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Preface

The present report is the result of a project in applied mathematical analysis on the
MATG6-term, 2001 at Aalborg University.

The theme of the project is partial differential equations and distribution theory.
Vector valued functions and vector distributions are introduced as an aid to verify
the proofs of existence and uniqueness of weak solutions of the Karman equations
presented in 7] and [8].

The notation used in this report is described in Chapter 1, which also contains a
presentation of the von Karman equations, and a definition of weak solutions.

Aalborg, 21-12-01

Line Ortoft
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Chapter 1

Introduction

The aim of this report is to give an account of the proofs of existence and uniqueness
of weak solutions of von Karmans equations, given in |7] and [8] respectively. This
chapter contains a short summary of the report, a description of the notation used
in the report and presents the von Karman equations and the definition of a weak
solution of von Karmans equations.

Chapter 2 contains within reasonable limits the definitions, lemmas and theorems
used in Chapter 3,4 and 5.

Chapter 3 presents a proof of continuity of a weak solution to the von Karman
equations under the assumption that the other conditions of being a weak solution
to the von Karman equations are satisfied.

In Chapter 4 the existence of weak solutions to the von Karman equations is shown,
by use of the model presented in Chapter 1, Section 4 in |7] by J.L. Lions.

Chapter 5 contains a proof of uniqueness of the weak solutions to the von Karman
equations. The proof follows the model presented in the article [8] by Anne Boutet
de Monvel and Igor Chueshov.

1.1 Notation

The notation used in this report is primarily the same as the notation used in [3]
and [4]. One exception is the LP-spaces which is written with an upper index instead
of a lower index.

When nothing else is assumed, then 2 € R" is open, bounded and has a smooth
boundary 0f2.




1. Introduction

The Sobolev space H*(£2) and its norm is for s € R defined by

HS(Q) = {U, S @’(Q) ‘ u = rqU for some U € Hs(Rn)}
lullzrs(0) = IEL[|U || 7= (em) ‘ u=rqU}

(1.1)

The norm on H*(Q2) N HY(2) for t,s € R is defined by

Hs(Q)NHE(Q) = || He () T | - ||Ht(9) (1.2)

Let u be a function on [0, 7] x 2, then rou(t,-) = u(0,-), i.e. the restriction to ¢t = 0,
and ru(t,-) = /(0,-), i.e. the restriction to ¢ = 0 of the derivative of u with respect
to t.

It is assumed that all Hilbert spaces are separable.

In the report a lot of positive constants C; > 0 for : € N are used. The index
symbolises that C; and C; might not be equal for i # j. The numbering is started
from ¢ = 1 within each theorem, lemma or proof.

The von Karman bracket defined below plays a central role in the von Karman
equations.

Definition 1.1
Let u,v € H?(2), then the von Karman brackets are defined by

[u,v] = D{uDjv + DiuDiv — 2D3,uD},v. (1.3)
as an element of 9'(2).

The space of vector distributions considered is 2'(0,T; H %(2)), which consists of
all bounded linear operators from C§°(]0,T) into H %(Q2).

Any other notation used in this report is either commonly used, or it is explained
in the text.

1.2 The von Karman Equations

The equations considered in this report, which are shown below, are simplifications
of the original von Karman equations.




1.3 The Concept of Weak Solutions

These equations are considered together with the following boundary and initial
conditions for ¢ €10, 7 and for z € Q

A~ N A/~
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The existence and uniqueness of a so called weak solution to the von Karman
equations are investigated with the following conditions for the initial data. For
Q =10,T[ xQ

f(t,2) € LX(Q)
UH(.I') S L2(Q)

1.3 The Concept of Weak Solutions

The definition of a weak solution to the von Karman equations is the one used in
[7].

Definition 1.2
A weak solution to the problem (1.4)-(1.9) on ]0,T[ x$ are functions u(t,z) and
v(t, x) satisfying

u(t,x) € L®(0,T; H3(Q)) (1.11)
u'(t,z) € L®(0,T; L*(Q)) (1.12)
v(t,z) € L>(0,T; H3(2)) (1.13)

and the following conditions

1. The equations (1.4) and (1.5) are satisfied in the vector distribution sense, i.e.
they are satisfied in 2'(]0,T[; H™2(Q)).

2. The conditions (1.6)-(1.9) are satisfied.

3. The functions u(t,x) and u'(t,z) depends continuously on t in the norm topo-
logy on HZ(Q2) and L?*(2) respectively.
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Chapter 2

Preliminaries

This chapter presents a number of definitions, theorems and lemmas, which are
necessary to obtain the results in the rest of the report.

2.1 Properties of some Hilbert Spaces

Lemma 2.1
Let P : R* — R" be a continuous function in R", that for some p > 0 satisfies

(P(z)|z) >0 for all x with |x| = p. (2.1)
Then there exists an x € B(0, p) for which P(z) = 0.
Proof:

Let P(z) be a continuous function in R" satisfying (2.1) for some p > 0. Assume
that P(z) # 0 on B(0, p). Consider the continuous function

T — |P(a:)|P( ) (2.2)

which is well defined as a map from B(0, p) into B(0, p). The ball B(0, p) is compact
and convex, so Brouwer’s Fix Point Theorem assures the existence of an x for which

r=— |P(a:)|P(x) (2.3)
This = satisfies |x| = p. Moreover
(P(2)[2) = =~ (P(2)|P(2)) = —p|P(z)| < 0 (2.4)

|P(a)]

which contradicts that (P(z)|z) > 0 for all z with |z| = p. Hence the assumption
P(z) # 0 on B(0, p) is wrong. Hereby the lemma is proved. O
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Lemma 2.2
Let H be a Hilbert space, and let v,, — v on H. Then the sequence (v,,) is bounded
in H.

Proof:

The sequence (-|v,)g: H — Cis a set of bounded linear operators. Fix y € H. Since
(y|vn) g — (y|v)g in C, then {(y|v,)rx} is a bounded set in C. By the Principle of
Uniform Boundedness |10, p. 31|

sup |[vn[| = sup [lva|[z- = sup [|( - | vn)ullc < oo (2.5)
neN neN neN
Hence (v,) is bounded in H. O

Lemma 2.3
Let H be a Hilbert space. If the sequence v, — v in H and the sequence u, — u in
H, then (u,|v,)g — (u|v)g.

Proof:
By Cauchy-Schwarz inequality

|(nlvn) i = (u|v) | = |(un = w|vn = V) + (un = wlv) g + (ulvn — 0)n]
< lun = wllzllvn = vlla + [(un = ufv)u| +[(vn = v|u)al
where the right hand side tends to 0. Indeed, the first term tends to 0 since ||u, —

ullg < ||un|lg + ||u||lg and (u,) is bounded (Lemma 2.2), and the last two terms
because (u, —u) and (v, — v) both tend weakly to 0. O

2.2 The Dirichlet Realisation of AZ2

In the next theorem the existence and boundedness of the inverse of the Dirichlet
realisation A% of A? is shown using the known result, that the inverse of the Dirichlet
realisation Ap of A is bounded, which is stated without proof. The domain of Ap
is H} () N H*(Q) |2, p- 317].

Theorem 2.4
Let Q C R"™ be open. Then

1. The Dirichlet realisation Ap of the operator A obtained from the triple (L*(2),
HL(Q), s(u,v)) with

n

s(u,0) = Y (Dyul D) 2(q (2.6)

j=1




2.2 The Dirichlet Realisation of A?

has a bounded inverse. Indeed, the domain of the realisation Ap is Hy(2) N
H?(Q). Then for u € H}(Q) N H?(RY), there exists a C' > 0, so

lull 3 @)nm2) < CllApulL2@).- (2.7)

2. The Dirichlet realisation A% of the operator A* obtained from the triple
(L2(Q), H2(), a(u, v)) with

a(u,v) = (Apu[Apv) 2 (2.8)

has a bounded inverse. Indeed, the domain of the realisation A%, is HZ(2) N
H*(Q).

Proof of part 2:
It is assumed that the first part of the theorem is shown.
Let v € D(Ap), then

Re a(v,v) :/ |Apv|da
Q

= ||ADU||%2(Q) (2.9)
> Chllvll gy )nmz )

> Cl||U||Hg(Q)-

According to Lax-Milgram’s Lemma A% has a bounded inverse G 3, p. 2.16].
If u e HZ(Q) N H*(Q) and v € HZ(Q) then by partial integration

(A%ulv) , Q) = (AulAv) 12y = a(u, v). (2.10)

(
Hence u € D(A%). On the other hand D(A%) C HZ(f2), according to the definition
of the realisation |3, Section 2.5, also D(A%) C H*(Q2), so D(A%) = HZ(Q)NH*(Q).
|

The anti-dual space V' of a vector space V is the set of all anti-linear functionals on
V. The anti-dual space is isometric isomorphic to the dual space, V* of V.

Theorem 2.5

Let H and V' be Hilbert spaces, let V' be densely injected in H, and let s be a
sesqui-linear form on V', that is V -elliptic. Then the associated operator is a linear
homeomorphism S : V — V.

When s is symmetric Theorem 2.5 is shown by giving V' a new Hilbert space structure
using the norm /s(v,v), because then S is a linear isometry that identifies V' and
V'
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In the non-symmetric case, it is used that S and S are injective and has closed range,
where S is the operator related to the adjoint sesqui-linear form. Now the identity

(Su,v) = s*(u,v) = (Sv,u) for u,v eV (2.11)

gives that R(S)* = {0}, hence R(S) =V, and S~ ! is continuous.

Theorem 2.5 is used on the triple (L?(Q2), HZ(2), a(u,v)) defined in Theorem 2.4.
Therefore A% is a homeomorphism from HZ(Q) to H %(Q) since V' is isometric
isomorph to V*. A more general statement which contains this result is presented
below.

Theorem 2.6
The operator A%, is a homeomorphism from H"™(Q)NHZ(Q2) onto H'(Q) fort > —2,
i.e. the inverse is a continuous operator

Gy - H'(Q) — H'™(Q) N H2(Q). (2.12)

2.3 Some Properties of H;(Q)

Theorem 2.7
Let Q C R" be open and bounded. The injection J of HZ(Q) into L*(2) is compact.

Since the injection of HZ(Q) into H'(Q) is continuous, Theorem 2.7 is shown if H'(Q)
is compactly injected into L?(Q). This can be shown for a set @ = [0, 27|", since
u € H'(Q) is equivalent to ((k)cy)kezn € [*(Z"), where ¢y, is the Fourier coefficients
of u, and (k) = (1+ |k[?)2. Now the operator K : u — (k)" cx)rezn € 2(Z") is
compact, and the inverse operator T is closed. Let (u;)jcz» € H'(Q) be a bounded
sequence, then (T'u;);ezn is bounded in [*(Z"), and hence (KTuj)jezn = (uj)jezn
has a convergent subsequence in L?(Q). Since C1Q C @ for some C; > 0 when € is
bounded, the injection of HZ(2) into L?*(2) is compact.

Lemma 2.8
Let Q be a bounded set in R*. If

u; —~u in HZ(Q) (2.13)

then the sequence (u;);en is bounded and there exists a subsequence (u;,)iuen of (u;)
with

wy,, —u in L*(Q). (2.14)

10
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Proof:

Weak convergence of u; to u in HZ(2) implies weak convergence of u; to u in L*((2),
since for v € L?(2), the injection J of HZ(Q2) into L*(Q) is weak-weak continuous.
The injection J is compact and (u;) is bounded (Theorem 2.7 and Lemma 2.2). So
{J(u;)} is compact, hence J(u;) has a subsequence (u;,) that is convergent in the
strong topology on L%(£2). Since strong convergence implies weak convergence the
limit of (u;,) is w. O

Lemma 2.9
Let Q C R" be open. Then there exists a countable basis for H:()) consisting of

functions in C§°(S2), i.e. there exists a countable set U € C§°(R2), so v € span{U}
for all v € H ().

Proof:
The realisation A% of A% has a bounded inverse (Theorem 2.4)

compact
—

Go: L2(Q) "2 H2(0) N HY(Q) L*(9) (2.15)

so GGy is a compact operator in L?(Q). The sesquilinear form a(u, v) is symmetric, so
A? is selfadjoint and closed according to Lax-Milgram’s Lemma |3, p. 2.16], hence
G, is selfadjoint |3, Theorem 2.7]. Therefore L?*(2) has an onb. U consisting of
a sequence of eigenvectors for GGy according to the Spectral Theorem of Compact
Selfadjoint Operators.

Since span((ug)gen) is dense in L?(2) and G5 is a homeomorphism from L?(Q) to
HZ(Q)NH*(Q), then span((Goug)ren) is dense in HZ(Q)NH*(Q2) and hence in HZ ().
Now span((ug)ren) is dense in HZ (), since span((Goug)ren) C span ((ug)ren)-

For N € N there exists a sequence w/,g ) € 03°(Q) satisfying
[ ||H2 < 27Nk, (2.16)

Let v € HZ(Q), and let oy, ..., a, satisfy for € > 0, that
£
v = (crus + -+ + aun) | a2 (0) < 3 (2.17)

and choose N(k) SO
u w H or e, N .
k k 2n 1+ |()ék| ’ ’

Then

||v —Zakwk |H2

| N

lo = awurlluzy + D lowlllux — w30
k=1 k=1

€ - € 1
— a —_—
2 ;| k|2n1+|ak|

<e.

IN

11
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Hence (w,(gN))NykeN is a countable set in C§°(Q2) and span((w,(cN))NykeN) is dense in
HZ(Q), since ¢ is arbitrary. O

2.4 Fractional Powers of A%

In the proof of Lemma 2.9 it was shown that the inverse of A% is a compact selfad-
joint operator and that there exists an orthonormal basis (e,,) of L*(Q) consisting of
eigenvectors of Gy = (A%)~! with corresponding eigenvalues (A,). The eigenvalues
is a bounded set of positive numbers # 0 since G5 is compact and has an inverse.
It is assumed that the eigenvalues are arranged in numerical order with the largest
first.

The spectrum o((A%)~!) = {A|\ is an eigenvalue of (A%)~'} U 0. The function
f(t) = t* is then a bounded function on o((A%)~"). Now the functional calculus for
compact operators can be used to define positive powers of ((A%)™!). Let u € L*(Q),
then

o0

(AD) ™) =D A% (ulen) 2(q) €n (2.19)
n=1
giving the negative powers (A%)"%) = ((A%)1)® These operators are injective,
because (A%) *u = 0, means that u = 0, since all the eigenvalues are positive, and
therefore (ule, )2y = 0 for all n € N, hence ker((A%)~*) = {0}. The operator
(A%)~> is selfadjoint, since f(¢) is real valued. Every Hilbert space H can for a
densely defined operator 17" be written as

H = R(T) @ ker(T™) (2.20)

so ker((A%)~*)*) = ker((A%)~*) = {0}, and then the range R((A%)"®) is dense in
L*(2), hence (A%)~“ has a densely defined inverse (A%)®.

By using the operators defined above, it is possible to define norms on the Sobolev
spaces that are equivalent with the usual norms, by

I+ llesy = [1(AD)
for —2 < s <2 and for s # :i:%,i%.

s

4 . ||L2(Q) (221)

2.5 Properties of The von Karman Bracket

The definition of the von Karman bracket (Definition 1.1) is for u,v € HZ(R")
equivalent to

[u,v] = D} (uD3v) + D3(uDjv) — 2D}, (uD?,v) (2.22)

= D, (DyuD3v — DoyuD3yv) + Do(DyuDiv — DyuD3yv) (2.23)

12



2.5 Properties of The von Karman Bracket

in 2'(Q).

Lemma 2.10
Let Q@ C R" be open and bounded. The mapping u,v — [u,v]| is bilinear and
continuous HZ(Q) x HZ(Q) — H2(Q).

Proof:
The von Karman bracket can be written as
[u,v] = Z ta,sDZuDjv (2.24)
18]=]al=2

Here o and 3 are multi-indices of length 2, and the a,g’s are constants. For u,v €
HZ(Q) each term in this sum is a product of two L?(Q2) functions, hence [u,v] €
LY (). Let w € C§°(Q) then by Sobolev’s Theorem

| (lu, o], w) [ < llw, o]l i@ llwllze < Culllu, o]llvey [wllm @ (2.25)

Since C§°(R2) is dense in HZ(), the inequality above is valid for w € HZ(Q2), hence
[u,v] € H2(Q).
Continuity is shown by evaluation the norm of one of the terms in (2.24)
la,s DauD5]| -20) < Col DauD3vl|1, (o)
S CQ||D§U||L2(Q)||D2U||L2(Q) (2.26)
< Collull gz yllvll 22 (0)-

Linearity in the first argument is easily shown by rewriting [u; + ug, v] for uy, ug, v €
HZ(2), and then the symmetry of the von Karman bracket gives the bilinearity. O

Lemma 2.11
Let 2 C R" be open and bounded. The form ([u, v]|w), s, is tri-linear and contin-
uous on HZ(Q).

Proof:
Let u,v,w € C§°(R2), then by Schwartz’ inequality
([u, v][w) 2y = ([u, v], @)
< [w, v]lla—2llwll 20 (2.27)
< CIHU“Hg(Q)||U||Hg(ﬂ)||w||Hg(Q)-
Since the von Karman bracket and the inner product both are continuous on the

dense subspace C5°(Q) of HZ(L2), then (2.27) extends to u,v,w € HZ(2) by conti-
nuity.

It can easily be shown that the inner product ([u,v]|w);sq is tri-linear when
u, v, w € C°(R), hence it extends to u,v,w € HZ(Q) by continuity. O

13
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Lemma 2.12
Let @ C R" be open and bounded. The tri-linear form ([u, v]|w) 2, is symmetric

on HZ(Q), i.e.
([u, v]|w) 2y = ([@, u]|V) 12 () = ([v, W][W) 120 (2.28)

Proof:
Let u,v,w € C3°(Q), then the following is true for the inner product on L?({2)
([u, v]|w) 2y = (D} (vD3u), ) + (D3(vDiu), W)y — (2D13(vDypu), W)

= (vDju, D7w) + (vDju, Dw) — 2 (vD1ou, D1>W)

= (D{wDju,v) + (D3wD;u,v) — 2 (D1sWD15u, v)

= ([, u][V) 2

(2.29)

Since the equations above are satisfied on C§°(Q2) they extend to HZ(£2) by continuity.
The last equation in (2.28) is shown by using the symmetry of the von Karman
bracket. a

2.6 Vector Valued Functions

Consider a measure space (M, R, u), where M is a measurable space, R is a o-
algebra defined on M, and p is a measure. Let A € R, and let V' be a vector space.
Then f(¢) is a vector valued function on A if f(¢) € V for a.e. t € A. Three kinds
of measurability of vector valued functions taking its values in a Banach space is
defined below.

Definition 2.13
Let f be defined on a measure space (M, R, u), taking its values in a Banach space
X.

1. f is called strongly measurable if there is a sequence of measurable functions
fn so that f,(x) — f(x) in norm for a.e. x € M and each f,, being a simple
function (taking only finitely many values, each value being taken on a set in

2. f is called Borel measurable if f~!(C') € R for each open set C' € X.

3. f is called weakly measurable if (f(x), ¢) is a complex-valued measurable
function for each ¢ € X*.

When a vector valued function takes its values in a Hilbert space the three kinds of
measurability are the same.

14



2.7 Integration of Vector Valued Functions

Theorem 2.14
Let H be a Hilbert space, and let f be a function from a measure space (M, R, u)
to H. Then the following three statements are equivalent

1. f is strongly measurable.
2. f is Borel measurable.

3. f is weakly measurable.

A proof of this theorem can be found in [11, p. 116].

Definition 2.15

Let 1 < p < oo, let (M, R, ;1) be a measure space, let A € R and let X be a Banach
space. Then LP(A; X) is the space of weakly measurable functions f(t) on A with
values in X a.e. for which

(/ ||f(t)||’;’(du(t)>% <, (2:30)

In addition L*>°(A; X)) is the space of weakly measurable essentially bounded func-
tions on A with values in X a.e., hence for u(t) € L*°(A; X),

ess sup [|u(t)||x < oco. (2.31)
teA

The spaces defined above equipped with the norms (2.30) and (2.31) respectively
are Banach spaces.

2.7 Integration of Vector Valued Functions

Theorem 2.16

Let (M, R, 1) be a measure space, let A € R, let X be a reflexive Banach space, i.e.
X = X**, and let f € L'(A; X). Then there is a unique element x € X such that
for all p € X*

(v, ) = / (), ). (2.32)

Proof:
For all ¢ € X*, the function ¢t — (f(t), ¢) is measurable, and

(B, ) < IFOllxlléllx- € LH(A), (2.33)

15



2. Preliminaries

so the integral [, (f(t), #)du(t) is well defined.
Now

b / (1), S)du(t) (2.34)

is a bounded linear functional on X*, since (2.33) gives

| [ G aaut) < [ (e

Hence there exists a unique x € X** = X with the properties

/ 1O xdut).  (2.35)

for all ¢ € X™. O
Theorem 2.16 can be used to define the integral of a vector valued function f.

Definition 2.17
Let X and f satisfy the conditions in Theorem 2.16. The integral of f over A is
defined by [, f(t)du(t) = .

The definition above is called the Bochner identity.

Lemma 2.18
Let (M, R, 1) be a measure space, let A € R, let X be a reflexive Banach space and
let f(t) € L'(A; X) then

H /Af(t)d“(t)HX S/A||f(t)||xd/vc(t)- (2.36)

Proof:
If [, f(t)du(t) = Ox then (2.36) is satisfied. Assume that [, f(t)du(t) # Ox, then
there exists a ¢ € X*, with ||¢||x- = 1, satisfying

H /Af(t)d“(t)HX :/A<f(t)a¢> dp(t). (2.37)

Since (2.35) is satisfied for all ¢ € X* the lemma is proved. O

The following theorem is Lebesgue’s Dominated Convergence Theorem extended to
functions valued in a Banach space.

Theorem 2.19
Let (M, R, ) be a measure space, let A € R, let X be a reflexive Banach space,
let f(t) be a weakly measurable function valued in X for a.e. t € A and let f,(t) €

16
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LY (A; X), with f,(t) — f(t) a.e. on A. If there exists a function K(t) € L*(A) for
which

|fn(®)]|x < K(t) foralln €N and for a.e. t€ A (2.38)
then f(t) € L'(A; X) and

H/fn )dp(t) /f )du(t) —>0 for n — oo. (2.39)

Proof:

Since ||fn(t)||x < M(t) for a.e. t € A, so that ||f(t)||x < M(t) for a.e. t € A, and
since f(t) is weakly measurable, then f(t) € L'(4; X). Now the following integrals
are well defined

H/f” Jdp(t) /f )dpu(t) /Ilfn — ()]l xdu(t) (2.40)

according to Lemma 2.18. Now || f,(¢ ) - ( Mx < 2M(t) for a.e. t € A, hence
Lebesgue’s Dominated Convergence Theorem for complex valued functions gives
that the right hand side and hence the left hand side in (2.40) tends to 0 as n tends
to infinity. O

Theorem 2.20

Let (M, R, ) be a measure space, let A € R, let X be a reflexive Banach space,
and let f(t,-) € L'(A;u,X) for t € R with f(-,s) norm-differentiable on R for
a.e s € A. Assume that 2 f(t s) is weakly measurable. If there exists a function
K(s) € L'(A, p), sat1sfymg|at (-,8)| < K(s) for a.e. s € A, then [, f(t,s)dpu(s) is

differentiable and
at/ftSdM /8t f(t,s)du(s (2.41)

Proof:

Assume that f is a real valued, vector valued function, since f is differentiable on R
for a.e. s € A it is also weakly differentiable. Then for a.e. s € A, and for ¢ € X*,
with ||¢||x- = 1, it follows by the Mean Value Theorem

‘ <%(f(t+ h) — f(t)),¢> - <%f(t)’¢> ‘

<2 70 + (060 (24 ) — () (1)

< K(s) +‘a— [y >(t+0h)‘ (2.42)

< K(s +‘< £t + 0h), ¢>‘
< 2K(s)
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Now Theorem 2.19 gives that ||+ (f(t + k) — f(t)) — & f(¢)]|x — 0 for h — 0.
If f is a complex valued function the theorem is shown by splitting f into the two
real valued functions Re f and Im f. O

2.8 Ordinary Differential Equations

In this section three theorems are presented, which are used in Chapter 4 to show
the existence of an approximated solution of von Karmans equations.

Theorem 2.21
Let Q € Rx C be open, let F(t,g) : Q@ — C with F(-,g) € L'(ty —¢,to +¢) for some
¢ and ty € R, and let F(t,-) be continuous. Let gy € C, then

dg
at ~ Fb9) (2.43)
9(to) = g0

has a continuous solution ¢(t) on some interval |ty — t., to + t.[ if and only if there
exists some continuous ¢(t) which satisfies

s =g+ [ Flo.g(0)do (2.44)

to

for all't €ty — t.,to + t.|[.

Theorem 2.22
Let Q € Rx C be open, let F(t,g) : Q@ — C with F(-,g) € L'(ty —¢,t, +¢) for some
¢ and ty € R, and let F(t,-) be continuous. Let F' satisfy

|E(t,g) = F(t,h)| < Cilg = h| (2.45)

for a.e. (t,g), (t,h) € Q. Then there exists a t. > 0 so (2.44) has a unique solution
on Jto — t., to + t.[.

These two theorems can be proved using the same proof ideas as in [6], since the
only difference is that F(¢,-) € L'(ty — ¢,ty + ¢) instead of being continuous, and
that it takes its values in C instead of R. Indeed, continuity is used to ensure
integrability, a quality which L' functions also possess on a measurable set, and to
ensure a supremum of F', but an essential supremum is enough. The analysis with
a complex valued function F' can be done by doing the analysing for the two real
valued functions Re F' and Im F' separately.

Theorem 2.23

Let U C C be open and bounded, and let [a,b] C R be bounded. Let Q2 C [a,b] x U,
let F(t,g) : Q — C with F(-,g) € L'([a,b]), and let F(t,-) be continuous on U, and
satisfy (2.45). Let g(t) be a solution to (2.43) defined on a maximal subinterval
lag, bo[ of [a,b]. Assume

18
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- There exists an € > 0, so g(]by — &,b]) C U.

- There exists a B > 0, so ess sup |F(t, g(t))| < B for all t € (by — &, by).
Then by = b

Proof:
The function g(t) solves (2.43), so

a(t) = go + / (s g(u))du. (2.46)

to

Let tl,tg S (bo - 6,[)0), then

ty
lg(t1) — g(t2)] < / |F(u, g(u))|du < Bty — ty]. (2.47)
to
A Cauchy sequence (t;) of numbers is formed by letting ¢; €]by — &, bo[, with &, — 0
for i — oo, hence (g(¢;)) is a Cauchy sequence, and the limit g, € U of g(t) exists
for ¢t — bg.
Assume that by # b, then Theorem 2.21 assure the existence of a h satisfying
dh

— =F(t,h
dt (7)

h(bo) = Gb

on some interval by — tp, by + tp,[, for t; > 0.

Now ¢'(t) = h'(t) on some open interval ¢y, bo[, hence on this interval g(t) — h(t) =
C, where C is a constant. Since the limits of g(¢) and h(t) on (¢4, bo) are equal for
t — by the constant C' must be 0. Therefore the function

- (t) On]ag,bo[
() = { B) on Do ot bl (2.49)

(2.48)

is a solution to (2.43) on the interval |ao,t; + by[, contradicting that the interval
|ag, bo[ is maximal, hence the assumption by # b must be wrong. O

2.9 Norms on Sobolev Spaces

In the rest of the report the norm on the Sobolev space H*(2) is written as || - ||,
which is easier to read when a lot of norms are involved.

In this section (e,,)qen is a basis of L*(Q2) consisting of the eigenvectors of A2, with
the corresponding eigenvalues ()\,;), where 0 < A; < Ay---. Consider

Ae, = A\pen (2.50)
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The left hand side A\,e,, € L*(Q), so the right hand side A%e, € L*(Q) and by
Theorem 2.6 €, € H*(Q), but then \,e,, € H*(Q), so A%e, € H*(Q2) and therefore
e, € H*(Q). Continuing this way it can be seen by using Sobolevs Theorem that

en € [H(Q) = C*(Q) (2.51)
seEN
For u € L?(Q) let Pyu be the projection of u on span(ey,...,ey), i.e.
N
Pyu = Z (ulen) 12(q) €n (2.52)
n=1

Then Pyu € C*°(RQ), a fact which will be used in the rest of this chapter without
reference.

Note that the A’s are not the same, but the reciprocal of the \’s used in Section 2.4.
With the new convention

(A%)%,, = \oe,. (2.53)

Lemma 2.24
The von Karman bracket satisfies for j = 1,2 and 0 < ¢ < 1 that

[[w, v]l|-5 < Cuillulle—yv]ls-j4u, (2.54)
and for j=0,1land 0 <¢p <O <1

ITws olll—j-0 < Collullz-orpl[v]ls—j—o- (2.55)

Lemma 2.25
Let f(z) € H}(S2) then there exists Ny > 0 so that
max |(Py f)(2)] < Ci(log(1 + A)2II£ (2.56)
for N > Nj.
Proof:
Let ¢ € C§°(2), then it follows from Cauchy-Schwarz inequality for o > 0, that
max [¢(x / |6(x)|dz

= 5 |0 ) )

-+ ( [ e liwpa) " ([ 2o "

= [|¢ll1s(Z)2.

(2.57)

20
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Let g € H'™7(Q) N Hy(Q) and § € H'7(R?) with suppg C Q and rqf = g. It is
possible to find a sequence (¢y) € C5°(R?) that converges to g in H'™(R?), i.e. for
g > 0 there exists Ny € N, so for £ > N,

165 = Gllito < e (2.58)

Sobolevs Theorem gives H'*7(R?) C C(RR?), hence the sequence ¢y, also converges
to g in C(R?), i.e. there exists a My € N, satisfying for k& > M, that

max|gx(z) — §(z)| < e. (2.59)
Therefore for k > max{Ny, My}, then by (2.57)
~ < ~ _ 7 7
max|g(x)| < max|g(z) — ¢x ()] + max|gy ()]

< e+ o2 ou ()14

(2.60)
<e+Cro e+ |1dllhto)
< Coe + Cro 2|10
Hence for g € H'™7(Q) N H () and for o > 0
max|g(x)| < Cro 2 lgll1sr (2.61)

since € was arbitrary.
The projection Py f € H™(Q)NH}(£2), so by using (2.21) and (2.52) for 0 < o < 1,
then

max |(Py (@) < Cio VAL Q)Y fllisy < Coo PlFL. (262)
Since 0 < (log(1 + Ay))™' < 1/2 for N large enough, then (2.56) is shown for
o = (log(1+ Ay))". O
Lemma 2.26
Let f(z) € H°(Q) for 0 < 0 < 1. Then for some C' >0, and 1 <p < (1 —o)7!
) p=1
p— o
p) <C | mT——m— o 2.63
ey <€ (L2 ) 7 | (269

Proof:

Let g(x) € H?(R?) be an extension of f(z). Let 5+ 3 = 1. Evaluating the LP-norm

of g using Holders inequality gives for 6 = po(2 — p)~!

Jilhsce = ([ )% @)% a(o) e " (2.64)

< ([ @¥lawka) " ([ 0 #ac) R
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which is finite since the first integral equals ||g||,, and since 26 > n = 2, making the
second integral finite. Therefore g € L?(R?) and Theorem 7.1.13 in [5] gives that
G(z) is mapped continuously into L? by the Fourier transformation.

Theorem 8.4 in [3] gives for h(x) € (R?), that h(z) = (2r)~2.Zh(x), the co-Fourier
transform of the Fourier transform. Hence for h(z) € .7(R?)

hwwzem*/"wwwwmw

= (27) 2 / eV h(—1p)dy) (2.66)
— Cih(—a).

Since the Fourier transformation is continuous on .(R?), the consideration above
extends to .#"(R?) by continuity, and therefore to H?(R?). Hence

£z < llgllzanezy = Cullgllizeeey < Collll o). (2.67)
The second integral in (2.65) can be calculated and an evaluation based on the size
of p and o gives an upper limit <7r Upp_;il) {0 the integral. Now
1 p-1
b— 2”
w) < Oy | T——— - 2.68
ey < €3 (L2 T ol (269
Which is true for all ¢ € H?(R?), with g(z)|q = f(z), hence it is also true for
infimum of ||g||, and thereby (2.63) is shown. O
Lemma 2.27

Let f(x) € L*(Q) and g(x) € H} (). Then there exists Ny > 0 so that

||(PNf)9||L2(Q) < C(log(1 + )\N))l/2||f||L2(Q)||9||1 (2.69)

for all N > Ny. The constant C does not depend on N.

Proof:
Holders inequality gives for 0 < 6§ < 1,

||(PNf)g||2L2(Q) (PNf)|2|9|2||L1(Q)
2 2
(PSP o192 3 (2.70)

_ 2 2
= ||PNf||L1‘739(Q)||9||Lg(Q)-

Lemma 2.26 is used with p = (1 — §)~! and o = 26, and then (2.21) is used giving

1-0

1PNl 2y < CillPy fllo < CHll(AD)"? P fllie) < CAYIf iz (2:71)
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for0 <o <.
Let p=60"! and 0 = 1, then Lemma 2.26 gives

1 _ gy 102
lols < (=25°) Tl (272)

Together (2.70), (2.71) and (2.72) gives

1(Px £)gll 2y < Cof™ 2NN 1l 2oy llglh (2.73)

If 0 = (log(1+ Ay)) !, then (2.69) is satisfied. O

Lemma 2.28
Let u € H?(Q) and let v € H'7#(Q) for 0 < 8 < 1. Then the following statements
are true

[uvllz2@) < Chllullsllvlli-s (2.74)
Juvlls—r < Collullgllvl[L2@)- (2.75)

Proof:
According to Holders inequality

luv]|z2(e) < Jull 2, ]l (2.76)

2
L1-B LB

Since H'=#(Q) is continuously embedded into L%, and hence H’ into L7 for
0 < 8 <11, Theorem 5.4, then (2.76) leads to (2.74).

Furthermore L7 7 (2) is continuously embedded into H'~?(€2). Therefore by Holders
inequality

Juvlls-1 < Cillunll, gz, o < Callull o, 0l o (2.77)

-1 -1 _ — _ 2-8
forp™ +q =1. Letq—Q—Bandp—m,then

luvlls—1 < Chllu]l 2 [v]le2) (2.78)

2

Now continuity of the embedding of H?(Q2) C L1-5(2) gives (2.75). 0
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Chapter 3

Continuity of Weak Solutions

A Weak solution u of von Karmans equations has to be continuously depending on
the time, or else it makes no sense to give an initial condition on u, likewise v’ has
to be continuously depending on . In order to show that these functions are in fact
continuous if the other conditions of being a weak solution are satisfied, a number
of statements has to be shown. First a sequence of functions are chosen.

It is possible to find a function h € C§°(R"), which satisfies
h >0, /n h(z)dz =1, supp h € B(0,1)
and hence a sequence of functions h;(z) = j"h(jz) satistying for j € N
h; >0, /n hj(z)dz =1, supp h; € B(0, %) (3.1)

Lemma 3.1

LetV, H, V* be three Hilbert spaces, with V' C H C V* each dense in the following,
and with continuous injections. If u € L*(0,T;V) and u' € L* (0,T;V*) then there
exists a sequence of functions (u;), that are infinitely differentiable from [0,T] to V/,
with the properties

w—u i L3 (0,T[V) (3.2)
u; — o' in Li?oc (J0,T[; V")
Proof:
Let h; be given as in (3.1) for n =1, and let
_.v [ u(t) on[0,T]
at) = { 0 on R\[0,7] (3-4)




3. Continuity of Weak Solutions

then the following sequence of functions will have the desired properties when re-
stricted to [0, 7]

w;(t) = (h; *a)(t) = / h;(t — s)u(s)ds. (3.5)
R
Each u; is well defined, since the integrand is in L'(R; V') by Holders inequality. In

order to show that u; is infinitely differentiable the difference between two function
values is rewritten as

(4 7) — uy(t) = /R (hy(t+7 — 8) — hy(t — ))a(s)ds
= /R (Wt — s)T +|7l|e(r,t — s))u(s)ds

/h'(t—s d8—|—|T|/ (1,t — s)u(s)ds
— (= ) (1) + |T|/Rs(7',t—s)ﬂ(s)ds.

It can be assumed that |7| < 1. First Taylor expansion is used to evaluate the term
|Tle(r,t —s) |3, p. 1.6]

(3.6)

ITle(r,t —5) = hj(t + 7 — 8) — hj(t —s) — hj(t — s)T

= /1(1 — )R] (t — s + 70)7%dD, (37)

therefore

1
e(rt — 5)| < |T|/ (L= 0)[H!(t — s+ 76)|dB
0 (3.8)
< |7l sup|hj(t)| < |7|Ch.
teR

Which leads to the evaluation

H/ b s)i dsHV<|T|ClH/ dsHv<|T|C'1/||u Vlvds  (3.9)

where the right hand side and hence the left tends to 0 as 7 tends to 0, since
U(s) € Liymp(R; V) € LY (R; V).
So for 7 — o0, the norm

gt 1)~ uy(0) — (B ()| =0 (3.10)

HT 14

Therefore u; is differentiable w.r.t ¢ on [0,7] for all j € N with au, = (b} *a)(t).
Continuing the same way, it can be shown that u; is infinitely d1fferentiable w.r.t t.
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To prove (3.2) it is enough for an arbitrary compact interval [a,b] C ]0,7] to show
that [lu; — u||r2(ap;) tends to 0 as j tends to infinity, but since [|u; — ul|p2¢0 1) <
||uj — 1| 2(r,vy, it can be done by evaluating the following norm

nw—ammwzafwmw—ww%w
/H/ a(t—s) —alt dsH dt
fgé(éﬂmwxmv—@—aa»MdQ a
< [ ([ mlat—9-aoas) ([ na) a

In the second step Lemma 2.18 is used, and in the last step h;(s) is placed outside
the norm since h;(s) > 0, and then Holder’s inequality is applied.
Now, by the translation invariance of the Lebesgue measure

‘/R”j(s) /R la(t = s) — a()|dt ds

Therefore Fubini’s Theorem can be used on (3.11), leading to

(3.11)

séwwwwm®mwzawm®w

g — 2y < /‘ !/nut—s —a(t)|3.dt ds. (3.12)

Because @ € L*(R; V') it is weakly measurable, hence strongly measurable (Theorem
2.14), then for e > 0 there exists a simple measurable function v(t) with the property

_ /
|t — v|| 2@,y < % Let s € [—%, %], then

(AQwu—s»—mm@wfﬂ

= la(t = 5) = (t) 2w
< aft = 9) = 0t = )|z + o0t = 5) = v(Olzay + [10(0) = GO |z
= 2w = vllar) + ot = 5) = vO)ll 2y

cl/2

<
3

+ vt —s) = v(®)||L2w,v)- (3.13)

The function v is written as

- iaklflk(t) (3.14)

Where a; € V and 14, is the characteristic function of the measurable set Aj. It is
assumed that suppv € [-1,7'+ 3] and s < 3. By using Theorem 9.5 in [12], since
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S, 14, € L*(), then

[t = ) = v(O L2y = /R lv(t = s) — v(B) Iy dt

N
= [ awla, () = Lacle = )
[71T+1] k=1
N 3.15)
< sup llal? / 3 (L () — L (£ — 5)|de
l1e{l,....N} [-1,7+1] 5
S Cg/ sdt
[_17T+1}
:CQ(T+2)8

1/2

which tends to 0 as s tends to 0, so for j large enough ||v(t —s) —v(t)||L2®,v) < S

3
Therefore
oy =l < [ 1y6o) [ late =s) = (o)

< / h;(s)eds = ¢
R

when j is sufficiently large, and (3.2) is hereby shown.

(3.16)

If it is shown that [Ju} — u'[|f2(ap;v+) — O for an arbitrary compact interval [a, b] C
10, 7] then (3.3) is proven. Consider

[1(j + a)(t) — u'(

V*_||/ h(s)a(t — s)ds — a'(t)]

v (3.17)

Let ¢(s) € C°(R), then

(0s(hj(s)u(t = 5)), ¢(s)) = (a(t — 5), —h;(s)0sp(s))
= (a(t - s), ( i(5))0(s) — 95 (hj(s)(s)))
= (Ri(s)a(t — 5),8(s)) — (hy(s)@ (t — 5), B(5))
Now the following is well defined for j large enough by Hélders inequality

/ 0, (h; (s)a(t — s))ds

. . (3.18)
J » J N

= /_; y(s)u(t — s)ds — / 1 hi(s)u' (t — s)ds.

J i

The integral on the right hand side equals Oy, so

1 1

/ hy(s)a(t — s)ds = / hy(s)i' (t — s)ds. (3.19)
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and therefore

/||h*u —a/(

y=dt

S k:|>—-

@t —s)— d(0)dsl|y-dt 0

|yt = /||/ @t — s)ds — (1))
/ 1/ o

]—)OO

Which is shown in the same way as for u above, since v’ € L*(0,T;V*), and V* is
a Hilbert space like V. O

Lemma 3.2

Let V., H, V* be three Hilbert spaces, where V. C H C V*, each dense in the
following, and with continuous injections. If u € L?(0,T;V) and u' € L? (0,T;V*)
the following equation holds in the distribution sense on |0, T[

21, =2 (o (0), w0 321
Proof:

Let u;(t) be given as the restriction of the w;’s defined in (3.5) to ]0,7[. Since
u; : 10, T[— H is differentiable

s = 5 Gy Dlus () = 2 (s (1) , =2 (), w5 0) (3:22)

Since u,;(t) and w/;(t) converges to u(t) and v'(t) in Lf,. (|0, T[; V) and L{ (]0,T[; V*)

respectively, then u;(t) and u}(t) converges to u(t) and u'(t) on V and V* respectively
a.e. for t € |0, T[. Therefore the duality <u; (1), uj(t)> converges to <u’(t),@> for
j — oo, which is shown in the same way as Lemma 2.3, where the inner product is

replaced by a duality.
Now by (3.5), Lemma 3.1 and Holder’s inequalities ||u/(¢)]

majorant to <u3 (t), u;(t )> Hence Theorem 2.19 gives that <u (1), uj(t)> converges

v+||ul|v is a integrable

to <u’(t) m> in L'([a,b]) for an arbitrary compact interval [a, b] C]0, T[, hence in

10(:(]0 TD
Likewise [Ju;(t)[|% = (u;(t)|u (1), — (u(t)|u(t))y = [Ju(t)||% for j — oo, and since
0, is continuous in 2'(]0, T'[), then d;||u;(t)||% — O¢l|u(t)||% in the distribution sense,
and hence (3.21) is shown in the distribution sense. O

Lemma 3.3
Let X and Y be two Banach spaces with X C Y, and the injection dense and
continuous. Then the injection of Y* into X* is dense and continuous.
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Proof:
Let I be the injection X — Y, then the adjoint operator [*: Y* — X*. Let x € X
and y* € Y*, then

(Iz,y") = (=, I"y") (3.23)

Now I* is injective, since for I*y* = Ox«, then (I - |y*) is the zero-functional on the
dense subspace X of Y, hence y* = Oy-.

Denseness of the injection I* is shown by using that every norm closed convex
subset of a normed space is weakly closed |9, p. 66|, so that R(I*) equals the w*
closure of R(I*). Assume that R([*) # X*, then Proposition 2.4.10 in [9] for every

x* € X*\R(I*) gives the existence of an 2’ € (R(I*))* C X such that

(z',2™) # 0. (3.24)
But the identity (3.23) is true for all z € X and y* € Y*, hence for y* € Y*
(I, y*) = (&', I"y*) = 0 (3.25)

since 2’ € (R(I*))*, but I is injective, so 2/ = O, which contradicts (3.24), hence
the assumption R(I*) # X* must be wrong. O

Lemma 3.4

Let X and Y be two Banach spaces with X C Y, and the injection dense and
continuous. Let ¢ be weakly continuous on [0,T] with values in Y and let ¢ €
L>(0,T; X), then ¢ is weakly continuous with values in X.

Proof:

Since the injection of X in Y is dense and continuous, the dual space Y* is dense
and continuously embedded in X* (Lemma 3.3).

Let n € Y*, then

n(o(t)) = (6(t),m) = (p(to),n) for t —to, V1o € [0,T]. (3.26)
Let
o(t) = { ¢(()t) o FR?Q[TO], 7. (3.27)

let h; be given as in (3.1) for n =1, and let

640) = (hy < )0) = [ st = 5)is)ds. (3.28)
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Then ¢;(t) satisfies for j € N (Lemma 2.18)

o0l = | [ mute =15

HX

< / oy 6~ B

(3.29)
< ||¢||L°o(0,T;X)/th(t — s)ds
= |8l oo (0,15x)-
Since ||¢(s)||x < oo a.e. Definition 2.17 and (3.26) gives for all n € Y*
(@50 = o0m) = ([ 1y(s) (1= 5) = () ds.n)
= [ @t =) = dte). s (3:30)
— 0.
j—00

This is seen by using Theorem 2.19, since ¢ is weakly continuous, and therefore for
j — 00, h](5)<¢(t),77> — h](8)<¢(t - 5)777>7 since s € B(07 %)
Because ¢;(t) € X by (3.29) for all j € N and for all ¢ € [0, T7,

{5 (), m| < llgsDIxllnllx < (1@l o) 0]l x- (3.31)
so in the limit 7 — oo
(@), M| < lloeorxyInllx- Vo€ Y™, ¢ €[0,T]. (3.32)

The inequality is also true for n € X* since Y* C X* densely, so ¢(t) € X** for all
t €10,7T]. Now for all t € [0, 7] and for all n € X*

(5(t) = o(t),m) = 0. (3.33)

Therefore ¢(t) is in the w*-closure of X**, which equals the w*-closure of X, which
again equals the norm closure of X, hence ¢(t) € X for all t € [0,7] and

le@llx < Molle=rx) ¥ €[0,T] (3.34)

Let n € X*, and let for ¢ > 0, . € Y* satisty

€

17— nellx- < (3.35)

3|pll Lo 0,:x)

Now

[{¢(t) — o(to), m)|

VAN

[{(t) — d(to), n — )| + b (t) — (t0), 1)

Z= -+ 1(6(0) — plto), -}

[N
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The last term tends to 0 as t tends to ¢y since ¢ is weakly continuous is Y, so there
exists a 0 > 0 satisfying |t — to] < ¢

[(o(t) — o(to), )| < € (3.36)

Since € was arbitrary the lemma is proved. O

Theorem 3.5

Let V, H, V* be three Hilbert spaces, where V. C H C V*, each dense in the
following, and with continuous injections. If u € L*(0,T;V) and v’ € L* (0, T;V*)
then u is almost everywhere equal to a continuous function from [0,T] into H.

Proof:
The function ¢ — (u'(¢),u(t)) can be considered as the composition of two Borel
measurable function as follows

Hence (u/(t),u(t)) is Borel measurable, and Holder’s inequality shows that the inte-
gral of (u'(t),u(t)) on [0,T] is finite. Therefore (3.21) gives

uwe L*0,T;H) (3.37)
Now for ¢ € C§°([0,T]) integration by parts of fOT u(t)@'(t)dt shows that condition

2 in Lemma 1.1 in [13, p. 250] is satisfied, hence u is a.e. equal to a continuous
function from [0, 7] into V*.

Therefore by Lemma 3.4 v is weakly continuous on [0, 7] with values in H, and then
for t — t5 € [0,T]

(u(®)luto)) g — (u(to)luto)) g = llulto)ll7- (3.38)
The theorem is shown if the following is satisfied for all ¢y € [0, 7] for t — ¢,
|u(t) — u(to)||3; — 0. (3.39)
Rewriting the norm gives

lu(t) = ulto) i = [lu@lF + llulto)l — 2 (u(®)|u(to)) (3.40)
Integrating (3.21) from ¢ to ty, and using Holders inequality gives for ¢t — ¢,

t

lu@)7 — [lulto) |7 < 2| t (/(5), u(8)) (- vy ds]

3.41
< 2||ul||L2(0,T;V*) u||L2(0,T;V)|t - to| ( )
— 0.
Hence (3.39) follows from (3.38), (3.40) and (3.41). 0
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Theorem 3.6
Let Q be an open and bounded set, let u(t,x) and v(t,z) be defined on [0,T] x €,
with
u(t,z) € L=(0,T; Hy(S2)) (3.42)
u'(t,z) € L®(0,T; L*(Q)) (3.43)

satisfying
e Equation (1.4) and (1.5) are satisfied in distribution sense, i.e. they are satis-
fied in 2'(0,T[, H*(Q)).

e The conditions (1.6)-(1.9) are satisfied.
Then the following is also satisfied

1. The function v(t,x) € L=(0,T; H3(Q)).

2. The functions u(t, x) and u'(t,x) depends continuously on t in the norm topo-
logy on HZ(Q2) and L?*(2) respectively.

Proof:

Since [u(t),u(t)] is a sum of products of L?(Q2) functions, for all ¢ € [0,7], then
[u(t), u(t)] € L=(0,T;L*(€2)), because for each term in the sum the norm of the
product in L'(Q) is less than or equal to the product of the norms in L?(f2), hence
the L'(Q)-norm will still be essentially bounded on [0, T].

Let ¢ > 0, let g € L'(Q2) and let ¢ € H;t*(2), then Sobolevs Theorem gives

[ (9lo) | < N9l I9ll=(@) < Cllgllzr @@l i+ (3.44)
So LY(Q) € H~'7¢(Q), and therefore
[u(t), u(t)] € L=(0,T; H ' 5(Q)) (3.45)

Now Gy is a bounded operator from H™'7¢(Q) to H>7¢(Q) N H3(Q) (Theorem 2.6)
for £ > 0, so

v(t) = —Ga([u(t), u(t)]) € L=(0,T; H* *(Q) N Hy(Q)) (3.46)

Since ||v(t)[|mz() < vl zs-<(@)nmz () the first part of the theorem is shown.

The von Karman bracket satisfies [u(t),v(t)] € L*®(0,T; L*(€)), since the norm
|v(t)||r2(q) is essentially bounded on [0,77]. Therefore the von Karman bracket
[u(t),v(t)] € L>®(0,T; H2(2)). Now u" € L>(0,T; H%(Q)), since (1.4) is satisfied
in distribution sense, and all the other terms are in L°°(0,7; H~2(€2)). Theorem 3.5
is used on both u and u’ giving that u,u' € C ([0, T]; L*(Q)). O
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Chapter 4

Existence of Weak Solutions

In this chapter the existence of weak solutions to the von Karman equations in the
stationary case and in the time dependent case will be treated.

It is assumed in the rest of the report, that A and A? are the Dirichlet Realisations
Ap and A? respectively.

It is also assumed that € R? is open and bounded and has a smooth boundary
0Q. Let @ =1[0,T] x €.

4.1 The Stationary Case

In this section the existence of weak solutions of stationary von Karman equations
will be shown. It is assumed in this section that the functions are reel valued in
order to be able to use Lemma 2.1. The problem reduces to

Au(z) = [u(z),v(z)] = f(x) (4.1)
A?v(x) + [u(z),u(x)] = 0 4.2

In the rest of the report writing the x dependents is omitted, it should be clear from
the text whether a function (or distribution) depends on x.

In the stationary case a weak solution of von Karmans equations is defined as:

Definition 4.1
A weak solution of von Karmans equations consists of two functions u,v € HZ(Q)
which solves (4.1)-(4.2) in distribution sense, i.e. in 2'(2).

It is possible to show the existence of a weak solution to the von Karman equations
under the assumption that f(z) € H~%(Q), and not necessarily in L*(Q), as it is
assumed in the time dependent case.
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4. Existence of Weak Solutions

Theorem 4.2
Let f(x) € H™*(Q2). Then the von Karman equations (4.1) - (4.2) has a weak
solution.

Proof:

Let wi,...,Wpy,... be a basis for HZ(Q) consisting of functions in C§°(Q), and
assume that the w;s are an onb. for H2(Q)) (Lemma 2.9). For 1 <i < m € N a
function w,, € span{wy, ..., w,,} that solves the following duality between functions

in 2'(Q) and 2(Q)
<A2um + [U’mv GQ([uma Um])]; wi> = <f, wi> (43)

is desired, where G5 is the inverse to A% which is well defined by Theorem 2.4.

Let v, € H3(Q) be defined by

Vm = —Go([tm, Um]) (4.4)
for u,, € span{wy, ..., wy,}.
Then u,, solves (4.3) if it solves the following for 1 <i <m
<A2um + [uma Um], wl> = <f7 wl> (45)
Ay + (U, U] = 0. (4.6)
A function u, € span{wy, ..., wy,} can for £ € R™ be written as u,,(§) = > iv, &w;.
Let P: R™ — R™ be given by
where
M = (A% (€) + [um(€), v ()], wi) — (f,wi). (4.8)

For each i € {1,...,m} the first term in (4.8) depends continuously on & according
to Lemma 2.11, since the first term equals (A%u, (&) + [ (§), vin(§)]Jwi) f2(y and
(G5 is a continuous operator, so v,, depends continuously on £. The last term in
(4.8) is just a constant for each i. Therefore P(£) is a continuous function on R™.
The aim is to use Lemma 2.1, so consider

(P©)IE) = Zm@

= > (A% (&) = [0 (), v (O], i) — (£, &)

= (A% (), 4 (©)) — ([t (E), v (O] () — (s i (E))
At By — ([ €)1 (€], 0 (€)) — (]t (€))
A () + 1A (©) By — (s ()
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4.1 The Stationary Case

According to Schwartz’ inequality [3, eq. (9.31)] and Theorem 2.4

[(Fs umEN] < Nl -2 [um (Ol 2 0) < Crll A ()| 220, (4.9)
then

(P(£),8) = [Aum(O)I72) + 1A (§)122(0) — CillAtum () lL2).  (4.10)
Hence (P(£),€) > 0 if
[ At (E)||220) = C1- (4.11)

This should be satisfied for all £, with |£| = p, for some p > 0. Let [{] = 1, and let
& = s& for some s > 0. Since the w;’s are linearly independent

| At () 2 /\ZSA Ewy(w)) P de = 5] A () 120 (4.12)

Hence it is possible to satisfy (4.11) for ¢ large enough if ||Aw,,(§)||r2(q) # 0 for all

€.
Assume that ||Au,(&)]|12) = 0 for some &, then

[um ()l mz(0) < Coll At () L2() = 0. (4.13)

Hence [[um(&)|luzi) = 0, 80 un(§) = 042(q) which contradicts that || =1 and the
w;s are independent. Therefore the assumption that ||Aw,,(£)|/12(q) = 0 for some §
must be wrong. So it is possible to satisfy (P(£'),£&') > 0 for all £ with |'| = p for
some p > 0.

Now according to Lemma 2.1 there exists a u,, € span{w, ..., w,,} that solves (4.5)
and hence (4.3).

Choose a sequence of functions (u,;,)men each satisfying (4.3) for i < m. Then it
follows from (2.7) that
2 @) + 1vmlli2 () < CalllAuml72 @) + 1Av|I72(q))
= C3(f, um)
< Cul| At 22(02)
< Culluml g2

(4.14)

So the sequence (U, )men and the corresponding sequence (v, )men are contained in
a bounded set in HZ(Q). Since HZ(Q) is a closed subspace of a Hilbert space, HZ()
is a Hilbert space, hence it can be identified with its own dual space. According to
Alaoglu’s Theorem [9, p. 70] the unit ball and hence every bounded set in HZ(€) is
w*-compact, so there exists subsequences (u,),en and (v,),en satistfying

u, — u weakly on HJ ()

4.15
v, — v weakly on H(). (4.15)
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4. Existence of Weak Solutions

According to Theorem 2.8 there exists subsequences () en and (vy)en of (w,)uen
and (v,)uen respectively satisfying

u, — u  strongly on L*({2)

v, — v strongly on L*(Q). (4.16)
Let ¢ be fixed, with v > ¢, then
(A2u7|wz~)L2(Q) - ([uy,u/”wi)Lz(Q) = (f,w;). (4.17)
Now it follows from Lemma 2.3, that
(A2u7|wi)L2(Q) = (u7|A2wi)L2(Q) — (u|A2wi)L2(Q) = (A2u|wi)L2(Q). (4.18)

Furthermore Lemma 2.12 and Lemma 2.11 gives

([U’WU’Y”wi)L?(Q) = ([whuv”q}v)m(m — ([wiauﬂv)m(g) = ([UJU]|wi)L2(Q) (4.19)

Therefore for all : € N

<A2u,wz~> - <[u,v],wz~> = (f,w;) (4.20)

Now (4.20) is true for any finite linear combination of the w;’s, hence for all w €
HZ(Q). Because C3°(Q) € HZ(2), then u, v solves (4.1) in the distribution sense.

By the definition of v, it follows by Lemma 2.12 and Lemma 2.11 that

0 = (A%]wi) ) + ([, ty]wi) o)
= (0] A%w01) oy + (Wi 5] us) 1o
( |A2wl) + ([wi, UHU) ()
( |wl) + ([u, u”wz) Q)
hence u, v solves (4.2) in 2'(Q2). O

4.2 The Time Dependent Case

In this section existence of weak solutions of the time dependent von Karman equa-
tions is shown. The time dependent von Karman equations are given by

u'(t, ) + A%u(t, ) — [u(t,z),v(t, )] = f(t, ) on ]0,T[x Q (4.21)
Av(t, ) + [u(t, ), u(t,z)] =0 on ]0,7[x Q. (4.22)
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4.2 The Time Dependent Case

These von Karman equations are evaluated with the following boundary and initial
conditions for ¢ € [0,7] and for z €

You(t,x) = yv(t,z) =0 (4.23)
yu(t,x) = no(t,z) =0 (4.24)
rou(t, ) = ug () (4.25)
ru' (t,x) = upp (o) (4.26)

The problem is investigated with the following properties of the initial data for
Q =10,T[ xQ2

f(t,z) € L*(Q)
uo(r) € HF(S) (4.27)
ui(z) € L*(Q).

The inverse G of A? (Theorem 2.4) is used to eliminate v from (4.21), when u(t) €
HZ(), then

v(t) = =Gy([u(t), u(®)]) (4.28)

Therefore if u(t) € HZ(Q) a.e. on [0,T], and then (4.21) is equivalent to

u(t) + A%u(t) + [u(t), Go([u(t), u(t)])] = f(t) (4.29)
which does not depend on v(t).

Theorem 4.3
Let (4.27) be satistfied. Then the problem (4.21)-(4.26) has a weak solution (Defini-
tion 1.2).

Proof:

Let wy, ..., W, ... be a basis for HZ(Q) consisting of functions in C§°(Q2) for all ¢ €
[0, 7] and assume that the w;s is an onb. for HZ(Q2). Let u,,(t) € span{wy, ..., w,}
for all ¢ € [0,T], then u,,(t) can be written as

U (t) = Z Gim (1) w; (4.30)

for some coeflicients g, (t).

A solution is desired to the following system of m equations for 1 < j < m

(U’Zz (t)v wj)L2(Q) + (Aum(t)v ij)L2(Q) + ([um(t)vGQ([um(t)v Um (t)])]v wj)Lz(Q)

4.31
= (f(t), wj)r2() .
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4. Existence of Weak Solutions

with initial conditions

U (0) = Ugrm € Spanfwy, ..., W],  Uoim — Upr in HZ() (4.32)

ul (0) = Ui, € spanfwy, ..., wnl,  Upm — uy in L*(82). (4.33)

m

For t € [0,7] and for u,,(t) defined by (4.30) equation (4.31) can be written as a
matrix equation

(w1|w1)L2(Q) T 0 9im (1) Fi(t, g1m(t))
: - : L= : (4.34)
0 o (Walwm) ) ]| 9 (t) Fin(t, gmm (t))
Since the matrix [(w;|w;)] is invertible the matrix equation has a solution, giving
Jim(t) = Fi(t, gim (1)) (4.35)

Where F; depends continuously on gi,, and Fj(-, gin) € L'([0,T]). The second
order ordinary differential equation (4.35) is a composition of two equations of the
type described in Theorem 2.21 - Theorem 2.23, with the initial conditions given by
(4.32) and (4.33). Therefore (4.35) and thereby (4.31) has solutions satisfying

um(t) € CH([0,T], C3°(9))
U (1) € C([0, T, C5°(2))

These solutions also satisfy that u] (t) € L*([0,T];C$°(£2)), because they solve
(4.31), with f(t) € L*(Q).

Define for ¢ € [0, T] the sequence (v,,(t))men € H3(Q) by
um(t) = =Ga([um(t), um(1)]) (4.37)
Now vy, can be inserted in (4.31) giving
(ulrln (2), wj)L2(Q) + (Aum (), ij)L2(Q) - ([um(t)7 um(t)]; wj)LQ(Q)
= (f(t),w;) L2

(4.36)

(4.38)

for 1 <j3<m.

Multiplying the first term in (4.38) by g;,,(t) and adding the equations for j =
1,...,m gives by using Leibniz’ Formula and Theorem 2.20

)SUMOICACIT IS O KA T E
= | ey

5 | oy

10

= 5o Ol
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4.2 The Time Dependent Case

Making the same evaluation on the second term in (4.38) gives that (u,(t))men and
(U (t) ) men solves

Q)|Q_)

-l O]z + [ Aum @172) = ([ (8), vm O3 (8)) 12
= (f(O)|un, (1) L2 (4.39)

It is possible to rewrite the third term using Lemma 2.12 and Theorem (2.20)

DO | —

— ([t (t), v ()] ‘U;n(t))m(m
m (1), tp, (1)] ‘Um t))L2(Q)

=— ([u
= — (D{umD3ul, + D3ty Dul, — 2D, Doty Dy Dyul, |0 | @
0

(
(
-~
1
2

o (DU, D3y, — DlDQWDIDQW)‘m)LZ(Q)
0
=— —(a[um(t)a um(t)]‘vm(t))ﬂ(ﬂ)
1
=3 (A%, (1), Um(t))m((z)
10
=157 180m ()20

In the last step 2 and A are interchanged since v,, () is continuously differentiable
with respect to t, and infinitely differentiable with respect to x.

Hence (4.39) is equivalent to
1
2(%(II w()1Z20) + 1AumOI729) + S 180 O [720) = (fO)ur () 120) (4:40)
Integrating this with respect to ¢ gives

1 1
5 Ul O 720) + 1Aum)[Z20) + 51 A0m @) 172a)

1 1
= S (I O)Z2() + 1Aum(0) 22 + 5 120m(0) ] z2(0))

4 / (F(0) 'y (0)) 2ydo (4.41)

The sequences {ug1,} and {uy1,,} are both bounded (Lemma 2.2), so {Augy,} is
bounded since [[ugim||gz(q) > [|Auoiml|L2), therefore

[triml| 2 () + 1AL |72 < Ch (4.42)
Since the initial conditions (4.32) and (4.33) are satisfied by w,,, then

Um(o) = _GZ([U'Olm; uOlm]) (443)
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4. Existence of Weak Solutions

The last term is a composition of continuous operators on wug,,, S0 the sequence
(vm(0))men is bounded.

The integral in (4.41) is also bounded, which is shown by Cauchy-Schwarz’ inequality
since

t T
| / (F(0) [t (0)) z2(eydor| < / 10y 1t (0) oy o

T 1/2 T
s(/ ||f(0)||i2(9)d0> (/ ||u:n<o>||%z(mdo)

< Ch.

1/2

Therefore there exists a constant C'3 > 0, satisfying
1
[, (0) 17200y + | AU (1) 20y + ZHAUm(t)“%?(Q) <G (4.44)

For t € [0,T] it follows by (2.7) that

{um(®)}, {vm(t)} is bounded in L*°(0,T; HZ())
{u,(t)} is bounded in L>®(0,T; L*(Q))

The Banach space L>®(0,T; X) is the dual space to the Banach space L'(0,T; X),
so it is possible according to Alauglus Theorem to extract subsequences (u,),en and

(V) en satisfying

u, —u w*on L®(0,T; H}(S))
v, v won L®0,T;H(Q)) (4.45)
u, v w on L*(0,T;L*())

Since (uy)uen converges to u on L*>(0,T; HZ(S2)) considered with the w*-topology,
then it converges weakly to v on L>(0,T; H(2)) (considered with the norm-topo-
logy). Likewise (u),),cn converges weakly to u' on L>(0,T’; L*(9)).

Let W = {w|lw € L*(0,T; H}(2)),w' € L*(0,T; L*()). Then Theorem 5.1 in [7,
p. 58| gives that T is compactly injected into L?(0,T; L*(£2)).

By evaluating the norms it is seen that L>(0,T; HZ(f2)) is continuously injected into
L*(0,T; H3(Q)) and L*°(0,T; L*(Q)) is continuously injected into L*(0,T; L?(2)).
Hence the sequence (u,)uen is compactly injected into L?(0,T; L?(f2)). Therefore
(u,)uen has a subsequence (u.,),en that converges strongly in L*(0,7'; L*(2)). Since
L*(0,T; L*(Q)) is continuously injected into L*(Q)), then the subsequence satisfies

u, — u on L*(Q). (4.46)

The corresponding sequence (v,),en converges according to (4.45) to v in the w*
topology on L>(0,T; HZ(2)).
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4.2 The Time Dependent Case

Let for 1 < j < jo, ¢; € C*([0,T7]), let ¢;(T) = 0 and let
Jo
= di(Hw;(x) (4.47)
=1

The following integral can for v > j, be written as

[ (z{@ )0y, )) iy} )

:/0 (ug(t,x)W(tax))m(Q) di

— / ! / ul(t, ) (t, x)dwdt (0.48)
// "(t, 2)(t, x)dtd
— [ (1w 05 - / ()T )t ) do

T
(g 900, 0)) gy~ [ (0 6 D1, )) g

Fubinis Theorem is used twice, because in both cases the integrand is absolutely
integrable by Cauchy-Schwarz’ inequality.

Now multiplying (4.38) by ¢;, adding the equations for j = 1,..., j, and integrating
with respect to ¢ gives for v > 7

) gy 5 [ (80 g e = [ (0
= [ 100+ O gy (49

Integration of a continuous function over the interval [0, 7] is a continuous operator,
hence Theorem (2.3) and Lemma (2.12) gives

| @)= [ (@ mm)m(mdt
%/ eyt = /0([u o)1) oyt (4:50)

For v — oo (4.49) becomes
T T T
/0 (W) ot + / (Au|AY) 1o dt — / (17, 0] oy

= [ 100y dt+ 0D, (451)

43



4. Existence of Weak Solutions

As a help to show that u;; = v/(0) a positive function n(t) € C5°([—1,T]), satistying
T
n(t)=1 fortelo, Z]

3T
n(t)=0 forte [I’T]

(4.52)
n(t)=n(—t) <1 forallt
n(t)dt = 1.
R
is chosen. Let w € span{wy,...,w; }. Then a sequence of functions 7 is defined by
() = n(kt)w (4.53)

This sequence fulfils the critirias for being defined by (4.47), hence solves (4.51) for
= 1. For the first term in (4.51)

\/ )y i (o <>|w>Lz(Q>\
- | / o () o ()2) gt — (O) )y |
- | / o () o/ (8) = O)0) o | (4.54)
0
T
< sup [u/(t) = (0) ey el 2oy / ko (kt)dt
te[0, L] 0
= sup |[u'(t) — u'(0)[| 2@ l|wllr2(0)
te0, %]

Which tends to 0 for £ — oo by Theorem 3.6, since (4.45) is satisfied.

The second term in (4.51) is evaluated by using Cauchy-Schwarz’ inequality twice

T T
[ Bttt < [ N8l At

T (4.55)
< [ 18ulogoy | Al )
0
< [|Aullzz @) | Awll L2yl ()] 22 0.1
On the interval [0, 7] the support of 7 is contained in ]0, 2], hence
0oy < [ I [ o (4.5
for k — oo, hence the second term in (4.51) tends to 0.
The third term in (4.51) gives for ¢ = n;
T
|/ ([@, vllm) 20y | < Csllullza)vllza@)llwll za@)Imell Zego.r) (4.57)
0
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4.2 The Time Dependent Case

which tends to 0 as & — co. The forth term also tends to 0. Therefore (4.51) reduces
to

(' (0)w) g2 () = (warw) (4.58)

Since 7;(0) = w. The equation above is true for j, € N, i.e. for w € span{w,|j € N}
which is dense in L?(Q2), hence u/(0) = uy;.

The inner products in (4.51) can also be written as dualities, giving for ¢ defined
as in (4.47)

_/0T<u',v>dt+/0T<Au,A@>dt_/0T<[a,v],@>dt
:/OT <f,E>dt+<u'(0),m> (4.59)

The time derivative of u'(¢) is considered, it exists as an element of 2'(0, T; H2(Q)).
Let ¢(t) € C§°(]0, T[), then u”(t): ¢(t) — H2(Q), giving the duality

(u"(t),6(t)) = — (W' (1), ¢' (1)) in H*(Q) (4.60)
This is a functional on HZ(2), hence for j € N
((u"(8), (t)) , wj) = = ((u'(2), (1)) , wy) (4.61)

Since v’ € C(0,T; L*(€2)) the last term in (4.61) is written as an integral and by the
Bochner identity (Definition 2.17)

(000 ) = [ o0 Ot
—/T<ﬁwv>wwﬁ

/¢ w;) dt

—/’wﬁxwww»w

0

(4.62)

The function ¢(t)w; is defined as described in (4.47), so for ¢ = ¢(t)w; equation
(4.59) is substituted into (4.62), which leads to

(G(8),6(2) ,/ (A%ult) = WD), (0] = £ 1) SOy ) de
:/‘§ [a®),o(t)] = £(1)6 (1), w; ) dt o)
([ tmwn—ﬂmmw%wQ
_ <<A2u aD),o(0)] — F(0),6(1)) ;)
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4. Existence of Weak Solutions

The duality in (4.63) is satisfied when wj; is replaced with any finite linear combi-
nations of the w;’s, and an evaluation of the limit gives that it is satisfied for any
w € HE(Q). Hence

(" (1), 6(0)) = (A%u(t) — [u(D), ()] ~ F(1),6()) in H2(Q).  (464)
The test function ¢(t) € C§°(]0,T) is arbitrary, so
W'(t) = A%u(t) — [u(®), v(t)] — £(2) in 2'(0,T; H 2(Q)). (4.65)

Hereby (4.21) is shown in the vector distribution sense.

Lemma 2.11 and Lemma 2.12 shows by introduction of a w € C§°(2), that
(A20(t), w) = (u,ul, w) (4.66)

which extends to w € HZ(Q2). Therefore A%v(t) = [u,u] in H2(f2), then they are
also equal in 2'(0,T; H 2(2)), and (4.22) is solved in the vector distribution sense.

It is shown in Chapter 3 that if the other conditions in Definition 1.2 are satisfied,
then (1.13) and Condition 3 are automatically satisfied. O
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Chapter 5

Uniqueness of Weak Solutions

In this chapter uniqueness of weak solutions to the von Karman equations is shown.
The problem treated is again

u'(t,x) + A% (t, 2) — [u(t, z),v(t, z)] = f(t,2) on ]0,T[x Q (5.1)
Av(t,z) + [u(t, ), u(t,z)] =0 on |0,7[x Q (5.2)
with the following boundary and initial conditions for ¢ €]0,7[ and for z € Q

You(t,x) = yv(t,z) =0 (5.3)
yu(t,x) = no(t,z) =0 (5.4)
rou(t, ) = ug(z) (5.5)
ru (@) = ugp (). (5.6)

There is a small difference between this problem and the problem treated by Boutet
de Monvel and Chueshov in [8]. In the problem they treat f do not depend on time,
but since this makes no difference in the proof of uniqueness of weak solutions, which
will be seen later, it is assumed that f do depend on time. So the assumptions on
the initial data are as before
Ugl(l') € Hg(Q)
Ull(l') € L2 (Q

)
f(t,2) € L*(Q).

Boutet de Monvel and Choeshov’s definition of a weak solution to the problem above
also seems to differ a little from the definition used in Chapter 4. Their definition
is:

Definition 5.1
The functions u(t,z) and v(t, ) are a weak solution of the problem (5.1) - (5.6) on
the interval [0,T] if

u(t,r) € L*(0,T; HZ(Q)) and '(t,z) € L®(0,T; L*()) (5.8)

and if the following conditions are satisfied

(5.7)
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5. Uniqueness of Weak Solutions

1. The equations (5.1) and (5.2) are satisfied in the vector distribution sense.
2. (5.3)-(5.6) is satistied.

3. The vector-valued function t — (u(t),u'(t)) € HE(Q) x L*(Q) is weakly con-
tinuous.

Condition 3 in Definition 5.1 does not seem to be satisfied by the weak solution
defined in Chapter 1, but a closer inspection will show that it is.

Assume for t — t;, that

u(t) — u(ty) in HE(Q)

u'(t) — u'(ty) in L(Q) (5.9)

where the convergences are in the norm topology on HZ(Q2) and L?(Q2) respectively.
Let 2 € H72(Q) and let 2, € L?(2). Then a functional A € (HZ(Q2) x L*(Q))* is
given by

Au(t), u'(t)) = (z1,u(t)) + / zou! (t)dx (5.10)

Q

Weak continuity of (u(t),u'(t)) € HF(Q) x L*(Q) is shown if the following tends to
0 for t — ty, since A is arbitrary,

A((u(t), u'(t)) — (ulto), u

(t0)))
:(zl,u(t)>+/ﬂz2u'(t)dx— Z1,U /Qz dz  (5.11)
t Q

= (21]u(t) — u(to)) g2y + (22[t/(t) — u'(t0)) 12(q)

Both terms tends to 0, because of (5.9).

Therefore it is shown in Chapter 4 that weak solutions in the sense described in
Definition 5.1 do exist.

Before stating and proving the main result of this chapter some notation is presented,
and a couple of lemmas are shown.

Let uy,us € HZ(Q), let u = uy — ug, let for i = 1,2
v, = —Gg([ui,ui]), (512)

which is well defined by Theorem 2.6, and finally let v = v; — vs.

The operator Py is defined as in Section 2.9, i.e. as the projection in L?(Q2) onto the
space spanned by the first N eigenvectors of A2, when the eigenvectors are listed so
the corresponding eigenvalues satisfy 0 < Ay < Ay---. Let Pyu = u(y) etc.
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Lemma 5.2
Let uy,uy € H(2) and let |Juj|ls < R for some R > 0. Then there exists a § > 0,
and Ny € N, so

@z, v]ll-1 < Crlog(L+ An)llur — uall + C2AVS, (5.13)

for N > Ny. The positive constants C and Cy only depend on R and f3.

Proof:
The von Karman bracket can be written as

[ag, v Z aijuDi(D3ur D) for 4,5, k,1 € {—1,0,1}. (5.14)

,7,k,l=1

Let 2 = D(D*u;Dv) represent a term in this sum, where D and D? are differential
operators of first and second order respectively, with constant coefficients.

Lemma 2.24 implies that [u;,u;] € H='7%(Q), for i = 1,2 and for 0 < @ < 1. Hence
Theorem 2.6 implies that v € HZ(Q) N H?*(Q) for 0 < § < 1, so Dv € H}(2) N
H'(Q2). Now Sobolevs Theorem gives that Dv € Cp=(Q2). Let Qn = I — Py.
Then

[, vl < Chlf2]|
< Co||(D*IDv)lo

< CQIH&X|DU (/ |D%u, (2| da:) (5.15)

< Cgl’ileaéqD'U( il

< ¢ (maxl(Py D)) + maxl QDo) o))
Then Lemma 2.25 gives for N > N

max|(Py Dv)(z)| < Cs(log(1+Av))?[[Dvll < Cs(log(1 +An)?lull:  (5.16)

Since Dv € H(Q) N H'™(Q), the following is obtained by using (2.61) with 48 = o
and 0 < # < 1, and by using (2.21) and (2.53)

IgggKQND”)(x” < C7|[(@nDv)(w)]] 1445
= Cs|[(A%) TP (Qy Du)(2) |0

(5.17)
< GO IA) 2 (Qn Do) (@) o
< CroAnZ[19llz+s5-
Rewriting v gives v = —Gy([u, u; + ug]). Now it follows form Theorem 2.6, that
vl zsra@ynuz ) = vl asra@) + Jollmzi0) < Cuilllu, ur + uslls (5.18)
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5. Uniqueness of Weak Solutions

so for s+4=2+4383
[v]l2485 < Chal[w, ur + ua]{|sp—2 (5.19)
and for j =0, 88 —2 = —60 and 6 = v it follows from Lemma 2.24, that
[v]l2485 < Cral|ulla-gryllur + ualls—y < Croflullz(fJuallz + [[uzll2) < Cis. (5.20)
Summing up these evaluations
1T, vl -1 < Crallog(L + An))z[[vll2 + CisAys, (5.21)

f0r0<[3<§andN2N0.
Since the von Karman bracket is linear in both arguments, it follows from Theorem
2.6, that
[oll2 < Cugllfu; ur + usll] -2
< Crr([[[uvy, ur + wo]ll-2 + [[[@nu, w1 + uz]||-2). (5.22)

Now Lemma 2.24 gives for j = 2, and ¢ = 4
I[@nu, ur + us]l|2 < Cus|@nulla-asl|ur + uzlli4p
1
< Cugll(AD) 2P Quullollur + usl2

< Coo Ay 1@l
< Con Ay

(5.23)

By using the rewritten form (2.22) of the von Karman bracket and Lemma 2.25

ey, ur + ol -2 < [lugvy D*vllo
2
< Capmax||D%vfo (5.24)

< Cyz{log(1 + )\N)}%HU’HI'
Hereby the Lemma is shown. O

Lemma 5.3
Let uy,us € HF(Q?) and ||uj||2 < R, for some R > 0. Then there exists a § > 0 and
Ny € N, so

1@, wa]ll -1 < Cilog(L + Aw)llully + CaAyS, (5.25)

for N > Ny. The constants C; and C5 only depends on R and [3.

Proof:
The von Karman bracket [@, vy] is rewritten by using (2.23). Let

z = D(DuD?*(vy)) = D(DuD*G{D(DuyD?*us)}) = z(Du, Dug, D*us)
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represent a term in this sum, where D and D, are differential operators with con-
stant coefficients. Because of the linearity of all the operators involved, z can be
partitioned in the following way

z = 21(Qn D, Duy, D*uy) + 25 (Py Dw,Q y Dug, D*us)
+ Zg(PNDﬂ, PNDU,Q, DQU,Q) (526)

The norm of each z; in H () is evaluated separately. Lemma 2.28 gives

|21]|=1 < C1]|Qn DuD*Go(D(DusD?us))||o
< Co]|Qn Dul|1—g||D*usGo(D(DuyD*us)) || (5.27)

If (2.21) and (2.53) is used on the first norm on the right hand side it leads to
—B/4 —B/4 —B/4
[@nDullis <AL IDulli-25 < CsAyllulle2s < CaAy (5.28)

and the second norm on the right hand side in (5.27) is evaluated by using Lemma
2.28 and Theorem 2.6

| D*usGa(D(DusD?us))||s < Cs|| Dua D*usl| g

< C|| Dugl||| D*uzl|o (5.29)
< Crllugl|2.
Therefore
a1 < GaAY (5.30)

The evaluation on z, is made using the same methods as above, giving
Iz2]| -1 < Col| Dull,_gllQn Dus|| gl D*usllo

—B/4
< Cuollully_ AN A 1Qn Dusll;_sllusls (5.31)
< Cudyy

and for z3
123]| -1 < Cra||(Py Du) D*Go(D((Py Dusz) (D*us))) o
< Cus{log(1 + Aw)}2 || Dullo]| (Px Dus) (D) -1 (5.32)
< Chaflog(1 + )\N)}%||U||1I£1§5<|PNDU2(33)|||Dzu2||o '
< Chslog(1 + An) w1
Hereby the Lemma is shown. O
Theorem 5.4

The von Karman equations (5.1)-(5.2) with the conditions (5.3)-(5.6) has a unique
weak solution.

51



5. Uniqueness of Weak Solutions

Proof:

The proof of this theorem consists of an analysis of the difference between two
solutions u;(t) and uy(t) to the von Karman equations. Let u = uy(t) — uy(t), and
let Pyu(t) = wn(t). Since uy and uy solves (5.1) with (5.2) defining v; and vy, then

u satisfies
"(t) + Au(t) = M(t
(1) + A%ult) = M) 533
You = NU = Ul—g = U'|j—g = 0

where
M(t) = [u(8), v ()] = [uz(t), va(1)] (5.34)

The projection Py and the differentiations commute, so u(yy solves the following
problem

) (1) + Augw () = PuM(2)

(5.35)
VoUN) = V1U(N) = U(n)li=0 = Uy li=o = 0

By forming the scalar product with d,u(y)(t) and integrating with respect to ¢, then
(5.35) gives

t
/0 ((0Fum)|0rum)) 2 + (A%u) ) o) )T
t
= [ (PO D100 et

According to Theorem 2.20 the differentiation with respect to ¢ can be moved inside
the integration with respect to = in the term 0, (OtU(N)|6tU(N))L2(Q). Hence Leibniz’

(5.36)

formula gives for the first term in the integrand on the left hand side in (5.36)

1

Re ((OEU(N) ()| Opu vy (t))Lz(Q)> =50 (Ovuqn) () Ovuy (t))m(sz) (5.37)
N :

= 5010ue) ®)lo

Differentiation with respect to ¢ and (A*)* commutes when used on u(y). Indeed
for a € R it follows by (2.53) and Theorem 2.20, that

A un = A" (ulen)

n=1

=0 Z A% (U|€n)L2(Q) €n (5.38)
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The second term in the integrand on the left hand side in (5.36) is therefore evaluated
by Leibniz’ formula, giving

Re ((NU(N)(t)latU(N)(t)) Lz(9)> = ((Az)m(zv)(t)lat(AQ)W(N)(t)) .
= 50 ((A2)§U(N)(t)|(A2)§u(N)(t)>L2 o (539
1 1
= §3t||(A2)2U(N)(t)||L2(Q)
Hence for the left hand side in (5.36), it follows by (2.21) and (5.35),
t
‘ /0 (w0 ) o) + (A%um) O 1, )dT‘
t
> ‘ /0 Re (07 uw)|0ru(w)) 1oy + (A2U<N>|3tU(N))Lz(Q>)dT‘

/ 0 (110 (7) 3+ 11(82) by (1)) (5.40)
t)le)
)
).

(18 112 + 1(A2) 2w

110y ()21 + [l (2)
210wy ()21 + [l (t)

The right hand side in (5.36) can be evaluated using Schwartz’ inequality

‘/Ot((PNM)(T)|8tu(N)(T))L2(Q)dT‘S/Ot

< /0 |(Py M)(7)|| -1 [|0uqwy (T)|1dr - (5.41)

) (1

m(
2
2
2
1

Q le»—* l\DIF—‘

v v

<(PNM) (7), By (T)> ‘dT

t
e / (P M) () | 1 1Bty (7) | o
Altogether (5.36) - (5.41) gives
t
10y D17, + lluen (B2 < C / Iy M) () | By () |adr. (5.42)

The projection Py is bounded, and || - || 1 is a continuous function, so ||Py - ||_; is
bounded, with an operator norm smaller than 1, therefore

/0 (P )01 Betsry (B)]| i < / NADW||-[Ou(t) | dr — (5.43)

Hence

10wy N1 + lluew (D1 < 04/ (M) ()| -1[| O (8) | -2 (5.44)
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5. Uniqueness of Weak Solutions

for all N € N. Since the operator Py is bounded the left hand side in (5.44)
converges for N — oo, which leads to

10 @)% + [[u@®)} < 05/0 (M) () |1l 9w ()| -rdr (5.45)

for all t € ]0,77.

After rewriting M (¢), the norm can be evaluated using Lemma 5.2 and Lemma 5.3.
For t €]0, 77 there exists an N, so

IM @) -2 < ([, va]ll -1+ [[[ar, o] -
S 06 lOg(l + )\N)“U“l + 07)\]_\7&1
for N > Ny and for some 3 €]0,T|. Let
U(t) = o)y + u@llL- (5.47)
Now is follows from (5.45), that

(5.46)

t t
(1) gcglog(HAN)/ ||u(7)||1||atu(7)||_1d7+09ANi1/ 10su(r) | _rdr (5.48)
0 0

The product of the norms in the first integrand on the right hand side are replaced
by W(t), since ab < 3(a?+b?) for a,b € R. The second integral is evaluated by using
that o,u € L*>°(0,7T; L*(Q)), and || - ||-1 < || - ||o, giving

t
0
Hence Gronwalls Lemma, gives
W(t) < CroT AV (1 + Ay) ! (5.50)
For N large enough
1+ v\’
)\Xril(l +AN) = (1 + Ay) P < il N)
AN+1
B 5.51
< (14 Ay) o <—1 + 1) (5:51)
AN41

< (14 Ay)“st7P26

Therefore the right hand side in (5.50) tends to 0 for N — oo, when Cst — 5 < 0,
i.e. when 0 <t <ty = c% Therefore u;(t) = us(t) on the interval [0, %[, hence the
value of u(%2) = 0. Now the problem (5.35) can be evaluated starting at 2 instead
of 0 by a translation of the time variable, giving (5.50), but now for the translated
time interval. The constants # and Cg only depends on the norm of the solutions u;
and uy in L>®(0, THZ(Q2)). Hence u(t) = 0 on the interval [0, 22[ with the original
convention for the time variable. Continuing this way it is shown, that u(¢) = 0 for

t € [0,T[, meaning that the solution is unique. O
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