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Preface

This thesis has been written in a hurry at the end of an interesting tenth semester of the Design
of Mechanical Systems-program at Aalborg University, spring 2011. The thesis can be regarded
as a pre-study for a PhD-project at Aalborg University titled Advanced Modelling of Wave Prop-
agation in Curved Elastic Fluid-Loaded Pipes. The PhD-project is supposed to be launched in
the autumn 2011. The PhD-stipend is funded by The Danish Council for Independent Research |
Technology and Production Sciences (FTP) and supported by NKT Flexibles I/S through possible
empirical data and gives the project an immediate industrial relevance. Both the PhD-project
and this thesis are supervised by Prof. Sergey V. Sorokin while Development Engineer Anders
Lyckegaard is the contact person to NKT Flexibles.

At the launch of this semester the ambition where to establish a shell model of a thin walled
toroidal shell. This model should represent a curved segment of a flexible pipe. From this
model the dynamical properties of such geometry should be extracted. Already from the be-
ginning it where expected that this shell model would contain quiet cumbersome equations.
It would then be relevant to approximate the results of the model through asymptotic analy-
sis and perturbation methods. In the mean time the development and benchmarking of the
toroidal shell model turned out to be more time demanding than expected. And as long as the
reliability of the shell model is unclear it has not been found relevant to proceed to next step
and approximate the model by means of perturbation.

Figures and equations are numbered according to the chapter in which they are presented—for
instance: figure 1.2 is the 2nd figure in chapter 1. Appendices are labelled with capital letters
followed by a section number—for instance: A.1 is the 1st section in appendix A. Citations and
references are done in accordance with the Harvard Style where the name of the author and
year of publication are given in square brackets. The bibliography is found on page 43. If not
anything else is stated then the following mathematical notation is used throughout the text:

Scalar: a
Vector: a
Matrix: A

Jonas Morsbøl
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Abstract

Flexible pipes are used in the oil and gas industry to transport various kinds of fossil fluid. One
application is to use a pipe as a riser, transporting crude oil or natural gas from the seabed to an
oil rig or a tank ship hovering in surface of the sea. A common issue with these kinds of pipes
is generation of vibrations due to the fluid flowing inside. These vibrations can be transmitted
through the pipe as elastic waves potentially resulting in fatigue failure of the components at-
tached to the ends of the pipe. With the aim of reducing these vibrations at the ends, a study
of the waveguide properties of such pipes is needed. The first step in this study is, in this the-
sis, taken by investigating the wave guide properties of a infinite toroidal shell. The waveguide
properties of an infinite toroidal shell can later be used to determine the wave guide prop-
erties of a small section of the torus by means of boundary integral equations method. The
small section of the torus can be thought of as representing a bend thin walled pipe section.
It has been chosen to model the pipe as a shell in order take the flexibility of the cross section
into account. The toroidal shell model has been benchmarked against, respectively, classical
Bernoulli-Euler beam theory and curved beam theory. The first comparison is relevant when
the radius of the torus is very large. Due to same reason a shell model of a thin walled cylin-
der has also been established and benchmarked against the toroidal shell. The benchmarking
is made between dispersion curves for some of the simplest vibration modes covered by both
theories. The dispersion curves are obtained by enforcing a trial solution on the differential
equations governing the system and a system of equally many equations and unknowns is ob-
tained by imposing Galerkin’s method. Different trial solutions representing, respectively, in-
plane bending and out-off-plane bending, have been enforced on the toroidal shell model in
fashion of truncated complex Fourier series and the converge of the dispersion curves related
to some of the simplest vibrations modes has been studied. From these studies it can be con-
cluded that the governing differential equations of the toroidal shell, which have been derived,
are valid.
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Chapter

1
Introduction

Flexible pipes are used in the oil and gas industry to transport various kinds of fossil fluid. One
application is to use a pipe as a riser, transporting crude oil or natural gas from the seabed to
an oil rig or a tank ship hovering in surface of the sea. Such situation is illustrated in figure 1.1.
One of the demands for this application is that the local strength of the pipe is sufficiently high
to withstand the pressure difference between the fluid inside the pipe and the surrounding
seawater. But at same time the pipes must be globally flexible to let the ship or the oil rig follow
the vertical movements due to the waves on the surface of the sea. Such demands can be met
by founding the pipe design on a corrugated steel pipe. Figure 1.2 shows a profile of such pipe.

Figure 1.1: A typical situation where the risers hovering
in the seawater (From: NKT Flexibles)

Flow

Vortex

Figure 1.2: The inner wall of a corrugated
pipe. (From: Goyder [2009])

As illustrated in the figure, when fluid is flowing inside the pipe, vortexes can be generated at
the inner pipe wall due to the cavities of the corrugation. It is common that these vortexes
induce time varying forcing of the pipe wall, cf. Nakiboglu [2010]. The time varying forcing
can then be transferred as elastic waves travelling through the pipe. Elastic waves travelling
through the pipe can also be induced if the pipe is attached to oscillating machinery at the
seabed. Time varying forcing is the driving force with respect to crack initiation, crack growth,
and fatigue in general. Due to the high safety demands in the oil and gas industry the encour-
agement for predicting and possibly reducing such fatigue inducing mechanisms is obvious.

NKT Flexibles is a Danish company specialised in designing and producing this kind of
pipes. Their experience is not that these vibrations are fatiguing the pipe, leading to leakage
of the pipe itself. Their concern is rather the possibility of fatigue failure of the components
mounted to each end of the pipe – i.e. end fittings and the piping system followed by the
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1. INTRODUCTION

mounting points. Thus NKT Flexibles are interested in how vibrations are transmitted from the
source to the pipe ends. With a goal of reducing the wave transmission, a deeper understand-
ing of how waves are transmitted through the pipes can yield more well-founded suggestions
for design changes. Knowledge about wave transmission also facilitates the ability of predict-
ing the vibrational output at the pipe end due to a vibrational excitation along, or at the other
end, of the pipe. An ambitious utilisation of such prediction is to monitor the vibrations at ap-
propriate locations along the pipe. Then, during the transmission time of the waves, the signals
from the monitoring can be processed in order to produce a proper counter respond when the
waves arrive at the end of the pipe.

These considerations point in direction of an analytical approach. A by-product of an ana-
lytical approach is a direct insight into the intermediate results. And because a valid analytical
model typically only incorporates the most important mechanisms, which are governing the
system, an insight into the intermediate results can enhance the understanding of how these
mechanisms affect the final result. Evaluation of an analytical model is often also very time
efficient. This is indeed needed if the ambition of actively damping the vibrations, by moni-
toring along the pipe, is to be realised. Thus an analytical approach is not only academically
appealing but is also highly industrial relevant.

Figure 1.3: The picture show the different layers of a NKT Flexibles pipe. (From: NKT Flexibles)

Figure 1.3 illustrates the complexity of a typical pipe produced by NKT Flexibles. The dif-
ferent layers consist of the corrugated inner pipe and a series of polymer layer, sealing the pipe,
and steel armour adding strength to the pipe. The steel armour is oriented in different direc-
tions adding strength in the axial direction of the pipe and in the circumferential direction of
the pipe. Due to these complications a thorough analysis of the dynamical properties of the
structure itself, is a demanding task. In addition to this the possible interactions between the
structure and the fluid inside and outside the pipe must be taken into account in order to ob-
tain a reliable prediction of the wave guide properties in its working environment. This also
makes the analysis multidisciplinary.

1.1 Thesis Outline and Essential Limitations

A long-termed objective is naturally to gain sufficient knowledge to predict the wave guide
properties of a pipe having all the complications as described just above. But instead of simply
launching the project by stating this objective it is found convenient to break down the anal-
ysis into delimited subtasks. An essential property of any flexible pipe, suitable for the above
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1.2. Approach of Modelling

described application, is that it can be regarded as an initially straight pipe. Though during its
application, it is hovering in the water column of the sea in an irregular configuration of pri-
marily slightly bend sections. Due to this essentiality the first milestone will be to investigate
the influence of introducing a bend on a generally flexible pipe. Thus the impact of introducing
a bend is expected to be relevant regardless the specific design of the wall of the flexible pipe.

With the aim of solely investigate the effects of the bending, the pipe will in this thesis be
regarded as isotropic, homogeneous, and single layered. Along with this only one bend, having
a constant bending radius, will be studied. The flexibility of the pipe will be attained by mod-
elling the pipe as a thin walled shell. Compared to conventional beam theory this adds extra
degrees of freedom to the cross section of the pipe, making it possible to attain circumferential
vibration modes which cannot be obtained by beam theory. On the other hand the shell model
will still be able to attain all modes covered by the beam theory. Thus the beam theory can be
used in benchmarking of the shell model.

The geometry of a thin walled flexible pipe, forming a single bend with a constant bending
radius, can be thought of as a section of a torus. It is possible to mathematically parameterise
such geometry and thus the foundation for an analytical shell model exists. In the mean time
it is convenient first to study the wave guide properties of free vibrations in an unbounded ge-
ometry and then later enforce the conditions at the boundaries by means of Boundary Integral
Equations Method, cf. Sorokin [2010]. An unbounded torus can be thought of as an infinite
cylinder which has been bend into a torus overlapping itself in an infinite number of times.
Thus the torus cannot in this case be thought of as a closed ring, but is rather an abstract ge-
ometry. Determination of the wave guide properties in an infinite toroidal shell is in itself a
challenging task. But when it is accomplished it defines the backbone of the analysis of wave
propagation in flexible pipes of finite length. In this thesis the wave guide properties of free
vibrations in the infinite geometry will be studied.

1.2 Approach of Modelling

Besides employing an analytical approach, the following subjects will be examined and dis-
cussed throughout the thesis in order to develop and benchmark the toroidal shell model:

• As a point of reference a shell model of a thin walled infinite cylinder will be estab-
lished. From this model the so-called dispersion curves will be determined. The dis-
persion curves are essential for the dynamical properties of a geometry and they hold
the relation between the wave number, characterising the wave propagation, and the
frequency.

• The cylinder model will be benchmarked against classical Bernoulli-Euler beam theory
by means of these dispersion curves for some of the simplest free vibrational modes for
the geometry.

• When the cylinder shell has been modelled and verified through classical beam theory
the modelling advances with the development of a toroidal shell model. Also here the
dispersion curves will be extracted. As will be demonstrated these dispersion curves are
at first hand used to tune in the shell model in order to obtain converged results.

• The dispersion curves from the toroidal shell model will be benchmarked against curved
beam theory, again for some of the simplest vibrational modes. Subsequently the dis-
persion curves of the toroidal shell model will be compared to the corresponding curves
of the cylinder model. When the torus is straightened out it approaches the geometry of
the cylinder and thus their properties must coincide at the limit.
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1. INTRODUCTION

Initially the ambition for this thesis where to proceed with asymptotic expansion of the rela-
tion between the wave number and the frequency by means of perturbation methods. But as
explained in the preface the modelling, benchmarking, and tuning of the torus model turned
out to be more time consuming than expected, and thereby it where found irrelevant to pro-
duce asymptotic expansion before the validity of the analytical model were ensured.

With these introducing considerations the thesis will start with a short review of the general
thin shell theory.
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Chapter

2
Thin Shell Theory

In this chapter some important relations from the general theory of thin shells will be presented.
The relations along with their fundamental assumptions will be presented and briefly discussed
in accordance with Novozhilov [1959] while the thorough derivations leading to these relations
are omitted.

2.1 Initial Definitions and Assumptions

A shell can be characterised as a continuum bounded by two closely spaced and smooth sur-
faces where the distance between the two surfaces can be regarded as the thickness of the shell.
The fact the two bounding surfaces must be closely spaced and smooth implies that the thick-
ness of the shell is small compared to the other dimensions of the shell, but it do not necessarily
requires the thickness to be constant throughout the shell. The middle of the distance between
the two surfaces bounding the shell defines the so-called middle surface. This is analogue to
the centre line of the beam in classical Bernoulli-Euler beam theory. Like in the beam theory,
where the deformation of any point in the beam is determined from the displacement of the
centre line, the deformation of any point in the shell is determined from the displacement of
the middle surface. Thus, the main concern in the shell theory is the displacement of the mid-
dle surface from its un-deformed configuration. Returning to the definition of the shell the
term small was used to characterise the thickness of the shell. To give a more precise quan-
tification of this smallness it is stated by Novozhilov that within the present thin shell theory a
relative error of less than 5% is obtained if the following inequality, at any point of the shell, is
not violated:

h

R
≤ 1

20
(2.1)

where: h Thickness of the shell at a given location.

R Smallest radius of curvature of the middle surface at the same given location.

If this inequality is violated the shell cannot be regarded as a thin shell and the relative error if
applying the present theory can then be more than 5%.
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2. THIN SHELL THEORY

2.2 Basic Results of Elementary Differential Geometry

A prerequisite in determining the displacement of the middle surface of the shell is a mathe-
matical description of the un-deformed configuration of the middle surface. This mathemat-
ical description can be based on a two-dimensional mesh wrapping the middle surface. This
is illustrated in figure 2.1. Thus the mathematical description can be grasped as a mapping

α1

α2

α2

α1

Α ,1 Α ,2 R ,1 R 2

rrrr

α1

α2nnnn

rrrr

rrrr

Figure 2.1: The mapping from the two-dimensional Cartesian coordinate system to the curved surface of
the shell is controlled by the parameters A1, A2, R1, and R2.

from a two-dimensional mesh to a three-dimensional generally curved surface. As illustrated
in the figure, any point in the two-dimensional mesh can be determined by the coordinates α1

andα2, also called curvilinear coordinates. Based on these two coordinates the mapping to the
curved surface can be formulated as a parameterisation of the following form:

r =
x

y
z

=
 f1(α1,α2)

f2(α1,α2)
f3(α1,α2)

 (2.2)

where: x, y, z Global cartesian coordinates.

From the parametrisation, r, the four parameters A1, A2, R1, and R2 can be derived. The two
first are called Lamé parameters whereas the two later expresses the two principal radii of cur-
vature of the shell. In the shell theory they are used to extract information from the parameter-
isation about the geometry of the middle surface. The Lamé parameters contains information
about how the curvilinear coordinates are stretched or compressed when they are mapped on
the surface while the radii of curvature naturally contains information about how the they are
curved. Because the parameterisation is formulated on the curvilinear coordinates then both
the Lamé parameters and the radii of curvature are in general also functions of the curvilinear
coordinates. The Lamé parameters are derived from the two partial derivatives of the parame-
terisation with respect to α1 and α2:

rα1 =
∂r

∂α1
, rα2 =

∂r

∂α2
(2.3)

The first vector is tangential to the curves generated on the surface, by varyingα1 while keeping
α2 constant. Likewise is the second vector tangential to the curves generated by varying α2.
This is also illustrated in figure 2.1. If α1 is increased by an infinitesimal step, dα1 then the
corresponding path length on the surface, d s1, is determined from:
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2.2. Basic Results of Elementary Differential Geometry

d s1 =
∣∣∣∣ ∂r

∂α1

∣∣∣∣dα1 (2.4)

where: |a| Length of vector a.

And equivalently for dα2:

d s2 =
∣∣∣∣ ∂r

∂α2

∣∣∣∣dα2 (2.5)

The Lamé parameters are now defined as:

A1(α1,α2) ≡
∣∣∣∣ ∂r

∂α1

∣∣∣∣=
√(

∂x

∂α1

)2

+
(
∂y

∂α1

)2

+
(
∂z

∂α1

)2

A2(α1,α2) ≡
∣∣∣∣ ∂r

∂α2

∣∣∣∣=
√(

∂x

∂α2

)2

+
(
∂y

∂α2

)2

+
(
∂z

∂α2

)2

(2.6)

As mentioned earlier the two parameters, R1 and R2, are the two principal radii of curvature
of the surface. Along with this it is assumed that the parameterisation is formulated such that
the directions of the curves generated on the curved surface, by varying one of the curvilinear
coordinates at the time, coincide with the principal directions of the surface. Consequently the
curvilinear coordinates are orthogonal when mapped on the surface. Another consequence is
that the radii of curvature of these curves also coincide with the principal radii of curvatures of
the surface. Naturally the subscripts of respectively the curvilinear coordinates and the radii of
curvature are designated such that the radii of curvature of the curves generated by varying α1

is determined by R1 and vice versa. The principal radii of curvatures can be determined from
a sequence of vector manipulations involving rα1 and rα2 . A sufficient set of relations making
it possible to determine the principal curvatures will here be presented shortly without further
discussion. Detailed derivations of these relations can e.g. be found in Raussen [2007].

First six parameters are determined from the so-called 1. fundamental form and 2. funda-
mental form:

1. fundamental form 2. fundamental form

E(α1,α2) = rα1 · rα1 e(α1,α2) = rα1×rα2|rα1×rα2 | · rα1,α1

F (α1,α2) = rα1 · rα2 f (α1,α2) = rα1×rα2|rα1×rα2 | · rα1,α2

G(α1,α2) = rα2 · rα2 g (α1,α2) = rα1×rα2|rα1×rα2 | · rα2,α2

(2.7)

These parameters are used to calculate the Gaussian curvature and the mean curvature:

K (α1,α2) = eg − f 2

EG −F 2

H(α1,α2) = eG + g E −2 f F

2
(
EG −F 2

) (2.8)
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2. THIN SHELL THEORY

Finally the two principal curvatures are found as:

k1(α1,α2) = H +
√

H 2 −K

k2(α1,α2) = H −
√

H 2 −K

(2.9)

The radii of curvature is found as the reciprocal of the curvature. It must though be empha-
sised that Raussen [2007] uses opposite sign convention for the radius of curvature compared
to Novozhilov. In Novozhilov’s book the centre of the negative curvature is found in the di-
rection of the positive surface normal, i.e. in direction of n = rα1 × rα2 , c.f. figure 2.1. In the
above relations the surface normal is though pointing in the direction of what is assumed to
be the centre of the positive curvature. To match the above relations to the conventions in
Novozhilov’s book the radii of curvature are here defined as:

R1(α1,α2) ≡− 1

k1

R2(α1,α2) ≡− 1

k2

(2.10)

With these definitions of the Lamé parameters and the radii of curvature the shell theory can
be specialised to any geometry coved by the initial definitions and assumptions presented in
previous section.

As a final remark to this section of elementary differential geometry it is pointed out that
certain relations between the Lamé parameters and the radii of curvature must be satisfied in
order to ensure that they consistently describe the same surface. The relations are called the
conditions of Codazzi and the condition of Gauss. The conditions of Codazzi are:

∂

∂α1

(
A2

R2

)
= 1

R1

∂A2

∂α1

∂

∂α2

(
A1

R1

)
= 1

R2

∂A1

∂α2

(2.11)

And the condition of Gauss is:

∂

∂α1

(
1

A1

∂A2

∂α1

)
+ ∂

∂α2

(
1

A2

∂A1

∂α2

)
=− A1 A2

R1R2
(2.12)

As indicated these identities can be helpful to test the consistency between the Lamé parame-
ters and the radii of curvature.

2.3 Deformations of the Middle Surface

The determination of deformation of the middle surface of the shell is based on a kinematic
assumption similar to one of the well-known Kirchhoff assumptions founding the Bernoulli-
Euler beam theory. In this thin shell theory, when determining the deformation of the shell, it
is assumed that:

Any fictive line normal to the middle surface of the shell remains straight and
normal to this surface at any instance during deformation of the shell.
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2.3. Deformations of the Middle Surface

The consequences of this kinematic assumption are identical to assuming that out of plane
shearing forces do not contribute to the deformation of the shell. From the kinematic assump-
tion the relations between displacements of the middle surface and its resulting deformations
can be derived. These derivations result in six relations expressing six quantities. All six quan-
tities are necessary in order to determine the complete state of deformation in the vicinity of
any point in the middle surface. Physically the quantities express; relative elongation along α1

and α2, in-plane shearing, changes of curvature in the direction of α1 and α2, and finally the
twist of the surface. The displacements of any point in the middle surface are given by u, v ,
and w , which are the projections of the displacement vector1 on the local frame defined by rα1 ,
rα2 , and n, c.f. figure 2.1. Relating to these displacements the relations of deformation are:

ε1 = 1

A1

∂u

∂α1
+ 1

A1 A2

∂A1

∂α2
v + 1

R1
w

ε2 = 1

A2

∂v

∂α2
+ 1

A1 A2

∂A2

∂α1
u + 1

R2
w

γ= A2

A1

∂

∂α1

(
v

A2

)
+ A1

A2

∂

∂α2

(
u

A1

)
(2.13)

κ1 =− 1

A1

∂

∂α1

(
1

A1

∂w

∂α1
− u

R1

)
− 1

A1 A2

∂A1

∂α2

(
1

A2

∂w

∂α2
− v

R2

)

κ2 =− 1

A2

∂

∂α2

(
1

A2

∂w

∂α2
− v

R2

)
− 1

A1 A2

∂A2

∂α1

(
1

A1

∂w

∂α1
− v

R1

)

τ=− 1

A1 A2

(
∂2w

∂α1∂α2
− 1

A1

∂A1

∂α2

∂w

∂α1
− 1

A2

∂A2

∂α1

∂w

∂α2

)
+

+ 1

R1

(
1

A2

∂u

∂α2
− 1

A1 A2

∂A1

∂α2
u

)
+ 1

R2

(
1

A1

∂v

∂α1
− 1

A1 A2

∂A2

∂α1
v

)

where: ε Relative elongation.

γ In-plane shearing.

κ Relative change of curvature.

τ Twist.

If A1 = A2 = 1 and R1 = R2 =∞, which corresponds to a plane shell, the relations reduce to:

1The displacement vector can be extracted from the vector field connecting the un-deformed and the deformed
middle surface and is pointing in direction of the deformed configuration.
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2. THIN SHELL THEORY

ε1 = ∂u

∂α1

ε2 = ∂v

∂α2

γ= ∂v

∂α1
+ ∂u

∂α2

κ1 =−∂
2w

∂α2
1

κ2 =−∂
2w

∂α2
2

τ=− ∂2w

∂α1∂α2

(2.14)

Here the first three can be recognised as the in-plane components of Cauchy’s strain tensor
given in engineering strains while the last three are known as fundamental in the plate theory,
c.f. Timoshenko [1959].

2.4 Equilibrium on a Shell Element

The equilibrium is obtained by applying Newton’s second law on any infinitesimal element of
the shell. Such element can by separated from the surrounding shell by cutting perpendicular
to the middle surface along the boundaries of the intervals α10 ≤ α1 ≤ α10 + dα1 and α20 ≤
α2 ≤α20 +dα2. The behaviour of this element is determined by the stresses acting through the
boundaries of the element along with body forces on the element and any possibly loadings on
the surface of the shell. In analogy to previous considerations about the middle surface it is also
here convenient to relate the stresses through the boundaries of the element and the loadings
on its volume and surface to its middle surface. Thus, the stresses through the boundaries
are represented by statically equivalent forces and moments acting on the boundaries of the
middles surface of the element. These forces and moments are obtained by integrating the
stresses over the area of each boundary of the shell element. But because the side lengths of the
element are of infinitesimal size the stresses are assumed constant along the directions of the
side lengths and are then only possible to vary through the thickness of the shell element. Thus,
to make each resulting force and moment independent of the side length of the boundary,
through which it is acting, it is normalised by this side length. The unit of the stress resultants
are then force per unit length and moment per unit length. The resultants of the stresses are
illustrated in positive direction in figure 2.2 and 2.3 where the forces are found in the first figure
and moments are found in the second. The explicit relations between the stresses and their
resulting forces and moments are not needed here and are thus not presented, but can be found
in the book of Novozhilov [1959]. As can be noticed in figure 2.2 the out of plane forces are
included even though they were abandoned in previous section where the deformation of the
shell were discussed. But as also mentioned the out of plane shearing forces are only neglected
when determining the deformations of the shell.
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a2
a1

T21

N2

T2
T12

N1

T1

Figure 2.2: The positive direction of forces is indi-
cated in the figure. (From: Novozhilov [1959])

a2
a1

M2M21
M1

M12

Figure 2.3: The positive direction of moments is in-
dicated in the figure. (From: Novozhilov [1959])

Body forces acting on the volume of the shell element and surface tractions acting on the
free surfaces are related to the middle surface by considering the smallness of the shell thick-
ness compared to the other dimensions of the shell and by utilising the assumption that the
side lengths of the element under consideration are of infinitesimal size. The small shell thick-
ness makes it reasonable to replace the body forces and surface tractions by a statically equiva-
lent forcing distributed over the middle surface without considering the moment arm between
the middle surface and the location of the acting point of the actual forcing. Similar it is as-
sumed that due to the infinitesimal side lengths of the element then the statically equivalent
forcing distributed over the middle surface is uniform which also means that no moments need
to be considered due to body forces or surface tractions. The intensity of the forcing on the
middle surface from the body forces and surface tractions can be collected in one quantity
which is denominated q.

The force equilibrium equations of the shell element are obtained by summing, respec-
tively, all the force differences between the opposite boundaries along with the forcing of the
middle surface. This sum is, in accordance with Newton’s second law, equated to the time
derivative of the linear momentum of the shell element. But following D’Alembert’s principle
the time derivative of the linear momentum can simply be regarded as a so-called inertia force
acting as a body force on the element. Thus, any dynamical contribution to the equilibrium
can simple be regarded as a part of q and the sum of forces are then just equated to zero. At
first hand this gives one equilibrium equation in vector form. By projecting this vector equa-
tion in the three directions given by the local frame in figure 2.1 the following three differential
equations are formed:

0 = 1

A1 A2

[
∂ (A2T1)

∂α1
+ ∂ (A1T21)

∂α2
+ ∂A1

∂α2
T12 − ∂A2

∂α1
T2

]
+ N1

R1
+q1

0 = 1

A1 A2

[
∂ (A2T12)

∂α1
+ ∂ (A1T2)

∂α2
+ ∂A2

∂α1
T21 − ∂A1

∂α2
T1

]
+ N2

R2
+q2 (2.15)

0 = 1

A1 A2

[
∂ (A2N1)

∂α1
+ ∂ (A1N2)

∂α2

]
− T1

R1
− T2

R2
+qn

The fact that the inertia force, due to e.g. free vibration of the shell element, can be regarded as
a part of q makes these equations equally valid for both statics and dynamics.

The moment equilibrium equations are obtained in similar way as the force equilibrium
equations by summing all the moment differences between the opposite boundaries. In ad-
dition to this the moments created by the shearing forces are also taken into account. The
moment due to the forcing of the middle surface is though neglected. This is because it is
calculated by multiplying the intensity by the area of the middle surface, dα1dα2, and then

11



2. THIN SHELL THEORY

crossed by its moment arm which is of same order as dα1 and dα2. This means that the mo-
ment due to the forcing of the middle surface is of third order smallness. The moments due to
the shearing forces on the boundaries of the element are though calculated by first multiplying
the force by the length of the boundary of which it is acting, e.g. dα1, and then by the moment
arm, dα2. Thus, these moments are only of second order of smallness, and the moment due
to the forcing of the middle surface is then neglected2. Like in the derivation of the force equi-
librium equations the moments are projected in the directions of the local frame of the shell
forming the following three equations:

0 = 1

A1 A2

[
∂ (A2M1)

∂α1
+ ∂ (A1M21)

∂α2
+ ∂A1

∂α2
M12 − ∂A2

∂α1
M2

]
−N1

0 = 1

A1 A2

[
∂ (A2M12)

∂α1
+ ∂ (A1M2)

∂α2
+ ∂A2

∂α1
M21 − ∂A1

∂α2
M1

]
−N2 (2.16)

0 = T12 −T21 + M12

R1
− M21

R2

Together with the force equilibrium equations these equations must be obeyed for any such
element of the shell. It can in the mean time be shown that the third of moment equilib-
rium equations is identically satisfied. This can be done by considering that all the terms in
this equations are obtained by integrating through the thickness of the shell over the shearing
stresses, i.e. σ12 or σ21, and imposing the identity that σ12 −σ21 = 0.

2.5 Strain Energy and the Relations Between Forces and Moments
and Deformations

In the previous two sections the relations between displacements and deformations of the mid-
dle surface and the equilibrium between forces and moments are given. Here the relations be-
tween the forces and moments and the deformation of the middle surface will be given such
that the equilibrium between displacements can be established.

The relations between the forces and moments and the deformation of the middle surface
takes their origin in the strain energy. To the general expression of strain energy the assump-
tion of out of plane shearing being neglectable is enforced. Along with this, another Kirchhoff
assumption is imposed; namely that normal stresses in the direction normal to the middle sur-
face of the shell may also be neglected. Thus, the strain energy can be expressed as:

U = 1

2

∫
V

(σ11ε11 +σ22ε22 +σ12ε12)dV (2.17)

where: σi j Components of Cauchy’s stress tensor.

εi j Components of Cauchy’s strain tensor.

V Volume of the shell element.

2An underlying assumption in these considerations is that the forcing of the middle surface is of maximum
same order of magnitude as the shearing forces at the boundaries of the element.
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2.5. Strain Energy and the Relations Between Forces and Moments and Deformations

This expression can be rewritten into two different forms. In the first form all stresses are elim-
inated through Hooke’s law and then integrated through the thickness of the shell. Then, if
terms of higher order of smallness are cancelled the following can be obtained:

U = Eh

2
(
1−ν2

) ∫ ∫ (
(ε1 +ε2)2 −2(1−ν)

(
ε1ε2 − γ2

4

))
A1 A2dα1dα2+

+ Eh3

24
(
1−ν2

) ∫ ∫ (
(κ1 +κ2)2 −2(1−ν)

(
κ1κ2 −τ2)) A1 A2dα1dα2 (2.18)

where: E Young’s modulus.

ν Poisson’s ratio.

h Thickness of the shell.

This is valid if the shell is made of a linear elastic, isotropic, and homogeneous material.
To obtain the other form of the strain energy the product of the stresses and strains in (2.17)

are also integrated through the thickness of the shell. But here they are integrated as they are.
The integration of the stresses, through the thickness of the shell, results in the statically equiv-
alent forces and moments which also forms the equilibrium equations, while the strains may
be replaced by the deformations of the middle surface. By taking the first variation with respect
to the displacements of the middle surface in both expressions of the strain energy and then
comparing terms the following relations can be identified:

T1 = Eh

1−ν2 (ε1 +νε2) , T2 = Eh

1−ν2 (ε2 +νε1)

M1 = Eh3

12
(
1−ν2

) (κ1 +νκ2) , M2 = Eh3

12
(
1−ν2

) (κ2 +νκ1)

T12 = Eh

2(1+ν)

(
γ+ h2

6R2
τ

)
, T21 = Eh

2(1+ν)

(
γ

h2

6R1
τ

)

M12 = M21 = Eh3

12(1+ν)
τ

(2.19)

By substituting the relations between deformations and displacements of the middle surface,
i.e. equations (2.13), into these relations and then these into the equilibrium equations pre-
sented in previous section the equilibrium between displacements is obtained. As a final re-
mark the equilibrium equations expressed in displacements can also be obtained by equating
to zero the first variation with respect to the displacements of the volume integral of the differ-
ence between the total potential energy and the kinetic energy. As long as free vibrations are
considered the total potential energy is purely expressed by the strain energy in (2.18) while the
kinetic energy is due to the oscillating mass of the shell. This method is known as Hamilton’s
principle.
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Chapter

3
A Thin Walled Cylinder

In this chapter the shell theory will be specialised to a thin walled infinite cylinder making it
possible to investigate the properties of free vibration of such geometry. On one hand this serves
as an example of how the theory presented in previous section can be applied, and on the other
hand the results serves as a limiting case of the thin walled torus which will be studied in next
chapter. The results obtained in this chapter will be compared to results from classical Bernoulli-
Euler beam theory describing some of the simplest free vibrational modes of a cylinder.

a1

a2
r

a2

a1

Figure 3.1: The middle surface of the cylinder shell is wrapped by the curvilinear coordinate system, α1

and α2.

The modelling of the cylinder shell follows the theory presented in previous chapter. From
these relations a system of three coupled differential equations, formulated in the displace-
ments of the shell, is obtained. The general solution to this system of equations is expected
to be expressible as a product of three separate complex exponential functions. The three ex-
ponential functions are, respectively, function of the axial coordinate of the cylinder, the cir-
cumferential coordinate of the cylinder, and of the time. The cylinder is illustrated in figure
3.1 where the axial and circumferential coordinates are given in the curvilinear coordinates α1

andα2. Because the cylinder is a semi-closed shell the circumferential waves must be standing
waves, having a wave length which multiplied with an integer gives the circumference of the
cylinder. Without loss of generality such standing wave can be represented by an infinite sum
of complex exponential functions, c.f. Fourier series. The axial waves are on the other hand
either evanescent or travelling as long as the length of the cylinder is not bounded. Together
this gives a solution on the form:

u (α1,α2, t ) =
u

v
w

=
∞∑

m=0
Re

{
ame

i mα2
r

}
Re

{
e

kα1
r e

iωc0t
r

}
(3.1)
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3. A THIN WALLED CYLINDER

where: u, v, w Axial, tangential, and normal displacements of the middle surface of the cylinder shell.

k Non-dimensional complex wave number.

m Circumferential mode number.

am Vector of complex amplitudes of vibrations.

ω Non-dimensional frequency.

c0 Speed of sound.

Note that α1 and α2 are scaled by r to ensure that k and m are non-dimensional. Similar t is
scaled by c0

r to makeω non-dimensional. Later this scaling will show itself convenient. By sub-
stituting this solution into the system of differential equations a system of algebraic equations
is formed. To investigate the dynamical properties of the cylinder shell, at one fundamental cir-
cumferential wave mode at the time, i.e. for one specific value of m, this system of equations
can be arranged as a matrix-vector equation of the form:

M
3×3

(k,ω,m)am = 0 (3.2)

According to Cramer’s rule a nontrivial solution of such system exists if the determinant to the
coefficient matrix is zero. So by taking the determinant and equating it to zero the relation be-
tween the wave number, k, and the frequency, ω, at the specified value of m, can be examined.
By determining the wave number at different frequencies the so-called dispersion curves can be
plotted. This dispersion diagram contains information about the transition between evanes-
cent and travelling waves in the axial direction of the cylinder and how each wave evolves at
different frequencies. The dispersion curves will be unique to the cylinder shell and to the spec-
ified circumferential mode number. To obtain this the relations presented in previous chapter
will now be specialised to the geometry of a cylinder.

3.1 Geometrical Properties of a Thin Walled Cylinder

The geometry of the middle surface of a cylinder can be parameterised as:

r(α1,α2) =
r cos

(α2
r

)
r sin

(α2
r

)
α1

 (3.3)

Applying this to equations (2.6) the Lamé parameters of the cylinder are:

A1(α1,α2) =
√(

∂x

∂α1

)2

+
(
∂y

∂α1

)2

+
(
∂z

∂α1

)2

=
√

12 = 1

A2(α1,α2) =
√(

∂x

∂α2

)2

+
(
∂y

∂α2

)2

+
(
∂z

∂α2

)2

=
√(−sin

(α2
r

))2 + (
cos

(α2
r

))2 =
√

12 = 1

(3.4)

The radii of curvature can easily be guessed to:

R1 =∞ (3.5)

R2 = r (3.6)
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3.2. Deformations of the Middle Surface of the Cylinder

R1 =∞

R2 = r
(3.7)

But this can also be verified by equations (2.7) through (2.10).

3.2 Deformations of the Middle Surface of the Cylinder

The deformations of the middle surface of the cylinder are determined by substituting the
Lamé parameters and the radii of curvature from above into the relations in (2.13):

ε1 = ∂u

∂α1

ε2 = ∂v

∂α2
+ 1

r
w

γ= ∂u

∂α2
+ ∂v

∂α1

κ1 =−∂
2w

∂α2
1

κ2 = 1

r

∂v

∂α2
− ∂2w

∂α2
2

τ= 1

r

∂v

∂α1
− ∂2w

∂α1∂α2

(3.8)

3.3 Equilibrium Equations of an Element of the Cylinder Shell

Similar to the deformations, the force equilibrium equations of the cylinder shell are deter-
mined by substituting the Lamé parameters and the radii of curvature into equations (2.15):

0 = ∂T1

∂α1
+ ∂T21

∂α2
+q1

0 = ∂T12

∂α1
+ ∂T2

∂α2
+ N2

r
+q2

0 = ∂N1

∂α1
+ ∂N2

∂α2
− T2

r
+qn

(3.9)

The forces N1 and N2 are determined from the first two of the moment equilibrium equations
in (2.16):
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3. A THIN WALLED CYLINDER

N1 = ∂M1

∂α1
+ ∂M21

∂α2

N2 = ∂M12

∂α1
+ ∂M2

∂α2

(3.10)

And they are substituted into the force equilibrium equations above:

0 = ∂T1

∂α1
+ ∂T21

∂α2
+q1

0 = ∂T12

∂α1
+ ∂T2

∂α2
+ 1

r

(
∂M12

∂α1
+ ∂M2

∂α2

)
+q2

0 = ∂2M1

∂α2
1

+ ∂2M21

∂α1α2
+ ∂2M12

∂α1α2
+ ∂2M2

∂α2
2

− T2

r
+qn

(3.11)

The forces and moments are then eliminated by substituting from the relations in (2.19):

0 = ∂ε1

∂α1
+ν ∂ε2

∂α1
+ 1−ν

2

∂γ

∂α2
+ 1−ν2

Eh
q1

0 = 1−ν
2

(
∂γ

∂α1
+ h2

6r

∂τ

∂α1

)
+ ∂ε2

∂α2
+ν ∂ε1

∂α2
+

+ (1−ν)h2

12r

∂τ

∂α1
+ h2

12r

(
∂κ2

∂α2
+ν∂κ1

∂α2

)
+ 1−ν2

Eh
q2

0 = h2

12

(
∂2κ1

∂α2
1

+ν∂
2κ2

∂α2
1

)
+ (1−ν)h2

6

∂2τ

∂α1∂α2
+

+ h2

12

(
∂2κ2

∂α2
2

+ν∂
2κ1

∂α2
2

)
− ε2 +νε1

r
+ 1−ν2

Eh
qn

(3.12)

To obtain the equilibrium equations expressed in displacements, the deformations of the mid-
dle surface are substituted by the relations in (3.8):
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3.3. Equilibrium Equations of an Element of the Cylinder Shell

0 = ∂2u

∂α2
1

+ν
(

∂2v

∂α1∂α2
+ 1

r

∂w

∂α1

)
+ 1−ν

2

(
∂2u

∂α2
2

+ ∂2v

∂α1∂α2

)
+ 1−ν2

Eh
q1

0 = 1−ν
2

(
∂2u

∂α1∂α2
+ ∂2v

∂α2
1

+ h2

6r

(
1

r

∂2v

∂α2
1

− ∂3w

∂α2
1∂α2

))
+ ∂2v

∂α2
2

+ 1

r

∂w

∂α2
+ν ∂2u

∂α1∂α2
+

+ (1−ν)h2

12r

(
1

r

∂2v

∂α2
1

− ∂3w

∂α2
1∂α2

)
+ h2

12r

((
1

r

∂2v

∂α2
2

− ∂3w

∂α3
2

)
−ν ∂3w

∂α2
1∂α2

)
+ 1−ν2

Eh
q2

0 = h2

12

(
−∂

4w

∂α4
1

+ν
(

1

r

∂3v

∂α2
1∂α2

− ∂4w

∂α2
1∂α

2
2

))
+ (1−ν)h2

6

(
1

r

∂3v

∂α2
1∂α2

− ∂4w

∂α2
1∂α

2
2

)
+

+ h2

12

(
1

r

∂3v

∂α3
2

− ∂4w

∂α4
2

−ν ∂4w

∂α2
1∂α

2
2

)
− 1

r

∂v

∂α2
− 1

r 2 w − ν

r

∂u

∂α1
+ 1−ν2

Eh
qn

(3.13)

As a final step before the general solution is substituted into the equilibrium equations the
intensity of the forcing of the middle surface, q, must be considered. The scope of this chap-
ter is, as mentioned, to investigate the free vibration properties of a cylinder shell. Because
the equilibrium equations from above are valid for the middle surface of an infinitesimal ele-
ment of the shell and because no other body forces or surface tractions are considered than the
inertia force due to the free vibration the intensity of q is:

q = ∂
(
hρu̇

)
∂t

= hρ
∂2u

∂t 2 = hρ
∂2

∂t 2

u
v
w

 (3.14)

where: ρ density.

By substituting this into the equilibrium equations derived above the following can be ob-
tained:



∂2

∂α2
1
+ 1−ν

2
∂2

∂α2
2
+

+ (1−ν2)ρ
E

∂2

∂t 2

1+ν
2

∂2

∂α1∂α2

ν
r

∂
∂α1

1+ν
2

∂2

∂α1∂α2

1−ν
2

(
1+ h2

3r 2

)
∂2

∂α2
1
+

+
(
1+ h2

12r 2

)
∂2

∂α2
2
+ (1−ν2)ρ

E
∂2

∂t 2

− h2

12r
∂3

∂α3
2
−

− (2−ν)h2

12r
∂3

∂α2
1∂α2

+ 1
r

∂
∂α2

−ν
r

∂
∂α1

h2

12r
∂3

∂α3
2
+

+ (2−ν)h2

12r
∂3

∂α2
1∂α2

− 1
r

∂
∂α2

−h2

12
∂4

∂α4
1
− h2

12
∂4

∂α4
2
− 1

r 2 −
−h2

6
∂4

∂α2
1∂α

2
2
+ (1−ν2)ρ

E
∂2

∂t 2



u
v
w

= 0 (3.15)

Here the matrix can be regarded as a differential operator acting on the displacements of the
cylinder shell. Next step is to substitute the solution.
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3. A THIN WALLED CYLINDER

3.4 Solving the Equations of Equilibrium of the Cylinder Shell

If a single term of the general solution in (3.1), i.e. for at specific circumferential mode number,
m, is substituted into the system of partial differential equations in (3.15) they become alge-
braic. Then, if these algebraic equations are also divided with the exponential functions of this
single term of the general solution, the following can be obtained:

Mam = 0

m 

k2

r 2 − 1−ν
2

m2

r 2 −
− (1−ν2)ρω2c2

0
Er 2

1+ν
2

i mk
r 2

νk
r 2

1+ν
2

i mk
r 2

1−ν
2

(
1+ h2

3r 2

)
k2

r 2 −
−

(
1+ h2

12r 2

)
m2

r 2 − (1−ν2)ρω2c2
0

Er 2

h2

12r
i m3

r 3 −
− (2−ν)h2

12r
i mk2

r 3 + i m
r 2

−νk
r 2

− h2

12r
i m3

r 3 +
+ (2−ν)h2

12r
i mk2

r 3 − i m
r 2

−h2

12
k4

r 4 − h2

12
m4

r 4 − 1
r 2 +

+h2

6
m2k2

r 4 − (1−ν2)ρω2c2
0

Er 2



am

bm

cm

= 0 (3.16)

As mentioned in the beginning of this chapter, solutions where am 6= 0 exists only if the deter-
minant of M is zero. Before expanding the determinant it will though show itself convenient to
multiply all terms in the matrix with the common factor r 2 and to multiply the second row with
i and then also divide second column with i . The combination of the last two manipulations
remains the determinant unchanged while the first do not change the relation between each
of the rows or columns of the matrix. Along with this the transformation h

r = δ is introduced

and it is recognised that c0 =
√

E
ρ . After also introducing these manipulations the following

equation must be solved:

|M| = 0

m ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k2 − 1−ν
2 m2−

−(
1−ν2

)
ω2

1+ν
2 mk νk

− 1+ν
2 mk

1−ν
2

(
1+ δ2

3

)
k2−

−
(
1+ δ2

12

)
m2 − (

1−ν2
)
ω2

−δ2

12 m3+
+ (2−ν)

12 δ2mk2 −m

−νk
−δ2

12 m3+
+ (2−ν)

12 δ2mk2 −m

−δ2

12 k4 − δ2

12 m4 −1+
+δ2

6 m2k2 − (
1−ν2

)
ω2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (3.17)

The manipulations between (3.16) and (3.17) reveal that the only material dependency on the
determinant is Poisson’s ratio. It can also be seen that the only important geometrical property
of the cylinder is the ratio, δ, between the shell thickness and the radius of the cylinder.

Expansion of the determinant results in a so-called dispersion polynomial of eighth order
of k and sixth order of ω. This polynomial can be solved numerically making it possible to plot
the dispersion curves for specified values of m. A plot of the dispersion curves obtained from
this cylinder shell model, related to the first three circumferential mode numbers, is seen as
the thin curves in figure 3.2. In this plot ν= 0.3 which is common to most metals. The relation
between the shell thickness and the radius of the cylinder is given in the headline of the figure.
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3.5. Correlation Between the Cylinder Shell and Classical Beam Theory
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Figure 3.2: The figure shows dispersions curves from the first three circumferential mode numbers.

3.5 Correlation Between the Cylinder Shell and Classical Beam
Theory

The two straight curves in figure 3.2 are related to m = 0, the curved one, cutting on at ω = 0,
is related to m = 1, while the one cutting on just below ω = 0.01 relates to m = 2. To get a
physical understanding of the vibrational displacement pattern of the cylinder shell, present
at these circumferential modes, a closer study of the solution, substituted into the equilibrium
equations, can be helpful. Naturally the most interesting part of the solution, in this context, is
the exponential function regarding the circumferential mode number along with its vector of
vibrational amplitudes. When m = 0 this exponential function gives:

a0e
i 0α2

r = a0 =
a0

b0

c0

 (3.18)

Thus the displacements along the circumference of the cylinder are uniform. And because
the displacements are related to the curvilinear coordinate system in figure 3.1 this uniform
circumferential displacement pattern can be illustrated as in figure 3.3.
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3. A THIN WALLED CYLINDER

b0

c0
a0

a0

a0

a0

b0

b0
b0

c0

c0

c0

Figure 3.3: The displacements along the circumfer-
ence at m = 0 are uniform.

b1b1

a1

a1

c1

c1

Figure 3.4: The displacements along the circumfer-
ence at m = 1 have a period of 2π.

From the matrix in (3.16) it can also be seen that if m = 0 then b0 is uncoupled from a0 and
c0 while a0 and c0 are coupled due to Poisson’s ratio. Thus one solution can be of the form
a0 = [0 b0 0]T and another can be a0 = [a0 0 b0]T . The first one corresponds to torsional
vibration of the cylinder. This vibrational mode can also be modelled through classical beam
theory. When modelled so the following partial differential equation can be obtained (cf. Rao
[2003]):

G J
∂2θ (x, t )

∂x2 = I0
∂2θ (x, t )

∂t 2 (3.19)

where: G Shear modulus.

J Polar moment of inertia.

θ Angle of twist of the beam.

x Coordinate along the axis of rotation of the beam.

I0 Polar mass moment of inertia.

The polar mass moment of inertia can be written as I0 = ρ J , the coordinate along the axis of
rotation of the beam can be written as x =α1, and the angle of twist can in relation to the shell
model of the cylinder be written as θ = v

r . If the general solution in (3.1) is substituted into the
differential equation and the equation then also is divided with this solution the following is
obtained:

G
∂2v

∂α2
1

= ρ∂
2v

∂t 2 (3.20)

⇓

E

2(1+ν)

k2

r 2 =−ρω
2c2

0

r 2 =−ω
2E

r 2 (3.21)

⇓

k =±
√

2(1+ν)iω (3.22)
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3.5. Correlation Between the Cylinder Shell and Classical Beam Theory

The positive imaginary part of this wave number is plotted as function of the frequency as the
cyan square marks in figure 3.2 and shows a close correlation to one of the branches of the
dispersion curves of the cylinder shell model.

The other solution, a0 = [a0 0 b0]T , corresponds to a wave mode of coupled axial and
breathing vibrations. As mentioned earlier the coupling is due to Poisson’s ratio. Physically
it means that if the cylinder is either stretched or compressed in its axial direction, the cross
section will either contract or expand in the radial direction. Such vibrational mode can also,
implicitly, be modelled through classical beam theory. If a beam is subjected to axial vibration
the governing partial differential equation is (cf. Rao [2003]):

E A
∂2u (x, t )

∂x2 = ρA
∂2u (x, t )

∂t 2 (3.23)

where: A Cross sectional area.

u Axial displacement.

When modelled so nothing has been assumed about the area changes of the cross section.
Thus the boundary of the cross section of the beam is free of tractions which implicitly mean
that it is free to expand or contract as needed. This is exactly the same situation as when the
cylinder shell is excited in a axial vibration mode which is coupled to breathing vibrations.
Applying same manipulations to the above differential equation as to the differential equation
governing the torsional vibration the following is gained:

E
∂2u

α2
1

= ρ∂
2u

∂t 2 (3.24)

⇓

E
k2

r 2 =−ρω
2c2

0

r 2 =−ω
2E

r 2 (3.25)

⇓

k =±iω (3.26)

Again the positive imaginary part of the wave number is plotted against the frequency as the
purple square marks in figure 3.2. Also here a close correlation is seen the one of the branches
of the dispersion curves of the shell model.

Now one possible vibration mode when m = 1 will be studied. The interesting term of the
general solution in (3.1) is in this case:

a1e
i 1α2

r =
a1

b1

c1

(
cos

(α2
r

)+ i sin
(α2

r

))
(3.27)

This solution is obviously periodic in the circumference of the cylinder and has a period of 2π.
Indeed it is possible that a1 can be of the form:

a1 = Re{a1}+ i Im{a1} =
 0

b1

0

+ i

 a1

0
c1

 (3.28)
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3. A THIN WALLED CYLINDER

If so, then the tangential displacement has a phase shift of π to the normal and axial displace-
ment of the surface of the cylinder shell. Such pattern is illustrated in figure 3.4. A displacement
field well known from the classical beam theory, which is almost encompassed by this displace-
ment pattern, is the bending of a beam subjected to the kinematic constraints due to Kirchhoff.
As mentioned previously in this thesis, the cross section of a bending Bernoulli-Euler beam is
kinematically constraint to remain plane and perpendicular to the centre line of the beam. This
is almost the same as assuming that the cross section moves as a rigid body and rotates just as
much as the centre line of the beam. Why it is just almost and not exactly the same will be
discussed later in this section. But for the time being the deviation between these two formula-
tions will be neglected. Thus it is reasonable to assume that some appropriate values and signs
of a1, b1, and c1 exist, such that the motion of the cross section in figure 3.4 will resemblance
the motion of the cross section in a Bernoulli-Euler beam subjected to bending vibrations. The
governing partial differential equation of a beam subjected to free bending vibrations can be
written as (cf. Rao [2003]):

E I
∂4w (x, t )

∂x4 =−ρA
∂2w (x, t )

∂t 2 (3.29)

where: I Moment of inertia.

w Displacement of the beam normal to its centre line.

If the same substitutions and manipulations are made to this equation as to the previous tor-
sional and axial vibration cases and it is noted that for a thin walled cylinder A = 2πr h and
I =πr 3h the following is obtained:

E I
∂4w

∂α4
1

=−ρA
∂2w

∂t 2 (3.30)

⇓

Eπr 3h
k4

r 4 = ρ2πr h
ω2c2

0

r 2 = 2πh
ω2E

r
(3.31)

⇓

k =±2
1
4
p
ωi

∨
k =±2

1
4
p
ω (3.32)

The positive imaginary part of this solution has also been plotted and is seen as the orange
triangle markers in figure 3.2. Especially in the low-frequency range a fair correlation is again
seen between the beam theory and the results obtained through the shell theory.

Now returning to the two formulations of the kinematic constraints enforced on the bend-
ing beam. The difference of these two assumptions is that the kinematic assumption due to
Kirchhoff only assumes that the cross section remains plane. Thus, on the compression side of
the centre line of the bending beam the cross section will tend to expand while on the elongat-
ing side of the centre line the cross section will contract. The result of this is that even though
the cross section is constraint to remain plane it is free to change shape as long as the bound-
aries of the cross section are free of tractions. Thus, the cross section in a Bernoulli-Euler beam
does not move as a rigid body. It is though possible to demonstrate the impact if actually as-
suming that the cross section moves as a rigid body and rotates just as much as the centre line.
This can be done by requiring:
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3.5. Correlation Between the Cylinder Shell and Classical Beam Theory

a1 = Re{a1}+ i Im{a1} =
 0

W
0

+ i

 −r ∂W
∂α1

0
W

 (3.33)

where: W Amplitude of displacement of the bending vibration mode.

Here it is also assumed that the amplitude of displacements are sufficiently small, making it
possible to substitute the angle of rotation by the slope of the centre line. This is also assumed
in the classical beam theory. Then, under these kinematic constraints, the deformations of
the middle surface of the cylinder can be determined from (3.8) and afterwards substituted
into equation (2.18) to determine the strain energy accumulated under the deformation of the
shell. This strain energy can then be equated to the kinetic energy of the vibrating shell and
through Hamilton’s principle, which has also been mentioned previously, the following dif-
ferential equation can be derived (the explicit mathematical manipulations following to this
equation is though omitted here):

E I

1−ν2

(
1+ h2

12r 2

)
∂4W

∂α4
1

= ρI
∂4W

∂α2
1∂t 2

−ρA
∂2W

∂t 2 (3.34)

Except of the denominator on left-hand side of this differential equation this was also derived
by Lord Reyleigh in his book The Theory of Sound, Rayleigh [1894]. Again, if the differential
equation is exposed to same manipulations as previous the following can be obtained:

E I

1−ν2

(
1+ h2

12r 2

)
k4

r 4 =−ρI
k2ω2c2

0

r 4 +ρA
ω2c2

0

r 2 (3.35)

⇓
1

1−ν2

(
1+ δ2

12

)
k4 =−k2ω2 +2ω2 = (

2−k2)ω2 (3.36)

This equation can be further simplified by considering the smallness of δ2 compared to 1 and
the smallness of k2 compared to 2, cf. figure 3.2. Thus the wave number is:

1

1−ν2 k4 = 2ω2 (3.37)

⇓

k =±(
2
(
1−ν2))1

4
p
ωi

∨
k =±(

2
(
1−ν2))1

4
p
ω (3.38)

Compared to the wave numbers determined from the Bernoulli-Euler beam theory, cf. equa-
tion (3.32), these results are corrected due to the Poisson coupling. But if ν = 0.3 then the
deviation on the wave numbers is less than 3% and thus is lower than the possible error on the
shell theory itself, cf. section 2.1 on page 5.

With these final remarks the derived shell model of a thin walled cylinder is regarded as
valid in comparison to classical beam theory. The dispersion curves in figure 3.2 will thus be
used for validation of the modelling of the thin walled toroidal shell which will be presented in
next chapter.
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Chapter

4
A Thin Walled Torus

In this chapter the free vibration properties of a thin walled infinite torus will be investigated.
The torus will be modelled as a thin shell and the modelling will follow the same sequence of
event as in previous chapter where the thin walled cylinder where studied. Though, due to the
slightly more complex geometry, the derived equations will be significantly more cumbersome
and thus they cannot be presented in same explicit extend as when deriving the equations of
the cylinder. For same reason the derivations are facilitated by the mathematical software tool
Mathematicar making it possible to get through with the analytic derivation of the results. Fi-
nally the results will be compared to results obtained through curved beam theory and to the
results of the cylinder analysis which acts as the limiting case of the torus.

a1

a2

r
a2

R

a1

q

Figure 4.1: The middle surface of the toroidal shell is wrapped by the curvilinear coordinate system, α1

and α2.

The toroidal shell is, like the cylinder shell, a semi-infinite shell. Thus the toroidal shell is
closed in its circumferential direction while it is unbounded in its axial direction. Consequently
the general solution to the problem of determining the free vibration displacements is expected
to be identical to the corresponding general solution to the cylinder shell. The solution is found
as equation (3.1) on page 15. But here the curvilinear coordinates are wrapping the middle
surface of the toroidal shell as illustrated in figure 4.1. When studying the cylinder shell the
dispersion curves where determined for one value of the circumferential mode number at the
time. This made it possible to study some of the simplest vibrational modes of the cylinder and
compare them to results obtained through classical beam theory. This is possible because the
vibrational modes associated to the different circumferential vibration modes do not interact.
In the cylinder case the bending mode do not interact with e.g. the torsional mode nor the
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4. A THIN WALLED TORUS

axial mode. But if the cylinder then is bent, forming a torus, these vibrational modes start to
interact. If the toroidal shell is e.g. excited in its axial direction the vibrations will unavoidable
excite bending vibrations. In this case the displacements of the neutral axis associated with the
bending will be parallel to the plane in which the torus is lying and thus this bending mode
will be recognised as in-plane bending. On the other hand if the toroidal shell is excited in
a torsional mode these vibrations will immediately excite bending which displace the neutral
axis out of the plane of the torus. Consequently this bending mode will be recognised as out-
off-plane bending.

These considerations indicate that even the simplest vibrational modes of the toroidal shell
cannot be attained by a single circumferential mode number but are a result of coupling be-
tween several, or at least two, circumferential mode numbers. Based on the experiences from
the analysis of the cylindrical shell it is then imaginable that the above discussed interaction
between the axial vibration mode and the in-plane bending mode or the torsional vibration
mode and the out-off-plane bending mode are both due to coupling between m = 0 and m = 1.
Thus, under the coupling between in-plane bending and axial vibration, the kinematic con-
straints on a cross section of the torus is that the bending contribution makes it move as a rigid
body, oscillating in direction of the centre of the torus, and rotate like the centre line. At same
time the axial vibration contribution makes the cross section oscillate in the axial direction
of the torus while it is free to expand and contract due to Poisson’s coupling. Similar, under
the coupling between out-off-plane bending and torsion vibration, the bending contribution
makes the cross section move as a rigid body, oscillating normal to the plane of the torus, and
rotates like the centre line. Along with this the torsion contribution makes the cross section
twist around the centre line. In equation (3.28) on page 23 a possible structure of the ampli-
tude vector, am , at m = 1 is presented. If this is substituted into (3.27) and then, in accordance
to the general solution in (3.1), the real part is extracted the following is obtained:

Re


 0

b1

0

+ i

 a1

0
c1

(
cos

(α2
r

)+ i sin
(α2

r

))=
 u1

v1

w1

 sin(θ)
cos(θ)
sin(θ)

 (4.1)

where: u1 =−a1, v1 = b1, w1 =−c1.

θ = α2
r .

Referring to the origin of the curvilinear coordinates in figure 4.1 this corresponds to out-off-
plane bending. Along with the solution related to m = 0 the solution of coupled out-off-plane
bending and torsional vibrations can then be expected to be of the form:

uoop (α1,θ, t ) =
u0 +u1

 sin(θ)
cos(θ)
sin(θ)

Re

{
e

kα1
r e

iωc0t
r

}
(4.2)

It is though equally possible that a1 can be of the form:

a1 = Re{a1}+ i Im{a1} =
 a1

0
c1

+ i

 0
b1

0

 (4.3)

Substituted into the solution and relating to figure 4.1 it is seen that this corresponds to in-
plane bending. The solution of coupled in-plane bending and axial vibration can then be ex-
pected to have the form:
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ui p (α1,θ, t ) =
u0 +u1

 cos(θ)
sin(θ)
cos(θ)

Re

{
e

kα1
r e

iωc0t
r

}
(4.4)

These two mode can also be regarded as, respectively, antisymmetric and symmetric modes
with respect to a line between θ = 0 and θ = π. Thus the out-off-plane bending mode is an-
tisymmetric while the in-plane bending mode is symmetric. In accordance to Akhilesh K. Jha
[2002] it has been shown that generally symmetric and antisymmetric vibration mode, of a
toroidal shell, can be studied independently, because they do not interact. Thus these two
modes are regarded as the two fundamental vibrational modes of the torus and are expected
to be comparable to corresponding results obtained through curved beam theory.

Similar to the development of the cylinder shell model it is also here necessary to establish
the three partial differential equations of equilibrium expressed in displacements of the middle
surface of the shell. When the solution, representing either in-plane bending or out-off-plane
bending, is substituted into the equilibrium equations they become algebraic containing six
unknowns due to u0 and u1. To solve this, additional equations must be introduces. This can be
done by applying Galerkin’s method. Galerkin’s method is based on the principle that the virtual
work performed by a virtual displacement away from a stationary configuration is zero1. If, at
one hand, a trial solution of the following form is substituted into the equilibrium equations:

ũM =
M∑

m=0
umφm (4.5)

where: um Vector of constants.

φm Vector of base functions.

And, at the other hand, the virtual displacement of the displacement field can be represented
by any of the vectors of base functions. Then, regardless of which one of the vectors of base
functions is used to represent the virtual displacement, the resulting virtual work is required to
remain zero, the following equations are obtained (cf. Irving H. Shames [1991]):

∫
V

LũMφmdV = 0, m = 0,1,2, ..., M (4.6)

where: L Differential operator.

V Volume of the continuum under consideration.

The differential operator, L, is in this case obtain by regarding the equations of equilibrium as
a differential operator acting on the trial solution ũM . Because (4.6) holds three equations for
each value of m and, in accordance to (4.5), each value of m deliverers three unknowns, um ,
the number of equations and unknowns are equal.

With this outline of a strategy, making it possible to study the interaction between different
circumferential mode numbers, the differential equations governing the displacements of the
toroidal shell will be established. Thus, the first step is to determine the Lamé parameters and
radii of curvature of the toroidal shell.

1Due to D’Alembert’s principle, making it possible to regard the dynamical contribution to the equilibrium
equations as inertia forces, this stationary principle still holds in this case.
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4. A THIN WALLED TORUS

4.1 Geometrical Properties of a Thin Walled Torus

The geometry of the middle surface of the toroidal shell can be parameterised as:

r(α1,α2) =


(
R + r cos

(α2
r

))
cos

(α1
R

)(
R + r cos

(α2
r

))
sin

(α1
R

)
r sin

(α2
r

)
 (4.7)

From this parametrisation the Lamé parameters can be determined from (2.6):

A1(α1,α2) =
√(

∂x

∂α1

)2

+
(
∂y

∂α1

)2

+
(
∂z

∂α1

)2

= (4.8)

=
√(

− 1

R

(
R + r cos

(α2
r

))
sin

(α1
R

))2

+
(

1

R

(
R + r cos

(α2
r

))
cos

(α1
R

))2

=

= 1

R

(
R + r cos

(α2
r

))
⇓

A1(θ) = 1+εcos(θ) (4.9)

Here the two substitutions must be emphasised (cf. figure 4.1):

ε= r

R
and θ = α2

r
(4.10)

Later these substitutions will show them self convenient. The other Lamé parameter can be be
determined in similar way:

A2(α1,α2) =
√(

∂x

∂α2

)2

+
(
∂y

∂α2

)2

+
(
∂z

∂α2

)2

= (4.11)

=
√(−sin

(α2
r

)
cos

(α1
r

))2 + (
sin

(α2
r

)
sin

(α1
r

))2 +cos
(α2

r

)2

⇓
A2 = 1 (4.12)

The radii of curvature are determined through equations (2.7) to (2.10). Though, with the aim
of condensing the extend of this thesis, only the final output from this sequence of equations
is presented. Also here the substitutions in (4.10) are employed:

R1(α1,α2) = R + r cos
(α2

r

)
cos

(α2
r

)
⇓

R1(θ) =
r
ε + r cos(θ)

cos(θ)
(4.13)
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The other radius of curvature is:

R2 = r (4.14)

Which corresponds to what is intuitively plausible.
The consistency between the derived Lamé parameters and radii of curvature can be veri-

fied through the Codazzi conditions and the condition of Gauss. These are found as equations
(2.11) and (2.12). Along with this it can be recognised that if the limit of R →∞ is taken then
ε→ 0. If so, then the Lamé parameters and radii of curvature of the torus all reduce to the Lamé
parameters and radii of curvature of the cylinder. Naturally the geometrical interpretation if
this is that when the limit of R →∞ is taken, which corresponds to taking the limit of ε→ 0,
then the torus is straighten and thus approaching the geometry of the cylinder. This is the first
example in this chapter of how the results obtained for the cylinder serves as a limiting case of
the torus.

4.2 Deformations of the Middle Surface of the Torus

The derived Lamé parameters and radii of curvature are used to determine the deformations
of the middle surface of the toroidal shell. Remembering that due to (4.10) ∂

∂α2
= ∂θ

∂α2

∂
∂θ = 1

r
∂
∂θ ,

then the deformations are determined from equations (2.13):

ε1 = 1

r (1+εcos(θ))

(
∂u

∂α1
−εcos(θ) v +εsin(θ) w

)

ε2 = 1

r

(
∂v

∂θ
+w

)

γ= 1

r (1+εcos(θ))

(
(1+εcos(θ))

∂u

∂θ
+εsin(θ)u + r

∂v

∂α1

)

κ1 = 1

r 2 (1+εcos(θ))2

(
εr cos(θ)

∂u

∂α1
− r 2 ∂

2w

∂2α1

)
+

+ 1

r (1+εcos(θ))

(
−εsin(θ)

r
v + εsin(θ)

r

∂w

∂θ

)

κ2 = 1

r 2

(
∂v

∂α2
− ∂2w

∂α2
2

)

τ= 1

r 2 (1+εcos(θ))2

(
ε2 cos(θ)sin(θ)u −εr sin(θ)

∂w

∂α1

)
+

+ 1

r (1+εcos(θ))

(
εcos(θ)

r

∂u

∂θ
+ ∂v

∂α1
− ∂2w

∂α1θ

)

(4.15)

Also in these equations it is possible to recover the corresponding relations for the cylinder by
taking the limit ε→ 0.
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4.3 Equilibrium Equations of an Element of the Toroidal Shell

The equations of equilibrium for an infinitesimal element of the toroidal shell are derived
from the equations in (2.15) where the normal shearing forces are determined from the first
two equations in (2.16). The corresponding equations for the cylinder shell where possible to
present explicitly within the format of this thesis. This where possible, because both the Lamé
parameters and the radii of curvature are constant and are thus vanishing when differentiating
these with respect to the curvilinear coordinates. But in this case A1 and R1 are both functions
of θ and the differentiations will thus results in a significant increase in number of terms. As
mentioned in the introduction to this chapter the mathematical software tool Mathematicar

by Wolfram Research has been facilitating these calculations. This makes it possible to elimi-
nate the forces and moments in the equilibrium equations by the relations in (2.19) and then
eliminate the deformations by inserting the relations presented in previous section. The iner-
tia forces due to the free vibration is of same form as in the cylinder case, which is found as
equations (3.14). Through these substitutions a set of three differential equations, formulated
in the displacements of the middle surface of the toroidal shell, are obtained.

4.4 Solving the Equations of Equilibrium of the Toroidal Shell

The solution method for the derived equilibrium equations has been discussed in the begin-
ning of the chapter as Galerkin’s method. After a trial solution has been substituted into the
governing equations this method requires integration over the volume of the continuum under
consideration, i.e. with respect to the coordinate variables. But if e.g. one of the trial solutions
in (4.2) or (4.4) is inserted into the governing equations and each term of the equations are also
divided with the exponential functions of the trial solution, then the only remaining coordinate
dependency in the now algebraic equations, is on θ. Thus the integration through the thick-
ness or along the axial direction of the torus is not needed. This simplification falls back on the
fact that the Lamé parameters and the radii of curvature of the torus are only functions of θ.

In the meantime the term (1+εcos(θ))−m can be recognised with different powers of m
in the relations in (4.15). This term also arise when A1 from (4.9) is substituted into the equi-
librium equations in (2.15) and (2.16). This term complicates the symbolic integration with
respect θ. To get through with the integration this term has instead been approximated by a
truncated Taylor expansion. For any torus it is known that 0 < ε< 1. But in the later application
of the torus model it is expectable that εwill be small or at least ε<< 1

2 . Because of that εcos(θ)
will also be small. This makes it relevant simply to regard εcos(θ) as one fictive variable and
then with the origin at εcos(θ) = 0 expand with respect to this:

1

(1+εcos(θ))m '
n∑

i=0

1

i !

∂i ((1+x)−m)

∂xi

∣∣∣∣
x=0

εi cos(θ)i = (4.16)

= 1−mεcos(θ)+ m (m +1)

2
ε2 cos(θ)2 + ...+ (−1)n

n!

n∏
i=0

(m + i −1)εn cos(θ)n (4.17)

where: n Order of Taylor expansion.

By substituting (1+εcos(θ))−m with this series expansion the equilibrium equations will ap-
pear as polynomials in different powers and combinations of cos(θ) and sin(θ) which are straight
forward, though cumbersome, to integrate.
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4.5. Correlation Between the Toroidal Shell and Curved Beam Theory

In accordance to Galerkin’s method the trial solution related to out-off-plane bending is
then formulated in fashion of base functions as (cf. equations (4.5) and (4.2)):

ũoop,1 =
(
uoop,0φoop,0 +uoop,1φoop,1

)
Re

{
e

kα1
r e

iωc0t
r

}
= (4.18)

=
u0

v0

w0

1
1
1

+
u1

v1

w1

sin(θ)
cos(θ)
sin(θ)

Re

{
e

kα1
r e

iωc0t
r

}
(4.19)

And regarding the equations of equilibrium as a differential operator, L, acting on the trial so-
lution the following two integrations must be performed (cf. equation (4.6)):

∫ 2π

0
Lũoop,1φoop,0dθ and

∫ 2π

0
Lũoop,1φoop,1dθ (4.20)

This gives six equations and each equation generally contains all the constant [u0 v0 w0 u1 v1 w1]T .
By extracting the coefficient multiplied on each of these individual constants, in each of the six
equations, a matrix vector equation can be arranged as:

M
6×6



u0

v0

w0

u1

v1

w1

= 0 (4.21)

From here the remaining steps leading to dispersions curves are identical to what is present in
the cylinder case. The corresponding equations for in-plane bending are obtained by simply
interchanging sin and cos inφoop,1 resulting inφi p,1.

4.5 Correlation Between the Toroidal Shell and Curved Beam
Theory

As described previously a Mathematica script has been developed to derive the equilibrium
equations for the toroidal shell and to determine dispersion curves related to a given trial so-
lution. Because the model involves the Taylor expansion found in equation (4.17) a sufficient
order of this expansion is needed. In appendix A on page 45 a sequence of dispersion plots are
found where the trial solution for in-plane bending has been enforced. In accordance to this
appendix it is probable that within the interval 0 < ε < 1

10 an order of the Taylor expansion as
high as seven is needed to obtain converged results. Naturally, in that connection, it has been
ascertained that even higher orders of the Taylor expansion is needed when ε > 1

10 . Identical
observations are found for the trial solution for out-off-plane bending. For the time being no
further convergence test has been imposed. Instead the validity of the model has been tested by
comparing with classical beam theory for both straight beams and curved beams. In figure 4.2
the dispersion curves for the toroidal shell are compared to dispersion curves obtained through
curved beam theory. The governing equations of curved beam theory are not presented in this
thesis, but can be found in the paper by A. Søe-Knudsen [2010]. In this comparison the order
of the Taylor expansion is seven while the trial solution imposed to the model corresponds to
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Figure 4.2: Dispersion curves for in-plane bending of the the toroidal shell compared to dispersion curves
obtained from curved beam theory.

in-plane bending found in equation (4.4). The values of ε and δ are given in the headline of
the figure. Except for one of the branches, which will be comment later, the qualitative corre-
lation is clear, and even though this is a comparison between a thin shell and a solid beam a
rather close quantitative correlation is also present. It would then be intuitively evident that a
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Figure 4.3: Dispersion curves for in-plane bending of the the toroidal shell compared to dispersion curves
obtained from classical straight beam theory.
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4.5. Correlation Between the Toroidal Shell and Curved Beam Theory

thicker shell would show even better quantitative correlation. If the ratio of the thickness-to
the radius is increased, the stiffness of the cross section of the torus will naturally also increase.
Intuitively this must drag the properties of the toroidal shell in direction of the properties of
the solid curved beam, and consequently oppress the additional degrees of freedom that char-
acterise a shell. This expectation can also emerge from the fact that the kinematic constraint
on the thin shell theory is that a line perpendicular to the middle surface remain straight and
rotates with the middle surface. If the shell is thick this is not fare from the kinematic constraint
in the beam theory where the entire cross section of the beam is forced to remain plane and
rotate with the centre line. But in this case it turns out that with the present trial solution the
dispersion plots are insensitive to the thickness of the shell.

In figure 4.3 dispersion curves from same shell model are plotted. But here ε= 1
1000 and thus

they are compared to results from classical straight beam theory. Also here a close correlation
is found. Returning to figure 4.2 and to the branch of which the two models no not agree. It
can be seen that the branch belonging to the shell model and cutting on at ω ' 0.061 do not
interact with any of the other branches. This is not the case for the corresponding branch
belonging to the beam model. But when comparing to figure 4.3 it can be seen that this branch
corresponds to torsional vibration. As discussed previously torsion is, with respect to a line
between θ = 0 and θ = π, antisymmetric while the remaining circumferential modes covered
by the trial function are symmetric. And as also mentioned anti-symmetric and symmetric
circumferential modes do not interact, and thus this is not regarded as a flaw to the shell model.

4.5.1 Higher Order Trial Solutions

The two figures presented above indicate that the derived equilibrium equations are valid. But
in the mean time a closer look at the equilibrium equations insinuate that the enforced trial
solution, in this case the trial solution for in-plane bending, do not cover the full displacement
pattern of the intended vibration mode. Off cause it is self-evident that the trail solution is
insufficient in comparison to the general solution given in equation (3.1) on page 15. But as
discussed in the beginning of this chapter it is intuitively expectable that the presented trial
solutions are sufficient for the two fundamental modes of, respectively, in-plane bending and
out-off-plane bending.

As mentioned previously the derived equilibrium equations appear as polynomials in dif-
ferent powers and combinations of cos(θ) and sin(θ). As an example a term like cos(θ)2 can be
found in the equilibrium equations. In accordance to Galerkin’s method this term is integrated
with respect to θ. Thus this term gives:

∫
cos(θ)2 dθ = 1

4 sin(2θ)+ ... (4.22)

But sin(2θ) will also enter into the equations if the next term of the general solution where
included in the trial solution. This shows that contributions from higher circumferential mode
numbers will appear in the equations even though they are not included in the trial solution
– contributions which do not necessary vanish when the limes of 0 ≤ θ ≤ 2π are evaluated
after the integration. Thus it is found relevant to investigate the influence of including terms
of higher circumferential mode number than what is present in the former trial solutions. First
the trail solution for in-plane bending is extended with the term of m = 2:

ũi p,2 =
u0

v0

w0

+
u1

v1

w1

cos(θ)
sin(θ)
cos(θ)

+
u2

v2

w2

cos(2θ)
sin(2θ)
cos(2θ)

Re

{
e

kα1
r e

iωc0t
r

}
(4.23)
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Figure 4.4: Dispersion curves for the toroidal shell with ũi p,2 as trial solution.
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Figure 4.5: Dispersion curves for the toroidal shell with ũi p,3 as trial solution.

This increases the number of unknowns with three, but it also introduces a vector of three new
base functions. So after applying Galerkin’s method the problem consists of nine equations and
nine unknown. In figure 4.4 a dispersion plot related to this trail solution is seen. Obviously this
differs from the dispersion plot in figure 4.2 even though the only difference is the extra term in
the trial solution. The difference is not only the introduction of a new set of branches but also
some of the branches which are present in both dispersion plots differ. The new branches are
examples of the additional degrees of freedom which are not present in beam theory, but char-
acterises a shell. They will not be investigated further in this thesis, so at this stage it can just be
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4.5. Correlation Between the Toroidal Shell and Curved Beam Theory

observed that they exists, and that they to some extend interrupt the clarity of the fundamental
branches.

Following along same path the trial solution is also extended with the term corresponding
to m = 3:

ũi p,3 = ũi p,2 +
u3

v3

w3

cos(3θ)
sin(3θ)
cos(3θ)

Re

{
e

kα1
r e

iωc0t
r

}
(4.24)

The dispersion curve corresponding to this trial solution is seen in figure 4.5. Again, with this
trial solution the branches which are common to the previous plots are affected. Now, if the
thickness of the shell is increased to the limit of the thin shell theory, i.e. δ= 1

20 cf. section 2.1
on page 5, then the dispersion plots starts to correlate closely. In figure 4.6 these two disper-
sion plots are plotted in same figure. Like with the Taylor expansion involved in the derivation
of the equilibrium equations, this indicates that the results start to converge when an appro-
priate number of term are included in the trail solution. In appendix A the dispersion curves
related to ũi p,2 and ũi p,3 are shown where ε = 1

1000 . The two curves are here compared to the
results of straight beams and the only visible difference is the additional branches due to the
introduction of, respectively, m = 2 and m = 3.
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Figure 4.6: Comparison between the dispersion curves related to, respectively, ũi p,2 and ũi p,3 when δ= 1
20 .

Unfortunately it has not been possible to further extend the trial solution and then let
Mathematica expand the determinant. With the trial solution in (4.24) the system of equa-
tions, after imposing Galerkin’s method, consists of 12 very cumbersome equations and 12
unknowns. When Mathematica then is asked to expand the determinant it runs into some
unexplained error. But in the mean time a close look at this 12-by-12 matrix reveals that the
second column only has a term in second row. This is because the first three columns of the
matrix refers to m = 0 and the second of these then refers to torsional vibration. Again this falls
back on the fact that torsion is antisymmetric while the remaining circumferential modes of
the in-plan trial solution are symmetric. Thus second row and column are uncoupled from the
rest. This can be illustrated as:
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4. A THIN WALLED TORUS

M
12×12

=

1 2 3 . . . 12
1
2
3
...

12


• 0 • . . . •
0 • 0 . . . 0
• 0 • . . . •
...

...
...

. . . •
0 0 • • •


(4.25)

It makes it possible to determine the determinant of the 12-by-12 matrix by extracting the term
at position (2,2) and then multiply this with the determinant of the remaining 11-by-11 minor.
In this case Mathematica do not run into errors making it is possible to present the results
above. But it shows that the present calculations are at the limit of what Mathematical can
handle. Due to this it has not succeeded to extend the trial solution even further and then
expand the determinant.

As discussed previously, if the thickness of the shell is increased, then the properties of the
toroidal shell are expected to be dragged in direction of the properties of a solid curved beam.
Thus, in figure 4.7 a dispersion plot, where δ= 1

9 , is compared to the curved beam theory. Well
aware that this thickness-to-radius ratio is beyond the limitations on the thin shell theory the
correlation to the curved beam theory is in this case even better in the low frequency range
than what is present in figure 4.2.
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Figure 4.7: Comparison between the curved beam theory and the toroidal shell with ũi p,3 as the trail
solution and δ= 1

9 .

Until this stage it has been shown that the nature of the equilibrium equations converge
with an increasing the order of the Taylor expansion in equation (4.17). It has been found
probable that up to a value of ε = 1

10 then a seventh order Taylor it sufficient. Having in mind
that it has not been possible to extend the trial solution for in-plane bending to cover more
than m = 0,1,2,3, then the close correlation between the dispersion plots corresponding to
ũi p,2 and ũi p,3, at δ= 1

20 , also indicates convergence with respect to the number of term in the
trial solution. Consequently, ũi p,3 is regarded as the best candidate for a valid trial solution for
in-plane bending.
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4.5. Correlation Between the Toroidal Shell and Curved Beam Theory

As a final topic the dispersion curves related to out-off-plane bending will be presented.
Based on the experiences from above the, assumable, best candidate for a trial solution for
out-off-plane bending is obtained by interchanging sin and cos in ũi p,3. Thus:

ũoop,3 =
u0

v0

w0

+
3∑

m=1

um

vm

wm

sin(mθ)
cos(mθ)
sin(mθ)

Re

{
e

kα1
r e

iωc0t
r

}
(4.26)
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Figure 4.8: Comparison between the curved beam theory and the toroidal shell with ũoop,3 as the trail
solution and δ= 1

100 .
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Figure 4.9: Comparison between the curved beam theory and the toroidal shell with ũoop,3 as the trail
solution and δ= 1

9 .

First the dispersion plot at δ= 1
100 is seen in figure 4.8. From this it can be seen that the branch

corresponding to axial vibration do not interact with the other branches. This is because this
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4. A THIN WALLED TORUS

mode is symmetric will the remaining modes are antisymmetric. In figure 4.9 the thickness-
to-radius ratio has been increased to δ = 1

9 and then compared to results from curved beam
theory. Like in figure 4.7 this also shows a close correlation in the low frequency range.
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Chapter

5
Discussions, Conclusions, & Future
Perspectives

In this thesis a shell model of a thin walled infinite cylinder has be established. From this
model the dynamical properties has been extracted in fashion of dispersion curves. These
dispersion curves have been compared to corresponding results obtained through classical
Bernoulli-Euler beam theory. The comparison has revealed a close correlation on the simplest
vibration modes for this geometry. With this point of reference a shell model of a thin walled
infinite torus has also been developed. Trial solutions for, respectively, in-plane bending and
out-off-plane bending has been formulated and enforced on the model. A system of equally
many algebraic equations and unknowns has been established by Galerkin’s method and from
these equations the dispersion curves related to the enforced trial solutions has been obtained.

The derivation of the equilibrium equations of the toroidal shell involves a Taylor expan-
sion on the parameter ε. Even when this parameter is as small as 1

10 the results show that a
rather high ordered expansion is needed to obtain converging results. At ε = 1

10 the studies
also show that for a very thin shell, i.e. for δ = 1

100 , the two fundamental vibration modes of
in-plane bending and out-off-plane bending are not isolated from higher modes. Thereby the
intuitive expectation of e.g. regarding the out-off-plane bending as a simple coupling between
Bernoulli-Euler bending and torsion only holds at relatively low frequencies and near and out-
side the limit of the thin shell theory where the shell thickness adds sufficiently stiffness to
the cross section. But it is also made probable that, also for thinner shells, the validity of this
expectation increases as the torus is straightened out.

From this it can be concluded that the governing differential equations of the toroidal shell,
which have been derived, are valid. With an order of seven of the Taylor expansion involved in
the differential equations, the dispersion curves have converged with respect to ε within the
interval 0 < ε < 1

10 . At the limit of the thin shell theory, i.e. when δ = 1
20 , and when ε = 1

10
it seems likely that the trial solution needs the terms from m = 0 to m = 3 in order to obtain
converging dispersion curves related to the two fundamental modes of, respectively, in-plane
bending and out-off-plane bending. But as mentioned it is also seen that the strength of this
statement increases as the value of ε decreases.

In this thesis the focus and benchmarking has only been on the fundamental vibration
modes with the purpose of validating the shell model. Thus the concern with respect to the
trial solutions has only been on their ability to attain the dispersion curves related to these fun-
damental modes. But as long as the importance of higher modes, with respect to the fatigue
inducing mechanisms initiating this thesis, are not known, these trail solutions might be insuf-
ficient. If higher order modes are in fact important the solution method, due to Galerkin, does
not prevent a further extension of the imposed trial solutions. But due to the unexplained error
in Mathematica it has not been possible to do so.
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5.1 Future Perspectives

From the introduction it is clear that this thesis only is concerned with the first milestone of
determining the wave guide properties of flexible pipes like those produced by NKT Flexibles;
namely the milestone of determining the waveguide properties of a thin walled pipe having a
single bend of constant bending radius. So the existence of possible future work is obvious.

First subject could be to search for any alternative solution method to Galerkin’s method.
The governing equations of the toroidal shell can generally be recognised as coupled partial
differential equations with periodic coefficients. Literature within this particular field of math-
ematic is available. The Mathieu function is known to be the trial solution to a family of these
type of differential equations and thus might be helpful, cf. V Krylov [1997] and Weisstein
[2011].

When a satisfactory solution method has been found and reliable dispersion curves are
determined the relation between the wave number and the frequency can be approximated
through asymptotic expansion. Thereby the dominating terms will be extracted from the an-
alytical solution making the relations fare less cumbersome. Until this stage the examined ge-
ometry has been of infinite extend. As explained in the introduction the waveguide properties
of an infinite geometry can be used to determine the waveguide properties of a bounded ge-
ometry through boundary integral equation method. Thus the asymptotic expanded solution
to the infinite torus can be used to determine the waveguide properties of only a small section
of the torus which correspond to a bend thin walled pipe section.

With respect to the pipes produced by NKT Flexibles at least two relevant advancements
could be followed by the model of the wave guide properties of a bend thin walled pipe:

• The load carrying layer of the pipes produced by NKT Flexibles is expected to be close
to or outside the limit of the applied shell theory. A relevant advancement is therefore to
introduce higher order deformation theory which is cover by thick shell theory.

• The pipes are, in their application, submerged in the sea and they are conveying fluid.
Due to this the fluid interaction is relevant to consider. The nature of the fluid interaction
inside and outside the pipe wall is fundamentally different. Considering a cross section
of the pipe, then the fluid inside the pipe is bounded because the pipe is closed while
outside the pipe the fluid is unbounded due to the wide extend of the sea.

A long-range perspective is to extend the thick shell model by incorporation of the anisotropic
nature of the pipe wall due to steel armouring. This could might be done by use of the Stroh
formalism or the Lekhnitskii formalism, cf. Ting [1996] or Lekhnitskii [1981, original Russian
edition: 1977]. Another long-range perspective is to take the flow of the fluid inside the pipe
into consideration and investigate how the flow velocity affects the waveguide properties of
the pipe. A final long-termed perspective is to include damping. If the fluid outside the pipe is
regarded as infinite, this will off cause act as a energy dissipating mechanism. But damping due
to friction and slipping between the different layers in the pipe could also be relevant topics.

42



Bibliography

S. V. Sorokin A. Søe-Knudsen. Modelling of linear wave propagation in spatial fluid filled pipe
systems consisting of elastic curved and straight elements. Journal of Sound and Vibration,
pages 5116–5146, 2010.

Raymond H. Plaut Akhilesh K. Jha, Daniel J. Inman. Free vibration analysis of an inflated
toroidal shell. Journal of Vibration and Acoustics, pages 387–397, 2002.

Dr Hugh Goyder, editor. On the Modelling of Noise Generation in Corrugated Pipes, 2009. ASME
2009 Pressure Vessels and Piping Division Conference.

Clive L. Dym Irving H. Shames. Energy and Finite Element Methods in Structural Mechanics.
Taylor & Francis Inc, 1991.

S. G. Lekhnitskii. Theory of Elasticity of an Anisotropic Body. Mir Publishers, 1981, original
Russian edition: 1977.

Günes Nakiboglu. Whistling behaviour of periodic systems: Corrugated pipes and multiple
side branch systems. International Journal of Mechanical Sciences, 2010.

V. V. Novozhilov. The Theory Of Thin Shells. P. Noordhoff LTD., 1959.

Singiresu S. Rao. Mechanical Vibrations. Thomson Canada Limited, 4th edition, 2003.

Martin Raussen. Elementary Differential Geometry - Curves and Surfaces. Department of Math-
ematical Sciences, Aalborg University, 2007.

Lord Rayleigh. The Theory of Sound. Republished in 1945 by Dover Publications, 1894.

Sergey V. Sorokin. Lecture Notes on Machine Acoustics. 2010.

Stephen P. Timoshenko. Theory of Plates and Shells. McGraw-Hill, second international edition
edition, 1959.

Thomas C. Ting. Anisotropic Elasticity: Theory and Applications. Oxford University Press, 1996.

S V Sorokin V Krylov. Dynamics of elastic beams with controlled distributed stiffness parame-
ters. IOP Science, pages 573–582, 1997.

Eric W Weisstein. Mathieu function. MathWorld – A Wolfram Web Resource, page
http://mathworld.wolfram.com/MathieuFunction.html, 2011.

43





Appendix

A
Convergence of Torus Model

The dispersion plots in figures A.1 through A.7 illustrate how the results of the toroidal shell
model, with the trail solution for in-plane bending given in equation (4.4), stabilise when the
order of the Taylor expansion in equation (4.17) increase from first order to seventh order. In
these plots ε= 1

10 while δ= 1
100 .

Similar plots are found in figures A.8 through A.10 though here ε = 1
1000 . This makes the

geometry of the torus almost identical to the cylinder. From the plots it is seen that the results
stabilise already with a second order Taylor expansion and that no visible difference is seen
between the results obtained with the second order expansion and a seventh order expansion.
Similar dispersion plots for the two higher order trial solutions, ũi p,2 and ũi p,3, are seen in
figures A.11 and A.12. No difference is found between these two plots except for the additional
branch in the second one.

0.05 0.10 0.15 0.20
Ω

-0.4

-0.2

0.0

0.2

0.4

k
In Plane Bending ¶ � 0.1 ∆ � 0.01 n=1

Figure A.1: Dispersion curves for the toroidal shell.

45



A. CONVERGENCE OF TORUS MODEL

0.05 0.10 0.15 0.20
Ω

-0.4

-0.2

0.0

0.2

0.4

k
In Plane Bending ¶ � 0.1 ∆ � 0.01 n=2

Figure A.2: Dispersion curves for the toroidal shell.
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Figure A.3: Dispersion curves for the toroidal shell.
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Figure A.4: Dispersion curves for the toroidal shell.
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Figure A.5: Dispersion curves for the toroidal shell.
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Figure A.6: Dispersion curves for the toroidal shell.
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Figure A.7: Dispersion curves for the toroidal shell.
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Figure A.8: Dispersion curves for the toroidal shell.
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Figure A.9: Dispersion curves for the toroidal shell.
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Figure A.10: Dispersion curves for the toroidal shell.
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Figure A.11: Dispersion curves for the toroidal shell.
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Figure A.12: Dispersion curves for the toroidal shell.
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