
AALBORG UNIVERSITYDepartment of Computer S
ien
eKDE master group

TEXT CATEGORIZATIONUSING HIERARCHICALBAYESIAN NETWORK CLASSIFIERSM.SC. PROJECT

Gytis Kar�
iauskasJune 2002

AALBORG UNIVERSITYDEPARTMENT OF COMPUTER SCIENCEFREDRIK BAJERS VEJ 7 - DK 9220 AALBORG � fTitle:Text CategorizationUsing Hierar
hi
alBayesian Network Classi�ersProje
t period:2002 02 01 { 2002 06 06Proje
t group:E1 { 121Members:Gytis Kar�
iauskasSupervisor:Ji�r�� VomlelPages: 45Copies: 3
Abstra
tIn this paper we propose thetype of Bayesian networksthat we
all the hierar
hi
alBayesian network (HBN)
las-si�ers. We present algorithmsfor the
onstru
tion of theHBN
lassi�ers and test themon the Reuters text
atego-rization test
olle
tion.

Gytis Kar�
iauskas

Contents
Introdu
tion 41 Related Work 51.1 Bayesian Network Classi�ers 51.1.1 Overview of Bayesian Networks 51.1.2 Bayesian Network S
oring Fun
tions 61.1.3 A Naive Bayes Classi�er 71.1.4 Extensions of a Naive Bayes Classi�er 91.1.5 Other Bayesian Network Classi�ers 91.2 Feature Clustering . 101.3 Text Categorization . 112 Hierar
hi
al Bayesian Network Classi�ers 133 Classi�er Constru
tion Algorithms 163.1 Motivation . 163.2 Constru
tion of a Hierar
hi
al Bayesian Network Classi�er . . 183.3 Constru
tion of a Hierar
hi
al Naive Bayes Classi�er 203.4 General Feature Clustering Algorithm 203.5 Feature Clustering Algorithm using Probability Average . . . 203.6 Feature Clustering Algorithm using OR 233.7 Feature Clustering Algorithm using Independen
e Tests . . . 244 Performan
e Experiments 294.1 Test Setup . 294.1.1 Data Used . 294.1.2 Text Indexing . 304.1.3 Classi�ers Tested . 304.2 Test Results . 314.2.1 Experiments on the Validation Data 314.2.2 Experiments on the Test Data 354.2.3 Feature Clustering Algorithms 355 Con
lusions and Future Work 411

List of Figures1.1 Naive Bayes Classi�er as a Bayesian Network 82.1 An Example HBN Classi�er 133.1 Bayesian Network with All Features Being Parents of the Class 163.2 Bayesian Network with Two Hidden Variables 173.3 Fun
tion Constru
tHBNClassi�er 193.4 Fun
tion Constru
tSubtree 193.5 Fun
tion ClusterFeatures . 203.6 Fun
tion ClusterFeaturesAvg 223.7 Fun
tion Merge . 233.8 Fun
tion InfoLoss . 233.9 Fun
tion ClusterFeaturesOr 243.10 Fun
tion Merge (for ClusterFeaturesOr) 243.11 Fun
tion ClusterFeaturesDep 263.12 Fun
tion ImproveClustering 284.1 HBN-AVG for Class Trade . 374.2 HBN-OR for Class Trade . 384.3 HBN-DEP for Class Trade . 394.4 HBN-DEP with � = 0 for Class Trade 40

2

List of Tables4.1 The Final Parameter Values For the HBN Classi�ers 324.2 The Performan
e of HBN-AVGwith Di�erent Number of Fea-tures . 324.3 The Performan
e of HBN-OR with Di�erent Number of Fea-tures . 324.4 The Performan
e of HBN-DEPwith Di�erent Number of Fea-tures . 324.5 The Performan
e of HNB-AVG Compared to HBN-AVG . . . 334.6 The Performan
e of HNB-OR Compared to HBN-OR 334.7 The Performan
e of HNB-DEP Compared to HBN-DEP . . . 334.8 The Performan
e of NB with Di�erent Number of Features . 344.9 The Performan
e of SVM with Di�erent Number of Features 344.10 The Performan
e on the Test Data 36

3

Introdu
tionText
ategorization, de�ned as the a
tivity of labeling natural language textswith themati

ategories from a prede�ned set ([Seb02℄), is a task frequentlyperformed by humans. Be
ause often there are many do
uments in a digitalform and they have to be
ategorized, there is a big need for automati

las-si�ers1 that would perform this task or would assist humans in performingit. Generally there are two ways for making automati

lassi�ers. In aknowledge engineering approa
h, the knowledge of human experts is de-s
ribed as a set of rules, whi
h are then used in the pro
ess of
lassi�
ation.The disadvantages of this approa
h are that many work needs to be done tomake human knowledge expli
it and for ea
h new domain a separate formu-lation of the rules needs to be done manually again. In a ma
hine learningapproa
h, the
lassi�er is built automati
ally from the set of the already
lassi�ed instan
es. The major work shifts from making human knowledgeexpli
it to
reating algorithms that
lassify new instan
es based on the in-formation about the already
lassi�ed instan
es. Classi�ers for di�erentdomains
an be learned using the same algorithm.In this paper we use ma
hine learning methods for automati
 text
ate-gorization. Parti
ularly, we use Bayesian networks, be
ause they seem to besuitable for modeling the un
ertainty that is present in the
ategorizationtask. We propose the type of Bayesian networks that we
all the hierar
hi-
al Bayesian network (HBN)
lassi�ers. We test them on the Reuters text
ategorization test
olle
tion.In Chapter 1 we des
ribe the related work. In Chapter 2 we de�ne theHBN
lassi�ers and des
ribe their properties. In Chapter 3 we des
ribeour algorithms for the
onstru
tion of
lassi�ers. In Chapter 4 we give theresults of the experiments performed. In Chapter 5 we give the
on
lusionsand possible future work dire
tions.
1We will use the terms \
ategorization" and \
lassi�
ation" as synonyms.4

Chapter 1Related WorkIn this
hapter �rst we review the work already done in the area of Bayesiannetwork
lassi�ers. Then we des
ribe the algorithms that
an be used forfeature
lustering. Finally we give a general overview of the ma
hine learningin text
ategorization.1.1 Bayesian Network Classi�ersIn this se
tion �rst we give a brief overview of Bayesian networks. Then wedis
uss Bayesian network s
oring fun
tions and problems related to usingthem for Bayesian network
lassi�ers. After that we review the alreadyavailable Bayesian network
lassi�ers. We divide them into three groups{ a naive Bayes
lassi�er,
lassi�ers that extend a naive Bayes, and otherBayesian network
lassi�ers.1.1.1 Overview of Bayesian NetworksBayesian network, des
ribed, for example, by Jensen [Jen01℄,
an be de-�ned as a set of variables and a set of dire
ted edges between variables,where ea
h variable has a �nite set of mutually ex
lusive states, the vari-ables together with the edges form a dire
ted a
y
li
 graph, and to ea
hvariable A with parents pa(A) = fB1; : : : ; Bkg there is atta
hed a
ondi-tional probability table P (AjB1; : : : ; Bk).1 The edges between the variablesmodel dependen
e relationships: an edge going from variable B to variableA means that the state of variable A depends on the state of variable B. Theprobability distribution over all variables A1; : : : ; An in a Bayesian networkis P (A1; : : : ; An) = Qi P (Ai j pa(Ai)). When using Bayesian networks as
lassi�ers, the variables represent
lasses and features, and the edges indi
atethe relationships between them.1Variable A having variable B as its parent means that there is an edge going fromvariable B to variable A. 5

In this paper we will use the following notation. � indi
ates the param-eters of a Bayesian network B, i.e. the
onditional probability distributionsfor all variables Ai in B. PB� (X1; : : : ;Xk) indi
ates the probability dis-tribution over variables X1; : : : ;Xk de�ned by a Bayesian network B withparameters �. PB� (x1; : : : ; xk) indi
ates the probability that the
orrespond-ing variables are in parti
ular states x1; : : : ; xk. D = f< f i1; : : : ; f in;
i >; i = 1; : : : ; Ng indi
ates the training data of N
ases with feature variablesF1; : : : ; Fn and a
lass variable C.1.1.2 Bayesian Network S
oring Fun
tionsWhen learning Bayesian network
lassi�er from training data, a s
oringfun
tion is used for evaluation of the
andidate Bayesian networks. Usuallys
oring fun
tions seek for a simple Bayesian network that �ts the trainingdata (that is, the joint probability distribution over all the variables). Usu-ally the likelihood of a Bayesian network B with parameters � given trainingdata D = f< f i1; : : : ; f in;
i >; i = 1; : : : ; Ng is used to measure how B �tsD. The likelihood is de�ned asL(B�jD) = NYi=1PB� (f i1; : : : ; f in;
i) :Often the log likelihood LL(B�jD) =PNi=1 logPB� (f i1; : : : ; f in;
i) is used in-stead of likelihood.Friedman et al. [FGG97℄ use the minimal des
ription length (MDL)s
oring fun
tion to evaluate the
andidate Bayesian network
lassi�ers. TheMDL s
oring fun
tion of a Bayesian network B with parameters � giventraining data D is de�ned asMDL(B�jD) = logN2 jB�j � LL(B�jD) ;where jB�j is the number of parameters in the network. The �rst termin a de�nition of MDL represents the length of the des
ription of B�, andthe se
ond term represents the suitability of B� for des
ribing D. Whensear
hing through the spa
e of possible Bayesian networks, we try to �nd theone with the minimal MDL s
ore. However, a good
lassi�er should �t bestthe probability of the
lass given the values of the features in the trainingdata rather than the joint probability distribution over all the variables in thetraining data. Therefore, a Bayesian network sele
ted as the best a

ordingto MDL or another non-spe
ialized s
oring fun
tion sometimes performspoorly as a
lassi�er. To deal with this problem, the
onditional likelihood
an be used instead of likelihood. The
onditional likelihood of a Bayesiannetwork B with parameters � given training data D = f< f i1; : : : ; f in;
i >6

; i = 1; : : : ; Ng is de�ned asCL(B�jD) = NYi=1PB� (
ijf i1; : : : ; f in) :Often the
onditional log likelihood CLL(B�jD) =PNi=1 logPB� (
ijf i1; : : : ; f in)is used instead of the
onditional likelihood. Then, a

ording to Friedmanet al. [FGG97℄, the
onditional MDL s
ore that would avoid the above men-tioned problem of the MDL s
ore
an be derived. The
onditional MDLs
oring fun
tion of a Bayesian network B with parameters � given trainingdata D is then de�ned asCMDL(B�jD) = logN2 jB�j �N � CLL(B�jD) :However, the
onditional likelihood has one serious drawba
k when
om-pared to the likelihood. For a �xed stru
ture of a Bayesian network B,there is a
losed form solution for the parameters � that maximize L(B�jD).Namely, the
onditional probabilities are simply equal to the frequen
ies ofthe
orresponding values for the variables in the training data D. How-ever, for the
onditional likelihood no su
h general solution exists. Only ina
ase when the
lass variable has no
hildren and all the parents of the
lass variable are feature variables, substituting the frequen
ies in D as theparameters of B maximizes the
onditional likelihood. This means thatgenerally when learning a Bayesian network stru
ture, the
omputationallyexpensive methods to estimate the
onditional likelihood have to be used.1.1.3 A Naive Bayes Classi�erThe most simple of Bayesian network
lassi�ers is a naive Bayes
lassi�er,des
ribed, for example, by Duda and Hart [DH73℄. In a naive Bayes
lassi�erit is assumed that the features are independent given the value of the
lass,that is, for the
lass variable C and any feature variables Fi, Fj ,P (FijFj ; C) = P (FijC)for all possible values of Fi, Fj and C, whenever P (C) > 0. Figure 1.1depi
ts a naive Bayes
lassi�er as a Bayesian network, where the
lassvariable is C and the feature variables are F1; : : : ; Fn. The probabilitiesP (C); P (F1jC); : : : ; P (FnjC) are estimated from the training data. When anew instan
e with the known values of feature variables F1; : : : ; Fn has tobe
lassi�ed, Bayes rule is used:P (CjF1; : : : ; Fn) = P (F1; : : : ; FnjC)P (C)P (F1; : : : ; Fn) :7

C

F1 F2 FnFigure 1.1: Naive Bayes Classi�er as a Bayesian NetworkSin
e F1; : : : ; Fn are assumed to be independent given C, P (F1; : : : ; FnjC) =P (F1jC) : : : P (FnjC), and the above formula be
omesP (CjF1; : : : ; Fn) = P (F1jC) : : : P (FnjC)P (C)P (F1; : : : ; Fn) : (1.1)The probabilities in the numerator are known, and the probability in thedenominator does not depend on the
lass value, so it need not be
al
ulated.Often on a naive Bayes
lassi�er smoothing, des
ribed, for example, byFriedman et al. [FGG97℄ is used. When no smoothing is used, the proba-bility that feature variable Fi is in state f given
lass
 is estimated simplyby
ounting the o

urren
es in the training data:P (Fi = f jC =
) = nN ;where N is the number of
ases in the training data in whi
h C is in state
, and n is the number of
ases in the training data in whi
h C is in state
 and Fi is in state f . If n = 0 and thus P (Fi = f jC =
) = 0, thenthe whole numerator in Equation 1.1 be
omes zero, and the probabilityP (C =
jF1; : : : ; Fn) for
lass
 is zero. That is, Fi being in state f
ausesprobability for
lass
 to be zero no matter how large the other probabilitiesin the numerator from Equation 1.1 would be. When smoothing is used,P (Fi = f jC =
) is estimated using the formulaP (Fi = f jC =
) = n+N0N +mN0 ;where N0 is a small
onstant and m is the number of states for the variableFi. In other words, it is assumed that before seeing training data the variableFi has been observed to be in ea
h of its states N0 times when the
lass was
. This guarantees that P (Fi = f jC =
) is always above zero.Obviously, in reality the assumption that the features are independentgiven the value of the
lass is violated very often. However, the performan
eof a naive Bayes
lassi�er is often very good and
omparable to the perfor-man
e of mu
h more sophisti
ated
lassi�ers, as shown by Domingos andPazzani [DP97℄. 8

1.1.4 Extensions of a Naive Bayes Classi�erLarge part of the work done in the area of the Bayesian network
lassi�ersdeals with the extensions of a naive Bayes
lassi�er. Sin
e a naive Bayes
lassi�er with its simplifying assumption about a
onditional feature inde-penden
e performs well, it is natural to hope that Bayesian
lassi�ers thatallow features to depend on ea
h other would perform even better.Friedman et al. [FGG97℄ extend a naive Bayes
lassi�er by allowing ea
hfeature variable to have at most one other feature as a parent in addition to a
lass variable. Su
h a network is
alled a tree-augmented naive Bayes (TAN)
lassi�er, be
ause feature variables together with edges between them
anform a tree. The authors present an algorithm that eÆ
iently
omputesaugmented edges for a TAN
lassi�er from the training data. The learnednetwork maximizes the likelihood of a TAN
lassi�er given training data.Even more general extension of a naive Bayes
lassi�er is to allow the fea-tures to form unrestri
ted Bayesian networks. Su
h a network is
alled anaugmented naive Bayes (ANB)
lassi�er. However, the number of possiblenetwork stru
tures in this
ase is very large. Friedman et al. use a greedyheuristi
 sear
h that tries to minimize the MDL s
ore.Cheng and Greiner [CG01℄ also propose algorithms for learning an ANB
lassi�er. For learning a network stru
ture they use
onditional indepen-den
e based algorithms rather than algorithms that seek a stru
ture thatmaximizes a s
oring fun
tion. Using statisti
al tests, the
onditional inde-penden
e relationships between the features are found. These relationshipsare used as
onstraints to
onstru
t a Bayesian network.Keogh and Pazzani [KP99℄ propose an algorithm that they
all Super-Parent for learning a TAN
lassi�er. The edges between feature variables areadded one at a time based on the predi
tive a

ura
y of the
andidate net-works. Zhang and Ling [ZL01℄ extend this work by proposing an algorithm
alled StumpNetwork. They exploit the idea that often the dependen
e be-tween the attributes tends to
luster into groups. The
onstru
tion of the
lassi�er is again based on the predi
tive a

ura
y of the
andidate networks.Langley and Sage [LS94℄ propose a sele
tive naive Bayes
lassi�er. Herea subset from the initial set of features is sele
ted to be used by a naiveBayes
lassi�er.1.1.5 Other Bayesian Network Classi�ersFriedman et al. [FGG97℄ use a greedy sear
h to �nd an unrestri
ted Bayesiannetwork that minimizes MDL s
ore. Cheng and Greiner [CG01℄ use
ondi-tional independen
e tests for learning unrestri
ted Bayesian network
lassi-�ers. These two approa
hes are similar to the
orresponding algorithms forlearning ANB
lassi�ers from the previous se
tion.Kontkanen et al. [KMT01℄ use a mixture of diagnosti
 Bayesian network9

lassi�ers. In a diagnosti
 Bayesian network, all the edges
onne
ted to the
lass variable are arriving edges from feature variables. The authors use amixture of
lassi�ers, where di�erent networks have di�erent sets of parentsfor the
lass node. The sets of features to be used in networks from a mixtureare found based on the predi
tive a

ura
y of the di�erent mixtures.1.2 Feature ClusteringWhile there are many general data
lustering algorithms (see, for example,Han and Kamber [HK01℄), we are aware only of several algorithms for feature
lustering for
lassi�
ation.Baker and M
Callum [BM98℄ des
ribe an algorithm for
lustering wordsinto groups spe
i�
ally for the bene�t of do
ument
lassi�
ation. The mainidea behind their algorithm is that similar words are those for whi
h thedistributions of the
lass given those words are similar. When similar wordsare assigned to the same
luster, all those words in the
luster are treatedas the same feature. When features wt and ws are assigned to the same
luster, the probability of the
lass variable C given the new feature wt _wsis de�ned asP (Cjwt _ws) = P (wt)P (wt) + P (ws)P (Cjwt) + P (ws)P (wt) + P (ws)P (Cjws) : (1.2)In the word
lustering algorithm, initially
lusters with one word in ea
hof them are
reated. Then
lusters are repeatedly joined, ea
h time joiningtwo
lusters wt and ws that minimize the average of the Kullba
k-Leiblerdivergen
e to the mean, de�ned asP (wt) �DKL(P (Cjwt) k P (Cjwt _ws))+P (ws) �DKL(P (Cjws) k P (Cjwt _ ws)) ; (1.3)whereDKL(P (Cjwa) k P (Cjwb)) =PjCjj=1 P (
j jwa) log P (
j jwa)P (
j jwb) . The authorstest a naive Bayes
lassi�er that uses
lusters
onstru
ted by their algorithmas features. The a

ura
y stays similar as in the
ase of using single wordsas features, while the number of features is redu
ed up to three orders ofmagnitude.Slonim and Tishby [ST01℄ present essentially the same algorithm forword
lustering by using an information bottlene
k framework [TPB99℄ as atheoreti
al basis for it. The
lusters are repeatedly joined, ea
h time joiningtwo
lusters of the
urrent partition into a single new
luster in a way thatlo
ally minimizes the loss of mutual information about the
lass variable.With the mutual information between the random variablesX and Y de�nedas I(X;Y) =Px2X;y2Y P (x)P (yjx) log P (yjx)P (y) , the algorithm ea
h time joinsthe
lusters wt and ws that minimizeI(wt; C) + I(ws; C)� I(wt _ ws; C) : (1.4)10

It
an be shown that expressions 1.3 and 1.4 are equal. Slonim and Tishbyalso test a naive Bayes
lassi�er that uses
lusters
onstru
ted by their al-gorithm as features. When there was few training data, the
lassi�
ationa

ura
y improved up to 18%
ompared to the
ase of using single words asfeatures.1.3 Text CategorizationThere has been mu
h resear
h done in the area of the automati
 text
ate-gorization. A survey of ma
hine learning approa
hes to text
ategorizationis given by Sebastiani [Seb02℄. First, for a
lassi�er to be able to work witha text, an indexing of the text has to be done. Usually this is done by repre-senting the text as a ve
tor of feature weights, where features are the wordsthat appear or do not appear in the text. Usually feature weights take valuesfrom the interval [0; 1℄. In a spe
ial
ase of binary features there are twopossible values: 1 for the presen
e and 0 for the absen
e of the feature in thetext. Often before the indexing the stemming (i.e. taking the words thathave the same word stem as the same feature) and the removal of fun
tionwords (i.e. topi
-neutral words su
h as arti
les, prepositions) is performed.Even after this prepro
essing the number of features is often too large fora ma
hine learning algorithm be
ause of the too long
omputation timeand over�tting. By over�tting we mean the adapting of a
lassi�er to theparti
ular instan
es in the training data instead of making generalizationsabout the
lasses. Therefore a dimensionality redu
tion, where the numberof features used by the
lassi�er is redu
ed, is performed. Dimensionalityredu
tion
an be either lo
al, where for ea
h
lass a separate set of featuresis
hosen, or global, where the set of features
hosen is the same for all the
lasses. Also dimensionality redu
tion
an be performed by either featuresele
tion, where the set of the new features is a subset of the set of all theoriginal features, or feature extra
tion, where the new features are obtainedby
ombinations or transformations of the original ones.One of the ways to perform feature sele
tion is to use an information gainmethod, des
ribed, for example, by Yang and Pedersen [YP97℄. Speakinggenerally, information gain for a feature F measures the number of bits ofinformation obtained for the predi
tion of
lass C by knowing the state of F .It is
al
ulated as IG(F) = E(C)�E(CjF), where E denotes the entropy.When the features are de�ned and the texts are indexed based on thosefeatures, the
lassi�ers
an be
onstru
ted. Dumais et al. [DPHS98℄ providea
omparison of di�erent automati
 learning algorithms for text
ategoriza-tion. Linear Support Ve
tor Ma
hines have been found better than de
isiontrees, Bayesian networks, and naive Bayes
lassi�ers.The e�e
tiveness of text
lassi�ers is usually measured in terms of pre-
ision (�) and re
all (�). As de�ned by Sebastiani [Seb02℄, pre
ision is the11

onditional probability that if a random do
ument is assigned to a parti
ular
lass, this de
ision is
orre
t. Re
all is de�ned as the
onditional probabilitythat if a random do
ument ought to be assigned to a parti
ular
lass, thisde
ision is taken. If we denote the number of true positive, false positive,and false negative
lassi�
ations as TP , FP , and FN , then the pre
isionand re
all are
omputed as� = TPTP + FP ; � = TPTP + FN :There are two ways of measuring pre
ision and re
all for multiple
lasses. Inmi
roaveraging, � and � are
omputed by taking ratios of the
orrespondingtotal values of TP , FP , and FN . In ma
roaveraging, �rst \lo
al" valuesof � and � for ea
h
lass are
omputed. The �nal values are obtained bysimply taking averages of these. These two methods may give quite di�erentresults, be
ause the ability of a
lassi�er to behave well on the
lasses withfew positive instan
es is emphasized mu
h more by ma
roaveraging than bymi
roaveraging.When measuring e�e
tiveness, usually we want one number that
om-bines pre
ision and re
all to be reported. The
ommonly used approa
h isto report a breakeven point { the value at whi
h � equals �.2

2The values of � and �
hange as we
hange the value of threshold that spe
i�es theprobability of a do
ument belonging to a parti
ular
lass that must be ex
eeded for thedo
ument to be assigned to that
lass. In
reasing the threshold in
reases pre
ision andde
reases re
all, while de
reasing the threshold in
reases re
all and de
reases pre
ision forthe
lass. 12

Chapter 2Hierar
hi
al BayesianNetwork Classi�ersIn this
hapter �rst we de�ne what do we mean by a hierar
hi
al Bayesiannetwork
lassi�er. After that we give propositions that relate
onditionallikelihood to the likelihood of a hierar
hi
al Bayesian network
lassi�er.De�nition A hierar
hi
al Bayesian network (HBN)
lassi�er with featurevariables F1; : : : ; Fn and a
lass variable C is a Bayesian network with thefollowing tree stru
ture: C is the root, Fj(j = 1; : : : ; N) are the leaves, andhidden variables H1; : : : ;Hk(k � 0) are the non-leaf nodes of the tree. Allar
s in the Bayesian network are going towards the root.In Figure 2.1 we give an example of the HBN
lassi�er with
lass variableC, feature variables F1; : : : ; F7, and hidden variables H1;H2;H3.
F3 F4

H2

C

F1 F2

H1

F5 F6

H3

F7

Figure 2.1: An Example HBN Classi�er13

Given by its stru
ture, the probability distribution over all variables fora HBN
lassi�er B with parameters � isPB� (C;H1; : : : ;Hk; F1; : : : ; Fn) == PB� (C j pa(C)) � kYi=1PB� (Hi j pa(Hi))! � nYi=1PB� (Fi)! :As mentioned in Se
tion 1.1.2, maximizing likelihood rather than
on-ditional likelihood of a Bayesian network
lassi�er
an lead to a poor per-forman
e. Bellow we prove that for a HBN
lassi�er this is not the
ase.This will allow us to learn the parameters for a HBN
lassi�er by trying tomaximize its likelihood.Proposition 1 Let D = f< f i1; : : : ; f in;
i >; i = 1; : : : ; Ng be a trainingdata. Let B be a HBN
lassi�er with feature variables F1; : : : ; Fn and a
lass variable C. Then for any parameters �1, �2 that satisfy PB�1 (Fj) =PB�2 (Fj);8j = 1; : : : ; n:L(B�1 jD) > L(B�2 jD) () CL(B�1 jD) > CL(B�2 jD) :Proof. By de�nition, we haveL(B�1 jD) = NYi=1PB�1 (f i1; : : : ; f in;
i)= NYi=1PB�1 (
ijf i1; : : : ; f in)! � NYi=1PB�1 (f i1; : : : ; f in)!= CL(B�1 jD) � NYi=1PB�1 (f i1; : : : ; f in) :Sin
e variables F1; : : : ; Fn have no
ommon parents (i.e. they are inde-pendent), PB�1 (f i1; : : : ; f in) = PB�1 (f i1) � : : : � PB�1 (f in);8i = 1; : : : ; N . So,L(B�1 jD) = CL(B�1 jD) � NYi=1PB�1 (f i1) � : : : � PB�1 (f in)!= CL(B�1 jD) �K ;whereK =QNi=1 PB�1 (f i1)�: : : �PB�1 (f in) does not depend on parameters thatspe
ify
onditional probabilities for non-feature variables in B. Be
auseof the assumption PB�1 (Fj) = PB�2 (Fj);8j = 1; : : : ; n, we also have thatK =QNi=1 PB�2 (f i1) � : : : � PB�2 (f in). Thus we
an writeL(B�2 jD) = CL(B�2 jD) �K :14

�Proposition 2 Let D = f< f i1; : : : ; f in;
i >; i = 1; : : : ; Ng be a trainingdata. Let B be a HBN
lassi�er with feature variables F1; : : : ; Fn and
lassvariable C. Then� maximize L(B�jD)) � maximize CL(B�jD) :Proof. It is known (see, for example, Friedman et al. [FGG97℄) that for� that maximize L(B�jD) it holds that PB� (Fj) = PD(Fj);8j = 1; : : : ; N ,with PD de�ned asPD(fj = k) = 1N NXi=1 1fjk(f ij);8j = 1; : : : ; n;8k = 1; : : : ; jFj j ;where 1fjk(f ij) = � 1; if f ij = k0; else .On the other hand, CL(B�jD) does not depend on parameters of PB� (Fj),be
ause CL(B�jD) =QNi=1 PB� (
ijf i1; : : : ; f in), and in probabilityPB� (
ijf i1; : : : ; f in) all Fj are instantiated. So, we
an have PB� (Fj) = PD(Fj).Together with Proposition 1, this proves Proposition 2. �

15

Chapter 3Classi�er Constru
tionAlgorithmsIn this
hapter �rst we give the motivation for using the HBN
lassi�ers and
hoosing the presented methods for learning them. Then we des
ribe ouralgorithms for the
onstru
tion of
lassi�ers.3.1 MotivationUsually, in texts there are many dependen
ies between features that repre-sent words. When
onstru
ting Bayesian network
lassi�ers, the
ommonapproa
h to deal with feature dependen
ies is to extend a naive Bayes
las-si�er, as dis
ussed in Se
tion 1.1.4. Another approa
h is to allow the
lassvariable to have parents. In the extreme
ase, we would have a model whereall the feature variables F1; : : : ; Fn are the parents of the
lass variable C, asdepi
ted in Figure 3.1. In this
ase, the dependen
ies between the features
C

F1 F2 Fn

Figure 3.1: Bayesian Network with All Features Being Parents of the Classare modeled. But an obvious problem with su
h a model is that the size of
onditional probability table for variable C grows exponentially with n, andthe number of parameters needed to spe
ify P (CjF1; : : : ; Fn)
an qui
klybe
ome larger than the number of
ases in training data. One of the pos-sible solutions is to introdu
e hidden variables that have feature variables16

as parents and the
lass variable as a
hild. For example, if we have 20features, but we do not want to have variables with more than 10 parents,we
an introdu
e two hidden variables H1 and H2, as shown in Figure 3.2.In general
ase, we
an have a hierar
hy of hidden variables (i. e., hidden
F1 F2 F10 F11 F12 F20

F2H2H1

CFigure 3.2: Bayesian Network with Two Hidden Variablesvariables having other hidden variables as parents). That is, we
an havethe hierar
hi
al Bayesian network
lassi�ers, as de�ned in Chapter 2. Sin
ein our text
lassi�
ation problem the features are binary, all the featurevariables in our HBN
lassi�ers have two states. For simpli
ity, we dealonly with HBN
lassi�ers where hidden variables have two states, and themaximum number of parents for any variable is a parameter that we
all abran
hing fa
tor.Ideally, we would like to have a fast algorithm that
omputes the maxi-mal
onditional log likelihood for a given HBN
lassi�er stru
ture. Then, fora given training data, we
ould perform a sear
h among the HBN
lassi�erstru
tures trying to �nd the one that minimizes the
onditional minimal de-s
ription length s
ore, des
ribed in Se
tion 1.1.2. However, we do not havea
losed form solution for the parameters that maximize the
onditional loglikelihood for a given HBN
lassi�er stru
ture. So, approximate and
ompu-tationally expensive methods have to be used. To
ompute the parametersfor a given HBN
lassi�er stru
ture we use the EM algorithm, des
ribed, forexample, by Cowell et al. [CDLS99℄. The EM algorithm tries to maximizethe likelihood for a given stru
ture, and a

ording to Proposition 1 fromChapter 2, it tries to maximize the
onditional likelihood at the same time.Sin
e running the EM algorithm is time
onsuming, we learn the parametersonly after the �nal stru
ture is learned.To learn the stru
ture of a HBN
lassi�er, we perform feature
lustering.For any non-leaf node of the tree, di�erent
lusters
orrespond to di�erentsubtrees of that node. We present three di�erent feature
lustering algo-rithms that more or less try to group similar features into the same
lusters.These algorithms are no guaranteed to �nd optimal solutions, and just use17

di�erent heuristi
s for
lustering features. The general algorithm for the
onstru
tion of the HBN
lassi�er does not depend on the parti
ular feature
lustering algorithm used.For the
omparison, we also try an algorithm for the
onstru
tion of ahierar
hi
al naive Bayes (HNB)
lassi�er. HNB has the same stru
ture asthe HBN
lassi�er with the ex
eption that all ar
s are going not towardsbut from the root. The HNB
lassi�er uses the same feature
lusteringalgorithms as the HBN
lassi�er.3.2 Constru
tion of a Hierar
hi
al Bayesian Net-work Classi�erIn this se
tion we des
ribe an algorithm for the
onstru
tion of the HBN
lassi�er. The algorithm is given in Figures 3.3 and 3.4. Fun
tionConstru
tHBNClassi�er takes two arguments. The �rst argument isthe training data set D of binary feature ve
tors, with one of the
lassesf
1; : : : ;
Mg assigned to ea
h feature ve
tor. The se
ond argument is thebran
hing fa
tor B. The output of the fun
tion is the HBN
lassi�er. If thenumber of features is not higher than B then all the feature variables aresimply made the parents of the
lass variable. Otherwise, the feature
lus-tering algorithm des
ribed in Se
tion 3.4 is used. Features are divided intoB
lusters, and B variables (one
orresponding to ea
h
luster) are madethe parents of the
lass variable. For dealing with ea
h of those B
lusters,fun
tion Constru
tSubtree is used. It takes the set of all the features in a
luster as an argument, and returns a variable that should be at the bottomof the subtree for the given
luster. If the
luster
ontains only one featurethen the subtree for the
luster
onsists only of that feature variable. Oth-erwise, there is a hidden variable at the bottom of the subtree. If the
luster
ontains no more than B features then the parents of the hidden variableare only those feature variables. Otherwise, feature
lustering algorithm isused to make further partitioning of the
urrent
luster. And for ea
h of thenew partitions fun
tion Constru
tSubtree is
alled re
ursively. SymbolsXi in the pseudo
ode denote the
lusters of variables.After learning the stru
ture of the HBN
lassi�er, the EM algorithm forlearning the parameters of the Bayesian network is used. We used a multiple-restart approa
h, as des
ribed by Chi
kering and He
kerman [CH97℄. Thenumber of starting
on�gurations of the parameters is 64. For ea
h starting
on�guration, random
onditional probabilities for the hidden variables aregenerated. For the
lass variable, the initial probabilities are the same forall the
lasses and all the parent
on�gurations. Sin
e feature variables haveno parents, the EM algorithm sets the probabilities for the feature variablesto be simply the frequen
ies of their
orresponding states in the training18

data. The threshold for terminating the EM algorithm1 was set to 0.0001.Fun
tion Constru
tHBNClassi�er(D; B):1. Let C be the
lass variable from D.2. Let F = fF1; : : : ; FNg be the set of all the feature variables fromD.3. If jFj � B, make F1; : : : ; FN the parents of C.4. Else,(a) Let fX1; : : : ;XBg = ClusterFeatures(D;F ; B).(b) For ea
h i = 1; : : : ; B make the variable returned byConstru
tSubtree(Xi) the parent of C.5. Using EM algorithm, learn the probabilities for the Bayesian net-work from D.6. Return the
onstru
ted Bayesian network.Figure 3.3: Fun
tion Constru
tHBNClassi�erSub-fun
tion Constru
tSubtree(F):1. If jFj = 1, return the feature variable in F .2. Else,(a) Let H be a new hidden variable with two states.(b) If jFj � B, make feature variables from F the parents of H.(
) Else,i. Let fX1; : : : ;XBg = ClusterFeatures(D;F ; B).ii. For ea
h i = 1; : : : ; B make the variable returned byConstru
tSubtree(Xi) the parent of H.(d) Return H.Figure 3.4: Fun
tion Constru
tSubtree1The EM algorithm terminates when the di�eren
e between the log likelihood for twosu

essful iterations be
omes less than the spe
i�ed threshold.19

3.3 Constru
tion of a Hierar
hi
al Naive BayesClassi�erIn this se
tion we des
ribe an algorithm for the
onstru
tion of the HNB
lassi�er. Fun
tion Constru
tHNBClassi�er takes the same argumentsas fun
tion Constru
tHBNClassi�er. The output of the fun
tion is theHNB
lassi�er where the
lass variable and ea
h hidden variable has no morethanB
hildren. The pseudo
ode for the fun
tionConstru
tHNBClassi�eris the same as for the fun
tion Constru
tHBNClassi�er with the ex
ep-tion that in steps 3, 4.b, 2.b, and 2.
.ii from Figures 3.3 and 3.4 the
orre-sponding variables are made
hildren rather than parents of the variables Cor H. The di�eren
e in using the EM algorithm is that the random initial
onditional probabilities are generated not only for the hidden but also forthe feature variables.3.4 General Feature Clustering AlgorithmIn this se
tion we present a general fun
tion for feature
lustering. Fun
tionClusterFeatures takes the training data set D, the set of features F tobe
lustered, and the number of
lusters B as its arguments. It returns apartition fX1; : : : ;XBg of F de�ned as:� Xi � F ;Xi 6= ;;8i = 1; : : : ; B,� Xi \Xj = ;;8i 6= j,� [Bi=1Xi = F .As seen from Figure 3.5, fun
tion ClusterFeatures is just a wrap-per for the parti
ular feature
lustering fun
tions ClusterFeaturesAvg,ClusterFeaturesOr, and ClusterFeaturesDep.Fun
tion ClusterFeatures(D;F ; B):Call one of the fun
tions ClusterFeaturesAvg, ClusterFeaturesOr,ClusterFeaturesDep.Figure 3.5: Fun
tion ClusterFeatures3.5 Feature Clustering Algorithm using Probabil-ity AverageIn this se
tion we des
ribe a feature
lustering algorithm that, similarly tothe algorithm of Slonim and Tishby [ST01℄ presented in Se
tion 1.2, merges20

smaller
lusters into larger ones by using an information loss
riteria. In our
lassi�ers, both the presen
e and the absen
e of a feature in a text is used asan eviden
e, while in both [BM98℄ and [ST01℄ only the presen
e of a featureis used as an eviden
e. That is why instead of Equation 1.2 from Se
tion 1.2we must have two equations { one for
omputing P (Cjwt _ws = 1) (featurewt _ ws is present in the text), and one for
omputing P (Cjwt _ ws = 0)(feature wt_ws is absent in the text). Also, we rede�ne the weight of featurewi to be the number of words that a
tually make up feature wi (i.e., thesize of
luster wi) rather than P (wi). After the initial experiments we alsomade the adjustments to Equation 1.4 from Se
tion 1.2 to penalize joiningof the already large
lusters.Fun
tion ClusterFeaturesAvg, given in Figure 3.6, takes the samearguments as fun
tion ClusterFeatures and additionally the
luster sizepenalty parameter �. ClusterFeaturesAvg returns a partition fX1; : : : ;XBgof F . The number of features N that have to be
lustered
an di�er for dif-ferent
alls of fun
tionClusterFeaturesAvg depending on how deep in theHBN tree is a variable the parents of whi
h have to be
lustered. Ea
h ofthe initial
lusters
ontains one feature. Probabilities P (Xn), P (CjXn), andP (C) are
al
ulated by taking frequen
ies from the training data. Theseprobabilities are enough to
ompute the mutual information I(Xi; C) be-tween
luster and
lass variables. Step 4 of the fun
tion
ontains the mainloop, where in ea
h iteration two
lusters that minimize the modi�ed infor-mation loss
riteria are merged into one. The loop
ontinues as long as thenumber of
lusters is higher than B.Fun
tion Merge, given in Figure 3.7, returns a
luster that is obtainedby merging
lusters Xi and Xj . The information that the algorithm needsabout any
luster X 0 is the mutual information I(X 0; C) and the
luster sizejX 0j. To
ompute I(X 0; C), probabilities P (X 0) and P (CjX 0) are needed.In this algorithm, these probabilities are
omputed by taking the weightedaverages of the
orresponding probabilities from the
lusters Xi and Xj.The weights are the sizes of
lusters Xi and Xj.Fun
tion InfoLoss, given in Figure 3.8,
omputes the modi�ed infor-mation loss when
lusters Xi and Xj are merged. Without modi�
ations,the information that is lost about C when merging Xi and Xj is equalto I(Xi; C) + I(Xj ; C) � I(Merge(Xi;Xj); C). However, if su
h an in-formation loss
riteria is used, the algorithm most often would just mergethe two largest
lusters. This is be
ause the larger the
luster is, the lessinformation on average it provides about the
lass variable (with
lustervariables having only two states, and fun
tion Merge de�ned as des
ribedabove). And obviously the less information the
luster provides about the
lass variable, the less information
an be lost when merging that
lus-ter with other
luster. That is why we introdu
e the term jXij + jXj j,whi
h penalizes large
lusters. Parameter � indi
ates how important
lus-ter size penalty is
ompared to the standard information loss value. So,21

Fun
tion ClusterFeaturesAvg(D;F ; B; �):1. Let F = fF1; : : : ; FNg. Make initial
lusters Xi = fFig; i =1; : : : ; N . Let Xi = 1 i� Fi = 1. Let A = fX1; : : : ;XNg.2. From D
al
ulate� P (Xn = 1) = P (Fn = 1),� P (C =
mjXn = 1) = P (C =
mjFn = 1),� P (C =
mjXn = 0) = P (C =
mjFn = 0),� P (C =
m),8n = 1; : : : ; N; m = 1; : : : ;M , where C is the
lass variable.3. Sort
lusters X1; : : : ;XN in des
ending order a

ording to I(Xi; C).4. While jAj > B, do(a) For ea
h fXi;Xjg : Xi;Xj 2 A;Xi 6= Xj
ompute lossij InfoLoss(Xi;Xj).(b) Sele
t Xi;Xj that minimize lossij, and
onstru
t X 0 =Merge(Xi;Xj). Remove from A
lusters Xi;Xj , and add toA
luster X 0.5. Return A.Figure 3.6: Fun
tion ClusterFeaturesAvgafter introdu
ing the penalty for large
lusters we get a modi�ed infor-mation loss (I(Xi; C) + I(Xj ; C)� I(Merge(Xi;Xj); C)) + �(jXij+ jXj j).The best value for the parameter � has to be determined experimentally.We would of
ourse like � to be independent of the
luster size. How-ever, as the
lusters are being merged in the loop of step 4 of fun
tionClusterFeaturesAvg, an average
luster size in
reases, and an averagevalue for I(Xi; C)+ I(Xj ; C)� I(Merge(Xi;Xj); C) de
reases while an av-erage value for �(jXij+jXj j) in
reases. That is why we multiply the �rst anddivide the se
ond term by an average
luster size k. There are no guaranteesthat these modi�
ations are the best possible, but at least when using thembetter
lassi�ers are produ
ed than in the
ase of using standard informationloss
riteria.
22

Sub-fun
tion Merge(Xi;Xj):1. Let si = jXij; sj = jXj j.2. Set� P (X 0 = 1) = siP (Xi=1)+sjP (Xj=1)si+sj ,� P (C =
mjX 0 = 1) = siP (C=
mjXi=1)+sjP (C=
mjXj=1)si+sj ,� P (C =
mjX 0 = 0) = siP (C=
mjXi=0)+sjP (C=
mjXj=0)si+sj ,8m = 1; : : : ;M .3. Set jX 0j = jXij+ jXj j.4. Return X 0. Figure 3.7: Fun
tion MergeSub-fun
tion InfoLoss(Xi;Xj):1. Let k = NjAj .2. Return (I(Xi; C) + I(Xj ; C) � I(Merge(Xi;Xj); C))k + �(jXij +jXj j) 1k . Figure 3.8: Fun
tion InfoLoss3.6 Feature Clustering Algorithm using ORIn this se
tion we des
ribe a feature
lustering algorithm that uses thesame
riteria for
luster merging as ClusterFeaturesAvg, but the prob-abilities for the new
lusters are de�ned by OR fun
tion. In algorithmClusterFeaturesAvg, we de�ned just the probabilitiesP (X 0) and P (CjX 0)without giving semanti
s for the states of X 0. In this algorithm we de�nethat the
luster variable is in state 1 if and only if at least one of the featurevariables that the
luster
ontains is in state 1. That is, we use OR fun
tion.Based on this, the probabilities P (X 0) and P (CjX 0) are
al
ulated from thetraining data. The algorithm is given Figures 3.9 and 3.10.
23

Fun
tion ClusterFeaturesOr(D;F ; B; �):Same as fun
tion ClusterFeaturesAvg, but with di�erent sub-fun
tionMerge. Figure 3.9: Fun
tion ClusterFeaturesOrSub-fun
tion Merge(Xi;Xj):1. Let X 0 = 1 i� Xi = 1 or Xj = 1.2. From D
al
ulate� P (X 0 = 1) = P (Fk1 = 1 _ : : : _ Fkl = 1),� P (C =
mjX 0 = 1) = P (C =
mjFk1 = 1 _ : : : _ Fkl = 1),� P (C =
mjX 0 = 0) = P (C =
mjFk1 = 0 ^ : : : ^ Fkl = 0),8m = 1; : : : ;M , where fFk1 ; : : : ; Fklg, is the set of all the features
ontained by
lusters Xi and Xj .3. Set jX 0j = jXij+ jXj j.4. Return X 0.Figure 3.10: Fun
tion Merge (for ClusterFeaturesOr)3.7 Feature Clustering Algorithm using Indepen-den
e TestsIn this se
tion we des
ribe a feature
lustering algorithm that uses an infor-mation about feature dependen
ies. Fun
tion ClusterFeaturesDep, givenin Figure 3.11, takes the same arguments as fun
tion ClusterFeatures andadditionally the mutual information importan
e parameter �.ClusterFeaturesDep returns a partition fX1; : : : ;XBg of F . For ea
hpair of features the probability of feature independen
e given the
lass vari-able is estimated. The initial experiments showed that measuring featureindependen
e given the
lass variable instead of an un
onditional featureindependen
e gives slightly better
lassi�
ation.For estimating P (Fi ? Fj j C) (the probability that Fi and Fj areindependent given C) we use a �2 test for independen
e as des
ribed, forexample, by Spirtes et al. [SGS93℄. Let xab
 denote the number of
ases inthe training data where Fi = a, Fj = b, and C =
. Let x+b
 = Pa xab
 ,xa+
 =Pb xab
 , and x++
 =Pa;b xab
 . Then using the hypothesis that Fi24

and Fj are independent given C, we
an
ompute the expe
ted values of xab
as E(xab
) = xa+
x+b
x++
 . Let X2 = Pab
 (xab
�E(xab
))2E(xab
) . If the independen
ehypothesis is true, the probability density fun
tion of X2
onverges to theprobability density fun
tion of �2 distribution with (jFij � 1)(jFj j � 1)jCjdegrees of freedom as the number of
ases in the training data approa
hesin�nity. Using this, we estimate P (Fi ? Fj j C). In our
lassi�ers, the
lassvariable C has always two states, so the �2 distribution with two degrees offreedom is used.As in the two previous algorithms, ea
h of the initial
lusters
ontainsone feature, and the new
lusters are obtained by merging smaller
lustersinto larger ones. Clusters are merged by trying to put mutually dependentfeatures into the same
lusters. pij
an be
onsidered as a measure of dis-tan
e between features Fi and Fj : the smaller pij is, the more dependentFi and Fj are expe
ted to be. That is why for any
luster Xk we want tominimizePFi;Fj2Xk pij. We sum this over all the
lusters. The total numberof distan
es pij summed depends on the sizes of
lusters. To get an averagedistan
e pij we divide the whole sum by the total number of pairs fFi; Fjginside all the
lusters. That is how we get the term PXk2A0PFi;Fj2Xk pijPXk2A0 (jXkj2) inExpression 3.1.If feature
lustering is performed by trying to minimize this term only,no distin
tion is made between features that provide a lot and features thatprovide little information about the
lass. As the initial experiments showed,the
lassi�er performan
e su�ered be
ause features that had a high mutualinformation with the
lass variable were separated from the
lass variableby too many hidden variables. To over
ome this problem, in Expression 3.1we introdu
e the se
ond term, where we penalize large
lusters that
ontaininformative features. For ea
h feature its mutual information value is dividedby the size of the
luster that the feature belongs to. On average, the sumPNi=1 I(Fi;C)jXki j is higher when features with high mutual information valuesbelong to smaller
lusters. And the smaller the
luster is, the less hiddenvariables on average separate its features from the
lass variable. Parameter� spe
i�es how important this mutual information fa
tor is
ompared tothe goal of having dependent features in the same
lusters. As in the twoprevious feature
lustering algorithms, the best value for the parameter �has to be determined experimentally, and we would like � to be independentof the number of
lusters. However, when the number of
lusters de
reasesthe sum PFi2Xk I(Fi;C)jXkj for any
luster Xk stays on average the same, butthe number of su
h sums de
reases. That is why we normalize by dividingthe whole sum by the number of
lusters jA0j.After step 3, where we obtain B
lusters by merging
lusters in a greedyway, we try to improve
lustering by further minimizing Expression 3.1.Fun
tion ImproveClustering takes the
urrent set of
lusters and the25

Fun
tion ClusterFeaturesDep(D;F ; B; �):1. Let C be the
lass variable. 8fFi; Fjg � F
ompute pij P (Fi ?Fj j C) from D by using �2 test for independen
e.2. Make initial
lusters Xi = fFig; i = 1; : : : ; N . Let A =fX1; : : : ;XNg.3. While jAj > B, do(a) For ea
h fXa;Xbg : Xa;Xb 2 A;Xa 6= Xb let X 0 = Xa [Xb,A0 = A n fXa;Xbg [X 0, and
omputePXk2A0PfFi;Fjg�Xk pijPXk2A0 �jXkj2 � � � 1jA0j NXi=1 I(Fi; C)jXki j ; (3.1)where Xki is the
luster that Fi belongs to.(b) Sele
t Xa;Xb that minimize Expression 3.1. Remove from A
lusters Xa;Xb, and add to A
luster Xa [Xb.4. Let A = ImproveClustering(A; E1), where E1 is the
urrentvalue of Expression 3.1.5. Return A.Figure 3.11: Fun
tion ClusterFeaturesDep
urrent value of Expression 1 as the arguments. It tries to minimize Ex-pression 3.1 by repeatedly moving one feature from its
urrent to another
luster.First, to speed up the
al
ulations, we pre
ompute dik { the sum ofdistan
es from feature Fi to all the features in
luster Xk. Then the loopis exe
uted, where in ea
h iteration we try to move one feature from its
urrent to another
luster. We sele
t those feature and the
luster tomove to that minimize the value of the
orresponding Expression 3.1. Forea
h feature Fi that belongs to a
luster Xl with more than one featurein it and for ea
h
luster Xm that is di�erent from Xl we
al
ulate E2m{ the value of Expression 3.1 if Fi were moved from Xl to Xm. In termPXk2APfFi;Fjg�Xk pij�dil+dimPXk2AnfXl;Xmg (jXkj2)+(jXlj�12)+(jXmj+12) we
ompute the new average distan
epij. Sin
e we try to move feature Fi from Xl to Xm, in the numerator of thisterm we
ompute a new sum of distan
es by subtra
ting dil from the
urrentsum and adding dim to it. When
omputing the new number of distan
es in26

the denominator of the term, we de
rease the size of Xl by one, and in
reasethe size of Xm by one. In the rest part of E2m we
ompute the new penaltyterm. P j2f1;:::;NgFj 62Xl;Fj 62Xm I(Fj ;C)jXkj j
omputes the penalty for all the
lusters ex
eptXl and Xm, PFj2Xl I(Fj ;C)jXlj�1 � I(Fi;C)jXlj�1
omputes the new penalty for Xl, andPFj2Xm I(Fj ;C)jXmj+1 + I(Fi;C)jXmj+1
omputes the new penalty for Xm.The value of gainim indi
ates the gain in Expression 3.1 if Fi is movedto Xm. If the maximal gainim is positive, we move the feature Fi anda

ordingly update the values of djl, djm (j = 1; : : : ; N), and E1. We haveset the maximum number of iterations for the \repeat" loop to be equalto the number of features N . In our experiments we have observed thatgain� be
omes less or equal to zero before N iterations are performed. Insome
ases strange gain� values were reported, whi
h may be explained bya possible error in the program
ode for ImproveClustering.

27

Sub-fun
tion ImproveClustering(A; E1):1. 8Fi 2 F ;8Xk 2 A
ompute dik PFj2Xk pij .2. Repeat(a) 8Xl 2 A; jXlj > 1;8Fi 2 Xli. 8Xm 2 A n fXlg
omputeE2m = PXk2APfFi;Fjg�Xk pij � dil + dimPXk2AnfXl;Xmg �jXkj2 �+ �jXlj�12 �+ �jXmj+12 ��� 1jAj 0BB� Xj2f1;:::;NgFj 62Xl;Fj 62Xm I(Fj ; C)jXkj j + XFj2Xl I(Fj ; C)jXlj � 1 � I(Fi; C)jXlj � 1+ XFj2Xm I(Fj ; C)jXmj+ 1 + I(Fi; C)jXmj+ 11A :ii. Let gainim = E1 �E2m.(b) Sele
t Fi;Xm that maximize gainim. Let gain� be the
orrespond-ing gainim. If gain� > 0,i. Move Fi from its
urrent
luster Xl to
luster Xm.ii. 8Fj 2 F set djl djl � pji; djm djm + pji.iii. Set E1 E2m.Until gain� � 0 or the maximum number of iterations has been rea
hed.Figure 3.12: Fun
tion ImproveClustering
28

Chapter 4Performan
e ExperimentsIn this
hapter we des
ribe the experiments performed. First we des
ribethe test setup. After that we present the tests results.4.1 Test SetupIn this se
tion �rst we des
ribe the text data that we use in our experiments.Then we des
ribe how we index the do
uments in that data. Finally wemention the
lassi�ers that we test in the experiments.4.1.1 Data UsedIn the experiments we test the
lassi�ers on the Reuters-21578 text
atego-rization test
olle
tion (Distribution 1.0), available athttp://www.daviddlewis.
om/resour
es/test
olle
tions/reuters21578.It is
urrently the most widely used test
olle
tion for text
ategorizationresear
h. It
ontains about 20000 do
uments (the Reuters news stories),ea
h of them assigned to zero or more
lasses. We use the most popular\ModApte" split of this
olle
tion into training and test sets. This split hasbeen made a

ording to the time of do
uments: stories in the do
umentsfrom the training set appeared earlier than stories in the do
uments fromthe test set. Following the test setup of Yang and Liu [YL99℄, we sele
tthe
lasses that have at least one do
ument both in the training set andthe test set. It results in sele
ting 90
lasses. After eliminating do
umentsthat do not belong to any of these 90
lasses, we get a training set of 7769do
uments and a test set of 3018 do
uments. We further split the trainingset into what we
all a training-0 set with 5827 do
uments and a validationset with 1942 do
uments. This split is again made a

ording to the time ofdo
uments. First we train the
lassi�ers on a training-0 set and tune their29

parameters based on the performan
e on a validation set. Then we learnthe
lassi�ers with the best parameters on the whole training set and runthe �nal experiments on a test set. Be
ause of too mu
h time required topro
ess data for a single
lass, we run the tests only for the 10 most frequent
lasses. These are earn, a
q, money-fx, grain,
rude, trade, interest, ship,wheat, and
orn
lasses (given in the de
reasing
lass frequen
y order).4.1.2 Text IndexingWhen indexing do
uments, for simpli
ity we do not distinguish betweenthe text that appears in a title and the text that appears in a body ofa do
ument. First for the extra
tion of the features from the do
umentwe
onvert the text to lower
ase and take from it words (i.e., sequen
esof alpha symbols delimited by any other symbols). Then, as des
ribed inSe
tion 1.3, we remove fun
tion words. We also tried to perform stemmingby using Porter [Por80℄ algorithm, but on the initial tests with a naive Bayes
lassi�er this gave a slightly worse performan
e. So, no stemming is used.After this prepro
essing ea
h do
ument has a number of features { the wordsthat appear in the do
ument and that are not fun
tion words. The featureset is then built by taking from the do
uments in the training data all thefeatures ex
ept those that appear only in one do
ument (be
ause these arevery unlikely to provide any information about the
lass). The �nal featureset
onsists of 15715 words. As in many other work on text
ategorization,we use binary features.Sin
e for many
lassi�ers it is
omputationally impossible to use 15715features, we perform lo
al dimensionality redu
tion by feature sele
tion, asdes
ribed in Se
tion 1.3. For feature sele
tion we use an information gain
riteria, be
ause it has been reported as one of the most e�e
tive by Yangand Pedersen [YP97℄. Unless mentioned otherwise, the default number offeatures used is 30. But for most of the
lassi�ers we also perform theexperiments with higher number of features. Both for the experiments onthe validation and on the test data we perform feature sele
tion based onthe
ases in the whole training data.4.1.3 Classi�ers TestedTotally we test 8 types of
lassi�ers. Namely, we test HBN
lassi�ers that usethat use probability average, OR, and (in)dependen
e test feature
lusteringalgorithms. We
all these
lassi�ers
orrespondingly HBN-AVG, HBN-OR,and HBN-DEP. Also, we test HNB
lassi�ers that use the same feature
lustering algorithms. We
all these
lassi�ers HNB-AVG, HNB-OR, andHNB-DEP. We also test a naive Bayes
lassi�er with the smoothing param-eter N0, des
ribed in Se
tion 1.1.3, set to 0.1. We
all this
lassi�er NB. Andwe test the Support Ve
tor Ma
hines (SVM), be
ause they have been re-30

ported by Dumais et al. [DPHS98℄ to perform better than other methods fortext
ategorization. We test linear SVM (i.e., SVM with polynomial kernelsof degree 1, as des
ribed by Christianini and Shawe-Taylor [CST00℄). Fortraining SVM, the sequential minimal optimization algorithm is used, andthe output of SVM is transformed into probabilities by applying a standardsigmoid fun
tion, as des
ribed in WEKA API do
umentation [WEK℄.For implementing all the HBN and HNB
lassi�ers we use HUGIN APIV5.0 [HUG℄. For implementing NB and SVM we use WEKA 3.2.1 [WEK℄.We also use WEKA 3.2.1 for running tests.4.2 Test ResultsIn this se
tion we present the results of our tests. First we present the resultsof the experiments on the validation data and then on the test data. In mostof the work in the area of text
lassi�
ation the mi
ro-averaged breakevenpoint, as des
ribed in Se
tion 1.3, is used to measure the
lassi�er perfor-man
e. We also use this measure to
ompare the
lassi�er performan
e onthe validation data. But in the experiments on the test data for
omparisonwe also report the ma
ro-averaged breakeven point for ea
h
lassi�er. In allthe tables, we report the breakeven point as a per
entage. In the end of these
tion we give the examples of the HBN
lassi�er stru
tures learned by ourfeature
lustering algorithms.4.2.1 Experiments on the Validation DataHBN Classi�ersWe use the validation data to tune the bran
hing fa
tor B and the parameter� (whi
h is the
luster size penalty parameter or the mutual informationimportan
e parameter) for ea
h of HBN-AVG, HBN-OR, and HBN-DEP
lassi�ers separately. First we take B = 7 and test the
lassi�er with thedi�erent values of �. Then we take � that gave the best performan
e andtest the
lassi�er with values 3, 5, 7, and 9 for B. Then we take B that gavethe best performan
e as the value to be used in the experiments on the testdata. For this B we again test the
lassi�er with the di�erent values of �.This time we take values of � that are from shorter interval and
loser toea
h other than in the �rst phase of tuning �. We take � that gave the bestperforman
e as the value to be used in the experiments on the test data. InTable 4.1 we present the �nal B and � values for the HBN
lassi�ers.We have also tried the HBN
lassi�ers with 60 features. In Tables 4.2,4.3, and 4.4 we present the performan
e of the HBN
lassi�ers with 30 and60 features with B = 7 and di�erent values of � (the �rst phase of theparameter tuning). The performan
e of HBN-AVG and HBN-OR de
reasedwhen more features were added, and the performan
e of HBN-DEP stayed31

Classi�er B �HBN-AVG 7 0.05HBN-OR 9 0.09HBN-DEP 7 170Table 4.1: The Final Parameter Values For the HBN Classi�erssimilar. That is why we do not test the HBN
lassi�ers with 60 features anyfurther. Value of � 30 features 60 features0 78.8 78.90.03 80.8 75.90.06 80.7 79.60.09 80.6 76.30.12 80.2 77.7Table 4.2: The Performan
e of HBN-AVGwith Di�erent Number of FeaturesValue of � 30 features 60 features0 80.1 79.70.05 80.4 78.80.10 80.1 78.10.15 79.8 77.70.20 79.8 75.5Table 4.3: The Performan
e of HBN-OR with Di�erent Number of FeaturesValue of � 30 features 60 features0 77.1 76.350 78.9 80.8100 80.6 80.2150 81.0 80.6200 80.6 80.5250 80.6 80.7300 80.3 80.9Table 4.4: The Performan
e of HBN-DEPwith Di�erent Number of Features
32

HNB Classi�ersIn Tables 4.5, 4.6, and 4.7 we
ompare the performan
e of the HNB (hi-erar
hi
al naive Bayes)
lassi�ers and the
orresponding HBN (hierar
hi
alBayesian network)
lassi�ers when B = 7 and the value of � varies (the �rstphase of the parameter tuning). The HNB
lassi�ers performed worse thanthe
orresponding HBN
lassi�ers. That is why we do not test the HNB
lassi�ers any further.Value of � HNB-AVG HBN-AVG0 78.8 78.80.03 77.6 80.80.06 78.2 80.70.09 77.5 80.60.12 76.9 80.2Table 4.5: The Performan
e of HNB-AVG Compared to HBN-AVGValue of � HNB-OR HBN-OR0 76.2 80.10.05 76.9 80.40.10 77.7 80.10.15 77.5 79.80.20 76.5 79.8Table 4.6: The Performan
e of HNB-OR Compared to HBN-ORValue of � HNB-DEP HBN-DEP0 76.7 77.150 75.0 78.9100 76.0 80.6150 75.4 81.0200 74.4 80.6250 75.0 80.6300 75.0 80.3Table 4.7: The Performan
e of HNB-DEP Compared to HBN-DEP
33

A Naive Bayes Classi�erIn Table 4.8 we present the performan
e of NB with the di�erent number offeatures used. For the experiments on the test data, we sele
t NB with 30features (to make a
omparison with other
lassi�ers that use 30 features)and NB with 100 features (be
ause it performed best on the validation data).Number of Performan
efeatures30 78.360 79.1100 79.5200 78.7300 78.8400 78.3500 77.9Table 4.8: The Performan
e of NB with Di�erent Number of FeaturesThe Support Ve
tor Ma
hinesIn Table 4.9 we present the performan
e of SVM with the di�erent number offeatures used. For the experiments on the test data, we sele
t SVM with 30features (to make a
omparison with other
lassi�ers that use 30 features)and SVM with 200 features (be
ause it performed best on the validationdata). In the tests presented in Table 4.9, the
omplexity
onstant param-eter of SVM, des
ribed in WEKA API do
umentation [WEK℄, is tuned forthe
lassi�er with 30 features. Before using SVM with 200 features in theexperiments on the test data, we separately tune the
omplexity
onstantparameter. Number of Performan
efeatures30 83.360 85.1100 87.4200 87.5300 86.7400 86.5500 86.1Table 4.9: The Performan
e of SVM with Di�erent Number of Features34

4.2.2 Experiments on the Test DataIn Table 4.10 we present the
lassi�er performan
e on the test data. Forea
h
lassi�er we present the breakeven performan
e on ea
h of 10
lasses,and also the mi
ro-averaged and ma
ro-averaged breakeven. When all the
lassi�ers use 30 features, the mi
ro-averaged breakeven performan
e of theHBN
lassi�ers is about 2% better than the performan
e of NB and about2% worse than the performan
e of SVM. If NB and SVM use more features,the mi
ro-averaged breakeven performan
e of the HBN
lassi�ers is onlyslightly better than the performan
e of NB and about 4% worse than theperforman
e of SVM. When the ma
ro-averaged breakeven performan
e ismeasured, the HBN
lassi�ers are about 6% better than NB and about 2%worse than SVM. This means that,
ompared to the other
lassi�ers, NBperforms mu
h worse on the
lasses with few positive instan
es.Among the HBN
lassi�ers, HBN-OR is slightly better than HBN-AVGand HBN-DEP.Running time for di�erent algorithms is quite di�erent. Learning andto testing of the
lassi�er for one
lass takes about 1 minute for NB, about10 minutes for SVM, and about 30 minutes for the HBN
lassi�ers. Forthe HBN
lassi�ers, most of the time is spent on learning the
onditionalprobabilities by using the EM algorithm.4.2.3 Feature Clustering AlgorithmsIn Figures 4.1, 4.2, and 4.3 we depi
t the HBN-AVG, HBN-OR, and HBN-DEP
lassi�ers learned during the experiments on the test data for
lasstrade. In HBN-AVG, all the parents of the
lass variable (\tradeTOPIC")are hidden variables. In HBN-OR, the variables \trade" and \tari�s", whi
hhave the highest information gain values, are made dire
tly the parents of the
lass variable. The features inside the
lusters seem to be more similar thanin the
ase of HBN-AVG
lassi�er. In HBN-DEP, the informative featurevariables are put as
lose to the
lass variable as possible. The
lass variablehas only one hidden variable as its parent, all the other its parents arefeature variables. Similarly, hidden variables have mostly features as theirparents, and only \hidden2" has two hidden variables as its parents. So, these
ond term from Equation 3.1
learly dominates. For the
omparison, inFigure 4.4 we depi
t the HBN-DEP
lassi�er learned during the experimentson the validation data for
lass trade with the parameter � set to 0. That is,only the �rst term from Equation 3.1 is taken into a

ount when
onstru
tingthe
lassi�er. This
lassi�er performed worse than the one where the se
ondterm from Equation 3.1 has more impa
t. However, the way features were
lustered seems to be very similar to how a human would do it if the
riteriawas the similarity of features. 35

Class HBN-AVG HBN-OR HBN-DEP NB NB SVM SVM(30 feat.) (100 feat.) (30 feat.) (200 feat.)earn 95.4 95.8 95.1 95.2 96.7 95.8 98.1a
q 86.7 85.2 84.6 86.6 89.4 87.6 93.7money-fx 59.9 60.5 57.1 59.2 61.3 60.3 66.5grain 83.2 84.2 86.9 73.3 75.6 92.0 85.9
rude 75.5 79.9 74.1 77.6 83.1 78.4 81.5trade 64.1 65.8 68.4 57.3 54.7 67.5 70.1interest 62.6 63.4 59.0 61.6 58.6 67.9 65.6ship 79.8 80.9 79.2 80.9 80.9 83.0 69.7wheat 85.9 87.3 87.3 63.4 71.5 90.7 85.9
orn 85.7 85.7 89.3 58.9 57.0 88.8 83.9Mi
ro-averaged 85.1 85.4 84.5 83.1 84.4 86.9 88.9Ma
ro-averaged 77.9 78.9 78.1 71.4 72.9 81.2 80.1Table 4.10: The Performan
e on the Test Data

36

tradeTOPIC

hidden1

tradebillionprotectionism

hidden2

hidden3

tariffsunited
hidden4

economicreagan

deficitimportsexportscountriesjapanese

hidden5

surplusjapantoldmarketsbilateralsemiconductor
hidden6

goodsstatesforeignwashingtonprotectionistimpose

hidden7

gattshr

hidden8

semiconductorsnet

hidden9

retaliationcts

ERROR: rangecheck
OFFENDING COMMAND: xshow

STACK:

[84 46 46 93 93 84 93 139 93 93 46 84 46 93 93 93 46 84 93 46 46 37 93
93 84 46 93 83 46 37 84 46 93 93 84 84 46 93 93 46 93 83 93 46 93 93 0]
()
-mark-
5
-savelevel-

