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Preface

This report was written during the spring semester 2011 by group
FLD606A.

The intended audience of the report are people who have at least the
same general level of knowledge in computer science as the authors,
as well as some experience with compiler theory, although little knowl-
edge of GPU programming is assumed.

A note on numbering In this report figures, tables and equations
have a number of the form x.y where x is the page on which they were
inserted and y is a unique number for that page. This should make it
easier for the reader to locate the reference in question, as it will be
found on either that or the next page.

We would like to thank:

Bent Thomsen for supervising throughout this project.
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1
Introduction

In this report we build on the work we did during the previous semester[BLWJ]
trying to make it easier for developers to write programs that use the
powerful Graphics Processing Units which many modern computers
are now equipped with, so that we can increase the speed of general,
non-graphic related, computations.

This is necessary as GPUs are very different from CPUs, due to CPUs
being mostly designed to do diverse computations on data in serial and
GPUs are designed to do the same computation on data in parallel.
This means that in order to take advantage of the new hardware ca-
pabilities, we have to either retrain programmers or develop a way to
automate the translation from the way programmers are used to write
for the CPU to the way the programs should run on the GPU.

In the last report[BLWJ] we documented a number of tools to make it
easier to write code for the GPU. Here we document the development of
a plugin for the Scala compiler which is capable of translating certain
code patterns to run on the GPU.

We choose to develop the plugin for the Scala compiler as it already has
got a powerful plugin system and because much Scala code is written
in a functional style which minimises side-effects, and that makes it
easier to run it concurrently.
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CHAPTER 1. INTRODUCTION

1.1 Motivation

In 2005 Herb Sutter published the article “The Free Lunch Is Over”
[Sut05] which stated that the CPU progress we have observed over the
past many years may come to a halt. With single-threaded code, one
could expect it to run faster with every new generation of processors,
due to increased clock speed and execution optimisation. As illustrated
in figure 10.1, since the year of 2005 there has not been any significant
increase in clock speeds. This is due to thermal limitations in present
semiconductor chip designs.

Figure 10.1: Intel CPU trends [Int07]
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1.1. MOTIVATION

Moore’s law states that transistor density is growing at an exponential
rate [Moo65] and will double roughly every two years. This law is still
in effect and is expeced to be so for many years to come. This has led
CPU vendors to divert focus from higher clock speed to fitting more
CPU cores on to a single die, leading to many-core CPUs.

In 2011, scientists at University of Massachusetts Lowell made an ex-
perimental CPU of one thousand cores on a single chip [fas11]. It will
take a number of years before we see so many cores in mainstream
computers, however, it gives us an insight as to what the future CPUs
will look like.

Recently, with the introduction of OpenCL [ope], programmers have
been allowed to write general purpose code that runs on mainstream
graphics cards. With most mainstream desktop/laptop computers, hav-
ing GPUs with thousands of simple SIMD (Single Instruction Multiple
Data) cores that can utilise massive throughput with parallel appli-
cations, they can also provide an insight on how the future of writing
applications will potentially be.

To write applications to the GPU, OpenCL provides a low-level C API
where memory management is handled by the programmer. Consider-
ing the difficulty of making concurrent applications and the low-level
OpenCL language, it will be challenging for the “traditional” program-
mer to take advantage of this extra processing power.

In order to ease the transition of writing concurrent applications we
will search for a solution to have “traditional” programmers take ad-
vantage of the GPU in a familiar setting without having to learn a new
programming language or radically changing their ways of making ap-
plications.
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This is a world of action, and not for moping and
droning in.

Charles Dickens 2
GPU

2.1 GPGPU Platform

Graphics Processing Units were originally introduced for the single
purpose of accelerating 2D and later 3D graphics computations on their
targeted platforms. Since the beginning of the 2000’s, with the intro-
duction of programmable shaders in OpenGL and DirectX, GPUs have
evolved from special purpose hardware into a more general purpose
programmable architecture. Today it is commonly seen that physics
simulation, scientific computing, video encoding/decoding and other
highly parallel tasks are accelerated on this recently emerged General
Purpose GPU platform. The two leading vendors of GPU hardware,
NVIDIA and AMD, even have products specifically aimed at general
purpose computation, with no display port for connecting an external
monitor.

When consulting documentation and professional articles about the
GPGPU platform, different concepts and terms are used for describing
and presenting the underlying architecture. This depends on the goal
of the very documentation, hardware vendor and/or API and the per-
spective of the targeted reader. For software developers, there are ref-
erence documentation for the different programming APIs; these stick
to the specifications of the API in question, but the concepts and layout
of the programming architecture may vary from and even collide with
terms of the underlying hardware architecture or other programming
APIs. This ambiguity introduces confusion when attempting to explain
what the GPGPU platform looks like, as the description of it depends

15



CHAPTER 2. GPU

on the point of view.

2.2 GPU Architecture

At first glance, the GPU architectures of the two leading manufactur-
ers, AMD and Nvidia, look very similar. They both brand their products
for how many shaders/cores, global memory, clock speed and FLOPS
(FLoating point OPerations per Second) they have. The lower-level de-
tails as to how their branch prediction works are still trade secrets and
thus not explained in their specifications. Architecture changes with
every generation, however, the focus upon these two vendors seems
that whilst AMD uses many simple ALUs (Arithmetic Logic Unit) with
relative low clock frequency, Nvidia tries to use fewer yet more complex
ALUs[Bit11].

As an intermediate programmer making an attempt at GPGPU pro-
gramming, these lower-level details might not be of mere relevance, but
are nevertheless important to be aware of as they can severely impact
performance depending on which application is written. As an exam-
ple: if you are running an algorithm based on SHA-256, it makes heavy
use of the integer rotate-right operation. On an AMD card, this oper-
ation is executed in a single hardware instruction whilst on an Nvidia
card it requires three separate hardware instructions to emulate (two
shifts + one add)[Bit11].

Even though GPUs from these two vendors vary in their architecture,
they have a common standard for listing features and specification we
can use for optimising OpenCL code. This standard notion is called
Compute Capability and is, at the time of writing, at version 2.0.

As Nvidia explain their features in CUDA terminology and AMD use
OpenCL terminology, table 16.1 lists the matching terms for which the
names differ between the two terminologies.

16



2.3. OPENCL

Table 16.1: OpenCL and CUDA terminology
Cuda term OpenCL term
GPU Device
Multiprocessor Compute Unit
Scalar core Processing element
Global memory Global memory
Shared(per-block) memory Local memory
Local memory Private memory
kernel program
block work-group
thread work-item

2.3 OpenCL

OpenCL is a framework which enables you to write programs that can
be executed on heterogeneous platforms possibly consisting of CPUs,
GPUs and other processing units.

It was initially developed by Apple, and in collaboration with big com-
panies including NVIDIA, AMD, INTEL and IBM, an initial proposal
was forwarded to the Khronos Group in the hopes of defining a new
standard for making a cross platform environment for general purpose
programming on the GPU. Khronos was finished with the 1.0 specifi-
cation on December 8th 2008 [ope] with aid from representatives from
different companies. As of now, the latest version is 1.1 and was fi-
nalised on June 14th 2010.

The OpenCL framework provides a low-level C like programming lan-
guage for writing kernels, and an API for defining and controlling plat-
forms. A kernel is a piece of code to be executed on the platform, and
the platform is a collection of OpenCL enabled devices such as host
CPU, GPUs and possibly other types of hardware.

OpenCL is defined in three types of models, which are: platform, exe-
cution and memory.

17



CHAPTER 2. GPU

2.3.1 Platform Model

As different hardware have different platform models, OpenCL pro-
vides an abstract platform model view, presenting a unified view to
heterogeneous hardware. Thus, the programmer merely has to write
one version of his code and the runtime takes care of translating it to
the different hardware platforms.

In figure 18.1 the OpenCL platform model is shown.

Compute 
Device

Compute 
Device

Compute 
Device

Host 
Processor Main Memory

Interconnect Bus

CU

Global/Constant
Memory Data Cache

Global
Memory

CU CU

Global
Memory

Compute Device     
       Memory

PE PEPE

Local Memory

Compute Unit

Private Memory

Figure 18.1: OpenCL Platform Model

The host processor is mapped to the host CPU whilst the main memory
is the RAM of the particular computer running the OpenCL host code.
They are connected by a bus to one or more Compute Devices being
OpenCL enabled e.g. CPUs, GPUs, stream processors. These Compute
Devices are further divided into CUs (Compute Unit), having a memory
hierarchy which is elaborated on later. The Compute Units on a CPU
are mapped to the different cores. On a GPU the Compute Units are
mapped to the number of multiprocessors.

The CUs are once again made up of PEs (Processing Element)—virtual
scalar processors operating on one thread at a time. On a GPU each
PE is mapped to a single core in a multiprocessor, whereas on a CPU it
can be comparable to an ALU (Arithmetic logic unit) inside one of the
cores where private memory is mapped to the ALU registers.[Coo10]
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2.3. OPENCL

2.3.2 Execution Model

Execution of OpenCL code occurs in two parts: kernels that run on
one or more OpenCL compliant devices and a host program executed
on the host. The host program defines a context where the kernels
execute. This context includes the following resources:

• Devices: Collection of OpenCL enabled devices

• Kernels: The OpenCL functions that run on devices

• Program Objects: The program source and executable that imple-
ment the kernels

• Memory Objects: A set of memory objects visible to the host and
OpenCL devices. Memory objects contain values that can be op-
erated on by kernels

When a context is created, it can be manipulated by the host by us-
ing functions from the OpenCL API. To coordinate the execution of
the kernels on the devices, the host creates a data structure called
command-queue. The host then places commands on these command-
queues which are then scheduled onto the devices within the context.
A command can be of the following kinds:

• Kernel execution commands: Execute a kernel on PEs of a device

• Memory commands: Transfer data to and from devices; map mem-
ory objects

• Synchronisation commands: Synchronise the execution of com-
mands

When a kernel is sent by the host to a device for execution, an index
space is made covering a number of work-groups. Each work-group
executes on a single CU and work-groups are further composed of many
work-items which are executed in parallel on the PEs of a CU.
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CHAPTER 2. GPU

Figure 19.1: two-dimensional OpenCL work-group and work-items
[amd]

Figure 19.1 shows a two-dimensional kernel with 16 indexed work-
groups. Each of these work-groups includes 64 indexed work-items.
The highlighted work-item has a local id of (4,2). It can also be ad-
dressed by its global id by using the highlighted work-group offset
of (3.1) by multiplying it with the work-group dimension length and
adding the local id.

2.3.3 Memory Model

The memory model view is, as illustrated in picture 20.1, a hierarchy
of memory banks that are:

• Global Memory: Allows read/write operations to all work-items in
all work-groups.

• Constant Memory: Allocated by the host and is constant during
the whole execution of a kernel.

• Local Memory: Local to a work-group and shared by work-items.

• Private Memory: Region private to a work-item.

20
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Private
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Memory

Local Memory

Work-
Item

Work-
item

Work-group

Private
Memory

Private
Memory

Local Memory

Work-
Item

Work-
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Work-group

Global/Constant Memory

Compute Device

Host

Host Memory

Figure 20.1: OpenCL Memory
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When writing kernels in OpenCL the memory must be declared with
certain address space qualifiers to indicate whether the data resides in
global, constant, local or private memory, or whether it will default to
private within a kernel.
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3
Alternatives

3.1 Domain Specific Language

As we have previously seen, a GPU is normally programmed in C or
C++. This is an issue, as neither C nor C++ are specifically designed
to handle the issues that may arise in a massively concurrent environ-
ment. Because of this, both languages lack the capability to describe
the operations which the GPU kernels typically are used for.

For example, C has an addition operator, so one can write:

1 int cc ;
2 addAndAssign ( int a , int b ) {
3 cc = a + b ;
4 }

And cc would have the expected result. However, when we deal with
the GPU we often write code which deals with arrays instead of single
numbers, yet if we try to write:

5 int [10] cc ;
6 addAndAssign ( int [ ] a , int [ ] b ) {
7 cc = a +b ;
8 }

we get an error.

23
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At the end of the day, we want a language where we can write that and
have the result of the element-wise addition to be stored in the cc array.
This would be possible if we had a language that was tightly coupled
to the specific domain of GPU programming. Such a language would
not contain the features from C that cannot be used on the GPU, such
as function pointers or memory allocations, but would have arithmetic,
e.g. matrix multiplication, build in.

While we could write an entire new language from scratch this would
be a vast amount of work and also presents us with a potential problem
as that language would have been designed to run on the GPU and not
the CPU. Instead of doing this, we could extend an already-existing
language. Since C++ allows us to override operators, we could define
a class GPUArray with the proper code to do the calculations on the
GPU. Then we could write:

1 GPUArray cc ;
2 addAndAssign (GPUArray a , GPUArray b ) {
3 cc = a + b ;
4 }

and have it executed as we want.

The downside of this approach is that it is limited by how flexible the
underlying language is. C++ is sufficiently flexible to allow overriding
operators but not to define new operators, and we cannot easily convert
existing arrays to GPUArrays as arrays in C++ are pointers to a mem-
ory area and we are unaware of know the size of the allocated memory.

The advantage is that it is relatively simple to write the DSL, and
programmers who already master C++ can be expected to comprehend
it faster than an entirely new language.

3.2 Functional Programming

Where Object Oriented Programming is focused on objects, functional
programming is focused on functions. In functional programming lan-
guages, functions are first class values; that is, they can be given as

24



3.2. FUNCTIONAL PROGRAMMING

arguments to other functions, returned from functions and stored in
variables. In addition, functional programs are often written in such
a way that they do not modify variables, but instead preferring to re-
turn a new value that is the result of applying the function to the in-
put. Functions which only depend on their input and always return
the same result given the same input, without changing any global
variables, are said to be pure[Has11].

Much of the inspiration from functional programming has been derived
from the lambda calculus, a mathematical model of computation de-
vised by Alonzo Church[Chu41]. Under the lambda calculus, computa-
tion is modelled as evaluating a mathematical expression. This is also
one of the reasons many of the functions used in functional program-
ming are pure, since no system of mathematical equations will ever
assign a variable two different values.

In addition, much of functional programming is spent working with
(linked) lists – they are available in the standard library of Java and
several other Object Oriented languages, but they are rarely used as
they do not offer cheap random access (like arrays do), nor do they
have a particularly good cache performance. However, linked lists are
better suited to functional programming because they save space (and
work): a pure function, which takes a list as input and returns the
sum of the elements of the list prepended to the list, does not need to
copy each element (as would be necessary with an array, because there
might not be space in front of the elements)—it needs only to return
the first element with the reference to the next element set to the head
of the original list.

While there are many different things one can calculate, functional
programs often use two patterns: creating a new list which contains
the result of applying some function to each element of an input list,
and calculating the result of applying some function to its previously
returned result and each element in the list.

The first pattern is almost always available as the map function, which
takes its name from the idea that mathematical functions (such as the
square root) are maps from one set of elements to another. Thus, to
calculate square roots of the first ten natural numbers, one could write:

1 val sqrtList = List (1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10) .
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CHAPTER 3. ALTERNATIVES

↪→ map(math . sqrt )

The second pattern seems more complicated, but, in fact, it is not. Con-
sider that we now have the list of square roots and we want the sum of
them. This is a situation where we want to apply the addition function
to each element in the list, plus the previous sum.

If we assume that the addition function is add, we can write this as:

2 val sum = sqrtList . reduce ( add )

In this case, there are ten elements in the list, so we could also have
expanded the calculation to become:

3 val sum = add ( add ( add ( add ( add (math . sqrt ( 1 ) , math . sqrt
↪→ ( 2 ) ) , math . sqrt ( 3 ) ) , math . sqrt ( 4 ) ) , math .
↪→ sqrt ( 5 ) ) , . . . )

3.2.1 Functional Programming and Concurrency

As elaborated on in the section of GPU architecture2.2, GPUs are mas-
sively parallel. This is in contrast to CPUs which typically have four
cores or less and, until recently, often only had one.

This is a problem because most of the popular languages in use at
present, according to the TIOBE index[TIO11]1, are not designed with
concurrency as a basic principle. This means that it is up to the pro-
grammer to write the program in such a way that it can take advantage
of multiple CPU cores.

However, multi-threaded programs are prone to a number of bugs such
as race conditions, dead-lock and live-lock. These bugs can be very
difficult to detect and resolve as they only manifest when some specific
non-deterministic condition occurs.

As an example, the following Java code may or may not be safe to

1Java, C, C++ and C#
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run concurrently, depending on whether any other thread modifies the
counter variable while it is being accessed in the loop:

1 for ( String item : ArrayOfItems ) {
2 counter += veryExpensiveFunction ( item ) ;
3 }

yet this is not very obvious from the code.

Pure functions can always safely be run on multiple cores as long as
their input data does not overlap. If Java had first class functions we
could rewrite the previous example in a functional style (pmap is as-
sumed to be a function that loops through the array in parallel on all
the computers cores):

4 ArrayOfItems .pmap( veryExpensiveFunction ) . sumList

Naturally, map is simple to parallelise as long as the given function is
pure, because the function does not depend on the value of any other
element in the list. On the contrary, reduce is more complicated to
parallelise. Since later calls to reduce depend on the previously cal-
culated values, we can only parallelise the calls if the function given
as the argument is associative1. This is the case for some functions
such as integer addition, multiplication and string addition, but not
others, such as subtraction or division. It is trivial to show that prov-
ing a function to be associative is undecidable, so we will have to use a
less general way to decide whether a given instance of reduce can be
parallelised.

Even if the function is associative, we will still have to synchronise the
calculations each time we have reduced the current level.

3.3 Scala

Scala is a functional and objective oriented programming language de-
signed by Martin Ordersky. The Scala compiler targets the Java virtual
machine and Scala can be used with almost any existing Java library.

1That is, the order in which the function is applied does not matter.
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In regards to our project it is, however, much more important that the
Scala compiler has a plugin system that allows us to add additional
compiler phases, and that we can alter the Scala code before it is com-
piled down to JVM instructions.

Compiler optimisations are no news and most compilers optimise a
number of things, such as constant expressions, register usage, method
in-lining and stack allocation. What is so great is that these optimisa-
tions can be used without the programmer having to be considerate of
them or having to rewrite the code.

The downside to this is that the compiler plugin can only get the infor-
mation available in the source code, and that it must not change the
semantics of the code. Since it is undecidable whether two pieces of
code have the same effect, the compiler plugin will be unable to opti-
mise every case and will almost certainly produce code that is slower
than a human could have optimised it to.

3.4 ScalaCL

ScalaCL is an approach to have people who master Scala to make use
of OpenCL without having to learn C or a new language. Initially,
ScalaCL was an internal Scala DSL with limited parallel expressions
on GPUs. It created OpenCL kernels out of its internal AST represen-
tation and executed them through OpenCL4Java OO (Object Oriented)
bindings, OpenCL4Java being a library used for calling OpenCL’s C
API.

1 import s ca lac l . _
2 import s ca lac l . ScalaCL . _
3
4 class VectAdd ( i : Dim) extends Program ( i ) {
5 val a = FloatsVar // array of f l o a t s
6 val b = FloatsVar
7 var output = FloatsVar
8 content = output := a + b
9 }

10
11 var n = 1000;

28



3.4. SCALACL

12 var prog = new MyProg(n)
13 prog . a . write (1 to n)
14 prog . b . write ( prog . a )
15 prog !
16 print ln prog . output

Listing 29.0: ScalaCL DSL vector multiplication

Listing 28.1 shows how a simple multiplication of two arrays looks like
in ScalaCL DSL.

The ScalaCL DSL is no longer maintained as the author thought it had
little or no resemblance to original Scala, as the whole idea of making
ScalaCL was to make people who master Scala able to use OpenCL
without having to learn a new language. With the ScalaCL DSL lan-
guage, people knowing Scala had to learn a new DSL language [Oli11]
instead. In addition, with a DSL there is little or no control structure
or support of structured data.

Realising the limits to ScalaCLv1, all effort has now been shifted to
ScalaCLv2. ScalaCLv2 includes two things:

• Scala compiler plugin.

The compiler plugin is used to optimise general loops on arrays,
lists, and inline integer ranges. These loop optimisations do not
rely on any library or hardware, as loops in Scala are an order
of magnitude slower than equivalent while-loops. For-loop perfor-
mance has been addressed many times on Scala forum and de-
velopment page but no major change has been made since 2008
[Sca11c].

• Library of OpenCL-backed collections

The ScalaCL collections make use of the compiler to translate
Scala functions into OpenCL code.

1 import s ca lac l . _
2 import scala . math . _
3
4 implicit val context = new ScalaCLContext

29
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5 val r = (0 to 1000000) . c l
6 val a = r . toCLArray
7 val m = a .map( v => cos ( v ) . toFloat )
8 print ln (m)

Listing 30.0: ScalaCL version 2

As seen in listing 29.1, ScalaCLv2 resembles native Scala far more
than ScalaCLv1 does and should therefore be easier to use for Scala
programmers. Having ScalaCL collections can easily be used directly
with Scala iterators like map, flatMap, filter and foreach, as shown in
Listing 29.1.

ScalaCL looks promising but is still Alphaware and has more bugs than
features acording to the developer [Oli11]. These are the collections
that are currently supported:

• CLArray[T]

– Supports types of AnyVal and tuples og AnyVal

– asynchronous OpenCL implementation for map, filter and
clone operations

– OpenCL implementation for min, max, product, sum opera-
tions

• CLFilteredArray[T]

– Same types as CLArray[T]

– asynchronous map and filter

• CLFunction[A, B]

– A,B can be of types tuple or AnyVal

– a CLFunction can be created explictily but it is reccomended
to write it as a Scala function and let the compiler plugin do
the translation

30



3.5. EXTENDING JIKES

3.5 Extending Jikes

There are two places where we can implement compiler optimisations
for languages targeting the JVM – in the compiler that compiles it
down into Java byte-code or in the JIT1 compiler which turns the Java
Bytecode into executable code for the current hardware platform.

Each approach has its own benefits – if we optimise the language com-
piler we will work with the code at a higher conceptual level and can
then take advantage of the semantics offered by it, but optimisations
to the JIT compiler means that any language targeting the JVM can
use the optimisations. This matters for the end user as well, because
if the JIT compiler is optimised, the user will then have to install the
optimised version in order to get the benefits, whereas if we optimise
the compiler the user gets the speed benefits, but this will only work
with programs that have been compiled with the enhanced compiler –
old programs will not get any faster.

Either approach is valid, and the JIT optimisation has been achieved
before with Jikes.

Jikes is an open source compiler for the Java language, made by IBM[IBM11a].
Due to Java source code not being compiled to native code but to a vir-
tual instruction set, it is necessary to have a virtual machine execute
the resulting code. To satisfy this need, IBM has also worked on the
Jikes RVM (Research Virtual Machine)[IBM11b].

Unlike the Java virtual machine made by SUN, the Jikes RVM is not
meant to be used to run Java, but as a vehicle to enable researchers to
do research in how to create and improve virtual machines; the result is
a virtual machine easy to extend but also not having the full Java class
library. This might be a problem if we wanted to develop a complex
application, but for our research purpose it being easier to extend is of
greater importance.

Finally, Jikes RVM has a rather unique feature for a Java Virtual Ma-
chine: it is primarily written in Java rather than a more common choice
for virtual machines such as C or C++. This allows people who are more

1Just In Time
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used to working with Java to improve a Java virtual machine, without
having to learn a new programming language.

Extending Jikes RVM was precisely the choice made in [LLL09]. The
central idea in the paper is to automatically translate loops (primarily
loops through arrays, but in principle any loop that can be run in par-
allel without changing the result) to code which gives the same result.

The paper placed the loops in the Java class files into three different
categories[LLL09]:

GPU implicit loops These are loops from which the work can be spread
out so that every turn through the loop is executed in parallel
across the processing elements of the GPU. This makes the loop
implicit. If there are enough processing elements to handle each
iteration the cost of the loop is reduced to the cost of transferring
the data, plus the cost of one loop iteration.

GPU explicit loops These are loops which are also run on the GPU,
but where the entire loop runs on the same processing element.
This is only performed if the loop is nested within a GPU implicit
loop, which would be the case with e.g. matrix multiplication. It is
important that the GPU explicit and implicit loops run for about
the same number of iterations as all the GPU processing elements
must run the same instruction. The cost of the GPU explicit loop
is the same as it would have been on the CPU, except that there
are fewer or even no data transfers.

CPU explicit loops These are the loops already present in the source
code — loops run on the CPU, in serial. Both GPU implicit loops
and GPU explicit loops can be written (safely) as a CPU explicit
loop, however, this comes at the cost of performance as the CPU
is only able to compute one iteration at a time.

3.5.1 Loop examples

GPU implicit loop Here is an example of a loop that could (trivially)
be executed in parallel across the GPU:
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1 for ( var i = 0 ; i < 10000; i ++) {
2 sum[ i ] = i * i+ i ;
3 }

Listing 33.0: A GPU implicit loop

GPU explicit loop We can extend the previous example to calculate
which numbers are perfect numbers1:

1 for ( var i = 1 ; i < 10000; i ++) {
2 int div i sors = 0;
3 for ( var j = 1 ; j < i ; j ++) {
4 i f ( i % j == 0)
5 div i sors += j ;
6 }
7 i f ( d iv i sors == i ) {
8 sum[ i ] = i ;
9 } else {

10 sum[ i ] = 0 ;
11 }
12 }

Listing 33.1: A GPU explicit loop inside a GPU implicit loop

CPU explicit loop Finally, we may want to get the sum of all the
perfect numbers we calculated:

1 //same code as be fore
2
3 int totalSum = 0;
4 for ( int i = 0 ; i <10000; i ++) {
5 totalSum= sum[ i ] ;
6 }

Listing 33.2: A CPU explicit loop

1A number is perfect if it is the sum of its proper divisors
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Here we are unable to execute the code in neither a GPU implicit nor
explicit loop as each iteration depends on those before it1.

Extending Jikes (or any other virtual machine) does come with a num-
ber of advantages: it allows the user to speed up all of the programs
targeted to that very virtual machine, including those already writ-
ten. It leaves no further requirements with the programmer and it is
a seamless experience for the developer. However, it does require that
the user is aware of and install the extension, and the developer cannot
assume that all users have the extension installed.

Instead of doing this, we will develop a plugin for the compiler. The
resulting speed-up is limited to programs which are compiled with this
extension, but it does not require the users to be aware of the existence
of the extension, and the developers can count on it being available. In
addition, it allows us to write the code at a higher conceptual level –
source code instead of byte code.

3.6 MapReduce

MapReduce is both the name of a concept and software written by
Google[DG04] which uses it to distribute computations over clusters
of unreliable computers. The MapReduce software automatically en-
sures reliability and redundancy by splitting the computational task
up over the different available computers.

MapReduce is based on the map and reduce functions from functional
programming, and although Google originally used it scale across many
unreliable machines, implementations of MapReduce have been cre-
ated for multi-core[RRP+07] and GPUs[HFL+08, LCWM08, HCC+10].

1We will later show that this is possible with our system
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4
Summary

We have investigated different techniques to program GPUs, including
domain specific languages, functional programming as well as differ-
ent ways to extend compilers to automatically use a GPU to increase
execution speed.

We have also looked at MapReduce, the technique Google uses to dis-
tribute computations across computer clusters and which has been used
in a number of different frameworks both for multi-core CPUs and for
GPUs.

Going forward we will develop a plugin for the Scala compiler which
will attempt to ofload map and reduce computations to the GPU with-
out changing the meaning of the program or without requiring the pro-
grammer to learn any special syntax or API.
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5
The Scala Compiler Plugin

System

Before we go into the technical details of the Scala compiler plugin, we
provide an overview of the design of the plugin and the Scala compiler
plugin system in general.

The overview follows the three requirements we have to the Scala com-
piler plugin:

1. It must update the AST to insert a call to our runtime system,

2. It must translate the map or reduce function argument to C so
that it can run it on the GPU,

3. It must compute the benchmarks needed to decide at runtime if
the code should run the GPU.

The documentation of the scala compiler and plugin system [Sca11a]
[Sca11b] is not very comprehensive and we have thus examined the
source for the 2.8.0 Scala compiler1 which is the version we will use for
this project.

The Scala compiler is large and uses many of the advanced features of
Scala, but below is an overview of the most important components:

1The Scala compiler is undergoing rapid development, at the time we started to
work on the project version 2.8.0 was the current version, at the time of writing
2.9.0.1 is the current version.
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scala.reflect.generic.Trees This is the outer trait in which all the
classes used to model the Scala abstract syntax tree exist. Con-
fusingly enough, there is also a trait in the compiler called Trees
(it is in package scala.tools.nsc.ast) which extends this trait.

scala.tools.nsc.plugins This package contains the PluginComponent
and Plugin classes which our plugin must extend to work with the
Scala plugin system.

Plugin This is the abstract class our plugin class must extend from.
In order to do so, we must provide a bit of information, including
the list of PluginComponent classes that the plugin consists of as
well as the name of the plugin.

PluginComponent Each plugin consists of one or more PluginCom-
ponent classes, each of which describes exactly one compiler phase.
This class contains the properties of the compiler phase, such as
when it should run and how to handle commandline options.

scala.tools.nsc.transform.Transform This trait can be implemented
by a PluginComponent class, should the component transform the
abstract syntax tree. It will create a Phase which runs a Trans-
former.

Phase This is the class responsible for updating the abstract syntax
tree.

Transformer This trait must be implemented by the class transform-
ing the abstract syntax tree.

This might seem complicated but it allows us to make more complex
plugins, adding features such as multiple inheritance which would re-
quire new parser, typechecker and code generator components as well
as plugins which change the abstract syntax tree (so that the plugin
works with the rest of the system).

To specify when the different plugin components should be called, we
can specify which phases the compiler depends on and the Scala com-
piler will then arrange the plugins in a way so that all the requirements
are satisfied.

40



5.1. AST COMPONENTS

5.1 AST Components

The AST1 in the Scala compiler system is composed of case classes
which all exists in the scala.reflect.generic.Trees trait. Each
PluginComponent must provide either a Phase (which is used when
we want to do additional checks on the AST, or to convert it into some-
thing else, such as Java class files) or, more common, a Transformer
which is used to transform the AST itself.

Some of the most common AST nodes are:

Ident(name) is the node which represents an identifier.

Apply(tree, args) is node which denotes function application. tree
is the function we wish to call and args is the list of arguments that it
takes.

Select(tree, name) is the node which is used to select some value
on an item. tree is the owner of what we wish to select, name is the
name of what is wish to select on tree. Select(Ident("horse"),
"shoe") is an AST fragment which represent the Scala code horse.shoe.

DefDef(modifiers, name, typeParameters, arguments, type, body)
DefDef is the node that represent method definitions. modifiers are
flags which indicate the protection level of the method, if it is overrid-
ing a method in a parent class, etc; name is the name of the function;
typeParameters is the list of generic types that the method has – map
has a generic type so that the return type can be adjusted depending on
what argument it is called with; arguments is a list of lists of ValDef,
in Scala functions can be curried such that not all their arguments are
provided in which case they return a function which takes the rest of
the arguments. To allow a function to be curried it has to be declared
as def a(i: int)(b: int) – arguments is then a list of two list

1Abstract Syntax Tree
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of ValDef; type is the type of the method and body is the body of the
methods.

ValDef(modifiers, name, type, rhs) ValDef is the node that repre-
sent the definition of a value, either as a member of a method or class
or as the part of the arguments to a method. Like DefDef it may have
one or more modifiers, such as public or private; a name which is what
it can be referred from in Ident nodes; a type and rhs which is the
value it is initialized to when it is created.

The Scala statement:

4 print ln ( " Hello , world ! " )

Is parsed with an AST as:

5 Apply (
6 Ident ( " pr int ln " ) ,
7 List (
8 Litera l ( Constant ( " Hello , world ! " ) )
9 )

10 )

5.2 Phases

Previously we said that a compiler plugin could define one or more
Phases through a PluginComponent. The Scala compiler also defines
a number of phases:
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parser explicitouter
namer erasure
packageobjects lazyvals
typer lambdalift
superaccessors constructors
pickler flatten
refchecks mixin
selectiveanf cleanup
liftcode icode
selectivecps inliner
uncurry closelim
tailcalls dce
specialize jvm

terminal

These phases matter since plugins must work on the AST as it is after
the phases before it has been called. After the typer phase, the AST
ofor the println statement looks like this:

11 Apply (
12 Select (
13 Select (
14 This ( " scala " ) ,
15 " Predef " ) ,
16 " pr int ln " ) ,
17 List (
18 Litera l ( Constant ( " Hello , world ! " ) )
19 )
20 )

For this reason, it is important that our compiler plugin is called the
AST is rich enough that we can ensure only the correct code is instru-
mented.
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6
Update the AST

Since the Scala compiler internally represents the program as an AST1,
we have to determine exactly which changes our compiler should make
to the AST.

There are two cases where we should potentially change the AST:

map When it contains a map statement on a collection.

reduce When it contains a reduce statement on a collection.

However, not all instances of neither map nor reduce statements should
be called, as it may either not be possible to run the code on the GPU
(this is the case for code which has side effects, such as printing the
value or updating a counter) or it may be possible, yet not desirable
(this is the case, for example, if the collection is small and, due to mov-
ing it to the GPU and back, may take more time than just computing
it on the CPU).

The simplest way to translate the AST would be to replace each call to
map with code that copied the collection to the GPU, ran the computa-
tion on the GPU and copied the collection back to the main memory.

Thus, code which looks like:

21 c o l l e c t i o n .map( a=>a+a )

1abstract syntax tree.
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would have to be translated to:

22 GPUAccelerate .map( co l l e c t i on , kernel )

where GPUAccelerate.map is a function that returns a collection.

While this approach is sound, it suffers from a number of performance
issues:

• If the original map call is called on a collection with values that
were already moved to the GPU, we copy the values back to the
host computer just for them to be copied back on to the GPU im-
mediately. It would be quicker to skip the extra copying.

• Without having the original function, GPUAccelerate is forced to
run the code on the GPU even if the collection is very small.

The first issue can be solved by returning a special collection that the
GPUAccelerate.map function can check for. The second issue can be
handled by adding the function given to map as an additional argument
to the GPUAccelerate.map function. This allows the map function to
run and maintain the calculations on the CPU, should this be deemed
to be better.

Likewise, then reduce call can be translated to:

23 GPUAccelerate . reduce ( co l l e c t i on , kernel , function )
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7
Translate from Scala to C

The reason for GPUAccelerate.map having to take a kernel argument is
that whilst Scala does have first class functions we cannot use them as
they rely on the JVM that is unavailable on the GPU. Instead, we will
have to translate the anonymous function to C, which can be made to
run on the GPU through the C compiler which is built into the OpenCL
library.

As previously stated, however, it is not possible to translate all possible
functions to run on the GPU, partially because we are incapable of pro-
viding any guarantees as to what happens with side-effects in the code
(they may be called in any order and that particular order is not likely
to be consistent in-between calls), partially due to things like object
creation not being possible on the GPU.

Since this is a compiler extension, it should function in such a way that
it does not change the meaning of the code, but merely the speed with
which that code is executed. In general, it is impossible to mathemat-
ically determine whether two functions are equal—that they give the
same result for all possible input values, that is—so we must be more
conservative.

The compiler only considers moving the function to the GPU if the
function given as the argument satisfies the following defined require-
ments:

• The function does not access any variable. This does not apply
to values holding immutable objects (such as Javas String or int
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types), as they cannot be changed and so may safely be copied to
the GPU.

• The function does not create any new objects.

• The only functions called are the arithmetic operators, as well as
the functions available in the Java.math package with the excep-
tion of the random function.

These requirements all help ensuring that we only move functions
whose execution does not change anything elsewhere.

The first limitation ensures that we do not access anything which may
be changed by a different part of the program – this may result in the
execution of the function being impure.

The second limitation is necessary as it is not possible to allocate mem-
ory from the GPU kernel and we cannot pre-allocate an area of mem-
ory and coordinate sharing it in-between the work-groups on the GPU,
since our test hardware does not support device-wide atomic opera-
tions.

The final limitation is a broad one – it ensures that we for definite only
call pure functions and that these are also available on the GPU. This
limitation is not as large as it may come across as, at first, although:
the major speed improvement on the GPU comes into force when it
does computations on floating-point values, and most of the functions
we would like to use with them are available in the java.math package.

There are many other functions in the Java standard library that are
pure, but even so we cannot necessarily run them on the GPU. In Java,
String objects are immutable, so all the functions in the String class
are pure but we would need access to the source code for the String
class in order to translate the functions to run on the GPU.

While we could write special code to handle String related functions, to
translate arbitrary functions, we would have to prove that the function
neither accesses anything outside its arguments nor calls a function
which does and proves that this, too, is the case for all functions called,
directly or indirectly, from this very function. This can only be done
if all the called functions are on objects which we can either prove the
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dynamic type of (and, therefore which method actually implements the
code) or where the called method is final or static (and, thus, cannot be
overridden in a subclass).

Methods to automatically prove purity do exist, and they can be very
efficient. A purity analysis system for Java is described in [Pea11] and
is capable of proving the purity in large parts of the Java standard
library; to do this, the author has to extend the concept of purity to in-
clude functions which create objects and access local, non-public prop-
erties. Unfortunately, we cannot create objects on the GPU, and as a
result of this we are unable to utilise the extended purity system.

As a further result, we will limit the allowed functions in the map step
to the aforementioned.

For the reduce function, we have to add some additional limitations as
originally the function is either specified as reduceLeft or as textttre-
duceRight, both of which guarantee the order in which the reductions
are executed. Since no such guarantee is possible on the GPU, we have
to add the additional requirement that the function given is associa-
tive. Regrettably, it is not possible to mathematically decide whether a
function is associative, so we will only translate functions for reduction
if they also satisfy the requirements listed below:

• The input type is either a float or an integer.

• No non-associate function is called on the arguments.

Both of these requirements are vital to prevent the situation where
the if-statement can be used to create a reduce function which is not
associative. If we allowed the input value to be of a more complex type,
we could define the reduce function to evaluate

24 i f ( a . someVal > b . someVal ) {
25 a
26 } else {
27 b
28 }
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This will ensure that the value returned from the reduce call is the one
with the largest someVal – that is, if no other object in the input collec-
tion has a someVal which is greater – however, if two objects both have
the largest value, then the one being returned depends on in which
order the input is given in.

If we had left out the second requirement, one could write the function
to reduce (with arguments a and b)

29 a−b

In this case, the result also depends on the order in which the argu-
ments are evaluated by the function.

A minor problem occurs, however – due to rounding errors, floating
point addition and multiplication are not associative. Unfortunately
most of the computations we can expect to do, and where the GPU is
really swift, are on floating point math. Fortunately, while we cannot
provide the same result as if the code had run sequentially, the result
is still correct. We therefore choose to ignore this minor problem.

Once we have determined whether to run a function on the GPU, we
have to translate it. For simple examples like:

30 a => a + a

this is easy, and since all the math related functions in Java.math have
a corresponding C function, we can simply substitute these as needed.

Translating reduce calls are more complicated because they depend on
the value of the result of a previous calculation.

In order to ensure that the work items have access to the previously
computed values, we have to compute the reduced values over a series
of rounds, where, for each round, each active work item computes one
reduced value (from two input values) and then, after synchronising
with the rest of the work group on a barrier, every other active work
item becomes inactive. We continue doing this until there is only one
value left for each work group. Since we cannot synchronise in-between
work-groups, we have to either copy the result back to the main mem-
ory and reduce it there or run a new kernel which computes the final
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reduce reduce reduce reduce reduce reduce reduce reduce

reduce reduce reduce reduce reduce reduce reduce reduce

reduce reduce reduce reduce reduce reduce reduce reduce

reduce reduce reduce reduce reduce reduce reduce reduce

Figure 51.1: Diagram showing the data-flow between the work-item
computations. Red nodes indicate inactive compute units, green indi-
cate active compute units and the blue lines are where the barriers are
inserted.

reduced value – the process for a single work-group is illustrated in
Figure 51.1.
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Take the number of vehicles in the field, (A), and multiply it
by the probable rate of failure, (B), then multiply the result
by the average out-of-court settlement, (C). A times B times C
equals X...
If X is less than the cost of a recall, we don’t do one.

Jack, Fight Club 8
When to Run code on the GPU

and When not to

Just because we can run the code on the GPU does not mean we have
to. If the code runs on the CPU, we do not have to initialise OpenCL,
copy the values to the GPU, schedule and execute a kernel nor copy
the results back. If the input is small enough, the time saved can be
significant.

The interesting question is now: How do we estimate the cost, i.e. the
required time, to do the computation on the GPU versus the CPU?

One way to determine the expected cost of running the code on the
GPU is to consider the size of the input and resulting output data,
which have to be copied to and from the GPU, and divide this by the
bandwidth between the GPU and the CPU; then, add the expected time
required to perform the actual computation. While it may be possible
to get a reasonably accurate estimate of the transfer time, the code
sent to the GPU is optimised by a JIT compiler, so there is no way of
knowing exactly what code with be executed and we have not found any
public technical documents which tell how much the various operations
cost anyway so we would not be able to calculate this, even if we knew
exactly what operations where done.

The alternative approach to this is to benchmark the compiled kernel
on a few values and then time this takes decided whether or not use the
GPU. Unfortunately this would require each kernel – and there may be
many kernels in a given program – to be tested which would result in
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a significant delay.

A compromise would be to test some basic operations and then assume
than the execution speed of the resulting program is about the same as
the execution time of the parts it consist of. As the kernels are likely to
be relatively simple, this would be a reasonable approximation.

Then we could benchmark the same operations on the CPU, compare
the numbers and see which one would be the fastest; benchmarking
the CPU would still take time, however.

Instead of doing this, we can get a very rough estimate by dividing the
number of GFLOPS the GPU can produce with the number of GFLOPS
the CPU can provide. In the case of our test equipment, that is about
8.75. If we further assume that because of overhead and underused
GPU-cores we only get a bit less than half of that benefit, this means
that our GPU is about 4 times faster than the CPU.

Our test machine can run (on the CPU) 2 billion iterations of a for loop
with a floating-point multiplication through in about 2.14 seconds and
takes about 39.5 seconds to do the same to a for loop with a call to
the “sin” function1. If we assume all the allowed functions are equally
expensive, we can construct the estimated time-cost table:

CPU GPU
function call (sin, cos, etc) 39.50 9.9
arithmetic or logic operator (*, +, -, /, >, =, etc) 2.14 0.535

Of course these numbers will differ depending on what hardware the
software runs on, but they will be accurate enough to prevent us from
sending very small arrays to the GPU, or avoid sending very large ones.

Now we just need a way to compute the estimated time a program will
take. To do that, we will use a slightly modified WCET-analysis.

1This include the time to start the program with the “time” unix command, but
that is insignificant compared to the total running time.
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WCET-analysis WCET1 as a method used in real-time programming
to determine the most time a given program can take to complete. We
can use the same technique, although we need not concern ourselves
with the worst case, but rather the average case.

The basic idea behind WCET-analysis is to add the time each operation
in a program takes, the sum of which is the worst case execution time.
This is easy enough for simple operations, but for loops we need to know
the maximum number of times the loop may be run through, which is
often not possible to know.

With the restrictions we put on the programs we can move to the GPU
however, it is trivial. First we can expect most of the functions to be
simple, and if they contain loops then the number of iterations of these
loops must either be constant, depend on a value on the input variable
or on some other value available in the current environment (since we
do not translate functions which refer to variables) in which case we
can check it before we determine whether to move the computation to
the GPU or not.

Finally we need some measure of the cost of sending data to the GPU.
The Cuda SDK bandwidthTest sample says that the bandwidth from
main memory to the GPU is 1428 MB/S, and from the GPU to main
memory is 1154 MB/S on our test computer. This is fast enough that
the limitation is mainly going to be latency for most cases. Looking at
the graphs in [Hov08, p. 17 - 25], we can expect read and write latencies
of between 8 and 12 microsecond for all the tested cards. 8 microsec-
ond is about the time it takes to do 400 iterations of the floating point
multiplication loop.

1Worst-Case Execution Time
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9
Implementation

To implement the compiler, we will use the plugin framework included
with the Scala compiler1. This framework allows us to access and
change the AST during the compilation, after any phase we choose.

The compiler plugin will run after the "‘refchecks"’ phase so that it has
access to type information about the elements in the tree.

The compiler, as outlined in the design part, has three tasks:

1. Update the AST, replacing map and reduce calls with calls to our
runtime.

2. Translate the function given with the map call into OpenCL C
code.

3. Analyze the function and extract the information necessary to es-
timate whether it would be a benefit to run it on the GPU.

9.1 Update the AST

As said before, the compiler plugin framework gives us direct access to
AST so the translation is reasonably simple. All we have to do is find
all instances of

1Version 1.8.0
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31 f l o a t C o l l e c t i o n .map( function )

with our runtime code:

32 GPUAccelerator . mapf ( f l oa tCo l l e c t i on , function ,
↪→ functionCcode , benchmarkInfo )

In Scalas AST this can represented as

33 Apply ( Select (TermName( GPUAccelerator ) ,TermName( mapf ) ) ,
↪→ List ( f l oa tCo l l e c t i on , function ,
↪→ compileToOpenCL ( function ) , benchmarkFunction (
↪→ function ) ) )

Where compileToOpenCL is the function which compiles the AST to
C code and benchmarkFunction is the function which computes the
estimated cost of running the code on the GPU versus CPU.

The first thing to do is to search through the Scala AST to see if we
have some part of the AST which can be run on the GPU. We do this
with Scalas pattern-matching capabilities:

34 def matchMapCall ( potent ia l : Tree ) = {
35 potent ia l match {
36 case s @ Apply ( ta @ TypeApply ( Select ( Apply (

↪→ Select ( Select ( This (name:Name) , predef :
↪→ Name) , doubleArrayOps :Name) ,
↪→ sourceCol lect ion ) , mapCall :Name) , typeTree
↪→ ) , functionArg ) i f ( ( name. toString == "
↪→ scala " ) && ( predef . toString == " Predef " )
↪→ && ( doubleArrayOps . toString == "
↪→ doubleArrayOps " ) && ( mapCall . toString ==
↪→ "map" ) &&(sourceCol lect ion . length ==1) &&
↪→ ( sourceCol lect ion ( 0 ) . isInstanceOf [ Ident ] )
↪→ ) => {

37 true
38 }
39 case default => {
40 false
41 }
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42 }
43 }

It looks more complicated than it is – what we do is first to match on
the general structure of the code, then we check that the function called
is “map”, that we are calling it on the doubleArrayOps (a wrapper class
that allows a high level view of Javas arrays, in this case with doubles),
that the given function takes exactly one argument.

The Scala plugin system gives us access to the AST, but there is no way
to iterate through all the nodes in the AST. Instead we walk the tree
and for each node which may be the outer-most node in a map call or
contain a map-node, we run through its child nodes. This is all done in
the replaceMapCall function:

44
45 def replaceMapCall ( potent ia l : Tree ) : Tree = {
46 potent ia l match {
47 case s @ Select ( lhs , rhs ) => {
48 treeCopy . Select ( s , replaceMapCall ( lhs ) , rhs )
49 }
50 case s @ Block ( l , e ) => {
51 treeCopy . Block ( s , l , replaceMapCall ( e ) )
52 }
53 case s @ DefDef ( a , b , c , d , e , exp ) => {
54 treeCopy . DefDef ( s , a , b , c , d , e , exp )
55 }
56 case s @ Assign ( l , r ) => {
57 i f ( matchMapCall ( r ) ) {
58 return treeCopy . Assign ( s , l , translateMapToGPU (

↪→ r ) )
59 }
60 treeCopy . Assign ( s , l , replaceMapCall ( r ) )
61 }
62 case s @ Apply ( f , rhs ) => {
63 treeCopy . Apply ( s ,
64 i f ( matchMapCall ( f ) ) {
65 translateMapToGPU ( f )
66 } else {
67 replaceMapCall ( f )
68 } ,
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69 rhs .map{ a => i f ( matchMapCall ( a ) ) {
70 translateMapToGPU ( a )
71 } else {
72 replaceMapCall ( f )
73 } } )
74 }
75 case d @ default => {
76 super . transform ( tree )
77 }
78 }
79 }

Unfortunately this code attaches an extra element to the tree each time
it is called. Since the documentation for the Scala plugin system is
scattered in many different places and other Scala compiler plugins we
looked at did not seem to have this problem, we decided to skip the
automatic translation part and simply insert the code manually when
we benchmark the system.

Since it is possible to write a plugin to the Scala compiler, we are more
interested in how well the compiler plugin would optimize the code if
we fixed the issue.

9.2 Translation into C

Since we have very strict limits on what the function arguments can do,
it is not very difficult to translate them into C code. All that is required
is that we change the AST from:

80 Apply ( Select ( value , functionName ) , arg )

to

81 value functionName arg

or if functionName is not an arithmetic operator1 then translate it into
1An arithmetic e.g *,/,-,+
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82 functionName ( value )

The translation for the reduce function is essentially the same, except
that - and * cannot be used as operators because they are not associa-
tive.

Because we cannot get the compiler plugin to work, we will not imple-
ment this part since it is not needed.

9.3 Data to Benchmark

To avoid the cost of moving small arrays back and forth between the
GPU and CPU, we implement a simple benchmark function which com-
putes the estimated cost of running the code on the GPU. We use the
price found in the design section, rounded up to the nearest integer.

83 def benchmark ( tr : Tree ) : int = {
84 def costOf ( f : String ) => {
85 i f ( f . length > 2)
86 10
87 else
88 1
89 }
90 tr match {
91 case t @ Apply ( a , args ) =>
92 args .map( benchmark ) . f o ldLe f t ( 0 ) ( _+

↪→ _ )+ benchmark ( a )
93 case Select ( a , name) =>
94 benchmark ( a ) + costOf (name.

↪→ toString )
95 case I f ( a , b , c ) =>
96 benchmark ( a ) + benchmark ( b )+

↪→ benchmark ( c )
97 case default => 0
98 }
99 }
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There are two things that should be noted here: First the reason we
check the length of the functions name is that all the arithmetic opera-
tors all have names with a length two or less whereas all the functions
from Java.math have a name with length at least three.

The second thing to note is that we compute the price of the if state-
ment as the cost of both branches rather than the average cost. This is
because on a GPU the cores run in lock step so if one core branch then
the others will follow along (though they will not modify any data).
Since the CPU is not limited in this way the function may estimate the
cost of running on the CPU a bit too high (the cost to run on the CPU is
given in the design section as 4 times the cost of the GPU for the same
operation).

To decide if we should run it on the GPU all we have to do is to add the
time it takes to move the data to the GPU to the time it takes to run it
and if that is lower than the cost of running the code on the CPU, move
it.

9.4 The runtime

To run code on the GPU, we will use the open source library JavaCL1.

We would need an object with two methods, one for map and one for
reduce, however the benchmarks which we are able to optimize only
requires map, so we will only use that.

Because of some weird bugs in the way Scala interacts with the JavaCL
system, the part our code which is responsible for calling through to
OpenCL is written in Java.

This is the Java part, based heavily on the code which drives the OpenCl
benchmark suite:

5 package Runtime ;
6
7 import com . nat ive l ibs4 java . opencl . * ;

1http://code.google.com/p/javacl/
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8 import com . nat ive l ibs4 java . opencl . u t i l . * ;
9 import com . nat ive l ibs4 java . u t i l . * ;

10 import org . br id j . Pointer ;
11 import static org . br id j . Pointer . * ;
12 import static java . lang . Math . * ;
13
14 public class JRuntime {
15
16 static CLContext context ;
17 static CLQueue queue ;
18 static Pointer <Float > aPtr ;
19 static CLBuffer<Float > a ;
20 static CLBuffer<Float > out ;
21 static CLProgram program ;
22 static CLKernel kernel ;
23 static CLEvent evt ;
24 static Pointer <Float > outPtr ;
25
26 public static float [ ] mapf ( String src , float [ ] input

↪→ ) {
27 context = JavaCL . createBestContext ( ) ;
28 queue = context . createDefaultQueue ( ) ;
29 aPtr = Pointer . a l l ocateFloats ( input . length ) ;
30 for ( int i = 0 ; i < input . length ; i ++) {
31 aPtr . set ( i , input [ i ] ) ;
32 }
33 // Input buf f er
34 a = context . createFloatBuffer (CLMem. Usage . Input ,

↪→ aPtr , true ) ;
35 // Output buf f er
36 out = context . createFloatBuffer (CLMem. Usage . Output

↪→ , input . length ) ;
37 // Compile program source
38 program = context . createProgram ( src ) ;
39 kernel = program . createKernel ( "mapf" ) ;
40 kernel . setArgs ( a , out , ( float ) input . length ) ;
41 evt = kernel . enqueueNDRange ( queue , new int [ ] {

↪→ input . length } ) ;
42 outPtr = out . read ( queue , evt ) ;
43 float [ ] o = new float [ input . length ] ;
44 for ( int i = 0 ; i < input . length ; i ++) {
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45 o [ i ] = outPtr . get ( i )
46 }
47 return o ;
48 }
49 }

The Scala program will then have to look:

100 ob jec t GPUAccelerator {
101 mapf ( c o l l e c t i o n : Array [ Float ] , fun : Float => Float

↪→ , openClCode : String , benchmarkInfo : Int ) :
↪→ Array [ Float ] = {

102 //We assume that i f i t wi l l take more time to run
↪→ than the latency , i t i s worth i t .

103 //Latency i s for both ways assuming 10
↪→ microseconds each

104 i f ( ( benchmarkInfo * c o l l e c t i o n . length )
↪→ / (2000000000. asInstanceOf [ Double ] ) >
↪→ 0.00002) {

105 Runtime . JRuntime . mapf ( openClCode , c o l l e c t i o n )
106 } else {
107 c o l l e c t i o n .map( fun )
108 }
109 }
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10
Benchmarks

There are many different benchmarks used in high performance com-
puting and authors often create their own benchmarks as well. Ad-
ditionally some benchmarks require fairly domain specific knowledge,
e.g. the BioPerf framework which uses algorithms such as phylogenetic
reconstruction and protein structure prediction[BLLS06]. In [BLWJ],
we identified a number of benchmarks:

Linpack This is the benchmark used to determine the TOP500 rank-
ings of super computers. While this is a simple benchmark, all it
does is test how fast a cluster can do floating point calculations —
an area where we already know the GPU excels.

NAS benchmark This is a more general benchmark, which is based
on problems encountered in fluid-dynamics. Unfortunately half of
the problems test communication between the nodes in the cluster
(which is not an issue when the HPC consist of one node), so that
benchmark is not that useful in this case.

hiCUDA benchmark These benchmarks are from the paper on hiCUDA
and are according to the authors standard CUDA benchmarks[HA09].
They include matrix multiplication, sum of absolute differences
as well as a polynomial equation solver.

Since we are not trying to compare our solution directly to that in the
paper on hiCUDA, we can afford to relax their benchmarks, as well as
to add those from the NAS benchmark that test additional things. In
[BLWJ] we found the following benchmarks:
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• Solving a simulation of interacting points.

• Evaluating a function over an area.

• Solving a polynomial equation.

However it is not enough to decide which benchmarks to use, we must
also find a way to evaluate them with a minimum of interference. [GBE07]
suggest among other things that we consider:

1. One hardware platform versus multiple hardware platforms.

2. One heap size versus multiple heap sizes.

3. A single VM implementation versus mulitple VM implementa-
tions.

4. Back-to-back measurements versus interleaved measurements.

We can however remove a few of them. Since we are testing Scala
and it is almost always used with the Java Virtual Machine from Sun
we do not have to consider other implementations of the Java Virtual
Machine.

In addition Scala is most often invoked with the standard size for the
Java heap, so we will only test that. [BMG+08] does have an example
of the danger of doing so, it shows a test with two different garbage
collectors where the fastest depends a great deal on the heap size. But
this is not a concern if it is mostly run at a given heapsize – because we
want the system to be as fast as possible for that particular heap size.

With regards to the hardware platform, we have only one machine to
run benchmarks on, so although this may influence the final result we
will not do the benchmarks on different hardware platforms.

Both [GBE07] and [BMG+08] also point out that we need to control for
non-determinism. This is an extra large issue in our case, because in
addition to the normal issues we would have with the JVM JIT com-
piler, we also have a JIT compiler that runs on the GPU.
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There are a number of techniques to remove or lower the non-determi-
nism from the JIT compilers. [GBE07, BMG+08] suggest that we either
focus on the warm-up phase of the JIT compiler – this is useful for
benchmarks which takes only a short time and whose execution time
is therefore greatly affected by the time it takes to start the system,
load classes and perform the initial JIT compilation – or on the steady
state, which is where the largest cost is incurred for benchmarks which
takes a long time.

Since it takes some time to send the data to the GPU, initialize the
kernel and read the result back it would not make sense to do this for
short workloads so we will be writing the benchmarks to test the steady
state of the program.

To make the benchmark tests we will run the tests multiple times in
the same VM instance as suggested in [GBE07] (this allows the virtual
machine to use the JIT compilers optimization) as well as running the
same benchmark a number of times (to smooth out the results of the
non-determinism from the JVM JIT compiler).

Unlike normal benchmarks for managed runtimes, we also have to con-
sider the costs of the JIT compiler on the GPU. While we could certainly
test the steady state of the JIT compiler on the GPU as well, that would
be wrong as it would make the GPU appear faster than it really is and
we would not be able to accurately compare the GPU optimization with
the non-optimized Scala code. For this reason, the benchmarks have to
include the entire cost of doing the computation on the GPU, including
both the time to copy the data back and forth as well as the cost of the
JIT compiler.

Finally then, we have to decided what benchmarks to run. Keeping
in mind the limitations of our compiler and the list of benchmarks we
got from the last report [BLWJ], we will be using the following bench-
marks:

1. Matrix multiplication

2.
√

sin(x) + cos(x)

3. sin(x)
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We chose Matrix multiplication because it is often used in high perfor-
mance computing and illustrates the limit of our compiler plugin, since
it is unable to optimize it.

We chose the
√

sin(x) + cos(x) function because it is simple but have a
high workload-data ratio.

We chose the sin(x) function because it has a lower workload-data ratio.

Our test hardware contains a quad-core Intel Xeon E5420 processor
and two NVIDIA Tesla C870 GPUs, but we will only be using one of
the GPUs. The Xeon can deliver no more than 40 GFLOPS, while each
Tesla card can deliver up to 350 GFLOPS performance.
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"what ’s done is done".
Macbeth ( Act III, Scene II) 11

Conclusion

We described how to make a compiler plugin which can optimize pro-
grams by moving computations to the GPU. Unfortunately this com-
piler plugin cannot correctly update the AST of the input data, so the
only way to use it is to insert the calls to it direcly in the source code,
neglecting the benefit of the compiler plugin.

We ran some benchmarks comparing the GPU and Scala code, but we
did not do any benchmarks directly on our plugin, partly because the
GPU code would be identical to the GPU code we wrote and partly
because of the issues we mentioned with the compiler.

We did find that significant speed-ups could be made by using a GPU.
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If you can look into the seeds of time, And say
which grain will grow, and which will not, Speak.

Macbeth, Act I, scene iii 12
Future work

Most importantly, we want the compiler to correctly update the AST,
since the idea with the plugin is to make it so that the programmer
does not have to worry about using the GPU.

Plenty of extensions can be made to the compiler plugin. In particular
we would like to be able to ofload computation on not just arrays but
also ranges, lists, and Scalas other standard collections.

In additions we would like to have the compiler do work on datatypes
other than floats and integers, including case classes, tuples and strings.

We would also like a better heuristics for when it is advantages to move
code to the GPU, as well as a more comprehensive benchmark so that
we can better know the likely speed-up.

In particular however, we would like to be able to inline loops, calls to
map and reduce and have a proactive caching system to move data to
and from the GPU.
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