AALBORG UNIVERSITY
Department of Computer Science
KDE master group

TEXT CATEGORIZATION
USING HIERARCHICAL
BAYESIAN NETWORK CLASSIFIERS

M.SC. PROJECT

Gytis Karciauskas

June 2002

AALBORG UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE
FREDRIK BAJERS VEJ 7 - DK 9220 AALBORG 0

Title:
Text Categorization
Using Hierarchical
Bayesian Network Classifiers

Project period:
2002 02 01 - 2002 06 06

Project group: Abstract
El - 121 In this paper we propose the
type of Bayesian networks
Members: that we call the hierarchical
Gytis Karciauskas Bayesian network (HBN) clas-

sifiers. We present algorithms
for the construction of the
HBN classifiers and test them
Pages: 45 on the Reuters text catego-
rization test collection.

Supervisor:
Jiri Vomlel

Copies: 3

Gytis Karciauskas

Contents

Introduction

1 Related Work
1.1 Bayesian Network Classifiers
1.1.1 Overview of Bayesian Networks
1.1.2 Bayesian Network Scoring Functions
1.1.3 A Naive Bayes Classifier
1.1.4 Extensions of a Naive Bayes Classifier
1.1.5 Other Bayesian Network Classifiers
1.2 Feature Clustering
1.3 Text Categorization

2 Hierarchical Bayesian Network Classifiers

3 Classifier Construction Algorithms

3.1 Motivation
3.2 Construction of a Hierarchical Bayesian Network Classifier . .
3.3 Construction of a Hierarchical Naive Bayes Classifier
3.4 General Feature Clustering Algorithm
3.5 Feature Clustering Algorithm using Probability Average . . .
3.6 Feature Clustering Algorithm using OR
3.7 Feature Clustering Algorithm using Independence Tests

4 Performance Experiments
4.1 Test Setup oL
411 DataUsed.,
412 Text Indexing L.
4.1.3 Classifiers Tested
42 Test Results L
4.2.1 Experiments on the Validation Data
4.2.2 Experiments on the Test Data
4.2.3 Feature Clustering Algorithms

5 Conclusions and Future Work

13

16
16
18
20
20
20
23
24

29
29
29
30
30
31
31
35
35

41

List of Figures

1.1 Naive Bayes Classifier as a Bayesian Network 8
2.1 An Example HBN Classifier 13
3.1 Bayesian Network with All Features Being Parents of the Class 16
3.2 Bayesian Network with Two Hidden Variables 17
3.3 Function ConstructHBNClassifier 19
3.4 Function ConstructSubtree 19
3.5 Function ClusterFeatures 20
3.6 Function ClusterFeaturesAvg 22
3.7 Function Merge o 23
3.8 Function InfoLioss o L. 23
3.9 Function ClusterFeaturesOr 24
3.10 Function Merge (for ClusterFeaturesOr) 24
3.11 Function ClusterFeaturesDep 26
3.12 Function ImproveClustering 28
4.1 HBN-AVGfor Class Trade 37
4.2 HBN-OR for Class Trade 38
4.3 HBN-DEP for Class Trade 39
4.4 HBN-DEP with a =0 for Class Trade 40

List of Tables

4.1
4.2

4.3

4.4

4.5
4.6
4.7
4.8
4.9

The Final Parameter Values For the HBN Classifiers
The Performance of HBN-AV (G with Different Number of Fea-
tures e e e e e e
The Performance of HBN-OR with Different Number of Fea-
tures L e e e e e e
The Performance of HBN-DEP with Different Number of Fea-
tures L e e e e e
The Performance of HNB-AVG Compared to HBN-AVG . . .
The Performance of HNB-OR Compared to HBN-OR

The Performance of HNB-DEP Compared to HBN-DEP . . .
The Performance of NB with Different Number of Features
The Performance of SVM with Different Number of Features

4.10 The Performance on the Test Data

Introduction

Text categorization, defined as the activity of labeling natural language texts
with thematic categories from a predefined set ([Seb02]), is a task frequently
performed by humans. Because often there are many documents in a digital
form and they have to be categorized, there is a big need for automatic clas-
sifiers! that would perform this task or would assist humans in performing
it.

Generally there are two ways for making automatic classifiers. In a
knowledge engineering approach, the knowledge of human experts is de-
scribed as a set of rules, which are then used in the process of classification.
The disadvantages of this approach are that many work needs to be done to
make human knowledge explicit and for each new domain a separate formu-
lation of the rules needs to be done manually again. In a machine learning
approach, the classifier is built automatically from the set of the already
classified instances. The major work shifts from making human knowledge
explicit to creating algorithms that classify new instances based on the in-
formation about the already classified instances. Classifiers for different
domains can be learned using the same algorithm.

In this paper we use machine learning methods for automatic text cate-
gorization. Particularly, we use Bayesian networks, because they seem to be
suitable for modeling the uncertainty that is present in the categorization
task. We propose the type of Bayesian networks that we call the hierarchi-
cal Bayesian network (HBN) classifiers. We test them on the Reuters text
categorization test collection.

In Chapter 1 we describe the related work. In Chapter 2 we define the
HBN classifiers and describe their properties. In Chapter 3 we describe
our algorithms for the construction of classifiers. In Chapter 4 we give the
results of the experiments performed. In Chapter 5 we give the conclusions
and possible future work directions.

'We will use the terms “categorization” and “classification” as synonyms.

Chapter 1

Related Work

In this chapter first we review the work already done in the area of Bayesian
network classifiers. Then we describe the algorithms that can be used for
feature clustering. Finally we give a general overview of the machine learning
in text categorization.

1.1 Bayesian Network Classifiers

In this section first we give a brief overview of Bayesian networks. Then we
discuss Bayesian network scoring functions and problems related to using
them for Bayesian network classifiers. After that we review the already
available Bayesian network classifiers. We divide them into three groups
— a naive Bayes classifier, classifiers that extend a naive Bayes, and other
Bayesian network classifiers.

1.1.1 Overview of Bayesian Networks

Bayesian network, described, for example, by Jensen [Jen0l], can be de-
fined as a set of variables and a set of directed edges between variables,
where each variable has a finite set of mutually exclusive states, the vari-
ables together with the edges form a directed acyclic graph, and to each
variable A with parents pa(A) = {By,..., By} there is attached a condi-
tional probability table P(A|By, ..., By).! The edges between the variables
model dependence relationships: an edge going from variable B to variable
A means that the state of variable A depends on the state of variable B. The
probability distribution over all variables Ay, ..., A, in a Bayesian network
is P(Ay,...,A,) =[], P(A4i | pa(4;)). When using Bayesian networks as
classifiers, the variables represent classes and features, and the edges indicate
the relationships between them.

'Variable A having variable B as its parent means that there is an edge going from
variable B to variable A.

In this paper we will use the following notation. @ indicates the param-
eters of a Bayesian network B, i.e. the conditional probability distributions
for all variables A; in B. Pg,(Xi,...,X}) indicates the probability dis-
tribution over variables X7,..., X} defined by a Bayesian network B with
parameters 6. Pp,(z1,..., ;) indicates the probability that the correspond-
ing variables are in particular states zi,...,z,. D = {< ff,...,fﬁb,ci >
,i=1,..., N} indicates the training data of N cases with feature variables
Fy, ... F, and a class variable C.

1.1.2 Bayesian Network Scoring Functions

When learning Bayesian network classifier from training data, a scoring
function is used for evaluation of the candidate Bayesian networks. Usually
scoring functions seek for a simple Bayesian network that fits the training
data (that is, the joint probability distribution over all the variables). Usu-
ally the likelihood of a Bayesian network B with parameters € given training
data D = {< fi,...,fi,c* >,i=1,...,N} is used to measure how B fits
D. The likelihood is defined as

N
L(By|D) = [[P, (f1,--- i) -
=1

Often the log likelihood LL(By|D) = El]\il log Pp, (fi,..., fi, c') is used in-
stead of likelihood.

Friedman et al. [FGG97] use the minimal description length (MDL)
scoring function to evaluate the candidate Bayesian network classifiers. The
MDL scoring function of a Bayesian network B with parameters 6 given
training data D is defined as

log N
2

MDL(By| D) = 2% By| - LL(By|D) |
where |By| is the number of parameters in the network. The first term
in a definition of MDL represents the length of the description of By, and
the second term represents the suitability of By for describing D. When
searching through the space of possible Bayesian networks, we try to find the
one with the minimal MDL score. However, a good classifier should fit best
the probability of the class given the values of the features in the training
data rather than the joint probability distribution over all the variables in the
training data. Therefore, a Bayesian network selected as the best according
to MDL or another non-specialized scoring function sometimes performs
poorly as a classifier. To deal with this problem, the conditional likelihood
can be used instead of likelihood. The conditional likelihood of a Bayesian
network B with parameters @ given training data D = {< f{,... fi c' >

,i=1,...,N} is defined as
N . . .
CL(Bg|D) = [] Poo (If1s- -, 1) -
i=1

Often the conditional log likelihood CLL(By|D) = ZZ]\;I log Pp, (| fi,..., f})
is used instead of the conditional likelihood. Then, according to Friedman
et al. [FGGI7], the conditional MDL score that would avoid the above men-
tioned problem of the MDL score can be derived. The conditional MDL
scoring function of a Bayesian network B with parameters 6 given training
data D is then defined as

log N
2

CMDL(By|D) = |Bg| — N - CLL(By|D) .

However, the conditional likelihood has one serious drawback when com-
pared to the likelihood. For a fixed structure of a Bayesian network B,
there is a closed form solution for the parameters 6 that maximize L(By|D).
Namely, the conditional probabilities are simply equal to the frequencies of
the corresponding values for the variables in the training data D. How-
ever, for the conditional likelihood no such general solution exists. Only in
a case when the class variable has no children and all the parents of the
class variable are feature variables, substituting the frequencies in D as the
parameters of B maximizes the conditional likelihood. This means that
generally when learning a Bayesian network structure, the computationally
expensive methods to estimate the conditional likelihood have to be used.

1.1.3 A Naive Bayes Classifier

The most simple of Bayesian network classifiers is a naive Bayes classifier,
described, for example, by Duda and Hart [DH73]. In a naive Bayes classifier
it is assumed that the features are independent given the value of the class,
that is, for the class variable C' and any feature variables Fj, F},

P(F;|Fj,C) = P(F;|C)

for all possible values of F;, F; and C, whenever P(C) > 0. Figure 1.1
depicts a naive Bayes classifier as a Bayesian network, where the class
variable is C and the feature variables are Fi,...,F,. The probabilities
P(C),P(F1|C),...,P(F,|C) are estimated from the training data. When a
new instance with the known values of feature variables Fi,..., F, has to
be classified, Bayes rule is used:

P(F,...,F,|C)P(C)
P(F,... F)

P(C|F,...,F,) =

Figure 1.1: Naive Bayes Classifier as a Bayesian Network

Since Fy, ..., F, are assumed to be independent given C, P(Fy,..., F,|C) =
P(F1|C)...P(F,|C), and the above formula becomes
_ P(RIC)... P(FC)P(C)

P(C|F,,...,F,) =) . (1.1)

The probabilities in the numerator are known, and the probability in the
denominator does not depend on the class value, so it need not be calculated.

Often on a naive Bayes classifier smoothing, described, for example, by
Friedman et al. [FGG97] is used. When no smoothing is used, the proba-
bility that feature variable F; is in state f given class c is estimated simply
by counting the occurrences in the training data:

P(F = {10 =c) = 1

where N is the number of cases in the training data in which C' is in state
¢, and n is the number of cases in the training data in which C is in state
c and F; is in state f. If n = 0 and thus P(F; = f|C = ¢) = 0, then
the whole numerator in Equation 1.1 becomes zero, and the probability
P(C = ¢|Fy,...,F,) for class c is zero. That is, F; being in state f causes
probability for class ¢ to be zero no matter how large the other probabilities
in the numerator from Equation 1.1 would be. When smoothing is used,
P(F; = f|C = ¢) is estimated using the formula

n + Ny

P(FZ-:f|C:c):m,

where Ny is a small constant and m is the number of states for the variable
F;. In other words, it is assumed that before seeing training data the variable
F; has been observed to be in each of its states Ny times when the class was
c. This guarantees that P(F; = f|C = c¢) is always above zero.

Obviously, in reality the assumption that the features are independent
given the value of the class is violated very often. However, the performance
of a naive Bayes classifier is often very good and comparable to the perfor-
mance of much more sophisticated classifiers, as shown by Domingos and
Pazzani [DP97].

1.1.4 Extensions of a Naive Bayes Classifier

Large part of the work done in the area of the Bayesian network classifiers
deals with the extensions of a naive Bayes classifier. Since a naive Bayes
classifier with its simplifying assumption about a conditional feature inde-
pendence performs well, it is natural to hope that Bayesian classifiers that
allow features to depend on each other would perform even better.

Friedman et al. [FGG97] extend a naive Bayes classifier by allowing each
feature variable to have at most one other feature as a parent in addition to a
class variable. Such a network is called a tree-augmented naive Bayes (TAN)
classifier, because feature variables together with edges between them can
form a tree. The authors present an algorithm that efficiently computes
augmented edges for a TAN classifier from the training data. The learned
network maximizes the likelihood of a TAN classifier given training data.
Even more general extension of a naive Bayes classifier is to allow the fea-
tures to form unrestricted Bayesian networks. Such a network is called an
augmented naive Bayes (ANB) classifier. However, the number of possible
network structures in this case is very large. Friedman et al. use a greedy
heuristic search that tries to minimize the MDL score.

Cheng and Greiner [CGO01] also propose algorithms for learning an ANB
classifier. For learning a network structure they use conditional indepen-
dence based algorithms rather than algorithms that seek a structure that
maximizes a scoring function. Using statistical tests, the conditional inde-
pendence relationships between the features are found. These relationships
are used as constraints to construct a Bayesian network.

Keogh and Pazzani [KP99] propose an algorithm that they call Super-
Parent for learning a TAN classifier. The edges between feature variables are
added one at a time based on the predictive accuracy of the candidate net-
works. Zhang and Ling [ZL01] extend this work by proposing an algorithm
called StumpNetwork. They exploit the idea that often the dependence be-
tween the attributes tends to cluster into groups. The construction of the
classifier is again based on the predictive accuracy of the candidate networks.

Langley and Sage [LS94] propose a selective naive Bayes classifier. Here
a subset from the initial set of features is selected to be used by a naive
Bayes classifier.

1.1.5 Other Bayesian Network Classifiers

Friedman et al. [FGG97] use a greedy search to find an unrestricted Bayesian
network that minimizes MDL score. Cheng and Greiner [CGO01] use condi-
tional independence tests for learning unrestricted Bayesian network classi-
fiers. These two approaches are similar to the corresponding algorithms for
learning ANB classifiers from the previous section.

Kontkanen et al. [KMTO01] use a mixture of diagnostic Bayesian network

classifiers. In a diagnostic Bayesian network, all the edges connected to the
class variable are arriving edges from feature variables. The authors use a
mixture of classifiers, where different networks have different sets of parents
for the class node. The sets of features to be used in networks from a mixture
are found based on the predictive accuracy of the different mixtures.

1.2 Feature Clustering

While there are many general data clustering algorithms (see, for example,
Han and Kamber [HKO01]), we are aware only of several algorithms for feature
clustering for classification.

Baker and McCallum [BM98] describe an algorithm for clustering words
into groups specifically for the benefit of document classification. The main
idea behind their algorithm is that similar words are those for which the
distributions of the class given those words are similar. When similar words
are assigned to the same cluster, all those words in the cluster are treated
as the same feature. When features w; and w; are assigned to the same
cluster, the probability of the class variable C given the new feature w; V ws
is defined as

P(w)
P(w) + P(ws)

In the word clustering algorithm, initially clusters with one word in each
of them are created. Then clusters are repeatedly joined, each time joining
two clusters w; and w, that minimize the average of the Kullback-Leibler
divergence to the mean, defined as

P(wy) - D (P(Clwy) || P(Clwy V ws))
+P(wy) - D (P(Clw,) || P(Clwy V wy))

P(w;)

P(Clwy Vws) = P(wy;) + P(wy)

P(Clwy) + P(Clws) . (1.2)

(1.3)

Y
where D1, (P(Clwg) || P(Clwy)) = Zﬁll P(cjlwg) log I;E?“Z‘Z; The authors
test a naive Bayes classifier that uses clusters constructed i)y their algorithm
as features. The accuracy stays similar as in the case of using single words
as features, while the number of features is reduced up to three orders of
magnitude.

Slonim and Tishby [STO1] present essentially the same algorithm for
word clustering by using an information bottleneck framework [TPB99] as a
theoretical basis for it. The clusters are repeatedly joined, each time joining
two clusters of the current partition into a single new cluster in a way that
locally minimizes the loss of mutual information about the class variable.
With the mutual information between the random variables X and Y defined
as [(X,Y) = 3 cx yey P(2)P(y|z) log %, the algorithm each time joins
the clusters w; and w, that minimize

I(w, C) + I(ws, C) — I(w V ws, C) . (1.4)

10

It can be shown that expressions 1.3 and 1.4 are equal. Slonim and Tishby
also test a naive Bayes classifier that uses clusters constructed by their al-
gorithm as features. When there was few training data, the classification
accuracy improved up to 18% compared to the case of using single words as
features.

1.3 Text Categorization

There has been much research done in the area of the automatic text cate-
gorization. A survey of machine learning approaches to text categorization
is given by Sebastiani [Seb02]. First, for a classifier to be able to work with
a text, an indezing of the text has to be done. Usually this is done by repre-
senting the text as a vector of feature weights, where features are the words
that appear or do not appear in the text. Usually feature weights take values
from the interval [0; 1]. In a special case of binary features there are two
possible values: 1 for the presence and 0 for the absence of the feature in the
text. Often before the indexing the stemming (i.e. taking the words that
have the same word stem as the same feature) and the removal of function
words (i.e. topic-neutral words such as articles, prepositions) is performed.
Even after this preprocessing the number of features is often too large for
a machine learning algorithm because of the too long computation time
and overfitting. By overfitting we mean the adapting of a classifier to the
particular instances in the training data instead of making generalizations
about the classes. Therefore a dimensionality reduction, where the number
of features used by the classifier is reduced, is performed. Dimensionality
reduction can be either local, where for each class a separate set of features
is chosen, or global, where the set of features chosen is the same for all the
classes. Also dimensionality reduction can be performed by either feature
selection, where the set of the new features is a subset of the set of all the
original features, or feature extraction, where the new features are obtained
by combinations or transformations of the original ones.

One of the ways to perform feature selection is to use an information gain
method, described, for example, by Yang and Pedersen [YP97]. Speaking
generally, information gain for a feature F' measures the number of bits of
information obtained for the prediction of class C' by knowing the state of F'.
It is calculated as IG(F) = E(C) — E(C|F), where E denotes the entropy.

When the features are defined and the texts are indexed based on those
features, the classifiers can be constructed. Dumais et al. [DPHS98] provide
a comparison of different automatic learning algorithms for text categoriza-
tion. Linear Support Vector Machines have been found better than decision
trees, Bayesian networks, and naive Bayes classifiers.

The effectiveness of text classifiers is usually measured in terms of pre-
cision (m) and recall (p). As defined by Sebastiani [Seb02], precision is the

11

conditional probability that if a random document is assigned to a particular
class, this decision is correct. Recall is defined as the conditional probability
that if a random document ought to be assigned to a particular class, this
decision is taken. If we denote the number of true positive, false positive,
and false negative classifications as TP, FP, and FN, then the precision
and recall are computed as

TP TP
T= =" =—.
P+FP° PTTPIFN

There are two ways of measuring precision and recall for multiple classes. In
microaveraging, ™ and p are computed by taking ratios of the corresponding
total values of TP, FP, and FN. In macroaveraging, first “local” values
of m and p for each class are computed. The final values are obtained by
simply taking averages of these. These two methods may give quite different
results, because the ability of a classifier to behave well on the classes with
few positive instances is emphasized much more by macroaveraging than by
microaveraging.

When measuring effectiveness, usually we want one number that com-
bines precision and recall to be reported. The commonly used approach is
to report a breakeven point — the value at which 7 equals p.?

2The values of m and p change as we change the value of threshold that specifies the
probability of a document belonging to a particular class that must be exceeded for the
document to be assigned to that class. Increasing the threshold increases precision and
decreases recall, while decreasing the threshold increases recall and decreases precision for
the class.

12

Chapter 2

Hierarchical Bayesian
Network Classifiers

In this chapter first we define what do we mean by a hierarchical Bayesian
network classifier. After that we give propositions that relate conditional
likelihood to the likelihood of a hierarchical Bayesian network classifier.

Definition A hierarchical Bayesian network (HBN) classifier with feature
variables Fi,..., F, and a class variable C' is a Bayesian network with the
following tree structure: C' is the root, F;(j = 1,...,N) are the leaves, and
hidden variables Hi, ..., Hi(k > 0) are the non-leaf nodes of the tree. All
arcs in the Bayesian network are going towards the root.

In Figure 2.1 we give an example of the HBN classifier with class variable
C, feature variables F1i, ..., F7, and hidden variables Hy, Hy, H3.

Figure 2.1: An Example HBN Classifier

13

Given by its structure, the probability distribution over all variables for
a HBN classifier B with parameters 6 is

Pp,(C,Hy,...,Hy, Fy,...,F),) =
k
= Pp,(C | pa(C (HPBe H; | pa(H) (HPBe) .
=1

As mentioned in Section 1.1.2, maximizing likelihood rather than con-
ditional likelihood of a Bayesian network classifier can lead to a poor per-
formance. Bellow we prove that for a HBN classifier this is not the case.
This will allow us to learn the parameters for a HBN classifier by trying to
maximize its likelihood.

Proposition 1 Let D = {< fi,...,fi,ct > i =1,...,N} be a training
data. Let B be o HBN classifier with feature variables Fi,...,F, and a

class variable C. Then for any parameters 01, Oy that satisfy Pg, (F;) =
PBQ2(Fj)?Vj = 1,...,n

L(Bgl|D) > L(B,92|D) <~ OL(B,91|D) > OL(B,92|D) .

Proof. By definition, we have

N
L(By, |D) = HPBQI (fiseeos far€)
=1

N o) N))
= (HPBQI(CZUL---af:z)) : (HPBel(ff""’fTZL)>
i=1 i=1

N
= OL(B‘91|D)HPB‘91(ff77fTZL)
i=1
Since variables F1,..., F,, have no common parents (i.e. they are inde-

pendent), Pg, (f{,...,f}) = P, (f1)-...- Pg, (f}),Vi=1,...,N. So,

L(By,|D) = CL(By,|D)- (HPB91 fl 'PBol (fri))
= (391|D) ’

where K = [, Pg,, (fH-.. . Pp, (f?) does not depend on parameters that
specify conditional probabilities for non-feature variables in B. Because
of the assumption Pp, (F;) = Pg,, (Fj),¥Yj = 1,...,n, we also have that

K = lel Pg,, (fH-... - Ppy, (f%). Thus we can write

L(B02|D) = CL(B6‘2|D) K

14

Proposition 2 Let D = {< fi,...,fi,c* >,i = 1,...,N} be a training
data. Let B be a HBN classifier with feature variables F1, ..., F, and class
variable C'. Then

6 maximize L(By|D) = 6 maximize CL(By|D) .

Proof. It is known (see, for example, Friedman et al. [FGG97]) that for
0 that maximize L(By|D) it holds that Pp,(F;) = Pp(F}),¥j = 1,...,N,
with Pp defined as

N
1 ; .
=1

, 1, if fi=k

On the other hand, CL(By|D) does not depend on parameters of Pp, (F}),
because CL(By|D) = Hl]\il Pp, (| f%,..., f1), and in probability
Py, (c'|fi,..., fi) all F;j are instantiated. So, we can have Pg, (F;) = Pp(Fj).
Together with Proposition 1, this proves Proposition 2.

15

Chapter 3

Classifier Construction
Algorithms

In this chapter first we give the motivation for using the HBN classifiers and
choosing the presented methods for learning them. Then we describe our
algorithms for the construction of classifiers.

3.1 Motivation

Usually, in texts there are many dependencies between features that repre-
sent words. When constructing Bayesian network classifiers, the common
approach to deal with feature dependencies is to extend a naive Bayes clas-
sifier, as discussed in Section 1.1.4. Another approach is to allow the class
variable to have parents. In the extreme case, we would have a model where
all the feature variables F7, ..., F}, are the parents of the class variable C, as
depicted in Figure 3.1. In this case, the dependencies between the features

Figure 3.1: Bayesian Network with All Features Being Parents of the Class

are modeled. But an obvious problem with such a model is that the size of
conditional probability table for variable C grows exponentially with n, and
the number of parameters needed to specify P(C|Fy,...,F,) can quickly
become larger than the number of cases in training data. One of the pos-
sible solutions is to introduce hidden variables that have feature variables

16

as parents and the class variable as a child. For example, if we have 20
features, but we do not want to have variables with more than 10 parents,
we can introduce two hidden variables H; and Hg, as shown in Figure 3.2.
In general case, we can have a hierarchy of hidden variables (i. e., hidden

Figure 3.2: Bayesian Network with Two Hidden Variables

variables having other hidden variables as parents). That is, we can have
the hierarchical Bayesian network classifiers, as defined in Chapter 2. Since
in our text classification problem the features are binary, all the feature
variables in our HBN classifiers have two states. For simplicity, we deal
only with HBN classifiers where hidden variables have two states, and the
maximum number of parents for any variable is a parameter that we call a
branching factor.

Ideally, we would like to have a fast algorithm that computes the maxi-
mal conditional log likelihood for a given HBN classifier structure. Then, for
a given training data, we could perform a search among the HBN classifier
structures trying to find the one that minimizes the conditional minimal de-
scription length score, described in Section 1.1.2. However, we do not have
a closed form solution for the parameters that maximize the conditional log
likelihood for a given HBN classifier structure. So, approximate and compu-
tationally expensive methods have to be used. To compute the parameters
for a given HBN classifier structure we use the EM algorithm, described, for
example, by Cowell et al. [CDLS99]. The EM algorithm tries to maximize
the likelihood for a given structure, and according to Proposition 1 from
Chapter 2, it tries to maximize the conditional likelihood at the same time.
Since running the EM algorithm is time consuming, we learn the parameters
only after the final structure is learned.

To learn the structure of a HBN classifier, we perform feature clustering.
For any non-leaf node of the tree, different clusters correspond to different
subtrees of that node. We present three different feature clustering algo-
rithms that more or less try to group similar features into the same clusters.
These algorithms are no guaranteed to find optimal solutions, and just use

17

different heuristics for clustering features. The general algorithm for the
construction of the HBN classifier does not depend on the particular feature
clustering algorithm used.

For the comparison, we also try an algorithm for the construction of a
hierarchical naive Bayes (HNB) classifier. HNB has the same structure as
the HBN classifier with the exception that all arcs are going not towards
but from the root. The HNB classifier uses the same feature clustering
algorithms as the HBN classifier.

3.2 Construction of a Hierarchical Bayesian Net-
work Classifier

In this section we describe an algorithm for the construction of the HBN
classifier. The algorithm is given in Figures 3.3 and 3.4. Function
ConstructHBNClassifier takes two arguments. The first argument is
the training data set D of binary feature vectors, with one of the classes
{c1,...,cpr} assigned to each feature vector. The second argument is the
branching factor B. The output of the function is the HBN classifier. If the
number of features is not higher than B then all the feature variables are
simply made the parents of the class variable. Otherwise, the feature clus-
tering algorithm described in Section 3.4 is used. Features are divided into
B clusters, and B variables (one corresponding to each cluster) are made
the parents of the class variable. For dealing with each of those B clusters,
function ConstructSubtree is used. It takes the set of all the features in a
cluster as an argument, and returns a variable that should be at the bottom
of the subtree for the given cluster. If the cluster contains only one feature
then the subtree for the cluster consists only of that feature variable. Oth-
erwise, there is a hidden variable at the bottom of the subtree. If the cluster
contains no more than B features then the parents of the hidden variable
are only those feature variables. Otherwise, feature clustering algorithm is
used to make further partitioning of the current cluster. And for each of the
new partitions function ConstructSubtree is called recursively. Symbols
X; in the pseudocode denote the clusters of variables.

After learning the structure of the HBN classifier, the EM algorithm for
learning the parameters of the Bayesian network is used. We used a multiple-
restart approach, as described by Chickering and Heckerman [CH97]. The
number of starting configurations of the parameters is 64. For each starting
configuration, random conditional probabilities for the hidden variables are
generated. For the class variable, the initial probabilities are the same for
all the classes and all the parent configurations. Since feature variables have
no parents, the EM algorithm sets the probabilities for the feature variables
to be simply the frequencies of their corresponding states in the training

18

data. The threshold for terminating the EM algorithm! was set to 0.0001.

Function ConstructHBNClassifier(D, B):
1. Let C be the class variable from D.

2. Let F = {F1,...,Fn} be the set of all the feature variables from
D.

3. If | F| < B, make Fi,..., Fy the parents of C.
4. Else,

(a) Let {X1,...,Xp} = ClusterFeatures(D, F, B).

(b) For each ¢ = 1,...,B make the variable returned by
ConstructSubtree(X;) the parent of C.

5. Using EM algorithm, learn the probabilities for the Bayesian net-
work from D.

6. Return the constructed Bayesian network.

Figure 3.3: Function ConstructHBNClassifier

Sub-function ConstructSubtree(F):
1. If |F| =1, return the feature variable in F.
2. Else,

(a) Let H be a new hidden variable with two states.

(b) If |F| < B, make feature variables from F the parents of H.

(c) Else,
i. Let {Xy,...,Xp} = ClusterFeatures(D, F, B).
ii. For each ¢+ = 1,...,B make the variable returned by

ConstructSubtree(X;) the parent of H.
(d) Return H.

Figure 3.4: Function ConstructSubtree

!The EM algorithm terminates when the difference between the log likelihood for two
successful iterations becomes less than the specified threshold.

19

3.3 Construction of a Hierarchical Naive Bayes
Classifier

In this section we describe an algorithm for the construction of the HNB
classifier. Function ConstructHNBClassifier takes the same arguments
as function ConstructHBNClassifier. The output of the function is the
HNB classifier where the class variable and each hidden variable has no more
than B children. The pseudocode for the function Construct HNBClassifier
is the same as for the function ConstructHBNClassifier with the excep-
tion that in steps 3, 4.b, 2.b, and 2.c.ii from Figures 3.3 and 3.4 the corre-
sponding variables are made children rather than parents of the variables C
or H. The difference in using the EM algorithm is that the random initial
conditional probabilities are generated not only for the hidden but also for
the feature variables.

3.4 General Feature Clustering Algorithm

In this section we present a general function for feature clustering. Function
ClusterFeatures takes the training data set D, the set of features F to
be clustered, and the number of clusters B as its arguments. It returns a
partition {X1,...,Xp} of F defined as:

e X, CF,X;#0,Vi=1,...,B,
° XiﬂXj:(Z),Vi;éj,
° UiB;IXi:f.

As seen from Figure 3.5, function ClusterFeatures is just a wrap-
per for the particular feature clustering functions ClusterFeaturesAvg,
ClusterFeaturesOr, and ClusterFeaturesDep.

Function ClusterFeatures(D, F, B):
Call one of the functions ClusterFeaturesAvg, ClusterFeaturesOr,
ClusterFeaturesDep.

Figure 3.5: Function ClusterFeatures

3.5 Feature Clustering Algorithm using Probabil-
ity Average

In this section we describe a feature clustering algorithm that, similarly to
the algorithm of Slonim and Tishby [ST01] presented in Section 1.2, merges

20

smaller clusters into larger ones by using an information loss criteria. In our
classifiers, both the presence and the absence of a feature in a text is used as
an evidence, while in both [BM98] and [ST01] only the presence of a feature
is used as an evidence. That is why instead of Equation 1.2 from Section 1.2
we must have two equations — one for computing P(C|w; V ws = 1) (feature
wy V ws is present in the text), and one for computing P(C|w; V ws = 0)
(feature w; Vwy is absent in the text). Also, we redefine the weight of feature
w; to be the number of words that actually make up feature w; (i.e., the
size of cluster w;) rather than P(w;). After the initial experiments we also
made the adjustments to Equation 1.4 from Section 1.2 to penalize joining
of the already large clusters.

Function ClusterFeaturesAvg, given in Figure 3.6, takes the same
arguments as function ClusterFeatures and additionally the cluster size
penalty parameter . ClusterFeaturesAvg returns a partition {X1,..., Xp}
of F. The number of features N that have to be clustered can differ for dif-
ferent calls of function ClusterFeaturesAvg depending on how deep in the
HBN tree is a variable the parents of which have to be clustered. Each of
the initial clusters contains one feature. Probabilities P(X,,), P(C|X,,), and
P(C) are calculated by taking frequencies from the training data. These
probabilities are enough to compute the mutual information I(X;, C) be-
tween cluster and class variables. Step 4 of the function contains the main
loop, where in each iteration two clusters that minimize the modified infor-
mation loss criteria are merged into one. The loop continues as long as the
number of clusters is higher than B.

Function Merge, given in Figure 3.7, returns a cluster that is obtained
by merging clusters X; and X;. The information that the algorithm needs
about any cluster X' is the mutual information 7(X’, C') and the cluster size
|X'|. To compute I(X',C), probabilities P(X') and P(C|X') are needed.
In this algorithm, these probabilities are computed by taking the weighted
averages of the corresponding probabilities from the clusters X; and X;.
The weights are the sizes of clusters X; and Xj.

Function InfoLoss, given in Figure 3.8, computes the modified infor-
mation loss when clusters X; and X; are merged. Without modifications,
the information that is lost about C' when merging X; and X, is equal
to I(X;,C) + I(X;,C) — I(Merge(X;, X;),C). However, if such an in-
formation loss criteria is used, the algorithm most often would just merge
the two largest clusters. This is because the larger the cluster is, the less
information on average it provides about the class variable (with cluster
variables having only two states, and function Merge defined as described
above). And obviously the less information the cluster provides about the
class variable, the less information can be lost when merging that clus-
ter with other cluster. That is why we introduce the term |X;| + |X;],
which penalizes large clusters. Parameter « indicates how important clus-
ter size penalty is compared to the standard information loss value. So,

21

Function ClusterFeaturesAvg(D, F, B, «):

1. Let ¥ = {F1,...,Fy}. Make initial clusters X; = {Fj}, i =
1,...,N. Let XlZIIHFlZI LetA:{Xl,...,XN}.

2. From D calculate
o P(X, =1)=P(F, = 1),
o P
o P
o P

Vn=1,...,N, m=1,...,M, where C is the class variable.
3. Sort clusters X1, ..., Xy in descending order according to I(X;,C).
4. While |A| > B, do

(a) For each {X;, X;} : X;,X; € A, X; # X, compute loss;;
InfoLoss(X;, X;).

(b) Select X;, X; that minimize loss;;, and construct X' =
Merge(X;, X;). Remove from A clusters X;, X;, and add to
A cluster X'.

5. Return A.

Figure 3.6: Function ClusterFeaturesAvg

after introducing the penalty for large clusters we get a modified infor-
mation loss (I(X;,C) + I(X;,C) — I(Merge(X;, X;),C)) + a(|Xi| + | X;]).
The best value for the parameter « has to be determined experimentally.
We would of course like o to be independent of the cluster size. How-
ever, as the clusters are being merged in the loop of step 4 of function
ClusterFeaturesAvg, an average cluster size increases, and an average
value for I(X;,C) +I(X;,C) — I(Merge(X;, X;),C) decreases while an av-
erage value for (| X;|+|X;|) increases. That is why we multiply the first and
divide the second term by an average cluster size k. There are no guarantees
that these modifications are the best possible, but at least when using them
better classifiers are produced than in the case of using standard information
loss criteria.

22

Sub-function Merge(X;, X;):

1. Let s; = | X;], s = | X

2. Set
iP(Xi=1)+s; P(X;=1
o P(X'=1) = 2PESEPES)
$iP(C=cm|X;=1)+s; P(C=cm|X;=1)

e P(C=cplX'=1) =

Sits; ’

Ym=1,...,M.
3. Set | X'| = |X;| + | X

4. Return X'.

Figure 3.7: Function Merge

Sub-function InfoLoss(X;, X;):
- N
1. Let k = Al

2. Return (I(X;,C) + I(X;,C) — I(Merge(X;, X;),C))k + a(| X;| +
X1 %

Figure 3.8: Function InfoLoss

3.6 Feature Clustering Algorithm using OR

In this section we describe a feature clustering algorithm that uses the
same criteria for cluster merging as ClusterFeaturesAvg, but the prob-
abilities for the new clusters are defined by OR function. In algorithm
ClusterFeaturesAvg, we defined just the probabilities P(X') and P(C|X")
without giving semantics for the states of X’. In this algorithm we define
that the cluster variable is in state 1 if and only if at least one of the feature
variables that the cluster contains is in state 1. That is, we use OR function.
Based on this, the probabilities P(X') and P(C|X') are calculated from the
training data. The algorithm is given Figures 3.9 and 3.10.

23

Function ClusterFeaturesOr(D,F, B, «):
Same as function ClusterFeaturesAvg, but with different sub-function
Merge.

Figure 3.9: Function ClusterFeaturesOr

Sub-function Merge(X;, X;):
1. Let X' =1iff X; =1 or X; = 1.
2. From D calculate

e P(X'=1)=P(F,, =1V...VF, =1),
) P(C:Cm|XI:1):P(C:Cm|Fk1:1\/\/Fkl:1)7
o P(C =cp|X'=0)=P(C=cplFy, =0A...AF, =0),

Vm =1,...,M, where {F},,...,F,}, is the set of all the features
contained by clusters X; and Xj.

3. Set |X'| = |X,] + |X;].

4. Return X'.

Figure 3.10: Function Merge (for ClusterFeaturesOr)

3.7 Feature Clustering Algorithm using Indepen-
dence Tests

In this section we describe a feature clustering algorithm that uses an infor-
mation about feature dependencies. Function ClusterFeaturesDep, given
in Figure 3.11, takes the same arguments as function ClusterFeatures and
additionally the mutual information importance parameter c.
ClusterFeaturesDep returns a partition {Xi,...,Xp} of F. For each
pair of features the probability of feature independence given the class vari-
able is estimated. The initial experiments showed that measuring feature
independence given the class variable instead of an unconditional feature
independence gives slightly better classification.

For estimating P(F; L Fj | C) (the probability that F; and F}; are
independent given C') we use a x? test for independence as described, for
example, by Spirtes et al. [SGS93]. Let x4 denote the number of cases in
the training data where F; = a, F; = b, and C = c¢. Let 215 = >, Tape »
Tate = D pTabe » and T4y = Za,b Zape - Then using the hypothesis that F;

24

and F} are independent given C, we can compute the expected values of x4,

as E(zgpe) = % Let X2 =3, W If the independence

hypothesis is true, the probability density function of X? converges to the
probability density function of x? distribution with (|F;| — 1)(|Fj| — 1)|C|
degrees of freedom as the number of cases in the training data approaches
infinity. Using this, we estimate P(F; L F; | C). In our classifiers, the class
variable C' has always two states, so the x? distribution with two degrees of
freedom is used.

As in the two previous algorithms, each of the initial clusters contains
one feature, and the new clusters are obtained by merging smaller clusters
into larger ones. Clusters are merged by trying to put mutually dependent
features into the same clusters. p;; can be considered as a measure of dis-
tance between features F; and Fj: the smaller p;; is, the more dependent
F; and Fj are expected to be. That is why for any cluster X we want to
minimize) | FoyFexy, Pig- We sum this over all the clusters. The total number
of distances p;; summed depends on the sizes of clusters. To get an average
distance p;; we divide the whole sum by the total number of pairs {F;, F;}
ZxkeA’ ZFi,FjEXk Pij .

m
XpeA! (|X2k‘)

inside all the clusters. That is how we get the term

Expression 3.1.

If feature clustering is performed by trying to minimize this term only,
no distinction is made between features that provide a lot and features that
provide little information about the class. As the initial experiments showed,
the classifier performance suffered because features that had a high mutual
information with the class variable were separated from the class variable
by too many hidden variables. To overcome this problem, in Expression 3.1
we introduce the second term, where we penalize large clusters that contain
informative features. For each feature its mutual information value is divided
by the size of the cluster that the feature belongs to. On average, the sum
Zi]\;l I‘(f;’k?) is higher when features with high mutual information values
belong to smaller clusters. And the smaller the cluster is, the less hidden
variables on average separate its features from the class variable. Parameter
« specifies how important this mutual information factor is compared to
the goal of having dependent features in the same clusters. As in the two
previous feature clustering algorithms, the best value for the parameter «
has to be determined experimentally, and we would like « to be independent
of the number of clusters. However, when the number of clusters decreases
the sum) FieX, I(&;? for any cluster X} stays on average the same, but
the number of such sums decreases. That is why we normalize by dividing
the whole sum by the number of clusters |A'].

After step 3, where we obtain B clusters by merging clusters in a greedy
way, we try to improve clustering by further minimizing Expression 3.1.
Function ImproveClustering takes the current set of clusters and the

25

Function ClusterFeaturesDep(D, F, B, «):

1. Let C be the class variable. V{F;, Fj} C F compute p;; < P(F; L
Fj | C) from D by using x? test for independence.

2. Make initial clusters X; = {F;}, ¢« = 1,...,N. Let A =
{Xla"'aXN}'

3. While |A| > B, do

(a) For each {Xy, Xp}: Xo, Xp € A, X, # Xp let X' = X, U Xy,
A = A\ {X,, Xp} UX', and compute

EXkEA’ Z{Fi,Fj}ch Dij Z I(F;,C)

Yyea) |A’| Xl

where X}, is the cluster that F; belongs to.

(3.1)

(b) Select X,, X, that minimize Expression 3.1. Remove from A
clusters X,, X3, and add to A cluster X, U Xj.

4. Let A = ImproveClustering(A, E), where F; is the current
value of Expression 3.1.

5. Return A.

Figure 3.11: Function ClusterFeaturesDep

current value of Expression 1 as the arguments. It tries to minimize Ex-
pression 3.1 by repeatedly moving one feature from its current to another
cluster.

First, to speed up the calculations, we precompute d;; — the sum of
distances from feature F; to all the features in cluster X;. Then the loop
is executed, where in each iteration we try to move one feature from its
current to another cluster. We select those feature and the cluster to
move to that minimize the value of the corresponding Expression 3.1. For
each feature F; that belongs to a cluster X; with more than one feature
in it and for each cluster X,, that is different from X; we calculate E5,,
— the value of Expression 3.1 if F; were moved from X; to X,,. In term

2xeA Z{Fi,Fj}ch pij—ditdim
xpeavixxm (CF)+HET)+H(Hn)
pij. Since we try to move feature F; from X; to X, in the numerator of this
term we compute a new sum of distances by subtracting d;; from the current
sum and adding d;,, to it. When computing the new number of distances in

we compute the new average distance

26

the denominator of the term, we decrease the size of X; by one, and increase

the size of X,,, by one. In the rest part of Ey,, we compute the new penalty

term. Y jeqi.n} % computes the penalty for all the clusters except
FjgX|,F;&Xm kj

X; and an, %)Fjexl Iijlfl — Tx -1 computes the new penalty for X;, and

I(F;,

EF]. EXm X F1 T ‘I(Iz‘ﬂ computes the new penalty for X,,.

The value of gain;,, indicates the gain in Expression 3.1 if F; is moved
to X,,. If the maximal gain;, is positive, we move the feature F; and
accordingly update the values of dj;, dj,, (j = 1,...,N), and E;. We have
set the maximum number of iterations for the “repeat” loop to be equal
to the number of features N. In our experiments we have observed that
gain® becomes less or equal to zero before N iterations are performed. In
some cases strange gain* values were reported, which may be explained by

a possible error in the program code for ImproveClustering.

27

Sub-function ImproveClustering(A, E1):
1. VF; € F,VX; € A compute d;;, + EF]-eXk Dij-
2. Repeat

(a) VX, € A, |Xl| > 1,VF; € X,
i. VX, € A\ {X;} compute

Do Xped Z{E-,F]-}CX,c Pij — dit + dim

Bom = X, X/|-1 Xon|+1
> e pxoxny (5 + (571 + (K
1 I(F;,C) I(F;,0) I(F;,C)
—— 5 C) B
A je{;z\r} | X | Fgl Xil -1 X -1
F.

I(F;,C) | I(F;,0)
X +1 | Xpm| +1

FieXm

ii. Let gaing, = E1 — Eap,.
(b) Select F;, X, that maximize gain;,,. Let gain® be the correspond-
ing gaing,. If gain* > 0,
i. Move F; from its current cluster X; to cluster X,,.
il. VFj € F set djl — dﬂ — Djis djm — djm + pji-
ili. Set F < Eoy,.

Until gain® < 0 or the maximum number of iterations has been reached.

Figure 3.12: Function ImproveClustering

28

Chapter 4

Performance Experiments

In this chapter we describe the experiments performed. First we describe
the test setup. After that we present the tests results.

4.1 Test Setup

In this section first we describe the text data that we use in our experiments.
Then we describe how we index the documents in that data. Finally we
mention the classifiers that we test in the experiments.

4.1.1 Data Used

In the experiments we test the classifiers on the Reuters-21578 text catego-
rization test collection (Distribution 1.0), available at

http://www.daviddlewis.com/resources/testcollections/reuters21578.

It is currently the most widely used test collection for text categorization
research. It contains about 20000 documents (the Reuters news stories),
each of them assigned to zero or more classes. We use the most popular
“ModApte” split of this collection into training and test sets. This split has
been made according to the time of documents: stories in the documents
from the training set appeared earlier than stories in the documents from
the test set. Following the test setup of Yang and Liu [YL99], we select
the classes that have at least one document both in the training set and
the test set. It results in selecting 90 classes. After eliminating documents
that do not belong to any of these 90 classes, we get a training set of 7769
documents and a test set of 3018 documents. We further split the training
set into what we call a training-0 set with 5827 documents and a validation
set with 1942 documents. This split is again made according to the time of
documents. First we train the classifiers on a training-0 set and tune their

29

parameters based on the performance on a validation set. Then we learn
the classifiers with the best parameters on the whole training set and run
the final experiments on a test set. Because of too much time required to
process data for a single class, we run the tests only for the 10 most frequent
classes. These are earn, acq, money-fx, grain, crude, trade, interest, ship,
wheat, and corn classes (given in the decreasing class frequency order).

4.1.2 Text Indexing

When indexing documents, for simplicity we do not distinguish between
the text that appears in a title and the text that appears in a body of
a document. First for the extraction of the features from the document
we convert the text to lowercase and take from it words (i.e., sequences
of alpha symbols delimited by any other symbols). Then, as described in
Section 1.3, we remove function words. We also tried to perform stemming
by using Porter [Por80] algorithm, but on the initial tests with a naive Bayes
classifier this gave a slightly worse performance. So, no stemming is used.
After this preprocessing each document has a number of features — the words
that appear in the document and that are not function words. The feature
set is then built by taking from the documents in the training data all the
features except those that appear only in one document (because these are
very unlikely to provide any information about the class). The final feature
set consists of 15715 words. As in many other work on text categorization,
we use binary features.

Since for many classifiers it is computationally impossible to use 15715
features, we perform local dimensionality reduction by feature selection, as
described in Section 1.3. For feature selection we use an information gain
criteria, because it has been reported as one of the most effective by Yang
and Pedersen [YP97]. Unless mentioned otherwise, the default number of
features used is 30. But for most of the classifiers we also perform the
experiments with higher number of features. Both for the experiments on
the validation and on the test data we perform feature selection based on
the cases in the whole training data.

4.1.3 Classifiers Tested

Totally we test 8 types of classifiers. Namely, we test HBN classifiers that use
that use probability average, OR, and (in)dependence test feature clustering
algorithms. We call these classifiers correspondingly HBN-AVG, HBN-OR,
and HBN-DEP. Also, we test HNB classifiers that use the same feature
clustering algorithms. We call these classifiers HNB-AV(G, HNB-OR, and
HNB-DEP. We also test a naive Bayes classifier with the smoothing param-
eter Ny, described in Section 1.1.3, set to 0.1. We call this classifier NB. And
we test the Support Vector Machines (SVM), because they have been re-

30

ported by Dumais et al. [DPHS98] to perform better than other methods for
text categorization. We test linear SVM (i.e., SVM with polynomial kernels
of degree 1, as described by Christianini and Shawe-Taylor [CST00]). For
training SVM, the sequential minimal optimization algorithm is used, and
the output of SVM is transformed into probabilities by applying a standard
sigmoid function, as described in WEKA API documentation [WEK].

For implementing all the HBN and HNB classifiers we use HUGIN API
V5.0 [HUG]. For implementing NB and SVM we use WEKA 3.2.1 [WEK].
We also use WEKA 3.2.1 for running tests.

4.2 Test Results

In this section we present the results of our tests. First we present the results
of the experiments on the validation data and then on the test data. In most
of the work in the area of text classification the micro-averaged breakeven
point, as described in Section 1.3, is used to measure the classifier perfor-
mance. We also use this measure to compare the classifier performance on
the validation data. But in the experiments on the test data for comparison
we also report the macro-averaged breakeven point for each classifier. In all
the tables, we report the breakeven point as a percentage. In the end of the
section we give the examples of the HBN classifier structures learned by our
feature clustering algorithms.

4.2.1 Experiments on the Validation Data
HBN Classifiers

We use the validation data to tune the branching factor B and the parameter
a (which is the cluster size penalty parameter or the mutual information
importance parameter) for each of HBN-AVG, HBN-OR, and HBN-DEP
classifiers separately. First we take B = 7 and test the classifier with the
different values of «. Then we take « that gave the best performance and
test the classifier with values 3, 5, 7, and 9 for B. Then we take B that gave
the best performance as the value to be used in the experiments on the test
data. For this B we again test the classifier with the different values of a.
This time we take values of « that are from shorter interval and closer to
each other than in the first phase of tuning a. We take « that gave the best
performance as the value to be used in the experiments on the test data. In
Table 4.1 we present the final B and « values for the HBN classifiers.

We have also tried the HBN classifiers with 60 features. In Tables 4.2,
4.3, and 4.4 we present the performance of the HBN classifiers with 30 and
60 features with B = 7 and different values of a (the first phase of the
parameter tuning). The performance of HBN-AVG and HBN-OR decreased
when more features were added, and the performance of HBN-DEP stayed

31

Classifier H B‘ « ‘

HBN-AVG || 7 | 0.05
HBN-OR 9 10.09
HBN-DEP || 7 | 170

Table 4.1: The Final Parameter Values For the HBN Classifiers

similar. That is why we do not test the HBN classifiers with 60 features any

further.

‘ Value of « H 30 features ‘ 60 features ‘

0 78.8 78.9
0.03 80.8 75.9
0.06 80.7 79.6
0.09 80.6 76.3
0.12 80.2 7T

Table 4.2: The Performance of HBN-AVG with Different Number of Features

‘ Value of « H 30 features ‘ 60 features ‘

0 80.1 79.7
0.05 80.4 78.8
0.10 80.1 78.1
0.15 79.8 7T
0.20 79.8 75.5

Table 4.3: The Performance of HBN-OR with Different Number of Features

‘ Value of « H 30 features ‘ 60 features ‘

0 77.1 76.3
50 78.9 80.8
100 80.6 80.2
150 81.0 80.6
200 80.6 80.5
250 80.6 80.7
300 80.3 80.9

Table 4.4: The Performance of HBN-DEP with Different Number of Features

32

HNB Classifiers

In Tables 4.5, 4.6, and 4.7 we compare the performance of the HNB (hi-
erarchical naive Bayes) classifiers and the corresponding HBN (hierarchical
Bayesian network) classifiers when B = 7 and the value of « varies (the first
phase of the parameter tuning). The HNB classifiers performed worse than
the corresponding HBN classifiers. That is why we do not test the HNB

classifiers any further.

| Value of o | HNB-AVG | HBN-AVG |

0 78.8 78.8
0.03 77.6 80.8
0.06 78.2 80.7
0.09 77.5 80.6
0.12 76.9 80.2

Table 4.5: The Performance of HNB-AV(G Compared to HBN-AVG

‘ Value of « H HNB-OR ‘ HBN-OR ‘

0 76.2 80.1
0.05 76.9 80.4
0.10 7T 80.1
0.15 77.5 79.8
0.20 76.5 79.8

Table 4.6: The Performance of HNB-OR Compared to HBN-OR

| Value of o | HNB-DEP | HBN-DEP |

0 76.7 77.1
50 75.0 78.9
100 76.0 80.6
150 75.4 81.0
200 74.4 80.6
250 75.0 80.6
300 75.0 80.3

Table 4.7: The Performance of HNB-DEP Compared to HBN-DEP

33

A Naive Bayes Classifier

In Table 4.8 we present the performance of NB with the different number of
features used. For the experiments on the test data, we select NB with 30
features (to make a comparison with other classifiers that use 30 features)
and NB with 100 features (because it performed best on the validation data).

Number of | Performance
features

30 78.3

60 79.1

100 79.5
200 78.7
300 78.8
400 78.3

500 77.9

Table 4.8: The Performance of NB with Different Number of Features

The Support Vector Machines

In Table 4.9 we present the performance of SVM with the different number of
features used. For the experiments on the test data, we select SVM with 30
features (to make a comparison with other classifiers that use 30 features)
and SVM with 200 features (because it performed best on the validation
data). In the tests presented in Table 4.9, the complexity constant param-
eter of SVM, described in WEKA API documentation [WEK], is tuned for
the classifier with 30 features. Before using SVM with 200 features in the
experiments on the test data, we separately tune the complexity constant

parameter.
Number of | Performance
features
30 83.3
60 85.1
100 87.4
200 87.5
300 86.7
400 86.5
500 86.1

Table 4.9: The Performance of SVM with Different Number of Features

34

4.2.2 Experiments on the Test Data

In Table 4.10 we present the classifier performance on the test data. For
each classifier we present the breakeven performance on each of 10 classes,
and also the micro-averaged and macro-averaged breakeven. When all the
classifiers use 30 features, the micro-averaged breakeven performance of the
HBN classifiers is about 2% better than the performance of NB and about
2% worse than the performance of SVM. If NB and SVM use more features,
the micro-averaged breakeven performance of the HBN classifiers is only
slightly better than the performance of NB and about 4% worse than the
performance of SVM. When the macro-averaged breakeven performance is
measured, the HBN classifiers are about 6% better than NB and about 2%
worse than SVM. This means that, compared to the other classifiers, NB
performs much worse on the classes with few positive instances.

Among the HBN classifiers, HBN-OR is slightly better than HBN-AVG
and HBN-DEP.

Running time for different algorithms is quite different. Learning and
to testing of the classifier for one class takes about 1 minute for NB, about
10 minutes for SVM, and about 30 minutes for the HBN classifiers. For
the HBN classifiers, most of the time is spent on learning the conditional
probabilities by using the EM algorithm.

4.2.3 Feature Clustering Algorithms

In Figures 4.1, 4.2, and 4.3 we depict the HBN-AVG, HBN-OR, and HBN-
DEP classifiers learned during the experiments on the test data for class
trade. In HBN-AVG, all the parents of the class variable (“tradeTOPIC”)
are hidden variables. In HBN-OR, the variables “trade” and “tariffs”, which
have the highest information gain values, are made directly the parents of the
class variable. The features inside the clusters seem to be more similar than
in the case of HBN-AVG classifier. In HBN-DEP, the informative feature
variables are put as close to the class variable as possible. The class variable
has only one hidden variable as its parent, all the other its parents are
feature variables. Similarly, hidden variables have mostly features as their
parents, and only “hidden2” has two hidden variables as its parents. So, the
second term from Equation 3.1 clearly dominates. For the comparison, in
Figure 4.4 we depict the HBN-DEP classifier learned during the experiments
on the validation data for class trade with the parameter « set to 0. That is,
only the first term from Equation 3.1 is taken into account when constructing
the classifier. This classifier performed worse than the one where the second
term from Equation 3.1 has more impact. However, the way features were
clustered seems to be very similar to how a human would do it if the criteria
was the similarity of features.

35

9¢

Class HBN-AVG | HBN-OR | HBN-DEP NB NB SVM SVM
(30 feat.) | (100 feat.) | (30 feat.) | (200 feat.)

earn 95.4 95.8 95.1 95.2 96.7 95.8 98.1
acq 86.7 85.2 84.6 86.6 89.4 87.6 93.7
money-fx 59.9 60.5 57.1 59.2 61.3 60.3 66.5
grain 83.2 84.2 86.9 73.3 75.6 92.0 85.9
crude 75.5 79.9 74.1 77.6 83.1 78.4 81.5
trade 64.1 65.8 68.4 57.3 54.7 67.5 70.1
interest 62.6 63.4 59.0 61.6 58.6 67.9 65.6
ship 79.8 80.9 79.2 80.9 80.9 83.0 69.7
wheat 85.9 87.3 87.3 63.4 71.5 90.7 85.9
corn 85.7 85.7 89.3 58.9 57.0 88.8 83.9
Micro- 85.1 85.4 84.5 83.1 84.4 86.9 88.9
averaged

Macro- 77.9 78.9 78.1 71.4 72.9 81.2 80.1
averaged

Table 4.10: The Performance on the Test Data

hidden6

semiconductors

hidden8

retaliation
tradeTOPIC

hidden9

L
! 09sg

T

L

/ .

@ japanese MM
resen @

hidden4 @
Qo i Y own @'

tariffs

ERROR: rangecheck
OFFENDI NG COMMVAND: xshow

STACK

[84 46 46 93 93 84 93 139 93 93 46 84 46 93 93 93 46 84 93 46 46 37 93

93 84 46 93 83 46 37 84 46 93 93 84 84 46 93 93 46 93 83 93 46 93 93 0]
)

- mar k-

5

-savel evel -

