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In this project we first formulate a theory of
strategy prediction in real-time strategy games
based the notion that a players strategical op-
tions are dependent on the in-game assets avail-
able. We then test a number of common training
algorithms to train multi-layer perceptrons to
predict the in-game assets of a player at time n
given information about information about the
same players in-game assets at time m, m < n.

A novel feature selection technique based on
real-time strategy game design principles is in-
troduced and tested, to address the number of
possible input features that can be extracted
from in-game assets.

A series of experiments to evaluate the
strategy prediction performance are performed
on MLPs trained with the Backpropagation,
RProp, Genetic Algorithm and two Genetic
Algorithm hybrids using Backpropagation and
RProp.
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CHAPTER
ONE

INTRODUCTION

1.1 Introduction

In the real-time strategy genre of video games, the role of the Al is both to provide challenge and the
illusion of intelligence. While human players have the ability to predict actions of their opponents,
AT opponents current lack this ability and are as such limited in the intelligence they can exhibit.
In this paper we present a method for predicting the strategy of a player derived from common
design features in the real-time strategy genre of video games which we argue can be applied to any
game with the aforementioned design features. The predictions are done by multilayer perceptrons
which are trained to use data about the in-game assets of a player to predict the same players
in-game assets at a later point in the game. We implement the solution to predict on captured
data from the game StarCraft: Brood War. Using the captured data multilayer perceptrons are
trained to use a players assets at one point in a game to predict the assets of that player at a later
point in that game.

Opponent modelling for real-time strategy games has previously been the subject of research
[2,7,14]. In [2], Schadd et al. use a hierarchical approach to strategy modelling that attempts to
classify a player strategy as one of a predetermined set of strategies. In [14] Herik at al makes a
competent general Al for 2 player competitive games using game trees a analysis of the goals of
AT in commercial computer games is presented. An approach to Al training using data mining of
expert gameplay is documented in [7] by Weber et al.

1.2 Real-Time Strategy Games

As the name implies, the real-time strategy (RTS) genre of video games has two hallmark traits:
strategic army management and real-time (as opposed to turn based) gameplay. In RTS games,
the player typically takes the role of a military commander and is tasked with controlling and
expanding an army.

In multiplayer games, the win condition is typically eliminating all assets belonging to an
opponent though it varies from game to game. Since every RTS revolves in part around construction
of an army, every RTS also has an economy system and a production system. Typically, the
economy features two resources - one general resource and one advanced resource. In the RTS
StarCraft: Brood War, these resources are called minerals and gas and units called workers must
be assigned to gather them, while in the Dawn of War series of RTS the resources are called
requisition and electricity and they are gathered by claiming points on the playing field.

Part of the challenge in RTS games is to manage resource collection and spending better
than your opponent, thereby getting more in-game assets faster. Thus much of the activity in
multiplayer games revolves around securing resources or denying resources, in an effort to limit
how many in-game assets the opposition is capable of producing. This effort to control resources
comes down to the army of the players and how well the players control the army. The units in RTS
typically perform significantly better if the player manually controls them, as opposed to issuing
a single command and waiting for the outcome. Ideally players would multitask well enough to



Figure 1.1: A screen shot of a base in the RTS "Command & Conquer: Red Alert 2".

both manage their resource collection and spending while also manually controlling their army
since that allows for both the maximal amount of units at any given time as well as the best unit
efficiency assuming the player has perfect control.

Much like strategic board games such as chess, high level play in RTS usually revolves around
opening plays. By using familiar opening plays, the players increase the chance of the state the
game enters after the opening being one they have been in before. This is important since the
game is played in real-time - it is usually too much for a player to figure out what the best option
is in an unfamiliar situation while managing the economy and controlling the army efficiently.

1.2.1 Technology Trees

One of the core design elements in RTS is the technology tree. Essentially, the technology tree
is a visual representation of the relationship between buildings and units as it is designed in
the game. In figure 1.2 we see the technology tree for the Protoss faction in StarCraft: Brood
War. Although the concept of the technology tree is the same in most RTS the nature of the
relationships it describes differs significantly from game to game. In order to provide variance,
players in StarCraft: Brood War can choose from three different factions, each with a technology
tree that is different from the other two. As an example, we see in figure 1.2 that the node labelled
Cybernetics Core is a child of the node labelled Gateway, meaning that a Gateway is required to
be present for a Cybernetics Core to be built; If a Gateway is not currently under the control of a
player trying to build a Cybernetics Core, the game will not permit it being built even if enough
resources are available.

Because of the relationships described in the technology tree, a players choice of buildings and
units is highly significant strategically. As an example, in StarCraft: Brood War a Protoss player
could opt to build a Gateway first and then a Cybernetics Core, or the player could opt for two
Gateways. In the first case, having the Cybernetics Core made means that the player will be able
to build a Stargate or a Robotics Facility as soon as resources become available, whereas in the
second case a Cybernetics Core would have to be built first. However in the second case twice the
number of Zealots could be produced at the time compared to the first case.

1.2.2 Predicting strategies in StarCraft: Brood War

StarCraft: Brood War is an economy focused RTS made by Blizzard Entertainment. Despite
the games age, there is still an active competitive multiplayer community around the game, in
particular in South Korea where it is has been and is a national sport for years at the time of
writing. Because of this community, StarCraft: Brood War is a common subject for Al research
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Figure 1.2: Part of the Protoss technology tree from StarCraft

and competitions since the game is very well understood at this point and an API for accessing
the StarCraft: Brood War engine named BWAPI is available.

In multiplayer games of StarCraft: Brood War, the players choose one of three factions to
control. These factions are Terran, Zerg and Protoss. The factions are completely unique, meaning
that there are no shared units or buildings between them - each faction has a separate technology
tree with a separate set of nodes. In standard competitive multiplayer matches the players start
out with their factions main building and four worker units (e.g. a Nexus and four Probes for a
Protoss player) and the game ends when either side has lost all buildings or surrenders. Much like
chess however, most competitive games end when a player surrenders having realized that a loss
is close to guaranteed.

In competitive multiplayer, players use several information sources to predict the strategy of
an opponent. If they know their opponent from before the game, they might know which opening
players the opponent usually favours. The playing fields used, called maps, often favour certain
strategies due to their layouts - easily defended resources encourages players taking them relatively
early while starting locations in close proximity to each other favour aggressive opening plays.
Perhaps the most important information a player can get is from see what buildings and units
an opponent has opted to invest in. Due to the technology tree restrictions, knowing what an
opponent has allows a player to rule out a number of potential strategies. As an example, if a
player sees an opponent has a large number of production buildings for a certain time in the game,
it would be reasonable to assume the opponent is going to be producing units at a higher rate than
normal and will therefore have a larger army than normal.

In StarCraft, as well as most commercial RTS, there is a large number of different in-game
assets that factor into a players capabilities. For a Protoss player in StarCraft: Brood War, there
are 31 unit and building types in the technology tree.

1.3 Possible applications

The application possibilities of a strategy prediction system for real-time strategy games have the
potential to enable Al players to closer resemble human players and offer more interesting gameplay
to the players. With the capability to predict the strategy of an opposing human player, an Al
player could can counteract the strategy of the human player intelligently. As an example, consider



an Al player that is capable of strategy prediction and which also has a set of strategies it can
execute along with data about how effective they are against commonly observed strategies. This
AT would be capable of picking a counter strategy to that of a human player opponent based on
the level of challenge desired - a poor counter strategy can be chosen if a low level challenge is the
goal or a good counter strategy can be chosen if a high level challenge is the goal.

By extending the prediction system described in this paper to work with partial information,
a system governing what an Al using the prediction system observes can be implemented. This is
an interesting prospect since this would allow a human player to hide in-game assets from an Al
player and thereby influence the information available to the AI. As an example a human player
could feint a specific strategy by allowing the AI player to observe information indicating this
strategy and then deviate from the strategy. Another way for human players to take advantage of
such a system would be to limit the observations of the AI player as much as possible, hindering
its ability to make an accurate predicting.

As such we believe that the aforementioned difficulty scaling and gameplay improvements that
could be achieved by means of the prediction system presented in this paper, the experience of
playing against an AI opponent in RTS could be significantly improved.

1.3.1 Problem Statement

The goal of this project is to provide a means for Al players real-time strategy games to predict
the strategy of an opponent, facilitating AI that more closely mimic human behaviour.

In this project we first formulate a theory of strategy prediction in real-time strategy games
based the notion that a players strategical options are dependent on the in-game assets available.
We then test a number of common training algorithms to train multi-layer perceptrons to predict
the in-game assets of a player at time n given information about information about the same
players in-game assets at time m, m < n.

A novel feature selection technique based on real-time strategy game design principles is in-
troduced and tested, to address the number of possible input features that can be extracted from
in-game assets.
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CHAPTER
TWO

THEORY

2.1 Perceptrons

Perceptrons are a class of Artificial Neural Networks based on a unit called a perceptron unit.
Perceptron units use the output function o : R™ — R defined as

o(z1, 2 ) = 1 if wog+wiz1 +woxs + ... + wpx, >0 (2.1)
L2oeeon) = 1 otherwise. ‘
where wq, w1, . ..,w, € R are called the node weights and determine the significance of each input.

The threshold value —wg ensures that the linear combination of the inputs must exceed its value
in other for the perceptron unit to give a positive output value.

The perceptron unit can be seen as representing a hyperplane in R™, in that it returns 1 if the
given input & € R™ lies on one side of the hyperplane and —1 if it lies on the other side. This
hyperplane is given by the equation WZ = 0 where @ = (wy, . .., wy).

Learning a perceptron constitutes finding the right weights and in this section we cover multiple
techniques for learning the weights of a single perceptron. The task at hand is to, given a training
set of inputs and outputs D C R™ x {—1,1}, find weights such that for each (Z,¢) € D, o(Z) =1 if
t =1 and o(¥) =0 if t = 0. Thus D contains pairs of inputs and target outputs. Note that not all
such sets can be divided by a hyperplane such that all positive target values are on one side and
all negative target values on the other and as such we cannot expect to learn successful weights
for any given training set. Training sets that can be separated by a hyperplane are called linearly
separable.

The basic idea in perceptron learning is to begin with random weights and then try each input
from the training set and adjust the weights if the output from the perceptron does not match that
in the training set. For each input & = (x1,...,x,) with target output ¢, each weight is updated
using the formula

w; < w; + Awi(f, t). (22)

We call the function Aw; the weight update rule. In the following, we describe two candidate
weight update rules.

2.1.1 The perceptron training rule

The perceptron training rule specifies a weight update rule using the formula
Awi(#,1) = n(t - o(@))a; (2.3)

where 77 € R, is the learning rate. n is usually a constant but it is sometimes set to decrease with
each iteration.

The perceptron training rule has been shown to converge towards successful weights, given that
a sufficiently small learning rate is chosen and the input data in the training set is linearly separable
[9]. The gradient descent rule, which we describe next, does not have the latter requirement.
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2.1.2 Gradient descent

The idea behind the gradient descent method is to minimize an error function over the space of
potential weights, or more precisely to find @ = argmingcpn+1 £(¥) where E is some error function.
This minimization can be done by following the gradient of the error function downwards along
the steepest descent until a local minimum is found.

A common error function is

B@) = 5 3 (ta - ol#)? (24)

deD

where Ty and ty denotes the input and associated target output of training sample d. Recall that
the steepest increase of E(w) is given by the gradient of E(w)

(2.5)

VE(@@E 8E>.

ow,’ 7 Ow,

Thus we can follow the steepest descent as intended by using the technique described in section
2.1 with the weight update rule
OF

o (2.6)

Aw; = —n

where 77 € R, is the learning rate.
Notice that the weight update rule shown above requires that we calculate the gradient in each
iteration of the learning process. Each gradient component is given by the formula

oE 5 1

5. = B2 aep(la = o(Ta))® (2.7)
= 2 gep(ta — o(Za))(—zid) (2.8)
where ;4 is the ith component of Z;. This gives us the weight update rule
Aw; =17 (ta — o(Za))ia (2.9)
deD

2.2 Multilayer Perceptrons

The perceptrons described in section 2.1 can only express linear decision surfaces or hyperplanes,
and even though compositions of perceptrons can be used with the same expressive power as most
boolean operations, they can still only represent linear decision surfaces. We often require a model
that can represent non-linear decision surfaces in order to learn arbitrary groupings.

Multilayered Perceptrons consists of multiple layers of units, such that the first layer works as
the input units and the last layer is the perceptrons output units. The units in the intermediate
layers are called the hidden units. Each unit in each layer takes as it’s input the vector consisting of
the outputs from all units in the proceeding layer. This structure is called a feed-forward network.

We need a non-linear unit to replace the perceptron unit from before. This new units output
must be a continuous function of its inputs such that it can be differentiated for gradient descent
learning of linearly inseparable training sets. One such output function is

o(¥) = o(W - X) (2.10)
where

1

= — 2.11
T+er (2.11)

a(r)

where o is called the sigmoid function. This output function will give us outputs ranged between
0 and 1.

Like the techniques we discussed in section 2.1 for learning the weights in single-unit percep-
trons, the Backpropagation method for learning the weights in a MultiLayered Perceptron (MLP)

12



involves minimizing an error function. The error function we use is similar to 2.4 but modified to
sum the errors of all the output nodes.

E(w) = % S>> (tke—ok)? (2.12)

deD keoutputs

where outputs is the set of output units, o, is the output for unit £ when given input from training
sample d and tj, is the target output of node k associated with training sample d.

Where the error function in 2.4 only has one minimum, the one in 2.12 can have multiple
local minima. A consequence of this is that a gradient descent technique might only find a local
minimum rather than the global minimum. However the Backpropagation method, which is a
gradient descent technique, has been shown to get good results in many applications [9]. One
method for compensating for the presence of local minima is momentum, which will be discussed
later.

The Backpropagation algorithm works as follows:

Algorithm 1: Backpropagation algorithm [9] p.98

Input: Network, T, n
Network is a Feed forward Neural Network using sigmoid units with n;, input nodes, 1,y
output nodes, Nhiddennodes hidden nodes, and nniddeniayers hidden layers.
T is a set of training samples, where each sample (Z,) € T' consist of an input vector # and
the corresponding target output vector .
7 is a learning rate parameter

1 Initialise every weight w;; in Network to small random numbers, where wj; is the weight
between neuron ¢ and j

2 while termination condition is not met do

3 foreach (Z,1) € T do

4 Input Z to the input units and compute the output of every unit in the network.
5 foreach output unit k in output layer do

6 §k :ok(lfok.)(tkfok.)

7 where oy, is the output of k and t;, is the target output of k as given in .

8 end

9 foreach hidden unit h in hidden layers do
10 on = Oh(l - Oh) Zkénext layer WinOk
11 where oy, is the output of h, wgy, is the weight of the input from k in h and Jy, is

the error term of k.

12 end

13 foreach wj; in Network do

14 Awj; = nd;jxzj; , where ;; is the input value from neuron ¢ to neuron j

15 Wj; = Wj; + iji

16 end

17 end

18 end

To help overcome local minima, we can make the update of the weights in one iteration depend
partially on the updates that occurred at the previous iteration. This is referred to as adding
momentum to the Backpropagation To do this, we replace the update rule on line 14 of the
algorithm with

ij‘i(?’l) = ndjxji + aiji(n - 1) (213)

where Awj;(n) is the weight update of iteration n and 0 < o < 1 is the momentum constant.

Adding momentum to the Backpropagation has an effect analogous to the effect of momentum
on a ball rolling down a slope. It will let the gradient descent overcome comparably shallow
local minima, however there is no guarantee that it will not overcompensate and thus render the
algorithm incapable of finding the global minimum.

13



2.3 Resilient Propagation

As discussed in section 2.2 the back propagation algorithm does require one to chose suitable
learning rate and momentum parameters. If one chooses too small parameters convergence towards
a minimum will take an undesirable amount of weight updates, and too large parameters will lead
to oscillation around the minimum. Various modifications of the basic back propagation algorithm
have been proposed to adapt the parameters to the specific problem during optimisation However,
as Riedmiller and Braun [11] points out, most of these proposal disregard the effect of varying size
of the partial derivative in the weight update rule, seen below:

E —+ aiji(n — 1)

Awji(n) = ~n7
ji

A carefully adapted learning rate  and momentum « can suddenly be less than optimal de-
pending on the behaviour of the partial derivative. Therefore in Riedmiller and Braun’s RProp
algorithm, also referred to as Resilient Propagation, only considers the sign of the partial derivative,
i.e. whether the error related to weight w;; is decreasing or increasing.

RProp uses a individual weight update value w;; to vary the size of the weight change, which
is determined as:

OFE =1  ap @)

oA if . >0
K i ! ow;; ow;;
AD — 5 1) JoR) 2.14
T e 2B OB (214
8’(0]'1; 8wji

t—1
AL

where 0 <~ <1 <nt

The intuition for the step size rule is if the partial derivative changes its sign, the step taken
last iteration was too large, and thus a smaller one needs to taken next time, if the sign stays the
same a larger step is taken to speed up convergence towards the minimum.

Once the step size has been determined, the weight delta for this iterations is given by:

OE ®
ign(Al), if 0
Aw](i) _ Slgn( Ji )’ 1 8wgz 3& (215)
0, else
wi = w® 4+ Awl? (2.16)

However, if partial derivative changed sign, it means that weight has been pushed past the
minimum and the previous weight change was too large, therefore the change is undone with the
following rule:
oE =V 9p ®
ﬁwji . 87,Uji

Al = —AwlTY | if <0 (2.17)

The sign function used in the weight update rule 2.15 is defined as:

1,ifn>0
sign(n) = ¢ —1,ifn <0 (2.18)
0,ifn=0

Putting it all together one gets the algorithm in 2. The parameters A,,., and A,,;, are
introduced to cap the minimum and maximum step size taken, values suggested by the authors
are 0.000001 and 50, and a initial Aj; value of 0.1.

Research [11], [5] shows that Resilient Propagation out performs other propagation methods
such as Back Propagation, SuperSAB, Quickprop and the conjugate gradient method (CG), both
on constructed test cases and in some real world data tests. However, as the weight rules focus
entirely on the sign of the gradient, the algorithm will zero in on the nearest local minimum with no
mechanism such as Back Propagation’s momentum to nudge itself out of a small local minimum.

14



Algorithm 2: RProp algorithm with weight backtracking [11]

Input : Network
Network is a Feed forward Neural Network using sigmoid units with n;, input nodes, 1yt
output nodes, npiddennodes hidden nodes, and npiddentayers hidden layers.

1 foreach wj; do

5 if B?UEj'z (t,l) . %(t) > 0 then
s |1 AB (A gt A
4 Awﬁ) = —Sign(%(t)) ' A;?
o |l s sl
6 end
.0 O (t=1) g ()
7 else if Dw; “a;  <0then
8 Agi) = max(Aﬁ_l N7 Amin)
R R RN
oE () _
10 owj; 0
11 end
12 else if B‘zJE e, a?DE]i " =0 then
s Aw'h = _sign(%m) A
14 w§§+1) = wg(:) + ij('?
15 end
16 end

2.4 Using Genetic Algorithms to Train Artificial Neural Net-
works

While the Backpropagation algorithm has been used successfully to train ANNs for decades, it does
have a drawback. The gradient descent method as the name suggests locates a minimum by taking
steps proportional to the negative of the gradient However, there is no guarantee that the located
minimum is the global minimum of the function being optimised, as the algorithm essentially gets
stuck in whatever minimum it has descented into. [9]

Just as gradient descent, genetic algorithms are a general approach to searching for a good
candidate in a hypothesis space. The name, genetic algorithms, stems from the inspirations that
led to their creation - the natural selection and mutation occurring in nature. A basic example
of a genetic algorithm can be described in the following steps, where a predefined fitness function
determines the appropriateness of a selected hypothesis:

2.4.1 Representation of hypothesis and operators

The original genetic algorithm expressed hypothesises as strings of bits, with non-boolean variables
encoded as a section of the bit string. According to Yao [16] there is research that suggests
the binary representation might not be the optimal encoding. In the context of using Genetic
Algorithms for weight training of Artifical Neural Networks (ANN), real valued hypothesises have
been used with success in many experiments [10] [16]. Each hypothesis is expressed as a vector of
real values, where each real value is a connection weight.

Selection Operator

The selection of the hypothesises that are allowed to reproduce in line 4 is generally carried out
probabilistically in a way such that the chance of a hypothesis being selected is related to fitness
value of the hypothesis under consideration. The number of hypothesises selected in line 4 and
the number of offspring produced in line 5 is balanced such that a set fraction of the population is

15



Algorithm 3: A Basic Genetic Algorithm [9] p.251

Input : p,cr,m

p is the size of the genetic population.

cr is the fraction of P to be replaced with new hypothesises created by crossover.

m is the fraction of P to be mutated.

Output: The hypothesis with the best fitness value found.

Start with a random population P with p hypothesises.

Evaluate: foreach Hypothesis h in P do find fitnesspy

while termination condition not met do

Selection: Probabilistically select (1 — ¢r)p hypothesises from P and add them to Ps.
Crossover: Probabilistically select “5 pairs of hypothesises from P and produce
offspring from these pairs by applying a crossover operator. Add the offspring to Ps.
Mutation: Select m - p hypothesises from Ps and apply a mutation operator to them.
New Generation: P = Pg

Evaluate: foreach Hypothesis h in P do find fitnessy

end

10 return hypothesis from P with the best fitness.

R W
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Binary | Real
00101110 01100110 0.1
00111000 00000000 0.5
10111010 00000000 | -0.75
00111101 01011001 | 1.337
10111011 11010111 0.98
01000100 01010100 4.33

-0 |0 [T

Figure 2.1: Two possible encodings of the weights in the illustrated ANN. Binary encoding using
half precious floating point, and real valued weights.
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Figure 2.2: Crossover Examples

replaced by new offspring each iteration. A constant r controls the fraction of the population that
is replaced by offspring such that (1 —r)|P| members of P is selected in line 4. In line 5, T|2P | pairs
of hypothesises is chosen and two offspring is produced for each pair.

One commonly used selection method is the fitness proportional selection method, often also
refereed to as roulette wheel selection. The chance of a hypothesis being selected is given by the

probability Pr(h) = % The whole selection method can be seen in algorithm 10.

Algorithm 4: Roulette Wheel Selection Operator
Input : P, n
P is the population to select from
n is number of hypothesisses to select
Output: S set of selected hypothesises

1 Psorteq = P sorted in descending order of fitness

2 while ||S|| < n do

3 select random value roll in the interval [0, 1]

4 repeat

5 h = next member of Psyyied

6 accumulated = accumulated + Zhiepiﬁt:’i?fit"ess
7 until accumulated < roll

8 S=SUh

9 Psorted = Psorted \ h
10 end

Crossover Operator

The reproductive step of line 5 in the general genetic algorithm described earlier requires a crossover
operation. This biologically inspired process takes two parent hypothesises and combines the
genome of each parent to produce a new offspring hypothesis. Some common crossover operations
for bit strings are shown in figure 2.2.

Mutation Operator

To improve the search efficiency, new genes that necessarily a part of the populations’ genome
are introduced with an mutation operator With a binary representation the mutation is relatively
simple, flip a given number of bits in each hypothesis chosen to be mutated. Montana and Davis [10]
suggest some mutation operators that work on real value representations, by selecting a set of
weights based on a criterion and then either replacing the weight with a random value or adding
a random value to the current weight. They show that adding a value to the weight instead of
replacing the weight entirely performs better. They posit this is because the current weight has
been chosen through generations of well performing weights. The current weight will therefore
perform better than the average newly randomly chosen weight, therefore it is better to centre the
mutation around the current weight than 0. The weight selection criteria used in their tests are
either selecting a number of random weights, selecting weights belonging to a number of neurons,
or targeting the weights of weak neurons for mutation. The strength of a neuron is defined as the
difference between the performance of the network with neuron enabled and disabled by setting
its input weights to zero.

17



2.4.2 Hybrid Training

Yao [16] points out in his overview article that are a lot of conflicting results on whether global
search using evolution algorithms (EA), such as a Genetic Algorithm, or local searches, e.g. back
propagation, perform better at finding ANN connection weights. He attributes it to the difference
in the particular details of the global and local search methods used and the problem used to
compare the search methods. One approach that has been used with success is to combine a global
and local search method when training ANN weights. The aim is to avoid the downsides each
method, EA have trouble fine tuning weights quickly while local searchs tend to get stuck in a
local minimum. The use of a Genetic Algorithm and a Back Propagation algorithm is a common
combination [8,16] that has encouraging results in a lot of experiments. However, Kitano [6] found
in his testing that as the network complexity rose even the GA-BP combination was out performed
by the Quickprop algorithm.
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CHAPTER
THREE

PREDICTION

This chapter begins with an explanation of our prediction methodology and limitations in section
3.1. In section 3.2 we go over the theory behind the feature selection method used and in section
3.3 the handling of data through out the data extraction, MLP training and prediction processes
is outlined.

3.1 Prediction Overview

The central concept in our strategy prediction method is that the potential strategies a player can
execute is dictated by the units and buildings available, which means that if we know what units
and buildings a player has available at a certain time the strategies that player can execute can be
inferred. To allow for brevity we refer to the units and buildings belonging to a player at time ¢
during a game of StarCraft: Brood War as the game state of that player and the values of buildings
and units in the game state as game state variables.

Definition 1 (Game State) We define a game state as containing the following:
e The time, t, at which the game state was captured as an integer.

e The number of each unit and building type observed as a set of integers, the game state
variables.

During the course of a competitive game of StarCraft: Brood War, several factors are introduced
which makes prediction more complex. As the game progresses players will in general expand their
economies and advance through the technology tree. A consequence of this is that prediction
becomes more complex, as the player has more resources to allocate, more ways to spend resources
and a higher chance of player error due to the more complex situation. Additionally the chance of
a player losing buildings and units increases as the game progresses, making it harder to predict
future game states.

The presence of losses in the data presents an interesting choice: Should losses of units and
buildings be reflected in Game states? As stated in 1.2, players of RTS will commonly stick to a
small set of strategies because of the advantage of familiarity. Because the strategic options of a
player is dictated by the Game State of the player, the same strategy will usually work towards
a certain goal game state. If the purpose of our predictions is to identify the goal state a player
is working towards, any losses the player sustains has the potential to act as noise. Alternatively,
if the purpose of our predictions is to identify the exact game state a player will be in at a later
point, knowing the exact game state at present could be beneficial.

Experiments comparing the performance of both game state variants are documented in this

paper.

Definition 2 (Prediction) We define a prediction to be a real number corresponding to a real
number in the target game state.
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Figure 3.1: The Technology Tree for the Protoss faction.

3.2 Feature selection using Technology Trees

The feature selection employed in our experiments relies on knowledge of the technology tree of
the three factions in StarCraft: Brood War.

As can be seen from the tree structure in figure 3.1, a parent node either unlocks or produces
its child nodes. Thus for a unit or building of a certain type to be made, buildings of all its parent
types must be present. While parents in unlocks connections only need to be present for the child
to be built, parents in builds connections are occupied for a certain amount of time in order to
produce a single unit or building of the child type. For these reasons, the parents in the technology
tree of a given node are good candidates for input features.

Less obvious candidates for feature selection include the variables related to resource gathering
and variables indicating alternate technologies. Each playable faction has 2 variables related to
resource gathering - a worker and a resource dump. For the Protoss faction, the variables related to
resource gathering are the Probe and Nezus variables. Since these variables indicate the income of a
player, they also indicate how many resources a player can spend in the timespan between the data
point and time we predict at. Since technology requires an investment of resources by the player,
effective strategies often rely on few technology buildings in the early game. If an investment in
technology other than the parents of the variable predicted on is observed it indicates the player
intends to allocate resources to something unrelated to the variable predicted on.

As an example, consider the feature selection in figure 3.2. This feature selection is meant for
predicting the number of Dragoons present at a certain time during a game and contains the parents
of the Dragoon node (Gateway and Cybernetics Core), the Protoss faction economy nodes (Probe
and Nexus) and four Alternate Technology nodes (Zealot, Citadel of Adun, Robotics Facility and
Stargate). The importance of the Gateway and Cybernetics Core inputs derives from the fact that
they are requirements for the construction of Dragoons. If no Cybernetics Core is present at the
time of the input game state, then it will have to have been built and subsequently Dragoons would
have to have been built for there to be an increase in Dragoons by the time of the target game
state.

The economic nodes are similar, in that all units and building require resources to be spent. It
may be that the player has enough Gateways to produce 6 Dragoons between the input time and
the target time, but only has enough income to make 5.

The Alternate Technology nodes are meant to provide information about investments in tech-
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nology that is not related to the variables predicted on. In this case, the Robotics Facility and
Stargate buildings are unit producing structures and could limit the amount of Dragoons made
since they require resources to make and to produce units. Since the Zealot is also a child of the
Gateway node via a builds connection, it could be the players strategy to make Zealots with his
Gateways instead of Dragoons and thus knowing how many zealots a player already has is useful.
Lastly the Citadel of Adun has a unlocks connection with the Templar Archives building, which in
turn has unlocks connections with the High Templars and Dark Templar units. These two units
are also children of the Gateway node through a builds connection and could therefore indicate
that the Gateways are not going to be making Dragoons.

3.3 Prediction Pipeline

This section describes how data is extracted from StarCraft and used throughout the MLP training
and prediction processes. As discussed in section 3.1, the training data we use is in the form of
game states which we have to extract from StarCraft replays. In video game terminology, a replay
is a file containing most information about the events of a single match or level. In Real-Time
Strategy games replays normally contain all the necessary information to recreate a multiplayer
match. As such, the data need to train our prediction MLPs can be generated from replays.
Replays in StarCraft: Brood War are essentially records of player actions rather than actual game
states. Because the game engine executes deterministically, in order to play a replay the game
simply interprets the recorded actions in the replay as player actions, leading to the exact same
course of events as transpired in the original game. In order to get information about the game
state throughout a replay, we made replay dumper plug in using BWAPI, an API for interfacing
with the StarCraft: Brood War game engine, that can monitor unit and building numbers from
the StarCraft: Brood War engine as it is playing a replay. The game states extracted from a replay
is stored on disc separately from the remainder.

3.4 Creating Data from StarCraft Replays

StarCraft replays only contain information about the players’ actions, so to get the state of a
game at time ¢ one need to play it back using the StarCraft engine. BWAPI [12] is a library that
provides an API to interface with the StarCraft: Brood war client memory. It allows a developer
to access the state of the game and issue orders to units to play the game as a player. In the
previous semester [1] the authors developed a plug in using BWAPI to dump the state of the game
every time it changes. By a game state change it meant every time a unit or building is created or
destroyed in the game. Upon the end of the game replay, all this state information is then dumped
into a file using a custom file format. This plug in was improved by adding support for non-protoss
players and players that observe a game by joining it as a player.
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3.5 Creating Training Data

The actual parsing of the generated game state data is done by a slightly improved version of
the parsing library written in C# from the authors’ last semester [1]. Our training data creator
program turns this game state information into a .NET serialised instance of the TrainingData class,
with using the classes seen in figure 3.4. The game state data is loaded into a series of instances
of the TrainingInstance class, with only the information about the state of the game for every
interval seconds. Each Traininglnstance instance represents a strategy taken by a player against
an opponent, expressed as a series of time and game state pairs as explained in section 3.1. Each
replay of a two player game will produce two TrainingInstances. The TrainingInstanceCollection
acts as a container class for Traininglnstances that is mainly responsible for loading and storing
the game state data.

Once a TrainingInstanceCollection has been created, the TrainingDataFactory’s methods can
be used to create a TrainingData object. The arguments given to the factory method determine
which data is put into created TrainingData object. The actual TrainingData object consists meta-
data properties about the games included, which inputs and outputs are included and how they
are encoded, and the actual data. The training data is stored as input and output arrays of double
precision floating point numbers encapsulated in a TrainingSet object. If cross validation is desired,
factory method will create split the data into multiple TrainingSet object. The TrainingSet class is
taken is a part of the NeuronDoNet [15] framework. Finally the constructed TrainingData object
is serialised and compressed using the gzip algorithm [3,13]. The compression step reduces the on
disk size of the serialised TrainingData object by 10 to 20 times.

3.5.1 Input and Output Encoding

Each value in the input vector is either an amount of how many units of a certain type existed in
the game state, or the game time in seconds for that game state. There are two possible output
encodings, either using a single output per predicted unit, or using a 1 of n representation for
each unit. Given a game state with an amount m of a particular unit, each output value o; where
1 # m is set to 0, and o,, is set to 1. When using the 1 of n encoding the difference in the highest
scoring output value and the next highest scoring output can be seen a confidence measure in the
prediction.

3.5.2 Input and Output Normalisation

As the neurons with a sigmoid activation function used in the experiments are only able to output
values in the range of ]0, 1], the training output values have to be in that range. However, because
the sigmoid function has two asymptotes at y = 0 and y = 1, as illustrated in figure 3.5, it is hard
for the training algorithms to optimise the input weights for the entire output range. Therefore
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the output values are normalised in the range of [0.05,0.95]. The input values are normalised into
the range of [0, 1]. For both input and output normalisations, the factors are stored in the created
TrainingData object, so values can be denormalised again.

3.6 MLP Training

The experiments are performed with an MLP that uses an input layer using linear activation
functions, a hidden layer and an output layer, both using sigmoid activation functions. The input
and hidden layer each contain a bias neuron. This is a neuron that always outputs the value 1 and
is unconnected to any neurons in the previous layer. As the input from bias node is always 1, the
input weight applied to it essentially shifts the output value’s centre, i.e. to output a value close
to 0 when the input is near 1. This allows the neuron to adapt to a constant component in its
input. An example of such an MLP is shown in figure 3.6.

The experiment framework initially used NeuronDotNET 3.0 [15] as its MLP implementation
which is an open sourced (GPLv3), easy to understand MLP library with a Back Propagation
training algorithm. However, the way the training algorithm is designed means it’s hard to add
another training algorithm to it cleanly, and the design of the Feed Forward Network classes means
causes performance penalties. The library was refactored by the authors. The Back Propagation
algorithm was put into its own class to ease the use of alternative training algorithms. And the
bias threshold value on each neuron was changed into a bias neuron for each non-output layer, this
means bias values become just another a input weight and training algorithms only need a single
weight update rule, rather than a separate rule for weights and bias thresholds.

The Encog DotNet Neural Network Framework [4] contains a highly optimised Feed Forward
Network and Back/Resilient Propagation implementation, a test experiment using our framework
shows that Back Propagation is roughly 8% times as fast using Encog compared to NeuronDotNet.

To hide the complexities of multiple MLP types and training algorithms two interfaces were
defined ITrainer for training algorithms and IFeedForwardNetwork for the two MLP types. The
definition of both interfaces and the classes that implement them can be seen in figure 3.7. MLPs
and Training Algorithms are not completely interchangeable Breaking the tight coupling between
Encog’s array based FlatNetwork MLP and its training algorithms would introduce performance
reducing indirection and not to mention a lot of refactoring work. Therefore training algorithms
deriving from the BaseEncogTrainer class require a EncogMLP network, likewise classes deriving
from the BaseNeuronDotNetTrainer require a NeuronDotNetMLP network.
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3.7 Genetic Algorithm implementation

The genetic algorithm used in the experiments is presented in pseudo code in algorithm 5 and its
class structure is shown in figure 3.8. It is made reusable by operating on a generic IHypothesis
type. If the Hypothesis class is thread safe the fitness of each population member is evaluated
in parallel, greatly increasing the execution speed on modern multiprocessor machines. To train
ANN connection weights a MLPHypothesis class was created, encoding weights as double precision
floating point values in an array, as discussed in section 2.4. Initialisation values of hypothesises
and mutation values are generated with the Student-T probability distribution supplied by the
Math.NET numerics library. This is inspired by Montana and Davis [10], who posit that connection
weights are a combination of many relatively small values and a few large values, therefore a
starting genome with a some large values will lead to faster convergence. The initialisation source
is replaceable by supplying another object that implements the IRandomSource interface during
the construction of the MLPWeightHypothesis prototype.

In addition to the standard one point, two point, uniform crossover operators, a per neuron
crossover operator is implemented in the MLPWeightHypothesis class.

The mutation operation is split into two stages, a target selection to chose which weights will be
mutated, and a mutation type which determines how the chosen weights will be changed. Either
a number of randomly chosen weights or a number of randomly chosen neuron’s weight can be
targeted. The mutation types implemented are replacing the weight with a new random value
from the initialisation source, adding a random value from the initialisation source to the current
weight, or adjusting the weight with random value from a uniform random distribution.

The actual fitness evaluation of a MLPWeightHypothesis is performed by a IFitnessMethod
implementer Two different fitness metrics are supported, the mean squared error (MSE) of the
output on a trainingset and mean classification error (MCE). As both MCE and MSE become
better with smaller values, and the genetic algorithm is designed to expect that higher fitness
values are better, ﬁ and ﬁ are used as the fitness values. Either of the two fitness metrics
can be used directly by the MLPWeightHypothesis, or combined with TrainerFitnessMethod to
first doing a set number of training iterations with a supplied ITrainer method before calculating
the MSE or MCE. This is how hybrid GA-BP or GA-RP training is performed in the framework.
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Algorithm 5: Genetic Algorithm used in Experiments
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Input : prototype, p, cr, m, crossover, mutator, fitness, keepBest, deviationThresh
p is the size of the genetic population.

cr is the fraction of P to be replaced with new hypothesises created by crossover.

m is the fraction of P to be mutated.

crossover is the crossover method used when creating a new generation.

mutator is the mutation method used when mutating m - p hypothesisses.

fitness is fitness method used to determine the fitness of a hypothesis.

keepBest is number of highest fitness hypothesisses copied directly over to the new
generation, before selection and crossover.

deviationT hresh is the threshold value the standard deviation of the population’s fitness
values must fall below, before every hypothesis but the best has its genome randomised.
Output: The best fitness value found.

P = clone(prototype, p)

randomise(P)

while termination condition not met do

foreach Hypothesis h € P do
h.Fitness = fitness(h)
if fitness can change genome then h.genome = updatedGenome
end
if standardFitnessDeviation < deviationThreshold then
‘ randomise(P \ {hfittest})
else
Ps = keepBest fittest hypothesises in P
Ps = Pg U rouletteWheelSelection(P, (1 — cr)p))
foreach Pair h,i € roulette WheelSelection(P, cr - p) do
| Ps = Ps U crossover(h,i) U crossover(i, h)
end
foreach h € mutationSelection(Ps,m) do h = mutation(h)
P = Pg
end
end
foreach Hypothesis h € P do
h.Fitness = fitness(h)
if fitness can change genome then h.genome = updatedGenome

end
return hypothesis from P with the best fitness.
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CHAPTER
FOUR

TESTING AND RESULTS

4.1 Experiments

This section describes the testing process and results. First we examine a set of tests listed as
preliminary experiments, the results of which impact the setup of the final tests. In the last part
of this section, the setup, result and interpretation of the result of the main test is documented.

4.1.1 Preliminary Experiments setup and mean classification error

Both the preliminary experiments and the main experiment use an error measure called the mean
classification error.

Definition 3 (Mean Classification Error) The mean classification error (MCE) of a predic-

Diso llvp—vill
n

tion system is defined as , where:

e n is the number of training samples in the test set.

° UZ, is the predicted value of training sample i.

e v! is the actual value of training sample i.

This measure along with information extracted from the dataset about the distributions of
values predicted on will be used to evaluate the efficiency of our predictions in the main experi-
ment. In the preliminary experiments, the focus is the relative efficiency of the tested multilayer
perceptrons and the distribution data is therefore not used.

Unless otherwise specified in the subsection of a preliminary experiment, the preliminary ex-
periments are conducted with the following configuration:

e The training data used is extracted from 135 Protoss versus Protoss replays, yielding a total
of 3240 training samples.

e All tests use four fold cross-validation.

e The following 20 input features are used: Time, Nexus, Pylon, Assimilator, Gateway, Forge,
Photon Cannon, Cybernetics Core, Robotics Facility, Stargate, Citadel Of Adun, Templar
Archives, Robotics Support Bay, Probe, Zealot, Dragoon, Dark Templar, High Templar,
Reaver and Shuttle.

e The networks use 20 hidden nodes, including a bias node.
e The networks use the same features as the input minus the Time feature.
e When a Genetic Algorithm is used, including hybrid GA/BP and GA/RP algorithms, a

population of 48, a crossover rate of 0.8 and a mutation rate of 0.2 is used.
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Figure 4.1: Test results for different hidden node counts predicting on the Dragoon game state
variable at time 270.

e When a backpropagation training algorithm is used, including in the hybrid GA /BP tests, a
learning rate of 0.00125 and a momentum of 0.0075 used.

Note that the unusual backpropagation learning rate and momentum is due to the implemen-
tation of the backpropagation algorithm in Encog.

4.1.2 Hidden node experiment

The number of hidden nodes in a network is important for the ability of the network to predict,
however if too many hidden nodes are used it may prolong the training time. To this end, we trained
a number of networks with different hidden nodes counts attempting to predict different game
state variables. All the networks used 20 inputs, 19 outputs and were trained using the resilient
propagation algorithm. In figure 4.1, the mean classification error of networks with different hidden
node counts is displayed.

In all experiments the performance did not vary between the different hidden node numbers
significantly. In a small number of cases a network with a large hidden node count performed the
best, such as the network with 40 hidden nodes shown in figure 4.1, however in the majority of the
test cases there was only marginal difference. Thus a number of hidden nodes equal to the input
layer node count is used, in order to minimize training time.

4.1.3 Genetic algorithm crossover experiments

The genetic algorithm used is detailed in section 3.7. In this section, experiments involving varia-
tions of crossover rate and crossover type used for our genetic algorithm experiments is documented.
These experiments were conducted to help narrow down optimal settings.

On figure 4.2 we see the mean classification error of MLPs trained with our genetic algorithm
using several different crossover rates. As seen on the figure predictions using game states from
time 300 all have a mean classification error around 1, with the GA using a crossover rate of 0.8
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Genetic Algorithm with varying Crossover Rates - PvP Dragoon - Prediction at
300 seconds - Cross Validated
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Figure 4.2: Test results for different crossover rates predicting on the game state variable Dragoon
at time 300

marginally lower than the remainder. This is consistent with the rest of our results leading us to
the conclusion that a crossover rate of 0.8 is optimal.
Similarly, an experiment was run to examine the performances of the different crossover types
Figure 4.3 plots the mean classification error of four different crossover types at times 300
and 360 respectively. As can be observed, Randomized Crossover appears to reach lower mean
classification errors and as such will be used for further testing.

4.1.4 Genetic algorithm mutation experiment

The last adjustable feature of our genetic algorithms is the mutation rate, which we also ran an
experiment on in an attempt to find n optimal value.

In the next figure, figure 4.4, we see the results of MLPs trained by GAs using different mutation
rates. It is immediately apparent that the network trained by the GA that did not mutation the
weights performed significantly worse than the rest. A mutation rate of 0.2 was chosen as it
performed the best on average.

4.1.5 Backpropagation experiments

For the backpropagation training algorithm, we tested several different learning rate and momen-
tum combinations. The results are shown in figure 4.5.

The graphs in figure 4.5 indicate that a learning rate of 0.01 is too high, since the mean
squared error of the test oscillates with iterations - the weight adjustment with each iteration is
too large to narrow down the minimum. For learning rate 0.0025 and 0.00125 the graphs appear
thinner, indicating less oscillation is taking place. The lowest mean squared error is achieved with
a learning rate of 0.0025 and a momentum of 0.0075. The unusually low values we attribute to
the implementation of the backpropagation algorithm in Encog and seems to correspond to 1/10
of conventional recommended values.
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Crossover Type Comparison - PvP Dragoon - Prediction at 300 seconds - Cross
Validated
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Figure 4.3: Test results for different crossover types predicting on the game state variable Dragoon
at time 300.
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Figure 4.4: Test results for different mutation rates predicting on the game state variable Dragoon
at time 300.
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BackPropgation Momentum 0.0075 with Varying Learning Rates - PvP
Dragoon - Prediction at 270 seconds - Cross Validated
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Figure 4.5: Test results for MLPs trained with a learning rate of 0.01 predicting on the game state
variable Dragoon at time 270

4.2 Main test

In this section we first walk through the main test setup and data used for the test and then present
and interpret the main test results.

4.2.1 Setup and dataset used for the main test

For the main test, we use the parameters we arrived to in the preliminary experiments. To
summarize the following test setup is used, unless otherwise is specified:

e The networks have a single hidden node layer with 20 hidden nodes, one of which is a bias
node.

e When Backpropagation is used for training, it uses a learning rate of 0.0025 and a momentum
of 0.0075.

e When the genetic algorithm is used,a mutation rate of 0.2, a crossover rate of 0.8 and the
crossover type randomized is used.

e A total of 135 Protoss vs Protoss replays were used to generate 3240 game states which were
used as training samples.

4.2.2 Prediction Accuracy Test Results

The final results for the Protoss versus Protoss prediction test is presented in figures 4.7, 4.8 and
4.6. The mean classification error of the network trained with the genetic algorithm is the highest
in the tests. In figure 4.7 the backpropagation algorithm achieves the lowest mean classification
error, while in figures 4.6 and 4.8 we see that the resilient propagation algorithm outperforms
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Figure 4.7: Prediction accuracy test results for Protoss versus Protoss - Dragoon
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Figure 4.8: Prediction accuracy test results for Protoss versus Protoss - Probe
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PvP Protoss Dragoon Distribution at 360 seconds
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Figure 4.11: Game state variable distribution - Dragoon

it slightly. In the majority of tests, the hybrid algorithms were both capable of matching the
propagation algorithms in prediction accuracy but with a far greater training time.

The distributions of the game state variables predicted on can be seen in figures 4.11, 4.10 and
4.9. With these distributions we can compare our prediction MCE to that of the statistically best
guess:

e Nexus - Prediction MCE: ca. 0.3, Best Guess MCE: 0.19.
e Robotics Facility - Prediction MCE: ca. 0.36, Best Guess MCE: 0.49.
e Probe - Prediction MCE: ca. 2.4, Best Guess MCE: 2.96.

Zealot - Prediction MCE: ca. 0.8, Best Guess MCE: 1.1.
e Dragoon - Prediction MCE: ca. 1.1, Best Guess MCE: 1.76.

These results are representative of the rest of our test data. The majority of game state variables
are predicted more accurately than the statistically best guess, with the rest predicted significantly
worse.

4.2.3 Input type test results

Two sample results of the input type experiments are presented in figures 4.12 and 4.13. We
differentiate between two types of input: input with losses and input without losses. The difference
between the two is whether the game states used for input are corrected for units that have been
lost or not. When input without losses is used, the target game state is also generated without
losses.

In figure 4.12 we see that the MLPs using data accounting for losses are more accurate, but
in figure 4.13 the data without losses appears to produce the best results by a significant margin.
The lacking performance of the MLPs trained with input without losses in predicting on Dragoons
could be caused by Dragoons lost earlier in the game, as the player may choose to remake lost units
in order to be able to defend. Input with losses may indicate unusually low numbers due to losses
which input without losses cannot, resulting in MLPs trained with input with losses being able
to predict if a player will remake the lost units. This theory is supposed by the tests predicting
on Zealots and Probes in which using input with losses also produced the best results. Robotics
Facilities are less likely to be lost since they can take more damage than Dragoons and are often
better protected since they represent a greater investment on the part of the player. As discussed in
the real-time strategy section 1.2, opening plays dictate the order in which a player builds units and
buildings and since the Robotics Facility represents a significant investment it is likely to be built
at the same time every time a certain opening play is used. By using the input without losses, we
are essentially using what the player has chosen to build as the input and since the players choice
of what to build is essential to opening plays when it comes to technology progressing buildings
especially.
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Figure 4.12: Test results for input with and without loss reflection predicting on the game state
variable Dragoon
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Figure 4.13: Test results for input with and without loss reflection predicting on the game state
variable Robotics Facility

37



PvP Dragoon - Prediction Time 240 seconds - Input Count Comparison - 20
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Figure 4.14: Feature selection test results for predicting on the game state variable Dragoon at
time 240

4.2.4 Feature Selection

In this experiment, several feature selections derived from the technology tree as described in section
3.2 were tested in order to evaluate the effect of the feature select. The input nodes of three MLPs
were configured as per the assigned feature selection and trained using resilient propagation and
a fourth MLP using the entire feature set as input was trained for comparison. The MLPs used a
single output node and a hidden node count equal to their input node count, including one bias
node.

As can be seen of figure 4.14 and figure 4.15, the performance of the networks using feature
selection consistently exceeded that of the network using the entirety of the feature set.
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PvP Dragoon - Prediction Time 300 seconds - Input Count Comparison - 20
Hidden Nodes - Cross Validated
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Figure 4.15: Feature Selection test results for predicting on the game state variable Robotics
Facility
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CHAPTER
FIVE

CONCLUSION

5.1 Conclusion

We have proposed, implemented and tested a multilayer perceptron based strategy prediction
system for the real-time strategy game StarCraft: Brood War. Also proposed is a novel feature
selection technique relying on real-time strategy game design, which was also tested. The resilient
propagation algorithm was found to be the most effective at training strategy predicting MLPs and
the resulting predictions were found to be an improvement to the statistically best guess. Networks
configured using the novel feature selection were found to be more effective than networks not
employing feature selection.

Two methods for using game states as training samples were examined and were found to
perform better than each other in differing scenarios.

5.2 Future Work

The predictions presented here are limited in the sense that only the game state at time 360 is
predicted and only the game StarCraft: Brood War was used as a test case. If a system predicting
the state a set amount of time in the future was implemented instead, it would be more useful
in making a functional AI as the predictions could then be applied throughout the entirety of
a game. As described in the real-time strategy section, 1.2, of this report, the theory behind
the predictions made in this report should be applicable to any real-time strategy game using a
technology tree which could be corroborated if the prediction system was implemented to work
with different real-time strategy games.

In terms of improving the accuracy of the predictions, a few logical steps can be taken. In
this report only the previous game state of the player whose strategy we predict is used as input
meaning that the opposing players game state is not factored in. As such examining the effect of
including variables from the opposing players game state as input on the prediction accuracy is
promising. Extracting additional data from replays concerning unit movements, map layouts and
building placements which could also be used as input to improve prediction accuracy is also a
possibility.

In our preliminary experiments we found that unexpectedly, not accounting for losses improved
the prediction accuracy significantly in some cases and theorized that this is due to the losses
making it harder to identify the opening play being executed. It may be possible to represent losses
sustained by the player in the input data in some form or analyse in which cases data without losses
provide better results. A modification of the prediction system presented here which predicts the
set of most likely candidate game states, instead of predicting the most likely value of each game
state variable at the target time. While an exact prediction would be preferable, it is possible that
sufficiently small set of possible strategies could be identified more easily.

Lastly as the presented system is meant to be incorporated in an Al player, creating such an
Al player and documenting its performance is of obvious interest.
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APPENDIX

A

A.1 Genetic Algorithm Parameters

A.1.1 Crossover Fraction

Genetic Algorithm with varying Crossover Rates - PvP Dragoon - Prediction at

240 seconds - Cross Validated
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Figure A.1: Mean Classification Error for predictions made at 240 seconds
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Genetic Algorithm with varying Crossover Rates - PvP Dragoon - Prediction at
300 seconds - Cross Validated
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Figure A.2: Mean Classification Error for predictions made at 300 seconds
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Figure A.3: Mean Classification Error for predictions made at 360 seconds
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Genetic Algorithm with varying Mutation Rates - PvP Dragoon - Cross
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.1.2  Crossover Type
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Figure A.5: Mean Classification Error for predictions made at 240 seconds
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Crossover Type Comparison - PvP Dragoon - Prediction at 300 seconds - Cross

Validated
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Figure A.6: Mean Classification Error for predictions made at 300 seconds

Crossover Type Comparison - PvP Dragoon - Prediction at 360 seconds - Cross
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Figure A.7: Mean Classification Error for predictions made at 360 seconds
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Crossover Type Comparison - PvP Dragoon - Cross Validated
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Figure A.8

.1.3 Mutation Fraction
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Figure A.9: Mean Classification Error for predictions made at 240 seconds
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Genetic Algorithm with varying Mutation Rates - PvP Dragoon - Prediction at
300 seconds - Cross Validated
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Figure A.10: Mean Classification Error for predictions made at 300 seconds

Genetic Algorithm with varying Mutation Rates - PvP Dragoon - Prediction at
360 seconds - Cross Validated

35
3
25
g
&
5?2 ——GA Mutation Rate 0
2 ——GA Mutation Rate 0.1
é «==GA Mutation Rate 0.2
15
H e L ——GA Mutation Rate 0.3
2 ——GA Mutation Rate 0.4
3 «=GA Mutation Rate 0.5
05

2300

4600

6900

9200
11500
13800
16100
18400
20700
23000
25300
27600
29900
32200
34500
36800
39100
41400
43700
46000
48300
50600
52900
55200
57500
59800
62100
64400
66700
69000
71300
73600
75900
78200
80500
82800
85100
87400
89700
92000
94300
96600
98900

Iterations

Figure A.11: Mean Classification Error for predictions made at 360 seconds
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Genetic Algorithm with varying Mutation Rates - PvP Dragoon - Cross
Validated
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Figure A.12: Mean Square Error
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Figure A.13: Mean Classification Error for predictions made at 240 seconds
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Varying Amount of Mutated Neuron Input Weights - Prediction at 300 second
- PvP Dragoon - Cross Validated
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Figure A.14: Mean Classification Error for predictions made at 300 seconds
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Figure A.15: Mean Classification Error for predictions made at 360 seconds
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Figure A.17: Mean Classification Error for predictions made at 240 seconds
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Genetic Algorithm Mutation Types - PvP Dragoon - Prediction at 300 seconds

- Cross Validation
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Figure A.18: Mean Classification Error for predictions made at 300 seconds

Genetic Algorithm Mutation Types - PvP Dragoon - Prediction at 360 seconds

- Cross Validation

== New Random Value Mutation
= Add Random Value Mutation

00Z6%
0008%
00891
009S¥
(444
00zEY
000zZv
0080t
0096€
00v8€
00zLE
0009€
008Y€E
009€€
oovze
00zTE
0000€
0088Z
009LZ
00v9Z
00zsT
000vZ
0082
00912
00v0Z
00z6T
0008T
0089T
009ST
00vyT
00ZET
000ZT
0080T
0096

oov8

00zL

0009

0087

009¢€

(24

oozt

35

25

~ w
-
Jo13 uopedyisse|) ueIN

05

Iterations

Figure A.19: Mean Classification Error for predictions made at 360 seconds
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Genetic Algorithm Mutation Types - PvP Dragoon - Cross Validation
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Figure A.20: Mean Square Error

A.1.6 Hybrid Iteration Count

Genetic Algorithm + Resilient Propagation Hybrid - PvP Dragoon - Prediction
at 240 Seconds - Cross Validated
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Figure A.21: Mean Classification Error for predictions made at 240 seconds
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Genetic Algorithm + Resilient Propagation Hybrid - PvP Dragoon - Prediction
at 300 Seconds - Cross Validated
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Figure A.22: Mean Classification Error for predictions made at 300 seconds
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Figure A.23: Mean Classification Error for predictions made at 360 seconds
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Figure A.24: Mean Square Error

A.1.7 Keepbest

Genetic Algorithm - Keeping the Best Hypothesis from each Generation - PvP
Target Time 360 seconds - Cross Validated
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Figure A.25: Mean Square Error
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Genetic Algorithm - Keeping the Best Hypothesis from each Generation - PvP
Dragoon - Target Time 360 seconds - Cross Validated
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Figure A.26: Mean Classification Error for predictions made at 270 and 360 seconds

A.2 Feature Selection

PvP Dragoon - Prediction Time 240 seconds - Input Count Comparison - 20
Hidden Nodes - Cross Validated
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Figure A.27: Mean Classification Error for predictions made at 240 seconds
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Figure A.28: Mean Classification Error for predictions made at 270 seconds
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Figure A.29: Mean Classification Error for predictions made at 300 seconds
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PvP Dragoon - Prediction Time 360 seconds - Input Count Comparison - 20
Hidden Nodes - Cross Validated
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Figure A.30: Mean Classification Error for predictions made at 360 seconds
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Should losses be included - PvP Probe - Target Time 540 seconds - Cross
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A.4.2 Protoss vs Zerg

PvZ Citadel of Adun - Target Time 360 - Prediction Time 240 - Cross Validated

—— Genetic Algorithm

——Back Propagation
~—— Resilient Propgation

~———GA +BP

~——GA +RP

0,6

05

=
o

o

5
10443 UonEIYISSE]) UBSN

Il
o

0,1

Iterations

PvZ Citadel of Adun - Target Time 360 - Prediction Time 300 - Cross Validated

= Genetic Algorithm

—— Back Propagation
——— Resilient Propgation

——GA + BP

~—GA + RP

06

05

=
S

o

o
10443 UonedIYISSE|) UBSN

N
o

0,1

00LYT

Iterations

83
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PvZ Gateway - Target Time 360 - Prediction Time 240 - Cross Validated
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PvZ Dragoon - Target Time 360 - Prediction Time 300 - Cross Validated
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PvZ Zealot - Target Time 360 - Prediction Time 300 - Cross Validated

45

10113 uonedlyIsse|) UBA

§

E 5 =

£z 2

S & 9

5 8 £

< g2 2
e 2 £ a o
£ 4 § > &
g o2 +
g 8 & &<
n ~ "

05

Iterations

PvZ Zealot - Target Time 360 - Prediction Time 360 - Cross Validated

= Genetic Algorithm

~=Back Propagation
~— Resilient Propgation

——GA + BP

~—GA + RP

45

n o n ~

- N

10443 UonedIYISSE|) UBSN

Iterations

97



PVvZ - Target Time 360 - Cross Validated

GA +BP

—— Genetic Algorithm
GA +RP

= Back Propagation
- Resilient Propgation

300000

250000

200000

150000

Jo.13 pasenbs jo wng

100000

50000

Iterations

98



	Introduction
	Introduction
	Real-Time Strategy Games
	Possible applications

	Theory
	Perceptrons
	Multilayer Perceptrons
	Resilient Propagation
	Using Genetic Algorithms to Train Artificial Neural Networks

	Prediction
	Prediction Overview
	Feature selection using Technology Trees
	Prediction Pipeline
	Creating Data from StarCraft Replays
	Creating Training Data
	MLP Training
	Genetic Algorithm implementation

	Testing and results
	Experiments
	Main test

	Conclusion
	Conclusion
	Future Work

	Experiment Graphs
	Genetic Algorithm Parameters
	Feature Selection
	Game State Loss Reflection
	Training Algorithms Comparison


