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SynopsisThis report gives an a

ount of the proofof existen
e of weak solutions of the vonKarman equations presented by Lions,and the proof of uniqueness presented byBoutet de Monvel and Chueshov. Theequations 
onsists of a hyperboli
 and anellipti
 partial di�erential equation.The existen
e and uniqueness of weak so-lutions are shown in the ve
tor distribu-tion sense.The foundation for showing the main re-sults is established in the �rst three 
hap-ters through a number of statements andan introdu
tion to ve
tor distributionsand ve
tor valued fun
tions.



Prefa
e
The present report is the result of a proje
t in applied mathemati
al analysis on theMAT6-term, 2001 at Aalborg University.The theme of the proje
t is partial di�erential equations and distribution theory.Ve
tor valued fun
tions and ve
tor distributions are introdu
ed as an aid to verifythe proofs of existen
e and uniqueness of weak solutions of the Karman equationspresented in [7℄ and [8℄.The notation used in this report is des
ribed in Chapter 1, whi
h also 
ontains apresentation of the von Karman equations, and a de�nition of weak solutions.

Aalborg, 21-12-01Line Ørtoft
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Chapter 1Introdu
tion
The aim of this report is to give an a

ount of the proofs of existen
e and uniquenessof weak solutions of von Karmans equations, given in [7℄ and [8℄ respe
tively. This
hapter 
ontains a short summary of the report, a des
ription of the notation usedin the report and presents the von Karman equations and the de�nition of a weaksolution of von Karmans equations.Chapter 2 
ontains within reasonable limits the de�nitions, lemmas and theoremsused in Chapter 3,4 and 5.Chapter 3 presents a proof of 
ontinuity of a weak solution to the von Karmanequations under the assumption that the other 
onditions of being a weak solutionto the von Karman equations are satis�ed.In Chapter 4 the existen
e of weak solutions to the von Karman equations is shown,by use of the model presented in Chapter 1, Se
tion 4 in [7℄ by J.L. Lions.Chapter 5 
ontains a proof of uniqueness of the weak solutions to the von Karmanequations. The proof follows the model presented in the arti
le [8℄ by Anne Boutetde Monvel and Igor Chueshov.
1.1 NotationThe notation used in this report is primarily the same as the notation used in [3℄and [4℄. One ex
eption is the Lp-spa
es whi
h is written with an upper index insteadof a lower index.When nothing else is assumed, then 
 2 Rn is open, bounded and has a smoothboundary �
. 3



1. Introdu
tionThe Sobolev spa
e Hs(
) and its norm is for s 2 R de�ned byHs(
) = fu 2 D 0(
) �� u = r
U for some U 2 Hs(Rn)gkukHs(
) = inffkUkHs(Rn) �� u = r
Ug (1.1)The norm on Hs(
) \H t(
) for t; s 2 R is de�ned byk � kHs(
)\Ht(
) = k � kHs(
) + k � kHt(
) (1.2)Let u be a fun
tion on [0; T ℄�
, then r0u(t; �) = u(0; �), i.e. the restri
tion to t = 0,and r1u(t; �) = u0(0; �), i.e. the restri
tion to t = 0 of the derivative of u with respe
tto t.It is assumed that all Hilbert spa
es are separable.In the report a lot of positive 
onstants Ci > 0 for i 2 N are used. The indexsymbolises that Ci and Cj might not be equal for i 6= j. The numbering is startedfrom i = 1 within ea
h theorem, lemma or proof.The von Karman bra
ket de�ned below plays a 
entral role in the von Karmanequations.De�nition 1.1Let u; v 2 H2(
), then the von Karman bra
kets are de�ned by[u; v℄ = D21uD22v +D22uD21v � 2D212uD212v: (1.3)as an element of D 0(
).The spa
e of ve
tor distributions 
onsidered is D 0(0; T ;H�2(
)), whi
h 
onsists ofall bounded linear operators from C10 (℄0; T [) into H�2(
).Any other notation used in this report is either 
ommonly used, or it is explainedin the text.1.2 The von Karman EquationsThe equations 
onsidered in this report, whi
h are shown below, are simpli�
ationsof the original von Karman equations.u00(t; x) + �2u(t; x)� [u(t; x); v(t; x)℄ = f(t; x) on ℄0; T [� 
 (1.4)�2v(t; x) + [u(t; x); u(t; x)℄ = 0 on ℄0; T [� 
: (1.5)4



1.3 The Con
ept of Weak SolutionsThese equations are 
onsidered together with the following boundary and initial
onditions for t 2 ℄0; T [ and for x 2 

0u(t; x) = 
0v(t; x) = 0 (1.6)
1u(t; x) = 
1v(t; x) = 0 (1.7)r0u(t; x) = u01(x) (1.8)r1u0(t; x) = u11(x): (1.9)The existen
e and uniqueness of a so 
alled weak solution to the von Karmanequations are investigated with the following 
onditions for the initial data. ForQ = ℄0; T [�
 f(t; x) 2 L2(Q)u01(x) 2 H20 (
)u11(x) 2 L2(
): (1.10)1.3 The Con
ept of Weak SolutionsThe de�nition of a weak solution to the von Karman equations is the one used in[7℄.De�nition 1.2A weak solution to the problem (1.4)-(1.9) on ℄0; T [�
 are fun
tions u(t; x) andv(t; x) satisfying u(t; x) 2 L1(0; T ;H20(
)) (1.11)u0(t; x) 2 L1(0; T ;L2(
)) (1.12)v(t; x) 2 L1(0; T ;H20(
)) (1.13)and the following 
onditions1. The equations (1.4) and (1.5) are satis�ed in the ve
tor distribution sense, i.e.they are satis�ed in D 0(℄0; T [;H�2(
)).2. The 
onditions (1.6)-(1.9) are satis�ed.3. The fun
tions u(t; x) and u0(t; x) depends 
ontinuously on t in the norm topo-logy on H20 (
) and L2(
) respe
tively.
5
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Chapter 2Preliminaries
This 
hapter presents a number of de�nitions, theorems and lemmas, whi
h arene
essary to obtain the results in the rest of the report.2.1 Properties of some Hilbert Spa
esLemma 2.1Let P : Rn ! Rn be a 
ontinuous fun
tion in Rn , that for some � > 0 satis�es(P (x)jx) � 0 for all x with jxj = �: (2.1)Then there exists an x 2 B(0; �) for whi
h P (x) = 0.Proof:Let P (x) be a 
ontinuous fun
tion in Rn satisfying (2.1) for some � > 0. Assumethat P (x) 6= 0 on B(0; �). Consider the 
ontinuous fun
tionx! � �jP (x)jP (x) (2.2)whi
h is well de�ned as a map from B(0; �) into B(0; �). The ball B(0; �) is 
ompa
tand 
onvex, so Brouwer's Fix Point Theorem assures the existen
e of an x for whi
hx = � �jP (x)jP (x): (2.3)This x satis�es jxj = �. Moreover(P (x)jx) = � �jP (x)j(P (x)jP (x)) = ��jP (x)j < 0 (2.4)whi
h 
ontradi
ts that (P (x)jx) � 0 for all x with jxj = �. Hen
e the assumptionP (x) 6= 0 on B(0; �) is wrong. Hereby the lemma is proved. 27



2. PreliminariesLemma 2.2Let H be a Hilbert spa
e, and let vn * v on H. Then the sequen
e (vn) is boundedin H.Proof:The sequen
e (�jvn)H : H ! C is a set of bounded linear operators. Fix y 2 H. Sin
e(yjvn)H ! (yjv)H in C , then f(yjvn)Hg is a bounded set in C . By the Prin
iple ofUniform Boundedness [10, p. 31℄supn2N kvnkH = supn2N kvnkH� = supn2N k( � j vn)HkC <1: (2.5)Hen
e (vn) is bounded in H. 2Lemma 2.3Let H be a Hilbert spa
e. If the sequen
e vn ! v in H and the sequen
e un * u inH, then (unjvn)H ! (ujv)H.Proof:By Cau
hy-S
hwarz inequalityj(unjvn)H � (ujv)Hj = j(un � ujvn � v)H + (un � ujv)H + (ujvn � v)H j� kun � ukHkvn � vkH + j(un � ujv)Hj+ j(vn � vju)Hjwhere the right hand side tends to 0. Indeed, the �rst term tends to 0 sin
e kun �ukH � kunkH + kukH and (un) is bounded (Lemma 2.2), and the last two termsbe
ause (un � u) and (vn � v) both tend weakly to 0. 22.2 The Diri
hlet Realisation of �2In the next theorem the existen
e and boundedness of the inverse of the Diri
hletrealisation�2D of�2 is shown using the known result, that the inverse of the Diri
hletrealisation �D of � is bounded, whi
h is stated without proof. The domain of �Dis H10 (
) \H2(
) [2, p. 317℄.Theorem 2.4Let 
 � Rn be open. Then1. The Diri
hlet realisation�D of the operator� obtained from the triple (L2(
);H10 (
); s(u; v)) with s(u; v) = nXj=1 (DjujDjv)L2(
) (2.6)8



2.2 The Diri
hlet Realisation of �2has a bounded inverse. Indeed, the domain of the realisation �D is H10 (
) \H2(
). Then for u 2 H10(
) \H2(
), there exists a C > 0, sokukH10 (
)\H2(
) � Ck�DukL2(
): (2.7)2. The Diri
hlet realisation �2D of the operator �2 obtained from the triple(L2(
); H20 (
); a(u; v)) witha(u; v) = (�Duj�Dv)L2(
) (2.8)has a bounded inverse. Indeed, the domain of the realisation �2D is H20 (
) \H4(
).Proof of part 2:It is assumed that the �rst part of the theorem is shown.Let v 2 D(�D), then Re a(v; v) = Z
 j�Dvj2dx= k�Dvk2L2(
)� C1kvkH10 (
)\H2(
)� C1kvkH20 (
): (2.9)
A

ording to Lax-Milgram's Lemma �2D has a bounded inverse G2 [3, p. 2.16℄.If u 2 H20 (
) \H4(
) and v 2 H20 (
) then by partial integration��2ujv�L2(
) = (�uj�v)L2(
) = a(u; v): (2.10)Hen
e u 2 D(�2D). On the other hand D(�2D) � H20 (
), a

ording to the de�nitionof the realisation [3, Se
tion 2.5℄, alsoD(�2D) � H4(
), soD(�2D) = H20 (
)\H4(
).2The anti-dual spa
e V 0 of a ve
tor spa
e V is the set of all anti-linear fun
tionals onV . The anti-dual spa
e is isometri
 isomorphi
 to the dual spa
e, V � of V .Theorem 2.5Let H and V be Hilbert spa
es, let V be densely inje
ted in H, and let s be asesqui-linear form on V , that is V -ellipti
. Then the asso
iated operator is a linearhomeomorphism S : V ! V 0.When s is symmetri
 Theorem 2.5 is shown by giving V a new Hilbert spa
e stru
tureusing the norm ps(v; v), be
ause then S is a linear isometry that identi�es V andV 0. 9



2. PreliminariesIn the non-symmetri
 
ase, it is used that S and ~S are inje
tive and has 
losed range,where ~S is the operator related to the adjoint sesqui-linear form. Now the identityhSu; vi = s�(u; v) = h ~Sv; ui for u; v 2 V (2.11)gives that R(S)? = f0g, hen
e R(S) = V , and S�1 is 
ontinuous.Theorem 2.5 is used on the triple (L2(
); H20 (
); a(u; v)) de�ned in Theorem 2.4.Therefore �2D is a homeomorphism from H20 (
) to H�2(
) sin
e V 0 is isometri
isomorph to V �. A more general statement whi
h 
ontains this result is presentedbelow.Theorem 2.6The operator�2D is a homeomorphism fromH t+4(
)\H20 (
) ontoH t(
) for t � �2,i.e. the inverse is a 
ontinuous operatorG2 : H t(
)! H t+4(
) \H20 (
): (2.12)
2.3 Some Properties of H20 (
)Theorem 2.7Let 
 � Rn be open and bounded. The inje
tion J of H20 (
) into L2(
) is 
ompa
t.Sin
e the inje
tion ofH20 (
) intoH1(
) is 
ontinuous, Theorem 2.7 is shown ifH1(
)is 
ompa
tly inje
ted into L2(
). This 
an be shown for a set Q = [0; 2�℄n, sin
eu 2 H1(Q) is equivalent to (hki
k)k2Zn 2 l2(Zn), where 
k is the Fourier 
oe�
ientsof u, and hki = (1 + jkj2) 12 . Now the operator K : u ! (hki�1
k)k2Zn 2 l2(Zn) is
ompa
t, and the inverse operator T is 
losed. Let (uj)j2Zn � H1(Q) be a boundedsequen
e, then (Tuj)j2Zn is bounded in l2(Zn), and hen
e (KTuj)j2Zn = (uj)j2Znhas a 
onvergent subsequen
e in L2(Q). Sin
e C1
 � Q for some C1 > 0 when 
 isbounded, the inje
tion of H20 (
) into L2(
) is 
ompa
t.Lemma 2.8Let 
 be a bounded set in Rn . Ifui * u in H20 (
) (2.13)then the sequen
e (ui)i2N is bounded and there exists a subsequen
e (ui�)i�2N of (ui)with ui� ! u in L2(
): (2.14)10



2.3 Some Properties of H20 (
)Proof:Weak 
onvergen
e of ui to u in H20 (
) implies weak 
onvergen
e of ui to u in L2(
),sin
e for v 2 L2(
), the inje
tion J of H20 (
) into L2(
) is weak-weak 
ontinuous.The inje
tion J is 
ompa
t and (ui) is bounded (Theorem 2.7 and Lemma 2.2). SofJ(ui)g is 
ompa
t, hen
e J(ui) has a subsequen
e (ui�) that is 
onvergent in thestrong topology on L2(
). Sin
e strong 
onvergen
e implies weak 
onvergen
e thelimit of (ui�) is u. 2Lemma 2.9Let 
 � Rn be open. Then there exists a 
ountable basis for H20 (
) 
onsisting offun
tions in C10 (
), i.e. there exists a 
ountable set U 2 C10 (
), so v 2 spanfUgfor all v 2 H20 (
).Proof:The realisation �2D of �2 has a bounded inverse (Theorem 2.4)G2 : L2(
) bounded�! H20 (
) \H4(
) 
ompa
t,! L2(
) (2.15)so G2 is a 
ompa
t operator in L2(
). The sesquilinear form a(u; v) is symmetri
, so�2D is selfadjoint and 
losed a

ording to Lax-Milgram's Lemma [3, p. 2.16℄, hen
eG2 is selfadjoint [3, Theorem 2.7℄. Therefore L2(
) has an onb. U 
onsisting ofa sequen
e of eigenve
tors for G2 a

ording to the Spe
tral Theorem of Compa
tSelfadjoint Operators.Sin
e span((uk)k2N) is dense in L2(
) and G2 is a homeomorphism from L2(
) toH20 (
)\H4(
), then span((G2uk)k2N) is dense inH20 (
)\H4(
) and hen
e inH20 (
).Now span((uk)k2N) is dense in H20 (
), sin
e span((G2uk)k2N) � span((uk)k2N).For N 2 N there exists a sequen
e w(N)k 2 C10 (
) satisfyingkuk � w(N)k kH20 (
) < 2�Nk: (2.16)Let v 2 H20 (
), and let �1; : : : ; �n satisfy for " > 0, thatkv � (�1u1 + � � �+ �nun)kH20 (
) < "2 (2.17)and 
hoose N(k) sokuk � wN(k)k kH20 (
) < "2n 11 + j�kj for k = 1; : : : ; n: (2.18)Thenkv � nXk=1 �kwN(k)k kH20 (
) � kv � nXk=1 �kukkH20 (
) + nXk=1 j�kjkuk � wN(k)kH20 (
)� "2 + nXk=1 j�kj "2n 11 + j�kj< ": 11



2. PreliminariesHen
e (w(N)k )N;k2N is a 
ountable set in C10 (
) and span((w(N)k )N;k2N) is dense inH20 (
), sin
e " is arbitrary. 22.4 Fra
tional Powers of �2DIn the proof of Lemma 2.9 it was shown that the inverse of �2D is a 
ompa
t selfad-joint operator and that there exists an orthonormal basis (en) of L2(
) 
onsisting ofeigenve
tors of G2 � (�2D)�1 with 
orresponding eigenvalues (�n). The eigenvaluesis a bounded set of positive numbers 6= 0 sin
e G2 is 
ompa
t and has an inverse.It is assumed that the eigenvalues are arranged in numeri
al order with the largest�rst.The spe
trum �((�2D)�1) = f�j� is an eigenvalue of (�2D)�1g [ 0. The fun
tionf(t) = t� is then a bounded fun
tion on �((�2D)�1). Now the fun
tional 
al
ulus for
ompa
t operators 
an be used to de�ne positive powers of ((�2D)�1). Let u 2 L2(
),then ((�2D)�1)�u = 1Xn=1 ��n (ujen)L2(
) en (2.19)giving the negative powers (�2D)��) = ((�2D)�1)�. These operators are inje
tive,be
ause (�2D)��u = 0, means that u = 0, sin
e all the eigenvalues are positive, andtherefore (ujen)L2(
) = 0 for all n 2 N , hen
e ker((�2D)��) = f0g. The operator(�2D)�� is selfadjoint, sin
e f(t) is real valued. Every Hilbert spa
e H 
an for adensely de�ned operator T be written asH = R(T )� ker(T �) (2.20)so ker((�2D)��)�) = ker((�2D)��) = f0g, and then the range R((�2D)��) is dense inL2(
), hen
e (�2D)�� has a densely de�ned inverse (�2D)�.By using the operators de�ned above, it is possible to de�ne norms on the Sobolevspa
es that are equivalent with the usual norms, byk � k(s) = k(�2D) s4 � kL2(
): (2.21)for �2 � s � 2 and for s 6= �12 ;�32 .2.5 Properties of The von Karman Bra
ketThe de�nition of the von Karman bra
ket (De�nition 1.1) is for u; v 2 H20 (Rn)equivalent to[u; v℄ = D21(uD22v) +D22(uD21v)� 2D212(uD212v) (2.22)= D1(D1uD22v �D2uD212v) +D2(D2uD21v �D1uD212v) (2.23)12



2.5 Properties of The von Karman Bra
ketin D 0(
).Lemma 2.10Let 
 � Rn be open and bounded. The mapping u; v ! [u; v℄ is bilinear and
ontinuous H20 (
)�H20 (
)! H�2(
).Proof:The von Karman bra
ket 
an be written as[u; v℄ = Xj�j=j�j=2a�;�D2�uD2�v (2.24)Here � and � are multi-indi
es of length 2, and the a�;�'s are 
onstants. For u; v 2H20 (
) ea
h term in this sum is a produ
t of two L2(
) fun
tions, hen
e [u; v℄ 2L1(
). Let w 2 C10 (
) then by Sobolev's Theoremj h[u; v℄; wi j � k[u; v℄kL1(
)kwkL1 � C1k[u; v℄kL1(
)kwkH20 (
) (2.25)Sin
e C10 (
) is dense in H20 (
), the inequality above is valid for w 2 H20 (
), hen
e[u; v℄ 2 H�2(
).Continuity is shown by evaluation the norm of one of the terms in (2.24)ka�;�D2�uD2�vkH�2(
) � C2kD2�uD2�vkL1((
))� C2kD2�ukL2(
)kD2�vkL2(
)� C2kukH20 (
)kvkH20 (
): (2.26)Linearity in the �rst argument is easily shown by rewriting [u1+u2; v℄ for u1; u2; v 2H20 (
), and then the symmetry of the von Karman bra
ket gives the bilinearity. 2Lemma 2.11Let 
 � Rn be open and bounded. The form ([u; v℄jw)L2(
) is tri-linear and 
ontin-uous on H20 (
).Proof:Let u; v; w 2 C10 (
), then by S
hwartz' inequality([u; v℄jw)L2(
) = h[u; v℄; wi� k[u; v℄kH�2kwkH20 (
)� C1kukH20 (
)kvkH20 (
)kwkH20 (
): (2.27)Sin
e the von Karman bra
ket and the inner produ
t both are 
ontinuous on thedense subspa
e C10 (
) of H20 (
), then (2.27) extends to u; v; w 2 H20 (
) by 
onti-nuity.It 
an easily be shown that the inner produ
t ([u; v℄jw)L2(
) is tri-linear whenu; v; w 2 C10 (
), hen
e it extends to u; v; w 2 H20 (
) by 
ontinuity. 213



2. PreliminariesLemma 2.12Let 
 � Rn be open and bounded. The tri-linear form ([u; v℄jw)L2(
) is symmetri
on H20 (
), i.e. ([u; v℄jw)L2(
) = ([w; u℄jv)L2(
) = ([v; w℄ju)L2(
) (2.28)Proof:Let u; v; w 2 C10 (
), then the following is true for the inner produ
t on L2(
)([u; v℄jw)L2(
) = 
D21(vD22u); w�+ 
D22(vD21u); w�� h2D12(vD12u); wi= 
vD22u;D21w�+ 
vD21u;D22w�� 2 hvD12u;D12wi= 
D21wD22u; v�+ 
D22wD21u; v�� 2 hD12wD12u; vi= ([w; u℄jv)L2(
) (2.29)Sin
e the equations above are satis�ed on C10 (
) they extend toH20 (
) by 
ontinuity.The last equation in (2.28) is shown by using the symmetry of the von Karmanbra
ket. 22.6 Ve
tor Valued Fun
tionsConsider a measure spa
e hM;R; �i, where M is a measurable spa
e, R is a �-algebra de�ned on M , and � is a measure. Let A 2 R, and let V be a ve
tor spa
e.Then f(t) is a ve
tor valued fun
tion on A if f(t) 2 V for a.e. t 2 A. Three kindsof measurability of ve
tor valued fun
tions taking its values in a Bana
h spa
e isde�ned below.De�nition 2.13Let f be de�ned on a measure spa
e hM;R; �i, taking its values in a Bana
h spa
eX.1. f is 
alled strongly measurable if there is a sequen
e of measurable fun
tionsfn so that fn(x) ! f(x) in norm for a.e. x 2 M and ea
h fn being a simplefun
tion (taking only �nitely many values, ea
h value being taken on a set inR).2. f is 
alled Borel measurable if f�1(C) 2 R for ea
h open set C 2 X.3. f is 
alled weakly measurable if hf(x); �i is a 
omplex-valued measurablefun
tion for ea
h � 2 X�.When a ve
tor valued fun
tion takes its values in a Hilbert spa
e the three kinds ofmeasurability are the same.14



2.7 Integration of Ve
tor Valued Fun
tionsTheorem 2.14Let H be a Hilbert spa
e, and let f be a fun
tion from a measure spa
e hM;R; �ito H. Then the following three statements are equivalent1. f is strongly measurable.2. f is Borel measurable.3. f is weakly measurable.A proof of this theorem 
an be found in [11, p. 116℄.De�nition 2.15Let 1 � p <1, let hM;R; �i be a measure spa
e, let A 2 R and let X be a Bana
hspa
e. Then Lp(A;X) is the spa
e of weakly measurable fun
tions f(t) on A withvalues in X a.e. for whi
h �ZA kf(t)kpXd�(t)� 1p <1; (2.30)In addition L1(A;X) is the spa
e of weakly measurable essentially bounded fun
-tions on A with values in X a.e., hen
e for u(t) 2 L1(A;X),ess supt2A ku(t)kX <1: (2.31)The spa
es de�ned above equipped with the norms (2.30) and (2.31) respe
tivelyare Bana
h spa
es.2.7 Integration of Ve
tor Valued Fun
tionsTheorem 2.16Let hM;R; �i be a measure spa
e, let A 2 R, let X be a re�exive Bana
h spa
e, i.e.X = X��, and let f 2 L1(A;X). Then there is a unique element x 2 X su
h thatfor all � 2 X� hx; �i = Z hf(�); �i: (2.32)Proof:For all � 2 X�, the fun
tion t! hf(t); �i is measurable, andjhf(t); �ij � kf(t)kXk�kX� 2 L1(A); (2.33)15



2. Preliminariesso the integral RAhf(t); �id�(t) is well de�ned.Now �! ZAhf(t); �id�(t) (2.34)is a bounded linear fun
tional on X�, sin
e (2.33) gives�� ZAhf(t); �id�(t)�� � ZA jhf(t); �ijd�(t) � k�kX� ZA kf(t)kXd�(t): (2.35)Hen
e there exists a unique x 2 X�� = X with the propertieshx; �i = Z hf(�); �ifor all � 2 X�. 2Theorem 2.16 
an be used to de�ne the integral of a ve
tor valued fun
tion f .De�nition 2.17Let X and f satisfy the 
onditions in Theorem 2.16. The integral of f over A isde�ned by RA f(t)d�(t) = x.The de�nition above is 
alled the Bo
hner identity.Lemma 2.18Let hM;R; �i be a measure spa
e, let A 2 R, let X be a re�exive Bana
h spa
e andlet f(t) 2 L1(A;X) then


 ZA f(t)d�(t)


X � ZA kf(t)kXd�(t): (2.36)Proof:If RA f(t)d�(t) = 0X then (2.36) is satis�ed. Assume that RA f(t)d�(t) 6= 0X , thenthere exists a � 2 X�, with k�kX� = 1, satisfying


 ZA f(t)d�(t)


X = ZA hf(t); �i d�(t): (2.37)Sin
e (2.35) is satis�ed for all � 2 X� the lemma is proved. 2The following theorem is Lebesgue's Dominated Convergen
e Theorem extended tofun
tions valued in a Bana
h spa
e.Theorem 2.19Let hM;R; �i be a measure spa
e, let A 2 R, let X be a re�exive Bana
h spa
e,let f(t) be a weakly measurable fun
tion valued in X for a.e. t 2 A and let fn(t) 216



2.7 Integration of Ve
tor Valued Fun
tionsL1(A;X), with fn(t) ! f(t) a.e. on A. If there exists a fun
tion K(t) 2 L1(A) forwhi
h kfn(t)kX � K(t) for all n 2 N and for a.e. t 2 A (2.38)then f(t) 2 L1(A;X) and


 ZA fn(t)d�(t)� ZA f(t)d�(t)


X ! 0 for n!1: (2.39)Proof:Sin
e kfn(t)kX � M(t) for a.e. t 2 A, so that kf(t)kX � M(t) for a.e. t 2 A, andsin
e f(t) is weakly measurable, then f(t) 2 L1(A;X). Now the following integralsare well de�ned


ZA fn(t)d�(t)� ZA f(t)d�(t)


X � ZA kfn(t)� f(t)kXd�(t) (2.40)a

ording to Lemma 2.18. Now kfn(t) � f(t)kX � 2M(t) for a.e. t 2 A, hen
eLebesgue's Dominated Convergen
e Theorem for 
omplex valued fun
tions givesthat the right hand side and hen
e the left hand side in (2.40) tends to 0 as n tendsto in�nity. 2Theorem 2.20Let hM;R; �i be a measure spa
e, let A 2 R, let X be a re�exive Bana
h spa
e,and let f(t; �) 2 L1(A;�;X) for t 2 R with f(�; s) norm-di�erentiable on R fora.e s 2 A. Assume that ��tf(t; s) is weakly measurable. If there exists a fun
tionK(s) 2 L1(A; �), satisfying j ��tf(�; s)j � K(s) for a.e. s 2 A, then RA f(t; s)d�(s) isdi�erentiable and ��t ZA f(t; s)d�(s) = ZA ��tf(t; s)d�(s): (2.41)Proof:Assume that f is a real valued, ve
tor valued fun
tion, sin
e f is di�erentiable on Rfor a.e. s 2 A it is also weakly di�erentiable. Then for a.e. s 2 A, and for � 2 X�,with k�kX� = 1, it follows by the Mean Value Theorem��� �1h(f(t+ h)� f(t)); ���� ��tf(t); ������ k ��tf(t)kX + j1h(hf; �i (t+ h)� hf; �i (t))j� K(s) + ��� ��t hf; �i (t + �h)���� K(s) + ���� ��tf(t+ �h); ������ 2K(s)
(2.42)

17



2. PreliminariesNow Theorem 2.19 gives that k 1h(f(t+ h)� f(t))� ��tf(t)kX ! 0 for h! 0.If f is a 
omplex valued fun
tion the theorem is shown by splitting f into the tworeal valued fun
tions Re f and Im f . 22.8 Ordinary Di�erential EquationsIn this se
tion three theorems are presented, whi
h are used in Chapter 4 to showthe existen
e of an approximated solution of von Karmans equations.Theorem 2.21Let 
 2 R� C be open, let F (t; g) : 
 ! C with F (�; g) 2 L1(t0� "; t0+ ") for some" and t0 2 R, and let F (t; �) be 
ontinuous. Let g0 2 C , thendgdt = F (t; g)g(t0) = g0 (2.43)has a 
ontinuous solution g(t) on some interval ℄t0 � t"; t0 + t"[ if and only if thereexists some 
ontinuous g(t) whi
h satis�esg(t) = g0 + Z tt0 F (�; g(�))d� (2.44)for all t 2 ℄t0 � t"; t0 + t"[.Theorem 2.22Let 
 2 R� C be open, let F (t; g) : 
 ! C with F (�; g) 2 L1(t0� "; t0+ ") for some" and t0 2 R, and let F (t; �) be 
ontinuous. Let F satisfyjF (t; g)� F (t; h)j � C1jg � hj (2.45)for a.e. (t; g); (t; h) 2 
. Then there exists a t" > 0 so (2.44) has a unique solutionon ℄t0 � t"; t0 + t"[.These two theorems 
an be proved using the same proof ideas as in [6℄, sin
e theonly di�eren
e is that F (t; �) 2 L1(t0 � "; t0 + ") instead of being 
ontinuous, andthat it takes its values in C instead of R. Indeed, 
ontinuity is used to ensureintegrability, a quality whi
h L1 fun
tions also possess on a measurable set, and toensure a supremum of F , but an essential supremum is enough. The analysis witha 
omplex valued fun
tion F 
an be done by doing the analysing for the two realvalued fun
tions ReF and ImF separately.Theorem 2.23Let U � C be open and bounded, and let [a; b℄ � R be bounded. Let 
 � [a; b℄�U ,let F (t; g) : 
! C with F (�; g) 2 L1([a; b℄), and let F (t; �) be 
ontinuous on U , andsatisfy (2.45). Let g(t) be a solution to (2.43) de�ned on a maximal subinterval℄a0; b0[ of [a; b℄. Assume18



2.9 Norms on Sobolev Spa
es- There exists an " > 0, so g(℄b0 � "; b0[) � U .- There exists a B > 0, so ess sup jF (t; g(t))j � B for all t 2 (b0 � "; b0).Then b0 = bProof:The fun
tion g(t) solves (2.43), sog(t) = g0 + Z tt0 F (u; g(u))du: (2.46)Let t1; t2 2 (b0 � "; b0), thenjg(t1)� g(t2)j � Z t1t2 jF (u; g(u))jdu � Bjt1 � t2j: (2.47)A Cau
hy sequen
e (ti) of numbers is formed by letting ti 2℄b0� "i; b0[, with "i ! 0for i !1, hen
e (g(ti)) is a Cau
hy sequen
e, and the limit gb0 2 U of g(t) existsfor t! b0.Assume that b0 6= b, then Theorem 2.21 assure the existen
e of a h satisfyingdhdt = F (t; h)h(b0) = gb0 (2.48)on some interval ℄b0 � th; b0 + th[, for th > 0.Now g0(t) = h0(t) on some open interval ℄tgh; b0[, hen
e on this interval g(t)�h(t) =C, where C is a 
onstant. Sin
e the limits of g(t) and h(t) on (tgh; b0) are equal fort! b0 the 
onstant C must be 0. Therefore the fun
tion~g(t) = n g(t) on ℄a0; b0[h(t) on [b0; th + b0[ (2.49)is a solution to (2.43) on the interval ℄a0; th + b0[, 
ontradi
ting that the interval℄a0; b0[ is maximal, hen
e the assumption b0 6= b must be wrong. 22.9 Norms on Sobolev Spa
esIn the rest of the report the norm on the Sobolev spa
e Hs(
) is written as k � ks,whi
h is easier to read when a lot of norms are involved.In this se
tion (en)n2N is a basis of L2(
) 
onsisting of the eigenve
tors of �2D, withthe 
orresponding eigenvalues (�n), where 0 < �1 � �2 � � � . Consider�2Den = �nen (2.50)19



2. PreliminariesThe left hand side �nen 2 L2(
), so the right hand side �2Den 2 L2(
) and byTheorem 2.6 en 2 H4(
), but then �nen 2 H4(
), so �2Den 2 H4(
) and thereforeen 2 H8(
). Continuing this way it 
an be seen by using Sobolevs Theorem thaten 2 \s2NH4s(
) ,! C1(
) (2.51)For u 2 L2(
) let PNu be the proje
tion of u on span(e1; : : : ; eN), i.e.PNu = NXn=1 (ujen)L2(
) en (2.52)Then PNu 2 C1(
), a fa
t whi
h will be used in the rest of this 
hapter withoutreferen
e.Note that the �'s are not the same, but the re
ipro
al of the �'s used in Se
tion 2.4.With the new 
onvention (�2)�en = ��nen: (2.53)Lemma 2.24The von Karman bra
ket satis�es for j = 1; 2 and 0 <  < 1 thatk[u; v℄k�j � C1kuk2� kvk3�j+ ; (2.54)and for j = 0; 1 and 0 <  � � < 1k[u; v℄k�j�� � C2kuk2��+ kvk3�j� : (2.55)Lemma 2.25Let f(x) 2 H10(
) then there exists N0 > 0 so thatmaxx2
 j(PNf)(x)j � C1(log(1 + �N))1=2kfk1 (2.56)for N � N0.Proof:Let � 2 C10 (
), then it follows from Cau
hy-S
hwarz inequality for � > 0, thatmaxx2
 j�(x)j � 12� ZR2 j�̂(x)jdx= 12� ZR2hxi�+1hxi���1j�̂(x)jdx= 12� �ZR2hxi2(�+1)j�̂(x)j2dx�1=2 �ZR2hxi�2(�+1)dx�1=2= k�k1+�(�� ) 12 : (2.57)
20



2.9 Norms on Sobolev Spa
esLet g 2 H1+�(
) \ H10 (
) and ~g 2 H1+�(R2) with supp ~g � 
 and r
~g = g. It ispossible to �nd a sequen
e (~�k) 2 C10 (R2) that 
onverges to ~g in H1+�(R2), i.e. for" > 0 there exists N0 2 N , so for k � N0k~�k � ~gk1+� < ": (2.58)Sobolevs Theorem gives H1+�(R2) � C(R2), hen
e the sequen
e ~�k also 
onvergesto ~g in C(R2), i.e. there exists a M0 2 N , satisfying for k �M0, thatmaxx2R2 j~�k(x)� ~g(x)j < �: (2.59)Therefore for k � maxfN0;M0g, then by (2.57)maxx2R2 j~g(x)j � maxx2R2 j~g(x)� ~�k(x)j+maxx2! j~�k(x)j� "+ C1��1=2k~�k(x)k1+�� "+ C1��1=2("+ k~gk1+�)� C2"+ C1��1=2k~gk1+�: (2.60)Hen
e for g 2 H1+�(
) \H10 (
) and for � > 0maxx2
 jg(x)j � C1��1=2kgk1+� (2.61)sin
e " was arbitrary.The proje
tion PNf 2 H1+�(
)\H10 (
), so by using (2.21) and (2.52) for 0 < � < 1,then maxx2
 j(PNf)(x)j � C1��1=2��=4N k(�2D)1=4fkL2(
) � C3��1=2kfk1: (2.62)Sin
e 0 < (log(1 + �N))�1 < 1=2 for N large enough, then (2.56) is shown for� = (log(1 + �N))�1. 2Lemma 2.26Let f(x) 2 H�(
) for 0 < � � 1. Then for some C > 0, and 1 < p < (1� �)�1kfkL2p(
) � C �� p� 1�p� p+ 1� p�12p kfk�: (2.63)Proof:Let g(x) 2 H�(R2) be an extension of f(x). Let 12p+ 1~p = 1. Evaluating the L~p-normof ĝ using H�olders inequality gives for ~� = ~p�(2� ~p)�1kĝkL~p(R2) = �ZR2hxi� ~p�2 hxi ~p�2 jĝ(x)j~pdx�1=~p (2.64)� �ZR2hxi2�jĝ(x)j2dx�1=2 �ZR2hxi�2~�dx� 2�~p2~p (2.65)21



2. Preliminarieswhi
h is �nite sin
e the �rst integral equals kgk�, and sin
e 2~� > n = 2, making these
ond integral �nite. Therefore ĝ 2 L~p(R2) and Theorem 7.1.13 in [5℄ gives thatĝ(x) is mapped 
ontinuously into L2p by the Fourier transformation.Theorem 8.4 in [3℄ gives for h(x) 2 S (R2), that h(x) = (2�)�2Fĥ(x), the 
o-Fouriertransform of the Fourier transform. Hen
e for h(x) 2 S (R2)h(x) = (2�)�2 ZR2 eix� ĥ( )d = (2�)�2 ZR2 e�ix� ĥ(� )d = C1^̂h(�x): (2.66)Sin
e the Fourier transformation is 
ontinuous on S (R2), the 
onsideration aboveextends to S 0(R2) by 
ontinuity, and therefore to H�(R2). Hen
ekfkL2p(
) � kgkL2p(R2) = C1k^̂gkL2p(R2) � C2kĝkL~p(R2): (2.67)The se
ond integral in (2.65) 
an be 
al
ulated and an evaluation based on the sizeof p and � gives an upper limit �� p�1�p�p+1� p�12p to the integral. NowkfkL2p(
) � C2�� p� 1�p� p+ 1� p�12p kgk� (2.68)Whi
h is true for all g 2 H�(R2), with g(x)j
 = f(x), hen
e it is also true forin�mum of kgk� and thereby (2.63) is shown. 2Lemma 2.27Let f(x) 2 L2(
) and g(x) 2 H10 (
). Then there exists N0 > 0 so thatk(PNf)gkL2(
) � C(log(1 + �N ))1=2kfkL2(
)kgk1 (2.69)for all N � N0. The 
onstant C does not depend on N .Proof:H�olders inequality gives for 0 < � < 1,k(PNf)gk2L2(
) � k j(PNf)j2jgj2kL1(
)� k j(PNf)j2kL 11�� (
)k jgj2kL 1� (
)= kPNfk2L 21�� (
)kgk2L 2� (
): (2.70)Lemma 2.26 is used with p = (1� �)�1 and � = 2�, and then (2.21) is used givingkPNfkL 21�� � C1kPNfk2� � C1k(�2D)�=2PNfkL2(
) � C1��=2N kfkL2(
) (2.71)22



2.9 Norms on Sobolev Spa
esfor 0 < � < �.Let p = ��1 and � = 1, then Lemma 2.26 giveskgkL 2� � ��1� �� �(1��)=2 kgk1: (2.72)Together (2.70), (2.71) and (2.72) givesk(PNf)gkL2(
) � C2��1=2��=2N kfkL2(
)kgk1 (2.73)If � = (log(1 + �N))�1, then (2.69) is satis�ed. 2Lemma 2.28Let u 2 H�(
) and let v 2 H1��(
) for 0 < � < 1. Then the following statementsare true kuvkL2(
) � C1kuk�kvk1�� (2.74)kuvk��1 � C2kuk�kvkL2(
): (2.75)Proof:A

ording to H�olders inequalitykuvkL2(
) � kukL 21�� kvkL 2� (2.76)Sin
e H1��(
) is 
ontinuously embedded into L 2� , and hen
e H� into L 21�� for0 < � � 1 [1, Theorem 5.4℄, then (2.76) leads to (2.74).Furthermore L 22�� (
) is 
ontinuously embedded intoH1��(
). Therefore by Höldersinequality kuvk��1 � C1kuvkL 22�� (
) � C1kukL 2p2�� (
)kvkL 2q2�� (
) (2.77)for p�1 + q�1 = 1. Let q = 2� � and p = 2��1�� , thenkuvk��1 � C1kuk 21�� kvkL2(
) (2.78)Now 
ontinuity of the embedding of H�(
) � L 21�� (
) gives (2.75). 2
23
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Chapter 3Continuity of Weak Solutions
A Weak solution u of von Karmans equations has to be 
ontinuously depending onthe time, or else it makes no sense to give an initial 
ondition on u, likewise u0 hasto be 
ontinuously depending on t. In order to show that these fun
tions are in fa
t
ontinuous if the other 
onditions of being a weak solution are satis�ed, a numberof statements has to be shown. First a sequen
e of fun
tions are 
hosen.It is possible to �nd a fun
tion h 2 C10 (Rn), whi
h satis�esh � 0; ZRn h(x)dx = 1; supp h 2 B(0; 1)and hen
e a sequen
e of fun
tions hj(x) = jnh(jx) satisfying for j 2 Nhj � 0; ZRn hj(x)dx = 1; supp hj 2 B(0; 1j ): (3.1)Lemma 3.1Let V; H; V � be three Hilbert spa
es, with V � H � V � ea
h dense in the following,and with 
ontinuous inje
tions. If u 2 L2 (0; T ;V ) and u0 2 L2 (0; T ;V �) then thereexists a sequen
e of fun
tions (uj), that are in�nitely di�erentiable from [0; T ℄ to V ,with the properties uj ! u in L2lo
 (℄0; T [;V ) (3.2)u0j ! u0 in L2lo
 (℄0; T [;V �) : (3.3)Proof:Let hj be given as in (3.1) for n = 1, and let~u(t) = n u(t) on [0; T ℄0 on Rn[0; T ℄ (3.4)25



3. Continuity of Weak Solutionsthen the following sequen
e of fun
tions will have the desired properties when re-stri
ted to [0; T ℄ uj(t) = (hj � ~u)(t) = ZR hj(t� s)~u(s)ds: (3.5)Ea
h uj is well de�ned, sin
e the integrand is in L1(R;V ) by H�olders inequality. Inorder to show that uj is in�nitely di�erentiable the di�eren
e between two fun
tionvalues is rewritten asuj(t+ �)� uj(t) = ZR �hj(t+ � � s)� hj(t� s)�~u(s)ds= ZR �h0j(t� s)� + j� j"(�; t� s)�~u(s)ds= � ZR h0j(t� s)~u(s)ds+ j� j ZR "(�; t� s)~u(s)ds= �(h0j � ~u)(t) + j� j ZR "(�; t� s)~u(s)ds: (3.6)
It 
an be assumed that j� j � 1. First Taylor expansion is used to evaluate the termj� j"(�; t� s) [3, p. 1.6℄j� j"(�; t� s) = hj(t+ � � s)� hj(t� s)� h0j(t� s)�= Z 10 (1� �)h00j (t� s+ ��)� 2d�; (3.7)therefore j"(�; t� s)j � j� j Z 10 (1� �)jh00j (t� s+ ��)jd�� j� j supt2R jh00j (t)j � j� jC1: (3.8)Whi
h leads to the evaluation

ZR "(�; t� s)~u(s)ds

V � j� jC1

 ZR ~u(s)ds

V � j� jC1 ZR k~u(s)kV ds (3.9)where the right hand side and hen
e the left tends to 0 as � tends to 0, sin
e~u(s) 2 L2
omp(R;V ) � L1(R;V ).So for � !1, the norm


1� (uj(t+ �)� uj(t))� (h0j � ~u(t))


V ! 0 (3.10)Therefore uj is di�erentiable w.r.t t on [0; T ℄ for all j 2 N with �uj�t = (h0j � ~u)(t).Continuing the same way, it 
an be shown that uj is in�nitely di�erentiable w.r.t t.26



To prove (3.2) it is enough for an arbitrary 
ompa
t interval [a; b℄ � ℄0; T [ to showthat kuj � ukL2(a;b;V ) tends to 0 as j tends to in�nity, but sin
e kuj � ukL2(a;b;V ) �kuj � ~ukL2(R;V ), it 
an be done by evaluating the following normkuj � ~uk2L2(R;V ) = ZR kuj(t)� u(t)k2V dt= ZR 


 ZR hj(s)(~u(t� s)� ~u(t))ds


2V dt� ZR�ZR khj(s)(~u(t� s)� ~u(t))kV ds�2 dt� ZR�ZR hj(s)k~u(t� s)� ~u(t)k2V ds��ZR hj(s)ds� dt: (3.11)
In the se
ond step Lemma 2.18 is used, and in the last step hj(s) is pla
ed outsidethe norm sin
e hj(s) � 0, and then H�older's inequality is applied.Now, by the translation invarian
e of the Lebesgue measure����ZR hj(s) ZR k~u(t� s)� ~u(t)k2dt ds���� � ZR hj(s)4kuk2L2(R;V )ds = 4kuk2L2(R;V ):Therefore Fubini's Theorem 
an be used on (3.11), leading tokuj � ~uk2L2(R;V ) � ZR hj(s) ZR k~u(t� s)� ~u(t)k2V dt ds: (3.12)Be
ause ~u 2 L2(R;V ) it is weakly measurable, hen
e strongly measurable (Theorem2.14), then for " > 0 there exists a simple measurable fun
tion v(t) with the propertyk~u� vkL2(R;V ) < "1=23 . Let s 2 [�1j ; 1j ℄, then(ZR k~u(t� s)� ~u(t)k2V dt)1=2= k~u(t� s)� ~u(t)kL2(R;V )� k~u(t� s)� v(t� s)kL2(R;V ) + kv(t� s)� v(t)kL2(R;V ) + kv(t)� ~u(t)kL2(R;V )= 2ku� vkL2(R;V ) + kv(t� s)� v(t)kL2(R;V )< 2"1=23 + kv(t� s)� v(t)kL2(R;V ): (3.13)The fun
tion v is written as v(t) = NXk=1 ak1Ak(t) (3.14)Where ak 2 V and 1Ak is the 
hara
teristi
 fun
tion of the measurable set Ak. It isassumed that supp v 2 [�12 ; T + 12 ℄ and s < 12 . By using Theorem 9.5 in [12℄, sin
e27



3. Continuity of Weak SolutionsPNk=1 1Ak 2 L2(
), thenkv(t� s)� v(t)k2L2(R;V ) = ZR kv(t� s)� v(t)k2V dt= Z[�1;T+1℄ k NXk=1 ak(1Ak(t)� 1Ak(t� s))k2V dt� supl2f1;:::;Ngkalk2V Z[�1;T+1℄ j NXk=1(1Ak(t)� 1Ak(t� s))jdt� C2 Z[�1;T+1℄ sdt= C2(T + 2)s
(3.15)

whi
h tends to 0 as s tends to 0, so for j large enough kv(t� s)�v(t)kL2(R;V ) < "1=23 .Therefore kuj � ~uk2L2(R;V ) � ZR hj(s) ZR k~u(t� s)� ~u(t)k2V ds< ZR hj(s)"ds = " (3.16)when j is su�
iently large, and (3.2) is hereby shown.If it is shown that ku0j � u0kL2(a;b;V �) ! 0 for an arbitrary 
ompa
t interval [a; b℄ �℄0; T [ then (3.3) is proven. Considerk(h0j � ~u)(t)� ~u0(t)kV � = k Z 1j� 1j h0j(s)~u(t� s)ds� ~u0(t)kV �: (3.17)Let �(s) 2 C10 (R), thenh�s(hj(s)~u(t� s)); �(s)i = h~u(t� s);�hj(s)�s�(s)i= h~u(t� s); (�shj(s))�(s)� �s(hj(s)�(s))i= 
h0j(s)~u(t� s); �(s)�� hhj(s)~u0(t� s); �(s)iNow the following is well de�ned for j large enough by Hölders inequalityZ 1j� 1j �s(hj(s)~u(t� s))ds= Z 1j� 1j h0j(s)~u(t� s)ds� Z 1j� 1j hj(s)~u0(t� s)ds: (3.18)The integral on the right hand side equals 0V , soZ 1j� 1j h0j(s)~u(t� s)ds = Z 1j� 1j hj(s)~u0(t� s)ds: (3.19)28



and thereforeZ ba k(h0j � ~u)(t)� ~u0(t)kV �dt = Z ba k Z 1j� 1j hj(s)~u0(t� s)ds� ~u0(t)kV �dt= Z ba k Z 1j� 1j hj(s)(~u0(t� s)� ~u0(t))dskV �dt!j!1 0 (3.20)
Whi
h is shown in the same way as for u above, sin
e u0 2 L2(0; T ;V �), and V � isa Hilbert spa
e like V . 2Lemma 3.2Let V; H; V � be three Hilbert spa
es, where V � H � V �, ea
h dense in thefollowing, and with 
ontinuous inje
tions. If u 2 L2 (0; T ;V ) and u0 2 L2 (0; T ;V �)the following equation holds in the distribution sense on ℄0; T [��tku(t)k2H = 2Du0(t); u(t)E : (3.21)Proof:Let uj(t) be given as the restri
tion of the uj's de�ned in (3.5) to ℄0; T [. Sin
euj : ℄0; T [! H is di�erentiable��tkuj(t)k2H = ��t (uj(t)juj(t))H = 2 �u0j(t)juj(t)�H = 2Du0j(t); uj(t)E (3.22)Sin
e uj(t) and u0j(t) 
onverges to u(t) and u0(t) in L2lo
 (℄0; T [;V ) and L2lo
 (℄0; T [;V �)respe
tively, then uj(t) and u0j(t) 
onverges to u(t) and u0(t) on V and V � respe
tivelya.e. for t 2 ℄0; T [. Therefore the duality Du0j(t); uj(t)E 
onverges to Du0(t); u(t)E forj !1, whi
h is shown in the same way as Lemma 2.3, where the inner produ
t isrepla
ed by a duality.Now by (3.5), Lemma 3.1 and Hölder's inequalities ku0(t)kV �kukV is a integrablemajorant to Du0j(t); uj(t)E. Hen
e Theorem 2.19 gives that Du0j(t); uj(t)E 
onvergesto Du0(t); u(t)E in L1([a; b℄) for an arbitrary 
ompa
t interval [a; b℄ �℄0; T [, hen
e inL1lo
(℄0; T [).Likewise kuj(t)k2H = (uj(t)juj(t))H ! (u(t)ju(t))H = ku(t)k2H for j !1, and sin
e�t is 
ontinuous in D 0(℄0; T [), then �tkuj(t)k2H ! �tku(t)k2H in the distribution sense,and hen
e (3.21) is shown in the distribution sense. 2Lemma 3.3Let X and Y be two Bana
h spa
es with X � Y , and the inje
tion dense and
ontinuous. Then the inje
tion of Y � into X� is dense and 
ontinuous. 29



3. Continuity of Weak SolutionsProof:Let I be the inje
tion X ,! Y , then the adjoint operator I� : Y � ! X�. Let x 2 Xand y� 2 Y �, then hIx; y�i = hx; I�y�i (3.23)Now I� is inje
tive, sin
e for I�y� = 0X�, then (I � jy�) is the zero-fun
tional on thedense subspa
e X of Y , hen
e y� = 0Y �.Denseness of the inje
tion I� is shown by using that every norm 
losed 
onvexsubset of a normed spa
e is weakly 
losed [9, p. 66℄, so that R(I�) equals the w�
losure of R(I�). Assume that R(I�) 6= X�, then Proposition 2.4.10 in [9℄ for everyx� 2 X�nR(I�) gives the existen
e of an x0 2 (R(I�))? � X su
h thathx0; x�i 6= 0: (3.24)But the identity (3.23) is true for all x 2 X and y� 2 Y �, hen
e for y� 2 Y �hIx0; y�i = hx0; I�y�i = 0 (3.25)sin
e x0 2 (R(I�))?, but I is inje
tive, so x0 = 0X , whi
h 
ontradi
ts (3.24), hen
ethe assumption R(I�) 6= X� must be wrong. 2Lemma 3.4Let X and Y be two Bana
h spa
es with X � Y , and the inje
tion dense and
ontinuous. Let � be weakly 
ontinuous on [0; T ℄ with values in Y and let � 2L1 (0; T ;X), then � is weakly 
ontinuous with values in X.Proof:Sin
e the inje
tion of X in Y is dense and 
ontinuous, the dual spa
e Y � is denseand 
ontinuously embedded in X� (Lemma 3.3).Let � 2 Y �, then�(�(t)) = h�(t); �i ! h�(t0); �i for t! t0; 8 t0 2 [0; T ℄: (3.26)Let ~�(t) = n �(t) on [0; T ℄0 on Rn[0; T ℄; (3.27)let hj be given as in (3.1) for n = 1, and let�j(t) = (hj � ~�)(t) = ZR hj(t� s)~�(s)ds: (3.28)30



Then �j(t) satis�es for j 2 N (Lemma 2.18)k�j(t)kX = 


 ZB(0; 1j ) hj(t� s)~�(s)ds


X� ZB(0; 1j ) hj(t� s)k~�(s)kXds� k�kL1(0;T ;X) ZR hj(t� s)ds= k�kL1(0;T ;X): (3.29)
Sin
e k~�(s)kX <1 a.e. De�nition 2.17 and (3.26) gives for all � 2 Y �h�j(t)� �(t); �i = DZR hj(s)�~�(t� s)� ~�(t)� ds; �E= ZR hj(s)h~�(t� s)� ~�(t); �ids!j!1 0: (3.30)This is seen by using Theorem 2.19, sin
e ~� is weakly 
ontinuous, and therefore forj !1, hj(s)h~�(t); �i ! hj(s)h~�(t� s); �i, sin
e s 2 B(0; 1j ).Be
ause �j(t) 2 X by (3.29) for all j 2 N and for all t 2 [0; T ℄,jh�j(t); �ij � k�j(t)kXk�kX� � k�kL1(0;T ;X)k�kX�; (3.31)so in the limit j !1jh�(t); �ij � k�kL1(0;T ;X)k�kX� 8� 2 Y �; t 2 [0; T ℄: (3.32)The inequality is also true for � 2 X� sin
e Y � � X� densely, so �(t) 2 X�� for allt 2 [0; T ℄. Now for all t 2 [0; T ℄ and for all � 2 X�h�j(t)� �(t); �i !j!1 0: (3.33)Therefore �(t) is in the w�-
losure of X��, whi
h equals the w�-
losure of X, whi
hagain equals the norm 
losure of X, hen
e �(t) 2 X for all t 2 [0; T ℄ andk�(t)kX � k�kL1(0;T ;X) 8 t 2 [0; T ℄: (3.34)Let � 2 X�, and let for " > 0, �" 2 Y � satisfyk� � �"kX� � "3k�kL1(0;T ;X) (3.35)Now jh�(t)� �(t0); �ij � jh�(t)� �(t0); � � �"ij+ jh�(t)� �(t0); �"ij� 23"+ jh�(t)� �(t0); �"ij 31



3. Continuity of Weak SolutionsThe last term tends to 0 as t tends to t0 sin
e � is weakly 
ontinuous is Y , so thereexists a Æ > 0 satisfying jt� t0j < Æjh�(t)� �(t0); �ij � " (3.36)Sin
e " was arbitrary the lemma is proved. 2Theorem 3.5Let V; H; V � be three Hilbert spa
es, where V � H � V �, ea
h dense in thefollowing, and with 
ontinuous inje
tions. If u 2 L2 (0; T ;V ) and u0 2 L2 (0; T ;V �)then u is almost everywhere equal to a 
ontinuous fun
tion from [0; T ℄ into H.Proof:The fun
tion t ! hu0(t); u(t)i 
an be 
onsidered as the 
omposition of two Borelmeasurable fun
tion as followst ! � u0(t)u(t) � ! hu0(t); u(t)iHen
e hu0(t); u(t)i is Borel measurable, and Hölder's inequality shows that the inte-gral of hu0(t); u(t)i on [0; T ℄ is �nite. Therefore (3.21) givesu 2 L1(0; T ;H) (3.37)Now for � 2 C10 ([0; T ℄) integration by parts of R T0 u(t)�0(t)dt shows that 
ondition2 in Lemma 1.1 in [13, p. 250℄ is satis�ed, hen
e u is a.e. equal to a 
ontinuousfun
tion from [0; T ℄ into V �.Therefore by Lemma 3.4 u is weakly 
ontinuous on [0; T ℄ with values in H, and thenfor t! t0 2 [0; T ℄ (u(t)ju(t0))H ! (u(t0)ju(t0))H = ku(t0)k2H : (3.38)The theorem is shown if the following is satis�ed for all t0 2 [0; T ℄ for t! t0ku(t)� u(t0)k2H ! 0: (3.39)Rewriting the norm givesku(t)� u(t0)k2H = ku(t)k2H + ku(t0)k2H � 2 (u(t)ju(t0))H (3.40)Integrating (3.21) from t to t0, and using Hölders inequality gives for t! t0ku(t)k2H � ku(t0)k2H � 2j Z tt0 hu0(s); u(s)i(V �;V ) dsj� 2ku0kL2(0;T ;V �)kukL2(0;T ;V )jt� t0j! 0: (3.41)Hen
e (3.39) follows from (3.38), (3.40) and (3.41). 232



Theorem 3.6Let 
 be an open and bounded set, let u(t; x) and v(t; x) be de�ned on [0; T ℄� 
,with u(t; x) 2 L1(0; T ;H20(
)) (3.42)u0(t; x) 2 L1(0; T ;L2(
)) (3.43)satisfying� Equation (1.4) and (1.5) are satis�ed in distribution sense, i.e. they are satis-�ed in D 0(℄0; T [; H�2(
)).� The 
onditions (1.6)-(1.9) are satis�ed.Then the following is also satis�ed1. The fun
tion v(t; x) 2 L1(0; T ;H20(
)).2. The fun
tions u(t; x) and u0(t; x) depends 
ontinuously on t in the norm topo-logy on H20 (
) and L2(
) respe
tively.Proof:Sin
e [u(t); u(t)℄ is a sum of produ
ts of L2(
) fun
tions, for all t 2 [0; T ℄, then[u(t); u(t)℄ 2 L1(0; T ;L1(
)), be
ause for ea
h term in the sum the norm of theprodu
t in L1(
) is less than or equal to the produ
t of the norms in L2(
), hen
ethe L1(
)-norm will still be essentially bounded on [0; T ℄.Let " > 0, let g 2 L1(
) and let � 2 H1+"0 (
), then Sobolevs Theorem givesj (gj�) j � kgkL1(
)k�kL1(
) � CkgkL1(
)k�kH1+"0 (
): (3.44)So L1(
) � H�1�"(
), and therefore[u(t); u(t)℄ 2 L1(0; T ;H�1�"(
)) (3.45)Now G2 is a bounded operator from H�1�"(
) to H3�"(
) \H20 (
) (Theorem 2.6)for " > 0, so v(t) = �G2([u(t); u(t)℄) 2 L1(0; T ;H3�"(
) \H20 (
)) (3.46)Sin
e kv(t)kH20 (
) � kv(t)kH3�"(
)\H20 (
) the �rst part of the theorem is shown.The von Karman bra
ket satis�es [u(t); v(t)℄ 2 L1(0; T ;L1(
)), sin
e the normkv(t)kL2(
) is essentially bounded on [0; T ℄. Therefore the von Karman bra
ket[u(t); v(t)℄ 2 L1(0; T ;H�2(
)). Now u00 2 L1(0; T ;H�2(
)), sin
e (1.4) is satis�edin distribution sense, and all the other terms are in L1(0; T ;H�2(
)). Theorem 3.5is used on both u and u0 giving that u; u0 2 C([0; T ℄;L2(
)). 233
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Chapter 4Existen
e of Weak Solutions
In this 
hapter the existen
e of weak solutions to the von Karman equations in thestationary 
ase and in the time dependent 
ase will be treated.It is assumed in the rest of the report, that � and �2 are the Diri
hlet Realisations�D and �2D respe
tively.It is also assumed that 
 2 R2 is open and bounded and has a smooth boundary�
. Let Q = [0; T ℄� 
.4.1 The Stationary CaseIn this se
tion the existen
e of weak solutions of stationary von Karman equationswill be shown. It is assumed in this se
tion that the fun
tions are reel valued inorder to be able to use Lemma 2.1. The problem redu
es to�2u(x)� [u(x); v(x)℄ = f(x) (4.1)�2v(x) + [u(x); u(x)℄ = 0 (4.2)In the rest of the report writing the x dependents is omitted, it should be 
lear fromthe text whether a fun
tion (or distribution) depends on x.In the stationary 
ase a weak solution of von Karmans equations is de�ned as:De�nition 4.1A weak solution of von Karmans equations 
onsists of two fun
tions u; v 2 H20 (
)whi
h solves (4.1)-(4.2) in distribution sense, i.e. in D 0(
).It is possible to show the existen
e of a weak solution to the von Karman equationsunder the assumption that f(x) 2 H�2(
), and not ne
essarily in L2(
), as it isassumed in the time dependent 
ase. 35



4. Existen
e of Weak SolutionsTheorem 4.2Let f(x) 2 H�2(
). Then the von Karman equations (4.1) - (4.2) has a weaksolution.Proof:Let w1; : : : ; wm; : : : be a basis for H20 (
) 
onsisting of fun
tions in C10 (
), andassume that the wis are an onb. for H20 (
) (Lemma 2.9). For 1 � i � m 2 N afun
tion um 2 spanfw1; : : : ; wmg that solves the following duality between fun
tionsin D 0(
) and D(
)
�2um + [um; G2([um; um℄)℄; wi� = hf; wii (4.3)is desired, where G2 is the inverse to �2D, whi
h is well de�ned by Theorem 2.4.Let vm 2 H20 (
) be de�ned byvm = �G2([um; um℄) (4.4)for um 2 spanfw1; : : : ; wmg.Then um solves (4.3) if it solves the following for 1 � i � m
�2um + [um; vm℄; wi� = hf; wii (4.5)�2vm + [um; um℄ = 0: (4.6)A fun
tion um 2 spanfw1; : : : ; wmg 
an for � 2 Rm be written as um(�) =Pmi=1 �iwi.Let P : Rm ! Rm be given byP (�) = (�1; : : : ; �m) (4.7)where �i = 
�2um(�) + [um(�); vm(�)℄; wi�� hf; wii: (4.8)For ea
h i 2 f1; : : : ; mg the �rst term in (4.8) depends 
ontinuously on � a

ordingto Lemma 2.11, sin
e the �rst term equals (�2um(�) + [um(�); vm(�)℄jwi)L2(
) andG2 is a 
ontinuous operator, so vm depends 
ontinuously on �. The last term in(4.8) is just a 
onstant for ea
h i. Therefore P (�) is a 
ontinuous fun
tion on Rm .The aim is to use Lemma 2.1, so 
onsider(P (�)j�) = mXi=1 �i�i= mXi=1 �
�2um(�)� [um(�); vm(�)℄; �iwi�� hf; �iwii�= 
�2um(�); um(�)�� 
[um(�); vm(�)℄; um(�)�� hf; um(�)i= k�umk2L2(
) � 
[um(�); um(�)℄; vm(�)�� hf ��um(�)i= k�um(�)k2L2(
) + k�vm(�)k2L2(
) � hf; um(�)i36



4.1 The Stationary CaseA

ording to S
hwartz' inequality [3, eq. (9.31)℄ and Theorem 2.4jhf; um(�)ij � kfkH�2(
)kum(�)kH20 (
) � C1k�um(�)kL2(
); (4.9)then (P (�); �) � k�um(�)k2L2(
) + k�vm(�)k2L2(
) � C1k�um(�)kL2(
): (4.10)Hen
e (P (�); �) � 0 if k�um(�)kL2(
) � C1: (4.11)This should be satis�ed for all �, with j�j = �, for some � > 0. Let j�j = 1, and let�0 = s� for some s > 0. Sin
e the wi's are linearly independentk�um(�0)kL2(
) = Z
 �� mXi=1 s�(�iwi(x))��2dx = s2k�um(�)kL2(
): (4.12)Hen
e it is possible to satisfy (4.11) for t large enough if k�um(�)kL2(
) 6= 0 for all�.Assume that k�um(�)kL2(
) = 0 for some �, thenkum(�)kH20 (
) � C2k�um(�)kL2(
) = 0: (4.13)Hen
e kum(�)kH20 (
) = 0, so um(�) = 0H20 (
) whi
h 
ontradi
ts that j�j = 1 and thew0is are independent. Therefore the assumption that k�um(�)kL2(
) = 0 for some �must be wrong. So it is possible to satisfy (P (�0); �0) � 0 for all �0 with j�0j = � forsome � > 0.Now a

ording to Lemma 2.1 there exists a um 2 spanfw1; : : : ; wmg that solves (4.5)and hen
e (4.3).Choose a sequen
e of fun
tions (um)m2N ea
h satisfying (4.3) for i � m. Then itfollows from (2.7) thatkumk2H20 (
) + kvmk2H20 (
) � C3(k�umk2L2(
) + k�vmk2L2(
))= C3hf; umi� C4k�umkL2(
)� C4kumkH20 (
): (4.14)So the sequen
e (um)m2N and the 
orresponding sequen
e (vm)m2N are 
ontained ina bounded set in H20 (
). Sin
e H20 (
) is a 
losed subspa
e of a Hilbert spa
e, H20 (
)is a Hilbert spa
e, hen
e it 
an be identi�ed with its own dual spa
e. A

ording toAlaoglu's Theorem [9, p. 70℄ the unit ball and hen
e every bounded set in H20 (
) isw�-
ompa
t, so there exists subsequen
es (u�)�2N and (v�)�2N satisfyingu� ! u weakly on H20 (
)v� ! v weakly on H20 (
): (4.15)37



4. Existen
e of Weak SolutionsA

ording to Theorem 2.8 there exists subsequen
es (u
)
2N and (v
)
2N of (u�)�2Nand (v�)�2N respe
tively satisfyingu
 ! u strongly on L2(
)v
 ! v strongly on L2(
): (4.16)Let i be �xed, with 
 � i, then��2u
jwi�L2(
) � ([u
; v
 ℄jwi)L2(
) = hf; wii: (4.17)Now it follows from Lemma 2.3, that��2u
jwi�L2(
) = �u
j�2wi�L2(
) ! �uj�2wi�L2(
) = ��2ujwi�L2(
) : (4.18)Furthermore Lemma 2.12 and Lemma 2.11 gives([u
; v
 ℄jwi)L2(
) = ([wi; u
℄jv
)L2(
) ! ([wi; u℄jv)L2(
) = ([u; v℄jwi)L2(
) (4.19)Therefore for all i 2 N 
�2u; wi�� 
[u; v℄; wi� = hf; wii (4.20)Now (4.20) is true for any �nite linear 
ombination of the wi's, hen
e for all w 2H20 (
). Be
ause C10 (
) 2 H20 (
), then u; v solves (4.1) in the distribution sense.By the de�nition of v
, it follows by Lemma 2.12 and Lemma 2.11 that0 = ��2v
 jwi�L2(
) + ([u
; u
℄jwi)L2(
)= �v
 j�2wi�L2(
) + ([wi; u
℄ju
)L2(
)! �vj�2wi�L2(
) + ([wi; u℄ju)L2(
)= ��2vjwi�L2(
) + ([u; u℄jwi)L2(
)hen
e u; v solves (4.2) in D 0(
). 24.2 The Time Dependent CaseIn this se
tion existen
e of weak solutions of the time dependent von Karman equa-tions is shown. The time dependent von Karman equations are given byu00(t; x) + �2u(t; x)� [u(t; x); v(t; x)℄ = f(t; x) on ℄0; T [� 
 (4.21)�2v(t; x) + [u(t; x); u(t; x)℄ = 0 on ℄0; T [� 
: (4.22)38



4.2 The Time Dependent CaseThese von Karman equations are evaluated with the following boundary and initial
onditions for t 2 [0; T ℄ and for x 2 

0u(t; x) = 
0v(t; x) = 0 (4.23)
1u(t; x) = 
1v(t; x) = 0 (4.24)r0u(t; x) = u01(x) (4.25)r1u0(t; x) = u11(x) (4.26)The problem is investigated with the following properties of the initial data forQ = ℄0; T [�
 f(t; x) 2 L2(Q)u0(x) 2 H20 (
)u1(x) 2 L2(
): (4.27)The inverse G2 of �2 (Theorem 2.4) is used to eliminate v from (4.21), when u(t) 2H20 (
), then v(t) = �G2([u(t); u(t)℄) (4.28)Therefore if u(t) 2 H20 (
) a.e. on [0; T ℄, and then (4.21) is equivalent tou00(t) + �2u(t) + [u(t); G2([u(t); u(t)℄)℄ = f(t) (4.29)whi
h does not depend on v(t).Theorem 4.3Let (4.27) be satis�ed. Then the problem (4.21)-(4.26) has a weak solution (De�ni-tion 1.2).Proof:Let w1; : : : ; wm; : : : be a basis for H20 (
) 
onsisting of fun
tions in C10 (
) for all t 2[0; T ℄ and assume that the wis is an onb. for H20 (
). Let um(t) 2 spanfw1; : : : ; wmgfor all t 2 [0; T ℄, then um(t) 
an be written asum(t) = mXi=1 gim(t)wi (4.30)for some 
oe�
ients gim(t).A solution is desired to the following system of m equations for 1 � j � m�u00m(t); wj�L2(
) + (�um(t);�wj)L2(
) + �[um(t);G2([um(t); um(t)℄)℄; wj�L2(
)= (f(t); wj)L2(
) (4.31)39



4. Existen
e of Weak Solutionswith initial 
onditionsum(0) = u01m 2 span[w1; : : : ; wm℄; u01m ! u01 in H20 (
) (4.32)u0m(0) = u11m 2 span[w1; : : : ; wm℄; u11m ! u11 in L2(
): (4.33)For t 2 [0; T ℄ and for um(t) de�ned by (4.30) equation (4.31) 
an be written as amatrix equation264 (w1jw1)L2(
) � � � 0... . . . ...0 � � � (wmjwm)L2(
) 375264 g001m(t)...g00mm(t) 375 = 264 ~F1(t; g1m(t))...~Fm(t; gmm(t)) 375 (4.34)Sin
e the matrix [(wijwj)℄ is invertible the matrix equation has a solution, givingg00im(t) = Fi(t; gim(t)) (4.35)Where Fi depends 
ontinuously on gim, and Fi(�; gim) 2 L1([0; T ℄). The se
ondorder ordinary di�erential equation (4.35) is a 
omposition of two equations of thetype des
ribed in Theorem 2.21 - Theorem 2.23, with the initial 
onditions given by(4.32) and (4.33). Therefore (4.35) and thereby (4.31) has solutions satisfyingum(t) 2 C1([0; T ℄; C10 (
))u0m(t) 2 C([0; T ℄; C10 (
)) (4.36)These solutions also satisfy that u00im(t) 2 L2([0; T ℄;C10 (
)), be
ause they solve(4.31), with f(t) 2 L2(Q).De�ne for t 2 [0; T ℄ the sequen
e (vm(t))m2N 2 H20 (
) byvm(t) = �G2([um(t); um(t)℄) (4.37)Now vm 
an be inserted in (4.31) giving�u00m(t); wj�L2(
) + (�um(t);�wj)L2(
) � �[um(t); vm(t)℄; wj�L2(
)= (f(t); wj)L2(
) (4.38)for 1 � j � m.Multiplying the �rst term in (4.38) by g0jm(t) and adding the equations for j =1; : : : ; m gives by using Leibniz' Formula and Theorem 2.20mXj=1 g0jm(t) (u00m(t)jwj)L2(
) = mXj=1 Z
 u00m(t)g0jm(t)wjdx= Z
 u00m(t)u0m(t)dx= 12 Z
 ��tu0m(t)u0m(t)dx= 12 ��tku0m(t)k2L2(
)40



4.2 The Time Dependent CaseMaking the same evaluation on the se
ond term in (4.38) gives that (um(t))m2N and(vm(t))m2N solves12 ��t�ku0m(t)kL2 + k�um(t)k2L2�� �[um(t); vm(t)℄ju0m(t)�L2(
)= (f(t)ju0m(t))L2(
) (4.39)It is possible to rewrite the third term using Lemma 2.12 and Theorem (2.20)��[um(t); vm(t)℄��u0m(t)�L2(
)=� �[um(t); u0m(t)℄��vm(t)�L2(
)=� �D21umD22u0m +D22umD21u0m � 2D1D2umD1D2u0m��vm�L2(
)=� � ��t(D21umD22um �D1D2umD1D2um)��vm�L2(
)=� 12� ��t [um(t); um(t)℄��vm(t)�L2(
)=12��2v0m(t); vm(t)�L2(
)=14 ��tk�vm(t)k2L2(
)In the last step ��t and � are inter
hanged sin
e vm(t) is 
ontinuously di�erentiablewith respe
t to t, and in�nitely di�erentiable with respe
t to x.Hen
e (4.39) is equivalent to12 ��t�ku0m(t)k2L2(
) + k�um(t)k2L2(
) + 12k�vm(t)k2L2(
)� = (f(t)ju0m(t))L2(
) (4.40)Integrating this with respe
t to t gives12(ku0m(t)k2L2(
) + k�um(t)k2L2(
) + 12k�vm(t)k2L2(
))= 12(ku0m(0)k2L2(
) + k�um(0)k2L2(
) + 12k�vm(0)kL2(
))+ Z t0 (f(�)ju0m(�))L2(
)d� (4.41)The sequen
es fu01mg and fu11mg are both bounded (Lemma 2.2), so f�u01mg isbounded sin
e ku01mkH20 (
) � k�u01mkL2(
), thereforeku11mk2L2(
) + k�u01mk2L2(
) � C1 (4.42)Sin
e the initial 
onditions (4.32) and (4.33) are satis�ed by um, thenvm(0) = �G2([u01m; u01m℄) (4.43)41



4. Existen
e of Weak SolutionsThe last term is a 
omposition of 
ontinuous operators on u01m, so the sequen
e(vm(0))m2N is bounded.The integral in (4.41) is also bounded, whi
h is shown by Cau
hy-S
hwarz' inequalitysin
ej Z t0 (f(�)ju0m(�))L2(
)d�j � Z T0 kf(�)kL2(
)ku0m(�)kL2(
)d�� �Z T0 kf(�)k2L2(
)d��1=2 �Z T0 ku0m(�)k2L2(
)d��1=2� C2:Therefore there exists a 
onstant C3 > 0, satisfyingku0m(t)k2L2(
) + k�um(t)k2L2(
) + 14k�vm(t)k2L2(
) � C3 (4.44)For t 2 [0; T ℄ it follows by (2.7) thatfum(t)g; fvm(t)g is bounded in L1(0; T ;H20(
))fu0m(t)g is bounded in L1(0; T ;L2(
))The Bana
h spa
e L1(0; T ;X) is the dual spa
e to the Bana
h spa
e L1(0; T ;X),so it is possible a

ording to Alauglus Theorem to extra
t subsequen
es (u�)�2N and(v�)�2N satisfying u� ! u w� on L1(0; T ;H20(
))v� ! v w� on L1(0; T ;H20(
))u0� ! u0 w� on L1(0; T ;L2(
)) (4.45)Sin
e (u�)�2N 
onverges to u on L1(0; T ;H20(
)) 
onsidered with the w�-topology,then it 
onverges weakly to u on L1(0; T ;H20(
)) (
onsidered with the norm-topo-logy). Likewise (u0�)�2N 
onverges weakly to u0 on L1(0; T ;L2(
)).Let W = fwjw 2 L2(0; T ;H20(
)); w0 2 L2(0; T ;L2(
)). Then Theorem 5.1 in [7,p. 58℄ gives that W is 
ompa
tly inje
ted into L2(0; T ;L2(
)).By evaluating the norms it is seen that L1(0; T ;H20(
)) is 
ontinuously inje
ted intoL2(0; T ;H20(
)) and L1(0; T ;L2(
)) is 
ontinuously inje
ted into L2(0; T ;L2(
)).Hen
e the sequen
e (u�)�2N is 
ompa
tly inje
ted into L2(0; T ;L2(
)). Therefore(u�)�2N has a subsequen
e (u
)
2N that 
onverges strongly in L2(0; T ;L2(
)). Sin
eL2(0; T ;L2(
)) is 
ontinuously inje
ted into L2(Q), then the subsequen
e satis�esu
 ! u on L2(Q): (4.46)The 
orresponding sequen
e (v
)
2N 
onverges a

ording to (4.45) to v in the w�topology on L1(0; T ;H20(
)).42



4.2 The Time Dependent CaseLet for 1 � j � j0, �j 2 C1([0; T ℄), let �j(T ) = 0 and let (t; x) = j0Xj=1 �j(t)wj(x) (4.47)The following integral 
an for 
 � j0 be written asZ T0 � j0Xj=1f�j(t) �u00
(t; x)jwj(t; x)�L2(
)g�dt= Z T0 �u00
(t; x)j (t; x)�L2(
) dt= Z T0 Z
 u00
(t; x) (t; x)dxdt= Z
 Z T0 u00
(t; x) (t; x)dtdx= Z
 �[u0
(t; x) (t; x)℄T0 � Z T0 u0
(t; x) 0(t; x)dt�dx= � (u11
j (0; x))L2(
) � Z T0 �u0
(t; x)j 0(t; x)�L2(
) dt
(4.48)

Fubinis Theorem is used twi
e, be
ause in both 
ases the integrand is absolutelyintegrable by Cau
hy-S
hwarz' inequality.Now multiplying (4.38) by �j, adding the equations for j = 1; : : : ; j0 and integratingwith respe
t to t gives for 
 � j0� Z T0 �u0
j 0�L2(
) dt + Z T0 (�u
j� )L2(
) dt� Z T0 ([u
; v
℄j )L2(
) dt= Z T0 (f j )L2(
) dt+ (u11
j (0))L2(
) (4.49)Integration of a 
ontinuous fun
tion over the interval [0; T ℄ is a 
ontinuous operator,hen
e Theorem (2.3) and Lemma (2.12) givesZ T0 ([u
; v
℄j )L2(
) dt = Z T0 �[ ; u
℄jv
�L2(
) dt! Z T0 �[ ; u℄jv�L2(
) dt = Z T0 ([u; v℄j )L2(
) dt (4.50)For 
 !1 (4.49) be
omes� Z T0 (u0j 0)L2(
) dt+ Z T0 (�uj� )L2(
) dt� Z T0 ([u; v℄j )L2(
) dt= Z T0 (f j )L2(
) dt+ (u11j (0))L2(
) (4.51)43



4. Existen
e of Weak SolutionsAs a help to show that u11 = u0(0) a positive fun
tion �(t) 2 C10 ([�T; T ℄), satisfying�(t) = 1 for t 2 [0; T4 ℄�(t) = 0 for t 2 [3T4 ; T ℄�(t) = �(�t) � 1 for all tZR �(t)dt = 1: (4.52)
is 
hosen. Let w 2 spanfw1; : : : ; wj0g. Then a sequen
e of fun
tions �k is de�ned by�k(t) = �(kt)w (4.53)This sequen
e ful�ls the 
ritirias for being de�ned by (4.47), hen
e solves (4.51) for�k =  . For the �rst term in (4.51)��� Z T0 (u0(t)j�0(t))L2(
) dt� (u0(0)jw)L2(
) ���= ��� Z T0 k�0(kt) (u0(t)jw)L2(
) dt� (u0(0)jw)L2(
) ���= ��� Z T0 k�0(kt) (u0(t)� u0(0)jw)L2(
) dt���� supt2[0;Tk ℄ku0(t)� u0(0)kL2(
)kwkL2(
)��� Z T0 k�0(kt)dt���= supt2[0;Tk ℄ku0(t)� u0(0)kL2(
)kwkL2(
)

(4.54)
Whi
h tends to 0 for k !1 by Theorem 3.6, sin
e (4.45) is satis�ed.The se
ond term in (4.51) is evaluated by using Cau
hy-S
hwarz' inequality twi
ej Z T0 (�uj��k)L2(
) dtj � Z T0 k�ukL2(
)k��kkL2(
)dt� Z T0 k�ukL2(
)k�wkL2(
)j�k(t)jdt� k�ukL2(Q)k�wkL2(
)k�k(t)kL2([0;T ℄) (4.55)On the interval [0; T ℄ the support of �k is 
ontained in ℄0; 3T4k [, hen
ek�k(t)k2L2([0;T ℄) � Z T0 j�kj2dt � Z 3T4k0 1dt! 0 (4.56)for k !1, hen
e the se
ond term in (4.51) tends to 0.The third term in (4.51) gives for  = �kj Z T0 ([u; v℄j�k)L2(
) j � C3kukL2(Q)kvkL2(Q)kwkL2(Q)k�kk2L2([0;T ℄) (4.57)44



4.2 The Time Dependent Casewhi
h tends to 0 as k !1. The forth term also tends to 0. Therefore (4.51) redu
esto (u0(0)jw)L2(
) = (u11jw) (4.58)Sin
e �k(0) = w. The equation above is true for j0 2 N , i.e. for w 2 spanfwjjj 2 Ngwhi
h is dense in L2(
), hen
e u0(0) = u11.The inner produ
ts in (4.51) 
an also be written as dualities, giving for  de�nedas in (4.47)� Z T0 
u0;  0� dt+ Z T0 
�u;� � dt� Z T0 
[u; v℄;  � dt= Z T0 
f;  � dt+ Du0(0);  (0)E (4.59)The time derivative of u0(t) is 
onsidered, it exists as an element of D 0(0; T ;H�2(
)).Let �(t) 2 C10 (℄0; T [), then u00(t) : �(t)! H�2(
), giving the dualityhu00(t); �(t)i = �hu0(t); �0(t)i in H�2(
) (4.60)This is a fun
tional on H20 (
), hen
e for j 2 Nhhu00(t); �(t)i ; wji = �hhu0(t); �0(t)i ; wji (4.61)Sin
e u0 2 C(0; T ;L2(
)) the last term in (4.61) is written as an integral and by theBo
hner identity (De�nition 2.17)�hhu00(t); �(t)i ; wji = �Z T0 u0(t)�0(t)dt; wj�= Z T0 hu0(t)�0(t); wji dt= Z T0 �0(t) hu0(t); wji dt= Z T0 hu0(t); �0(t)wji dt (4.62)
The fun
tion �(t)wj is de�ned as des
ribed in (4.47), so for  = �(t)wj equation(4.59) is substituted into (4.62), whi
h leads tohhu00(t); �(t)i ; wji = Z T0 D�2u(t)� [u(t); v(t)℄� f(t); �(t)wjE dt= Z T0 D(�2u(t)� [u(t); v(t)℄� f(t))�(t); wjE dt= �Z T0 (�2u(t)� [u(t); v(t)℄� f(t))�(t)dt; wj�= DD�2u(t)� [u(t); v(t)℄� f(t); �(t)E ; wjE (4.63)
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4. Existen
e of Weak SolutionsThe duality in (4.63) is satis�ed when wj is repla
ed with any �nite linear 
ombi-nations of the wi's, and an evaluation of the limit gives that it is satis�ed for anyw 2 H20 (
). Hen
ehu00(t); �(t)i = D�2u(t)� [u(t); v(t)℄� f(t); �(t)E in H�2(
): (4.64)The test fun
tion �(t) 2 C10 (℄0; T [) is arbitrary, sou00(t) = �2u(t)� [u(t); v(t)℄� f(t) in D 0(0; T ;H�2(
)): (4.65)Hereby (4.21) is shown in the ve
tor distribution sense.Lemma 2.11 and Lemma 2.12 shows by introdu
tion of a w 2 C10 (
), that
�2v(t); w� = h[u; u℄; wi (4.66)whi
h extends to w 2 H20 (
). Therefore �2v(t) = [u; u℄ in H�2(
), then they arealso equal in D 0(0; T ;H�2(
)), and (4.22) is solved in the ve
tor distribution sense.It is shown in Chapter 3 that if the other 
onditions in De�nition 1.2 are satis�ed,then (1.13) and Condition 3 are automati
ally satis�ed. 2
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Chapter 5Uniqueness of Weak Solutions
In this 
hapter uniqueness of weak solutions to the von Karman equations is shown.The problem treated is againu00(t; x) + �2(t; x)� [u(t; x); v(t; x)℄ = f(t; x) on ℄0; T [� 
 (5.1)�2v(t; x) + [u(t; x); u(t; x)℄ = 0 on ℄0; T [� 
 (5.2)with the following boundary and initial 
onditions for t 2 ℄0; T [ and for x 2 

0u(t; x) = 
0v(t; x) = 0 (5.3)
1u(t; x) = 
1v(t; x) = 0 (5.4)r0u(t; x) = u01(x) (5.5)r1u0(t; x) = u11(x): (5.6)There is a small di�eren
e between this problem and the problem treated by Boutetde Monvel and Chueshov in [8℄. In the problem they treat f do not depend on time,but sin
e this makes no di�eren
e in the proof of uniqueness of weak solutions, whi
hwill be seen later, it is assumed that f do depend on time. So the assumptions onthe initial data are as before u01(x) 2 H20 (
)u11(x) 2 L2(
)f(t; x) 2 L2(Q): (5.7)Boutet de Monvel and Choeshov's de�nition of a weak solution to the problem abovealso seems to di�er a little from the de�nition used in Chapter 4. Their de�nitionis:De�nition 5.1The fun
tions u(t; x) and v(t; x) are a weak solution of the problem (5.1) - (5.6) onthe interval [0; T ℄ ifu(t; x) 2 L1(0; T ;H20(
)) and u0(t; x) 2 L1(0; T ;L2(
)) (5.8)and if the following 
onditions are satis�ed 47



5. Uniqueness of Weak Solutions1. The equations (5.1) and (5.2) are satis�ed in the ve
tor distribution sense.2. (5.3)-(5.6) is satis�ed.3. The ve
tor-valued fun
tion t ! (u(t); u0(t)) 2 H20 (
) � L2(
) is weakly 
on-tinuous.Condition 3 in De�nition 5.1 does not seem to be satis�ed by the weak solutionde�ned in Chapter 1, but a 
loser inspe
tion will show that it is.Assume for t! t0, that u(t)! u(t0) in H20 (
)u0(t)! u0(t0) in L2(
) (5.9)where the 
onvergen
es are in the norm topology on H20 (
) and L2(
) respe
tively.Let z1 2 H�2(
) and let z2 2 L2(
). Then a fun
tional � 2 (H20 (
) � L2(
))� isgiven by �(u(t); u0(t)) = hz1; u(t)i+ Z
 z2u0(t)dx (5.10)Weak 
ontinuity of (u(t); u0(t)) 2 H20 (
)� L2(
) is shown if the following tends to0 for t! t0, sin
e � is arbitrary,�((u(t); u0(t))� (u(t0); u0(t0)))= hz1; u(t)i+ Z
 z2u0(t)dx� hz1; u(t0)i � Z
 z2u0(t0)dx= (z1ju(t)� u(t0))L2(
) + (z2ju0(t)� u0(t0))L2(
) : (5.11)Both terms tends to 0, be
ause of (5.9).Therefore it is shown in Chapter 4 that weak solutions in the sense des
ribed inDe�nition 5.1 do exist.Before stating and proving the main result of this 
hapter some notation is presented,and a 
ouple of lemmas are shown.Let u1; u2 2 H20 (
), let u = u1 � u2, let for i = 1; 2vi = �G2([ui; ui℄); (5.12)whi
h is well de�ned by Theorem 2.6, and �nally let v = v1 � v2.The operator PN is de�ned as in Se
tion 2.9, i.e. as the proje
tion in L2(
) onto thespa
e spanned by the �rst N eigenve
tors of �2, when the eigenve
tors are listed sothe 
orresponding eigenvalues satisfy 0 < �1 � �2 � � � . Let PNu = u(N) et
.48



Lemma 5.2Let u1; u2 2 H20 (
) and let kujk2 � R for some R > 0. Then there exists a � > 0,and N0 2 N , so k[u1; v℄k�1 � C1 log(1 + �N)ku1 � u2k1 + C2���N+1 (5.13)for N � N0. The positive 
onstants C1 and C2 only depend on R and �.Proof:The von Karman bra
ket 
an be written as[u1; v℄ = 2Xi;j;k;l=1�ijklDi(D2jku1Dlv) for i; j; k; l 2 f�1; 0; 1g: (5.14)Let z = D(D2u1Dv) represent a term in this sum, where D and D2 are di�erentialoperators of �rst and se
ond order respe
tively, with 
onstant 
oe�
ients.Lemma 2.24 implies that [ui; ui℄ 2 H�1��(
), for i = 1; 2 and for 0 < � < 1. Hen
eTheorem 2.6 implies that v 2 H20 (
) \ H2+Æ(
) for 0 < Æ < 1, so Dv 2 H10 (
) \H1+Æ(
). Now Sobolevs Theorem gives that Dv 2 CL1(
). Let QN = I � PN .Then k[u1; v℄k�1 � C1kzk�1� C2k(D2u1Dv)k0� C2maxx2
 jDv(x)j�Z
 jD2u1(x)j2dx� 12� C3maxx2
 jDv(x)j� C4�maxx2
 j(PNDv)(x)j+maxx2
 j(QNDv)(x)j� : (5.15)
Then Lemma 2.25 gives for N � N0maxx2
 j(PNDv)(x)j � C5(log(1 + �N)) 12kDvk1 � C6(log(1 + �N)) 12kvk2 (5.16)Sin
e Dv 2 H10 (
)\H1+Æ(
), the following is obtained by using (2.61) with 4� = �and 0 < � < 14 , and by using (2.21) and (2.53)maxx2
 j(QNDv)(x)j � C7k(QNDv)(x)k1+4�= C8k(�2) 14+�(QNDv)(x)k0� C9���N+1k(�2) 14+2�(QNDv)(x)k0� C10���N+1kvk2+8�: (5.17)Rewriting v gives v = �G2([u; u1 + u2℄). Now it follows form Theorem 2.6, thatkvkHs+4(
)\H20 (
) = kvkHs+4(
) + kvkH20 (
) � C11k[u; u1 + u2℄ks (5.18)49



5. Uniqueness of Weak Solutionsso for s+ 4 = 2 + 8� kvk2+8� � C11k[u; u1 + u2℄k8��2 (5.19)and for j = 0, 8� � 2 = �� and � =  it follows from Lemma 2.24, thatkvk2+8� � C12kuk2��+ ku1 + u2k3� � C12kuk2(ku1k2 + ku2k2) � C13: (5.20)Summing up these evaluationsk[u1; v℄k�1 � C14(log(1 + �N)) 12kvk2 + C15���N+1 (5.21)for 0 < � < 18 and N � N0.Sin
e the von Karman bra
ket is linear in both arguments, it follows from Theorem2.6, that kvk2 � C16k[u; u1 + u2℄k�2� C17(k[u(N); u1 + u2℄k�2 + k[QNu; u1 + u2℄k�2): (5.22)Now Lemma 2.24 gives for j = 2, and  = 4�k[QNu; u1 + u2℄k�2 � C18kQNuk2�4�ku1 + u2k1+4�� C19k(�2D) 12��QNuk0ku1 + u2k2� C20���N+1kQNuk2� C21���N+1: (5.23)By using the rewritten form (2.22) of the von Karman bra
ket and Lemma 2.25k[u(N); u1 + u2℄k�2 � ku(N)D2vk0� C22maxx2
 kD2vk0� C23flog(1 + �N)g 12kuk1: (5.24)Hereby the Lemma is shown. 2Lemma 5.3Let u1; u2 2 H20 (
) and kujk2 � R, for some R > 0. Then there exists a � > 0 andN0 2 N , so k[u; v2℄k�1 � C1 log(1 + �N)kuk1 + C2���N+1 (5.25)for N � N0. The 
onstants C1 and C2 only depends on R and �.Proof:The von Karman bra
ket [u; v2℄ is rewritten by using (2.23). Letz = D(DuD2(v2)) = D(DuD2GfD(Du2D2u2)g) = z(Du;Du2; D2u2)50



represent a term in this sum, where D and D2 are di�erential operators with 
on-stant 
oe�
ients. Be
ause of the linearity of all the operators involved, z 
an bepartitioned in the following wayz = z1(QNDu;Du2; D2u2) + z2(PNDu;QNDu2; D2u2)+ z3(PNDu; PNDu2; D2u2) (5.26)The norm of ea
h zj in H�1(
) is evaluated separately. Lemma 2.28 giveskz1k�1 � C1kQNDuD2G2(D(Du2D2u2))k0� C2kQNDuk1��kD2u2G2(D(Du2D2u2))k� (5.27)If (2.21) and (2.53) is used on the �rst norm on the right hand side it leads tokQNDuk1�� � ���=4N+1 kDuk1�2� � C3���=4N+1 kuk2�2� � C4���=4N+1 (5.28)and the se
ond norm on the right hand side in (5.27) is evaluated by using Lemma2.28 and Theorem 2.6kD2u2G2(D(Du2D2u2))k� � C5kDu2D2u2k��1� C6kDu2k�kD2u2k0� C7ku2k2: (5.29)Therefore kz1k�1 � C8���=4N+1 : (5.30)The evaluation on z2 is made using the same methods as above, givingkz2k�1 � C9kDuk1��̂kQNDu2k�̂kD2u2k0� C10kuk2��̂���=4N+1 kQNDu2k�̂��ku2k2� C11���=4N+1 (5.31)and for z3 kz3k�1 � C12k(PNDu)D2G2(D((PNDu2)(D2u2)))k0� C13flog(1 + �N)g 12kDuk0k(PNDu2)(D2u2)k�1� C14flog(1 + �N)g 12kuk1maxx2
 jPNDu2(x)jkD2u2k0� C15 log(1 + �N)kuk1: (5.32)Hereby the Lemma is shown. 2Theorem 5.4The von Karman equations (5.1)-(5.2) with the 
onditions (5.3)-(5.6) has a uniqueweak solution. 51



5. Uniqueness of Weak SolutionsProof:The proof of this theorem 
onsists of an analysis of the di�eren
e between twosolutions u1(t) and u2(t) to the von Karman equations. Let u = u1(t)� u2(t), andlet PNu(t) = u(N)(t). Sin
e u1 and u2 solves (5.1) with (5.2) de�ning v1 and v2, thenu satis�es u00(t) + �2u(t) =M(t)
0u = 
1u = ujt=0 = u0jt=0 = 0 (5.33)where M(t) = [u1(t); v1(t)℄� [u2(t); v2(t)℄ (5.34)The proje
tion PN and the di�erentiations 
ommute, so u(N) solves the followingproblem u00(N)(t) + �2u(N)(t) = PNM(t)
0u(N) = 
1u(N) = u(N)jt=0 = u0(N)jt=0 = 0 (5.35)By forming the s
alar produ
t with �tu(N)(t) and integrating with respe
t to t, then(5.35) givesZ t0 � ��2t u(N)j�tu(N)�L2(
)+ ��2u(N)j�tu(N)�L2(
) �d�= Z t0 �(PNM)(t)j�tu(N)�L2(
) d�: (5.36)A

ording to Theorem 2.20 the di�erentiation with respe
t to t 
an be moved insidethe integration with respe
t to x in the term �t ��tu(N)j�tu(N)�L2(
). Hen
e Leibniz'formula gives for the �rst term in the integrand on the left hand side in (5.36)Re���2t u(N)(t)j�tu(N)(t)�L2(
)� = 12�t ��tu(N)(t)j�tu(N)(t)�L2(
)= 12�tk�tu(N)(t)k0 (5.37)Di�erentiation with respe
t to t and (�2)� 
ommutes when used on u(N). Indeedfor � 2 R it follows by (2.53) and Theorem 2.20, that�t(�2)�u(N) = �t(�2)� NXn=1 (ujen)L2(
) en= �t NXn=1 ��n (ujen)L2(
) en= NXn=1 ��n (�tujen)L2(
) en= (�2)��tu(N):
(5.38)
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The se
ond term in the integrand on the left hand side in (5.36) is therefore evaluatedby Leibniz' formula, givingRe���2u(N)(t)j�tu(N)(t)�L2(
)� = �(�2) 12u(N)(t)j�t(�2) 12u(N)(t)�L2(
)= 12�t �(�2) 12u(N)(t)j(�2) 12u(N)(t)�L2(
)= 12�tk(�2) 12u(N)(t)kL2(
): (5.39)Hen
e for the left hand side in (5.36), it follows by (2.21) and (5.35),��� Z t0 � ��2t u(N)j�tu(N)�L2(
) + ��2u(N)j�tu(N)�L2(
) �d� ���� ��� Z t0 Re � ��2t u(N)j�tu(N)�L2(
) + ��2u(N)j�tu(N)�L2(
) �d� ���= 12 Z t0 �t �k�tu(N)(�)k20 + k(�2) 12u(N)(�)k20� d�= 12(k�tu(N)(t)k20 + k(�2) 12u(N)(t)k20)� C1(k�tu(N)(t)k2�1 + ku(N)(t)k22)� C2(k�tu(N)(t)k2�1 + ku(N)(t)k21):
(5.40)

The right hand side in (5.36) 
an be evaluated using S
hwartz' inequality�� Z t0 �(PNM)(�)j�tu(N)(�)�L2(
) d� ��� � Z t0 ��� D(PNM)(�); �tu(N)(�)E ���d�� Z t0 k(PNM)(�)k�1k�tu(N)(�)k1d�= C3 Z t0 k(PNM)(�)k�1k�tu(N)(�)k�1d�:(5.41)Altogether (5.36) - (5.41) givesk�tu(N)(t)k2�1 + ku(N)(t)k21 � C4 Z t0 k(PNM)(�)k�1k�tu(N)(�)k�1d�: (5.42)The proje
tion PN is bounded, and k � k�1 is a 
ontinuous fun
tion, so kPN � k�1 isbounded, with an operator norm smaller than 1, thereforeZ t0 k(PNM)(t)k�1k�tu(N)(t)k�1d� � Z t0 k(M)(t)k�1k�tu(t)k�1d� (5.43)Hen
e k�tu(N)(t)k2�1 + ku(N)(t)k21 � C4 Z t0 k(M)(t)k�1k�tu(t)k�1d� (5.44)53



5. Uniqueness of Weak Solutionsfor all N 2 N . Sin
e the operator PN is bounded the left hand side in (5.44)
onverges for N !1, whi
h leads tok�tu(t)k2�1 + ku(t)k21 � C5 Z t0 k(M)(�)k�1k�tu(�)k�1d� (5.45)for all t 2 ℄0; T [ .After rewriting M(t), the norm 
an be evaluated using Lemma 5.2 and Lemma 5.3.For t 2 ℄0; T [ there exists an N0, sokM(t)k�1 � k[u; v2℄k�1 + k[u1; v℄k�1� C6 log(1 + �N )kuk1 + C7���N+1 (5.46)for N � N0 and for some � 2 ℄0; T [. Let	(t) = k�tu(t)k2�1 + ku(t)k21: (5.47)Now is follows from (5.45), that	(t) � C8 log(1 + �N) Z t0 ku(�)k1k�tu(�)k�1d� + C9���N+1 Z t0 k�tu(�)k�1d� (5.48)The produ
t of the norms in the �rst integrand on the right hand side are repla
edby 	(t), sin
e ab � 12(a2+ b2) for a; b 2 R. The se
ond integral is evaluated by usingthat �tu 2 L1(0; T ;L2(
)), and k � k�1 � k � k0, giving	(t) � C8 log(1 + �N) Z t0 	(�)d� + C10T���N+1 (5.49)Hen
e Gr�onwalls Lemma, gives	(t) � C10T���N+1(1 + �N )C8t (5.50)For N large enough���N+1(1 + �N)C8t = (1 + �N)C8t�� �1 + �N�N+1 ��� (1 + �N)C8t�� � 1�N+1 + 1��� (1 + �N)C8t��2�: (5.51)Therefore the right hand side in (5.50) tends to 0 for N ! 1, when C8t � � < 0,i.e. when 0 � t < t0 = �C8 . Therefore u1(t) = u2(t) on the interval [0; t0[, hen
e thevalue of u( t02 ) = 0. Now the problem (5.35) 
an be evaluated starting at t02 insteadof 0 by a translation of the time variable, giving (5.50), but now for the translatedtime interval. The 
onstants � and C8 only depends on the norm of the solutions u1and u2 in L1(0; TH20(
)). Hen
e u(t) = 0 on the interval [0; 3t02 [ with the original
onvention for the time variable. Continuing this way it is shown, that u(t) = 0 fort 2 [0; T [ , meaning that the solution is unique. 254
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