
Distributed parameter sweep for
UPPAAL models

MASTER’S THESIS, SPRING 2011
PETER SCHMIDT FREIBERG

JIMMY MERRILD KRAG

BRIAN VILLUMSEN

DEPARTMENT OF COMPUTER SCIENCE

AALBORG UNIVERSITY
JUNE 1ST , 2011





Department of Computer Science
Aalborg University
Selma Lagerlöfs Vej 300
DK-9220 Aalborg East
Phone +45 9940 9940
Fax +45 9940 9798
http://cs.aau.dk

Title: Distributed parameter sweep for
UPPAAL models
Project area: Distributed Systems
Project period: spring 2011
Project group: f11d603a
Participants:

Peter Schmidt Freiberg

Jimmy Merrild Krag

Brian Villumsen

Supervisor: Brian Nielsen
Copies: 5
Page count: 106
Appendices: 1
Finished: June 1st, 2011

Synopsis:

The use of a tool when conducting a para-
meter sweep is essential, since the amount
of possible combination is often very large.
This thesis presents UPPAAL PARMOS,
a Parameter Sweep Application that dis-
tributes a parameter sweep of verifications
of a UPPAAL model to multiple resources,
while employing an optimization scheme
to prioritize individual model configura-
tions, thus allowing for faster access to de-
sired results. The thesis includes both a
fully described design of UPPAAL PAR-
MOS as well as an implementation and
test. Additional, a study of heuristic op-
timization algorithms has been conducted
in order to utilize three of these, specifi-
cally Hill-Climbing, Simulated Annealing,
and Pareto Archived Evolution Strategy,
in UPPAAL PARMOS. Based on experi-
ments on our implementation we conclude
that there are grounds for utilizing UPPAAL

PARMOS to acquire faster access to desired
results.

The contents of this report is publicly available, but publication (with reference) is only allowed with the
acceptance of the authors.



ii



Preface

This report serves as our master’s thesis, which documents our work through the period of
February 1st to June 1st 2011. This thesis, which marks the completion of our specialisation
year, is produced while based at the Distributed and Embedded Systems research unit at the
Department of Computer Science at Aalborg University. The work done in this thesis build
upon our preliminary work titled Distributed parameter sweep for UPPAAL models [19],
which was conducted in the autumn of 2010. No sections or paragraphs of our previous
work directly exists in this thesis, yet the ideas obtained and experience gained has been
continued in this thesis.

While [19] includes more background and studies of existing parameter sweep systems,
Chapter 2 of this thesis includes a only basic knowledge. The knowledge gain from reading
Chapter 2, should be sufficient for a reader familiar with the areas of distributed systems
and model checking.

During the course of our work, Aalborg University provided us with access to the cluster
Fyrkat, which has 124 nodes, with a total of 243 processors, providing 1020 processing
cores at 2.33-2.93 GHz. however, only 19 nodes were at a disposal, of which 14 were
only available during the final weeks of the project period, providing us with a total of 132
processing cores. Further specifications on the available nodes is provided in Chapter 6

The implementation of UPPAAL PARMOS, together with results from our experiments and
our previous work [19] is found at the following web page: http://cs.aau.dk/~bv1645

http://cs.aau.dk/~bv1645


iv



CONTENTS

Contents

1 Introduction 1

2 Prerequisites 3
2.1 The UPPAAL tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Parameter Sweep Application . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Design of UPPAAL PARMOS 13
3.1 Design principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Parameter Sweep Application . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Task specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Web service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Algorithms 33
4.1 Notation and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Algorithm classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Hill-Climbing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5 Pareto Archived Evolution Strategy . . . . . . . . . . . . . . . . . . . . . 52
4.6 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Implementation of UPPAAL PARMOS 57
5.1 Parameter Sweep Application . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3 Front-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.5 Resource proxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.6 Software platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Test 81
6.1 Test environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3 Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.4 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.5 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.6 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

CONTENTS v



7 Conclusion 95
7.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8 Appendix 97

Acronyms 101

Bibliography 103



1Introduction

The continuous development in the areas of information technology and electronics have
reached a state, where the developed products includes less electronics, in terms of hard-
ware, and more information technology, in terms of software. This has given rise to an
interdisciplinary area of research, concerning the topic of reactive systems [21, pp. 2-3].
Here, formalisms from theories of automata are used to describe and model a type of sys-
tems, known as real-time systems. A real-time system is a concurrent software system,
made up by a number of processes, each marked with a deadline, specifying when the ex-
ecution of the processes must be completed [3, pp. 2-3]. These systems includes operating
systems, communication protocols, control programs and embedded software running in
e.g. mobile phones, network routers, and the airbag system of a car.

Once a formal model of a real-time system has been developed e.g. using a network of
timed automata, it can be used to extract information about the behaviour of the modelled
system. However, as this can be an exhaustive manoeuvre, an automation tool called a
model checker is utilized to conduct the information extraction. This thesis focus on the
UPPAAL model checker, developed in a collaboration between Uppsala University and Aal-
borg University, hence the name UPPAAL.

In order to extract information about the behaviour of the modelled system, the user together
with a model specifies certain properties that need to be examined. These properties can
include questions such as; is a state visited more than once, or is it in any way possible for
the system to deadlock during execution. The model checker will then do an exhaustive
search in the state-space, in order to check whether each of the specified properties are
satisfied.

In the previously described scenario, it is assumed that the model utilized is of such a quality,
that it perfectly matches the modelled system. Yet, this is not always the case, and some-
times certain value settings in the model needs to be fitted. While a single value setting
with a limited range produces only a small amount of required model checking runs, mul-
tiple value settings with a wider range requires exponentially many. In order to cope with
this tremendous increase in workload, we suggested in [19] an automated scheme known
as a Parameter Sweep Application (PSA). The PSA systematically changes the value set-
tings in the model and subsequently distributes the run of the model checking application
to compute resources.

In this thesis, we take the experiences gained from our previous work, and design a new
version of the PSA. This new PSA is not only capable of conduction a parameter sweep,
but also of minimizing the amount of required sweeps needed before the user is presented
with a desireable result. This will minimize the waiting time for the user, and thereby also
the development- and testing time of a real-time system.

1. Introduction 1



Reading guide

The content of this thesis is divided into chapters, sections and sub-sections. The content
chapters are identified by numbers and the appendix chapters by letters. Sections are re-
ferred to by numbers e.g. 1.2.3 refers to chapter 1, section 2, sub-Section 3.

This thesis also makes use of acronyms for better readability. Acronyms are introduced
the first time they are used with the full expression, followed by the acronym enclosed in
parenthesis, and thereafter only the acronym is used, with a few exceptions for titles, quotes,
etc. For example here Internet Protocol (IP) is introduced, and hereafter only IP is shown.
If the acronym had an s appended, it means plural form. In addition, a list of all acronyms
is provided on page 101 for reference.

2 1. Introduction



2Prerequisites

The purpose of this chapter is to provide the reader with better understanding of various
concepts, used throughout the rest of this thesis. The chapter includes three sections; this
first is a presentation of the UPPAAL tool, the second is a description of PSAs and the third
describes computer clusters.

2.1 The UPPAAL tool

UPPAAL is a tool for verification of real time systems, modelled as a network of finite
state machines with clocks, known as Network of Timed Automata (NTA). Given a set of
queries, expressed as reachability properties, UPPAAL performs an exhaustive search on the
dynamic state of a model in order to verify its properties [36]. This concept is illustrated in
Figure 2.1

UPPAAL
satisfied?model

property

Figure 2.1: UPPAAL verification

2.1.1 Model

The UPPAAL model consists of a number of Timed Automatons (TAs), where each TA
consists of a number of locations connected by edges. Each location can have invariants,
which limits when the state can be entered, or when it must be exited, practically disabling
the location whenever the invariant is invalidated. Likewise, edges can be decorated with
guards, enabling the edge when the guard is satisfied, disabling it otherwise. Furthermore,
edges can also be decorated using update expressions, which modify the state of the TA,
or synchronizations, which performs a two-way handshake synchronization between TAs,
as well as selections, which non-deterministically assigns a value within a given range to a
named variable. Below, a number of UPPAAL features are described.

Data types and containers Besides bounded integers and booleans, both arrays, structs
and scalars are supported in UPPAAL, with struct and scalar being keywords, used to
denote variables of these types, and arrays being denoted using the [size] notation.

Clocks clocks are a way of measuring time in a UPPAAL system, progresses evenly on over
the entire system. However, updates to clocks are restricted to be simple non-negative
integers, no complex expressions.

Constants Integer and boolean variables as well as arrays and structs of integers and
booleans can be declared constants using the const keyword.

2. Prerequisites 3



2.1 The UPPAAL tool

Synchronization channel Channels can be defined to provide binary synchronization be-
tween TAs.

Urgent and Committed locations These locations freeze time, in order to proceed imme-
diately, such as when several synchronization channels needs to be synchronized.
Committed locations also require that the next transition exits the location.

Global/local declarations UPPAAL variables can be defined locally to the TA, or it can be
declared in global scope, thus being available to all TAs.

Templates a TA is modelled as a template, and can be instantiated with different parame-
ters.

Functions Functions can be declared alongside variable declarations, both local and global
in scope. Returning values from functions is possible, however, only structs and
integers are allowed.

A i<=3

B

i>=3

i=i+1

CC

D

sync!

∪E

F

sync?

Figure 2.2: UPPAAL model examples

Figure 2.2 shows examples of UPPAAL TAs, in which A, C, E are initial locations, which
is where the TA start, and C is a committed location, and E is an urgent location, meaning
that it must leave immediately. In order to leave C, it has to synchronize on the channel
named sync, which the E → F edge is able to. The A location has an invariant, saying that
the variable i must be less than or equal to three, meaning that it must leave this location
before i is greater than three. Furthermore, it has an edge leading back to A with an update
on i, and another leading to B, with a guard that i must be no greater than three.

UPPAAL model example: Task Graph Scheduler

The Task Graph Scheduler (TGS) models a scheduler, whoose goal it is to map T tasks
onto P processors, such that all tasks are completed within D time units. Furthermore, in
order to preserve energy, tasks can scheduled on slower, more energy-effective processors,
whenever D permits it.

The tasks may have dependencies between them, such that one task must be completed
before another can begin. The specific dependencies for the tasks in the TGS are shown in

4 2. Prerequisites



2.1 The UPPAAL tool

Pending

Processing

Done

i:ProcessorID
dependsDone(myID)

use[i]!
C_T=CycleTime[myID],

p=i

done[p]?
p=0,
TaskDone[myID]=1

(a) Task

free inUse x<=Duration

use[pid]!
Duration=CPUTime(C_T,Speed[pid]),

x=0

x==Duration
done[pid]!

x=0,
E+=Energy(Duration,Speed[pid]),

Duration=0

(b) Processor

Figure 2.3: The TAs of the Task Graph Scheduler

P0

P1 P5

P2

P3 P4

P6

Figure 2.4: Task dependencies.

Figure 2.4, where it can be seen that P0 must be executed before P3 and P2, whereas for P5

to start, both P0 and P1 must be finished.

In order to model this behaviour, two processes are created, one to model a processor, and
one to model a task, which are tied together in the system declaration in Listing 2.4

The task is modeled as shown in Figure 2.3(a), with only three states. A Pending state, in
which it awaits until a processor is ready to execute it, at which point it will transition to the
Processing state, which it will stay in, until the task is completed, and it transitions to the
Done state.

To make sure that a task does not transit to the Processing state before their dependencies
are met, a guard is inserted on the transition from Pending to Processing, which checks
whether the dependencies are met, using a globally defined function called dependsDone

defined in lines 22 to 28 in Listing 2.1

Once all dependencies are satisfied, a selection statement will nondeterministically select a
processor to synchronize with, utilizing one of the channels in the use channel array.

For the task to transit to the done state, it must once more synchronize with the processor

2. Prerequisites 5



2.1 The UPPAAL tool

once more, using a done channel, at which point it will update its status to reflect that it is
now in the Done state.

The processor, shown in figure 2.3(b), consists of two states, namely free and inUse, which
reflects the processor being idle and working.

When transitioning from free to inUse, the processor synchronizes with a task, using a use
channel, thus allowing a task to transition to its Processing state.

The inUse state has an invariant, ensuring that the processor exits when sufficient time has
passed, for the task to be completed. The elapsed time is measured using a clock x, defined
in the processors local declarations as shown in Listing 2.2, which is compared to a variable
named Duration, whose value is calculated using the function CPUTime, defined in lines
22 to 28 in Listing 2.1, which gives the duration of the task, at the speed of the specific
processor.

The guard on the transition back to the free state requires that the clock x exactly equals that
of the tasks duration, thus preventing the processor to spend too much or too little time in
the inUse state. Upon transitioning to the free state, the energy expended on processing the
task is added to the total energy expenditure of all tasks processed so far.� �

1 const int NP=4; / / n u m b e r o f P r o c e s s o r s

2 const int NT=7; / / n u m b e r o f T a s k s

3 const int MAXC=200; / / Max c y c l e d u r a t i o n o f t a s k

4

5 typedef int [0,NP -1] ProcessorID;{

6 typedef int [0,NT -1] TaskID;{

7 typedef int[0,MAXC] Duration_t;

8

9 const int [0,1] Pred [TaskID][TaskID]={

10 {0,0,0,0,0,0,0}, / / p 0 d e p e n d s o n n o n e

11 {0,0,0,0,0,0,0}, / / p 1 d e p e n d s o n n o n e

12 {1,0,0,0,0,0,0}, / / p 2 d e p e n d s o n p 0

13 {1,0,0,0,0,0,0}, / / p 3 d e p e n d s o n p 0

14 {0,0,1,1,0,0,0}, / / p 4 d e p e n d s o n p2 , p 3

15 {1,1,0,0,0,0,0}, / / p 5 d e p e n d s o n p0 , p 1

16 {0,0,1,0,0,1,0} / / p 6 d e p e n d s o n p2 , p 5

17 };

18

19 const Duration_t CycleTime[TaskID]={9,30,18,48,6,9,6};

20 const int Speed[NP]={1,2,3,4}; / / c y c l e s p e r t i m e u n i t s

21 int [0,1] TaskDone[NT];

22 bool dependsDone(TaskID i){{

23 for(j:TaskID)
24 if(Pred[i][j])
25 if(! TaskDone[j])

26 return false;
27 return true;
28 }{

29

30 Duration_t CPUTime(int Cycles ,int Speed){

31 int dur = Cycles/Speed;

6 2. Prerequisites



2.1 The UPPAAL tool

32 if(Cycles%Speed >0) dur+=1; / / c e i l

33 return dur;

34 }

35

36 int Energy(int Duration , int Speed){

37 return (Duration *Speed*Speed*Speed);

38 }

39

40 urgent chan use[ProcessorID];

41 chan done[ProcessorID];

42

43 int [0,MAXC] C_T;

44 int E;

45 clock now;� �
Listing 2.1: TGS global declarations� �

1 clock x;

2 Duration_t Duration;� �
Listing 2.2: TGS processor declarations� �

1 ProcessorID p;� �
Listing 2.3: TGS task declarations� �

1 system Processor ,Task;� �
Listing 2.4: TGS system declarations

2.1.2 Query

The queries are expressed using a query language as described by [37], the grammar of
which can be seen in Listings 2.5, where Expression is a side effect free expression, further
explained in [37].� �

1 Prop

2 = ’A[]’ Expression | ’E<>’ Expression | ’E[]’ Expression

3 | ’A<>’ Expression | Expression ’-->’ Expression

4 | ’sup’ ’:’ List

5 | ’sup’ ’{’ Expression ’}’ ’:’ List

6 | ’inf’ ’:’ List

7 | ’inf’ ’{’ Expression ’}’ ’:’ List

8 :

9

10 List

11 = Expression | Expression ’,’ List

12 :� �
Listing 2.5: the UPPAAL query language grammar

2. Prerequisites 7



2.1 The UPPAAL tool

The A and E are equivalent to the mathematical ∀ and ∃ respectively, and the semantics of
the different queries is shown in Equation 2.1.

∃〈〉 p : there exists a path where p eventually holds.

∀ [] p : f or all paths p always holds.

∃ [] p : there exists a path where p always holds.

∀〈〉 p : f or all paths p will eventually hold.

sup{p} : list : returns the supremum o f the expressions

in list when evaluated where p holds

in f{p} : list : returns the in f enum o f the expressions

in list when evaluated where p holds

(2.1)

UPPAAL query example: Task Graph Scheduler

The goal of the TGS is to schedule the tasks, such that they complete within D time units,
thus UPPAAL must verify that such a configuration exists, which the first query in Listing
2.6 depicts. Furthermore, it should not be possible that the scheduler ever enters a deadlock,
such that the tasks do not finish. This is depicted in the next query. In the final query, it is
tested whether a schedule exists in which the tasks can be done at all, with no regard for D,
which indicates that D may be too ambitious, if this last query is satisfied, but the first is
not.� �

1 E<> forall (i:TaskID) Task(i).Done and now <= 50

2 A[] not (forall (i:TaskID) Task(i).Done) imply not deadlock
3 E<> forall (i:TaskID) Task(i).Done� �

Listing 2.6: uppaal query file

8 2. Prerequisites



2.2 Parameter Sweep Application

2.2 Parameter Sweep Application

A PSA is an application structured as a set of multiple “experiments”, each of which is exe-
cuted with a distinct set of parameters [6]. This allows for performing multiple experiments,
without much, if any, interaction from the user, once it has been started. Furthermore, some
PSA can direct the parameter sweep, based upon the results of previous experiments, thus
possibly limiting the duration of the parameter sweep, if an exhaustive parameter sweep
is not necessary, for example to optimize certain parameters, in which case only the best
parameters are needed.

Using scripting languages such as Bash, it is fairly straightforward to create a simple PSA.
However, while this may be adequate for a single parameter sweep, it may quickly become
inadequate for multiple or complex parameter sweeps, in which case a dedicated PSA may
be the solution needed. Furthermore, several PSAs are also capable of distributing the
sweep onto several computer nodes, thus speeding up the parameter sweep, by utilizing the
fact that individual parameter sweep experiments are often largely independent.

Below is a description of a few PSAs.

APST: The AppLes Parameter Sweep Template (APST) is an application for scheduling
and deploying large scale parameter sweeps on grid platforms [5]. It works in client-
server configuration, where a daemon is responsible for deploying the experiments, as
well as monitoring running experiments. The daemon also acts as a server, to which
the user, through a client application, is able to submit parameter sweeps, as well as
inquire to the progress of already submitted jobs. Furthermore, APST is capable of
utilizing third-party schedulers to schedule the individual experiments.

Nimrod: Nimrod provides much the same facilities as APST, however it allows even more
flexibility in the parameter sweep specification, as it provides a small scripting lan-
guage, allowing the user to specify multiple actions to be performed at various stages
of the parameter sweep. Furthermore, Nimrod also allow the user to direct the para-
meter sweep, by utilizing one of several built-in single objective optimization algo-
rithms.

error may be necessary, to adjust all parameters, in order to satisfy all queries. Furthermore,
in order to improve the performance of the model, more trial-and-error attempts may be
necessary, before the optimal values of the parameters are found.

Both of the above scenarios can be automated, through utilization of a PSA, by letting the
parameters be a subset of the variables in the model, thus allowing for the PSA to actually
change the model.

In the TGS, it would be obvious to let the parameter sweep take place over the NP variable,
as this will thus vary the number of processors available to schedule the tasks onto. Further-
more, the number of tasks may also be changed, or their duration, to see how this may affect
the scheduling, and by creating a few additional queries, monitoring the performance of the
scheduler, using the sup and inf queries, it can even be possible to find optimal parameter
settings, for things such as the energy consumption of the system, or the execution time of
all the tasks.

2. Prerequisites 9



2.2 Parameter Sweep Application

The Listing 2.7 shows a uppaal model, which has been prepared for parametrization, on
the NP, B and P variables. This parametrization however requires that the Speed array is
initialized before anything else. Therefore, a committed state is inserted in the Processor
process, as the start state, with an edge leading to the former start state, on which the method
procInit is called, such that each processor initializes its own place in the Speed array before
starting any task execution.� �

1 const int NP=8; / / n u m b e r o f P r o c e s s o r s

2 const int NT=8; / / n u m b e r o f T a s k s

3 const int P=29;

4 const int B=18;

5

6 const int I=P;

7 const int MAXC=100; / / Max c y c l e d u r a t i o n o f t a s k

8

9 const int MaxTaskSize =10;

10 typedef int [0,NP -1] ProcessorID;

11 typedef int [0,NT -1] TaskID;

12 typedef int[0,MAXC] Duration_t;

13

14 int [0,1] Pred [NT][NT]={

15 / / d e p e n d e n c i e s b a s e d o n t h e B e r k e l e y MPEG−1 e n c o d e r

16 {0,0,0,0,0,0,0,0,0,0}, / / I 1

17 {1,0,0,0,0,0,0,0,0,0}, / / P 4

18 {1,1,0,0,0,0,0,0,0,0}, / / B 2

19 {1,1,0,0,0,0,0,0,0,0}, / / B 3

20 {0,1,0,0,0,0,0,0,0,0}, / / P 7

21 {0,1,0,0,1,0,0,0,0,0}, / / B 5

22 {0,1,0,0,1,0,0,0,0,0}, / / B 6

23 {0,0,0,0,1,0,0,0,0,0}, / / P 1 0

24 {0,0,0,0,1,0,1,0,0,0}, / / B 8

25 {0,0,0,0,1,0,1,0,0,0} / / B 9

26 };

27

28 Duration_t CycleTime[NT]; / / = { 9 , 3 0 , 1 8 , 4 8 , 6 , 9 , 6 } ;

29

30 Duration_t CycleTimeData[MaxTaskSize]={I,B,B,P,B,B,P,B,B,P};

31 void taskInit(int tid)

32 {

33 CycleTime[tid]=CycleTimeData[tid];

34 for (i:TaskID) Pred[tid][i]=PredData[tid][i];

35 }

36 int Speed[NP];

37 void procinit(int pid)

38 {

39 Speed[pid]=(pid+1); / / + S p e e d M u l t ;

40 }

41

42 / / c o n s t i n t S p e e d [ NP ] = { 1 } ; / / c y c l e s p e r t i m e u n i t s

43 int [0,1] TaskDone[NT];

44 bool dependsDone(TaskID i){

10 2. Prerequisites



2.3 Clusters

45 for(j:TaskID)
46 if(Pred[i][j])
47 if(! TaskDone[j])

48 return false;
49 return true;
50 }

51

52 Duration_t CPUTime(int Cycles ,int Speed){

53 int dur = Cycles/Speed;

54 if(Cycles%Speed >0) dur+=1; / / c e i l

55 return dur;

56 }

57

58 int Energy(int Duration , int Speed){

59 return (Duration *Speed*Speed*Speed);

60 }

61

62 urgent chan use[ProcessorID];

63 chan done[ProcessorID];

64

65 meta int [0,MAXC] C_T;

66 meta int E;

67 clock now;� �
Listing 2.7: TGS parametrized� �

1 E<> forall (i:TaskID) Task(i).Done and now <=50

2 inf{forall (i:TaskID) Task(i).Done and now <=50}:now,E

3 A[] not (forall (i:TaskID) Task(i).Done) imply not deadlock
4 E<> forall (i:TaskID) Task(i).Done

5 inf {forall (i:TaskID) Task(i).Done}:E� �
Listing 2.8: TGS parametrized query file

2.3 Clusters

Clusters consist of a number of computers networked together to provide some service that a
single computer cannot efficiently deliver, such as high throughput and density storage, high
performance computing or high availability services. This section will focus on clusters for
high performance computing, and how to use them.

2.3.1 Cluster management

Several tools exist for managing cluster resources, such as the Terascale Open-Source
Resource and QUEue Manager (TORQUE), Simple Linux Utility for Resource Manage-
ment (SLURM), Oracle Grid Engine (OGE) and others. Their purpose is to manage jobs
submitted by multiple users, and execute them on multiple resources, while allowing ad-
ministrators to control the resources available to each user.

2. Prerequisites 11



2.3 Clusters

Despite these different systems, the focus of this section will be on the SLURM, as the
Fyrkat cluster at our disposal utilizes it. Information in this section stems from [2, 20] as
well as the man pages related to the SLURM commands.

SLURM is an open source resource manager, which enables users to execute jobs on a
cluster. A SLURM job is essentially a reservation of resources for use by a specific user,
at a specific time, accompanied by a number of job steps,where each job step describes a
single parallel task, as well as any dependencies it may have to other job steps. A job step
essentially contains the work to be done, by the nodes it is allocated to.

SLURM functions in a master-slave architecture [4, pp. 243-260], where one machine is
designated the SLURM master, and the rest of the machines in the cluster are slaves. The
master runs a daemon, i.e. a background process, named slurmctld, which monitors re-
sources and jobs. Each slave runs an instance of slurmd, which executes jobs on the slave.

A number of auxiliary commands exists, which instructs the slurmctld daemon, or extracts
information from it, and in some cases also the slurmd daemon. Some of these commands
can be used to initiate jobs, such as the srun and the sbatch. While the srun command will
interactively run a job or job step, sbatch will schedule a script for execution.

Both commands can take a number of arguments, such as specifying the number of cores or
nodes needed, using the --nodes=x-y, where x describes the minimum number of nodes
required for the job, and y describes the maximum number. Furthermore, environment
variables, e.g. PATH, may also be set up by SLURM, before executing the job, by use of
the --export=list, where list is a comma separated list of key-value pairs, specifying the
variable names, and their appertaining values.

Once a job has been submitted via the sbatch command, the scheduler running in slurmctld
will attempt to schedule the job as requested by the user. This means that it must wait for
the necessary resources to be available, before running the job, which implies that if a user
requests more resources that are available, the job can never be scheduled.

Furthermore, in order to handle multiple users and multiple jobs simultaneously, SLURM
implements several queues, from which jobs are executed, if resources permit. The order of
these queues depends on the scheduler loaded for SLURM, which can be either a built-in
one, such as a First-In First-Out (FIFO), or use commercial schedulers such as the MOAB
Cluster Suite.

2.3.2 Cluster storage

Storage on clusters can be managed in any number of ways. The most simple is to let
each cluster node have its own storage, and let the jobs be responsible for moving the data
around. This, however, is quite impractical, as each individual job must reimplement the
data transfer. Therefore a common solution is preferred, in which only minimal concern
for data placement is necessary in the job. SLURM provides an option for this, using the
sbcast command, which ensures that all nodes allocated to the current job have access to
the data. However, another solution could be to use a network file system, where the user is
completely free from considering the location of the data, as all data is accessible from any
node. This last option is what is employed on the Fyrkat cluster.

12 2. Prerequisites



3Design of UPPAAL PARMOS

The purpose of this chapter is to present the design of UPPAAL PARMOS — a PSA that
distributes a parameter sweep of verifications of a UPPAAL model to multiple resources,
while employing an optimization scheme to prioritize individual model configurations, thus
allowing for faster access to desired results. The chapter starts with a profound description
of the design principles, and then follows sections with deeper technical specifications that
allows for later implementation.

3.1 Design principles

The construction of UPPAAL PARMOS is designed around a PSA. In order to design such a
PSA, it is essential to understand and formulate the interaction between a user and UPPAAL

PARMOS. The word interaction should be understood as; what does UPPAAL PARMOS re-
quire of knowledge in order to conduct a parameter sweep, and what knowledge is UPPAAL

PARMOS able to provide the user with.

Given that the PSA is sweeping over a UPPAAL model, it is important that the user provides,
not only the model but also the appertaining query file, to the PSA. However, this will only
allow the PSA to run a verification of the model as it is specified by the user, thus more in-
teraction is needed to establish a variation of different model configurations to verify. From
Section 2.1 it is known that a UPPAAL model can contain both local and global declarations.
These declarations can contain variables and a forthright idea is to use these variables to
establish variation in a model.

As the variables in a model are statically typed, a range of different data types can be utilized
as the type of a variable. A variable can also be marked as constant and it is also possible to
specify different data containers such as structs and arrays. However, because full support
for all data types and structures will require a complex interaction, and based on our view
that most parameter sweeps will be initiated with the purpose to fit one or more integer
variables, the variation of variables in our design is at first limited to integer variables that
are declared globally. Yet this limitation is no greater than it is possible to preset the array
and struct declarations, and then use integer variables to control what is read.

Task specification: To allow the user to specify the variation of variables, i.e. the parameter
sweep, we establish a concept named task specification. The task specification, is to
be viewed as an extension to a UPPAAL system, and contains information required
for the PSA to vary a model configuration in the way that is desired by the user.

Task: While the task specification defines how the parameter sweep should be run, it do
not include its related UPPAAL system. This design is chosen to keep the UPPAAL

system as one unit, which at all times can be loaded using the UPPAAL Graphical User

3. Design of UPPAAL PARMOS 13



3.1 Design principles

Interface (GUI). Yet, for UPPAAL PARMOS to be able to link the task specification
together with its related UPPAAL system we establish a concept named task.

For the user to be able to interact with UPPAAL PARMOS an interface is designed. While an
idea to provide a mechanism that allows the user to transfer the files of a UPPAAL system as
they are is rather forthright, it requires a profound design for a user-friendly way of letting
the user specify the task specification.

Graphical User Interface: Since new complex concepts can be hard to cope for a user, we
chose to design a GUI for allowing the user to construct the task specification in a
visual environment. Yet, as the task specification can be viewed as a collection of
instructions to UPPAAL PARMOS, which potentially can be reused e.g. in case of
minor changes, we design the content of the task specification to be stored within a
single file. This file can then be constructed, changed and stored locally. The front-
end design will then provide the user with two options:

1. Enter information about the parameter sweep through a GUI, which will then
generate the task specification based on the input.

2. Allow the user to transfer the task specification in a single file.

The GUI will not only provide ease of use, it will also often result in a faster con-
struction of the task specification. However, this could vary from one task to another,
and therefore the choice between the two options is left to the user.

Besides the possibility to add a new parameter sweep task, the GUI also provides the
possibility for accessing the results obtained on the basis of the verifications runs.

The ability for the user to specify where the parameter sweep should run, is not included
in the task specification. This is because that the specification of how a parameter sweep
should run, is independent of where it should run. The user therefore need a way of inform-
ing UPPAAL PARMOS where the verification processes should distributed to.

Resource: A location, where verification processes can be distributed to and then executed,
is named a resource. Different types of resources such as clusters, grids or a single
personal computer are valid as long as:

1. UPPAAL PARMOS is able to transfer and retrieve model configurations from the
resource.

2. The UPPAAL verifier is able to run on the resource.

For a user to utilize such different types of resources, we define a concept named re-
source proxy. A resource proxy is a proxy that is inserted between UPPAAL PARMOS

and a resource. This will remove the heterogeneity that exists between the interface
of an unknown resource and UPPAAL PARMOS, thus allowing UPPAAL PARMOS to
utilize resources whose interfaces are unknown at design time. A resource proxy is
viewed as an extension to UPPAAL PARMOS and users will be able to develop their
own customized ones.

14 3. Design of UPPAAL PARMOS



3.1 Design principles

In order to have UPPAAL PARMOS exploit the resources added by the user, it is im-
portant that the system is designed to be scalable. This property reflects that UPPAAL

PARMOS should remain efficient and run effectively when there is an increase in the
amount of resources utilized [7, p. 19].

Multiple challenges arise when designing a scalable distributed system [7, pp. 19-21].
The challenge of controlling the cost of physical resources arise, if the system does
not utilize additional supplied resources in a proportional scale. If UPPAAL PARMOS

is able to run 1000 verifications per minute on one resource, then it should be able to
run 2000 verifications on two equal resources, if and only if all model configurations
on both resource take an equal amount of time to run.

To cope with the issue of controlling the performance loss it is profound to utilize
hierarchic communication structures found in e.g. cluster resources, rather than a lin-
ear communication structure of a single personal computer. While an increase of data
sent will result in performance loss for both structures, a hierarchically structured re-
source will at best have a communication complexity of O(log n), where a linearly
structured resource will at best have one of O(n). This design allows UPPAAL PAR-
MOS to communicate once with the resource manager of a cluster, and then have the
resource manager communicate further to its nodes.

Although the execution of verification processes are distributed to multiple resources,
controlling this distribution is centralized in the PSA. It is therefore important to
design this control such that it avoids performance bottlenecks throughout its entire
utilization.

Such performance bottlenecks can arise multiple places in the PSA, yet areas such as com-
putation of new model configurations and storage of verification results are obvious.

Storage: Once a task has been sent to UPPAAL PARMOS, it needs to be stored safely such
that it can be accessed by UPPAAL PARMOS, both throughout the verification of the
task and afterwards. Additionally, all the different model configurations generated
from the task specification also need to be stored together with the computed result
of their verification.

Since UPPAAL PARMOS is utilizing resource proxies for communicating with re-
sources, storage for these resource proxies is also designed. Given the design of these
resource proxies, it is possible to employ multiple instances of each resource proxy.
Thus the storage must be designed such that different informations can be related to
each instance.

While storage for tasks, model configurations and resource proxies can be designed
in multiple ways, it limits the different design options, when considering that the
data must be stored such that the user is able to access it both under and after the
execution of the verification processes. Given that the user accesses the data through
a front-end, this front-end needs to interact with the storage in a way, in which the
data presented, is consistent and yield a useful result for the user.

Failure model: When designing a distributed system such as UPPAAL PARMOS it is impor-
tant to consider a failure model. The failure model is defining the faults of the system

3. Design of UPPAAL PARMOS 15



3.1 Design principles

that must be handled. These faults can arise both at UPPAAL PARMOS, at resources
or in the communication channels between them [7, pp. 53-57].

A fault that must be detectable, is the crash of an established connection to a resource.
This can be detected by incrementing a timer e.g. Timer A, which is started when
data is sent from UPPAAL PARMOS to a resource, and stopped when response from
the resource is received. After Timer A is incremented, the value of it is checked and
if the value exceed a specified value, e.g. 10 seconds, a time-out signal is thrown.
After a time-out, the resource should be removed from the list of resources known
by UPPAAL PARMOS. Other resources should then start the verification process of
those model configurations that were in the process of being verified on the crashed
resource.

The failure model also need to consider the topic of fault tolerance. It is important
that those data that are available, both to the user and the system, are correct and
consistent even after a fault has occurred.

Architecture: Several aspect are considered in the choosing of an architecture for UPPAAL

PARMOS. The first consideration is that of the work, which UPPAAL PARMOS has
to execute. This work includes the executing of a task, which consist of running
multiple verification processes on remote resources. The design of UPPAAL PARMOS

is to reflect the fact that, given these verification processes, the only way of knowing
the running time of these processes, is to run them and measure the time. Therefore,
UPPAAL PARMOS is not to require that the user needs be active once the task has
been received.

To cope with this a Service-Oriented Architecture (SOA) for UPPAAL PARMOS

is chosen. SOA is a commonly recognized design principle, utilized for building
scientific complex applications [10]. A SOA expose network accessible program-
ming interfaces, and the communication between a service and the clients using it,
is done through standardized protocols and standardized content encoding schemes
[13, 30, 41, 42] [7, pp. 14-15]. A SOA will allow the user to add a task, then discon-
nect and reconnect whenever desired.

Since we have chosen to design a GUI for interacting with UPPAAL PARMOS, the
design of this GUI is also taken into consideration. The chosen service structure can
be viewed as having a front-end and a back-end, where the back-end is the PSA and
appertaining storage. The design of the front-end, consist not only the GUI, but also
of a web service that the GUI communicates to UPPAAL PARMOS through. This
design is chosen so that users can develop their own customized user interfaces, if the
GUI provides insufficient features.

Web service: In order for the GUI to have access to UPPAAL PARMOS, we have chosen
to design it as web service, which serves as a proxy between the user and UPPAAL

PARMOS. This set-up, with a web service between the front-end and the back-end,
gives benefits both in terms of authorization and authentication, and also in terms of
providing the user with access to common procedures that can be implemented into
the web service. These procedures can involve parsing and mapping of data. This

16 3. Design of UPPAAL PARMOS



3.1 Design principles

choice of a proxy also provides an easy way of specifying what the user is allowed to
access in the data storage, instead of giving the user full access to the data storage.

The utilization of a web service allows both web based and non-web based applica-
tions to interact with UPPAAL PARMOS. The only requirement is that the application
supports standardized protocols and standardized content encodings for communicat-
ing with the web service.

Our architectural software design of UPPAAL PARMOS is illustrated in Figure 3.1. The
light grey areas illustrates the four main parts of UPPAAL PARMOS, the dark grey squares
with rounded corners illustrates different modules in the parts and the arrows illustrate the
interaction between these modules. The design of the GUI is chosen to be web based, which
will provide a speedy deployment of UPPAAL PARMOS, since no software other than a web
browser need to be installed on the user’s computer.

Front-end

Storage

Parameter Sweep Application Resource

GUI Web Service

Database

Resource Proxy

Resource Proxy

Scheduler

Algorithms

Local Search

PC

Cluster

Figure 3.1: Illustrates the four parts of UPPAAL PARMOS. It exemplifies an instance of
UPPAAL PARMOS with the PSA employing a Local Search optimization algorithm and
distributing the verification of models to two resources, specifically a cluster and a single
personal computer.

As illustrated in Figure 3.1 the front-end is decoupled from the back-end i.e. PSA, Storage
and Resource, thus providing a separation of concerns. The figure illustrates the point, that
the PSA is a centralized part of the UPPAAL PARMOS architecture.

Parameter Sweep Application: The PSA is responsible for conducting the parameter
sweep. Once a user submits a task to UPPAAL PARMOS, it is through the Web
Service placed in the storage. The PSA is periodically checking the storage to locate
new task that are ready to be processed.

3. Design of UPPAAL PARMOS 17



3.1 Design principles

As illustrated in Figure 3.1 the PSA contains a module called Algorithms. This mod-
ule is responsible for loading and initializing of the optimization algorithm that the
user has specified in the task specification. The PSA will then utilize the loaded
algorithm to compute model configuration in a way that is desired by the user.

After a model configuration has been created, it is wrapped together with task infor-
mation and shipped to a resource. The PSA then periodically checks the resource to
discover whether the verification process has ended. If it has, it locates the produced
verification results, and transmit them back to the PSA for parsing. Once a received
result has been parsed, the algorithm is notified of the result, such that it can produce
new model configurations based on the received results. After this the received result
is stored together with its model configuration, such that the user can access it.

In order to avoid a design of the PSA that is locked to a fixed optimization algo-
rithm or some specific types of resources, we have chosen to extend the SOA with
component-based principles. In addition to allowing customization of algorithms and
resource proxies, the component-based principles will also provide a desired separa-
tion of concerns between resource proxies, algorithms and the PSA.

The modular separation of the system will yield the opportunity of delegating development
resources to areas that are essential for this thesis, and to settle for a minimum requirement
in other areas. The modular separation is an essential property since this thesis focuses
mainly on utilizing algorithms to minimize the time consumed before the user can receive
desired results.

This completes the design principles of UPPAAL PARMOS. Based on this, deeper speci-
fications of the UPPAAL PARMOS architecture is made. These specifications are found in
the following sections Parameter Sweep Application, Task specification, Storage, Graphical
User Interface and Web service.

18 3. Design of UPPAAL PARMOS



3.2 Parameter Sweep Application

3.2 Parameter Sweep Application

The PSA is the part of the UPPAAL PARMOS architecture, which is responsible for conduct-
ing the parameter sweep. As illustrated in Figure 3.1 the PSA is a centralized component,
thus the design of it must be profound in order to avoid performance loss when conduction
parameter sweeps.

From Section 3.1 it is known that there are two main responsibilities of the PSA, these are
the scheduling of model verifications on resources and the retrieval of the results produced
by these verifications. The two responsibilities have, in their mode of operation, two differ-
ent behaviours. While scheduling can be designed as a state-based system, which changes
state based on events that are raised throughout the processing of a task, it is not profound
to use this design for the retrieval responsibility.

The success of a retrieval operation is determined by the number of verification results
retrieved. If the number of results is greater then zero, then the retrieval operation was
a success, otherwise it was not. To ensure that a retrieval operation always succeed, the
retrieval system is designed to utilize time-based events. This will allow a dynamic be-
haviour, where the retrieval system is able to adjust the execution of the retrieval operation.
This adjustment is designed to be based on running time statistics gathered from previous
run. However, it shall be noted, that there does not exist a generalized relationship between
these running times, thus the adjustment value will only be an estimate.

It is now clear that the PSA is handling two diverse responsibilities, i.e. scheduling and
retrieval, which requires concurrent execution if each of their behaviour is to be respected.

Before scheduling and retrieval are presented, two components, which provides expand-
ability to the PSA, are described. These two components are called Resource proxy and
Algorithm and provides key functionality, without which the PSA could not function. The
components will enable users to develop their own customized solutions for the optimiza-
tion scheme employed in a parameter sweep, and to specify a proxy between UPPAAL

PARMOS and an arbitrary remote resource.

3.2.1 Algorithm

One of most essential parts of the PSA, is the decision making process where the next model
configuration to verify is chosen. We name this part scheduling and the decision making
occurs inside an external component of the PSA, named algorithm. This scheduling design
is important, because it allows the user to choose a scheduling algorithm that is appropriate
for the given task. Only the user can have knowledge about the behaviour of a task, and
that knowledge can be utilized, to gain desired verification results faster, by choosing or
developing an appropriate algorithm.

The algorithms that are utilized by the PSA are known as optimization algorithms. These
algorithms are based on optimization principles found in mathematics, where the objective
is to find the maximum or minimum of some function. It is important to understand that
optimization algorithms do not lower the running-time of a full parameter sweep, they sim-
ply try to limit the time elapsed before a desireably result is obtained. A thorough study of

3. Design of UPPAAL PARMOS 19



3.2 Parameter Sweep Application

these types of algorithms and optimization principles is found in Chapter 4. The rest of this
section is devoted to how an algorithm should be structured and how it should interact with
the PSA.

It is clear that the PSA need to conduct multiple concurrently running verifications. To make
this possible, it is important that the algorithm design does not stipulate that the currently
running verification need to be finished, before another can be started. Consequently, we
chose to view the algorithm and the PSA as having a client-server relationship, where the
PSA is, at all times, able to request a new model configuration. This relationship is illus-
trated in Figure 3.2 where the PSA is concurrently requesting new model configurations.

PSA ...

Request0

Result

Requestn

Algorithm

Figure 3.2: An illustration of the client-server relationship between an Algorithm and
the PSA. Where Request0, . . . , Requestn depicts a concurrent requesting of model con-
figurations from the Algorithm and Result depicts the return of a computed verification
result.

The design, as illustrated in Figure 3.2, allows the PSA to control all calls between it and
the algorithm. This is preferable since it allows the the algorithm to be disjointed from other
processes running in the PSA, and function merely as a pluggable component.

We chose that the PSA should be able to utilize algorithms developed by the user or an
algorithm designer. For this to be possible we decided to design a contract for the interaction
between the PSA and the algorithm. This will require algorithms to provide a programming
interface that the PSA knows how to use, and also provide the algorithm designer with
knowledge of how an algorithm receives information from the PSA. We have designed the
programming interface to contain the following procedures:

GetModelConfiguration: This procedure is executed the by the PSA, once a resource is
ready to start a new verification. The algorithm is then to return the model configura-
tion, which it has decided needs verification.

AddVerificationResult: This procedure is executed by the PSA, once a verification result
has been computed and received from a resource. It gives the model configuration
and appertaining verification result to the algorithm instance.

GetAlgorithmSettings: Algorithms are task independent, and possibly not developed by the
user. Thus we design the programming interface to contain a procedure named GetAl-
gorithmSettings, which, when executed, is to return a list of settings, available to the
algorithm. This feature is designed with the purpose of providing embedded algo-
rithm information to the user, e.g. when the algorithm selection is made at the GUI.

SetInitialCondition: This procedure is called just after the algorithm has been loaded into
the PSA. It gives the task specification and user specified settings to the algorithm
instance.

20 3. Design of UPPAAL PARMOS



3.2 Parameter Sweep Application

The programming interface is designed such that a minimum of interaction between the
algorithm and the PSA is obtained. This is important since this interaction could become
a bottleneck when the PSA is conduction very large sweeps. Furthermore, the implemen-
tation of the programming interface, need to support that the PSA can instantiate multiple
instances of an algorithm concurrently. This scenario is possible if the PSA is conducting a
scheduling scheme with multiple tasks.

3.2.2 Resource proxy

In order to have a model configuration verified, a computing resource is needed by the PSA.
As we have decided that the PSA should be extensible with regard to support of resources,
and that multiple disparate resource types exists, we have chosen to design a resource proxy,
which the user can utilize to create new resource proxies with minimal effort.

As illustrated in Figure 3.3 we have designed the PSA to utilize multiple resources concur-
rently, and also to have the PSA ship multiple verifications to the same resource. Concur-
rently utilized resources can be necessary, if the amount of verifications in a task is very
large. Multiple verification at a single resource can also be needed, if a resource has multi-
ple computing cores available, e.g. if the resource is a multi-core personal computer, a grid
or a cluster.

b1 a1

...

b2

...

a2

bn an

Resource
proxy B PSA

Resource
proxy A

Resource B Resource A

? ?

Figure 3.3: An illustration of the relationship between a Resource proxy and the PSA.
Where a1, ..., an and b1,...,bn depicts a concurrent requesting of model configuration veri-
fications from the PSA to multiple Resource proxies.

For this to be possible, we have chosen to design a contract, stating the necessary interac-
tion between the PSA and the resource proxy. This contract requires a resource proxy to
provide a programming interface that the PSA knows how to use. We have designed the
programming interface to contain the following procedures:

Initialize: Since multiple resource proxies can be instantiated from a single resource proxy
component, the user should be able to specify settings of the resource proxy. Thus,
the PSA executes this procedure, just after the resource proxy has been loaded.

3. Design of UPPAAL PARMOS 21



3.2 Parameter Sweep Application

ProcessVerirfication: This procedure is called by the PSA to command the resource proxy
to execute a verification. It gives the model configuration to verify as argument.

TransferFiles: This procedure is called by the PSA to request transfer of local files to the
resources. It gives the files that should be transferred as argument.

RetrieveVerificationResults: This procedure is called by the PSA to notify the resource
proxy, that it should start retrieving verification results from the resource.

NoMoreVerificationsToProcess: This procedure is called by the PSA to notify the resource
proxy, that no more verifications of the current task is needed, and if the resource
proxy has buffered verifications stored, it should flush them i.e. ship them to the
resource.

CleanUp: This procedure is called by the PSA to notify the resource proxy, that the files
that were transferred should be removed from the resource. It gives the files to be
removed as argument.

Status: This procedure is called by the PSA, when it needs to be notified about the status of
the resource. The resource proxy should change status depending of whether it has
crashed, is running, is connecting to its resource or disconnected from its resource.

CrashRestore: This procedure is called by the PSA in order to notify the resource proxy,
that model configurations were found in the storage.

The programming interface of the resource proxy is designed such that most resources can
be utilized. This is important, since the resources that the PSA is to utilize in future parame-
ter sweeps, are unknown at design time. We could have chose to allow the user to utilize a
limited types of resources, yet this would result in limited usefulness of UPPAAL PARMOS.

While both algorithm and resource proxy are components of the PSA, only the algorithm
can have settings that are task dependent. Therefore, the list of available resource proxy
instances and their appertaining settings need to be stored. For this we design a data model,
which is found in Section 3.4. This will allow the created resource proxy instances to be
stored at UPPAAL PARMOS, thus to be used by all submitted tasks.

3.2.3 Scheduling

The Scheduler is the part of the PSA, responsible for the mapping of model configurations
generated by the Algorithm onto Resource proxies as well as passing results from said
resources back to the Algorithm.

These two parts are designed as two distinct systems: the Scheduler and the Retriever It is
the Scheduler that is responsible for fetching a task to process from the Storage, requesting
new model configurations from the Algorithm, distributing the verification processes to
resources via Resource proxies and storing the model configurations in the Storage. The
Scheduler is designed as a sequential task scheduler, i.e. it will complete the run of a single
task before moving on to a new task, as depicted in Figure 3.4.

Before the Scheduler can begin to schedule jobs, it will perform some initialization, before
going into the main loop, where it will continually attempt to load new tasks, if the Storage
contains any, and start processing them.

22 3. Design of UPPAAL PARMOS



3.2 Parameter Sweep Application

Initialize

Request
task

Prepare
files

Transfer
files

Initialize
algorithm
instance

Lock
resource

Update DB

Request
model con-
figuration

Cleanup

Prepare
verification

Ship to
reserved
resource

Update DB

Figure 3.4: Depicts the flow of the Scheduler. Decisions are denoted with a diamond and
processing steps are denoted with rounded squares. While all arrows denote the flow, a red
arrow from a diamond also denotes “failure” and a green arrow denotes “success.”

In order to prepare the task for processing, the UPPAAL system files, i.e. the model and
query files, must be available on all resources. However, in order to avoid a continuous
transfer of model files with only minimal change in content, the Scheduler implements a
scheme to cope with this, thus removing overhead caused by continuous file transfers. This
scheme is illustrated in Figure 3.5, where the Scheduler, after having extracted the UPPAAL

system from the Storage, splits the model into two pieces, and instructs the Resource proxies
to transfer both pieces, formatted as two files, together with the query file.

This will allow the resource proxies to command their resource to create a new model file
by merging a model configuration in between the two model file pieces already existing at
the resource.

Next, the Scheduler is initializing the optimization Algorithm, which decides which model
configurations to run. Once the Algorithm is loaded, the Scheduler enters the main loop,
in which it attempts to lock a free resource, before requesting a new model configuration
from the Algorithm. If no configuration can be obtained from the Algorithm, it has decided
that no further verifications are necessary, and the Scheduler should end the task. If a model
configuration is obtained, it will prepare it for dispatching to the resource, such as assigning
it a unique id. Once the preparations are done, the model is shipped to the locked resource,
and the model configuration information will be added to the Storage, and the main loop
start over.

3. Design of UPPAAL PARMOS 23



3.2 Parameter Sweep Application

Part 1

Variable declarations

Part 2

Model configurationPart 1 Part 2

Part 1

Model configuration

Part 2

Figure 3.5: The splitting of a UPPAAL model, and the assimilation of model configura-
tions

24 3. Design of UPPAAL PARMOS



3.2 Parameter Sweep Application

Once the Algorithm reports that no more configurations are necessary, the Scheduler will
clean up the state of the task, including waiting for, and fetching, the results of any unfin-
ished verifications, as which point it will commit the final update for the task to the database,
before going back to check for new tasks.

If no new tasks are ready in the Storage, the Scheduler will merely sleep and continue to try
requesting a new task.

3.2.4 Retrieval

The control flow in the Service handles all events related to the distribution of a parameter
sweep. However, while the flow employed by the Service exhibit a time independent control
flow i.e. it is event based, the process of retrieving results from resources exhibits a dynamic
behaviour. This dynamic behaviour is found in the variations of execution time of the
model verifiers, which employs different model configurations. This excludes an event
based controlled process for retrieving results, if unnecessary retrieves are to be avoided.

The retrieval of job results is unquestionably a necessary process and it is a common duty
of all resource proxies. In order to release the resource proxies of the burden of managing
the retrieval frequency, a retrieval scheme is designed. This scheme provides the resource
proxies with a simple notification at the times when execution of the retrieval is necessary.

In order to design a retrieval scheme it is necessary to, at first, establish the retrieval flow.
This flow of requesting, transmitting, parsing, storing and notification of job results is de-
signed as illustrated on Figure 3.6.

Scheduler
Retrieval
Interrupt

Proxy
Retrieval
Procedure

Result
Callback

Parsing of
Verifier
Output

Update
Model

configura-
tion

Storage
Buffer

Notify
Algorithm

Figure 3.6: Illustrates the flow of the retrieval process.

Feedback

Each retrieval interrupt requires the use of one or more network connections and the at-
tention of the Service, which is interrupted and forced to prioritize other procedures than
scheduling. It is therefore desirable to minimize the amount of retrieval interrupts to an
absolute necessary minimum. This section addresses this issue by suggesting a solution,
which involves the use of concept of a feedback loop from control theory [11].

Figure 3.7 illustrates a basic feedback loop that consist of a Plant, a Controller and a Feed-

3. Design of UPPAAL PARMOS 25



3.3 Task specification

Reference
Σ Controller Plant

Feedback

Result+

−

Figure 3.7: Illustrates a feedback loop with Plant, Controller and Feedback.

back. The Σ process on Figure 3.7 is a summation of the Reference value and the feedback
value. Where the Plant is the system that is affected by the input from the Controller, which
manipulates the summation in order to obtain a desired result. The Feedback is a measured
value, which has been changed, based on the output value of the system.

The idea is to view the verification processes, on a resource, as a dynamical system, which,
with different frequencies, produces results. The challenge is to predict this frequency, such
that the resource is notified a minimum number of times. This idea is illustrated in Figure
3.8 where the idea is abstracted onto the feedback system of Figure 3.7.

Reference
Σ Wait Check

Run-time measure

Result+

−

Figure 3.8: Illustrates the idea of utilizing a feedback loop for minimizing the frequency
of retrieval interrupt procedure calls.

In Figure 3.8 a Wait procedure that implements a delay between retrievals, serve as the
Controller of the feedback system, where the Plant is the Check procedure. The feedback
value shall be found by having the resources stamp the job results with the running time of
the verifier before they are passed on to the scheduler.

3.3 Task specification

As described earlier in the design principles of Section 3.1, the parameter sweep need only
to be over integers. Thus a superset can be defined in the form of a hyperrectangle, i.e.
defined using a lower and upper bound on each of the parameters. Given this, we have
chosen to design a concept named Parameter. A Parameter is designed to contain a name,
a lower bound value, an upper bound value and an increment value to state by which value
to step towards the upper bound. The name contained in the Parameter, is the name of the
integer variable in the UPPAAL model, which the user want to sweep over.

To limit the parameter set, we have chosen to design a concept named Constraint, which
will reduce the superset to the actual necessary parameter space. A Constraint is designed

26 3. Design of UPPAAL PARMOS



3.4 Storage

to contain a boolean expression which must be true, for the PSA to accept the current set of
Parameters.

In order for the PSA to know which solutions are desired by the user, we have defined a
concept named Objective. The user can specify two different types of objectives:

1. Simple Objective which defines a requirement which must be fulfilled.
2. Optimization Objective which directs the parameter sweep, towards a desired result.

Both in the case of the constraints on the parameter space, and in the objectives, having the
ability to describe these using expressions is necessary. The expressions should handle not
only arithmetic expressions, but also boolean expressions and comparisons. A Constraint
is designed to contain a boolean expression, although, by use of comparison expressions, it
can contain arithmetic expressions. In order to make the expressions more useful, we have
chosen that the user should be able to access not only the value of the current parameters,
but also those of the results returned by UPPAAL, both whether a query was satisfied, and
the numeric result of any inf and sup query.

In order for the PSA to direct the sweep in the direction of better results, an optimization
algorithm must also be specified, since different algorithms may behave differently, and
only the user can know which one suits a specific model. Thus, we have designed the Task
Specification to also contain information on the Algorithm to use, as well as any settings
appertaining the Algorithm.

3.4 Storage

As stated in the desing principles of 3.1, UPPAAL PARMOS requires a location to store
information about resource proxies, tasks, model configurations and their results.

We have decided to utilize using a database-management system, which gives an convenient
and efficient way of handling data [35]. The database provides a range of benefits that a spe-
cialized storage system would not be able to match, given the evolution of modern database
systems, without extensive development effort. These benefits includes properties such
as atomicity, consistency, isolation and durability that all serve to guarantee that database
transactions are processed correctly. Furthermore, we also decided that the database need
to support relational models, which allows the database to be modelled as collection of en-
tities and relationships between them. Another decision is to use a database supporting a
data-definition language, for handling database schemas, and a data-manipulation language
to handle data addition, removal and changes.

3.4.1 Entity-Relationship Model

In order to produce a database design, we chose to create a Entity-Relationship Model
(ERM) of each of the elements that we decided should be stored. The ERM allows objects
to be modelled using entities and relationships between them. The ERM uses four symbols
for representing different concepts, these are illustrated in Figure 3.9.

3. Design of UPPAAL PARMOS 27



3.4 Storage

E Entity Set

R Relationship

A Attribute

M Multivalued Attribute

Figure 3.9: Illustrates the ERM concepts used for modelling the storage.

The Entity Set, Attribute and Multivalued Attribute of Figure 3.9 all represents objects, yet
with minor differences. The Entity Set can be viewed as a group of objects, the Attribute
as a single data object that belongs to a group and Multivalued Attributes as containing
multiple instances of the same data object. It is also possible to group Attributes together
as children with another parent Attribute. Furthermore, relations between Entity sets can be
expressed using the Relationship symbol, which links the individual entities together

The required database design for UPPAAL PARMOS is modelled using three entities as illus-
trated in Figure 3.11, 3.12, 3.13 and a relationship between them as is illustrated in Figure
3.10.

InstanceJob Task

Resource

? 1

?

Figure 3.10: Illustrates of the relationship between the Task, VerificationResults and Re-
source entities.

The relationship illustrated in Figure 3.10 states that a UPPAAL PARMOS instance will in-
clude a single task, multiple verification results and multple resources.

Task

QueryModel

Identifier

Task speci-
fication

Create
time

Start timeEnd time

ParametersConstraintsAlgorithm

Goals

Figure 3.11: Illustrates the Task entity, and appertaining attributes.

28 3. Design of UPPAAL PARMOS



3.4 Storage

As stated in Section 3.3, a task must contain both a model and a query. Furthermore, in
order for the PSA to know what parameter space to iterate over, and how to optimize the
search, it must also contain a task specification. Besides this, it also contains certain timing
statistics, as well as an identifier, to uniquely identify a specific task.

Model
configu-
ration

Statistics

Start timeEnd time

Reference
Resource
identifier

Task
identifier

Parameters

Value Name

Identifier

RankStatus

Query

ExtremaName Value

Line

Satisfied

Property

Figure 3.12: Illustrates the Model configuration entity, and appertaining attributes.

The Model configuration, representing a single configuration taken from the parameter
space of the Task, contains the names and apertaining values of the parameters. It also
contains the results of its verification, split up into multiple attributes:
Property: Stores the property number, as determined by its appearance in the UPPAAL

query file.
Line: The line in which the query appears in the UPPAAL query file.
Satisfied: Whether the query was verified or not.
Extrema: A number of results obtained from an inf or sup query, containing both the name

and values.
Furthermore, the Module configuration also contains the status of the verification, whether
it is pending on the resource, running or finished, as well as the Rank of the task, which
indicates whether it is the best job found so far. Some statistics are also collected from the
task, specifically Start time and End time, which are also stored. Lastly, a reference to the
Resource and Task pertaining to the Model configuration must also be saved, by storing
their unique identifiers.

Resource

Assembly
Name

Identifier Cores

SettingName Value

Figure 3.13: Illustrates the Resource entity, and appertaining attributes.

3. Design of UPPAAL PARMOS 29



3.5 Web service

The Resource consists of the name of the assembly pertaining to the resource, along with
a number of settings, each containing the name of the setting and the appertaining value.
Furthermore, the Resource also contains the number of cores it has available, as well as an
identifier, to uniquely identify the Resource among other resources

3.5 Web service

As stated in the design principles of Section 3.1, we have chosen to design a web service for
providing a programming interface for the user to access UPPAAL PARMOS. This design
will provide a prudent separation between a user a running instance of UPPAAL PARMOS.
While we in this thesis does not focus on security in terms of authorization and authentica-
tion, this design with a proxy between the user and UPPAAL PARMOS can be necessary in
future versions of UPPAAL PARMOS.

We have designed the web service to allow the users of UPPAAL PARMOS to develop their
own GUI for managing their tasks. The web service is designed to provide not only acces-
sors and mutators to elements in the Storage, but also to provide the user with ready-to-use
procedures such as mappers and parsers. This will allow the users to develop their own semi
complex user interface, by using library procedures.

We have designed the web service to include the following procedures:

AddModelQuery: Adds a UPPAAL system to the storage of the PSA. This forms the first
of two parts required to form a task. The task will first be complete, i.e. active, once
a task specification has been added. This procedure takes the content of a model and
query as argument.

GetTasks: Returns a list of tasks located in the storage of the PSA. This procedure accepts
arguments to filter on the running, completed or pending status of the tasks, and a
range to select a subset of tasks to return. Another argument is used to sort the tasks
based on status or running statistics.

GetTaskInformation: Returns the status and statistics for a task. This procedure takes the
identifier of a task as argument.

GetTaskModel: Returns the model of a task. This procedure takes the identifier of a task as
argument.

SetTaskModel: Sets the model of a task. This procedure takes the identifier of a task as
argument.

GetTaskQuery: Returns the query of a task. This procedure takes the identifier of a task as
argument.

SetTaskQuery: Sets the query of a task. This procedure takes the identifier of a task as
argument.

GetTaskSpecification: Returns the entire task specification of a task. This procedure takes
the identifier of a task as argument.

SetTaskSpecification: Sets the entire task specification of a task. This procedure takes the
identifier of a task as argument.

GetTaskSpecificationParameters: Returns the parameters located in the task specification
of a task. This procedure takes the identifier of a task as argument.

30 3. Design of UPPAAL PARMOS



3.6 Graphical User Interface

SetTaskSpecificationParameters: Sets the parameters located in the task specification of a
task. This procedure takes the identifier of a task as argument.

GetTaskSpecificationObjectives: Returns the objectives located in the task specification of
a task. This procedure takes the identifier of a task as argument.

SetTaskSpecificationObjectives: Sets the objectives located in the task specification of a
task. This procedure takes the identifier of a task as argument.

GetTaskSpecificationConstraints: Returns the constraints located in the task specification
of a task. This procedure takes the identifier of a task as argument.

SetTaskSpecificationConstraints: Sets the constraints located in the task specification of a
task. This procedure takes the identifier of a task as argument.

GetTaskSpecificationAlgorithm: Returns the optimization algorithm and its appertaining
settings located in the task specification of a task. This procedure takes the identi-
fier of a task as argument.

SetTaskSpecificationAlgorithm: Sets the optimization algorithm and its appertaining set-
tings located in the task specification of a task. This procedure takes the identifier of
a task as argument.

GetVerificationResultMatrix: Returns a list of verification results appertaining a task. This
procedure takes the identifier of a task as argument or an identifier of a verification
result. Another argument is used to filter by rank, input values or output values and
another is used to sort said options.

Get2DGraphResultValues: Used to extract values from the verification results such that
they can be applied to a two-dimensional graph. This procedure takes the identifier
of a task as argument, together with the name of a parameter to vary and a list with
the names of those parameters to keep fixed. This procedure accepts arguments to
filter on the running, completed or pending status of the tasks, and a range to select a
subset of tasks to return. Another argument is used to sort the tasks based on status
or running statistics.

Get3DGraphResultValues: Used to extract values from the verification results such that
they can be applied to a tree-dimensional graph. This procedure takes the identifier
of a task as argument, together with the name of two parameters to vary and a list
with the names of those parameters to keep fixed. This procedure accepts arguments
to filter on the running, completed or pending status of the tasks, and a range to select
a subset of tasks to return. Another argument is used to sort the tasks based on status
or running statistics.

3.6 Graphical User Interface

While the GUI is not the focus of this thesis, it still gives rise to a requirement of an interface,
rich enough to fulfil the minimum needed functionally for managning a parameter sweep.
In the design principles of Section 3.1, we stated the decision of a web-based GUI for
managing tasks. A web-based application gives the benefit that no other software than
a web browser needs to be installed at the users computer. The GUI has been designed to
provide two options; the submitting of a task, and the presentation of the verification results.

3. Design of UPPAAL PARMOS 31



3.6 Graphical User Interface

3.6.1 Submitting

In order to create a task, the user needs to submit the UPPAAL system, i.e. model and
query file, which the parameter sweep is to be conducted over. In order to complete the
task, the user also needs to submit the task specification describing the parameter sweep to
be conducted. The design principles states that the user should be able to choose between
submitting a task specification as a file or construting one using the GUI. If the last option is
chosen, a range of boxes and appertaining help text are displayed on GUI in order to guide
the user through the process of creating a task specification.

3.6.2 Presentation

As soon as the first model verification result is stored in UPPAAL PARMOS, the GUI is
updated to show this and other results. The user is provided with options for having a
graphical representation of the verification results presented. The user also has the choice
of having the verification results presented as they are i.e. model configuration and the
computed result.

32 3. Design of UPPAAL PARMOS



4Algorithms

The phrase “needle in a haystack”, as illustrated in Figure 4.1, describes fully the problem
that arises, when searching for a solution in an partially unknown space. A solution may
or may not exist, and if it exists it may be the only one, or possible not even an optimum,
but just a candidate solution. A range of algorithms that are suitable for conducting a non-
exhaustive search exists, and some of those are studied in this chapter. These algorithms,
known as meta-heuristic algorithms, allow the exploration of unknown space without having
much, if any, knowledge at disposal [22].

Figure 4.1: Needle in a haystack [33].

When a problem needs to be solved, seve-
ral solutions can exist, yet the optima are
often preferred. All of these solutions ex-
ists in the same space, called the solution
space, where each element in the space rep-
resent a possible solution. To find the best
possible solution, one should be able to dif-
ferentiate the solutions according to some
value. This value is called the quality of
the solution. Given this search space and a
way of measuring the quality, a solution can
be obtained that has either a minimum or
maximum value i.e. the solution is the best
according to some minimization or maxi-
mization criterion, called the objective. An
essential problem with the search space is
that by the time of solving a problem, all
elements in the search space is often only
partial known. That is, the locations are
known but not the quality value of those locations. This is a problem because it limits
the amount of algorithms that can be used for solving a problem. This problem is further
extended when the decision of choosing a better solution, called the candidate solution,
needs to be taken. At that time, the quality of a candidate solution may not be known and
need to be calculated, thus adding extra time for iterating through the search space. This is
also a reason for why an exhaustive search is often not feasible, given that the scale of the
search space is often very large, as it would simply take too long. Thus, in order to find a
candidate solution, one must apply a strategy that limits the number of interesting solutions
in the search space, and, at the same time, contains a criterion for handling the decision of
elevating a particular candidate solution to become the current optimum.

Along with the study, some assumptions and details necessary for a practical implementa-
tion are described, such that the algorithms can be implemented in UPPAAL PARMOS.

4. Algorithms 33



4.1 Notation and definitions

4.1 Notation and definitions

To create a uniform and legible representation of the content of this and the following chap-
ters, some rules for syntax and styling of both mathematical and other abstract terms are
introduced. Some definitions are provided to ease the descriptions following the pseudo-
code of the algorithms.

Literals Integers are written plainly, like 0, and a boolean value is in bold face,
like true or false .

Variables All variables are written with a mono-space font. Integer, boolean, and
candidate solution variables are written as small letters, like variable,
and variables containing sets start with a capital letter, like Variable.

Sets Sets are denoted enclosed in curly brackets with each element delimited
by a comma, like {a, b, c}.

Assignment a← b means that a is assigned the value of b.

Procedures Procedures are written in small caps face with an initial capital letter,
like PROCEDURE.

Table 4.1: List of notations.

A combinatorial optimization problem is defined as the search for an optimum, or optimum
approximation, from a finite set of solutions [1]. This problem of either minimisation or
maximisation requires a search algorithm that does not require a complete iteration over the
search space and a way of identifying the quality of a solution. From this definition a formal
abstraction of a combinatorial optimization problem is written in Definition 1.

A combinatorial optimization problem is called an instance and is represented
as a tuple (S, O, f ) where S represent a finite solution space, O the set of finite
objectives and f is a mapping f : Si×O 7→R that denotes a cost function, where
Si ∈ S. The cost function is in the Algorithms of called COST

Definition 1

The concept of an index-based solution space in Definition 1 allows for a single joined
abstraction of a parameter collection and the computed quality of this collection. The so-
lution space can therefore be viewed as the container of all valid parameter combinations
to a UPPAAL model and their appertaining computed quality measure. This measure is ob-
viously first available once a cost function has been applied. The set of objectives of an
instance is the same for all solutions, in the solution space, in that instance. These objec-
tives are necessary for the cost function to measure the quality of a solution. The relation
between a cost function, objectives, a solution and its quality is depicted in Figure 4.2.

Objectives

Solution Cost function
Quality measure

Figure 4.2: A illustration of the cost function.

34 4. Algorithms



4.1 Notation and definitions

By using index-based notation information can be extracted from a solution a ∈ S of an
instance. The available options are listed in Table 4.2.

aParameters Is the set of all parameters in the solution a.

aResult Is the set of all computed results in the solution a.

Table 4.2: Notation for extracting informations of a solution a ∈ S of an instance.

When iterating though a solution space, a procedure for finding the next candidate solution
is needed. A profound idea in optimization theory is that the next good solution should be
found around, or close, to a current good solution instead of being found nearby an arbitrary
solution [18]. This idea is formalized in Definition 2.

Let (S, O, f ) represent an instance, where i and j are two solutions st. i, j ∈ S.
Then a neighbourhood, denoted Si, is the set of solutions that surrounds the
solution i where Si ⊂ S. Each solution j ∈ Si is called a neighbouring solution
or simply neighbour of i.

Definition 2

The relation between the sets S and Si of Definition 2 is depicted in Figure 4.3.

i

Si

S

Figure 4.3: Illustration of the neighbourhood as defined in Definition 2.

In order to utilize the concepts of Definition 2 an algorithm, which provides predictability
of the order of which the neighbouring solutions appear, is needed. Definition 3 provides
such an algorithm.

An algorithm named NEIGHBOUR is defined as NEIGHBOUR: Si 7→ S j where
Si, S j ∈ S and S j is the closest unvisited neighbour to Si.

Definition 3

Figure 4.4 illustrates an example of the function NEIGHBOUR as defined in Definition 3.
This example illustrates the path taken by the algorithm as it is applied to the same origin
multiple times, each time finding the closest unvisited neighbour.

Some heuristic algorithms includes an iteration course that can continue for a long period

4. Algorithms 35



4.2 Algorithm classes

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Figure 4.4: An example of the NEIGHBOUR function as defined in Definition 3.

of time. The decision to break the iteration in order to obtain the current best solution is
defined in Definition 4.

The expression that decides when an continues algorithm in an iteration course
is to stop is called the stop-criterion.

Definition 4

4.2 Algorithm classes

Algorithms that search for an objective can be divided into classes. This section provides
descriptions of classes that support a single objective and multiple objectives. This section
also contains a subsection that describes a special kind of algorithm that implement an
evolutionary strategy to reach its objective.

4.2.1 Single objective algorithms

A single objective algorithm optimizes towards a single goal i.e. a value that should ei-
ther be as small or as large as possible. The algorithm can be viewed as a maximization or
minimization of a function f (~x) as in Equation 4.1 [18]. It should be noted that a maximiza-
tion problem can be turned into minimization problem by inverting the sign of the quality
measure hence the same algorithm can be used for either.

maximize f (~x)

subject to~x ∈ ~X
∨

minimize f (~x)

subject to~x ∈ ~X
(4.1)

Where ~x in Equation 4.1 is a discrete solution vector, ~X is a finite set of feasible solutions
and f :~x 7→ R.

36 4. Algorithms



4.2 Algorithm classes

If the function f (~x) is known and differentiable at each~x∈~X then a gradient descent method
can be applied as an optimization solver. However, when f (~x) is unknown it becomes a
black box and other types of algorithms that do not require a derivative for optimization is
needed. Meta-heuristic algorithms are such a type. They allow the exploration of unknown
space and iterates through it using only available knowledge.

In Section 4.3 and Section 4.4 two single objective meta-heuristic algorithms, Hill-Climbing
and Simulated Annealing, are studied for later implementation.

4.2.2 Multi objective algorithms

When the objective for an algorithm need to be expressed using multiple objectives, the
algorithms of 4.2.1 are no longer directly sufficient. However, those algorithms could be
utilized if an aggregate objective value, i.e. a combination of the objective values into one
objective value, is used. This can be done as in Equation 4.2, where the objectives, denoted
ai, are scaled in according to some weights, denoted wi.

|a|
∑
i=1

ai ·wi (4.2)

This will result in the objectives being weighted evenly and a single value can be maximized
or minimized. It is of course possible to use different weights, or use a non-linear formula,
but it may not always be easy to figure out the most optimal formula, thus resulting in less
than optimal solutions, in which case another strategy is needed.

Pareto dominance is a strategy to determine which one, if any, of two solutions are the best,
using multiple objectives. In order for a solution A to dominate another solution B, it must
be at least as good as B in all objectives, and better in at least one objective.

In other words: For two solutions Z and X , X dominates Z if both Equation 4.3 and 4.4
holds, denoted X � Z.

∀i ∈ {1, ...,m} : Zi ≤ Xi (4.3)

∃i ∈ {1, ...,m} : Zi < Xi (4.4)

When having multiple objectives, a number of things can happen when comparing two
solutions:

1. A is better than B in all objectives
2. A is as good as B in all objectives, and better in at least one
3. A is as good as B in all objectives
4. A is better than B in at least one objective, but B is better in at least one objective.
5. A is as good as B in almost all objectives, but worse in at least one
6. A is worse than B in all objectives.

In the cases 1 and 2, A dominates B, and in cases 5 and 6, A is dominated by b. In the
remaining cases, neither clearly dominates the other, they are thus nondominated. This

4. Algorithms 37



4.2 Algorithm classes

may produce multiple ’best’ results, as can be seen in Figure 4.5, which represents two
objectives, each having to be maximized, with the line of blue dots representing what is
known as the pareto front, where each point is nondominated.

0 2 4 6 8 10

0

2

4

6

8

10

Figure 4.5: The Pareto front.

The Pareto Front may comprise excessively many solutions, with no clear way to distinguish
which one may be best. Many algorithms therefore do not attempt to find the single best
solution, but instead provide a sampling of the Pareto Front, from which a human user or
perhaps another algorithm is able to choose the solution best fitting the situation, perhaps in
the case of a human user, using some not easily formalizable criterias.

In Section 4.5 on page 52 a multi objective meta-heuristic algorithm, Pareto Archived Evo-
lution Strategy (PAES), is studied for later implementation.

4.2.3 Genetic and evolutionary algorithms

The class of genetic and evolutionary algorithms are inspired by the theory of evolution as
established by Charles Darwin. He stated that all species of life have descended over time
from a common ancestry and that a process of natural selection would lead to a more homo-
geneous population due to the survival of the strongest genetic variation within a population
[8]. This principle of evolution was introduced in computing by [34], which initiated the
idea of natural evolution as a method to solve parameter optimization problems. This idea
was further researched and developed by [14] where he introduced the concept of Genetic
Algorithms (GAs).

The class of genetic and evolutionary algorithms differs from the algorithms described in
4.2.1 and 4.2.2. They do so by their structure, which holds a population of candidate so-
lutions rather than a single candidate solution. Based on the implementation of these al-
gorithms, each of the candidate solutions can affect the population mechanism and quality
measure, which thereby affect how new candidate solutions evolve [22]. As a result of this,
good candidate solutions could influence poor candidate solutions to become extinct, or, by
affecting them to change behaviour, to become better.

Two common versions of the GA exists, one called a generational and once called steady-

38 4. Algorithms



4.2 Algorithm classes

state. The generational version of a GA updates the entire population once per iteration,
while the steady-state version only updates the population with a few new candidates at a
time. The outline of a generational GA is as depicted in Figure 4.6.

Initiate Evaluate Populate

Testno Return
yes

Figure 4.6: The flow of a Genetic Algorithm.

The first process step in Figure 4.6 contains the initiating phase where a population, i.e. a
set of candidate solutions, of chromosomes is randomly generated. The term chromosome
is drawn from the natural science of biology in which evolution and genetics are a parts of.
It is used as an abstraction of a solution that has a data type that can be represented in form
of a fixed-length vector, which is necessary for the Populate process [22], depicted in Figure
4.7.

Then follows a process of evaluation where each chromosome in the population is measured
according to some function that returns its quality. In the third process is the Populate
process where a new population is generated, using the current population as origin. This
process contains internal processes which are depicted in Figure 4.7 and elaborated on later
in this section. The fourth process, called Test, contains an end condition for when no more
populations should be generated. The fifth and final process returns the best solution in the
current population.

Selection Crossover Mutation

Complete
no

Replace
yes

Figure 4.7: The internal flow of the populate process in a Genetic Algorithm.

The internal processes of the Populate process in Figure 4.6 is depicted in Figure 4.7. It
consists of three process steps surrounded by an iteration, that break on a specified end-
condition, and a final Replace process. The first Selection process selects two parent chro-
mosomes from the current population. This is done in according with the quality values

4. Algorithms 39



4.2 Algorithm classes

of the chromosomes i.e. the higher quality value, the higher chance to be selected. The
second process is the Crossover process where a new offspring is conceived. A probability
condition decides whether a crossover is performed using the parent as origin otherwise the
offspring is just an exact copy of the parents. Then follows a Mutation process where a new
probability condition decides whether the new offspring is mutated. If the the condition is
met, the chromosome is mutated at each locus i.e. each position in the chromosome.

It is now clear that, in order to map the GA on to any specific problem, some prerequisites
exists. The GA need to be able to measure the quality of each solution, in order to distin-
guish them, and the algorithm should know a termination criterion, for when a solution is
regarded as optimum. It is also important that the data is contained in a way that allows for
the processes depicted in Figure 4.7 to operate.

40 4. Algorithms



4.3 Hill-Climbing

4.3 Hill-Climbing

Hill-Climbing is a simple iterative algorithm, suitable for finding optima in a solution space.
It assumes that as long as an optimum has not been reached, better solutions exist in the
vicinity of the current solution. The neighbouring solutions can thus be explored, and the
current solution in the direction where the better nearby solutions are found.

Figure 4.8: Visualization of the Hill-Climbing algorithm.

Hill-Climbing works, in its simplest form, by starting at some solution in a solution space,
tests a neighbouring solution, and continue to this solution, if it is better than the current
best solution. This continues until an optimum has been reached.

Figure 4.8 shows an illustration of the path taken by a Hill-Climbing algorithm in a two-
dimensional parameter space (The vertical axis denotes how good the solutions are). The
red dot marks the point where the algorithm has reached a maximum and ended the search.

4.3.1 Formalisation

The Hill-Climbing algorithm generally requires that there is a strong relationship between
change in parameters and the quality of a solution. Neighbouring solutions must show some
degree of similarity, in order for Hill-Climbing to be useful.

The algorithm is good for finding maxima or minima, but because the algorithm moves
locally in every iteration, it does not guarantee to find the global optimum. If the initial
solution is in an bad area, the search will end in a local optimum rather than the global one.
This is illustrated in Figure 4.9, where a Hill-Climbing path ends up in an optimum which
is not the global optimum.

A number of variations of the Hill-Climbing algorithm exists. Most notably is Steepest
Ascent Hill-Climbing and Random Restart Hill-Climbing.

Steepest Ascent Hill-Climbing is a variation of simple Hill-Climbing, where the imme-
diate neighbours of the current best solution is tested in each iteration. More than one of
these solutions may be better than the current best solution, but the best of all these solutions
is likely to indicate the fastest direction to an optimum.

4. Algorithms 41



4.3 Hill-Climbing

Figure 4.9: Visualization of the Hill-Climbing path .

Random Restart Hill-Climbing (also known as Shotgun Hill-Climbing) is an approach
where Hill-Climbing is run multiple times using different starting solutions in the same pa-
rameter space, and the best solutions is chosen among the solutions returned by each agents.
Since this approach explores broader in the parameter space, is increases the likelihood for
finding a global optimum significantly.

4.3.2 Pseudo-code

A simple Hill-Climbing algorithm is shown in Algorithm 4.1.

Algorithm 4.1 Simple Hill-Climbing Algorithm

input:
output: solution

1: procedure HILLCLIMBING

2: solution← Initial random candidate solution . Holds the current best solution.
3: repeat
4: candidate← NEIGHBOUR(solution)
5: if COST(candidate) < COST(solution) then
6: solution← candidate
7: end if
8: until an optimum has been reached, or other stop criterion has been met
9: return Solution

10: end procedure

The Steepest Ascent Hill-Climbing algorithm shown in Algorithm 4.2, is a slight modifi-
cation of the simple Hill-Climbing algorithm, where more than one neighbour is tested in
each iteration.

42 4. Algorithms



4.3 Hill-Climbing

Algorithm 4.2 Steepest Ascent Hill-Climbing Algorithm

input:
output: solution

1: procedure STEEPESTASCENTHILLCLIMBING

2: solution← Initial random candidate solution . Holds the current best solution.
3: repeat
4: improved← false
5: for each neighbour ∈ Ssolution do
6: if COST(neighbour) < COST(solution) then
7: solution← neighbour
8: improved← true
9: end if

10: end for
11: until not improved, or other stop criterion has been met
12: return Solution
13: end procedure

4. Algorithms 43



4.3 Hill-Climbing

4.3.3 Implementation details

Because our framework requires that an algorithm is able to deliver a new candidate solution
whenever asked, "an iteration" becomes a very loosely defined concept.

Having a great degree of parallelism to process results, it makes sense to explore not only
the neighbouring solutions, but also other nearby solutions - like neighbours neighbours,
and maybe further away, depending on how many computing resources are available, and
thus, every time the algorithm is asked for a new solution it just iterates a little further
away from its current best solution. Since the current best solution cannot be changed until
better results have been returned from solutions being computed, the algorithm must find
new nearby solutions to be computed. The number of solutions being computed in each
iteration will therefore increase with the number of available resources. Because of this, the
algorithm for finding neighbours must be an incremental one, always able to return the nth

neighbour from a given current solution.

The current best solution can then be changed when new better results are returned. The
results may also return in any given order, and since new solutions are queried for computa-
tion when others return results, the current best solution is therefore bound to change before
all solutions return results.

44 4. Algorithms



4.4 Simulated Annealing

4.4 Simulated Annealing

In the Simulated Annealing (SA) algorithm the criterion of elevating a particular candidate
solution to be the current optimum, is inspired by the thermal process of condensed matter
physics. This process includes two steps;

• an increase in temperature to a value where some solids melts and
• a carefull decrease in temperature until the particles in the solids arrange themselves

in a ground state.

Once the solids melt, and are in a liquid phase, all their particles arrange themselves ac-
cording to some stochastic process. This process has successfully been modeled by [16].
However, [24] developed in 1953 a small algorithm for simulating the evolution of a solid
in a heat bath. This algorithm was based Monte Carlo techniques and generates a sequence
of states of the solid. The algorithm consists of a criterion that compares the energy of a
current solid state with the energy of a new solid state, derived from a perturbation mecha-
nism [9]. This energy difference decides whether a new candidate solution state is accepted
as the new current solution. This criterion, see Equation 4.5, is known as the Metropolis
criterion, which is at the heart of the SA algorithm.

exp
(

Ei−E j

KBT

)
(4.5)

Where T denotes the temperature of the heat bath, KB is the Boltzmann constant and Ei−
E j is the energy difference of two states. In order to utilize this physical concept in a
combinatorial optimization problem some analogies are stated.

• The states in the physical process are equivalent to solutions in the combinatorial
optimization problem.
• The energy of a state in the physical process is equivalent to the cost of a solution in

the combinatorial optimization problem.
• The Boltzmann constant and chosen temperature utilized in the Metropolis criterion

are equivalent to a control parameter in the SA algorithm.

These definitions allow the SA algorithm to be viewed as iteration of Metropolis criterions,
with the control parameter as a candidate solution acceptance criterion controller, which
provides the ability to choose whether a lesser qualified candidate solution should be ele-
vated to optimum. This choice of a lesser qualified candidate solution is a strength of the
SA algorithm because it allows for a wider exploration of a search space where other local
search algorithms have problems escaping a local minimum.

This principle of elevating a candidate solution, of lesser quality, to be the optimum is
depicted on Figure 4.10. The function ζ is given, and the objective is to locate the global
minimum. The point A on the figure indicates a local minimum of the function ζ where
a local search algorithm would be trapped. This entrapment is avoided because the SA
algorithm is able to move to another point such as B, and although this point seems worse
than A. This allows the algorithm to reach the point C.

4. Algorithms 45



4.4 Simulated Annealing

A

B

C

Figure 4.10: A segment of a periodic function denoted ζ.

4.4.1 Formalisation

In order to present an essential description of the algorithm some necessary definitions are
provided. These definitions are in accordance to those provided by [1].

If (S, O, f ) represent an instance and i and j two solutions such that i, j ∈ S
with cost function f . Then an acceptance criterion determines whether j is
accepted instead of i by applying the probability PC:

PC =

1 if f ( j)≤ f (i)

exp
(

f (i)− f ( j)
C

)
otherwise

PC is derived from the Metropolis criterion as previously described, where C
is the configuration i.e. the value of the control parameter.

Definition 5

The transformation process of a current solution to a new candidate solution is
called a transition. This process contains two steps;

1. Run the perturbation mechanism.
2. Validate the new candidate solution against the acceptance criterion.

Definition 6

4.4.2 Pseudo-code

Algorithm 4.3 contains the main procedure for the SA algorithm. The algorithm uses some
auxiliary procedures that are found in Algorithm 4.4. Algorithm 4.4 is special, in the sense
that its procedures control the number of transitions and acceptance ratio in the SA algo-
rithm. These procedures are elaborated on in Section 4.4.3 given that, in order to utilize the
SA algorithm practically, they must be computeable in finite-time, which they by definition
are not.

Algorithm 4.3 executes on an instance and contains six variables that are listed in Table 4.3.

46 4. Algorithms



4.4 Simulated Annealing

Algorithm 4.3 Simulated Annealing Algorithm

1: procedure SIMULATEDANNEALING

input: An initial solution i.
output: The new solution.

2: k← 0
3: Seedinit← initial state
4: L0← initial value
5: C0← initial value
6: repeat
7: for Lk times do
8: j← NEIGHBOUR(i)
9: if COST(j) ≤ COST(i) then

10: i← j
11: else
12: if exp

(
f (i)− f ( j)

Ck

)
> RANDOM(Seedinit) then

13: i← j
14: end if
15: end if
16: end for
17: k←k + 1
18: Lk← CALCULATELENGTH(Lk)
19: Ck← CALCULATECONTROL(Ck)
20: until stop criterion
21: return i
22: end procedure

4. Algorithms 47



4.4 Simulated Annealing

k denotes the iteration count value.

Seedinit denotes the state of the seed.

Ck denotes the value of the control parameter for the kth iteration.

Lk denotes the number of transitions generated for the kth iteration.

i denotes the current solution.

j denotes the candidate solution.

Table 4.3: Variables of Algorithm 4.3.

The first part of Algorithm 4.3 sets up the initial values of its variables. It moves on into
an iteration, which continues as long as the search for a new solution of higher quality is
possible, within the boundary of the stop criterion. In each iteration multiple transitions are
taken in order to mutate the current solution into a new solution. The number of transitions
taken is possibly diverse in each iteration, yet this is decided by the implementation of the
CalculateLength procedure in Algorithm 4.4. The decision of elevating a candidate solu-
tion to be an optimum, is controlled by the acceptance criterion. The acceptance criterion,
depends on the CalculateControl procedure in Algorithm 4.4, and states that if the current
solution is better than a candidate solution, then a stochastic method shall decide whether
the candidate solution should be elevated although it is of a lesser quality.

Algorithm 4.4 Simulated Annealing Algorithm Auxiliary Procedures

1: procedure CALCULATELENGTH

input: The length variable Lk
output: The number of transitions to be taken at the kth iteration.

2: end procedure

3: procedure CALCULATECONTROL

input: The control parameter variable Ck
output: The control parameter to be used at the kth iteration.

4: end procedure

Algorithm 4.4 contains two important procedures for controlling both the run-time and tran-
sitions of the SA algorithm. The CalculateLength procedure computes the number of transi-
tions needed for the next iteration. The CalculateControl procedure computes the decreas-
ing value of the control parameter.

48 4. Algorithms



4.4 Simulated Annealing

4.4.3 Implementation details

Multiple factors must be taken into account when the SA algorithm is to be implemented.
This implementation relies on literature provided by [1] where that of importance is derived
and presented in this section.

The most important factor is that the algorithm is designed in such a way that, to serve as
an optimization algorithm guaranteeing a globally optimum solution, it requires an infinite
number of transitions [1]. However, an implementation that allows for finite-time execution
of the algorithm is considered instead. This implementation comes with the cost of yielding
the guarantee of finding the optimum solution, to allow a optimum approximation to be
satisfying. This is handled by implementing a cooling schedule, see Definition 7, that allows
for polynomial-time execution Algorithm 4.3.

A cooling schedule includes the specification of finite values for;

• An initial value of the control parameter.
• A decrement function to decrease the control parameter.
• A final value of the control parameter to specify the stop criterion of the

algorithm.
• A length to specify the number of transitions at each value of the control

parameter.

Definition 7

Definition 7 contains four parameters, which needs to be found. This requires further algo-
rithms and these are presented as derived from the abstract guidelines of [1].

Initial value

At initialization, the value of the control parameter C0 should be sufficient large to allow
almost all transitions to be accepted. This requirement is useful when an adequate value
of CO is to be found. Some definitions, listed in Table 4.4, are made before an adequate
approximated value can be calculated.

Let I be an instance (S, O, f ).

Let α be a chosen integer st. 1≤ α≤ |S|.
Let β be a appropriate control parameter st. β ∈ R.

Let aRandom be a randomly chosen solution st. aRandom ∈ S.

Let m1 be the number of transitions from i to j where f ( j)≤ f (i).

Let m2 be the number of transitions from i to j where f ( j)> f (i).

Let ∆ f+ be the average difference in cost over the m2 cost-increasing transitions.

Table 4.4: List of notations.

Now the acceptance ratio φ for the acceptance criterion, see Definition 5, can be approxi-
mated by Equation 4.6.

4. Algorithms 49



4.4 Simulated Annealing

φ≈
m1 +m2 · exp

(
−∆ f+

β

)
m1 +m2

(4.6)

From Equation 4.6 a new Equation 4.7 can be obtained by isolating β in Equation 4.6. To
emphasise the use of an approximated value φ in Equation 4.7, which is found using a
pre-selected β value in Equation 4.6, β is renamed to C0.

C0 =
∆ f+

ln
(

m2
m2·φ−m1(1−φ)

) (4.7)

The value of C0 can now be calculated using Equation 4.7 and Algorithm 4.5.

Decrementing the control parameter

The choice between a large number of transitions or small changes in the value of the control
parameter is problem specific. A way of decrementing the control parameter is to have a
uniform decrementataion constant e.g. τ, which is multiplied with the control parameter in
each iteration.

Ck+1 = τ ·Ck, k = 1,2, ... (4.8)

[1] argue for typical values of τ to lie between 0.8≤ τ≤ 0.99.

Final value of the control parameter

The cost function is suggested to be the key criteria in the stop criterion of the algorithm.
Once the quality of the last solution in a sequence of transitions remain unchanged for a
number of consecutive iterations the algorithm should stop.

Number of transitions needed

The number of transitions needed should intuitively be as “small” as possible. Here “small”
should be read as, the number of transitions where the algorithm has a sufficiently large
probability of discovering a large part of the neighbourhood of a given solution.

50 4. Algorithms



4.4 Simulated Annealing

Algorithm 4.5 Simulated Annealing Algorithm Initial Control Parameter Calculator

1: procedure SAAICPC
2: m1, m2, w← 0
3: i← random solution
4: for α times do
5: j← NEIGHBOUR(i)
6: if COST(j) ≤ COST(i) then
7: m1← m1 + 1
8: else
9: m2← m2 + 1

10: w← w + COST(j) - COST(i)
11: end if
12: i← j
13: end for
14:

15: ∆ f+← w
m2

16:

17: φ←
m1+m2·exp

(
−∆ f+

β

)
m1+m2

18:

19: m1, m2← 0
20: i← random solution
21: for α times do
22: j← NEIGHBOUR(i)
23: if COST(j) ≤ COST(i) then
24: m1← m1 + 1
25: else
26: m2← m2 + 1
27: end if
28: i← j
29: end for
30:

31: C0← ∆ f+

ln
(

m2
m2 ·φ−m1(1−φ)

)
32:

33: return C0
34: end procedure

4. Algorithms 51



4.5 Pareto Archived Evolution Strategy

4.5 Pareto Archived Evolution Strategy

PAES is an evolutionary algorithm, using the currently best solution, known as the current
solution, to generate a new candidate solution, by performing a small mutation on the cur-
rent solution, thus making it a local search algorithm similar to the Hillclimbing algorithm
described in Section 4.3.

It evaluates the candidate solution against the current solution, using Pareto Dominance in
order to be able to optimize towards multiple objectives, to determine whether the candidate
should be promoted to the new current.

However, as described in section 4.2.2, it is not always possible to establist clear dominance
between two solutions. Therefore PAES holds in an archive a number of the nondominated
solutions found so far. These are used to establish dominance when neither the current nor
the candidate solution dominates the other, by comparing the candidate solution to each
solution in the archive.

If the candidate dominates any solution in the archive, it gets replaced by the candidate,
and the candidate is considered to dominate the current, which then gets replaced.

In order to keep the size of the archive managable, only a limited number of solutions
are stored. Once the archive is full, selection of which solutions are stored, is based on a
diversity criterion, if clear dominance cannot be established. If a new solution introduces
more diversity to the archive, than an existing solution, it is added, otherwise it is ignored,
thus providing the most diverse set of optimal solutions [17].

4.5.1 Pseudo-code

Algorithm 4.6 PAES Algorithm

1: procedure PAES
2: Archive← /0 . Contains the best solutions found so far
3: current← random solution . Holds the most recent best solution.
4: Archive← Archive ∪ {current}
5: while stopping criterion is not met do
6: candidate← a,a ∈ Scurrent . Scurrent is the neighbourhood of current.
7: if COST(current) � COST(candidate) then
8: if ARCHIVECHECK(candidate) then
9: current← candidate

10: Archive← Archive ∪ current
11: end if
12: end if
13: end while
14: end procedure

52 4. Algorithms



4.5 Pareto Archived Evolution Strategy

The PAES algorithm described in Algorithm 4.6 consists of two main parts

• the initialisation from line 2 to 4 and
• the optimisation loop from line 5 to line 13.

The initialization initializes the Archive and the Current solution, and, since there are
no other solutions that dominates current, it is automatically added to Archive, which is
necessary for the optimization loop.

Algorithm 4.7 ArchiveCheck
input: solution a
output: boolean . does a dominate any solution in the archive

1: procedure ARCHIVECHECK

2: result← false
3: tied← true
4: for each Solutioni ∈ Archive do
5: if COST(Solutioni) ≺ COST(a) then
6: Archive← Archive \ {Solutioni}
7: result← true
8: tied← false
9: else

10: if COST(Solutioni) � COST(a) then
11: result← false
12: tied← false
13: end if
14: end if
15: end for
16: if tied then
17: result← DIVERSITYCHECK(a) . inserts a into Archive if it introduces

greater diversity.
18: end if
19: return result
20: end procedure

4.5.2 Implementation details

As our framework requires that an algorithm is able to deliver a new solution whenever
asked, it is modified to have one current solution and multiple candidate solutions. These
candidates are evaluated as results come in, and the current replaced when the domination
check dictates. This implies that a candidate can be checked against a different current than
the one that it was created from.

However, the only difference is that the current solution may be different for a number of
iterations, before reverting to the ’correct’ solution, thus providing a bit more exploration,
for any candidate solutions generated in that period. This may even possibly add to the
diversity of the archive, thus perhaps even finding otherwise undiscovered optimal solutions.

4. Algorithms 53



4.5 Pareto Archived Evolution Strategy

Another detail of the implementation is the diversity check. The diversity check compares
the distance between solutions in the archive, and the candidate solution, using the manhat-
tan distance of the results.

In order to ummarize the results of different solutions, which may have different ranges,
they need to be normalized to a common range, to avoid having one result weigh more than
another. This is done using Equation 4.9, which normalizes it to a range of ]0,1[. In order to
do this, a minimum and maximum value for each result must be known, however a global
minimum or maximum for each result may not be known, when needed, in which case the
maximum and minimum value currently residing in the archive as well as the candidate
solution can be used, but in this case it must be recalculated each time a new solution is
tested.

Once the normalized distance is calculated for each solution in the archive, as well as the
candidate solution, it finds the solution in the archive closest to the candidate, known as
the current, and the two closest to it, known as the predecessor and successor, as shown in
Figure 4.11. Using these two points as reference, it calculates which one of candidate and
current is closest to the middle of predecessor and successor.

2 4 6 8 10
0

2

4

6

8

10
pred

currsucc

cand

Figure 4.11: Diversity calculation

dist =
|Sresult |
∑
i=0

Si−Mini

Maxi
(4.9)

Mini =min{∀ j ∈ Archive : jResulti}
Maxi =max{∀ j ∈ Archive : jResulti}

54 4. Algorithms



4.6 Parallelization

4.6 Parallelization

A way of parallelizing existing algorithms, is to, whenever multiple solutions needs to be
tested, before a decision can be made, let them test all at once. This is usable e.g. in
Steepest Ascent Hill-Climbing, where all solutions next to the current needs to be evaluated.
However, this provides only a limited parallelization, as only the solutions immediately next
to the current solution can be tested simultaneously, and is not applicable to all algorithms,
as some may require a result immediately, before the next solution can be calculated.

As the algorithms this chapter are all local search algorithms, some parallelization can be
done in a similar way for all. Two methods for this, speculative scheduling and multiple
agents, are described in the following subsections.

4.6.1 Multiple instances

In order to parallelize a local search algorithm, it is possible to run multiple instances of
the algorithm, either each within its own subset of the parameter space, or all in the entire
parameter space. In both cases, a monitor is needed, in order to keep track of the global best
solution. If all instances are searching in the entire parameter space, it must also monitor for
convergence, in which case one instance must be stopped, or possibly restarted from a new
origin point. The concept of convergence of multiple instances is illustrated in Figure 4.12,
where two instances are running simultaneously. Once the red instance reaches the blue,
the red one must be terminated, as it will simply follow the same path as the blue already
has taken.

0 2 4 6 8 10 12 14

0

5

10

Figure 4.12: Convergence of multiple local search algorithm instances

This method is similar in nature to the random restart described in Section 4.3.1, except
that each run is executed in parallel.

4. Algorithms 55



4.6 Parallelization

4.6.2 Speculative testing

When doing speculative testing, solutions that are not necessarily needed by the algorithm
right now but might be necessary in the near future, are tested anyway, just in case that they
are needed later. This allows the results to be available to the algorithm as soon as it needs
them, as they have already been calculated beforehand.

In a local search algorithm, this is fairly straightforward to implement, as the solutions
possibly needed later on, are the ones nearby the current solution. Thus, using a pattern
such as the one generated by the Neighbour algorithm, shown in Figure 4.4, can be used to
predict which solutions may be neccesary in the near future.

56 4. Algorithms



5Implementation of

UPPAAL PARMOS

The purpose of this chapter is to present our implementation of UPPAAL PARMOS, which is
based on the design specified in Chapter 3. Furthermore, this chapter contains not only the
implementation of UPPAAL PARMOS, but also the implementation of some components to
be utilized for testing of the system. These components are the three algorithms described in
Chapter 4, i.e. Hill-Climbing, SA and PAES, as well as a Resource proxy named upslurm,
in order to utilize the cluster placed at our disposal for testing purposes.

Based on the design, we have chosen to utilize a range of existing software components,
This is decided in order to faster create a working prototype, but also in recognition with
the fact that, it would be impossible within the time frame of this thesis, to develop these
components to a level where they are available on the marked today.

One of the most essential software components that we have chosen to utilize, was the pro-
gramming framework called .NET Framework. It is build according to the Common Lan-
guage Infrastructure (CLI) specification [15], which provides basis for executing UPPAAL

PARMOS on other platforms e.g. the open source implementation of CLI called Mono. Cur-
rently, only the .NET Framework supports the full implementation of CLI, yet the Mono
Project is continuously developing, in order to support the full implementation of the CLI.
Utilizing this programming framework has minimized the amount of new code that was
needed to be written by providing already written and exhaustive tested libraries.

There exists compilers for a range of programming languages that compiles to the interme-
diate language which the CLI supports. We have chosen to utilize one of these languages
called the C# programming language, which supports an object-oriented programming
style. This matches with the design decision of developing a system using a component
based approach, where components can be implemented using object-oriented techniques
e.g. data abstraction, encapsulation, polymorphism etc. [23].

Throughout of this chapter we present implementation of the design using class diagrams.
Figure 5.1 gives an overview of the different types of objects and the relation between them.
There are to kind of objects on Figure 5.1, a class and an interface. The class is illustrated
as a rectangle, where an interface is illustrated using rounded corners. Figure 5.1 illustrates
also the four different types of relations there can exist between classes.

5. Implementation of UPPAAL PARMOS 57



ClassName
Fields:
+ Public
- Private
Static

Methods:
+ Public
- Private
Static

Events:
+ Public
- Private
Static

InterfaceName

Methods:
Events:

a

a

a

a

inherits
b

implements
b

uses
b

has
b

1 1. . .

Figure 5.1: Illustrates the different class types used throughout this section.

58 5. Implementation of UPPAAL PARMOS



5.1 Parameter Sweep Application

5.1 Parameter Sweep Application

The design of the PSA has been implemented as a background running service. The PSA
receives all its instructions from the database and are not directly in contact with the user
accessing UPPAAL PARMOS through the GUI.

As illustrated in Figure 5.2 the PSA is constructed around two class instances, a Service and
a Resource Handler.

Service
- Collection<IAlgorithm> algo-

rithms
- Database database
- ResourceHandler resources
- State state
+ Service()
+ void Initialize()
+ void LoadAlgorithms()
- void StateMachine()
- void OnVerificationRanked(

string[], uint)
- void OnVerificationResul-

tReady( VerificationResult)

+ TaskCleanUp

State
+ Task task
+ IAlgortihmInstance algorith-

mInstance
+ States state

ResourceHandler
- Database database
- ResourceCollection resources
- int loadedResources
- int totalResources
- int availableResources
+ ResourceHandler()
+ void CollectVerificationRe-

sults()
+ bool HasFreeResource( out

IResource, string)
+ void LoadResourceProxies()
+ void NoMoreVerificationsTo-

Process()
+ void PerformTaskCleanUp(

string[])
+ void TransferFilesToResources

(string[])
- void OnVerificationDone(

Verification)
- void OnVerificationShipped(

string, string)

+ VerificationResultReady

1

1

1 1

Figure 5.2: Class diagram of the main PSA component: Service, and its appertaining
classes

The Resource Handler instance is responsible for controlling the attached resource proxies
and provides an interface to the Service, where the Service can lock and ship verifications to
a resource proxy. The Service instance is responsible for requesting model configurations
from the conduction Algorithm and shipping these using the Resource Handler. It is also
the Service that tells the Resource Handler when to check for results, what to transfer of
auxiliary files and when to clean-up after a sweep.

The Service is implemented as a state machine an utilized a class named State for storing

5. Implementation of UPPAAL PARMOS 59



5.1 Parameter Sweep Application

information related to the current state, which the state machine is in. The Service class
contains the following methods.

Initialize is a method called once by the main program to initialize an instance of the
Service.

LoadAlgorithms is called both at unitialization both also when the user supplies a new
algorithm.

StateMachine is called once to initiate the state machine.

OnVerificationRanked is called as a callback when the rank of a solution is found, and
need to be stored in the database.

OnVerificationResultReady is called as a callback when a resource proxy has a verifica-
tion results ready for the Service.

TaskCleanUp is an event that is fired by the Service to notify the Resource Handler to start
clean-up of the current task at the attached resources.

The Resource Handler contains the following methods:

CollectVerificationResults is called by the Service to notify the resource proxies to check
their resource for finished verifications.

HasFreeResource is called by the Service to check whether a resource is available.

LoadResourceProxies is called both in the constructor and once the user adds new re-
sources to the system.

MoMoreVerificationsToProcess is called by the Service to notify the resource proxies that
there are no more verifications to run in the current task.

PerformTaskCleanUp is called by the Service to notify the resource proxies that a clean-
up of the current task should be performed.

TransferFilesToResources is called by the Service to notify the resource proxies that a list
of files need to be transfered to its resource.

OnVerificationDone is a callback called by the resource proxy when it has a verification
result ready for the Service.

OnVerificationShipped is a callback called by the resource proxy when it has shipped a
verification to its resource.

60 5. Implementation of UPPAAL PARMOS



5.1 Parameter Sweep Application

5.1.1 Components

In order to implement a pluggable component-based design of UPPAAL PARMOS, we have
chosen to utilize assemblies, which are libraries that contains compiled CLI supported code.
Assemblies can, using the System.Reflection library of the .NET Framework, dynamically
at run-time be loaded and instantiated into an already running process [25–27].

The choise of implementing a components such as algorithms and resource proxies as as-
semblies is further supported by the practice of sandboxing, i.e. running code in a restricted
environment [28]. Even though our implementation does not support this, it is possible to
have it supported in the furture based on the current component-based implementation of
e.g. algortihms and resource proxies.

5.1.2 Application Programming Interface

For allowing users to develop their own customized solutions, we have chosen to provide a
library of commonly used structures and methods. The Application Programming Interface
(API) provides classes, interfaces, delegates and enumerations all needed for creating an
assembly to be used with UPPAAL PARMOS. While this subsection only contains a subset
of all the classes, more is found in Appendix 8.

SettingCollection

The SettingCollection, shown in Figure 5.3, is a class, created to ease the passing of settings,
and is utilized in both the implemented Algorithms, as well as the Resource.

SettingCollection

+ Collection<setting> settings

+ SettingCollection()

Setting

+ string name
+ string value

+ Setting(string,string)

Figure 5.3: Class diagram of the SettingCollection class

IAlgorithm interface

The IAlgorithm interface serves to provide information of the algorithm, as well as to pro-
vide a reference to an instance of the IAlgorithmInstance. The class diagram is shown in
Figure 5.4(b).

InitialCondition is a method called by the scheduler to initialize an instance of an algo-
rithm.

GetAlgorithmSettings is used to obtain the settings the algorithm accepts

5. Implementation of UPPAAL PARMOS 61



5.1 Parameter Sweep Application

IAlgorithm

IAlgorithmInstance InitialCon-
dition( TaskSpecification)
string[] GetAlgorithmSet-
tings()

VerificationResultRanked

(a) Class diagram of the IAlgorithmInstance in-
terface

IAlgorithmInstance

void NewVerificationResult(
VerificationResult)
ModelConfiguration GetMod-
elConfiguration()
void MarkModelConfigura-
tionOutOfParameterSpace(
ModelConfiguration)

(b) Class diagram of the IAlgorithm interface

Figure 5.4

IAlgorithmInstance interface

The IAlgorithmInstance class, shown in Figure 5.4(a), is the actual algorithm implementa-
tion, responsible for calculating new model configurations to be verified. It contains three
methods, which are described below

NewVerificationResult informs the algorithm of the results of a previously supplied model
configuration

GetModelConfiguration will return a new model configuration to the scheduler whenever
called.

MarkModelConfigurationOutOfParameterSpace informs the algorithm that a specific
model configuration is outside the parameter space.

62 5. Implementation of UPPAAL PARMOS



5.1 Parameter Sweep Application

IResource interface

IResource

void Initialize( SettingCollection)
bool ProcessVerification( Verification)
void CleanUp( string[] )
UPStatus GetStatus()
void TransferFilesToResource( string[])
void CollectVerificationResult()
void NoMoreVerificationsToProcess()
void CrashRestoreVerifications( Collection<Verification>)

VerificationDone
VerificationShipped

Figure 5.5: Class diagram for the IResource interface

The IResource interface, shown in Figure 5.5, specifies the methods which a Resource proxy
must implement, which mainly concerns sending files or commands to and from the re-
sources which it serves as a proxy for, and are described below.

Initialize is called once by the Resource Handler to initialize the loaded resource proxy.

ProcessVerification is called by the Resource Handler when a new verification needs to be
shipped.

CleanUp is called by the Resource Handler when a clean-up need to be performed.

GetStatus is called by the Resource Handler to retrieve the status of the resource.

TransferFilesToResource is called by the Resource Handler to when files need to be trans-
ferred to the resource.

CollectVerificationResult is called by the Resource Handler when a retrieval of verifica-
tion results should be performed.

NoMoreVerificationsToProcess is called by the Resource Handler when there are no ver-
ification to process in the current task.

5.1.3 Task specification

The layout of the task specification file is split up into 4 sections, each of which is defined
below. Each section start of with the name of the section, and the contents of that section
is enclosed in curly brackets. General for each section (unless otherwise noted in the indi-
vidual sections) is that each line is delimitered by a semicolon, all whitspace is ignored and
c-style comments are allowed, and similarily ignored.

5. Implementation of UPPAAL PARMOS 63



5.1 Parameter Sweep Application

� �
1 task

2 = ’parameters{’ parameters ’}’

3 ’constraints{’ constraints ’}’

4 ’objectives{’ objectives’}’

5 ’optimization{’ optimization {}’}’

6 :� �
Listing 5.1: General task specification file gramma

Parameters

The parameters section specifies the parameters making up the parameter space, taking the
form of a from value, a to value and a step value, with the from and to values describing the
lower and upper bound respectively, and step defining the step size. Each such definition is
prefixed with a parameter name. This is used to hold the current value of that parameter, for
use in later expressions in the other sections of the task specification file.� �

1 parameters

2 = (parameter ’;’ )*

3 :

4 parameter

5 = ID ’={’ number ’:’ number’,’ number’}’

6 :

7 number

8 = UNARYINTOPERATOR? INT

9 :

10 INT : ’0’..’9’+

11 :

12 UNARYINTOPERATOR

13 = ’-’

14 :

15 ID

16 = (’a’..’z’|’A’..’Z’|’_’) (’a’..’z’|’A’..’Z’|’0’..’9’|’_’)*

17 :� �
Listing 5.2: Task specification file parameter section

Constraints

The constraints are used to limit the parameter space, and take the form of a boolean ex-
pression which must be true, for the parameter set to be considered valid.� �

1 constraints

2 = (constraint ’;’)*

3 :

4 constraint

5 = boolExpr

6 :

7 boolExpr

64 5. Implementation of UPPAAL PARMOS



5.1 Parameter Sweep Application

8 = boolTerm (OR boolExpr)?

9 :

10 boolTerm

11 = boolean (AND boolTerm)?

12 :

13 boolean

14 =

15 UNARYBOOLOPERATOR?

16 (

17 BOOL

18 | ID

19 | LPAREN boolExpr RPAREN

20 | ’[’compare’]’

21 )

22 :

23 compare

24 = intExpr COMPARATOR intExpr

25 :

26 intExpr

27 = intTerm ((SECONDORDERINTOPERATOR intExpr) )?

28 :

29 intTerm

30 = intPow ((FIRSTORDERINTOPERATOR) intTerm )?

31 :

32 intPow

33 = factor (INTPOWOPERATOR intPow)?

34 :

35 factor

36 =

37 UNARYINTOPERATOR?

38 (

39 INT

40 | ID(’.’ID)?

41 | intParens

42 )

43 :

44 intParens

45 =LPAREN intExpr RPAREN

46 :

47 AND

48 = ’&&’

49 :

50 OR

51 = ’||’

52 :

53 UNARYBOOLOPERATOR

54 = ’!’

55 :

56

57 COMPARATOR

58 = ’<=’|’>=’|’<’|’>’|’!=’|’=’

5. Implementation of UPPAAL PARMOS 65



5.1 Parameter Sweep Application

59 :

60 BOOL

61 = ’true’|’false’

62 :

63 LPAREN

64 =’(’

65 :

66 RPAREN

67 =’)’

68 :

69 SECONDORDERINTOPERATOR

70 = ’+’|’-’

71 :

72 FIRSTORDERINTOPERATOR

73 = ’*’|’/’|’mod’|

74 :

75 INTPOWOPERATOR

76 = ’^’

77 :

78 UNARYINTOPERATOR

79 = ’-’

80 :� �
Listing 5.3: Task specification file constraints section

Objectives

An objective can be one of two things; either a true/false objective, which must be satisfied
for the solution to be considered valid, and optimization objective, which are used by the
optimization algorithms in order to optimize in the right direction. The true/false objectives
simply consist of a boolean expression much like the constraints, whereas the optimization
objectives consist of an optimization direction, telling the algorithm to either minimize or
maximize the expression inside the parentheses. In the expressions of both types of objec-
tives, it is possible to use several variables, such as the parameter values, but also the return
values of queries. These variables take the form of #doneinf, where each query is named
according to how the user specifies them in the GUI of UPPAAL.

66 5. Implementation of UPPAAL PARMOS



5.1 Parameter Sweep Application

Figure 5.6: A screenshot of the UPPAAL GUI with an inserted variable in the “Kommen-
tar” field.

Furthermore, UPPAAL queries files may contain inf or sup queries, which may return the
value of one or more UPPAAL integers or clock values. These can be accessed using the
same name notation as above, but appending a dot and the variable name. As illustrated in
Figure 5.6, #doneinf.E refers to the variable called E in the fifth query in the query file.� �

1 objectives

2 = (objective ’;’)*

3 :

4 objective

5 = ( DIRECTION ’(’ intExpr ’)’ )

6 | boolExpr

7 :

8 DIRECTION

9 = ’min’ | ’max’

10 :� �
Listing 5.4: Task specification file objectives section

5. Implementation of UPPAAL PARMOS 67



5.1 Parameter Sweep Application

Optimization

This section tells UPPAAL PARMOS which optimization algorithm to use, along with a set
of options for the algorithm, in the form of key-value pairs. The reason for the ID ( ’.’ID )+
part is that the namespace of the algorithm must also be specified.� �

1 ooptimization

2 = ID(’.’ID)+

3 ’{’ (optimizationOption ’;’)* ’}’

4 :

5 optimizationOption

6 = ID ’=’ (STRING|ID|INT)

7 :

8

9 / / m a t c h o n a n y t h i n g i n s i d e ’ " ’ ’ " ’ , e x c e p t ’ " ’ , u n l e s s i t i s

p r e p e n d e d b y a ’ \ ’

10 STRING

11 : ’"’ .* ’"’

12 ;� �
Listing 5.5: Task specification file optimization section

Task specification file example

In listing 5.6 an example of a full Task specification file is given. It is the actual task
specification file for the taskgraphsched task used in the test of UPPAAL PARMOS, which is
found in Chapter 6.� �

1 parameters{
2 NP={1:8,1};

3 P={5:32,1};

4 B={5:32,1};

5 }

6 constraints{
7 }

8 objectives{
9 done50;

10 notdeadlock;

11 done;

12 min(doneinf.E);
13 }

14 optimization{
15 upalgorithms.PAES{

16 ArchiveSize =10;

17 DeadSpotMaxSize =100;

18 Restarts=0;

19 }

20 }� �
Listing 5.6: Example of the task specification file.

68 5. Implementation of UPPAAL PARMOS



5.2 Storage

As can be seen, the task has three parameters, with a total parameter space of 6.272, making
it a rather small task.

Further down, in the objectives section, three true/false objectives are defined. these must
evaluate to true, for the solution to be considered valid. If they do not, all evaluation of the
current solution halts, and it is discarded.

The section also contains three optimization objectives, which all attempts to minimize a
certain expression, the first being the time used by the scheduler, to execute all tasks, the
two last each are a measure of energy consumption per work unit, the first when all tasks
must execute within 50 time units, the last without any regard for time.

A fourth optimization should have been defined, to find a reasonable tradeoff between time,
energy, and cost. This is, however, quite difficult to quantify. Luckily, using the PAES
algorithm, as defined in the optimization section, this last objective is easily fulfilled by
the user, who will only have to compare a limited number of solutions, in this case 10, as
defined by the ArchiveSize option.

5.2 Storage

In order to implement the designed storage for UPPAAL PARMOS, we have chosen to uti-
lize a Relational Database Management System (RDBMS). This allows us to easily map
the ERM design of our storage to the RDBMS. A range of different RDBMSs exists on
the marked, and we have chosen to utilize the freely available MySQL Database System
RDBMS [32]. MySQL runs on both Windows or Linux and thereby keeps UPPAAL PAR-
MOS cross-platform supported.

MySQL Connector/Net

Since the .NET Framework does not support the MySQL Database by itself, we have uti-
lized the MySQL provided implementation of a ADO.NET[29] connector to communicate
with the database. This connector is called the MySQL Connector/Net[31], and provides
all the functionality needed for UPPAAL PARMOS to store and retrieve data from a MySQL
database. The version of the library used in the current version of UPPAAL PARMOS is
release version 6.3.5.

5. Implementation of UPPAAL PARMOS 69



5.3 Front-end

5.3 Front-end

The front-end of UPPAAL PARMOS is implemented using ASP.NET of the .NET Frame-
work. ASP.NET is a collection of web oriented technologies, used for e.g. building dynamic
web pages and web services.

5.3.1 Graphical User Interface

In order for the GUI to communicate with the web service, a proxy is implemented for
wrapping messages in a Simple Object Access Protocol (SOAP) envelope. The proxy to the
web service is generated using a tool available in the Visual Studio development environ-
ment. This tool retrieves the Web Services Description Language (WSDL) from the web
service, which it uses for automatic generation of C# proxy code [40]. The allows us to
view the web service as was it a class in the namespace.

As illustrated in Figure 5.7, 5.8 and 5.9 the GUI provides features for submitting and view-
ing information about a task. For developing these feature, we have implemented the needed
procedures, as described in Section 3.5. The web service implementation is found in the ap-
pertaining code of this thesis.

70 5. Implementation of UPPAAL PARMOS



5.3 Front-end

Figure 5.7: Screenshot of the first step in adding a new task.

Figure 5.8: Screenshot of the second step in adding a new task.

5. Implementation of UPPAAL PARMOS 71



5.3 Front-end

Figure 5.9: Screenshot of the verification result viewer.

72 5. Implementation of UPPAAL PARMOS



5.4 Algorithms

5.4 Algorithms

Below, the implementations of the three algorithms described in Section 4.

Common to them is the implementation of the data structure in which the state of the Model
configurations is stored, i.e. whether it has been scheduled or not. The class diagram of this
data structure, called ConcurrentInclusionSet is shown in figure 5.10. This is implemented
using a bit array, the size of the entire parameter space.

ConcurrentInclusionSet
- BitArray backingSet
- int count
- firstUnset
- int[] parameterFrom
- int[] parameterOffset
- int[] parameterSteps
- string[] parameterName

+ ConcurrentInclusionSet(
TaskSpecification)

+ bool
Add(ModelConfiguration)

+ bool AddByIndex(int)
+ void Clear()
+ bool Con-

tains(ModelConfiguration)
+ ModelConfiguration GetMod-

elConfiguration(int)
+ bool Re-

move(ModelConfiguration)
+ int GetFreeIndex()
- int

GetIndex(ModelConfiguration)
- void UpdateFirstUnset(int)

Figure 5.10: Class diagram of the ConcurrentInclusionSet data structure

This allows for the state of all model configurations to be stored, using relatively little
space. The array is a one dimensional array, where the index is calculated, using the formula
provided in Equation 5.1, where P is the set of parameters, and O is the offset pertaining
to each parameter, calculated using the formula shown in 5.2, although this formula does
not take step size into account, as it would complicate the formula unnecessarily, and it is a
trivial expansion.

5. Implementation of UPPAAL PARMOS 73



5.4 Algorithms

index =
|P|
∑
i=0

Pi ·Oi (5.1)

Oi =(maxP0−minP0 +1) (5.2)

· (maxP1−minP1 +1)
...

· (maxPi−minPi +1)

5.4.1 Brute-force

The Brute-force algorithm is a simple algorithm iterating over all possible model configu-
rations, and is implemented in order to verify the optima found by the other algorithms, as
it is guaranteed to find the global optima.

5.4.2 Hill-Climbing

A simple Hill-Climbing algorithm is implemented as described in 4.3.3. In order to find
out when to stop, a set of thresholders is generated from a threshold value, and the current
best solution, when ever that changes. Thresholders are essentially the neighbourhood of
the current best solution, which size is defined by a threshold setting of the algorithm.
Thresholders are removed from the set if their result is known, and it is not better than the
current best one, are out of the parameter space, or fall for constraints. This way, when the
threshold set is empty, all neighbours of the current best solution in the vicinity defined by
the threshold value, has been found worse than the current best one. Thus threshold has
been fulfilled, and the algorithm ends search.

5.4.3 Simulated Annealing

The SA algorithm is not implemented as specified in the initial design in Section 4.4.3. That
design included two cost function calls that in each transition would block the generation of
new model configurations. Instead of this, we have implemented the acceptance criterion
from Definition 5. This criterion is used to compare a current best solution, with each of the
received candidate solutions from the verification process.

In order to stop the algorithm a concept of a dead spot counter is implemented. This counter
is on initialization sat to a predefined value and decremented each time a received candidate
solution fails the acceptance criterion. The dead spot counter reset when a candidate solu-
tion becomes the current best solution. When the dead spot counter equals zero or there are
more candidate solutions, the algorithm will stop.

74 5. Implementation of UPPAAL PARMOS



5.5 Resource proxies

5.4.4 Pareto Archived Evolution Strategy

The PAES algorithm is implemented as described in 4.5, with the addition of both spec-
ulative testing, as described in Section 4.6.2, and random restart as in the Hill-Climbing
algorithm in Section 4.3.

In order to minimize the impact on the scheduler of returning a job result, the algorithm
utilizes a buffer, into which the result is loaded, and the function call immediately returns.
A thread then regularly empties it, in order to evaluate the results.

When evaluating a result, if the Pareto Dominance algorithm cannot establish clear domi-
nance between two results, it will compare it against the results in the archive, as specified
in the PAES Algorithm 4.5.1. If clear dominance still cannot be established, the diversi-
tycheck will be employed. This will check whether the new result will introduce greater
diversity into the archive. The diversitycheck is implemented as the normalized Manhattan
distance of the results. Thus, the result of evaluating the expression of each optimization
query is normalized compared to the upper and lower bound of the expression, when evalu-
ated for all results in the archive as well as the new result. This produces a number between
0 and 1 for each expression, which is then summed over all expression, to produce a number
representative of the distance between the results. This is shown in Equation 5.3.

dist =
|R|
∑
i=0

maxi−mini

Ri−mini
(5.3)

mini =Min({∀A ∈ archive : Ai}∪Ri) (5.4)

maxi =Max({∀A ∈ archive : Ai}∪Ri) (5.5)

PAES also implements the concepts of a dead spot counter as described in Section 5.4.3.

5.5 Resource proxies

In order to test our PSA we have implemented as resource proxy, for the cluster sat at our
disposal.

5.5.1 Simple Linux Utility for Resource Management

As mentioned in Section 2.3.1 on page 11, SLURM is an open source resource manager,
which enables users to execute jobs on a cluster. The SLURM resource proxy is a resource
proxy that is able to utilize the resources of a SLURM enabled cluster, through the SLURM
resource manager.

5. Implementation of UPPAAL PARMOS 75



5.5 Resource proxies

Batch

To be able to group a portion of verifications, we establish a concept named batch. A batch
is essentially the specifications for processing a number of verifications as a single SLURM
job on a single node.

We also establish a concept of batch size, to be the number of verifications specified by a
given batch. Two factors of a batch make the batch size:

• The number processes to run on the node to process the batches.
• The number of verifications that should be processed sequentially in each process.

Trivially, the product of these two factors define the batch size. By grouping a verifications,
batches are used to reduce overhead, and thus make better use of resources. The larger the
batch size, the less batches are needed to process a certain amount of verifications, and thus
fewer batches need to be transferred and handled by SLURM.

Settings

To make use of a SLURM resource, and control how it is used, a number of settings must
be applied to the SLURM resource proxy. This section consists of an overview of these
settings. Additional details on how settings affect performance, is described in the following
section.

Host A Domain Name System (DNS) resolvable address or an Internet Protocol (IP) ad-
dress of the SLURM resource.

Port Is an optional parameter, specifying the port number for the Secure Shell (SSH) con-
nection to the SLURM resource. Not specifying this parameter, will default to the
SSH default port 22.

Username The username used to access the SLURM resource.

Password The password needed for authentication of the given username.

Cores Defines the number of cores available for a batch on each node at the SLURM re-
source.

Verifications per core Defines the number of verifications to be processed sequentially, for
each process started in a batch.

Batches Defines the maximum number of batches the resource proxy is allowed to have
present at the resource.

Batch options Defines an optional string passed directly to the sbatch command as extra
arguments when running batches.

76 5. Implementation of UPPAAL PARMOS



5.5 Resource proxies

Performance optimization

The settings host, port, username and password are trivial connection settings for estab-
lishing a SSH connection to the resource, through which the resource proxy communicates
with the resource.

Passing batch options to the sbatch command can prove very useful if e.g. the SLURM
resource is divided into partitions, and one want the batches to run in another partition than
the default one.

The remaining settings batches, cores and verifications per core, however require further
explanation on their influence on the behaviour of the resource proxy and UPPAAL PARMOS

as a whole.

Tuning the values for batches, cores and verifications per core right, can provide a large
increase in performance. How to tune them depends on the task being processed by UPPAAL

PARMOS.

Collectively these three settings define the number of verifications the SLURM resource
proxy will strive to have at the resource at all times.

The resource proxy will always try to keep as many batches at the resource as it is
allowed. Since we have from the batch definition on the facing page, that cores ·
veri f ications per core defines the batch size, we trivially have that batches · cores ·
veri f ications per core is the total amount of verifications that it will try to keep at the
resource. Figure 5.11 illustrates the interrelation between batches, cores and verifications
per core.

...

. . .
...

...

Verifications per core

C
or

es

Batches

Figure 5.11: Illustration of the interrelation between the batches, cores and verifications
per core settings. The big boxes illustrate batches, the lines of conjoined small boxes
illustrate processes, and the small boxes illustrate verifications.

A batch will always be processed by a single node on a SLURM resource, so naturally in
order to utilize several nodes, at least equally many batches should be dispatched. Usually
nodes have multiple cores however, and SLURM may therefore choose to process several

5. Implementation of UPPAAL PARMOS 77



5.6 Software platform

batches on a single node. This is good for performance, since processing verifications in
parallel is naturally faster than processing them sequentially.

However, overhead from SLURM batch handling can be reduced, by letting each batch
occupy more cores on a single node. The value of cores should therefore ideally be set
to the number of cores available at each node — providing that all nodes have the same
amount of cores.

The value of cores is used by the resource proxy:

• to define the number of processes to be started at the node.
• to tell SLURM that the specified number of cores is required to run the batch.

The last of the two, cause that setting the value of cores higher than the available amount
of cores, will block batches from being processed. SLURM will conclude that insufficient
resources are available, and will therefore not let them run at all.

Even though cores is set to the amount of cores present on each node, it may still prove
beneficial to set the value of batches higher than the amount of nodes. Generally it is likely
to be beneficial to set the value higher than there are resources available for. This is because
of he behaviour of the Service. When a resource is considered occupied, because it holds
its defined maximum capacity of verifications, a new batch will not be dispatched to the
resource before one has been retrieved from it. SLURM however, makes it possible to
submit a batch, even though there are no resources available for processing, so increasing
the value of batches to be higher than the available amount of nodes, thus sending more
batches than there processing resources for, will make SLURM queue the additional amount
of batches. The extra batches will then wait for resources to become available, and start
processing while the results of previous batches are retrieved. Thus overhead from resources
standing idle between batches is reduced. However setting the value to the amount of nodes
available, will result in overhead, since UPPAAL PARMOS will not send a new batch before
having retrieved one. A node will then stand idle while the batch is being retrieved, and
a new one is being dispatched. Setting the value of batches higher than the amount of
available nodes, makes it possible to ensure maximum load on the resource. This is because
the extra batches that are shipped, will be queued at the SLURM resource, and executed
while the resource proxy retrieves the results of previous batches, calculates new model
configurations and dispatch new batches.

5.6 Software platform

The current version of UPPAAL PARMOS has the following requirements for running:

• .NET Framework 4.0
• MySQL Server 5.5 (Community Edition)

Note that the choice of .NET Framework 4.0 excludes the use of Mono, and thus makes a
requirement for a Microsoft Windows operation system. The reason for this choice is that
the SSH.NET Library, we use for SSH connectivity, require .NET 4.0, and Mono currently

78 5. Implementation of UPPAAL PARMOS



5.6 Software platform

does not support all functionality in .NET 4.0. See the section about this library on the
current page for more information on this issue.

5.6.1 Third-party libraries

In the implementation of UPPAAL PARMOS, a number of third party libraries, has been
utilized, in addition to the ones included in .NET 4.0. This section provides an overview of
these libraries and their usage.

ANother Tool for Language Recognition (ANTLR) Parser Generator

ANTLR[38] is a language recognition framework. It supports defining a grammar in
Extended Backus–Naur Form (EBNF), and provides runtime binaries for several languages.

The version of the library used in the current version of UPPAAL PARMOS is 3.3.

We use this library for parsing our task specification file.

SSH.NET Library

The SSH.NET Library[39] is a .NET library for SSH and SSH File Transfer Protocol
(SFTP) connectivity. On the homepage of the library, the creator states in the introduc-
tion that:

This project was inspired by Sharp.SSH library which was ported from java and
it seems like was not supported for quite some time. This library is complete
rewrite using .NET 4.0, without any third party dependencies and to utilize the
parallelism as much as possible to allow best performance I can get.

Initially we used the Sharp.SSH library[12] for SSH and SFTP connectivity, which enabled
us to host UPPAAL PARMOS in a Linux + Mono + MySQL environment. We were however
forced to change because we experienced instabilities using the library under high load.

The choice then fell on the SSH.NET Library, and as previously mentioned, Mono does
not support all functionality needed by the library. This is, to our knowledge, primarily
functionality used for treating large numbers in cryptographic functions.

Additional to the functionality of the Sharp.SSH library, the SSH.NET Library supports
asynchronous calls with callback, and also allows us to download the contents of files di-
rectly to memory. The version of the library used in the current version of UPPAAL PARMOS

is the one found in the repository of [39] revision 7733.

5. Implementation of UPPAAL PARMOS 79



5.6 Software platform

80 5. Implementation of UPPAAL PARMOS



6Test

Testing is required to determine the successfulness of achieving our design goal of perfor-
mance, described in Section 3.1.

This chapter describes every aspect of our testing of UPPAAL PARMOS.

6.1 Test environment

This section describes the general aspects of the environment in which our test were con-
ducted.

6.1.1 Resource

As primary resource for our tests, we have used the Fyrkat cluster of Aalborg University[2],
introduced in the preface. Since Fyrkat is a SLURM enabled cluster, our SLURM resource
proxy, described in Section 5.5.1, is used for the testing. The overhead tests in Section 6.3
on page 83 and the scalability tests in Section 6.4 on page 89, therefore test the overhead
and scalability of UPPAAL PARMOS in conjunction with this resource proxy.

Fyrkat is divided into partitions of different worker node types. The node types shown in
Table 6.1, are the ones that have been utilized for our test.

Sister nodes Killing nodes

CPU Xeon X3220 quad core 2.40GHz Two Xeon E5345 quad core 2.33 GHz

Memory 8GB 16GB

NIC Gigabit ethernet Gigabit ethernet and Infiniband

OS Ubuntu 10.04.2 LTS Ubuntu 10.04.2 LTS

Table 6.1: Specifications for utilized Fyrkat worker nodes [2]

A total of 5 Sister and 14 Killing nodes have been at our disposal. However, even though
there are more Killing nodes, and they provide more cores for processing, most of our
testing have taken place using the Sister nodes, as the Killing nodes were only available in
the final week of our project period.

6.1.2 Server

For testing purposes we have used a test server, installed with Windows 7 Enterprise 32 bit
(Service Pack 1) and the required software described in 5.6.

Our test server has the following hardware specifications:

6. Test 81



6.2 Settings

CPU Intel r CoreTM2 Duo E8400 @ 3.00 GHz

RAM 4,00 GB (3,46 GB usable due to 32 bit OS)

NIC 100 Mbit/s

Storage Seagate Barracuda 7200.10 SATA 3.0Gb/s 320-GB Hard Drive
(ST3320620AS)

6.1.3 Network

Our test server is placed at Cassiopeia, the building of residence for the Department of
Computer Science at Aalborg University, and connected to the campus network. 100 Mbit/s
is the minimal bottleneck speed of the campus network, however since our data transfers
consist mostly of small pieces of text, we find latency to be the of greater concern.

From running the Windows tracert command on the server, targeting the Fyrkat cluster,
we can see that there are 4 hops between the server, and the cluster, and all hops are internal
to the Aalborg University network. The output of the tracert command is shown in Listing
6.1.� �
C:\Users\Administrator >tracert fyrkat.grid.aau.dk

Tracing route to fyrkat.grid.aau.dk [130.225.196.202]

over a maximum of 30 hops:

1 <1 ms <1 ms <1 ms h253.net.klient.slv.site.aau.dk

[172.25.23.253]

2 <1 ms <1 ms <1 ms aau-gw1.aau.dk [130.225.52.1]

3 <1 ms <1 ms <1 ms gi2 -3.aau-edge1.aau.dk

[192.38.59.66]

4 <1 ms <1 ms <1 ms fyrkat.grid.aau.dk

[130.225.196.202]

Trace complete.� �
Listing 6.1: The output of the tracert command from the test server to the Fyrkat cluster

The output in Listing 6.1 also shows that there is very little latency between the server and
the cluster, thus removing the concern for the latency.

6.2 Settings

As described in Section 5.5.1, three settings of the SLURM resource proxy, affect the
throughput and scalability of UPPAAL PARMOS, namely cores, verifications per core and
batches. Furthermore we have made tests on modifying the retrieval timer of the Scheduler.
The effect of modifying these settings has been tested in Sections 6.3 and 6.4. While the
effects of one of these settings is tested, the others usually have fixed values. Section 6.5
concerns itself with testing the implemented algorithms, described in Section 5.4.

82 6. Test



6.3 Overhead

The TGS UPPAAL system, described in Sections 2.1.1 and 2.1.2, is used for most test-
ing. Another system, EKC described in [19] has been used for throughput benchmarking
described in 6.6.

Tests are conducted in sets, varying on only one setting between them, however a small ex-
ception is made for the scalability tests (See Section 6.4 for details). A set usually translates
into a graph, so multiple sets can easily be compared in a graph.

6.3 Overhead

The ability to get jobs processed with low overhead, is one of the most important goals of
UPPAAL PARMOS. Therefore great effort has been put into reducing it.

Overhead in UPPAAL PARMOS may stem from a range of different sources. Internally in
UPPAAL PARMOS, the most significant overhead exists in the selection of new parameters,
when an ID is queried from the database for every verification that is prepared. All other
database requests are buffered, and executex asynchroneously, and does not really introduce
any overhead. Other than this, internal overhead can be introduced from the employed
algorithm being slow at selecting new parameters for verification. Time constraints have
kept us from conducting profiling of UPPAAL PARMOS at runtime, so this is a claim based
on our knowledge of UPPAAL PARMOS rather than empirical data.

Observations however show, that the biggest source of overhead overall, stems from the
handling of resource. The following sources of overhead have been identified in relation
with resources, and can be alleviated by tweaking settings in the resource proxy:

Network connection to the resource The SSH protocol used for communicating with the
resource, introduce some overhead for every command string that is to be executed
at the resource. This command string has a limited size of maximum 32 KB, so
traffic is not likely to be the problem, the overhead thus lies in initiating the command
string, and is increased for every command string that is to be executed. Lowering
the amount of command strings to be executed is thus preferred.

A command string is executed for every batch dispatched to the resource, so the more
batches a task requires, the more overhead. Thus lowering the amount of batches
lowers the overhead. Besides from an employed algorithms ability to choose veri-
fications well, increasing the batch size can be used to lower the amount of batches
dispatched in relation with a task. This can be achieved by increasing the value for
the cores and verifications per core setting of the SLURM resource proxy.

Batch handling at the resource Along with the above described overhead of command
strings, SLURM also introduce some overhead for every batch, in its internal han-
dling of it. This is again a per batch overhead, and thus again calls for lowering the
amount of batches.

Results waiting at the resource When a batch has finished processing its verifications, its
results should ideally be retrieved immediately, such that the employed algorithm
may benefit from them, when selecting new parameters. Since UPPAAL PARMOS

employs a loop for periodically checking for results, this loop should ideally check

6. Test 83



6.3 Overhead

for results as soon as a batch has finished processing, in order for the results not to
wait too long at the resource. There is no setting available in the SLURM resource
proxy for this, but we have made experiments with three different settings of the
retriever loop.

Nodes/cores standing idle New batches cannot be dispatched to the resource, before re-
sults of others have been retrieved. This is yet another reason that results should be
retrieved as fast as possible. Another way of dealing with this issue however, is in-
crease the value for the setting batches, so extra batches are queued up at the resource.
SLURM can then start processing of these batches, as soon as others finish. Queueing
batches however, forces the algorithm to select more parameters for verification, with
less knowledge of results than if no batches were queued.

The rest of this Section present results for tests that show configuration tendencies related
to the issue of reducing the overhead of UPPAAL PARMOS.

6.3.1 Test setup

An exhaustive search, using the brute-force algorithm implemented in UPPAAL PARMOS,
is used for these tests. In order for overhead to have maximum impact during testing, it is
preferable that verifications have as little processing time at the resource as possible, yet
still generate result data to be retrieved and parsed. This can be used to ensure that the
throughput capability of the Service is stressed as much as possible from overhead, and
tendencies from changing settings between experiments may show better.

To ensure this very low processing time of verifications, a task has been created using the
TGS UPPAAL system, and the task specification shown in Listing 6.2.� �

1 parameters {

2 NP = {1:1,1};

3 NT = {1:1,1};

4 MAXC = {91:1090 ,1};

5 }

6

7 constraints {

8 NP <= NT;

9 }

10

11 objectives {

12 done50;

13 notdeadlock;

14 done;

15 min(done50inf.now);
16 min(doneinf.E);
17 min(done50inf.E);
18 }

19

20 optimization{ upalgorithms.BruteForce{} }� �
Listing 6.2: The task specification used for overhead testing.

84 6. Test



6.3 Overhead

The settings in this task file obviously describes a parameter space of a 1000 parameter
combinations, as NP and NT only have one combination each, and MAXC has a 1000. Since
NP and NT are locked at their lowest values, the processing time of verifications will be
minimal. The reason why MAXC starts at 91, is that lower values of MAXC makes UPPAAL

fail to verify the model, which would lessen the amount of data to be retrieved and parsed
from the resource.

To make comparable experiments with a higher work load, we have inserted a loop in every
part of the scripts that process a verification, such that the verification is processed multiple
times discarding results first, after which a final processing is run to get the results. The
loop is illustrated in Listing 6.3.� �

1 for (( i = 0; i < 49; i++ )); do
2 ./verifyta [arguments] &> /dev/null

3 done� �
Listing 6.3: Structure of the loop inserted to process a verification multiple times.

Two types of overhead experiments have been conducted, respectively testing the impact of
the batches and verifications per core settings of the SLURM Resource proxy. Furthermore,
results of the overhead effects of the retriever loops behaviour in UPPAAL PARMOS, has also
been tested. Further effects of the retriever loop is described in Section on scalability, as
we, during these test, also got results on its significance to overhead.

6.3.2 Retriever loop

The retriever loop in UPPAAL PARMOS is far from optimal, and is an area of UPPAAL

PARMOS that needs further work. During our testing of scalability, described in Section 6.4
on page 89, we tested 3 different retriever loops — one with a fixed interval, and 2 with
auto-adjusting variable intervals, one tuned to a specific workload, the other not.

In both the auto-adjusting retriever loops, the actual processing time for batches are used
for predicting when new results are ready.

T =
Tactual +Told

2
(6.1)

T =
Tactual +Told

2
+ c (6.2)

For the first auto-adjusting retriever loop, Equation 6.1 is used to calculate a new loop time
every time a batch is retrieved. This way of setting loop time has however a tendency of
undershooting the points in time where results are ready by a small margin. This results
in looping twice before retrieving results again, possibly making results wait longer at the
resource. Figure 6.2 shows an illustration of this tendency.

The second auto-adjusting retriever loop uses Equation 6.2 to calculate the new loop time.
A constant value added to the calculated value, is used to tune the retriever loop to avoid
undershooting, and overshoot a little instead. Thus if it is tuned right, the result will wait a
shorter amount of time before it is retrieved. Figure 6.1 shows an illustration of this.

6. Test 85



6.3 Overhead

Time

check check check

New results

Figure 6.1: Time line illustrating the effect of the retriever loop undershooting results by
a small margin. The dashed line is the time the results wait at the resource.

Time

check check

New results

Figure 6.2: Time line illustrating the effect of the retriever loop overshooting results by a
small margin. The dashed line is the time the results wait at the resource.

The third retriever loop with a fixed interval simply checks for results every second. This
way results will wait a maximum of one second for being retrieved, and overhead from
results waiting for being retrieved is thus very low, but a lot of checks are made for long
running tests, and a high latency could give issues with requests queueing up. This is not
a problem in our test setup, and we have used this retriever loop to minimize the overhead
influence from waiting results in the tests not examining the effects of the retriever loop. A
small factor that may induce delay, is that it is not possible to dispatch and retrieve jobs at
the same time.

We will, for the remainder of the thesis refer to these three retriever loops by name. The
first will be referred to as the untuned retriever loop, the second will be referred to as the
tuned retriever loop and the third will be referred to as the fixed retriever loop.

Both the auto-adjusting retriever loops tend to let results wait longer at the resource than the
fixed loop. However, they require notably fewer checks than the fixed loop.

In testing this, 100 batches was made using the task specification from Listing 6.2, with
verification per core set to 10. Three sets of experiments have been made, where every
model configuration verification was processed 50, 250 and 500 times for set 1, set 2 and
set 3 respectively.

The values for batches and cores were both 1, to impose the greatest possible waiting time,
by only having one batch at the resource at all times. This experiment was conducted for
all three retriever loops, with the tuned retriever loop adding a constant of 1. The tuning is
made from multiple experiments with verification processed 50 times, and the results from
these experiments are shown in Table 6.2.

The results are shown in Table 6.3. It is obvious that the untuned loop must overshoot, since
it is takes quite a bit longer to complete than the other two in all three cases. The fixed
loop, does logically check every second, and thus make checks correspondingly, while we
unfortunately have no numbers for how many times the auto-adjusting loops check.

86 6. Test



6.3 Overhead

Constant 3 2 1.5 1 0.75

Time 1904 1668 1566 1488 1546

Table 6.2: Experiments used to of tune the tuned auto-adjusting retriever loop

Also, as shown in the Section on test of scalability (6.4), the tuned loop scales bad, and thus
must be re-tuned for each specific task in UPPAAL PARMOS. Therefore we conclude that
this is an area of UPPAAL PARMOS that require an effort to improve.

Loop Set 1 time Set 2 time Set 3 time

Fixed 1573 5359 10558

Untuned 2563 5943 12359

Tuned 1488 7125 10583

Table 6.3: Running times of experiments on retriever loops. Times are in seconds.

6.3.3 Batches

Testing of the impact of the batches setting was conducted on the 5 Sister nodes of Fyrkat.
The goal of these tests is to test the batches settings potential for reducing overhead from
nodes standing idle at the resource.

Prior to testing, the impact of increasing the value for batches was that the throughput would
rise, until a certain point, where it will just cause batches to queue up, and wait for longer
time. Thus the increase in throughput will stall. This point was expected to be reached
relatively quickly. A graph illustrating this expectation is depicted in Figure 6.3.

Batches

T
h
ro
u
gh

p
u
t

Figure 6.3: Graph illustrating our expectations for the overhead tests, varying on the value
of batches.

Tests were conducted on Sister nodes, with settings for verifications per core, and cores
fixed to 10 and 4 respectively, and values for batches was tested starting at 5 through 20.
Since a Sister node has four cores, a batch that takes possession of 4 cores, will then take
possession of a full node. Testing with lower values of batches than 5, will not allow batches

6. Test 87



6.3 Overhead

to queue, since there will always be nodes ready to process them. Thus, the starting value
for batches was equal to the number of Sister nodes available.

One sets of experiments was conducted with a loop for inducing work. Each verification
was processed 500 times. Without the loop, verifications would finish processing too fast
for the queueing to occur, since the value of verifications per core was set to 1 to test with
as many batches as possible.

Results are shown in 6.4, and show something in the lanes of the expected. However results
are coloured from tests being run with the untuned retriever loop, and we expect this to be
the source of the spiking from batches values 12 through 16. Unfortunately time did not
permit us to rerun the tests with the fixed retriever loop.

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Batches

T
h

ro
u

g
h

p
u

t
(v

er
ifi

ca
ti

on
s/

s)

Figure 6.4: Graph illustrating our expectations for the overhead tests, varying on the value
of verifications per core.

6.3.4 Verifications per core

Increasing the value for verifications per core is expected to decrease the amount of over-
head, corresponding to it’s reduction of the amount of batches, as described in Section 5.5.1.

Figure 6.5 shows a graph illustrating our expectations for increasing the value for verifica-
tions per core. The graph is generated with values for verifications per core from 1 through
2000, using the formula in Equation 6.4. 1000 is the total number of jobs to be processed,
3 is the time for batch handling overhead, and 0.01 is the job processing time. Equation
6.3 is used to calculate the number of batches with the verifications per core value in every
sample, and a cores value of 1.

88 6. Test



6.4 Scalability

maxbatches =
⌈

1000
veri f ications per core ·1

⌉
(6.3)

T hroughput =
1000

maxbatches ·3+1000 ·0.01
(6.4)

By a verifications per core value of 1000, increase in throughput stops, since the value of
verifications per core reaches a point where it is equal to or higher than the number of
verifications defined by the task, and all verifications can thus be dispatched in one batch.

Verifications per core

T
h

ro
u

g
h

p
u

t

Figure 6.5: Graph illustrating our expectations for the overhead tests, varying on the value
of verifications per core.

Time, however did not permit us to run 2000 experiments, so experiments have been run
for the values 1, 10, 20, 30, 40, 50, 100, 150, 200, 250, 300, 350 and 400 to reveal the
tendency. There reasons for why 400 is the last value for the experiment, is because of the
32 kB limitation on SSH described in Section 6.3.

The result of the experiments are shown in Figure 6.6. As can easily be seen, the tendency
follows our expectations very well.

6.4 Scalability

With minimal overhead, UPPAAL PARMOS should be able to take full advantage of the
speed-up gained by parallel processing of verifications. The goal of the tests in this Section,
is to test how well UPPAAL PARMOS scales under different workload conditions, when extra
resources are added.

The experiments were again exhaustive searches of 1000 verifications, using the brute-fore
algorithm, the Sister nodes on Fyrkat and the TGS system with the task specification in
listing 6.2. A fixed value of 10 is used for verifications per process.

For all test sets, an initial sequential search, with cores and batches both set to 1, was
performed to have a base for measuring speed-up when processing the rest in parallel. The
remaining experiments in every set, was then made with the value of cores set to 4, and the
value for batches being from 1 to 5 to adjust parallelism further.

Between experiments, the loop inducing work has been changed between 50, 250 and 500

6. Test 89



6.4 Scalability

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

Verifications per core

T
h

ro
u

g
h

p
u

t
(v

er
ifi

ca
ti

on
s/

s)

Figure 6.6: Results from experiments with verifications per core

verifications, and further the retriever loop has been varied between the fixed, the tuned and
the untuned, as introduced earlier. Thus it is possible to compare results between different
work loads, as well as the retriever loops. Note that the same tuning as presented in Section
6.3.2 was employed for all tests with this retriever loop.

Prior to testing, our expectations was that the speed-up would be cose to linear. There is no
dependencies between two verifications then processing them in parallel, so we expected
overhead to be the only obstacle. If the amount of resources should reach a point where
overhead from starting batches becomes a bottleneck, this would present a degrade in per-
formance. This is illustrated in Figure 6.7 with the red line. The grey line shows linearity
for reference.

Nodes

S
p
ee
d
-u
p

Figure 6.7: Graph illustrating our expectations for speed-up when scaling.

The results reveal that UPPAAL PARMOS scales quite well, in conjunction with the SLURM

90 6. Test



6.5 Algorithms

resource proxy. Figure 6.8 shows that nearly linear speed-up is achieved, when adding
resources, except when using the tuned retriever loop.

1 4 8 12 16 20

1

4

8

12

16

20

Total CPU cores

S
p
ee
d
-u
p

Untuned
Tuned
Fixed

Figure 6.8: Average speed-up for the three retriever loops over all three work amounts

Figure 6.9 shows the average throughput over all three workloads, and illustrates a general
tendency, that the fixed retriever loop generally performs better in these tests, than the two
others. However as discussed earlier, the fixed retriever loop performs a lot more check than
the two others. The results presented in Section 6.3.2, should also be taken into considera-
tion, that the tuned retriever loop performs very well under the circumstances it is tuned for,
but the effect of this is averaged away here.

Figure 6.9 however shows that the Tuned retriever loop performs very well around the area
it is tuned for. With 50 times processing for every verification, it performs as good as the
fixed retriever loop for lower amounts of cores.

6.5 Algorithms

The implemented algorithms, described in Section 5.4, have been tested for efficiency, by
measuring how many jobs they need to process before exiting in the “belief” that they have
reached the global maximum.

The TGS model is used for this purpose, but with another task specification than for the
overhead and scalability tests. The one in Listing 5.1.3 on page 68 is used, in order to have
rank-able results for the algorithm to compare on.

In order to know the value the optima found by the algorithms, we have first run an exhaus-
tive search over the parameter space.

6. Test 91



6.5 Algorithms

1 4 8 12 16 20

1

4

Total CPU cores

T
h

ro
u

g
h

p
u

t
(V

er
ifi

ca
ti

o
n

s/
s)

Untuned
Tuned
Fixed

Figure 6.9: Average throughput for the three retriever loops over all three work amounts

1 4 8 12 16 20
0

2

4

6

8

10

12

Total CPU cores

T
h

ro
u

gh
p

u
t

(V
er

ifi
ca

ti
on

s/
s)

Fixed
Untuned
Tuned

Figure 6.10: Throughput for the three retriever loops with 50 times processing of every

Speed is not a factor, when we look at in the algorithm tests, so in that respect the settings
of the resource proxy are without importance. They are however influential on the num-
ber of jobs processed by the algorithms, since they set the number of verifications sent to

92 6. Test



6.6 Performance

the resource for verification before any results return, as well as the potential number of
verifications still at the resource when the algorithm meets its stopping criterion.

To compare the results of each algorithm, an exhaustive search has been conducted in order
to find the global optimum for the model.

A good starting location will, for all algorithms, except brute force, make it end earlier
Since the starting location is random for all algorithms, each experiment has been therefore
been run a number of times, to reduce the impact of this.

We must regrettably conclude that there is a bug in our implementation of the Hill-Climbing
algorithm. It searches the parameter space well and finds the optimal solution in all three ex-
periments, but unfortunately it does not know when to stop. If not stopped, it will eventually
have performed an exhaustive search before halting, as was the case with our experiments.
We anticipate the bug to be found in the algorithms use of a threshold set.

SA and PAES both worked pretty well, finding the optimal solutions. Results are shown in
Table 6.4 Unfortunately we only managed to run one successful experiment with SA, as the
Fyrkat cluster was shut down.

Experiment Verifications Rankings Found global optimum

PAES 1 2691 13 Yes

PAES 2 5665 36 Yes

SA 921 3 Yes

Hill-Climbing* 1 2552 34 Yes

Hill-Climbing* 2 389 17 Yes

Hill-Climbing* 3 335 13 Yes

Table 6.4: Results for algorithm tests. * Hill-Climbing verifications are when the algo-
rithm should have stopped, had it worked properly

6.6 Performance

To get an idea of the throughput capability of UPPAAL PARMOS, we employed the Brute-
Force algorithm on the EKC system described in [19], and tweaked the settings of UPPAAL

PARMOS to achieve a maximum throughput. 5 Sister and 14 Killing nodes of Fyrkat was
used. We achieved a maximum throughput of 14.45 verification/s on a total of 132 cores.
The average processing time of a batch was 650 seconds. With 400 verifications per batch,
this gives us 1.625 seconds per verification.

6. Test 93



6.6 Performance

94 6. Test



7Conclusion

As the content of thesis shows, we have successfully designed and implemented a PSA that
distributes a parameter sweep of verifications of a UPPAAL model to multiple resources,
while employing an optimization scheme to prioritize individual model configurations, thus
allowing for faster access to desired results.

This conclusion grounds in the fact that we were able to implement the design of Chapter
3, and sequentially conduct experiments that produced successful results. One of the most
important design features, was the decision to make the PSA expandable, with components
containing some of the most essential functionality. This decision, which result in a more
customizable PSA, is likely to extend the life cycle of UPPAAL PARMOS, since users are
able to adjust the two most important aspects in UPPAAL PARMOS, the Algorithm, which
decides what to run, and the Resource proxy, which decides where to run it.

In order to measure the performance of UPPAAL PARMOS, multiple experiments have been
performed. These experiments were performed on two different cluster set-up, that totally
provided 132 processors for us to use. In these experiments we have measured through-
put, speed-up and efficiency for three different workloads and a varied number of allocated
processors.

7.1 Results

We have conducted experiments of the implemented optimization algorithms. Their results,
compared to the one produced by an exhaustive search algorithm, clearly shows that the
required amount of verifications needed can be lowered tremendously.

The result from the experiments showed, in almost all cases with different workload, a very
close to linear tendency. The limited resources available to us, during testing, is however not
sufficient to push UPPAAL PARMOS to the limit, and illustrates that further experiments with
more resources available are needed, in order to locate conditions where UPPAAL PARMOS

is no longer scalable, in order to identify the bottlenecks which needs to be worked on in
future versions.

The decision to have resource proxies between UPPAAL PARMOS and the computing re-
source has proven usable, yet it have also bred the conclusion that the scalability of UPPAAL

PARMOS is truly decided by how the implementation of the communication between a re-
source proxy and a remote computing resource is done.

The decision to design a feedback loop, for handling the dynamic behaviour of retrieving
verification results from resources, has proven valid yet not perfect. We conducted experi-
ments, which showed that a fixed retrieval time of 1 sec. instead of a varied, was in close
to all cases superior to the dynamic one. An attempt to tune the the varied time by adding
a fixed constant produced a successful result, yet only in and close to the measure that was

7. Conclusion 95



7.2 Future work

tuned against. However, were additional resources available to us, the sheer number of
connections made by the fixed retriever loop might have proved to be a bottleneck, thus
requireing the use of a feedback loop.

7.2 Future work

Although we with UPPAAL PARMOS have created a working system, there is still much to
attend to.

While we for this version of UPPAAL PARMOS have decided not to focus on user right, in
terms of authentication and authorization, this area is essential and should be attended to.

In this version of UPPAAL PARMOS we allow only constant global integers to be
parametrized. This a limitation in the system, which should be extended to include struct
and array types as parameters. We have made some considerations regarding a realisation
of this, yet have found most models can be adjusted, such that a global integer parameter
is enough. However, we believe that in future versions of UPPAAL PARMOS this should be
available to the user.

Another place that should be attended is the retrieval system of the PSA. While we believe
that the feedback system is a profound idea, the current set-up with one single retriever for
all resources is not profound and should be attended to. The feedback timer should also be
tuned towards more than one result.

The resources available to the PSA are currently totally independent from a task. This
decision was made to allow the resources to be shared between user, yet we have made
considerations about have users specify their “own” resources to be used only with their
task. This is however in the area of user rights which we do no attend to in the version of
UPPAAL PARMOS.

Regarding the use of available resources, currently the PSA views all resources as being
equal, thus utilizing one single resource fully before moving on to the next. In future ver-
sions of UPPAAL PARMOS we suggest that a more fair work-balanced scheme is utilized
for.

While we have conducted multiple experiments for measuring speed-up and throughput we
have not done any profiling on our internal PSA code. This should also be done in the
future, such that all possible computing power can be extracted.

A bottleneck in the current system is the requirement to generate a verification identifier in
the database. This identifier is used throughout of the system and is necessary to distinguish
between the different verifications. We have made some considerations about generating an
identifier from a hash-value of the model configuration, to be used as identifier instead of
the database identifier.

96 7. Conclusion



8Appendix

This appendix contains class diagrams that we have found it necessary to remove from the
content of this thesis.

TaskSpecification

+ Collection<Parameter> param-
eters

+ Collection<Expression> con-
straints

+ Collection<Goal> goals
+ string algorithm
+ SettingCollection algorithm-

Settings

+ bool IntegrityCheck()
+ bool EvaluatePa-

rametersInParame-
terSpace(ModelConfiguration)

+ bool EvaluatePArameterCon-
straints(ModelConfiguration)

+ Collection<Goal> Evaluate-
Goals( IdentifierValueCollec-
tion)

Figure 8.1

8. Appendix 97



AuxMethods

+ Dominance CompareResults(
VerificationResult,
VerificationResult,
TaskSpecification)

+ bool EvaluateResult( Verifica-
tionResult, TaskSpecification, out
int[])

+ int GetMaxModelConfigurations(
TaskSpecification)

+ ModelConfiguration
GetRandomModelConfiguration(
TaskSpecification)

+ ModelConfiguration
GetRandomModelConfiguration(
int, TaskSpecification)

Neighbour
- TaskSpecification

taskSpecification
- ModelConfiguration origin
- int[] offset

+ Neighbour( TaskSpecifica-
tion, ModelConfiguration)

+ ModelConfiguration Next()
+ void Re-

set(ModelConfiguration)

Figure 8.2

98 8. Appendix



Expression
- Expression leftValue
- Expression rightValue
- Literal literalValue
- Operator oprValue

+ Expression( Operator, Expres-
sion, Expression)

+ Expression( Operator, Expres-
sion)

+ Expression(Literal)
+ Literal Evaluate( IdentifierVal-

ueCollection)
+ bool IntegrityCheck()

Literal
+ object value
+ Type type
+ Operator operator

+ Literal(Type, ob-
ject)

+ bool ToBool()
+ int ToInt()
+ string ToString()
+ IntegrityCheck

Boolean

+ Boolean(bool)

Identifier

+ Identifier(string)

Digit

+ Digit(int)

Figure 8.3

Goal
+ Direction direction
+ Expression expres-

sion
+ Goal(Direction,

Expression)
+ bool Integrity-

Check()

ParameterValue
+ string Name
+ int value
+ ParameterValue(

string, int)

Figure 8.4

8. Appendix 99



ModelConfiguration
- Collection<ParameterValue>

+ ModelConfiguration()
+ bool Add(ParameterValue)
+ bool Remove(ParameterValue)
+ Collection<ParameterValue>

GetCollection()

Verification
+ string stdError
+ string stdOut
+ string resourceID
+ string identifier
+ string taskID
+ string processingInforma-

tion
+ ModelConfiguration mod-

elConfiguration

+ Verification(string, string)

VerificationResult
+ string identifier
+ bool failure
+ uint rank
+ int executionTime
+ ModelConfiguration mod-

elConfiguration
+ Collection<Query> queries

+ VerificationResult()

Query

+ int line
+ int propertyNumber
+ bool satisfied
+ Collection <QueryEx-

tremum> extrema
+ Query()

QueryExtremum

+ string name
+ string value

Figure 8.5

100 8. Appendix



Acronyms

ANTLR ANother Tool for Language Recognition . . . . . . . . . . . . . . . . . . . . . . . 79

API Application Programming Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

APST AppLes Parameter Sweep Template . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

CLI Common Language Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

DNS Domain Name System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

ERM Entity-Relationship Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

FIFO First-In First-Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

GA Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

GUI Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

IP Internet Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

NTA Network of Timed Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

OGE Oracle Grid Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

PAES Pareto Archived Evolution Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

PSA Parameter Sweep Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

RDBMS Relational Database Management System . . . . . . . . . . . . . . . . . . . . . . . 69

SA Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

SFTP SSH File Transfer Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

SLURM Simple Linux Utility for Resource Management . . . . . . . . . . . . . . . . . . . 11

SOA Service-Oriented Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

SOAP Simple Object Access Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

SSH Secure Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

TA Timed Automaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

TGS Task Graph Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

TORQUE Terascale Open-Source Resource and QUEue Manager . . . . . . . . . . . . . . 11

WSDL Web Services Description Language . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8. Acronyms 101





BIBLIOGRAPHY

Bibliography

[1] E. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines: A Stochastic
Approach to Combinatorial Optimization and Neural Computing, pages 1–6, 13–17,
54–55, 57–65, 77–79. John Wiley & Sons, 1989.

[2] AAU Grid. The fyrkat wiki. Wiki, 2011. URL
https://fyrkat.grid.aau.dk/wiki/. (Login required) Accessed: May 16, 2011.

[3] A. Burns and A. Wellings. Real-Time Systems and Programming Languages.
Pearson, third edition, 2001.

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. A system of
patterns: Pattern-oriented software architecture. Wiley, 1996.

[5] H. Casanova and F. Berman. Parameter Sweeps on the Grid with APST. Wiley
Online Library, 2003. ISBN 0470853190.

[6] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman. Heuristics for scheduling
parameter sweep applications in grid environments. In 9th IEEE Heterogeneous
Computing Workshop (HCW), pages 349–363, 2000.

[7] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Concepts and
Design, chapter 1,2,15, pages 14–15,19–20,53–57,605. Addison-Wesley Longman,
fourth edition, 2005.

[8] C. Darwin and J. Carroll. On the origin of species. Broadview Press, 2003. ISBN
1551113376.

[9] C. V. Deutsch and X. H. Wen. An improved perturbation mechanism for simulated
annealing simulation. Mathematical Geology, 30:801–816, 1998.

[10] I. Foster. Service-oriented science. Science, 308(5723):814–817, 2005.

[11] G. F. Franklin, J. D. Powell, and M. L. W. (Author). Feedback Control of Dynamic
Systems, chapter 1, pages 1–7. Prentice Hall, third edition, 1997.

[12] T. Gal. Sharpssh - a secure shell (ssh) library for .net, 2007. URL
http://www.tamirgal.com/blog/page/SharpSSH.aspx. Accessed: May 20,
2011.

[13] N. A. B. Gray. Comparison of web services, java-rmi, and corba service
implementations. In The Fifth Australasian Workshop on Software and System
Architectures (AWSA 2004), page 52, 2004.

BIBLIOGRAPHY 103

https://fyrkat.grid.aau.dk/wiki/
http://www.tamirgal.com/blog/page/SharpSSH.aspx


BIBLIOGRAPHY

[14] J. Holland. Adaptation in natural and artificial systems. The University of Michigan
Press, Ann Arbor, 1975.

[15] ISO. ISO/IEC 23271:2006: Information technology — Common Language
Infrastructure. International Organization for Standardization, Geneva, Switzerland,
2010. URL http://www.iso.org/iso/iso_catalogue/catalogue_tc/

catalogue_detail.htm?csnumber=42927.

[16] S. Kirkpatrick, C. G. Jr., and M. Vecchi. Optimization by simulated annealing.
Science, 220:671–680, 1983.

[17] J. Knowles and D. Corne. The pareto archived evolution strategy: A new baseline
algorithm for pareto multiobjective optimisation. In Evolutionary Computation,
1999. CEC 99. Proceedings of the 1999 Congress on, volume 1. IEEE, 1999. ISBN
0780355369.

[18] J. Knowles, R. Watson, and D. Corne. Reducing local optima in single-objective
problems by multi-objectivization. In Evolutionary Multi-Criterion Optimization,
pages 269–283. Springer, 2001.

[19] J. M. Krag, P. S. Freiberg, and B. Villumsen. Distributed parameter sweep for uppaal
models. Technical report, Computer Science, Aalborg University, 2010.

[20] Lawrence Livermore National Laboratory. Slurm documentation, August 2010. URL
https://computing.llnl.gov/linux/slurm/documentation.html. Accessed:
May 27, 2011.

[21] K. G. L. Luca Aceto, Anna Ingólfsdóttir and J. Srba. Reactive Systems: Modelling,
Specification and Verification. Cambridge University Press, 2007.

[22] S. Luke. Essentials of Metaheuristics. Lulu, 2009. URL
http://cs.gmu.edu/~sean/book/metaheuristics/. Accessed: March 5, 2011.

[23] L. Mathiassen, A. Munk-Madsen, P. Nielsen, and J. Stage. Objektorienteret analyse
& design. Marko, 2001.

[24] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equation of
state calculations by fast computing machines. Journal of Chemical Physics, 21:
1087–1092, 1953.

[25] Microsoft. Activator class, 2010. URL
http://msdn.microsoft.com/en-us/library/system.activator.aspx.
Accessed May 11, 2011.

[26] Microsoft. System.reflection namespace, 2010. URL
http://msdn.microsoft.com/en-us/library/136wx94f.aspx. Accessed May
11, 2011.

[27] Microsoft. Load and unload assemblies, 2010. URL
http://msdn.microsoft.com/en-us/library/ms173101.aspx. Accessed May
11, 2011.

104 BIBLIOGRAPHY

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=42927
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=42927
https://computing.llnl.gov/linux/slurm/documentation.html
http://cs.gmu.edu/~sean/book/metaheuristics/
http://msdn.microsoft.com/en-us/library/system.activator.aspx
http://msdn.microsoft.com/en-us/library/136wx94f.aspx
http://msdn.microsoft.com/en-us/library/ms173101.aspx


BIBLIOGRAPHY

[28] Microsoft. Run partially trusted code in a sandbox, 2010. URL
http://msdn.microsoft.com/en-us/library/bb763046.aspx. Accessed
17.05.2011.

[29] Microsoft. Ado.net, 2011. URL
http://msdn.microsoft.com/en-us/library/aa286484.aspx. Accessed May
21, 2011.

[30] N. Milanovic and M. Malek. Current solutions for web service composition. Internet
Computing, IEEE, 8(6):51–59, 2004.

[31] MySQL. Download connector/net, 2011. URL
http://dev.mysql.com/doc/refman/5.5/en/introduction.html. Accessed:
May 21, 2011.

[32] MySQL. Mysql 5.5 manual: 1. general information, 2011. URL
http://dev.mysql.com/doc/refman/5.5/en/introduction.html. Accessed:
May 10, 2011.

[33] Popular Science Publishing Company. Mechanics & Handicraft, July 1939. URL
http://blog.modernmechanix.com/issue/?magname=

PopularScience&magdate=7-1939. Accessed: May 5, 2011.

[34] I. Rechenberg. Evolutionsstrategie–Optimierung technisher Systeme nach Prinzipien
der biologischen Evolution. PhD thesis, Technical University of Berlin, 1973.

[35] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database System Concepts, chapter
1, 2, 6, pages 1–5, 9,37–45, 235–236. McGraw Hill, fifth edition, 2006.

[36] UPPAAL Team. UPPAAL 4.0 : Small tutorial, November 2009. URL
http://www.it.uu.se/research/group/darts/uppaal/small_tutorial.pdf.
Accessed: December 10, 2010.

[37] UPPAAL Team. UPPAAL help file, September 2010. UPPAAL v. 4.1.3 (rev. 4577).

[38] The ANTLR developers. Antlr, 2011. URL http://www.antlr.org/. Accessed:
May 21, 2011.

[39] The SSH.NET developers. SSH.NET Library, 2011. URL
http://sshnet.codeplex.com/. Accessed: May 21, 2011.

[40] W3C. Web services description language (wsdl) 1.1, March 2001. URL
http://www.w3.org/TR/wsdl. Accessed 18.05.2011.

[41] W3C. Soap version 1.2 part 1: Messaging framework (second edition), 2010. URL
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/. Accessed:
December 15, 2010.

[42] C. Youn and T. Kaiser. Management of a parameter sweep for scientific applications
on cluster environments. Concurrency and Computation: Practice & Experience, 22
(18):2381–2400, 2010.

BIBLIOGRAPHY 105

http://msdn.microsoft.com/en-us/library/bb763046.aspx
http://msdn.microsoft.com/en-us/library/aa286484.aspx
http://dev.mysql.com/doc/refman/5.5/en/introduction.html
http://dev.mysql.com/doc/refman/5.5/en/introduction.html
http://blog.modernmechanix.com/issue/?magname=PopularScience&magdate=7-1939
http://blog.modernmechanix.com/issue/?magname=PopularScience&magdate=7-1939
http://www.it.uu.se/research/group/darts/uppaal/small_tutorial.pdf
http://www.antlr.org/
http://sshnet.codeplex.com/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/



	Introduction
	Prerequisites
	The Uppaal tool
	Parameter Sweep Application
	Clusters

	Design of Uppaal Parmos
	Design principles
	Parameter Sweep Application
	Task specification
	Storage
	Web service
	Graphical User Interface

	Algorithms
	Notation and definitions
	Algorithm classes
	Hill-Climbing
	Simulated Annealing
	Pareto Archived Evolution Strategy
	Parallelization

	Implementation of Uppaal Parmos
	Parameter Sweep Application
	Storage
	Front-end
	Algorithms
	Resource proxies
	Software platform

	Test
	Test environment
	Settings
	Overhead
	Scalability
	Algorithms
	Performance

	Conclusion
	Results
	Future work

	Appendix
	Acronyms
	Bibliography

