.

48 Summary of previous work

Figure 4.5: The histogram of the results from pitting one bot against a lone ofitself. As expeted the density is higher loser to 0, but noise is learly present.4.4.2 ReprodutionThe reprodution operator implements the onept of elitism, an regulatethe rate at whih the population onverges. Furthermore it ensures that thebest strategies survives and an be further evolved. A high reprodutionsetting will eliminate urrent weaker strategies at a faster rate, that is, ahigh reprodution setting will speed up loal searh but it an also have thedrawbak of eliminating potential strong but immature individuals. Thisproperty is one of our reasons behind the introdution of the islands prin-iple and migration in our extended GA/GP yle, sine this allows us tomaintain a high reprodution setting to re�ne loal strategies while avoidingdomination of the total population by deelerating the migration rate.4.4.3 CrossoverThe rossover operator is implemented as desribed by Koza (1992). Theonstrained syntati struture is not enfored in the rossover operationdue to time onstraints and the reason that we want to let evolution deidewhat is good and what is bad, when the initial generation has been generated.When two individuals have been seleted, a random ross point is hosen anda subtree swapping is performed as desribed in setion 3.3.1, produing twoo�springs.4.4.4 MutationThe mutation operator an take the ustom tree generator in use when gen-erating a subtree. The operator hooses a random ut point and inserts the

4.5 Tests 49generated subtree at that point.4.4.5 ReplaementThe o�spring generated by onseutive appliation of rossover and mutationreplaes the urrent population, with the exeption of the best individualsthat are kept due to elitism.4.4.6 Island ApproahWe have hosen to adopt the island approah. In hapter 3 we explained howdistributed versions of evolutionary algorithms seems to favor the quality andthe robustness of the solutions when strutured settings for the populationsare used. In addition we have argued that it also supports the theory ofompetitive �tness funtions and we have hypothesized that using the islandapproah ould enhane the development of di�erent strategies and therebyavoiding the risk that the population will speialize itself to handle only asubset of strategies. To be able to ontrol the migration rate and movementof individuals we have implemented the ring topology with seven islands, eahinhabited by 32 individuals. Migration will our with a regular interval -when ourring, the best individual of every island will migrate to its leftneighbor. In this way we an ontrol exatly how long it will take for anindividual to wander the ring.4.5 TestsThree di�erent runs were performed with di�erent parameters, listed in ta-ble 4.4. The di�erent parameters were hosen with omparison of results inmind. The most important task though, was the investigation of the evo-lutionary proess itself and how the bots evolved. As the projet served aspreliminary studies preeding this thesis, it was more important to identifyproblems and opportunities in the applied domain, than to analyze all of thedata olleted through the test runs. It was also neessary to postpone athorough examination of the olleted data, sine the amount of data wassimply to extensive. In the end the evolved bots were ompared to the UTbots and tested against a human opponent.4.5.1 Parameters of the EvolutionIn table 4.4, Assessment pool is the amount of ustom generated individualsfrom whih our initial population is reated. Initial population is the sizeof the initial population, and Islands is the number of islands used. Pross,Pmuta and Rmigr are the probability of rossover, the probability of mutationand the migration rate 5, respetively. Relite is the amount of individualsthat are transferred to the next generation unhanged. Initial time is thetime that one math in the up tournament based �tness funtion 6 will last5For instane, 12 means that the �ttest individual migrates from an island every seondgeneration.6Refer to setion 3.2.4, for a desription of the up-based �tness funtion.

50 Summary of previous workParameters 1st Run 2nd Run 3rd RunAssessment pool 2000 2000 2000Initial population 224 224 224Islands 7 7 7Pross 90% 90% 80%Pmuta 10% 10% 20%Rmigr 12 12 14Relite 2 2 2Initial time 30 20 20Max. time 120 120 60Max. individual depth 9 9 9Max. mutation depth 4 4 4Subtree generator Random Custom CustomTable 4.4: The di�erent parameters used in the 1st, 2nd and 3rd run, respetively.in seonds for the �rst generation. This amount is inremented by 1 seondevery generation, as desribed in setion 4.3.2. Max. time is the maximumallowable time of an evaluation. Max. individual depth is the maximumdepth of an individual in the assessment pool. Max. mutation depth is themaximum depth of a ustom generated subtree that is to be inserted duringmutation. Subtree generator lists the method used for subtree generationduring mutation.Halting onditionsNeither of the three runs have had expliitly stated halting onditions, wehave just evolved for as long as possible. Still no more than 100 generationsseemed reasonably, sine we spend about 2 hours evolving one full populationof size 224. In e�et that meant a few weeks of evolution on two standardPCs (700 Mhz and 1333 Mhz). As the problem domain (the game of UT)is running in realtime, an inrease in pu-yles would have no e�et on theevaluation time.4.5.2 Performane TestsTo derive information about the abilities of the evolved bots, we have per-formed two kind of experimental tests. Firstly, we have tested some of theevolved bots against the UT bot. Seondly, we arried out a test between ahuman and an evolved bot. A desription of the tests and a debrie�ng aboutthe results will onlude this hapter.Unreal Tournament Bot vs. Evolved BotsThe UT bot are widely known and esteemed in the gaming ommunity fortheir strength of play, espeially when they are ompared to other bots insimilar games 7. For this reason we thought it would be interesting to see7Quake, Half-Life, et.

4.5 Tests 51UT bot - 10th generation bot 50 - 0UT bot - 15th generation bot 47 - 50UT bot - 20th generation bot 50 - 43UT bot - 25th generation bot 50 - 49UT bot - 30th generation bot 47 - 50UT bot - 35th generation bot 43 - 50UT bot - 40th generation bot 48 - 50UT bot - 45th generation bot 49 - 50UT bot - 50th generation bot 39 - 50Table 4.5: The results of the mathes between bots from the 1st run, 6th island andthe UT bot.how the evolved bots performed against the UT bot. In addition this testould serve as a benhmark test against an opponent of known and onstantstrength. In the previous tests presented in Holm and Nielsen (2002), theevolved bots have been tested against a team of other evolved bots fromthe same run. This mean they have played against bots using strategies thetested bots themselves either have evolved from or to. Hene, a ompetitionwith an UT bot will be an aid test to aquire information on the evolvedbots ability to engage strategies whih they have not been spei�ally evolvedto handle. The result of this test an be found in table 4.5 and �gure 4.6.

Figure 4.6: The di�erene between the UT bot and the di�erent generations of the3rd island 1st run. Notie that the evolved bots gradually improve the performaneagainst the UT bot.The UT bot has played bots from the 6th island of the 1st run, hosen with5 generations interval from the 10th generation to the 50th generation. The�ghts were terminated when one of the ontestants reahed a frag limit,whih was set to 50. The UT bot gets defeated the �rst time against the15th generation bot. The last �ve evolved bots are all vitorious and the50th generation bot is distintly superior to the UT bot.

52 Summary of previous workUT bot - 32nd generation bot 32 - 50Human - UT bot 50 - 12Human - 32nd generation bot 50 - 42Human - 82nd generation bot 47 - 50Table 4.6: The results of the experimental test between humans, an UT bot and twoevolved bots from the 3rd run and 3rd island.This test supports the supposition stated earlier, about the e�ets of applyinga ompetitive �tness funtion in onjuntion with the island priniple, whihis believed to evolve and maintain a broad set of strategies throughout thepopulations.Human Versus Evolved Bots The major motive for testing an evolvedbot against a human is that, ontrary to omputer opponents, a human isapable of analyzing the behavior of evolved bots, not to mention that ahuman also has a relatively good apability to adapt. We would like toompare the time it will take a human to adapt to an UT bot strategyompared to that of an evolved bot. This should give us a lue about thegenerality of the strategy used by the evolved bot. Sine we believe thatthe evolved bot should be apable of ompeting various strategies, it will befeasible to believe that it should be easier to adapt to an UT bot, than anevolved bot. In this test the best bot from the 32nd generation of island3 in the 3rd run was pitted against an UT bot and a human. In additionthe human played the UT bot. At last the human played a bot from the82nd generation of island 3. Again, the math was ended when one of theontestants reahed 50 frags. The result of the test an be found in table4.6.Firstly it an be seen that the evolved bot from the 32nd generation wassuperior to the UT bot. The human was even more superior to the UT bot,whih was to be expeted beause of humans adaptive apabilities. It wasalso lear when observing the atual math that, as the math progressed,the human adapted more and more and was muh better in the last half ofthe math. The math between the evolved bot and the human was moreequal. In the start of the game the evolved bot was dominant and thehuman showed greater di�ulties in adapting to this bot. As an observerit was hard to see if this was beause the evolved bot used a more generaldi�ult strategy to deal with for humans or it was beause the strategyin general was evolved to be more resilient to a broad range of opposingstrategies. To look further into this matter the human was pitted againstthe bot from the 82nd generation. In this math the human faed evengreater di�ulties and lost it. It would require a more exhaustive test tomake de�nite onlusions about the general auses of the test results, sinehumans introdue a lot of di�ulties when evaluating due to inonstantperformane and the ability to adapt. Nevertheless we an onlude thatthe evolved bots tend to show resilieny against di�erent strategies appliedby a human and they are superior to the UT bot.

5 Problem definition�No problem an withstand the assault ofsustained thinking.�,Voltaire.This hapter will motivate several extensions and additions to the systemdesribed in Holm and Nielsen (2002). The motivation will originate from anarrowing of the projet spae, after whih an analysis of the observationsmade from the 3 runs desribed in setion 4.5 is given. In setion 5.3 thishapter will onlude in a more spei� de�nition of the goals of this projet.5.1 Projet SpaeWe have hosen the spae of this projet to be to design and test severalextensions to the system previously developed. Many di�erent extensionsare immediately interesting, most of whih an be lassi�ed in one of twomajor lasses, namely:Agent spei�: Extensions that a�et the general arhiteture of the agents,and to some extend these suh extensions are inherently isolated fromthe GP system. The only diret onnetion between agent arhitetureand the GP system is the language for desribing strategies.System spei�: Extensions that a�et the GP system. For example, extend-ing the geneti operators used during reprodution with more features,or extending the population type to inlude a generation gap parame-ter and thereby using a steady state model. These extensions are nottightly onneted to the agent arhiteture.In Holm and Nielsen (2002) we proposed extensions of both lasses as pos-sible future work. In this projet, however, we have hosen to onentrateon system spei� extensions. More spei�ally, we will evaluate di�erentextensions that might improve the searh proess.In the following setions, we will perform an analysis of the result and ex-perienes gained in Holm and Nielsen (2002) that will onlude in a morespei� de�nition of the projet goals.5.2 Analysis of Previous ResultsWe onluded hapter 4 with a presentation of some performane tests onthe bots previously evolved. These tests were not of exhaustive quantita-tive nature, but more meant as a random test to measure the quality of theevolved solutions. The results of these tests left us with the impression thatthe most e�ient strategies evolved were relatively simple strategies and notvery omplex. That is, when playing against the evolved bots or viewing the53

54 Problem definitiontournament as a spetator, they did not display omplex human-like behav-ior. Still, at later generations, strategies seemed to inlude some primitiveadaptation, that is, di�erent behaviors aording to di�erent enemies or dif-ferent enemy behavior. But as this is only based on random observations, wewill investigate the omposition of strategies in more detail in the followingsetions. First, we will take a look at the distribution of the nodes usedduring the learning proess.5.2.1 Popular Briks And Building BloksIn this setion we will investigate how the di�erent language onstruts isused during evolution. In �gure 5.1 the average ourrene of spei� fun-tion (�gure 5.1(a)) and terminal (�gure 5.1(b)) onstruts is plotted as afuntion of the generation 1. The orresponding plots for the 2nd and 3rdrun an be seen in �gures 5.2(a-b) and 5.3(a-b). We notie the expetedeven distribution in the beginning of the evolution in all plots. In the latergenerations, the evolution seems to have found some favorite funtions andterminals, whih is espeially lear in �gure 5.1(a-b) for the 1st run. thefuntion relative-movement and the terminal shoot have gained unswerv-ing foothold in the population. The very notieable dominane an easilybe explained if we take a look at the environment in whih the bots whereevolved. Reall the map, skethed in �gure 4.4 (and espeially the spawningpoints) for whih we have evolved strategies, and the language whih we haveused. It should not ome as a big surprise that simple strategies an be highlye�ient. The arena is irular with no obstales, so a irular movement isnatural. A irular movement is easy to produe by on of the three onstrutsrelative-movement, irle-strafe-left or irle-strafe-right. Allthese funtions moves the bot in a irular motion relative to the enemy ifhe/she is in sight. However, this is always the ase initially, and as there is nowhere for your enemy to hide, you an easily trak him/her down with a goodirular searh path. So, ombining any of these funtions with a few shootonstruts you have a pretty good strategy. The reason relative-movementgains dominane unlike any of the irle-strafe funtions must be thatwith relative-movement it is possible to move the bot out of the �eld of vi-sion of the enemy, whereas the irle-strafe funtions uses no knowledgeof the urrent orientation of the enemy. So in e�et, the relative-movementonstrut has good defensive properties in addition to the obvious o�ensiveproperties of dynami movement.The dominane of relative-movement and shoot is less notieable in the2nd and 3rd run (�gures 5.2(a-b) and 5.3(a-b)), but still reognizable. Inthese two runs, the shoot onstrut is aompanied by the onst onstrut.5.2.2 The Flower of The TreeSo now that we have realized that the population seems to be dominatedby a few onstruts in the later generations, we ask ourself if everything inthe tree should be onsidered �owers in bloom, or if some withered leavesan be identi�ed. Following this question further, we will investigate the1Refer to appendix A for the orresponding data divided among islands.

5.2 Analysis of Previous Results 55evolved strategies in order to isolate these �owers, that is, simple yet e�ientstrategies, that apparently are responsible for the e�ieny of the tree. Wehave pitted a number of individuals against a seleted team of 7 di�erentindividuals (one at a time), and logged information of the exeution paths.In �gure 5.4 the results for the best individual from the 4th island of the60th generation from the 3rd run is depited. This individual is an exampleof a somewhat adapting strategy, whih an be realized when omparing theexeuted paths of the di�erent trees in �gure 5.4 (for instane �gure 5.4(a)and �gure 5.4(b)). Figure 5.5 depits the results for the �ttest individualof the 1st island of the 60th generation of the 3rd run is depited. Thisis an example of a relatively large parse-tree, in whih only a few nodes isever (observed) exeuted. For the matter of omparison we inlude a solutionfrom the 10th generation in �gure 5.6. Here we �nd a muh lower proportionof unexeuted nodes, whih ould indiate that the proportion of unexeutednodes grows as the evolution progresses 2. In �gure 5.7 the average size ofthe 3 runs have been plotted, and as expeted the size of the trees growstogether with the evolution.So, following up the introduing metaphor of this setion, we must say thatindeed, not everything found in parse trees are �owers, some withered leafs(or whole branhes) are learly unused.
5.2.3 The Withered LeavesWe have now identi�ed that large parts of the parse trees are not a�et-ing the performane of the solution. We will postpone a disussion of themarosopi e�et of this phenomenon to a following setion, and �rst ab-sorb ourself in an analysis of di�erent kinds of withered leafs, often referredto as introns.If individual X is produed by applying the subtree-swapping rossover op-erator to a ut-point within a large unreahable blok of individual Y, thenX and Y will perform equally and hene, no good qualities of Y has beensuessfully exploited. X and Y only di�er within an unreahable part ofthe program, so in all reahable parts of the program X and Y are idential.This spei� property is part of the de�nition of introns given by Nordin andBanzhaf (1995). They de�ne introns to be bloks of ode with the followingproperties:1. The blok has no e�et on the performane of the program.2. O�spring produed by applying the rossover operator inside the intronof the parent, will display performane and behavior equivalent to itsparent.2This observation is thoroughly desribed throughout the literature, Blikle and Thiele(1994) and Nordin et al. (1995) just to mention a few.

56 Problem definition

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(a) Funtions

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(b) TerminalsFigure 5.1: Distribution of language onstruts for the population of the 1st run.

5.2 Analysis of Previous Results 57

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(a) Funtions

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(b) TerminalsFigure 5.2: Distribution of language onstruts for the population of the 2nd run.

58 Problem definition

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(a) Funtions

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(b) TerminalsFigure 5.3: Distribution of language onstruts for the population of the 3rd run.

5.2 Analysis of Previous Results 59
if-less-than

100%

armor
100%

shoot
100%

if-ammo-in-reach
0%

if-enemy-is-static
99%

enemy-distance
0%

if-enemy-move-away
0%

shoot
0%

my-weapon
0%

if-enemy-in-sight
96%

if-enemy-in-sight
2%

if-bump
96%

relative-movement
0%

shoot
0%

if-enemy-closing-in
96%

if-enemy-closing-in
0%

relative-movement
96%

shoot
0%

shoot
0%

const 5
96%

const 98
96%

shoot
0%

const 0
0%

if-less-than
2%

if-enemy-is-static
0%

relative-movement
2%

if-enemy-closing-in
2%

if-ammo-in-reach
0%

if-enemy-move-away
2%

const 5
2%

const 98
2%

if-enemy-closing-in
0%

if-enemy-in-sight
2%

shoot
0%

ammo
0%

if-less-than
2%

if-enemy-move-left
0%

relative-movement
2%

if-enemy-closing-in
2%

armor
0%

if-enemy-move-away
2%

const 5
2%

const 98
2%

if-enemy-move-right
0%

relative-movement
2%

health
0%

enemy-damage
0%

relative-movement
2%

my-weapon
2%

shoot
2%

const 0
2%

enemy-damage
0%

my-weapon
2%

enemy-weapon
0%

enemy-distance
0%

strafe-right
0%

health
0%

enemy-damage
0%

my-weapon
2%

if-enemy-move-right
0%

shoot
0%

strafe-right
0%

if-enemy-move-left
0%

enemy-weapon
0%

if-enemy-closing-in
0%

enemy-damage
0%

if-less-than
0%

relative-movement
0%

if-enemy-closing-in
0%

armor
0%

if-enemy-move-away
0%

const 5
0%

const 98
0%

if-enemy-closing-in
0%

if-enemy-in-sight
0%

armor
0%

ammo
0%

if-less-than
0%

if-enemy-move-left
0%

relative-movement
0%

if-enemy-closing-in
0%

armor
0%

if-enemy-move-away
0%

const 5
0%

const 98
0%

if-enemy-closing-in
0%

relative-movement
0%

relative-movement
0%

ammo
0%

relative-movement
0%

my-weapon
0%

shoot
0%

my-weapon
0%

enemy-weapon
0%

my-weapon
0%

enemy-damage
0%

my-weapon
0%

enemy-weapon
0%

enemy-distance
0%

enemy-damage
0%

enemy-weapon
0%

(a) Math 1
if-less-than

100%

armor
100%

shoot
100%

if-ammo-in-reach
0%

if-enemy-is-static
100%

enemy-distance
0%

if-enemy-move-away
0%

shoot
0%

my-weapon
0%

if-enemy-in-sight
3%

if-enemy-in-sight
96%

if-bump
3%

relative-movement
0%

shoot
0%

if-enemy-closing-in
3%

if-enemy-closing-in
0%

relative-movement
3%

shoot
0%

shoot
0%

const 5
3%

const 98
3%

shoot
0%

const 0
0%

if-less-than
0%

if-enemy-is-static
96%

relative-movement
0%

if-enemy-closing-in
0%

if-ammo-in-reach
0%

if-enemy-move-away
0%

const 5
0%

const 98
0%

if-enemy-closing-in
0%

if-enemy-in-sight
0%

shoot
0%

ammo
0%

if-less-than
0%

if-enemy-move-left
0%

relative-movement
0%

if-enemy-closing-in
0%

armor
0%

if-enemy-move-away
0%

const 5
0%

const 98
0%

if-enemy-move-right
0%

relative-movement
0%

health
0%

enemy-damage
0%

relative-movement
0%

my-weapon
0%

shoot
0%

const 0
0%

enemy-damage
0%

my-weapon
0%

enemy-weapon
0%

enemy-distance
0%

strafe-right
0%

health
0%

enemy-damage
0%

my-weapon
0%

if-enemy-move-right
0%

shoot
96%

strafe-right
0%

if-enemy-move-left
0%

enemy-weapon
0%

if-enemy-closing-in
0%

enemy-damage
0%

if-less-than
0%

relative-movement
0%

if-enemy-closing-in
0%

armor
0%

if-enemy-move-away
0%

const 5
0%

const 98
0%

if-enemy-closing-in
0%

if-enemy-in-sight
0%

armor
0%

ammo
0%

if-less-than
0%

if-enemy-move-left
0%

relative-movement
0%

if-enemy-closing-in
0%

armor
0%

if-enemy-move-away
0%

const 5
0%

const 98
0%

if-enemy-closing-in
0%

relative-movement
0%

relative-movement
0%

ammo
0%

relative-movement
0%

my-weapon
0%

shoot
0%

my-weapon
0%

enemy-weapon
0%

my-weapon
0%

enemy-damage
0%

my-weapon
0%

enemy-weapon
0%

enemy-distance
0%

enemy-damage
0%

enemy-weapon
0%

(b) Math 2
if-less-than

100%

armor
100%

shoot
100%

if-ammo-in-reach
0%

if-enemy-is-static
100%

enemy-distance
0%

if-enemy-move-away
0%

shoot
0%

my-weapon
0%

if-enemy-in-sight
0%

if-enemy-in-sight
100%

if-bump
0%

relative-movement
0%

shoot
0%

if-enemy-closing-in
0%

if-enemy-closing-in
0%

relative-movement
0%

shoot
0%

shoot
0%

const 5
0%

const 98
0%

shoot
0%

const 0
0%

if-less-than
0%

if-enemy-is-static
100%

relative-movement
0%

if-enemy-closing-in
0%

if-ammo-in-reach
0%

if-enemy-move-away
0%

const 5
0%

const 98
0%

if-enemy-closing-in
0%

if-enemy-in-sight
0%

shoot
0%

ammo
0%

if-less-than
0%

if-enemy-move-left
0%

relative-movement
0%

if-enemy-closing-in
0%

armor
0%

if-enemy-move-away
0%

const 5
0%

const 98
0%

if-enemy-move-right
0%

relative-movement
0%

health
0%

enemy-damage
0%

relative-movement
0%

my-weapon
0%

shoot
0%

const 0
0%

enemy-damage
0%

my-weapon
0%

enemy-weapon
0%

enemy-distance
0%

strafe-right
0%

health
0%

enemy-damage
0%

my-weapon
0%

if-enemy-move-right
0%

shoot
100%

strafe-right
0%

if-enemy-move-left
0%

enemy-weapon
0%

if-enemy-closing-in
0%

enemy-damage
0%

if-less-than
0%

relative-movement
0%

if-enemy-closing-in
0%

armor
0%

if-enemy-move-away
0%

const 5
0%

const 98
0%

if-enemy-closing-in
0%

if-enemy-in-sight
0%

armor
0%

ammo
0%

if-less-than
0%

if-enemy-move-left
0%

relative-movement
0%

if-enemy-closing-in
0%

armor
0%

if-enemy-move-away
0%

const 5
0%

const 98
0%

if-enemy-closing-in
0%

relative-movement
0%

relative-movement
0%

ammo
0%

relative-movement
0%

my-weapon
0%

shoot
0%

my-weapon
0%

enemy-weapon
0%

my-weapon
0%

enemy-damage
0%

my-weapon
0%

enemy-weapon
0%

enemy-distance
0%

enemy-damage
0%

enemy-weapon
0%

() Math 3
if-less-than

100%

armor
100%

shoot
100%

if-ammo-in-reach
0%

if-enemy-is-static
100%

enemy-distance
0%

if-enemy-move-away
0%

shoot
0%

my-weapon
0%

if-enemy-in-sight
13%

if-enemy-in-sight
86%

if-bump
13%

relative-movement
0%

shoot
0%

if-enemy-closing-in
13%

if-enemy-closing-in
0%

relative-movement
13%

shoot
0%

shoot
0%

const 5
13%

const 98
13%

shoot
0%

const 0
0%

if-less-than
78%

if-enemy-is-static
7%

relative-movement
78%

if-enemy-closing-in
77%

if-ammo-in-reach
0%

if-enemy-move-away
77%

const 5
78%

const 98
78%

if-enemy-closing-in
24%

if-enemy-in-sight
53%

shoot
24%

ammo
0%

if-less-than
53%

if-enemy-move-left
0%

relative-movement
53%

if-enemy-closing-in
53%

armor
0%

if-enemy-move-away
53%

const 5
53%

const 98
53%

if-enemy-move-right
2%

relative-movement
51%

health
0%

enemy-damage
2%

relative-movement
51%

my-weapon
51%

shoot
51%

const 0
51%

enemy-damage
27%

my-weapon
26%

enemy-weapon
0%

enemy-distance
0%

strafe-right
0%

health
0%

enemy-damage
37%

my-weapon
40%

if-enemy-move-right
0%

shoot
7%

strafe-right
0%

if-enemy-move-left
0%

enemy-weapon
0%

if-enemy-closing-in
0%

enemy-damage
0%

if-less-than
0%

relative-movement
0%

if-enemy-closing-in
0%

armor
0%

if-enemy-move-away
0%

const 5
0%

const 98
0%

if-enemy-closing-in
0%

if-enemy-in-sight
0%

armor
0%

ammo
0%

if-less-than
0%

if-enemy-move-left
0%

relative-movement
0%

if-enemy-closing-in
0%

armor
0%

if-enemy-move-away
0%

const 5
0%

const 98
0%

if-enemy-closing-in
0%

relative-movement
0%

relative-movement
0%

ammo
0%

relative-movement
0%

my-weapon
0%

shoot
0%

my-weapon
0%

enemy-weapon
0%

my-weapon
0%

enemy-damage
0%

my-weapon
0%

enemy-weapon
0%

enemy-distance
0%

enemy-damage
0%

enemy-weapon
0%

(d) Math 4
if-less-than

100%

armor
100%

shoot
100%

if-ammo-in-reach
0%

if-enemy-is-static
100%

enemy-distance
0%

if-enemy-move-away
0%

shoot
0%

my-weapon
0%

if-enemy-in-sight
1%

if-enemy-in-sight
98%

if-bump
1%

relative-movement
0%

shoot
0%

if-enemy-closing-in
1%

if-enemy-closing-in
0%

relative-movement
1%

shoot
0%

shoot
0%

const 5
1%

const 98
1%

shoot
0%

const 0
0%

if-less-than
55%

if-enemy-is-static
42%

relative-movement
55%

if-enemy-closing-in
55%

if-ammo-in-reach
2%

if-enemy-move-away
53%

const 5
55%

const 98
55%

if-enemy-closing-in
34%

if-enemy-in-sight
21%

shoot
34%

ammo
0%

if-less-than
21%

if-enemy-move-left
0%

relative-movement
21%

if-enemy-closing-in
21%

armor
0%

if-enemy-move-away
20%

const 5
21%

const 98
21%

if-enemy-move-right
0%

relative-movement
20%

health
0%

enemy-damage
0%

relative-movement
20%

my-weapon
19%

shoot
20%

const 0
20%

enemy-damage
10%

my-weapon
9%

enemy-weapon
0%

enemy-distance
0%

strafe-right
1%

health
0%

enemy-damage
19%

my-weapon
33%

if-enemy-move-right
0%

shoot
42%

strafe-right
0%

if-enemy-move-left
0%

enemy-weapon
0%

if-enemy-closing-in
0%

enemy-damage
0%

if-less-than
0%

relative-movement
0%

if-enemy-closing-in
0%

armor
0%

if-enemy-move-away
0%

const 5
0%

const 98
0%

if-enemy-closing-in
0%

if-enemy-in-sight
0%

armor
0%

ammo
0%

if-less-than
0%

if-enemy-move-left
0%

relative-movement
0%

if-enemy-closing-in
0%

armor
0%

if-enemy-move-away
0%

const 5
0%

const 98
0%

if-enemy-closing-in
0%

relative-movement
0%

relative-movement
0%

ammo
0%

relative-movement
0%

my-weapon
0%

shoot
0%

my-weapon
0%

enemy-weapon
0%

my-weapon
0%

enemy-damage
0%

my-weapon
0%

enemy-weapon
0%

enemy-distance
0%

enemy-damage
0%

enemy-weapon
0%

(e) Math 5
if-less-than

100%

armor
100%

shoot
100%

if-ammo-in-reach
0%

if-enemy-is-static
100%

enemy-distance
0%

if-enemy-move-away
0%

shoot
0%

my-weapon
0%

if-enemy-in-sight
13%

if-enemy-in-sight
86%

if-bump
13%

relative-movement
0%

shoot
0%

if-enemy-closing-in
13%

if-enemy-closing-in
0%

relative-movement
13%

shoot
0%

shoot
0%

const 5
13%

const 98
13%

shoot
0%

const 0
0%

if-less-than
86%

if-enemy-is-static
0%

relative-movement
86%

if-enemy-closing-in
85%

if-ammo-in-reach
0%

if-enemy-move-away
86%

const 5
86%

const 98
86%

if-enemy-closing-in
44%

if-enemy-in-sight
41%

shoot
44%

ammo
0%

if-less-than
41%

if-enemy-move-left
0%

relative-movement
41%

if-enemy-closing-in
41%

armor
0%

if-enemy-move-away
42%

const 5
41%

const 98
41%

if-enemy-move-right
3%

relative-movement
37%

health
2%

enemy-damage
0%

relative-movement
37%

my-weapon
37%

shoot
37%

const 0
37%

enemy-damage
21%

my-weapon
20%

enemy-weapon
0%

enemy-distance
0%

strafe-right
0%

health
0%

enemy-damage
27%

my-weapon
58%

if-enemy-move-right
0%

shoot
0%

strafe-right
0%

if-enemy-move-left
0%

enemy-weapon
0%

if-enemy-closing-in
0%

enemy-damage
0%

if-less-than
0%

relative-movement
0%

if-enemy-closing-in
0%

armor
0%

if-enemy-move-away
0%

const 5
0%

const 98
0%

if-enemy-closing-in
0%

if-enemy-in-sight
0%

armor
0%

ammo
0%

if-less-than
0%

if-enemy-move-left
0%

relative-movement
0%

if-enemy-closing-in
0%

armor
0%

if-enemy-move-away
0%

const 5
0%

const 98
0%

if-enemy-closing-in
0%

relative-movement
0%

relative-movement
0%

ammo
0%

relative-movement
0%

my-weapon
0%

shoot
0%

my-weapon
0%

enemy-weapon
0%

my-weapon
0%

enemy-damage
0%

my-weapon
0%

enemy-weapon
0%

enemy-distance
0%

enemy-damage
0%

enemy-weapon
0%

(f) Math 6
if-less-than

100%

armor
100%

shoot
100%

if-ammo-in-reach
0%

if-enemy-is-static
100%

enemy-distance
0%

if-enemy-move-away
0%

shoot
0%

my-weapon
0%

if-enemy-in-sight
9%

if-enemy-in-sight
90%

if-bump
9%

relative-movement
0%

shoot
0%

if-enemy-closing-in
9%

if-enemy-closing-in
0%

relative-movement
9%

shoot
0%

shoot
0%

const 5
9%

const 98
9%

shoot
0%

const 0
0%

if-less-than
90%

if-enemy-is-static
0%

relative-movement
90%

if-enemy-closing-in
89%

if-ammo-in-reach
0%

if-enemy-move-away
89%

const 5
90%

const 98
90%

if-enemy-closing-in
47%

if-enemy-in-sight
41%

shoot
47%

ammo
0%

if-less-than
41%

if-enemy-move-left
0%

relative-movement
41%

if-enemy-closing-in
41%

armor
0%

if-enemy-move-away
41%

const 5
41%

const 98
41%

if-enemy-move-right
6%

relative-movement
35%

health
5%

enemy-damage
0%

relative-movement
35%

my-weapon
35%

shoot
35%

const 0
35%

enemy-damage
20%

my-weapon
20%

enemy-weapon
0%

enemy-distance
0%

strafe-right
0%

health
0%

enemy-damage
31%

my-weapon
58%

if-enemy-move-right
0%

shoot
0%

strafe-right
0%

if-enemy-move-left
0%

enemy-weapon
0%

if-enemy-closing-in
0%

enemy-damage
0%

if-less-than
0%

relative-movement
0%

if-enemy-closing-in
0%

armor
0%

if-enemy-move-away
0%

const 5
0%

const 98
0%

if-enemy-closing-in
0%

if-enemy-in-sight
0%

armor
0%

ammo
0%

if-less-than
0%

if-enemy-move-left
0%

relative-movement
0%

if-enemy-closing-in
0%

armor
0%

if-enemy-move-away
0%

const 5
0%

const 98
0%

if-enemy-closing-in
0%

relative-movement
0%

relative-movement
0%

ammo
0%

relative-movement
0%

my-weapon
0%

shoot
0%

my-weapon
0%

enemy-weapon
0%

my-weapon
0%

enemy-damage
0%

my-weapon
0%

enemy-weapon
0%

enemy-distance
0%

enemy-damage
0%

enemy-weapon
0%

(g) Math 7Figure 5.4: The �ttest individual from the 4th island, 60th generation, 3rd run hasbeen pitted against 7 di�erent enemies. Exeuted nodes is olored, and all nodeshas been tagged with the proportion of exeutions.

60 Problem definition
if-enemy-in-sight

100%

relative-movement
0%

if-weapon-in-reach
100%

if-enemy-in-sight
0%

const 47
0%

if-enemy-closing-in
0%

relative-movement
0%

if-enemy-move-right
0%

if-less-than
0%

prog-2
0%

if-enemy-move-right
0%

enemy-damage
0%

shoot
0%

cirkle-strafe-right
0%

shoot
0%

if-enemy-closing-in
0%

health
0%

enemy-damage
0%

if-enemy-closing-in
0%

enemy-damage
0%

shoot
0%

enemy-damage
0%

shoot
0%

if-enemy-move-right
0%

if-ammo-in-reach
0%

cirkle-strafe-right
0%

shoot
0%

if-enemy-closing-in
0%

armor
0%

enemy-damage
0%

shoot
0%

if-enemy-move-right
0%

if-weapon-in-reach
99%

cirkle-strafe-right
0%

prog-2
0%

move-backward
0%

move-backward
0%

if-enemy-move-right
0%

face-enemy
99%

cirkle-strafe-right
0%

if-enemy-closing-in
0%

move-backward
0%

if-ammo-in-reach
0%

relative-movement
0%

relative-movement
0%

if-enemy-closing-in
0%

armor
0%

if-enemy-move-away
0%

if-enemy-move-right
0%

my-weapon
0%

shoot
0%

cirkle-strafe-right
0%

shoot
0%

move-backward
0%

face-enemy
0%(a)

if-enemy-in-sight
100%

relative-movement
0%

if-weapon-in-reach
99%

if-enemy-in-sight
0%

const 47
0%

if-enemy-closing-in
0%

relative-movement
0%

if-enemy-move-right
0%

if-less-than
0%

prog-2
0%

if-enemy-move-right
0%

enemy-damage
0%

shoot
0%

cirkle-strafe-right
0%

shoot
0%

if-enemy-closing-in
0%

health
0%

enemy-damage
0%

if-enemy-closing-in
0%

enemy-damage
0%

shoot
0%

enemy-damage
0%

shoot
0%

if-enemy-move-right
0%

if-ammo-in-reach
0%

cirkle-strafe-right
0%

shoot
0%

if-enemy-closing-in
0%

armor
0%

enemy-damage
0%

shoot
0%

if-enemy-move-right
0%

if-weapon-in-reach
99%

cirkle-strafe-right
0%

prog-2
0%

move-backward
0%

move-backward
0%

if-enemy-move-right
0%

face-enemy
99%

cirkle-strafe-right
0%

if-enemy-closing-in
0%

move-backward
0%

if-ammo-in-reach
0%

relative-movement
0%

relative-movement
0%

if-enemy-closing-in
0%

armor
0%

if-enemy-move-away
0%

if-enemy-move-right
0%

my-weapon
0%

shoot
0%

cirkle-strafe-right
0%

shoot
0%

move-backward
0%

face-enemy
0%(b)Figure 5.5: The �ttest individual from the 1st island, 60th generation, 3rd run hasbeen pitted against 7 di�erent enemies. The exeuted nodes is olored, �gure (a)shows the result of 6 out of the 7 mathes, �gure (b) shows the result of the lasttest.

if-enemy-is-static
100%

shoot
66%

if-less-than
33%

ammo
33%

turn-left
33%

if-amor-in-reach
0%

relative-movement
32%

const 91
0%

relative-movement
0%

const 134
0%

const 157
0%

if-enemy-closing-in
32%

cirkle-strafe-left
32%

if-enemy-move-left
5%

if-enemy-closing-in
27%

enemy-distance
3%

enemy-distance
2%

armor
0%

cirkle-strafe-right
27%(a)

if-enemy-is-static
100%

shoot
0%

if-less-than
100%

ammo
100%

turn-left
100%

if-amor-in-reach
0%

relative-movement
100%

const 91
0%

relative-movement
0%

const 134
0%

const 157
0%

if-enemy-closing-in
100%

cirkle-strafe-left
100%

if-enemy-move-left
7%

if-enemy-closing-in
93%

enemy-distance
5%

enemy-distance
1%

armor
0%

cirkle-strafe-right
93%(b)Figure 5.6: The �ttest individual from the 6th island, 10th generation, 3rd run hasbeen pitted against 7 di�erent enemies. The exeuted nodes is olored, �gure (a)shows the result from 6 out of the 7 mathes, �gure (b) shows the results of the lasttest.

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

A
va

re
ge

 S
iz

e

Generations

Average size of individuals

1st run
2nd run
3rd run

Figure 5.7: The evolution of average size for the 3 test runs.

5.2 Analysis of Previous Results 61
if−less−than

100%

armor
100%

shoot
100%

if−ammo−in−reach
0%

if−enemy−is−static
99%

enemy−distance
0%

if−enemy−move−away
0%

shoot
0%

my−weapon
0%

if−enemy−in−sight
96%

if−enemy−in−sight
2%

if−bump
96%

relative−movement
0%

shoot
0%

if−enemy−closing−in
96%

if−enemy−closing−in
0%

relative−movement
96%

shoot
0%

shoot
0%

const 5
96%

const 98
96%

shoot
0%

const 0
0%

if−less−than
2%

if−enemy−is−static

if−enemy−is−static

if−enemy−is−static

0%

relative−movement
2%

if−enemy−closing−in
2%

if−ammo−in−reach
0%

if−enemy−move−away
2%

const 5
2%

const 98
2%

if−enemy−closing−in
0%

if−enemy−in−sight
2%

shoot
0%

ammo
0%

if−less−than
2%

if−enemy−move−left
0%

relative−movement
2%

if−enemy−closing−in
2%

armor
0%

if−enemy−move−away
2%

const 5
2%

const 98
2%

if−enemy−move−right
0%

relative−movement
2%

health
0%

enemy−damage
0%

relative−movement
2%

my−weapon
2%

shoot
2%

const 0
2%

enemy−damage
0%

my−weapon
2%

enemy−weapon
0%

enemy−distance
0%

strafe−right
0%

health
0%

enemy−damage
0%

my−weapon
2%

if−enemy−move−right

if−enemy−move−right
0%

shoot

shoot
0%

strafe−right

strafe−right

0%
if−enemy−move−left

if−enemy−move−left

0%

enemy−weapon
0%

if−enemy−closing−in
0%

enemy−damage
0%

if−less−than
0%

relative−movement
0%

if−enemy−closing−in
0%

armor
0%

if−enemy−move−away
0%

const 5
0%

const 98
0%

if−enemy−closing−in
0%

if−enemy−in−sight
0%

armor
0%

ammo
0%

if−less−than
0%

if−enemy−move−left
0%

relative−movement
0%

if−enemy−closing−in
0%

armor
0%

if−enemy−move−away
0%

const 5
0%

const 98
0%

if−enemy−closing−in
0%

relative−movement
0%

relative−movement
0%

ammo
0%

relative−movement
0%

my−weapon
0%

shoot
0%

my−weapon
0%

enemy−weapon
0%

my−weapon
0%

enemy−damage
0%

my−weapon
0%

enemy−weapon
0%

enemy−distance
0%

enemy−damage
0%

enemy−weapon
0%

Figure 5.8: A global intron in a parse tree is typially aused by redundant sensor-heks.Some introns will be of a ontext independent nature, and others will be ofa ontext dependent nature as some branhes will be exeuted based uponthe spei� temporal state of some sensor value. Nordin and Banzhaf (1995)generalizes the de�nition of this distintion of two kinds of introns, namelyglobal and loal introns, by the following de�nition:Global Introns: An intron is global if it is an intron for every valid programinput.Loal Introns: An intron is loal if it is an intron for the urrent test ase,but not neessarily for any other valid program input.When investigating the parse trees in �gures 5.4 and 5.5 further all whitenodes are introns, either global or loal. In �gure 5.8, the parse tree from �g-ure 5.4(a) is reprinted, and this time the root of a global intron is magni�ed,orresponding to the blok of ode:(if-enemy-is-stati(true-branh)(... false-branh ...(if-enemy-is-stati(..global-intron..)(... false-branh ...))))As an be seen from this onstrution, the redundant use of the booleansensor hek (if-enemy-is-stati) gives raise to a global intron. Likewisewe an identify loal introns, this time we inspet the parse tree from �gure5.5. In �gure 5.9, the parse tree from �gure 5.5(a) is reprinted, this timewith the root of a loal intron magni�ed (by oinidene, this is also the rootof the tree). The magni�ation orresponds to the ode:(if-enemy-in-sight(..loal-intron..)(if-weapon-in-reah ..))

62 Problem definition
if−enemy−in−sight

if−enemy−in−sight
100%

relative−movement

relative−movement
0%

if−weapon−in−reach

if−weapon−in−reach
100%

if−enemy−in−sight
0%

const 47

const 47
0%

if−enemy−closing−in
0%

relative−movement
0%

if−enemy−move−right
0%

if−less−than
0%

prog−2
0%

if−enemy−move−right
0%

enemy−damage
0%

shoot
0%

cirkle−strafe−right
0%

shoot
0%

if−enemy−closing−in
0%

health
0%

enemy−damage
0%

if−enemy−closing−in
0%

enemy−damage
0%

shoot
0%

enemy−damage
0%

shoot
0%

if−enemy−move−right
0%

if−ammo−in−reach
0%

cirkle−strafe−right
0%

shoot
0%

if−enemy−closing−in
0%

armor
0%

enemy−damage
0%

shoot
0%

if−enemy−move−right

if−enemy−move−right
0%

if−weapon−in−reach
99%

cirkle−strafe−right
0%

prog−2
0%

move−backward
0%

move−backward
0%

if−enemy−move−right
0%

face−enemy
99%

cirkle−strafe−right
0%

if−enemy−closing−in
0%

move−backward
0%

if−ammo−in−reach
0%

relative−movement
0%

relative−movement
0%

if−enemy−closing−in
0%

armor
0%

if−enemy−move−away
0%

if−enemy−move−right
0%

my−weapon
0%

shoot
0%

cirkle−strafe−right
0%

shoot
0%

move−backward
0%

face−enemy
0%Figure 5.9: A loal intron in a parse tree is aused by a spei� on�guration of thetest ase, and hene is dependent on the urrent test ase.At �rst, this kind of intron seem less interesting as it potentially will a�etthe performane of the program when fed the right input and hene is notat all unimportant to the individual. But with referene to the identi�ationof introns, it is somewhat easier to identify the loal introns for the urrenttest ase, as we an just tag all nodes when exeuted, and thereafter allnon-tagged nodes are loal introns. The identi�ation of global introns anbe done by a muh more omplex semantial analysis of the parse trees.Therefore, one interesting property of loal introns is the relation with globalintrons. Namely, that the set of all global introns is a subset of all loalintrons, so if all loal introns are isolated you an be sure that all globalintrons has been isolated as well.5.2.4 Causes of growth of non-exeuted odeMany theories as to why the proportion of introns seems to grow as theevolution progresses exist, three slightly di�erent theories will be desribedin the following.1. Amongst others, Blikle and Thiele (1994) and Nordin et al. (1995)desribe the growth of proportion of introns as a kind of protetionagainst the destrutive e�et of rossover and mutation operators.That is, rossover and mutation annot alter (neither inrease nor de-rease) the performane of the program, if it is applied to an intron partof the program. Therefore, it ould be expeted that the evolution toa ertain degree promotes solutions that are somewhat immune to thedestrutiveness of rossover and mutation. Another way of putting itis, that the number of introns in the population serves as an adjustmentof the parameter ontrolling the rossover and mutation frequenies.2. Soule and Foster (1998) has a slightly di�erent explanation, also orig-inating in the destrutiveness of rossover and mutation, namely theremoval bias. When o�spring is produed by replaing a subtree froma parent, the good qualities of the parent are in danger of being de-stroyed. The larger the subtree being remove the more likely it is thatsome good qualities are lost. Hene, we would expet the evolutionto bias towards those individuals that has been produed from a re-plaement proedure that removed as little as possible from the parent.

5.2 Analysis of Previous Results 63This would of ourse give raise to a general growth in size of solutions.3. Lastly, Langdon and Poli (1997) argue that when using variable lengthenodings, it is most often possible to enode semantially equiva-lent solutions in many (possibly in�nitely many) syntatially di�erentways. This means that any solution an be found in many syntati-ally di�erent inarnations in the searh spae, and if in�nitely manyexist, then for any solution there will always be more equivalent thatare larger than there are equivalent solutions that are smaller. Hene,as the searh progresses, it is more probable to �nd larger solutionsthan it is to �nd smaller, with any given �tness.It should by now be fully realized that ode growth is to be expeted. Thequestion now is whether this harateristi is an advantage or a disadvantagefor the performane of the evolutionary searh.5.2.5 Effets of ode growthWhen viewed as some kind of automati adjustment of the rossover andmutation frequeny, the existene of large introns in the population seemsto be justi�ed, or at least something that seems to be inherent to any EAsearh using variable length enodings. We ould argue, that it makes senseto let evolution optimize the parameters of the system itself, improving thedynamis of the total system. However, one should not overlook the fatthat when lowering the frequeny of mutation, you narrow your searh andwill not explore new solutions as often. And when lowering the frequenyof rossover, the good solutions in the populations is not as aggressivelyexploited. In e�et, the evolutionary searh is slowed down whih is alsoreognized by Blikle and Thiele (1994) and De Jong et al. (2001) amongstothers.Another argument for ontrolling the size of individuals is presented by Rosa(1996), where strategies for a simple Pa-Man game are evolved. Here, thesmallest evolved programs were also the most general ones. With generalitywe understand the performane of a program when presented a new set of testases that have not been inluded in the training data used in the evolution.Gatherole and Ross (1996) desribes the interation between the rossoveroperator and the absolute tree size. They argue that in populations weretrees have reahed a onsiderable size, the disovery of good subtrees andthe distribution of these subtrees, mainly ours in the lower levels of thetrees, that is, near the leafs. When the size of the trees grow, the probabilityof seleting a rossover point near the root dereases dramatially, and henethe upper part of the trees onverge, while diversity is maintained in the lowerparts of the trees. So if a suboptimal solution gains foothold in the earlygenerations, this solution an be dragged on in the upper levels of the treesfairly immune to further improvement. It is obvious that in a situation likethis, there exists an upper bound on the quality of solutions that an beexpeted to evolved from the urrent population.Lastly, in some systems solutions with a high proportion of introns requiremore evaluation time. For instane, Brameier and Banzhaf (2001) use aLinear Geneti Programming system to evolve a lassi�ation program to

64 Problem definitionpredit diseases. In this system, introns are removed before evaluation ofspei� programs in order to optimize this step. After evaluation and beforethe new generation is produed, the introns are reintrodued on the originalplaes into the programs. This, however, is not an issue for our spei�problem, due to the spei� evaluation method we use.5.3 Projet GoalsIn the previous setions we have both identi�ed and desribed the phe-nomenon of bloat using some new results extrated from the experimentsdesribed in Holm and Nielsen (2002) (see hapter 4 for a summary). In ourspei� domain, bloat does not give raise to extra overhead in the evaluationof the solutions, but indeed we are interested in a general improvement ofthe evolution whih ould onsist in reduing bloat.In the �gures 5.1(a-b), 5.2(a-b) and 5.3(a-b) we notie that diversity mainte-nane might be an interesting topi to engage. In Holm and Nielsen (2002)we attaked this topi by using the island priniple with 7 islands. Whenomparing the three runs, we see that the populations get dominated by onlya few nodes, whih ould indiate onvergene and low diversity in the latergenerations.When working in a multimodal and highly omplex domain suh as UT, itis indispensable to the performane of the evolution, not to get stuk in aloal optima. We believe that it is essential to the quality of the evolvedsolutions of a GP system applied to real time domains, to avoid onvergenefor as long as possible. So, when onsidering the quality of the system asa whole, it is highly dependent on the systems ability to avoid prematureonvergene.We therefor state the goals of this projet to be:1. Address the problem of bloat or ode growth. Extensions to the systemfor gaining better ontrol of the size of individuals should be designedand implemented. The e�et on the quality of the evolved solutionsshould be investigated.2. Address the problem of maintaining diversity. New initiatives di�erentfrom the island priniple should be designed and implemented. Thee�et on the quality of the evolved solutions should be investigated.The performane of the searh should always stay in fous, and we shouldnot give up performane in favor of one of the two above mentioned goals.We propose the following extensions:1. Exeuted Path Guided Operators. New rossover and mutation oper-ators that only allows ut-points/mutation-points within the exeutedpath are proposed. The rossover operator was previously proposedby Blikle and Thiele (1994), and it is inspired by the ause of growthlisted as item 1 in setion 5.2.4 by not allowing neutral operators. Thatis, individuals an not be immune to the destrutiveness of the genetioperators by growing in size.

5.3 Projet Goals 652. Extended Context Free Grammar, an extended version of the ontextfree grammar desribed in setion 4.3.1 is used both when generatingsubtrees during for mutation and individuals for the initial population.In addition, rossover and mutation should be losed operators over theset of individuals reognized by the extended ontext free grammar.This extension attaks the ause of growth listed as item 3 in setion5.2.4, as it narrows the searh spae of possible solutions.3. Size Ranking, a more diret method for promoting small solutions areproposed. This method attaks no spei� ause of growth, rather itis a more general approah.4. Diversity Ranking, a more diret method for promoting disperse pop-ulations. This method is based on a subtree omparison of exeutedsubtrees, for either rewarding or punishing individuals for their unique-ness.The design of the di�erent extensions will be desribed in the following hap-ters.

Part IIOur ApproahThis part is intended as doumentation of the proess of designing the dif-ferent extensions previously proposed. Along with eah extension, relatedwork is presented. Chapter 6 desribes some modi�ations to the sys-tem desribed in hapter 4. Chapter 7 present the Size Ranking method.Chapter 8 presents the Diversity Ranking method. Chapter 9 presentsour E-CFG method, and hapter 10 presents our EPGO method.

6 System Modifiations�Things alter for the worse spontaneously,if they be not altered for the better de-signedly.�,Sir Franis Baon.Before we ontinue with the design of the four methods proposed in setion5.3, we �nd it appropriate to desribe some of the more general systemmodi�ations made to the system desribed in hapter 4.First of all, the algorithm that implements the extended loop of evolutionas depited in �gure 4.3 used 7 islands. This property has been removed, soinstead of 7 subpopulations of 32 individuals eah (a total of 224 individuals),only a single population of size 256 is maintained. We hoose a size that is apower of 2, as this yields a nie tournament shedule with no �walk-overs� 1.This modi�ation was onsidered neessary as in order to get a more leantest environment. That is, when measuring the e�et of a new feature ofthe system, it ould be hard to distinguish the e�et of one feature from thee�et of another, or even the e�et of the ombination of the two. Therefore,it is preferable to keep the GP system at a very basi level.Seondly, we skipped the assessment step of our old algorithm, refer to se-tion 4.3.2 for a desription of this funtion. In the assessment step youbasially deide where you want your searh to begin, and this might beeither onsidered good or bad. In our ase we assessed the strategies aord-ing to some prior knowledge about the domain. In other words, we imposean arti�ial distribution on the initial population. In this projet however,we want to have a system as basi as possible, and we therefore wants tostart with a random initial population. This approah seems to be standardthroughout the literature.Thirdly, we have modi�ed the language desribed in setion 4.2, also asa result of the observations made in Holm and Nielsen (2002). It is awell known issue (e.g. see Koza (1992)), that atomi onstruts with veryomplex semantis 2 an ause onvergene by dominating good solutionsand whole populations. And indeed we saw this e�et with onstrutslike relative-movement (see setion 5.2.1). Therefore, this onstrut hasbeen removed from the set of funtions. In general, we dislike the ideato mix high-level and low-level onstruts in the language, and by remov-ing relative-movement we feared that onstruts like irle-strafe-leftand irle-strafe-right ould be just as dominant in the population aswhat we experiened with relative-movement, and therefore the everlast-ing risk of onverging prematurely is strengthened. Hene, we have removedirle-strafe-left and irle-strafe-right from the language. This1Individuals that an not be paired with another individual in the urrent round istypially given a so alled �walk-over�, meaning that they proeed to the next roundwithout ompeting.2Often referred to as high-level funtions and terminals.69

70 System Modifiationsremoval does not narrow the expressiveness of the language, unlike the re-moval of relative-movement. That is, it is possible to onstrut the be-havior of irle-strafe-left by ombination of e.g. fae-enemy andstrafe-left. However, in experimenting with di�erent ombinations toahieve the irular stra�ng movement, we notied that smooth movementwas hard to onstrut without being able to postpone further exeution ofthe parse tree every one in a while. The reason is that it takes some smallamount of time before the server aknowledges (and perform) an ation om-mand send by the lient. Hene, we added the funtion:(wait x arg)This funtion requires (as does onst) an integer value x, and exeutionof the argument arg is postponed proportional to the value of x. waitassumes the value assumed by arg. This does not mean that the bot stopsits urrent business in the arena, it just means that no new ommands aresend during that slie of time. A omplete language spei�ation an befound in appendix C.Fourthly, we have hanged the arena a bit, for two reasons:1. The bots where spawned on one of several spawning-points, uniformlyplaed and faing the enter of the arena, see �gure 4.4. In e�et, thismeans that the bots were spawned with visual ontat of eah other,whih is a perfet ondition for suessful use of the relative-movementfuntion. Also, a single shoot node is a highly e�etive solution if youare faing your enemy most of the time. So in an attempt to onstrainthe sope of some of the very primitive solutions, the spawning-pointsare now sattered over the arena. Also, we wanted to make the mapmore dynami, and the symmetri spawning points in the old mapmakes it somewhat more stati, and might not reward good strategiesfor �nding your enemy, as he/she is usually right in front of you.2. In the old map, items were evenly distributed throughout the wholearena, making it very easy for the bots to pik up items. In fat, thebots would typially run into several items just by rossing the arena.So, in an attempt to avoid this situation, and making the environmentmore hallenging to the bots, we enlarged the arena and dispersed theplaement of items.

7 Size Ranking�One should not inrease, beyond what isneessary, the number of entities requiredto explain anything.�,William of Oam.The fat that the performane of a standard GP system using subtree swap-ping rossover will degraded along with growth in tree size was motivated inhapter 5. The following setion 7.2 presents di�erent approahes to defeatthis problem. In setion 7.3 the approah that we have hosen in this projetis desribed.When desribing the e�et of evolution on the size of enodings, some sortof formal argumentation is often onstruted (i.e. see Nordin and Banzhaf(1995); Langdon and Poli (1997); Rosa (1997)). In keeping with this tradi-tion, the next setion 7.1 will serve as suh an argumentation.7.1 The Bloat PhenomenonBefore going into a detailed disussion about the e�et of evolution on the sizeof individuals, it is useful to distinguish between e�etive size and absolutesize of a program. Nordin and Banzhaf (1995) de�ne the e�etive size (Seff)of a program to be the size of the non-intron part, and the absolute size(Sabs) is of ourse the total size of the program, inluding all introns. Inaordane with the de�nitions of introns given in setion 5.2, we an see thee�etive part of a program as being the exeuted part of that program. Inthe following we will illustrate the fat that the absolute size of an individualan have a hand in the survival rate of that individual.As desribed in hapter 5, neither standard rossover nor mutation an (byde�nition) hange the raw �tness of a program when applied within a globalintron blok. On the other hand, rossover or mutation within any non-intronblok of ode will almost ertainly hange the performane or behavior ofthat program at the risk of dereasing raw �tness.It is possible to estimate the evolution of size by alulating the expetednumber of opies of a given e�etive part of a program in future generations.In generations later than the initial, this estimate is omposed of two parts.Firstly, ode bloks an survive aross generations through seletion andgeneti operations. Seondly, entirely new instanes of equivalent bloks anemerge from geneti operations. We will fous on the survival of existingbloks and for now we will disregard new instanes of ode bloks emergingfrom reombination and mutation.We have a probability of rossover and mutation at the individual level ofp and pm respetively. Seff (i) and Sabs(i) desribes the e�etive size andabsolute size of individual i. We an formulate an upper bound of the prob-ability of potential destrution of the e�etive ode blok of individual i,71

72 Size RankingPdes(i), as a result of rossover or mutation, as:Pdes(i) � Seff (i)Sabs(i) (p + pm): (7.1)The destrution of the e�etive blok is only bounded by this value, andnot neessarily equal to it, as it is possible to perform rossover or mutationwithin the e�etive blok without destroying it 1. If the probability of indi-vidual i being seleted for mating is Psel(i), then the survival rate Psur(i) ofthe e�etive part of individual i is desribed by equation (7.2).Psur(i) = Psel(i)� Pdes(i) (7.2)Psur(i) � Psel(i)� Seff (i)Sabs(i) (p + pm): (7.3)In equation (7.3), the proportion of destrutive rossover operations, as esti-mated by equation (7.1), has been substituted into the survival rate desribedby equation (7.2).The way Psel(i) is alulated is not of great importane in equation (7.2)and (7.3), only fat that better �tness yields a higher Psel value is importantto notie. The relation that is important to observe, is that of Psur andSabs. With �xed Seff and Psel, an inrease in Sabs does in fat inrease thesurvival rate of an individual. Also, the smaller the Seff , the higher thePsur, whih show that evolution inherently favors ompat solutions, or atleast a low value for SeffSabs . Amongst others, these fats were reognized byNordin and Banzhaf (1995) and Rosa (1996).7.2 Previous EffortsA lot of di�erent approahes to gain more ontrol over the size and omplex-ity of the evolved solutions have been investigated. One rude or primitiveapproah is simply to onstrain solutions to be smaller than some expliitlyde�ned maximum size. This tehnique is most often rejeted as too greedyand stati, espeially if this size onstraint is �xed by plain guessing. How-ever, if you are already in possession of an aeptable solution, and just wantto explore equally good (possibly better) but less omplex (i.e. shorter) solu-tions, this approah is intuitively optimal. It ould easily be ombined withone or more of the methods desribed in the following setions.7.2.1 Primitive Parsimony PressureA ommon (and a bit more sophistiated than the above mentioned) ap-proah is to expliitly introdue parsimony pressure to the evaluation fun-tion. In e�et, this means to make the e�etive �tness value dependent onthe absolute size of the individual. We rede�ne Psel and modify equation(7.2) as: P 0sel(i) = Psel � �Sabs(i) (7.4)Psur(i) = P 0sel(i)� Pdes(i): (7.5)1For instane, two idential subtrees an be exhanged between the parents, resultingin o�spring idential to the parents.

7.2 Previous Efforts 73As remarked by Rosa (1997), the hoie of value for the Oam fator 2 � isa di�ult task, but at least � should be a small positive value so that �Sabs(i)in general is negligible ompared to Psel(i). The drawbak of this approah isthat the weighting fator is onstant throughout the evolution and with toogreat a value for �, it may not be possible to evolve solutions with su�ientlygood performane. As the other extreme, if � is �xed on a too low value,it will have no e�et, and tree sizes will explode as usual. Both Nordin andBanzhaf (1995) and Rosa (1996) show simple parsimony pressure an reduethe absolute size while e�etive size is relatively una�eted by the pressure.7.2.2 Adaptive Parsimony PressureAn adaptive Oam fator for the parsimony pressure was proposed by Zhangand Mühlenbein (1995), and it extends the primitive parsimony pressureapproah desribed in setion 7.2.1 above. All individuals are �rst evaluatedin order to �x their raw �tness. Then, the error E of every program i ingeneration g, E(i; g), is determined. The absolute size of every program isalso de�ned as a funtion of the generation, i.e. Sabs(i; g). An estimate of theabsolute size of the best individual in the next generation, Ŝabs, is alulatedas: Ŝabs(best; g + 1) = Sabs(best; g) + �S(g): (7.6)In equation (7.6), �S(g) is reursively de�ned by equation (7.7).�S(g) = � 0 if g = 0,12Sabs(best; g) � Sabs(best; g � 1) + �S(g � 1) otherwise.(7.7)Now the Oam fator is updated between generations aording to thesheme desribed by equation (7.8).�(g) = (1N2 E(best;g�1)Ŝabs(best;g) if E(best; g � 1) > �1N2 1E(best;g�1)Ŝabs(best;g) otherwise (7.8)In equation (7.8) N is the size of the training set, and � desribes the max-imum training error allowed for the �nal solution. Finally, before engagingin the seletion proess, � in equation (7.4) is replaed by the new de�ni-tion �(g) from equation (7.8). Amongst others Blikle (1996) shows goodresults in solving two symboli regression problems, one ontinuous and onedisrete.7.2.3 Expliitly Defining IntronsNordin et al. (1995) propose a system in whih a speial language onstruts(an Expliitly De�ned Intron (EDI)) is given the harateristi properties ofintrons. An EDI an be attahed to any edge between two 'normal' neighbornodes in the program, and it have no e�et on the exeution of the program.2Named after William of Oam and his priniple of simpliity (Oam's Razor): �Givena hoie between two explanations, hoose the simplest � the explanation whih requiresthe fewest assumptions.�

74 Size Ranking
�������� ����
����
����
����

��������
��������
��������
��������

��Figure 7.1: The 6 di�erent �tness lasses, produed by our tournament based �tnessfuntion, when applied to a population of 32 individuals, with �tness dereasing fromleft to right.Attahed to an EDI is an integer value (EDIV) that a�ets the probability ofrossover between the two nodes onneted by the edge, proportional to thespei� EDIV. Nordin et al. (1995) show that the addition of EDIs to a GPsystem evolving solutions for symboli regression problems perform betterthan the equivalent system without EDIs. The aspets investigated inludeomputation time, generalization and raw �tness. Also, it is shown that thenumber of destrutive rossover operations is dereased dramatially.7.3 Our ApproahWe have hosen to experiment with a simple parsimony pressure approah.Our �tness funtion (desribed in setion 4.3.2) is a ompetitive tournamentbased �tness funtion, whih means, that the �tness of an individual is deter-mined relative to the population of the urrent generation. More preisely,with a population of size N , the individuals are divided into log2(N) + 1�tness lasses, as depited in �gure 7.1. The �tness lass membership of anindividual is de�ning the raw �tness of this individual. We now order theindividuals within eah �tness lass aording to their absolute size. In thisway, we never run the risk of moving a individual from one �tness lass to an-other as a result of applying the pressure. The fat that the smallest hangein �tness is balaned against the biggest hange in size, is in aordane withthe guidelines that put up by Nordin and Banzhaf (1995).Our approah desribed in this hapter, will be referred to in the followingas SR.

8 Diversity Ranking�Without order nothing an exist - withouthaos nothing an evolve.�,Unknown.The diversity of the geneti material ontained in the population maintainedby the EA is known to drop over time. The onsequene is that solutionswill be more and more alike, that is, the area of the entire searh overedby the population is narrowed, and the optimization is onentrated on asingle peak on the �tness landsape. The population experiene onvergeneand the exploration of new solutions is rapidly damped down. In someappliations of EA, this is a very attrative property, espeially if you wantthe system to terminate and spit out a solution to the problem, as it is niethat a lot of time is not wasted by on exploring totally new areas of thesearh spae for ever.However, in some problem domains, you want to have more ontrol over theonvergene properties of the EA. For instane, when dealing with problemdomains of very high omplexity and multimodality, it is ommon to experi-ene �tness landsapes with (possibly in�nitely) many peaks of suboptimalsolutions. In suh domains, it is of great importane that diversity is keptunder ontrol and not permitted to drop below some threshold, whih woulddrive the exploration of new solutions to a halt.Espeially, in our domain (desribed in setion 2) we expet a lot of sub-optimal solutions to exist. As a result, we are not interested in dampingdown exploration prematurely, but rather we would prefer to explore newsolutions. However, when onsidering our use of a ompetitive tournamentbased �tness funtion (see setions 4.3.2), the �tness funtion itself displaysa very dynami behavior, as it is dependent on the population of the ur-rent generation. As mentioned by Angeline and Pollak (1994), this kind oftournament �tness will naturally disourage onvergene in most situations.The reason is in the way �tness is assigned to individuals. As illustratedin �gure 7.1, individuals are assigned a �tness value aording to the levelof the tournament reahed by that individual, in e�et meaning that a lotof individuals will be assigned the same �tness. So even in the �tness dis-tribution, we have inherently a bias towards low pressure. And as we usea seletion method with low pressure 1, we have a very low seletion pres-sure indeed. A low seletion pressure inherently promotes diversity, as nosuperindividual will be allowed to reprodue aggressively. This being said, itmight seem strange that we still want to onsider methods for maintainingdiversity in the population. The answer is, that a ompetitive �tness fun-tion only leaves room for diversity to exist, but does not diretly dispersethe population and thereby foring individuals to explore new areas of thesearh spae, and this is what we would like to do.1Tournament seletion with tournament size 2, see setion 4.3.2.75

76 Diversity Ranking
if−enemy−move−away

if−enemy−move−right if−less−than

turn−right prog−2

face−enemy shoot

shoot turn−left const 42 move−forward(a)

if−enemy−move−away

if−enemy−move−right if−less−than

turn−right

turn−right

prog−2

prog−2

if−enemy−move−away

face−enemy

shoot

shoot

move−forward if−enemy−closing−in

shoot turn−left const 42 move−forward

(b)Figure 8.1: Two trees are ompared, exeuted nodes are olored. A math of size 4has been enirled.8.1 Our ApproahWe have hosen to experiment with a tehnique that will inorporate anexpliit distane measure, and thereby promote individuals that inreasethe diversity of the population. The distane measure is inspired by DeJong et al. (2001), where the distane between two trees is alulated bysumming the number of idential nodes with orresponding positions whenthe two trees are overlaid. De Jong et al. (2001) normalizes the distanebetween two trees by division of the size of the smaller of the two. Insteadof performing this kind of full tree omparison, we only onsider the biggestgarbage free subtrees when performing omparison. By garbage free we meanthat all nodes in the full subtree have been exeuted. As an example �gure8.1(a), 8.1(b), 8.2(a) and 8.2(b) depit a omparison of two trees using oursheme, and two subtree mathes are enirled by the dashed line. So, for allpairs of individuals in the population, we alulate the maximum ommonsubtree, and for eah individual we alulate an average of these values.Like in the approah desribed in setion 7.3, we use this average measureto sort individuals within spei� �tness lasses, so that individuals with alow average ommon size are promoted and individuals with a high value arepunished.The motivation for only onsidering the biggest garbage free subtree is �rstof all the fat that we do not want to punish trees with idential garbage,and promote trees with di�erent garbage. If, at some point the garbage isput into use, the garbage will not ontinue to be garbage, and trees withlarge ommon sizes will now be punished.8.1.1 Measuring Common SizeThe algorithm for determining the size of the biggest mathing subtree ofany two trees, is desribed by the algorithms ompare and subTreeMath de-pited in tables 8.1 and 8.2 respetively. Basially, ompare takes two treesas arguments, performs a breadth �rst san through both trees and ontin-

8.1 Our Approah 77
if−enemy−move−away

if−enemy−move−right if−less−than

turn−right prog−2

face−enemy shoot

shoot turn−left const 42 move−forward(a)

if−enemy−move−away

if−enemy−move−right if−less−than

turn−right

turn−right

prog−2

prog−2

if−enemy−move−away

face−enemy

shoot

shoot

move−forward if−enemy−closing−in

shoot turn−left const 42 move−forward

(b)Figure 8.2: Two trees are ompared, exeuted nodes are olored. A math of size 5has been enirled.ually omparing the subtrees rooted at the nodes urrently being sanned,by ontinually alling subTreeMath for all possible pairs of nodes of thetwo trees. This yields a omplexity of M �N invoations of subTreeMath,where M and N are the sizes of t1 and t2. In the average ase we ouldminimize this omplexity, by only alling subTreeMath when it is possibleto �nd a bigger math, that is both arguments of subTreeMath must havea size greater than the value of variable max_math. This improvement doesnot a�et the worst ase senario, when two ompletely di�erent trees aregiven as arguments to ompare. The omplexity of subTreeMath is equal tothe size of the smaller of the two trees. This an be realized by onsideringthe worst ase senario, when two idential trees are given as arguments forsubTreeMath. In this ase, the amount of omparisons needed is equal tothe number of nodes in the tree. The same is the ase, when trees onlydi�er in leaf nodes. If we assume that most often the trees ompared are ofapproximately equal size, we get a omplexity of ompare of O(n2), n beingthe average size of the two trees given as arguments. As earlier mentioned,the worst ase senario for ompare is two ompletely di�erent trees, whihis the best ase senario for subTreeMath, yielding a onstant omplexityas the test in line 10 of table 8.2 fails in the �rst iteration.It is obviously of great onern that our algorithm for ompare has a om-plexity of O(n2), but as we use only the biggest garbage free subtrees whenomparing two trees, we expet the size of these garbage free subtrees to stayapproximately onstant on a relative low value. As an illustration, some pre-liminary experiments have shown that garbage free subtrees on average donot grow to sizes of more than 10 to 20 nodes, whih yields a total of max202 = 400 omparisons. Compared to the evaluation of a generation of255 individuals in our real-time domain (� 15 seondsindividual) 400 omparisons isnegligible. Of ourse, the 15 seonds primary evaluation is done in a up-tournaments based fashion (desribed in setion 3.2.4), while all individualsneed to be ompared with all others one, yielding a total of 32385 ompar-isons on the individual level. However, experiments still show that this is

78 Diversity Ranking01: ompare(t1, t2){02: math = 0;03: max_math = 0;04: stak1 = Ø;05: stak2 = Ø;06: stak1.push(t1.root);07: stak2.push(t2.root);08: while(stak1 != Ø){09: node1 = stak1.pop();10: while(stak2 != Ø){11: node2 = stak2.pop();12: math = subTreeMath(node1, node2);13: if(max_math < math){14: max_math = math;15: }16: for all hildren x of node1{17: stak2.push(x);18: }19: }20: stak2.push(t2.root);21: for all hildren x of node1{22: stak1.push(x);23: }24: }25: return max_math;26: }Table 8.1: Algorithm for �nding the largest subtree math within to subtrees.not a performane bottlenek.In the following hapters, the approah desribed in this hapter will bereferred to as DR

8.1 Our Approah 79

01: subTreeMath(root1, root2){02: math = 0;03: stak1 = Ø;04: stak2 = Ø;05: stak1.push(root1);06: stak2.push(root2);07: while(stak1 != Ø AND stak2 != Ø){08: node1 = stak1.pop();09: node2 = stak2.pop();10: if(node1 == node2){11: math = math + 1;12: for all hildren x of node1{13: stak1.push(x);14: }15: for all hildren x of node2{16: stak2.push(x);17: }18: }19: }20: return math;21: } Table 8.2: Algorithm for mathing subtrees.

9 Enhaned Context FreeGrammar�We adore haos beause we love to pro-due order.�,M. C. Esher.In Holm and Nielsen (2002) we introdued a CFG to be used by the us-tom tree generator. The ustom tree generator was used to generate theinitial population of trees reognized by the CFG and to diret the muta-tion operator when a subtree was needed 1. In this setion we will desribethe enhanement of the CFG and the motivation for it. We will name thisenhaned CFG, the Enhaned-Context Free Grammar (E-CFG).9.1 MotivationSeveral motives for enhaning the CFG exist. The impat of further syntationstraints is very appealing, sine it redues the searh spae. Of oursewe still have to be areful not to limit the solution spae. By analyzing thethree runs from Holm and Nielsen (2002) we found various useless syntatistrutures whih ould be eliminated by altering the CFG, and hopefully notthe solution spae. Another reason for enhaning the CFG was the removalof the high level funtions. The high level funtions were part of all the bestindividuals from the three runs in Holm and Nielsen (2002). By removingthese we expet that it will beome more di�ult to reah solutions of thesame quality. Yet by adding rules to the CFG we an push the evolution toevolve sensible building bloks of the low level funtions. In the next setionwe will look loser into the new rules added to the CFG.9.2 Our ApproahThe E-CFG is onstruted by altering some of the old rules from the ini-tial CFG and adding a number of new rules. The E-CFG should narrowthe searh spae further, still it should not do it by removing satisfyingsolutions. It has been our goal to design the E-CFG with the removal ofunsound syntati strutures in mind, e.g. strutures whih are obsolete be-ause they only di�er ompared to other strutures as genotype but not asphenotype. In �gures 9.1(a) and 9.1(b) we an see an example of two treeshaving idential phenotype but di�ering genotype.
1Notie that when the mutation operator was applied the resulting tree was not ne-essarily reognized by the CFG, only the subtree inserted.81

82 Enhaned Context Free Grammar
if−less−than

const 100 const 140 if−enemy−move−right const 42

if−enemy−move−right if−enemy−move−left

turn−right shoot prog−2 health

if−less−than health

prog−2 prog−2 const 33 armor

turn−left wait 33

health

face−enemy shoot

(a)

if−enemy−move−right

turn−right if−enemy−move−left

prog−2 turn−right

turn−left wait 33

prog−2

face−enemy shoot(b)Figure 9.1: In (a) a randomly generated tree is depited. Notie the semantialequivalene with the tree depited in (b) whih is reognized by our CFG.9.2.1 Context Free GrammarsA ontext free grammar is a four-tuple(N ;X;P;S);where N is the non-terminal alphabet, P is the terminal alphabet, P is theset of produtions and S is the start symbol. The produtions are of theform A! b;where A 2 N , b 2 P S N �. Produtions of the formA! b;A! ;an be expressed as A! b j :9.2.2 The EnhanementsThe alphabet of the E-CFG, representing the funtions and terminals of ourlanguage, is desribed in table 9.1.We will now eluidate a number of sets, whih will be used in the grammar.

9.2 Our Approah 83F NamesA prog-2B if-less-thanC waitD if-health-in-reahE if-ammo-in-reahF if-armor-in-reahG if-weapon-in-reahH if-bumpI if-enemy-in-sightJ if-enemy-move-leftK if-enemy-move-rightL if-enemy-move-awayM if-enemy-losing-inN if-enemy-is-stati

T Namesa healthb my-weapon ammod armore enemy-weaponf enemy-damageg enemy-distaneh fae-enemyi turn-leftj turn-rightk strafe-leftl strafe-rightm shootm move-forwardo move-bakwardp onstTable 9.1: The alphabet of the E-CFG. The funtions are assigned upperase lettersin the leftmost box and the terminals are assigned lowerase letters in the rightmostbox. Fset = fA::Ng (9.1)Iset = fD::Ng (9.2)aset = fh::og (9.3)sset = fa::gg (9.4)The "funtion" set (Fset) onsists of all the funtions from our funtionand terminal set. The "if" set (Iset) onsists of all the funtions being ifonstrutions exept if-less-than whih di�er in that it uses two of itsarguments for evaluation. The "ation" set (aset) onsists of all terminalswhih auses some kind of bot ation when exeuted. The "sensor" set (sset)onsists of all terminals representing game information and the onstantterminal.We will now take a look on the reasoning behind the di�erent rules in theE-CFG.The start rule S ! Fset (9.5)makes sure that trees at least onsist of three nodes, as all onstruts in Fsetrequire at least 2 hildren with the exeption of the wait onstrut, thatonly requires 1 hild. However, the rule for wait (see rule (9.10)) preservesthe minimum tree size of trees with a wait node as root. Sine trees withless than three nodes an not represent satisfying solutions and we will avoidthat an individual whih only onsists of the shoot node an get a good

84 Enhaned Context Free Grammar
prog−2

prog−2 shoot

if−enemy−in−sight shoot

face−enemy turn−right(a)
if−enemy−in−sight

prog−2 prog−2

face−enemy prog−2

shoot shoot

turn−right prog−2

shoot shoot(b)Figure 9.2: A tree generated randomly depited in (a). When using the E-CFG fortree generation a semantial equivalent tree exists as an be seen in (b). The treeis generated using the new E-CFG prog-2 rule the rule should not onstrain thesolution spae.�tness early in a GP run, this is possible sine "shots �red" is a part of anindividuals �tness assignment.The prog-2 rules A! aset A j A aset j aset aset (9.6)only allows a prog-2 funtion to have another prog-2 funtion or one ofthe ation terminals as its arguments. This rule is implemented with theoriginal purpose of introduing the prog-2 funtion in mind, namely to beable to exeute a sequene of ations. The syntax of this rule makes itpossible to exeute from two to an in�nite sequene of ations. We shouldalso note that this rule does not redues the set of possible solutions, but onlyredues semanti dupliates. An example of two trees whih are semantiallyequivalent an be seen in �gure 9.2(a) and �gure 9.2(b). The tree in �gure9.2(b) was generated using the E-CFG and the tree in �gure 9.2(a) was not.The following if-less-than rulesB ! B0 B00 B00 (9.7)B0 ! sset p j p sset j sset sset (9.8)B00 ! aset j Fset (9.9)helps to generate onditionals whih should have a purpose, that is, evaluatesensor information and exeute the appropriate branh based on this infor-mation. The analysis of the trees from the three runs in Holm and Nielsen(2002) showed that the if-less-than funtion in some ases served as aprog-3 funtion or always exeuted the same branh, or both possible exe-utable branhes had sensor nodes as hildren. Illustrations of these threetypes of undesirable tree strutures an be seen in �gures 9.3(a), 9.3(b) and9.3(). When using the new E-CFG's if-less-than rules, we make surethat the two hildren being evaluated never are two onstants, in this waywe avoids that the same branh always is exeuted (with one exeption; whenonst takes a minimum or maximum value).

9.2 Our Approah 85
if−less−than

const 42 const 52 health shoot(a) if−less−than

const 42 health armor ammo(b)
if−less−than

shoot move−forward shoot if−enemy−in−sight

face−enemy turn−right()Figure 9.3: An if-less-than funtion always exeuting the same branh is depitedin (a). The two exeutable branhes both have useless sensor nodes as instrution,depited in (b). An if-less-than funtion ating as a prog-3, depited in ().
prog−2

wait 100

???

shoot

(a)
prog−2

wait 100 shoot

move−backward(b)Figure 9.4: During tree generation a wait funtion deides its hild by using itsparent's grammar rule. In (b) the wait node has deided to be a ation terminalaording to the prog-2 grammar rule.The wait rule C ! parent rule (9.10)neessitates a little explanation. To limit the number of listed rules for thisfuntion we have made a notational shortut. What we mean by parent ruleis that the allowed hild to wait is determined by looking at the hildrenallowed for wait's parent. An example of this rule in use an be found in�gures 9.4(a) and 9.4(b). In this ase the rule for prog-2 will be used sinethis type of node is parent to wait, so this means that waits hild an beeither a prog-2 node or a terminal from the Aset as hosen in �gure 9.4(b).The Iset rule, de�ned in terms of the B00 variable previously de�ned by rule(9.9), Iset ! B00 B00; (9.11)allows all funtions and terminals exept for sensors as arguments.

86 Enhaned Context Free GrammarE-CFGS ! FsetA ! aset A j A aset j aset asetB ! B0 B00 B00B0 ! sset p j p sset j sset ssetB00 ! aset j FsetC ! parent ruleIset ! B00 B00Table 9.2: The E-CFG of the onstrained syntati rules for ustom tree generation,rossover and mutation.The omplete E-CFG is observable in table 9.2. We an now use this E-CFG to generate our initial population and the subtrees used in mutation.In addition we will use the E-CFG to ontrol the rossover operator, so thatthe o�spring generated will reognize the rules imposed by the grammar.

10 Exeuted Path GuidedOperators�I think omplexity is mostly sort ofrummy stu� that is there beause it's tooexpensive to hange the interfae.�,Jaron Lanier.In this setion we will desribe a new rossover operator and a new mutationoperator. These operators are designed with an evolutionary optimization inmind and the theory behind them is desribed in Blikle and Thiele (1994).We will refer to these new operators as Exeuted Path Guided Crossover(EPGC) and Exeuted Path Guided Mutation (EPGM). We will refer toboth of them as Exeuted Path Guided Operators (EPGO).10.1 ConsiderationsThe motivation for the introdution of these new operators is partly basedupon our observations in Holm and Nielsen (2002) and the analysis in hapter5. As previously mentioned and doumented in Soule et al. (1996), withoutany onstraint mehanism the programs generated by GP will grow inde�-nitely regardless of whether or not the growth ats to improve the programs'solutions.The fat that the amount of non-funtional ode in our programs grows asevolution progresses raises some onerns. Contrary to most papers touh-ing the problem with tree growth, the domain in fous is highly omplex,dynami and noisy. With this in mind, one have to onsider that results andmethods in these papers have to be arefully evaluated before applying anyof the theory to aomplish our task.In a domain like UT it an be expeted to evolve a onsiderable numbergenerations in a GP run, before an adequate solution is found. When lookingat the time onsuming �tness funtion used in our domain it should beapparent that it is relevant to optimize the exploration and exploitationproperties provided by the geneti operators. When the amount of non-funtional ode in the population grows exponentially and we an expet toevaluate a high number of individuals it seems logial to aim for individualsonly di�ering in size but not semantially are only evaluated one. Beforegoing into details with the approah taken to deal with this issue let us lookat similar work done within the area.10.2 Similar workThe priniple of EPGO, namely to let exeution paths guide the hoie of GProssover and mutation loation is yet rather unexplored. As far as is known,87

88 Exeuted Path Guided Operatorsprogram exeution paths are introdued and used for guiding rossover forthe �rst time in Blikle and Thiele (1994). in this paper the method devisedis problem dependant in that it only works for ertain funtion sets and theperformane varies dependent on the problem at hand.In Langdon (1995) a more general, but also rather di�erent method is sug-gested. Langdon (1995) states that it is obviously wasteful to performrossover in ode that is working orretly, and therefore he suggests a di-reted rossover mehanism whih sueeds in dynamially redistributingrossover loations to ode in need of improvement as the population evolves.In the problem under treatment eah individual onsists of multiple trees,eah of whih is a part of the solution. By keeping a reord of whih treesare exeuted and with what outome, the urrent performane of eah treewithin an individual an be desribed and this desription is used to biaswhih trees are hosen for rossover. Sine the method desribed in Langdon(1995) is designed for another representation of solutions than the one weuse and it is di�ult to adapt, we will not go into details with the spei�sof the method.The representation of the population as parse trees allows the trees to growwith time, often without improving the urrent best solution. One way ofavoiding this is to add some penalty to the �tness funtion for too big trees.Blikle and Thiele (1994) explain both the phenomenon of bloating and theunsatisfying onvergene of the searh proess by means of the redundanyin the trees. Spei�ally Blikle and Thiele (1994) give a more formal de-sription of the rossover phase and redundany phenomena in GP. In thefollowing setion some of the de�nitions will be summarized.10.2.1 Crossover and RedundanyDe�nition 10.2.1 The edge A in tree T is alled redundant if for all valuesof the leaves (terminals) the funtion represented by the tree T is independentof the subtree loated at edge A.Note:� If the edge A is redundant if follows immediately that all edges in thesubtree loated at edge A are redundant, too.� The redundany of an edge A in general depends on the ontext.� All nodes loated at redundant edges are redundant nodes.� The non-redundant nodes are also alled "atomi" by Takett (1994).De�nition 10.2.2 The proportion of redundant edges in a tree T is givenby pr(T) = number of redundant edges in Tnumber of all edges in TDe�nition 10.2.3 The redundany lass T � is the set of all trees T that onlydi�er from subtrees at redundant edges, i.e. for any two trees T1; T2 2 T �,

10.2 Similar work 89T1 an be transformed into T2 only by hanging subtrees at redundant edgesof T1.Theorem 10.2.1 Let p be the probability of rossover and T a tree of theredundany lass T �. The probability of tree T to remain in lass T � afterrossover is given by ps(T) � 1� p + ppr(T).Theorem 10.2.2 Let pr(T �) be the average redundany of the redundanylass T � before reprodution. The average redundany pr(T 0�) after repro-dution is in average independent of the reprodution method and pr(T 0�) =pr(T �).Proofs of theorem 10.2.1 and theorem 10.2.2 an be found in Blikle andThiele (1994).It follows from 10.2.1 that the more redundant trees are more likely to sur-vive. This implies the inreasing redundany in a typial GP run makesit less likely to hoose a non-redundant node as rossover point and henehinders the evolution of new individuals. Blikle and Thiele (1994) alsonote that it follows from this onsideration that the probability to esape apotential loal optima dereases with time.In a highly multimodal and omplex problem domain the possibility of ex-ploring several loal maxima is evident. Therefore we �nd the just mentionedproperty highly undesirable in our domain. Blikle and Thiele (1994) suggesta method to ontrol the redundany and present results whih demonstrateits appliability.10.2.2 The Marking MethodThe idea of the "marking" operator desribed in Blikle and Thiele (1994) isto mark all nodes that are traversed (or exeuted) during evaluation of the�tness funtion in the following way:� First before evaluation the marking �ags of all nodes are reset.� Then if a node is exeuted during the �tness alulation the orre-sponding �ag is set.� At last after the alulating the �tness funtion, only at redundantnodes the �ags are still leared. The rossover is then restrited toedges with the �ag set.The method is applied on three problems taken from Koza (1992). For the6-multiplexer problem the performane was almost doubled, for the trukbaker upper problem an improvement in onvergene of 20 % was measuredand for the ant problem almost no improvement was measured.

90 Exeuted Path Guided Operators
if−enemy−move−away

if−enemy−move−right

if−less−thanturn−right

prog−2

face−enemy shoot

shoot turn−left const 42 move−forward(a) An initial generatedtree with no exeute nodesyet.
if−enemy−move−away

if−enemy−move−right

if−less−thanturn−right

prog−2

face−enemy shoot

shoot turn−left const 42 move−forward(b) The tree from �gure(a) after an evaluation.The olored nodes havebeen exeuted.
if−enemy−move−away

if−enemy−move−right

if−less−thanturn−right

prog−2

face−enemy shoot

shoot turn−left const 42 move−forward() The tree from �gure(b) after another evalua-tion. This time a di�erentpart of the tree has been ex-euted.

if−enemy−move−away

if−enemy−move−right

if−less−thanturn−right

prog−2

face−enemy shoot

shoot turn−left const 42 move−forward(d) The olored subtreehas still not been exe-uted. This latent subtreeould be exeuted in a sub-sequent evaluation.Figure 10.1: The olored subtree has still not been exeuted. This latent subtreeould be exeuted in a subsequent evaluation.10.3 Our ApproahWe have hosen to adopt the method desribed in Blikle and Thiele (1994)and use it for mutation as well as rossover. The method seems to �t nielyfor our problem domain. Alternate methods whih try to remove redundantode ould ause a problem in our domain. Let us take a look at an example.In �gure 10.1(a) we see an initial generated tree. We ould apply heurististo remove possible redundant nodes, but we risk to remove sound ode andwe also risk to alter the initial diverse distribution of funtions and terminals.In �gure 10.1(b) we see the exeuted nodes in a tree after an evaluation.These nodes will be allowed as utpoints in the following rossover phaseusing EPGC.In �gure 10.1(a) we see another exeuted path in the same tree for a sueed-ing evaluation, whih ould be aused by another opponent using a di�erentstrategy. This time only these nodes will be allowed as utpoints. Now it isnatural to ask: Why don't we also allow the previously exeuted nodes asutpoints? Imagine an evolution running for several generations, as we ob-served in Holm and Nielsen (2002) the solutions of the population graduallyadapt to di�erent strategies (as a result we see di�erent exeuted paths),some of the strategies enountered early in the evolution are primitive and

10.3 Our Approah 91will possibly beome extint, nevertheless the individuals will still ontainthe ode evolved to ope with this strategy as latent ode. This is a nieproperty whih ould be destroyed if we allowed the nodes of these latentsubtrees to be utpoints, in addition even if they were allowed as utpointswe wouldn't trae a hange in �tness sine the tree would not exeute thealtered.In �gure 10.1(b) we see a portion of the tree still not exeuted after two ormore evaluations. We ould remove this subtree, but we an not rule outthat it an be exeuted in a later generation and it is nie to preserve adiverse number of funtions and terminals in the population. In this waysuddenly exeuted "never before exeuted" ode an provide the populationwith fresh geneti material in late generations in support to the mutationoperator.So just to sum up we will adapt the method desribed in Blikle and Thiele(1994) as the "marking" operator and we refer to as EPGC. In addition wewill use the priniples of EPGC to onstrut the EPGM operator sine thepriniples and motivation for EPGC also applies for EPGM and hene willbe a logial extension.

Part IIIResults and onlusionThis part presents the results extrated from test runs of the basi GenetiProgramming algorithm, extended with the di�erent methods designed inthe previous part. The results are presented in hapter 11, and �nally weonlude upon these in hapter 12.

11 Tests and Results�In theory, there is no di�erene betweentheory and pratie. But, in pratie, thereis.�,Jan L.A. van de Snepsheut.To evaluate the di�erent extensions to the algorithm desribed in hapters7 through 10, we have evolved a population of 256 individuals using the GPsystem desribed in hapter 4 with the modi�ations listed in hapter 6. Wehave performed a single run of 75 generations for eah extension, and fromthese test runs we want to identify harateristis of the di�erent modi�a-tions. We an not expet these single runs to be a solid basis for formingstrong onlusions, but our aim is only to get indiations of the di�erentadvantages and disadvantages that might be inherited by the introdutionof these new methods. The real-time domain we use is not easily speededup, and as a result, a full evaluation of a population of size 256 last for justabout 1 hour, e.g. 75 hours for a omplete run. Therefore, the time availableputs up a natural onstraint to the amount of testing possible.11.1 Parameters of the EvolutionWe have used the same set of parameters for all runs, these are listed in table11.1. As previously mentioned, we have disontinued the use of the islandpriniple and now only maintains a single population without subpopulationsand with a total size of 256. The rossover frequeny Pross is set to 0.9,the default value used by Koza (1992). Unlike default Koza-parameters 1,we use mutation at a frequeny of 0.1. As we have a very low seletionpressure presented by our ombination of the up-tournament-based �tnessfuntion and tournament seletion with tournament size 2, and as we do notuse reprodution as de�ned by Koza (1992), we use elitism that opies the 10most �t individuals unhanged to the next generation. We have reon�guredthe UT-server to run at double speed, so the evaluation time of 30 seonds isin real-time only 15 seonds. The minimum and maximum initial individualdepth onstraints the individuals in the initial population (either random orustom generated) on depth. The minimum and maximum mutation depth,onstraints the subtrees (either random or ustom generated) inserted byour mutation operator on depth.11.2 ResultsIn this setion we will �rst of all take a look at how the �ve runs haveevolved with regard to tree sizes. The �gures will depit average absolutesize, average e�etive size and absolute size of winner. A short desriptionof these three measures an be found below (see setion 7.1 for a detailed1Default mutation frequeny used by Koza (1992) is 0.0.95

96 Tests and ResultsParameter ValuePopulation Size 256Pross 0.9Pmuta 0.1Relite 10Evaluation Time (seonds) 30Min. initial individual depth 4Max. initial individual depth 10Min. mutation depth 2Max. mutation depth 4Table 11.1: The di�erent parameters used in all runs.desription):Average absolute size: The absolute size of a tree is the total number of nodesontained in that tree (inluding introns). The average is alulatedfrom the entire population of a generation.Absolute size of winner: The absolute size of the best individual from a gen-eration.Average e�etive size: The e�etive size of a tree is the number of nodesexeuted in that tree. The e�etive size of a tree is based on the�rst math every individual play in the tournament based ompetitive�tness funtion (note: not the aumulated nodes exeuted during atournament). The average is alulated from the entire population ofa generation.Seondly, we desribe the results of a benhmark test performed on individ-uals from all generations of the �ve di�erent runs. An All-Star team wassummoned to at as the benhmark test environment. The best individualfrom the 25th, 50th and 75th generation of all �ve runs were drafted to playon the All-Star team, as we hoped this would ompose a diverse and broadspetrum of di�erent strategies. The tests were performed by pitting thewinners from eah generation against all 15 members of the All-Star team,one at a time, in a 30 seonds math in the well known arena. For all winnersof all generations of the di�erent runs, the following values were logged:Points An aumulation of points reeived in the 15 mathes. 1 point isgiven to the individual with the most frags, -1 to the other, or 0 toboth individuals if there is a tie on amount of frags. We have departedfrom the interpretation of results used in the evaluation funtion forthe up-based tournament �tness funtion 2. The behavior we wantedto evolve in the bots, is the ability to ollet more frags than the enemy.Therefore, it does not make sense to be onerned with amount of shots�red or maximum period of no movement, when benhmark testing thesolutions.2See setion 4.3.2 for further information.

11.2 Results 97Using this system for evaluating performane, a general strategy supe-rior all 15 strategies on the All-Star team will sore max, while a highlyspeialized strategy will have trouble against some of the strategies onthe All-Star team, and will therefore be punished.The results will be presented in the following setions. Two graphs for eah ofthe �ve runs have been produed, one for performane plotting points againstgeneration, and one for size plotting size against generation. In addition tographs of the logged data, a smoothly interpolated Bezier urve that displaysthe trend of the data more learly is inluded.11.2.1 The BASIC runThe size and performane graphs for the BASIC run are depited in �gure11.1(a-b). A peuliar phenomenon is the �utuations in the size of the winnerthat happens throughout the entire run and seem to �utuate around theaverage absolute size. Sine this phenomenon is ommon for the other runsas well, we will take a loser look at it and try to explain it.The Flutuation HypothesisWe have to onsider the high amount of noise in the domain as a possibleause to ertain irregularities, but the �utuations seems too steady andonstant to be aused by the noise. At �rst, it seems di�ult to ome upwith a straightforward explanation about this phenomenon, so we will haveto study the evolution of the winning trees in detail. It seems reasonableto seek for a relation between the performane results and the size results,espeially beause we also observed �utuations in the performane results.In �gure 11.1(a) we see that after generation 40 the performane stabilizesand the small �utuations in the later generations are probably just a result ofthe inherent noise in the domain. This observation rule out an intermediateonnetion between the size �utuations and the evolution of new solutionsin the population. To searh for another explanation we have extrateddetailed information on the sizes of individuals from the entire populationin onseutive generations. In �gures 11.2(a-e) the data from generation 52,53, 54, 55 and 56 an be seen.It is apparent from these graphs that not only the winners of the di�erentgenerations �utuates in size but the entire generation of individuals do. Thissupports us with the neessary information to form a hypothesis. Assumingthat the building blok hypothesis suggested by Goldberg (1989) is true, thenwhen we start an GP evolution small building bloks will start to form asevolution progresses. Then these building bloks get ombined to onstitutemore omplex solutions, as in �gure 11.3(a) illustrating an abstration of agood solution. Some of these solutions will be better than others and henegets seleted more often, resulting in multiple o�spring based on this buildingblok. In �gure 11.3(b) suh two bloks are depited where the large triangleis the building blok and the small triangles illustrates two subtrees beingintrons. When evolution progresses and these trees are hosen for rossoveras depited in �gure 11.3(b) and 11.3(), some of the resulting o�springwill be a omposition of the same building bloks on top of eah other. If

98 Tests and Results

-15

0

15

0 10 20 30 40 50 60 70

A
cu

m
ul

at
ed

 R
es

ul
t

Generations

Result of performance test for the BASIC run.

(a) Points

0

100

200

300

0 10 20 30 40 50 60 70

N
um

be
r

of
 n

od
es

Generation

Evolution of size for BASIC run

(53,304) (54,304)
(68,303)

Average absolute size
Average effective size

Absolute size of winner

(b) SizeFigure 11.1: Performane(a) and size(b) graphs for the BASIC run.

11.2 Results 99

0

100

200

300

400

500

600

08163264128256

S
iz

e

Population(a) Generation 52, with a winner of size228. 0

100

200

300

400

500

600

08163264128256

S
iz

e

Population(b) Generation 53, with a winner of size304.
0

100

200

300

400

500

600

08163264128256

S
iz

e

Population() Generation 54, with a winner of size304. 0

100

200

300

400

500

600

08163264128256

S
iz

e

Population(d) Generation 55, with a winner of size27.
0

100

200

300

400

500

600

08163264128256

S
iz

e

Population(e) Generation 56, with a winner of size203.Figure 11.2: Evolution of size of individuals from generation 52 through 56.

100 Tests and Results
(a) (b) ()

(d) (e)Figure 11.3: In (a) a good building blok is depited. In (b) two trees seleted forrossover, with rossover-points marked by the blak dots are depited. In () thetwo o�spring resulting from that rossover are depited. These three �gures depitsthe beginning of an aumulation of good building-bloks in a still growing tree. Twolater generation individuals seleted for rossover (d), and the o�spring produedby hoosing the blak dots as ut-points (e).this happens through onseutive generations we an imagine individualslike the two depited in 11.3(d). When suh two are hosen for rossoverthe resulting o�spring an look like its depited in �gure 11.3(e). As anbe seen the smaller tree (�gure 11.3(e)) will then still onsist of the goodbuilding blok, hene perform as well as the larger. Therefore we will seethe huge �utuations. When studying some of the parse trees in detail ourhypothesis is supported. In �gure 11.2 the winning tree from generation 55an be observed. This tree only has a size of 27 nodes and as seen in �gure11.1 follows generation 54 whih had a winning tree onsisting of 304 nodes.We have identi�ed at least two ommon building bloks in the winning treefrom generation 55, these an be found in table 11.3. These building bloksseems to be the basi foundation for a good solution in the last half ofthe evolution and are found multiple times in the large trees. Taking thisevidene in onsideration we feel the hypothesis is further baked up.Benhmark ResultWe have now argued for the heavy �utuation in size, and when investigatingthe graph in �gures 11.1(a), we notie �rst of all that heavy �utuation inperformane is also present. For instane we notie the sudden peak at the9th generation, and the equally sudden drop in performane of the 10thgeneration. In table 11.4 the 9th and 10th winner is depited. The 10thgeneration is learly the more primitive of the two. As the shoot node alwaysreturns 0, the if-less-than will always evaluate to false, and hene the

11.2 Results 101(if-less-than(if-enemy-in-sight(fae-enemy)(turn-left))(shoot)(if-weapon-in-reah(move-bakward)(move-bakward))(if-less-than(armor)(onst 6)(if-enemy-is-stati(enemy-damage)(move-bakward))(if-enemy-move-right(if-amor-in-reah(if-enemy-in-sight(turn-left)(turn-left))(prog-2(shoot)(if-weapon-in-reah(enemy-damage)(move-bakward))))(if-enemy-move-away(move-forward)(shoot)))))Table 11.2: The winner from generation 55 of the BASIC run.(if-enemy-in-sight(fae-enemy)(turn-left)) (if-enemy-move-away(move-forward)(shoot))Table 11.3: Two ommon building bloks extrated from the winner of generation55 of the E-CFG run.behavior is only omposed of shooting and running bakwards. The 9thgeneration winner however, will both try to fae the enemy and shoot nomatter the urrent states of sensors. The reason suh a primitive strategy asthat of the 10th generation an make it to the top, while more sophistiatedstrategies (like the winner from the 9th generation) exist in population isworth investigating. When looking at the 10th generation in more detail, wefound that the winner from the 10th generation atually was pitted againstan individual equivalent to the 9th generation winner in the semi-�nals, andof ourse won. This on�rms, that the low seletion pressure that ombinedwith a relatively noisy environment does not allow single good solutions tospread rapidly throughout the population. Apart from the �utuation, thegeneral trend of the graph is interesting. The trend in points olleted isalready above 0 around the 25th generation, whih is very good indeed. Inthe following setions we will ompare the performane of the other runswith this result.

102 Tests and ResultsWinner of the 9th generation Winner of the 10th generation(if-less-than(armor)(if-less-than(shoot)(fae-enemy)(armor)(if-enemy-move-away(shoot)(turn-right)))(if-weapon-in-reah(move-bakward)(move-bakward))(if-enemy-move-away(fae-enemy)(if-less-than(shoot)(enemy-damage)(enemy-distane)(if-health-in-reah(prog-2(ammo)(health))(if-bump(if-ammo-in-reah(fae-enemy)(shoot))(shoot))))))

(if-less-than(onst 97)(shoot)(if-amor-in-reah(enemy-weapon)(if-enemy-is-stati(wait 95(shoot))(prog-2(if-enemy-in-sight(armor)(enemy-damage))(fae-enemy))))(move-bakward))

Table 11.4: The best individual from the 9th (the leftmost) and 10th (the rightmost)generation
The Undesirable Flora of SizeThe average size of the population in the BASIC run was expeted to growrapidly and as an be seen in �gure 11.1(b) indeed it did. The average ef-fetive size though is kept under a size of 25 during the entire run and thegrowth of the e�etive size seems to happen with an insigni�ant linear rate.The thing to note here is that growth of absolute size happens with an ap-proximately linear rate through the entire run. This raises the probabilityof premature onvergene and as an be seen in �gure 11.1(a) the perfor-mane begin to onverge after generation 30. Now, this it not neessarily abad thing sine the onvergene happens lose to the maximum sore, but itsurely brake further evolution of better solutions. Hene if we had inreasedthe number of generations per run it is unlikely that further improvementwould happen.It would be nie if we ould limit the growth of the trees, while still keepingthe performane of the BASIC run. In the next three runs (SR, DR andE-CFG) desribed, this growth is limited and the DR method sueeds inmathing the performane of the BASIC run. The last method (EPGO)sueeds in limiting the e�etive part of the trees used for rossover andmutation while still mathing the performane of the BASIC run.

11.2 Results 103

-15

0

15

0 10 20 30 40 50 60 70

A
cu

m
ul

at
ed

 R
es

ul
t

Generations

Result of performance test using SR.

(a) Points

0

100

200

300

0 10 20 30 40 50 60 70

N
um

be
r

of
 n

od
es

Generation

Evolution of size for SR run

Average absolute size
Average effective size

Absolute size of winner

(b) SizeFigure 11.4: Performane(a) and size(b) graphs for the SR run.

104 Tests and Results11.2.2 Size RankingCompared to the benhmark results of the BASIC run, the results of the SRrun presented in 11.4(a-b) are not as onvining. The �rst notable peak isat the 5th generation, and when omparing with the size graph depited in�gure 11.4(b), we note that generation 5 is the �rst to have a winner witha size below average. Even though isolated generations ollet a positivenumber of points, the general trend seems to stabilize around a negativesore of 5 points.The average e�etive size and the average absolute size is almost identialthrough the entire run. The growth is almost non existing and the winnerfollows the same pattern until generation 47 where the winners size �utuateswith some relative large winner sizes at the peaks, then at generation 64 thewinners size stabilizes at the same level as the average absolute and e�etivesize.Pressure Can Be UnhealthyThe enormous seletion pressure added by the size ranking method maintainsa lose to onstant size in all measurements. In onlusion it seems thatpressure simply is too high onsidering the performane test whih showedpoor results. This ould be due to the omplexity of the domain, whihprobably will neessitate some evolutionary latitude (i.e. lower seletionpressure) when onstruting the building bloks. To put it another way, goodbuilding bloks are not allowed enough freedom to evolve and aumulated inlarger and larger trees, as we assume is the ase for the BASIC run. The nextmethod sueeds in delivering the latitude neessary for steady evolution ofbetter solutions while still maintaining a population with a trimmed size.11.2.3 Diversity RankingAlthough the performane graph of the DR run depited in �gure 11.5(a) isnot as steep as that of the BASIC run depited in �gure 11.1(a), the tendenyis learly asending. The �utuation in points is more pronouned than thatof the BASIC run. If we take a look at the evolution of size, it is interestingto see that many of the peaks in performane (at generations 35, 38, 42, 47,48, 49 and 52) is mathed by o�-peaks in size. This is in keeping with resultspreviously reported by Rosa (1996), were short and ompat solutions arefound to be more general, even though other explanations (inluding pureoinidene) to this phenomenon ould be just as valid. One obvious questionis then why the SR run performed so poorly ompared to the DR run? Theanswer must be that in SR we just promote solutions with a small absolutesize, and this makes the population onverge against the same short solution.The DR method however, aomplishes the damping in bloat more indiretly,whih will be elaborated in the following setion.

11.2 Results 105

-15

0

15

0 10 20 30 40 50 60 70

A
cu

m
ul

at
ed

 R
es

ul
t

Generations

Result of performance test using DR.

(a) Points

0

100

200

300

0 10 20 30 40 50 60 70

N
um

be
r

of
 n

od
es

Generation

Evolution of size for DR run

Average absolute size
Average effective size

Absolute size of winner

(b) SizeFigure 11.5: Performane(a) and size(b) graphs for the DR run.

106 Tests and ResultsThe Strength of Diversity RankingIn the DR run, we promote solutions with an e�etive part, that adds tothe diversity of the population. Reall the method we use for measuring thediversity or uniqueness of an individual, namely the average size of the largestommon garbage free subtree (see hapter 8). That is, the shorter the averagegarbage free subtree overlapping is, the more rewarded an individual will be.Therefore, we see the very limited grow in e�etive size. This e�et seen inthe light of our �utuation hypothesis onerning as stated in setion 11.2.1,must get most of the redit for the good performane together with limitedbloat observed. Good building bloks are given sope for development, butthe redundany introdued by the aumulation of more bloks is punishedby the DR method. This explains the good performane oexisting with thelow degree of bloat observed. Another nie property found when observingthe performane test in 11.5(a), is the lak of visible onvergene, this isnie beause through the entire run the performane has inreased steadilyand at generation 75 reahed a solution ompetitive with that of the BASICrun. If additional generations were evolved a better solution would be aninherent possibility onsidering the limited e�etive average size of the treesombined with the performane trend.As one last remark, we must point out that the DR run is the run thatevolves a solution apable of soring the maximum of 15 points in the earliestgeneration, namely generation 35.11.2.4 Enhaned Context Free GrammarThe performane test of the E-CFG as depited in �gure 11.6(a) is not goodwhen ompared to the other tests. One reason for this result ould be thatthe rules that make up our E-CFG in fat narrows the spae of possiblesolutions to tight. Another reason ould be, that the semantial meaningof our language onstruts is not as well de�ned as initially assumed. 3 Ifthis is the ase, we have built our E-CFG on a inorret basis, and heneour E-CFG will at as a poor guide for the evolutionary proess. Withoutenforing the E-CFG upon the evolution, the true semantial meaning ofthe funtions and terminals would emerge from the ompositions of the �tindividuals.What Went WrongWe have done extensive testing on every single funtion and terminal and be-lieve that the missing performane of the E-CFG should be loated elsewhere.When looking at �gure 11.7(a-b) showing the distribution of funtions andterminals, it seems odd that the frequeny of prog-2 and shoot inreases sorapidly. Now, when investigating the di�erent trees from the run, a patternis forming. It appears that a suboptimal solution has emerged in an earlygeneration, the ore of this solution an be found leftmost in table 11.5 and3An analogy is, in a real world robot, a move-forward ommand may not be wellde�ned for all possible environments, and may very well be dependent on the frition ofthe surfae.

11.2 Results 107

-15

0

15

0 10 20 30 40 50 60 70

A
cu

m
ul

at
ed

 R
es

ul
t

Generations

Result of performance test using ECFG.

(a) Points

0

100

200

300

0 10 20 30 40 50 60 70

N
um

be
r

of
 n

od
es

Generation

Evolution of size for ECFG run

Average absolute size
Average effective size

Absolute size of winner

(b) SizeFigure 11.6: Performane(a) and size(b) graphs for the E-CFG run.

108 Tests and Results

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70

F
re

qu
en

cy

Generations

Frequency of use of terminals during evolution using E-CFG.

face-enemy
my-weapon

health
ammo
armor

enemy-weapon

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
move-forward

move-backward
const

wait(a) Terminals

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70

F
re

qu
en

cy

Generations

Frequency of use of functions during evolution using E-CFG.

prog-2
if-enemy-in-sight

if-less-than
if-health-in-reach
if-ammo-in-reach

if-amor-in-reach
if-bump

if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right

if-enemy-move-away
if-enemy-closing-in

if-enemy-is-static(b) FuntionsFigure 11.7: Frequeny of node usage during the E-CFG run.

11.2 Results 109Core Advaned Core(prog-2(shoot)(move-bakward)) (if-enemy-losing-in(fae-enemy)(prog-2(prog-2(turn-left)(move-bakward))(shoot)))Table 11.5: Two ommon building bloks from the BASIC run.is very simple. This suboptimal solution is taking over the population witha surprisingly high rate and auses it to onverge prematurely. We believethe fast onvergene is sped onsiderably up by the E-CFG. The prog-2rule makes it di�ult for new building bloks to emerge and the fat thatthe rossover operator must fail 10 times before giving up and then signalsfor two new parents makes it less likely that the prog-2 blok makes noo�spring. As an be seen in �gure 11.6(a), three generation winners (fromgeneration 57, 71 and 73) are making remarkable higher sores than the restof the winners. When further inspeted, these individuals onsists of thesame skeleton as the individual depited in leftmost in table 11.5 and is en-haned with a apability of faing the enemy and turn as showed rightmostin table 11.5. The impat of this general new solution an also be observedin �gure 11.7(a), showing inreased frequenies of the terminals fae-enemyand move-bakward.Should the CFG be DisardedAs a onluding remark to the E-CFG results, we must say that it hasproven very di�ult to de�ne a CFG that generates good solutions. Oneshould aknowledge, that imposing a CFG on the onstrution of solutionsis equivalent to imposing a new distribution of the usage of nodes. That is,when the language is hanged from being type-less (in whih a totally randomomposition of individuals is valid) to a language onstrained by a grammar,a dependeny between the nodes is imposed. And hene, if some nodes gaindominane in the population, some other nodes might be nearly impossibleto introdue into this population, due to the inter-node-dependeny inferredby the grammar. Therefor, the geneti operators are hanged in a way thatmight not be ompletely lear, when designing the CFG. When this is said,we still believe a CFG an be powerful in a omplex domain, but it shouldbe guided in some way e.g. by a heuristi. In hapter 12.4 we have proposedthis as future work.11.2.5 Exeuted Path Guided OperatorsThe performane graph for the EPGO run depited in �gure 11.8(a) is verynie, and has a trend very muh alike that of the DR run (depited in �g-ure 11.5(a)). But unlike the DR run, the EPGO explodes in size, see �gure11.8(b). The EPGO is the run with the largest average size and also the

110 Tests and Results

-15

0

15

0 10 20 30 40 50 60 70

A
cu

m
ul

at
ed

 R
es

ul
t

Generations

Result of performance test using EPGO.

(a) Points

0

100

200

300

0 10 20 30 40 50 60 70

N
um

be
r

of
 n

od
es

Generation

Evolution of size for EPGO run

(71,461)
(72,469)

Average absolute size
Average effective size

Absolute size of winner

(b) SizeFigure 11.8: Performane(a) and size(b) graphs for the EPGO run.

11.2 Results 111largest winners. This is not entirely unexpeted, as we have made no ef-fort to diretly disourage bloat, rather we hanged the geneti operators bydisabling their neutral property. Still, the performane of the solutions isnotable, whih shows that the destrutive geneti operations does not seemto have the upper hand over the onstrutive geneti operations. One lastobservation on the size, is the grow in e�etive size. Even though it is thelargest observed amongst the �ve di�erent runs, it is remarkable when on-sidering the fat that operators are only applied within e�etive ode. Thatis, we would have expeted the grow in e�etive size to be more intensive.Good or Bad Growth in SizeAt �rst the growth in both average e�etive size and average absolute sizelooks disouraging, but we should not jump to onlusions. On the ontrary,we have to onsider the amount of e�etive ode in the trees and realize thatthis is the amount of ode used for rossover. Thus, a fair omparison willbe to ompare the average e�etive size of EPGO with the average absolutesize of the other methods. With this in mind we see that EPGO keep a verylow growth rate in size on par with that of the DR. Taking into aount theompetitive performane with the BASIC run and the fat that EPGO sharethe trend of avoiding onvergene we believe the EPGO to have shown itspower and potential in omplex domains.

12 Conlusion and FutureWork �Siene... never solves a problem withoutreating ten more.�,George Bernard Shaw.In setion 5.1 we de�ned the spae of this projet to be within system spei�extensions for improvement of the evolutionary searh proess. In addition tothe more broad projet spae, the goals of this projet was de�ned in setion5.3 to be onerned with the phenomenon of bloat and diversity maintenane,altogether an attempt to improve the GP system. Four di�erent approaheswere implemented, and test runs were performed in order to get an initialidea of the general performane of the di�erent methods. In the following, wewill sum up the most important onlusions and ideas we have onstrutedthrough the analysis of the results performed in hapter 11.12.1 Summary of ResultsThe simplest approah, the BASIC run, seems at �rst to outperform theother methods, at least when it omes to plain performane. We feel, how-ever, that it is a valid to also reognize that the performane of the BASICrun show signs of onvergene. And as stated in the problem de�nition (seesetion 5.3) we believe the avoidane of premature onvergene to be essen-tial to the evolution. We an not say for sure that the BASIC run in fathas onverged prematurely, but we an say for sure that neither EPGO norDR shows sign of onvergene. On the ontrary, the heavy �utuation inperformane indiates that onvergene has still not ourred, and yet the�utuation of both runs ontain numerous peaks lose to the maximum of 15,demonstrating that good solutions are found. When onsidering the degreeof bloat, the DR run is learly the best amongst the three. Furthermore, theDR run is the �rst to evolve a solution apable of soring the maximum of15 points.Regarding the SR run that only in �ashes raises above zero points in per-formane we must onlude that the parsimony pressure did not provide theneessary latitude for good solutions to emerge. The E-CFG run performsjust as poor, and with the least growth observed in the �ve di�erent runs.The reason for the failure of the E-CFG is redited to the fat that impos-ing a CFG on geneti operators distorts the distribution with whih genetimaterial an spread throughout the population, and also whih types of newgeneti material an be introdued into the population. All together the runis in high risk of premature onvergene.
113

114 Conlusion and Future Work12.2 FailuresWith the SR approah, we have shown that are must be taken when par-simony pressure is introdued. We did not sueed in keeping the pressureon the size of the individuals on a insigni�ant level when ompared to theprimary �tness measure.With the E-CFG approah, we have shown that to the introdution of priorknowledge imposed by a CFG on the geneti operators may weaken theevolution.12.3 SuessesWith the DR approah, desribed in hapter 8, we have demonstrated thepossibility of ontrolling the degree of bloat by means of a diversity promotingapproah is possible. This is aomplished without loss of quality in theevolved solutions, and in addition we believe the potential of the approahto be higher than with the most basi approah.With the EPGO approah, desribed in hapter 10, we have demonstrateda way to relax the orrelation between bloat and premature onvergene.That is, we allow bloat to our as we have removed it as a primary ause ofonvergene. In addition this is aomplished without loss in performane,and we believe this yet rather unexplored method to withhold potentials.12.4 Future WorkIn this setion di�erent extensions and modi�ations are suggested to themethods applied in the solution of our de�ned problem. We will ontinue touse the two lassifying lasses of extensions introdued in hapter 5, namelyagent spei� extensions and system spei� extensions.12.4.1 Agent Speifi ExtensionsThe onepts of agent spei� extensions are as follows:1. Extend the individual to ontain multiple di�erent speialized parsetrees, instead of just one general.2. Introdue the onept of memory for the parse trees to use.3. Inrease the dynamis of the environment.Introdution of Speialized Parse TreesThe individuals desribed in this thesis is represented by only one generalpurpose strategy, desribed by the parse tree. Instead, several parse treesould be evolved for eah individual. One parse tree for all di�erent subtaskslike weapon seletion, aiming, o�ensive and defensive movement and overallbehavior seletion. That is, one parse tree ould be evolved to be responsiblefor seleting amongst the other parse tree, i.e. when to exeute o�ensive

12.4 Future Work 115movement and when to instead exeute defensive movement.In addition the mehanism used to bias the hoie of rossover loationsdesribed in Langdon (1995) ould be used. This mehanism is based on arepresentation of eah individual with multiple parse trees eah performinga distint operation. The mehanism used to bias the rossover loations isdesigned with the belief that it is wasteful to perform rossover in ode thatis working orretly, instead the rossover loations should be dynamiallyredistributed to ode in need of improvement.Introdution of MemoryAs of now, we have not introdued a onept of �exible memory into thestrategy. Intuitively, this limits the quality of the strategies we an expetto evolve, so any notion of memory would be welome. One way to introduememory would be to introdue a �xed number of global variables that ouldbe read by speial terminals, and written to by speial funtions. If thestrategies are able to use the onept of memory, it would be easier to imaginestrategies with a high level of adaption, as the strategy is able to use priorknowledge about the enemy.Environmental DynamisSine we want to evolve �exible bots, apable of performing well in di�erentenvironments we believe inreasing the dynamis of the system will improvethe evolved solutions. The environment mainly onsists of two omponents;the players and the map (inluding the items). We have tried to approah thehallenge of player dynamis by introduing the ompetitive �tness funtionand this step showed to provide dynamis to the environment. Another in-teresting experiment would be to evaluate the bots against human opponentsby setting up a server on the internet.We believe that another hallenge to be dealt with is the dynamis of themap. When the bots are spawned on the map for evaluation, it is always atone of the multiple spawning points on the same map. It is therefore feasibleto believe that the evolved solutions to a ertain degree will be adapted tothe spei� map. One solution ould be to hange map after eah endedgeneration but bots just spawned would still have the same health, armorand ammunition as always when they start an evaluation.Inspired by Nordin and Banzhaf (1997) we propose a bots spawning onditionto be a result of the previously evaluated bots end ondition, metaphoriallyspeaking it would be like onsidering the UT agent body as a vessel and theGP tree as the driver, a new driver would then reeive the vessel in the statethe previous ontroller left it. In Nordin and Banzhaf (1997) this method isalso used for pratial reasons sine it is thereby avoided to bring a mobilerobot bak to a start loation but it is also mentioned that using the sameinitial starting ondition ould result in over-speialization and failure toevolve a behaviour that an generalize to unseen environments and tasks.

116 Conlusion and Future Work12.4.2 System speifi ExtensionsThe onepts of system spei� extensions are as follows:1. Re�ne and alter the funtion and terminal set based on the experienesgained.2. Combine the proposed methods (E-CFG, EPGO, SR, DR).3. Extend the up based tournament �tness to inlude seeding of individ-uals.4. Extend the geneti operators with an operator for ompression of usefulsubtrees.5. Protet the innoent by applying non-destrutive rossover.6. Guide a CFG with heuristis.Refining the Funtion and Terminal SetAn interesting projet for future work would be a thorough investigation ofthe funtion and terminal set. We believe that an important orner stonefor suess is a well designed funtion and terminal set. The trees we havebeen analyzing indiate that the funtion and terminal set is only partlyexploited, for instane the if-less-than funtion does not seem to be usedat all exept as a prog-x, hene all the terminals representing sensor valuesare obsolete. Two approahes ould be taken to deal with this undesirableirumstane. We an try to help the evolution to use the if-less-thanfuntion in a proper way (maybe using the same priniples as in the E-CFG)or we an just remove all the unused funtions and terminals.Another thing whih we think might improve the funtion and terminal setwould be to hange the ation set onsisting of terminals to funtions takingarguments. Reall the terminals turn-right and turn-left that turns thebot a steady amount of degrees every time they are exeuted. If they werefuntions they ould take an argument for deiding the value of degrees toturn. The same priniple ould be applied to the rest of the ation sete.g. move-forward or strafe-right, where an argument ould deide thedistane the bot should move.Combinatory PowersWe would like to test the performane of a ombination of the methods.For instane the E-CFG ould easily be ombined with EPGO and DR orSR. In addition it seems obvious to believe that some of the GP parametersould be �ne-tuned and further experiments would have to be done to deidethis. As desribed in hapter 11, SR and DR ensure a limited growth of thetrees in the population, but the pressure applied on the individuals by usingthese methods ould in�uene the evolution of more advaned solutions.Additional test runs would give a better answer to this question.

12.4 Future Work 117Extending the Cup Tournament with SeedingThe up tournament based �tness, as previously desribed in setion 3.2.4,has the drawbak of only returning a fragmented ordering of the population,and in addition we an not insure orret ordering. That is, if the most�t individual by hane is paired with the seond most �t individual in the�rst round, then the seond most �t bot will be ranked side by side withthe least �t individual. By introduing the notion of seeding when deidingwhih individuals should be paired in the �rst round of the tournament, weould insure that individuals expeted to be the most �t and the seondmost �t would never be paired in the �rst round. So the problem of howto seed newborn individuals remains. We propose to use the parents of anindividual in the seeding proess. If the individual is onstruted throughreprodution aording to the onept of elitism, the ranking in the previousgeneration should follow the individual to the urrent generation.Introdution of the Compression OperatorAmongst others, Angeline and Pollak (1994) introdued the ompression op-erator that nondeterministially reates new funtions and adds these to F .This task is arried out by seleting a part of a subtree, and then ompress-ing it to reate a new funtion, that is, proteting this subtree against futuremodi�ation.The ompression operator would make it possible to evolve yetmore omplex strategies from small, robust and basi strategies. In additionto removing all high level funtions and terminals, we expet this extensionto be fertile in produing new reative strategies.Introdution of Non-Destrutive CrossoverAs showed in several papers (e.g. Nordin and Banzhaf (1997)) the rossoveroperator in GP has a tendeny to produe o�spring less �t than the parents.This undesirable e�et also destroys a lot of potential sound building bloksin that the parents ode ontaining the building bloks is exterminated. In anattempt to test the destrutive hypothesis, Soule (1998) suggests an exper-iment using non-destrutive rossover to eliminate the destrutive e�et ofrossover (Soule (1998) was inspired by similar methods proposed by O'Reillyand Oppaher (1995) and Hooper et al. (1997)). In Soule (1998)'s versionof non-destrutive rossover, after eah rossover operation, the �tness ofthe o�spring is ompared to the �tness of the parent program. An o�springis inorporated into the new population only if its �tness equals or exeedsthat of its parent, otherwise the parent is kept. In O'Reilly and Oppaher(1995) multiple attempts were made to produe more suessful o�springand if all the attempts failed, the parents were replaed by randomly reatedindividuals.The method desribed by Soule (1998) seems sensible to be used in generalin that it maintains and improve building bloks assuming that the buildingblok hypothesis is orret. In addition we would propose to ombine non-destrutive rossover with EPGO. Considering our experiments and hypoth-esis about EPGO we think that this ombination ould show powerfull. It

118 Conlusion and Future Workseems logial to believe that fousing on exeuted paths in hoosing rossoverloations will heighten the probability of generating better o�spring, andthereby speed up the evolution.A Heuristially Guided CFGThe problem with the proposed E-CFG seems to be that ertain funtionsand terminals will beome dominant in the population all too rapidly, be-ause the E-CFG will make it hard for trees, with ertain funtion andterminals, to make o�spring. Consequently we believe that if would be ben-e�ial with a heuristi to guide the loation of rossover points, dependentof the urrent population funtion and terminal distribution.

BibliographyR. Adobbati, A. N. Marshall, A. Sholer, S. Tejada, G. A. Kaminka, S. Shaf-fer, and C. Sollitto. 2001 gamebots: A 3d virtual world test-bed for multi-agent researh. 2001.P. J. Angeline and J. B. Pollak. Competitive environments evolve bettersolutions for omplex tasks. In Proeedings of the 5th International Confer-ene on Geneti Algorithms (GA-93), pages 264�270. Morgan KaufmannPublishers, 1994.R. M. Axelrod. The evolution of strategies in the iterated prisoner'sdilemma. In Geneti Algorithms and Simulated Annealing. Pitman Pub-lishing/Morgan Kaufmann Publishers, 1987.T. Blikle. Evolving ompat solutions in geneti programming: A asestudy. In Parallel Problem Solving From Nature IV. Proeedings of theInternational Conferene on Evolutionary Computation, pages 564�573.Springer-Verlag, 1996.T. Blikle and L. Thiele. Geneti programming and redundany. In GenetiAlgorithms within the Framework of Evolutionary Computation, pages 33�38. Max-Plank-Institut für Informatik (MPI-I-94-241), 1994.M. Brameier and W. Banzhaf. A omparison of linear geneti programmingand neural networks in medial data mining. IEEE-EC, pages 17�26, 2001.E. D. De Jong, R. A. Watson, and J. B. Pollak. Reduing bloat and promot-ing diversity using multi-objetive methods. In Proeedings of the Genetiand Evolutionary Computation Conferene (GECCO-2001), pages 11�18.Morgan Kaufmann Publishers, 2001.K. A. De Jong. An analysis of the behaviour of a lass of geneti adaptivesystems. PhD thesis, University of Mihigan, 1975.Epi-Games, Infogrames, and Digital-Extremes, 2001. URL http://www.unrealtournament.om/.F. Fernández, M. Tomassini, and L. Vanneshi. Studying the in�uene ofommuniation topology and migration ondistributed geneti program-ming. In EuroGP2001, 4th European Conferene on Geneti Programming,pages 51�73. Springer Verlag, 2001.The Gamebot-Projet. Gamebots: O�ial site, 2001. URL http://www.planetunreal.org/gamebots/.C. Gatherole and P. Ross. An adverse interation between the rossoveroperator and a restrition on tree depth. In Geneti Programming 1996:Proeedings of the First Annual Conferene, pages 291�296. MIT Press,1996.D. E. Goldberg. Geneti Algorithms in Searh, Optimization, and MahineLearning. Addison-Wesley Publishing Company, In., 1989.119

120 BIBLIOGRAPHYJ. Heitkötter and D. Beasley. Hith-hiker's guide to evolutionary omputa-tion, 1994. URL http://surf.de.uu.net/enore/www/.W. D. Hillis. Co-evolving parasites improve simulated evolution as an op-timization proedure. In Arti�ial Life II, volume X, pages 313�324.Addison-Wesley, 1992.J. H. Holland. Adaption in natural and arti�ial systems. The MIT Press,1992.J. Holm and J. D. Nielsen. Geneti Programming applied to a real-time game domain. DAT5/F9SE projet, University of Aalborg, 2002.http://www.s.au.dk/~dalgaard/gp01.ps.gz.D. C. Hooper, N. S. Flann, and S. R. Fuller. Reombinative hill-limbing:A stronger searh method for geneti programming. In Geneti Program-ming 1997: Proeedings of the Seond Annual Conferene, pages 174�179.Morgan Kaufmann Publishers, 1997.Gamespot J. Gerstmann. Unreal tournament: Ation game of the year, 1999.URL http://www.gamespot.om/features/1999/p3_019.html.J. R. Koza. Geneti evolution and o-evolution of omputer programs. InArti�ial Life II, pages 603�629. Addison-Wesley, 1991.J. R. Koza. Geneti Programming: On the Programming of Computers byMeans of Natural Seletion. The MIT Press, 1992.W. B. Langdon. Direted rossover within geneti programming. TehnialReport RN/95/71, University College London, UK, 1995.W. B. Langdon and R. Poli. Fitness auses bloat. In Soft Computing in Engi-neering Design and Manufaturing, pages 13�22. Springer-Verlag London,1997.S. Luke. Geneti programming produed ompetitive soer softbot teamsfor roboup97. In Geneti Programming 1998: Proeedings of the ThirdAnnual Conferene, pages 214�222. Morgan Kaufmann Publishers, 1998.S. Luke. Two fast tree-reation algorithms for geneti programming. IEEETransations on Evolutionary Computation 4(3), pages 274�283, 2000.M. L. Minsky. The Soiety of Mind. Simon & Shuster In., 1988.D. J. Montana. Strongly typed geneti programming. BBN Tehnial Report#7866, Cambridge, 1993.S. Nol� and D. Floreano. Evolutionary robotis through arti�ial evolution.ERCIM News, (42):12�13, 2000.P. Nordin and W. Banzhaf. Complexity ompression and evolution. InGeneti Algorithms: Proeedings of the Sixth International Conferene(ICGA95), pages 310�317. Morgan Kaufmann, 1995.P. Nordin and W. Banzhaf. An on-line method to evolve behavior and toontrol a miniature robot in real time with geneti programming., 1997.

BIBLIOGRAPHY 121P. Nordin, F. Franone, and W. Banzhaf. Expliitly de�ned introns anddestrutive rossover in geneti programming. In Proeedings of the Work-shop on Geneti Programming: From Theory to Real-World Appliations,pages 6�22. MIT Press, 1995.U. M. O'Reilly and F. Oppaher. Hybridized rossover-based searh teh-niques for program disovery. In Proeedings of the 1995 World Confereneon Evolutionary Computation. IEEE Press, 1995.J. Rosa. Generality versus size in geneti programming. In Geneti Pro-gramming 1996: Proeedings of the First Annual Conferene, pages 381�387. MIT Press, 1996.J. P. Rosa. Analysis of omplexity drift in geneti programming. In GenetiProgramming 1997: Proeedings of the Seond Annual Conferene, pages286�294. Morgan Kaufmann Publishers, 1997.B. Shumeet. A massively distributed parallel geneti algorithm (mdpga).Tehnial report, CMUCS -92-196, Carnegie Mellon University, 1992.T. Soule. Code Growth in Geneti Programming. PhD thesis, College ofGraduate Studies, University of Idaho, 1998.T. Soule and J. A. Foster. Removal bias: a new ause of ode growth in treebased evolutionary programming. In 1998 IEEE International Confereneon Evolutionary Computation, pages 781�186. IEEE Press, 1998.T. Soule, J. A. Foster, and J. Dikinson. Code growth in geneti program-ming. In Geneti Programming 1996: Proeedings of the First AnnualConferene, pages 215�223. MIT Press, 1996.W. A. Takett. Reombination, Seletion and the Geneti Constrution ofComputer Programs. PhD thesis, University of Southern California, 1994.T. Yu. Polymorphism and geneti programming. In EuroGP2001, 4th Euro-pean Conferene on Geneti Programming, pages 437�444. Springer Ver-lag, 2001.B. T. Zhang and H. Mühlenbein. Balaning auray and parsimony ingeneti programming. Evolutionary Computation, pages 17�38, 1995.

A Node FrequeniesThis appendix inludes plots desribing with whih frequenies the di�erentlanguage onstruts have been used through the three evolutions previouslyperformed in Holm and Nielsen (2002), and desribed in hapter 4. FiguresA.1 and A.2 depit the frequenies observed in the 1st, �gures A.4 and A.5depit the frequenies observed in the 2nd run and �gures A.7 and A.8 depitthe frequenies observed in the 3rd run. The plots are divided on islands.
0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(a) Funtions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(b) Terminals

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static() Funtions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(d) Terminals

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(e) Funtions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(f) TerminalsFigure A.1: The frequeny of node usage on island 1 (�g. a-b), 2 (�g. -d) and 3(�g. e-f) of the 1st run. 123

124 Node Frequenies
0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(a) Funtions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(b) Terminals

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static() Funtions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(d) Terminals

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(e) Funtions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(f) TerminalsFigure A.2: The frequeny of node usage on island 4 (�g. a-b), 5 (�g. -d) and 6(�g. e-f) of the 1st run.

125
0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(a) Funtions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(b) TerminalsFigure A.3: The frequeny of node usage on island 7 (�g. a-b) of the 1st run.

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(a) Funtions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(b) Terminals

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static() Funtions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(d) TerminalsFigure A.4: The frequeny of node usage on island 1 (�g. a-b) and 2 (�g. -d) ofthe 2nd run.

126 Node Frequenies
0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(a) Funtions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(b) Terminals

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static() Funtions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(d) Terminals

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(e) Funtions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(f) TerminalsFigure A.5: The frequeny of node usage on island 3 (�g. a-b), 4 (�g. -d) and 5(�g. e-f) of the 2nd run.

127
0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(a) Funtion 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(b) Terminals

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static() Funtions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(d) TerminalsFigure A.6: The frequeny of node usage on island 6 (�g. a-b) and 7 (�g. -d) ofthe 2nd run.

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(a) Funtions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(b) TerminalsFigure A.7: The frequeny of node usage on island 1 (�g. a-b) of the 3rd run.

128 Node Frequenies
0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(a) Funtions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(b) Terminals

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static() Funtions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(d) Terminals

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(e) Funtions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(f) TerminalsFigure A.8: The frequeny of node usage on island 2 (�g. a-b), 3 (�g -d) and4(e-f) of the 3rd run.

129
0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(a) Funtions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(b) Terminals

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static() Funtions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(d) Terminals

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

prog-2
if-less-than

if-enemy-in-sight
if-health-in-reach
if-ammo-in-reach

if-bump
relative-movement

if-amor-in-reach
if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right
if-enemy-move-away

if-enemy-closing-in
if-enemy-is-static(e) Funtions 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

Generations

Frequency of use of nodes during evolution.

my-weapon
health
ammo
armor

enemy-weapon
face-enemy

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
cirkle-strafe-left

cirkle-strafe-right
move-forward

move-backward
const(f) TerminalsFigure A.9: The frequeny of node usage on island 5 (�g. a-b), 6 (�g. -d) and7(�g. e-f) of the 3rd run.

B New Node FrequeniesThis hapter inludes plots desribing with whih frequenies the di�erentlanguage onstruts have been used through the �ve di�erent runs performedin hapter 11. Figure B.1(a-b) depit the frequenies for the BASIC run,�gure B.2 the ECFG run, �gure B.3 the EPGC run, �gure B.4 the SR runand �gure B.5 the DR run.
0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70

F
re

qu
en

cy

Generations

Frequency of use of terminals during BASIC evolution.

face-enemy
my-weapon

health
ammo
armor

enemy-weapon

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
move-forward

move-backward
const

wait(a) Terminals 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70

F
re

qu
en

cy

Generations

Frequency of use of functions during BASIC evolution.

prog-2
if-enemy-in-sight

if-less-than
if-health-in-reach
if-ammo-in-reach

if-amor-in-reach
if-bump

if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right

if-enemy-move-away
if-enemy-closing-in

if-enemy-is-static(b) FuntionsFigure B.1: Funtions and terminals used during the BASIC evolution.
0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70

F
re

qu
en

cy

Generations

Frequency of use of terminals during evolution using E-CFG.

face-enemy
my-weapon

health
ammo
armor

enemy-weapon

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
move-forward

move-backward
const

wait(a) Terminals 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70

F
re

qu
en

cy

Generations

Frequency of use of functions during evolution using E-CFG.

prog-2
if-enemy-in-sight

if-less-than
if-health-in-reach
if-ammo-in-reach

if-amor-in-reach
if-bump

if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right

if-enemy-move-away
if-enemy-closing-in

if-enemy-is-static(b) FuntionsFigure B.2: Funtions and terminals used during the evolution using the E-CFG.

131

132 New Node Frequenies
0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70

F
re

qu
en

cy

Generations

Frequency of use of terminals during evolution using EPGO.

face-enemy
my-weapon

health
ammo
armor

enemy-weapon

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
move-forward

move-backward
const

wait(a) Terminals 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70

F
re

qu
en

cy

Generations

Frequency of use of functions during evolution using EPGO.

prog-2
if-enemy-in-sight

if-less-than
if-health-in-reach
if-ammo-in-reach

if-amor-in-reach
if-bump

if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right

if-enemy-move-away
if-enemy-closing-in

if-enemy-is-static(b) FuntionsFigure B.3: Funtions and terminals used during the evolution using EPGO.
0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70

F
re

qu
en

cy

Generations

Frequency of use of terminals during evolution using SR.

face-enemy
my-weapon

health
ammo
armor

enemy-weapon

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
move-forward

move-backward
const

wait(a) Terminals 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70

F
re

qu
en

cy

Generations

Frequency of use of functions during evolution using SR.

prog-2
if-enemy-in-sight

if-less-than
if-health-in-reach
if-ammo-in-reach

if-amor-in-reach
if-bump

if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right

if-enemy-move-away
if-enemy-closing-in

if-enemy-is-static(b) FuntionsFigure B.4: Funtions and terminals used during the evolution using SR.
0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70

F
re

qu
en

cy

Generations

Frequency of use of terminals during evolution using DR.

face-enemy
my-weapon

health
ammo
armor

enemy-weapon

shoot
enemy-distance
enemy-damage

turn-left
turn-right
strafe-left

strafe-right
move-forward

move-backward
const

wait(a) Terminals 0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70

F
re

qu
en

cy

Generations

Frequency of use of functions during evolution using DR.

prog-2
if-enemy-in-sight

if-less-than
if-health-in-reach
if-ammo-in-reach

if-amor-in-reach
if-bump

if-weapon-in-reach
if-enemy-move-left

if-enemy-move-right

if-enemy-move-away
if-enemy-closing-in

if-enemy-is-static(b) FuntionsFigure B.5: Funtions and terminals used during the evolution using DR.

C Language RefereneThis appendix serves as a thorough referene of the language of our F andT . In table C.1 the elements from T are desribed, and in table C.2 theelements from F are desribed.TerminalsSyntax Semantis E�et on bot-ontrol(move-forward) Assumes the value 200. Moves the bot one stepforward.(move-bakward) Assumes the value 0. Moves the bot one stepbakward.(turn-left) Assumes the value 0. Rotates the bot 45 de-grees ounterlokwise.(turn-right) Assumes the value 200. Rotates the bot 45 de-grees lokwise.(strafe-left) Assumes the value 0. Moves the bot side-ways one step left.(strafe-right) Assumes the value 200. Moves the bot side-ways one step left.(health) Assumes the value of the urrenthealth level of the bot. No e�et.(ammo) Assumes a value proportional tothe urrent ammo level of theweapon urrently used by the bot.The mapping funtion used isAmmourrentAmmomax � 200, so the valuewill be in the range of [0..200℄. No e�et.
(armor) Assumes the value of the urrentarmor level of the bot. No e�et.(fae-enemy) Assumes the value 200. If the enemy is in sightthen the bot is rotatedto fae the enemy, oth-erwise no e�et.(shoot) Assumes the value 0. Fires on shot in the fa-ing diretion. If the en-emy is in sight, the botaims at the enemy.(enemy-damage) Assumes an estimate of the urrentdamage-level of the enemy. Everytime the enemy is hit, we expethim to have taken a ertain amountof damage. But this is a tempo-ral quantity, as we expet the en-emy to regenerate by piking uphealthpakets. Therefore, we re-due the amount aording to theformula dt = dt�1 � exp(�Hit),where dt is the estimated damageat time t and �Hit is the time inseonds sine damage was last in-�ited upon the enemy.

No e�et.
Continued on next page

133

134 Language RefereneContinued from previous pageSyntax Semantis E�et on bot-ontrol(my-weapon) Assumes a value aording to therelative superiority of the weaponurrently used by the bot. No e�et.(enemy-weapon) If the enemy is in sight it assumes avalue aording to the relative su-periority of the weapon urrentlyused by the enemy. Otherwise 0. No e�et.(enemy-distane) Assumes a value aording to thedistane to the enemy, or 0 if theenemy is not in sight. No e�et.(onst x) Assumes the value of integer xwithin the interval [0..200℄ No e�etTable C.1: Terminal refereneFuntionsSyntax # Semantis E�et on bot-ontrol(if-bumb) 2(wait x) 1(if-less-than) 4 If the value assumed by arg1 isless than the value assumed byarg2 then the value assumed byarg3 is assumed, otherwise thevalue assumed by arg4. No e�et.(if-health-in-reah) 2 If health is in reah, then thevalue assumed by arg1 is as-sumed, otherwise the value as-sumed by arg2 is assumed. If health is in reah, itis piked up, otherwiseno e�et.(if-armor-in-reah) 2 If armor is in reah, then thevalue assumed by arg1 is as-sumed, otherwise the value as-sumed by arg2 is assumed. If armor is in reah, itis piked up, otherwiseno e�et.(if-ammo-in-reah) 2 If ammo is in reah, then thevalue assumed by arg1 is as-sumed, otherwise the value as-sumed by arg2 is assumed. If ammo for theweapon urrentlyused by the bot is inreah, it is piked up,otherwise no e�et.(if-weapon-in-reah) 2 If a weapon that is better thanthe weapon urrently used bythe bot is in reah, then thevalue assumed by arg1 is as-sumed, otherwise the value as-sumed by arg2 is assumed. If a weapon that is bet-ter than the weaponurrently used by thebot is in reah, it ispiked up, otherwise noe�et.(if-enemy-in-sight) 2 If the enemy is in sight, thenthe value assumed by arg1 is as-sumed, otherwise the value as-sumed by arg2 is assumed. No e�et.(if-enemy-move-left) 2 If the enemy is in sight andmoving left, then the value as-sumed by arg1 is assumed, oth-erwise the value assumed byarg2 is assumed. No e�et.(if-enemy-move-right) 2 If the enemy is in sight andmoving right, then the valueassumed by arg1 is assumed,otherwise the value assumed byarg2 is assumed. No e�et.Continued on next page

135Continued from previous pageSyntax # Semantis E�et on bot-ontrol(if-enemy-move-away) 2 If the enemy is in sight andmoving away, then the valueassumed by arg1 is assumed,otherwise the value assumed byarg2 is assumed. No e�et.(if-enemy-losing-in) 2 If the enemy is in sight and los-ing in, then the value assumedby arg1 is assumed, otherwisethe value assumed by arg2 is as-sumed. No e�et.(if-enemy-is-stati) 2 If the enemy is in sight andhas veloity 0, then the valueassumed by arg1 is assumed,otherwise the value assumed byarg2 is assumed. No e�et.
Table C.2: Funtion referene the # olumn ontains the number of argumentsrequired by the funtion.

