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PREFACE

This project began February 1st 2011 and ended June 9th 2011. The report documents the
process and performance of performing reachability analysis on timed automata using max-plus
algebra.

Inlined code or words that refer to some implementation aspect will be shown in a
typewriter font. Concepts and words of particular interest are emphasized when first used.

References to figures, tables and listings will contain a given number in the form of the
chapter number and counter, for example, the first figure in Chapter 4 will be referenced as
Figure 4.1.

The project is a continuation of our project from previous semesters, and contains some
content from the associated project reports. The following parts are mostly unchanged from the
previous report:

• Chapter 1 on page 3

• Section 2.1.1 on page 4

• Section 2.2 on page 12

• Section 2.3 on page 15

• Chapter 3 on page 19 excluding Sections 3.2.4 on page 21, 3.3.2 on page 25 and 3.4 on
page 29

The report is divided into the following chapters:

Chapter 1 contains an introduction to the problem we deal with, and how we propose to
solve it.

Chapter 2 provides background theory supporting the topics dealt with in the report.

Chapter 3 contains algorithms for operations on max-plus polyhedra.

Chapter 4 describes elements which may be used in an extrapolation algorithm to ensure
termination of reachability analysis.
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Chapter 5 contains an overview of our implementation of this approach.

Chapter 6 concludes the report and discusses future work and possible improvements.

Lastly, we would like to thank Morten and Lasse Jacobsen for their work on the verifytapn
model checker, and their willingness to assist us in implementing this approach, Alexandre David
for his insight into Uppaal, Jiří Srba for his insight into timed-arc Petri nets, Xavier Allamigeon,
Stéphane Gaubert and Éric Goubault for inspiring the project, and Jesper Dyhrberg and Martin
Milata for their previous collaboration on this topic.



CONTENTS

Preface i

1 Introduction 3

2 Preliminaries 4
2.1 Timed models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Timed automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Timed-arc Petri nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Max-plus algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Polyhedra over max-plus algebra . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Representations of max-plus polyhedra . . . . . . . . . . . . . . . . . . . . 13

2.3 Difference Bound Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 DBM operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Comparison with max-plus polyhedra . . . . . . . . . . . . . . . . . . . . 16

3 Algorithms on Max-plus polyhedra 19
3.1 Conversion algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Property checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Emptiness test – consistent(P ) . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Membership test – contains-point(G,x) . . . . . . . . . . . . . . . . . . 20
3.2.3 Inclusion test – contains(P, P ′) . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.4 Constraint satisfaction – satisfied(P, xi − xj ∼ c) . . . . . . . . . . . . . 21

3.3 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.1 Constraint intersection – and(P, xi − xj ∼ c) . . . . . . . . . . . . . . . . 24
3.3.2 Delay – up(P ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.3 Backward delay – down(P ) . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.4 Resetting clocks – reset(P, xi = c) . . . . . . . . . . . . . . . . . . . . . . 28
3.3.5 Removing constraints – free(P, xi) . . . . . . . . . . . . . . . . . . . . . . 28
3.3.6 Union overapproximation – convex-union(P1, P2) . . . . . . . . . . . . . 28

3.4 Termination of reachability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Cleaning up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.1 Removing redundant generators – cleanup(P ) . . . . . . . . . . . . . . . 29

1



2 CONTENTS

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Principles for extrapolation 31
4.1 1-clock model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 n-clock models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Implementation 38
5.1 Changes to VerifyTAPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Max-plus polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Conclusions and future work 43
6.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Strict constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3 Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Bibliography 47



CHAPTER 1

INTRODUCTION

A real-time system is a system where total completion of a task depends not only on the logical
order of events, but also the time at which events are performed. Examples of real-time systems
include airbags, pacemakers, live video streaming, video game systems, and production lines.

A key problem when developing a real-time system is to ensure correctness of the system. For
that purpose, it is useful to construct a model of the system and verify certain properties directly
on the model. This is known asmodel checking, and when applied to real-time systems, it is called
real-time model checking. Zone-based reachability analysis is a well-established technique for
performing real-time model checking, and several tools exist for this purpose, e.g. Uppaal [30],
TAPAAL [28] and Kronos [32]. Common models for real-time model checking include timed
automata [5] and timed-arc Petri nets [12, 20].

A zone is an abstraction of a set of states, which allows reduction of the number of states
that need to be considered during analysis. A common representation of zones is as a Difference
Bound Matrix, or DBM for short [8, 16], which have the same expressive power as zones.
However, they are not perfect: for good performance, one must be able to determine if a given
zone has already been handled, to minimize the risk of state-space explosion. This can normally
be done by simply taking the union of all states visited and performing inclusion checking to
check if a zone has been visited completely, but DBMs are not capable of representing exact
unions, as zones are not closed under union. Instead, an overapproximation must be performed,
and then followed up by an exact analysis if necessary.

One way to handle this issue is to use a different data structure. We propose to use max-plus
polyhedra, which have been shown capable of providing large performance improvements for
selected problems in static analysis [3, 4]. Max-plus polyhedra are more expressive than DBMs,
and capable of creating better overapproximations than DBMs, which would minimize the need
to perform re-analysis.
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CHAPTER 2

PRELIMINARIES

This chapter explains the preliminary notions that are used in the rest of the report. The first
section introduces timed automata and Petri nets, whereas the second section is concerned with
the definition of max-plus algebra and max-plus polyhedra. Finally, the third section describes
difference bound matrices, and provides an example to illustrate the difference between max-plus
polyhedra and DBMs.

2.1 Timed models

The concept of real-time model checking is not specific to one particular type of model, but can
be applied to any class of models containing a notion of real time.

Two of the more well-known classes are timed automata and timed-arc Petri nets. For
this report, we have used the theory of timed automata when developing our algorithms, but
the implementation performs model checking on timed-arc Petri nets. Despite the significant
differences in behavior, networks of timed automata and timed-arc Petri nets are equivalent [14],
and the same underlying data structure for model checking can be used in either case, simply
by adapting the reachability algorithm itself to the different data structure. TAPAAL [28], a
tool similar to Uppaal [30], but for timed-arc Petri nets, currently performs model checking by
converting the Petri net into a timed automaton, and performing model checking on it using
Uppaal.

2.1.1 Timed automata

Timed automata, or TA for short, can be thought of as finite automata that can interact with
a number of real-valued clocks. They have proven to be useful in modelling and verification
of real-time systems. Timed automata were introduced by Alur and Dill [7]; a more thorough
overview of relevant notions can be found for example in [1].

Syntax

First, let X be a finite set of real-valued non-negative variables referred to as clocks. Define B(X)
to be set of all clock constraints g generated by following grammar:

g ::= x1 ∼ n | x1 − x2 ∼ n | g1 ∧ g2,

4



CHAPTER 2. PRELIMINARIES 5

where x1, x2 ∈ X, n ∈ N is a natural number and ∼ ∈ {<,≤,=,≥, >}.
A timed automaton is a quintuple (L,X, l0, E, I), where

• L is a finite set of locations,

• X is a finite set of clocks,

• l0 ∈ L is the initial location,

• E ⊆ L× B(X)× 2X × L is the set of edges and

• I : L→ B(X) a function which assigns to every location an invariant.

Instead of (l1, g, r, l2), we will write l1
g,r−→ l2. Here, l1 is the source location of the edge, l2 is

the destination, g is the guard of the edge and r is the set of clocks to be reset after transition.
Generally, transitions may also include input and output actions; these are used to syn-

chronize two timed automata running in parallel, by requiring that an input action and its
corresponding output action in a different automaton is taken at the same time. This allows for
a network of timed automata, where all the automata in the network are run in parallel [1]. In
the interest of simplicity, however, we ignore the actions in this report, as they do not make any
practical difference for our purpose.

Strict constraints We are currently only able to represent conjunctions of non-strict con-
straints using max-plus polyhedra. While the external representation of polyhedra allows simple
extension to strict inequalities, it is not the case with the internal representation which we use.
This means that in the rest of the report (excluding the preliminaries), we restrict B(X) to
∼ ∈ {≤,=,≥}, which results in weaker model of timed automata that is still interesting. See
section 6.2 on page 44 for further discussion.

Semantics

We will first try to give a very informal description of the semantics of timed automata. The
state of a timed automaton is composed of its control location and values of each clock. In the
initial state, the location is set to l0 and the value of all clocks is zero. Whenever the automaton
is in some control location l, it has two choices.

1. Similarly to finite state automata, it can do a transition over one of the edges (l, g, r, l′)
that lead from it. However, this is only possible when the current clock values satisfy the
guard g of the edge. After the transition, all the clocks in the set r of the edge are reset
to zero. Additionally, the invariant of the destination state must be satisfied by the clock
valuation after resetting.

2. It can “stay” in location l for some period of time. This means that all the clocks increase
by the same amount of time. The values of the clocks must satisfy the location invariant
I(l) during this whole period.

To formally define the semantics of a timed automaton, we must first define clock valuations.
A clock valuation v is a function v : X → R≥0, that assigns a non-negative value to each clock.
Let δ ∈ R≥0 and r ⊆ X. We will define v+ δ to be the valuation such that (v+ δ)(c) = v(c) + δ
and v[r] to be the valuation such that v[r](c) = 0 whenever c ∈ r and v[r](c) = v(c) otherwise.
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Formally, the semantics of a timed automaton (L,X, l0, E, I) is given in terms of a transition
system1 (S, s0,→):

• S = {(l, v) | l ∈ L, v ∈ RX
≥0, v � I(l)} is the set of states,

• s0 = (l0, v0), where v0 is the clock valuation that assigns 0 to all clocks, is the initial state,

• → ⊆ S × S are transitions such that:

– (l, v)→ (l′, v′) if l g,r−→ l′, v � g, v′ = v[r],

– (l, v)→ (l, v + δ) for all δ ∈ R≥0 such that v + t � I(l) for any 0 ≤ t ≤ δ.

Such a transition system is in most cases infinite and even uncountable, which means it cannot
be directly used in an algorithm. Fortunately, we can also construct transition systems which
are finite – this is achieved by replacing individual states with symbolic states, where each such
state consists of a control location and a set of clock valuations. We naturally require those
sets to have a finite description and the clock valuations contained in them to be in some way
equivalent, which usually means that they have to be untimed bisimilar, see Aceto et al. [1].

An example of such symbolic semantics is the region graph, where the sets of clock valuations
are divided into equivalence classes based on integer parts, orderings of fractional parts of clock
values and whether or not the value is greater than some fixed constant.

Definition 2.1 (Region Equivalence). Given two clock valuations v,v′ and upper bounds on
all clocks {kx | x ∈ C}, where C is the set of clocks, for the constraints on the form x ≤ c and
x ≥ c it holds c ≤ kx.
The integer part of a clock valuation vx is denoted bvxc and the fractional part is denoted
fract(vx). The equivalence relation ∼ between two clock valuations is then defined as v ∼ v′
iff all of the following conditions hold:

1. ∀x ∈ C.bvxc = bv′xc ∨ (vx > kx,v′x > kx),

2. ∀x, y ∈ C,vx ≤ kx,vy ≤ ky.fract(vx) ≤ fract(vy) iff fract(v′x) ≤ fract(v′y),

3. ∀x ∈ C,vx ≤ kx.fract(vx) = 0 iff fract(v′x) = 0.

A clock region is the set of clock valuations induced by the equivalence relation ∼ [6, Definition
4.3].

Definition 2.2 (Region Closure). The region closure of a set of clock valuations, S, is the
minimal set S′ s.t. for all p ∈ S,p′ ∼ p, p′ ∈ S′.

The number of such classes grows very quickly with the number of clocks, hence the region
graph is not really suitable for algorithmic use. Nevertheless, region graphs have been shown to
be useful when proving decidability of some properties of timed automata.

There is, however, another variant of symbolic semantics, which is suitable for practical use.

1If we label the edges of the timed automaton, this becomes a labelled transition system. Labeling of edges is,
however, not useful for our purpose.
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Zones and zone graphs

Zones are sets of clock valuations that satisfy a conjunction of clock constraints. Formally,
Z ⊆ R

X
≥0 is a zone if there is a g ∈ B(X) such that Z = {v | v � g}. Zones can also be thought

of as convex subsets of |X|-dimensional Euclidean space.
In order to define transitions on symbolic states of the form (l, Z), where l is a location and

Z is a zone, we again need to define some operations first. Let Z be a zone, g ∈ B(X) and
r ⊆ X.

• Z ∧ g = {v ∈ Z | v � g},

• Z↑ = {v + δ | v ∈ Z, δ ∈ R≥0},

• Z[r] = {v[r] | v ∈ Z}.

Lemma 2.3. Let Z be a zone, g ∈ B(X) and r ⊆ X. Then Z ∧ g, Z↑ and Z[r] are also zones
[1].

We can now define the symbolic successor relation ; as follows:

• (l, Z) ; (l, Z↑ ∧ I(l)) – delay successor,

• (l, Z) ; (l′, (Z ∧ g)[r] ∧ I(l′)) if l g,r−→ l′ – discrete successor.

Let Z0 be a zone containing just the one valuation which assigns zero to all clocks, and (l0, Z0)
our initial symbolic state. All this together gives us a transition system on symbolic states,
called the zone graph. We are usually only interested in the part that is reachable from (l0, Z0),
but it still may be the case that even this part is infinite.

The zone graph can be made finite by the process of extrapolation (sometimes also referred to
as normalization), which exploits the fact that once a clock value exceeds the maximal constant
the clock is compared to in the constraints of the automaton, its precise value becomes irrelevant.
There exist several such operations [9, 13], which will make the state space finite while preserving
its properties (i.e. reachability of a state in our case).

From a practical point of view, the representation of zones is very important. We obviously
cannot represent a zone as a list of the clock valuations it contains. A logical approach is to
represent zones by the constraints that define them, which is the basic underlying principle of
the DBM data structure, which is nowadays most commonly used in tools for timed automata
analysis. Section 2.3 on page 15 is devoted to describing this data structure.

Deciding reachability in zone graphs

A zone graph can be directly used to decide whether a particular state is reachable in a timed
automaton, i.e. whether there is a run of the automaton that reaches the state. Although the
algorithm is basically a depth-first search on the zone graph, it might be useful to show it here
so that we can refer to some details later.

The input of an algorithm is a timed automaton together with a description of a state to
check for reachability, i.e. a location s and a constraint ϕ ∈ B(X).

The algorithm keeps two sets of symbolic states – Passed for already processed states and
Waiting, containing the initial state at the beginning, for states yet to be processed. The body
of the main loop picks a state from the Waiting set, checks whether it satisfies ϕ, and terminates
with positive answer if it does. Otherwise it checks if the state is already covered by the passed
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states, i.e. whether it is a subset of an already visited state with the same control location. If
this is not the case, the state is added to the Passed set and its successors to the Waiting set.
This is repeated as long as the Waiting set is nonempty.
Algorithm 1: Forward reachability

1: Waiting := {(l0, Z0)}
2: Passed := ∅
3: while Waiting 6= ∅ do
4: choose and remove (l, Z) from Waiting
5: if l = sandZ ∧ ϕ 6= ∅ then
6: return True
7: end if
8: if Z * Z ′ for all (l, Z ′) ∈ Passed then
9: Passed := Passed ∪ {(l, Z)}
10: Waiting := Waiting ∪ {(l′, Z ′) | (l, Z) ; (l′, Z ′) ∧ Z ′ 6= ∅}
11: end if
12: end while
13: return False
We can see from the algorithm that in order to develop a data structure that supports

forward reachability analysis, we need it to support following operations:

• decide whether some parts of the zone satisfies a constraint ϕ,

• decide whether it is a subset of another zone,

• compute successors of a state, which can be achieved by the three operations listed in
Section 2.1.1 on the preceding page and an additional check whether the zone is empty.

2.1.2 Timed-arc Petri nets

The concept of timed-arc Petri nets, denoted TAPN, derives from Petri nets [24], PN. It is a
timed extension of PN where ages are associated with tokens, allowing tokens to be considered
similar to clocks in timed automata. Arcs going from a place to a transition are labeled with a
time interval, which a token age has to satisfy in order for the transition to be enabled.

Basic definitions

The set of well-formed time intervals I is defined by the following abstract syntax containing a
lower bound l ∈ N ∪ {0} and an upper bound u ∈ N, s.t. l < u.

I ::= [l, u] | [l, l] | (l, u] | [l, u) | (l, u) | [l,∞) | (l,∞)

Given an age a, these intervals represent, respectively, the constraints l ≤ a ≤ u, a = l, l < a ≤
u, l ≤ a < u, l < a < u, l ≤ a < ∞, and l < a < ∞. We can see the intersection of any finite
number of time intervals I1, I2, . . . , In ∈ I is either empty or belongs to I.

Additionally, we can specify invariants in TAPNs. The abstract syntax of invariants IInv ⊂ I
is given by:

IInv ::= [0, 0] | [0, u] | [0, u) | [0,∞)

A timed-arc Petri net is a tuple N = (P, T, F, c, Inv) where

• P is a finite set of places,
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• T is a finite set of transitions such that P ∩ T = ∅

• F ⊆ (P × T ) ∪ (T × P ) is a set of normal arcs, and is called flow relation, and

• c : F |P×T → I is a time constraint assigning time intervals to arcs from places to transi-
tions.

• Inv : P → IInv is a function which assigns to every place an invariant.

Due to the definition of F , Petri nets can be considered as directed bipartite graphs, since
it is not possible to have an arc directly between two places or two transitions.

A marking M on a TAPN N is a function M : P → C(R+) where C(R+) denotes the set
of finite multisets on R

+, representing the distribution of tokens. M(N) denotes the set of all
markings over N , andM(p) denotes the number of tokens in place p for marking M . A marked
TAPN is a pair (N,M0) where N is a TAPN and M0 is the initial marking on N . Similar to the
initial state of a timed automaton, we only allow initial markings where all tokens have age 0.

We define the preset or input places of a given transition t ∈ T as •t = {p ∈ P | (p, t) ∈ F}
and the postset or output places of t as t• = {p ∈ P | (t, p) ∈ F}.

Semantics

A TAPN has two basic transition behaviors: firing and time-elapsing. When a transition is
fired, one token in each place of its preset is consumed and a new token of age 0 is created in
each place of its postset. The transition relation of the firing transition t from marking M to
marking M ′ is written as M t−→ M ′ and the time-elapsing transition is written as M d−→ M ′,
where d ∈ R≥0 is the time elapsing.

In order for a transition to be enabled, some conditions must be satisfied:

Definition 2.4 (Enabledness). Given a TAPN N = (P, T, F, c), a transition t ∈ T is enabled
in a marking M , iff for all p ∈ •t, there exists a x ∈M(p), s.t. x ∈ c(p, t).

In other words, a token in a place p may participate in enabling a transition t if the age of
the token lies within the time interval of the arc from p to t. In order for the transition to be
enabled, this must be satisfied by all places in the preset.

Definition 2.5 (Firing rule). Given a TAPN N = (P, T, F, c) and a marking M enabling a
transition t ∈ T , t can be fired to create a new marking M ′ defined by ∀p ∈ P.M ′(p) =
(M(p)r C−t (p, t)) ∩ C+

t (t, p), where C−t (p, t) and C+
t (t, p) denote the ages of tokens in place p,

as given by the following equations:

C−t (p, t) =
{
{x}, if p ∈ •t s.t. x ∈M(p) ∧ x ∈ c(p, t)
∅, otherwise

C+
t (t, p) =

{
{0}, if p ∈ t•
∅ otherwise.

Definition 2.6 (Time-elapsing). Let N = (P, T, F, c) be a TAPN. A time-elapsing transition,
where r ∈ R+ is the time elapsing, is defined as M r−→M ′ iff for all p ∈ P , M ′(p) = M(p) + r.

Figure 2.1 on the next page contains an example of a small TAPN N before, Figure 2.1a,
and after, Figure 2.1b, a time-elapse of 4 and firing transition t0. We see tokens in places p0 and
p1 are consumed and new tokens of age 0 are created in places p2 and p3. A formal definition of
the net N is:
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p0

#2

{0.0,0.0}

p1

0.0

p2

p3

t0

[3,∞)

[4, 5]

(a) TAPN N before firing transition
t0.

p0

4.0

p1

p2

0.0

p3

0.0t0

[3,∞)

[4, 5]

(b) N after firing t0.

Figure 2.1: A timed-arc Petri net N .

• P = {p0, p1, p2, p3},

• T = {t0},

• F = {(p0, t0), (p1, t0), (t0, p2), (t0, p3)},

• c = {(p0, t0)→ [3,∞), (p1, t0)→ [4, 5]},

• M0 = {p0 → {0, 0}, p1 → {0}}

Special arcs

Some literature, such as Bouyer et al. [14], as well as tools like TAPAAL [28], use arcs beyond
the simple arcs described so far. Here, we will describe the meaning of these additional arc
types.

Transport arcs A transport arc goes from one place to another via a transition. When
the corresponding transition is fired, the token is moved to the new place, rather than being
consumed and re-created [29].

In TAPAAL, transport arcs are drawn using a filled diamond, and a numeric identifier on
the arcs to disambiguate when a transition involves multiple transport arcs.

Testing arcs/read arcs A testing arc works like a normal arc, but the token used is not
consumed when firing the transition. Instead, the token is left as-is, continuing to age without
interruption. The addition of testing arcs is sufficient to make networks of timed automata and
timed-arc Petri nets equally expressive [14], allowing us to convert a network of timed automata
to a Petri net.

TAPAAL does not implement testing arcs directly, but their semantics can be emulated
using a transport arc going to the transition and back to the original place; see Figure 2.2 on
the facing page for a visual example.

Symbolic semantics

Conceptually, the age of a token functions like a clock. Consequently, we can consider a token
to actually be a clock, thereby allowing us to directly apply the concept of zones as described
in Section 2.1.1 on page 7.

A key difference is that unlike normal zones, Petri nets do not allow us to express constraints
on differences between clocks, so effectively, each token merely has a range of valid ages. However,
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0.0

0.0

[2,∞)

[0, 3]

(a) TAPN using a testing arc.

0.0

0.0

[2,∞)

[0, 3]:1
1

(b) Transport arc simulating a
testing arc.

Figure 2.2: Special arcs in a TAPN.

we can still apply all of the other properties of zones themselves, as neither delay nor reset can
introduce new difference constraints, and intersection will only introduce a difference constraint
when actually intersecting with a difference constraint.

Since Petri nets do not have locations, we define a new symbolic successor relation ;:

• (place, age) ; (place, age↑ ∧ Inv(place)) – delay successor,

• (place, age) ; (place′, age′ ∧ Inv(place′)) if there exists t ∈ T s.t. (place, age) t−→
(place′, age′) – discrete transition successor.

Reachability for TAPN

Like for timed automata, we are interested in determining whether a given marking is reachable.

Definition 2.7 (Reachability). Let (N,M0) be a marked TAPN. A marking M ∈ M(N) is
reachable if M0

∗−→ M , where the transition ∗−→ is an arbitrary combination of firing and time-
elapsing transitions.

For an arbitrary TAPN, the reachability problem is undecidable [26], as there is no limit on
the number of tokens in the TAPN. However, by imposing a bound k on the number of tokens,
reachability becomes decidable [21]. We call such Petri nets k-bounded.

Definition 2.8 (k-boundedness). A marked TAPN (N,M0) is k-bounded if the total number
of token |M | ≤ k for any reachable marking M .

The reachability algorithm for k-bounded TAPNs is given by Algorithm 2 on the following
page, and works on the same basic principle as the reachability algorithm for timed automata,
but using token placements instead of locations. The reachability property ψ is a subset of CTL
as defined in Jacobsen and Jacobsen [21]. Additionally, we define (place0, age0) as the initial
marking.
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Algorithm 2: Reachability of k-bounded TAPN
Waiting := {(place0, age0)}
Passed := ∅
while Waiting 6= ∅ do
choose and remove (place, age) from Waiting
if (place, age) � ψ then
return True

end if
if age * age′ for all (place, age′) ∈ Passed then

Passed := Passed ∪ {(place, age)}
Waiting := Waiting ∪ {(place′, age′) | (place, age) ; (place′, age′) ∧ age′ 6= ∅}

end if
end while
return False

By comparing Algorithm 2 to Algorithm 1 on page 8, it can easily be seen that the only
difference is the substitution of locations and zones with placements and token ages.

2.2 Max-plus algebra

Let Rmax denote the set R ∪ {−∞}, and let a ⊕ b = max(a, b) and a ⊗ b = a + b. The max-
plus algebra is the semiring (Rmax,⊕,⊗), that is, the set of real numbers equipped with zero
element −∞ with the maximum operation as addition and ordinary addition as multiplication.
To further conform to the usual semiring notation, we denote −∞ as 0 and 0, the neutral element
with respect to max-plus multiplication, as 1. As with ordinary multiplication, we will also use
the convention that ab = a⊗ b.

The definitions of addition and multiplication in max-plus algebra can be extended to vectors
and matrices in the usual way – addition: (v1, . . . ,vn)⊕ (w1, . . . ,wn) = (v1⊕w1, . . . ,vn⊕wn),
multiplication by scalar: α⊗(v1, . . . ,vn) = (α⊗v1, . . . , α⊗vn), matrix multiplication: (AB)ij =⊕n

k=1Aik ⊗Bkj .
Note that the max-plus semiring is idempotent, because a ⊕ a = a for any element a, and

that it is not a ring, because for every a except a = 0, there is no b such that a⊕ b = 0.
The dual notion to max-plus algebra, used in some literature, is the min-plus algebra, also

called tropical semiring,2 in which the maximum operation is replaced by the minimum operation
and positive infinity is used as zero element. This has also lead some authors to call max-plus
algebra the arctic semiring.

Notation In the rest of the report we will mainly use the letters a, b, c . . . to denote elements of
Rmax. Greek letters α, β, . . . will be used for elements of Rmax in context of scalar multiplication.
Whenever speaking of dimension makes sense, we will denote it n. Vectors, i.e. elements of
R

n
max, will be denoted v,w, . . .; we will use vi to mean i-th component of vector v, as is usual.

Whenever we work with an indexed family of vectors, the indices of individual elements will be
written in superscript, i.e. v1, . . . ,vm to avoid confusion with selecting the element of vector.

2They are called tropical in honour of Imre Simon, who pioneered the field, apparently because he was from
Brazil.
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(a) 2D polyhedron. (b) 3D polyhedron.

Figure 2.3: Examples of polyhedra in 2D and 3D.

2.2.1 Polyhedra over max-plus algebra

Convex max-plus polyhedra are the max-plus analogues of classical convex polyhedra.

Definition 2.9. A convex max-plus polyhedron is a subset of Rn
max that satisfies a finite set of

(max-plus) linear inequalities.

The word convex refers to the property that any max-plus line segment between two points
of the set is contained in the set. As shown in Figure 2.3, which displays convex max-plus
polyhedra in 2D and 3D, we can see that this is different from the classical understanding of
convexity.

Whenever we mention polyhedra in the report, we refer to closed convex max-plus polyhedra,
unless stated otherwise. Max-plus convex sets were introduced by Zimmermann [33], a general
introduction can be found for example in Gaubert and Katz [19].

2.2.2 Representations of max-plus polyhedra

Because polyhedra are usually infinite sets of points, we need to represent them in some finite
way, which we furthermore would like to be able to manipulate efficiently. In the following, we
consider three representations of max-plus polyhedra: systems of constraints, sets of generators
and max-plus cones of higher dimension; the third being a slight variation of the second. Note
that the conversion between the first and the second representations is computationally rather
expensive, while conversion between the second and the third is trivial.

All three representations and algorithms for conversion between these are described by Al-
lamigeon et al. [2, 3, 4].

Systems of constraints

One possible representation of max-plus polyhedra is by a finite set of linear inequalities, i.e.
inequalities of the form ax ⊕ b ≥ cx ⊕ d, where a, c ∈ R1×n

max and b, d ∈ Rmax . Such a system
of s constraints can be described by two matrices A,C ∈ R

s×n
max and two vectors b,d ∈ R

s
max,
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with the polyhedron P = {x | Ax ⊕ b ≥ Cx ⊕ d}. This representation is also called external
representation.

This representation is very similar to a DBM, and it is indeed possibly to easily convert a
DBM to a polyhedron in external representation through simple rewriting of clock constraints.
As an example, a constraint xi−xj ≥ n can be written as the max-plus inequality ax⊕b ≥ cx⊕d
with ak = 0 for k 6= i and ai = 1, ck = 0 for k 6= j and cj = n, and b = d = 0; see Dyhrberg
et al. [17] for further details.

A slightly surprising difference from ordinary linear algebra is that a system of inequalities
can be represented as a system of equalities (and vice versa). This follows from the fact that
a ≥ b⇔ a = a⊕ b. We can therefore also choose to represent max-plus polyhedra as systems of
equalities.

Sets of generators

Let A,B ⊆ R
n
max. The Minkowski sum is defined as A ⊕ B = {a ⊕ b | a ∈ A,b ∈ B}. Vector

a is a convex combination of vectors b1, . . . ,bm if a =
⊕m

i=1 αibi for some scalars αi such that⊕m
i=1 αi = 1. Let co(A) denote the set of all convex combinations of points from A, i.e. its

convex hull.
Vector a is a linear combination of vectors b1, . . . ,bm if a =

⊕m
i=1 αibi for some scalars αi.

A max-plus cone is a set that is closed under linear combination. The max-plus cone generated
by A, denoted cone(A), is the set of all linear combinations of members of A. Max-plus cones
are the analogues of vector (sub)spaces of vectors over a field, and they are studied in different
contexts under the name semimodules [19].

The following theorem is an analogue of a similar theorem for classical polyhedra.

Theorem 2.10. Any max-plus polyhedron can be represented as Minkowski sum of a bounded
convex set and a cone, both of which are finitely generated. Additionally, the Minkowski sum of
some bounded convex set and some cone, both of which are finitely generated, represents some
max-plus polyhedron. [19]

In other words, max-plus polyhedra can be represented as co(V ) ⊕ cone(W ), where V and
W are finite sets of points. This can be written explicitly as

α1v1 ⊕ · · · ⊕ αpvp ⊕ β1w1 ⊕ · · · ⊕ βqwq,

where
⊕p

i=1 αi = 1 and β1, . . . , βq ∈ Rmax. The representation is also referred to as internal.
Furthermore, every polyhedron has a unique minimal V , the elements of which are called

extreme points [19, 2, 15]. Extreme points have the property that they cannot be written as
a convex combination of any other points in V . There is no unique minimal W , because any
generator of the minimal set can be replaced by a scalar multiple. The set of all scalar multiples
of a vector is called a ray, and every cone has a unique minimal set of extreme rays that generate
it. Therefore the minimal W is only unique up to the choice of representative for each ray.

The internal representation is very different from the external representation, and the con-
version between these representations involves solving max-plus matrix equations, which is com-
putationally rather expensive [2]. As a result, this report will only deal with the internal repre-
sentation.

Homogeneous coordinates for max-plus polyhedra

Max-plus polyhedra in n dimensions can be also represented as max-plus cones in n+1 dimensions,
which can be thought of as using homogeneous coordinates. Let P = co(V ) ⊕ cone(W ) be the
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max-plus polyhedron generated by the sets V,W ⊆ R
n
max. Now, let Z ⊆ R

n+1
max be defined as

Z = {(v,1) | v ∈ V } ∪ {(w, 0) | w ∈ W}. It can be seen that P = {x | (x,1) ∈ cone(Z)}. The
requirement that the last component of the vector must be equal to 1 enforces that the scalars
used to multiply elements that were in V sum to 1, while no restriction is placed on elements
of W . The advantage of representing polyhedra as cones is that we don’t have to distinguish
between two kinds of generators, which allows the algorithms to be considerably simpler.

This representation can be easily converted back to the representation by two sets of gen-
erators. The elements with nonzero last coordinate are multiplied by a scalar such that their
last coordinate becomes 1. We can then drop the last coordinate, which gives us the set V .
Dropping the last coordinates of the vectors where it is 0 gives us the set W .

2.3 Difference Bound Matrices

Difference Bound Matrices [16], or DBMs for short, is currently one of the most efficient data
structures for representing zones [10]. A DBM is, as the name suggests, a matrix with entries
representing the difference between clocks. To be able to do this in a uniform way for both
regular difference constraints as well as comparing just one clock to a constant, a zero clock,
0, with the constant value 0, is introduced. This approach benefits from the fact that, as
mentioned in Section 2.1.1 on page 7, zones are defined by conjunctions of constraints. With a
little rewriting these zone constraints can be converted into difference constraints on the form
x − y � n, where x, y ∈ C ∪ {0}, �∈ {≤, <} and n ∈ Z where C is the set of clocks. This is
exactly what a DBM represents, hence one DBM encodes exactly one zone.

Since we are only interested in the tightest constraints and every constraint is concerned with
two clocks, every zone is defined by at most |C0| · (|C0| − 1) constraints, where C0 = C ∪ {0}.
By defining the upper bound on the difference between two clocks as x − y � n and the lower
bound as y − x � −n, zones in systems with |C| clocks can be stored as |C0| × |C0| matrices.

To compute the DBM for a zone, every clock in C0 is numbered, assigning one column and
one row to the clock. Every entry in the matrix, D, now represents the bound xi−xj � n where
xi, xj is clocks, i is the row index of the matrix, j the column index. This means that rows and
columns encode lower and upper bounds respectively.

To be able to handle strictness, an entry in the DBM is not just a value, but rather the tuple
(n,�) where n ∈ Z and �∈ {≤, <}, representing the bound xi − xj � n. When no bound is
present for the given clock difference,∞ is used, since everything is less than or equal to infinity.
Additionally, since all clocks are positive, the implicit constraints 0 − xi ≤ 0 are added, and
since the difference between a clock and itself should always be 0, xi − xi ≤ 0 is added as well.
However, as we will not deal with strictness in this report, we will simplify the notation where
appropriate by using the values directly.

Finally, to be able to manipulate DBMs, comparison and addition of bounds must be defined.
Bound comparison is a logical extension of comparison of integers where everything is smaller
than infinity, and for equal values, strict constraints are smaller than non-strict. This provides
a logical ordering of constraints (n1,�) < (n2,�) for n1 < n2 or n1 = n2 ∧ (n1, <) < (n2,≤).
Similarly, addition is a simple extension of integer addition, where adding infinity to something
is infinity, and the tightest strictness is always carried to the result. In other words, (n1,�1
) + (n2,�1) = (n1 + n2,�1 + �2) where (< + ≤=<).



16 2.3. DIFFERENCE BOUND MATRICES

l0

l1

l2

l3

R[x = 0]

R[y = 0]

y ≥ 2

x ≥
2

Figure 2.4: Timed automaton used for this example.

Example An arbitrary zone D could be represented by the constraints, x < 10 ∧ 0 − x ≤
−20 ∧ y − x ≤ 10 ∧ 0− z ≤ −5, which in turn would be represented by the DBM D below.

D =


(0,≤) (−20,≤) (0,≤) (−5,≤)
(10, <) (0,≤) ∞ ∞
∞ (10,≤) (0,≤) ∞
∞ ∞ ∞ (0,≤)


Since there can be infinitely many different conjunctions of constraints representing the

same solution set and thereby the same actual zone, a canonical representation is necessary.
The canonical representation for DBMs is the one representing the tightest constraints, without
altering the solution set. This canonical representation can be computed by converting the
DBM into a directed graph, where clocks are represented by nodes and difference constraints
are labelled edges between the appropriate nodes. Now all there is to do is compute the shortest
path between nodes, e.g. by using the Floyd-Warshall algorithm [18], and then converting back
to matrix form [10].

2.3.1 DBM operations

As mentioned above, DBMs provide efficient algorithms for reachability-analysis operations.
This includes linear time algorithms for the basic operations of delaying and resetting, as well
as freeing a clock.

For computing the relationship between two DBMs and intersecting with one clock, quadratic
algorithms are provided. This is also the case for the backward delay, used in backward reach-
ability. DBMs also provide algorithms for normalization, the commonly used algorithm being
quadratic as well.

For comparison of the DBM algorithms to our proposed algorithms on max-plus polyhedra
we refer the reader to Chapter 3 on page 19.

2.3.2 Comparison with max-plus polyhedra

Since DBMs are the current industry standard for performing real-time model checking, it is
useful to provide a more direct comparison between max-plus polyhedra and DBMs.

Figure 2.4 shows an example of a small TA of two clocks which benefits from using max-plus
polyhedra rather than DBMs. Imagine that this is just the tiny initial part with start location l0
of a much bigger TA connected by the transition going out of location l3. Running the forward
reachability algorithm on this example will give us the following results in locations l1 and l2,
shown as a zone Z, a max-plus polyhedron P and as a DBM D. A visual indication of the two
zones can be seen in Figure 2.5 on the next page. In both locations, we are ready to take the
transition out.
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(a) l1 (b) l2

Figure 2.5: Location l1 and l2 after delay.

l1:

Z = J0− x ≥ 0 ∧ 0− y ≥ 0 ∧ x− y ≤ 0K
P = co({( 0

0 )})⊕ cone({( 0
0 ) ,

(−∞
0
)
})

D =

 0 0 0
∞ 0 0
∞ ∞ 0


l2:

Z = J0− x ≥ 0 ∧ 0− y ≥ 0 ∧ y − x ≤ 0K
P = co({( 0

0 )})⊕ cone({( 0
0 ) ,

( 0
−∞

)
})

D =

 0 0 0
∞ 0 ∞
∞ 0 0


Continuing the reachability algorithm we calculate the state space going from l1 and l2 to

l3. At first these are stored as two separate states, containing the zones seen in Figure 2.6 on
the following page.

l3 via l1:

Z = Jx ≥ 0 ∧ y ≤ −2 ∧ x− y ≤ 0K
P = co({( 0

2 )} ⊕ cone({( 0
0 ) ,

(−∞
0
)
})

D =

 0 0 −2
∞ 0 0
∞ ∞ 0


l3 via l2:

Z = Jx ≥ 2 ∧ y ≥ 0 ∧ y − x ≤ 0K
P = co({( 2

0 )})⊕ cone({( 0
0 ) ,

( 0
−∞

)
})

D =

 0 −2 0
∞ 0 ∞
∞ 0 0


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(a) l3 via l1 (b) l3 via l2

Figure 2.6: The two different possible states in location l3.

(a) l3 DBM union (b) l3 MPP and exact union

Figure 2.7: Union of zones from the two l3 states.

Notice that P and D are unchanged by a delay operation, hence we are ready to take a
transition out of l3. This allows us to see the difference between the DBM and max-plus
approaches. We have two different states for the location, l3. Moving on from here, because
neither max-plus polyhedra nor DBMs can do exact union, we must decide whether to do all
subsequent operations on both instances of the state space, risking state space explosion, or
whether we make an overapproximating union. Opting for the overapproximation, we get the
following state for l3.

l3 union:

P = co({( 2
0 ) , ( 0

2 )})⊕ cone({
(−∞

0
)
,
( 0
−∞

)
})

D =

 0 0 0
∞ 0 ∞
∞ ∞ 0


Figure 2.7 shows the overapproximating union both for DBM and max-plus polyhedra. As

we can see the DBM overapproximation includes the entire state space, which is not exact,
and therefore introduces the risk of false positives, throughout the remainder of the analysis.
However, for the max-plus polyhedron, the union in this case is actually exact, thus there is no
risk of false positives in this case.

Note, however, that max-plus union and exact union will not always coincide.



CHAPTER 3

ALGORITHMS ON MAX-PLUS
POLYHEDRA

With inspiration from Bengtsson’s PhD thesis [10] this chapter contains suggestions and ideas
for different algorithms needed for forward and backward reachability checking. The algorithms
accommodate the checking of properties of zones and doing different transforming operations.

Whereas Bengtsson et al. consider DBMs, we will work with and suggest equivalent algo-
rithms for max-plus polyhedra represented as the Minkowski sum of generators. Most of the
algorithms are performed on polyhedra P always consiststing of a convex, V , and a linear set
of generators, W . A few of the algorithms are performed on polyhedra represented as cones,
denoted G. Additionally, note that n always denotes the number of clocks for a system, and p
the number of generators for a max-plus polyhedra.

3.1 Conversion algorithms

Some of the algorithms described in this chapter use two predefined algorithms described in
Section 2.2.2 on page 14. These are concerned with the conversion from polyhedra to cones
(Algorithm 3) and back (Algorithm 4 on the following page); both having a complexity of
O(pn).

Algorithm 3: poly-to-cone(P )
G := ∅
for all v ∈ V do
G := G ∪ {(v, 0)}

end for
for all w ∈W do
G := G ∪ {(w,−∞)}

end for
return G

19
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Algorithm 4: cone-to-poly(G)
V,W := ∅
for all g ∈ G do
if gn+1 = −∞ then
W := W ∪ {g}

else
g′ = (g1, . . . gn)
for i := 1 to n do

gi := gi +−gn+1
end for
V := V ∪ {g}

end if
end for
return V,W

3.2 Property checking

The algorithms in this section do not alter a polyhedron, but are used in reachability analysis to
determine whether a given state is reached, as well as determining if some state has previously
been visited.

3.2.1 Emptiness test – consistent(P )

To check for consistency of a polyhedron is to check whether it contains a legal clock valuation.
By the definition of max-plus polyhedra, a consistent polyhedron is one that at least contains
one generator in the convex set. This is because the set of scalars for the convex set must sum
to max-plus one, however if there are no generators, there will be no scalars and the sum of
nothing is max-plus zero [2].

Additionally, clocks will always have a value in positive Euclidean space. Hence, for the
polyhedron to be consistent, there must exist at least one combination of scalars such that all
dimensions are positive or 0.

However, if we start with a polyhedron in positive space and only use the operations described
here (for reset, we additionally require it to be used with positive constants), this will preserve
the polyhedron in positive space. This makes the test for emptiness O(1) as we only need to
check if we have a non-empty set of convex generators according to the definition.

3.2.2 Membership test – contains-point(G, x)

Testing whether a point x is contained in a polyhedron P is not directly used in reachability
analysis, but is used as a subroutine in contains and cleanup algorithms.

Checking whether one point x can be generated by a polyhedron P is done by converting P
to a cone G of Rn+1

max as shown in Algorithm 3 on the previous page. Similarly, x is converted to
x′ of Rn+1

max with the last coordinate set appropriate according to whether it is an actual point or
a ray representative.

Then the only thing left to do is to see if Gy = x′ admits a solution, where G is a matrix
containing all generators of G as columns, using the algorithm provided by Allamigeon et al. [2].
The equation may not have a solution, but the inequality Gy ≤ x′ always does. We can compute
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the maximal solution ŷ of this inequality according to the formula ŷi = min1≤j≤n+1(x′j − Gji).
The equation Gy = x′ then has a solution if and only if Gŷ = x′. If so x′ is in P otherwise it is
not. The algorithm runs in O(pn) time.
Algorithm 5: contains-point(G,x)

for all gi ∈ G do
yi := min1≤j≤n+1(xj − gi

j)
end for
for all 1 ≤ j ≤ n+ 1 do

zj := maxgi∈G(yi + gi
j)

end for
if x = z then
return true

end if
return false

3.2.3 Inclusion test – contains(P, P ′)

Inclusion checking is a crucial operation when doing state space exploration. This is needed
to determine whether a given state has already been visited, and hence does not need to be
traversed again.

Inclusion checking is a logical extension of set inclusion, as checking if P ′ is included in P
is the same checking if the set of all points generated by P ′ is included in the set of all points
generated by P . To do this for max-plus polyhedra is simple: given two polyhedra P and P ′, to
determine if P contains P ′, we just need to check whether all generators of P ′ can be generated
by P .

The complexity of the contains algorithm is O(pp′n), where n is the number of clocks, p
is the number of generators for P and p′ the number of generators for P ′, as every call to
contains-point takes O(pn) and there is p′ of them. For comparison, the DBM algorithm for
inclusion checking is quadratic in the number of clocks, O(n2).

Algorithm 6: contains(P, P ′)
G := poly-to-cone(P )
G′ := poly-to-cone(P ′)
for all g′ ∈ G′ do
if ¬contains-point(G,g′) then
return false

end if
end for
return true

3.2.4 Constraint satisfaction – satisfied(P, xi − xj ∼ c)

Determining if a conjunction of constraints are satisfied requires expensive intersections, so it
can be desirable to first check each constraint individually. For example, Petri nets can use this
to determine enabledness of a transition. This algorithm has a complexity of O(p), in contrast
with the DBM algorithm which is trivially O(1).
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For Petri nets, xj will always correspond to x0, as Petri nets are incapable of directly ex-
pressing the difference between the age of two tokens.
Algorithm 7: satisfied(P, xi − xj ∼ c)

if ∼ is = then
return satisfied(P, xi − xj ≤ c) and satisfied(P, xi − xj ≥ c)

if xj = x0 then {xj is not a clock}
return satisfied-single(P, xi ∼ c)

else
return satisfied-diff(P, xi − xj ∼ c)

Algorithm 8: satisfied-single(P, xi ∼ c)
for all v ∈ V do
if vi ∼ c then
return true

if ∼ is ≥ then
for all w ∈W do
if wi 6= −∞ then
return true

return false

Algorithm 9: satisfied-diff(P, xi − xj ∼ c)
if ∼ is ≥ then
for all v ∈ V do
if vi ≥ vj + c then
return true

for all w ∈W do
if wi = −∞ and wj = −∞ then
continue

if wi ≥ wj + c then
return true

else
return satisfied-diff(P, xj − xi ≥ −c)

return false

Proof. To prove the algorithm, we need to prove every possible branch. Essentially, there are
three branches the algorithm can take as an equality can be expressed by ≤ ∧ ≥ and the differece
constraint xi − xj ≥ c is the same as xj − xi ≤ −c. Let P = co(V )⊕ cone(W ) be a polyhedron,
and p a point in P , given by:

p =
p⊕

l=1
αlvl ⊕

q⊕
m=0

βmwm

where α, β ∈ Rmax and
⊕p

l=1 α
l = 0.

xi ≤ c: For a single clock ≤ constraint to be satisfied, the algorithm requires at least one convex
generator satisfying the constraint, i.e. there exists a v ∈ V s.t. vi ≤ c. To show this is
sufficient, we can chose the corresponding α = 0 and the rest of the scalars α, β = −∞. Let
u denote the generator satisfying the constraint. Since we are scaling all other generators
by −∞ we get:

p = 0⊗ u⊕ 0
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where 0j = −∞, 1 ≤ j ≤ n and therefore for this combinations of scalars, p = u. Since
we know ui ≤ c, there trivially exists a p s.t. pi ≤ c.
In the opposite case, when there does not exist a v ∈ V s.t. vi ≤ c, then it must
be true that there does not exist a p.pi ≤ c. This follows trivially from the fact that
minp∈P (pi) = minv∈V (vi) since

⊕p
l=1 α

l = 0.

xi ≥ c: For a single clock ≥ constraint to be satisfied, the algorithm states that if there exists a
v ∈ V s.t. vi ≥ c, or a w ∈ W s.t. wi 6= −∞), then there exists a p where pi ≥ c. The
convex satisfiability works in exactly the same way as for the less than constraint, and
follows exactly the same proof strategy.
The linear part only needs to be considered if there are no convex generators satisfying the
constraint. This means we know

⊕p
j=1 α

jvj
i < c. Thus, if we have a linear generator w

where wi 6= −∞, we can choose the corresponding scalar β = |wi|+ c and the remaining
linear scalers as −∞. This means that

⊕p
j=1 β

jwj
i ≥ c, which in turn means:

p =
p⊕

j=1
αjvj ⊕

p⊕
j=1

βjwj =⇒ pi ≥ c

If there does not exist a w ∈ W where wi 6= −∞), it follows trivially that our linear set
cannot satisfy the constraint.

xi − xj ≥ c: For the difference constraint, the algorithm states that if there exists a v ∈ C s.t. vi−vj ≥
c or a w ∈ W s.t. wi 6= −∞,wj 6= −∞,wi − wj ≥ c) then there exists a p ∈ P where
pi − pj ≥ c. Again, the convex part of the disjunction can be shown in the same way as
for single-clock constraints.
For the linear part, standard math is used when dealing with negative infinity, so −∞−x =
−∞ and x − (−∞) = ∞. The remaining case, −∞ − (−∞), is already handled, since
this means that no value can be added by this generator in the given dimensions, as
β ⊗−∞ = −∞. The calculations to see that is sufficient are straightforward:

wi −wj ≥ c =⇒ pi − pj ≥ c
since we can scale w with any value. If wi = −∞ and wj 6= −∞ then:

−∞−wj = −∞ < c =⇒ pi − pj � c

Conversely, if wi 6= −∞ and wj = −∞ then:

wi − (−∞) =∞ ≥ c =⇒ pi − pj ≥ c

The opposite case, where wi − wj ≤ c, requires no additional explanation, since it is
equivalent to wj −wi ≥ −c.

3.3 Transformations

The transformations are the algorithms which modify a polyhedron in order to determine the
reachable state space for a timed model. This includes the basic algorithms of delay and reset
among others.
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3.3.1 Constraint intersection – and(P, xi − xj ∼ c)

Adding a constraint is done by intersecting the polyhedron P with the difference constraint
xi − xj ∼ c. An algorithm (Algorithm 11) for computing the intersection of a max-plus cone
with the half-space satisfying a set of max-plus inequalities is given by Allamigeon et al. [3]. As
any difference constraint can be expressed as max-plus inequality, the only thing that remains
is to convert the constraint of the form xi − xj ∼ c to two vectors a and b that represent the
max-plus half-space {x | a ⊗ x ≤ b ⊗ x}, and use the aforementioned algorithm on the cone
representation of the polyhedron.

Without loss of generality, we can assume that the constraint is xi−xj ≤ c, because xi−xj ≥ c
is equivalent to xj − xi ≤ −c and intersection with xi − xj = c can be computed by simply
computing the intersection with xi − xj ≤ c and xi − xj ≥ c. This constraint can be rewritten
as xi ≤ xj + c, or in the max-plus notation, 0⊗xi ≤ c⊗ xj . This means that a will be a vector
the components of which will be -∞, except for the i’th value, which will be 0. Similarly, b will
consist of negative infinities except at the j’th place, which will be c.

Max-plus polyhedra do not explicitly represent an x0 clock, but the additional element
introduced by converting to a cone is used instead.

Like for constraint satisfaction, Petri nets do not allow to directly express a difference con-
straint, so in xi − xj ∼ c, xj will always be x0.

Algorithm 10: and(P, xi − xj ≤ c)
a := (−∞, . . . ,−∞)
b := (−∞, . . . ,−∞)
ai := 0
bj := c
return cone-to-poly(intersect-halfspace(poly-to-cone(P ),a,b))

Algorithm 11: intersect-halfspace(G,a,b)
G≤ := {g ∈ G | a ⊗ g ≤ b⊗ g}
G> := {g ∈ G | a ⊗ g > b⊗ g}
H := G≤

for all (g, h) ∈ G≤ ×G> do
H := H ∪ {((a ⊗ h)⊗ g)⊕ ((b⊗ g)⊗ h)}

end for
return H

The complexity of intersect-halfspace is O(p2n) – the evaluation of the expression inside
the loop takes O(n) and may be performed O(p2) times, which is also the upper bound on the
number of computed generators. As the conversions from and to the cone representation can be
naively implemented in O(pn), the overall time complexity of intersection with a constraint is
in O(p2n). The complexity of this operation for DBMs is O(n2).

3.3.2 Delay – up(P )

The delay operation is one of the basic algorithms used for forward exploration. Delay is easily
done on a max-plus polyhedron, simply by copying all points in the convex combination to the
linear combination [17]. The complexity is O(pn), as we need to loop though all points, and
for each point we need to copy its value in every dimension. For DBMs the delay algorithm is
linear in the number of clocks, O(n).
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Algorithm 12: up(P )
W := W ∪ V

The definition of a delayed zone shown in section 2.1.1 on page 7 is directly transferable to
max-plus polyhedra: P ↑ = {v +d | v ∈ P, d ∈ R≥0}, that is, any point in P ↑ can be obtained by
adding a non-negative distance d to some point from P . The details of the proof are described
in our previous project report [23].

Alternative delay algorithm

As with all the transforming algorithms, some redundancy is potentially introduced. Cleanup
of the generators, as will be explained in Section 3.5.1 on page 29, is subsequently needed.
When delaying, we can calculate exactly which generators from the convex set are needed in the
linear set to express the delay, thereby reducing the amount of redundancy introduced. With this
reduction, the amount of work for the subsequent cleanup algorithm is also reduced. Essentially,
a delayed polyhedon consists of a convex set, imposing a lower bound, and a linear set giving
the extreme rays. Thus, if a generator in the linear set can be generated by a combination of
the remaining linear generators, it is redundant. From Algorithm 12, we see that the set of
potential linear generators is the combination of the cone and convex set. Therefore, we need
to check that any generator we want to add cannot be generated by the existing generators in
W or by the remaining generators in V . This leads us to an algorithm for calculating the exact
set of extra generators needed in the cone set to represent the delay. The set of generators to
copy can be expressed as:

{x | x 6=
p⊕

i=1
γivi ⊕

q⊕
i=1

βiwi}

where x ∈ V,vi ∈ V \ {x}, wi ∈W , p, q ∈ N and γ, β ∈ Rmax.

Algorithm 13: up-alt(P )
V ′,W ′ = ∅
for all x ∈ V do
V = V r x
if x 6=

⊕p
i=1 γivi ⊕

⊕q
i=1 βiwi then

W ′ = W ′ ∪ {x}
V = V ∪ {x}

else
V ′ = V ′ ∪ {x}

end if
end for
V = V ∪ V ′
W = W ∪W ′

To give an example, figure 3.1 on the following page shows a polyhedron and the result of
running up-alt. We see that the algorithm only copies v3 of the convex generators to the cone
set, copy denoted w3, since the other generators, v1 and v2, can be generated linearly from the
rest. However, it will neither remove w2 nor v3 which becomes redundant generators from the
modification; thus, cleanup is still required to get the polyhedron in minimal form.
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Figure 3.1: The generators of a max-plus polyhedron before and after running up-alt.

Complexity analysis Initially, we see that the complexity of the alternative delay algorithm,
O(p2n), is worse than that of the original delay algorithm, O(pn). However, as mentioned
above, both algorithms require a subsequent cleanup of O(p2n), effectively resulting in the same
complexity for both algorithms. The amount of work done by the original delay algorithm is
less than the alternative one, but as the new algorithm reduces the number of generators that
need to be copied, the amout of work performed by cleanup is reduced correspondingly, allowing
for a potential performance increase.

Essentially, this approach provides some hints which allow the cleanup algorithm to perform
less work. We can use similar principles to adjust the other algorithms, and go even further to
define specialized cleanup algorithms for each individual algorithm, based on the properties of
the possible outputs of each algorithm, which may lead to further performance benefits.

Proof. Our proof follows a similar strategy as our proof for up, shown in our previous report [23].
The delay of P is defined as P ↑ = {v + d | v ∈ P, d ∈ R≥0}, i.e. any point in P ↑ is

obtained by translating some point from P along all axes by some non-negative distance d. Let
P = co(V )⊕cone(W ) be a max-plus polyhedron, and P̂ be the polyhedra obtained from running
up-alt(P ) be P̂ = co(V ) ⊕ cone(V ′ ∪W ), where V ′ = {x | x 6=

⊕p
i=1 γivi ⊕

⊕q
i=1 βiwi}. We

have to prove that P̂ = P ↑. This is the case if P ↑ ⊆ P̂ and P̂ ⊆ P ↑.

• P ↑ ⊆ P̂ : Let p ∈ P ↑. From the definition of the delay operation, we have that p = q + d
for q ∈ P and some d ∈ R≥0. Hence,

p = q + d =
( p⊕

i=1
αivi ⊕

q⊕
i=1

βiwi

)
⊗ d =

p⊕
i=1

αidvi ⊕
q⊕

i=1
βidwi,

where αi, βi ∈ Rmax, vi ∈ V , wi ∈W and
⊕p

i=1 αi = 0. The rightmost side of the equality
now expresses p as a linear combination of generators from V and W . To satisfy the
definition of max-plus polyhedra, we also need to have a convex combination of at least
one point in the expression. Because d is non-negative, we know that αidvi = αidvi⊕αivi

for all 1 ≤ i ≤ p. So,
⊕p

i=1 αivi can be added to the equality without changing its value
to get:

q + d =
p⊕

i=1
αivi ⊕

p⊕
i=1

αidvi ⊕
q⊕

i=1
βidwi.
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This means that q + d ∈ co(V )⊕ cone(V ∪W ). We know V ′ ⊆ V is the set of generators
from V that cannot be generated by the linear combination of the remaining generators
of V and W . Trivially, the separation of V into V ′ and V \ V ′ gives us two disjoint sets.
Therefore the expression representing the linearly scaled V ,

⊕p
i=1 αidvi can be written as:

p⊕
i=1

αidvi =
g⊕

i=1
αidv′i ⊕

p⊕
i=g+1

αidv′′i,

where v′i ∈ V ′,v′′i ∈ V \ V ′. This gives us:

q + d =
p⊕

i=1
αivi ⊕

g⊕
i=1

αidv′i ⊕
p⊕

i=g+1
αidv′′i ⊕

q⊕
i=1

βidwi.

We know from the definition of V ′ that:
g⊕

i=1
αidv′i ⊕

p⊕
i=g+1

αiv′′i ⊕
q⊕

i=1
βiwi =

g⊕
i=1

αidv′i ⊕
q⊕

i=1
βiwi

since v′i ∈ V \ V ′ are the generators that could be represented by the others.
Ultimately this gives us:

q + d =
p⊕

i=1
αivi ⊕

g⊕
i=1

αidv′i ⊕
q⊕

i=1
βidwi

which means that p ∈ co(V )⊕ cone(V ′ ∪W ) and therefore p ∈ P̂ .

• P̂ ⊆ P ↑: It can easily be seen that at the end of up-alt, Vout = Vin and Wout ⊆Win∪Vin,
where Vin,Win is the input, and Vout,Wout is the output. From our previous report [23],
we know that our original up algorithm results in P̂old = co(V )⊕ cone(W ∪V ) = P ↑. This
trivially shows that P̂ ⊆ P̂old, which implies P̂ ⊆ P ↑.

3.3.3 Backward delay – down(P )
Backward delay is the algorithm for determining all the states that could have brought us into a
given state by delay. It is used when doing backward state-space exploration rather than forward
exploration. To do backward delay on a polyhedron we need to add the generator (−1, . . . ,−1)
to the convex set and then intersect with the polyhedron for positive Euclidean space. Since
and is complexity O(p2n) the entire complexity of down is O(p2n2). Backward delay for DBMs
is O(n2).

Algorithm 14: down(P )
V := V ∪ {(−1, . . . ,−1)}
for i := 1 to n do

and(P, xi ≥ 0)
end for

The algorithm works as a result of the properties of Minkowski sums of max-plus generators;
by using -1, we essentially draw a ray going backwards from each individual generator in the
original polyhedron, and this can be shown to match the definition of backwards delay, P ↓=
{p | p+ d ∈ P, d ∈ R≥0}. For details of the proof, refer to our previous project report [23].
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3.3.4 Resetting clocks – reset(P, xi = c)

Reset is the operation of resetting one clock to a given value. In effect it is an affine projection
to the hyperplane equivalent to a given constant for the given dimension. This is done by
iterating through all generators, setting the given dimension to the given reset value for the
convex generators, and to −∞ for the linear generators [17]. This operation can be done in
linear time in the number of generators O(p). The reset operation on DBMs is done in linear
time in the number of clocks O(n).
Algorithm 15: reset(P, xi = c)

for all v ∈ V do
vi := c

end for
for all w ∈W do

wi := −∞
end for

Intuitively, the algorithm works by forcing all the convex generators to be the desired value
for the specificed dimension, and eliminating the effect of the linear generators on this dimension;
consequently, the only possible value for that dimension is the desired value. For the full proof,
see our previous project report [23].

3.3.5 Removing constraints – free(P, xi)

Freeing a clock on a polyhedron is done by removing all constraints on that particular clock. It
is used in combination with constraint intersection to handle resets when exploring the state-
space backward. Performing the free operation on a polyhedron can be done by resetting the
polyhedron with respect to the clock being freed, and then adding the generator containing −∞
for all clocks except xi, where the value should be 0, to the set W. Since linear generators may
be scaled with an arbitrary value, this generator allows clock xi to be any value. The proof
of correctness is also described in our previous project report [23]. Complexity-wise, free is
O(n + p) since reset is linear in the number of points, and creating a vector is linear in the
number of clocks. Free on DBMs is O(n).
Algorithm 16: free(P, xi = 0)

reset(P, xi = 0)
g := (−∞, . . . ,−∞)
gi := 0
W := W ∪ {g}

3.3.6 Union overapproximation – convex-union(P1, P2)

This operation returns the smallest polyhedron that contains both P1 and P2. Such an operation
is useful when performing reachability analysis with convex hull overapproximation of the state
space. We have shown in our previous work [17] that the overapproximated symbolic state
obtained with max-plus polyhedra is at most as large as the one obtained with similar operation
on equivalent DBMs.

The algorithm for max-plus polyhedra simply takes the union of both sets of generators from
each polyhedron, which can be done in O(pn). For DBMs, the overapproximation algorithm is
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O(n2) as it simply involves searching through the matrices and picking the higher value from
them.
Algorithm 17: convex-union(P1, P2)

P = co(V1 ∪ V2)⊕ cone(W1 ∪W2)

3.4 Termination of reachability

Because the clock space is infinite, the reachability algorithm cannot be guaranteed to terminate.
To avoid this issue, DBMs use extrapolation as stated in Section 2.1.1 on page 7. However, due
to the substantial differences in representation, the DBM algorithm cannot be applied directly
to max-plus polyhedra.

Although we were able to show a number of principles which can be applied in an extrapola-
tion algorithm for max-plus polyhedra (see Chapter 4 on page 31 for details), we were not able
to construct a full algorithm which could accomplish this. Consequently, we cannot currently
guarantee termination unless models are modified to ensure a finite state space, e.g. by not
having infinite paths in the system.

3.5 Cleaning up

All of our transformations on max-plus polyhedra may introduce redundant generators, i.e.
generators that are not extreme points and can therefore be expressed as a combination of the
extreme points. Because the time complexity of most of the algorithms depends on the number
of generators, it is desirable to remove such redundancy and only store the minimal number of
generators.

3.5.1 Removing redundant generators – cleanup(P )

Cleaning up results in a combination of a unique and minimal representation for max-plus
polyhedra, in the sense that the convex part is minimal and unique, while the linear part is
only minimal. Making the linear part unique would require a slight alteration of cleanup which
normalizes the linear vectors in some way. However, we do not believe this will give us any
significant advantage, so we have decided not to do this.
Algorithm 18: cleanup(P )

G := poly-to-cone(P )
for all g ∈ G do
if contains-point(g, Gr {g}) then
G := Gr {g}

end if
end for
return cone-to-poly(G)

This is done by checking each point to see whether it can be generated by the other points;
if so, the point is removed. Every such check is O(pn), which makes the time complexity of this
algorithm O(p2n) [19, 2, 15].

A cleaned up polyhedron can be considered to be canonical in the sense that a cleaned up
polyhedron is the optimal input for the different algorithms in a similar way as a canonical
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Max-plus polyhedra DBM
Emptiness test O(1) O(1)∗
Inclusion test O(p2n) O(n2)
Constraint satisfaction O(p) O(1)
Constraint intersection O(p2n) O(n2)
Delay O(pn) O(n)
Backward delay O(p2n2) O(n2)
Resetting clocks O(p) O(n)
Removing constraints O(p+ n) O(n)
Union overapproximation O(pn) O(n2)
Removing redundant generators O(p2n) O(n3)†

Table 3.1: Complexity of algorithms for max-plus polyhedra and DBMs.

DBM is for DBM algorithms. Therefore, it can be compared to the canonicalization algorithm
for DBMs, which is the standard Floyd-Warshall algorithm and therefore O(n3).

3.6 Summary

Table 3.1 shows a comparison of the complexity of the algorithms for max-plus polyhedra and
for DBMs. The number of clocks is denoted n, while p denotes the number of generators of the
polyhedron. We can conclude from this comparison that the complexities of the polyhedra-based
algorithms are comparable to the DBM algorithms, though with a slight advantage to DBMs.

The main argument for using max-plus polyhedra is therefore the more accurate overapprox-
imations; max-plus polyhedra make it possible to represent more complex shapes than a DBM,
which can provide a significant advantage for some models.

Table 3.1 notes

* This requires the zone to always be canonical and for every operation changing a bound
to verify if the upper bound is lower than the corresponding lower bound, setting D00 to
a negative value if this is the case.

† As mentioned in Section 3.5.1 on the preceding page, we have decided to compare this
to DBM canonicalization. Note that some of the DBM algorithms accommodate the
possibility of a slight alteration which preserves canonicity, allowing the canonicalization
to be skipped.
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PRINCIPLES FOR EXTRAPOLATION

Extrapolation is the most commonly used way to ensure termination when representing the clock
space as a DBMs [9, 11]. This, as described in Section 2.1.1 on page 7, takes advantage of the
fact that when maximal bounds are exceeded, the clock valuations become region equivalent,
thereby allowing the zones to include entire regions that are region equivalent to points already
in the zone.

Although we do not have a complete extrapolation algorithm, we have been able to determine
a number of principles which could be used as part of such an algorithm for max-plus polyhedra.

To prove the validity of each principle, we must prove that the modification inferred from
the principle is sound. In other words, the modification of a polyhedron P , denoted Pmod, must
be a subset of the region closure of P , called P closure, as given in Definition 2.2 on page 6. This
subset, Pmod ⊆ P closure means that for all p′ ∈ Pmod, there exists p ∈ P s.t. p′ ∼ p.

Furthermore, if we want to prove a complete extrapolation algorithm, we would also need to
prove that the modification performed on each of the infinite number of possible inputs, leads
to termination of the reachability algorithm, which can be done by either proving a finite set of
outputs, or by proving the outputs to be well quasi-ordered (WQO).

All lemmas and theorems in this chapter are only guaranteed to hold for timed automata with
no difference constraints. Per definition, such constraints cannot exist in a Petri net, therefore
the principles hold for any such model.

Definition 4.1 (Well-Quasi Order). A binary relation, �, on the elements of a set Σ is a well
quasi-order if and only if � is a preorder on Σ, and for any infinite sequence s1, s2, s3, . . . of
elements of Σ, there exist i < j such that si � sj .

Lemma 4.2. The containment relation, ⊇, between two polyhedra is a preorder, i.e. it is
reflexive and transitive.

Proof. Since the containment between polyhedra defined in Section 3.2.3 on page 21 is a logical
extension of set containment, it follows trivially that ⊇ is a preorder over the set of all max-plus
polyhedra.

4.1 1-clock model

Let an arbitrary one-dimensional polyhedron P = co(V )⊕ cone(W ) and a maximal constant k.

31
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Lemma 4.3. There exist only finitely many 1-dimensional polyhedra P where there does not
exist a v ∈ V where v1 > k.

Proof. This is trivial as there are only finitely many integer values between k and 0.

Lemma 4.4. For a one-clock model, given P = co(V ) ⊕ cone(W ) where there exists a v ∈ V
s.t. v1 > k, then Pmod = co(V )⊕ cone(W ∪ {(0)}) leads to Pmod ⊆ P closure.

Proof. Let P be a polyhedron satisfying the condition, then Pmod = co(V ) ⊕ cone(W ∪ {0})
where 0 is the generator (0). This gives us:

p =
p⊕

m=1
αmvm ⊕

q⊕
m=1

βmwm

p′ =
p⊕

m=1
αmvm ⊕

q⊕
m=1

βmwm ⊕ γ0

where p ∈ P , p′ ∈ Pmod and γ ∈ Rmax. We know there exists a p∗ ∈ P s.t. p∗1 > k, since
there exists a u ∈ V s.t. u1 > k. For any valid assignment of α, β, and γ scalars for a p′, it is
necessarily the case that

⊕p
m=1 α

mvm
1 ⊕

⊕q
m=1 β

mwm
1 ≤

⊕p
m=1 α

mvm
1 ⊕

⊕q
m=1 β

mwm
1 ⊕ γ01. If

they are equal, γ0 has no effect, and we can trivially reuse the same α and β scalars to create
a p ∈ P s.t. p = p′ =⇒ p ∼ p′.

If γ0 has an effect on the result, then it is either the case that p′1 > k, in which case p′ ∼ p∗,
or that p′1 ≤ k, in which case p′ ∈ P , since the presence of u guarantees that if such a point
exists, there must also exist a way to obtain that point entirely using V , as V imposes a lower
bound which γ0 cannot violate. Thus we have shown that for all p′ there exists a p where
p′ ∼ p, which implies Pmod ⊆ P closure.

Lemma 4.5. The set of polyhedra Σex being {P | @v ∈ V.v > k} ∪ {Pmod = co(V )⊕ cone(W ∪
{(0)}) | ∃v ∈ V.v > k} with the containment relation, ⊇, between polyhedra, (Σex,⊇) is a WQO.

Proof. From Lemma 4.2 on the preceding page we know the superset relation between polyhedra
is a preorder. The rest of the proof is simple conversion from the fact that (N,≤) is a WQO.
First we see that this well quasi-order can be interpreted as the set of intervals ([N,∞[) is a
WQO over ⊇. Finally we see that Σex correspond to the intervals ([x,∞[), x ∈ N>k and the
intervals ([y, z]) where 0 ≤ y ≤ z ≤ k <∞. It is trivially seen that the intervals between y, z are
a finite set and ([N>k,∞[) ⊂ ([N,∞[). We know a subset of a WQO is itself a WQO [25] and
trivially, the union of a well quasi-ordered set and a finite set over the same preordered relation,
is a well quasi-order as well; thus (Σex,⊇) is a WQO.

Theorem 4.6. For 1-clock models, P extra = co(V ) ⊕ cone(W ∪ {(0)}) if there exists a v ∈ V
s.t.v1 > k, otherwise P extra = P , P extra is an extrapolation of P .

Proof. From Lemma 4.5, we know that our given definition of P extra is a WQO. Lemma 4.4 shows
that the modified polyhedra are sound with rspect to region closure. The unmodified polyhedra
are trivially sound. Since the two cases for this algorithm are mutually exclusive, combining
them must retain the soundness. Finally, since the condition for one algorithm is the negation
of the other, we trivially know P extra covers the entire set of possible input polyhedra.
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4.2 n-clock models

For models with more than one clock, we have developed a number of sound subroutines which
may be used as part of a complete extrapolation algorithm.

Lemma 4.7. Given maximal constants k1, . . . , kn for clocks x1, . . . , xn there exists only finitely
many different polyhedra P satisfying @p ∈ P∀1 ≤ (i, j) ≤ n, i 6= j.pi−pj > ki∨ (pi > ki∧pj >
kj).

Proof. The lemma states that below maximal bounds and between diagonals going out from
the bottom of each maximal bound there is only finitely many possible polyhedra. This can be
seen as a trivial extension of the fact that only finitely many positive integer points exist which
satisfy the condition, and since all generators in a polyhedron represent positive integer points,
there can only be finitely many distinct polyhedra satisfying the condition. In Figure 4.1 the
highlighted clock space is showing the part defined by Lemma 4.7 for two clocks, with maximal
bounds kx and ky.

0
0 kx

ky

Figure 4.1: The two-dimensional finite part clock space below maximal bounds and their diag-
onals as stated by Lemma 4.7.

Lemma 4.8. For all polyhedra P where there exists a v ∈ V s.t. vi − vj 6=i > ki), or a w ∈ W
s.t. wi−wj 6=i > ki), then for all p ∈ P , there exists a p# ∈ P such that p#

j 6=i = pj and p#
i > ki.

Proof. Let the v or w which satisfied the initial condition be denoted by f and the corresponding
scalar by ω. Then by choosing ω = −maxl 6=i(fl)− s, where 0 < s < 1, we get:

ωfi = −maxl 6=i(fl)− s+ fi

ωfj 6=i = −maxl 6=i(fl)− s+ fj

We know from the initial condition that fi − fj 6=i > ki and since all generators have integer or
−∞ elements, fi − fj 6=i − 1 ≥ ki. Trivially, fj 6=i ≤ maxl 6=i(fl), so ωf can be generalised to:

ωfi > ki

ωfj 6=i < 0

As ω < 0 for all s, we know it is a legal scalar value in both cases that f ∈ V and f ∈W , except
for the case where f represents the only convex generator. In this case V = {f} and thus we
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know that 0 ⊗ fi ⊕ cone(W ) =⇒ pi > ki for all p ∈ P . If f is not the only convex generator,
or if it is a linear generator, we define P ∗ = P \ {f} and p∗ ∈ P ∗, such that p = p∗ ⊕ ωf . Now
we see that

p = p∗ ⊕ ωf =⇒
{

pi > ki as ωfi > ki =⇒ max (p∗i , ωfi) > ki

pj 6=i = p∗j as ωfj < 0 =⇒ max(p∗j , ωfj) = p∗j
(4.1)

Now we consider the case where ω < −maxl 6=i(fl) − s. Here we see that ωf does not add
anything to P in dimensions other than the i’th.

p∗j 6=i ⊕ ωfj = p∗j

This is fine as we have covered all p∗j in Equation 4.1.
For the remaining case, where ω > −maxl 6=i(fl) − s, we see that regardless of what clock

valuations ωf adds for the rest of the dimensions, it will always be the case that

p = p∗ ⊕ ωf =⇒ pi > ki

Theorem 4.9. For all polyhedra P where there exists a v ∈ V s.t. vi − vj 6=i > ki, or a w ∈W
s.t. wi −wj 6=i > ki), then Pmod = co(V ) ⊕ cone(W ∪ {0i1}), where 0i1

i = 0, 0i1
j 6=i = −∞, then

Pmod ⊆ P closure.

v3

v2

v1

kx + y

kx

(a)

v3

v2

v1

kx + y

kx

(b)

Figure 4.2: Theorem 4.9 applied to a polyhedron.

Proof. For a two-dimensional example of the modification, see Figure 4.2.
Let p ∈ P and p′ ∈ Pmod.

p =
p⊕

m=1
αmvm ⊕

q⊕
m=1

βmwm

p′ =
p⊕

m=1
αmvm ⊕

q⊕
m=1

βmwm ⊕ γ0i1

where α, β, γ ∈ Rmax, m, p, q ∈ N and
⊕p

m=1 α
m = 0.
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It is trivially seen that adding γ 0i1 to any point p ∈ P , the resulting point p′ must be
identical to p except for the i’th dimension, where it must be greater than or equal to the value
in p. In combination with Lemma 4.8 on page 33, we can therefore safely discard the other
dimensions, degenerating our polyhedron into one dimension. From here, we can directly apply
the same proof as for 4.4 on page 32 to show Pmod ⊆ P closure.

Lemma 4.10. For all polyhedra P where there exists a 1 ≤ i ≤ n s.t. vi > ki for all v ∈ V ,
then for all p ∈ P , pi > ki.

Proof. This is trivial as the convex generators impose a lower bound for all clocks, since⊕p
j=1 α

j = 0.

Theorem 4.11. For all polyhedra P where there exists a 1 ≤ i ≤ n s.t. for all v ∈ V , vi > ki,
then Pmod = PR[xi=ki+1] ⊕ γ0i1, where γ ∈ Rmax, 0i1

i = 0, 0i1
j 6=i = −∞, and Pmod ⊆ P closure.

kx kx + 1

v1

v2

v3

(a)

kx kx + 1

v1

v2

v3

(b)

Figure 4.3: A polyhedron modified as described by Theorem 4.11.

Proof. Figure 4.3 shows an example of the modification done on a two-dimensional polyhedron.
Let p ∈ P and p′ ∈ Pmod. From the definition of reset given in Algorithm 15 on page 28,

we know that for all p′ ∈ Pmod there exists a p ∈ P s.t. p′i > ki and p′j 6=i = pj , as we have
reset the i’th dimension to ki + 1, and γ0i1 neither can add values lower than the lower bound
imposed by the convex generators nor add anything in any dimensions other than the i’th. This
satisfies region closure from Definition 2.2 on page 6 for all dimensions j 6= i.

For the i’th dimension, we can use the knowledge from Lemma 4.10 that for all p ∈ P ,
pi > ki. Thus we know that for all combinations of legal values in dimensions other than the
i’th, there exists a p ∈ P where pi > ki. This can be combined with the fact that all dimensions
apart from the i’th have been preserved to see that for all p′ ∈ Pmod there exists a p ∈ P s.t.
p′i > ki ∧p > ki. All dimensions are therefore covered, so for all p′ ∈ Pmod there exists a p ∈ P
s.t. p ∼ p′ =⇒ Pmod ⊆ P closure.

Corollary 4.12. All polyhedra P , where vi > ki for all 1 ≤ i ≤ n and v ∈ V , can be extrapolated
to P extra = co({(k1 + 1, . . . , kn + 1)})⊕ cone({011, . . . ,0n1}).

Theorem 4.13. For all polyhedra P where there exists a v ∈ V s.t. v1≤i≤n > ki, then Pmod =
co(V )⊕ cone(W ∪ {v}) and Pmod ⊆ P closure.
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Figure 4.4: A polyhedron modified by the property of Theorem 4.13

.

Proof. In Figure 4.4 a two-dimensional example of the modification is shown.
Let the convex generator satisfying the condition be denoted u and p′ ∈ Pmod:

p′ =
p⊕

j=1
αjvj ⊕

q⊕
j=1

βjwj ⊕ γu

where α, β, γ ∈ Rmax and
⊕p

j=1 α
j = 0.

For any γ ≤ αu, where αu is the convex scalar used for u, γu ⊕ αu = αu; in other words,
γu is overridden by αu.

For any γ ≤ 0, αu < γ, γu overrides αuu, but since γ is a valid value for αu, we could have
used the value for γ as the value for αu, so γu doesn’t add any new points.

For any γ > 0, γu enforces p′i > ki, since for all 1 ≤ i ≤ n, γu > ki =⇒ γui ⊕ xi > ki,
where x ∈ Rn

max; thus any such point is region equivalent with u.
Since this works on arbitrary polyhedra, then intuitively, the principle can be applied to

multiple generators satisfying the condition.

Claim. Theorems 4.9, 4.11 and 4.13 are sufficient to perform extrapolation on 2-dimensional
polyhedra.

Proof sketch. Lemma 4.7 on page 33 states that the number of possible polyhedra below both
of the k-diagonals or below both kx and ky is finite. This is exactly the part of the clock space
highlighted in Figure 4.1 on page 33.

We believe that in two dimensions, the resetting modification described in Theorem 4.11
on the preceding page results in a finite set for polyhedra entirely below the opposite maximal
bound; i.e. the number of polyhedra entirely below ky and entirely above kx is finite and vice
versa. That still leaves the polyhedra that are partly above either of the k-diagonals and below
the respective k’s, and the polyhedra both above and below kx and ky. The latter modification
is described in Theorem 4.13 on the previous page, while the former is described in Theorem 4.9
on page 34.

We believe the union of these two sets of modified polyhedra to be well quasi-ordered, since
given a polyhedron partly above the kx-diagonal and thus modified to extend infinitely for the
x-clock, there are only finitely many supersets of this polyhedron, given we maintain the possible
values for y. Conversely, if we do not maintain the value of y, there are only finitely many values
y can be until either y = 0 or y−x > ky, which will cause a modification by extending infinitely
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in the direction of the y-clock. There is then only the possibility of modifying both x and y. In
this case, there are only finitely many steps back to (0, 0) or until x > kx and y > ky, in which
case the polyhedron may be extended infinitely on the diagonal. A similar strategy could have
been used if the initial polyhedron was modified either on the y-clock or on the diagonal.

Since the lemma and the three theorems cover all possible input polyhedra in two dimensions,
and since the union of finite and well quasi-ordered sets over the same preorder is still WQO,
we can make use of these to ensure termination. Additionally, all of the theorems have been
proven sound on arbitrary polyhedra, hence the combination of these is still sound, allowing
extrapolation of 2-dimensional polyhedra.

4.3 Summary

For models containing only one clock, we have shown that extrapolation can be done using
the provided theorems. Additionally, we have sketched a proof strategy for our claim that the
theorems are also sufficient for two-dimensional polyhedra.

The reason this is not sufficient for models where n > 2 is that Theorem 4.13 on page 35 only
allows modification when all maximal bounds are exceeded. Thus there exists infinite sequences
given by modifying two clocks, where the polyhedra are both below ki and above ki-diagonals.
Therefore, the presented modification strategies are not sufficient for complete extrapolation of
arbitrary polyhedra.



CHAPTER 5

IMPLEMENTATION

In order to test the efficiency of our approach, we have implemented it in VerifyTAPN [22], a
project created to perform reachability checking directly on timed-arc Petri nets. This chapter
will only discuss the changes made as part of our implementation; for a more detailed explanation
of VerifyTAPN itself, refer to Jacobsen and Jacobsen [21].

5.1 Changes to VerifyTAPN

In addition to implementing max-plus polyhedra, we have added support for overapproximation
to VerifyTAPN.

In a timed automaton, overapproximation is implemented by only storing a single zone for
each location, and using convex hull union when adding more zones. This helps to avoid state-
space explosion, but at the cost of losing accuracy: even if a point is found to be inside a
zone when using overapproximation, that point may not actually be reachable. For a timed-arc
Petri net, the same principle applies, such that one zone is stored for each combination of token
placements.

Overapproximation allows us to find a case where we can exploit the properties of our convex
union, and get a correct result in a situation where DBMs would provide an inconclusive result.
In such a case, we can compare the running time of max-plus overapproximation with the running
time of both overapproximation and exact analysis for DBMs.

5.2 Max-plus polyhedra

VerifyTAPN includes support for zone-based model checking, using the Uppaal DBM li-
brary [31]. The implementation supports a dynamic number of tokens by adding or removing
clocks as necessary, and also supports symmetry reduction.

Our implementation of max-plus polyhedra also supports a dynamic number of tokens in
a similar way to DBMs. Symmetry reduction is not currently implemented, so all testing on
DBMs is performed without this option; however, it would certainly be possible to implement
symmetry reduction for max-plus polyhedra as well, which should provide similar results as
adding symmetry reduction for DBMs.

38
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Figure 5.1: Timed automaton used as template for benchmarking.

To represent our generators, we have implemented a simple MPVector class which can handle
the various operations we need to perform on the generators - other than max-plus addition and
multiplication, this includes adding and removing dimensions, and comparing two instances of
the class. To keep the code as simple as possible, the underlying storage is currently implemented
using std::vector<int>, but can be substituted with e.g. a manually allocated array.

The two sets of generators in our max-plus polyhedra are represented using two doubly-
linked lists (std::list<MPVector>). Although it may seem counter-intuitive to store sets using
lists, it is much more difficult to alter elements in a set, since practical implementations of sets
(e.g. std::set) require the elements to be ordered, necessitating that elements are removed,
modified and subsequently re-added. Since we perform the cleanup operation after most other
operations, these extra points will be removed quickly, so we consider this to be a reasonable
trade-off. Another disadvantage of lists is that finding a specific element requires searching
through the entire list - but this is not a problem in practice, since none of our algorithms look
for specific points; when dealing with individual generators, we always want to work on all of
them, so we have to iterate over the entire collection.

5.3 Benchmarking

The main advantage of using max-plus polyhedra is the possibility for more accurate overap-
proximations, so we have created a model specifically to highlight this difference. The basic
model is shown in Figure 5.1, and it uses the same principle as the model in Section 2.3.2 on
page 16.

If overapproximation with DBMs are used, the final transition from l6 to lf will be enabled,
even though this is clearly not possible in practice – hence, the result will be inconclusive. In
this case, max-plus polyhedra avoid this issue, since they are able to generate the exact result
even with overapproximation.

Using a tool, we construct different models from this template, based on three parameters:

Number of branches Between l3 and l6, we can vary the number of branches n. Each
branch goes to a different, intermediate state, with the i’th branch constraining on x ≥ i and
y ≥ (n− i+ 1).

Number of repetitions Since the exact automaton shown in Figure 5.1 is too small to show
any significant differences in timing, we chain the template after itself a number of times. When
doing so, the transition between l6 and lf is replaced with a transition from l6 to l0 in the next
instance of the template, resetting both clocks involved with the upcoming instance.
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Number of clocks We can use an arbitrary number of clocks when repeating our template.
Essentially, the set of clocks C is put into a queue; every time the template is instantiated
for a repetition, two clocks are removed from the queue and used in place of x and y. After
generating the current instance, the clocks are put back in the order they were removed, and the
next instance can be generated. For example, if we use 4 clocks (1-4), the first instance would
use clocks 1 and 2, while the second instance would use 3 and 4, and the nth instance would use
the same clocks as the (n− 2)th instance.

The tool works by constructing the timed automaton, then converting it to a timed-arc Petri
net using an algorithm presented by Srba [27] and ultimately serializing this Petri net as an
XML model.

As stated in Section 3.4 on page 29, termination is guaranteed due to a finite number of
paths through the system. Consequently, we do not add upper invariants on the age of tokens.

5.3.1 Results

Table 5.1 shows the absolute time required to perform reachability checking with breadth-first
search on our model, using a variety of different parameter values. MPP refers to the time spent
performing model checking with max-plus polyhedra and overapproximation (which is exact in
this case), whereas DBM refers to the time spent performing using DBMs and exact analysis.
To reduce the impact of unfortunate scheduling, each model has been checked 3 times, and the
best result selected.

Since overapproximations with DBMs will result in incorrect results, this configuration is not
included; similarly, because all of our max-plus algorithms are of equal or higher complexity than
the corresponding DBM algorithms, DBMs will always outperform max-plus polyhedra when
both are faced with exact analysis, so we also avoid exact analysis with max-plus polyhedra.

The computer used for these benchmarks is an Intel Core i7-920 @ 2.67 GHz, with 6 GB
RAM and Windows 7 (64-bit). GCC 4.3.3 (32-bit) was used to compile the program using -O3,
and DBM operations are performed using the Uppaal DBM library version 2.07 built in release
mode.

Branches 2 3 5 10
Reps Clocks DBM MPP DBM MPP DBM MPP DBM MPP
100 2 0.26s 0.22s 0.44s 0.31s 0.85s 0.55s 2.35s 1.44s
200 2 1.03s 0.75s 1.78s 1.08s 3.44s 1.88s 9.78s 4.97s
400 2 4.61s 3.06s 7.74s 4.37s 15.0s 7.66s 42.6s 19.8s
100 3 0.28s 0.26s 0.47s 0.37s 0.89s 0.64s 2.44s 1.64s
200 3 1.09s 0.85s 1.85s 1.23s 3.54s 2.11s 9.81s 5.40s
400 3 4.36s 3.06s 7.26s 4.35s 14.1s 7.53s 40.0s 19.2s
100 4 0.44s 0.60s 1.27s 1.63s 3.06s 8.63s 9.88s 144s
200 4 1.72s 1.62s 5.06s 3.82s 12.5s 18.8s 41.2s 311s
400 4 7.14s 5.06s 21.3s 10.7s 51.4s 43.7s 174s 630s
100 5 0.45s 0.93s 1.84s 2.46s 4.41s 12.2s 14.3s 185s
200 5 1.89s 2.28s 7.13s 5.47s 17.8s 25.3s 57.8s 367s
400 5 7.56s 6.21s 28.5s 13.4s 71.4s 54.4s 239s 734s

Table 5.1: Timing results for model checking
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To more easily compare the results, Table 5.2 shows the time spent for max-plus polyhedra
as a percentage of the time spent for DBMs. The number of states discovered and explored are
shown, respectively, in Table 5.3 and Table 5.4 on the next page.

Branches 2 3 5 10
Reps Clocks
100 2 83.3% 70.3% 64.6% 61.2%
200 2 72.7% 60.7% 54.5% 50.8%
400 2 66.4% 56.6% 51.0% 46.6%
100 3 93.8% 79.6% 71.8% 67.0%
200 3 78.6% 66.4% 59.5% 55.1%
400 3 70.1% 59.9% 53.6% 48.0%
100 4 137% 128% 282% 1453%
200 4 94.0% 75.4% 151% 753%
400 4 70.9% 50.1% 85.0% 361%
100 5 205% 133% 275% 1291%
200 5 120% 76.8% 142% 634%
400 5 82.2% 47.0% 76.2% 308%

Table 5.2: Time spent on max-plus as percentage of DBM time

Branches 2 3 5 10
Reps Clocks DBM MPP DBM MPP DBM MPP DBM MPP
100 2 1399 900 1997 1100 2995 1500 5391 2500
200 2 2799 1800 3997 2200 5995 3000 10791 5000
400 2 5599 3600 7997 4400 11995 6000 21591 10000
100 3 1399 900 1997 1100 2995 1500 5391 2500
200 3 2799 1800 3997 2200 5995 3000 10791 5000
400 3 5599 3600 7997 4400 11995 6000 21591 10000
100 4 2191 900 5755 1100 11897 1500 31511 2500
200 4 4391 1800 11555 2200 23897 3000 63311 5000
400 4 8791 3600 23155 4400 47897 6000 126911 10000
100 5 2191 900 7715 1100 17385 1500 50327 2500
200 5 4391 1800 15515 2200 34985 3000 101327 5000
400 5 8791 3600 31155 4400 70185 6000 203027 10000

Table 5.3: Number of discovered states during model checking
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Branches 2 3 5 10
Reps Clocks DBM MPP DBM MPP DBM MPP DBM MPP
100 2 1100 700 1500 800 2100 1000 3500 1500
200 2 2200 1400 3000 1600 4200 2000 7000 3000
400 2 4400 2800 6000 3200 8400 4000 14000 6000
100 3 1100 700 1500 800 2100 1000 3500 1500
200 3 2200 1400 3000 1600 4200 2000 7000 3000
400 3 4400 2800 6000 3200 8400 4000 14000 6000
100 4 1595 700 3777 800 6555 1000 12707 1500
200 4 3195 1400 7577 1600 13155 2000 25707 3000
400 4 6395 2800 15177 3200 26355 4000 51107 6000
100 5 1595 700 4757 800 8515 1000 16627 1500
200 5 3195 1400 9557 1600 17115 2000 33427 3000
400 5 6395 2800 19157 3200 34315 4000 67027 6000

Table 5.4: Number of explored states during model checking

As the numbers show, increasing the number of repetitions of our model always improves the
relative performance of using max-plus polyhedra, but the results are more varied for branches
and clocks. This makes sense: the model is designed to incur some degree of state space explosion
for DBMs, so significantly more operations need to be performed than for overapproximating
max-plus, negating the impact of the higher complexity of the algorithms.

It is notable that in the test data given above, models with 3 branches always require less
relative time to analyze with max-plus polyhedra than models with 2 branches, but once we
exceed 3 clocks, the same does not apply for 5 and 10 branches. This can be explained by the
necessity to perform cleanup after each union; more clocks means this operation takes more
time for every execution, and more branches means the operation must be executed more often.
This implies the existence of a limit on the number of branches, after which max-plus polyhedra
are unable to perform better than DBMs, determined by the number of clocks and repetitions;
alternatively, the number of branches and repetitions can be said to limit the number of clocks
we can support while maintaining a performance improvement.
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CONCLUSIONS AND FUTURE WORK

The main objective of this project was to expand upon our previous work [17, 23] and im-
plement our work in a manner that allows us to sensibly compare our performance against
the Uppaal DBM library. We succeeded in showing that models can be created such that a
max-plus overaproximation can give the correct answer where DBM overaproximation would
not, while simulatenously outperforming exact DBM analysis. Additionally, we have provided
a set of theorems and lemmas which may be used in the attempt to create an extrapolation
algorithm to ensure termination of the reachability algorithm.

The missing extrapolation and other issues are still unresolved, which prevents us from using
max-plus polyhedra to their full effect. Future work would benefit from considering these issues,
described below.

6.1 Performance

Although we have shown a case where max-plus polyhedra can use overapproximation to obtain
the correct result faster than DBMs, max-plus polyhedra are still slower than DBMs in the
general case, with many algorithms having a higher complexity than the corresponding DBM
algorithm, or incurring a high additional complexity due to the need to perform cleanup after
performing the operation. It is possible that better algorithms exist which can reduce the total
complexity.

We have considered the possibility of having the down algorithm alter the generators rather
than relying on intersection. Several attemps came close, however none of them turned out to
work for arbitrary polyhedra. Despite a lack of success, we believe an algorithm with better
complexity than O(p2n2) is possible but finding and proving such an algorithm is left as future
work.

Additionally, the implementation can likely be improved to increase its practical perfor-
mance, which would mitigate the effect of the higher complexities. For example, our current
representation of vectors is quite naive, and e.g. by using a representation suitable for specialized
CPU vector operations, a significant change may be observable.
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6.2 Strict constraints

As we have shown, max-plus polyhedra can be used to represent timing information for real-time
model checking as combinations of conjunctions, as well as some disjunctions, of constraints.
If all constraints represented by a polyhedron are non-strict, no additional information for the
polyhedron is needed. However, if strict constraints are introduced, the generators for the
polyhedron cannot trivially be used to represent this strictness information. While we do not
have a complete theory for this, we will present the current state of our work on this.

The basic idea comes from looking at the elements of constraints. Trivially, a strict constraint
is equivalent to a non-strict constraint without the equality, i.e. x−y < t ⇐⇒ x−y ≤ t\x−y =
t. We attempt to transfer this principle to polyhedra by representing strict constraints as a set
of polyhedra representing the strict faces, in addition to the usual non-strict polyhedron which
defines the shape of the polyhedron. Formally, we write this as P = co(V ) ⊕ cone(W ) \ {P1 =
co(V1)⊕cone(W1), . . . , Ps = co(Vs)⊕cone(Ws)}, where s ≥ 0 is the number of strict constraints,
and each Pi = co(Vi) ⊕ cone(Wi), 1 ≤ i ≤ s represents one strict constraint. For convenience,
we will denote P = P̄ \ P̃ , where P̄ is the non-strict max-plus polyhedron defining the shape,
and P̃ = {P1, . . . , Ps} is the set of strict constraints as polyhedra.

Any polyhedron P with strictness information can be converted to a max-plus cone G in the
regular manner by converting P̄ and all Pi ∈ P̃ individually, using by Algorithm 3 on page 19;
the same principles applies for converting back to a polyhedron. The notation of a cone carrying
strictness will be the intuitive G = Ḡ \ G̃.

We start by providing an algorithm for checking if one given point can be generated
by a cone. This is done by first checking if the point can be generated by Ḡ using Al-
gorithm 5 on page 21; if so, we check that it cannot be generated by any of cones in G̃.
Algorithm 19: contains-point-strict(G,x)

if contains-point(Ḡ,x) then
for all Gi ∈ G̃ do
if contains-point(Gi,x) then
return false

end if
end for
return true

end if
return false

The complexity of this algorithm is O(spn) where s is the number of strict constraints
represented as cones, p is the maximal number of generators in any of the cones in G and n is
the number of clocks. Thus this is done in polynomial time.

The membership test can be used to create an algorithm for subset testing between two
polyhedra. It uses Algorithm 6 on page 21 to take advantage of the fact that the non-strict
polyhedron P̄ must contain the non-strict polyhedron P̄ ′ in order for P ⊇ P ′ to be possible. If
this is the case, we also need to ensure that the strict parts of the two polyhedra are handled cor-
rectly by stating that if a generator is strictly included in P ′ it must also be strictly included in P .
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Algorithm 20: contains-strict(P, P ′)
if ¬contains(P̄ , P̄ ′) then
return false

end if
G := poly-to-cone-strict(P )
G′ := poly-to-cone-strict(P ′)
for all g ∈ Ḡ′ do
if contains-point-strict(G′,g) ∧ ¬contains-point-strict(G,g) then
return false

end if
end for
return true

The complexity of the containment algorithm is O(sp2n). This ensures that the relationship
between polyhedra can be calculated using the given representation of strictness.

The first, and so far only, transforming algorithm we have devised for this data structure is
constraint intersection. It assumes an input ϕ = xi−xj ∼ c,∼∈ {≤, <} since all other constraint
types can be rewritten to this form. The algorithm works by intersecting the non-strict part P̄
with the non-strict form of the constraint, regardless of the actual ∼, using Algorithm 10 on
page 24. If the result is empty, then P is empty regardless of all strictness information; if this
initial intersection is non-empty, all constraints in P̃ is intersected with the non-strict form of
ϕ, to keep them within the shape of our polyhedron, and the new constraint is added to P̃ .

One thing to notice is that and-strict is an actual modifying algorithm, whereas and as
presented in Algorithm 10 on page 24 ends up returning a modified copy instead.

Algorithm 21: and-strict(P, xi − xj ∼ c)
P̄ := and(P̄ , xi − xj ≤ c)
if P̄ 6= ∅ then
for all Pi ∈ P̃ do
Pi := and(Pi, xi − xj ≤ c)

end for
if ∼ is < then
Pnew := and(P̄ , xi − xj = c)
if Pnew 6= ∅ then
P̃ := P̃ ∪ {Pnew}

end if
end if

end if

The non-strict constraint intersection has a complexity of O(sp2n) as it has to do regular
intersection s times.

Using the intersection algorithm, we have been able to create an satisfied algorithm
for this strict representation. It takes advantage of the simple principle that for ϕ to
be satisfied, intersecting polyhedron P with ϕ must not be empty. As only a sin-
gle intersection is necessary, the complexity is the same as for Algorithm 21, O(sp2n).
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Algorithm 22: satisfied-strict(P,ϕ)
if and-strict(P,ϕ) = ∅ then
return false

end if
return true

Finally, we can create the overapproximating union of two strict polyhedra. To union two
polyhedra P and P ′, we can simply re-use the non-strict algorithm by unioning the non-strict
parts P̄ and P̄ ′ and discarding all strictness information. This is valid since the union between
two polyhedra is already an overapproximation, and removing the strictness information would
only result in a slightly worse approximation.

Problems One of the first problems that arises with this structure is how to check for empti-
ness. An intuitive way is to check if the non-strict part is empty and if it is not, check that
the non-strict part is not entirely contained in any of the strict faces. However, this can be a
problem if, e.g., we have P = co((1, 1), (3, 2)) \ {P1 = co((1, 1), (2, 1)), P2 = co((2, 1), (3, 2))}, as
shown in Figure 6.1. Here P1 represents the constraint x 6= 1 and P2 the constraint x− y 6= 1.
Non-strict part P̄ = co((1, 1), (3, 2)) is not entirely contained in either, however it is entirely
contained in the combination of the two strict faces. This combination is not trivially calculated
as we have no algorithm for determining whether the union of two polyhedra is exact.

0 1 2 3 40

1

2

3

P̄

P1

P2

Figure 6.1: The problem of emptyness checking with strictness.

For the modifying algorithms except for intersection, the main problem is that modification
– whether projecting time or resetting or freeing clocks – will sometimes require that certain
strict faces must be discarded. So far, we have not been able to construct any algorithms that
were able to correctly do so.

6.3 Extrapolation

As described in Chapter 4 on page 31, we have a complete extrapolation algorithm for 1-
dimensional polyhedra, as well as a proof sketch for an algorithm for 2-dimensional polyhedra;
however for polyhedra containing more clocks, we are unable to guarantee termination of the
reachability algorithm. Therefore models with a finite number of branches or models where an
upper bound has been imposed by adding invariants to all states must be used in these cases.

Nevertheless, we were able to prove a number of principles which can be used in an max-plus
extrapolation algorithm, and these hold for any number of clocks.
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Summary
In this report, we perform real-time model checking, using a new abstract
representation for the symbolic state space, namely max-plus polyhedra rep-
resented as the Minkowski sum of sets of generators. Previously we have
shown that the required basic operations needed for forward (resp. back-
ward) reachability analysis of timed models, delay, reset (resp. backward
delay and free) and intersection can be done using this representation. We
present the algorithms and give a suggestion for a possible optimization of
the delay algorithm, which could potentially could adapted and applied to
the rest. To combat the problem of state space explosion which can occur
in models with extensive branching, unions, exact or overapproximating,
are needed. It has been shown that max-plus polyhedra are more expres-
sive than DBMs, and we have previously shown that the overapproximating
union of max-plus polyhedra are at least as good as those for DBMs.

Additionally, an extrapolation algorithm is needed to ensure termination.
We have provided theorems sufficient for creating a such algorithm for 1-
dimensional polyhedra and a claim that we have theorems sufficient for 2-
dimensional extrapolation. For models of more than two clocks, we cannot
devise a complete extrapolation, however most of the lemmas and theorems
still apply to arbitrary n-dimensional polyhedra.

The main purpose of the report was to show the approach of using max-
plus polyhedra as a data structure for the symbolic state space in real-time
model checking to be applicable in practice. We implement our approach
on top of the model checker VerifyTAPN, for timed-arc Petri nets. The al-
gorithms were originally developed based on the theory of timed automata,
but they are easily converted to operate on timed-arc Petri nets, despite the
differences in behavior between the two classes of models. We construct a
model to show the concrete advantage of the ability of max-plus polyhedra
to express more accurate overapproximations. The test shows for these con-
crete models, the DBM overapproximation always generates false positives
and thus exact analysis is needed, while overapproximation with max-plus
polyhedra overapproximation get the correct result, thereby not requiring
exact analysis. For some of these models, this property makes the max-plus
overapproximation faster than exact DBM analysis.


