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Resume

Social tagging facilitates users to annotate and categorize items (Web links, pic-
tures, movies, etc.). Assigned tags express the user preferences. Social tagging
systems (STS) have become popular hence various tag based recommenders have
been developed. The state-of-the-art STS model three types of entities (i.e. tag-
user-item) and relationships between them are encoded into a 3-order tensor.
Latent relationships and patterns can be discovered by applying tensor factor-
ization techniques like Higher Order Singular Value Decomposition (HOSVD),
Canonical Decomposition (CD), etc. STS accumulate large amount of data that
significantly slows down the process of a tensor factorization.
Firstly, we propose to reduce tag space by exploiting clustering techniques so
that execution time is improved and memory requirements are decreased while
preserving the quality of the recommendations. The clustering is motivated by
the fact that many tags in a tag space are semantically similar thus the tags
can be grouped. Two approaches of computing tags similarities are investigated.
The former one utilizes tag pair cooccurrence similarity measures. The latter
expresses tags as feature vectors and uses standard distance measures. The best
prediction quality is achieved with the Spectral K-means clustering that employs
cooccurrence tag pair similarity. The best trade-of between prediction accuracy
and execution time is when the number of clusters equals to 50% of the original
tag space size.
Secondly, we propose to incorporate the personal prior knowledge to increase the
precision of tensor based recommenders. In addition, we take an advantage of
Non-negative Tensor Factorization (NTF) to get rid of negative values from the
factorized tensor that are difficult to interpret. Possibility to run NTF in parallel
is explored and the minor improvement of the execution time is achieved.
Finally, we combine all the approaches to improve the quality and time of com-
putations and present the promising experimental results.
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Abstract

Social tagging facilitates users to annotate and cat-
egorize items (Web links, pictures, movies, etc.).
Assigned tags express the user preferences. Social
tagging systems (STS) have become popular hence
various tag based recommenders have been developed.
The state-of-the-art STS model three types of entities
(i.e. tag-user-item) and relationships between them
are encoded into a 3-order tensor. Latent relation-
ships and patterns can be discovered by applying
tensor factorization techniques like Higher Order
Singular Value Decomposition (HOSVD), Canonical
Decomposition (CD), etc. STS accumulate large
amount of data that significantly slows down the
process of a tensor factorization. Firstly, we pro-
pose to reduce tag space by exploiting clustering
techniques so that execution time is improved and
memory requirements are decreased while preserving
the quality of the recommendations. The clustering is
motivated by the fact that many tags in a tag space
are semantically similar thus the tags can be grouped.
Secondly, we propose to incorporate the personal prior
knowledge to increase the precision of tensor based
recommenders. In addition, we take an advantage
of Non-negative Tensor Factorization (NTF) to get
rid of negative values from the factorized tensor that
are difficult to interpret. Finally, we combine all the
approaches to improve the quality and time of compu-
tations and present the promising experimental results.

Keywords: personal tensor factorization, tags, higher
order singular value decomposition, non-negative ten-
sor factorization, clustering, prior knowledge, parallel

1 Introduction

Collaborative tagging has become an important and
popular way of categorizing and retrieving various con-
tent within different Web 2.0 sites. Due to the sim-
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plicity and massive users engagement, tagging [41] has
been incorporated into the leading social web systems
such as Facebook, Flickr, Delicious. A user has possi-
bility to classify and characterize a particular content
item by annotating it with an arbitrary term – tag.
This allows a convenient retrieval and searching for the
content according to a defined tag.
A tagging activity expresses additional knowledge

about user interests about the item [32]. These implicit
ratings (or voting) can be used to extend the capa-
bilities of the state-of-the-art recommendation systems
based on explicit ratings [15]. A collaborative tagging
enables a construction of tag-based users profiles which
can be utilized for personalised content recommenda-
tions. There are different families of systems that can
compute the recommendation purely based on tag pro-
files of users. The promising tag-based recommenders
are based on tensor factorization [36, 44] which are a
concern of our study.
Tensor based recommenders build 3-dimensional ma-

trix (tensor) by reflecting relationships between all
users, items and tags from STS. Afterwards, a factor-
ization technique is performed on the constructed ten-
sor. The tensor approximation usually reveals latent
relations between the involved objects. The main ad-
vantages of these recommenders are as follows:

• Outperforms other tag-aware state-of-the-art rec-
ommendation algorithms like: Fusion [46], Item-
based collaborative filtering [51] and for tag rec-
ommendations FolkRank [23] as was shown in [44]
and [36].

• Generates recommendations of items, tags or users
from the same approximated tensor [44] – it is
enough to perform a factorization only once for
item, tag or user recommendations. Most often
items are recommended to a user. Tag recom-
mendations can be utilized to suggest possible tags
when tagging is performed.

• Takes into account all three dimensions i.e., items,
users and tags altogether, in comparison with algo-
rithms [46] that split 3-dimensional data into three
2-dimensional relations {user, item}, {user, tag},
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{tag, item} – such transformation causes a par-
tial loss of interactions between objects that were
captured by the 3-dimensional datastructure e.g.,
a particular tag has different meanings for differ-
ent users, users have different preferences for items
and items have different facets.

However, there are many practical difficulties that re-
strict usage of tensor based recommenders in real world
application. Below is a list the most significant prob-
lems that are addressed in this paper:

• A factorization is computationally demanding pro-
cess and most of the tensor based recommenders
[36, 44] calculate tensor approximation in the of-
fline mode. When new users, items or taggings
are inserted into a system there is a need to re-
compute tensor approximation so the appropriate
recommendations are generated. However, there
are proposed extensions like folding-in [39] and in-
cremental Singular Value Decomposition (SVD) [7]
which enable less frequent recomputations of a ten-
sor factorization. The former one is suitable only
when the size of update is small enough otherwise
the space will not be orthogonal which negatively
affects recommendation results. The latter one is
computationally faster than standard batch SVD.
The main limitations of these extensions are that
they can be applied only to HOSVD. Other factor-
ization techniques like Non-negative Tensor Fac-
torization (NTF), Ranking with Tensor Factoriza-
tion (RTF) [36] and Canonical decomposition need
to fully recompute tensor approximation when new
objects enter the STS.

• Excessive memory demands when large datasets
are used.

• Final factorized tensor may contain negative values
that are confusing and hardly interpretable when
generating recommendations. This decreases the
accuracy of predictions.

1.1 Contributions

Above mentioned problems are addressed in this paper
with exploitation of the non-negative tensor factoriza-
tion and clustering techniques that reduce tag space
and improve time performance of the approximation
process. The main novel aspects of proposed techniques
are described below.

1.1.1 Non-negative tensor factorization

NTF algorithm [16], [9] is adjusted and utilized in this
work. The main benefits of this approach are:

• NTF generates a factorized tensor with positive
values only – an interpretation of such values is
clear and straightforward. The majority of other
factorization methods produce an approximated
tensor that can contain negative values. The nega-
tive values are omitted because they signal the rec-
ommendation is not relevant for the user. But it
is not always true, there exist cases when negative
values make sense and should be used while con-
structing the list of the recommendations [30, 48].
Unfortunately, there is no rule how to handle nega-
tive values. The NTF eliminates this problem and
therefore it is simple to interpret the approximated
tensor.

• A prior knowledge about the user interests and
preferences can be incorporated to achieve a higher
prediction accuracy. The factor matrices can be
constructed using random numbers or using a
specific algorithm to encode the prior knowledge
about the user. This helps to exploit the fact that
users future interests should remain related to the
prior interests.

• We explore whether the time needed to compute
the approximated tensor can be reduced by im-
plementing a simple approach – to calculate the
factor matrices in parallel. This helps to improve
the overall time performance of factorization pro-
cess and the precision stays the same. The current
trend in computers hardware implies that the fu-
ture computers will not have more powerful proces-
sor (CPU) but will have a higher number of CPUs
installed on a single machine. The NTF algorithm
with the possibility to be executed in parallel helps
to utilize all computational power of the modern
computer hardware.

1.1.2 Reducing tag space with clustering

The factorization is computationally demanding and
when new users, items or tags enter the system, there
is a need to recompute tensor approximation such that
new objects will be incorporated into the tensor. This
procedure is time demanding and it prevents often re-
computations of approximated tensor and as a conse-
quence not relevant recommendations are generated.
Our approach addresses this issue by clustering a tag
space. Majority of the STS contain a lot of semantically
related tags (rarely used tags are commonly just exten-
sions of more frequent ones) and they can be grouped.
Hence, this reduces the size of the tag space. Clustering
of a tag space results into the following improvements:

• The size of the tensor is smaller so that time per-
formance of a tensor approximation is better.

• Memory requirements are significantly decreased.
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• The similar accuracy of recommendations is pre-
served.

• The factorization can be recomputed more often
and recommendations will embrace the new en-
tered objects. Moreover, the approach can be also
combined with the folding-in and incremental SVD
methods for HOSVD factorization.

To the best of our knowledge, we are first that introduce
clustering of tag space to reduce a dimension of the
tensor to improve execution time of the factorization.

In this paper, we consider only recommending items
to a particular user according to tags that he has in
common with other similar users. The proposed NTF
factorization can generate either tag or user recommen-
dations from the same approximated tensor. Clustering
a tag space does not restrict user or item recommen-
dations. However, a certain post-filtering method has
to be applied for tags prediction as there is a need to
appropriately extract tags from clusters.

1.2 Outline

The structure of the paper is organized as follows. In
Section 2 are introduced different tensor factorization
and clustering techniques. The principles of HOSVD
and NTF factorization are described in the section 3.
In Section 4 is explained the extended NTF factoriza-
tion that incorporates a prior knowledge and can be
executed in parallel. Also, the approach of reducing
tag space by clustering to improve time performance of
tensor factorization. In Section 5 are presented results
of experiments and in the last section is summarized
the whole work.

2 Related work

2.1 Recommendation systems based on
tensor factorization

Symenonidis et al. [43] introduce recommendation
algorithm based on Higher Order Singular Value
Decomposition (HOSVD) where the relationships
between users, items and tags are represented in
three dimensional matrix called tensor. Each tagging
activity for a given item from a particular user is
represented by value 1 in the initial tensor, all other
cases are represented with 0. The core idea is the
factorization of an initial tensor utilizing the HOSVD
to obtain an approximated tensor which reveals the
latent relationships and patterns of the users. The
tensor is split into three mode matrices by applying dif-
ferent perspectives to the initial tensor. The Singular
Value Decomposition (SVD) [29] is the factorization

method used for all the three mode matrices. The
approximated tensor is computed by multiplying
the results from SVD of the mode matrices. The
recommendations are obtained from the approximated
tensor by inspecting the entries that belong to a given
user, item and tag. We utilize this recommendation
system and use it as the baseline for the comparison
of precision and time performance with our proposed
techniques.

[27] proposes another tensor based system – called
multiverse recommendation, which employs HOSVD
technique and supports relations between users, item
and more contextual objects. Context can be expressed
as a number of variables (like time, location, tag) hence
the method is also called as N-dimensional tensor fac-
torization. For the simplicity authors present only a
model with a single contextual variable – it is only 3-
dimensional tensor factorization. Authors define objec-
tive function which consists of loss function and regu-
larization part, the final tensor is approximated by the
optimization of the objective function. The factorized
tensor can contain negative values that can be hardly
interpretable. As authors propose to incorporate more
contextual variables – it also enlarges tensor dimensions
therefore, we consider our clustering solution suitable
to group space of a particular textual context variable.
Rendel et al. [36] present tag recommender – Ranking
with Tensor Factorization (RTF). The system exploits a
custom post-based ranking interpretation scheme and
utilizes a similar factorization technique as HOSVD.
The main differences between our two considered fac-
torization techniques (the baseline HOSVD based algo-
rithm and proposed NTF factorization) and the RTF
are:

• The interpretation scheme (function which is used
when the initial tensor is created) is different. Au-
thors point out the three possible situations – a
positive case (a user tagged a particular item); neg-
ative case (a user has explored a particular item
but has not tagged it with a given tag); not ob-
served case (a user has not explored a given item
yet). This interpretation is semantically more ac-
curate and provides better recommendation re-
sults. However, the interpretation constraints
must be trained.

• As the interpretation constraints have to be
trained, the outcome from this learning process are
the model parameters – matrices that are used for
the computation of the approximated tensor.

In our work, we use a naive interpretation scheme pro-
posed by [43] instead of incorporating the post based
ranking. We avoid the latter one approach because
it generates only tag recommendations. Integrating
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clustering with the RTF would require additional
adjustments of the post-based ranking interpretation
scheme.

Canonical Decomposition (CD) also known as Par-
allel Factor Analysis (PARAFAC) is widely used in the
different research areas – chemometrics, psychometrics
and signal processing [10]. The main advantage in
comparison to the Tucker Decomposition [47] is linear
computation time for a construction of factorized ten-
sor as the core tensor is diagonal. A factorized tensor
is approximated according to the three component
matrices also called as loading factors. These matrices
have to be trained, the most common algorithm for the
learning is Alternating Least Squares (ALS) [45]. The
components are estimated iteratively until the solution
converges. However, training can be computationally
demanding.
The NTF algorithm, we implemented, is based on
PARAFAC, therefore the construction time of the
tensor is linear and it can be controlled by adjusting
the size of factors. However, the usage of too small
factors can result in lower precision. The impact
of this issue can be minimized by incorporating the
prior knowledge instead of randomly generating factor
matrices – therefore, the size of the factor matrices can
be reduced with the improved time performance and
with preserved quality of the recommendations.

The problem of the mentioned methods is negative
values in the final approximated tensor. In the follow-
ing paragraph, we describe NTF based techniques that
produce only positive weights in the factorized tensor
and approximate the initial tensor within the accept-
able error rate [10].

The approach presented by [16] is based on
PARAFAC decomposition using a diagonal core
tensor. The factor matrices are initialized using
random numbers r where r ∈ (0, 1). The NTF
algorithm [16] uses Bound-Constrained Linear least-
Squares solver (BCLS) [6] that is an extension of
ALS. The main purpose of this solver is to restrict the
range of values (which approximate initial tensor) in
factor matrix and to minimize the rest of the values
(which are not significant for the approximation)
– in such way the factor matrices are trained (the
important values are purified while the rest of them
are minimized). Also, it is known [16], [52] that each
column of the factor matrices can be trained in parallel.

FacetCube [9] is the recommendation system based
on NTF and it extends NTF with incorporating
prior knowledge of the users. The domain ontology
is constructed for a particular user to reduce the
search space of the recommendations. Such approach

offers 3 distinct modes of the tensor approximation:
with unrestricted search space (no prior knowledge is
incorporated); from a sub-space which is determined
by the prior knowledge of the users and a fixed space
that is provided by the users. Our approach does not
restrict the search space but promotes the facts of a
user behaviour from the past. Therefore the obtained
recommendations capture not only the preferences of
a user but also the predictions based on the revealed
latent relations.

Authors of [31] incorporate a lexical prior knowledge
into a non-negative matrix tri-factorization to perform
sentiment analysis – automatic identification whether
a given web item is considered as positive or negative
one. The technique uses a context-independent senti-
ment lexicon (positive or negative textual expressions
i.e., bad, great, etc.) to construct the prior knowledge
about a certain users query (e.g. when searching
for some product, movie etc.). The lexical prior
knowledge is incorporated into two matrices – matrix
of prior knowledge for words and for documents. The
approach can be utilized for various sentiment analysis
tasks. Our technique is different as we analyze the
three-dimensional data structures and use personal
prior knowledge of a user based on his past behaviour.

The research study [52] proposes to use the par-
allelism while adjusting the values of each column
for factor matrices. It is possible due to the ALS
algorithm – the original NTF problem is divided into
the three sub-problems. The goal of each sub-problem
is to compute the factor matrix. At the given time only
one factor matrix is being computed while the other
two factor matrices stay unchanged (in other words
– only one sub-problem is being solved at the given
time). We take an inspiration from this proposal and
provide the solution to compute each of the factors in
parallel (as the result, we start 3 processes in parallel
for each NTF iteration). The main difference is that
authors of [52] adjust each single column of factor
matrix in parallel. However, the factor matrices are
still computed in a linear mode.

We choose to implement the algorithm proposed
by [16], to incorporate the prior knowledge and provide
the possibility to run the algorithm in parallel.

2.2 Clustering techniques

Cluster analysis groups data items into certain amount
of clusters, such that items within the same group are
more similar than items in different groups. Cluster-
ing is commonly used for data dimensional reductions
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hence processing such clustered data spaces is compu-
tationally less expensive as not clustered data [1]. Clus-
tering techniques are commonly utilized within recom-
mendation and personalization algorithms. [2], [38] pro-
pose to group customers with the similar preferences,
once clusters are generated predictions for a particular
user can be made by averaging the opinions of other
customers in that cluster. Techniques based on cluster-
ing usually produce less-personal recommendations but
performance is significantly better. Similarly, our ap-
proach is based on pre-clustering that provides reason-
able trade-off between accuracy and time performance.
However, instead of aggregating users or content items
into groups, we concentrate on clustering tags. Many
papers explore possibilities to cluster tags for different
purposes. [42] proposes to cluster tags and consequently
the technique builds ontologies from generated tag clus-
ters. The ontologies can enhance various tasks in social
tagging systems – query extension when tag search is
performed, better visualization of related tags to the
searched tag and also improved tag suggestion when
tagging is performed. Before clustering, tags are pre-
processed such that infrequent, isolated and unusual
tags are filtered out as the motivation is to cluster only
tags with a more general applicability as they will be
part of generated ontologies. Such pre-processing is in-
feasible in our approach as we mainly want to cluster in-
frequent and unusual tags. Their approach is similarly
based on the computing co-occurrences between tag
pairs. The another difference is that tag pairs within
a cluster are evaluated firstly by querying a semantic
search engine, i.e, Swoogle whether both tags belong
to the same ontology. In case the answer to the query
is not resolved, Wikipedia and Google services are in-
voked to verify whether a given tag was not misspelled.
The approach provides better and semantically more
related clusters, however it is computationally more
expensive and mainly it filters out rare and unusual
tags. Therefore, it is not suitable for our application.
Begelman et al. [5] group tags into clusters to improve
search, exploration and subscription of content. They
argue that users tagging behaviour is divergent thus
tagspace contains many semantically similar tags which
should be clustered to provide better retrieval services.
The claim also promotes our approach – appropriate
clustering of tags can be useful and does not have to
decrease the quality of recommendations significantly.
The technique builds similarity matrix where an affin-
ity between two tags is based on their co-occurence
(amount of items that were annotated with given tag
pair). Afterwards, the spectral clustering is performed.
Our method similarly computes affinities between tag
pairs, however we exploit different similarity measures
(Dice coefficient, Jaccard and Cosine similarities) that
incorporate co-occurence of tag pairs. Wu et al. [50] ex-

press a tag, user or item in d-dimensional vector space
where each dimension represents some knowledge and
describes connection between a given object and par-
ticular knowledge or category. It is probabilistic gener-
ative model and probabilities that a particular object is
conditioned by a given category are estimated accord-
ing to the expectation-maximization algorithm (EM).
A user, item or tag can be expressed as d-dimensional
vector, for each category then can be retrieved top-k
mostly semantically related tags, items or users. The
method is infeasible due to time complexity of EM al-
gorithm and even when vector representation of tags
is obtained – another cluster analysis would have to
be performed. In the work [18] tags are expressed as
feature vectors and in a such way a tag space is clus-
tered. Each tag is encoded as a vector over the set
of items and a tag frequency for the particular item is
used as a weight on the corresponding position in the
vector. Clustering techniques Mean Shift and K-means
also utilize the same approach of expressing each tag as
a vector over set of resources.

3 Preliminaries

In this section, we describe the fundamental principles
of the HOSVD and NTF as our proposed techniques
are based on these two factorization methods.

3.1 HOSVD

A higher-order singular value decomposition (HOSVD)
is an extended version of the SVD applied to the multi-
dimensional matrices. SVD [13] computes matrix ap-
proximation for any matrix FD1×D2 in the following
way:

FD1×D2 = UD1×D1 .SD1×D2 .V
T
D2×D2

(1)

where UD1×D1 contains left singular vectors (eigenvec-
tors of FFT ), VD2×D2 contains right singular vectors
(eigenvectors of FTF ) and SD1×D2 is diagonal ma-
trix with singular values – square roots of the non-zero
eigenvalues of FFT sorted in descended order. SVD is
used in different statistical and analysis tasks. In the
area of information retrieval a well known technique
called Latent semantic indexing (LSI) also utilizes SVD
– it reveals latent relations between words and docu-
ments from a corpus. LSI addresses synonymy and pol-
ysemy of words - which is also crucial for the HOSVD.
It is common to process only first c top singular values
and corresponding singular vectors (c ≤ min(D1, D2))
to achieve better approximation of the matrix F – such
approach removes noise and preserves only the most
important semantic information from the original ma-
trix.
Tensor of n-th order – is multidimensional array

with N indices, denoted as A ∈ RI1×I2×...,×IN . In this
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work we consider only 3-rd order tensors.
Tensor fiber – one dimensional fragment of a tensor
(column vector), such that all indices are fixed except
for one. For matrix (2nd tensor) a matrix column is a
mode-1 fiber and matrix row is mode-2 fiber. For 3rd
order tensor there are column, row and tube fibers [10].

A tensor can be converted into so called mode matri-
ces by arranging particular fibers of a tensor as columns
of mode matrices. Tensor of 3rd order can be unfolded
into three different mode matrices with the following
dimensions:

A1 ∈ RI1×I2I3 – column fibers of A as columns of A1

A2 ∈ RI2×I1I3 – row fibers of A as columns of A2

A3 ∈ RI3×I1I2 – tube fibers of A as columns of A3

Mode-n multiplication of tensor by matrix –
a mode-n multiplication Y = A ×n F of a tensor A ∈
RI1×I2×...×IN by a matrix F ∈ RDn×In is a tensor Y ∈
RI1×I2×...×In−1×Dn×In+1×...×IN with elements:

yi1,i2,...,in−1,dn,in+1,...,iN =
Dn�

dn=1

= ai1,i2,...,iN fin,dn (2)

HOSVD of 3rd order tensor is defined as:

A� = S ×1 U
1
c1 ×2 U

2
c2 ×3 U

3
c3 (3)

where U1
c1, U

2
c2 and U3

c3 are matrices with the top ci left
singular vectors from the SVD of 1, 2, 3 mode matrices
respectively. Core tensor S is obtained according to:

S = A×1 (U
(1)
c1 )T ×2 (U

(2)
c2 )T ×3 (U

(3)
c3 )T (4)

The factorized tensor A� is the approximation of the
initial tensor A.

3.1.1 HOSVD in Social Tagging Systems

Symenonidis et al. (2008) [43] utilize HOSVD to an-
alyze and detect relationships and patterns between
tags, users and information items. HOSVD based ap-
proach explores the complex 3-dimensional relations
and detects latent associations which provide better
quality of recommendations. The usage data of a rec-
ommendation system are represented by 3rd order ten-
sor – A where for a particular user with a selected in-
formation item and an assigned tag is stated a weight
1 and for all other cases where is not created relation a
weight is 0 :

au,i,t ∈ A, au,i,t =

�
1, exists an association for (u, i, t)

0, no association between (u, i, t)

(5)
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Figure 2: Application of the SVD to the 1st mode ma-
trix - U1 matrix
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Figure 3: Application of the SVD to the 1st mode ma-
trix - S1 matrix

We are including an illustrative example to better
describe the HOSVD factorization. Let us assume a
social tagging system with 3 different users, 3 different
information items – articles and 3 tags. The associ-
ations between these objects are showed in the Table
1. The initial tensor A is constructed according to the

Users Information items Tags Weights

U1 I1 T1 1
U2 I1 T1 1
U2 I2 T2 1
U3 I3 T3 1

Table 1: The associations between the objects

usage data (Table 1) and it is depicted in the Figure
1. The tensor is unfolded into the three mode ma-
trices, denoted as the 1-mode, 2-mode and 3-mode re-
spectively. The unfolded mode matrices from the initial
tensor A are subject of the SVD. It results into creation
of Un, Sn, V n matrices (see Figures 2 and 3) with the
U1 and S1 matrices respectively, V 1 T is not depicted
due to the huge size and is not required in the further
computations), the most important are U1, U2, U3 as
they contain the left singular vectors of the 1-mode,
2-mode and 3-mode matrices.
The algorithm stores top ci singular values of i− th

mode matrices with corresponding left singular vectors
in order to construct the core tensor and the approxi-
mated tensor A� – depicted in the following Figure 4.
From the new tensor A�, the recommendation system

is able to suggest tags or information items with the
highest weights to a given user. Readers can observe
that a new association was discovered between User 1
and Tag 2 and Information Item 2.

3.2 NTF

NTF is another technique that extracts characteristics
jointly from the different data dimensions [9]. It means
that the latent relations can be revealed from the given
data set knowing some facts from the past.
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Figure 1: Tensor construction according to the users preferences table and i-th mode matrices

Figure 4: The core tensor S and the reconstructed tensor A�

To apply tensor factorization we need to construct
the initial data tensor (n-dimensional matrix, where
n = 3). There can be used any kind of triplets to
construct the initial tensor (for example: {user, item,
tag}). The third-order initial tensor A ∈ RI×J×K

+ rep-
resents the data where I, J and K are the dimensions
of users, items and tags, respectively.
The goal of NTF is to approximate the initial tensor
such that it reflects patterns of the original data. The
quality of the approximation can be measured by the
error rate between the initial and factorized tensor. The
most common error measure is Kullback-Leibler diver-
gence (KL) [12], [40]. KL is a measure how close a
probability distribution p = {pi} is to a model (or can-
didate) q = {qi}:

DKL(p�q) =
�

i

pi log2
pi

qi
(6)

In this study NTF is considered as the following prob-
lem [16]:

NTF: minimize
C,X,Y,Z

1

2
�C ×1 X ×2 Y ×3 Z −A�2F

subject to C, X, Y, Z ≥ 0
(7)

where C is a diagonal core tensor, A is the initial
tensor, X, Y and Z are the factor matrices, initialized
with positive random values (each factor has the same
amount of rows as corresponding dimension of the
initial tensor).
The factor matrices are trained using BCLS (which is
an extension of ALS (Formula 8)) algorithm.

minimize
x f(x) subject to x ∈ X (8)

BCLS algorithm (Formula 9) ensures that the values of
factor matrices stays within the lower and upper bound-
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aries.

minimize
x∈Rn

1

2
�Mx− b�22+c

T
x+

1

2
γ
2�x�22

subject to l ≤ x ≤ u

(9)

where M is m × n factor matrix, b, c are m- and n-
vectors, respectively. The n-vectors l and u are lower
and upper bounds on variables x, respectively. γ is a
non-negative regularization parameter that can be used
to control the optimality of the final solution. As the
matrices are being trained, the error rate is decreas-
ing. The training is executed until the error rate con-
verges. The convergence condition is computed using
Frobenius norm. If the condition is not met after the
number of iterations k, then the factorized tensor will
not approximate the initial tensor within the accept-
able error rate. The factorized tensor T is computed
using mode-n multiplication of core tensor C by factor
matrices:

T = C ×1 X ×2 Y ×3 Z (10)

The outcomes of NTF technique are as follows [16]:

• the first outcome is three factor matrices that rep-
resents the most significant data characteristics for
a corresponding tensor dimension, i.e. matrices
X, Y and Z represent the users, items and tags,
respectively. The number of the factor matrices
is the same as the order of a tensor. Each row
of each factor matrix represents exactly one user,
item or tag of a corresponding dimension of the
initial tensor. For example, the factor matrix for
tagged items by users are: X ∈ RI×L

+ , Y ∈ RJ×M
+

and Z ∈ RK×N
+ where each row ofX, Y and Z rep-

resents the most important (active) users, mostly
tagged items by the most popular tags.

• the second outcome is a core tensor C which is
in the same order as the initial tensor, just usu-
ally much smaller when measuring the sizes. This
core tensor represents all the correlations among
the factors in all data dimensions: C ∈ RL×M×N

+

where L, M and N are the number of factor size
for users, items and tags, respectively.

• the main outcome is a factorized tensor T – the
product of the core tensor C and the trained factor
matrices X, Y , Z (Formula 10).

4 Proposals

We propose the improvements for the existing tensor
based recommendation systems to increase the quality
of the recommendations and speed up the time perfor-
mance of recommendations. We focus on non-negative
tensor factorization to get rid of negative values and

incorporate prior knowledge to improve the quality
of predictions. Clustering of tag space is another
extension which improves the time performance of
the factorization process and reduces the memory
demands.

4.1 Proposals to extend standard NTF
algorithm

4.1.1 Motivation

The popular techniques of data analysis like Principal
component analysis (PCA) and SVD produce approx-
imations that contain negative values. Authors of [48]
and [30] argue that for the data relations with posi-
tive values only (e.g. pixel encoding) it is not possible
to interpret the negative approximated values. During
our experimental work we observed that the factorized
tensor is sparse as it contains only ∼ 1% entries that
are not equal to 0. From these non-zero entries almost
∼ 50% are negative values. In the recommendations
context the negative values can imply that a recommen-
dation is not relevant for the user at all. However, there
are cases when negative values are relevant. So, nega-
tive values have the undesirable impact on the quality
of recommendations. Also, these values can be called
ballast – it gives no advantage for the factorization pro-
cess. Such phenomena (when the positive values only
are used as input for the tensor, but as result the neg-
ative values are produced) can not be resolved unless
non-negative tensor factorization is employed.
The studies [9], [31] imply that prior knowledge can
be successfully exploited during the factorization pro-
cess to improve the quality of the recommendations.
We focus on incorporating the personal prior knowl-
edge of a user. It is a very common situation when a
user does not have a rich training dataset and as the
result the quality of the recommendations drops sig-
nificantly. There can be used pre-filtering technique
(to filter out not related objects for the user [34]) but
it would restrict the search space for the recommen-
dations. Incorporating prior knowledge into the NTF
does not constrain the search space while the benefits
of tensor based recommenders are still preserved.
A tensor constructed using a current interpretation
scheme from the STS data is usually sparse (∼ 99% of
tensor entries are zeros) [36]. Tensor factorization tech-
niques based on HOSVD and ALS approximate dense
data accurately as they minimize the element-wise loss
between the entries of the initial and factorized ten-
sor. Therefore, the techniques do not perform well on
sparse STS data. The incorporation of a prior knowl-
edge pre-processes the factor matrices hence it improves
the approximation of a sparse tensor. The final tensor
is approximated faster with a lower error rate.
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We propose the extensions for the NTF algorithm as
follows:

• incorporate the prior knowledge in factor matrices;

• possibility to run the algorithm in parallel.

4.1.2 Prior knowledge

We take the inspiration from FacetCube framework [9]
for the prior knowledge incorporation. The main dif-
ference between this approach and FacetCube is that
the important aspects of the initial tensor are promoted
instead of reducing the search space for the recommen-
dations. The model of prior knowledge is universal as it
reflects the personal facts of each user behaviour in the
past. Such approach enables to benefit from a prior
knowledge and at the same time not to restrict the
search space. The proposed approach does not sup-
press the discovery of latent relations that is the main
advantage of tensor based recommenders. It is possi-
ble to incorporate the personal prior knowledge of a
concrete user only. The generalized or averaged prior
knowledge of all users would produce noisy approxi-
mated tensor.

Prior knowledge model The prior knowledge is a
set of tagging activities, i.e., tags assigned by a user
to items in the past. The prior knowledge is promoted
and incorporated into the factor matrices however, the
initial data tensor is not modified. We are interested in
two factor matrices that reflect items and tags. Each
row of a factor matrix is expressing the importance of
a concrete item or tag. The significance of the object
can be controlled by adjusting the values of exact row.
The higher sum of a row reflects the more distinctive
promotion of prior knowledge. This enables to differen-
tiate the prior knowledge – it is natural that some parts
of the knowledge are more important than the others
i.e., items are preferred over tags because we consider
only items recommendations.
The procedure to incorporate the prior knowledge:

1. promote the items the user has tagged in the past
using a parameter rk where k is the index of user
item;

2. promote the tags user has used in the past using a
parameter ti where i is the index of a tag from the
set of all distinct tags used by the user;

3. promote the items that were tagged by the other
users using the same tags as our user. This type
of promotion is half personal because we promote
the items user has not tagged, but the promotion
is based on the tags the user and other users have
used. The promotion is expressed using the pa-
rameter otherItems.

Aforementioned parameters must be adjusted accord-
ing to the concrete dataset to reflect its structure. Gen-
erally it should hold: rk > ti > 1 > otherItems (be-
cause our recommender is item-based and usually each
item is associated with multiple tags) where rk for ac-
tive users is smaller than rk for not active users, i.e.,
rActive users
k < rNot active users

k .
For the experimental studies the parameter rk =
|all items|
|user items| is used. The parameter ti is expressed as
the term frequency-inverse document frequency and it
is defined as follows:

ti =
frequser(tagi)

|all tagsuser|
× log

� |all tagscorpus|
freqcorpus(tagi)

�
(11)

where frequser(tagi) represents how frequently the user
utilized a tagi and freqcorpus(tagi) is the frequency of
a tagi in the system. This weight promotes more pop-
ular tags of a user that are not frequently used by the
other users in the system. This type of promotion bet-
ter expresses user interests.
It is very important to choose the correct parameters
to not over-promote prior knowledge as it can suppress
the latent relations. In case of over-promotion there
is no need to use a recommender based on a tensor
factorization because we could simply generate the rec-
ommendations based on the tags usage of the users. To
verify the optimality of the values for chosen parame-
ters we investigate whether not promoted items (the
revealed latent relations) appeared in the top-N list
of recommendations. Our naive approach for setting
values for the parameters should be further more inves-
tigated in the future work whether the latent relations
are not suppressed.

Example of incorporating prior knowledge The
Figure 5 represents a single slice of the initial tensor.

Figure 5: The slice nr. 1 of the initial tensor

The slice itself represents a distinct tag. Empty rela-
tions are omitted by convenience. User1 has tagged the
Item1 and User2 has tagged the items 1 and 3 using
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the same Tag1.
The rows of the items factor (Figure 6) represent the
set of items encoded in the initial tensor.

Figure 6: The items factor and the prior knowledge

The personal prior knowledge of User2 is promoted by
changing the values of the exact factors rows – we pro-
mote this personal prior knowledge by assigning the
values r1 and r3 for each of the cell of the correspond-
ing factor rows (in this case – rows 1 and 3). It is
possible to compute the distinct values for rk to differ-
entiate the prior knowledge. However, we use the same
value for all rk as the quality of recommendations is
acceptable.
In the same way we express the prior knowledge for
the Tag1 using a variable t1 (computed according to
the Formula 11) in the tags factor matrix for the User2

(Figure 7).

Figure 7: The tags factor and the prior knowledge

It is also known User1 tagged the Item1 with the same
tag as User2, therefore the value of r1 is increased:
r1 ← r1+otherItems∗freq where freq is a number of
the common tag usage by the other users for the same
item as originally tagged by our user.

4.1.3 Algorithm of NTF

In the following paragraph, we describe the utilized
NTF algorithm (Algorithm 1). The input for the al-
gorithm is initial tensor A and the option whether the

factor matrices should be trained in parallel. The out-
put is a factorized tensor T which is computed accord-
ing to the Formula 10.

Algorithm 1 The algorithm for NTF with possibility
to run in parallel

Data: A ∈ RI×J×K , useParallelism ∈ {false, true}
Result: T ∈ RI×J×K

1 Initialize factors with prior knowledge:
X ∈ RI×N , Y ∈ RJ×N , Z ∈ RK×N ≥ 0
Initialize core tensor: C ∈ RK×K×K = I
Reset iterations counter: k ← 0 repeat

2 if useParallelism then
3 Start parallel processes pi, i = 1, 2, 3

X ← p1(solve(NTFX))
Y ← p2(solve(NTFY ))
Z ← p3(solve(NTFZ))

4 end
5 else
6 X ← solve(NTFX)

Y ← solve(NTFY )
Z ← solve(NTFZ)

7 end
8 [compute column scales]

D1
k+1 for X

D2
k+1 for Y

D3
k+1 for Z

9 [compute scaled factor matrices]
Xk+1 ← XD1

k+1
Yk+1 ← Y D2

k+1
Zk+1 ← ZD3

k+1

for n = 1, 2, 3 do
10 [update diagonal core tensor C]

Ck+1 ← Ck ×n (Dn
k+1)

−1

11 end
12 k ← k + 1
13 until converged ;
14 T ← Ck ×1 Xk ×2 Yk ×3 Zk

Firstly, the factor matrices and a core tensor are ini-
tialized, the prior knowledge is encoded into the tags
(X) and items (Z) factor matrices. The factorization
process is being repeated until the optimal solution is
found or the number of iterations is exceeded. To train
each of the factor matrix the BCLS algorithm is exe-
cuted. After the training phase the values of factor ma-
trices are scaled – small and insignificant values tend
to move to lower bound and the important values are
preserved. The core tensor is updated using mode-n
multiplication and the trained factor matrices. Finally,
if the optimality condition is satisfied (or the number
of iterations is exceeded), the approximated tensor is
computed.
The linear execution of NTF algorithm (Algorithm 1)
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takes time TNTF
linear (to execute code in lines 5− 7 takes

∼ 95% of all execution time) (Formula 12):

T
NTF
linear = (t1 + t2 + t3) ∗ iterlinear (12)

where t1, t2, t3 is time needed to compute factor ma-
trices 1, 2, 3, respectively and iterlinear is a number of
iterations needed to achieve the optimal solution when
NTF is executed linearly.
We expect the NTF algorithm to terminate in time
TNTF
parallel (Formula 13) when the parallel approach is

applied.

T
NTF
parallel = (

t1 + t2 + t3

3
+ ostime) ∗ iterparallel (13)

where ostime is a time needed for the operating system
to handle the parallel processes, manage the memory
and iterparallel is number of iterations needed to achieve
the optimal solution when NTF is executed in parallel.
It is very likely there will be needed more iterations for
parallel execution than linear execution (iterparallel ≥
iterlinear) to approximate a tensor because the training
process of the factor matrices is slightly slower.
We implement a provided NTF algorithm (that origi-
nally developed in Matlab and C by the authors of [16])
in Java with the possibility to run it in parallel.

4.1.4 Discussion

The main advantage of NTF algorithm is that the ap-
proximated tensor contains only the positive values.
Hence the interpretation of the results is clear. Our
attempt to incorporate the personal prior knowledge
by promoting the facts from the past of the exact user
helps to produce the recommendations of better qual-
ity. This model overcomes the problems that arise when
pre-filtering is used: the search space for the recommen-
dations is not reduced. The parallel execution of the
algorithm improves the time performance as it utilizes
the modern computer hardware more efficiently.
The major drawback of this model is a need to compute
NTF factorization for each user because the factor ma-
trices are built using the personal prior knowledge of
the concrete user in a system. Every time a new object
(e.g. item, tag or user) is introduced into the system a
factorization has to be recomputed for each user to pro-
vide up to date recommendations. In comparison with
the HOSVD approximation, there are no techniques for
updating factorized tensor like folding-in or incremen-
tal SVD. These limitations constrain the usage of the
NTF with prior knowledge in the real world applica-
tions as the demands for the resources, i.e., memory
and CPU power are high.

The usage of the personal prior knowledge can be re-
stricted due to the absence of the user behaviour in the
past. Also, it is a challenge to choose the promotion

variables for the aspects of the personal prior knowl-
edge to not suppress the latent relations. Furthermore,
the execution time of NTF can drop significantly when
more iterations are executed or bigger factor matrices
are used.
The prior knowledge model (step 3) can be extended
by computing the similarities (based on syntax and se-
mantic as presented by [14]) between the tags instead
of using just the same tags. Also, the clustering tech-
niques can be applied to group the similar tags in order
to enrich the prior knowledge.

4.2 Reducing tag space with clustering

We propose to utilize a cluster analysis on the tag space
to group similar tags into clusters. Such reduced tag
space causes smaller initial tensor and in consequence
the better time performance is achieved while the qual-
ity of recommendations is preserved. Before describing
technical details of our method, we provide motivation
for clustering and describe our approach with the illus-
trative example.

4.2.1 Motivation

The majority of tags used within the social tagging sys-
tems are assigned and used rarely. These infrequently
used tags cause unnecessary high memory demands e.g.
28145 tags from the BibSonomy dataset were assigned
just once, and an initial tensor will contain 28145 slices
(each slice of the tensor corresponds to a particular tag)
of the size |U |× |I| however each such slice will contain
only one value. We explore the MovieLens and Bib-
Sonomy datasets 5.2 and evaluate the amount of such
rarely used tags in the Table 2. Our findings are sup-

Dataset Number of
tags at each
frequency

Number of uses
of tag

MovieLens 9248 1
MovieLens 2515 2
MovieLens 1134 3
BibSonomy 28145 1
BibSonomy 8806 2

Table 2: Amount of rarely used tags in the BibSonomy
and MovieLens datasets.

ported also by the [28] where authors have shown that
around 30% of all distinct tags were used only once
within the Delicious system. Their analysis also shows
that synonyms, acronyms and spelling variations occur
frequently among tags. Many tags differ only in the
spelling variations – upper or lower case initial letters
of tags, singulars or plurals, spelling mistakes. There-
fore, majority of the rare tags can be grouped with the
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more frequent because of the mentioned reasons. For
instance, infrequent tags from the BibSonomy dataset
like: 123flickr, flickr+avivamagnolia, flickr.com,
flickr+tamevolcano, flickrInspector, flickrbits, flickr-
feeds, flickrites, toflickr could be grouped into one clus-
ter with more frequent tag flickr. On the other hand,
there are rarely used tags with the unique and specific
meaning that cannot be clustered. It is the task of the
clustering to appropriately distinguish which tags can
(not) be clustered.

Let us present the following motivational exam-
ple with the 3 users (u1, u2, u3 ), 3 web items
(flickr.com, www.wallpapers.org, cnn.com) and 6 dis-
tinct tags (flickr.com, toflickr, flickr, wallpapers, pic-
tures, news). The tagging posts of the users assigned
to the web items are depicted in the Table 3: Obviously,

User Web item Tag Weight
u1 flickr.com flickr.com 1
u1 flickr.com toflickr 1
u1 flickr.com flickr 1
u1 wallpapers.com wallpapers 1
u1 flickr.com pictures 1
u2 flickr.com flickr 1
u3 cnn.com news 1

Table 3: Tagging posts of the example.

the tags flickr.com, flickr, toflickr are semantically re-
lated and our approach groups them into one cluster
flickr cluster = {flickr.com, flickr, toflickr }.
Grouping the similar tags into the cluster provides

new relations as follows:

User Web item Tag Weight
u1 flickr.com flickr cluster 3
u1 wallpapers.com wallpapers 1
u1 wallpapers.com pictures 1
u2 flickr.com flickr cluster 1
u3 cnn.com news 1

Table 4: Tagging relations when tags about flickr are
grouped into one cluster.

After the HOSVD factorization is computed, the
following scores are obtained for the given triplets.
HOSVD factorization reveals a latent relation between
the user u2 and the web item wallpapers.com. There-
fore, the recommendation system recommends item
wallpapers.com to the user u2. The similar result would
be obtained if the tags flickr.com, flickr, toflickr would
not be merged however our approach removes 2 slices
of the tensor and in consequence it improves time per-
formance of the factorization and decreases memory re-
quirements.

User Web item Tag Weight
u1 flickr.com flickr cluster 3.0435
u1 wallpapers.com wallpapers 0.9287
u2 wallpapers.com wallpapers 0.2572
u1 wallpapers.com pictures 0.9287
u2 wallpapers.com pictures 0.2572
u2 flickr.com flickr cluster 0.8429
u3 cnn.com news 1

Table 5: Results of the factorization with the revealed
relation between user u2 and web item wallpapers.com.

4.2.2 Cluster analysis of tags

We exploit and evaluate 4 different clustering tech-
niques that are adjusted to group similar tags into a
cluster. The general proposed approach consists of the
following steps:

1. Perform cluster analysis of a tag space with the se-
lected clustering method from the 4 proposed tech-
niques.

2. Build an initial tensor where a tag dimension has
the same size as the amount of obtained clusters.
A tagging performed by a user u to a item i with a
tag t is a triplet (u, i, t). All such triplets are en-
coded to corresponding positions in the initial ten-
sor with the initial weight 1 and a tag t is mapped
to the matching cluster. When two or more triplets
share the same item and user – differ only in tags
and these tags belong to the same one cluster a
final weight in the tensor is the amount of such
triplets, e.g. given two triplets: (u, i, t1), (u, i,
t2) and tags t1, t2 belong to the same tag cluster,
then an initial tensor will contain weight 2 at the
position (a row for a user u, a column for a item
i and slice corresponding to tag cluster with tags
t1, t2).

3. Compute tensor factorization for the constructed
initial tensor. Finally, items recommendations are
generated according to the sorted weights from the
factorized tensor for the given user and all not ob-
served items.

In the following sections, we describe 4 different clus-
tering techniques – first two proposed approaches clus-
ter tags according to their co-occurrence based similar-
ities, K-means and Mean shift algorithms consider each
tag from a tag space as feature vector.

4.2.3 Correlated Feature Hashing

We propose to reduce a tag space with hashing function
that is similar to the proposed technique in [4] where
authors successfully reduced dictionary size by utilizing
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hashing. The idea is to share and group tags with the
similar meaning. We sort the tags used within the sys-
tem according to the frequency of usage such that t1 is
the most frequent tag and tT is the least frequent. For
each tag ti ∈ 1, . . . , T is calculated DICE coefficient
with respect to each tag tj ∈ 1, . . . ,K among the top
K most frequent tags. The DICE coefficient is defined
as:

DICE(ti, tj) =
2.cocr(ti, tj)

ocr(ti) + ocr(tj)
(14)

where cocr(ti, tj) denotes the number of co-occurrences
for tags ti and tj , ocr(ti) and ocr(tj) is the total number
of tag ti, tj assignments respectively. For each tag ti, we
sort theK scores in descending order such that Sp(ti) ∈
1, . . . ,K represents the tag of the p-th largest DICE
score DICE(ti, Sp(ti)). We can then use hash kernel
approximation defined as:

Φ̄tj (x) =
�

ti∈T :h(ti)=tj

Φti(x) (15)

and given by hash function

h(ti) = S1(ti) (16)

The described approach is replacing each tag ti with
the tag S1(ti). Obviously, we have reduced tag space
from all T tags to the K most frequent tags.

4.2.4 Spectral K-means clustering

We utilize Spectral K-means clustering technique.
Firstly, we encode tag relations into the affinity ma-
trix W , such that wi,j entry represents affinity between
tag ti and tag tj . The similarity matrix can be also
interpreted as undirected weighted graph G where tags
represent nodes and weights are expressed as similari-
ties between given tags. We exploit Jaccard (17) and
Cosine(18) similarity measures denoted as JAC(ti, tj)
and COS(ti, tj).

JAC(ti, tj) =
|ti| ∩ |tj |
|ti| ∪ |tj |

=
cocr(ti, tj)

ocr(ti) + ocr(tj)− cocr(ti, tj)

(17)

COS(ti, tj) =
|ti| ∩ |tj |�
|(ti|× |tj |

=
cocr(ti, tj)�

ocr(ti)× ocr(tj))
(18)

where cocr(ti, tj) is the sum of all co-occurrences for
tags ti and tj , ocr(ti) and ocr(tj) is the total number
of tag ti, tj occurrences respectively. The introduced
DICE 14 similarity measure is also considered. Once
the similarity matrix W is created, we then proceed to
find (sub) clusters of tags that address the same topic.

To obtain clusters, we rely on a spectral cluster-

ing algorithm which input is the undirected weighted
graph G. The spectral clustering algorithm partitions
the graph G based on its spectral decomposition into
subgraphs. In order to run the spectral clustering, we
perform the following steps:

1. We build the Laplacian matrix L = D−1/2WD−1/2

derived from the affinity matrix W . The D is n×n

diagonal matrix whose (i, i)−th element is the sum
of W ’s i− th row, in other words it is the degree of
a given node i - sum of all weights corresponding
to the edges that are connected to a given node
i. The Laplacian matrix L is symmetric and has
identical size as affinity matrix W .

2. We compute the k largest eigenvectors of L, these
obtained top k eigenvectors are used as columns
to create a new matrix U ∈ Rn×k. We consider
each row of U as a point in Rk, hence we can
apply standard K-means algorithm to cluster these
points into k clusters.

3. Finally, we map original node i to the cluster j if
and only if row i from matrix U belongs to the
same cluster j. We obtained disjoint groups of
similar and related tags and we are able to build
initial tensor with the reduced tag dimension and
then proceed with the factorization.

We have tried to integrate and explore another spec-
tral non-parametric clustering algorithm Eigencuts [8].
Similarly to the spectral K-means algorithm it com-
putes eigendecomposition of the Laplacian matrix that
is derived from the affinity matrix. The main intuition
of this algorithm is to identify bottleneck edges within
the graph structure by performing random walk and
observe how a probability flow changes when a given
weight for the edge is replaced. However, we have strug-
gled with infeasible time and memory demands there-
fore it can be concern of our future work.

4.2.5 K-means

The following two clustering techniques differ from the
previous in a such way that each tag is expressed in
n-dimensional vector space where i-th dimension cor-
responds to the i-th item resi (in a similar way as
in [24, 35]). We denote T = {t1, t2 . . . , t|T |} as the
set of all distinct tags that are clustered and R =
{res1, res2 . . . resn} the set of all items that are tagged
with tags from T . Let f(t, resi) be equal to a frequency
of a tag t assignements to item resi otherwise it is equal
to 0. Then, the vector representation of tag t is:

t = (f(t, res1), f(t, res2), . . . , f(t, resn)) (19)

Once, tags from T are expressed as n-dimensional
vectors, we proceed with the cluster analysis.
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The K-means is a simple well known clustering tech-
nique that groups objects from a given set into k clus-
ters (given a priori). The algorithm starts with gener-
ating k random centroids. Then for each object from a
dataset, i.e., a tag from T the nearest centroid is found
thus a given tag is associated with a particular centroid.
When all tags are processed, centroids have to be re-
computed such that new centroid is the mean value of
the vectors for the given cluster. Again for all objects
the nearest centroids are identified and objects are clus-
tered with them. This process repeats until locations
of centroids do not change.

Clustering of a tag space with the K-means algorithm
is computed as follows:

1. Each tag from a tag space T is expressed as n-
dimensional vector. According to the size of the
tag space and user requirements an amount of clus-
ters is set to k.

2. It randomly places k centroids such that a distance
from each other is maximized.

3. Each tag from the tag space is binded to the near-
est centroid.

4. New centroids are computed as the mean value of
tags vectors grouped with a given centroid. It con-
tinues with the step 3, until new centroids are iden-
tical with the centroids from the previous iteration.

We obtained k disjoint clusters of tags so we can
proceed with the tensor factorization. The results of
K-means algorithm depend on used distance measure -
we exploit Cosine, Manhattan, Euclidean and Jaccard
distances.

4.2.6 Mean shift clustering

The Mean shift [11] is a nonparametric clustering as
it does not require a prior definition of the number
of clusters. The feature vector space is considered as
probability density function. Input objects for clus-
tering are considered as they would be sampled from
this probability density function. The density function
is estimated according to the Kernel density estima-
tion method (also known as Parzen Window technique)
which is defined as:

f̂(x) =
1

nhd

n�

i=1

K(
x− xi

h
) (20)

where n is an amount of tags, d is dimension of the
vector space and kernel function K(x) is defined as:

K(x) = ck,dk(||x||2)

where ck,d is constant that assures integration of K(x)
to 1 and k(x) is specific kernel profile. Mean shift vec-
tor mh(x) is computed for each object and it points
toward the direction of the maximum density increase.
It results into the replacement of the window to the new
position given as: x = x+mh(x). These two steps re-
peat for each object until stationary point (∇f(x) = 0)
is not reached. The final clusters (dense regions) cor-
respond to these local maximums of the given density
function. Each final cluster contain only objects that
are associated to the same stationary point.

In the context of tags clustering, for each tag that is
expressed as d-dimensional vector a window is placed
around a given tag such that a window size is condi-
tioned with parameter h and a given point is centroid
of that window. Mean shift computes mean for all tags
within the given window (mean shift vector points to
the computed mean). Centroid of the window is moved
to the obtained mean and this repeats until window
position stabilize.

The main advantage of the technique is to automat-
ically determine the number of clusters, however this
depends on the window size which is given by band-
width parameter h and it has to be tuned. The smaller
parameter is set more final clusters are obtained. The
drawbacks are computational expensiveness and when
a feature space with large amount of dimensions is con-
sidered it is demanding to identify points that belong
within the particular window.

4.2.7 Theoretical complexity analysis

We compare complexity analysis of the basic HOSVD
factorization with the proposed approach where the
tag dimension is reduced. When the HOSVD is per-
formed, always 3 different Singular Value Decomposi-
tion (for each mode matrix) must be computed. Ac-
cording to [7], [20, p. 254] a computation complexity
of full SVD for a matrix Mp×q is O(pq2 + p2q + q3)
To obtain a core tensor and then a final approximated
tensor, a tucker product (n-mode multiplication) must
be calculated. The complexity of this operation is
O(C.|U |.|I|.|T |) where C = 1

3 (|U | + |I| + |T |) [3]. A
complexity of these sub operations of the HOSVD is
showed in the Table 6.

For better readability, we substituted a term [U2R+
R2U +RU +CUR] with A, a term [UR2 +RU2 +RU ]
with B, [R3 + U3] with C and R3U3 with D. Obvi-
ously, computational complexity is decreased when a
tag space is clustered. Less clusters are generated thus
the execution time of the HOSVD factorization is im-
proved. Let us assume that |Tc| = k.|T | where k ≤ 1
(percentage how many clusters should be created from
the original tag space |T |), in such case with our pro-
posed approach we improve computational complexity
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Operation Full HOSVD Clustered HOSVD
SVD of U1

|U |×|tags||I| |U |(|T ||I|)2 + |U |2(|T ||I|) + |T ||I|3) |U |(|Tc||I|)2 + |U |2(|Tc||I|) + |Tc||I|3)
SVD of U2

|I|×|tags||U | |I|(|T ||U |)2 + |I|2(|T ||U |) + |T ||U |3) |I|(|Tc||U |)2 + |I|2(|Tc||U |) + |Tc||U |3)
SVD of U3

|tags|×|I||U | |T |(|I||U |)2 + |T |2(|I||U |) + |I||U |3) |Tc|(|I||U |)2 + |Tc|2(|I||U |) + |I||U |3)
Tucker product C.|U |.|I|.|T | C.|U |.|I|.|Tc|

Total TA+ T 2B + T 3C +D TcA+ T 2
c B + T 3

c C +D

Table 6: Complexity analysis of HOSVD and clustered HOSVD

with

(T − Tc)A+ (T − Tc)
2B + (T − Tc)

3C +D

Our approach also decreases memory requirements,
when the size of the initial and factorized tensor is no-
tably smaller. Let us assume the initial size of the used
distinct tags |T | amount of users |U |, items |I| and |K|
is the amount of clusters. Then clustering saves:

|T − Tc|× (|U |.|I|)× 8bytes

in comparison to the initial tensor where a tag space is
not clustered.

4.3 Discussion

One could argue that applying clustering to reduce tag
dimension before computing the tensor factorization is
unnecessary as HOSVD is also dimensional reduction
technique. However, the low rank approximation [22]
is not reducing tag dimension in the same sense as clus-
tering. The low rank SVD is only removing noisy data,
so that approximated tensor better reflects the patterns
in the data. The importance of clustering is to shrink
tag space in such way that an initial tensor contains
less slices and the factorization is faster. Once the tag
space is clustered each mode matrix is smaller. In case
only the low rank SVD is applied user and item mode
matrices reflect the original tag space and only the tag
mode matrix is reduced.

5 Experiments

We investigate the prediction quality and time perfor-
mance of the proposed techniques and compare it with
the baseline results of the HOSVD recommender [44].

5.1 Experimental environment and im-
plementation

All the experiments are conducted on Windows 7 64-bit
operating system running on Intel Core 2 Quad CPU
@ 2.66GHz with 8, 00 GB (7, 87 GB usable) RAM.
The HOSVD, NTF and clustering techniques are im-
plemented in Java 6 and source code is available on the

website1. The main parts of Spectral K-means, Mean
shift and K-means are provided by Apache Mahout2.

5.2 Datasets

The proposed techniques are evaluated on the BibSon-
omy [25] and MovieLens [37] datasets. Similarly, as
in [44] the datasets are preprocessed with p-core filter-
ing so that data are more dense. P -core constraints
data such that each user, item and tag has to appear
at least p times in the dataset [17]. The following p-core
values are applied:

• 5 for the BibSonomy dataset (B)

• 59 for the MovieLens dataset (M)

Due to the limited memory resources on the test com-
puter it is not possible to run NTF with lower p-core
value than 59 for MovieLens dataset.
The BibSonomy contains 116 distinct users, 361 items
and 412 tags. The total number of tagging posts is
10148.
The MovieLens dataset contains 288 unique items
tagged by 221 different users with 265 unique tags. In
total, there are tagged 8412 items using at least one or
more tags by the users.

5.3 Classes of users

Users are sorted according to their tagging activity and
3 classes of users are created: Active users – top 10
most active users, Average users – 10 average active
users and Not active users – 10 least active users. The
classes are used to investigate the quality of the pro-
posed techniques more precisely.

5.4 Experimental protocol

The same methodology is followed as in [44] in order
to compare the enhancements of our approaches. For
a test user we split his tagging posts into training and
evaluation set in the ratio 50%:50%. The task of the
recommender is to predict the items that corresponds to
the tagging posts in the evaluation set. The models are

1http://www.cs.aau.dk/~mleginus/thesis
2http://mahout.apache.org

http://www.cs.aau.dk/~mleginus/thesis
http://mahout.apache.org
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trained on the training set and the recommendations
quality is measured on the test set. The prediction
quality is evaluated according to the following common
evaluation metrics.

• Precision is the ratio of the number of recom-
mended relevant items (we consider only items
that correspond to the tagging posts in the evalu-
ation part of the data set) from the top-N list of
entries to N .

PN =
|{relevant items} ∩ {top-N items}|

|{top-N items}| (21)

• Recall is the ratio of the number of recommended
items from the top-N list of entries to the total
number of items for a given user from the evalua-
tion part of data set.

RN =
|{relevant items} ∩ {top-N items}|

|{relevant items}| (22)

• F-measure is a metric which involves the pre-
viously described recall and precision indicators.
There is computed an average of both metrics. The
best results of the recommendations are achieved
when F-measure reaches one.

F-measure = 2 .
PN .RN

PN +RN
(23)

5.5 Results for the HOSVD

We conduct experiments using the HOSVD recom-
mender and both datasets. The results are used as
the baseline for the comparison with our proposed tech-
niques. We measure the quality of the items recommen-
dations, also the execution time of the factorization.

For the BibSonomy dataset the average precision
for all 116 users is 0.3373 and 0.2075 for 221 users
from the MovieLens dataset (Table 7). The best
prediction quality is achieved when top (60, 105, 225)
singular values and corresponding left singular vectors
are preserved for the 1st, 2nd and 3rd mode matrices
respectively for the BibSonomy dataset. For the
MovieLens dataset the following values are used:
(44, 103, 69). We achieve the similar precision for the
BibSonomy dataset as is reported in [44], however
the achieved recall is worse, because the BibSonomy
dataset contains significantly more items (+115) and
the amount of users is similar. The precision for
MovieLens dataset is worse, compared with the results
for the BibSonomy, even using more dense data. For
the least active users, the precision is 0 and it is not
acceptable. The reason of such accuracy is that these
users have posted a few tags to the items constrained
by p-core.

The splitting into training and evaluation set is
performed with ratio 50% : 50%, the evaluation set
contains many items and in consequence the recall is
lower. The average execution time of HOSVD factor-
ization for BibSonomy is 110 s and 102 s for MovieLens.

Class of users Precision Recall F-measure
All usersB 0.3373 0.1266 0.1637
Active usersB 0.7 0.052 0.0966
Average usersB 0.3000 0.138 0.182
Not active usersB 0.155 0.155 0.155
All usersM 0.2075 0.0738 0.0983
Active usersM 0.42 0.0435 0.0788
Average usersM 0.1628 0.1261 0.1421
Not active usersM 0 0 0

Table 7: Baseline results for the HOSVD

We incorporate the prior knowledge into the mode
matrices of HOSVD to verify whether the proposed
model is universal. The preliminary experimental study
shows that the quality of precision is increased by ∼ 3%
for the BibSonomy dataset. However, this approach re-
quires a more detailed analysis.

5.6 Clustered tag space

In this section, we evaluate quality of recommenda-
tions when a tag space is clustered and the sets of
users and items have the original size. HOSVD is ap-
plied on such compressed tensor where tags dimension
is reduced from the original size to the certain number
of clusters. The goal is to find the best trade-off be-
tween the accuracy of recommendations and time per-
formance.

5.6.1 Distance and similarity measures

Before performing clustering, a tag space has to be pre-
processed so that tags are expressed either as feature
vectors (K-means, Mean Shift) or in the affinity matrix
where each entry represents similarity between two tags
(Spectral Clustering, Correlated Feature Hashing).

When a tag space is clustered with K-means algo-
rithm and Mean Shift, we explore and compare different
similarity measures. The experiments are conducted
with Cosine, Euclidean, Manhattan and Jaccard dis-
tance measures. We observe how a given distance mea-
sure influences the quality of recommendations. The
results are compared in the following table:
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Distance measure Precision Recall F-measure
Cosine 0.1806 0.0607 0.0908
Euclidean 0.1293 0.0454 0.0672
Manhattan 0.1732 0.0495 0.0769
Jaccard 0.1474 0.0481 0.0806

Table 8: Comparison of the distance measures and their
impact on the recommendation quality for K-means
amount of clusters set to (40%) of the tag space

The cosine distance produces the best recommenda-
tions results. Many tags are placed into one large clus-
ter when Euclidean and Manhattan distances are used
thus the quality is significantly decreased. The observa-
tion is similar to the [42] as authors identify Cosine sim-
ilarity as the most suitable. It is sensitive to the small
variations in more elements. Euclidean and Manhattan
distances are more sensitive to significant changes in a
few elements of feature vectors. Based on this results,
we use the cosine similarity for all K-means and Mean
shift clustering computations.

For the spectral K-means clustering and feature
hashing, a coocurrence similarity has to be computed
for each tag pair in the original tag space. We eval-
uate several similarity measures: Dice 14, Jaccard 17
and Cosine 18. The impact of selected measures on the
prediction quality is shown in the Table 9.

Similarity measure Precision Recall F-measure
Cosine 0.2722 0.0926 0.1381
Dice 0.285 0.104 0.1523
Jaccard 0.283 0.1007 0.1484

Table 9: Comparison of the similarity measures and
their impact on the recommendation quality for spec-
tral K-means clustering amount of clusters set to (50%)
of the tag space

The evaluated measures do not affect significantly
the quality of recommendations therefore, in this work
the Dice similarity is used.

5.6.2 Clustering techniques

We describe corresponding settings and parameters for
each clustering technique that are used to run them.

Correlated feature hashing: A tag space is split
into top k most frequent tags set (MFTS) and the rest
of a tag space – not frequent tags set (NFTS). For each
tag from the MFTS is computed similarity with all tags
in the NFTS. Afterwards, each tag from the NFTS is
mapped to a tag with the highest similarity score from
the MFTS. Some tags from the MFTS do not have
mapping with infrequent tags such tags are mapped to
themselves so they generate single-tag clusters. The

dice coefficient is used for computations of tag pairs
similarities.

Spectral K-means clustering: For each tag in a
tag space a co-occurrence is computed with all other
tags. The Dice distance measure is used and tag pairs
similarities are encoded into the affinity matrix. The
amount of clusters is given by input parameter k.

K-means clustering: Each tag is expressed as fea-
ture vector, where a weight on a particular dimension
expresses relation between the tag and a particular
item. The number of clusters k is set in advance.

Mean shift clustering: The algorithm does not re-
quire setting the number of clusters a priori, but a win-
dow size has to be specified in advance. The window
size is the main parameter that affects the amount of
clusters. The second parameter determines whether
two clusters are close enough, if so they are merged
into one bigger cluster.

5.6.3 Results

For each technique, the number of clusters is iteratively
changed: starting from the 40% of the original tag space
size, after each iteration amount of clusters is increased
by 10% untill 80%. We plot the precision value versus
amount of clusters in Figure 8. We also measure im-

40% 50% 60% 70% 80%
0.15

0.2

0.25

0.3

Number of clusters (% of original tag space)
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 Feature Hashing K−means Mean shift Spectral K−means

Figure 8: Precision comparison of clustering techniques

provement of time performance. The execution time of
the factorization is significantly decreased as is showed
in the following Figure 9.
The spectral K-means outperforms correlated feature
hashing, K-means and also Mean Shift almost in all
cases. The Mean Shift attains the worst precision for
all number of clusters as the distribution of tags in clus-
ters is not uniform. The K-means and spectral K-means
methods get higher precision as the number of clusters
is increased but the precision of recommendations does
not grow so significantly as could be expected.
The best trade-off between accuracy and execution

time is reached when the number of clusters is 50% of
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Figure 9: Comparison of time performance for cluster-
ing techniques

the original tag space. In such case the average preci-
sion for all users is decreased with only ∼ 0.05 but the
execution time of the factorization is decreased about
40.2%. The results of clustering techniques when num-
ber of clusters is set to 50% are in the Tables 10, 11.

Clustering
method

Precision Recall F-measure Execution
time

HOSVD
baseline

0.3373 0.1266 0.1841 110.326 s

Feature
hashing

0.2551 0.0873 0.1301 50.301 s

Spectral
K-means

0.2850 0.1040 0.1523 65.956 s

K-means 0.2544 0.1045 0.1465 48.813 s
Mean
Shift

0.1722 0.0697 0.0992 51.312 s

Table 10: Accuracy and execution time results for clus-
tering techniques, number of clusters is set to 50% of
the tag space.

The best prediction quality is achieved with the spec-
tral K-means clustering. The accuracy for active class
of users is increased but for average and not active
classes of users accuracy drops by 0.02 and 0.032 re-
spectively.

Class of users Precision Recall F-measure
All users 0.2850 0.1040 0.1523
Active users 0.74 0.0544 0.1013
Average users 0.28 0.1212 0.1692
Not active users 0.123 0.123 0.123

Table 11: Accuracy results of spectral K-means cluster-
ing (number of clusters is set to 50% of the tag space)
for 3 classes of users: Active users, Average users, Not
active users.

The examples of different tag clusters for the Bib-

Sonomy dataset are shown in the Table 12. The fea-
ture hashing creates clusters that always contain at
least one frequent tag. Such approach is not always
suitable, e.g., tags swikig, eswc2006 are mapped with
the tag iccexample that describes an example of color
profile. The Mean shift generates not uniformly dis-
tributed clusters, e.g., a cluster about social bookmark-
ing contains tags about web2.0. The spectral K-means
and K-means methods produce reasonable clustering
results. However, the former one slightly outperforms
the latter method and that also affects the prediction
accuracy.
The proposed approach significantly decreases execu-

tion time of the factorization as is shown by the theoret-
ical complexity analysis and also proved by conducted
experiments. We observe that 50% is the optimal num-
ber of clusters such that the execution time is improved
and the quality of the recommendations is acceptable.
The methods based on a tag pair co-occurrence simi-
larity outperform the techniques that express tags as
feature vectors. The Mean shift is not suitable for tags
clustering because of the complicated tuning of window
size parameter. The best results are achieved with the
spectral K-means clustering.

5.7 Results for the NTF

We conduct the following experiments using the NTF
algorithm, both datasets and all users:

• the basic NTF – NTFb;

• NTF with prior knowledge – NTFk;

• NTF with prior knowledge and with parallelism –
NTFkp;

• NTF with prior knowledge and clustering –
NTFkc.

All the results are presented in Table 13.

Case Precision Recall F-measure Execution
time

NTFB
b 0.0465 0.0138 0.0212 34.485 s

NTFM
b 0.0524 0.0140 0.0220 70.584 s

NTFB
k 0.8508 0.4440 0.5834 84.576 s

NTFM
k 0.9687 0.5572 0.7074 144.600 s

NTFB
kp 0.8594 0.4494 0.5901 82.494 s

NTFM
kp 0.9776 0.5591 0.7113 108.292 s

NTFB
kc 0.7686 0.3968 0.5233 32.787 s

NTFM
kc 0.8596 0.5094 0.6397 56.656 s

Table 13: The experimental results for the NTF
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Correlated feature hash-
ing

Spectral K-means K-means Mean Shift

informationretrieval, lec-
ture, retrieval

retrieval, lecture, evalua-
tion, informationretrieval

ranking, folkrank, infor-
mation, retrieval, ir, infor-
mationretrieval

retrieval, information, ir

iccsexample, swikig,
eswc2006

semwiki2006, swikig,
eswc2006

wiki, swikig, semwiki2006,
eswc2006

swikig, semwiki2006,
eswc2006

bookmarks2.0, bookmark,
system, socialnetworking

bookmark, system, book-
marks2.0, bookmarklet

bookmarks2.0, book-
marks, socialbookmark-
ing, bookmarklet

bookmarks, software,
ajax, socialbookmarks,
web2.0, bookmarking,
delicious, socialbook-
marking, blog, online,
tagging, folksonomy

eclipse, rails, code, de-
velop

develop, informatik, rails,
code, python, eclipse

code, svn, source, subver-
sion

code, svn, source, subver-
sion

Table 12: Different cluster examples when amount of clusters is set to 50% of the original tag space

5.7.1 NTFb vs. HOSVD

The basic NTF algorithm produces the recommenda-
tions with unacceptable precision (0.0465 for the Bib-
Sonomy and 0.0524 for MovieLens) compared to the
HOSVD baseline results (Section 5.5). The time per-
formance, compared to the basic HOSVD results are
improved ∼ 3.2 times for the BibSonomy and ∼ 1.5
for MovieLens. The average precision for all the users
is poor because the factor matrices are initialized with
random numbers only. The results imply that random
values can be used for the active users only (the classes
of users are defined in a Section 5.3). The active users
have rich enough training sets to minimize the nega-
tive impact of random values and the precision rates
from ∼ 0.5 to ∼ 1. However, for the average users and
not active users (that is usually a majority and a com-
mon case in the real world applications) have too small
training sets for the basic NTF to produce the recom-
mendations within the acceptable precision, recall and
f-measure metrics.

5.7.2 NTFk vs. NTFb

According to the results, our proposal to incorporate
the personal prior knowledge and to promote the im-
portant aspects of the triplets significantly improves the
average precision (0.8508 for the BibSonomy vs. 0.0465
and 0.9687 for MovieLens vs. 0.0524) for all the users.
The precision and other measures are improved for the
both datasets therefore we claim that the prior knowl-
edge model is universal. The prior knowledge technique
has to be adjusted for a particular dataset, e.g. the
items in MovieLens dataset are tagged with more tags
in comparison to the BibSonomy thus the variables for
expressing the prior knowledge are adapted. NTFk at-
tains higher precision on MovieLens dataset than the
BibSonomy. That is caused by more dense MovieLens

dataset because the higher p-core value is used.
The execution time is improved almost twice compared
to the basic NTF algorithm. It is caused by the extra
time needed for incorporating the prior knowledge. The
additional time is consumed by querying the database
to fetch the prior knowledge for each user. We strongly
believe the workload to resolve the prior knowledge
could be optimized to achieve the similar time perfor-
mance as for the basic NTF.

5.7.3 NTFkp vs. NTFk

The results of NTFkp suggest that we achieve a slight
improvement in time performance of NTF using our
parallel approach. Compared to NTFk, the execution
time is improved by ∼ 1.025 for the BibSonomy dataset
and ∼ 1.3 times for the MovieLens dataset.
The precision (also the recall and f-measure) for both
datasets are almost the same, compared to the results
of NTFk. The slight differences can be argued by the
fact that NTF algorithm does not guarantee the unique
solution using the same initial tensor as the factor ma-
trices are initialized with random values.
The minor improvement of time performance could be
argued by the set of issues:

• To execute NTFkp the Parallel Java Library [26] is
used. Our implementation is not optimal because
a large amount of memory (RAM) is required (∼ 2
GB per process) for the data structures. Frequent
memory allocations and deallocations are causing
the time delay.

• Too many processes are started that are striving
for the limited memory resources therefore, the ex-
ecution time is not optimal. Parallel Colt frame-
work [49] is using threads to execute the compu-
tations. The framework is heavily utilized for the
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operations with matrices and tensors therefore, the
additional processes are introduced.

• The standard Java Virtual Machine is not the op-
timal technology [21] to exploit the parallel proces-
sors. Java, compared to C/C++, can not control
kernel threads to fully utilize the hardware.

5.7.4 NTFkc vs. NTFkp

We combine NTF prior knowledge approach with Spec-
tral K-means clustering technique (the number of clus-
ters is 50% of the original tag space) using Dice similar-
ity measure. The previous results show that HOSVD
and clustering technique with these settings produce
the most accurate recommendations (Table 10). The
results of NTFkc infer that the execution time of tensor
factorization can be significantly improved because of
the reduced tag space. In comparison with the results
of NTFkp, the speed-up of the factorization is ∼ 2.5
times for the BibSonomy dataset and ∼ 1.9 times for
the MovieLens dataset. The quality of recommenda-
tions is slightly decreased: ∼ 9% for the BibSonomy
and ∼ 12% for the MovieLens data. The trade-off be-
tween the precision and time performance can be ad-
justed by changing the number of clusters.

6 Conclusion and future work

In this work, we propose to utilize clustering techniques
for reducing tag space that significantly improves the
execution time of tensor factorization and decreases the
memory demands preserving the acceptable quality of
the recommendations.
Two approaches of computing tags similarities are
investigated. The former one utilizes tag pair co-
occurrence similarity measures. The latter expresses
tags as feature vectors and uses standard distance
measures. The best prediction quality is achieved
with the Spectral K-means clustering that employs co-
occurrence tag pair similarity. The best trade-off be-
tween prediction accuracy and execution time is when
the number of clusters equals to 50% of the original tag
space size. Such reduced tag space improves time per-
formance of a factorization and the prediction quality
insignificantly decreases.
The model of the personal prior knowledge is presented.
The facts about the users preferences are incorporated
into the factor matrices of NTF to improve the quality
of the recommendations. The approach is adjustable
for a concrete dataset – the importance of a prior knowl-
edge aspects can be differentiated.
Possibility to run NTF in parallel is explored and the
minor improvement of the execution time is achieved.
The experimental results of a combined solution (NTF
with a prior knowledge and clustering) strongly imply

the time performance of a factorization is improved, the
quality of the recommendations is acceptable.
As a future work, we intend to extend the cluster-

ing techniques with ability to detect tags with multiple
meanings (polysemy), e.g., tag java can be considered
as an island or a programming language. The exten-
sion would allow a particular factorization technique to
correctly address polysemy of tags and as consequence
the quality of recommendations would be improved.
The second aim of a future work is to ensure whether
the tags from the same cluster are semantically sim-
ilar utilizing different semantic sources, i.e., WordNet
dictionary and ontologies from open linked data on the
Web [14]. The semantically enriched clusters should
improve accuracy of the recommendations.
The process of incorporating a personal prior knowl-
edge into a tensor should promote also the semantically
similar tags. The proposal could exploit the proposed
clustering techniques. Also, the more complex study
for incorporating prior knowledge into the n-mode ma-
trices of HOSVD should be investigated.
It is worthy to explore how to use a prior knowledge
of all users in the initial tensor. Such approach would
not require to recompute NTF algorithm for each user.
The promotion variables should be computed according
to the activity of all the users in the past.
The last goal of a future work is to improve our parallel
implementation by training each of a column of factor
matrices in parallel.
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A Appendix: Genetic algo-
rithms - a way to tune tensor
based recommenders

In this section, we propose a diagnostic tool for es-
timating optimal parameters for tensor based recom-
menders. The approach is based on Genetic Algorithm
(GA) [19, 33] and it identifies the optimal parameters
for HOSVD based recommender so that the best possi-
ble accuracy is attained. Below is described the prob-
lem of tuning the parameters, also introduced short re-
lated work and finally our solution is described.

A.1 Motivation

Tensor based recommenders are complex algorithms
that require detailed tuning and adjustments of par-
ticular parameters or settings to provide the most ac-
curate results. For HOSVD based recommenders [44],
there must be provided a number of preserved top sin-
gular values for each mode matrix. These 3 param-
eters c1, c2, c3 determine dimensions of the core ten-
sor as only c1, c2, c3 top left singular vectors from the
SVD of 1, 2, 3 mode matrices respectively are used for
construction of the core tensor. The motivation to fil-
ter out small singular values and corresponding left
singular vectors is to achieve better approximation of
mode matrices. This removes noise and preserves only
important semantic information. The common ap-
proach to determine the parameters is to empirically
estimate a percentage of original diagonal of matrix
with singular values, e.g., let us assume a diagonal of
the original singular values matrix contains the follow-
ing sorted singular values 1.2, 1.15, 0.95 that sum to
(1.2 + 1.15 + 0.95) = 3.3, we want to preserve 70 per-
cent of the original diagonal therefore the parameter c1
is set to 2 as (1, 2 + 1.15)/3.3 ∼ 70%.

Symeonidis et. al [44] provide an analysis about the
parameters and their significant impact on the precision
of the recommendations. According to their empirical
results, a 70% of original diagonal matrices provides the
best quality of recommendations. However, the given
setting does not hold in our work as for the BibSonomy
dataset the best results are achieved with the parame-
ters set to (c1 ∼ 74%, c2 ∼ 47% and c3 ∼ 78%). Rendle
et. al [36] also describe that recommenders based on
HOSVD are sensitive to small changes of the 3 param-
eters. In both works, the parameters are tuned manu-
ally without usage of any diagnostic methods. Such ap-
proach is computationally expensive when large dataset
is considered. This naive approach search through a de-
fined parameters space, that requires to execute 3 inner
loops as there is no correlation between the parameters.
Such finding of the optimal parameters is slow and not
efficient.

We utilize GA to speed up the search of the opti-
mal parameters as it can faster explore the parameters
search space.

A.2 Our approach

The GA is search heuristic that we use to find the op-
timal parameters. The GA are adapted to our search
problem in the following way:

• Each parameter represents a gene.

• The parameters c1, c2, c3 are genes that are to-
gether encoded in a chromosome.

• A population of possible solutions consists of k dif-
ferent chromosomes.

• Fitness function is the average precision for consid-
ered users and for the provided chromosome (pa-
rameters c1, c2, c3).

Below are described steps of the process of searching
for the optimal parameters with the GA.

1. A population is randomly generated in a such way
that each chromosome consists of 3 genes. Each
gene represents a particular parameter and it is
randomly initialized (parameter ci belongs to the
defined interval (0.4, 0.8).

2. Calculate the fitness function of each chromosome
from the population. The result of the fitness func-
tion is average precision for the given parameters.

3. New population is created such that chromosomes
that produce best average precision are repro-
duced. New chromosomes are created with mu-
tation and cross-over operations.

4. Go to step 2, repeat until fixed number of itera-
tions is reached.

Once the searching process is finished, GA returns a
chromosome with the best average precision (result of
the fitness function). The given chromosome contains
the optimal parameters c1, c2, c3.

A.3 Preliminary results

We provide a short study of the technique and compare
it with the naive approach for searching the optimal
parameters. The experiments are conducted on Movie-
Lens dataset. Values of the parameters range from 0.4
to 0.8 (preserve from 40% to 80% of diagonal of original
mode matrix).
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A.3.1 Naive approach

The search space for the parameters is represented as
set of the possible values that range from 0.4 to 0.8,
i.e.,

SearchSpaceSet = {0.35, 0.4, 0.45, 0.5, . . . , 0.75, 0.8}

The goal is to find 3 different parameters that belong to
SearchSpaceSet hence there must be executed 3 inner
loops so that all possible combinations of c1, c2 and c3

are explored. Therefore, execution time of the search
for parameters is defined as

|SearchSpaceSet|3 × tfitness function

According to aforementioned formula, the search for
optimal parameters of HOSVD recommender on Movie-
lens dataset takes 103 × tfitness function as the size of the
|SearchSpaceSet| = 10 and tfitness function is computa-
tion time for selected users for a particular combination
of the parameters.

A.3.2 Our approach

The approach based on GA of searching for optimal
parameters takes the following execution time:

iterations× PopulationSize× tfitness function

where the number of iterations is denoted as iterations
and size of the population is given by PopulationSize.
The number of iterations is set to 20 and size of the pop-
ulation to 5 different triples of parameters. Therefore,
the execution time of search for the parameters with
GA on MovieLens dataset takes 20× 5× tfitness function

Obviously, the approach based on GA outperforms
the naive one. It improved almost 10 times the
execution time of search for the optimal parame-
ters. Generally, is expected that term iterations ×
PopulationSize � |SearchSpaceSet|3 and therefore in
most cases it significantly speed up search process for
the optimal parameters.
The found parameters c1, c2 and c3 for the MovieLens
dataset are 0.431, 0.553, 0.44 respectively.

A.4 Conclusion

We propose a novel approach of tuning tensor based
recommenders. The solution is based on GA, that more
optimally explore search space of the parameters for
HOSVD based recommenders. Aforementioned prelim-
inary results prove the contribution of the approach.
The given technique could be easily adopted for other
tensor based recommendation systems, e.g., NTF rec-
ommender requires to specify one dimension of factor
matrices a priori. The approach would be adjusted in

such way that sizes of factor matrices would be en-
coded into chromosomes and the fitness function would
compute average precision for given users and provided
chromosome that contains factor matrices sizes.

B Appendix: Design and imple-
mentation

In this part, the design of the implemented recommen-
dation system based on the HOSVD and NTF tensor
factorization techniques are presented. Firstly, the gen-
eral structure of the system is introduced. Secondly, we
present each part of the system more precisely. More-
over, the main data structures and algorithms are de-
fined. Finally, we state which open source frameworks
are used in our system.

B.1 Architecture

The architecture of our system is composed of several
layers. The general structure is shown in the Figure 10.

The system is designed to be easily extended with the
multiple recommendation techniques while using the
same database, data structure, utilities, statistics and
the presentation layers. We designed and implemented
the p-core and tag-space clustering extensions that are
available for HOSVD based and NTF based recom-
menders. Also, prior knowledge extension is available
for NTF.

B.2 Detailed overview

B.2.1 Database layer

We use the samples of the real world data sets (as de-
scribed in Section 5.2) to generate recommendations.
The data is stored in the databases. We choose to use
Hibernate framework3 for the object/relational persis-
tence and query service. We are able to manipulate
with the data as the objects. Also, we are able to bind
a number of the databases to the system – each of the
data set is stored in the different databases. More-
over, the databases can be different, e.g., MySQL, Post-
greSQL, Oracle, etc. The structure of a database layer
is presented in the Figure 11.
We designed an importer of the data sets in case data
set is not available in a dump file format. The importer
can be extended to implement the database scheme of
a concrete data set. The concrete importer is invoked
to import data when a dataset is chosen by the user
using Graphical User Interface (GUI) of the system.
We designed a simple but efficient cache technique
to minimize the creation time of the initial tensor.
We store the results of each different query for each

3http://www.hibernate.org

http://www.hibernate.org
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Figure 10: General overview of the system

different persistence manager (i.e. for each different
database) in a memory to improve the performance. It
is possible because we use read only operations to con-
struct the initial tensor, provide recommendations and
the other actions. The data is imported before using
the Queries API and this is executed only once when
data is not imported. Caching technique could be easily
extended in case we would need to use write/update
operations for the other actions than data import.

B.2.2 Data structures

We divide the data structures that are required for our
system, into the two parts: the structures needed for
the database layer and the others (mostly used in the
statistics layer).

The data structures of the database layer cap-
ture the relations of triplets user -tag-item (Figure
12). There is an interface DefaultEntity that iden-
tifies an object of a database. The abstract classes
DefaultUser, DefaultTag and DefaultResource im-
plement DefaultEntity and represent user, tag and
item respectively. There are unique implementations
for each of the abstract class per each data set.

The other data structures as Recommendation,
Statistics, AverageStatistics are used to represent
the generated recommendation for the user and to pro-
vide information about the statistics of the recommen-
dation(s).

B.2.3 Utilities layer

There is a number of utilities (helpers) classes used:

• Settings – used for generating the recommenda-
tions: identifies the currently selected data set.

• RandomUtil – used for generating the recommen-
dations: helps to split the data set of a user into
the training and the evaluation sets (as described
in Section 5.2).

• IOUtil – used for managing Input/Output oper-
ations. Also, writes the average statistics to the
file.

• CollectionsUtil – used for manipulating the ob-
jects of a type Collection.

B.2.4 Abstract recommender

The recommender layer can be split into the several
parts:

• Generating initial tensor

• Computing tensor factorization

• Generating a list of recommended items

Generating initial tensor To generate the initial
tensor, a user must be provided (for who the recom-
mendations will be computed) and a number of users
to be used. We provide the algorithm (see Algorithm
2) of the initial tensor creation.
We describe the main ideas of the algorithm:
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Figure 11: Database layer with caching service

• Users set users is generated.

• Tags set tags is resolved. These are the tags used
by the users.

• Items set items is resolved. These are the items
tagged with the tags by the users.

• Iterate through all the users, tags and items. Re-
solve if a current item is tagged by the current tag
and user. If so, the existing relationship is marked
in the tensor.

• Store the empty relations (if a user does not tag a
item with a tag) of a current user. These relations
will be used to resolve the recommendations.

Algorithm 2 The algorithm for creating the initial
tensor
Data: User user, number of users users
Result: Initial tensor tensor

15 Generate a set of users
for i ← 0 to users do

16 get user u, add it to the users set users
17 end
18 Get a set of tags used by the users

Get a set of items tagged with the tags by the users

19 tensor = new double[tags][users][items]

20 int uIndex = 0;

foreach user u ∈ users and uIndex < users do
21 for tIndex ← 0 to tags do
22 for rIndex ← 0 to items do
23 if a current user tagged a current item with

a current tag then
24 tensor[tIndex][uIndex][rIndex]++

25 end
26 end
27 end
28 if current user == u then
29 StoreEmptyRelations (tensor)
30 end
31 uIndex++;

32 end
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Figure 12: Data structures of the database layer

Computing tensor factorization To compute a
tensor factorization, the initial tensor has to be defined.
Currently, the recommendations can be computed us-
ing HOSVD (Algorithm 3) or NTF algorithms (as pre-
sented in Section 4.1.3).
We describe the key points of HOSVD algorithm:

• Firstly, the initial tensor is split into the three
mode matrices and the Singular Value Decompo-
sition is computed for each mode matrix.

• Secondly, the dimensions are reduced for the ma-
trices that are results from the Singular Value De-
composition for each mode matrix. These reduced
matrices are multiplied to compute a core tensor.

• Finally, the reduced matrices are transformed, and
with n-mode multiplication the factorized tensor is
computed.

Algorithm 3 The algorithm for tensor factorization
Data: Initial tensor
Result: Factorized tensor

33 Splits initial tensor into the first, second and third
mode matrices and computes SVD for each mode
matrix
splitIntoModeMatrices (tensor)

34 Computes a core tensor: applies dimensional reduc-
tion, executes matrices multiplication
computeCoreTensor (){
matrixDimensionalReduction

multiplyDifferentMatrices

}

35 Computes factorized tensor: transforms the three re-
duced matrices, applies matrices multiplication
computeFinalTensor (){
transformMatrix (redMat1, fMatDim)
transformMatrix (redMat2, sMatDim)
transformMatrix (redMat3, tMatDim)
multiplyDifferentMatrices

}

Generating a list of recommended items When
the factorized tensor is computed, the recommenda-
tions can be resolved. It is possible to do this because
the empty relations are known. The value of an empty
relation is the coordinate in an approximated tensor. It
is iterated through the list of the empty relations and
checked if a score in a concrete coordinate of the fac-
torized tensor is positive. If so – the item is resolved
and an object of Recommendation is created and added
to the list of recommendations. Finally, the list of the
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recommendations is sorted by the scores.

B.2.5 p-core

The main goal of this extension to make a data set
more dense. The members of triplets (users, tags and
items) are generated as it is described in Section 5.2.
More dense data is forwarded to the recommender layer
to create initial tensor or the clustering techniques.

B.2.6 Clustering techniques

Clustering techniques reduces a tag space as described
in Section 4.2. The extension can be combined with any
recommender available (currently HOSVD and NTF)
in the system.

B.2.7 Prior knowledge

This extension is designed for NTF (as explained in
Section 4.1.2) and can be utilized by HOSVD recom-
mender. It may be possible to re-use this extension by
the recommenders based on various factorization tech-
niques.

B.3 Statistics layer

This is a collection of the simple helper classes that
computes metrics and provides the additional infor-
mation about the recommendations. The metrics are:
precision, recall and f-measure (as described in Section
5.4). While analyzing the additional information it is
possible to know which tags were used by the user and
which tags were used to tag a item. Also, the training,
evaluation sets and a top-N list can be resolved.

B.4 Graphical User Interface

Using the GUI a user is able to select the data set, a par-
ticular user for who the recommendations will be gen-
erated, the factorization method and whether the clus-
tering technique should be used. In case basic method
is selected, the user has to provide a number of random
users to be used to construct the initial tensor. Other-
wise, a user has to provide the value for the variable p

for p-core based factorization method.
The screenshots of the application are provided in the
Figures 13, 14 and 15.

B.5 The Open source frameworks

We use the following frameworks for our recommender
system:

• Prallel Colt4 [49] – to execute various mathemat-
ical operations on tensors and matrices. It has a

4http://sites.google.com/site/piotrwendykier/
software/parallelcolt

rich API and performs well. It is developed by the
scientists of CERN5 and it is used for the CERN
projects.

• Parallel Java Library6 [26] – to utilize the par-
allelism with Java. The rich API provides a variety
of options to execute code in parallel.

• Apache Mahout7 – to exploit the clustering tech-
niques like k-Mean, Spectral k-Mean, Mean shift.
During our work, we attempted to integrate Eigen-
cut clustering technique. However, we faced some
problems with the implementation of the method.
We found and reported one error in the code to
the developers of the Apache Mahout framework.

• Hibernate – to manipulate data as the objects of
Java. We describe our choice of Hibernate in the
section B.2.1.

B.6 Conclusion

We present the design of Recommender application.
HOSVD and NTF factorization techniques are imple-
mented. Also, the extensions of p-core, clustering tech-
niques and prior knowledge are implemented. The main
advantages of this system are as follows:

• Database layer enables to manipulate data items
as objects. A number of the different databases
can be bound to the system.

• Flexible Abstract recommender layer can be easily
extended or the new factorization techniques can
be implemented.

• Statistics layer can represent the statistics for any
factorization technique. New metrics can be easily
added.

• Graphical User Interface is simple to use.

• We use the powerful open source frameworks to
minimize the efforts and time when manipulating
with data and tensors (also matrices).

5http://www.cern.ch
6http://www.cs.rit.edu/~ark/pj.shtml
7http://mahout.apache.org/

http://sites.google.com/site/piotrwendykier/software/parallelcolt
http://sites.google.com/site/piotrwendykier/software/parallelcolt
http://www.cern.ch
http://www.cs.rit.edu/~ark/pj.shtml
http://mahout.apache.org/
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Figure 13: The main window of a recommender system

Figure 14: The main window with the generated recommendations

Figure 15: The statistics window for the generated recommendations


