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1
Preface

Style Guide

The following style is used throughout this report:

Citations are represented as a pair of angle-brackets containing a number.
The number refers to a number in our bibliography. Used as this section
is based on [1] means that the entire section is based on the mentioned
source, unless other sources are explicitly stated.

A citation at the end of a sentence, but right before the full stop, means
that the citation is used exactly for that sentence. A citation after a full
stop means that the citation is applied to the whole paragraph, i.e. more
than one sentence.

Citing a speci�c page, section and chapter, is done with "p.", "sec." and
"chap." respectively, e.g. [1, p. 55], [1, chap. 2], etc.

Prerequisites

The intended readers of this report are people with knowledge equivalent of a
9th semester Software Engineering student, with a basic understanding of par-
allel programming, and knowledge of computational accelerators and Graphics
Processing Unit (GPU)s. A basic understanding of the C# is recommended, as
many of the code examples in this report are written in C#. In addition, a basic
understanding of the .NET framework is recommended since we are developing
a .NET library.

General-Purpose computations on Graphics Processing Units (GPGPU) ex-
perience is not required prior to reading this report, since Section 2.1 will de-
scribe the basic theory related to GPGPU programming.

Terms

The following list de�nes how some of the most important terms should be
understood.

GPU refers to Graphics Processing Unit, a specialized microprocessor that
accelerates graphics computations.
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Chapter 1. Preface

Concurrency refers to computations done simultaneously, but can be inter-
leaved.

Parallel refers to computations that are done simultaneously and in parallel.

GPGPU refers to General-Purpose computing on Graphics Processing Units,
i.e. utilizing graphics cards for non-graphical computations.

Device refers to a GPU and its associated memory.

Device code refers to code which is executed on a device.

Host refers to the host system containing the Central Processing Unit (CPU)
and main memory.

Host code refers to code which is executed on the host.

Benchmark is a task to be performed a number of times, e.g. a task could be
Vector Addition or Matrix Multiplication.

Benchmark suite is a collection of benchmarks.

Benchmark implementation is a speci�c implementation of a benchmark.

Iteration is a single execution of the task given by the benchmark.

Benchmark run refers to running all the iterations of a benchmark both in
steady state and start up.

Run of a benchmark suite is a benchmark run of all the benchmarks in the
suite.

Arithmetic Intensity is de�ned as the number of operations performed per
element of memory transferred.

Enclosed CD and Summary

On the enclosed CD the source code developed during this project is available,
along with the benchmark results and this report in PDF format. In addition,
we have included a summary of the whole report in Appendix F.

Thanks

We will like to give special thanks to Lone Leth Thomsen, our supervisor the
past four semesters, for her tireless feedback and guidance. Furthermore we
will thank Aage Sørensen for ordering and installing the graphics card we used
during this semester, and the IKT-board for sponsoring the graphics card.
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2
Introduction

GPGPU is the technique of utilizing GPUs for general computations, that is,
solving problems other than the graphics rendering problem. During the last
decade GPGPU programming has become increasingly accessible, through bet-
ter support from GPU manufacturers, e.g. Nvidia has released its own program-
ming language, abstract GPU architecture and framework, known as Compute
Uni�ed Device Architecture (CUDA), for Nvidia GPUs. Nvidias programming
language, CUDA C, has helped remove some of the �black art� of GPGPU pro-
gramming, but it still requires that the developer knows fundamental GPGPU
heuristics, such as which memory types to use in which situations, and how
threads should be grouped to maximize performance. CUDA and GPGPU pro-
gramming is described in more detail in Section 2.1.

9th Semester Project During our 9th semester, we conducted an analysis of
the topic of GPGPU where we looked at a concrete GPU architecture, namely
the CUDA enabled G80 architecture featured in the Tesla C870 graphic card,
and how GPUs can be programmed using GPGPU programming languages such
as BrookGPU, CUDA C and Open Computing Language (OpenCL). Further-
more, we gained experience with GPGPU by implementing a ray tracer using
CUDA C, and implementing the Boids �ocking simulation of one million actors
using OpenCL, CUDA C and Brook+.

Additionally, benchmarks were carried out and found that the ray tracer
achieved 8 times speedup on the GPU compared to the CPU implementation,
and that the �ocking simulation achieved 25 times speedup. Finally, we looked
at the future trends of GPGPU and found that Nvidia is pushing the GPGPU
boundaries by introducing language support for function pointers and object
orientation, which were not possible on the G80 architecture. We also found
that GPGPU is gaining momentum which is evident by the number of companies
which are investing programmer hours in implementing GPU support into their
applications, and is evident on the number of GPGPU publications by the
scienti�c community.

Based upon the knowledge and GPGPU programming experience gained last
semester, we conclude that GPGPU programing is still in its early stages and
requires maturation before it will be accepted by most programmers, but that

1



Chapter 2. Introduction

GPGPU programming is a skill worth learning if higher arithmetic performance
is needed. We also saw last semester that not all types of problems can be solved
faster by using the GPU, and even if all problems were e�ectively solvable using
GPUs, the majority of programmers and companies might not be interested in
high performance, but instead be interested in e.g. high productivity. Therefore,
GPGPU programming is primarily interesting for programmers concerned with
performance, as is the case with parallel programming for the CPU.

Motivation Parallel programming on the CPU has existed for several years by
utilizing threads, and has been regarded as a "black art" since concurrency faults
are common. The same can be said of GPGPU programming, since GPUs are
seldom programmed using high level abstractions but instead using lower level
abstractions, such as CUDA C or OpenCL C. This means that programmers
need to use an Application Programming Interface (API)s such as the CUDA
Runtime API or OpenCL API, and languages, such as the CUDA C language
or OpenCL C language to move computations from the CPU to the GPU.

Researchers and companies have introduced higher level GPGPU abstrac-
tions for well know programming languages, such as the the Accelerator project
for .NET [51], which gives programmers the possibility of moving computations
to the GPU using their language of choice. The interaction between the CPU
part of the application and the GPU part of the application involves invoking
functions and marshalling data to and from the GPU. When using one of the
higher level abstractions, data between the two parts are often marshalled by
a runtime system, instead of manually marshalled by the programmer, and the
GPU part of the application is written in the same language, or a subset thereof,
as the CPU part.

At the time of writing, CUDA Runtime API, CUDA Driver API and OpenCL
API bindings exist for the .NET platform, thus giving .NET programs the ability
to invoke GPU functions written in CUDA C or OpenCL C. Also, some solutions
such as GPU.NET, allow the GPU part of the program to be implemented
directly in C#. GPU.NET does however not provide much abstraction, thus
the programmer must still divide the threads into thread-blocks, and write the
GPU part of the program as if it was written in CUDA C, albeit with a di�erent
syntax. CUDA concepts, such as thread-blocks, will be covered in more detail
in Section 2.1.

10th Semester Project In this project, we want to increase the abstraction
level of writing GPU powered .NET applications, which means that the pro-
grammer must be able to write GPU functions directly in a .NET language,
such as C#, while not having to worry about marshalling of data to and from
the GPU. Currently, auto parallelization is possible on the CPU by using the
.NET Task Parallel Library (TPL) which is part of the .NET 4.0 framework.
We want to introduce a similar library but for the GPU, dubbed Accelerated
Parallel Library (APL). This allows programmers with experience in using the
TPL to port their parallel applications to the GPU, by changing only a few
lines of code. TPL supports both task parallelism and data parallelism. In this
project, we will focus on the data parallel part of the TPL.
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2.1. GPGPU PROGRAMMING

2.1 GPGPU Programming

The aim of this section is to brie�y introduce the concept of GPGPU program-
ming, how GPGPU programming is done on todays GPUs, and some of the
needed terminology to understand later sections of this report.

There exist several frameworks and GPU speci�c languages for developing
GPU accelerated applications, such as Brook, CUDA, OpenCL and Accelerator.
This section mainly introduces CUDA and OpenCL, which we analyzed in our
9th semester project [16].

First, we will brie�y cover how GPGPU programming was done in the past
using shaders. Afterwards, we will cover the CUDA compute model, which is
the model used by Nvidia's GPUs.

Lastly, we will brie�y cover the OpenCL compute model, along with the
OpenCL C language used to program this model, and compare this model with
the CUDA model.

2.1.1 General Purpose Programming Using Graphics API

Prior to abstractions such as CUDA and OpenCL, programmers used graphics
APIs such as DirectX and OpenGL to execute custom made programs on the
GPU, called shaders.

The graphics API was initialized prior to invocation of the shader, which
means that the graphics pipeline is con�gured to render a square at a given
resolution, which is positioned such that it �lls the entire screen. The number
of threads spawned on the GPU depends on this resolution, e.g. rendering a
quad at 1024x1024 resolution means that about a million threads are spawned.
[12]

Each spawned thread executes the programmer de�ned shader, thus allowing
highly parallel algorithms to run on the GPU, without these algorithm being
graphical in nature. The problems with this approach is that shader program-
ming is very limited, e.g. a shader could not write to an arbitrary address prior
to the introduction of compute shaders in DirectX 11[53], and algorithms has
to be expressed in a graphical way, i.e. by using the graphics API.

Projects, such as Accelerator which is brie�y covered in Section 2.2.6, ab-
stracts away from this graphical nature.

2.1.2 CUDA

CUDA is a parallel computing architecture developed by Nvidia for Nvidia based
GPUs [47, sec. 1.2]. CUDA resembles the model presented above, except that
kernels, which are equivalent to shaders in DirectX and OpenGL terminology,
are much more powerful, e.g. a CUDA kernel is able to randomly access memory
and arbitrary branching is allowed.

The programmer writes the kernel in a language such as CUDA C, and
is later compiled to a language called Parallel Thread Execution (PTX), the
programmer can then issues a kernel call from the host in order to run the
kernel on the device. PTX is covered in more detail in Section 3.7. The kernel
call determines how many instances of the kernel, i.e. how many threads, should
be executed concurrently on the GPU. Each thread executing a kernel instance
has a unique thread ID, this can for example be used to determine which piece
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of the input data the thread should work on. Threads are further grouped into
thread blocks and thread blocks are grouped into a grid. This is shown on
Figure 2.1. [47, Chap. 2.2]

The CUDA model exposes several types of memory: Global memory, which
is shared between all threads, shared memory, which is shared by all threads in
a thread block, and local memory, which is private to each thread. This is also
depicted on Figure 2.1. Furthermore, some read only memory exists: Constant
and texture memory, which can be used by the programmer to optimize certain
areas of the kernel, e.g. texture memory can be used to optimize read only parts
of the kernel since texture memory is cached on chip memory. When memory
from the host is needed on the device it must explicitly be copied back and forth
between the host and the device. [47, Chap. 2.3]

With regards to execution, CUDA devices execute threads in lockstep of 32
threads at a time and this grouping is referred to as a warp. Since threads are
executed in lock step, branching is not supported. This means that a thread
which do not take a branch, is inactive until the other threads in the warp,
which did take the branch, returns from that branch. This can result in 1/32th
the performance in the worst case, if all 32 threads follow 32 di�erent execution
paths. [47, Chap. 4.1]

GPUs which support CUDA have one of several compute capabilities. Each
compute capability increases the range of features which is supported on the
device, e.g. compute capability 1.1 supports all features of 1.0 but does also
support atomic operations [47, G.1]. In addition, two major version of compute
capability exists, namely 1.x and 2.x. 2.x introduces many new features, such
as 64bit addressing and a common address space which gives better support for
pointers. The di�erence between the two major versions are covered in more
detail in Appendix E.

2.1.3 OpenCL

OpenCL is more or less the open version of CUDA, i.e. OpenCL is developed
and implemented by many vendors whereas CUDA is implemented by Nvidia.
OpenCL provides a programming model which is very similar to the CUDA
model, and a language, OpenCL C, which is very similar to CUDA C. The
di�erence between the two abstractions is more or less the naming conventions
used. Table 2.1 shows the name translation between CUDA and OpenCL ter-
minologies. Furthermore CUDA is more powerful in some aspects, as described
in Section 3.5.2.

Since OpenCL is an open standard, multiple vendors are invited to improve
the standard by introducing new features. New features, however, have to be
accepted into the standard by the other vendors, whereas Nvidia is the only
company responsible for the CUDA standard.
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CUDA OpenCL Description

Thread Work-item One instance of a kernel
Thread block Work-group A set of threads
Grid N-Dimension range Grouping of thread blocks
Global memory Global memory Accessible for all threads
Shared memory Local memory Shared between threads in thread blocks
Local memory Private memory Private to each thread
Constant Constant Read only memory

Table 2.1: Terminology in CUDA and OpenCL

Thread Block

Grid 0

Grid 1

Block (0, 0) Block (1, 0) Block (2, 0)

Block (0, 1) Block (1, 1) Block (2, 1)

Block (0, 0) Block (1, 0)

Block (0, 1) Block (1, 1)

Block (0, 2) Block (1, 2)

Per-thread 
local memory

Per-block 
shared 

memory

Global 
memory

Thread

Figure 2.1: Shows the relations between threads, thread blocks, grids and mem-
ory types [47]

5



Chapter 2. Introduction

2.2 Prior Works

In this section we will look at publications in the area of GPGPU program-
ming. Also, we will look at publications dealing with code generation from one
language to another within the context of Common Language Infrastructure
(CLI), which is the speci�cation of the .NET framework. The aim of this sec-
tion is to give us inspirations for how to implement APL, by looking on other
contributions.

2.2.1 A Parallel Dynamic Compiler for CIL Bytecode

[4] from 2008 deals with the problem of implementing a parallel dynamic trans-
lator and optimizer, i.e. a Just-In-Time (JIT) compiler that compiles and per-
forms optimizations in parallel, called Intermediate Language Distributed Just
In Time (ILDJIT), which takes as input a Common Intermediate Language
(CIL) representation of the source program and translates this representation
to native instructions of the target architecture there is then executed. .NET
programs are mostly written in a high level language, such as C#, and compiled
to CIL instructions, which are then executed on the target architecture using
Virtual Machine (VM)s such as ILDJIT. [4, sec. 2]

[4] have designed ILDJIT such that di�erent CIL methods can be compiled
simultaneously. Also, instead of directly translating CIL code to the target in-
struction set, the CIL code is �rst translated to an Intermediate Representation
(IR), and then optimized at runtime by a separate process, i.e. the optimization
can also be done in parallel.

According to [4], it is important to de�ne a suitable translation granularity
size since a too small translation granularity makes it harder to perform op-
timizations, while a too big granularity increases the risk of translating code
that will never be executed. Also, a small granularity size makes it harder to
reason about what state information must be saved, i.e. local variables, thus
increasing the overhead of execution. The granularity size chosen by [4] is the
size of a method, since a method de�nes a state boundary, i.e. local state can
be destroyed upon exiting a method.

The translation from CIL to executable native code is grouped into �ve
stages in the so called translation pipeline, showed in Figure 2.2. The �rst stage
of the translation pipeline translates the stack based CIL code to register based
IR code. The second stage optimizes the IR code. The third stage translates
the IR code to the native instruction set of the target architecture, speci�cally
x86 instructions. The fourth stage dispatches the code needed to initialize static
memory used by the program, such as static class members, thus making sure
that all static memory is allocated prior to use. The �fth and �nal stage is the
actual execution of the generated code on the native architecture. [4, sec. 3]

2.2.2 hiCUDA: High-Level GPGPU Programming

hiCUDA, published in 2009, is an high-level directive-based language for writing
applications for CUDA enabled GPUs, which makes it easier to port sequential
C code with minimal e�ort and at performance comparable to handwritten
CUDA C code. [14, sec. 1]
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Figure 2.2: Translation pipeline [4, sec. 3]

Given a sequential C program,
#pragma directives can be issued that tell the hiCUDA compiler where and how
kernel code should be generated. An example of a hiCUDA directive is
#pragma hicuda kernel matrixMul tblock(4,2) thread(16,16) and
#pragma hicuda kernel_end, which tell the hiCUDA compiler that a kernel
with the name "matrixMul" should be created, and that the kernel should be
executed with 4∗2 thread blocks containing 16∗16 threads. The C code between
the two directives makes up the kernel. [14, sec. 3]

Loops must be parallelized using directives such as
#pragma hicuda loop_partition over_tblock _over_thread, since hiCUDA
does not provide any auto parallelization of loops to the GPU. This particular
directive tell the hiCUDA compiler to output kernel code that loops over blocks
and thread. As with loop directives, hiCUDA also supports data allocation
directives that allocates GPU memory and data write and read directives that
tells the hiCUDA compiler that it must output CUDA C code that either reads
or writes data to or from device memory. [14, sec. 4]

2.2.3 GPU.NET

GPU.NET is a proprietary solution that gives developers the ability to write
high performance GPU applications, targeting CUDA enabled GPUs, in any
.NET supported language, such as C# and F#. TidePowered, the company
behind GPU.NET, was founded in 2009 and have since worked on GPU.NET.
GPU.NET is currently supported on Windows XP, Vista and Windows 7 and
.NET 4.0 is required. [54]

Developers write device methods directly in their .NET language of choice,
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and specify through .NET attributes that the method should be executed on
the GPU, and not the CPU. The .NET method can afterwards be invoked.
Prior to invoking of the method, the number of thread blocks and threads are
speci�ed by the developer. Data to and from the CPU and GPU is automatically
marshalled. [57]

Although GPU.NET removes much of the data marshalling burden from
the developers, the developer must still think in CUDA terms, e.g. the kernel
code must still be written with block threads and thread indices in mind. Also,
GPU.NET only supports primitive types such as integers, and array types; ob-
jects and structs are currently not supported. TidePowered says the GPU.NET
compiles directly to device code, we assume this means PTX, and not to OpenCL
C or CUDA C. [55]

As of February 9 2011, GPU.NET o�cial supports C# and CUDA Software
Development Kit (SDK) 3.0. F# and VB.NET can be used, but is not o�-
cially supported. Not all opcodes have been implemented, meaning much of the
functionality found in CIL is not yet supported. [56]

2.2.4 OpenMP to GPGPU

[20] describes a compiler framework for automatically transforming OpenMP
applications to applications that make uses of CUDA enabled GPUs. OpenMP
is a platform for shared-memory computations and allows for synchronization
between all threads, while the CUDA model only supports synchronization be-
tween threads in the same thread block. This problem is solved by exiting the
current kernel and starting a new at each synchronization point.

The core contributions of the publication is a source to source translator for
OpenMP to CUDA C and several compile-time techniques to improve access to
global memory both for applications with regular and irregular memory access
patterns.

The resulting compiler framework is evaluated against OpenMP benchmark
applications, both with regular and irregular memory access patterns. The
evaluation �nds the optimizations to improve performance 12x on average over
the unoptimized translations.

In 2010, two of the authors of [20] published [19] which extends the OpenMP
API with new set of directives to �control important CUDA-related parameters

and optimizations� [19, sec. 1]. [19] states that by utilizing these directives the
developer can tune the application, without detailed knowledge of the CUDA
memory model. They also develop tools to assist performance tuning, e.g. a
search space pruner and a con�guration generator which can create the di�erent
con�guration variations produced by the search space pruner.

The search space pruner reduces the search space for the best con�guration
by more than 90% thus making it easier to achieve good performance. When
the user assists with optimization the performance is up to 88% of that achieved
with hand written code, though lower on average.

2.2.5 CUDA DBMS

A Software 10 master thesis from 2009 which deals with the problem of mov-
ing computations to a CUDA enabled GPU, by using abstractions commonly
found in databases. They proposed a custom .NET Language Integrated Query
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(LINQ) provider, which support common database operations such as SELECT,
JOIN, and DELETE, thus turning the GPU into a �exible database where data
can be inserted, deleted and selected upon. [6, sec. 2.2]

While their benchmarks show that selection queries on the GPU database
generally perform worse compared to selection queries on a normal Structured
Query Language (SQL) server, it is clear that their GPU database outperforms
the SQL server when performing math operations. [6, sec. 5.4]

[6] proposes as future development, to dynamically compile and execute
their CUDA kernels instead of Ahead-Of-Time (AOT) compiling each kernel
beforehand. At present, an expression is converted to several small kernels
that are invoked. They propose to JIT compile the expression to fewer kernels
thus taking advantage of register caching and shared memory. Their initial
experiments show that such kernels perform worse when the input is small, but
perform better than the smaller kernels when the input size increases. [6, sec.
6.6.4]

2.2.6 Accelerator

[52] from 2006 describes Accelerator, which is a library using data parallel ab-
stractions to program GPUs. The Accelerator library is implemented in C#
and exposes a data parallel array type to the programmer, along with a num-
ber of operations which can be performed on these data parallel arrays. The
operations are executed on the GPU using DirectX shaders. Access to individ-
ual elements of a data parallel array is not possible without �rst performing an
explicit conversion to a normal array.

To improve the performance of the library, operations performed on data
parallel arrays are not immediately executed on the GPU, as this would in-
troduce a signi�cant overhead from running multiple shaders in separate calls.
Instead, the operations are stored in a Directed Acyclic Graph (DAG) and only
executed when the data parallel array is converted back to a normal array. An-
other advantages of using a DAG to store the operations are that these can be
transformed prior to execution. Transformations can improve the performance
of the operations and overcome some of the limitations of shaders, such as the
limited maximum size of a shader.

[52] shows that the performance of Accelerator is usually within 50% of that
of a hand written shaders, and are often many times faster than a C++ imple-
mentation running on the CPU. There are however cases in which Accelerator is
signi�cantly slower than the an equivalent C++ implementation, even though
a handwritten shader is faster than the C++ implementations. [52] speculates
that this is caused by non uniform memory accesses which are handled poorly
in Accelerator.

2.2.7 Inspiration

We have looked at prior work ranging from a parallel JIT compiler to a library
aimed at accelerating arithmetic evaluations by moving these to the GPU. Some
of the publications presented above have given us inspiration which we can use
in this project. Looking at the Accelerator project, we see that the abstraction
level provided is that of parallel arrays, where the programmer calls methods
on the parallel array which is at some point executed on the GPU. We �nd
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this abstraction limiting, since the programmer has to express his computations
through operations on the parallel array, and convert back and forth between
parallel and non-parallel arrays.

We �nd that the multi-stage pipeline presented in Section 2.2.1 provides a
great architecture for us to use: Translate a source language to an IR, opti-
mize the generated IR, translate the optimized IR to native instructions, and
afterwards, execute the native instructions. Also, we �nd that the compile gran-
ularity size of a method to be a good size, since TPL deals with Action delegates
which encompasses one method, with the ability to call other methods, as will
be described in Section 3.1.

The GPU.NET in Section 2.2.3 translates CIL code to device code, which
are later executed on the GPU, but can prior to the execution be transformed
to increase performance. In addition, translating from CIL code allows us to
support .NET programming languages other than, e.g. C#.

2.3 Problem Formulation

Our main problem is as follows:

Is it possible to create a library similar to the Task Parallel Library from .NET

4.0, where the data parallel operations are executed on a many-core GPU instead

of a multi-core CPU?

To answer this we have created a list of sub-questions, which will help us
solve the main problem. We have dubbed our library APL, to distinguish it
from the TPL.

• How can source code be accessed at runtime, compile-time or in any other
way?
In order to execute .NET code, the code in question must be accessible,

e.g. through pre-processing or at runtime

• How is device code best generated from .NET?
There are di�erent possibilities for generating device code at runtime or

compile-time

• Which optimizations are important when generating code?
When generating device code, it may be necessary to optimize the code to

achieve a speed up

• How does device code generated by our solution fare against hand written
device code?
Since performance is the primary concern of programmers utilizing GPUs

for general purpose computations, benchmarks will be carried out to eval-

uate the performance of our solution.

• How does APL fare against the TPL?
Moving computations from the CPU to the GPU should increase perfor-

mance due to the higher theoretical performance of the GPU.
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2.3.1 Learning Goals

Beside the questions in the problem formulation, we have created a list of learn-
ing goals in the areas we want to gain knowledge during this project.

• Gain knowledge of the .NET framework and its architecture
Large parts of this project is concerned with .NET and its architecture,

and knowledge of these will help us when designing our solution

• Gain knowledge of the Nvidia CUDA and OpenCL compiler and toolchain
In order to generate GPU code it is useful to know how Nvidias o�cial

compiler functions, and possibly �nd parts of it that can help us optimize

the outputted code or be used for the actual compilation

• Gain knowledge of the new features of Compute Capability 2.0
Compute capability 2.x was not analyzed in our 9th semester project, as

we did not have a graphics card of this capability at our disposal. We

have now acquired such a card, and the added features may require that we

optimize in ways not necessary for compute capability 1.x

• Gain experience with code translation
During this project we wish to gain further experience with code genera-

tion. We have previous had courses in this area which focused on language

design and compiler implementation. This semester we want to focus on

translation from one language to another

2.3.2 Delimitations

During our previous semester we looked at several GPGPU languages, however,
in this project we will only focus on CUDA and OpenCL as these are the most
general and getting a lot of attention. Furthermore, we will only be focusing on
languages common to CLI, and not other languages such as Java and C, and do
not consider the security aspects of our solution.

We have also made delimitations with regards to the memory available to
devices, i.e. some problems might require more memory than available on a
device, thus requiring some sort of virtual memory solution. We consider this
problem outside the scope of this project.

In addition, GPUs tend not to implement 100% IEEE compliant �oating
point arithmetics, which might in�uence the precision of the benchmarks. This
is also beyond the scope of this project.

Lastly, we will only focus on the System.Threading.Tasks.Parallel class
of TPL since this is the class which contains the methods for executing parallel
computations.

2.4 Development Method

We will be using an incremental method, inspired by agile methods such as
Scrum and XP, to develop APL. By splitting our development up in increments,
we can have an implemented and working subset by the end of each increment.
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We will start this project by conducting an analysis of a number of di�erent
solution strategies, which can be used to implement APL. We will choose the
strategy based upon pros and cons that we have found during the analysis phase.

We will also create a benchmarks suite such that we can experiment with
di�erent optimization techniques, reason about the e�ectiveness of these tech-
niques, and reason about the performance of our library compared to the TPL
found in .NET 4.0, sequential for-loops and CUDA C.

The benchmark suite will also be used as test cases for each increment of our
development, so that we are always working towards getting a new benchmark
to run without compromising our ability to run existing benchmarks. This
means that we must have a wide variety of benchmarks, ranging from very
simple benchmarks, such as running an empty loop, to complex benchmarks,
where branching and arithmetic computations are carried out. This also means
that the benchmark suite should be capable of running automatically, such that
we can easily run the whole benchmark suite when a new increment of APL is
complete.

2.4.1 Benchmark Approach

There are many things to consider when benchmarking a system. Therefore, we
have investigated some of these in Appendix B. Based on this investigation, we
have chosen to use the approach as described in this section.

One goal of this project is to see a performance increase when moving com-
putations from the CPU to the GPU, therefore, we want to compare the perfor-
mance of TPL and sequential for-loop implementations with APL. To determine
how well APL fare against other GPGPU abstractions, we will also compare the
performance of APL with hand written CUDA C.

Other publications on the subject of GPGPU compares their solutions against
the code examples found in the CUDA SDK [14]. Therefore, we will use these
as our CUDA C implementation of the benchmarks.

We have been unable to �nd a benchmark suite which uses TPL and se-
quential for-loop, with the same benchmarks as those found in the CUDA SDK.
Therefore, we will implement the TPL and sequential for-loop benchmarks our-
selves.

We only have access to a single compute capability 2.x GPU, so we will only
be testing on a single hardware platform.

We will be using the .NET 4.0 framework and the Common Language Run-
time (CLR) as these are at the time of writing are the newest versions of Mi-
crosoft's o�cial CLI implementation.

We will be measuring the startup performance of the CLR over 40 iterations,
to do this we will run each iteration of the benchmark in its own CLR instance.
As the �rst iteration may involve loading data from the hard disk which is later
cached, the �rst iteration will be ignored.

To measure the performance at a steady state, we will continue to run itera-
tions of a benchmark in a single CLR invocation, until a steady state is reached
for the past 20 iterations. To take into account that di�erent steady states
might occur, this is done two times.

For both startup and steady state measurements, we will be computing a
con�dence interval at con�dence level 99%, in order to reason about the per-
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formance of alternatives. If two non-overlapping con�dence intervals are found,
we will conclude that there is a di�erence between the two.

As we have limited time, we will only try to limit bias in our benchmarks
by trying to create a varied benchmark suite. This is primarily because trying
to identify all the factors that might cause bias in a GPGPU powered appli-
cation would be very time consuming and beyond the scope of this project.
Furthermore, causal analysis is hard to perform as it can not be automatized
and requires an in-depth analysis of the factors which might in�uence perfor-
mance. We will therefore limit our causal analysis to the optimizations, and
talk about which improvements might in�uence the performance of APL.

Since we will primarily be basing our benchmark suite on the CUDA SDK,
the benchmark suite might be biased towards the GPU. We do however not see
this as a big problem as it has already been shown that there are situations
in which the CPU outperforms the GPU and vice versa[21], and that the APL
should only be used for the type of problems which performs well on a GPU.
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3
Analysis

Our aim is to move computations from the CPU to the GPU using the same
abstractions provided by TPL. To achieve this goal, several topics needs to be
analyzed before we can create a solution. This analysis is covered in this chapter.

The TPL will be covered in some detail in Section 3.1, with emphasis on how
to use the library to program multi-core CPUs within the .NET framework. This
analysis will serve as an introduction to the abstraction provided by TPL. The
speci�cation of the .NET framework is analyzed in greater detail in Section 3.2,
where both the runtime component and the language speci�cations are covered
in more detail.

Moving computations from the CPU to the GPU requires that we translate
CPU code to a GPU program, such that it can be executed on the GPU. In
Section 3.3, we analyze our options with regards to which source language we
should choose.

The device compilers, i.e. the compiler used to compiling code for the device,
which is available to developers might have an impact on the choice of target
language. Thus, device compilers are analyzed in Section 3.4. The choice of
target language is analyzed further in Section 3.5 where the target language is
chosen.

Two in depth analysis of the source and target language are carried out
in Section 3.6 and Section 3.7, followed by analysis and evaluation of how to
translate the chosen source language to the chosen target language in Section 3.8.

3.1 Data Parallelism Using Task Parallel Library

One aim of this project is to implement a library similar to the TPL, but where
computations are carried out on GPU and not the CPU. This section will intro-
duce TPL and how it is used, speci�cally, we will cover the functionality de�ned
within the System.Threading.Task.Parallel class as this is the part of TPL
which run parallel computations. The section is based on [33].

The .NET 4.0 implementation of the System.Threading.Tasks.Parallel

class has three methods: For, ForEach and Invoke each with a number of
overloads. The For and ForEach methods deals with data parallelism while
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1 // Sequen t i a l
int [ ] output = new int [ 1 0 0 ] ;

3 for ( int x = 0 ; x < output . Length ; x++)
{

5 output [ x ] = x ∗10 ;
}

7
// Pa r a l l e l

9 Pa r a l l e l . For (0 , output . Length , d e l e ga t e ( int x )
{

11 output [ x ] = x ∗10 ;
}) ;

Figure 3.1: Sequential for loop and Parallel.For

int out = 0 ;
2 P a r a l l e l . For (0 , 100 , d e l e ga t e ( int x )

{
4 out += x ;

}) ;

Figure 3.2: Parallel.For with race condition

Invoke deals with task parallelism. In the following, we will cover each of these
three methods in more detail.

All overloads of For takes at least three arguments, where two are integers
de�ning an index range, and a Action delegate de�ning an action to be exe-
cuted in parallel once for each index. An Action can be a named or unnamed
function or an expression lambda. Example usage of the For method is shown
in Figure 3.1, where an inline delegate has been created and given as argument
to the For method.

The library does not handle race conditions for the user, e.g. the code shown
on Figure 3.2 will cause a race condition, since several threads will try to add
to the same variable. Thus, the programmer still have to handle this kind of
conditions manually.

The Parallel.ForEach method can be used to loop over all the elements
in an object that implements the IEnumerable interface, such as an integer
array, and executing an action in parallel for each element. An example of the
Parallel.ForEach loop is shown in Figure 3.3.

1 int [ ] indexes = new int [ ] { 0 , 1 , 2 , 3 , 4 , 5 } ;
int [ ] output = new int [ 6 ] ;

3 P a r a l l e l . ForEach ( indexes , d e l e ga t e ( int i )
{

5 output [ i ] = i ∗10 ;
}

Figure 3.3: Example of Parallel.ForEach

Both Parallel.For and Parallel.ForEach has overloaded methods. Some
of the overloads allow for monitoring and manipulation of the For and ForEach
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loop, while some enable local variables for each thread and introduces a �nal
Action, which can for example be used to sum up the results of each local
variable. This is shown in Figure 3.4. [28] [34]

long r e s u l t = 0 ;
2 P a r a l l e l . For<long>(0 , 100 ,

// The i n i t i a l s t a t e o f l o c a l v a r i a b l e
4 de l e ga t e ( ) {return 0 ; } ,

// Add i to l o c a l v a r i a b l e o f the thread
6 de l e ga t e ( int i , Pa ra l l e lLoopSta t e loop , long l o c a l )

{ l o c a l += i ; return l o c a l ; } ,
8 // Sum l o c a l v a r i a b l e s o f threads

// Using the atomic Add method o f In t e r l o c k ed
10 de l e ga t e ( long x ) { In t e r l o ck ed .Add( r e f r e s u l t , x ) ; }

) ;

Figure 3.4: Parallel.For with thread local variables

The last method of the Parallel class is Invoke, which simply executes a
series of actions, possibly in parallel, and can thus be used for task parallelism.
This is shown in Figure 3.5.

1 Pa r a l l e l . Invoke (
de l e ga t e ( ) {Console . WriteLine ( "Action 1" ) ; } ,

3 de l e ga t e ( ) {Console . WriteLine ( "Action 2" ) ; }
) ;

Figure 3.5: Example of Parallel.Invoke

3.1.1 Summary

In summary, the Parallel class of TPL contains three overloaded methods,
For, ForEach and Invoke, which can be used to do computations in parallel.
Each of the methods take one or more Action's as input. An Action is a
delegate type which can either be a named method, anonymous method or an
expression lambda.

We have chosen to only focus on implementing the For method since For

and ForEach are very similar in nature and we do not think that it would be
e�cient use of our time to implementing both of these. We will not implement
the Invoke method since this focuses on task parallelism which is very poorly
supported by GPUs, and while it is possible to create a system which allows
task parallelism [13], this is beyond the scope of this project.

3.2 Common Language Infrastructure

The CLI standard describes the overall architecture of CLI and provides a
normative description (requirements, recommendations and statements) of the
Common Type System (CTS), Virtual Execution System (VES) and Common
Language Speci�cation (CLS). The standard also contains the speci�cation of
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the CIL instruction set, which is conceptually similar to Java byte-code, and a
description of the common CLI libraries. [10]

The .NET Framework is a concrete implementation of the CLI speci�cation,
which is a speci�cation developed primarily by Microsoft. Other CLI imple-
mentations exist, such as the Mono Runtime [40] and Portable.NET [9]. The
.NET Framework is a software framework developed by Microsoft targeting the
Microsoft Windows operating system. It consists of two main components: the
CLR and the .NET Framework class library. [32]

The CLR provides an abstraction layer over the operating system, while the
class library provides commonly used constructs. The .NET Framework allows
programmers to write programs for a variety of devices, such as desktop com-
puters, mobile phones, servers and clouds, using the same set of tools. These
tools include o�cial Microsoft supported programming languages, such as C#,
VB.NET, F# and managed C++, the Visual Studio 2010 Integrated Develop-
ment Environment (IDE) and the .NET Framework library. The current version
of .NET is 4.0. [24]

Common Type System

The CTS de�nes how types are declared and managed by the VES. A type is
either a value type or a reference type. VES supports �ve categories of types:
classes, structures, enumerations, interfaces and delegates. Classes, interfaces
and delegates are reference types, while enumerations and structures are value
types. [26]

Virtual Execution System

The VES provides an environment for executing CIL code, which is the Inter-
mediate Language (IL) code used by the VES, and can be viewed as a virtual
machine similar to the Java virtual machine. The CLR is a concrete VES im-
plementation providing an execution environment for code expressed in CIL,
which is the target of the o�cial Microsoft supported languages. The VES JIT
compiles CIL instructions to native binary code, which are then executed on the
given computer architecture. This is depicted on Figure 3.6. Other execution
models are also supported, such as interpreting CIL code, and executing native
code for legacy or compatibility purposes. The VES includes direct support for
15 data types, such as signed integer, unsigned integer and �oating point types,
these can be manipulated directly by CIL instructions. [17, Part 1. sec. 12]

Common Language Speci�cation

Programmers seldom write directly in CIL, as it is a low level language, but
instead write code using higher level languages such as C# and VB.NET, which
are compiled to CIL code. This means that multiple high-level languages can be
used when writing a program, i.e. one programmer might write the application
core in C#, while another programmer writes the Graphical User Interface
(GUI) part of the application in VB.NET.

For a language to be compliant with the CLI, it must be compliant with
the CLS. The CLS de�nes a common set of features that all CLI languages
have in common, e.g. Int32 is a supported primitive in the language, all names
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Compiler Compiler Compiler

C# VB.NET C++

CIL

VES

Native binary code

Figure 3.6: Conceptual overview of the Common Language Infrastructure. Il-
lustration from [58].

within a scope are distinct and a class must inherit from the System.Object

class. Examples of non-CLS compliant features are: Data and function pointers,
operator overloading, variable-length argument lists in methods and unsigned
types. Some of these features are supported by CLI languages, e.g. pointers
and unsigned types are part of C# but not CLS compliant, meaning that using
such features might break compatibility with other CLI languages which do not
include support for these features. [36]

Code compiled with a compiler targeting CIL is called managed code, not to
be confused with managed memory. Managed code bene�ts from features such
as [25]:

Cross-language integration, i.e. classes, methods and data can be shared
between two distinct programming languages hereby increasing code reuse.

Cross-language exception handling, i.e. exceptions handling between code
written in distinct programming languages.
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Enhanced security, i.e. managed code is passed through a veri�cation process
before it is executed unless administrator privileges have been granted.

CLI Metadata

CLI metadata is used to describe the structure of code, such as classes and
methods. This allows the CLI to locate and load the classes at runtime, resolve
method invocations, enforce security constraints, among other things. A CLI
component, such as a class and its implementation, carries component meta-
data. Component metadata describes things such as class declarations, method
declarations, where the CIL code of the methods are located, and references
to other components. Since metadata is packed within the CLI component,
the CLI component is said to be self-described. CLI components are packed
together into an assembly which can be deployed. [17, Part 1. sec. 9.1].

CLI metadata is extensible by using CLI attributes. An attribute can be
added to all types of metadata objects, such as methods, classes, �elds, func-
tions, properties, etc. An attribute contains information that can be accessed
at runtime by the VES. An example of an attribute is the "Serializable" at-
tribute, which can be used to denote which classes, and their members, can be
serialized. Attributes are language independent and accessible from any CLS
compliant language, and can be accessed at runtime by using re�ection. Meta-
data is contained within tables, some of these will be described in more detail
in Section 3.6.1. [17, Part 1. sec. 9.7]

Assembly

An assembly is a collection of modules and other resources, such as icons, that
provide a set of functionality. A module is a single �le containing executable
resources, e.g. a C# source �le is compiled to a single module. An assembly
can contain both public and private resources. Public resources are exposed
to and can be consumed by other assemblies, e.g. an assembly might expose a
type which can be used by another assembly. Private resources are internal to
the assembly, and cannot be consumed by other assemblies. Each assembly has
one manifest which declares which �les make up the assembly, what types are
exposed to other assemblies, and a list of dependent assemblies that must be
resolved prior to using the assembly. An application is a type of assembly that
exposes an entry point, such as a main function which is commonly found in
console application on both Windows and Linux, or Windows services' OnStart
method, which is called when the service is started. [17, Part 1. sec. 9.5]

3.2.1 Summary

In this section, we have looked at the CLI speci�cation and have found that
the .NET framework is a concrete implementation of CLI, while the CLR is
a concrete implementation of the VES. In addition, we have covered some of
the design goals of the CLI, have found that CIL code is executed on the VES,
and that the structure of an assembly is described using metadata. CIL will be
covered in more detail in Section 3.6.
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3.3 Source Language

In order to move computations from the CPU to the GPU, we have to translate
the CPU program to a device program, which means we must translate some
source language to a target language. This section will deal with the aspect of
which source language we should translate from.

Through the analysis in Section 3.2, we found that we can translate from a
high-level CLI language, such as C#, or translate from the low-level CIL code
that the high-level CLI languages use as compile target. In addition, we can
choose to perform this translation AOT or JIT.

In this section, the approaches will be discussed and evaluated, and a source
language will be chosen.

3.3.1 High-level Source Parsing

The �rst approach is to parse the source �le at compile-time, e.g. the C# �le
containing the method is parsed and device code is generated. This requires
that we choose a speci�c CLI language, such as C#, and this means that our
solution is tied to this speci�c high-level language. This also means that we
must write, or adapt, a high-level language parser which is able to detect code
used by the APL and output e.g. CUDA C kernel code which can be executed
on the device.

By focusing on a CLI language, we can utilize language constructs that are
not CLS complaint, e.g. operator overloading and pointers can be utilized if C#
is chosen as the high-level language. This however also means that we are tied
to one language, and that we more or less void one of the properties of CLI,
namely that it supports multiple high-level languages.

Another problem with this approach is that the body of a APL construct
cannot reference types or methods where the high-level source code is not avail-
able, since device code is generated from the high-level source. This can be
problematic, especially when referencing methods within the standard library,
since these are typically already compiled to CIL, thus no high-level source
code is available. A solution to this problem is to substitute references to the
standard library with references to our own library implementation.

Pros

• Writing the solution with a high-level language in mind, such as C#,
allows us to utilize language constructs that are not CLS compliant, e.g.
operator overloading and pointers.

Cons

• The solution is language dependent and will not work directly with other
high-level CLI languages.

• Whenever a type or method is used within a APL construct, where the
high-level source code is not available, it has to be replaced by a se-
mantically equivalent implementation where the high-level source code
is present.

20



3.3. SOURCE LANGUAGE

• The standard library has to be re-implemented or adapted from an open-
source implementation, in the high-level language, such that device code
can be generated.

• A more complex parser is needed

3.3.2 Low-level Source Parsing

The second approach is to parse the actual CIL code that the high-level language
compilers output. This means that such a solution is independent with regards
to which high-level language is used to write the code that utilizes the APL.
Any CLS compliant language can therefore be used. This can be done AOT, by
parsing the output of the high-level language compiler, or it can be done JIT,
using re�ection and metadata to �nd and read the CIL code of the code passed
to the APL.

This approach does not break with the design goal of CLI, i.e. being able to
use multiple languages when writing an application. All CLS compliant types
of the standard library, or other libraries, can be used within a APL construct;
these do not have to be substituted by our own implementations.

Pros

• All CLS compliant languages are supported.

• Libraries implemented in CIL can still be used, even though the high-level
representation is not available.

• If device code is generated at runtime it can potentially be optimized to
the speci�c architecture of the device.

Cons

• Depending on the target language, a device kernel compiler might be re-
quired at runtime, which can increase warm-up time.

3.3.3 Ahead of Time vs Just in Time Compiling

An aspect of doing JIT compiling instead of AOT is that the device language
compiler must be present on the system in which the application is run. If
we choose to target OpenCL C, we get a built in compiler, from the OpenCL
API, that can JIT compile and run OpenCL C kernels on the device. If we
choose to target CUDA C instead, a CUDA C compiler must be installed on the
system. This is not a problem when performing AOT compilation, since only the
developer system has to have the compiler tool-chain installed. Furthermore, the
compiler may not be intended for JIT compiling, resulting in a slow compiler,
ultimately meaning that all speedup gained by running the code on a GPU is
lost by the JIT compiling unless some caching is implemented. The analysis
and choice of target device language is done in Section 3.5.

Generating device code at runtime, gives the compiler the possibility to
optimize the device code for the particular device. As a concrete example,
consider a compute capability 1.x device vs a compute capability 2.x device. The
compute capability 1.x device supports up to 16K 32-bit registers per Streaming
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Multiprocessor (SM), while compute capability 2.x supports up to 32K 32-bit
registers per multiprocessor. This means that the compiler should output leaner
kernels when targeting the compute capability 1.x device. Although register
usage is still a limiting factor on the compute capability 2.x, it is not as big a
limitation. Compute capability 2.x is covered in more detail in Appendix E.

3.3.4 Choice

Based on the pros and cons identi�ed above, we choose to use the low-level
CIL language as our source language. Especially because this will enable us
to generate code from high level CLI languages, thus giving support a several
languages without having to implement source parser for each language, but
also because it allows us to use libraries without having access to the source
code. The low-level language facilitates both JIT and AOT generation kernels
by using re�ection. With regards to AOT vs JIT compiling of CIL, we will use
JIT compiling with the ability to cache compiled kernels, which means that we
can contain all required functionality in a library and distribute this library, in
the same manner as the Accelerator project, described Section 2.2.6.

3.4 Device Compiler

To help us decide the target device language, this section introduces the OpenCL
kernel compiler and the CUDA SDK toolchain, which includes the CUDA kernel
compiler and relevant libraries used during compilation of CUDA kernels. As
described in Section 2.3.2, we will only focus on these two technologies.

3.4.1 CUDA

The following is based upon [46]. The CUDA SDK toolchain contains several
executables: cudafe, �lehash, nvopencc, ptxas, fatbin and nvcc. In addition, the
toolchain utilizes a C/C++ compiler. This compiler is referred to as cpp, which
typically is cl on Windows and gcc on Unix.

Typical CUDA C programs contain both device and host code. Compiling
a .cu �le can be done by invoking nvcc. The device code can be compiled to
either PTX code and/or the cubin binary format [47, sec. 3.1].

Typical CUDA C Compilation Run

A parse of a .cu source �le, containing both host and device code, involves the
following steps:

1. nvcc is invoked with the .cu �le as input.

2. The .cu �le is passed to the platform dependent C/C++ compiler, cpp,
which performs preprocessing and macro expansion.

3. cudafe splits the output of cpp into host and device code, such that host
code can be compiled to the CPU, and device code can be compiled to the
device. cudefe also inlines necessary code. cudafe produce a .c and a .gpu
�le, where the .c �le contains the host part, and the .gpu �le contains the
device part.
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Extension Description

.cu Regular host and device source

.cup Preprocessed CUDA source

.c C source

.cc, .cxx, cpp C++ source

.gpu Gpu intermediate �le

.ptx Ptx intermediate assembly �le

.o, .obj Object �le

.a, .lib Library �le

.res Resource �le

.so Shared object �le

.i, .ii Preprocessed �les, i is C, ii is C++

Table 3.1: File types [46]

4. The .gpu �le is processed again by cpp, then by cudefe and once more by
cpp. These steps produces a .gpu �le where dead code analysis and more
macro expansions have been performed.

5. The .gpu �le is passed to nvopencc and �lehash, described below. nvopencc
compiles the .gpu �le into a .ptx �le, which contains PTX instructions that
can be compiled to a speci�c GPU and executed. PTX is described in more
detail in Section 3.7.

6. �lehash produces an application independent device name for the device
functions. This name, along with the produced .ptx �le, is passed to fatbin
which produces a .fatbin �le that contains the name of the device code
and the actual device code.

7. Lastly, the .c �le produced by cudafe, and the .fatbin �le, is passed to cpp
which combines the two �les into a single .c �le, which can be compiled
and executed by the system.

The �le types used can be seen in Table 3.1

nvopencc

The nvopencc generates PTX code and is build upon the open64 compiler. It
takes a .gpu �le as input, containing de�nitions, such as the de�nition of dim3
and �oat3, and the kernel itself at the very bottom.

nvopencc relies on three executables: gfec, inline and be. According to [37],
gfec is used to produce code in an intermediate language called WHIRL, while
inline is used to inline de�nitions and be is used to optimize and produce PTX
code. nvopencc is open source and available at ftp://download.nvidia.com/
CUDAOpen64, the three executables mentioned above are also in the nvopencc

releases.

Runtime API and Driver API

CUDA exposes two APIs which can be used by application developers, the
Runtime API and the Driver API. The Runtime API is commonly used by
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application developers. The Runtime API is used by all CUDA C applications.
The Driver API exposes handles that can be used to query and manipulate

device state, e.g. CUdevice is a handle to a CUDA enabled device, such as
CUcontext, which is an handle to a a device context similar to a CPU process.
Handles allow more control over the CUDA enabled GPU, compared to the
relatively higher abstraction level provided by the Runtime API. In addition,
the Driver API can load kernels written in the PTX language, which means we
can use the Driver API to load and JIT compile our own PTX kernels.

JIT compiling of CUDA C code can be done by using nvcc at runtime, with
the CUDA C �le, and afterwards load the resulting .ptx �le at runtime. The
nvcc may, however, not be suited for JIT compiling, as it is somewhat slow, e.g.
our testing shows that compiling the simple seven lined vector addition kernel
to PTX code, takes around 0.8 seconds wallclock time on a Linux system, which
in some cases is more than a sequential execution of the same problem. The
kernel can be seen in Appendix A. In this example, all speedup may be lost by
compiling the kernel. Furthermore it requires that the CUDA SDK is distributed
to the end user.

3.4.2 OpenCL

The API exposed by OpenCL is conceptually identical to the CUDA Driver
API, and allows JIT compiling of OpenCL C kernel programs. This stands in
contrast to CUDA C, which does not o�cially support JIT compiling of CUDA
C kernels but only supports JIT compiling of PTX.

3.5 Target Language

Moving computations from the CPU to the GPU, means that we must output
device code that can be executed on the GPU. The aim of this section is to
choose the target language that will be generated by APL from our CIL based
source, and executed on the device.

Recall from the introduction in Chapter 2, that there exist several program-
ming languages, techniques and frameworks that allow GPGPU programming,
such as BrookGPU, CUDA C and OpenCL C. Recall from Section 2.3.2 that
we have decided to look only at OpenCL C and CUDA C, as these are the
most prominent. Also, as described in Section 3.4, CUDA C programs can be
compiled to PTX code that can be loaded at runtime and JIT compiled for a
speci�c GPU, such as G80 based GPUs, and executed as a kernel program.

Thus, we �nd that we have three candidates with regards to which target
language we should choose for our solution, i.e. OpenCL C, CUDA C and PTX.

3.5.1 CUDA C as Target Language

The �rst possible solution is to generate CUDA C code from our CIL code, and
then compile the CUDA C code using the CUDA SDK toolchain. Doing this
using JIT compilation can be troublesome, since the CUDA Driver API does
not support JIT compilation of CUDA C kernels, but only PTX kernels. Thus,
the CUDA C compiler must be available if JIT compilation of CUDA C kernels
is needed.
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CUDA C prior to March 2011 supported classes, as long as the member
functions were not virtual, i.e. it was not possible to overwrite an inherited
function [47, sec. D.6]. Virtual functions are however present in version 4.0 of
the CUDA SDK, which was released as a release candidate in March 2011.

A solution using AOT compilation of CUDA C to PTX simply requires that
the resulting PTX code is embedded into the application which uses APL. This
is already supported for C and C++ applications, as described in [47, sec. 3.1.4].

Translating CIL code to CUDA C means that we are translating from low-
level code to high-level code. According to one publisher [7], translating from
a low-level language to a high-level languages can be done by following several
steps, such as data �ow analysis, control �ow analysis and type analysis. Data
�ow analysis aims to recover high-level expressions, function de�nitions, param-
eters for functions, etc. while removing hardware references from the code, such
as registers and stack references. Control �ow analysis aims to recover condi-
tional statements, loops and nesting levels from low-level branching instructions.
Type analysis aims to recover typing information of variables and function re-
turn types of functions. This type of translation is also commonly referred to as
decompiling. According to [7, sec. 1], several techniques exist for decompiling,
but many of these are proprietary and not released to the scienti�c community,
therefore it might be hard to �nd an appropriate technique for translating CIL
to CUDA C.

Translating CIL to CUDA C should however be relatively easy with regards
to typing information, since types are saved in metadata which can be referenced
by our translator. Metadata also contains much of the information required for
data �ow analysis, since method name, parameters, return values, etc. are kept
within metadata. Control-�ow information is not contained within metadata,
meaning that CUDA C control �ow statements must be generated based on the
branching instructions in the CIL code.

3.5.2 OpenCL C as Target Language

The second possible solution is to output an OpenCL C program, similar to
CUDA C.

The expressive power of OpenCL C is however lower than CUDA C, since
OpenCL C does not provide function pointers and virtual methods. In addition,
OpenCL C does not support recursive functions, which have been introduced
into CUDA C with compute capability 2.0.

Compiling OpenCL C kernels is done through the OpenCL API, similar
to how PTX programs can be compiled through the CUDA Driver API. Thus,
choosing OpenCL C over CUDA C allows us to perform JIT compilation without
the need to distribute a separate OpenCL C compiler.

Also, choosing OpenCL C makes our solution much less platform dependent
than choosing CUDA C, since our solution can be used both on CUDA enabled
GPUs, OpenCL enabled GPUs from ATI and Nvidia, OpenCL enabled CPUs,
and more.

3.5.3 PTX as Target Language

Recall from Section 3.4 that nvcc can output PTX code directly from CUDA C
kernels, which are later JIT compiled to the target GPU architecture, or further
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AOT compiled to binary form and embedded into the application.
Instead of using nvcc, we can translate CIL code to PTX code and let the

CUDA Driver API compile the PTX code to the particular CUDA enabled GPU.
This means that we have to write a translator from the low-level language of
CIL to the low-level language of PTX, thus we do not have to perform the
same level of data-, �ow- and type-analysis, that we had to perform if we were
translating from CIL to OpenCL C or CUDA C.

However, we do not know how much the PTX JIT compiler optimizes the
code, which means that we might have to implement more optimizations when
outputting PTX code, compared to outputting CUDA C code. This is because
we can leverage the existing optimizations done by nvcc, when outputting CUDA
C code, compared to manually optimizing the generated PTX code. Optimiza-
tions such as using shared memory, when appropriate, needs to implemented by
both solutions, since nvcc does not automatically optimize the use of this and
thus has to be manually managed by the programmer.

Outputting PTX also increases our expressive power, since PTX supports
features that appear to be non-accessible through CUDA C, such as timing
registers [45, sec. 11.2.1.3].

3.5.4 Choice

Based upon the pros and cons presented above, we choose PTX as target lan-
guage.

If we had chosen to output CUDA C kernels from our APL library, we
must have used nvcc to generate PTX code from the CUDA C kernels, since
neither the Driver API nor Runtime API supports JIT compilation of CUDA
C kernels directly. This is in contrast with the OpenCL API, which supports
JIT compilation of OpenCL C code, i.e. OpenCL C kernels can be embedded
directly as a string and JIT compiled using the OpenCL API. It is possible to
JIT compile CUDA C kernels by distributing the Nvidia CUDA compiler.

Translating from low-level representation to a high-level representation re-
quire that we perform some kind of data-, control-�ow- and type analysis, and
is commonly referred to as decompiling. Even though the metadata associ-
ated with the CIL code contains much information concerning the types and
methods used, control-�ow analysis is still a required step before a high-level
representation can be generated.

Translating from CIL to PTX is much more straightforward, as we are deal-
ing with two assembly level languages and we can perform a somewhat one-
to-one mapping between the two languages, thus voiding the need to perform
decompilation, which according to [7] is a complex problem. Also, the choice
of PTX removes the problem concerning distribution of nvcc and increases the
expressive power compared to OpenCL C. The choice of PTX as target does
however requires that we learn an additional low-level language and perform
low-level optimizations.

3.6 Common Intermediate Language

The aim of this section is to introduce CIL in more detail, since we must trans-
late from stack-based CIL instructions to PTX instruction in APL. We will
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speci�cally cover the concept of metadata tables and the evaluation stack, both
are important parts of the VES.

3.6.1 Metadata Tables

Recall from Section 3.2, that metadata is used to describe the structure of pro-
grams, such as methods, classes, references to objects, and much more. Meta-
data is stored in one of severals tables, within modules, and is loaded at runtime
when needed. Metadata records in metadata tables are referenced by metadata
tokens, which are conceptually similar to pointers.

Metadata tokens are four bytes long, where the most signi�cant byte indi-
cates one of the many metadata tables. The other three bytes represents an
index within that particular table. Thus, a metadata token points to a speci�c
record within a speci�c metadata table. [17, Part 2. sec. 22]

An example of a metadata tables is the TypeDef table, where each row
contains metadata on a type, that includes references to other metadata records
containing information such as the name of the type, the name of the namespace
of the type, the �elds de�ned within the type, and the list of methods of the type.
Another example is the MethodDef table, where each row contains metadata on
a method owned by a type.

Codeexample 3.1 shows C# code and its CIL counterpart. The TestMethod
is compiled to a nop instruction, i.e. an instruction that does nothing, a call

instruction, i.e. an instruction that calls a method, and a ret instruction, i.e.
a return instruction. The call instruction takes as operand a 4 byte metadata
token, 0x06 0x00 0x00 0x02, which points to a metadata record in a metadata
table, speci�cally to the second row of the MethodDef table. The VES is able
to locate and invoke the CIL code of the TestMethod2 method, since the meta-
data record pointed to by the metadata token, 0x06000002, has a signature
column that points to an area in memory containing the CIL instructions of
TestMethod2.

Given a metadata token, re�ection can be used to retrieve the particular
method, �eld, type signature, etc. from a module.

Speci�cally, the Module.ResolveMethod(int) method returns a reference
to an object of type MethodBase, while Module.ResolveField(int) returns a
reference of type FieldInfo to a particular �eld in a class. Afterwards, re�ection
can be used to invoke the method, retrieve values of �elds used by the method,
etc. [30]

C# code :
2

pub l i c stat ic void TestMethod ( )
4 {

TestMethod ( ) ;
6 }

pub l i c stat ic void TestMethod2 ( )
8 {

}
10

CIL code :
12 ; TestMethod ( )

00 : nop
14 01 : c a l l , 0 x06000002

02 : r e t
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16 ; TestMethod2 ( )
01 : nop

18 02 : r e t

Codeexample 3.1: C-sharp code compiled to CIL code, which refer to a
MethodDef metadata record

3.6.2 Evaluation Stack

Recall from Section 3.2 that the VES is responsible for the actual execution of
a CIL program, and can be viewed as a virtual machine executing CIL instruc-
tions. The VES is a stack machine and as such, most of the CIL instructions
operate on values on the stack instead of taking operands. Load instructions
refer to instructions that load values from the stack, while store instructions
refer to instructions that store values on the stack. The add instruction is an
example of a load and store instruction, that pops two value from the stack,
adds them, and pushes the result back to the stack. [17, Part 1. sec. 12.1]

Native data types are also supported and are mapped at runtime, e.g. the
integer data type is mapped to a 32bit integer on a 32bit system, and a 64bit
integer on a 64bit system. This also means that data type sizes are generally not
known at compile time, and must be determined at runtime. Pointer sizes are
also determined at runtime unless some explicit datatype is used as a pointer
within the CLI, e.g. an unsigned int32 could be used as a pointer but would
only work correctly on 32bit systems unless some pointer conversion is in place.
Forcing pointer sizes at compile time should be avoided, but can be necessary,
e.g. when accessing unmanaged memory. [17, Part 1. sec. 12.1.1]

Object references, having type O, and managed pointers, having type &, are
used within the CLI in a managed the environment. An O references is used
to reference objects as a whole, e.g. an O reference can be used to reference
an instance of the class Foo. An & pointer is used to reference �elds within
an object, such as a method, member variable, or speci�c location in an array.
Managed pointer can point to locations that are not under the control of the
garbage collector, such as static variables and the stack. Since data can be
moved around by the garbage collector, object references and managed pointers
can be changed during garbage collection. [17, Part 1. sec. 12.1.1.2]

3.6.3 Summary

As described in this section, re�ection can be used to fetch metadata from
the metadata tables, such as metadata of a particular �eld of a class and the
CIL code of methods. In addition, we have seen that CIL is a stack-oriented
language, which uses the evaluation stack to perform evaluations. In Chapter 4,
this information is used to implement the IR and the translation from the stack-
oriented CIL code to register-oriented PTX code.

3.7 Parallel Thread Execution

PTX is a low level parallel thread execution virtual machine and Instruction Set
Architecture (ISA). The aim of PTX is to expose the GPU as a data-parallel
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computing device, while providing a stable programming model spanning mul-
tiple GPU generations, a stable ISA, and e�cient execution on Nvidia's GPU
architectures. PTX provides a machine independent ISA for compilers to tar-
get, such as the CUDA C compiler, which means that future GPUs can change
their native architectures without breaking backward capability with older ap-
plications. [45, chap. 1.2]

With the release of PTX 2.1, PTX supports features commonly found in
virtual machines meant for CPUs, such as stack support for compute capability
2.x targets, indirect branching, indirect function calls, and more. The indirec-
tion introduced in PTX 2.1 allows for features such as C++ virtual functions.
[45, chap. 1.3]

The aim of this section is to give an overview of PTX. Some of the details
of the PTX ISA will be explained in more detail throughout Chapter 4, when
needed.

3.7.1 Programming Model

The following is based upon [45, chap. 2].
The programming model of PTX is conceptually identical to that of CUDA

C. The GPU is a device which is used as co-processor to the main CPU for
compute intensive applications. Several of thousands of threads are executed
on the device concurrently, executing the same kernel function. Threads are
organized into one or more Cooperative Thread Arrays (CTA), these are con-
ceptually similar to thread blocks in CUDA C and are executed concurrently or
in parallel. CTAs are organized into a grid, which is conceptually similar to a
grid in CUDA C.

CTAs are either one, two or three dimensional shapes, speci�ed by a three-
element vector which speci�es the number of threads in each CTA dimension.
As with a CTA, grids are also one, two or three dimensional shapes and can be
accessed by a three-element vector. In addition, each grid has an identi�er, and
all threads within a grid execute the same kernel program.

As with CUDA C, PTX supports a number of di�erent memory spaces, such
as register memory, shared memory, constant memory and texture memory. The
memory spaces are refereed to as state spaces.

3.7.2 Source Format

The following is based upon [45, chap. 4].
PTX programs are human readable text �les, similar to assembly code ge-

nerated by a compiler or disassembler. PTX source �les are commonly JIT
compiled to the desired GPU architecture, but AOT compiling can also be
done.

A PTX statement is either a directive or an instruction, and can be pre�xed
with an optional label, and ends with a semicolon. .reg .f32 r1; is an example
of a directive statement that declares a register r1 of type .f32, i.e. a 32bit
�oating point. add.f32 r1, r2, 0.5; is an example of a instruction statement,
which adds the �oating point value of 0.5 to the value of register r2, and stores
the result in the r1 register.

Comments in PTX uses the same syntax as in C/C++, Java and C#, with
// denoting a one line comment, while /* */ denotes a multi line comment.
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3.7.3 State Spaces

The following is based upon [45, chap. 5.1].

A state space is a storage area, all variables used within a PTX program are
stored in a state space, and PTX de�nes a number of state spaces, such as the
.reg and the .global state spaces.

Register The .reg state space describes a register storage area with high
bandwidth and low latency memory access. The amount of available registers
is limited and register variables will be spilled to the local state space, causing
a decrease in performance, if this limit is exceeded. Scalar register sizes are
restricted to a width of 1, 8, 16, 32 and 64 bits, while vector registers have a
width of 16, 32, 64 or 128 bits.

Special Register The .sreg state space contains all special registers, such
as the three-element vector that specify the CTA dimensions. All variables in
.sreg are read only.

Constant The .const state space is similar to the constant memory area
in CUDA C, thus variables contained within this state space are cached read
only variables that are initialized by the host. The .const memory space is
organized into eleven 64KB banks, i.e. eleven logical units of memory storage.
Note that the CUDA C Programming Guide states that CUDA C programs
only have access to one 64KB bank [47, sec. G.1], whereas PTX allow all banks
to be used [45, chap. 5.1.3].

Global The .global state space is similar to global memory in CUDA C. All
threads have access to the .global state space, and synchronization instructions
such as the bar.sync must be used to ensure that memory writes have been
carried out to avoid race conditions within a CTA. Generally, threads must be
able to do their work without relying on the work of other threads, and threads
in di�erent CTAs cannot communicate and synchronize their global state space
access.

Local The .local state space is memory that is local to each thread. Prior to
compute capability 2.0, local memory was non-cached memory and had similar
performance as global memory. With the introduction of compute capability 2.0,
local memory is cache-able. On compute capability 2.x devices which supports
call stack and recursive functions, the stack is located in local memory.

Parameter The .param state space is used to pass input arguments from the
host to the kernel. The ld.param instruction can be used to fetch the value
contained within a parameter, and store this value in a register. The location
of the .param state space is implementation speci�c. With the release of PTX
2.0, the .param state space can also be used as parameters in device functions.
Prior to PTX 2.0, device functions only supported the .reg state meaning that
structures that did not �t a single register must be �attened and passed using
multiple registers.
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Shared The .shared state space is shared between all threads within a single
CTA. This state space is conceptually similar to shared memory in CUDA C.
Memory access can be done when using .shared state space, such as the use of
a broadcast, i.e. all threads within the CTA reads at the same time and at the
same address, thus conserving bandwidth.

Texture The .tex state space is global read only memory which is cached on
the device, i.e. memory bandwidth consumption when using texture memory is
reduced compared to global memory. All threads share the .tex state space and
typically have support for 128 texture bindings, i.e. up to 128 separate textures
can be used at a time. The .tex has been deprecated in favor of new types
that specify textures. The PTX statement .tex .u32 tex_a;, which declares
a reference to texture memory, is equivalent to .global .texref tex_a which
uses the new texture type, .texref.

3.7.4 Types

The following is based upon [45, chap. 5.2].

PTX de�nes several fundamental types of di�erent sizes, which re�ect the
native data types supported by the target architecture, e.g. the compute capabil-
ity 1.x and compute capability 2.x architectures. Signed and unsigned integers
of di�erent sizes are supported, e.g. .s32, .u16, .s8, .u64, etc. where s and u

denotes signed and unsigned integers.

Floating points are also supported, i.e. .f16, .f32 and .f64. Thus, PTX can
be regarded as a strongly typed language. Untyped "types" are also supported,
e.g. .b32 denotes 32bit untyped data. Fundamental types are compatible if they
share the same type and the same size, e.g. it is possible to add two variables of
type .f32 together, but not two variables of type .f32 and .s32. A conversion
must be done prior to the addition. One exception to this rule is that unsigned
and signed integer types are compatible if they are the same size, i.e. it is possible
to add two values of type .u32 and type .s32, and save the result in either a
.u32 or .s32 register.

The last fundamental type is the predicate type, denoted by .pred. .pred
registers are used as guards in instructions, e.g. @p add.u32 x,y,z is only ex-
ecuted if the predicate @p is true.

3.7.5 Example

Codeexample 3.3 shows a compiler generated PTX program, from the CUDA
C source shown in Codeexample 3.2, that performs an addition of the a and b

array, and stores the result in the c array. The kernel uses the thread index
as index into the arrays, thus, thread 0 will perform c[0] = a[0] + b[0], while
thread i will perform the ith addition, i.e. c[i] = a[i] + b[i]. Note that the PTX
example is not the direct output from the nvcc compiler. It has been cleaned,
i.e. unneeded comments have been removed, some variables have been renamed,
and white spaces have been added.

The statements on line 1 and line 2 declares that this PTX program is a
PTX 1.4 program, i.e. features of PTX 1.4 and below are supported, and that
the PTX program supports compute capable devices of 1.0 and higher.
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Line 3 declares the addArray kernel which takes three parameters. Each
parameter denotes an array, and each array is represented as an 32bit unsigned
integer which is used as a pointer into the memory area where the elements of
the array is kept.

Line 5 − 7 declares three .u16 registers, ten .u32 registers and �ve .f32

registers. The numbered brackets denotes the number of registers to create, e.g.
the statement %rh<3> denotes three registers named %rh1, %rh2 and %rh3.

Line 8 − 9 converts the thread id stored in %tid.x from type .u16 to type
.s32, i.e. from an unsigned 16bit integer to a signed 32bit integer, and stores
the result in the %r1 register. Afterwards, the value stored in the %r1 register is
converted to an .u16 type and stored in the %rh1 register. The reason for the
two conversions are to remain backward compatible with older PTX version,
since the %tid.x special register was a .u16 type prior to PTX 2.0, where it is
now a .u32 type. This conversion is not needed if the PTX version was set to
2.0 instead of 1.4 [45, table 115].

Line 10 performs an integer multiplication on the value stored in %rh1, with
the constant four, and writes the result to the %r2 register. The %r2 register is
later used as an byte o�set into the a, b and c arrays, thus, thread 0 access the
�rst four bytes of the arrays, while thread n accesses the four bytes at index
n∗4. The multiply of four is required since PTX does not support C style array
indexing.

Line 11 − 13 loads the address of the �rst array, stored in the a variable,
into %r3 register. Afterwards, the byte o�set stored in %r2 is added to %r3 and
the result is stored in the %r4 register. %r4 now holds the address of the of the
nth �oat in the a array. The nth value is loaded into the %f1 register using the
ld.global.f32 instruction at line 13.

Line 14− 16 is essential the same as line 11− 13 but on the b array. On line
17, the two nth �oat values of the a and b arrays are added together and stored
in the %f3 register. Line 18− 19 calculates the address of the c array where to
place the result. Line 20 stores the value of %f3 into the c array, at the address
stored in %r8, using the st.global.f32 instruction.

Line 21 exits the kernel, marking the end of the computation.

1 __global__ void square_array ( f loat ∗a , f loat ∗b , f loat ∗c )
{

3 int id = threadIdx . x ;
c [ id ] = a [ id ] + b [ id ] ;

5 }

Codeexample 3.2: The CUDA C source of the PTX program

1 . v e r s i on 1 .4
. t a r g e t sm_10

3 . entry addArray ( . param . u32 a , . param . u32 b , . param . u32 c )
{

5 . reg . u16 %rh<3> ;
. reg . u32 %r<10> ;

7 . reg . f32 %f<5> ;
cvt . s32 . u16 %r1 , %t i d . x ;

9 cvt . u16 . u32 %rh1 , %r1 ;
mul . wide . u16 %r2 , %rh1 , 4 ;

11 ld . param . u32 %r3 , [ a ] ;
add . u32 %r4 , %r3 , %r2 ;

13 ld . g l oba l . f 32 %f1 , [%r4+0] ;
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ld . param . u32 %r5 , [ b ] ;
15 add . u32 %r6 , %r5 , %r2 ;

ld . g l oba l . f 32 %f2 , [%r6+0] ;
17 add . f32 %f3 , %f1 , %f2 ;

ld . param . u32 %r7 , [ c ] ;
19 add . u32 %r8 , %r7 , %r2 ;

s t . g l oba l . f 32 [%r8 +0] , %f3 ;
21 e x i t ;

}

Codeexample 3.3: Example of PTX program which sums two array.

3.7.6 Summary

During this section we found that the programming model of PTX is very similar
to the CUDA programming model, e.g. threads are grouped in CTAs which are
equal to CUDA thread blocks described in Section 2.1.2. PTX also has the same
memory spaces as CUDA along with some extra, such as .sreg which contains
special values, e.g. thread index number and CTA size.

PTX is a low level language similar to assembly languages known for example
from x86. PTX is register based, and each registers is declared with a speci�c
type, e.g. .reg .s32 %r1 declares a signed 32 bit integer register, which can
be referred to as %r1, while .reg .f64 %fl declares a 64 bit �oat.

3.8 Translation

This section will look at ways of translating CIL instructions to PTX instruc-
tions. We start by presenting two methods for generating a IR for the Action

delegate method, which is passed to APL through the Parallel.For method.
Next, we will analyze the di�erences between stack based and register based ILs
and how to translate from the former to the latter.

3.8.1 Expression Tree

The Expression namespace of the .NET library can be used to build an ex-
pression tree which can be traversed to generate PTX code. However, the
Expression class can only be used to parse Expression Lambdas, i.e. methods
that do not use assignment such as the one shown in Codeexample 3.4.

delegate int de l ( int i ) ;
2 de l myDelegate = x => x ∗ x ;

Codeexample 3.4: Example of Expression Lambda which squares x [29]

The methods of TPL take Actions as input, i.e. a delegate type which points
to either a lambda expression, a named method or an anonymous method as
described in Section 3.1. Even though the Expression class can only auto-
matically generate expression trees for lambda expression, expression trees can
be created manually using static methods on the Expression class. Thus we
can implement our own expression tree generator to handle the Action delegate
type which the Expression cannot parse, i.e. named and anonymous methods.
[27]
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Action<int> act i on = new Action<int>(( int x ) =>
2 {

Console . WriteLine (x ) ;
4 }) ;

Byte [ ] i l c o d e = act i on . Method . GetMethodBody ( ) . GetILAsByteArray ( ) ;

Figure 3.7: Example showing how to get CIL from an Action

3.8.2 Re�ection

The classes in the Reflection namespace can be used to retrieve information
about entities [35], such as the Action delegate. For example, Action has a
Method property of the type MethodInfo, which stems from the Reflection

namespace. This MethodInfo class contains a GetMethodBody method which
returns a MethodBody object, which is also part of the Reflection namespace.
This MethodBody object can be used to retrieve the CIL code of the given Action
by calling the GetILAsByteArray method, this is shown on Figure 3.7.

Likewise, references to data and methods de�ned outside the action can also
be accessed through re�ection, as mentioned in Section 3.2. The CIL code can
now be parsed and used to generate an IR which can be further optimized and
translated to PTX code as described in Section 3.8.3.

3.8.3 CIL to PTX Translation

CIL and PTX are both used to express general purpose programs, although
CIL is primarily used to express CPU programs, whereas PTX is primarily
used to express GPU kernel programs. The following will give an overview of
the di�erences between the two languages. Next we will look at how the stack
based CIL language can be translated to the register based PTX language and
which possible problems can arise from this.

Stack Based vs Register Based

CIL is entirely stack based whereas PTX is register based.

Nearly all CIL instructions operate on values stored on the evaluation stack,
e.g. the add instruction pops two values from the evaluation stack and pushes
the sum of the values back to the evaluation stack. Another example is the
ldelem.i4 instruction which pops an array address, pops an index, fetches an
int32 value contained within the array at the index, and pushes this value
to the stack as an int32. Most instructions use the stack for operands. Some
instructions do however take operands, such as the branching instructions which
take the address to jump to.

Looking at PTX, nearly all instructions take one or more operands, e.g. the
add instruction takes a destination operand and two source operands. Arith-
metic evaluations are not carried out using a stack, instead, registers are used.
Thus, the programmer or compiler declares several registers that can hold the
values of computations. Another example is the ld.global instruction which is
used to fetch the value contained within an array in global memory, by taking
the address of the array o�set by some index, and the register to hold the value.
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1 reg a1 , a2 , a3 // Declare r e g i s t e r s
push 0x1 mov a1 , 0x1 // Push/move data to s tack / r e g i s t e r s

3 push 0x2 mov a2 , 0x2 // Di t to
add add a3 , a1 , a2 // Add data

Figure 3.8: Pseudo code for a stack based assembly language to the left, and
the translated pseudo code for a register based assembly language to the right,
after applying SSA to all push and pop operations

A similar operation in CIL requires that the address and index of the array were
pushed to the stack.

Stack to Register Translation

As we saw above, translating CIL to PTX requires that we translate from a
stack based machine to a register based machine. A simple way of doing this is
by creating a new register for each instruction which pushes data to the stack,
and use this register when an instruction pops data from the stack. This method
is called Static Single Assignment (SSA) [1] and is commonly used in compilers
to perform optimizations, e.g. identifying redundant writes.

Figure 3.8 show an example of SSA translation from stack based to reg-
ister based pseudo code. When looking at this pseudo code, we can see that
some of the registers created by using SSA could have been left out, e.g. if
add supports values as argument the registers a1 and a2 could be avoided.
However, when loading PTX source with the CUDA Driver API, e.g. with the
cuModuleLoadDataExmethod, the level of optimization and the maximum num-
ber of registers used can be set [43]. Though the documentation does not explic-
itly state that these optimizations also optimize the number of registers used,
this may be the case, thus the potential overuse of registers may not be an issue.

To test whether the JIT compiler optimizes the register consumption,
cuFuncGetAttribute from the Driver API can be used. cuFuncGetAttribute
retrieves information attributes about the JIT compiled PTX code, e.g. number
of registers used and the amount of local memory used [42]. We can determine if
the JIT compiler removes some of the registers used, by comparing the number
of registers used by the JIT compiled PTX code to the number of registers
declared in the input PTX �le. Registers are spilled to Local memory, if more
are used than available. The local memory resides in device memory and thus
has the same high latency and low bandwidth as global memory [47, sec. 5.3.2.2],
thus eliminating register usage by moving registers to local memory can lead to
slowdown. To test this we assess the local memory consumption after the PTX
code has been JIT compiled.

We conducted a test on a CUDA C kernel compiled with nvcc to PTX,
the CUDA C kernel and resulting PTX �le is shown in Appendix A. The
PTX �le declares four unsigned int 16 bit registers, nine unsigned int 32 bit
registers and ten unsigned int 64 bit registers. When loading the PTX �le with
cuModuleLoadData and using cuFuncGetAttribute to retrieve register count
and local memory usage, we see that the register count has been reduced to
four registers in the JIT compiled PTX code, and with 0 byte usage in local
memory. From this we can conclude that the JIT compiler, at least in some
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cases, is able to make large reductions in the number of registers used, and
that Nvidia's own nvcc compiler also has an overproduction of registers, when
producing PTX �les, compared to the optimized version. Thus, the overuse of
registers introduced by SSA may not be a problem and we will not perform any
register elimination in our IR.

if I < 29
 then do
  I = 5
  J = 5
 end
 else do
  I = 6
  J = 7
 end

I1 = 5
J1 = 5

I2 = 6
J2 = 7

I3 =  4(I1,I2)
J3 =  4(J1,J2)

? I < 29 (1)

(3)(2)

(4)

Figure 3.9: Phi function. From [1]

By using SSA we may face the problem of deciding which variable name to
use after branching, e.g. the example in Figure 3.9. The left part of Figure 3.9
shows pseudo code for a program which checks whether I is below 29, and if it
is, sets I and J to 5, if not, I is set to 6 and J is set to 7. The right part of
the �gure shows a Control Flow Graph (CFG) representation of the left part,
with each node representing a basic block, i.e. a portion of code which does not
contain jumps within it, and SSA applied to variables. For more about basic
block see Section 4.2.4. In to order use I and J after the branching, caused by
the if statement in the CFG, an extra joint point (4) is added. This join point
decides which of the variables should be used, e.g. I1 is assigned I3 if I was
below 29 and I2 if I was above 29, thus after the join point, I3 can be used
without worrying about which path was chosen. [1]

Through our initial experiments we have not encountered any CIL code
where values were not written back to e.g. local variable array as shown in
Figure 3.10. Line 2 and 3 pushes 0 to the stack and pops it into local variable 0,
line 4 and 5 pushes argument 1 (isTrue) to the stack and pushes 0 to the stack.
Line 6 compares whether the two elements on the stack are equal and line 7
and 8 stores the result in local variable 1 and loads it back to the stack. Line
9 branches to label IsTrue (line 13) if the top element of the stack is non-zero,
else continue with subsequent lines. Line 10 and 11 writes 1 to the stack and
writes it back to local variable 0 and line 12 jumps to IsFalse (line 16). Line
13 and 14 pushes -1 to the stack and writes it local variable 0. Line 17 and 18
loads local variable 0 and replaces the value at �eld value with the value on
the stack. Through this result, we see that all temporary values on the stack
are written to local variables before the next branch.

However, if we should encounter this problem, we are able to use the φ func-
tion as described above. One implementation would be to split the φ function
in the number of arguments it takes, and move it into the basic blocks. For
example, J3 = φ4(I1,I2) can be split in I3 = I1 which is put in basic block
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nop stat ic void Main(bool i sTrue )
2 ldc . i 4 . 0 {

s t l o c . 0 int x = 0 ;
4 ldarg . 0 i f ( i sTrue )

ldc . i 4 . 0 x = 1 ;
6 ceq else

s t l o c . 1 x = −1;
8 l d l o c . 1 va lue = x ;

br t rue . s IsTrue }
10 ldc . i 4 . 1

s t l o c . 0
12 br . s I sFa l s e

IsTrue :
14 ldc . i 4 .m1

s t l o c . 0
16 I sFa l s e :

l d l o c . 0
18 s t s f l d in t32 Conso leAppl i cat ion1 . Program : : va lue

r e t

Figure 3.10: Example of how computations are copied to local variable array
before exiting basic block

(2) and I3 = I2 which is put in basic block (3).

3.8.4 Summary

In this section, we have looked at two ways of generating our IR, and we have
chosen to parse the CIL which can be retrieved using re�ection. In addition, we
have looked at the problem of translating stack-based instructions to register-
based instructions, and have chosen to use SSA to help us in this regard. Lastly,
we have looked at a potential problem of using SSA, namely that branches can
be problematic with regards to intermediate values. Through our experiments,
we saw that intermediate values were saved in a local variables and not on the
stack, thus removing the need to implement the φ function.

3.9 Summary

In Section 3.1, we described the TPL, which we in Chapter 2 stated that we
wanted to move to the device. Furthermore we decided that we would only focus
on implementing the Parallel.For method in APL as we found the other parts
of TPL to be beyond the scope of this project.

In Section 3.2, we described the CLI architecture, and we found that .NET
is a concrete implementation of CLI. In addition, we found that the CLR is a
concrete implementation of the VES and that the VES executes CIL instructions
by JIT compiling these to the underlying computer architecture. We also found
that one of the primary design goals of CLI was to facilitate multiple high-level
languages.

In Section 3.3, we looked at which source language we should translate from,
be it a high-level language such as C#, or the low level language CIL. We found
that the best choice was to use CIL as source language, since one of the design
goals of CLI is to facilitate multiple languages. CIL was therefore chosen as the
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source language. Additional we chose to use JIT compiling since this means that
APL can be used without making changes to ones existing compiler toolchain.

In Section 3.4, we looked at the o�cial CUDA toolchain found in the CUDA
SDK, and saw that we had the possibility to generate PTX code from CUDA C
code. We found that nvcc is not a good choice for JIT compilation, due to nvcc
taking nearly a second to compile a very simple kernel, and that nvcc would
have to be distributed along with APL.

In Section 3.5, we chose the target language among three candidates, PTX,
CUDA C and OpenCL C. We found that translating CIL to CUDA C or OpenCL
C required that we implemented a decompiler, which would require control-�ow
analysis, among other things, to construct high-level source code. We found that
choosing PTX meant that we were able to produce a closer one-to-one mapping
between the source and target language, and that PTX was more powerful. We
therefore chose PTX as target language.

In Section 3.6, we analyzed CIL and found that metadata tables can be ac-
cessed using re�ection, and that the CIL instructions of methods can be fetched.
In addition, we found that CIL is a stack-oriented language, thus it uses an eval-
uation stack to perform the computations.

In Section 3.7, we analyzed PTX and found that the PTX language is a
register-oriented language, thereby standing in contrast to CILs stack-orientation.
We also found that PTX exposes several state spaces, and that PTX is a typed
language.

In Section 3.8, we analyzed how we could translate CIL code to PTX code.
We found that we could use re�ection to access the CIL code and use SSA to
help us translate the stack-based CIL instructions to the register-based PTX
instructions, and that even though branches could be problematic with regards
to SSA, this was not observed in our initial experiments.

With the analysis complete, we will in Chapter 4 talk about the development
of the APL.
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4
Development

This chapter covers the development of APL, from requirement to implementa-
tion.

The functional and non-functional requirements to APL are described in
Section 4.1, where the functional requirements are based upon a number of
benchmarks and the non-functional requirements are individually rated.

The design of APL is covered in Section 4.2 where the di�erent classes and
their relations are covered. In addition, the IR is covered in more detail in this
section.

The Parser and Optimizer are covered in Section 4.3 and in Section 4.4.
The Emitter and Invoker are covered in Section 4.5 and in Section 4.6. Dur-
ing the development of the four components, �ve optimizations were found and
implemented. These are covered in the section dealing with the particular com-
ponent where the optimization is implemented.

Lastly, a summary of the development chapter is given in Section 4.7.
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4.1 Requirements

This section de�nes our functional and non-functional requirements for the APL
implementation. Recall from Section 2.4 that the functional requirements are
based upon a number of benchmarks. The chosen benchmarks are covered
in Section 4.1.1. Afterwards, the non-functional requirements are covered in
Section 4.1.2.

4.1.1 Functional

In order to run the benchmarks, we need to implement the functionality used
by these. Thereby these benchmarks will serve as acceptance tests for each
iteration. A brief description of each benchmark, along with their required
functionality, is described below. The benchmarks are also covered in more
detail in Appendix C.

1. Overhead Benchmark: Execute an empty Action.
The �rst step is to have support for an empty kernel. This benchmark has
the following concrete requirements:

• APL must implement an interface which resembles that of TPL.

• APL must implement the APL.Parallel.For method such that it
takes an Action along with two integers de�ning the range that the
For loop should iterate over.

• APL must be able to generate an empty device kernel in valid PTX.

• APL must run the resulting PTX kernel on the device.

2. Vector Addition Benchmark: Execute an Action that adds each ele-
ment in two arrays of �oating points together, and stores the results in a
third array of �oating points.
This step introduces the �rst arithmetic operation, namely addition, and
imposes marshalling requirements to APL.

• APL must be able extract the CIL code of the Action at runtime,
and the data utilized by the Action must be identi�ed.

• APL must parse the CIL code and generate an IR.

• APL must generate PTX code from the IR.

• APL must marshall the data used by the Action to the device before
execution, and back to the host after execution.

3. Matrix Multiplication Benchmark: Execute an Action which multi-
plies two matrices.
The third benchmark introduces branches to the kernel, and two dimen-
sional rectangular arrays.

• APL must support the required branching opcodes, not implemented
in the previous benchmark

• APL must support two dimensional rectangular arrays.
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Importance Not important Less important Important Very important

E�ciency X
Scalability X
Correctness X
Comprehensibility X
Testability X
Interoperability X
Usability X
Reusability X
Maintainability X
Reliability X
Portability X
Security X

Table 4.1: Nonfunctional requirements

4. Black Scholes Benchmark: Execute an Action which implements the
Black-Scholes �nancial model.
The Black-Scholes model is widely used in other benchmark suites, re-
quires function calls, and utilizes many of the mathematical functions
found in System.Math.

• APL must support function calls.

• APL must support the required mathematical functions, such as
Math.Log.

4.1.2 Non-Functional

The non-functional requirements, and their importance, are speci�ed in Ta-
ble 4.1. Table 4.1 is used to decide how much focus should be put on each
non-functional requirement during development. Each non-functional require-
ment is explained in more detail in the following paragraphs and is inspired by
the non-functional requirements found in [23]. In this context, "Implementa-
tion" is de�ned as APL.

E�ciency - Very Important The economical utilization of the technical

platform's facilities

In order to achieve good performance, we must utilize the platform as e�ciently
as possible, e.g. by producing e�cient PTX kernel code. In addition, the CUDA
model exposes di�erent memory spaces which have di�erent performance char-
acteristics, such as fast on-chip shared memory compared to slower but more
abundant global memory.

E�ciency is ful�lled when the APL implementation produces a PTX ker-
nel which, for a given benchmark, achieves the same performance as the kernel
produced from the CUDA C implementation. Also, APL should impose min-
imum overhead on the marshaling and invoking of the kernel, this should be
comparable to the CUDA C implementation.
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Scalability - Important How well the implementation scales with regard to

the input

The programmer speci�es three inputs to the APL: the program to run on the
device, the iteration range used by For, and, implicitly, the data which the
program operates on.

The �rst requirement is that APL must translate the CIL program to an
equivalent PTX kernel which performance scales equally well or better than the
sequential for-loop, TPL and CUDA C implementation.

Also, APL must scale to an arbitrary iteration range size. Di�erent devices
impose limits on the number of threads and thread-blocks, which means that
there is an upper bound on the size of the iteration range. Circumvention of
this restriction is beyond the scope of this project, as described in Section 2.3.2.

With regards to the data size, APL will not impose any restrictions. How-
ever, a device might not have enough memory to hold the input data, thus
requiring some form of memory swapping between host memory and device
memory. This is beyond the scope of this project, as described in Section 2.3.2,
and APL requires that all needed data is kept in device memory. In addition,
since we only have access to one compute capability 2.0 GPU, we will not im-
plement support for multiple CUDA enabled devices.

Based upon the requirement that the generated PTX kernel must scale at
least as well as the other implementations, and that the iteration range and data
sizes are bound by the device, we rate scalability as an important requirement
in APL. This requirement is ful�lled if the data size is bounded only by the
amount of memory available on the device, and that the resulting PTX kernel
scales the same as the other implementations.

Correctness - Important Ful�lling the formalized requirements

In order to improve the correctness of APL we will be using the benchmarks as
acceptance tests. Thus, if the APL implementations of the benchmarks produce
the same results as the other implementations described in Appendix C, we have
ful�lled correctness.

Comprehensibility - Important The e�ort of ensuring a coherent under-

standing of the system

Beside facilitating maintainability, segmenting the code will also help increase
comprehensibility if each segment has a well de�ned responsibility along with
well written and documented code. However, as we are three developers work-
ing closely together, we will not focus greatly on this area. We will however
document our solution using UML and describe the implementation through
this chapter, thus we rate comprehensibility as important.

Testability - Important The expense of ensuring that the system ful�lls the

requirements

APL will be implicitly tested by our benchmarks, which are also used as accep-
tance tests as described in Section 4.1.1.

To ease testing we will implement a benchmark runner, as described in Ap-
pendix D, which will be used to run all benchmarks for all implementations,
output timing result from the benchmark, and verify the benchmarks computa-
tion. We �nd the testability requirement ful�lled when this is implemented.
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Interoperability - Less Important The expense of coupling the system with

other systems

The system should be able to handle the necessary parts of CLI to run the
benchmark implementations, but it is not a requirement that it can be coupled
with other systems.

Usability - Less Important Adaption to the technical-, work- and organi-

zational environment

To increase usability we will use the same names as TPL, thus developers accus-
tomed to TPL will be able to easily adopt APL, however, beside this usability
is not priority for this project.

Reusability - Less Important The ability of using parts of the system in

other systems

Our design should to some extent facilitate reuse, e.g. by dividing the compo-
nents by responsibility, but this property should not be at the cost of other
non-functional requirements rated more important, thus, reusability is rated as
less important.

Maintainability - Less Important The expense of �nding and correcting

errors in the system

The system needs to be maintainable during this project, through the iterations
and the refactoring that will possibly be required to optimize the code or imple-
ment new features, thus we split the code up in segments containing di�erent
responsibilities.

Reliability - Less Important Ful�llment of the required level of precision

when solving a task

The system must be able to handle errors and throwing exceptions, thereby
allowing the developer to act on these problems. However, the non standard
compliance of �oating point math is not considered, and is rated beyond the
scope of this project as described in Section 2.3.2. The results of the benchmarks
will however be compared to each other.

Portability - Not Important The expense of moving a system to another

technical platform

We will not be focusing on other languages than CIL and PTX, and we will
only target compute capable 2.x GPUs, thus portability is not a priority.

Security - Not Important Securing the system against unwanted access to

its facilities and data

Security is outside the scope of this project and will not be considered, as
described in Section 2.3.2.
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4.2 Design

Based upon the functional requirements in Section 4.1, and the architecture de-
scribed in Section 2.2.1, we have created an UML 2.0 class diagram that depicts
the major classes, and their relations, used in APL. This diagram is shown on
Figure 4.1. In addition, we have created an activity diagram, which depicts
the abstract activities. This gives a better understanding of what activities are
present within APL, whenever a Parallel method is called. Also, a sequence
diagram is covered, which depicts the concrete sequence of operations, when
calling the Parallel.For method exposed by APL. The aim of the sequence
diagram is to concretise the abstract actions into concrete operations. The
activity and sequence diagrams are covered in Section 4.2.2 and Section 4.2.3
respectively.

4.2.1 Class Diagram
cd ClassDiagram

Action<int>

APL

Parallel
<<uses>>

APL.Compiler

Driver

Parser Optimizer Emitter Invoker

<<call>> <<call>>

<<call>> <<call>>

<<calls>><<uses>>

APL.Compiler.Intermediate

IR PTXIR

1

Statement

*

<<instantiate>> <<uses & instantiate>>

PTX 1IR 1

<<uses>> <<instantiate>> <<uses>>

APL.Compiler.Intermediate.Statements

<<inherits>><<uses>>

CUDA.NET

<<uses>>

Figure 4.1: Class diagram of APL

APL de�nes four namespaces:

• APL
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• APL.Compiler

• APL.Compiler.Intermediate

• APL.Compiler.Intermediate.Statements

These namespaces and their content will be described below.

APL Namespace

The APL namespace contains the Parallel class, which is the only public avail-
able class outside of APL.

Parallel The APL namespace contains the Parallel class, which has the same
signature as the Parallel class contained within the TPL. The Parallel class
contains the static For method. This method can be used by the programmer
to o�oad computations, which are contained within an Action delegate, to the
device.

APL.Compiler Namespace

The APL.Compiler namespace, contains the Driver, Parser, Optimizer, Emitter
and Invoker classes. Each class, apart from the Driver, is responsible for one
step in the compilation process.

Driver The Driver moves the compilation process forward, by calling static
methods on each of the four classes, and pass each intermediate result from
the previous step to the next. In addition, the Driver implements the �rst
optimization: a cache which caches the resulting PTX code, thus compilation
of the method body referenced by an Action object only happens once. We
expect that this optimization will increase performance when executing the same
Action, since compilation can be a time consuming process. We have chosen
to cache the whole code, and not individual PTX functions, even though the
latter might provide better performance in situations where the same method
is used by di�erent APL invocations. The reason for this choice is that function
call support is �rst implemented in later increments.

Parser The Parser parses the CIL bytecode of the Action object, thereby
generating an IR of the CIL code. The Parser is described in Section 4.3.

Optimizer The Optimizer performs optimizations on the IR, thereby gener-
ating a optimized IR. The Optimizer is described in Section 4.4.

Emitter The Emitter traverses the IR and generates PTX instructions. These
are packed into a PTX kernel that can later be loaded by the CUDA driver API
and executed on the device. The emitter is described in Section 4.5.

Invoker The Invoker's responsibility is to start the PTX kernel on the de-
vice, while making sure the required data is marshalled to the device prior to
execution, and marshalling the data back when execution has �nished. The
Invoker is described in Section 4.6.
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APL.Compiler.Intermediate Namespace

The APL.Compiler.Intermediate namespace, contains the IR and PTX classes,
among others. These classes are used by the di�erent steps of the compiler.

IR The IR class is the IR of the CIL code contained within the Action dele-
gate. It is generated by the Parser and modi�ed by the Optimizer. The IR,
along with the classes used within it, are covered in more detail in Section 4.2.4.

PTX The PTX class is a container class that contains the PTX instructions
emitted by the Emitter. A PTX object has a reference to the IR object which
was used to generate the PTX instructions. This gives the Invoker easy access
to the metadata through the IR references within the PTX object.

4.2.2 Activity Diagram

Figure 4.2 shows the activities that are carried out whenever the Parallel.For
method is called from the APL.

act Activity

Parallel.For is Called

Check PTX cache Compile Action

[PTX not in cache]

Parse CIL code

Optimize IR

Emit PTX instructions

Cache PTX codePrepeare Invocation

[PTX in cache]

Setup PTX kernel
Marshal data to the  
device

Invoke Kernel

Marshal data from  
the device

Body IR

Optimized IR

PTX

Body

Figure 4.2: Activity diagram of a call to the Parallel.For method

An application calls the For method of the Parallel class contained within
the APL namespace of the APL library, this results in the Parallel.For is Called
activity.

The PTX cache is checked to see if the method body has been compiled to
PTX code or not. If it has not, the compilation is started. This is denoted by
the Compile Action activity.

The CIL code is parsed, the IR is optimized and PTX instructions are emit-
ted and cached such that subsequent calls to Parallel.For with the same input
does not result in multiple compilations of the same method body.

After the Cache PTX code activity, APL proceeds with the preparation of
kernel invocation, where the PTX kernel is loaded and the required data is
marshalled to the device, such as the �elds used by the method body.
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Afterwards, the kernel is invoked, and the resulting data is marshalled back
from the device to the host. This marks the end of the activity.

In another run, using the same method body, the Check PTX cache activity
results in the Prepare Invocation activity, since an existing PTX version of the
method body is located in the cache.

4.2.3 Sequence Diagram

The activity diagram presented in Section 4.2.2 shows the abstract activities that
are present when calling the Parallel.For method. The sequence diagram in
this section cover the concrete operations that are performed when calling the
Parallel.For method. For better readability the sequence diagram is divided
in two parts: Compilation sequence and invocation sequence.

Compilation Sequence

As shown on Figure 4.3, an Application calls the For method on the Parallel
class. The �rst argument speci�es the start index of the for loop, the second
argument speci�es the end index and the last argument speci�es an Action

delegate containing the body of the for loop.
The Execute method of the Driver is called with the same arguments.

Afterwards, a check is made to see if a PTX object corresponding to the Action
delegate is kept in the cache. If not, the Parse method of the Parser is called,
with the Action delegate as input.

The Parser parses the CIL code of the Action delegate and creates an IR

object with the parsed CIL statements, as Statement objects. The IR object is
returned to the Driver and fed to the Optimize method of the Optimizer.

The Optimizer performs some optimizations on the IR object, and the op-
timized IR is returned to the Driver, where it is fed to the Emitter using the
Emit method.

The Emitter traverses the IR and generates PTX instructions. A PTX object
is created, which contains the generated PTX instructions. The PTX object is
returned to the Driver, where it is cached in the PTX cache using the CachePTX
method.
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sd SequenceDiagram

Application Parallel Driver Parser Optimizer Emitter Invoker

For(...)

Execute(...)

Invoke(PTX)

LoadKernel(PTX)

InvokeKernel(...)

MarshalTo(...)

SetArguments(...)

MarshalFrom(...)

Multiple
optimization steps

Compile(...)

Parse(action)

IR

Optimize(IR)

PerformOptimization

IR

Emit(IR)

PTX

CachePTX()

GetCachedPTX

Alt

[if PTX is not cached]

Foreach

[Optimization]

[else PTX is cached]

Figure 4.3: Compilation sequence diagram of a call to the Parallel.For method
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Invocation Sequence

As shown on Figure 4.4, the Driver calls the Invokemethod of the Invoker with
the PTX object as argument. The Invoker loads the kernel using the LoadKernel
method, marshalls the required data to the device using the MarshalTo method,
and sets the arguments of the kernel using the SetArguments method.

Afterwards, the kernel is invoked using the InvokeKernel which blocks until
the kernel has �nished executing. The data is marshalled back from the device
using the MarshalFrom method and control is returned to the application which
called the Parallel.For method.

sd SequenceDiagram

For(...)

Execute(...)

Invoke(PTX)

LoadKernel(PTX)

InvokeKernel(...)

MarshalTo(...)

SetArguments(...)

MarshalFrom(...)

Multiple
optimization steps

Compile(...)

Parse(action)

IR

Optimize(IR)

PerformOptimization

IR

Emit(IR)

PTX

CachePTX()

GetCachedPTX

Alt

[if PTX is not cached]

Foreach

[Optimization]

[else PTX is cached]

Application Parallel Driver Parser Optimizer Emitter Invoker

Figure 4.4: Invocation sequence diagram of a call to the Parallel.For method

4.2.4 Intermediate Representation

Recall from Section 3.8 that we have decided to parse and generate an IR from
the CIL code using SSA. The IR is transformed by the Optimizer in the next
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step of compilation, to produces an optimized IR, this approach is inspired by
Section 2.2.1. The aim of this section is to cover the classes of the IR and their
relations. These are shown on Figure 4.5.

cd IR

IR

Attributes

+ Entry : Method

Operations

Statement 1 Statement 0..*

Method

Attributes

+ Entry : BasicBlock

+ Fields : FieldInfo[]

+ Parameters : Parameter[]

Operations

IR

1

Method

1..*

Statement 1

Method 0..1

BasicBlock

Method 1

BasicBlock 1..*

BasicBlock

1
Statement
1..*

AddBranch

Figure 4.5: The class diagram of the intermediate representation

The IR is composed of four main classes: an IR class, a Method class, a
BasicBlock class, and an abstract Statement class. In addition, several sub-
types of the Statement class exists, each representing a speci�c statement type,
e.g. Add represents an addition statement, Call represents a call statement to
a method, etc. Statements that produces a value inherit from the Declaration
class, this class is described in more detail in Section 4.3.

The IR class consists of several Method objects, where each Method object
represents a method. An IR object has at least one method, and each IR has
exactly one entry point, i.e. a method which is used as by PTX kernel entry
point, this is explained in more detail in Section 4.5. The entry method can be
fetched using the Entry property of the IR object.

The Method class encapsulates all basic blocks that make up a method, and
exposes the BasicBlock object which is used as entry point into the method
through the Entry property. The Method also exposes the Fields and Parameters
properties, where the Parameters property returns the list of parameters used
by the method, and the Fields property returns the list of �elds that are used by
the method. The Fields and Parameters properties are used by the Emitter
and Invoker and their uses are explained in more detail in Section 4.5 and
Section 4.6.

The BasicBlock class represents one basic block in the method, i.e. an array
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of statements where the last statement allows branching outside the block and
the �rst statement allows branching into the block.

int i = 1
count:
if i % 2 != 0 jmp odd
println "count:" + i
odd:
i++
if i < 100 jmp count
println "counting complete"

if i % 2 != 0 jmp odd

println "count:" + i
i++
if i < 100 jmp count

println "counting complete"

Int i = 1

Odd
Count

Figure 4.6: Pseudo code which have been split into basic blocks

As an example of the use of basic blocks, see Figure 4.6. The pseudo code
on the left increments the integer variable i until it reaches the value of 100.
For each increment, if the value is even, the value is printed to the console, and
at the end of the count, "counting complete" is printed to the console. This
piece of code is subdivided into �ve basic blocks, where the �rst initializes the
variable i, the second jumps if the value of i is odd, the third prints the value
of i, the fourth increments i and jumps to the second basic block if the value
is less or equal to 100, and the �fth prints the "counting complete" message to
the console.

The abstract Statement class represents a statement which perform some
computation, such as an addition, assignment, call to method, etc. Statement
objects can reference other statements if they depend on these, e.g. an Add

statement must reference two Assignment statements that contain the name of
the variables to add together. Statements can also reference methods, such as
a Call statement that performs a call to the method. In addition, statements
which perform branching can refer to statements in other blocks.

4.2.5 Summary

In this section, we covered the design of APL. We have divided APL into four
components: the Parser, the Optimizer, the Emitter, and the Invoker. In
addition, we have chosen the structure of our IR and are now ready for the
implementation of each component.
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4.3 Parser

The aim of this section is to describe the Parser component of APL in more
detail. The Parser is responsible for parsing the CIL data and thereby gen-
erating an IR. The Driver calls the Parse method of the Parser class, with
a MethodInfo object as argument. The MethodInfo object contains all meta-
data of a method, such as the return type, parameter types, etc. and contains
a reference to the body of the method such that the corresponding CIL code
can be accessed. The �rst method which is parsed is the method referenced by
an Action delegate, i.e. the delegate which is used by the For method of the
Parallel class. Other referenced methods are also parsed.

4.3.1 Traversal of CIL

The CIL instructions of a method are traversed and Statement objects are
generated based upon the encountered opcodes, e.g. an opcode of 0x00 generates
a Nop statement, while an opcode of 0x58 generates an Add statement. The
generated statements are saved in one or more BasicBlock objects, depending
on the number of branches in the method, and the BasicBlock objects are
saved within a Method object which represents the parsed method. Recall from
Section 4.2.4 that an IR object is composed of one or more Methods which are
composed of one or more BasicBlocks, which are composed of one or more
Statements.

4.3.2 Evaluation Stack

Recall from Section 3.6 that the VES uses an evaluation stack to carry out
evaluations, e.g. the add instruction pops two values from the stack and pushes
their sum to the stack, and that we aim to convert these stack based instructions
to register based instructions. As described in Section 3.8.3, this can be done
by following the principles of SSA.

All statements inherit from the Statement class in some way, either di-
rectly or by inherit from the Declaration class, which in turn inherits from the
Statement class. Declarations are statements that produce a value, e.g. the
Add and Assignment statements are Declarations while the Nop and Branch

statements are not. Declarations contain a Type member which denotes the
type of value produced by the statement, e.g. an Add statement might produce
a value of type Int32 or Float.

Each time a Declaration statement is created and added to a BasicBlock

by the Parser, the same Declaration statement is pushed to a stack. The
stack is used to keep track of which values other statements consume, e.g. an
Add statement will pop two Declarations from the stack and push itself to the
stack. The two Declarations represents the values which the Add instruction
adds together. This stack is therefore used as a compile-time evaluation stack.

Boolean evaluations are handled in a similar manner, except that most
boolean instructions have a 16bit opcode instead of an 8bit opcode, e.g. the
compare equal (ceq) instruction has the opcode 0xFE01. When a ceq instruc-
tion is parsed, a CompareEqual statement is generated which produces a value
of 1 or 0, by at runtime comparing the two Declarations prior to it. If the
Declarations are equal a 1 is produced, and if they are not a 0 is produced.
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4.3.3 Branching

Local branching instructions, i.e. branching within a method, such as the un-
conditional branch instruction br, takes one operand which denotes the target
address to branch to. In CIL the target is represented as a signed o�set from
the next instruction, e.g. br 0x10 transfers control to the address of the next in-
struction + 0x10. When parsing a CIL instruction and generating a Statement

object, the address of the instruction is saved within the Statement. This
address is later used to calculate the exact Statement a branching statement
transfers control to.

Conditional branches are handled in a similar manner, e.g. the branch on
equal instruction (beq) pops two values from the evaluation stack, compares the
values, and branches if they are equal.

All branching statements inherit from the Branch class, which de�nes two
members: Target and BranchTo. The Target member holds the signed o�set
as described above, and the BranchTo contains the target Statement of the
Branch statement. The BranchTo member is computed after all statements
belonging to a method have been found, by traversing the list of Statements
and comparing their Address to the computed address of the branch.

This information is later used by the Emitter to generate labels in PTX
code that the branching statements can point to.

4.3.4 Calling other Methods

When the Parser encounters a call opcode, a Call statement is generated
which represents a call to a method. Call statements are Declarations since a
method might return a value. In CIL, a call instruction contains a metadata
token, which points to the metadata of the given method. This metadata token
can be dereferenced using re�ection, and the corresponding MethodInfo object
is saved within the Call statement.

The Parser is then called recursively on the new method, which produces
an IR for that particular method. The IR of the method is merged with the
current IR object, i.e. the methods of the newly parsed IR object are added to
the methods of the current IR object. The return type of the Call statement is
set to the return type of the corresponding method. The merging is done such
that only one IR, containing all methods, is produced at the end of the parse.

4.3.5 Local Variables, Fields and Method Arguments

Recall from Section 3.8.3 that local variables used within a CIL program are
kept in the so-called local variable array, and not on the evaluation stack. CIL
instructions such as ldloc and stloc are used to load and store the content
of local variables, kept in the local variable array, to and from the evaluation
stack. These type of instructions are parsed and a LoadLocal statement is gene-
rated, if the instruction is a ldloc, while a StoreLocal statement is generated,
if the instruction is an stloc. LoadLocal is a Declaration since the load pro-
duces a value, while a StoreLocal is a Statement that consumes some other
Declaration.

Arguments are handled in the same way. Arguments can be loaded to the
evaluation stack using the ldarg and values can be stored using the starg
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instruction.
Fields are also handled in the same way, where the ldfld and stfld are

used to load and store values of �eld.

4.3.6 Arrays

In CIL, one dimensional arrays can be accessed using instructions such as the
ldelem instruction, which loads an array element at the speci�ed index onto the
evaluation stack, the stelem instruction, which pops a value from the evaluation
stack and stores this in the array at a speci�ed index, and the ldlen instruction,
which pushes the length of the array onto the stack.

To access an element in the array, the CIL program pushes the metadata
token of the array to the evaluation stack, along with the index of the element
to access. In case of a stelem instruction, the value of the store operation
is also pushed prior to the execution of the stelem instruction. The Parser

generates a LoadElement or StoreElement statement, if a ldelem or a stelem

instruction is encountered. The LoadElement statement is a Declaration since
the ldelem instruction produces a value, i.e. the value contained in the array at
the particular index.

Rectangular arrays, i.e. multi dimensional arrays where each dimension has
a �xed size, do not have native support within CIL. Instead, these are imple-
mented using SetValue and GetValue member methods of the Array class.
The GetValue method takes two integers as arguments that represent the index
of each dimension. The SetValue method takes in addition to the index, an
argument containing the value in which to set. Instead of translating the rect-
angular access to method calls, we parse the call and create a SetElementRect

statement, in case of a SetValue call, or a GetElementRect statement, in case
of a GetValue call. Thus, we make a single statement instead of translating the
opcodes of GetValue and SetValue for multidimensional arrays, in our IR. By
doing this we avoid the need to implement support for objects.

4.3.7 Math Functions

Mathematical functions, such as the Abs, Log, Sqrt, etc. found in the System.Math
class is required by one of the benchmarks. However, many of the methods are
not implemented in CIL code, which is evident when performing re�ection on
these methods, meaning that we are not able to translate calls to these methods
directly. These methods are instead implemented in the VES.

Instead, whenever a call opcode is encountered by the Parser to one of
the System.Math functions, a statement which re�ects the particular method
is generated, e.g. a call to System.Math.Abs results in a Abs statement instead
of a Call statement. The Emitter is afterwards able to generate the required
PTX code for the math functions.
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4.4 Optimizer

The IR produced by the Parser can be optimized by running it through the
Optimizer, which performs transformations on the IR. We have decided to
implement two optimizations in this class, namely the fused multiply add op-
timization and the optimization where only �elds which have been written to
are marshalled back from the device, and �elds which are read by the device,
are marshalled to the device prior to kernel invocation. These optimizations
have been chosen sine we know that copying data between the device and host
is a slow process, and that nvcc produces code that makes much use of multiply
add.

We refer to the last optimization as "Copy Omit", since unnecessary copies
are omitted. These optimizations, and what we expect from them, are described
below.

4.4.1 Fused Multiply Add

An expression containing both a multiplication and addition, such as 1 ∗ 2 + 3,
is parsed such that two statements are generated, namely one Multiply and
one Addition statement. When generating PTX code, these statements will
result in two PTX instructions, one mul instruction and one add instruction. It
might increase kernel performance if these instructions are combined into one
mad instruction, i.e. an instruction which performs the multiply and the addition
in one instruction.

When examining a PTX kernel produced by nvcc, it is apparent that nvcc
replaces many of the add and mul instructions with a single mad instruction.
Thus, we expect that this optimization is important for the runtime performance
and have decided to implement this optimization in the Optimizer.

The Optimizer introduces this optimization, by replacing a Multiply and a
Add statements with a combined MultiplyAdd statement, if the Multiply state-
ment is directly followed by the Add statement. Consider the list of statements:
Add, Multiply, Add. Here, the Optimizer will replace the second and third
statement with a combined MultiplyAdd statement.

This allows the Emitter to output a mad instruction as described in Sec-
tion 4.5, which improves performance in situations where the kernel is compute
bound and not memory bound. This replacement is possible since we know
that Declarations are read at most once, thus the value produced by the �rst
Declaration, in this case the Multiply, is only needed by the Add following
the Multiply statement.

We expect this optimization will give speedup to all kernels which have
multiplication followed by an addition, i.e. Matrix Multiplication and Black
Scholes in our benchmark suite.

4.4.2 Copy Omit

Recall from Section 4.2 that the Invoker marshalls all required data to the
device, invokes the kernel and marshalls all the data back from the device to the
host. In some situations, data which is marshalled to the device is not needed,
and in other situations, data which has not been modi�ed, is marshalled from
the device back to the host.
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Consider the expression, c = a + b, if this expression was computed on the
device, the a and b data must be marshalled to the device prior to execution,
but c does not have to be, as it is only written to. Also, a and b do not have to
be marshalled back from the device after kernel invocation is completed,since
they have not been modi�ed, but c must be marshalled since the kernel has
changed c. We argue that the runtime performance will be increased by using
this optimization, as we are able to eliminate unnecessary marshalling and thus
reduce the runtime overhead. Therefore we decide to implement the Copy Omit
optimization.

To introduce the Copy Omit optimization, the Optimizer traverses the list
of all statements and �ags the �elds used by the statements depended on how
they are used. In the expression above, if a, b and c were arrays, the Optimizer
would �nd a LoadElement statement for a and one for b, and thus be �agged
as being read. Similarly, the Optimizer would �nd a StoreElement statement
for c, and �ag this �eld as being written to. As described in Section 4.6, the
Invoker is able to use this information to reduce the amount of unnecessary
copying to and from the device.

One potential problem with this optimization is that an array used as output,
might be written to on the host prior to it being used as an output array on
the device. The output array is not marshalled to the device prior to kernel
invocation, since the Optimizer deems that this array is never read on the
device, thus changes made by the host are lost when copying the array back.
Detecting this scenario requires that we detect where the array is used on the
host, and �ag the array if it is written to on the host prior to invocation of the
kernel, or, that the device produces a mask which can be used to overwrite only
the parts written to on device. But since we do not have any benchmarks which
would encounter this problem we will not implement support for this type of
scenario.

We expect this optimization will giver better performance to all benchmarks
which marshalls redundant data, i.e. Vector Addition, Matrix Multiplication
and Black Scholes in our benchmark suite. The factor of speedup is heavily
in�uenced by the type of algorithm, since the overhead of marshalling data
is more visible in low arithmetic intensity algorithms, e.g. we expect greater
performance increase in the Vector Addition benchmark, while the optimization
is expected to have little e�ect in the Matrix Multiplication benchmark due to
its high arithmetic intensity.
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4.5 Emitter

After the optimization process, the Emitter is run on the optimized IR to
produce PTX code that can be loaded by the CUDA Driver API, through the
Invoker, and executed on the device.

The Emitter has been implemented with the visitor pattern in mind, i.e.
each Statement has a Visit method which outputs the corresponding PTX
code for that Statement. This pattern improves the separation of concerns,
which in turn improves maintainability.

4.5.1 Version and Target

PTX sources start with a .version and .target directive, which speci�es the
PTX version number and the desired target architecture. We use PTX version
2.2 and output code for compute capable targets of 2.0, thus the Emitter out-
puts .version 2.2 and .target sm_20 as this is the version and target our
test setup supports, which is described in Section 5.1.

4.5.2 Types

Recall from Section 3.7, that PTX is a typed language, meaning that instruc-
tions and registers have a type associated. To facilitate this requirement when
generating PTX code, each CLI type maps to a corresponding PTX type.

As an example, consider the add instruction in CIL, and the corresponding
add instruction in PTX. In CIL, the type of the value produced by the add

depends on the source types, e.g. 1 + 2 will produce a System.Int32 value,
whereas 1.0f + 2.0f will produce a System.Single value. In PTX, this type
information is saved along with the instruction, thus, an add instruction which
adds two signed integers and an add instruction which adds two �oating point
values have the signatures, add.s32 and add.f32 respectively.

As seen, System.Int32 is mapped to ".s32" and System.Single is mapped
to ".f32". In addition, array types are converted to the ".u32", which is an
unsigned 32bit integer and treated as a pointer to a block of memory containing
the elements of the array. Recall from Section 2.1.2 that our device supports
64bit addresses, this feature is however not used since we were unable to produce
PTX code which functioned correctly under 64bit addressing. But since our
device does not exceed the amount of memory addressable using 32bit pointers,
we do not see this as a problem. This issue is discussed in further detail in
Section 6.2.4.

With regards to boolean values, the System.Boolean type is mapped to
".s32" where a value of zero represents false, and all other values represents
true.

4.5.3 Forward Declarations

Variables must be declared prior to use and must be declared as belonging to
some state space with a given type, e.g. add.s32 a, b, c; adds b and c together
and stores the result in a. The three variables must be declared prior to use,
as belonging to the .reg state space which is the register state as described in
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Section 3.7.3, and as having the type .s32, using the following signature: ".reg
.s32 variableName;".

As described in Section 4.3, each Declaration statement has an associated
type that denotes the type of the value produced by that Declaration. In addi-
tion, a Declaration has a global name which is used by the Emitter to produce
a variable name. For each Declaration statement in a Method, the Emitter

forward declares a variable in the .reg state space which is used by other state-
ments. Thus, all Declarations saves their produced value in a register which
can be used by later statements.

Local variables, which were described in Section 3.8.3, are also forward de-
clared prior to use.

4.5.4 Branches

When the Emitter encounters a Branch statement, a bra PTX instruction is
emitted along with a label which refers to the location to jump to. When the
Emitter encounters the Statement the label belongs to, the label is outputted
along with the PTX code for the particular Statement.

Conditional branches in our IR is also supported, such as the BranchIfTrue
statement which perform the jump if some expression returns true. As men-
tioned in Section 3.7 PTX has guard predicates, which determines if an in-
struction is carried out or not based upon some guard. The BranchIfTrue

statement is translated into the PTX code: "setp.eq.s32 p,v,1; @p bra

Label;", where the setp instruction sets the p variable to true, if the vari-
able v is equal to 1.

The branch is taken if the guard @p is true, i.e. if the value of v is 1. The setp
instruction can be used with other operators to implement other conditional
branches such as the less than (lt) and greater than (gt) operators.

4.5.5 Arrays

Recall from Section 4.5.2 that array types are mapped to .u32 and used as
pointers into a block of memory containing the elements of the array. The �rst
four bytes of the block contains the size of the array, i.e. how many elements
are present in the array. The size is used to compute the index address of
rectangular arrays, which will be covered below. The rest of the bytes contain
the actual elements.

Array access statements, such as the GetElement and SetElement state-
ments, are translated into ld.global or st.global instructions which performs
a load or a store in global memory. Prior to the load or store, the address of
the element is calculated using a combination of mul and add instructions. To
access the element at the index i of an array with address a, four is added to
a such that a points to the �rst element of the array, since the �rst four bytes
contains the size of the array. Afterwards, i is multiplied with the size of an
element, and added to a such that a now contains the address of the i′th element
in the array. Lastly, the st.global or ld.global instruction is executed which
writes or reads the element at index i.

Rectangular arrays are handled in a similar manner, except that the ad-
dress a is computed using two indices in the case of a two dimensional rect-
angular array. Array access on a two-dimensional rectangular array where
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each dimension has a size of: size, on an index: x, y and having an ele-
ment size of: elementSize bytes is computed using the following formula:
array[y, x] = a+ 4 + (x ∗ elementSize) + (y ∗ size ∗ elementSize).

4.5.6 Math Functions

Recall form Section 4.3.7 that some of the System.Math methods are trans-
lated to statements in the IR these statements are translated directly to one or
more PTX instruction, e.g. the System.Math.Sqrt method can be translated
to the sqrt instruction in PTX. Other methods, such as System.Math.Exp and
System.Math.Log, requires a combination of PTX instructions.

4.5.7 Device Functions

The IR contains one or more methods that are translated to PTX. The Emitter
traverses each Method and generates a device function which can be executed
on the device. Each Method contains all information required by the Emitter

to generate a method signature, such as parameter count, parameter types and
return type of the method. In addition, the �elds required by the method is
also added as parameters to the method.

Consider the method:

1 stat ic f loat Test ( int i )
{

3 return array [ i ] ;
}

This method takes one argument i of type System.Int32, and returns a
System.Single value. This method makes use of one �eld, the array �eld. The
Emitter translates this method into a PTX device function as shown below:

. func ( . reg . f32 return ) Test
2 (

. reg . s32 P0
4 , . reg . u32 F0

)
6 {

. . .
8 }

The ".reg .f32 return" denotes that this function returns a value of type f32
and that return is used as return register. In addition, the PTX function has
two parameters, P0 and F0. P0 is the parameter of the Test method, and F0

represents the �eld used by the device function.
A Call statement, which calls a method, is simply translated into a PTX

function call. Registers are used to pass arguments and the return value to and
from the function.

4.5.8 Kernel Function

After all device functions have been generated by the Emitter, a single kernel
function is generated which is called by the Invoker. The kernel function calls
the �rst device function generated by the Emitter, which is the function gene-
rated from the method body of the original Action delegate. In addition, the
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kernel function computes a linear thread index of each thread using the special
registers: tid, ctaid and ntid, where tid holds the thread index relative to a
CTA, ctaid holds the CTA index in the grid (block index in CUDA terms) and
ntid holds the number of blocks in the grid.

In addition, the generated kernel function performs the necessary bound-
ary checks prior to invoking the device function. As an example, a call to
Parallel.For(0,1000,body) will spawn 1024 threads on the device, since two
CTAs of 512 thread will be spawned as described in Section 4.6. The check is
made to ensure that only the �rst 1000 threads calls the �rst device function.
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4.6 Invoker

The invoker is in charge of initializing the CUDA Driver API, marshalling data
and invoking the generated kernel on the device. The CUDA Driver API can
been called by using the P/Invoke feature of CLI, this however would require
that we made signatures for all the methods of the CUDA Driver API which
we use. Instead, we have chosen to use the CUDA.NET library which provides
these signatures for us, thus allowing us to call the CUDA Driver API [8].

Before the PTX kernel can be invoked some setup is required, e.g. the CUDA
Driver API must be initialized and a CUDA context created. Next the data
which is used by the kernel is marshalled to the device. Likewise, the data
is marshalled back when the kernel execution has �nished. As described in
Section 4.5, the PTX object contains a reference to all �elds used by the PTX
kernel. This allows the Invoker to decide which data should be marshalled to
and from the device. The kernels are invoked with a CTA size of 512, which
is the maximum size allowed by compute capability 1.x devices. This size was
chosen such that we are able to test the implementation using our developer
computers.

When memory is marshalled back and forth, the data is pinned on the host
system, using the GCHandle.Alloc method. This ensures that the data is not
garbage collected before the data has been fully transfered. Furthermore it
creates a GCHandle object which gives a pointer to the memory area, this is
then used as input to the cuMemcpyDtoH or cuMemcpyHtoD methods, depending
on the direction of the memory transfer.

Furthermore, kernel arguments must be memory aligned. This is done by
adding an o�set to the argument given to the cuParam* function, which is the
function that adds the parameters to the kernel call. This o�set is calculated
using the alignment requirements of the host system [47, sec. 3.3.3]. For example
if the current o�set is 14, and the memory must be 4 byte aligned, a two byte
padding must be added, such that the parameter is put at o�set 16. This new
o�set can be calculated by the function new_offset = offset + alignment -

(offset mod alignment) [47, sec. 3.3.3].

4.6.1 Optimizations

We have introduced three optimizations to the Invoker, context caching, in-
creased L1 cache and the Copy Omit optimization.

Context Caching Before any CUDA Driver API methods can be called, a
context must be created, this is done by calling the cuCtxCreate method. How-
ever our initial tests shows that this is a slow operation. A naive implementation
of the Invoker will simply create a new context each time a kernel is run. There-
fore, we chose to store the context object in a static �eld such that we only need
to create the context when the �rst kernel is run. We expect this optimization
to increase runtime performance of all benchmarks in steady state, since the
context is only created once.

L1 Cache As mentioned in Section E.2, compute capability 2.x devices can
use part of their shared memory as a L1 cache and the programmer has some
control over how large a part this is. By default, shared memory is 48KB and the
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L1 cache is 16KB [47, G.4.1] therefore we might see an increase in performance
by increasing the L1 cache to its maximum size of 48KB.

Because our implementation does not utilize shared memory for any other
purpose we allow CUDA to utilize a larger part of the shared memory for L1
caching than default. This optimization is introduced by calling
cuCtxGetCacheConfig with the CU_FUNC_CACHE_PREFER_L1 as argument. This
increases the L1 cache from 16 KB to 48 KB [47, sec. G.4.1].

We expect this optimization to give speedup to all benchmarks which iterates
their data several times, i.e. the Matrix Multiplication benchmark.

Copy Omit As described in Section 4.4, the Optimizer annotates, all �elds
used by the Action, to indicate whether the �eld is read from or written to.
These annotations allow us to omit copying data to the device which are not
read from and copy data back to the host which are not written to on the device.
The Invoker checks these �elds and only copy the data which is necessary. As
described during Section 4.4 we expect this optimization will improve perfor-
mance on all our benchmarks, except the Overhead benchmark which does not
copy any data to or from the device.
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4.7 Summary

This chapter covered the implementation of APL and its four components, the
Parser, which parses the CIL and generates IR, the Optimizer, which performs
optimizations on the IR, the Emitter, which traverse the IR thereby generating
PTX code, and the Invoker, which invokes the PTX kernel on the device.

All functional requirements described in Section 4.1.1 have been imple-
mented, which means that all of our benchmarks can be executed. In addition
to the functional requirements, optimizations have been introduced to increase
the e�ciency and scalability of the solution, which are both important non-
functional requirements as described in Section 4.1.2.

Five optimizations were introduced: The PTX caching optimization was
introduced into the Driver which caches the produced PTX kernel. We ex-
pect that this optimization will increase runtime performance after the initial
compilation of the PTX kernel.

The fused multiply add optimization was introduced into the Optimizer,
which is an optimization that is also used by nvcc. We expect that this op-
timization will give a speedup in the Matrix Multiplication and Black Scholes
benchmark, as it reduces two instructions to one.

The Copy Omit optimization was introduced in the Optimizer and Invoker,
which reduces unnecessary copies to and from the device. We argue that this
optimization will provide a speedup, since marshalling of data to and from the
device is an expensive process.

Lastly, context caching and L1 caching was introduced into the Invoker.
Context caching should remove the overhead of creating a context in subsequent
calls to APL, thus increasing the runtime performance in steady state.

Increasing the L1 cache should increase performance in benchmarks which
performs multiple access to the same memory locations, such as is the case with
the Matrix Multiplication benchmark.

These optimizations are benchmarked in Section 5.2, and their results are
analyzed.
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The aim of this chapter is to cover the results of running our benchmark suite,
containing the Overhead, Vector Addition, Matrix Multiplication and Black
Scholes benchmarks, which were all described in Appendix C.

Recall that we have four implementations of the benchmark suite, namely
the C# implementation which uses sequential for-loops, the C# implementation
which uses the TPL, the C# implementation which uses APL, and the CUDA
C implementation. The results of running these benchmarks will be covered in
this chapter.

The hardware con�guration and software con�guration of the test setup will
be covered in Section 5.1. Afterwards, to determine if our optimizations have
any e�ect, the results of benchmarking APL using di�erent combinations of
optimizations is covered in Section 5.2.

Lastly, Section 5.3 and Section 5.4 compares the performance results of APL
with the performance results of the three other implementations, where the �rst
section compares the di�erence in performance and the last section covers the
di�erence in scaling with regards to input size.

The array sizes of the benchmarks in Section 5.2 and Section 5.3 have been
�xed to 33, 000, 000 �oating point elements for the Vector Addition and Black
Scholes benchmarks, and 768x768 = 589, 824 elements for the Matrix Multipli-
cation benchmark. The Overhead benchmark requires no data, but it performs
33, 000, 000 iterations.

By running the benchmark implementations we saw that all implemented
benchmarks computed the correct values. The benchmarks runner is in charge of
validation, which is done by comparing the values computed by each benchmark
implementation with all other computed values of that benchmark, as described
in Appendix D.

5.1 Test Setup

In this section, we will present the hardware and software setup used to perform
the benchmarks.
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CPU Intel Xeon E5420: Quad Core, 2.5 GHz 12MB cache
RAM 2 X 2GB Samsung PC2-5300
GPU Zotac Nvidia GeForce GTX 470: 1280MB GDDR5 RAM,

16X Peripheral Component Interconnect Express (PCIe) 1.0
Hard Drive Seagate Barracuda 7200.12: 500GB, 7200rpm, 16MB bu�er
Chipset North Bridge: Intel 5400A, South Bridge: 6321ESB

Table 5.1: LENOVO ThinkStation D10 6427H6G

OS Microsoft Windows 7 Enterprise x64
Graphics Driver Nvidia GeForce 270.21 WHQL
BIOS 2XKT31AUS
CLR v4.0.30319
.NET Framework 4.0

Table 5.2: Software used

5.1.1 Hardware

With regards to the hardware used, we have access to the same ThinkStation
as we used on the 9th semester. This time, however, it is �tted with a newer
GPU. The hardware specs are shown in Table 5.1.

5.1.2 Software

With regards to the software used, we use the same operating system as we
did at our 9th semester, but the graphics driver has change. The software
speci�cations are shown in Table 5.2.

5.2 Optimizations

The aim of this section is to benchmark the �ve optimizations which were in-
troduced in Chapter 4. The �ve optimizations are:

1. More L1 cache

2. CUDA Context caching

3. PTX caching

4. Fused multiply add

5. Copy Omit

Each optimization will be benchmarked separately to determine if they have
an e�ect on performance. Lastly, all optimizations are turned on and their
performance is compared with a benchmark run where all optimizations have
been turned o�. The result of benchmarking these optimizations can be seen
in the following �gures, Overhead benchmark: Figure 5.1, Vector Addition:
Figure 5.2, Matrix Multiplication: Figure 5.3 and Black Scholes: Figure 5.4.

In the following sections we discuss the result of each optimization, along
with how the optimizations perform when combined.
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Figure 5.1: Result of the di�erent optimizations for the Overhead benchmark.

5.2.1 More L1 Cache

This optimization works by increasing the memory area used for L1 caching from
18 KB to 48 KB. This optimization will a�ect computations which accesses the
same memory several times.

Matrix Multiplication is the only benchmark which iterates over the same
memory multiple times. This is also re�ected in our results, in that all bench-
marks, except Matrix Multiplication, gives overlapping con�dence intervals with
and without the L1 cache optimization. While Matrix Multiplication gains a
speedup of 1.12x at startup and 1.16x in steady state as seen on Figure 5.3.
This result match our expectation stated in Section 4.6.1.

5.2.2 CUDA Context Caching

Caching the CUDA context decreases the runtime of all benchmarks in steady
state by 36-44 ms. The startup time is also a�ected a little by this optimization
as shown by the Overhead and Vector Addition benchmarks where the con�-
dence intervals do not overlap. This increase in performance is however very
small and we expect that the di�erence might be caused by the context not
having to be destroyed for each run. In steady state a greater speed up is seen
in all benchmarks, since the context for all consecutive calls then have been
cached. This result also matches the expectations described in Section 4.6.1.
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Figure 5.2: Result of the di�erent optimizations for the Vector Addition bench-
mark.

5.2.3 PTX Caching

By caching the generated PTX code of an Action, we avoid having to recompil-
ing the same Action for consecutive calls. The benchmark, however, only shows
non-overlapping con�dence intervals in the Vector Addition benchmark, when
comparing PTX caching enabled with PTX caching disabled and in this case it
is a slowdown. This result is not as our expectations described in Section 4.2.
We expected that this optimization would result in speedup for all benchmarks
in steady state.

The reason for this is likely that the overhead of compiling the code to PTX
is not big enough to be decreased by using a cached PTX. If the method of
the Action was greater in size, or the Optimizer performed more transforma-
tions, thus making the compilation take longer, this optimization might provide
increased performance.

With regards to the Vector Addition benchmark, a 1.01x slowdown is ob-
served, which can be due to the Vector Addition kernel is very small, only a few
statements, thus PTX caching introduces too much overhead.

We have experimented with The Native Image Generator tool [31], which
allow pre-JITing of .NET code prior to execution. Here, we see that the Vector
Addition benchmark does not perform worse when PTX caching is enabled.
This indicates that the overhead of JITing the .NET code might be the reason
for the slowdown.
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Figure 5.3: Result of the di�erent optimizations for the Matrix Multiplication
benchmark.

5.2.4 Fused Multiply Add

By using the fmad instruction, we can replace two instructions, i.e. the mul and
add instruction, with a single instruction which should provide a speedup.

Our results show however that the fmad have no e�ect in most benchmarks.
The only benchmark which do not produce overlapping con�dence intervals both
in steady state and startup is Matrix Multiplication which shows a slowdown,
54.5 ms on startup and 24 ms for steady state, i.e. 1.09x and 1.05x slowdown.
This can be explained by Matrix Multiplication being the benchmark which has
the most instructions merged into fmad instructions.

The reason for the slowdown when applying fmad can be explained by the
time spend traversing the IR instructions and inserting the MultiplyAdd in-
struction overshadows the potential speedup. The reason that steady state is
faster than startup can be that the code which traverse the IR code only has to
be JIT compiled by the CLR the �rst time it is run.

Our expectations described in Section 4.4 were that this optimization would
lead to speedup for the benchmarks which used consecutive multiplications and
additions, i.e. Matrix Multiplication and Black Scholes, the results however did
not meet our expectations.

5.2.5 Copy Omit

In order for the copy omit optimization to show speedup, a large amount of
memory copies must be omitted compared to the arithmetic intensity of the
kernel, e.g. Matrix Multiplication which operates on 3x589, 824 �oat values, is
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Figure 5.4: Result of the di�erent optimizations for the Black Scholes bench-
mark.

very arithmetic intensive, and produces overlapping con�dence intervals. Vector
Addition, which is not arithmetic intensive, achieves a speedup of 1.61x for
startup and 1.89x in steady state, and operate on a input of 3x33, 000, 000 �oats
which is signi�cantly larger than the data used by the Matrix Multiplication
benchmark. This trend is also re�ected by the Black Scholes which operate on
5x33, 000, 000.

Our expectations described in Section 4.4 stated that we expected to achieve
speedup for all benchmark marshalling redundant data, i.e. Vector Addition,
Matrix Multiplication and Black Scholes. This is not fully coherent with the
results described above, since Matrix Multiplication did not achieve a speedup,
but this can be explained by the arithmetic intensity of the kernel. We also
stated that we expected the speedup factor to be greater for benchmarks with
smaller runtime, as the time spend copying data would be a larger part of
the overall time. This was found to be true, e.g. Vector Addition and Black
Scholes sees speedups very close to each other with a speedup of 1.89x and
1.91x respectively, even though the overall time of Black Scholes is 489 ms
longer. This may seem to be against our expectation, but Black Scholes avoids
�ve copies and Vector Addition only three, thus giving additional speedup to
Black Scholes resulting in the speedup factor.

5.2.6 All Optimizations On

When looking at the results for the benchmarks with all optimizations enabled,
we see that for the Overhead, Vector Addition and Matrix Multiplication bench-
mark, it the case that in startup there is at least one of the other con�gurations
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which is faster, e.g. for Matrix Multiplication Figure 5.3 it is faster when only
L1 cache is enabled in startup compared to when all optimizations are enabled.
However, in steady state, the benchmark with all optimizations enabled is al-
ways the fastest.

5.2.7 Summary

We have seen that the results very from optimization to optimization and from
benchmark to benchmark. Some optimizations results in a slowdown, while
some optimizations results in a speedup. A general trend and important fac-
tor when developing optimization is that the optimization have to give a large
enough speedup to not be absorbed by the overhead imposed by making the
optimization, especially if it is an Action which is only run once. Furthermore,
the time spend by the CLR on JIT compiling the code performing the optimiza-
tion may be an important factor, though it only imposes an overhead the �rst
time the code is run.

In particular we see that Copy Omit for large inputs gives a high speedup.
L1 caching gives better performance as well for benchmarks which iterate the
input several times. Context Caching sees a speedup for all subsequent calls to
APL. PTX caching and Fused Multiply Add resulted in no particular speedup,
and in some cases even slowdown.

With regards to our expectations, we saw that More L1 Cache, Context
Caching and Copy Omit behaved as expected. PTX Caching and Fused Multiply
Add did not meet our expectations and in some cases even resulted in worse
performance.

5.3 Comparisons

In this section, we will present and re�ect on the result from each of the indi-
vidual benchmark suite, i.e. the CUDA C, TPL, APL and sequential for-loop
benchmark suites.

The results of each benchmark will be compared in the following sections.

5.3.1 Overhead

The startup time of APL is high compared to all other implementations, espe-
cially the sequential for-loop has a low startup runtime, as seen in Figure 5.5.
The reason the sequentially executed loop is faster, may be that it has minimal
overhead, whereas all other implementations have higher overhead, e.g. creating
a CUDA context which we saw in Section 5.2 is a slow process.

The steady state for APL however, is 9.3x faster than the for-loop and 82.5x
faster than the TPL implementation. The only implementation which exceeds
APL in speed in steady state is the CUDA C implementation, with less than a
millisecond.

5.3.2 Vector Addition

Overall, the APL implementation of Vector Addition is slower than the other
implementations, except for the CUDA C implementation in steady state, as
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Figure 5.5: Result of benchmarking the di�erent implementations of the Over-
head benchmark.

seen in Figure 5.6. The worst case slowdown is the sequential for-loop, which is
2.6x faster than the APL implementation. One reason that APL is slower than
the implementations which run on the CPU could be that only one operation
is made on each element in the array. Thus the time spend marshalling data
to and from the device exceeds the speedup from executing on the GPU. As
seen, the sequential for-loop even beats TPL in speed. This might be due to
the overhead of spawning CPU threads, which is not amortized by the low
arithmetic intensity of the vector addition, or that false sharing is observed.

5.3.3 Matrix Multiplication

For Matrix Multiplication the CUDA C implementation, gives the best perfor-
mance with a speed up of 24.7x compared to APL. The main reason for this is
most likely that the CUDA C implementation is more advanced, e.g. memory
is split in smaller chunks and stored in shared memory, to avoid access to high
latency global memory. The APL implementation is only able to use shared
memory as a L1 cache.

Comparing APL with TPL we see that the startup for APL gives a speed
up of 1.5x, and a speed up of 2.58x in steady state. See Figure 5.7. A greater
speedup is achieved when comparing against the sequential for-loop, 5.8x for
startup and 10x for steady state. The reason that we see this speedup for
Matrix Multiplication and not Vector Addition is that Matrix Multiplication is
a more arithmetic intensive algorithm than Vector Addition.
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Figure 5.6: Result of benchmarking the di�erent implementations of the Vector
Addition benchmark.

5.3.4 Black Scholes

APL is faster than all other implementations, except for CUDA C at startup
as seen on Figure 5.8. In particular, the sequential for-loop is slow compared
with APL, which is 14x faster for steady state and 10x faster at startup. The
reason that APL startup is slower than CUDA C, but APL steady state is not,
may be the overhead of the CLR JIT compiling the APL code, since this will
only be experienced during the �rst run. The best speedup experienced is 14x,
when comparing APL with the sequential for-loop in steady state. APL is 1.02x
faster than CUDA C in steady state while CUDA C is 1.2x faster than APL in
startup.

5.3.5 Kernel Time

In Section 4.1.2, we stated that in order to ful�ll e�ciency, APL must generate
PTX kernels which performs as well as their CUDA C counterparts. Figure 5.9
shows the kernel times for APL and CUDA C in startup and steady state for
each benchmark.

The Overhead benchmark shows around 0,8 ms di�erence between the CUDA
C kernel time and APL kernel time. This may be because the APL kernel for
each thread calculate its thread index based on the thread block and grid block
as described in Section 4.5.

The kernel time for Vector Addition in CUDA C and APL are very close,
with a di�erence of 0,12 ms. We argue this is because of the similarity of the
implementations, e.g. none of the implementations utilize optimizations which

72



5.3. COMPARISONS

0

500

1000

1500

2000

2500

3000

3500

m
s

TPL Start Up

TPL Steady State

For Start Up

For Steady State

CUDA Start Up

CUDA Steady State

APL Start Up

APL Steady State

Figure 5.7: Result of benchmarking the di�erent implementations of the Matrix
Multiplication benchmark.

a�ect the result that the other does not use. The small di�erence that we do
see might be caused by the APL implementation calling a device function witch
the CUDA C implementations dose not.

For Matrix Multiplication CUDA C is 64.95x times faster than the APL
implementation. This large time di�erence might be caused by the extensive
optimizations implemented in the CUDA C version, e.g. the memory is split
into smaller blocks and stored in shared memory before being operated on. For
more on the CUDA C optimizations see [47, sec 3.2.2].

The Black Scholes kernel is around twice as fast in the CUDA C implemen-
tation as the APL implementation. This may be due to nvcc better optimizes
arithmetic instructions and does less loads from global memory, APL does 11
global loads where the nvcc generated PTX code only performs 3 global loads.

5.3.6 Summary

APL is in general faster than the sequential for-loop and TPL implementations.
The sequential for-loop and TPL implementations are however faster than both
the APL and CUDA C implementations of Vector Addition. The CUDA C
Matrix Multiplication implementation achieves very good results, 24.7x times
faster than APL, this is because it is heavily optimized to take advantages of
shared memory. APL Black Scholes is only beaten by CUDA C in startup, but
beats CUDA C in steady state.
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Figure 5.8: Result of benchmarking the di�erent implementations of the Black
Scholes benchmark.
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5.4 Scaling

Recall from Section 4.1.2 that scalability is an important non-functional require-
ment. The aim of this section is to cover how well our APL benchmarks scale
with regards to the input size, compared to the other implementations.

The Matrix Multiplication benchmark found in the CUDA SDK only sup-
ports matrices where each dimension has a size which is a multiply of 16. We
have to take this into account when choosing the input sizes used to investigate
how well it scales, since choosing a size which is not a multiply of 16 will break
the CUDA C implementation of the benchmark. Also, the GeForce 470 GTX is
limited to running at most 33553920 iterations in the Parallel.For loop, since
the Invoker uses a CTA size of 512 as stated in Section 4.6, and a kernel can
at most be invoked with 65535 CTAs [47, sec. G.1].

Based on these restrictions on input size, we have chosen to investigate the
scalability of APL with all optimizations enabled by running the benchmark
suite with di�erent input size starting with a size corresponding to a 16 × 16
matrix and doubling the size in each dimension for each run until the limit on
the number of iterations is reached. This approach gives a sequence of input
sizes which is: 256, 1024, 4096, 16384, 65536, 262144, 1048576, 4194304 and
16777216, thereby quadrupling the input size every iteration.

5.4.1 Overhead

Figure 5.10 shows that APL and CUDA C scales almost identically in the over-
head benchmark, despite APL always being a little slower. We also see that for
small inputs, both CPU implementations perform better than APL, but as the
input size increases, APL begins to perform better than the CPU implementa-
tions. One reason that the sequential for-loop appears to scale worse then APL,
might be that the loop condition must be checked for each iteration of the loop
while APL just starts a kernel with the given number of threads and does the
boundary checking in parallel. One reason for TPLs poor scaling might be that
TPL tries to balance the work between the di�erent CPU cores, and since no
work is performed in the loop, the overhead introduced by the load balancing
overshadows any speedup introduced by parallel execution.

5.4.2 Vector Addition

Figure 5.11 shows that APL and CUDA C scale almost identically in the Vector
Addition benchmark, but that CUDA C is a little faster than APL. All of the
implementations appear to scale similarly, but the implementation which uses
the sequential for-loop is much faster than the other implementations, regardless
of the input size. This is most likely because the sequential for-loop does not
have the overhead of marshalling data back and forth to the device, as is the
case with the APL and CUDA C implementations, and does not have the risk
of scheduling overhead and false sharing, which might be the case with TPL.

5.4.3 Matrix Multiplication

Looking at Figure 5.12, it appears that CUDA C scales better than APL and
is generally faster. This di�erence of scaling and performance is most likely
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due to the matrix multiplication algorithm used by CUDA C, in order to make
e�cient used of shared memory. APL does however appear to scale much like
the CPU implementations until the run with 4194304 elements. At this point,
the CPU implementations decrease in performance. This decrease is most likely
caused by the size of the matrices, which consumes 48MB of memory in total,
thus exceeding the 12MB cache of the CPU.

5.4.4 Black Scholes

Figure 5.10 shows that APL and CUDA C scale almost identically in the Black
Scholes benchmark. APL is always a little slower than CUDA C. In steady
state and for small inputs, the CPU implementations are faster than the GPU
implementations. As the input size increases, the GPU implementations become
faster than both CPU implementations.

5.4.5 Summary

APL and CUDA C scale equally well in all benchmarks, except the Matrix
Multiplication benchmark, but APL is a little slower than CUDA C. The reason
that the CUDA C and APL Matrix Multiplication implementations do not scale
equally well, is that the CUDA C implementation is highly optimized to use
shared memory.

The CPU performs better on small inputs in most of the cases, but is out-
performed by the GPU for larger inputs. One exception is the Vector Addition
benchmark, where the CPU is always faster due to the low arithmetic intensity
of this benchmark.
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Figure 5.10: Graph showing how the implementations of the Overhead bench-
mark scales.
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Figure 5.11: Graph showing how the di�erent implementations of the Vector
Addition benchmark scale.
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Figure 5.12: Graph showing how the di�erent implementations of the Matrix
Multiplication benchmark scale.
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Figure 5.13: Graph showing how the di�erent implementations of the Black
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5.5 Summary

In Section 5.2, we found that three out of �ve optimizations gave a performance
increase. The PTX caching and Fused Multiply Add optimizations gave no
speedup, which was not as expected. Increasing the L1 cache gave speedup in the
Matrix Multiplication benchmark, as was expected due to Matrix Multiplication
iterates over the same memory multiple times. Context caching gave speedup
for all subsequent calls to APL, since context creation is a relatively expensive
process. Copy Omit was the optimization which provided best speedup, which
was as expected, since marshalling of memory to and from the device over the
PCIe bus takes a long time.

In Section 5.3, we saw that the APL benchmark implementations are in
general faster than both sequential for-loop and TPL. Sequential-for and TPL
are both faster than APL and CUDA C in the Vector Addition benchmark.
With regards to CUDA C, we see that the CUDA C Matrix Multiplication
implementation is 24.7x times faster than APL's implementation due to its
heavy use of shared memory. The CUDA C implementation of Black Scholes
was however beaten by the APL implementation in steady.

In Section 5.4, we saw that APL and CUDA C scales equally well in all
benchmarks, except for the Matrix Multiplication benchmark. This was be-
cause CUDA C implementation was optimized with shared memory, while the
APL implementation only uses shared memory as L1 cache. We also saw that
the CPU implementations performed better on small inputs, while the GPU
performed better than the CPU implementations on larger input. The only ex-
ception being the Vector Addition benchmark, which always performed better
on the CPU due to the low aritmetic intensity of this benchmark.
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6
Epilogue

In this chapter, we conclude and re�ect upon the achieved results and the project
as a whole.

The conclusion is covered in Section 6.1, where we conclude on the project
as a whole, conclude upon our results, and revisit our problem formulation
thereby concluding upon our main problem and answering our sub-questions
from Section 2.3.

Afterwards in Section 6.2, we discuss the results along with our choice of
development method, choice of technologies, and among other things, discuss
the usefulness of our solution.

Finally, we look at the future development of Accelerated Parallel Library
(APL) in Section 6.3, where we discuss the potential optimizations that can be
applied to the existing solution, along with new features that we would like to
see added.

6.1 Conclusion

As we saw during our 9th semester project [16], solving computational problems
using the Graphics Processing Unit (GPU) can provide a substantial speedup,
but requires that the programmer is pro�cient with one of the General-Purpose
computations on Graphics Processing Units (GPGPU) languages, such as Com-
pute Uni�ed Device Architecture (CUDA) C and its executional model. This
pro�ciency requirement is also seen with multi-core programming on the Cen-
tral Processing Unit (CPU), especially with lock-based programming, but has
been alleviated to some extent by the introduction of abstractions such as the
Task Parallel Library (TPL), which takes care of many low level details such as
spawning threads.

In this project, we have designed and implemented APL which can execute a
delegate method on the GPU using an Application Programming Interface (API)
similar to that of TPL. TPL is library which can execute a delegate method
on the CPU. Speci�cally, we have implemented the Parallel.For method and
thereby provide the same abstractions as is provided by TPL, but using the
GPU as the execution unit instead of the CPU. This has a major advantage for
programmers already using TPL, since they can, with minimal change to their
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existing code base, move their computations from the CPU to the GPU and in
some cases achieve a speedup.

In Chapter 3, it was decided that APL should utilize Common Interme-
diate Language (CIL) as the source language, and Parallel Thread Execution
(PTX) as target language. In addition, we decided in Section 3.8 based upon
the limitation of Common Language Infrastructure (CLI) expression trees, to
implement our own CIL parser and use a Static Single Assignment (SSA) based
Intermediate Representation (IR) to help us translate between the stack-based
CIL to the register based PTX.

To guide the development of APL and benchmark the potential speedup of
moving computations from the CPU to the GPU, four benchmarks were devised,
ranging from simple benchmarks to more complex as described in Appendix C.
Each benchmark provided concrete requirements to APL, thereby providing us
with functional requirements, in addition to the non-functional requirements
that we devised.

The Overhead benchmark served as the most basic case, where the only
requirement was that the APL compiler must be able to produce an empty but
valid PTX kernel which could be executed on the GPU. The Vector Addition
benchmark introduced the requirement that we must be able to support single
dimensional arrays, marshaling to and from the GPU, and arithmetic addition.
The Matrix Multiplication benchmark introduced the requirement that we must
be able to support arithmetic multiplication, rectangular arrays, and branching.
Lastly, the Black Scholes benchmark introduced the requirement of function calls
and mathematical functions.

In addition to these requirements, �ve optimizations were introduced in
Chapter 4: The PTX caching optimization, the Fused Multiply Add optimiza-
tion, the Copy Omit optimization, the Context caching optimization and the
increased L1 cache optimization.

Using our benchmarks, we found that the Context caching optimization, the
Copy Omit optimization and L1 cache optimization did increase performance
in some of the benchmarks. Fused Multiply Add and PTX caching did however
not provide any measurable speedup, at least for this set of benchmarks, and in
some cases resulted in slowdown.

To determine the usefulness of APL, i.e. if a speedup could be gained by using
APL instead of TPL or CUDA C, the four benchmarks were also implemented
in CUDA C, C# using sequential for-loops and C# using TPL.

The Overhead benchmark showed that APL and CUDA C were superior to
both TPL and sequential for-loops with a speedup of 82.5x compared to TPL
and a speedup of 9.3x compared to the sequential for-loop.

The Vector Addition benchmark showed that APL was a few milliseconds
faster than the CUDA C implementation, but achieved less than half of the
performance of TPL and the sequential for-loop.

The Matrix Multiplication benchmark showed that the hand optimized CUDA
C version was 24.7x times faster than APL. APL did however achieved a better
performance than TPL and sequential for-loops with a speedup of 2.57x and
10x respectively.

The Black Scholes benchmark showed that APL is generally the fastest of
all implementations. APL is faster than CUDA C by a few milliseconds, but
achieves 3.96x speedup compared to TPL and 14,29x speedup compared to the
implementation that uses a sequential for-loop.
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6.1.1 Problem Formulation Revisited

At the beginning of this project, we created a problem formulation as described
in Section 2.3, which describes our main problem and a number of sub-questions,
which should help us solve the main problem. Each of the sub-questions will be
addressed below and the main problem at the end of this section.

How can source code be accessed at runtime, compile-time or in any

other way? In Section 3.3 we found that we had two possibilities with re-
gards to source language: A high-level languages, such as C#, or the low-level
language CIL. By using a high-level language, we would restrict the solution to
just one source language.

But since we chose CIL, we are able to support all high-level languages
which are compiled to CIL and at runtime access the resulting CIL code by
using re�ection.

How is device code best generated from .NET? The compilers available
for CUDA C, Open Computing Language (OpenCL) C and PTX were analyzed
in Section 3.4 and we found that OpenCL was able to compile its high-level code,
OpenCL C, at runtime, and Nvidia's nvcc compiler was able to Ahead-Of-Time
(AOT) compile CUDA C code. We also found that the CUDA Driver API
supports loading of low-level PTX code, which is Just-In-Time (JIT) compiled
and optimized to run on the device.

We found that PTX was the best choice since it supports more features,
e.g. recursion, which are not supported in OpenCL C, furthermore we avoid
transforming the low-level CIL code into a high-level abstraction, such as CUDA
C or OpenCL C, and are therefore able to make a near one-to-one translation
of CIL to PTX.

Which optimizations are important when generating code? Through-
out Chapter 4, we implemented several optimizations: Context caching, larger
L1 cache, PTX caching, Copy omit and Fused multiply add. In Section 5.2, we
analyzed the performance improvements of these optimizations and saw some
speedup, especially in steady state.

Some of the optimizations did however not give any speedup, and some gave
slowdown. Slowdown was often seen for startup benchmarks, that is when the
benchmark was run for the �rst time. We argue that this slowdown is caused
by the Common Language Runtime (CLR) JIT compiler, which is run once on
the CIL code [39]. The most important optimizations was the copy omit and
context caching, since these optimization provided good speedup for several of
the benchmarks. Thus, optimizations which reduces memory marshalling and
memory bandwidth usage are important.

How does device code generated by our solution fare against hand

written device code? To analyze the performance of our library against
the performance of CUDA C, we ran several benchmarks. These results show
that CUDA C in general is faster than APL, with two exceptions. The APL
implementation of Vector Addition and the Black Scholes benchmark are in
steady state faster than the CUDA C implementations. Vector Addition is
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1.03x faster and Black Scholes is 1.02x faster. CUDA C's kernel was however
64x times faster than APL in the Matrix Multiplication benchmark, due to its
heavy use of shared memory.

How does APL fare against the TPL? APLs performance is better for
all benchmarks, with the exception of the Overhead benchmark in startup, and
the Vector Addition in both startup and steady state. We argue that the reason
Vector Addition is slower is that the number of computations is too small,
because only one computation is performed per element, the performance gain
is overshadowed by the time spend compiling the code and marshalling data.
Vector Addition is up to 2.5x faster on TPL. APL is 82x faster in the Overhead
benchmark in steady state, 2.58x faster in the Matrix Multiplication benchmark
in steady state and 3.9x faster in the Black Scholes benchmark in steady state.
Thus, in three out of four cases, APL is faster than TPL.

Main Problem The main problem was: �Is it possible to create a library
similar to the Task Parallel Library from .NET 4.0, where the data parallel
operations are executed on a many-core GPU instead of a multi-core CPU?�.

Since we have implemented a library which has the same interface as TPL
and is able run the same code for the benchmarks we chose to implement and
achieve speedup in some cases, we rate our main problem solved.

6.1.2 Requirements Revisited

Non-Functional Requirements

In Section 4.1.2, we decided upon a number of non-functional requirements,
which were rated based upon how much focus we should put into the particular
non-functional requirement. In the following we will conclude upon how well
we ful�lled the very-important, important and less important non-functional
requirements.

E�ciency - Very Important - Partially ful�lled The economical utiliza-

tion of the technical platform's facilities

In order for this requirement to be ful�lled, we stated that the performance of
the produced PTX kernel from APL should be the same as the CUDA C kernel.
Furthermore, the overhead of APL should be comparable to that of the CUDA
C implementation.

In Section 5.3.5 we saw that the kernel runtime of benchmarks implemented
in CUDA C always has better performance than the APL implementations
kernel runtime. The overall performance of APL is however comparable to the
CUDA C with the exception of the Matrix Multiplication benchmark which is
up to 64x faster with CUDA C with regards to the kernel runtime.

We implemented �ve optimizations to help ful�ll this requirement, but these
did not provide the same level of kernel performance, as is the case with the
CUDA C implementation.

But since we achieved better performance on at least two of the benchmarks
in steady state in Section 5.3, we rate E�ciency as partially ful�lled, but not
ful�lled since APL does not produce as e�cient a PTX kernel as the handwritten
CUDA C implementation.
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Scalability - Important - Partially ful�lled How well the implementation

scales with regard to the input

For scalability we have three requirements:

1. APL implemented benchmarks must scale at least as well as the sequential
for-loop, TPL and CUDA C implementation.
In Section 5.4 we see that APL and CUDA C implementations scale equally
well, except for Matrix Multiplication for large inputs. APL scales at least
as well as the sequential for-loop and TPL implementations.

2. APL must support all input sizes below the maximum number of threads
runnable per device. APL has been hard-coded with a Cooperative Thread
Arrays (CTA) size of 512, where compute capability 2.0 devices support
CTA sizes of up to 1024. This limits us to half the number of thread
possible on our device.

3. APL must handle as much data as there is memory available on the device.
Our benchmarks are run with up to 629 MB of data, during which we
have not experienced any limitations to the amount of memory available
to APL.

Because APL does not scale as well as the CUDA C Matrix Multiplication
implementation, we only support half the number of thread possible on compute
capability 2.x, and we have not tested memory up the maximum available, we
rate scalability partially ful�lled.

Correctness - Important - Ful�lled Ful�lling the formalized requirements

We have tested the correctness of APL by running the benchmark implemen-
tations and comparing the results. As stated in Chapter 5, all the APL bench-
marks produce the same results as the other implementations. Thus we rate
this requirement ful�lled.

Comprehensibility - Important - Ful�lled The e�ort of ensuring a co-

herent understanding of the system

To facilitate comprehensibility, we required that the implementation should be
documented through Uni�ed Modeling Language (UML) diagrams and the im-
plementation should be described. This is done in Chapter 4. We thus rate this
requirement ful�lled.

Testability - Important - Ful�lled The expense of ensuring that the sys-

tem ful�lls the requirements

We rate this requirement ful�lled since we have implemented a benchmark run-
ner, as described in Appendix D, which implements the required features: Is
able to run all benchmarks on all implementation, output timings and verify
the correctness of the benchmarks calculations.

Interoperability - Less Important - Ful�lled The expense of coupling the

system with other systems

The system should interoperate with the necessary parts of CLI to run the
benchmarks implementations. We rate this requirement ful�lled, as we are able
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to run the implemented benchmarks on APL and generate the correct result,
thus APL is able to interoperate with the required parts of CLI.

Usability - Less Important - Ful�lled Adaption to the technical-, work-

and organizational environment

APL has the same interface as TPL, which was the only requirement for ful�lling
usability. We thus rate it ful�lled.

Reusability - Less Important - Ful�lled The ability of using parts of the

system in other systems

We have divided the APL source code in components with di�erent responsi-
bility, as described in Section 4.2. This facilitates that parts of code can be
exchanged, e.g. to handle other target languages. Thus we rate reusability ful-
�lled.

Maintainability - Less Important - Ful�lled The expense of �nding and

correcting errors in the system

To facilitate maintenance we split the code into components by responsibility.
This increases cohesion and loose coupling between components, thus it is sim-
pler to make changes to parts of the code, as changes does not propagate. We
therefore rate maintainability as ful�lled.

Reliability - Less Important - Partially ful�lled Ful�llment of the re-

quired level of precision

The requirements for ful�lling reliability is that APL should be able to calculate
the correct result for each of the implemented benchmarks. In addition, APL
must support exception handling. The benchmarks does produce the correct
result, but exception handling has however not been implemented, and we thus
rate reliability as only partially ful�lled.

Functional Requirements

Our benchmark serves as an acceptance test for our functional requirements in
Section 4.1, that is, if all benchmarks are able to run and produce the same result
as the other benchmark implementations, the APL ful�lls the acceptance test.
By running our benchmark runner, described in Appendix D, we have tested all
benchmarks and that they produce the same result. We thus conclude that the
functional requirements have been ful�lled.

6.2 Discussion

The aim of this section is to discuss our choices and results, speci�cally, we will
look at our choice of development method, whether we chose a good benchmark
suite or not, and our choices of technologies. Finally, we will discuss the learnings
goals that we presented in Section 2.3.1, discuss a problem we experienced with
64bit pointers on the device, and conclude the discussion with a discussion of
the usefulness of APL.
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6.2.1 Development Method

As described in Section 2.4, we have used an incremental development method
which has been a great help for us, since it allowed us to freeze development of
the code when we got close to the deadline of the project, despite not having
implemented all the features and optimizations that we would have liked to.
These features and optimizations are described in Section 6.3.

The automated tests and benchmarks was a great help doing the develop-
ment, especially when implementing optimizations since we could ensure that
we did not break previously working functionality, and easily see the e�ect the
optimizations had on performance.

Benchmark Suite

During this project, we have implemented a benchmark suite which contains four
benchmarks implemented in C# using sequential for-loops, C# using parallel
loops from TPL, C# using parallel loops for APL and C++ using the CUDA
Runtime API with CUDA C. This benchmark suite is however rather limited
and we would have liked to have included more benchmarks if we had more
time, since it do not represent all types of workloads.

It would have been interesting to have a benchmark which made use of more
registers, since none of the benchmarks in our current benchmark suite exceed
the 20 registers per thread, which according to the CUDA occupancy calculator
a compute capability 2.0 GPUs can run without loosing any of the latency hiding
ability. Therefore, it would be interesting to run a larger benchmark like the
Ray Tracer, implemented on the 9th semester, which made use of 39 registers
[16, sec. 4.2.3].

All of our current benchmarks make uses of sequential memory accesses
which perform better on the GPU than non-sequential accesses. Therefore it
would be interesting to have a benchmark which relied more on unsequential
memory accesses, this could for example be the Pruned Neighbor Search we
implemented on the 9th semester as part of our Boids model [16, sec. 3.1.2.2].

Few of the iterations in any of the benchmarks we currently have, take
di�erent branches. It would be interesting to have a benchmark which did
more branching since this can have a large impact on the performance of a
GPU application, as each warp can only follow a single thread at a time. A
benchmark which could be used for this is the odd-even transposition sort we
implemented on the 9th semester [16, 3.1.2.1].

As a whole our benchmark suite is not su�ciently varied to eliminate bias
from the results. However, the di�erences we see in the performance of APL
and TPL are in most cases so large that it is unlikely that they can be caused
by bias. We do see small di�erences between some of the optimizations in which
bias might have some e�ect, and cause us to draw incorrect conclusions.

6.2.2 Choice of Technologies

Based on the analysis in Chapter 3 we chose to use CIL as the source language of
APL and JIT compile it to PTX using SSA. SSA was chosen to help us translate
from the stack based representation of CIL to the register based representation
of PTX. In the following, we will re�ect on these choices.
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We chose to use CIL as the source language of APL since this allows APL
to be used in multiple high level languages and allows libraries, where the high-
level source code is not available, to be used along with APL. We still �nd CIL
to be a good choice, since CIL is the most �exible solution and since CIL is
a relatively simple language. This simplicity means that we were not required
to implement a parser for all the features of the high-level language, but could
just create a relatively simple parser for the CIL using SSA. The Reflection

namespace is used as it enabled us to access CIL at runtime.

We decided to use JIT compilation to translate from CIL to PTX, which we
still �nd to be a good choice since it allows APL to be used without making
changes to existing compiler tool chains. Furthermore, the benchmarks shows
the time spend on JIT compiling is very low, as seen in Section 5.2.3, at least
for the benchmarks we use.

Based on the decision to use CIL as the source language and perform JIT
compilation, we chose to use PTX as the target language. We still �nd this
to be a good choice since we avoid having to decompile the low-level CIL code
to a high-level language such as CUDA C or OpenCL C. We also avoid having
to deal with redistributing of nvcc, which is required to JIT compile CUDA C,
and we do not have to worry about not being able to take advantages of all the
new features introduced in Compute Capability 2.x, which are not available in
OpenCL C.

If we had chosen to use a high-level source language, it would have been bet-
ter to target CUDA C or OpenCL C, as this would have allowed us to take ad-
vantage of the optimizations already implemented in nvcc and Nvidia's OpenCL
C compiler implementation, and thereby possibly achieving our e�ciency goal.
For example, in the case of the Black Scholes benchmark we expect that the
performance di�erence we see is caused by nvcc performing more optimizations
than we do.

We use re�ection to access the instructions of an Action. This allows us to
overcome the limitation of Expression only being able to generate expression
trees for Expression Lambdas. While we could have implemented a parser which
generated an expression tree, we expect this approach would have been more
time consuming than our approach of using SSA and re�ection to generate our
own IR.

Non-functional Requirements Table 6.1 shows the result of our conclusion
upon the non-functional requirements in Section 6.1.2. We have managed to
ful�ll three important and four less important non-functional requirements. One
important requirement, one very important and a less important requirement
is rated partially ful�lled. The very important requirement, E�ciency, required
that APL produced kernels which had the same running time as the CUDA
C implementation, this however proved to be di�cult, and none of our results
showed equivalent or better performance than CUDA C kernels. We did however
beat the overall runtime of CUDA C on two benchmarks in steady state.

One reason for this is that CUDA C allows for more complex optimizations
than APL, e.g. Matrix Multiplication splits the data into several small blocks,
which is put in shared memory before they are multiplied which gives a 64x
speedup with regards to the kernel runtime compared with APL. By allowing
the user to nest several APL loops and implement an optimizations which uses
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shared memory where possible, it may be possible to use the same algorithm as
the CUDA C implementation does and thus achieve the same kernel time.

Furthermore the e�ciency requirement state that APL should achieve a total
runtime comparable to the CUDA C implementation. Some of the benchmarks,
e.g. Matrix Multiplication, can be said to not achieve this, as the CUDA C
implementation is much faster than the APL implementation.

Scalability required that we: 1. scale as well as the other implementations,
2. allow for all input sizes up to the maximum number of threads runnable on
the device and 3. that APL must handle data up to size of memory available on
the device. We did however only support half of the threads possible, because
we initially targeted 1.x, which only supports 512 threads in a thread block.
This is easily �xable, as it will not a�ect other parts of the code. Furthermore
we only tested APL with benchmarks of up to 629 MB of data. We did however
not see any problems so far, and there is nothing in the APL implementation
to stop us from using more data on the device. With regards to reliability,
exception handling has to be added to APL to ful�ll this requirement, this is
covered in more detail in Section 6.3.2. Based on these re�ections, we argue that
despite three requirements not being fully ful�lled, the solution is still usable,
and will in many cases give the user a speedup over sequential and parallel CPU
implementations of code.

Not ful�lled Partially ful�lled Ful�lled

E�ciency (V) X
Scalability (I) X
Correctness (I) X
Comprehensibility (I) X
Testability (I) X
Interoperability (L) X
Usability (L) X
Reusability (L) X
Maintainability (L) X
Reliability (L) X

Table 6.1: Result from conclusion on non-functional analysis. V means the
requirement is rated very important, I means rated important and L means less
important.

6.2.3 Learning Goals

In Section 2.3, we formulated a list of four learning goals. Below we will discuss
these and their relevance.

Gain knowledge of the .NET framework and its architecture In or-
der to implement APL we needed to gain insight to the .NET framework and
its architecture. We have documented this insight through the analysis, i.e.
Section 3.2 talks about CLI, Section 3.6 talks about CIL and Section 3.8 talks
about the possible ways of translating CIL to PTX. This knowledge proved use-
ful during development, e.g. we knew how to extract CIL code from an Action
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delegate method.

Gain knowledge of the Nvidia CUDA compiler and toolchain In Sec-
tion 3.4, we found that Nvidia's o�cial CUDA C compiler, nvcc, allows the
programmer to compile both host and kernel code. In addition, we found that
nvcc produces PTX code which is embedded into the application. We also found
that nvcc supports AOT compilation of PTX to binary device code, which is
embedded along with the PTX code. We also learned that the CUDA Driver
API can load PTX code at runtime, which is then JIT compiled to the speci�c
GPU and invoked. Looking at OpenCL C, we see that the OpenCL API sup-
ports loading of OpenCL C kernels and JIT compiling these to the device. This
is not supported by the CUDA Driver API, thus CUDA C cannot be loaded at
runtime and JIT compiled.

Gain knowledge of the new features of Compute Capability 2.0 Ap-
pendix E contains an analysis of the di�erences between compute capability 1.0
and 2.0. We did however not get far enough with the implementation of APL
to utilize many of the new features in compute capability 2.0, such as recursive
functions or classes. One thing we did use from compute capability 2.0 is the
L1 cache, as described in Section 5.2, which lead to speedup in some cases.

Gain experience with code translation Given that we have implemented a
compiler which translates CIL to PTX, we argue that we have gained experience
with the topic of code translation.

6.2.4 64bit On Device

Recall from Section 4.5.2 that we produced PTX code which utilized 64bit point-
ers at the start of the project, due to our device having 64bit addressing support,
but that we later changed the Emitter such that 32bit pointers were used in-
stead. The reason was that the CUDA Driver API threw "unknown" CUDA
errors, i.e. errors which CUDA could not classify, and the results produced by
the kernel was at times corrupted.

This behavior was �rst observed when we used "u64" types as pointer into
global memory, and issued a st.global instruction which writes a value to the
address pointed to by the 64bit pointer, using a GeForce GTX 470 GPU. We
also tried a Quadro 880M with compute capability 1.2. In this case, the use of
64bit pointers was not a problem, even though the 880M does not support 64bit
addressing, whereas the GTX 470 does.

Looking at the PTX produced by nvcc, we see that 64bit pointers are also
used. Thus, we think that the problem is not with the PTX kernel code, but
might be with the code which invokes the kernel.

This behavior might be caused by the di�erent memory alignment require-
ments, i.e. using 32bit requires that memory is 32bit aligned while 64bit requires
that memory is 64bit aligned. This would also explain why the kernel works
correctly on the 880M device, since the 880M has no 64bit support and thus
simply uses the 64bit registers as a 32bit pointer where the last 4 bytes are not
used.
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On the GTX 470, the st.global will initiate a 64bit transfer using a non-
naturally aligned address that might fail. The PTX documentation states that
the "address must be naturally aligned to a multiple of the access size" [45,
Table 86], and if the address is not properly aligned, the resulting behavior is
unde�ned, which is the behavior we see.

Thus, to �x this problem in future iterations of APL, we must look at the
memory alignment requirements and implement proper alignment.

6.2.5 Potential Problems With Copy Omit

As mentioned in Section 4.4.2 the Copy Omit optimization can potentially cause
APL to produce incorrect results, this can happen in the case where the host
creates an array and writes some data to it before the array is then used as write
only by APL, since the data written to the array by the host is not preserved
after the call to APL. In our benchmark suite, this was not a problem since all
the benchmarks which uses write only arrays writes to all positions in these.
In future iterations of APL, this should however be taken into account, be it
by detecting if the host writes data to the array prior to a call to APL, or by
creating a mask on the device and only overwriting the positions in the host
array that has been changed on the device, as described in Section 4.4.2.

6.2.6 Is APL Useful?

Looking at the abstraction provided by APL, and comparing this abstraction
to CUDA C and OpenCL C, we argue that APL provides a higher abstraction
level due to APL abstracts away from the concepts of data marshalling and
launch con�guration, and is thus easier for programmers to use. In addition,
programmers, which are familiar with TPL, can move their computations to the
GPU by changing only a few lines of code. Doing the same, using CUDA C and
the CUDA Runtime API, requires several changes to the existing application.

Currently, it might however be necessary to make some changes to existing
TPL programs to achieve higher performance, due to the APL compiler not
optimizing the kernel as much as possible. This can be seen in the Matrix
Multiplication benchmark in Section C.3, which as shown have modi�ed from
the TPL version to run more thread and use variables as an accumulator to avoid
accesses to global memory. These two changes could however have been avoided
by implementing the optimizations described in Section 6.3.1, and Section 6.3.1
respectively in the APL compiler.

The abstraction provided by APL is that of parallel loops, which we have
seen in Section 2.2 is also provided by hiCUDA. hiCUDA is however relatively
low level, since the programmer must explicitly use directives to specify which
data is marshalled to the device and how the parallel-loop is broken up into
thread blocks. These low-level directives does however provide the programmer
with more control, which might improve kernel performance in some situations.

Comparing APL to GPU.NET, we see that GPU.NET only provides a thin
abstraction on-top of CUDA C. Kernels are written as a .NET method and
tagged with an attribute. The methods are later compiled to device code and
executed on the device. Even though GPU.NET removes the aspect of manually
marshalling data when writing CUDA C applications, it is still required that
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the programmer specify the thread and thread-block sizes. This is not required
in APL, thus APL provides a higher level of abstraction.

Comparing APL with Accelerator, we see that APL is more general purpose
while Accelerator is more domain speci�c for parallel array computations. Even
though the for-loop abstraction provided by APL works well using arrays, we
are allowed much greater freedom with access patterns such as random reads
and writes. In addition, Accelerator requires that the programmer must make
use of the Accelerator provided types, where operations on these are carried out
on the device. APL does not impose such requirements, the only requirement of
APL is that the programmer must parallelize a for loop using the Parallel.For
method.

Looking beyond prior work from the start of the this project, we see that
several new publications have been made by researchers on the topic of GPGPU.

A publication from April 2011 [49] argues that interpreted languages have
failed to utilize modern processors, speci�cally the Single Instruction, Multiple
Data (SIMD) aspect of modern processors. Looking at our project, we see that
we are essentially trying to solve the same problem, which is to utilize modern
processing power in an interpreted/JIT compiled environment. [49] argues that
improving SIMD utilizations is important since GPU components, such as wide
SIMD arrays, are �nding its way to the CPU. This is already the case with the
AMD fusion processors.

A publication from March 2011 [15] deals with optimizations techniques,
speci�cally optimizations to reduce branch divergence in GPU programs, which
can improve performance. APL does not perform any optimizations on branches.
Their performance improvements range from 12%-80%, and may therefore be
considered for APL.

A publication from 2011 [5] works with an existing parallel extension to the C
language, which is called the Uni�ed Parallel C (UPC) language, that is aimed
at programming large-scale parallel machines. [5] extends UPC with a new
execution which is closer to the execution model of CUDA, thereby allowing
UPC applications to run on the GPU. Our solution is very similar to their
solution, except that our solution is meant for TPL applications were their
solution is meant for UPC applications.

6.3 Future Development

The aim of this section is to cover some of the ideas that have come to mind
through out the development of APL. We will �rst cover some of the optimiza-
tions that we thought about implementing for our current set of features, but
did not �nd the time to do. Afterwards, we will cover a broader set of features
that will make APL more useful.

6.3.1 Optimizations

Recall from Section 4.7 and Section 5.2 that we implemented �ve optimizations
that provided some speedup. The aim of this section is to cover other optimiza-
tions, which we though about during development of APL, but we did not have
time to implement, and which might provide even more speedup.
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Pa r a l l e l . For (0 , s i z e , delegate ( int i )
2 {

v2 [ i ] += v1 [ i ] ;
4 }) ;

P a r a l l e l . For (0 , s i z e −1, delegate ( int i )
6 {

r e s u l t [ i ] = v2 [ i ] + v2 [ i +1] ;
8 }) ;

f loat f oo = r e s u l t [ 2 ] ;

Figure 6.1: Illustration of how data transfer between host and device is not
always needed

CUDA Occupancy Calculator

The launch con�guration of a kernel has an impact on how many threads can
run concurrently on each Streaming Multiprocessor (SM) and thereby the per-
formance of the kernel. Nvidia provides an Excel document called the CUDA
Occupancy Calculator, which makes it easy to calculate how many threads can
be executed concurrently on each SM on the GPU. The number of threads
which can run concurrently depends on the compute capability of the device,
how many registers the kernel uses, how much shared memory the kernels uses
and the size of the CTAs, that is the number of threads in a thread block.

We can implement the CUDA Occupancy Calculator into APL and use this
to determine the optimal CTA size, and thus maximize the occupancy rate of
a kernel. This means that when the APL compiler has produced the PTX
kernel, the integrated occupancy calculator can be run and the CTA size can
be determined and the launch can be con�gured with this CTA size in mind.

Copy back to host on access

There is no need to copy data back to the host from the device until the host
accesses the data. If the copying of data is delayed until the data was actually
needed, data transfers could be avoided in cases where the data is never used on
the host. Another case is illustrated in Figure 6.1, where the data is not used
by the host between two calls of APL, and thus the data can be kept on the
device between the two calls, thereby removing the data transfer overhead.

Nested parallel loops

GPUs require a lot of threads to achieve high performance, i.e. the GeForce
GTX 470 available to us must have at least 21504 threads running concurrently
to achieve the best possible performance, since this device has 14 SMs and each
SM can have up to 1536 resident threads [47, p. 111][47, p. 154]. Therefore, it
might be advantageous to use nested parallel loops to create additional threads
as shown in Figure 6.2, where the APL kernel is equivalent to the CUDA C
program shown on Figure 6.3. The CUDA C code runs size2 threads rather
than just size. This approach to implement nested loops is however somewhat
limited since there is no way of synchronizing threads across multiple CTAs,
without running multiple kernels, and it is therefore not possible to guarantee
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1 Pa r a l l e l . For (0 , s i z e , delegate ( int y )
{

3 Pa r a l l e l . For (0 , s i z e , delegate ( int x )
{

5 r e s u l t [ x + y ∗ s i z e ] = x + y ;
}) ;

7 }) ;

Figure 6.2: Example of nested parallel loops in APL

1 __global__ void example ( f loat ∗ r e su l t , int s i z e )
{

3 int x = blockDim . x ∗ blockIdx . x + threadIdx . x ;
int y = blockDim . y ∗ blockIdx . y + threadIdx . y ;

5 i f ( x < s i z e && y < s i z e )
{

7 r e s u l t [ x + y ∗ s i z e ] = x + y ;
}

9 }

11 public void hostExample ( )
{

13 . . .
. . .

15 dim3 threads (BLOCK_SIZE, BLOCK_SIZE) ;
dim3 gr id ( s i z e / BLOCK_SIZE, s i z e / BLOCK_SIZE) ;

17 example<<< grid , threads >>>(d_result , s i z e ) ;
. . .

19 . . .
}

Figure 6.3: Example of how a nested parallel loops in APL might look in CUDA
C

that operations in the outer loop is performed in the correct order. In Sec-
tion 6.3.1, another approach to handling nested loops is shown, which overcomes
this limitation but instead imposes limits on the size of the nested loop.

Local objects

If data is allocated inside a parallel loop and operated on by nested parallel
loops, as is done in Figure 6.4, it could increase performance if the data were
allocated in shared memory. Shared memory could be used by mapping each
iteration in the outer loop to a CTA and each iteration of a nested loop to a
thread in the CTA as shown in Figure 6.5. To be able to do this, the data used
in the outer loop must �t in the shared memory, which for compute capability
2.0 devices is 48KB, and as the iterations of the nested loops are mapped to
threads in a CTA the maximum number of iterations which can be performed
by each nested loop is limited to 1024, since 1024 is the maximum number of
threads in a CTA on a compute capability 2.0 device. Because it is possible to
synchronize threads using PTX synchronization instructions such as bar.sync,
it possible to do multiple operations in the outer loop and still guarantee the
correct order of execution.
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int bar [ ] = new int [ s i zeX ∗ s izeY ] ;
2 P a r a l l e l . For (0 , s izeX , delegate ( int x )

{
4 int [ ] f oo = new int [ s i zeY ] ; // a l l o c a t e d in shared memory

Pa r a l l e l . For (0 , s izeY , delegate ( int y )
6 {

foo [ y ] = x ;
8 }) ;

P a r a l l e l . For (0 , s izeY , delegate ( int y )
10 {

i f (y−1 >= 0)
12 {

bar [ x + y ∗ s izeX ] = foo [ y−1] ;
14 }

}) ;
16 }) ;

Figure 6.4: Example of how a nested parallel loops can operate on a object
allocated in the outer loop

__global__ void example ( int∗ bar , int sizeX , int s izeY )
2 {

int x = blockIdx . x ;
4 int y = threadIdx . x ;

__shared__ int∗ f oo ;
6

i f ( threadIdx . x == 0)
8 {

foo = ( int ∗) mal loc ( s izeY ∗ s izeof ( int ) ) ;
10 }

__syncthreads ( ) ;
12 foo [ y ] = x ;

__syncthreads ( ) ;
14 i f (y−1 > 0)

{
16 bar [ x + y ∗ s izeX ] = foo [ y−1] ;

}
18 }

public void hostExample ( )
20 {

. . .
22 . . .

example<<< sizeX , s izeY >>>(d_bar , int sizeX , int s izeY ) ;
24 . . .

. . .
26 }

Figure 6.5: Example of how local objects can be allocated in shared memory in
CUDA C
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int s i z e = 1000 ;
2 P a r a l l e l . For (0 , s i z e , delegate ( int i )

{
4 r e s u l t [ i ] = 0 ;

for ( int j = 0 ; j < s i z e ; j++)
6 {

r e s u l t [ i ] += m1[ i , j ] ;
8 }

}) ;

Figure 6.6: Example of multiple accesses to the same array element

Asynchronous GPU execution

There is no need for the device and the host to run synchronously at all times.
The host could continue executing after a call to APL, and only synchronize
with the device when accessing a variable which is written to by the device. As
with the optimization described in Section 6.3.1, this could lead to a increase in
performance as the device and the host would be capable of working on di�erent
tasks in parallel.

Constant and Texture memory

In our 9th semester project, we found that the use of other on chip memory,
other than shared memory, can lead to a substantial increase in performance
[16, sec. 4.2.2]. There are some possibilities for APL to take advantage of
the di�erent types of on chip memory, such as constant memory and texture
memory, there can lead to an increase in performance.

If data is only read from, it might give better performance if it is allocated
in one of the read only memory spaces. The constant memory space can provide
access to an on chip cache. In addition to being able to broadcast a read from
a single memory address to multiple threads, the texture memory space also
gives access to an on chip cache which is optimized for spatial locality. The
texture memory cache is however higher latency than the L1 cache and might
hurt performance in some situations where the memory accesses can be better
cached by the L1 cache.

Cache Memory Access in Registers

In some case the same element in a array is accessed multiple times without
any explicit synchronization between them as e.g. seen in Figure 6.6 where
results[i] is accessed 2001 times for each iteration of the parallel loop. Since
each access to a array element corresponds to a global memory access it might
increases performance if we instead cached the array element in a register. Since
TPL and therefore also APL does not provide any guarantees about the order of
execution of the loop iterations, or how many iterations run concurrency, such
caching will not e�ect the correctness of the program since any problems with
it would be as a result of a race condition which might give problem even with
no caching support.
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6.3.2 Features

In this section, we cover some of the features which came to mind while imple-
menting APL, but we did not have time to do, or was beyond the scope of this
project. We will consider two sets of features, the need to have features and the
nice to have features.

Need to Have

In this section, we will cover all features which we argue needs to be implemented
prior to an o�cial release of APL.

All OpCodes The Parser of APL currently supports 46 opcodes, which is
roughly 1/4th of the opcodes found in CIL. This means that many of the lan-
guage construct in CIL cannot be translated to PTX and executed on the device,
due to lacking opcodes.

Implementing support for all opcodes would remove this problem, since APL
would then able to express all CIL instructions in PTX. This would mean that
higher level abstractions can be supported in languages such as C#, since C#
compiles to CIL.

Many of the lacking opcodes are easy to implement, since many of them are
alternatives to opcodes which APL already supports, e.g. several of the opcodes
deal with branching which are very similar to implement. Some opcodes are
however harder to implement, e.g. the newarr opcode, which allocates an array.
Currently we have no support for memory allocation, this must be implemented
prior to support for this particular opcode.

Structures We have support for arrays of type System.Single and
System.Int32, and their element types. Support for other primitive data types
is easy to implement, e.g. a System.Int16 can be mapped to the PTX type
.s16.

Support for complex types such as user de�ned structures was beyond the
scope of this project. Support for these are however a necessity in future itera-
tions of APL, since structures allow the programmer to group primitive types
into records which can be passed around, thus increasing the abstraction level.
Implementing support for structures is not a big challenge, since structure sup-
port is also available in CUDA C, even for 1.0 compute capable devices.

Classes Class support is a feature which we would like to see added to APL,
because most languages of CLI support the concept of classes. Class support is
however not a trivial matter to implement, since we must support features such
as inheritance, interfaces, and virtual methods.

CUDA C does support C++ classes to some extent, and with the release of
CUDA Software Development Kit (SDK) 4.0, CUDA C's class support has been
extended with virtual methods on compute capability 2.x devices. Thus, we are
certain that PTX has support for the necessary features required to implement
class support in APL.
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6.3. FUTURE DEVELOPMENT

Security Security aspects, such as preventing APL in taking over the device
by a malicious application, or such as preventing crashes if array boundaries
have been breached by the kernel, should have priority in future iterations of
APL.

In the current state, a malicious program can overload the device using the
Parallel.For method, which will make the system unresponsive or result in a
blue screen due to the device being shutdown after a certain amount of time.
Even in situations where the program is not malicious, the kernel might require
more resources by the device than available, thus resulting in an unresponsive
system.

Array boundary exceptions, or other types of exceptions, are frequently en-
countered in .NET applications. APL currently has no support for exceptions
of any kind, not even array boundary checks. This means that the kernel might
corrupt the memory on the device, which can result in artifacts in other pro-
grams running on the system. In real life applications, this exception handling
is a necessity.

Nice to Have

In this section, we will cover the features which we would like to see added to
APL, but is not required in the �rst o�cial release of APL.

Dynamic Memory Currently, all data required by our produced kernels is
preallocated prior to invocation. In some situations, it is desirable to allow
dynamic memory allocation, e.g. if the output size is not known at compile
time.

Dynamic memory allocation has been introduced using the alloca built-in
function which is available in PTX 2.x. This function allocates local memory
for the thread to use. It appears that there are no support for dynamic memory
allocation of global memory, thus global memory must be allocated prior to
kernel invocation.

CUDA C has a form of dynamic memory support, but this is done by al-
locating a big chunk of global memory, which is afterwards used by the other
threads as a heap [47, sec. B.15]. We can adopt a similar technique, and allocate
a big chunk of global memory prior to kernel invocation for the heap.

Debugging Support Currently, we have no debugging support in APL mean-
ing that it is not possible to reach breakpoints which for example have been set
through the Visual Studio IDE. To implement breakpoint support, the break op-
code must be implemented, which signals the Virtual Execution System (VES)
that a breakpoint has been reached.

The break opcode is implementation speci�c [17, 3.16], meaning that we are
free to use this opcode as we see �t. With regards to PTX, the documentation
does not mention debugging support other than the brkpt, pmevent and trap

instructions, which are categorized as miscellaneous instructions. The brkpt

instruction is used to indicate breakpoints and suspends the execution of the
kernel, the pmevent is used to perform monitor events such as incrementing one
of the four performance counters, and the trap instruction aborts the execution
of the kernel. These instructions are vaguely documented and their usage is not
clear.
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Chapter 6. Epilogue

However, we know that it is possible to debug CUDA C kernels when execut-
ing these on a device, if an independent device is used to render the Graphical
User Interface (GUI) of the machine in which debugging is carried out[44]. And
since CUDA C is translated to PTX, it should be possible for us to include the
same debugging support as is supported in CUDA C.

Multiple Devices Currently, APL can o�oad computations to one device,
but does not support o�oading of computations to multiple devices present in
the system. Introducing support for multiple devices allows APL to use the
extra computational power present in the system. Utilizing multiple devices
requires that we change much of APL, speci�cally, we must include support
for multiple devices by changing the code that deal with the CUDA Driver
API. In addition, each device has its own global memory, thus some form of
synchronization between the devices must be implemented prior to being able
to support this feature.

IDE Support for Overhead With the introduction of Visual Studio 2010,
Microsoft has included support for a graphical tool, called the Parallel Perfor-
mance Tool, used to indicate how well a TPL powered application performs on
the CPU. This tool allows the developer to analyze how well his parallel pro-
gram performs, i.e. how much each core is utilized and the amount of time each
thread is blocked. [50]

Introducing support for APL in the Parallel Performance Tool allows the
developer to determine how well his parallel program runs on the device, i.e. by
showing the percentage of active threads and the number of uncoalesced memory
accesses. Another possibility is to introduce this support into the Nvidia Parallel
Nsight extension to Visual Studio, which allows debugging and performance
pro�ling of CUDA kernels.
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A
CUDA C and PTX test kernel

The code presented here is used in Section 3.4.1 and Section 3.8.3.

1 extern "C"
__global__ void mult ( int ∗A, int ∗B, int ∗out , int max)

3 {
int x = blockDim . x∗blockIdx . x+threadIdx . x ;

5 i f ( x < max)
out [ x ] = A[ x ] + B[ x ] ;

7 }

Figure A.1: Vector addition kernel in CUDA C
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1 . v e r s i on 1 .4
. t a r g e t sm_10 , map_f64_to_f32

3 // compiled with /usr / l o c a l /cuda/open64/ l i b // be
// nvopencc 3.2 b u i l t on 2010−11−03

5
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7 // Compiling /tmp/tmpxft_00000e0b_00000000−9_t_k . cpp3 . i (/ tmp/
ccBI#.YRfVEt)

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 // Options :

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 // Target : ptx , ISA : sm_10 , Endian : l i t t l e , Pointer S i ze :64

// −O3 ( Optimizat ion l e v e l )
15 // −g0 (Debug l e v e l )

// −m2 (Report a d v i s o r i e s )
17 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

19 . f i l e 1 "<command−l i n e >"
. f i l e 2 "/tmp/tmpxft_00000e0b_00000000−8_t_k . cudafe2 . gpu"

21 . f i l e 3 "/ usr / l i b / gcc /x86_64−l inux−gnu /4 . 4 . 5 / in c lude / s tdde f . h"
. f i l e 4 "/ usr / l o c a l /cuda/bin / . . / i n c lude / c r t /device_runtime . h"

23 . f i l e 5 "/ usr / l o c a l /cuda/bin / . . / i n c lude / host_de f ines . h"
. f i l e 6 "/ usr / l o c a l /cuda/bin / . . / i n c lude / bu i l t in_types . h"

25 . f i l e 7 "/ usr / l o c a l /cuda/bin / . . / i n c lude / device_types . h"
. f i l e 8 "/ usr / l o c a l /cuda/bin / . . / i n c lude / dr iver_types . h"

27 . f i l e 9 "/ usr / l o c a l /cuda/bin / . . / i n c lude / sur face_types . h"
. f i l e 10 "/ usr / l o c a l /cuda/bin / . . / i n c lude / texture_types . h"

29 . f i l e 11 "/ usr / l o c a l /cuda/bin / . . / i n c lude / vector_types . h"
. f i l e 12 "/ usr / l o c a l /cuda/bin / . . / i n c lude /

device_launch_parameters . h"
31 . f i l e 13 "/ usr / l o c a l /cuda/bin / . . / i n c lude / c r t / s to rage_c la s s . h"

. f i l e 14 "/ usr / inc lude / b i t s / types . h"
33 . f i l e 15 "/ usr / inc lude / time . h"

. f i l e 16 "/ usr / l o c a l /cuda/bin / . . / i n c lude / texture_fetch_funct ions
. h"

35 . f i l e 17 "/ usr / l o c a l /cuda/bin / . . / i n c lude /common_functions . h"
. f i l e 18 "/ usr / l o c a l /cuda/bin / . . / i n c lude /math_functions . h"

37 . f i l e 19 "/ usr / l o c a l /cuda/bin / . . / i n c lude /math_constants . h"
. f i l e 20 "/ usr / l o c a l /cuda/bin / . . / i n c lude / dev i ce_funct ions . h"

39 . f i l e 21 "/ usr / l o c a l /cuda/bin / . . / i n c lude /sm_11_atomic_functions .
h"

. f i l e 22 "/ usr / l o c a l /cuda/bin / . . / i n c lude /sm_12_atomic_functions .
h"

41 . f i l e 23 "/ usr / l o c a l /cuda/bin / . . / i n c lude /sm_13_double_functions .
h"

. f i l e 24 "/ usr / l o c a l /cuda/bin / . . / i n c lude /sm_20_atomic_functions .
h"

43 . f i l e 25 "/ usr / l o c a l /cuda/bin / . . / i n c lude / sm_20_intr ins ics . h"
. f i l e 26 "/ usr / l o c a l /cuda/bin / . . / i n c lude / su r f a c e_func t i on s . h"

45 . f i l e 27 "/ usr / l o c a l /cuda/bin / . . / i n c lude /math_functions_dbl_ptx1
. h"

. f i l e 28 "t_k . cu"
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. entry mult (
48 . param . u64 __cudaparm_mult_A ,

. param . u64 __cudaparm_mult_B ,
50 . param . u64 __cudaparm_mult_out ,

. param . s32 __cudaparm_mult_max)
52 {

. reg . u16 %rh<4>;
54 . reg . u32 %r<9>;

. reg . u64 %rd<10>;
56 . reg . pred %p<3>;

. l o c 28 2 0
58 $LDWbegin_mult :

mov . u16 %rh1 , %c ta id . x ;
60 mov . u16 %rh2 , %nt id . x ;

mul . wide . u16 %r1 , %rh1 , %rh2 ;
62 cvt . u32 . u16 %r2 , %t i d . x ;

add . u32 %r3 , %r2 , %r1 ;
64 ld . param . s32 %r4 , [__cudaparm_mult_max ] ;

s e tp . l e . s32 %p1 , %r4 , %r3 ;
66 @%p1 bra $Lt_0_1026 ;

. l o c 28 6 0
68 cvt . s64 . s32 %rd1 , %r3 ;

mul . wide . s32 %rd2 , %r3 , 4 ;
70 ld . param . u64 %rd3 , [__cudaparm_mult_A ] ;

add . u64 %rd4 , %rd3 , %rd2 ;
72 ld . g l oba l . s32 %r5 , [%rd4 +0] ;

ld . param . u64 %rd5 , [__cudaparm_mult_B ] ;
74 add . u64 %rd6 , %rd5 , %rd2 ;

ld . g l oba l . s32 %r6 , [%rd6 +0] ;
76 add . s32 %r7 , %r5 , %r6 ;

ld . param . u64 %rd7 , [ __cudaparm_mult_out ] ;
78 add . u64 %rd8 , %rd7 , %rd2 ;

s t . g l oba l . s32 [%rd8+0] , %r7 ;
80 $Lt_0_1026 :

. l o c 28 7 0
82 e x i t ;

$LDWend_mult :
84 } // mult

Figure A.2: Result of compiling Figure A.1 to PTX with the nvcc -ptx

kernel.cu command with CUDA compilation tools release 3.2
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B
Benchmarks

There are many di�erent things to consider when measuring the performance of
an application. In the following, we will look at some of these to form the basis
for our approach to performing benchmarks as presented in Section 2.4.1. First,
we will look at how bias might be introduced into performance measurements,
and which techniques can be used to avoid this. Next, we will look at some of
the things that should be taken into account when benchmarking applications
implemented i managed languages such as Java or C#. Finally, we will show how
to compute a con�dence interval which can be used to indicate how con�dent
we are in the correctness of our measurements.

B.1 Bias

As noted by [38], measurement bias is often a problem in publications dealing
with performance measurements of computer systems. To avoid being bias to-
wards one speci�c implementation, or optimization, and potentially draw wrong
conclusions, [38] have investigated how such bias might be dealt with.

To illustrate that bias is both commonplace and signi�cant, [38] conducted
an experiment where they tried to �nd out whether compiling a C program
with O2 or O3 optimization produces the fastest execution time. They did
this by running a number of benchmarks from the SPEC CPU2006 benchmarks
suite. To show how easy it is to introduce bias into benchmarks, they compile
the benchmarks with di�erent link orders and ran the benchmarks with di�erent
UNIX environment sizes. The link order can a�ect the performance of a program
due to di�erent code layout in memory, and the UNIX environment sizes, i.e.
the number of bytes used to store environment variables, because it a�ects
alignment of data allocated on the stack.

The results show that these small changes can have a signi�cant impact on
which conclusions are drawn based upon the performance changes. In one case,
a benchmark compiled with O3 optimization gave a speed up of 1.1 compared
to O2 optimization, while change in the link ordering gave a speedup of 0.92
with O3 over O2 optimization. Thus, one might incorrectly conclude that O2
is better than O3 or vise versa depending on the link ordering.
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In [38], three approaches to handle the bias of a benchmark setup is pre-
sented. In the following sections, we will give an introduction to these.

B.1.1 Using a Diverse Benchmark Suite

By using a su�ciently diverse benchmark suite, any bias that might be present
could be factored out, since the bias would e�ect the di�erent workloads in
the benchmarks di�erently. It is however hard to create a su�ciently diverse
benchmark suite and benchmark suites might themselves be biased. It has e.g.
been shown that the SPEC JVM98 benchmark suite is less memory intensive
than real world Java applications [2], thus this benchmark suite might be biased
against Virtual Machine (VM)s with sophisticated memory management. It has
also been shown that the SPEC CPU2006 benchmark suite is not su�ciently
diverse to factor out the bias introduced by di�erent link orders and UNIX
environment sizes [38, sec. 7.1.1].

B.1.2 Experimental Setup Randomization

By varying di�erent parameters which are known to cause bias, and running the
benchmarks multiple times, one can use statistical methods to factor out the
e�ect of a bias in benchmark setups. To ensure that there is no bias present, it
is important that each of the parameters is varied enough. It can however be
hard to determine what is enough. It is required that a lot of benchmark runs
are created, which might not be practical. In addition, it is requires that all
parameters that a�ect the bias is know and it is often the case that we do not
know all of these. [38, sec. 7.1.2]

B.1.3 Using Causal Analysis

Causal analysis can be used to ensure that we do not draw incorrect conclusions
for our data, even if the data is a�ected by a bias in the measurements. The
basic approach is that if we reach the conclusion that X caused Y, we can in-
crease our con�dence that Y is in fact caused by X, and not some bias, by �rst
modifying X in some way, while having a minimal e�ect on all other parts of
the system. Then use the modi�ed version of X to measure the change to the
system and �nally see if Y changed in the way we expected, as a consequence of
the changes to X. Thus, if a performance gain is seen when applying O3 opti-
mization instead of O2 optimization, a change to the compiler, such that the O3
optimization is performed di�erently, could be made to increase the con�dence
that the increases in performance is caused by the O3 optimization, and not
some lucky interaction between the optimization O3 and the benchmarks setup.
[38, sec. 7.1.3]

B.2 Benchmarking Languages

As stated by [3], there are a number of things which should be taken into con-
sideration when benchmarking Java applications, and managed languages in
general. We will implement our benchmarks using C#, which is a managed
language, we will therefore look at these considerations in the following. Note
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that the problems of choosing a Meaningful Baseline, Host Platform and Lan-
guage Runtime is not exclusive to managed languages and should be taken into
account when benchmarking unmanaged languages as well.

B.2.1 Meaningful Baseline

When performing benchmarks, it is important to �nd a meaningful baseline to
compare ones implementation against, usually a meaningful baseline would be
the current state of the art or the most widely used implementation. [3, sec.
3.3]

B.2.2 Host Platform

It is desirable to benchmark on di�erent hardware platforms and di�erent oper-
ating systems, since di�erent implementations may exhibit di�erent character-
istic on di�erent platforms. [3, sec. 3.3]

B.2.3 Language Runtime

The use of di�erent compilers, VMs and libraries can a�ect the performance
of an application, therefore, this should be considered when performing bench-
marks. It should be ensured that all benchmarks in a benchmark run are using
the same toolchain in order to make the results comparable. It is however desir-
able to have other benchmark runs which uses di�erent toolchains, to investigate
if that observed performance characteristics are present with other toolchains.
[3, sec. 3.3]

B.2.4 Heap Size

Managed languages use garbage collectors to deallocate unused objects. When
garbage collectors run, they free up memory but interfere with the normal exe-
cution of a program, thus causing the program to run slower, leading to a trade
o� between space and time usage. The heap size is a variable involved in con-
trolling how often the garbage collector runs, i.e. the smaller the heap the more
often the garbage collector will run. [3, sec. 3.2]

B.2.5 Warm-up

A single instance of a VM often executes the same part of an application multi-
ple times, the �rst time the applications, runs a lot of warm up is involved due
to JIT compilation of code, while later instances of the application involves less
compilation and might even produce more optimized code. Given enough runs,
the code will eventual reach a steady state where no further optimizations are
applied. In real applications, steady state is the most common case, e.g. in ap-
plications servers the same code is run many times by the same VM instance. It
might however sill be desired to measure the performance at startup by running
each benchmark iteration in its own VM instance. [3, sec. 3.2]

109



Appendix B. Benchmarks

B.2.6 Nondeterminism

Some high performance VMs try to measure how often methods are called and
try to perform more optimization on the methods that are called often. Com-
monly, this is done using dynamic sampling, thus how much optimization i
performed at a given point of execution can vary from run to run. To control
this nondeterminism, three approaches are given: Replay Compilation, Multi-
Iteration Determinism and Statistical Analysis. [3, sec 3.2]

Replay Compilation allows an application to run a number of training runs.
The optimization plans created in the training runs are then recorded and re-
played in subsequent timing runs, thus the same optimizations are performed
on all timing runs. This however requires support by the VM. Most production
VMs do not provide this support. [3, sec. 3.4] There is also a chance that replay
compilation do not re�ect the actual performance characteristic of the program
running on a normal VM. [11, sec. 6.2.3]

Multi-Iteration Determinism does not require support from the VM, instead
it runs iterations of a benchmark on a single instance of the VM until a steady
state is reached and then measures the performance from that point on. When
the steady state is reached can be determent by the coe�cient of variance, de-
�ned as the standard deviation divided by the mean [22]. If this value falls below
a threshold, such as 0.01 or 0.02 as suggested by [11], the iteration is considerate
as being steady state. Thus measuring the performance of a benchmark over N
iterations in steady state can be done by calculating the coe�cient of variance
over a window of N iterations and only stopping the benchmark run when the
coe�cient of variance falls below 0.02. As noted by [11] there is however still a
chance that two di�erent invocations of a VM may reach di�erent steady states.

Statistical Analysis can be used to increase con�dence in results when mea-
suring in noisy environments by collecting data from multiple runs, but there is
a limit to how many runs can practically be performed on a given benchmark,
therefore, while it is possible to achieve a desired con�dence in the results with-
out using the two previous methods, it can be advantageous to use these to limit
the noise and thereby require less data to achieve the same level of con�dence.
One way of measuring con�dence in a result is by using a con�dence interval.

B.3 Con�dence Interval

The con�dence interval for the mean is computed using a number of samples
from a larger population. The con�dence interval is an interval which is a certain
probability, e.g. 90%, that the actual mean of the whole population lies within.
If we want to increase the probability that the actual mean is in the con�dence
interval from e.g. 90% to 95% without changing the samples used to compute
the interval we have to increase the size of the interval. [11, sec. 3.2.3]

Based on the con�dence intervals of two alternatives we can compare these, if
the two con�dence intervals overlap we cannot say for certain that the di�erences
seen in mean value is not due to noise in the measurements. If the two intervals
do not overlap we can however conclude that there is no evidence to suggest
that there is not a statistically signi�cant di�erence between the two. That is,
there is still some small chance that the di�erence between the two means might
be caused by noise in the measurements. [11, sec. 3.3]
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There exists a number of techniques which can be used to compare two or
more alternatives as the ones presented in [11, sec. 3.4] and [11, sec. 3.5] we
however �nd that these are beyond the scope of this project, so we will not
present these. We will however show how to compute a con�dence interval in
Section B.3.1.

B.3.1 Calculating the Con�dence Interval

The con�dence interval around a mean can be computed based on a number of
independent samples xi, 1 ≤ i ≤ n, taken from a population which actual mean
is at µ. The goal when computing the con�dence interval is to �nd a lower
limit c1 and a upper limit c2 such that µ is in the range [c1, c2] with a given
probability. This probability is called the con�dence level, and is chosen before
computing the con�dence interval. Thus we must estimate c1 and c2 such that
Pr [c1 ≤ µ ≤ c2] = cl holds where Pr is an appropriate probability distribution,
e.g. a normal distribution and cl is the con�dence level. [11, sec. 3.2.1]

Computing the con�dence interval around a mean can be done by using the
general formula:

c1 =M − (Zcl)(sm)

c2 =M + (Zcl)(sm)

where M is the mean of the samples, sm is the standard error for the mean
given by the samples and Zcl is the number of standard deviations from the
mean required to cover cl percentage of the area of the probability distribution
used. [18, sec. VIII.E.2]

The following describes how to calculate these in more detail: M is mean of
the samples and can be calculated as:

M =

∑n
i=1 xi
n

In order to calculate sm the sample variance is �rst calculated [18, sec.
VIII.B]

s2 =

∑n
i=1(xi −M)2

n− 1

Then sm is calculated as [18, sec. VIII.E.2]

sm =

√
s2

n

When calculation a con�dence interval based on the sample variance, as is the
case when calculating it based on performance measurements, the t distribution
should be used rather than the normal distribution [18, sec. VIII.E.2]. This is
because the t distribution takes into account the number of samples used such
that it for a low number of samples have relatively many scores in the tails, i.e.
one have to extend farther for the mean to contain a given percentage of the area.
While the t distribution, as the number of sample increase, comes closer to the
normal distribution. This means that the t distribution gives a more pessimistic
result compared to the normal distribution, which is a desirable property since
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both M and sm are estimations of the actual population and could potentially
be outliers, thus the t distribution takes outliers into account [18, sec. VIII.E.3].

For our purposes we can look Zcl up in a table such as the one found in [18,
sec. VIII.E.3]. If we for example have 11 samples and want a con�dence level
of 95% then Zcl = 2.228.

112



C
Our Benchmark Suite

In the following, we will describe the benchmarks which we have chosen for
this project. Since the benchmarks will be used as test cases for APL, we will
start with some very simple benchmarks, which we should be able to run in the
�rst couple of iterations of our development. Afterwards, we will move on to
more complex benchmarks. We will base most of our benchmarks on the code
examples found in the CUDA SDK, since this allows us to better compare our
solution against the handwritten CUDA C samples. The sequential for-loop,
TPL and APL have been implemented in C#. This information is used in
Section 4.1.1and Section 4.1.2.

C.1 Overhead

This is the simplest benchmark in the benchmark suite. It runs a number of
iterations on a loop with an empty body. This benchmark is interesting since
there might be a signi�cant amount of overhead involved with kernel invocation
on the GPU, or moving di�erent iterations of a loop to di�erent threads. The
APL and TPL implementation of this benchmark is shown in Figure C.1.

Pa r a l l e l . For (0 , s i z e , delegate ( int i )
2 {

}) ;

Figure C.1: Overhead Benchmark in APL and TPL

C.2 Vector Addition

This benchmark adds corresponding elements from two vectors together to pro-
duce a third vector. This is a benchmark which is very memory dependent,
since it requires at least three memory accesses for each addition. Furthermore,
the Peripheral Component Interconnect Express (PCIe) bus could become a
bottleneck for the GPU since a lot of data have to be transfered to and from the
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GPU, with very few computations being performed on the GPU per data ele-
ment. Figure C.2 shows the APL and TPL implementation of this benchmark.

1 Pa r a l l e l . For (0 , s i z e , delegate ( int i )
{

3 r e s u l t [ i ] = v1 [ i ] + v2 [ i ] ;
}) ;

Figure C.2: Vector Addition Benchmark in APL and TPL

C.3 Matrix Multiplication

This benchmark somewhat more complex than the previous benchmarks, since it
makes use of control �ow inside the outer loop. The implementations should use
a O(n3) algorithm, like the one used in the CUDA SDK. This means that there is
also a lot more compute work to be done on the GPU, without requiring data to
be transferred over the PCIe bus. This should result in less of a bottleneck than
in the vector addition benchmark. The TPL implementations of this benchmark
is given in Figure C.3.

Note that the TPL implementation will also work in APL, however, due
to this implementation only spawns size threads, were size is the size of the
dimensions, i.e. 768. We have rewritten the matrix multiplication as seen on
Figure C.4. Here, n2 threads are spawned and an accumulator is used which
reduces the number of global memory accesses.

Pa r a l l e l . For (0 , s i z e , delegate ( int i )
2 {

for ( int j = 0 ; j < s i z e ; j++)
4 {

r e s u l t [ i , j ] = 0 ;
6 for ( int k = 0 ; k < s i z e ; k++)

{
8 r e s u l t [ i , j ] += m1[ i , k ] ∗ m2[ k , j ] ;

}
10 }

}) ;

Figure C.3: Matrix Multiplication Benchmark in TPL
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1 Pa r a l l e l . For (0 , s i z e ∗ s i z e , delegate ( int index )
{

3 int i = index % s i z e ;
int j = index / s i z e ;

5 f loat acc = 0 .0 f ;
for ( int k = 0 ; k < s i z e ; k++)

7 {
acc = acc + (m1[ i , k ] ∗ m2[ k , j ] ) ;

9 }
r e s u l t [ i , j ] = acc ;

11 }) ;

Figure C.4: Matrix Multiplication Benchmark optimized for APL

C.4 Black Scholes

Black Scholes is a method for calculation fair call and put prices for a set of
European options. It makes use of more complex arithmetic operations then
the previous benchmarks, like the log and exp operations. It is also often
implemented using function calls like in the implementation found in the CUDA
SDK. The Black-Scholes method has a complexity of O(n), and as such has low
arithmetic complexity compared to Matrix Multiplication. There is however a
large amount of calculations that needs to be performed for each input element,
and we therefore expect to see better performance with APL then TPL.

The APL and TPL implementations of this benchmark is given in Figure C.5.
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1 . . .
. . .

3 P a r a l l e l . For (0 , s i z e , delegate ( int j )
{

5 f loat d1 = ( ( ( f loat ) (Math . Log ( StockPr ice [ j ] / Opt ionStr ike [ j ] ) ) +
( r i s k f r e e + v o l a t i l i t y ∗ v o l a t i l i t y / 2) ∗ OptionYears [ j ] ) /
( v o l a t i l i t y ∗ ( ( f loat )Math . Sqrt ( OptionYears [ j ] ) ) ) ) ;

f loat d2 = d1 − v o l a t i l i t y ∗ ( ( f loat ) Math . Sqrt ( OptionYears [ j ] ) ) ;
7 Ca l lResu l t [ j ] = StockPr ice [ j ] ∗ CND(d1 ) −OptionStr ike [ j ] ∗ ( ( f loat

) Math . Exp(− r i s k f r e e ∗OptionYears [ j ] ) ) ∗ CND(d2 ) ;
PutResult [ j ] = Opt ionStr ike [ j ] ∗ ( ( f loat ) Math . Exp(− r i s k f r e e ∗

OptionYears [ j ] ) ) ∗ (CND(−d2 ) ) − StockPr ice [ j ] ∗ (CND(−d1 ) ) ;
9 }) ;

. . .
11 . . .

private stat ic f loat CND( f loat d)
13 {

f loat A1 = 0.31938153 f ;
15 f loat A2 = −0.356563782 f ;

f loat A3 = 1.781477937 f ;
17 f loat A4 = −1.821255978 f ;

f loat A5 = 1.330274429 f ;
19 f loat RSQRT2PI = 0.39894228040143267793994605993438 f ;

f loat K = 1.0 f / ( 1 . 0 f + 0.2316419 f ∗ Math . Abs (d) ) ;
21 f loat cnd = RSQRT2PI ∗ ( f loat )Math . Exp(−0.5 f ∗ d ∗ d) ∗ (K ∗ (A1

+ K ∗ (A2 + K ∗ (A3 + K ∗ (A4 + K ∗ A5) ) ) ) ) ;
i f (d > 0)

23 cnd = 1 .0 f − cnd ;
return cnd ;

25 }

Figure C.5: Black Scholes Benchmark in APL and TPL
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D
Benchmark Runner

To run our benchmark suite automatically, we have created a benchmark runner.
The implementation of this is described in the following, �rst we will introduce
the di�erent classes that make up the benchmark runner and then give a more
detailed description of the sequence of operations performed by the benchmark
runner. This information is used in Table 4.1.

D.1 Class Diagram

Figure D.1 depicts the class diagram of the benchmark runner which consists of
three namespaces:

• Benchmarks

• Benchmarks.Implementations

• Benchmarks.Utilities

These namespaces and their contents are described in the following.

D.1.1 Benchmarks Namespace

The Benchmarks namespace is the primary namespace of the benchmark runner.

BenchmarkSuiteRunner

The BenchmarkSuiteRunner is the main entry point for running the benchmark
suite. It is implemented as a PowerShell script which runs the benchmark suite
and asserts whether or not all benchmark implementations produce the same
results.

Con�denceIntervalCalculator

The ConfidenceIntervalCalculator is an application that takes a �le con-
taining the measurements from one benchmark run and prints the computed
con�dence interval for the measurements.
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IBenchmarkSuiteImplementation

The IBenchmarkSuiteImplementation de�nes a command line interface which
all the platform speci�c, i.e. CUDA C, TPL, etc. implementations of the bench-
mark suite must follow. It de�nes the Count operation which prints the number
of benchmark implementations for a given platform, the Startup operation runs
a single iteration of a benchmark implementation and prints the time it took in
millisecond(ms), the SteadyState operation runs a benchmark implementation
until steady state has been detected for twenty consecutive iterations and prints
the time it took for each of these iterations in ms. The CreateTestData oper-
ation prints the data produced by running a benchmark implementation, such
that correctnesses can be asserted, and the Assert operation asserts that the
results produced by running a benchmark implementation match the results in
a given �le.

D.1.2 Benchmarks.Implementations Namespace

The Benchmarks.Implementations namespace contains a number of applica-
tions which implement the IBenchmarkSuiteImplementation interface. Each
of these applications contains all the benchmark implementations for a given
platform, e.g. CUDA C or TPL. Each benchmark implementation implements
the IBenchmark interface.

D.1.3 Benchmarks.Utilities Namespace

The Benchmarks.Utilities namespace contains a number of classes that are
shared between the di�erent applications in the Benchmarks namespace, such
as the con�dence interval calculator and each benchmark suite implementation
which are all executables.

CommandLineParser

The ParseArguments operation on CommandLineParser takes an array of com-
mand line arguments and an array of benchmark implementations, all imple-
menting the IBenchmark interface, in order to perform the operations de�ned
by the IBenchmarkSuiteImplementation interface.

Calculations

The Calculations class contains a number of operations for doing calculations
used by other parts of the benchmark runner. The two most important of these
are the ConfidenceInterval and Variance, which respectively calculates the
con�dence interval as de�ned in Section B.3.1 and coe�cient of variance as
de�ned in Section B.2.6, for a given number of samples.

BenchmarkRunner

The BenchmarkRunner contains the operations Startup and SteadyState which
measures the performance of a given benchmark implementation, i.e. an imple-
mentations of IBenchmark which is given as a parameter to the operation, at
startup and steady state respectively.
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IBenchmark

IBenchmark is an interface which all benchmark implementations must imple-
ment. The operations this interface de�nes are: CreateResults, prints the
results of running the benchmark, Run, runs the benchmark and returns the
time used for execution on the GPU, and Assert, asserts whether or not the
benchmark implementation produces the same results as those found in a given
�le. The Run method return zero on both TPL and sequential-for loop, since
neither of these utilizes the GPU.
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Figure D.1: Class diagram of the Benchmark Runner
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D.2 Sequence Diagram

We have split the description of the sequence of operations performed by the
benchmark runner in to two parts. First, we will describe the sequence of op-
erations performed by BenchmarkSuiteRunner and then describe the sequence
of operations performed by the APL implementation of the
IBenchmarkSuiteImplementation interface.

D.2.1 BenchmarkSuiteRunner

The sequence diagram of BenchmarkSuiteRunner is divided in two �gures: Fig-
ure D.2 and Figure D.3. As shown, the BenchmarkSuiteRunner iterates over
all applications that implement the IBenchmarkSuiteImplementation.

For each of these iterations, the number of benchmarks implementations in a
given IBenchmarkSuiteImplementation is determined by calling Count. Each
of these benchmark implementations is run in steady state
NUMBEROFSTEADYSTATERUNS times by repeatedly calling SteadyState. The re-
sult of calling SteadyState is piped to a �le such that they can processed later.

Once the steady state runs of a benchmark implementation has been com-
pleted, the ConfidenceIntervalCalculator application is used to calculate
the con�dence interval of the measurements in the �le, to which the results of
calling SteadyState was piped.

Next, we call Startup to ensure that disk access does not a�ect our bench-
marks results when measuring startup performance as described in Section 2.4.1.
After this single call, we call Startup an additional NUMBEROFSTARTUPRUNS times
where we pipe the output of each run to a �le. Once all the NUMBEROFSTARTUPRUNS
runs are completed, the ConfidenceIntervalCalculator is used to calculate
the con�dence interval for the startup runs.

When the con�dence interval has been calculated the CreateTestData op-
eration is called, and the results are piped to a �le so the correctness of the
results produced by the benchmarks implementations can be asserted later.

Once all the IBenchmarkSuiteImplementation implementations have been
processed, another loop is entered, which iterates over all
IBenchmarkSuiteImplementation implementations. Inside this loop, all the
benchmark implementations in each of the IBenchmarkSuiteImplementation

is iterated over, and for each of these the correctness of the results are asserted
by calling the Assert operation once for each of the �les containing the results
produced by the other implementations of the benchmark implementations.

D.2.2 IBenchmarkSuiteImplementation

There are multiple applications which implement the
IBenchmarkSuiteImplementation interface, but all of these perform the same
basic sequence of operations, therefore we will only present the implementation
which targets the APL here. The sequence diagram for the APL implementation
is shown in Figure D.4 and Figure D.5.

The �rst thing the main function does is to instantiate the di�erent bench-
mark implementations. These are then passed as arguments to ParseArguments
in the form of an array of IBenchmark implementations, along with the com-
mand line arguments that were given to the application. ParseArguments

121



Appendix D. Benchmark Runner

checks the �rst command line argument to determine which of the operations,
de�ned in the IBenchmarkSuiteImplementation interface, should be performed.

If the �rst argument is �count�, the length of the array of IBenchmark im-
plementations is written to the console.

If the �rst argument is �steadystate�, the SteadyState operation on
BenchmarkRunner is called with the IBenchmark indicated by the second com-
mand line argument. While the coe�cient of variance is greater than
DESIREDCOEFFICENTOFVARIANCE, SteadyState repeatedly calls Run on the
IBenchmark and measures the time this took. If more than twenty iterations
of the loop have been completed, the Variance operation on Calculations

is called to calculate the coe�cient of variance over the last twenty measure-
ments. When the while loop exits, the last twenty measurements are returned
and printed to the console.

If the �rst argument is �startup�, the Startup operation on BenchmarkRunner
is called with the IBenchmark, indicated by the second command line argument.
This will measures the time it takes to execute a single call to Run and returns
this measurement which is then printed to the console.

If the �rst argument is �createdata�, the CreateResults operation is called
on the IBenchmark indicated by the second command line argument.
CreateResults �rst runs the task in the given benchmark and then prints the
results of the tasks to the console.

If the �rst argument is �assert�, the Assert operation is called on the
IBenchmark, indicated by the second command line argument, with the �le
path given in the third command line argument as argument. Assert �rst runs
the task of the benchmark and then compares the results of running this task
with the results in the �le given as argument to the operation. This operation
prints a boolean value to the console, where the value indicates if the produced
benchmark results is equal to the results at the �le path.
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sd lala

BenchmarkSuiteRunner
IBenchmarkSuite
Implementation

ConfidenceInte
rvalCalculator

Count

<<return>>

SteadyState(BenchmarkNumber)

<<return>>

Startup(BenchmarkNumber)

<<return>>

CreateTestData(BenchmarkNumber)

<<return>>

Assert(...)

<<return>>

Count

<<return>>

Startup(BenchmarkNumber)

<<return>>

CalculateConfidenceInterval("mesurmentsFile")

<<return>>

CalculateConfidenceInterval(""mesurmentsFile")

<<return>>

Loop

[ForEach(IBenchmarkSuiteImplementation)]

Loop

[For(BenchmarkNumber = 0 to Count)]

Loop

[For(RunNumber = 0 to NUMBEROFSTEADYSTATERUNS)]

Loop

[For(RunNumber = 0 to NUMBEROFSTARTUPRUNS)]

Loop

[ForEach(IBenchmarkSuiteImplementation)]

Loop

[For(BenchmarkNumber = 0 to Count)]

Loop

[ForEach(IBenchmarkSuiteImplementation)]

Figure D.2: Part 1 of the sequence diagram of the Benchmark Suite Runner
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sd lala

BenchmarkSuiteRunner
IBenchmarkSuite
Implementation

ConfidenceInte
rvalCalculator

Count

<<return>>

SteadyState(BenchmarkNumber)

<<return>>

Startup(BenchmarkNumber)

<<return>>

CreateTestData(BenchmarkNumber)

<<return>>

Assert(...)

<<return>>

Count

<<return>>

Startup(BenchmarkNumber)

<<return>>

CalculateConfidenceInterval("mesurmentsFile")

<<return>>

CalculateConfidenceInterval(""mesurmentsFile")

<<return>>

Loop

[ForEach(IBenchmarkSuiteImplementation)]

Loop

[For(BenchmarkNumber = 0 to Count)]

Loop

[For(RunNumber = 0 to NUMBEROFSTEADYSTATERUNS)]

Loop

[For(RunNumber = 0 to NUMBEROFSTARTUPRUNS)]

Loop

[ForEach(IBenchmarkSuiteImplementation)]

Loop

[For(BenchmarkNumber = 0 to Count)]

Loop

[ForEach(IBenchmarkSuiteImplementation)]

Figure D.3: Part 2 of the sequence diagram of the Benchmark Suite Runner
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sd APL

APL
CommandLine

Parser

BenchmarkRu

nner
IBenchmark Calculations

ParseArguments(...)

<<return>>

SteadyState(...)

<<return>>

Run()

<<return>>

Variance(samples)

<<return>>

StartUp(...)

<<return>>

Run()

<<return>>

CreateResulte()

<<return>>

Assert(args[2])

<<return>>

Alt

[if(args[0] == "count")]

[if(args[0] == "steadystate")]

Loop

[while(variance > 0.2)]

Alt

[if (i > numberOfSamples)]

[if(args[0] == "startup"]

[if(args[0] == "createdata")]

[if(args[0]=="assert")]

Figure D.4: Part 1 of the sequence diagram of the APL Benchmark Suite im-
plementation
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sd APL

APL
CommandLine

Parser

BenchmarkRu

nner
IBenchmark Calculations

ParseArguments(...)

<<return>>

SteadyState(...)

<<return>>

Run()

<<return>>

Variance(samples)

<<return>>

StartUp(...)

<<return>>

Run()

<<return>>

CreateResulte()

<<return>>

Assert(args[2])

<<return>>

Alt

[if(args[0] == "count")]

[if(args[0] == "steadystate")]

Loop

[while(variance > 0.2)]

Alt

[if (i > numberOfSamples)]

[if(args[0] == "startup"]

[if(args[0] == "createdata")]

[if(args[0]=="assert")]

Figure D.5: Part 2 of the sequence diagram of the APL Benchmark Suite im-
plementation
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CUDA Compute Capability

There exists di�erent CUDA compute capabilities which de�ne what features
a given GPU supports. Two major versions of CUDA compute capabilities
currently exists, compute capability 1.x and 2.x. These corresponds to the Tesla
architecture and the Fermi architecture respectively. Some of the information
presented in this chapter is used in Section 3.3.3 and Section 4.6.1.

The Tesla architecture should not be confused with the Tesla branded GPUs,
such as the Tesla C870 and Tesla C2070, since these implement either the Tesla
or Fermi architecture. [41, p. 1]

The Fermi architecture was introduced in 2010 with the GF100 chip, and
it replaces the Tesla architecture, which was released in 2006 with the G80
chip. The Fermi architecture is used in all compute capability 2.x GPUs and
features a number of changes compared to the Tesla based GPUs with compute
capability 1.x. These changes should be taken into consideration to ensure high
performance.

Programs which use compute capability 2.x or 1.x must exhibit many of the
same characteristics to achieve high performance. In the following we will give
a short overview of the characteristics all applications must share regardless of
the target compute capability, followed by a more detailed look at what should
be done to achieve high performance with compute capability 2.x.

E.1 Best Practices

There are a number of best practices that should be followed when developing
applications using CUDA enabled GPUs. We will give a quick overview of the
most important of these as de�ned by [48], for a more complete description see
[16] or [47].

One of the most important things to consider in order to achieve good per-
formance when developing applications which use CUDA enabled GPUs, is is
to parallelize the code. This is because GPUs need to execute hundreds or
thousands of concurrent threads to achieve good performance.

Communication between the host and the device should be minimized to
avoid the PCIe bus forming a bottleneck since the PCIe bus, which usually con-
nects the host and device, has a comparatively low bandwidth for transferring
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data between device- and host memory.

GPUs relies on latency hiding to eliminate time spend waiting for resources,
i.e. executing instructions from another thread when waiting for high latency
operations to complete, which requires that each SM can execute a large number
of concurrent threads to be e�ective. However, the number of concurrent threads
a SM can execute depends on several factors, such as the thread layout. The
chosen launch con�guration of kernels should therefor try to achieve the highest
possible utilization of each SM.

Data in global memory should be accessed in a pattern that allows multiple
accesses to be coalesced in a single memory transaction. This is because un-
coalesced memory accesses waste a lot of bandwidth, since it transfers data that
is never used. This decreases the bandwidth available to the application.

Since shared memory has a much higher bandwidth and lower latency than
global memory, accesses to global memory should be replaced with accesses to
shared memory whenever possible.

Threads in a warp execute in lock step, i.e. all active threads in a warp
execute the same instruction at the same time. Thus, if di�erent threads in
a warp follow di�erent branches, these branches will be executed sequentially
leading to a decrease in performance. Di�erent execution paths in waprs should
therefore be avoid.

E.2 Compute Capability 1.x vs Compute Capa-

bility 2.x

The following is based on [41] and [48]. There have been a number of changes
between compute capability 2.x and compute capability 1.x which should be
taken into account when developing for compute capability 2.x, especially if one
has previously developed for compute capability 1.x.

Compute capability 2.x allows threads of di�erent kernels to execute concur-
rently on the GPU, thus giving more �exibility and performance since di�erent
kernels can potentially utilize more SMs on the GPU. With compute capabil-
ity 1.x, utilization of all SMs could only be achieved by running a kernel that
used enough thread blocks to �ll all SMs. Thus, compute capability 2.x allows
a limited form of task parallelism since multiple kernels can run concurrently,
compared to compute capability 1.x which only allowed one kernel at a time.

With compute capability 2.x a L1 cache has been introduced on each SM
which resides in the shared memory already found on the SMs. This L1 cache
is used to cache accesses to global and local memory. The programmer can
choose how large a portion of the shared memory is used for cache and how
much is used for ordinary shared memory. The portion of the shared memory
can have a large impact on performance and should therefore be considered
carefully. The introduction of the L1 cache means that texture memory is less
useful then previously where using texture memory could lead to signi�cantly
improved performance since it was cached. Using texture memory with compute
capability 2.x can even lead to a decrease in performance, since the texture
cache has a higher latency than shared memory. Texture memory is still useful
in some cases since it can provide other bene�ts than caching, such as address
calculations or texture �ltering.
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With compute capability 2.x, the number of registers per SM has been in-
creased from 8192 to 32768. This increase allows more threads to run concur-
rently, thereby increasing the latency hiding ability of the device and increasing
performance.

With compute capability 2.x, global memory access is processed a warp at a
time, while it was processed a half warp at a time with compute capability 1.x.
Therefore changing kernel launch con�gurations there assume a per half warp
access pattern might lead to a performance increase if they are changed so that
the x dimension of thread blocks have a size that is a multiple of the warp size
as each warp could addresses a single cache line.

With compute capability 1.x, shared memory was split in 16 banks and
access was processed a whole warp at a time. With compute capability 2.x
there are 32 banks, and access is processed a whole warp at a time. This means
that there can now be bank con�icts between threads in the �rst and the last
half of a warp, and memory might need to be padded di�erently to avoid this.
However compute capability 2.x has better support for broadcasting a read to
multiple threads on the warp and is better at avoiding bank con�icts on non
32-bit word accesses.

In addition to constant memory which is managed by the programmer, com-
pute capability 2.x features a LDU instruction that can be used by the compiler
to load any variables as if it was stored in constant memory, as long as the
variable is not a pointer to global memory, is read-only and not dependent on
the thread id, thus gaining the advantages of constant memory i.e. caching and
broadcasting of a single memory read to multiple threads.

Compute capability 2.x natively supports 32-bit integer multiplication while
compute capability 1.x only supported 24-bit integer multiplication. 32-bit in-
teger multiplication was implemented in compute capability 1.x using multiple
instructions. The _[u]mul24 instruction could be used to improve performance
when only 24-bit integers were required. Compute capability 2.x however do
not natively support 24-bit integer multiplications, and therefore, the use of
_[u]mul24 is implemented using multiple instructions, leading to lower perfor-
mance.

Compute capability 2.x supports double precision �oating points arithmetics,
where compute capability 1.0-1.2 do not. Also, the double precision performance
is much better with compute capability 2.x. Compute capability 2.x provides a
factor 2/5 of the single precision performance when performing double precision
computations, while the double precision performance of compute capability 1.3
were much lower, a factor 1/12.

The IEEE754-208 compliance has been improved with compute capability
2.x compared to compute capability 1.x. In particular, addition and multiplica-
tion were often combined it to a single FMAD instruction with compute capability
1.x in a none standard compliment way. With compute capability 2.x, they are
instead combined into a FFMA instruction that is standard compliant. In addition
to this, there are a number of other changes that can cause compute capability
2.x and compute capability 1.x to produce di�erent results. By default, the nvcc
compiler produces standard compliant code but can be con�gured to produce
results which are closer to that of compute capability 1.x. This can be achieved
by using the following �ags: -ftz=true which �ushes denormalized numbers to
zero, -prec-div=false which gives less precise division and -prec-sqrt=false

which gives less precise square root. Using these �ags also tend to give higher
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performance.
Compute capability 2.x allows the use of C++ classes in kernels, recursion

is supported on device functions, and it is possible to dynamically allocate part
of a preallocated heap of memory to threads in a kernel.

An optimization sometimes used with compute capability 1.x is to take ad-
vantage of the fact that all treads in a warp execute in lock step, and explicit
synchronization can sometimes be omitted without a�ecting the correctness of
the program. With compute capability 2.x, accesses to a memory location can
sometimes be cached in registers. Therefore, a change made to a memory loca-
tion may not be re�ected in another thread, since that thread would read from
its register instead of global memory. This means that all memory that is used
to communicate between threads, without using explicit synchronization, should
be declared as volatile, as this ensures that it is not cached in registers. Note
that data should also be declared volatile with compute capability 1.x but it
had no a�ect on the execution of a program if it was not, a bit like a C program
where 32 bit integers is used as pointer will work an a 32-bit CPU but fail on a
64-bit CPU.
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Summary

During our 9th semester project, we saw that computations could be moved from
the Central Processing Unit (CPU) to the Graphics Processing Unit (GPU),
using the techniques of General-Purpose computations on Graphics Processing
Units (GPGPU). We also saw that GPGPU has been regarded as a "black art",
and few posses the skills needed to implement GPGPU powered applications.
Though programming languages such as Compute Uni�ed Device Architecture
(CUDA) C and Open Computing Language (OpenCL) C, and their compute
models, provides some abstraction, we found that these abstractions are still
relatively low-level. Looking beyond the 9th semester project, we have seen that
the research community is working towards higher-level GPGPU abstractions.

With this in mind, we decided to increase the abstraction level of GPGPU
programming from .NET languages, by providing the same abstractions as the
Task Parallel Library (TPL). To this end, we introduced the Accelerated Parallel
Library (APL) which provides the same abstractions as TPL while accelerating
the computations by using the GPU. This choice of abstraction allows existing
TPL powered applications to take advantage of the GPU, by changing only a
few lines of code.

Prior to implementing APL, we found that in order to run .NET programs
on the GPU we had to translate host code to device code. This meant that
we had to choose a source language and a target language. We found that
the .NET framework is a concrete implementation of the Common Language
Infrastructure (CLI), and that the Common Language Runtime (CLR) is a
concrete implementation of the Virtual Execution System (VES), which executes
Common Intermediate Language (CIL) code. We also found that all high-level
CLI languages are translated to CIL prior to execution on the VES. CIL was
thereafter chosen as the source language, since this choice allowed APL to be
used in multiple high-level languages.

Afterwards, we looked at how the o�cial CUDA C compiler called nvcc,
which compiles CUDA C host and device code, and found that nvcc producec
Parallel Thread Execution (PTX) code which is embedded into the GPGPU
powered application. We also found that the CUDA Driver Application Pro-
gramming Interface (API) can load PTX kernels and Just-In-Time (JIT) com-
pile them to the device present in the system. We therefore decided to target
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the PTX language.
With the source language being CIL and the target language being PTX,

we looked at ways of translating between these two languages. We found that
CIL is a stack-oriented language, and that PTX is a register-oriented language.
To overcome this we chose to use Static Single Assignment (SSA), a technique
which translates each push to the stack to an assignment to a new variable, and
each pop from the stack to a read from the corresponding variable. APL uses
re�ection to access the low-level CIL code at runtime, thus we were able to JIT
compile the code to be run on the GPU.

To drive the development of APL, we created four benchmarks: Overhead,
Vector Addition, Matrix Multiplication and Black Scholes. Each added a new set
of requirements to APL, e.g. the Vector Addition benchmark required support
for single dimension arrays and arithmetic addition, while the Matrix Multi-
plication benchmark required rectangular arrays, arithmetic multiplication and
branching.

We decided to split the architecture of APL into four components: the
Parser, the Optimizer, the Emitter and the Invoker. The Parser was in
charge of parsing the CIL code to produce an Intermediate Representation
(IR). The Optimizer was in charge of performing optimizations on the IR.
The Emitter was in charge of producing PTX instructions from the IR. And
the Invoker was in charge of initializing the device, allocating device memory,
marshalling data to and from the device, and invoking the kernel.

Furthermore, �ve optimizations were implemented. PTX Caching which was
used to cache compiled kernels. More L1 Cache which increased the portion of
shared memory used for L1 cache, thus more data could be cached on chip.
CUDA Context Caching which avoided creating a new CUDA context for each
call to APL, since context creation proved to be a time-consuming operation.
Copy Omit which reduced redundant copies to and from the device. Lastly,
Fused Multiply Add which, replaces a mul instruction followed by an add in-
struction with a single Fused Multiply Add (mad) instruction.

To investigate the performance of APL each benchmark was implemented
using: APL, TPL, sequential for-loops and CUDA C. The results of running
the benchmarks showed that all optimizations except PTX caching and Fused
Multiply Add provided a measurable performance increase. The results also
showed that APL beat CUDA C in two out of four benchmarks in steady state,
with a speedup of 1.03x in the Vector Addition benchmark, and a speedup of
1.02x in the Black Scholes benchmark. APL beat TPL in all benchmarks, except
for the Vector Addition benchmark, where TPL won due to the low arithmetic
intensity of the benchmark and large overhead incurred by APL to transfer
data to and from the device. We saw that the APL implementation of Black
Scholes, Matrix Multiplication and Overhead outperformed TPL with speedups
of 2.5x, 2.58x and 82.5x respectively. With regards to scaling, we saw that the
APL benchmark implementations scaled just as well or better than the other
benchmark implementations, except for the CUDA C Matrix Multiplication
benchmark implementation, which was highly optimized to take advantage of
the shared memory on the device.

Based upon the results, we concluded that APL did indeed provide the
abstraction of TPL, and that it was a useful library for GPGPU application
development. We did however also conclude, that further work was needed
prior to release, such as supporting more opcodes, structures and classes.
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