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Preface

This project is written as a Master Thesis by Morten Jakobsen in 2011.
The project consists of two written parts, the main report and the appendices. It includes a
DVD containing the data series, scripts and analysis results.
The focus of the main report is on the choices made and the results obtained throughout
the report, while the appendices is explaining in a more in-depth and technical fashion the
methods involved in the process. The main report is written with the intent to be read
through and through, while the appendices are intended to be used for lookup.
Citations are made in the Harvard style by surname and publication year in the text, with
the year in parentheses. If multiple publications has been made by the same author in the
same year, uniqueness is obtained by a trailing alphabetic index. The literature list will be
alphabetically sorted by surname and should contain enough information needed to obtain
the original publication.
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Summary

Studiet af bølger er omfangsrigt og derfor fokuserer dette projekt på et begrænset aspekt
af dette område. Konkret vurderes egenskaberne for bølger i 3D gennem stokastisk analyse,
herunder speci�kt bestemmelse af spredningsfunktionen og retnings bølge spektret.
Igennem dette projekt bliver trykmålere anvendt, hvilke er placeret så bestemmelse af bøl-
gehøjde og bølgeretning er mulig. Dette projekt har en teoretisk tilgang til emnet i den
forstand, at computer implementeringer er lavet til både generering og analyse af bølger.
Disse implementeringer er beskrevet sammen med en gennemgang af teorien der ligger til
grund for metoderne. Det betyder også, at hverken felt eller laboratorieundersøgelser er
udført.
De metoder der er implementeret er, for generering af bølger, irregulære bølger i både 2D
og 3D. For 3D bølger er der både implementeret med og uden re�eksion. Til at analysere
disse bølger er hensigten derpå at implementere en stykvis konstant metode, en Maximum
Likelihood Method og en modi�ceret version af Maximum Likelihood Method.
For at kontrollere at disse implementeringer giver fornuftige resultater, er de sammenlignet
med en eksisterende software pakke, Wavelab og en værktøjskasse til Matlab kaldet DIWASP.
Senere bruges implementeringerne til at analysere bølge serier med kendte egenskaber fra
IAHR, The International Association for Hydro-Environment Engineering and Research,
Hawkes (1997), der blandt andet indeholder bølger målt i et laboratorie.
Opsætningen af bølgemålerne er baseret på CERC opstillingen, hvor fem tryk målere er
brugt. For at vurdere om dette valg er fornuftigt beskrives og implementeres en metode til
bestemmelse af kvaliteten. For at kunne vurdere kvaliteten sammenlignes CERC arrayet
med alternative opsætninger.
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Chapter 1

Introduction

The study of oceanic waves is a large �eld, and as such this project focuses on a limited
aspect of it, the estimation of the properties of multi-directional waves through stochastic
analysis.
Throughout this project only arrays of pressure gauges are used, which are used to obtain
the water elevation. For simplicity these are referred to simply as wave gauges and wave
gauge arrays. This project is mostly an theoretical approach to the subject in the sense that
computer implementations of both the generation and analysis of the waves are used based
on existing theoretical methods. This also means that neither �eld nor laboratory tests are
performed.
In order to verify these implementations, they are �rst compared to existing software pack-
ages. Later the implementations are compared with actual wave records with known prop-
erties from IAHR, The International Association for Hydro-Environment Engineering and
Research, Hawkes (1997). Further tests are performed with these models to examine the
setup of the wave gauge arrays in an attempt to test existing wave gauge setups against each
other and if possible improve the array layout.

1.1 Problem formulation

The aim of this project is to determination of three dimensional wave spectra, getting famil-
iar with the use of existing methods. Examining the methods assumptions and limitations.
Creating scripts to determine the spreading function of wave series numerically. Working
with the IAHR laboratory wave series, to test the implemented methods against the un-
certainties introduced by waves created in the laboratory. Experimentation will be made
in regards to the placement of the wave gauges trying to improve on existing gauge array
designs.

In short:

• Obtain knowledge of 3D wave properties.

• Obtain knowledge of the methods used to determine the spreading function and the
directional spectrum.

• Create a new method to determine the spreading function.

• Determine uncertainties involved with numerical and experimental tests.
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Chapter 2

Introduction to multi-directional

waves

Oceanic waves may be interpreted in varying levels of detail, where a compromise between
simplicity of the model and the computational time required for more complex models must
be made. In this chapter the basic theory will be outlined, with attention to the basics of
the analytical aspect of generation and analysis of irregular waves.
A more in-depth explanation of generation and analysis is presented in chapter 3. The
chapter will cover both a more in-depth explanation as well as an explanation of the im-
plementations in this project. The idea is to present an analyzing method and explain the
strengths and weaknesses, supported by tests with di�erent types of computer- and labora-
tory generated waves.
The two main reasons why this project covers generation of waves is �rst and foremost to get
familiar with the concepts of wave spectra in both two(x and z) and three dimensions(x,y,z).
Furthermore the methods used to generate the waves can be controlled and modi�ed as more
advanced analysis are presented.

2.1 The process

Natural occurring waves are in�uenced by a wide range of sources, among the more note-
worthy of those are the e�ects of the slope of the seabed, wind and lunar gravitation. Due to
the complexity of the in�uences, observing natural occurring waves reveals wave properties
such as the wave heights and wave-periods to appear random. It is in other words necessary
to simplify the interpretation of waves.
The commonly used simpli�cation is to assume that waves can be interpreted as a stochastic
process, which means that the mean and correlation functions may be obtained to represent
statistical properties of the natural occurring waves at any time. From this assumption a
stochastic analysis may be performed, which consists of calculation in the time, frequency
and probabilistic domain.
By doing so a commonly accepted interpretation of the the ocean waves are used, where a
directional spectrum is to be estimated, which represents the characteristics of the waves.
The directional spectrum consists of a (one-dimensional) frequency spectrum and a direc-
tional spreading function (referred to simply as the spreading function in this project), see
�gure 2.1.
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Structural and Civil Engineering Chapter 2 - Introduction to multi-directional waves

Figure 2.1: Visual interpretation of the directional wave spectrum, where the contour lines
represent the spreading function and the frequency spectrum.

The one-dimensional frequency spectrum de�nes the characteristics of the waves while the
spreading function determines the angular distribution of these one-dimensional wave char-
acteristics.
The �rst step in the stochastic analysis requires sample functions which are obtained in the
time domain through measurements of the oceanic waves. This can be done in several ways,
the method used in this project is through wave gauges measuring the elevation. Then the
auto- and cross-correlation functions are calculated from the sample functions. Using the
obtained correlation functions, the spectral density functions are estimated, which are a part
of the frequency domain.
In order to determine the directional properties, probabilistic methods are used, among
the most common are: The Maximum Likelihood Method, MLM, the Maximum Entropy
Method, MEM, and the Bayesian Direct Method, BDM.
While this project only implements the MLM, the BDM method are introduced indirectly
through commercial software packages. It is beyond the point of this project to determine the
strengths and weaknesses of each method. Instead the focus is on determining the accuracy
of the implementation through crosschecking with the available methods in the commercial
software, assuming that the results shared by most methods are the most likely solution.
The commercial software packages used to generate and analyze the sample functions are:

• DIWASP, by MetOcean Solutions LTD (2002), A Matlab toolbox, which can be used
to calculate using, either of the four methods.

• Wavelab, by Andersen (2010), A standalone program, which can be used to calculate
using both the MLM and BDM method.

To further test the implementations, several wave series with known properties are used,
which are provided by IAHR, The International Association for Hydro-Environment Engi-
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2.1 The process Morten Jakobsen - Spring 2011

neering and Research, Hawkes (1997).
Other factors than the method used to analyze the sample functions a�ect the results. In
a simulation environment the number of uncertainties lowers dramatically but the layout
of the wave gauge array still has a signi�cant role on the results. In order to obtain good
results the placement of these gauges should be considered carefully. Throughout the initial
testing the CERC 5 gauge array introduced by Borgman and Panicker (1970) is used. This
setup provides reasonably good results with only �ve wave elevation gauges, see �gure 2.2.

Figure 2.2: CERC 5 gauge setup here with minimal gauge distance of 26 m.

When the implementation and testing of the generation and analyzing methods are done the
intent is to examine alternative placements and change the amount of gauges to �nd a good
compromise between the precision they provide and the complexity of the array.
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Chapter 3

The implementations

This chapter covers both an explanation of the theory of the methods as well as an expla-
nation of the implementations made in this project. The idea is to present both methods
used to generate sample functions and methods which can analyze and estimate the prop-
erties of these sample functions. The methods implemented may vary from the procedures
suggested by the source material, in these cases an explanation of the choices made within
these methods is presented.
The ordering of the methods presented here is arranged after the time of implementation.
This means that �rst the generation method is introduced and then the corresponding anal-
ysis is explained.
In this report multi-directional are divided into two categories, uni-modal and bi-modal
waves. The term uni-modal and bi-modal refer to the spreading function which can contain
either just the incident waves (uni-modal) or a combination of both incident and re�ected
waves(bi-modal).
Notice that black and white models are conceptual models while colored models are results
from the implementations.
The list of methods implemented are:

1. Irregular wave trains send strictly along the main-axis, these waves are referred to as
unidirectional waves.

2. Multi-directional waves containing only incident wave trains, the waves generated are
called unimodal due to shape of the spreading function.

3. Multi-directional waves containing both incident and re�ected wave trains, referred to
as bimodal waves.

3.1 Unidirectional waves

By assuming that the sample functions may be considered as stochastic processes it is im-
plied that the records must be ergodic random waves. Further simpli�cations are made by
excluding calculation of e�ects of the seabed (shoaling, refraction, and di�raction) and by
considering only �rst order waves. The assumptions made in the implemented method is
that waves may be considered as an in�nite amount of super-positioned regular waves, based
on Pierson et al. (1955).
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Structural and Civil Engineering Chapter 3 - The implementations

The basic formula used to create regular waves is shown in equation (3.1).

η(x, t) = a · cos(k · x+ ω · t+ Ψ) (3.1)

Where η(x, t) is the wave elevation which depends on position x and time t. The right hand
side consists of the a cosine expression with amplitude a, the circular frequency ω, the time
t, the wave numbers k, the position x and the phase Ψ.
By superposition of all frequencies in equation (3.1) the expression for irregular waves are
shown in equation (3.2).

η(x, t) =
∑
ω

aω · cos(kω · x+ ω · t+ Ψω) (3.2)

To recreate realistic waves a spectrum is introduced which is based on the Hasselmann et al.
(1973) modeling of the Jonswap �eld experiments, which where performed in the North Sea
in the period from 1968 to 1969. To avoid having to determine the governing fetch parameter
the implementation in this project will be based on the rewriting done by Goda (1988), which
is based on the signi�cant wave height and peak period, referred to as the Jonswap spectrum.
Using the implemented method and the parameters shown in table 3.1 it is expected that
the generated model should create a Jonswap spectrum as shown in �gure 3.1.

Tp Hs h Ts N x

1.5 s 0.2 m 0.6 m 50 min 512 [0, 1, 2] m

Table 3.1: Values of the parameters used in the example.
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3.1 Unidirectional waves Morten Jakobsen - Spring 2011

Figure 3.1: Expected Jonswap spectrum based on the parameters speci�ed in the example.

Through analysis it should then be possible to obtain a similar Jonswap spectrum. In order
to obtain this spectrum the procedure described by Bendat and Piersol (2000) is used, where
the ensemble-averaged auto-spectral density estimates are computed. In this section only
the procedure is explained, see appendix A.2 for a more detailed explanation. The essence
of this procedure is listed below:

1. Compute the mean value of the data record and subtract this value from the record.

2. Divide the data record into nd continuous blocks containing N elements each. In this
implementation 50% overlap is used.

3. To suppress side-lope leakage, taper the data values of each block xn by the Hanning
window. While some literature suggests limiting the taper size to only cover a certain
percentage of the ends of each block, the window is applied to the entire block in this
implementation.

4. Compute the Fast Fourier Transform for each block.

5. Adjust scale factor X(fk) for loss from tapering.

6. Compute the auto-spectral density estimate, Φxx(f).

In this case several wave gauges are used, and to utilize these extra auto-spectra the frequency
spectrum estimate Ŝ(f) is obtained by an average of the available auto-spectra as seen in
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Structural and Civil Engineering Chapter 3 - The implementations

equation (3.3).

Ŝ(f) = E[Φxx(f)] (3.3)

Where E is the average of auto-spectra available. The resulting frequency spectrum is shown
in �gure 3.2.

Figure 3.2: Comparison of the expected Jonswap spectrum and the frequency spectrum
obtained through analysis.

3.2 Generation of multi-directional, unimodal waves

For multi-directional waves the solution has been to extend the unidirectional solution to
the (x, y)-plane de�ning the wave propagation direction as components of x and y. This is
illustrated in equation (3.4).

η(x, y, t) =
∑
ω

∑
θ

aωθ · cos(kω · x · cos(θ) + kω · y · sin(θ) + ω · t+ Ψωθ) (3.4)

Where θ is the wave propagation direction and Ψ is now a function of both frequency and
direction. In order to progress from regular to irregular waves equation (3.4) is superpo-
sitioned of both frequency and direction. The initial phase is chosen at random within a
cosine period Ψ ∈ ]0; 2π].
In order to cover multi-directional waves it is necessary to incorporate a spreading function,
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3.2 Generation of multi-directional, unimodal waves Morten Jakobsen - Spring 2011

D(f, θ), to determine how the waves spread from the main direction. The spreading function
is principally based on both frequency and azimuth range, but in this implementation it is
constant for all frequencies.
Combining the Jonswap spectrum and the spreading function results in the directional wave
spectrum, S(f, θ), see equation (3.5).

S(f, θ) = S(f) ·D(f, θ) (3.5)

The directional wave spectrum may also be visually interpreted seen in �gure 3.3.

Figure 3.3: Interpretation of the directional wave spectrum.

The spreading function creates an angular distribution of the energy of the one-dimensional
spectrum this means that the spreading function must be normalized as seen in equa-
tion (3.6). ∫ π

−π
D(f, θ)dθ = 1 (3.6)

The distribution function used in this project is based on Mitsuyasu et al. (1975) named
the Mitsuyasu spreading function hence forth. An more in-depth explanation is covered in
appendix B. The expression is shown in equation (3.7).

D(f, θ) =
22s−1

π

Γ2(s+ 1)

Γ(2s+ 1)
cos2s

(
θ − θ0

2

)
(3.7)

The spread parameter, s, varies with frequency and wave type, where the wave types may be
fetch or wind generated or a combination of the two according to Mitsuyasu et al. (1975). In
the implementations the spreading function is set to a constant value for all directions. With
the directional wave spectrum equation (3.5), and the basic wave equation equation (3.4)
the waves may be generated.
To test the methods strength against noise in the acquired samples a random noise function,
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rnl, is is used, which is de�ned as a percentage of the signi�cant wave height, as seen in
equation (3.8).

rnl(x, y, t) = rnd(x, y, t) · nl · (1 + (1− r))
2

(3.8)

where nl is the factor of the noise level, r is the re�ection coe�cient, which is zero in the
absence of re�ection and rnd is random values between 0 and 1, with the size equal to the
wave series η(x, y, t). Finally the new wave elevation can be calculated using equation (3.9).

η = η0 + η0 · rnl (3.9)

Using the implemented method and the parameters shown in table 3.2 it is expected that
the generated model should create a directional spectrum as shown in �gure 3.4. Where the
minimum distance of the gauge pairs are 0.2 m.

Tp Hs h Ts N nθ θ0 s Array type

1.5 s 0.2 m 0.6 m 50 min 1024 41 0 deg. 12 CERC5

Table 3.2: Values of the parameters used in the example.

Figure 3.4: Expected directional spectrum based on the parameters speci�ed in the example.
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3.3 Analysis of multi-directional waves Morten Jakobsen - Spring 2011

3.3 Analysis of multi-directional waves

The central concept of the wave analysis used in this project is the assumption that waves
may be characterized by the directional spectrum de�ned in equation (3.5). With this in
mind the aim is to obtain the spreading function D(f, θ) and the frequency spectrum S(f),
as this will result in having the directional spectrum too.
The frequency spectrum is calculated by the same procedure as the unidirectional waves. So
the remaining unknown, the spreading function, is then found by the following derivation.
The exponential form of the elevation is used as seen in equation (3.10).

η(x, y, t) = a · <
(
ei(ωt+k(xcos(θ)+ysin(θ))+Ψ)

)
(3.10)

Where < is the symbol used for real values. The conversion is obtained by Euler's formula
shown in Appendix E.3.1. The amplitude amay be de�ned in terms of the directional spectra
seen in equation (3.11).

a =
√

2S(f, θ)∆f∆θ (3.11)

Where ∆f and ∆θ represents a small section of the discretized directional spectra and a is
the volume under the red rectangle, illustrated in �gure 3.5

Figure 3.5: Discretized directional spectra.

The cross-correlation of the elevation between two sample functions ηx and ηy is de�ned as
equation (3.12). Using equation (3.10), equation (3.10), equation (3.11) and the Wiener-
Khinchine theorem shown in appendix E.3.2, equation (3.13) is obtained.

Rxy(τ) =
1

T

∫ T

0
ηx(t)ηy(t+ τ)dt (3.12)

Φxy(f) =

∫ π

−π
S(f, θ)eikr·cos(θ−β)dθ (3.13)
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where β and r represent the angle and distance between the two wave gauges. Using equa-
tion (3.5), (3.3) and (3.13) the expression can be reformed into equation (3.14), which is the
central equation for multi-directional waves.

Φxy(f)

Φxx(f)
=

∫ π

−π
D(f, θ)eikr·cos(θ−β)dθ (3.14)

Using equation (3.14) the spreading function D(f, θ) can be estimated. But in order to
determine the spreading functions some assumptions must be made.
The commonly used method is to model the spreading function by a function such as the
Fourier series or the cosine squared function mentioned in section 3.1, which can both be
de�ned by an arbitrary amount of variables. By adjusting the function so it contains more
equations than unknown the system becomes overdetermined and probabilistic methods are
then used to obtain an estimate.
The entire analysis procedure is illustrated in �gure 3.6, including determination of the
spreading function by using probabilistic methods such as the Maximum Likelihood Method,
the Maximum Entropy Method and the Bayesian Deterministic Method.

Figure 3.6: Stochastic analysis process.
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3.4 The piecewise constant method Morten Jakobsen - Spring 2011

3.4 The piecewise constant method

A method named the piecewise constant method is implemented based on equation (3.14),
where one equation is created for each gauge pair available. This allows a solution which
can be solved without using probabilistic �tting methods. Hence equation (3.14) may be
interpreted as the equation (3.15).

Φxy(f)

Φxx(f)
=

N∑
n=1

D(f, θn)eikr·cos(θn−β) ·∆θn (3.15)

Where θn is a discretization of θ into N angular ranges. From this simpli�cation the direc-
tional spectrum will end up discretized in N directions.
In this implementation the cross- and auto-spectra are obtained through equation (3.16)
with the complete spectral estimation procedure described in appendix A.

Φxy(f) = Cxy − iQxy
where :

Cxy =
2

T
(<(X)<(Y ) + =(X)=(Y )) (3.16)

Qxy =
2

T
(<(X)=(Y )−=(X)<(Y ))

Cxy and Qxy are the coincident- and quadrature-spectra of the Fourier transforms X(f, T )
and Y (f, T ), and < and = are the real and imaginary parts of the Fourier transforms.
The distances r and β are easily obtained through conversion of the Cartesian coordinates
(the distance from gauge to gauge in both directions) to polar coordinates. Finally the
wave numbers are calculated based on the dispersion relation, equation (3.17), using an
convergence algorithm explained in appendix E.3.3.

ω2 = g · k · tanh(k · h) (3.17)

Analyzing the generated model in section 3.1 should then result in a directional spectrum
similar to the spectrum in �gure 3.7, with a wide spread but with the peak around 0.
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Figure 3.7: Expected directional spectrum for simple analysis.

However, using the generated data from section 3.1 the implemented method results in
�gure 3.8.
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3.5 The Maximum Likelihood Method Morten Jakobsen - Spring 2011

Figure 3.8: Directional spectrum for simple analysis.

The result obtained from the implementation are unsatisfying. Although extensive work has
been performed to �nd the cause of the failure in the implementation no solution has been
found. For this reason the implementation of this method is discontinued in this project.

3.5 The Maximum Likelihood Method

As an alternative to section 3.4 the Maximum Likelihood Method, MLM, is implemented.
The method is primarily based on Davis and Regier (1977) supported by Isobe and Kondo
(1984). A more throughout explanation of the MLM implementation is found in appendix C.
The central expression of this method is the calculation of the spreading function seen in
equation (3.18).

D̂0(k, θ) = κ/

[
M∑
m,n

Φ−1
mn(θ)eik(xn−xm)

]
(3.18)

where κ is a variable which ensures that the expression satis�es the properties of the spread-
ing function equation (3.6). M is the amount of wave gauges in the array and Φ−1

mn is the
inverse full spectral matrix. The spectral matrix is de�ned by Φ(x, y) and contains both
cross- and auto-spectra, where the auto-spectra are found in the diagonal and the cross-
spectra are the remaining o�-diagonal entries, the properties of spectral matrix is further
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explained and illustrated in appendix E.1.
The implementation in this project di�ers a bit from the procedure explained in the source
literature, as the spectral matrix and the wave numbers in equation (3.18) are determined
using the same approach as that of the discrete method. Another change is in determining κ,
as mentioned in section 3.1 the spreading function is normalized and so κ is de�ned simply
by dividing with the mean from the result of equation (3.18), see equation (3.19).
Then the directional spectrum is obtained by multiplying by the frequency spectrum, equa-
tion (3.20). Note that the frequency spectrum is obtained by average of the auto spectra,
just as in the discrete method.

D̂ =
D̂0

E[D̂0]
(3.19)

Ŝ(f, θ) = Ŝ(f) · D̂(f, θ) (3.20)

Using the generated �le from section 3.1 the MLM method obtains an estimate, seen in
�gure 3.9.

Figure 3.9: Generation model.

This result is far more satisfying, and this method is subject to more throughout testing
which is done in chapter 4.

3.6 Generation of multi-directional, bimodal waves

Until now only uni-modal waves have been considered which are su�cient if there are no
more than one main direction of the waves. But due to disturbances in the water in�uenced
by shorelines and structures it is often relevant to incorporate re�ecting waves into the
expression. To calculate re�ected waves it is necessary to include an additional function into
the spreading function resulting in a bi-modal spreading function.
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But as explained in appendix E.2, re�ection is quite complex, as the re�ection coe�cient
and distance to the re�ector may vary with the frequency and slope of the re�ector.
The method used to generate bi-modal waves is based on two peak directions (θ0i and θ0r),
then two time series are generated with a constant phase shift di�erence, still retaining a
random phase for each frequency.
Two input methods are created, one where the two peak directions are speci�ed manually
and one which only takes an incident peak direction, and then calculate the second peak
direction using provided information on the direction and distance to the re�ection line.

3.7 The modi�ed Maximum Likelihood Method

In this section the more advanced Modi�ed Maximum Likelihood Method, MMLM, is exam-
ined. The method is based on Isobe and Kondo (1984). This modi�ed method is introduced
as the standard MLM is inaccurate in distinguishing between incident and re�ected waves
in a bimodal spectrum. One of the problems with the traditional MLM is that it is assumed
that a random phase lag between the incident and re�ected waves are used. As explained in
greater detail in appendix E.2 this assumption is incorrect. With a re�ector in the vicinity
there exists a direct relation between the phase of the incident and re�ected waves however.
This is what the MMLM is created to account for by adding a phase-interaction term.

Just as in the discrete method, the spectral matrix is calculated using the procedure described
in appendix A. The spreading function of the MMLM is shown in equation (3.21).

D̂(k, σ) = κ/



M∑
m,n

Φ−1
mn(σ)eik(xn−xm) r0 ≤ 0

M∑
m,n

Φ−1
mn(σ)eik(xn−xm) −

{
M∑
m,n

Φ−1
mn(σ)[eik(xn−xmr)+eik(xnr−xm)]

}2

4
M∑
m,n

Φ−1
mn(σ)eik(xnr−xmr)

r0 > 0

(3.21)

Where D̂(k, σ) is a estimate of the spreading function and κ is a proportionality constant
determined in the same way as in the MLM. r0 is the initial estimated re�ection coe�cient
and xnr and xmr are the positions of xn and xm mirrored in the re�ection line. The spreading
function is very similar to the MLM, in fact it is the same expression that is used when no
re�ections are present. The di�erence is the term which are being subtracted when re�ections
exist. In order to calculate r0 the Isobe and Kondo (1984) proposed the expression in
equation (3.22).

r0 = −

M∑
m,n

Φ−1
mn(σ)

[
eik(xn−xmr) + eik(xnr−xm)

]
2
M∑
m,n

Φ−1
mn(σ)eik(xnr−xmr)

(3.22)

It should be noted that equation (3.22) can contain negative values which is not possible for
a re�ection coe�cient. This is of no importance to equation (3.21) though, as it is regarded
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in the same way as a re�ection coe�cient of zero and does not in�uence the calculations in
this range. To obtain a better re�ection coe�cient estimate r̂ all negative values are set to
zero as shown in equation (3.23).

r̂ =

{
0 r0 ≤ 0

r0 r0 > 0

In order to determine the coordinates xnr and xmr of the mirror image of the array some
knowledge must be determined and/or assumed. Two conditions are considered in this
project, the �rst is where the direction of the re�ection line is known and only the distance
is calculated, the second is where neither direction nor distance to the re�ection line is known.
Davidson et al. (1998) has suggested a method to determine the estimate of the distance
to the re�ection line based on a linear least squares regression between the numerator and
denominator of equation (3.23).

κ(σ) =
Φmm(σ)∫

ki

[
Ŝ(ki, σ) + 2

√
Ŝ(ki, σ)Ŝ(kr, σ)cos · ki(xm − xmr) + Ŝ(kr, σ)

]
dki

(3.23)

This �nal step of the MMLM implementation could unfortunately not by �nished in time
for the project dead-line. The MMLM is implemented to the point where it can be used in
the case where the distance and direction of the re�ection line is known.
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Chapter 4

Implementation evaluation

The next step is to examine the accuracy of the implemented methods. This is done by
extensive testing of both generating and analyzing implementations. The complete list of
simulations are found on the DVD in the Data�les folder, in this section only the highlights
will be presented.
The waves evaluated are separated into sections covering the generated waves with uni-
directional, multi-directional waves and the wave series from the IAHR project, Hawkes
(1997).
All tests generated by the implementations in this project has no noise applied and while
some tests (included on the DVD) has been performed to test the noise functionality in the
scripts it should be noted that the possibility to add noise has not been as throughly tested
as intended.
In this section references are made to execution times of the implementations, this is based
on a 2 GHz dual core computer with 2 GB ram.

4.1 Unidirectional waves

For the unidirectional simulations the comparisons made in this project relies on the di�er-
ences between the model which is expected from the generating method and the model found
in the analysis. The wave properties that are compared are the signi�cant wave height, peak
frequency and the overall match of the frequency spectrum. The signi�cant wave height is
obtained by equation (4.1) and (4.2). The generating method is using the properties shown
in table 4.1, while the analyzing method strictly uses information on h and x from the
generated series, with N = 256.

Tp Hs h Ts N x

1.5 s 0.2 m 0.6 m 50 min 64− 1024 [0, 1, 2] m

Table 4.1: Values of the parameters used in the unidirectional case.
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Hs ' 4 ·
√∑

xx

Φxx ·∆f (4.1)

difHs
=

∣∣∣∣1− Hs,generated

Hs,expected

∣∣∣∣ · 100% (4.2)

The di�erence in peak frequency is essentially obtained in the same way as the signi�cant
wave height equation (4.2). The peaks are found by obtaining the maximum value of the
frequency spectrum. The overall di�erence in the frequency spectrum is found by equa-
tion (4.3).

diff
∑
f

|fgenerated − fexpected|
2

· 100% (4.3)

The only parameter which a�ects the results signi�cantly is the resolution of the frequency
spectrum shown in �gure 4.1.

Figure 4.1: Deviation in percent of fp, Hs and the frequency spectra f as the frequency
resolution is varied.

This relates to an improvement from a frequency resolution of N = 64 with 33 pct. deviation
seen in �gure 4.2 to N = 1024 with 4 pct. in �gure 4.3.
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Figure 4.2: Frequency spectrum with a frequency resolution of 64.

Figure 4.3: Frequency spectrum with a frequency resolution of 1024.
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4.2 Unimodal waves

The second test is of the unimodal generating model and the corresponding MLM imple-
mentation. As the discrete method never provided any reasonable results it is omitted from
this section. For the bidirectional cases the spreading function is compared using the same
principle as the comparison of the frequency spectrum. Starting by modifying the frequency
resolution as in the unidirectional case and the properties shown in table 4.2, it is seen in
�gure 4.4 that the deviation �rst improves signi�cantly with N ≥ 2048.

Tp Hs h Ts N nθ θ0 s Array type

1.5 s 0.2 m 0.6 m 50 min 64− 16384 41 0 deg. 12 CERC5

Table 4.2: Values of the parameters used in the unimodal case.

Figure 4.4: Comparison of fp, Hs, the unimodal frequency spectrum and spreading function.

This is illustrated by the expected generated model in �gure 4.5, the model found in the
MLM implementation in �gure 4.6, the comparison between the two frequency spectra in
�gure 4.7, the comparison of the spreading functions in �gure 4.8 and the results of the BDM
analysis in Wavelab �gure 4.9.
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Figure 4.5: Expected generated directional spectrum with a frequency resolution of 2048.

Figure 4.6: Directional spectrum obtained from the MLM.
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Figure 4.7: Comparison of the frequency spectra.

Figure 4.8: Comparison of the spreading functions.
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Figure 4.9: Analysis done in WAVELAB compared to the generated directional spectrum.

To compare the results of N = 2048, (211) above, the results of N = 164384, (214) is shown
in �gure 4.10, 4.11, 4.12, 4.13 and 4.14.

Figure 4.10: Expected generated directional spectrum with a frequency resolution N = 214.
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Figure 4.11: Directional spectrum obtained from the MLM.

Figure 4.12: Comparison of the frequency spectra.
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Figure 4.13: Comparison of the spreading functions.

Figure 4.14: Analysis done in WAVELAB compared to the generated directional spectrum.

As seen there are no de�nitive improvement by increasing the frequencies alone. Another
thing to notice in general is the relatively poor generation of the spreading function with
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nth = 41. In the context of testing the MLM implementation this is of minor importance,
but to ensure the generating method works as intended this number is increased from 41 in
steps of 10 to 101. The results are found on the DVD. This produces a smoother spreading
function but does not produce better results between the expected generated model and the
model found by the analysis.
For all the unimodal cases tested there are no notice worthy di�erence found between the
results obtained from the MLM implementation and the BDM method used in Wavelab. The
MLM should produce broader directional peaks according to Benoit and Teisson (1994). This
could not be established in the unimodal tests performed in this report however.
On a �nal note the implemented method for generating bidirectional waves are running
at O(N3) as no improvements are made in the transition from 2D to 3D. This results in
unsatisfying long generating times where a simple test of N = 2048, t = 50 min and s = 41
requires around 25 minutes. This calculation time can be improved by using the random
phase method utilizing the inverse Fourier transform. The random phase method is down
prioritized though as the main focus in this project is the methods for analyzing waves.

4.3 Bimodal waves

The �nal test of the bimodal waves are performed and analyzed by the MLM implementation.
The properties are the same as those found in table 4.2, only the number of frequencies used
in the model is increased to 4096 along with three additional parameters, two of which relates
to the re�ection line and the re�ection coe�cient, these are speci�ed in table 4.3.

θr lr r

−30 deg −1 m 0.5

Table 4.3: Re�ection line direction, θr, distance, lr and re�ection coe�cient in the bimodal
case.

This results in the gauge array seen in �gure 4.15 and the corresponding directional spectrum
obtained from the implemented MLM in �gure 4.17.
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Figure 4.15: Wave gauge array with the incident and re�ected wave direction along with the
re�ector.

This leads to the expected generated model seen �gure 4.16.

Figure 4.16: Expected generated directional spectrum with a frequency resolution N = 4096.

The results are seen in �gure 4.17 and �gure 4.18.
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Figure 4.17: Directional spectrum obtained from the MLM.

Figure 4.18: Directional spectrum obtained from Wavelab's BDM.

In �gure 4.19 the comparison of the spreading functions of the implemented method are
shown.
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Figure 4.19: Comparison of the spreading functions.

While the peaks are located quite accurately by the implemented method the di�erence in
the spreading functions are between 15 and 20 pct. Wavelab provides a better result at dis-
tinguishing between the incident and re�ected waves, which are more similar to the expected
model.
The generation of bimodal wave takes O(2N3) as two peak directions are calculated sepa-
rately, this results in 50 min generation time, compared to the phase di�erence method in
Wavelab which only takes roughly 2 min. For this reason only a limited amount of tests has
been performed using the generating feature in the implemented method. Although the bi-
modal wave generation appears to work it has been producing unstable re�ection coe�cients
according to Wavelab. To further test the implemented MLM three generated wave series
are made in Wavelab. The parameters are shown in table 4.4.

Test Hs h θi0 θr0 r si sr

1 0.2m 0.6m 60 deg. 100 deg. 0.5 10 10

2 0.2m 0.6m 90 deg. 180 deg. 0.5 10 10

2 0.2m 0.6m 90 deg. 270 deg. 0.5 10 10

Table 4.4: Peak direction incident θi0, re�ection θr0, spread parameter incident si, re�ection
sr.

The spreading functions obtained from the Wavelab BDM analysis are shown in table 4.5
and �gure 4.20.
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Table 4.5: Spreading function obtained from Wavelab's, on the left based on test 1 and 2.

Figure 4.20: Spreading function obtained from Wavelab's, based on test 3.
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From the MLM implementation the directional spectra are shown in �gure 4.21, 4.22 and
4.23.

Figure 4.21: Directional spectrum of test 1 obtained from the MLM.

Figure 4.22: Directional spectrum of test 2 obtained from the MLM.
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Figure 4.23: Directional spectrum of test 3 obtained from the MLM.

The directional spectra obtained from the MLM implementation appear to �t quite well
with the BDM. By manually combining the two spreading functions the similarities can be
directly compared in �gure 4.24, 4.25 and 4.26.

Figure 4.24: Comparison between spreading function of the implemented MLM and the
BDM in test 1.
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Figure 4.25: Comparison between spreading function of the implemented MLM and the
BDM in test 2.

Figure 4.26: Comparison between spreading function of the implemented MLM and the
BDM in test 3.

4.4 IAHR wave data

The IAHR wave data are analyzed compared, based on data obtained from Hawkes (1997).
The speci�cations in table 4.6 are from Hawkes et al. (1997). It should be noted that
the comparison of the overall mean wave direction, explained in appendix B has not been
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implemented due to shortage of time in this project and can therefor not be compared to
those found in Hawkes et al. (1997).

Test Tp Hm0 θ0 θr0 s h Comments

A1 1.8s 0.12m 26 deg. − 6 3.0m Standard test

A2 1.8s 0.12m 28 deg. − 6 3.0m Double-sum

A4 1.8s 0.12m 25 deg. − 6 3.0m 20% noise (all gauges)

A5 1.8s 0.12m 25 deg. − 6 3.0m 1.1 gain (η1 and u)

A6 1.8s 0.12m 25 deg. − 6 3.0m Cross talk (η1/η2 and u/v)

B1 1.8s 0.12m 29 deg. − 40 3.0m Narrow spread

C1 1.8s 0.12m 27 deg. 126 deg. 6 3.0m 20% ref., wall par. to wave-maker at 10m

C2 1.8s 0.12m 35 deg. 139 deg. 6 3.0m 70% ref., wall par. to wave-maker at 1m

C3 1.8s 0.12m 27 deg. 151 deg. 6 3.0m same as C2 but without phase-locking

C4 1.8s 0.12m 20 deg. 125 deg. 6 3.0m Cross-resonant modes

D1 1.8s 0.12m 27 deg. − 6 0.5m Laboratory basin, �wide spread�

E1 1.8s 0.12m 31 deg. − 40 0.5m Laboratory basin, �narrow spread�

Table 4.6: IAHR wave data speci�cations based on average values from Hawkes et al. (1997).

Where − means that the parameter is unused.
The results of the implemented MLM analysis and the Wavelab BDM is seen in table 4.7.
It should be noticed that while Wavelab (and IAHR) uses the positive x-direction as the
0 degree angle moving counter clockwise, the implementation has the negative x-direction
as the 0 degree moving counter clockwise as well. The implemented MLM directions are
corrected in the list to resemble IAHR and Wavelab.

Test Tp MLM Tp BDM Hm0 MLM Hm0 BDM θ0 MLM θr0 MLM θ0 BDM θr0 BDM

A1 1.83s 1.83s 0.121 0.107 −4 deg. − 37 deg. −
A2 1.83s 1.77s 0.116 0.103 −4 deg. − 39 deg. −
A4 1.83s 1.83s 0.123 0.107 4 deg. − 37 deg. −
A5 1.83s 1.83s 0.123 0.109 −12 deg. − 37 deg. −
A6 1.83s 1.83s 0.123 0.108 −12 deg. − 36 deg. −
B1 1.83s 1.71s 0.120 0.118 0 deg. − 30 deg. −
C1 1.83s 1.83s 0.122 0.110 −4 deg. 160 deg. 36 deg. N/A

C2 1.83s 1.77s 0.136 0.121 8 deg. 175 deg. 60 deg. N/A

C3 1.83s 1.83s 0.143 0.128 0 deg. 179 deg. 67 deg. 152 deg.

C4 1.83s 1.83s 0.131 0.111 0 deg. 126 deg. 45 deg. N/A

D1 1.83s 1.83s 0.118 0.107 4 deg. − 37 deg. −
E1 1.83s 1.83s 0.119 0.118 8 deg. − 30 deg. −

Table 4.7: Analysis of IAHR wave data speci�cations using MLM implementation and Wave-
lab's BDM.
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Where N/A means that the result is unobtainable.
The MLM implementation is quite inaccurate in determining the peak directions, being
o� by roughly 30 degrees on both incident and re�ected waves. It does appear as if the
implemented method is able to distinguish between incident- and re�ected- waves in the
phase-locking cases of the tests C1 and C2.
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Chapter 5

Optimization of wave gauge array

The default gauge array used in this project has been the CERC 5 gauge array. The idea of
this section is to evaluate alternatives and compare these alternatives to the CERC 5 gauge
setup. There are several factors which should be taken into account when comparing these
arrays. Of the most important factors are the number of wave gauges used and the results
of the analysis utilizing these arrays.
The evaluations in this section breaks down the wave gauge array into separate directions
and then some measurement criteria must be established in order to evaluate the gauge
arrays against each other. The criteria used are those listed by Goda (2010), they are:

• No pair of wave gauges should have the same vector distance between gauges.

• The vector distance should be distributed uniformly in as wide a range as possible.

• The minimum separation distance between a pair of wave gauges should be less than
half of the smallest length of the component waves for which the directional analysis
is to be made.

The vector distance referred to is the e�ective distance in the direction of the waves between
two wave gauges. So the vector distance is determined by the wave direction. This can also
be explained by introducing a co-array de�ned in lag-space which is based on Davis and
Regier (1977). This means that the latency from when a wave reaches the �rst gauge in a
gauge pair till it reaches the second is used. The idea is to optimize the gauge placement
to increase the number of elements in the co-array without sacri�cing the uniformity of the
array as this will limit side-lobe leakage due to a better resolution and thereby improve the
accuracy of the directional spectrum.
To explain how this co-array may help determine the better wave gauge array, three simple
line-arrays are used in �gure 5.1.

Figure 5.1: Arrays and co-arrays of three di�erent line arrays.
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A is a simple array with evenly spaced gauges while B and C are distributed as suggested
by Pawka (1974) and Barber (1963) respectfully. From this example it is seen that C has
the largest number of distinctive lags and are furthermore uniformly distributed.
The second criterion de�nes the highest frequencies which are una�ected by aliasing obtained
in the cross-spectra. It is written as equation (5.1).

lG < L/2 (5.1)

Where lG is the gauge distance and L is the wavelength. By ful�lling this expression it
is shown by Barber and Doyle (1956) that the phase di�erence, Ψ is within the limits
−π ≤ Ψ ≤ π.
The wave-direction directly a�ects the vector distance and thereby also the extent of the
co-array. So in order to keep the resolution and accuracy of the directional spectrum high
it is necessary to include some redundancy in various directions. Ideally these redundancies
should be placed uniformly1. This can be seen to be ful�lled quite well in the standard
CERC 5 gauge array, in this example with the default minimum gauge pair distance is 0.2m.
The array is shown in �gure 5.2. As seen the CERC array got three unique distances, in this
case they are 0.200m, 0.235m and 0.380m.

Figure 5.2: CERC 5 gauge array.

In order to streamline the evaluation a script is created which calculates the vector distances
between each gauge pair for a discrete set of directions. Using the criteria de�ned above
the maximum distance and the number of distinctive distances are used to determine the
weaknesses. The Co-array of the vector distances are calculated for the CERC 5 gauge array
in �gure 5.3.

1In example: Three redundancies could be placed at the angles 0 deg. 60 deg. 120 deg.
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Figure 5.3: Vector distances in the CERC 5 gauge array.

Where the blue lines are the vector distances of all available gauge pairs. The black and
red dashed lines are coinciding in the same locations. The black line indicates the direction
with the least amount of elements in the co-array and the red line is the directions with the
shortest co-array.
This can then be illustrated by combining directions with the array, as seen in �gure 5.4.
From the co-array it is seen that the likely weakness is waves coming straight at the array.
The largest separation of gauges are 0.22m which, compared to 0.38m for most other direc-
tions is a large di�erence. The minimal number of unique vector distances are three shown
at the red lines.

Figure 5.4: Expected weaknesses of the CERC 5 gauge array.
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An alternative to the CERC array is the Haubrich (1968) array with six gauges placed on
the sides of a triangle as illustrated in �gure 5.5.

Figure 5.5: Haubrich's array, �gure from Goda (2010).

Using the minimum gauge pair distance of 0.2m as in the CERC array, the corresponding
tests are shown in �gure 5.6 and �gure 5.7.

Figure 5.6: Vector distances in the HAUB 6 gauge array.
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Figure 5.7: Expected weaknesses of the HAUB 6 gauge array.

In this array the largest di�erence when comparing the separation of gauges are from 0.50m
at the weakest point to 0.53m at the strongest equal to a di�erence of 6%. The minimal
number of unique vector distances are three like the CERC array.
The �nal array tested is the 6 gauge array where one additional node is added to the top
on the circle of the CERC-5 gauge array. This array is used in the IAHR project, Hawkes
(1997). The results are seen in �gure 5.8 and �gure 5.9.

Figure 5.8: Vector distances in the modi�ed 6 gauge CERC array.
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Figure 5.9: Expected weaknesses of the modi�ed 6 gauge CERC array.

Comparing the maximal vector distance between the weakest and strongest point in the
array equals to a di�erence of 5% and with six unique vector distances as minimum this
method appears to be superior based on the chosen criteria.
Overall the 6-gauge arrays should produce more stable results regardless of the direction.
This method is meant to be supported or rejected by extensive testing, where high and low
frequency waves is sent uni-directionally in various directions and then comparing the results
with the speci�cations of the co-arrays. Due to shortage of time this is not possible though.
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Conclusion

Through the progression of creating this report the generating methods has been of increas-
ing importance, particularly because of the ability to queue tests using any of the imple-
mented methods and specifying which parameters to use. This has allowed for very extensive
testing with no user involvement while the scripts works through uni-directional, unimodal
and/or bimodal wave generations and directly analyzing these generated waves using the
implemented Maximum Likelihood Method. Additionally all relevant data are automati-
cally put into timestamped �les, including �gures, wave properties and comparisons between
the expected generated models and the models found through analysis. So while important
tests have been performed using waves generated in Wavelab and obtained from the IAHR
database the most extensive testing has been performed using the methods implemented.
So it has been important to ensure that the implemented methods works as intended. To
do so the Bayesian Deterministic Method used in Wavelab and the MLM implemented in
DIWASP has been used to verify the generated data. All generating methods appears to
work as intended with the exception of the re�ection parameter, which has been reported
by Wavelab to be too large for the generated waves.
The implemented methods are using the superposition of regular waves to generate irregu-
lar waves. The advantage of using this generating method is that it is intuitive. There is
also a clear progression from the uni-directional wave generation all the way to the bimodal
wave generation. The drawback is the execution time which is considerably slower than for
instance the phase di�erence method.

The implemented analysis has been the most time-consuming part of this project. Par-
ticularly the attempt of making implementation of the piecewise constant method work.
Extensive bug-searching of each individual part of the script has been performed and large
parts of the script was entirely rewritten and even replaced later by parts of the well-working
MLM. But no matter what was done the results where unsatisfying.
The MLM was the second method implemented, remarkably this method was surprisingly
easy to implement and it took only a few days before it returned realistic results. The calcu-
lation of the directional spectra and spreading function in the MLM only takes a few seconds,
and the results obtained from this method are quite satisfying. Both waves generated from
the implemented methods and from Wavelab produces good results but also most of the
IAHR tests are quite accurate although the directions of the peaks are o�. The implemented
MLM even managed to obtain reasonable results from the bimodal test case C1 − C4 and
bimodal tests performed in Wavelab. This may be happenstance though as the method does
not include functionality to account for the relation between the phase of the incident and
re�ected waves.
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Isobe introduced a modi�cation to the MLM. This method should account for the relation
between the incident and re�ected phase by including a re�ected wave gauge array, which is
a function of the location of the re�ection line. Up to this point the implemented method
seems to work. But as the location of the re�ection line is di�cult to determine in real cases,
the idea is to �nd this by letting the program determine the parameters for the line. This
introduces a problem as it is unclear what criteria should be used to determine when the
right distance and direction is found.

The wave gauge array used in this project is based on the CERC 5 gauge array. To compare
this array with other arrays it is necessary to determine which criteria should be taken into
account. In this report the focus is on the actual vector distances between gauge pairs based
on the direction of the wave trains. The quality of the array is then de�ned by the number of
unique vector distances in the array, the uniformity of the distribution of the vector distances
and the maximal vector distance available at the any given direction. The array which �t
these criteria the best should have the better resolution and thereby improve the accuracy
of the directional spectrum. Through this test the weaknesses are then found in the gauge
array and it is then possible to run extensive testing on the given direction(s). Using this
method to evaluate the CERC 5 gauge array it was clear than the CERC 5 gauge array may
have a weakness when waves approach straight at it. Two other wave gauge arrays where
then tested, both consisting of 6 gauges. One similar to the CERC 5 gauge array but with
an additional wave gauge forming a pentagon with one central node and one by Haubrich
(1968), which is based on a triangle with nodes on the sides. Both of these gauge arrays
has a better distribution of the vector distances when considering waves from an arbitrary
direction. But with a minimum of six distinct vector distances the modi�ed CERC array
would seem like the better choice, even though the extent of the vector distances where
narrower.
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Appendix A

Spectral estimation

The procedure used to estimate the spectral density functions from sample functions, re-
ferred to here as the spectral estimation, is primarily based on Bendat and Piersol (2000), a
fundamental explanation of the spectral density function is explained in appendix E.1.
The method used to determine the spectral density functions is via �nite Fourier Transforms
of the sample functions. In this project is required that the sample functions ηx(t) and ηy(t)
de�ned in the limited time interval 0 ≤ t ≤ T must be part of associated stationary random
processes1.
Through Fourier Transformation a spectral density function are obtained by equation (A.1),
with the Fourier Transform X(f, T ).

Φ(2sided),xy(f, T ) =
1

T
X∗(f, T )Y (f, T ) , −∞ < f <∞ (A.1)

(A.2)

The spectral density function in equation (A.1) is double-sided spectrum mirrored at the the
zero-frequency (and again in the Nyquist frequency). For the purposes in this project the
negative frequencies are not needed and instead a one-sided spectrum in equation (A.3) is
used and multiplied by two to preserve the energy.

Φxy(f, T ) =

{
2
TX

∗(f, T )Y (f, T ) 0 ≤ f <∞
0 −∞ < f < 0

(A.3)

By expansion equation (A.3) may be written as equation (A.4).

Φxy(f) = Cxy − iQxy
where :

Cxy =
2

T
(<(X)<(Y ) + =(X)=(Y )) (A.4)

Qxy =
2

T
(<(X)=(Y )−=(X)<(Y ))

As Cxy and Qxy are the coincident- and quadrature-spectral density functions respectfully
of the Fourier Transforms X(f, T ) and Y (f, T ). For convenience these two functions are
referred to later as co- and quad-spectra.
The Fourier Transform of the sample functions ηx(t) and ηy(t) are de�ned by equation (A.5)

1Stationarity implies that statistical parameters such as the mean, correlation and covariance may be
determined from a sample function in a limited time-span.

3



Structural and Civil Engineering Appendix A - Spectral estimation

X(f, T ) =

∫ T

0
ηx(t)e−j2πftdt (A.5)

Y (f, T ) =

∫ T

0
ηy(t)e

−j2πftdt

The Discrete Fourier Transform, DFT, of equation (A.5) is written as equation (A.6).

X(f, T ) =
T∑
t

ηx(t)exp(−j2πft)∆t (A.6)

To improve calculation time (from O(N2) to O(NlogN)) the Fast Fourier Transformation,
FFT, is used instead of the DFT. The FFT requires that the block size is of a power of two,
to ensure this condition is satis�ed the sample functions are divided into B blocks of size b
which leads to equation (A.7).

Xb(f, T, b) =
N−1∑
n=0

ηn(t)exp

(
−j 2πfbn

N

)
∆t , b = 1, 1, 2, ..., B (A.7)

To handle sample functions of arbitrary sizes it is chosen to �ll the last block with trailing
zeros. The spectral matrix are then calculated by the estimate of the B blocks, assuming
that the time interval T is large enough to obtain a representative sample.

Φxy(f) = lim
T→∞

E [Φxy(f, T, b)] (A.8)

A.1 Improvement of estimate

The procedure which are implemented are the one suggested by Bendat and Piersol (2000,
section 11.5.3) where the ensemble-averaged auto-spectral density estimates are computed.

In order to suppress side-lobe leakage the data blocks are each tapered with the Hanning
tapering window, where the loss generated by the tapering window is determined by the
di�erence in covariance before and after the tapering. The trade-o� when using this method
is that the tapering windows also increases the main lobe of the spectral window. Com-
pensating for this can be done by either creating overlapping blocks or simply obtaining a
longer record. In this project a 50% overlapping of the blocks are used as suggested by the
literature.
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A.2 Unidirectional spectral estimation

In the case of unidirectional wave trains the one-sided spectral density function is rewritten
to equation (A.9).

Φxx(f) =

{
2
T |X(f, T )|2 0 ≤ f <∞
0 −∞ < f < 0

(A.9)

A.3 The frequency spectrum

The Jonswap spectrum has a high concentration of energy compared to the predecessor, the
Pierson-Moskowitz spectrum, Mitsuyasu et al. (1975), suggested to use Jonswap for wind
dominated waves, while using PM for swell. Furthermore US. Army engineer corpse suggests
in a technical note, U.S. Army Engineer (1985a), to use the TMA spectrum Hughes (1984) for
shallow water cases, which is a further development of the Jonswap spectrum to incorporate
the water depth.
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Appendix B

Cosine squared distribution

The cosine squared distribution was introduced by Longuet-Higgins et al. (1963). It is de�ned
by equation (B.1).

D(θ) = G′(s) ·
∣∣∣∣cos(θ − θ0

2

)∣∣∣∣2s (B.1)

Where s is a spread parameter and θ0 is the main direction of the waves.
The spreading function can be de�ned either as a real or positive function depending on
the literature, in the original work by Longuet-Higgins et al. (1963) the cosine squared
distribution is a positive function, which is shown in equation (B.1). G′(s) is a function used
to normalize the cosine expression to satisfy equation (B.2).

∫ π

−π
D(θ)dθ = π (B.2)

G′(s) is calculated by equation (B.3).

G′(s) = 22s−1 Γ2(s+ 1)

Γ(2s+ 1)
(B.3)

Where Γ is the gamma function. Due to the de�nition of the relationship between the one-
dimensional spectrum, the directional spectrum and the spreading function in section 3.1
the spreading function should be normalized to one instead leading to equation (B.4) and
equation (B.5).

∫ π

−π
D(θ)dθ = 1 (B.4)

D(f, θ) =
22s−1

π

Γ2(s+ 1)

Γ(2s+ 1)
cos2s

(
θ − θ0

2

)
(B.5)

Where denoting the spreading function as a function of the frequency serves as a reminder of
the connection between the spread parameter and the frequency, which is used in section B.1.
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The relation between the spreading function and the spread parameter may be visually
interpreted by �gure B.1.

Figure B.1: Visual interpretation of the spreading function and the spread parameter.

B.1 The frequency dependent spread parameter

To determine the value of the spread parameter Goda (1999) suggests to use an expression
for s formulated by Mitsuyasu et al. (1975) as seen in equation (B.6).

s =

{
smax(f/fp)

5 f ≤ fp
smax(f/fp)

−2.5 f > fp
(B.6)

Where smax is determined by the type of waves, low values for wind waves and high values
for swell waves with long decay distance.

B.2 Spreading function comparison

In order to compare spreading functions which are not only modeled by the cosine squared
function it is necessary to have a parameter which de�nes the degree of the spread of D.
One method is using the directional spreading σθ de�ned by Frigaard et al. (1997). The
method suggested takes into account the discrete computation of waves which can cause
incorrect results when analyzing bimodal waves. The peak direction θ0 and the directional
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spreading σθ are de�ned by equation (B.7) and equation (B.8).

θ0 = atan(c1) (B.7)

σθ =
√

2(1− |c1|) (B.8)

c1 =

∫ 2π

0
D(f, θ)cos(θ)dθ + i

∫ 2π

0
D(f, θ)sin(θ)dθ

The relation between the directional spreading and the spread parameter of the cosine
squared method is illustrated by �gure B.2.

Figure B.2: Relation between the spread parameter s and the standard deviation σ. The
�gure is from Frigaard et al. (1997).

Where s1 is an alternative to the traditional cosine squared method in equation (B.5). This
alternative is shown in equation (B.9).

D(f, θ) =
1√
π

Γ(s1 + 1)

Γ(s1 + 1/2)
cos2s1(θ − θ0)) (B.9)

Hawkes et al. (1997) has used this method to compare a wide range of wave analysis methods.
The data used for the comparison are from the IAHR project, Hawkes (1997), which are also
the wave data used in the comparison section 4.4 of this report. The exact comparison
criteria is the overall mean wave direction σ shown in equation (B.10).

σ =

∫
σθ(f)S(f)df∫
S(f)df

(B.10)
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Appendix C

Maximum likelihood method

This explanation covers two aspects, the �rst being the theory of the MLM, the second being
the actual implementation.

C.1 Theory

The description of the general Maximum Likelihood Method, MLM, is explained based on
Davis and Regier (1977) and Isobe and Kondo (1984), with support from Isobe et al. (1984),
Benoit et al. (1997), Ayyub and McCuen (2002), Ochi (1998) and Scott and Nowak (2004).
The intent is to end up explaining the MLM and MMLM methods used in section 3.5.
As hinted by the name the method maximizes the probability of obtaining a particular
sample, this is done by determining the global maximum of the likelihood function. The peak
may be obtained by di�erentiating the likelihood function and �nding the zero crossing(s),
in case of multiple peaks the global maximum should be used. The function is written as
equation (C.1).

dln(L(λ))

dλ
= 0 (C.1)

λ being the parameter.
Equivalently to obtaining the maximum likelihood estimate is to minimize the error in the
variance estimate. This however requires that the processing method is constrained to unit
gain when there is no noise on the signal. Since it is the variance of the signal which is the
most relevant in the case of spectral estimation, it is the approach used by Davis and Regier
(1977) and hence subsequently by Isobe et al. (1984).
The central aspect of the method is the estimated wavenumber-frequency spectrum de�ned
by equation (C.2).

D̂(k, θ) =
∑
n,m

αnm(k, θ)Φnm(θ) (C.2)

Where
∑

n,m is a summation of n and a summation of m, αnm is a weighting of the cross
spectra de�ned in equation (C.3).

αnm(k, θ) = γm(k, θ)γ∗n(k, θ) = e−ik(xn−xm) (C.3)
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Φnm is the cross spectra, equation (C.4), de�ned similarly to equation (3.12) and (3.13) used
in the discrete method.

Φnm(θ) =

∫
k
e−ik(xn−xm)D(k, θ)dk (C.4)

By insertion of equation (C.4) into equation (C.2) the expression reads

D̂(k, θ) =
∑
n,m

αnm(k, θ)

∫
k
e−ik(xn−xm)D(k, θ)dk (C.5)

By introducing the window-function W and dividing the wavenumbers into an integrated k′

and un-integrated k.

D̂(k, θ) =
∑
n,m

αnm(k, θ)

∫
k′
e−ik

′(xn−xm)D(k′, θ)dk′ (C.6)

The expression can be rewritten as equation (C.7).

D̂(k, θ) =

∫
k′
D(k′, θ)W (k,k′)dk′ (C.7)

where W is de�ned by equation (C.8).

W (k,k′) =
∑
n,m

αnm(k, θ)e−ik
′(xn−xm) (C.8)

by inserting equation (C.3) into equation (C.8) the expression can be rewritten to equa-
tion (C.9) .

W (k,k′) =
∑
n,m

γm(k, θ)γ∗n(k, θ)e−ik
′(xn−xm) (C.9)

The wavenumber frequency spectra are of the best resolution when the window function W
approximates to a Dirac delta-function at k = k′. This leads to equation (C.10).

W (k,k′) =

∣∣∣∣∣∑
m

γm(k, θ)e−ik
′(xm)

∣∣∣∣∣
2

(C.10)

Then applying the imposed constrain of unit gain, the expression should ful�ll equa-
tion (C.11).

M∑
m,n

W (k,k′) = 1 (C.11)
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And so by combining equation (C.10) (C.11) and (C.3) the expression of the estimated
wavenumber-frequency spectrum de�ned in equation (C.2) can be rewritten as equa-
tion (C.12).

D̂(k, θ) = κ/

[
M∑
m,n

Φ−1
nm(θ)eik(xn−xm)

]
(C.12)

Where κ is a proportionality constant which is determined from the relationship between
the wavenumber frequency spectrum and the power spectrum.
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Appendix D

The structure of the

implementation

The reason for choosing Matlab as the implementation environment is primarily due to the
large collection of toolboxes available within the environment. The tools are used to focus
the attention on what is relevant for the project and not on time consuming o�-topic func-
tionality. In this chapter the entire implementation made in this project is outlined. For a
more in-depth view into the implementation it is suggested to look through the code in the
Implementation section of the DVD. Comments and explanations are left in the code for this
purpose. In this appendix it is assumed that the main report has been read beforehand, as
terminology and references are implicit.

The folder structure used for this implementation is illustrated in �gure D.1.

Figure D.1: Folder structure and main functions.

Notice that Wavegeneration and Waveanalysis have separate subfolders and that these sub-
folders contain all the implemented methods. Furthermore a Data�les folder is used to store
the datasets divided into generated data�les from this implementation, IAHR and WAVE-
LAB. The last folder named common is a folder containing scripts which are essential to the
implementations but at the same time uninteresting to review, functions such as import of
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Wavelab and IAHR �les are found here along with scripts handling plotting of graphs and
surfaces.

D.1 The main �les

Files named main.m or main_auto.m are meant as the user access points. These �les
can be run directly and only parameters in these �les should be modi�ed. In main.m all
parameters are set directly in the �le, whilemain_auto.m uses a script �le which are speci�ed
inside main_auto.m. The purpose of the auto-script is that consecutive setups can be
executed sequential without user-interaction. Concretely speaking the auto-script in the
main Implementation folder is used to �rstly generate waves with properties speci�ed in the
script �le then save the directional spectrum plot and wave properties to �les along with
the data series. Secondly it initiates the Maximum likelihood analysis and computes the
directional spectrum, which again is saved along with the analyzed wave properties. These
data are be found in Data�les under MJ-dat ordered by a auto-generated time stamp, an
example is shown in �gure D.2, where all �les belong to one wave generation and analysis.

Figure D.2: Auto generated �les, including directional spectrum plot, wave properties and
the time series.

From left to right the �les are the data �le containing the time series in the Wavelab format.
Three picture�les containing the wavegauge array, the generated wave series directional
spectrum and the analyzed spectrum respectfully. Finally the text �le contains the two
groups of properties, the generated and the analyzed, illustrated in �gure D.3. This text-�le
can be used for comparison and to reproduce waves with the same properties later.

The script-�le must be formated in a strict way in the sense that the parameters must
come in the right order and separated by taps only. The number of taps used between the
parameters are disregarded in the evaluation of the script however, and this may be used to
properly place parameters above and below each other. An example utilizing all available
generation methods is shown in �gure D.4. As seen the di�erent generation methods uses
a di�erent combination of parameters. To keep the script �le easily manageable a header is
added specifying in which order the parameters should be placed.

The explanation of the parameters are also found in main_auto. The time parameter is the
length of the sample in seconds, nf is the number of frequencies to divide the spectrum into,
wp is the wave plots to be performed see main_auto for the plot number correspondence.
ar.tp and ar.sz are array type and array size where ar.tp = 1 and ar.sz = 0.2 correspond to
a CERC array with the minimal distance from wave gauge to wave gauge of 0.2 m. r is the
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Figure D.3: Waveproperties obtained from properties-text�les generated by main.m and
main_auto.m.

Figure D.4: Example script-�le containing an all available generation methods and the cor-
responding properties.

re�ection coe�cient and �nally m_th and m_d are direction and distance of the mirror line
in the bimodal wave generation case.

D.2 Wave generation

The three generation types shown in �gure D.1, are the unidirectional irregular waves and
multi-directional waves with one main peak called unimodal and with two main peaks called
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bimodal. Three other cases are kept separate from these three general generation types.
The �rst case is in the unidirectional wave generation, where the random phase method was
tested. The second is in the unimodal case where an experiment has been made where the
calculation of the elevation is done in a complete �eld, by which a water surface is created.
The third is in bimodal wave generation where two approaches are available, the primary
method is the case with one peak direction and a re�ection line and the secondary method
is the one handling bimodal waves with two peak directions de�ned in the properties.
In the following only the three main generation types are used. These three methods are
named simple2D.m, unimodal.m and bimodal2.m respectfully. To obtain a good structure in
the implementation it is sought to ensure that each script has only one major functionality.
This means that the three methods only serves as backbones and to a great extend utilizing
common scripts. This is clearly shown in �gure D.5 which shows which scripts the three
methods uses.

Figure D.5: Scripts used for wavegeneration.

Where Jonswap2 is the second implementation of the Jonswap spectrum which uses the
implementation by Goda (1988). Spread is the spreading function based on Mitsuyasu et al.
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(1975). Calcre�ine is used to convert a distance and angle between the wave gauge array and
the re�ection line to the properties of the re�ected waves. Genwaves2 and Genwaves3D are
the functions that generates the wave elevation time series. Applynoice and Savetowavelab

should be fairly self-explanatory.
After this the three methods returns all relevant properties to the main �le, which plots the
�gures and and saves the generation and analyzed properties to a �le.

D.3 Wave analysis

In the wave analysis three implemented methods are used, The piecewise constant method
called analysis_simple2, the Maximum likelihood method called analysis_MLM and the
modi�cation of the MLM called analysis_MMLM. The three wave analysis are not comprised
of as many distinguishable functions as the case is with wave generation. For this reason all
three methods rely on just two notice-worthy functions, crossspec which calculates the auto-
and cross spectral density functions and wtok1 which calculates the wave numbers using
the provided circular frequency. The rest of the procedure is handled internal in the three
methods. The three analysis methods then returns the relevant estimated properties to the
main function just as the case where for wave generation.

1The script-name is meant as a acknowledgement of WAFO's w2k method, which was used in the early
stages of the project.
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Appendix E

Notes

This annex contains notes on various independent subjects.

E.1 The spectral density function

The auto- and cross-spectral density functions, referred to simply as the auto-spectra and
cross-spectra, are denoted, Φxx(f) and Φxy(f) respectfully. They are de�ned in the frequency
domain and are a central part of the stochastic analysis of ocean waves. The spectral den-
sity functions can be obtained in several ways. The two most common methods are through
correlation functions and alternately through �nite Fourier transforms. With known corre-
lation functions it is possible to obtain the spectral density function by Fourier transforming
the correlation function. This is done using the Wiener-Khinchine theorem shown in ap-
pendix E.3.2.
In this project the correlation functions are not known before hand, so instead the sample
functions are Fourier transformed, this is the �nite Fourier transform, the procedure of which
is explained in detail in appendix A.

The auto-spectra is calculated to obtain fundamental properties of a single random process at
di�erent times. Similarly the cross-spectra is used to obtain the properties between two ran-
dom processes. Essentially a spectral matrix may be created showing a visual interpretation
of the relation between the auto- and cross-spectra, the matrix is shown in equation (E.1).


Φ11 Φ21 . . . Φx1

Φ12 Φ22 . . . Φx2
...

...
. . .

...

Φ1y Φ2y . . . Φx=y


Where the diagonal are the auto-spectra and the o�-diagonal are the cross-spectra. The
properties of the two spectra are signi�cantly di�erent though, the auto-spectra are real-
valued and even functions, unlike the cross-spectra which are complex functions. These
properties are shown in equation (E.1) and illustrated in table E.1.

Φxx(−f) = Φ∗xx(f) = Φxx(f)

Φxy(−f) = Φ∗xy(f) = Φyx(f) (E.1)
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Table E.1: Auto- and cross-spectral density function Φxx and Φxy.

E.2 Re�ection

Re�ection is quite a complicated matter. This section will only highlight some of the im-
portant aspects which should be considered when working with analytical methods on wave
data with re�ected waves. For further information on the subject see Davidson et al. (1998),
Helm-Petersen (1998) and Isobe and Kondo (1984).

E.2.1 The re�ection coe�cient

The interpretation used in this project of re�ection is that it is directly related to the wave
amplitudes. Having a simple regular incident wave equation (E.2), the corresponding re-
�ected wave is calculated by equation (E.3), where r is the so called re�ection coe�cient.

ηI = a · cos(ωt) (E.2)

ηR = r · a · cos(ωt) (E.3)

As di�erent regular waves are super-positioned into irregular waves and wave numbers are
introduced, this re�ection coe�cient becomes a bit trickier to determine, as the re�ection
coe�cient generally depends on the frequencies of the waves. This is important to remember
when using methods which is supposed to determine these properties.

The determination of the re�ection coe�cient is entirely beyond the scope of this project, for
further information on the subject it is suggested to read Helm-Petersen (1998) and Muttray
et al. (2006).

E.2.2 The re�ection line

The re�ection line is the line at which the incident waves are re�ected. As incident waves
in this report is considered to span a azimuth range it also means that not all waves impact
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on the re�ection line at a 90 degree angle. This is where Snell's law is used to determine the
direction of the re�ected wave, for more on this see appendix E.4.
To further complicate the matter, not only the direction a�ects the re�ected waves but also
the slope of the re�ector. Since the re�ection coe�cient varies with the frequencies the
re�ection line may lie in di�erent places depending on which frequency the incident wave
has.

E.3 Algorithms, theorems and methods implemented

This section covers the explanation of the algorithms, theorems and methods used throughout
the project,

E.3.1 Euler's formula

References to Euler's formula in this project regards the formula used in complex analysis
shown in equation (E.4).

eiθ = cos(θ) + i · sin(θ) (E.4)

This equivalently means that the real and imaginary parts may be written as shown in
equation (E.5).

cos(θ) = <(eiθ) (E.5)

sin(θ) = =(eiθ)

Using the expression for waves in two and three dimensions,

η(x, t) = a · cos(ωt+ kx+ Ψ)

η(x, y, t) = a · cos(ωt+ k(x · cos(θ) + y · sin(θ)) + Ψ)

the corresponding exponential functions are shown in equation (E.6) and (E.7) respectfully.

η(x, t) = a · <
(
ei(ωt+kx+Ψ)

)
(E.6)

η(x, y, t) = a · <
(
ei(ωt+k(xcos(θ)+ysin(θ))+Ψ)

)
(E.7)

E.3.2 Wiener-Khinchine Theorem

The Wiener-Khinchine theorem is a fundamental part of the signal processing used in this
project, proo�ng this theorem is beyond the scope however, see Bendat and Piersol (2000)
instead. It relates the correlation from the time domain to the spectral density function from
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the frequency domain.

Sxx(f) =

∫ ∞
−∞

Rxx(τ)e−i2πfτdτ (E.8)

Sxy(f) =

∫ ∞
−∞

Ryx(τ)e−i2πfτdτ (E.9)

Rxx(τ) =

∫ ∞
−∞

Sxx(f)ei2πfτdf (E.10)

Rxy(τ) =

∫ ∞
−∞

Syx(f)ei2πfτdf (E.11)

Where Sxx and Sxy are the auto- and cross-spectral density functions and Rxx and Rxy are
the auto- and cross-correlation functions.

E.3.3 Chebyshev's convergence optimization

Chebyshev suggested an optimization of the Newton-Raphson convergence theorem. It is
used to obtain the wave-numbers through the dispersion relationship. This is done by ex-
panding the Newton-Raphson solution seen in equation (E.12), with an additional term
equation (E.13). While Chebyshev's method is slower for each iteration, the convergence
should happen quicker resulting in an shorter execution time overall. Determining if this
claim is true is outside the scope of this project. A more throughout explanation is found in
Bagatur (2007).

Newton-Raphson: xi+1 = xi −
f(xi)

f ′(xi)
(E.12)

Chebyshev: xi+1 = xi −
f(xi)

f ′(xi)
− f2(xi)f

′′(xi)

f ′3(xi)
(E.13)

Where f ′′(xi) denotes the second derivative while f2(xi) is the function squared, and i
indicates the iteration number.

E.3.4 Wave frequency to Wavenumber

The �rst usage of the Chebyshev Approximation is on the dispersion relationship and its
derivatives seen in equation (E.14).

f(k) = g k tanh(k h)− ω2 (E.14)

f ′(k) = g tanh (kh) + gk
(

1− tanh (kh)2
)
h

f ′′(k) = 2 g
(

1− tanh (kh)2
)
h− 2 gk tanh (kh)

(
1− tanh (kh)2

)
h2

The Matlab function implementing Chebyshev's optimization is named wtok, in the project.
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E.3.5 Wave period to Wavelength

Similarly the Chebyshev Approximation is used on the expression yielded by Laplace's equa-
tion

f(L) =
1

2

gT 2 tanh
(
2 π h

L

)
π

− L (E.15)

f ′(L) = f −
gT 2

(
1− tanh

(
2 π h

L

)2)
h

L2
− 1

f ′′(L) = −
4 gT 2 tanh

(
2 π h

L

) (
1− tanh

(
2 π h

L

)2)
π h2

L4
+

2 gT 2
(

1− tanh
(
2 π h

L

)2)
h

L3

The Matlab function implementing Chebyshev's optimization is named TtoL, in the project.
Using lG < L/2 de�ned by equation (5.1). Where lG is the gauge distance and L is the
wavelength. The relation between the gauge distance and the wave period is shown in
�gure E.1, using h = 0.6 in the range T = 0.1to1.

Figure E.1: Relation between gauge distance and wave period.

This means that for the minimum gauge separation(vector distance) of 0.2m can calculate
wave periods no lower than T ' 0.51.

E.4 Geometry

This appendix explains the basic geometry used to de�ne the re�ection line, how the inter-
section between the incident wave direction and the re�ection line are obtained and how this
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can be used to calculate the direction of the re�ected waves. This is used in connection with
generation and analysis of bimodal waves, where the phase between incident and re�ected
waves are considered.
To keep the notation simple all �lines� are de�ned by and o�set from the abscissa for simplic-
ity and a angular direction in the plane. The abscissa and ordinate are hence forth referred
to as x and y to keep notation simple.
coordinates in the plane are de�ned by equation (E.16).

x = cos(θ) · v + b (E.16)

y = sin(θ) · v

Where θ is the angel of the line, v is an amplitude and b is the o�set from the x-axis. This
may be rewritten to an expression of y, see equation (E.17).

v =
y

sin(θ)
=

x− b
cos(θ)

y = (x− b) · a , with a =
sin(θ)

cos(θ)
(E.17)

Intersection between the two lines, y = (x − b1) · a1 and y = (x − b2) · a2, is then straight
forward, and the x-coordinate of the intersection may be obtained by equation (E.18).

(x− b1) · a1 = (x− b2) · a2

x =
a2(x− b2)

a1
+ b1 (E.18)

Similarly the o�set may obviously be calculated by equation (E.19).

b = x− y

a
(E.19)

Using Snell's law in equation (E.20),

sin(θ1)

sin(θ2)
=
v1

v2
(E.20)

and assuming that the velocity change may be neglected the re�ected wave direction may be
calculated by mirroring it around the normal of the re�ection line, and using equation (E.19)
the corresponding o�set may be obtained.
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