TileShifter

A Peer-2-Peer Multiplayer Game for Smartphones

Master Thesis during DAT6 by
— Group D601a —
Jais Heslegrave & Thomas Justesen

July 29, 2011 at Aalborg University

(8

AALBORG UNIVERSITET

Student Report — Master Thesis

Titel:
TileShifter
— A Peer-2-Peer Multiplayer Game for
Smartphones. ..

Theme:
Peer-2-Peer Multiplayer on Mobile De-
vices, Distributed Systems

Project period:
DAT®G, spring 2011

Project group:
D601a

Authors:
Jais Heslegrave
Thomas Justesen

Supervisor:
René Rydhof Hansen

Printcount:
4

Nr. of pages:
77

Appendix:
A cd with source, executable, testresults
and simulator results.

Completed & signed:
July 29, 2011 at Aalborg University

Department of Computer Science
Aalborg University

Selma Lagerlofs Vej 300

Phone +45 9940 9940

Fax +45 9940 9798
http://www.cs.aau.dk

Abstract:

Most people have tried to be bored, while
waiting for something, whether it is a bus
or a person late for a meeting.

Since Smartphones began taking over the
mobile phone market, more and more peo-
ple tend to use their Smartphones to fill
periods of boredom, with either business
— such as reading and responding to mail,
or with entertainment — such as games.
Due to the rapidly expanding market of
Smartphones and the increase in number
of interested consumers, more and more
apps for Smartphones are developed. It
does, however, seem that in the area of
games, very few apps support multiplayer,
especially for larger groups of people.

TileShifter is the product of this project,
and is an attempt at developing an action-
packed, scalable, Peer-2-Peer multiplayer
game. The aim is to prove that, although
the resources on mobile phones are low,
Smartphones are at a stage, where scalable
multiplayer is possible. The solution for
TileShifter is to introduce a custom set of
algorithms, which correlates well with the
game design and a virtual world of tiles.

The contents of this report is accessible without limitation, publication, however, is
only allowed through an agreement with the authors.

http://www.cs.aau.dk

Contents

Contents
Preface

1 Introduction
1.1 Problem Statement

2 Analysis
2.1 Game Concepts Lo
2.2 About Smartphones L
2.2.1 Defining A Smartphone
2.2.2 Features of The Smartphone
2.2.3 Choice of Smartphones
2.3 Smartphone Networking
2.3.1 Physical Network Connection
2.3.2 Network Protocols & Architectures
2.4 Choice of Game Engine L.
24.1 Using Unity3D

3 Design
3.1 Game Design
3.1.1 The Tilesystem & Grid
3.2 Tile Algorithms
3.2.1 Variables, Intervals & Timeouts
3.22 Jolningo
3.23 Updating oo
324 Keepalives. L
3.2.5 Disconnecting oL
3.3 Test & Simulation Design

4 Implementation
4.1 Game Implementation L.
4.1.1 Sending & Receiving Packages

iii

[\

© © 0o o = Ut W\

10
12
16
17

19
19
22
26
27
28
29
32
35
35

11 Contents

4.1.2 Encoding & Decoding Packages 41
4.1.3 Dequeuing Packages 42
4.1.4 Act on Messages, Example. 43

4.2 Algorithm Implementation 44
4.2.1 Coordinate Closest to Zero 45
4.2.2 Dealing With Joining Peers 45
4.2.3 Relevant Neighbouring Peers 47

5 Evaluation 49
5.1 Wireless Test Results 49
5.1.1 Ping Times oL 50
5.1.2 Throughput oo 53

5.2 Simulation Results L. 54
5.2.1 Result Evaluation o4
5.2.2 Realistic Test Cases 56
5.2.3 Stress Testingo 59
5.2.4 Split Scenario 60

5.3 Further Development L. 62
5.3.1 Overlay Algorithm 63
5.3.2 TileShifter. oL 65
5.3.3 General Networking, 67

54 Conclusion 69
5.4.1 TileShifter. o oo 69
5.4.2 Tile Algorithms 70
5.4.3 Wireless Testing 71
544 Final Words o oL 72

Bibliography 73

Preface

This report has been written during the DAT6-project period and is a Master
Thesis by group D601a at Aalborg University. The theme is “Peer-2-Peer
Multiplayer on Mobile Devices, Distributed Systems”.

References to sources are marked by [ABc#]|, where ABc# refers to the related
literature in the bibliography at the end of the report.

The appendix to the report is found as test results, simulation results, source
code and executables on a compact disc, located on the very last page of the
report.

The entire report is written in English and no translation will be accessible.
Abbreviations and acronyms are at first appearance written in parentheses,
to avoid breaking the reading stream. The report is written in KXTEX and is
accessible as a PDF-document.

A special thanks to Rex Nebular (Morten Lund Sgegaard) for supplying the
game with sound and music, our peers for constructive peer reviews of this text,
Unity Technologies for providing educational licenses and Aalborg University
for providing Smartphones.

Signatures:

Jais Heslegrave Thomas Justesen

i

CHAPTER].

Introduction

Games on Smartphones are already soaring in popularity, but why play with
yourself when you could be playing with your friends. In this report, the
game TileShifter is introduced, which lets Smartphone owners play against
each other, in an exciting tank combat game. TileShifter uses Peer-2-Peer
networking, to allow many players to play simultaneously, and drop in and out
of the game on a whim.

In the past few years, the Smartphone sales have risen noticeably according
to Gartner [PS11|. This trend has lead to the development and production
of increasingly powerful devices, both in terms of processing power and in
the number of features. The introduction of Apple’s App Store opened a
market for numerous new software and game developers for Smartphones, both
independent and professional. According to recent news from Apple [PM11],
a reason for this success could be the ease of development and publishing of
the apps. It means that any developer with an idea and time, is capable of
creating and distributing an app to the rapidly expanding app store market.
The App Store concept was quickly adopted by other Smartphone developers,
who sought to reap the benefits.

As Smartphones increase in computational power, more and more elaborate
and demanding games appear in the app stores. It is clear that Smartphone
games can be successful, demonstrated for instance by “Angry Birds” recently
reaching 100 million downloads across multiple platforms [Leill]. It seems,
however, that the game developers for Smartphones are thinking mostly in
single player games. Few multiplayer games exist in the stores, and those that
do exist are either not real-time collaboration (such as “Pass and Play” and turn
based games) or limited to very few players (i.e. 2 — 4 players). One can only
speculate why so few multiplayer games are available, since the Smartphone
is more than capable of network multiplayer games, with the built-in network

2 Chapter 1. Introduction

interfaces.

This project tries to discover, that if the right game design choices are made, it
is possible to create a scalable multiplayer game for Smartphones, with wireless
connectivity and sufficient computational power. To discover this, TileShifter
is developed. TileShifter is a scalable multiplayer action game, that uses a
Peer-2-Peer architecture in connection with custom-tailored tile algorithms.

In the Analysis Chapter, the initial part discusses a few interesting game con-
cepts, that could be implemented. Afterwards the Chapter defines the term
Smartphone, leading to which features are available in a Smartphone. The fo-
cus of the report is on networking, so an analysis of possible physical network
connections, protocols and architectures available on a Smartphone, leads the
networking design of TileShifter in the right direction.

In the Design Chapter, the game design of TileShifter is explained, along with
how game design choices are used to influence the network connectivity, us-
ing a number of custom tile-based algorithms. These algorithms are detailed
in depth, along with a description of the wireless network test and algorithm
simulation design.

Special network related implementations in TileShifter are exemplified in the
Implementation Chapter, along with interesting examples from the tile algo-
rithm implementations.

Evaluations of TileShifter, the tile algorithms and the wireless test results are
brought forward and elaborated upon in the Evaluation Chapter. Finally, the
Evaluation Chapter describes further possible developments on all aspects of
TileShifter, and concludes on the project.

1.1 Problem Statement

The goal of this project is to examine the possibilities of developing a Peer-
2-Peer game for a Smartphone environment. This requires designing a game
fitted for the Peer-2-Peer model, as well as investigating the capabilities of
modern Smartphones. The game is intended to be quick fun for a group of
players joining together to play, as well as a game that is quick to get into the
action. Therefore this project will focus on local multiplayer using the wireless
connection. Letting any player leave or join at a whim, still maintaining a
stable game experience for the remaining players and letting the game scale
up to a certain amount of players, is of importance. A relevant goal is further-
more, to examine how game design, networking and program design can mesh
together to enhance and shape the multiplayer experience.

These thoughts coalesce into one problem, that is tackled during this project:
“Can a multiplayer Peer-2-Peer game be developed for a Smartphone plat-
form?”.

1.1. Problem Statement 3

The game should try to live up to as many of the Peer-2-Peer system character-
istics as possible, namely: Each peer contribute resources, all peers should be
equal, no server or tracker is necessary for the system, anonymity for peers and
an efficient algorithm should handle data and workload distribution [CDKO05].
These problems can be formalised into the following requirements:

Peer-2-Peer The game must be Peer-2-Peer and should not require a dedi-
cated server or tracker of any kind.

Smartphone Platform The game is to be developed primarily for the mod-
ern Smartphone platform, capable of executing the chosen game engine.

Scalability A certain amount of players should be able to join the game and
have an enjoyable experience, and every player joining should contribute
in some way.

Robustness Players should be able to join and leave on a whim, with minimal
impact on the remaining players.

Drop in/out Gameplay Game pacing should allow players to have a fun
experience immediately upon joining.

Game Driven Design As many networking features as possible should con-
tribute to the gameplay in a meaningful way.

In addition to these requirements, some delimitations also exist, namely in
the area of security and NAT. As such the following delimitations have been
formalized:

Security Anti-cheating, anonymity and security are whole research areas in
themselves, and thus will not be the focus of this project. In addition
the game is meant to be played locally, by players in the general vicin-
ity of each other, this means the players themselves are the anti-cheat
mechanism.

NAT Network Address Translation is an obstacle for every networked appli-
cation attempting to use the Internet. The game is meant to be played
locally in this phase of development, not over the Internet. As such,
NAT and Internet communication is no concern.

CHAPTER 2

Analysis

Before designing the game and network connection, the Analysis
Chapter aims to examine relevant existing solutions to related prob-
lems. The purpose is to generate a knowledge base, satisfactory
enough to create the multiplayer game, TileShifter.

Among the important subjects discussed in the analysis phase are,
existing games on the market for Smartphones and what game con-
cepts have been contemplated in this project. The analysis sheds
light over what possibilities the modern Smartphones hold. A very
wmportant part of this project is the networking, and this Chap-
ter also details the different paths to follow and which is chosen.
Finally the Chapter explains the choice of using Unity3D for the
development.

2.1 Game Concepts

The way to acquire games for a mobile device is using using the various app
stores that support them, whether an Apple or Android device. Examining
both the App Store [Appll] and Android Market [Gooll]| reveals some of the
multiplayer games available, that are popular with users. Many of the multi-
player games are of the turn-based variety, where players take turns making
moves in the game, and as such do not play at the same time. This allows
the game to be played in a “Pass and Play” manner, also known as “Hotseat”,
where players take turns using the device. This approach is not suitable for
an action based game. Turn-based games also commonly support multiplayer
with multiple devices, this can be locally over Bluetooth or wireless network,
but also online using wireless network or 3G. Games like these include Check-
ers, Chess, Risk and Monopoly. Multiplayer real-time games for the mobile

5

6 Chapter 2. Analysis

devices can be found supporting both local and online play, most commonly
these games support 2-4 players. Rarely do they support upwards of 16 players
at once. Some games are of the MMORPG variety, which offer online play for
many players at once, these games do require servers however, and cannot be
played locally.

In order to investigate the possibilities of scalable Peer-2-Peer games on a
mobile platform, a suitable game concept has to be chosen to develop a rea-
sonable, yet simple, game design. The game design must be basic enough to
not obscure key issues, yet advanced enough to be an interesting game. These
concerns lead to several different game genres that could be pursued for the
developed game, these include: action games, puzzle games, turn based games,
arcade games, trivia games and more. These are also game types that lend
themselves to the mobile platform, given that some game types are difficult
to properly control on a touch screen interface. The following game concepts
have emerged from these considerations:

Tanks The tanks idea is inspired by the classic games of tanks shooting at each
other. This basic idea is easily expandable, and the simple mechanics
of tanks driving around, shooting and destroying each other would be
preserved. The unique twist here is that the arena that tanks would
be fighting in would be made of square building blocks that could fit
together and easily expand the playing field to allow for more and more
players to combat each other. A concept sketch of the Tanks game is
depicted in Figure 2.1.

Board Game This idea hits a mark near turn based game and arcade game,
being a game based on the board game “Snakes and Ladders”. This game
idea would have players take turns to roll a die to advance up the game
board and try to hit ladders while avoiding snakes. Players could pick
up power-ups along the way, to influence the gameplay with extra moves
or obstacles.

Quiz A basic quiz trivia game where the players have to answer questions
or solve puzzles competing against each other. The game could feature
a variety of questions, ranging from simple multiple choice questions to
writing answers on the phone to recognizing shapes. Points would be
awarded for correctness and speed.

Arcade Game An idea based on a tabletop game which is a hybrid between
an action game and an arcade game. Players take turns revealing cards
on their hand bearing shapes and colours, if a similar shape was already
in play in an opponents revealed cards, these two players would race for
a totem, and the winner of this duel would give his revealed cards to the
loser. The player who discards all cards first, wins.

2.2. About Smartphones 7

I

Figure 2.1: A concept sketch of the Tanks game.

After some deliberation on which game concept to run with, the final decision
ended up being the “Tanks” concept. It is named “TileShifter”, based on the
concept of the square tiles that the playing field would be built of. This is due
to the tile idea allowing an interesting approach to the Peer-2-Peer aspect of
the multiplayer game, a more detail explanation of this idea is found in Section
2.3.2 about network protocols and architecture. Each peer controlling one of
these tiles and connecting to other peer tiles to play, this game concept can
also be made serverless, which is one of the goals of this project. The tile— and
game design concepts are further detailed and examined in Section 3.1. The
other game concepts do not have these opportunities to integrate interesting
game concepts with networking and game design as the tank concept did.
In addition the other games were more turn-based and it seemed as though
turn-based games were the norm, as examined earlier. Pursuing an action
game approach was more appealing, since it meant heading in a more unique
direction.

2.2 About Smartphones

There is much talk about Smartphones at the present day, because more and
more consumers have an increasing interest in their features, and the Smart-

8 Chapter 2. Analysis

phone developers respond to the rising interest by adding more features and
increase the complexity and processing power. It is a good idea to define what
is meant by the word Smartphone before initiating the development (i.e. when
can a mobile phone be called a Smartphone). No official definition of the word
Smartphone exists, probably because it is used in the industry as a buzzword
to increase sales of mobile phones. Some even try to define a Featurephone
as a phone with lesser features than a Smartphone, to add more depth to the
discussion [NZ09|. Small attempts at definitions can be seen in PCMAG.com
[PCM11] and in 2010 Steve Litchfield tries to define the term on All About
Symbian.com [LS10] as well. In the context of this project, the word Smart-
phone is used, not as a sales argument, but as a specific type of consumer
device, so the definition must specify a set of necessary features needed to play
a multiplayer game on the device.

2.2.1 Defining A Smartphone

In the context of this project, the Smartphone must be able to run a 3D graph-
ical game and have a wireless network connection. Therefore the definition of a
Smartphone in connection with this report, is a phone capable of the following:

e Resources to be able to run 3D applications.
e Installation of applications and games.

e Network communication through wireless connections.

This is a rather loose definition of a Smartphone, but it is viewed as sufficient
for the scope of this project.

2.2.2 Features of The Smartphone

As mentioned, Smartphones have more and more features and the compu-
tational power increases with each new product that arrives on the market.
The Smartphone is becoming a possible substitute for the computer or laptop.
Often more functions are available in Smartphones than in most laptops and
PCs, such as assisted GPS, multitouch displays and accelerometer. A typi-
cal Smartphone runs with an underclocked processor of 1 GHz, with 256 —
512 MB RAM and very varied storage capacity. The reason for the processor
underclocking is mainly to save power and reduce heat of the device [CE10].

The specifications and capabilities of the Smartphones, and the fact that users
have them at hand at any time of day, makes them ideal as small gaming
platforms. Either for small quick games while waiting for a bus, or for larger

2.2.3. Choice of Smartphones 9

games for longer idle periods. The games could easily be used in a social con-
nection, when using the built-in wireless networking or Bluetooth connections.
The games can be made for the different platforms to be able to communicate
across platforms. This will reach a larger group of consumers. Another idea is
to utilize some of the built-in features such as GPS and the accelerometer, to
enhance and enrich the game experience.

2.2.3 Choice of Smartphones

At the moment three major Smartphone developer platforms are available,
the Blackberry by RIM, the iPhone iOS by Apple and the Android by Google.
Blackberrys are made solely for business and is not a good gaming platform due
to the smaller screen and market share. iOS and Android on the other hand,
are very good choices for the game. Both platforms are relatively simple, but
to develop for the iOS platform, Apple requires a one year developer license as
well as a Mac computer to compile the application. Google Android is much
more lenient in this regard, as no special licenses or equipment are required to
build an application to a device. These facts mean that Google Android is the
chosen platform for this project.

The final choice for the development and test platform is two HTC Desire
Smartphones, with 1 GHz floating point processor, 512 MB RAM, wireless
networking 802.11b/g and Android operating system.

2.3 Smartphone Networking

When developing a network multiplayer game, it is imperative to analyse the
possibilities for network connections and network architecture. These are two
different subjects within networking for multiplayer games. The network con-
nections refer to the hardware components used for the network connections,
and the network architecture refers to protocols, while relations between the
participating client devices.

In this Section, the aim is to describe the networking hardware, architecture
and protocols, which can aid in the development of an application for the HT'C
Desire. The Section concludes with the choice of networking components and
the motivation for this choice. The first step, in Section 2.3.1, is to decide
upon what physical network connection is paramount to the project, while in
Section 2.3.2, different networking protocols and architectures are discussed
for use in the project.

10 Chapter 2. Analysis

2.3.1 Physical Network Connection

In Section 2.2.3 the HT'C Desire was chosen as the target device for this project.
This Section therefore uses the Desire as a reference for what hardware is
available on the Smartphone for networking communications.

In the following Sections, the positive and negative sides in relation to mul-
tiplayer network development are discussed for: Bluetooth, the cellular data
and the wireless network, to determine the best choice for this project.

Bluetooth

Bluetooth is a widely used wireless proprietary — but open — technology. Its
purpose is to connect and exchange data between devices over short distances.
Bluetooth was developed by Ericsson [Blulla, KRAO08| and it is maintained
by the Bluetooth Special Interest Group, mainly consisting of members from
the telecommunication industry [Blullb].

Bluetooth in mobile devices is often used to transmit sound to a headset, or
connect the device to a computer to work as an internet modem. Because of
this, many people may forget or be unaware, that Bluetooth is capable of more
than a single connection between two devices. Eight devices can be connected,
where seven of them act as slave devices, and a single device is the master, this
is called a Piconet [KRAO08, MS99]. One of these devices in this Piconet could
be connected to another Piconet forming a Scatternet, which means that it
is possible to create a larger network using Bluetooth. See Figure 2.2 for an
example of two Piconets forming a Scatternet. The Bluetooth antennas are
omni-directional, meaning that the signals go in all directions, and do not need
to be directed, signals can also go through obstacles. Finally, the Bluetooth
applications can be both synchronous and asynchronous. In the dissertation
“Design and Deployment of Wireless Networked Embedded Systems” by Jan
Beutel [Beu05], experiments with large scale Scatternet using Bluetooth is
possible for a network of 70+ connected devices.

Speaking against Bluetooth as a solution for TileShifter, is that the connection
speed is limited to theoretically 3 Mbit/s, which is 375 kB per second, at
best in Bluetooth v.2.1, which is used in the HTC Desire! [HTC11]. This
speed is expected to be a bit low for a near real-time multiplayer network
game. Furthermore, the Piconets and Scatternet will be difficult to maintain
when players leave the network, and will result in much work to create a
solution that keep Piconets running if masters leave. The distance limitations

!Bluetooth v.2.1 with Enhanced Data Rate. Never versions of Bluetooth v.3.0 and 4.0
is said to have a Data Rate of 24 Mbit/s

2.3.1. Physical Network Connection 11

Figure 2.2: A concept sketch of a two Bluetooth Piconets forming a Scatternet.

of approximately 5 — 100 meters, depending on if it is a Class 1, 2 or 3
Bluetooth connection, is viewed as a minor factor.

GSM, GPRS, EDGE & 3G

Smartphones can directly access the internet at all times, this is in modern
days done using a built-in 3G network connection which is the third generation
of mobile internet communication, also known as High-Speed Packet Access
(HSPA). 3G mobile data networking is a result of the demand of higher data
rates on the mobile devices [IMLT03] and is said to be able to perform at
a theoretical speed of 42 Mbit/s (approximately 5 MB per second), while
Danish companies promise to deliver up to 32 Mbit/s [Danll] and up to 100
Mbit /s using the slowly expanding long term evolution 4G [Tell1]. The speed
depends on several factors, such as obstacles between the device and antenna,
the number of concurrent users and the distance between the device and the
antenna. A more realistic data rate is about 1 — 10 Mbit/s.

On the downside there is no way of controlling the routing on a mobile data
network such as 3G, EDGE, GPRS or GSM internet connection. The device
does get an IP address on the network, but ports are closed and connections
from device to device are highly limited. This is mainly to secure the de-
vices from hacking and other types of misuse of the network. The fact that
there is no guarantee that the devices will be able to communicate using this
network connection, leaves it to be an unreasonable choice for this project as
well. Communication could be established using advanced NAT punchthrough
mechanisms, in which the concept is to “punch” a hole through the firewalls
and NAT port translations on the network [JE03]. This, however, seems like
a unnecessary problem to solve in this project.

12 Chapter 2. Analysis

Wireless 802.11b/g

Ruling out Bluetooth and 3G connections as a network for TileShifter, leaves
the wireless 802.11b/g network, available in the HTC Desire. The 802.11b
connection allows a theoretical throughput of up to 11 Mbit/s and the 802.11g
allows a theoretical throughput of up to 54 Mbit/s, according to the IEEE
standard on 802.11 [iee07]. This throughput should be sufficient for a near
real-time network multiplayer game. Beyond the abilities of the HT'C Desire,
some other often seen wireless implemented standards are the 802.11a and
the 802.11n, where 802.11a can deliver 54 Mbit/s in theory, and 802.11n goes
to 150 Mbit/s in theory. The main difference between 802.11a and 802.11g
is that 802.11a uses a higher frequency but has a shorter transmission range
than 802.11g.

On a 802.11b/g connection, it is possible to control the routing and open
ports on the device. Therefore it is easier to work with connections between
the devices. It is possible to create an Ad-Hoc network which is connections
directly between devices, without the use of routers and wireless switches.
Larger Ad-Hoc networks for mobiles, have been subjected to a lot of research
and are referred to as a MANET (Mobile Ad-Hoc Network), which is described
in RFC 5444 [CDDAQ9]. Since the mobile devices are expected to move around,
the connections need to change often. Every device in a MANET works as a
router and forward traffic, it is therefore a complex task to keep the integrity of
the routing in a MANET, this is done using NHDP (neighbourhood discovery
protocol), which is described in RFC 6130 [CDD11|. To avoid making the
project more complex than necessary, the MANET solution is not researched
and it is assumed that all devices, playing TileShifter, are connected to a
wireless network router using 802.11b/g.

One notable issue is, that if the game should be played over the internet, it is
obligatory to create a NAT punchthrough solution, since most of the wireless
network connections are behind a NAT address. This issue is not handled in
this project, so a second assumption is, that the players of TileShifter are all
on the same network.

2.3.2 Network Protocols & Architectures

The choice of hardware is the wireless 802.11b/g connection, the next step is
to determine which protocols to use and investigate reasonable solutions for
handling connections.

The following Sections discuss initially which protocol is viewed as the most
reasonable, secondly the networking connection architecture is discussed and
finally, a few existing solutions for game networking, are examined as possible

2.3.2. Network Protocols & Architectures 13

candidates for TileShifter.

UDP vs. TCP

Choice of protocol is important in connection with network multiplayer game
development, especially when the game is supposed to feel like it updates in
real-time on all the client devices. The reason is that there are many possibil-
ities of protocols to choose from and because it has to be an optimal (in terms
of speed and stability) protocol for the game to perform in the best possible
way.

Choice of protocol becomes easier, when the expected type of data sent between
devices during the game is known. The following description lists this expected
data:

Connecting Joining a game session is not time critical. The important part
of connection data is that it reaches the necessary parties.

Movement Essentially, the players need to receive updates on the where-
abouts of others. This has to be sent often for a fluid gameplay experi-
ence.

Shots Whenever a player fires a shot, the other players need to get this
information very fast after the event. Because there is an element of
competition in the game, it must be delivered to all players implicated
immediately.

Scoring Least important is the information on scores, defeats and victories.
It is important in the context of game design, but in connection with
timely delivery and reliability, it is less important.

Searching for a reasonable protocol for the purpose of multiplayer games is
a time consuming task, various different, more or less custom and problem
specific protocols exist, but very few turn up when looking for multiplayer
game specific protocols. An assumption of why this is the case, is that game
development seems rather new in the field of scientific studies and because
most game developers are content with the use of either UDP (User Datagram
Protocol), standardised in RFC 768 [Pos80|, or TCP (Transmission Control
Protocol), standardised in RFC 793 [Pos81|. It does however seem, that this
trend is changing. Recent work, contributed in 2011, on a Power Aware Game
Transport Protocol (PGTP) for Multi-Player Mobile Games [ASM*11] fuels
the fire of the science of networking in games between mobile devices. Here
Anand et. al. expect that the nu er of multiplayer games for mobile devices
will increase in the near future, and address the important problem of battery

14 Chapter 2. Analysis

consumption by the networking hardware, while playing a game. Anand et.
al. have provided interesting research, though for this project, the PGTP is
viewed as too adolescent. This is mainly to avoid the risk of spending too
much time on solving potential problems with an untested protocol.

Since a look into which protocols, the majority of other network multiplayer
games use, reveals that it is common to use UDP and TCP, they are regarded
as reagsonable choices for a final implementation of TileShifter. The protocols
are widely used, implemented as standard in most network programming li-
braries and are well documented. UDP performs well for timely deliveries of
packages at the cost of not guaranteeing ordered delivery or any delivery at all
[Pos80]. TCP is slow but ensures ordered delivery of all the data, as long as the
connection is open, but requires the communicating peers to establish a con-
nection prior to sending any packages [Pos81|. For TileShifter, this motivates
using UDP packages for data transfers, because data needs timely delivery and
since it is expected that the connections between peers often change, due to
peers leaving and joining in the tile based Peer-2-Peer network.

Peer-2-Peer vs. Client-Server

Another question is how to organize the connected players in a network archi-
tecture. There are two major network architectures: a Client-Server solution
or a Peer-2-Peer solution.

Related to games, the Client-Server architecture is often used. The reason
being that it is easy to manage and synchronize the connected players, it is
easy to replicate the server and there is a lot of control over the game sessions
and the stability. The drawbacks of the Client-Server architecture is that
it is not very scalable, since all players connect to a specific server. This
means that the bandwidth of the server, is a bottleneck, limiting the number
of players. Furthermore, the Client-Server architecture need a server available
on the network, to allow the players to connect to.

Opposed to the Client-Server architecture, the Peer-2-Peer architecture does
not need servers. Instead all players on the network communicate directly
to each other. This can allow the game to scale, if the data is delivered
between the connected players in an elegant manner. The drawbacks of Peer-
2-Peer architectures are that there is little control over the game session, since
every peer in the network has an opinion of what happens in the game, which
often results in conflicting game states and desyncronisations. It is difficult to
distribute the game updates to all of the connected peers. Peers should not be
regarded as stable, meaning that the Peer-2-Peer network should be able to
resolve problems such as failing, leaving and Byzantine peers (arbitrarily failing
peers [CDKO05]), but should also be able to handle churn (peer turnover).

2.3.2. Network Protocols & Architectures 15

A third opportunity is to combine the two architectures into a hybrid. The
game concept of TileShifter was described in Section 2.1, is tanks driving
around on tiles. This idea and the network architecture can be integrated in
such a way that the separate tiles function in the Client-Server manner, while
the tiles are interconnected in a Peer-2-Peer manner. A peer would be the
master or server of a tile, and the peers having tanks on the tile would be
clients of the master. Peers send their messages to the master, who distributes
them to the other peers. Messages that need to be delivered outside of the tile
can be sent to the neighbouring tiles. Notice that since all tiles are the same
size and are square, a single tile can have up to four immediate neighbours.
This way, the local messages and updates on a tile can function as a Client-
Server structure, while the global messaging can be following the Peer-2-Peer
architecture.

Using this hybrid model avoids conflicts on the tiles, while allowing the game
a certain amount of scalability, provided every tank is not on the same tile at
once. This is unlikely, since many tanks in the same place means large battles
with many casualties. These dead players respawn on other tiles, distributing
the players through combat. Avoiding the need for a dedicated server or tracker
also means the game is playable at any time, and does not require the initial
game starter to remain in the game.

Expanding on Peer-2-Peer

There are some research in the field of Peer-2-Peer in connection with games.
One example of such research is an algorithm for large-scale, high-speed, Peer-
2-Peer games, called Donnybrook [BDLT08]. The main idea of the Donny-
brook Peer-2-Peer algorithm, is to introduce interest sets, calculated by each
peer every frame. An interest set can be used to determine which peers have
interest in what message updates. This brings the load on the bandwidth
down. Bharambe et. al. use intricate formulae of distance and view direction
to calculate the interest set. This concept of interest sets can be compared
to the concept of tiles in TileShifter, as peers on one tile will be interested in
updates from other peers on that tile.

Another example of the use of localization to determine who to send updates
to, is formed in the paper “Peer-to-Peer Support for Massively Multiplayer
Games” by Knutsson et. al. [KLXHO04]. As the title of the paper suggests, the
paper is minded on Massively Multiplayer Games, but the idea of location-
based interest sets, failover resolution and use of replication, could be mapped
to other game types as well.

The two papers’ testing results indicate that the concept of location-based
interest updates is a good solution to solving the bandwidth problem in large-

16 Chapter 2. Analysis

scale multiplayer games. This also goes for TileShifter. Instead of calculating
distances and locations, however, the tiles form a natural boundary of interest
of messages.

In the paper by Knutsson et. al. the use of a Dynamic Hash Table (DHT) has
proven to be a good solution for managing and locating peers in a game session.
The DHT is used in conjunction with Pastry, which is a widely discussed and
tested scalable, decentralised object location and routing overlay for large-
scale Peer-2-Peer systems, using a DHT |[RDO01|. Pastry is primarily an overlay
network used for quick and easy localisation and fetching of specific files or
data in a large distributed network, using a DHT. However, TileShifter does
not require this capability, rather it is needed to distribute data from one
peer to multiple other peers, as well as store highly mutable data, such as
tank locations. For this reason a more specific overlay algorithm is created
instead, but based on many of the same key concepts of the successful Pastry
network overlay. For example, it uses neighbours as routing tables as well
when sending global messages and maintains the network structure upon peer
departure. The overlay algorithm for TileShifter is made for the concept of
tile-based Peer-2-Peer network games, instead of file sharing, with mutable
data instead of immutable data for which Pastry is designed. The tiles of
TileShifter is a game design decision, that can be used as an optimisation
for many parts of the game such as: unnecessary rendering on the limited
resources of the Smartphone, aid in keeping connections between peers, and
creating an exciting and dynamic map for the players. Dealing with Peer-2-
Peer architectures, makes it impossible to assure connection between all peers
at all times, especially under churn, because there is no single device or server
that keeps an overview of the connected peers. So the task of the overlay is to
repair the holes in the network and minimise the damage as much as possible,
so that isolation of peers is kept at a minimum.

2.4 Choice of Game Engine

A good and robust game engine is advantageous when developing a game.
The alternative of having to write native Smartphone device code is a very
time consuming process and not the focus of this project. The game engine
is expected to take care of the physics in the game, the graphics, the input
and sound. Many game engines are available on the market, so the criteria to
chose a game engine by are defined.

Smartphone support : Since the game is for Smartphones, the engine must
have support for Smartphone development.

2.4.1. Using Unity3D 17

Network support : This being a network multiplayer game, the engine must
support networking protocols, preferably UDP sockets.

Easy & fast to use : Development should be smooth and fast, to avoid
waste of time on superfluous development issues with the engine, such
as setup, configuration, learning and asset handling.

A very capable engine for this exact game development product, is the Unity3D
engine [Unill].

2.4.1 Using Unity3D

The Unity3D engine lives up to all the demands, provided the correct add-ons
are acquired. It is very fast and intuitive to use for development of a game and
there are a large community due to rising popularity and a free-to-use Indie
version. Unity3D can be used to develop for several platforms using the same
programming language (either JavaScript, Boo or C#). For this game the add-
ons called Unity-Pro and Android-Pro are needed to make C# .Net sockets
available in the game. The practical sides of Unity3D is that it isa WYSIWYG
game editor allowing the developer to use standard C# .Net version 2.0 and
libraries. Unity3D takes care of the translation to the native language on the
chosen platform. Unity3D uses Nvidia PhysX as physic environment and has
built-in sound, light and 2D-3D graphic rendering. This makes Unity3D ideal
for this project.

Unity3D is used for creating the game, but since it provides such an easy
development platform, it is also usable for creating testing and simulation
applications. Using Unity3D to create network testing applications, ensure
that the results are as close to the results of the game itself and due to the
easy to manage 3D graphics, it is also very good for visual simulations.

CHAPTER 3

Design

The Design Chapter aim to provide a thorough depiction and de-
scription of various elements of the project. Initially, the Design
Chapter will motivate viewing many of the networking problems as
game design related choices instead, by explaining how game design
can influence network functionalities and message passing.

An important part of the networking in the game, is the way the
tiles are maintained as a map structure, and how this tile system
15 used to uphold connectivity between peers. The design of the
algorithms managing this is a key part of the project and will be
described here as well.

Besides the game itself network tests have been performed to find
the throughput and bandwidth of wireless connections and a simu-
lator has been created, to provide a test base of the tile algorithms
mentioned. The design of these tests and simulations is described
in this Chapter.

3.1 Game Design

The game design is chosen based on the consideration that it should feature
relatively low complexity game mechanics, so it is easier to focus on the network
specific concerns. The Peer-2-Peer and Client-Server hybrid leans itself to
distributing the game to as many peers as possible, to allow the game to scale.
Thus, the final game idea conceptualized is a player versus player game, where
each player controls a tank. This tank is capable of driving around the playing
area, as well as shooting directly ahead. The goal is to find, shoot and destroy
opposing players to increase the player score and ultimately win the game,
without getting hit and destroyed. Tanks will have a number of lives, and

19

20 Chapter 3. Design

once shot enough times eliminating all of a player’s lives, the player will die
and respawn on one of the tiles that he owns. Ownership in this case means
the player is tilemaster of a tile, which is detailed further below. A score will
be kept of how many other tanks a player kills, how many shots he has hit
with and how many times he has died.

The game idea is simple, but allows itself to be expanded and modified easily
with extra game rules, even rules made up by the players locally. This can
include team based combat, zone control or even a drinking game. Many of
these expansions, modifications and extra game rules are covered in the Section
5.3.2 on Further Development.

To allow the game concept of tanks to scale and fit the general idea of Peer-2-
Peer, the game should be divided into parts. This is done using a tile system,
where the playing area is made up of an amount of square tiles. Each tile
represents a block of the town that is the battlefield, with four exits to adjacent
tiles. Fach tile is symmetric and thus different tiles can fit together in any
combination, and there is no ambiguity as to where a player can enter and exit
a tile. Tiles can still be different, however, using different tile sets, as long as
the transitions are located in the same areas. Two different tile sets have been
made so far, industrial and residential. A tile is created when a new player
joins the game, and the joining player is assigned to be the tilemaster of this
tile. This means as players join and leave the game, the game world grows and
shrinks dynamically, and game worlds are unlikely to form the same way from
game to game.

The game is controlled using the touch screen of the smart phone, with an
analogue stick in the lower left of the screen, that directs the tank. The
cannon is fired using the back button on the phone. In the game view of the
phone it is only possible to see the tile that the player is currently on, which
not only eases the computational load on the phone, but also lets the player
focus on his active tile and not be distracted by other tiles. This also means
that the game does not have to care what is happening on neighbouring tiles
unless the player actually transitions to it. This ease the network load.

Screenshots of the implemented game, called “TileShifter”, can be seen in Fig-
ure 3.1. In Screenshot 3.1a, set on an industrial tile, the player controlled tank
is shown in green, and two enemy tanks in red. A blocked transition is also
shown, meaning no tile neighbour exists in the western direction for this tile.
In Screenshot 3.1b, the player is now on a residential tile, which shows a better
view of a shell fired by a tank, as well as an active transition, meaning the
player can go north to the tile’s northern neighbour.

The game design and network fit together intentionally for this game, the tiles
are managed in a Client-Server fashion by a tilemaster, who controls actions
on the tile for which he is responsible. Each tank currently residing on this tile

3.1. Game Design 21

o
EVALanK

Figure 3.1: Screenshots from TileShifter.

acts as a client to the tilemaster. Each tile is interconnected in a Peer-2-Peer
manner, where no one tile knows the entirety of the total system of tiles.

Tile

A tile represents a square part of the total map area arranged in a grid. A
number of tiles fit together to form the total playing area for a certain game
session. A tile has an ID, which is the IP address of the peer that owns
the tile, with the periods removed. The IP address is unique for all peers
on the network, keeping in mind that NAT is disregarded in this project. A
tile includes a list of its neighbours, including the four immediate neighbours,
but also neighbours an additional distance away, meaning a tile has twelve
total neighbours in its neighbour list. This amount of neighbours is needed to
facilitate updates and movements in the grid, because a tile needs to know of
second degree neighbours to avoid conflicts from multiple tiles being interested
in the same free coordinate. A tile also manages any tanks that are currently
occupying it. A tile is depicted in Figure 3.2, where the blue tile is the peer,
the immediate neighbours are marked green, and the red outline encircles
the entire neighbourhood of the blue tile, containing twelve tiles. The peer
responsible for a tile, is itself a tilemaster.

22 Chapter 3. Design

I
|
HiEl NI
Oy
Hini

Figure 3.2: A Figure showing a tile and its neighbours.

Tilemaster

The tilemaster is the peer that is responsible for a given tile. Being respon-
sible for a tile means sending and receiving messages on behalf of the tile.
It is therefore acting as a sort of server for the different peers using the tile.
This covers tanks currently occupying the tile, as well as the tile’s various
neighbours. Tanks on the tile will send movement and shoot messages to the
tilemaster, and the tilemaster will collect these messages to distribute them to
all concerned peers. A tilemaster peer’s tank does not necessarily have to be
on the tile it is tilemaster for.

The concept of tilemasters is depicted in Figure 3.3. In this Figure, two tiles
are shown, where player 1 and player 2 are tilemasters of a tile, however player
1 is not on his own tile. Figure 3.3c depicts the message flow that would result
from this scenario: Player 1 sends tank data to player 2, and receives data
back about player 2’s tank. Meanwhile, player 3 and 4 send data to player 1,
who collects their tank data and responds with the state of the tile to player
3 and 4.

3.1.1 The Tilesystem & Grid

The system envisioned for the tiles and grid in the game, is advanced enough to
warrant further details. To the tanks themselves — the avatars of the players
— the tile system generates the playing field of the game. Behind the scenes,
however, the tiles are much more. This Section explains the concepts behind
the tilesystem, joins, leaves and updates, while the following Section 3.2 details

3.1.1. The Tilesystem & Grid 23

Tilemaster: P1 Tilemaster: P2

-5\ Q&
B gel

(a) Two tanks on player 1’s tile (b) Two tanks on player 2’s tile
v v |
Player 1 h Player 2 Player 3 Player 4

f !

(c) Communication between peers

Figure 3.3: Figures showing the tilemaster concept

the algorithmic designs that conceptualise these ideas.

Abstractly speaking, the tiles are arranged in a grid, with each position in
the grid corresponding to a coordinate in an (z,y) coordinate system, with
the coordinate (0,0) at its center. Each tile is connected to its immediate
neighbours in the grid, being able to send tanks, that drive onto the borders,
onto the neighbouring tile in that direction, and vice versa. This means that
a tank on the tile located at coordinate (1,2) in the grid is able to drive onto
the neighbouring tiles occupying coordinates (1,1),(1,3),(2,2),(0,2). If any
of these grid coordinates are unoccupied, the passage in these directions will
be blocked, in this case by impassable tank traps.

The grid is arranged such that tile placement gravitates towards the coor-
dinate (0,0). This decision is based on the consideration that in order for
players to enjoy the game the most and experience the most action, ideally
they should be able to reach the tiles where other players are fighting within a

24 Chapter 3. Design

reasonable amount of time. The chosen gravity of (0,0) in the grid causes tiles
to cluster together and not form long labyrinths of tiles. Furthermore, this
help maximising the action in TileShifter, since the distance between players
is reduced.

In addition, this clustering improves the robustness of the total tile map, such
that players are still able to traverse from one end to the other without being
isolated entirely because of some players and their associated tiles leaving the
game. To further improve this, tiles will attempt to switch to coordinates
closer to (0,0) when such an event occurs, so the tiles remain clustered. Tiles
switching position happens behind the scenes, and players will only really know
the tile they are on has moved if they move to a neighbouring tile. Though
it has been decided to use the tile movement as a gameplay element, causing
in-game earthquakes on the moving tile to notify players that the map has
changed for them.

Closest to (0, 0) is defined using Manhattan Distance [Barl1]|, and two tiles are
compared using the following distance measurement, given tile A, with grid
coordinates (z,y):

DistToZero(A) = |A.x|+ |A.y| (3.1)

A tile is closer to (0,0) than another tile if the distance to zero is smaller than
the other.

While not eliminating splitting problems altogether, this clustering allows the
players to remain in the same game without being isolated and without having
a dedicated server in a lot of situations. The robustness of this idea is further
investigated and demonstrated in the simulation Section 5.2.

Joining

Each player joining the game session is assigned a tile of his own to be tile-
master for. This tile is placed on a free coordinate in the grid. This tile will be
neighbour of the tile who’s tilemaster peer he initiated the game connection
to, in the ideal case. This joining case is depicted in Figure 3.4a, where a new
peer joins the peer who is tilemaster of the tile in coordinate (0,1). This tile
has a free neighbour spot in coordinate (—1,1), and the new peer is assigned
this coordinate for his own tile.

A different case is when every immediate neighbour spot is occupied, the peer
will be sent to one of these actual neighbours and attempt a join on this tile-
master instead. This continues until the peer finds a free spot for the tile. This
case is shown in Figure 3.4b, here a new peer is trying to join the tile marked
by the joining arrow, but all of the tiles’ immediate neighbours are occupied.

3.1.1. The Tilesystem & Grid 25

The new peer is now told to try to join one of these neighbours instead, picked
randomly. In this case of Figure 3.4b, the north neighbour is chosen.

Join Join éé

i"l'l)‘:" /%
[|

0,0)

(a) Join (b) Indirect Join

Figure 3.4: Two different join cases

Leaving & Maintainance

The grid itself needs to be maintained in order for the criteria of clustering to
hold adequately. Tiles can leave the game, or be positioned in conflicting co-
ordinates on the grid. If a tilemaster leaves the game, that tile will be removed
from the game, unless the tile is currently occupied by tanks other than the
leaving tilemaster’s tank, in which case the tile control will be transferred to
one of its occupants.

If a peer leaves, crashes or otherwise disconnects from the game, then it leaves
a gap in the grid. In order for these gaps not to create separate games and
isolate players from each other, tiles further away from (0,0) than the leaving
tile, whom are neighbours of this gap, can detect the gap and attempt to move
to it. This will cause tiles to always be attempting to be as close to the center
of the grid as they can be, causing a clustering. A small problem with using
Manhattan Distance as the basis of this grid is, that given very specific join
and tile placement scenarios, the tile map could form in long lines outward
from (0,0), which defeats the purpose of the clustering. However, during the
many simulations run in Section 5.2, this problem was never encountered.

Two such scenarios are depicted in Figure 3.5. The situation in Figure 3.5a
could be caused by either the tile in coordinate (—1,1) leaving the game, or
the tile in coordinate (—2,1) being placed this way by a join. The tile in

26 Chapter 3. Design

[
/y—-;(-l,l) : Leaver ID: 9
HP=NT=) L_*_J \

3 | e A

(0,0)

(a) Update and move (b) Two nodes interested in the same coor-
dinate

Figure 3.5: Two scenarios caused by a node leaving

coordinate (—2,1) discover the open coordinate in (—1, 1), which is closer to
(0,0), and looks in its neighbour list to asks neighbour (—1,0) to move it to
the open coordinate, leaving the old coordinate (—2,1) vacant.

In the other situation, depicted in Figure 3.5b, a tile has left the game in the
center of a group of tiles. Both the tiles with id 5 and id 9 see this closer
coordinate open and seek to move there. First, however, they search their
neighbour list for any known neighbours that could also be interested in the
coordinate, discovering each other. This conflict is resolved by the lowest id
getting priority, and as such id 5 moves to the open spot while id 9 remains
where it is.

Game design wise, this movement of tiles can even aid the gameplay, such that
any time a tile is moved and repositioned in the grid, the players on this tile
will experience an earthquake or a similar event in the game, to signify that
the tile they are on has switched to a new position in the game world. This
should give the players on a tile that has just moved a sense of exploration, to
discover if a battle is occurring on the new neighbour tiles that they can take
part of.

3.2 Tile Algorithms

A central part of the game, both in terms of design and network structure,
is the tile maintenance algorithms. The tile system is a result of many con-

3.2.1. Variables, Intervals & Timeouts 27

siderations of how the peers connect to each other and how the in-game map
are going to be structured as new peers join and other peers leave or discon-
nect. These are the same concepts as explained in Section 3.1 above, but in
this Section, a more algorithmic approach is taken with concepts of joining,
maintenance and updates. The algorithms as a whole are a relatively complex
system, which is why this section aims to provide a better understanding of
the algorithms including argumentation for the choices made in the algorithm
design. The following requirements have been specified for the tile algorithms
to ensure that they perform satisfactory:

Robustness Any player can join or leave the game at any time without in-
conveniencing the other players to a great degree.

Reachability It should be possible to reach other tiles in the game, disre-
garding a possible split. Tiles should be placed in such a way that there
is a short path to the point of battle.

Scalability The game should scale to a certain amount of players, relevant
in cases such as: A full auditorium, a bus, a train or an aircraft or other
usecases.

Decentralised No dedicated server or tracker is required for the game to run.

The algorithms have been split into peer actions; Join, update and keepalive,
and the descriptions of these parts follow the normal life cycle of a peer joining
a game session.

3.2.1 Variables, Intervals & Timeouts

Several timeouts and intervals are used in the following algorithms, it is help-
ful to know how these are defined and what their overall purpose is. The
description below provides a quick overview of these, the values provided are
in seconds and they are the values used in the simulator. The value numbers
may be different in TileShifter, but the relation between the values are the
same for simulator and game.

COORDTIMEOUT =5
— Time that should pass before a neighbour is deemed as timed-out and
therefore considered disconnected or crashed.

COORDUPDATETIMER = COORDTIMEOUT x 3
— Time that should pass before an update runs. Used to avoid updates
each frame to save processing power.

28 Chapter 3. Design

INTERVALKEEPALIVE =2
— Time that should pass between sending each keepalive message. To

avoid sending keepalive messages each frame, saves the network band-
width.

LONELYTIMER = 20
— Time that should pass before a check, if the peer is isolated and should
try to rejoin to a peer closer to the coordinate (0,0).

3.2.2 Joining

The initial step of a peer is either to join a running game session or create a
new session. Creating a new session does not require any algorithmic measures,
the device has to initialise the first tile in the game, and the player controlled
tank. Joining a session, however, is done by creating a connection to another
peer who has created a game session already. Since the game is a server-less
Peer-2-Peer game, the joining peer needs the IP address of another player in
the running session.

The join is written as Code Example 3.1.

1 Join(IP)

2 Ask known peer to join by ip

3 Known peer looks for a free coord using FindNextFreeCoord

0

4 If a free coord is found

5 Fetch IPs of the neighbours relevant to the joiner, at
the new coord using GetRelevantNeighbours ()

6 Add the joining peer to the list of neighbours at the
coord

7 Send the new coord and the relevant neighbours to the
joining peer

8 Place tile at the free coord

9 Initialize() the joining peer

10 Else

11 Send the IP of a random(Could result in livelock)
neighbour peer, using FindNextFreeCoord()

12 Run Join() on recieved IP

Code Example 3.1: Pseudocode of the Join() algorithm.

The idea behind the Join() algorithm in Code Example 3.1 is that when a
new peer joins an existing peer, the peer needs to check if it has a free spot
(coordinate) either directly to the north, east, south or west. If a free spot is
found, the coordinate and the known relevant neighbours for that coordinate
(which is found using the GetRelevantNeighbours() in Code Example 3.3)
is sent in reply, and the joining peer is now initialised as being placed in the
grid and having joined the game properly. This case was depicted in Figure

3.2.3. Updating 29

3.4a. If none of these spots are free, it should instead inform the joining peer
that it must join on one of the neighbours. The Join() algorithm uses the
FindNextFreeNode() algorithm to check if a neighbouring spot is free and to
find a random neighbouring peer. This case can be seen in Figure 3.4b. The
FindNextFreeNode() algorithm used to discover free coordinates or pick a
neighbour to join is seen in Code Example 3.2. The livelock has solutions in
Section 5.3.1 about further development, if it becomes a problem.

1 FindNextFreeCoord ()
2 Find the neighbour coord closest to zero (immediate north,
east, south, west) among free coords.
If one to more free coords are found
return a random free coord
Else
Return a random neighbour

[= T S)

Code Example 3.2: Pseudocode of the FindNextFreeNode() algorithm.

The FindNextFreeNode() algorithm in Code Example 3.2 looks through the
list of neighbours and finds the free coordinate closest (Manhattan Distance)
to coordinate (0,0), if there is one at all. If there are no free coordinate, then
return a random neighbouring peer’s IP to join on instead.

1 GetRelevantNeighbours (coord)

2 Foreach existing neighbour AND the coord

3 Calc the absolute value of the neighbour coord — coord to
check

4 If the value is equal to 2 or less (manhattan distance)

5 Add the neighbor to a return list

Code Example 3.3: Pseudocode of the GetRelevantNeighbours() algorithm.

Since the peer on which a new peer joins likely knows some of the neighbours to
the coordinate the joining peer is placed on, it should inform the joining peer
about the neighbours relevant to that coordinate. GetRelevantNeighbours()
in Code Example 3.3 finds these neighbours given a specific coordinate. It
does so by subtracting the coordinate of each neighbour from the coordinate to
check. If the neighbour coordinate is within two steps of Manhattan Distance
of the coordinate, the neighbour is deemed relevant, and is returned. This list
of relevant neighbours is then forwarded to the joining peer along with the
join message. When the peer has been initialised and placed it is time to start
“Updating”.

3.2.3 Updating

Once a peer have joined the game session, received a tile coordinate and been
placed in the grid, it is time to start performing updates and maintenance

30 Chapter 3. Design

tasks on the grid. These tasks include keeping neighbour lists up to date,
sending keepalives, moving around the grid and resolving conflicts. Since it is
unreasonable to expect graceful leaves and changes in a Peer-2-Peer network,
it is not possible to foresee when maintenance tasks should be performed.
Performing the tasks at given intervals is a solution to this.

Using Unity3D for the development, enforce the use of the built-in Update()
method. This method is executed once per frame by the Unity3D engine. This
makes it ideal for runtime maintenance of the peers and coordinates. Notice
that since it is executed before every single frame, it is best to avoid high
complexity in the algorithms. Furthermore, it is not necessary to perform the
maintenance tasks each frame, so timers are used to set relevant intervals for
these tasks.

See the Update() in Code Example 3.4.

1 Update ()
If peer is initialized

If peer is not coord 0,0
Decrease LONELYTIMER
If LONELYTIMER is below 0
FindNeighbourClosestToZero ()
If the current peer is closest to zero
Join() on either initially joined peer or a random/
closestToZero peer known from the global score
messages

© 0 N DUt s W N

10 Else
11 Reset LONELYTIMER

Code Example 3.4: Pseudocode of the Update() algorithm.

The Update() algorithm in Code Example 3.4 is executed when the peer has
been initialised. Its main purpose is to make sure the UpdateNode() and the
SendKeepAlive() algorithms are being executed in reasonable intervals. In
addition it removes timed out neighbours from the neighbour list. These are
simple timers and have been omitted from the Code Example. The intervals
for these timers were defined in Section 3.2.1. Furthermore, it checks if the
peer has become separated from a larger game. The check is performed if the
peer is not placed in the coordinate (0,0). This check works, since the concept
of the tiles is, that they cluster up around the coordinate (0,0) throughout
the games session’s lifetime. If the tile is detected to be isolated, because no
neighbours are closer to (0,0) than itself, it will attempt to rejoin the game by
joining a peer it have discovered through global messages containing scores and
other information. This information might not be current, and it is possible
for the tile to be unable to find another tile, in which case it will stay where
it is. If this should happen, the peer have not been participating in the game

3.2.3. Updating 31

very long, and drives on its own tile. An example of a tile being isolated is
depicted in Figure 3.6.

Lonely

Figure 3.6: A isolated tile

The UpdateNode() algorithm, seen in Code Example 3.5, has the purpose of
discovering empty grid coordinates and moving the tile closer to the coordinate
(0,0) if possible.

1 UpdateCoord ()

2
3

© 0 N o U

10

11

12

13

14

15
16

Foreach neighbour that does not exist
If the empty neighbour spot/coord is closer to zero than
the peer itself, AND is not more than 1 manhattan
distance away
Look for a neighbour that exists, which is closer to
zero than the peer itself
If a closer to zero peer is found
Join() the neighbour closer to zero
Else
Check all neighbours to see if the peer is alone
If we are not alone
check neighbours who could be a candidate to move
closer to zero coord based on coord position
If the peer has the lowest Id/ip nr amongst
candidate neighbours
allow peer to move to the spot closer to zero
Else
// Do nothing, let the other peer move (conflict
resolved)
Else
// Do nothing. Peer could be lonely, a later update
resolves this issue

Code Example 3.5: Pseudocode of the Update Node() algorithm.

32 Chapter 3. Design

UpdateNode() in Code Example 3.5 checks each of the peer’s neighbours, to
see if a neighbour position in a coordinate closer to (0,0) is available, maybe
because of a disconnection or having joined in a coordinate with free neigh-
bours. If the peer knows a neighbour closer to (0,0) than itself, it will Join()
that particular peer to get a new coordinate and move to the open coordinate.
This rejoin still preserves any neighbours that are relevant to the new coordi-
nate. The scenario was depicted in Figure 3.5a.

If the peer is the closest to (0,0) among its neighbours, it will check if there are
any other neighbours with the same Manhattan Distance to the free coordi-
nate as itself. In this case this neighbour is also a candidate for the new empty
coordinate. There might be two or more candidate tiles that are able to move
to the same open coordinate, and to avoid race conditions and further conflicts
on this account, a general rule is applied stating, that the peer with the lowest
IP/ID value takes highest precedence. The tile with the lowest value allows
itself to move to the open coordinate, and the other candidates with higher
values stay at their current positions. This scenario was depicted in Figure
3.5b, where the tiles with ID 5 and 9 are candidates to move to the same open
coordinate, and the tile with ID 5 is allowed to move.

3.2.4 Keepalives

Keepalives are important, since they are used to uphold the connectivity and
discover disconnected neighbours. Furthermore, they are used to maintain
and update neighbour lists of each tile. The keepalive messages in TileShifter,
are global messages, that hold scores and are propagated to each neighbour.
Keepalive messages are sent every time the interval for keepalive has passed,
these are sent to every peer in a given peer’s neighbour list. Neighbours from
which no keepalives have been received for the duration of the timeout, are
considered disconnected from the game. Keepalives are intended to work as
global messages for the game, which includes kills, scores and other values
that peers on other tiles are interested in. It is intended that they should
piggyback as much additional information as possible, to avoid unnecessary
overhead from extra package headers, and wasting bandwidth.

The RecieveKeepAlive() in Code Example 3.6 is more complex. First of all,
it handles adding newly discovered neighbours to the neighbour list of the tile,
as well as resetting the timeouts for already existing tiles. It must be able to
act on conflicting neighbours, which can be problematic, since all peers have
their own interpretation of what is the correct game state.

1 RecieveKeepAlive(Id/Ip, coord, relevantNeighbours)

2 If neighbour sending keep alive is still relevant

3 If peer already has a neighbour registered to the spot/
coord

3.2.4. Keepalives 33

4 If the peer is the same

5 Reset the COORDTIMEOUT for the neighbouring peer

6 Foreach relevant neighbour received

7 If we have no peer registered at the position AND it

is relevant to the peers interest

8 Add the relevant neighbour to the list of
neighbours

9 Else

10 // Silently discard the keepalive — the peer is
not of our interest.

11 // We might have a conflict, but since it is just
a relevant neighbour from the meighbour, it is
not sure we can trust it.

12 Else

13 // We have a conflict

14 If no investigations are pending for the neighbour

coord

15 Start a ConflictInvestigator () on the neighbour

16 Else

17 Add the keep alive sender peer, to the peers list of

neighbours at its coord

18 Foreach relevant neighbour the recieved

19 If we have no peer registered at the position AND it

is relevant to the peers interest

20 Add the relevant neighbour to the list of neighbours

21 Else

22 // Silently discard the keepalive — the peer is not

of our interest.

23 // We might have a conflict, but since it is just a

relevant neighbour from the mneighbour, it 1is not
sure we can trust it

Code Example 3.6: Pseudocode of the RecieveKeepAlive() algorithm.

First part of the RecieveKeepAlive() in Code Example 3.6 checks the coor-
dinate of the peer, from which the keepalive arrived, to make sure that the
message is still relevant (the receiver might have moved since the last message).
If the coordinate is relevant, the ID of the message is compared with the ID of
the tile, registered in the neighbour coordinate, to check if there is a conflict.
A conflict occurs if the ID of the peer registered in that coordinate, is different
from the ID of the received keepalive message’s peer.

If a conflict is found and it is not already running for that particular conflict,
the ConflictInvestigator() in Code Example 3.7 is invoked. If, however, the
peer is found not to be in conflict, or if the neighbour position is empty, then
the peer is added and/or timeout is reset. In any case, the neighbours sent
with the keepalive message are examined in the same way, however, this is
merely to fill empty spots in the neighbour list. Neighbours’ neighbours are
not investigated in Con flictInvestigator(), because it is not sure the infor-
mation received about them from the neighbour, can be trusted. It is not sure
that they are still relevant and alive. A keepalive message from the neighbours’

34 Chapter 3. Design

neighbours should also arrive shortly, provided they are still alive connected.

1 ConflictInvestigator (neighbour)

2 Wait for INTERVALKEEPALIVE + COORDTIMEQUT // maybe the
conflict resolves itself

3 If the neighbour spot/coord still holds a neighbour AND the
neighbour the peer knows to be in the spot/coord, is not
the one known to be in the spot

4 Ask neighbour with the highest ID/IP nr in the conflicting
position to Join() again

5 Update the neighbour list accordingly

6 Else

7 // The conflict was resolved peacefully, stop the

investigation.

Code Example 3.7: Pseudocode of the Con flictInvestigator() algorithm.

The ConflictInvestigator() in Code Example 3.7 is responsible for figuring
out how to solve a conflict. Initially the investigator waits for enough time
for a peer to time out, this is because the conflict might be due to another
neighbour knowing, that the old peer on the coordinate was disconnected,
and have placed a new peer in the empty coordinate without the current peer
having timed the old peer in that location out yet. If the conflict still exists
then the peer with the highest IP/ID is instructed to rejoin on the tile that
discovered the conflict. An example of one such conflict is depicted in Figure
3.7.

Conflict ID: 9 Rejoin| 1[D: 9!

ID: 5 ID:5 @

(a) Conflict between tiles 5 and 9 (b) Conflict resolved

Figure 3.7: Conflict scenario

In this example, the first part in Figure 3.7a shows two tiles, ID 5 and ID
9, being placed in the same grid coordinate. This could be caused by both

3.2.5. Disconnecting 35

tiles joining at the same time to different tiles in range of the same tile. In
Figure 3.7b this conflict has been detected by the peer with the tile signified
by the light bulb, the conflict is then investigated. After investigation, tile ID
5 is allowed to stay, due to lower ID, while ID 9 is instructed to rejoin and is
assigned a new coordinate.

3.2.5 Disconnecting

Disconnection from the game is handled by timeout. Therefore no algorithms
specifically for leaving, have been created. This is chosen from the delibera-
tion that the game should be able to handle random failures and disconnects
without any graceful leaving mechanism. The reason for this being that when
a game is played on a Smartphone, leaving a game is seldom graceful. Take
for example the situation where the phone receives an incoming call or when
the user needs to do something else. In both cases the game would just lose
focus on the phone, not run any cycles, and be disconnected. The user may
also forcibly close the game, also causing a disconnect.

All of these algorithms work together to create the tilesystem and manage the
grid without a dedicated server, the system is entirely self organized. Players
can join and leave on a whim, to any peer in the system, and be included
in the game. These peers will attempt to keep the grid in a non conflicting
state, and keep the tiles clustered around (0,0). This tile system is deeply
connected with the gameplay, as tile movement and the tiles themselves are
building blocks of gameplay.

3.3 Test & Simulation Design

In this project, two different tests or simulations were performed. The first
test’s purpose was to ascertain the capabilities of the Android Smartphones
used to test the game. This was done to examine the packet sizes, optimal to
use for transferring wireless data, as well as how the effect of different wireless
networks affected the round trip time.

This test was designed using two applications, one being the sending appli-
cation and the other being the receiving application. These two applications
were built to a Smartphone each, using Unity3D, and the Smartphones were
connected to the same wireless network. The sending application will trans-
mit a number of packets of a fixed size, marked with timestamps and sequence
numbers, to the receiving application on the other Smartphone. The receiving
application will immediately send the packet unmodified back to the sending
application, which will measure the resulting round trip time.

36 Chapter 3. Design

These results is logged, and once all the packets of a test set have been sent
and received. A mean round trip time could be calculated, for each different
packet size. The results of this test can be seen in Section 5.1.

A more detailed simulation is performed as well. This simulation has as its
goal, to determine whether the algorithm designed for handling the tile system
and the grid, is robust enough to live up to the requirements set forth in the
Problem Statement 1.1 and the Algorithm Design in Section 3.2. This simu-
lation is executed locally, using a simulator designed for the job in Unity3D,
without using a Smartphone. The main reason for not using Smartphones
for the simulations is the difficulty of acquiring the number of Smartphones
required to adequately test the real game. The simulator will allow execution
of many tests overnight, stressing the algorithm with a series of joins and leaves.

Figure 3.8: A screenshot showing the simulator in action.

This simulation is designed to have a single program running, with a single
simulator. This simulator is able to instantiate any amount of peers to join
the system, it can also make any amount of peers leave the system again.
In order to allow the simulation to run unattended, and deal with randomly
selected input, at random times, the simulator is extended with support for
Poisson Processes, which are used to select average wait times between each
join or leave event. This is based on the rate or intensity of the Poisson Process
[Weill, Hen09]. This allows a setup of the simulation with certain values for
join and leave rates, and if required, a certain percentage of current peers, as
the leave ratio.

The simulator is also extended with support for simulations, that will stabilize

3.3. Test & Simulation Design 37

at a certain number of peers in the system as the population mean, in order
to test more realistic scenarios of game usage.

In Figure 3.8, a screenshot of the simulator is shown. The simulator can be
seen with a number of active tiles currently in the game, the pink lines showing
immediate neighbour connections. The red tile is the selected tile, in case a
scenario requires joins or leaves on a specific tile. Green lines show every
neighbour of the tile. In this case, the tile marked is (0,0). The results of the
simulations and the conclusions about them, can be seen in Section 5.2.

CHAPTER

Implementation

The Implementation Chapter highlights important and interesting
implementation choices made throughout the development phase.
The implementation examples and explanations are for both the
game and the simulator. The aim is to further the understanding
of difficult choices made during the game and simulator implemen-
tation.

4.1 Game Implementation

This Section of the Implementation Chapter explains noteworthy examples of
the programming in the developed game. The main part of the explanations
are based on, or related to, the networking aspects, since networking is the
main focus of this project.

Code examples and explanations are divided based on functionality, in the
following Sections.

4.1.1 Sending & Receiving Packages

Sending and receiving packages are done using the C# .Net Sockets, more
specifically using the UdpClient class. To ease the interfacing between the
game and the UdpClient, a UdpSender and a UdpReceiver class have been
implemented. UdpSender is a simple class that initialises and stores a Udp-
Client that can be used for sending package data, while the UdpReceiver is a
bit more complicated. The peer should be listening for packages with game
updates at all times and this has to be done without interrupting the game,
therefore the UdpReceiver runs as a thread behind the game. As opposed to
multiple UdpSenders, there is only a single UdpReceiver per peer since the

39

40 Chapter 4. Implementation

UdpReceiver is listening on all data arriving on a specific port. The game
needs an UdpSender for each peer it needs to send data to. Unity3D does not
support threading well, so a great deal of caution has to be taken when using
and stopping the threads. StartReceiverThread() creates a UdpClient bound
to a provided port and starts the listening thread, it is seen in Code Example
4.1.

28 public void StartReceiverThread(int port)
29 {

30 mUdpReceiver = new UdpClient (port);
31 if (!mThreadRunning)

32 {

33 mUdpReceiverThread.Start () ;

34 mThreadRunning = true;

35 }

36 mThreadStarted — true;

37 }

Code Example 4.1: The StartReceiverThread() method. Initialising
UdpClient and starting listener thread.

The thread started in the StartReceiverThread(), which can be seen in Code
Example 4.2, runs as long as the game runs and fires the event DataReceived()
as soon as data has been received.

56 private void UdpReceive ()

57 {

58 while (true)

59 {

60 if (!mThreadStarted)

61 break;

63 mReceivedData — mUdpReceiver.Receive(ref mIPEP);
64 if (DataReceived != null)

65 DataReceived(this, EventArgs.Empty);
66 }

67 }

Code Example 4.2: The UdpReceive() method. Thread that listens for data
on the created UdpClient.

The event saves the received data into a byte array, before feeding it to the
data decoder, which is described in Section 4.1.2. The resulting decoded data
packages are inserted into a package queue, read by the game. The byte array
and the package queue (described in Section 4.1.3) works as a double buffering
of the received data packages, by inserting them at one end, and removing
them from the other. Only packages in the queue at the time the Update()
method is invoked are processed, adding later arriving packages to the queue
for the next processing.

4.1.2. Encoding & Decoding Packages 41

4.1.2 Encoding & Decoding Packages

Sending updates between peers is done as arrays of bytes, but this needs to
be converted to a format that is understandable by the game. For this, two
different methods were tested, one of which was to create a serialisable object,
that can be converted to a byte array by C#. The other was to create the byte
array manually from a string formed from a predefined syntax. The second
solution of creating the byte array manually, proved to be more efficient in
connection with the size of the package sent on the network, because there
is a lot more control over what the package actually consists of. This means
that the size of the packages can be reduced, as opposed to the solution of the
serialised package.

The Encode() and Decode() methods convert between a byte array sent or
received and a PackageData object, that can be read in the game. The
PackageData is seen in Code Example 4.3.

8 public struct PackageData

o {

10 public PackageHandler.packageType type;

11 public string ip;

12 public PackageHandler.subPackageType subType;
13 public Vector2 pos;

14 public Quaternion rot;

15 public int misc;

16 public List<Tile.tileNeighbour> neighbours;
17 public List<TankRepresentation> tanks;

18 }

Code Example 4.3: The PackageData structure. Denoting an object called
PackageData

Notice in Code Example 4.3 that a Vector2 and a Quaternion are Unity3D
defined object types.

Since the messages sent between peers are created manually, they can be con-
structed as a string with the needed information for a given message. Not all
information in a PackageData object is required for every message type, so
to save bandwidth, only the required information for the specific message type
should be inserted into the message. It is important to define a strict syntax
for the messages. It begins by defining an integer that denotes the type of
message, followed by an integer indicating the subtype of the message. When
both the sending and receiving peer know exactly how the message is con-
structed, it is possible to concatenate strings with raw information delimited
with markers. As example of this way to create the messages see Example 4.1.
The example is a reference of a ConnectReply package type, with subtype
SpawnHere.

42 Chapter 4. Implementation

[TY PE] # [SUBTY PE] # [COORDX] ,[COORDY]| # [TILETY PE] #
[IP],[COORDX],[COORDY]$

ForeachNeighbour

34240, 0#1410.10.10.1,1,08 - - -
(4.1)

In the SpawnHere Example (4.1) the first integer (3), denotes that the mes-
sage type is a Connect Reply message. There are a few different Connect Reply
messages, so the second integer (2) denotes that it is a SpawnHere reply. This
message is designed to inform a connecting peer, that it can create the tile of a
specific type (type 1 in the example) on the device, with the specified coordi-
nate ((0,0) in the example). Notice that enemy tanks on the current tile will
be created when receiving the first movement update from the tilemaster peer.
The last part of the message is the neighbours of the tile (10.10.10.1,1,0).
These are provided for two reasons, one is that the peer spawning on the tile,
can be used as a replicating peer if the original tilemaster disconnects, but also
to indicate what directions the peer can drive to leave the tile.

4.1.3 Dequeuing Packages

Recall that the received packages are inserted into a queue of updates. This
queue is emptied every Update(), which is executed before each new rendered
frame. In Code Example 4.4, a fragment of this Update() method is seen. This
part of the method, takes a snapshot of the queue and acts on the queued
events.

1 int queueSize = mNetEventQueue.Count;

3 for (int i = 0; i < queueSize; i++)

i {

5 queuedEvent gqe = mNetEventQueue.Dequeue () ;
6 switch (ge.PackageData.type)
7
8
9

case PackageHandler.packageType.Connect:
packetReceivedConnect (qge);

10 break;

11 case PackageHandler.packageType.Move:

12 packetReceivedMove(qe);

13 break;

14 case PackageHandler.packageType.Shoot:

15 packetReceivedShoot(qe);

16 break;

17 case PackageHandler.packageType.ConnectReply:
18 packetReceivedConnectReply(qge);

19 break;

4.1.4. Act on Messages, Example 43

20 case PackageHandler.packageType.MoveTile:

21 packetReceivedMoveTile(qe);

22 break;

23 default :

24 Debug.LogWarning ("PackageType not implemented!");
25 break;

26}

27 }

Code Example 4.4: Part of the Update() method that acts on package type.

The package receiver is running as a background thread, feeding into this
queue, so it could result in problems if the receiver thread and this Update()
method writes and reads the same elements in the queue, at the same time.
Line 1 in Code Example 4.4 stores the length of the queue at the beginning
of the execution, so that the following for-loop dequeues only the enqueued
events and not events inserted while the for-loop is running. Any events
enqueued that were not included for this particular Update() execution, will
wait till next frame.

4.1.4 Act on Messages, Example

The packet Received . . . () methods perform the needed actions for the received
messages. As an example, Code Example 4.5 depicts how a shoot message is
handled, using packetReceivedShoot(). Notice that the method is not exe-
cuted when the player fires a shot, but only when the player receives a shoot
message from another player, or from the tilemaster.

1 private void packetReceivedShoot (queuedEvent qe)
2 {

w

// Test if the current tile is the tile of the shot

if (mPlayerScript.currentPlayerTile.TileCoord.Equals (new
Tile.tileCoordinate ((int)qe.PackageData.pos.x, (int)qe.
PackageData.pos.y)))

i

5|

6 GameObject tankObject;

7 if (mPlayerScript.currentPlayerTile.tanks.TryGetValue(qe.
PackageData.ip, out tankObject))

8 tankObject.GetComponent<Cannon>().Shoot () ;

o}

11 GameObject masterTileObject;

12 if (mPlayerScript.masterTiles.TryGetValue (new Tile.
tileCoordinate ((int)qe.PackageData.pos.x, (int)qe.
PackageData.pos.y), out masterTileObject))

13
14 byte[] shooter = PackageHandler.Encode(qe.PackageData);
15 foreach (string p in mPlayerScript.currentPlayerTile.tanks

.Keys)

44 Chapter 4. Implementation

16 {

17 // Dont send the package back to the sender, and dont
send it to ourselves ..

18 if (p.Equals(qe.PackageData.ip) || p.Equals(Statics.
playerIp))

19 continue;

21 if (!peers.ContainsKey(p))

22

23 UdpSender localSender = new UdpSender(p,Statics.PORT);

24 peers.Add(p, localSender);

25 }

26 peers|[p]|. SendPackage (shooter);

27 }

28}

29 }

Code Example 4.5: Part of the packet ReceivedShoot() method that acts on a
received shoot package type.

There are three different situations or states for the peer that receives the
shoot message:

e The peer is a tilemaster, and must send the shoot to all peers moving on
the tile, but the tilemaster is not on the tile, so the shot should not be
displayed for himself.

e The peer is a tilemaster, and must send the shoot to all peers moving
on the tile, and the tilemaster is on the tile, so the shot needs to be
displayed on his current tile as well.

e The shoot comes from a tilemaster, and the receiving peer is not a tile-
master on the current tile, which means that the shot needs to be dis-
played on the current tile.

Lines 4 — 9 in Code Example 4.5 test if the shot is fired on the current tile. If
that is the case, the shot is initialized and fired on the player’s screen.

Lines 12 — 28 in Code Example 4.5 test if the peer receiving the shoot message
is the tilemaster of the current tile. If so, it is obligated to send the shoot
message to all peers on the tile, except itself and the peer that initially sent
the shoot message.

4.2 Algorithm Implementation

During the implementation of the algorithms, mainly when creating the simu-
lator, a few changes to the original idea were implemented to improve the tile

4.2.1. Coordinate Closest to Zero 45

algorithms. In this Section significant implementation examples are brought
forward as code examples and explanations. Notice that the code examples
are mostly from the implementation of the simulator, since the algorithm is
more apparent and not entangled in the game implementation.

4.2.1 Coordinate Closest to Zero

The first example is based on determining which tile is closer to (0,0) than
another. This is a widely used method that can be found for neighbour objects,
tile objects or tile coordinate objects by overloaded methods. In Code Example
4.6 the findCoordClosestToZero() takes two TileCoord objects which is a
structure with two integers, « and y, that imply a coordinate.

1 private TileCoord findCoordClosestToZero(TileCoord a,
TileCoord b)

2

3 int aPos = Mathf.Abs(a.x) + Mathf.Abs(a.y);
4 int bPos = Mathf.Abs(b.x) + Mathf.Abs(b.y);
6 return bPos < aPos 7 b : a;

T}

Code Example 4.6: findCoordClosestToZero() return the coordinate closest
to (0,0).

In Code Example 4.6, the findCoordClosestToZero() uses Manhattan Dis-
tance as was described in Section 3.1.1, to determine whether a or b is closer to
(0,0) by adding = and y for a and b individually. It could occur that the two
values are of an equal value, in which case a is returned. This choice means
that a is favoured, which has to be taken into consideration before executing
the method, as the first parameter has to be chosen with care.

4.2.2 Dealing With Joining Peers

When a new peer, b, joins the game session, on a given peer, a. a must
check if there is a free coordinate next to the tile of peer a. Since peer a has
knowledge of neighbours of up to two steps of Manhattan Distance. This could
be a neighbour’s neighbour, but when the Manhattan Distance becomes larger
than one step, it is more likely not to be updated with whether the coordinate
is taken or not. Therefore, it is better to keep the joining peer a within a
single Manhattan step of distance, as there may be another peer, ¢, that has
allowed peer d, to join on that same coordinate, without peer a knowing this.
See Figure 4.1 for a depiction of the problem.

46 Chapter 4. Implementation

d join
|
= 2
r? <|l C
L]
a
I
b join

Figure 4.1: A situation that would lead to a conflict, if the algorithm allowed
a joining peer to be placed as a neighbour’s neighbour.

If it were allowed to join as a neighbour’s neighbour, conflicts are more likely
to appear, because a larger number of surrounding peers can offer the same
coordinate to the joining peers b, d. Furthermore, the distance between a and
c means that updates take more time to propagate to the other, resulting in
the lack of synchronisation. Therefore, it is only allowed to place newly joined
neighbours within a distance of a single Manhattan step.

Code Example 4.7 holds the findNextFreeNode(), which is responsible for
locating a free coordinate a single Manhattan step away, or return a random
neighbour closest to (0,0).

1 private Neighbour findNextFreeNode ()

|

3 Neighbour temp — new Neighbour();

4 temp.node = null;

5 temp . timer = —100f;

6 temp.coord — new TileCoord (0, int.MaxValue);

7 List<Neighbour> templList = mnew List<Neighbour >();

9 for (int i = 0; i < 4; i++)

10 {

11 if (neighbours|[i]|.node — null && neighbours[i].coord.y

!= int.MaxValue)

4.2.3. Relevant Neighbouring Peers 47

12 {

13 temp — findNeighbourClosestToZero(neighbours[i],temp);

14 tempList.Add(temp);

15 }

16 }

18 if (temp.coord.Equals(new TileCoord (0, int.MaxValue)))

19 return neighbours|[Random.Range (0, 4)]; // Could possibly
cause a livelock

20 else

21 return templist.ElementAt(Random.Range(0,tempList.Count)

) ;
22}

Code Example 4.7: findNextFreeNode() returns a free coordinate a single
Manhattan step away, or a random neighbour closest to (0,0).

In Code Example 4.7, the first part (lines 3—7) creates a temporary Neighbour
object and resets it to values that indicate that it is empty. Lines 9 — 16 check
the four closest neighbour coordinates, to see if any coordinates are empty,
and stores the closest empty ones in the temp and tempList variables. In
lines 18 and 19, temp is not set (e.g. still initialized as 3 — 7), if all neighbour
coordinates are taken by other peers, in which case a random neighbour is
returned to rejoin on. This could lead to a livelock in the unlucky situation that
peers send the joining peer around in a circle, but it has not been experienced
in the simulations. The livelock has solutions in Section 5.3.1 about further
development, if it becomes a problem. On the other hand, if one or more free
coordinates are found (more is possible because it is Manhattan Distance), a
random — closest to zero — free coordinate is returned.

4.2.3 Relevant Neighbouring Peers

When a joining or rejoining peer receives a new coordinate for its tile, it also
needs a list of new neighbours, relevant to the new coordinate position. The
peer on which the joining or rejoining peer connects, finds a list of neighbours
that are relevant to the new peer, and sends the list along with the join re-
sponse. In Code Example 4.8, the method getRelevantNeighbours(), that
creates this list of relevant neighbours, is shown.

1 private List<Neighbour> getRelevantNeighbours(TileCoord

coord)
2
3 List<Neighbour> retval = new List<Neighbour >();
5 foreach (Neighbour n in neighbours)
6 {

7 if (n.node — null)

48 Chapter 4. Implementation

8 continue;

10 int dx = Mathf.Abs(n.coord.x — coord.x);

11 int dy = Mathf.Abs(n.coord.y — coord.y);

13 if (dx + dy <= 2)

14 retval.Add(n);

15 }

17 int thisDX = Mathf.Abs(this.tCoord.x — coord.x);
18 int thisDY = Mathf.Abs(this.tCoord.y — coord.y);
20 Neighbour ourself = new Neighbour () ;

21 ourself.coord = this.tCoord;

22 ourself .node = this;

23 ourself.timer = Statics.NODETIMEQUT;

25 if (thisDX + thisDY <= 2)

26 retval.Add(ourself);

28 return retval;

29}

Code Example 4.8: getRelevantNeighbours() finds neighbouring peers,
relevant to a specific coordinate.

Lines 3—15 in Code Example 4.8 look through the array of neighbouring peers,
and compares the neighbour coordinate with the parameter. If the neighbour
is within two Manhattan Distance, it is added to the return list. Lines 17 — 26
add the peer itself to the list, if it also is within the range of the two Manhattan
Distance steps, before the list is returned.

CHAPTER 5

Evaluation

In this Chapter the test results and the simulation results are matched
against the goals for the project. The Chapter aims to reason on if
a Peer-2-Peer multiplayer game is a possibility for the rapidly ez-
panding market of Smartphone games. The Chapter also points out
what parts of the game need further development, to be introduced
to the global market on the various application stores for Smart-
phones. Finally, it holds an overall conclusion of the project as a
whole.

5.1 Wireless Test Results

Experimentation of sending various package sizes on two different wireless net-
works, was performed early in project. This was done for three reasons, first
reason being that it was essential to know whether the two Android Smart-
phones were capable of sending information to each other. Secondly, to know
if it was necessary to put more effort into the construction or the compression
of the payloads that need to be sent. Finally, it is interesting to see how much
delay and throughput the two different wireless connections deliver using the
Smartphones.

All the tests were performed using the phones along with a purpose built
application made in Unity3D. A description of how the test application was
designed was shown in the Design Chapter in Section 3.3. This was to ensure
that the test results were as close to the results that would be generated by
the game. There were two available individual wireless networks for the tests,
one of which known as “Aau-1x" and another known as “D601a”. Aau-1x is
the large scale optimised network at the university, this is a Cisco system with
antennas and a centralised controller, which is common set-up in large-scale

49

o0 Chapter 5. Evaluation

public or company networks. D601a is an older small scale home type of net-
work from Linksys (WRT54G from 2006), which was a common in households
with wireless networks a few years back [MAO07]. Many changes and optimi-
sations for wireless networks means that the older D601a network is not very
optimised. Given that the Aau-1x Cisco system is being updated and main-
tained thoroughly, the D601a network is in the case of this project, used as
a worst case benchmark in relation to the Aau-1x test. All test results are
available on the CD that accompanies the report.

Besides using two different wireless networks, there are two other variables
to experiment with; the size of the packages and the time between sending a
package. The testing software was constructed to send a number of packages
with different sizes, so the tests were performed by sending 100 packages of
various sizes: {16,32,64,128,256,512,1024,2048,4096} bytes with different
intervals between packages, all tests were run twice.

5.1.1 Ping Times

Looking at the results it is seen that the Aau-1x network is better optimised
for the wireless network connection between the two Smartphones. This can
be seen in Figure 5.1.

300
Delay at 40 MS between packages

250 /

200 / /
—+—Delay d601a A
~#-Delay d601a B

100 - Delay Aau-1x A

=>=Delay Aau 1x B

AN I

16 32 64 128 256 512 1024 2048 4096
Bytes

Milliseconds
P
w
o

50

Figure 5.1: A graph showing the difference in package delay between the Aau-
1x and D601a wireless networks, at 40 ms delay between packages.

Notice that in Figure 5.1 the measuring points are the average values calcu-
lated from the 100 packages sent. There are four lines because the tests were
performed twice on different times on both networks. The tests were per-

5.1.1. Ping Times ol

formed twice, to see if the results would be the same to ensure the quality of
the measurements.

An important information regarding the initial spikes in the graphs, at 16
bytes, is due to the way the testing software is created. The first time a
package is received, the peer creates the UDP sender, which means that the
spike represents the approximate execution time to create a UDP sender on
the Smartphone.

Looking into the results gathered for Figure 5.1, the ping times of the packages
lay firmly between 100 ms and 150 ms until it reaches a size of 1024 bytes on
D601a. The ping times on Aau-1x lay between 5 ms and 10 ms, which is
significantly better. A small rise in delay can be noticed on the Aau-1x. The
reason for this increase is, that when the package payload data becomes larger
than 1480 bytes, the underlying hardware layer begins to split the packages
due to the Maximum Transfer Unit (MTU). This can be seen in a Wireshark
package dump log. Wireshark is a tool for detailed logging of network traffic on
a specific network interface [Wirll], its features make it perfect for debugging
network package exchange. In the excerpt of a Wireshark package log in Table
5.1, a package split is indicated. The example holds three packages, a package
with the size 1024 bytes is at the top, which is recognised as a UDP package
by Wireshark and given the package number 1391. The two last packages
in the excerpt (number 1393 and 1394), form a single UDP package of 2048
bytes. Notice that Wireshark sees package number 1393 as a fragment, which
is reassembled in package number 1394. Package number 1393 had a size of
1480 bytes, which means that this is the maximum size, allowed by the MTU.
In Table 5.1, the fields that indicate this split, are highlighted in bold.

Before commenting on whether a delay between 100 ms and 150 ms is good or
bad, it is imperative to understand what it means. In games, especially fast
paced games that needs approximate real-time updates on the players monitor,
it is very important for the game to provide a fluid gameplay experience. Any
of such fast paced games can be ruined, if the enemies do not move fluidly
and skip around in the virtual world. Such a behaviour does not look realistic
and it may be very difficult to e.g. shoot the enemy. This behaviour occurs
when there is too much delay (too high ping time) or when packages are lost
on the network. This means that the delay should be kept as low as possible
for a multiplayer game. It is not possible to say what the maximum amount of
delay is allowed to be, since that is a subjective point of view, it also depend on
how well the game handles the delay. For instance, movement is often handled
by predicting the movement based on the previous movement, for instance
using interpolation, extrapolation or a technique known as “Dead Reckoning”
[Aro97, VVBO0S8|. For many multiplayer First Person Shooters, a ping time
of 200 ms is denoted as a high limit. In “The effects of loss and latency on
user performance in unreal tournament 2003” [BCL* 04| by Beigbeder et. al.

02 Chapter 5. Evaluation

’ No. ‘ Time ‘ Source ‘ Destination ‘ Prot. ‘ Info

1391 | 175.620058 | 172.27.83.122 | 172.27.83.106 | UDP | SPort 34115
Destination port: icl-twobasel

Frame 1391: 1066 bytes on wire (8528 bits), 1066 bytes captured (8528
bits)

Ethernet II, Src: 7¢:61:93:36:37:f4 (7¢:61:93:36:37:f4), Dst: IntelCor -
05:39:03 (00:1b:77:05:39:03)

Internet Protocol, Src: 172.27.83.122 (172.27.83.122), Dst: 172.27.83.106
(172.27.83.106)

User Datagram Protocol, Src Port: 34115 (34115), Dst Port: icl-twobasel
(25000)

Data (1024 bytes)

1393 | 175.927076 | 172.27.83.122 | 172.27.83.106 | IP | Fragment IP
protocol (proto=UDP 0x11, off=0, ID=0cdc) |[Reassembled in #1394|
Frame 1393: 1514 bytes on wire (12112 bits), 1514 bytes captured (12112
bits)

Ethernet II, Src: 7¢:61:93:36:37:f4 (7¢:61:93:36:37:f4), Dst: IntelCor_-
05:39:03 (00:1b:77:05:39:03)

Internet Protocol, Src: 172.27.83.122 (172.27.83.122), Dst: 172.27.83.106
(172.27.83.106)

Data (1480 bytes)

1394 | 175.928070 | 172.27.83.122 | 172.27.83.106 | UDP | SPort 34115
Destination port: icl-twobasel

Frame 1394: 610 bytes on wire (4880 bits), 610 bytes captured (4880 bits)
Ethernet II, Src: 7¢:61:93:36:37:f4 (7¢:61:93:36:37:f4), Dst: IntelCor -
05:39:03 (00:1b:77:05:39:03)

Internet Protocol, Src: 172.27.83.122 (172.27.83.122), Dst: 172.27.83.106
(172.27.83.106)

User Datagram Protocol, Src Port: 34115 (34115), Dst Port: icl-twobasel
(25000)

Data (2048 bytes)

Table 5.1: Table with Wireshark dumps of three packages, indicating a package
split at 1480 bytes.

it is concluded that a latency of a 100 ms is noticeable while latency at 200
ms becomes annoying for the player, in Unreal Tournament. Therefore it is
reasonable to aim for a upper limit of ping time on 150 ms for TileShifter,
which should be possible given the relationally rather low ping on the Aau-1x
network.

5.1.2. Throughput 93

5.1.2 Throughput

Delay is not the only information that can be read from the test, it is also
possible to determine the maximum bandwidth, also known as throughput, on
the network. Both the D601a and the Aau-1x are 802.11g connections which
suggest a theoretical data rate of 54 Mbit/s or 5—84 = 6,75 MB/s. This through-
put should not be expected in practice, it is more likely half or less than half
the theoretical data rate [KRA08]. Among the reasons for this decrease in data
rate is, compatibility with 802.11b!, which supports a theoretical data rate of
11 Mbit/s [WCLHO05|. Furthermore, timing delays used to avoid intersymbol
interference, which is a type of wireless interference that can be viewed as noise
created if data collides. Distance and obstacles between device and antenna
also play a role, which results in a decrease in signal strength. Finally, the
wireless antennas are half-duplex, which means that the antennas can either
send or receive at a given time, not both at once.

The throughput is calculated using the formula 5.1, where RW is the Receive
Window (65.535 bytes), RTT is the Round-Trip Time (from device to device
and back in this case) and TP is the Throughput.

= >Tp (5.1)

On D601a the throughput was calculated to be approximate between 2 — 3
Mbit /s, slowly descending toward 1 Mbit/s as the package size increases. The
throughput of D601a is therefore rather low, and the graph does not pose much
interest. However, the result of the Aau-1x network can be seen as a graph in
Figure 5.2.

Notice, that in Figure 5.2 there is a single special case, that limits the through-
put of the connection to approximately 6 Mbit/s. This is a case where another
device that supports only a 802.11b is connected to the antenna, this has a
bad effect on every other connecting device on that particular antenna, since
it limits all connections to a 802.11b connection |[WCLHO05].

In the graph in Figure 5.2, every line indicates a single test with a chosen delay
between the 100 packages per size.

Looking at the other test results, the throughput is above half of the promised
bandwidth of 54 Mbit /s up to a size of 512 bytes, which is better than initially
expected, thus making it a fairly good connection for the game. The results
indicate that a size up to 512 bytes for a single package, could be a reasonable
aim.

1802.11a support 54 Mbit/s, 802.11b support 11 Mbit/s, 802.11g support 54 Mbit/s with
average about 22 Mbit/s and the new 802.11n support 54 — 600 Mbit/s [iee09].

o4 Chapter 5. Evaluation

60 Throughput on Aau-1x

=—TP 3 delay 250
—#-TP 4 delay 250

50 7 — /X*" TP 5 delay 250
//&\ \\ \ ,N =<TP 3 delay 185
\ —#TP 4 delay 185

40 /- Se—

TP 3 delay 80

TP 3 delay 40

" TP 4 delay 40
) 7 \\ —

—

—a

Mbit/s
w
o
\

10

T T
16 32 64 128 256 512 1024 2048 4096
Byte

Figure 5.2: A graph showing the throughput on the Aau-1x network.

5.2 Simulation Results

In order to validate the decisions taken when designing the tilesystem and
the algorithms, that form the basis for the project and TileShifter, a series of
simulations have been executed. This has been done to evaluate the success
of the algorithm during test cases deemed realistic, as well as how the algo-
rithm performs under various levels of stress generated by joining and leaving
peers. The many simulations performed have resulted in a multitude of simu-
lation logs, which have been examined and evaluated, based on two different
categories: Realistic test cases and Stress test cases. Both of which provide
relevant results to evaluate how the algorithm, that has been developed, per-
forms. All simulation results are available on the CD that accompanies the
report.

5.2.1 Result Evaluation

Evaluating these many log results has been a challenge, as the question arises
on how to judge the results of the simulations. The choice was ultimately
to attempt to measure the amount of splits that each simulation produced.
However, the way the algorithm is constructed, it is difficult to accurately
judge when a split has occurred, as the split’s tiles will attempt to rejoin to
the main game if they have been cut off, with one exception: If they are able to
move themselves such that they are in the coordinate (0, 0), the tile will assume
that it is, in fact, the correct game running, and it and any tiles connected
to it will not attempt to join other games any further. Attempts to fix these

5.2.1. Result Evaluation 55

occurrences in the algorithm are discussed in Section 5.3.1. It is also difficult
to know from the log if the algorithm simulation would eventually have solved
splits by itself, as two tiles in (0,0) that are unknown to each other, could be
connected by a long line of tiles created by leave events.

It is important to note, however, that this way of counting splits does not take
into account game splits existing outside of (0,0). But due to the gravity of
(0,0), they should attempt to move closer and closer to this coordinate until
the split cluster eventually reaches it and becomes a real split, or runs out of
tiles to move and starts to dissolve because of the lonely criteria.

For these reasons, it has been chosen to evaluate log results as follows: Look
for splits, where more than one tile is currently residing in (0,0); Once one
such split has been found, follow the log events until this split has disappeared
and the simulation contains fewer games; Examine timestamps of this event
and see if the timestamps coincide with a leave event in the log file. If so, a
split has occurred, with the exception of cases where the split and the leave
event are less than 15 seconds apart, due to giving the algorithm a chance to
at least discover the changed game state before reaching a conclusion, based
on current timeout values.

It is then pessimistically concluded that any of these splits, only removed by
leave events, are splits of the game into more games, that the algorithm itself
was unable to solve. It is possible, that these splits could have been solved by
the algorithm if left undisturbed by further leaves, but by drawing pessimistic
conclusions to these scenarios, this results in a worst case approximation.

7/3/2011 11:31:46 PM 26 nodes left the game. Percentage 407, of total 65
7/3/2011 11:31:59 PM There are now 2 games running

7/3/2011 11:32:26 PM Node 588 at position -2,-1 was joined by 9 nodes
7/3/2011 11:32:30 PM Node 591 at position -1,2 was joined by 9 nodes

7/3/2011 11:32:32 PM Node 612 at position 1,2 was joined by O nodes

7/3/2011 11:32:56 PM Node 594 at position -1,3 was joined by 1 nodes

7/3/2011 11:33:10 PM There are now 1 games running

7/3/2011 11:33:10 PM 24 nodes left the game. Percentage 41.37931}, of total 58

Example 5.1: Log excerpt of a split.

Example 5.1 shows part of a simulation log indicating what is typically counted
as a split, in a simulation evaluation. Here, a split is caused by the first leave
event and two split games is the output of that leave. The split is then resolved
by a second leave event and not by the algorithm itself. This counts as a split.

In Example 5.2, a different scenario can be observed. This time a split into
two games is again caused by a leave event, however, the algorithm repairs it.
This can be deduced because the log shows that one game is running again,

o6 Chapter 5. Evaluation

7/3/2011 11:25:44 PM 19 nodes left the game. Percentage 51.35135) of total 37
7/3/2011 11:26:05 PM There are now 2 games running

7/3/2011 11:26:50 PM Node 585 at position 1,-2 was joined by 1 nodes

7/3/2011 11:26:51 PM Node 585 at position 1,-2 was joined by 9 nodes

7/3/2011 11:27:01 PM There are now 1 games running

7/3/2011 11:27:10 PM Node 485 at position 1,-1 was joined by O nodes

Example 5.2: Log excerpt of the algorithm merging two games.

without the help of a leave event.

7/6/2011 12:29:55 AM Node 869 at position 1,-6 was joined by 1 nodes

7/6/2011 12:30:50 AM There are now 2 games running

7/6/2011 12:30:53 AM There are now 1 games running

7/6/2011 12:30:53 AM 27 nodes left the game. Percentage 30.68182), of total 88

Example 5.3: Log excerpt of a split falling to 15 second limit.

A log excerpt showing what falls under the 15 second criteria can be seen in
Example 5.3. Two games are running, but is fixed within 15 seconds. This
means that there is no way to discern if this is a split, or a join conflict
salvageable by the algorithms.

Graphical explanations of some splits, can be seen in Section 5.2.4.

5.2.2 Realistic Test Cases

Realistic test cases are scenarios where the game is intended to be commonly
played. In these scenarios, the algorithm should very rarely result in any splits.
In these realistic cases, joins and leaves are separated by a significant timer,
chosen based on the scenario. These scenarios could be playing on public trans-
portation with friends or other passengers, playing at the university in between
class, breaks or other periods with medium to long waiting times. Of course
it is also entirely possible to meet up with friends just to play TileShifters.

With these considerations in mind, the simulation values have been chosen as
follows: The amount of peers able to join and leave each event is relatively
low, it is unlikely that a large group of people will leave unless everyone leaves.
Peers joining also do this in smaller groups. The average time between these
leave and join events, in other words; the intensity of the events, has been

5.2.2. Realistic Test Cases 57

chosen to be relatively large, since it is unlikely that peers will leave and join
very often. More likely is a group of peers making a game for a length of time
without leaving or joining unless by accident. The mean population of peers
in a game has been chosen relative to the scenarios defined, such as 20 players
on a bus or 30 players in a lecture break. The simulator will then attempt to
keep the simulation mean population close to this number.

With few peers leaving and joining simultaneously, and large average intervals
between each of such events, the algorithm is expected to behave splendidly
and only ever result in any splits if the amount of leavers amounts to 12 or
more, given that this can completely isolate peers by completely removing a
neighbourhood of 12 tiles. In very unlucky situations, less than 12 peers leav-
ing simultaneously could generate splits, this requires the tiles to build a map
of specific form, which should occur rarely. Examples of such situations are
shown later in Section 5.2.4.

The results of the realistic simulations can be seen in the Tables 5.2 and 5.3.

Join Leave # denotes the maximum amount of peers that can possibly join
or leave every join or leave event.

Join Leave A means the intensity of the Poisson Process used to generate the
time elapsed between each event, which is used by the simulator.

1 is the population mean of the simulation, which is the amount of simulta-
neous peers the simulator will attempt to keep in the game at the same
time.

Total Splits counts the total number of splits detected during the simulation.
Minutes is the total length of the simulation in minutes.

Splits Per Hour calculates the approximate amount of splits that would oc-
cur every hour.

Table 5.2 shows measurements from simulations that have been performed with
a range of 3 to 9 maximum joining or leaving peers per event, and a relatively
long 300 seconds average between each event for most simulations. The mean
population aimed for is either 20 or 30. Each simulation has been run for
8+ hours. The expected results for these simulations were not to have any or
very few splits occurring, as the amount of peers able to leave simultaneously
were too few to completely wipe neighbour connections out. In addition the
long length between each event should allow the algorithm to settle before the
next leave event. Looking at the actual results, it is clear that the simulations
performed even better than expected, resulting in no splits across the board.
With these usage scenarios, fitting cases such as the bus, train or course room,
the algorithm should perform admirably, letting all the players continue to

o8 Chapter 5. Evaluation

Join Leave # 3 3 6 6 9 9 9

Join Leave)\ 300 | 300 | 300 | 300 | 300 | 300 | 1800
u 20 130 |20 |30 |20 |30 |30
Total Splits 0 0 0 0 0 0 0
Minutes 655 | 510 | 573 | 490 | 500 | 594 | 571

Splits Per Hour | 0 0 0 0 0 0 0

Table 5.2: Results of realistic test cases.

Join Leave # 12 12] 12 12 12] 15 15 15 20

Join Leave A\ 300 | 300 | 600 | 600 | 600 | 300 | 600 | 600 | 300

! 30 60 | 20 30 30 | 30 30 30 60
Total Splits 2 0 3 2 0 6 1 2 2
Minutes 482 | 474 | 584 | 390 | 480 | 456 | 426 | 475 | 499

Splits Per Hour | 0,25 | 0 | 0,31 | 0,31 |0 | 0,79 | 0,14 | 0,25 | 0,24

Table 5.3: Results of realistic test cases.

stay connected and play together regardless of small groups of players joining
and leaving.

The results shown in Table 5.3 are based on larger number of peers able to leave
and join the game at the same time, from 12 up to 20 maximum simultaneous
joins or leaves. The intensity of the Poisson Process ranges from 300 to 600
seconds. The mean population for the simulations has been aimed between
20 and 60. With these settings, it is expected to encounter some splits, as 12
peers leaving at the same time are able to completely isolate players, even if
their neighbour lists are fully populated. However, with the lengthy average
between these events, many such occurrences should be able to be sorted by
the algorithm, unless the isolated group is able to move into (0,0). The actual
result shows numbers in line with these expectations, as splits have occurred in
a modest amount in nearly every simulation. It is actually surprising that more
splits have not occurred in the simulation with 20 peers able to join or leave
at once. There is a certain degree of randomness in the simulations, however,
both from the Poisson Process and from the randomly generated amount of
joiners and leavers, and which peers are chosen to receive joiners or leave the
game.

Occurrence of splits highly depends on which peers are chosen for leaves and
joins, and how the tilemap has been constructed for the particular game.
Therefore, the evidence is not conclusive, but points to the algorithm and
game performing well, under the intended usecases that the game is expected
to be used in. The only way to know for certain, is releasing the game to the
consumers.

5.2.3. Stress Testing 99

5.2.3 Stress Testing

The stress testing simulations have been performed to see how well the algo-
rithm performs under heavy pressure of constant joins and leaves, where the
leaves are a certain percentage of the number of players in the game. These
percentage based leaves could very well result in several split games, just from
one leave event, as there are no bounds on the population for these tests. Peers
will keep joining, which could lead to games with hundreds of players in them
before a leave event occurs, shattering the grid.

These tests are expected to result in splits, probably many and often, again
depending on which nodes are randomly chosen for joins and leaves, and how
the tilemap has been constructed. The purpose of these tests is to examine how
the algorithm behaves under severe stress, with relatively short time between
join and leave events, and with increasing numbers of leaves. These scenarios
are unrealistic for normal game purposes, as players will most likely not leave
based on percentages, nor so often. It might, however, reveal how robust the
algorithm is to churn.

In Figure 5.3, these stress simulation results have been drawn as a graph,
which shows the increasing percentage of peers each leave event causes, and
how many splits per hour this results in. The settings for these simulations
have been a join event intensity of one every 20 seconds, while the leave event
intensity is lower at one every 180 seconds. The leave percentage ranges from
20% to 60% peers leaving per event, out of the total amount of peers currently
in the game.

With these settings, it is expected to encounter splits in every simulation, as
the often and large leaves can very well fragment the tilemap and isolate peers
in small clusters, depending on which peers are chosen to leave. However,
with the often leaves, the algorithm has little time to attempt to cope with a
leave event before another can occur, resulting in possible fix scenarios being
evaluated as a split.

The actual results in Figure 5.3 show the average splits per hour being rela-
tively low for the 20% leaves, but increasing up to a more severe approximately
5 splits per hour at 40% leaves, which clearly shows that more splits occur un-
der stress, than under realistic scenarios. It should be noted, however, that
split games are still playable, these games will just act as smaller games, so
while undesirable, splits are not catastrophic for the game experience. Ways
to improve handling of split games can be read in Section 5.3.1 about further
development.

A final stress test was performed, in which 1000 peers were joined to a single
game session, this conveyed no problems. The session expanded healthily and
adjusted the tiles of peers, which could be placed better. Disconnecting 500
peers afterwards, resulted in 4 simultaneous games, one of which was resolved

60 Chapter 5. Evaluation

Average splits per hour

5,39 5,06 4,88

5 / e
4

Splits per hour
w

20 25 30 35 40 45 50 55 60
Leave Percentage

Figure 5.3: A graph of the relationship between leave percentage and average
splits per hour.

by the algorithms and it ended on 3 simultaneous games. This indicates that
the tile algorithms are scalable to numbers well over realistic scenarios.

5.2.4 Split Scenario

Due to the design of the algorithm, it is possible to predict some of the scenarios
which would cause one or more splits to occur in a game. These are scenarios
where the game is split up, such that two or more smaller clusters of peers are
disconnected and have no neighbours reaching each other. In addition, these
clusters should contain enough tiles to be able to shuffle and move in the grid
to reach (0,0), if this happens, the splits will no longer consider themselves as
a split and consider themselves an independent game session. If the clusters
are unable to reach (0,0), then the closest peer will eventually consider himself
lonely and try to join a closer peer, based on the global score messages received
before the game was split. Without these, the cluster would still remain as a
split game. An example of a split scenario can be seen in Figure 5.4.

The first Figure, 5.4a, shows a tilemap in the grid built from several peers.
However, the game is hit by several leaves, and all the tiles marked with
diagonal lines depart the game. This results in the red tiles and the green
tiles being separated from each other. In this case, the green tiles are perfectly
content being their own game and are none the wiser of the isolated red tiles.
The red tiles will begin moving towards (0,0), as the tiles detect open grid
positions closer and closer to (0,0).

5.2.4. Split Scenario 61

HHna

1

L2
L

(a) Marked tiles leave, green and red seper- (b) Red moves into middle, two games run-
ated. ning.

Figure 5.4: Figures showing a split scenario.

Eventually the red tiles reach (0,0), which is shown in Figure 5.4b, and now
the red tiles consider themselves to be a game of their own, none the wiser
of the green tiles, that was once part of the same total game as the red ones.
This scenario will cause a split, and the algorithm is unable to repair it, as
both splits consider themselves an independent game.

/—\

0,0

Figure 5.5: A split where the red tiles do not know any green tiles.

A different split scenario is the one shown in Figure 5.5, it shows a situation
that has arisen after several peers have left the game, leaving the red tiles and

62 Chapter 5. Evaluation

the green tiles isolated. However, in this situation, the red tiles are unable to
move into (0,0), thus the tile closest will eventually exhaust its lonely timer.
Normally, this would cause the peer responsible for the tile to look through its
list of peers obtained from the global messages, but in this specific case, none
of the red peers have any of the green peers in this list. This results in the
red peers becoming stranded in their own game. The scenario depicted here is
rather unlikely, as it requires no global messages to reach the peers respounsible
for the red tiles, but also requires the tanks controlled by these peers to be on
red tiles. If any red tank is on a green tile, this should allow the red cluster to
connect to the green cluster and eventually reassemble into one game.

Another scenario that occurs, is the situation shown in Figure 5.6, which, if
given enough time, actually resolves itself, even though the simulator would
read it as a split for a long time before it fixes itself. Figure 5.6a depicts a well
populated game, where a large amount of peers in the center of the tilemap all
leave the game, which leaves a large gap in the middle. This results in the two
“ends” of the long chain of tiles wanting to move into the (0,0) grid coordinate.
Due to the leaves separating them, these two parts of the game are not aware
of each other and do not cause a conflict. This is depicted in Figure 5.6b. Here,
the red part and the green part have both laid claim on the middle. The entire
tilemap has not yet coped with the amount of leaves before, which has left a
gap that has yet to be filled, allowing this split to happen. The tiles located
in the top left of the grid will steadily move closer towards (0,0), and red and
green tiles will come to meet each other, and discover that they belong to the
same game. This will cause any conflicts caused by the green and red tiles
occupying the same coordinates, to eventually resolve themselves, including
the two occupants of (0,0), turning the split into a single game once again.

5.3 Further Development

If TileShifter was to be distributed and sold in an AppStore, some further
development is needed to perfect the product. Furthermore, during the devel-
opment, some possible improvements for the network overlay algorithm have
been discovered. Therefore, this Further Development Section accentuates
potential improvements for both the overlay algorithm and TileShifter as a
game. The following Sections divide the further development into categories
of whether it is on the tile algorithms in Section 5.3.1, for the game in Section
5.3.2 or the networking between peers in general in Section 5.3.3.

5.3.1. Overlay Algorithm 63

L]

2]|
HijEnn

Hj .
HiE N
HIIEINININE

N R NN

NN
NN

(a) A populated game suffering leaves. (b) Red and green claim the middle but
are really the same game.

Figure 5.6: Figures showing a split scenario that eventually solves itself.

5.3.1 Overlay Algorithm

The sole purpose of the tile algorithms, is to keep tiles connected as best as
possible, to form an exciting map in the game world. The purpose is also
to avoid splits in the communication, which results in the creation of smaller
separate games as much as possible, when peers leave or disconnect. Although,
as the simulation results in Section 5.2 show, the algorithm avoids many splits
and repairs potential problems very well, but splits do still happen. The biggest
obstacle is that no entities have knowledge or overview of the entire network
in a Peer-2-Peer network, thus, this problem is impossible to avoid entirely.
With more tweaking and a better discovery of splits, however, the algorithm
could be improved to resolve more of these situations.

Join Livelock

The livelock noted in the Join() algorithm in Section 3.2 is unfortunate, but
is unlikely to happen, as no simulation ever encountered it. It can become a
livelock, because the joining peer can be sent in circles. If it becomes a notice-
able problem, then it can be solved by not returning any random neighbour,
or returning a random neighbour until a join timeout expires. The algorithm
will instead return a random neighbour picked from neighbours further away
from (0,0), than the tile the join was attempted upon.

64 Chapter 5. Evaluation

Rejoining On Splits

A proposed improvement is to utilize more information, available about other
peers. For instance, if a tilemaster is moving on another tile, it can rejoin
the other tilemaster if it finds itself isolated. This also works the other way
around, if the tilemaster drives on its own tile, it may rejoin on a peer that
drives on his own tile. This leaves three possible problematic situations:

Peer is alone on own tile A peer can be a tilemaster on its current tile,
and no other peer is on the tile. In this case the solution does not help.

Other peers to rejoin on may be isolated themselves If there are peers
to rejoin on, there is no guarantee that that particular peer is not isolated
as well. But atleast it is likely, that the peer will be able to continue an
unresolved battle with known peers.

Other peers may not be tilemasters themselves To heighten the action
experience, the number of tiles in the game could be limited i.e. to half
of the joining peers. This can be used to ensure that replication does
not put too big a burden on a single peer, and it reduces the size of the
world, so that tanks meet more often. The trade-off is that there are less
peers to rejoin on, in case of isolation.

The number of splits may be reduced, but the problem will still occur. Finally,
the isolated tilemaster can try to rejoin on the peer it originally joined on, if it
still exists. In this situation, the two peers will still be connected to the same
game, which means that the player is less likely to notice the split, based on
the assumption, that they joined each other because they want to play against
each other.

Discovering Splits

Improving the discovery of splits as separately running games, can be done
using the coordinate system and neighbours. Think of the peers in the coordi-
nate system as routers with a coordinate identification, this way a peer would
know if a message should be propagated to the north, east, south or west to
reach a specific coordinate. That knowledge will aid in the area of pathfinding
and indication of directions towards enemies, and in connection with detection
of splits. It can be used to detect if it has connection to (0,0) or to the tile of
a peer that drives on its own tile. It can also be used the other way around,
where the peer drives on another tile, it can check if there is a connection
between the two.

In practice, this could be implemented such that a tilemaster sends a message

5.3.2. TileShifter 65

towards the coordinate it wants to check, and wait a predefined timeout for
response. The message should hold the destination coordinate, and the IP of
the sending peer, such that an answer can be sent directly back to the sender
upon success. The propagation could work in much the same way as a depth
first search pathfinding algorithm. If the timeout expires without response, the
peer must expect that it cannot reach the destination, and a corresponding
action must be taken. The timeout value should depend on the Manhattan
Distance between the two coordinates.

5.3.2 TileShifter

The game itself must be polished and the missing features implemented. Fur-
ther development on the TileShifter, is mostly cosmetic changes and additions,
but also ideas to expand on the gameplay.

Cosmetic Changes

In connection with this project, cosmetic changes are not important, but if
TileShifter were to be distributed and sold, cosmetic problems and issues can
easily be the difference between success and failure, for a small action game
such as TileShifter. Consumers are hard critics and a few bad reviews can
have a huge impact on the interest gained by other consumers. If, however,
the game looks good, feels good and presents itself well, more consumers are
going to give it a chance. The game therefore, must be polished in the following
areas:

e Tile textures should be finished

More tiles should be added

Better user interface

A menu should be added

More feedback, such as explosion sounds, particle effects and device vi-
brations

Play testing can signify whether the game can be a success or not, before
distributing it on the market.

66 Chapter 5. Evaluation

Missing Functionality

Also in terms of functionality, a few implementations are missing before the
game is finished. The missing functionalities in this Section are all viewed as
necessary to deem TileShifter a complete game. The functionalities are briefly
described below:

Player Names Being a competitive scalable game, usernames should be sup-
ported, such that the players can see which opponent they are firing at
and competing against.

Scoring Global messages containing scores and player names should be prop-
agated on the network, such that the players can view their performance
relative to others.

Guidance Arrows Arrows that point in the direction of a number of the
nearest enemies should be implemented. These could be generated by a
pathfinding algorithm and point in the direction of another tiles coordi-
nate, if there are no other players on the current tile.

Tile Replication The functionality of tile replication is needed to save play-
ers moving on a tile with no tilemaster. Remember, that the tilemaster
works as a server for the single tile, so if this tilemaster leaves the net-
work with other players on the tile, another peer must be regarded as
the master. Therefore, a player moving on a tile, has to replicate the
master of that tile.

Cross Platform To reach a larger consumer market, TileShifter must be dis-
tributed on more platforms. Using Unity3D, it is very easy to distribute
on Apple i0S and Sony PSP as well. This will only need minor changes
in the input handling, since Unity3dD takes care of the translation to
native code.

Expanding Game Concepts

During the development of TileShifter, a number of additional alternate game
modes have been envisioned, that can improve the game experience for the
players. This may be small additions and entirely other game modes or ways
to play the game. This can be controlled when the game session is created
initially. Which game modes are activated and the information of the game
mode is given at join, any time a player joins, all peers will play the same game
mode chosen, provided that it cannot change for the entire game session. In
the description below, a few such additions and alternate game modes are
described:

5.3.3. General Networking 67

Power-ups Players may be able to pick up power-ups. This could be better
weapons, more ammo or repair-kits.

Team Game Players are divided into teams and play against other teams.
Scores are the same for the entire team, and friendly fire subtracts from
the score.

Quizmaster Tanks Periodically ask a question, requiring the players to move
to specific tiles to answer. This is a good way of distributing load on
different tiles, thus lowering bandwidth use on a single tilemaster.

Custom Tile Placement When joining, the player can choose where to place
his own tiles in the world, maybe buy specific tiles for experience points
earned during gameplay.

Custom Tiles Support creation of custom tiles, which could be built from
either predefined pieces or player created content, provided it lives up
to criteria such as having transitions in the correct locations. A player
would be able to place a custom built tile, when joining a game session.

5.3.3 General Networking

Finally there are a few networking features and optimisations that need im-
plementation. The improvements range from important missing necessary im-
plementations in the current state, to ideas on how to improve the networking
for TileShifter.

Global Messages

Initially, the most important part is to finally implement and fine tune the
global messaging. These are messages containing scores and player names
and work as keepalive messages. They should also be used to find another
tilemaster to connect to, if a player becomes isolated. This means that this is
the most important feature missing in the implementation, since it is one of
the cornerstone functionalities of connection recovery in the overlay algorithm.

Package Optimisation

Part of optimising the networking, is the ability to handle missing packages
or packages caught in high latency. When an enemy moves on the screen, it
must be as fluid as possible, and this can demand a lot of bandwidth when
movement updates are sent frequently. Furthermore, the latency might be high
on the network or the movement packages could be lost. To be able to handle

68 Chapter 5. Evaluation

this, the game must be able to perform predictions on movements of enemies,
which could be done by extrapolation. When a package containing a movement
update arrives within a short time span, often set to the average latency ping
time, the client can use interpolation, and move the enemy according to the
position in the package. In the situations, however, where an update is lost,
or arrive late, the client still needs to know where to move the enemy player’s
tank on the screen. In such cases, extrapolation or dead reckoning is used.
Extrapolation uses the last updates to calculate and predict the direction the
enemy is moving, while dead reckoning predicts where the enemy is moving
using direction and velocity. This concept could be a great improvement for
TileShifter.

As part of the network optimisations, data encoding or data compression could
be a potential improvement, as previous research has indicated on for example
the HTTP [MDFK97|. Data encoding covers the concept of only transmitting
changes or differences between new and old updates. Compression of the data
is another way of saving bandwidth, but this is only relevant, when the size of
packages exceeds 512 byte (as discovered in Section 5.1 with test results).

In TileShifter, messages received by a peer is buffered in a queue. This has
proven to be helpful in connection with the threads that run the game and
the thread that receives data on the network. However, as mentioned in “A
Multiplayer Real-Time Game Protocol Architecture for Reducing Network La-
tency” by Ahn et. al. [WACBF09] implementation of a protocol that discards
outdated packages could be an improvement. The idea is, that any server (or
tilemaster in the case of TileShifter), receives a lot of updates, and as they end
up in a buffer, it may receive updates that render older updates in the buffer
obsolete. In this case, it is best to ignore and disregard this update to avoid
using computational power or bandwidth on distributing the obsolete data to
the other peers on the tile.

Extra Research

Dealing with a mobile platform, not only resources are limited, but the battery
power also sets a limit for the gaming experience. Games generally use a lot
of computational power, this means that the games also use a lot of battery
power or energy. When using the networking interfaces on the Smartphone as
well, it consumes the energy even faster. Since energy is a limited source in a
Smartphone, it is a good idea to think of the energy consumption. Anand et.
al. [ASM™11] have introduced a protocol that is energy saving and developed
for network gaming on mobile devices. This is a very relevant field to improve
on in relation to networking in games for Smartphones and it is no different
for TileShifter.

5.4. Conclusion 69

Finally, the use of a MANET could be a way to enhance the connectivity
between peers. A wireless router might not be available and some wireless
routers can be set to block Peer-2-Peer traffic. In such cases, a MANET
could be a solution. The MANET was shortly described in Section 2.3.1. The
connections of a MANET could be better integrated with the tile system.
For instance the physical location of peers could control tile and neighbour
locations in the game world.

5.4 Conclusion

The primary goal of this project, as formulated in the Problem Statement in
Section 1.1, was to examine the possibilities of developing a Peer-2-Peer multi-
player game, for a Smartphone environment. In a Peer-2-Peer network, many
problems arise, such as connectivity stability, synchronisation and randomly
disconnecting peers, but if these obstacles can be traversed, the Peer-2-Peer
multiplayer game will be serverless and highly scalable. Game development
is often a task with great freedom of choice, so it is proposed to focus more
on game design-driven development. The idea is to use game design to solve
functionality— and network— related problems, to highest possible extend.

5.4.1 TileShifter

The result of the project is TileShifter, a Peer-2-Peer multiplayer action game.
The gameplay of TileShifter is simple, players control tanks, driving around
and shooting each other in a tile-based and randomly constructed world. Tiles
are used to solve most of the Peer-2-Peer network related problems, using
a series of custom algorithms, described in Sections 3.1.1 and 3.2, created
specifically for tile-based games. Although, the tile algorithms are created for
TileShifter, it is meant as a generic set of algorithms, usable for other game
types, that can be based on tiles.

For TileShifter to be a success, as an implemented Peer-2-Peer multiplayer
game, a set of requirements were formalised in the Problem Statement in
Section 1.1. The following description re-lists the demands for TileShifter,
and points out the features that ensure the demands are fulfilled.

Peer-2-Peer TileShifter uses Peer-2-Peer and does not require a dedicated
server or tracker of any kind. The peers connect directly to each other
using UDP connections.

Smartphone Platform TileShifter is developed for Android, and is tested
on the HTC Desire. Using Unity3D, it is possible to compile the game

70 Chapter 5. Evaluation

for Apple i0S as well.

Scalability Scalability is achieved in TileShifter, through the use of the grid-
based tile system, which expands with every new peer. The tilemaster
concept provides a semi-server for peers on a tile, which limits the com-
munication to interested peers only.

Robustness The tile algorithms takes care of cleaning and maintaining the
connections between peer owned tiles, such that players can join and
leave without issues. Therefore, the tile algorithms ensure the robustness
of TileShifter.

Drop in/out Gameplay Action is not far away, due to clustering of the tiles
in the virtual world, since it makes sure that distance between tiles is
minimised to a certain degree.

Game Driven Design The tile-based algorithms have proven to be very use-
ful in connecting gameplay features with functionality and connectivity
between peers. Moving tiles both repair connections and stimulates ex-
plorative gameplay.

The demands for TileShifter have all been acknowledged in the implementa-
tion, and as such, it is successful in relation to this project. As noted in the
description above, most of the success lies in the tile algorithms, so next step
is to conclude on how successful the algorithms have proven to be.

5.4.2 Tile Algorithms

As for TileShifter, certain demands of the tile algorithms were formalised in
Section 3.2. The tile algorithms are an important factor in this project, since
they propose a new way to organise a Peer-2-Peer game, based on tiles. Due
to their importance, it is crucial that the demands are met, therefore they
are evaluated in the following description, based on the simulation results in
Section 5.2.

Robustness When a peer joins, other peers are not affected at all, since the
joining peer is placed in a free coordinate and adjusted to a better po-
sition, if possible. When peers leave, the tiles rearrange in the grid and
other peers can still play the game. Even when the tiles are separated
and splits occur, TileShifter is still playable for the isolated peers. Fur-
thermore, they are most likely still connected to the peers they have had
encounters with, due to the way an isolated group of peers rearrange
their tiles, based on what other tiles they drive on and have received
global score messages from.

5.4.3. Wireless Testing 71

Reachability Rearrangements of tiles in the grid and clustering of tiles, en-
sure that tiles are connected and that the distance between tiles is as
small as possible. With the exception of the unlikely problem with long
lines of tiles forming outwards from (0,0), instead of clustering, which
was mentioned in Section 3.1.1.

Scalability The scalability of the tile algorithms has been tested with several
realistic simulations, based on real-world usecases, such as a class break
or during public transportation. The test results were good, but splits
of games could still occur. Percentage based leaves illuminated this, but
join tests showed that the algorithms could easily let thousands of tiles
join at least as described in Section 5.2.3.

Decentralised Although a tilemaster is used as a localised server, there are no
need for a dedicated machine to act as server or tracker. Therefore, the
tile algorithms work independently, making TileShifter a decentralised
Peer-2-Peer game.

Since large scale tests of TileShifter have been unreachable, due to lack of
test devices, we have had to rely solely on the results of the simulations. The
simulations in Section 5.2 indicated that the tile algorithms perform well under
realistic situations, while stress testing indicated, that there is a large increase
in splits per hour from 30% to 40% leaves. Intelligent selection of which peers
to attempt to rejoin on, in the event of a split, would mitigate ill effects a split
could have on the player. This is because the player’s tile would reposition
according to recently encountered tanks.

Being satisfied with the performance of the tile algorithms and TileShifter
itself, the final performance question of the wireless network still needs an-
swering.

5.4.3 Wireless Testing

In Section 5.1 about Wireless Test Results, two areas of wireless network con-
nections were tested for two different networks. The tests were performed by
sending packages of increasing sizes from one Smartphone to another, and back
again.

The first test results determined the network latency — or ping time — on
the two wireless networks. The latency indicates that if the wireless network
is optimised for connections with Smartphones, then the ping time has little
influence on the gaming experience, with a ping time of approximately 10 ms.
On an older unoptimised network, latency could pose a problem with a ping
time of approximately 150 ms.

72 Chapter 5. Evaluation

The second test results calculated the throughput of the two networks, to indi-
cate the large difference. The optimised network allowed a practical through-
put of approximately 30 Mbit/s at a package size of 512 bytes. The older
unoptimised network could perform at approximately 3 Mbit/s at a package
size of 512 bytes, which indicates a significant difference.

Looking at the graphs of the results in Section 5.1, it can be seen that, up
to the package size of 512 bytes, the optimised network could deliver more
than half of the promised theoretical throughput of 54 Mbit/s. Therefore it is
argued that to get best performance, the packages should aim for a size of 512
bytes. It is best to piggyback as much data in one package as possible, to save
overhead on headers added to packages. It was furthermore noticed, that the
underlying network layer, automatically split the packages at a size of 1480
bytes, so this is regarded as a hard limit for the size of packages. If packages
becomes larger than 1480 bytes, the number of packages on the network are
increased.

5.4.4 Final Words

Development of a game, is a time-consuming and complex task, and as such,
many features have been omitted due to time constraints or because it is
outside the scope of this project. Many of these possible improvements on the
TileShifter game, were listed in Section 5.3.

Despite the simplicity of the gameplay, TileShifter is a fun action game, in the
eyes of the authors. It allows a much larger group of competitors than other
games available for the Smartphone, and there are many ideas for expanding
the gameplay. It would be enjoyable to see the game finally developed and
available for several platforms in app stores.

The initial problem of whether a multiplayer Peer-2-Peer game can be devel-
oped for a Smartphone, is answered with a resounding “yes”, demonstrated
through the creation of TileShifter.

Bibliography

[Appl1]

[Aro97]

[ASM*11]

[Barll]

[BCL*04]

[BDL08§]

[Beu05]

[Blulla]

Apple. Apple App Store, 2011.
http://www.apple.com/iphone/apps-for-iphone/.

Jesse Aronson. Dead Reckoning: Latency Hiding for Networked
Games, 1997. http://www.gamasutra.com/view/feature/
3230/dead_reckoning_latency_hiding_for_.php.

B. Anand, J. Sebastian, Soh Yu Ming, A.L.. Ananda,

Mun Choon Chan, and R.K. Balan. Pgtp: Power aware game
transport protocol for multi-player mobile games. In
Communications and Signal Processing (ICCSP), 2011
International Conference on, pages 399-404, feb. 2011.

Margherita Barile. Taxicab Metric, 2011.
http://mathworld.wolfram.com/TaxicabMetric.html.

Tom Beigbeder, Rory Coughlan, Corey Lusher, John Plunkett,
Emmanuel Agu, and Mark Claypool. The effects of loss and
latency on user performance in unreal tournament 2003. In
Proceedings of 3rd ACM SIGCOMM workshop on Network and
system support for games, NetGames ’04, pages 144-151, New
York, NY, USA, 2004. ACM.

Ashwin Bharambe, John R. Douceur, Jacob R. Lorch, Thomas
Moscibroda, Jeffrey Pang, Srinivasan Seshan, and Xinyu
Zhuang. Donnybrook: enabling large-scale, high-speed,
peer-to-peer games. In Proceedings of the ACM SIGCOMM
2008 conference on Data communication, SIGCOMM 08, pages
389-400, New York, NY, USA, 2008. ACM.

Jan Beutel. Design and Deployment of Wireless Networked
Embedded Systems. PhD thesis, ETH Zurich, Zurich,
Switzerland, 2005.

Bluetooth.com. The Official Bluetooth Technology Website,
2011. http://www.bluetooth.com.

73

http://www.apple.com/iphone/apps-for-iphone/
http://www.gamasutra.com/view/feature/3230/dead_reckoning_latency_hiding_for_.php
http://www.gamasutra.com/view/feature/3230/dead_reckoning_latency_hiding_for_.php
http://mathworld.wolfram.com/TaxicabMetric.html
http://www.bluetooth.com

74

Bibliography

[Blul1b]

[CDD11]

[CDDA0Y]

[CDKO05]

[CE10]

[Danl1]

|Gooll]

[Hen09]

[HTC11]

liee07]

[iee09]

Bluetooth.org. The Official Bluetooth Special Interest Group
Website, 2011. http://www.bluetooth.org.

T. Clausen, C. Dearlove, and J. Dean. Mobile Ad Hoc Network
(MANET) Neighborhood Discovery Protocol (NHDP). RFC
6130 (Proposed Standard), April 2011.

T. Clausen, C. Dearlove, J. Dean, and C. Adjih. Generalized
Mobile Ad Hoc Network (MANET) Packet/Message Format.
RFC 5444 (Proposed Standard), February 2009.

G. Coulouris, J. Dollimore, and T. Kindberg. Distributed
Systems: Concepts and Design. Addison-Wesley Professional,
fourth edition, 2005.

Young Choi and EETimes. Analysis gives first look inside
Apple’s A4 processor, 2010. http://www.eetimes.com/design/
signal-processing-dsp/4089026/
Analysis-gives-first-look-inside-Apple-s-A4-processor.

Hi3G Danmark. 3G Data Rate of up to 32 Mbit/s (Commercial,
Danish), 2011. http://www.3.dk/Privat/Mobilt-bredband/
Hastighed-og-dakning/Hastighed2/7nm_extag=
datadelingpuf_32mbit.

Google. Android Market, 2011. https://market.android.com/.

Christopher Henden. Simulating the Poisson process, 2009.
http://www.oddnumber.co.uk/2009/05/30/
simulating-the-poisson-process/.

HTC.com. Official HTC Desire Specifications, 2011.
http://www.htc.com/europe/specification.aspx?p_i1d=312.

Ieee standard for information technology-telecommunications
and information exchange between systems-local and
metropolitan area networks-specific requirements - part 11:
Wireless lan medium access control (mac) and physical layer
(phy) specifications. IEEE Std 802.11-2007 (Revision of IEEE
Std 802.11-1999), pages C1-1184, 12 2007.

Ieee standard for information technology—telecommunications
and information exchange between systems—local and
metropolitan area networks—specific requirements part 11:
Wireless lan medium access control (mac) and physical layer
(phy) specifications amendment 5: Enhancements for higher
throughput. IEEE Std 802.11n-2009 (Amendment to IEEE Std

http://www.bluetooth.org
http://www.eetimes.com/design/signal-processing-dsp/4089026/Analysis-gives-first-look-inside-Apple-s-A4-processor
http://www.eetimes.com/design/signal-processing-dsp/4089026/Analysis-gives-first-look-inside-Apple-s-A4-processor
http://www.eetimes.com/design/signal-processing-dsp/4089026/Analysis-gives-first-look-inside-Apple-s-A4-processor
http://www.3.dk/Privat/Mobilt-bredband/Hastighed-og-dakning/Hastighed2/?nm_extag=datadelingpuf_32mbit
http://www.3.dk/Privat/Mobilt-bredband/Hastighed-og-dakning/Hastighed2/?nm_extag=datadelingpuf_32mbit
http://www.3.dk/Privat/Mobilt-bredband/Hastighed-og-dakning/Hastighed2/?nm_extag=datadelingpuf_32mbit
https://market.android.com/
http://www.oddnumber.co.uk/2009/05/30/simulating-the-poisson-process/
http://www.oddnumber.co.uk/2009/05/30/simulating-the-poisson-process/
http://www.htc.com/europe/specification.aspx?p_id=312

75

[IML+03]

[JE03]

[KLXH04]

[KRAOS]

[Leill]

[LS10]

[MA07]

[MDFK97]|

[MS99]

[NZ09)]

802.11-2007 as amended by IEEE Std 802.11k-2008, IEEE Std
802.11r-2008, IEEE Std 802.11y-2008, and IEEE Std
802.11w-2009), pages c1-502, 29 2009.

H. Inamura, G. Montenegro, R. Ludwig, A. Gurtov, and
F. Khafizov. TCP over Second (2.5G) and Third (3G)
Generation Wireless Networks. RFC 3481 (Best Current
Practice), February 2003.

JWatte and Enchantedage.com. How to use an introducer to do
NAT punch-through for peer-to-peer communication, 2003.
http://www.enchantedage.com/node/8.

B. Knutsson, Honghui Lu, Wei Xu, and B. Hopkins.
Peer-to-peer support for massively multiplayer games. In
INFOCOM 2004. Twenty-third AnnualJoint Conference of the
IEEE Computer and Communications Societies, volume 1, pages
4 vol. (xxxv+2866), march 2004.

J.F. Kurose, K.W. Ross, and B. Anand. Computer networking:
a top-down approach. Pearson/Addison Wesley, 2008.

Alexander Leigh. Angry Birds Sees 100 Million Downloads,
2011. http://www.gamasutra.com/view/news/33509/Angry_
Birds_Sees_100_Million_Downloads.php/.

Steve Litchfield and All About Symbian.com. Defining the
Smartphone, July 2010. http://www.allaboutsymbian.com/
features/item/Defining_the_Smartphone.php.

Bradley Mitchell and About.com. Top 802.11g Wireless
Broadband Routers for Home, 2007. http://compnetworking.
about.com/od/wirelessrouters80211g/tp/80211ghome.htm.

J.C. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy.
Potential benefits of delta encoding and data compression for
http. ACM SIGCOMM Computer Communication Review,
27(4):181-194, 1997.

Heidi Monson and SysOpt.com. Bluetooth Technology and
Implications, December 1999. http://www.sysopt.com/
features/network/article.php/12029_3532506_1.

Andrew Nusca and ZDnet.com. Smartphone vs. feature phone
arms race heats up; which did you buy?, August 2009.
http://tinyurl.com/featurephone.

http://www.enchantedage.com/node/8
http://www.gamasutra.com/view/news/33509/Angry_Birds_Sees_100_Million_Downloads.php/
http://www.gamasutra.com/view/news/33509/Angry_Birds_Sees_100_Million_Downloads.php/
http://www.allaboutsymbian.com/features/item/Defining_the_Smartphone.php
http://www.allaboutsymbian.com/features/item/Defining_the_Smartphone.php
http://compnetworking.about.com/od/wirelessrouters80211g/tp/80211ghome.htm
http://compnetworking.about.com/od/wirelessrouters80211g/tp/80211ghome.htm
http://www.sysopt.com/features/network/article.php/12029_3532506_1
http://www.sysopt.com/features/network/article.php/12029_3532506_1
http://tinyurl.com/featurephone

76 Bibliography

[PCM11] PCMAG.com. Definition of: Smartphone, 2011.
http://www.pcmag.com/encyclopedia_term/0,2542,t=
Smartphone&i=51537,00.asp.

[PM11] Simon Pope and Trudy Muller. Apple’s App Store Downloads
Top 15 Billion, 2011.
http://www.apple.com/pr/library/2011/07/
O7Apples-App-Store-Downloads-Top-15-Billion.html.

[Pos80] J. Postel. User Datagram Protocol. RFC 768 (Standard),
August 1980.

[Pos81] J. Postel. Transmission Control Protocol. RFC 793 (Standard),
September 1981. Updated by RFCs 1122, 3168, 6093.

[PS11] Christy Pettey and Holly Stevens. Gartner Says Android to
Command Nearly Half of Worldwide Smartphone Operating
System Market by Year-End 2012, 2011.
http://www.gartner.com/it/page.jsp?id=1622614.

[RDO1] Antony Rowstron and Peter Druschel. Pastry: Scalable,
decentralized object location, and routing for large-scale
peer-to-peer systems. In Rachid Guerraoui, editor, Middleware
2001, volume 2218 of Lecture Notes in Computer Science, pages
329-350. Springer Berlin / Heidelberg, 2001.
10.1007/3-540-45518-3 _18.

[Tell1] Telia.dk. EDGE, 3G and 4G Data Rates (Commercial, Danish),
2011. http://telia.dk/mobiltbredbaand/omhastighed/.

[Unill] Unity3D. The Official Unity3D Technologies Website, 2011.
http://unity3d.com.

[VVBO0§| James Van Verth and Lars M. Bishop. Essential Mathematics
for Games And Interactive Applications. Morgan Kaufmann,
second edition, 2008.

[wACBF09] Yong woon Ahn, A.M.K. Cheng, Jinsuk Baek, and P.S. Fisher.
A multiplayer real-time game protocol architecture for reducing
network latency. Consumer Electronics, IEEE Transactions on,
55(4):1883-1889, november 2009.

[WCLHO05] S.-C. Wang, Y.-M. Chen, Tsern-Huei Lee, and A. Helmy.
Performance evaluations for hybrid ieee 802.11b and 802.11g
wireless networks. In Performance, Computing, and
Communications Conference, 2005. IPCCC 2005. 24th IEEE
International, pages 111 — 118, april 2005.

http://www.pcmag.com/encyclopedia_term/0,2542,t=Smartphone&i=51537,00.asp
http://www.pcmag.com/encyclopedia_term/0,2542,t=Smartphone&i=51537,00.asp
http://www.apple.com/pr/library/2011/07/07Apples-App-Store-Downloads-Top-15-Billion.html
http://www.apple.com/pr/library/2011/07/07Apples-App-Store-Downloads-Top-15-Billion.html
http://www.gartner.com/it/page.jsp?id=1622614
http://telia.dk/mobiltbredbaand/omhastighed/
http://unity3d.com

77

[Weill]

[Wirl1]

Eric W. Weisstein. Poisson Process, 2011.
http://mathworld.wolfram.com/PoissonProcess.html.

Wireshark.org. The Official Wireshark Website, 2011.
http://www.wireshark.org.

http://mathworld.wolfram.com/PoissonProcess.html
http://www.wireshark.org

	Contents
	Preface
	Introduction
	Problem Statement

	Analysis
	Game Concepts
	About Smartphones
	Defining A Smartphone
	Features of The Smartphone
	Choice of Smartphones

	Smartphone Networking
	Physical Network Connection
	Network Protocols & Architectures

	Choice of Game Engine
	Using Unity3D

	Design
	Game Design
	The Tilesystem & Grid

	Tile Algorithms
	Variables, Intervals & Timeouts
	Joining
	Updating
	Keepalives
	Disconnecting

	Test & Simulation Design

	Implementation
	Game Implementation
	Sending & Receiving Packages
	Encoding & Decoding Packages
	Dequeuing Packages
	Act on Messages, Example

	Algorithm Implementation
	Coordinate Closest to Zero
	Dealing With Joining Peers
	Relevant Neighbouring Peers

	Evaluation
	Wireless Test Results
	Ping Times
	Throughput

	Simulation Results
	Result Evaluation
	Realistic Test Cases
	Stress Testing
	Split Scenario

	Further Development
	Overlay Algorithm
	TileShifter
	General Networking

	Conclusion
	TileShifter
	Tile Algorithms
	Wireless Testing
	Final Words

	Bibliography

