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Abstract

This Master’s thesis deals with mathematical optimisation of composite structures. A new method is
presented, in which it is attempted to overcome the non-convex nature often associated with optimi-
sation of composite structures modelled with finite elements.

First of all, the underlying theory is presented. The brief overview of shell theory is given, and
the formulations needed in order to incorporate it into a finite element analysis application are de-
rived. That is, the geometric representations needed are established, followed by an expression for
the strain-displacement matrix. From this the layer-wise thickness integration needed to obtain the
stiffness for a laminate structures is studied and used to derive an expression for performing explicit
thickness integration instead, which involves slight approximations of the element Jacobian. Fur-
ther approximations can, however, be made resulting in an expression for doing approximate explicit
thickness integration. On top of the stiffness formulations the constitutive relations are addressed.
Aided by the lamina invariants, the constitutive relations are rephrased to include the lamination pa-
rameters assuming that the laminate under inspection is composed of only a single material through
all layers (with different orientations though). The result of this, in combination with the formula-
tion of explicit thickness integration, is that the element stiffness matrix is seen to be linear in the
lamination parameters. The above reformulations are at last verified numerically and seen to give ac-
curate results. Furthermore it is seen that the expression of explicit thickness integration is especially
efficient when working with laminates consisting of many layers.

Based on the presented theory the newly developed method is presented. First of all, the focus
is brought to maximum stiffness optimisation with reference to the standard model, which is done
by minimising the compliance. With the expressions of explicit thickness in hand the sensitivities
needed for such an optimisation can be determined analytically, which is verified numerically to give
accurate results.

The method of optimisation is based on a patch-compatible parameterisation where lamination
parameters play an essential role. In order to overcome the non-convex nature of the optimisation
problem some characteristics of lamination parameters are studied, namely the problem of feasibil-
ity and the question of convexity of the objective function. If the objective function is optimised with
lamination parameters as design variables the strain energy is in fact convex. However, this approach
would give problems with ensuring feasibility of the final result. Hence the problems are sought
solved by keeping the fibre orientations of the laminate as design variables and then overcoming
the non-convex nature of the problem by designing the optimisation method as a two-step approach.
Thus some of the ideas from the two-step approach presented by [Foldager, 1999] are utilised in com-
bination with results from [Kann and Sørensen, 2010] in order to develop a new and more robust
two-step method. The method developed includes an identification process where an identification
function based on a local linearisation is minimised by the use of a genetic algorithm.

The developed method have been implemented in MUST with the ability to switch between dif-
ferent numbers of applied lamination parameters in the identification process as well as both a full
and an approximate method.

In order to test the new method numeric experiments have been conducted. Three simple prob-
lems of "academic character" are presented - a cantilever beam with a distributed load, a flat plate
with a uniform pressure normal to the surface, and a pinched hemisphere with different curvature-
to-thickness ratios. The three examples show that successful identification is indeed found in several
instances, meaning that a local minimum can be overcome. However, the success is dependent on
a several-to-one relationship between the number of design variables and the number of lamina-
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tion parameters. Furthermore the results indicate that one of the first problems arising, when doing
stiffness optimisation of composite structures, seems to be that the design variables get stuck at the
bounds of the design space.

Asides from the experiments of "academic character", a more "industrial/practical" experiment
has been conducted as well. The geometry under inspection is a generic main spar from a wind
turbine blade. The conclusion from this experiment is first and foremost that the method can indeed
be used on large industrial structures. Furthermore the results are close to what would be expected,
however, there are small differences. These differences can be explained by the patch breakdown
and effects of so small magnitude that they cannot be captured numerically. Finally, there is a strong
indication that post-processing of the optimised structure is indeed necessary, as the design typically
contains features which cannot be realised, or maybe is too complicated or too impractical for the
manufacturer to fully realise the optimised structural design. The amount of time needed for post-
processing may be reduced by incorporating restrictions associated with the manufacturing process
into the numerical optimisation routines.
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Preface

This Master’s thesis is written by group 29a on the tenth semester of the Design of Mechanical Systems-
programme at Aalborg University, spring 2011. The semester theme is Industrial development work
and the title of the project is:

Optimisation of Composite Structures Using Lamination Parameters in a Finite
Element Application

The project group would like to thank Professor Krister Svanberg for help with providing articles
which seemed hard to find using the universities library service.
The report consists of a main report and additional documentation given in appendices. In appendix
C a CD is found with the following content:

• Electronic copy of the report.

• Electronic copies of some articles which have been hard to get hold of, and therefore is provided
in order to help along the reader doing the same job.

• The developed edition of MUST. The software is provided both as executable files as well as
source code.

• Relevant FE-examples used in the report.

Citations and references are done in accordance with the Harvard Style where the last name of the
author and year of publication are given in square brackets. The bibliography is found on page 92.

Figures and equations are numbered according to the chapter in which they are presented—for in-
stance: figure 1.2 is the 2nd figure in chapter 1. Appendices are labelled with capital letters followed
by a section number—for instance: A.1 is the 1st section in appendix A.

The following mathematical notation is used throughout the text:

Vectors: *x
Matrices: K

The following notation is used for specifying the lay-ups of composite laminates:

Four ply laminate: (θ1,θ2,θ3,θ4)
A symmetric laminate: (θ1,θ2,θ2,θ1) ⇒ (θ1,θ2)S

An antisymmetric laminate: (θ1,θ2,−θ2,−θ1) ⇒ (θ1,θ2)A

Unequal ply thickness: (θ1@t1,θ2@t2,θ3@t3)

Unless otherwise stated all plies of a laminate are of equal thickness and have the same orthotropic
material properties.

Further notation and nomenclature is given where relevant and a general list of nomenclature is
found on page 94.
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Chapter

1
Introduction

In recent years the world agenda has really been set on care for climate and environment as well as
efficient use of raw materials. In terms of efficient use of materials composite structures are a key
player. The idea behind building structures from composite materials is focused around efficient use
of materials. The world of composites has thus drawn quite a lot of attention in recent years, and
the result is that composite materials are being used to a larger and larger extent. Composite materi-
als are in particular used in high-performance structures due their high stiffness-to-weight as well as
strength-to-weight ratios. Thus composite materials are today a key player in the production of boats,
rackets, aircrafts, space shuttles, bicycles, race cars, wind turbine blades, and many others. The many
applications of composite materials have naturally given many stakeholders within research and de-
velopment of such materials which again has resulted in an enormous on-going development within
the area.

The main idea of composite structures is to utilise the materials in the best possible way by tai-
loring the material to the application. A composite material is thus not just used in an immediate
form but designed to meet the specified requirements. From mechanics of materials it is well known
that the maximum stresses occur in a certain direction. Thus, having uniform strength of the mate-
rial in all directions leads to a natural "oversizing" in the non-maximum directions. This oversizing
is strongly reduced in laminated composite structures as the material is designed to have directional
strength where needed.

Directional strength is not the only possibility of tailoring a composite material to the applica-
tion. A wide variety of properties can be improved by the use of composite materials. Some of these
properties are [Jones, 1999]:

• Strength

• Stiffness

• Corrosion resistance

• Wear resistance

• Attractiveness

• Weight

• Fatigue life

• Temperature-dependent behaviour

• Thermal insulation

• Thermal conductivity

• Acoustical insulation

Design of such property-improved structures is often done with inclusion of the finite element
method in one way or the other. The challenge here though is to obtain an efficient mathematical
formulation in order to reduce calculation time. Finite element analysis has nowadays been a cen-
tral part of research and development of mechanical engineering for quite some years, and as such
efficient finite element formulations are in general obtained for a lot of applications and scenarios.
However, efficient modelling of composite materials in finite element applications does lag some
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1. Introduction

years behind. One of the areas that has been under research for the last couple of decades, and still
is, is the modelling and analysis of thin-walled structures. Thus efficient plate and shell formulations
are of great interest, and hence that is exactly one of the main areas of this thesis - to do efficient
plate/shell modelling of composite laminates.

Though the inclusion of composite materials in a plate or shell formulation can give both accu-
rate and effective analyses, the design phase also becomes quite complex. Thus a powerful synthesis
tool such as mathematical optimisation now becomes even more complicated when working with
composite materials. Actually, to do efficient optimisation of the above is not possible offhand. A
traditional gradient-based optimisation algorithm is prone to get stuck in a local minimum, whereby
the result of the process becomes a non-optimal structure. The solution could be to do a more com-
plete scan of the design space, but with the inclusion of a finite element analysis this usually gets
too computationally heavy. This issue is sought solved in this thesis. The proposed solution is based
on a stiffness formulation incorporating the so-called lamination parameters. These lamination pa-
rameters are mathematical quantities that arise from the physical variables describing the composite
material, namely the fibre orientation and the thicknesses of each ply in the material. The lamina-
tion parameters themselves do not give any physical meaning, but they do carry some characteristics
which make them well-suited as a tool for optimisation. However, though the lamination parame-
ters bring some nice and convenient aspects to the optimisation they also bring several challenges
that has to be overcome, but that are still not solved. In the following subsection a brief exposition of
the current status on optimisation of composite structures is given with a special weight on research
regarding lamination parameters.

1.1 State-of-the-art

In recent years much effort has been put on developing an efficient method for optimisation of com-
posite structures in such a way that the non-convex nature of the problem is overcome. This has
lead to many new methods within the area. Examples of such methods could be those presented
by [Stegmann and Lund, 2005], [Hammer et al., 1997], [Foldager, 1999], [Setoodeh et al., 2006], and
[Bloomfield et al., 2009], where the latter four included lamination parameters in one way or the other.
Though these methods represent state of the art within the field they are all designed for a specific
application which gives limitations when used in another context. E.g. the method presented by
[Hammer et al., 1997] is as presented restricted to laminates with three layers which quickly becomes
insufficient. Examples of more generally applicable methods are given by [Stegmann and Lund, 2005],
who used discrete material optimisation to determine the optimal material from a predefined set of
possibilities, and [Bloomfield et al., 2009], who established the feasibility constraints of the lamina-
tion parameters for a set of laminates with homogenous material but different angular orientations of
each layer. Though both of these methods are general in terms of the allowed loading scenarios, they
do have that in common that they are restricted in terms of the design variables as these are treated
discretely. On the contrary e.g. the method presented by [Hammer et al., 1997] and [Setoodeh et al.,
2006] has no restrictions on the design variables as these are treated continuously, but do impose
restrictions on the loading scenario and how the laminate must be designed. As it is today, to the
knowledge of the authors, the only restriction free method with continuously treated design variables
and the potential to overcome the non-convex nature of the problem is the method by [Foldager,
1999]. However, as shall be clarified later in this thesis this method is not at all flawless.

In the attempt to draw general optimisation of composite structures closer, several people have
contributed with various partial results and/or characteristics of lamination parameters. Among
these, the first to mention should naturally be [Tsai and Pagano, 1968] who introduced the lamination
parameters. The first to establish anything concrete about the feasibility of the lamination parameters
were [Miki, 1982] who determined the bounds of the feasible domain for an orthotropic laminate sub-
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1.1. State-of-the-art

jected to either in-plane or out-of-plane loads. After this many people have contributed with other
special cases of bounds on the feasible domain, though still without any achieving the bound for the
general case. Among other results worth noticing are [Fukunaga and Sekine, 1992] who determined
the relationship between the four in-plane parameters and also for the four out-of-plane parame-
ters, [Grenestedt and Gudmundson, 1993] who showed that the feasible domain of the general case
is convex, and [Svanberg, 1984] who proved that if the finite element stiffness matrix is linear in the
design variables, then the problem of optimising w.r.t. maximum stiffness is in fact convex. This was
later verified by [Grenestedt and Gudmundson, 1993], who also determined that the application of
lamination parameters as design variables in stiffness related optimisation would produce a convex
design space.

With regards to efficient shell formulations [Kumar and Palaninathan, 1997] developed the basis
for the method of explicit thickness integration, whereas [Hvejsel and Hansen, 2007] implemented a
formulation of such a method in the finite element program MUST. Later [Laustsen and Vestergaard,
2010] expanded the implementation in MUST to include non-linear behaviour. However, none of
these implementations included the use of lamination parameters.

Asides from this, the authors of the current thesis have done some preliminary work before the
work accounted for in this thesis [Kann and Sørensen, 2010] (an electronic copy of the report is found
on the CD in appendix C). This previous work studied the possibilities of utilising some of the pre-
liminary ideas of the method presented by [Foldager, 1999] in combination with a newly developed
and more robust formulation. The previous studies were based on plate theory which was treated in
Matlab without the use of finite elements. Thus only a uniform plate with uniform loads could be
handled.

In this thesis it is attempted to utilise some of the results from the previous work in order to obtain
a more generally applicable method [Kann and Sørensen, 2010]. Thus earlier results are combined
and utilised to develop and implement a generally applicable optimisation procedure for laminated
composite shells with the use of the efficient finite element formulations in MUST.
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1. Introduction

1.2 Outline of Report

The method presented in this thesis is based on the idea presented by [Foldager, 1999] and some of
the results presented in [Kann and Sørensen, 2010]. The thesis enables optimisation of composite
laminates in a formulation where the angular orientations of the plies in the laminate are used as de-
sign variables without any restrictions. The method is applicable to both plate and shell formulations
of composite laminates where both of these are treated with efficient finite element formulations.
Finite element analysis is thus an integrated part of the method.

The thesis documents the development of the formulations as well as a brief exposition of the cur-
rent implementation in MUST. Following the implementation several numerical experiments have
been performed in order to study the performance of the method. These results are presented in the
thesis as well.

The report is divided into seven chapters which are organised as follows:

Chapter 1: Introduction and outline of the thesis.

Chapter 2: A theoretical exposition of efficient shell modelling of composite laminates in finite ele-
ment analysis.

Chapter 3: Presentation of the developed optimisation method.

Chapter 4: Brief overview of how the developed method has been incorporated into MUST.

Chapter 5: Presentation of results from the performed numerical experiments.

Chapter 6: Discussions and conclusions of the thesis in general.

Chapter 7: Suggestions for further work with the method.
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Chapter

2
Shell Element Theory

This chapter serves to introduce the theoretical foundation of shell theory in a finite element context.
Thus the basic concepts of shell theory are briefly presented. Next necessary quantities such as geometric
representations and a strain-displacement matrix are derived in order to incorporate the shell theory
into a finite element analysis. Given this, some effort is made into reformulating the expression for
the element stiffness matrix in order to obtain a more efficient formulation with what is called explicit
thickness integration and as well approximated explicit thickness integration. At last, the constitutive
relations are briefly outlined and a reformulation is made implementing the so-called lamination pa-
rameters which shall be used later on for performing optimisation. The chapter is based on [Stegmann
and Lund, 2002], [Hvejsel and Hansen, 2007], [Laustsen and Vestergaard, 2010], [Jones, 1999] and [Tsai
and Pagano, 1968].

2.1 Basic Concepts of Shell Elements

A shell is geometrically characterised as a curved or doubly curved solid structure where the extent in
one of the dimensions is negligible when compared to the other two. The geometric characteristic of
the shell makes it possible to represent the shell by a reference surface and a thickness, thus obtaining
a 2D representation of the structure. Resulting from the geometry is that the ideal way to load a shell
structure is to load it with purely membrane stresses.

The shell in mechanics of materials can be understood as a generalisation of a plate (or the plate
as a specific case of a shell). The difference is, as already implicitly stated, the permission of curved or
doubly curved surfaces. If the structure in fact was properly loaded a full and exhaustive 3D descrip-
tion would not at all be necessary — actually a simple 2D description with kinematic assumptions
allowing the structure to carry loads in pure membrane and pure bending stresses only would be suf-
ficient. However, due to external loads, supports, and the slightly curved geometry, this idealisation
is seldom sufficient. The Kirchhoff-Love assumptions known from classical plate theory are thus too
restrictive for a shell. Instead a first order shear deformation theory (FSDT) is applied by allowing the
transverse normals of the reference surface to rotate following the Reissner-Mindlin assumptions:

• The shell is thin when compared to the radius of curvature (t/R ¿ 1).

• The linear and angular deformations of the shell are small.

• The transverse normal stress is negligible.

• Normals to the reference plane before deformation remain straight and inextensible after de-
formation, but are allowed to rotate.
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2. Shell Element Theory

The first assumption is the most basic, since if this is violated the other three assumptions are
also violated. The second assumption ensures that the governing equations become linear since the
deformed geometry can be related directly to the non-deformed geometry. The third assumption is
the assumption of a state of plane stress which is reasonable for a thin shell. The fourth assumption is
where the distinction from the Kirchhoff-Love assumptions is found. The transverse normal strains
are assumed negligible as they also are in the Kirchhoff-Love assumptions, but the transverse nor-
mals are allowed to rotate. Thus the FSDT accounts for transverse shear strains while it still neglects
transverse normal strains.

An effect of the Reissner-Mindlin assumptions is that too much shear deformation energy is ab-
sorbed as the shear strains are modelled as a constant contribution through the thickness when in
fact they should be modelled as varying through the thickness. For an isotropic plate a shear correc-
tion factor of 5/6 can be determined analytically to be appropriate. The choice of shear correction
factor is, however, strongly dependent on geometry and loading conditions. For a laminated plate
5/6 is often used as compensation, although in fact the distributions should be piecewise parabolic.

The 2D description of the model is obtained by relating the geometry of the shell to the mid-
surface as a reference surface, as indicated in the shell element sketched in figure 2.1. The funda-
mental assumptions, as explained above, are applicable only for thin to moderately thick structures.
In this connection it should furthermore be emphasised that for layered composite structures the
term "thin" is a question of both thickness and stiffness of the layers.

r

s

g

g

g

x

y

z

r

s

t

t

r

s

Figure 2.1: Illustration of the reference surface of a shell. The shaded area is the reference surface.

2.2 Geometric Representation

In order to model anything with shell elements a proper geometric representation is needed. That is,
appropriate coordinate systems as well as a reliable shell element formulation need to be established.

2.2.1 Coordinate Systems

When modelling with shell elements the need for different coordinate systems quickly arises. The ge-
ometric characteristics can be most conveniently defined in one coordinate system while the mate-
rial properties are defined in another. Hence, in order to do a proper and exhaustive analysis different
local coordinate systems must be defined.

The element is, as illustrated in figure 2.1, attached a set of natural coordinates r , s, and t , which
all attain values within ±1 thus mapping the physical geometry in a global space to the natural space,
as illustrated in figure 2.2. The natural coordinates do not necessarily constitute a Cartesian base.
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2.2. Geometric Representation
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Figure 2.2: Mapping of shell element geometry from (a) global space to (b) natural space.

2.2.1.1 Element Coordinate System

In order to fully describe the geometry of the shell a parameterisation is made based on the natu-
ral surface coordinates r and s, and the natural thickness coordinate t . Provided that the thickness
direction unit vector, *v3 is given, any point in the structure can then be described as:

*x(r, s, t ) = *x0(r, s)+ t
h

2
*v3 (2.1)

where: *x Any point in the structure.

*x0 The point on the reference surface.

r, s, t Natural curvilinear coordinates.

h The thickness of the shell.

*v3 The thickness direction unit vector.

Here the thickness direction unit vector is defined based on the covariant tangent base vectors *g i . The
covariant tangent base vectors are in general defined as:

*g i =
∂*x

∂ri
(2.2)

where: ri Denotes r , s, and t , respectively

The thickness direction unit vector is then determined as the unit normal to the tangent plane spanned
by the two base vectors *g 1 and *g 2. The thickness direction unit vector is thus determined as:

*v3 =
*g 1 × *g 2∣∣*g 1 × *g 2

∣∣ (2.3)

The thickness direction unit vector is also referred to as the node director. It should be noted that *v3

is normal to *g 1 and *g 2, whereas *g 3 not necessarily is. Also, the r , s, and t axes constitute the element
coordinate system (ECS) which not necessarily is a Cartesian coordinate system.

2.2.1.2 Material Coordinate System

Constitutive relations are normally defined in a Cartesian coordinate system. Hence the ECS is inap-
propriate. A new Cartesian coordinate system, the material coordinate system (MCS) is thus defined
in order to handle the constitutive relations efficiently. The MCS has three unit base vectors *m1, *m2,
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2. Shell Element Theory

and *m3. The two base vectors lie in the tangent plane of the reference surface whereas the last, *m3,
is normal to the reference surface. Hence *m3 is equal to *v3, cf. equation (2.3).

In order to determine *m1 and *m2 two auxiliary vectors, *a and *b, are constructed from the covari-

ant tangent base. *a and *b are defined as:

*a =
*g 1 + *g 2∣∣*g 1 + *g 2

∣∣ , *b =
*m3 × *a

|*m3 × *a| (2.4)

From the two auxiliary vectors *m1 and *m2 are defined as:

*m1 =
p

2

2
(*a − *b) , *m2 =

p
2

2
(*a + *b) (2.5)

Hereby the three base vectors *mi are uniquely defined and the constitutive relations can be stated
according to this. Obviously, with one coordinate system being Cartesian and the other not neces-
sarily, the two coordinate systems (ECS and MCS) cannot always be coincident. However, with the
method accounted for here, the angle between *g 1 and *m1 is identical to the angle between *g 2 and
*m2 which ensures that the MCS-base is as close to the ECS-base as possible.

If only isotropic materials were used, the MCS would be sufficient to fully describe the constitu-
tive relations. However, with the use of orthotropic materials a need for principal material directions
(PMD) arises. The PMD are normally described using a single angle θ. The angle is to be interpreted
as a rotation of the *mi -base around the *m3 axis. Thus the first principal direction of the orthotropic
material is found rotated an angle θ around the *m3-axis from *m1, and the second principal direc-
tion is found rotated an angle θ+ π

2 around the *m3-axis from *m1. The third principal direction is
coincident with *m3.

2.2.1.3 Director Coordinate System

In each node, a, a director coordinate system (DCS) with a Cartesian base *v i is attached. The DCS is
used for defining the axes of the rotational degrees of freedom of the node director which is a vector
indicating the thickness direction of the element. The third axis of the DCS-base is the node director
defined above. To complete the local Cartesian base two other base vectors must be established.
These can in principle be chosen arbitrarily as long as the definition is unique. In different literature
many different schemes for this task exist. In MUST the approach is first to check if *v a

3 coincides with
*j . If this is the case then the remaining two base vectors are simply chosen as *v a

1 = *i and *v a
2 = *k.

Otherwise the two remaining base vectors are defined as:

*v a
1 =

*j × *v a
3∣∣∣*j × *v a
3

∣∣∣ , *v a
2 = *v a

1 × *v a
3 (2.6)

2.2.2 Degenerated Shell Element

The shell element is a special type of element developed by eliminating nodes from a solid element
imposing the kinematic assumptions described in section 2.1. The process of removing nodes is
called degeneration. A general 20-node solid element is able to interpolate displacements quadrat-
ically in all three directions for all nodes. However, this is unnecessary for a shell as the normals in
the thickness direction are assumed to remain straight and inextensible. Hence, some nodes can be
removed without losing notable accuracy.

The degeneration process is done in two steps, as sketched in figure 2.3. First the mid-nodes
in the thickness direction are removed as with linear interpolation functions they can just as well
be interpolated from the two corner nodes, thus removing four nodes from the element. The next

8



2.2. Geometric Representation

step is to utilise the fact that normals to the reference surface are assumed to be inextensible. When
this is the case, the relative information extracted from two corresponding corner nodes is simply the
direction of the thickness, as the distance between them is kept constant. This can be done "cheaper"
by having a single node where the rotation of the node director is accounted for. The latter step
requires two additional degrees of freedom for the shell element though. So even though the number
of nodes is reduced from 16 to 8, the number of degrees of freedom is only reduced from 48 to 40.
The result is a shell element with 8 nodes on the reference surface and 40 degrees of freedom which
encompasses the kinematic assumptions of shell theory presented in section 2.1.

(a) (b) (c)

Figure 2.3: Degeneration of (a) a 20-node solid element into first (b) a 16-node solid element with interpolated
midnodes and next into (c) an 8-node shell element.

2.2.3 Interpolation Functions

Following the development of a degenerated shell element, the interpolation of coordinates between
the nodes must also be rephrased. Traditionally any point within a solid element given in natural
curvilinear (r, s, t )-coordinates can be transformed to global Cartesian (x, y, x)-coordinates as:

*x =
nsol i d∑
a=1

N 3D
a

*x3D
a (2.7)

where: *x Global Cartesian coordinates of arbitrary point.

nsol i d Number of nodes in a solid element.

N 3D
a Interpolation function for node a — is a function of the natural (r, s, t )-coordinates.

*x3D
a Global Cartesian coordinates of node a in the solid element.

In order to reduce the equations to hold for a 8-node shell element, the trick is to divide the interpola-
tion functions N 3D

a (r, s, t ) = 1
8 (1±r )(1± s)(1± t ) into a plane part N 2D

a = 1
2 (1±r )(1± s) and a thickness

part N t
a = 1

2 (1± t ), with the interpolation functions being linear. The interpolation of coordinates can

9



2. Shell Element Theory

then be rephrased as:

*x =
nsol i d∑
a=1

N 3D
a

*x3D
a =

nsol i d∑
a=1

N t
a N 2D

a
*x3D

a

=
nsol i d∑
a=1

1

2
(1± t )N 2D

a
*x3D

a

=
nshel l∑
a=1

(
1

2
(1+ t )N 2D

a
*x top

a + 1

2
(1− t )N 2D

a
*xbot tom

a

)
=

nshel l∑
a=1

(
N 2D

a
1

2

(
*x top

a + *xbot tom
a

)
+ t

2

(
*x top

a − *xbot tom
a

))
(2.8)

where: nshel l = 1
2 (nsol i d −nmi dnodes ). The number of nodes in a shell element. Hence a for a 16-node

element refers to a "virtual" node on the reference surface.
*x top

a Global Cartesian coordinates of the top nodes of a 16-node element as sketched in figure
2.3b.

*xbot tom
a Global Cartesian coordinates of the bottom nodes of a 16-node element as sketched in

figure 2.3b.

Now the coordinates of the nodes on the reference surface are expressed in terms of the top and
bottom nodes as:

*xa = 1

2

(
*x top

a + *xbot tom
a

)
(2.9)

where: *xa Global Cartesian coordinates of the nodes on the reference surface of a shell element.

Furthermore the node director defining the thickness direction in each node can be expressed as:

*v a
3 = 1

ha

(
*x top

a − *xbot tom
a

)
(2.10)

where: ha The height of the shell.

Substituting equations (2.9) and (2.10) into equation (2.8) now gives a new expression for the
interpolation of coordinates:

*x =
nshel l∑
a=1

N 2D
a

(
*xa + t

2
ha

*v a
3

)
(2.11)

The displacements are by definition given as the change in coordinates. Thus, the displacements can
be derived from equation (2.11) as:

*u =
nshel l∑
a=1

N 2D
a

(
∆*xa + t

2
ha∆

*v a
3

)
=

nshel l∑
a=1

N 2D
a

(
*ua + t

2
ha∆

*v a
3

)
(2.12)

where: *u Global Cartesian displacements.

*ua Global Cartesian displacements of node a.

∆*v a
3 Relative displacements of the node director in node a.

10



2.2. Geometric Representation

As normals to the reference surface remain inextensible after deformation, only the orientation of *v a
3

changes, the length does not. This change in orientation can, as earlier mentioned, be described by
two rotations α and β. These are illustrated in figure 2.4.

va

va

va

uαβ 

α 

β 

ha

uα

uβ 

xz

y

α 

β 

-(1-cos(α))v

uα

uβ 

v

v

v

v

-(1-cos(β))v

-sin(α)v

sin(β )v

In-plane rotation, α

In-plane rotation, β

Figure 2.4: Global displacements due to nodal rotations of the node director. Vector arrows are omitted in the
figure.

Considering the figure, the change in rotation angles α and β can be described as:

*uα =−*v2 sin(α)− *v3(1−cos(α)) (2.13a)
*uβ = *v1 sin(β)− *v3(1−cos(β)) (2.13b)

Recalling that the rotations are assumed to be small, in order to obtain a linear formulation, the above
reduces to:

*uα =−*v2α (2.14a)
*uβ = *v1β (2.14b)

Substituting equations (2.14) into equation (2.12) now gives the final expression for the displace-
ments:

*u =
nshel l∑
a=1

N 2D
a

(
*ua + t

2
ha(*v1β− *v2α)

)
(2.15)

which for the sake of simplicity is rephrased to:

*u =
n∑

a=1
Na

(
*ua + t

2
ha(*v1β− *v2α)

)
(2.16)

where: n = nshel l

Na = N 2D
a

Thus the displacements of all points within the element are related to five degrees of freedom of each
node. In matrix notation this can be written as:

*u =


u
v
w

= N *d (2.17)

11



2. Shell Element Theory

where the shape function matrix, N , is:

N =

. . .

Na 0 0 − t
2 ha

*v2 · *i t
2 ha

*v1 · *i
0 Na 0 − t

2 ha
*v2 · *j t

2 ha
*v1 · *j

0 0 Na − t
2 ha

*v2 · *k t
2 ha

*v1 · *k

 . . .

 (2.18)

and the nodal degrees of freedom, *d , are assembled in a vector:

*d = [
. . .

[
ua va wa αa βa

]
. . .

]T
(2.19)

2.2.4 Strain-displacement Matrix

Now that expressions for the displacements are obtained the next step is to take the derivatives in or-
der to get the strains, and thereby the relation between strains and displacements known as the strain-
displacement matrix. As known from the theory of elasticity the strains are, according to Cauchy’s
definition of the strain tensor, expressed in terms of displacements as:

*ε= [
εx εy εz γx y γy z γzx

]T = [
εx εy εz 2εx y 2εy z 2εzx

]T

= [
u,x v,y w,z u,y + v,x v,z +w,y u,z +w,x

]T

= ∂*u

= ∂N *d (2.20)

where: ∂ Differential operator matrix.

whereby the strain-displacement matrix can be stated as:

B = ∂N (2.21)

where: B The strain-displacement matrix.

Thus what is needed is the derivative of the displacements w.r.t. the global coordinates. This is deter-
mined by use of the chain rule where the derivative of the displacements w.r.t. the natural coordinates
are found first, and secondly multiplied with the derivative of the natural coordinates w.r.t. the global
coordinates, i.e.:

∂*u

∂*x
= ∂*u

∂*r

∂*r

∂*x
(2.22)

The first term on the right-hand side of this equation is obtained by taking the derivative of equation
(2.17) as:



u,r

u,s

u,t

v,r

v,s

v,t

w,r

w,s

w,t



=


. . .



Na,r 0 0 −Na,r
t
2 ha

*v2 · *i Na,r
t
2 ha

*v1 · *i
Na,s 0 0 −Na,s

t
2 ha

*v2 · *i Na,s
t
2 ha

*v1 · *i
0 0 0 −Na

ha
2

*v2 · *i Na
ha
2

*v1 · *i
0 Na,r 0 −Na,r

t
2 ha

*v2 · *j Na,r
t
2 ha

*v1 · *j
0 Na,s 0 −Na,s

t
2 ha

*v2 · *j Na,s
t
2 ha

*v1 · *j
0 0 0 −Na

ha
2

*v2 · *j Na
ha
2

*v1 · *j
0 0 Na,r −Na,r

t
2 ha

*v2 · *k Na,r
t
2 ha

*v1 · *k
0 0 Na,s −Na,s

t
2 ha

*v2 · *k Na,s
t
2 ha

*v1 · *k
0 0 0 −Na

ha
2

*v2 · *k Na
ha
2

*v1 · *k


. . .





...
ua

va

wa

αa

βa
...


= F *d (2.23)
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2.2. Geometric Representation

where: u,p , v,p , w,p The partial derivative of the displacements w.r.t. the variable p.

Na,p The partial derivative of Na w.r.t. the variable p.

The second right-hand term in equation (2.22) is the derivative of the natural coordinates w.r.t. the
global coordinates, which can be found by first determining the derivative of the global coordinates
w.r.t. the natural coordinates and next inverting it. The first step is completed by differentiating
equation (2.11) w.r.t. the natural coordinates:

∂*x

∂r
=

n∑
a=1

(
Na,r

*xa +Na,r
t

2
ha

*v a
3

)
(2.24a)

∂*x

∂s
=

n∑
a=1

(
Na,s

*xa +Na,s
t

2
ha

*v a
3

)
(2.24b)

∂*x

∂t
=

n∑
a=1

ha

2
Na

*v a
3 (2.24c)

Assembling these derivatives in a matrix gives what is known as the Jacobian matrix for the element:

J =


∂x
∂r

∂y
∂r

∂z
∂r

∂x
∂s

∂y
∂s

∂z
∂s

∂x
∂t

∂y
∂t

∂z
∂t



=
n∑

a=1

Na,r xa +Na,r
t
2 ha

*v a
3 · *i Na,r ya +Na,r

t
2 ha

*v a
3 · *j Na,r za +Na,r

t
2 ha

*v a
3 · *k

Na,s xa +Na,s
t
2 ha

*v a
3 · *i Na,s ya +Na,s

t
2 ha

*v a
3 · *j Na,s za +Na,s

t
2 ha

*v a
3 · *k

ha
2 Na

*v a
3 · *i ha

2 Na
*v a

3 · *j ha
2 Na

*v a
3 · *k

 (2.25)

where: J The Jacobian matrix.

The right-hand side of equation (2.22) is now given as a simple product (where the inverse of the
Jacobian is used three times as three global displacements need to be treated):

u,x

u,y

u,z

v,x

v,y

v,z

w,x

w,y

w,z



=
 J−1 0 0

0 J−1 0
0 0 J−1





u,r

u,s

u,t

v,r

v,s

v,t

w,r

w,s

w,t



= Γuv w



u,r

u,s

u,t

v,r

v,s

v,t

w,r

w,s

w,t



(2.26)

Thus the derivatives of the displacements w.r.t. the global coordinates are obtained. What is needed
in order to get the strains as listed in equation (2.20) is now only to keep track of the bookkeeping.
This is done by pre-multiplying with an auxiliary summation matrix H :

H =



1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 1 0 0

 (2.27)
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2. Shell Element Theory

Hence the expression for the strains becomes:

*ε= ∂N *d = H Γuv w F *d ≡ H G *d ≡ B *d (2.28)

where: G Matrix containing shape function derivatives with respect to global coordinates.

2.2.5 Thickness Dependency

In order to establish explicit thickness integration the thickness dependency of the strain-displacement
matrix needs to be expressed explicitly. That is, the z-dependency of B needs to be identified. To
reach this identification two reformulations are done. First of all F is split into two z-independent
matrices, which enables an explicit formulation of its thickness dependency. Second the variation of
the inverse Jacobian matrix, Γuv w , over the thickness is approximated by a linear function as done
by [Kumar and Palaninathan, 1997], which is known to be a good approximation for thin shells with∣∣∣ h

R ¿ 1
∣∣∣.

Before decomposing F into two submatrices a change of variable is first made. The physical thickness

coordinate z ′ is introduced by substituting it with ha
2 t . Next, F is decomposed into two submatrices

F 1 and F 2 that are independent of z ′. Simultaneously the shell thickness ha is assumed to be constant
within the element and therefore just denoted by h. F can thus be rewritten as:

F = F 1 + z ′ F 2 (2.29)

with

F 1 =


. . .



Na,r 0 0 0 0
Na,s 0 0 0 0

0 0 0 −Na
h
2
*v2 · *i Na

h
2
*v1 · *i

0 Na,r 0 0 0
0 Na,s 0 0 0

0 0 0 −Na
h
2
*v2 · *j Na

h
2
*v1 · *j

0 0 Na,r 0 0
0 0 Na,s 0 0

0 0 0 −Na
h
2
*v2 · *k Na

h
2
*v1 · *k


. . .


(2.30)

F 2 =


. . .



0 0 0 −Na,r
*v2 · *i Na,r

*v1 · *i
0 0 0 −Na,s

*v2 · *i Na,s
*v1 · *i

0 0 0 0 0

0 0 0 −Na,r
*v2 · *j Na,r

*v1 · *j
0 0 0 −Na,s

*v2 · *j Na,s
*v1 · *j

0 0 0 0 0

0 0 0 −Na,r
*v2 · *k Na,r

*v1 · *k
0 0 0 −Na,s

*v2 · *k Na,s
*v1 · *k

0 0 0 0 0


. . .


(2.31)

The inverse Jacobian matrix is approximated linearly as done by [Kumar and Palaninathan, 1997] as:

J−1 ' J−1
A

+ t J−1
V

= J−1
A

+ z ′ 2

h
J−1

V
(2.32)
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2.2. Geometric Representation

with

J−1
A

= 1

2

(
J−1|t=1 + J−1|t=−1

)
(2.33a)

J−1
V

= 1

2

(
J−1|t=1 − J−1|t=−1

)
(2.33b)

Next the two reformulations are substituted into the G-matrix in order to give an approximate explicit
thickness dependency of both G and B . As seen by equations (2.26) and (2.28) G consist of three
similar parts dealing with each of the three displacements u, v and w . That is:

G =


Gu

Gv

Gw

 (2.34)

In order to shorten the following derivations these are only conducted for the Gu-part. For the other
two parts the derivations are quite similar and thus in a way redundant.
Substituting the two new expressions into Gu and rearranging gives:

Gu = J−1 F u

= (
J−1

A
+ z ′ 2

h J−1
V

)(
F u

1 + z ′ F u
2

)
= J−1

A
F u

1︸ ︷︷ ︸+z ′ ( 2
h J−1

V
F u

1 + J−1
A

F u
2

)︸ ︷︷ ︸+z ′2 2
h J−1

V
F u

2︸ ︷︷ ︸ (2.35)

Gu
1 Gu

2 Gu
3

which can be done similarly for Gv and Gw .
Hereby the expression for G with approximate explicit thickness dependency can be stated as:

G = G1 + z ′ G2 + z ′2 G3 (2.36)

Recalling that B = H G this also gives an expression for the strain-displacement matrix with its thick-
ness dependency explicitly stated:

B = B 1 + z ′ B 2 + z ′2 B 3 (2.37)

Hereby the strain-displacement matrix is decomposed into three thickness independent submatrices.
This gives the approximate explicit thickness dependency. The matrices shall be used for developing
an expression for explicit thickness integration of shell elements.
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2. Shell Element Theory

2.3 Thickness Integration

In order to obtain a stiffness matrix for a shell element it must be integrated through the thickness. In
this section an efficient way of performing this integration is introduced namely the explicit thickness
integration. However, first "traditional" layer-wise thickness integration is described.
The stiffness matrix for a shell element, as sketched in figure 2.5, can according to [Cook et al., 2002]
be derived to:

ke =
1∫

−1

1∫
−1

1∫
−1

B T C B | J |dr d sd t (2.38)

l’th layer

h/ 

tlz’ t



--h/ 



-
h

NL
k




:

z
x

y

Figure 2.5: Layered shell element.

2.3.1 Layer-wise Thickness Integration

In traditional layer-wise thickness integration each layer is integrated separately and the results for
each layer are summed. In order to do this, a natural layer-wise thickness coordinate tl is constructed
for each layer. tl runs from −1 to 1 for each layer. The correlation between the natural layer-wise
thickness coordinate and the natural thickness coordinate for the element can be stated as:

t =−1+ 1

h

(
2

NL∑
k=1

hk −hl (1− tl )

)
(2.39)

where: hk The summed thicknesses of the preceding layers.

hl The thickness of the l ’th layer.

Before integration of the element stiffness matrix in equation (2.38) the new natural layer-wise thick-
ness coordinate is substituted into the equation to replace the natural thickness coordinate. Equation
(2.39) yields:

d t = hl
h d tl (2.40)

which substituted into the stiffness matrix, remembering the summation over the layers, gives:

ke =
NL∑
l=1

1∫
−1

1∫
−1

1∫
−1

B T C B | J |hl
h dr d sd tl (2.41)

Even though Gauss quadrature is used to perform the integration, this kind of integration requires
3 · 3 · 2NL evaluations of shape functions and their derivatives. For structures with many layers this
becomes computationally expensive.
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2.3. Thickness Integration

2.3.2 Explicit Thickness Integration

A more computationally inexpensive integration can be obtained by use of an approximate explicit
thickness integration. This section serves to derive the necessary equations. In order to do so, the
approximate thickness dependencies from section 2.2.5 are employed in the stiffness matrix from
equation (2.38). However, first the natural thickness coordinate from the stiffness matrix must be
substituted for the z ′-variable used in section 2.2.5:

z ′ = t
h

2
⇒ (2.42a)

d t = 2

h
d z ′ (2.42b)

which inserted in the stiffness matrix gives:

ke =
1∫

−1

1∫
−1

1∫
−1

B T C B | J |dr d sd t

=
1∫

−1

1∫
−1

h
2∫

−h
2

B T C B | J | 2
h d z ′dr d s (2.43)

Next the Jacobian determinant is rephrased by an approach used by [Kumar and Palaninathan, 1999].
First the square root of the Jacobian determinant is expressed at the top and bottom of the shell:

∆top =
√

| J |t=1 (2.44a)

∆bot tom =
√

| J |t=−1 (2.44b)

The thickness average and slope of the determinant are then given by:

∆A = 1

2

(
∆top +∆bot tom

)
(2.45a)

∆V = 1

2

(
∆top −∆bot tom

)
(2.45b)

Hereby the square root of the Jacobian can be expressed as:

∆=∆A + 2

h
z ′∆V (2.46)

and the Jacobian can then be expressed as:

| J | =∆2 =
(
∆A + 2

h
z ′∆V

)2

=∆2
A +2

2

h
z ′∆V ∆A + 4

h2 z ′2∆2
V

=∆2
A

(
1+2z ′ 2∆V

h∆A
+ z ′2 4∆2

V

h2∆2
A

)
=∆2

A

(
1+2z ′γ+ z ′2γ2) (2.47)

where: γ = 2∆V

h∆A
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The Jacobian matrix is thus set up for the reference surface and extrapolated from there based on
evaluations at the top and bottom surface. For structures with many layers this can save significant
computational time. It should be noted that for a plate (which has no curvature) the Jacobian is
identical at top and bottom. Hence ∆V = 0 and γ= 0 meaning that the Jacobian is simply | J | =∆2

A
Now the new expressions for the Jacobian matrix and the strain-displacement matrix are inserted into
the element stiffness matrix — that is, equations (2.47) and (2.37) are substituted into equation (2.43):

ke =
−1∫

−1

−1∫
−1

h
2∫

−h
2

(
B T

1 + z ′ B T
2 + z ′2 B T

3

)
C

(
B 1 + z ′ B 2 + z ′2 B 3

) 2

h
∆2d z ′dr d s

=
−1∫

−1

−1∫
−1

h
2∫

−h
2

(
B T

1 C B 1 + z ′ B T
1 C B 2 + z ′2 B T

1 C B 3

+z ′ B T
2 C B 1 + z ′2 B T

2 C B 2 + z ′3 B T
2 C B 3

+z ′2 B T
3 C B 1 + z ′3 B T

3 C B 2 + z ′4 B T
3 C B 3

)
∆2

A

(
1+2z ′γ+ z ′2γ2) 2

h
d z ′dr d s (2.48)

Remembering that B 1, B 2, and B 3 are thickness independent and the constitutive properties con-
stant for each layer, the strain-displacement matrices can be put outside the integral and the thick-
ness integration thereby conducted separately for each term. This yield:

ke =
−1∫

−1

−1∫
−1

(
B T

1 E 1 B 1 + B T
1 E 2 B 2 + B T

1 E 3 B 3

+ B T
2 E 2 B 1 + B T

2 E3 B 2 + B T
2 E 4 B 3

+ B T
3 E 3 B 1 + B T

3 E 4 B 2 + B T
3 E 5 B 3

)
∆2

A
2

h
dr d s (2.49)

with the thickness integrated constitutive properties E 1, . . . , E 5 given as:

E 1 =
NL∑

k=1
C k

z ′
k∫

z ′
k−1

(
1+2z ′γ+ z ′2γ2)d z ′ =

NL∑
k=1

C k

(
var1 +2γvar2 +γ2var3

)
k (2.50a)

E 2 =
NL∑

k=1
C k

z ′
k∫

z ′
k−1

z ′ (1+2z ′γ+ z ′2γ2)d z ′ =
NL∑

k=1
C k

(
var2 +2γvar3 +γ2var4

)
k (2.50b)

E 3 =
NL∑

k=1
C k

z ′
k∫

z ′
k−1

z ′2 (
1+2z ′γ+ z ′2γ2)d z ′ =

NL∑
k=1

C k

(
var3 +2γvar4 +γ2var5

)
k (2.50c)

E 4 =
NL∑

k=1
C k

z ′
k∫

z ′
k−1

z ′3 (
1+2z ′γ+ z ′2γ2)d z ′ =

NL∑
k=1

C k

(
var4 +2γvar5 +γ2var6

)
k (2.50d)

E 5 =
NL∑

k=1
C k

z ′
k∫

z ′
k−1

z ′4 (
1+2z ′γ+ z ′2γ2)d z ′ =

NL∑
k=1

C k

(
var5 +2γvar6 +γ2var7

)
k (2.50e)
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2.4. Constitutive Relations

where: var j = 1

j
(z’

j
k − z’

j
k−1)

In this way, the stiffness matrix for each element can be determined by explicit integration in the
thickness direction. Obtaining the stiffness matrix in this way requires 3 ·3 ·2 evaluations where the
last two are evaluations of the inverse Jacobian at the bottom and top of the shell cf. equations (2.33).
As stated by [Kumar and Palaninathan, 1999] further approximations of the stiffness matrix can be
done by neglecting G3, and thus B 3, as these matrices merely contain entrances that are of negligible
magnitude due to the multiplication of higher order terms of the shell thickness. Hence by removing
these terms the number of integrand terms in the stiffness matrix is reduced from 9 to 4, i.e:

ke =
−1∫

−1

−1∫
−1

(
B T

1 E 1 B 1 + B T
1 E 2 B 2

+ B T
2 E 2 B 1 + B T

2 E3 B 2

)
∆2

A
2

h
dr d s (2.51)

For a laminate consisting of the same orthotropic material (with different orientations) through the
thickness, these constitutive properties can be expressed in terms of lamination parameters. Nat-
urally this holds for both the method of explicit thickness integration, c.f. equation (2.49) and for
the method of explicit thickness integration with further approximations, c.f. equation (2.51). This
reformulation is shown in section 2.4.3.

2.4 Constitutive Relations

This section serves to describe the constitutive relations for a composite laminate. The focus is based
on laminates consisting of plies with orthotropic behaviour. The approach for obtaining constitutive
relations for a laminate is first to determine the relations for a single ply at a macroscopic level, and
next combining the constitutive relations for all plies into a general governing equation for the entire
laminate.

2.4.1 Single Layers

For a linear homogeneous material the general constitutive law is (using Einstein’s index notation):

σi j =Ci j klεkl (2.52)

where: σi j The stress tensor.

Ci j kl The constitutive tensor.

εkl The strain tensor.

The 81 unknown components can, using tensorial symmetry and thermodynamic considerations, be
reduced to 21 independent components. For a material with anisotropic behaviour the constitutive
law can thus be written in matrix form as:

σ11

σ22

σ33

σ12

σ23

σ13


=



Q11 Q12 Q13 Q14 Q15 Q16

Q22 Q23 Q24 Q25 Q26

Q33 Q34 Q35 Q36

Q44 Q45 Q46

s ym. Q55 Q56

Q66





ε11

ε22

ε33

2ε12

2ε23

2ε13


(2.53)
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2. Shell Element Theory

where: Qi j The components of the constitutive tensor, which traditionally is denoted as Q instead of
C when dealing with laminaes.

A material with three planes of material symmetry is said to have orthotropic behaviour. For such a
material equation (2.53) can, when described in the PMD, be reduced to:

σ11

σ22

σ33

σ12

σ23

σ13


=



Q11 Q12 Q13 0 0 0
Q22 Q23 0 0 0

Q33 0 0 0
Q44 0 0

s ym. Q55 0
Q66





ε11

ε22

ε33

2ε12

2ε23

2ε13


(2.54)

The assumptions of FSDT were introduced in section 2.1. The third assumption stated was that nor-
mal strains are negligible, i.e. ε33 = 0. At the same time an assumption of plane stress is presumed for
thin to moderately thick shells. When accounting for the Poisson effect these two assumptions are
obviously conflicting. This can be corrected by modifying the stiffness matrix into what is referred to
as the reduced stiffness matrix of a shell.

The relationship between σ33 and ε33 is, according to equation (2.54):

σ33 =Q13ε11 +Q23ε22 +Q33ε33 = 0 (2.55)

The only solution to this expression, which is fulfilled for all combinations of strains, is the trivial
solution, i.e. Q13 =Q23 =Q33 = 0. The reduced constitutive relations for a shell with FSDT assumptions
thus become: 

σ11

σ22

σ33

σ12

σ23

σ13


=



Q11 Q12 0 0 0 0
Q22 0 0 0 0

0 0 0 0
Q44 0 0

s ym. Q55 0
Q66





ε11

ε22

ε33

2ε12

2ε23

2ε13


(2.56)

As previously mentioned, the FSDT assumptions incorporate a constant through the thickness distri-
bution of the shear strains γ13,γ23. These distributions should in fact be shaped more like a parabola
within each layer. In order to obtain a more correct strain energy, the shear stiffnesses Q55 and Q66

are correlated with a shear correction factor k. The magnitude of the shear correction factor is in fact
dependent on both geometry and loading. Using energy considerations it can be derived that a factor
of 5

6 gives a reasonable compensation for isotropic materials. For sandwich structures on the other
hand, a factor of 1 should be used. However, what to do for laminates in general is dependent on both
the material properties, the number of layers etc. and thus it can be a laborious task to determine the
correct value. The result is that simplifications often are made. In MUST the strategy implemented is
simply to use a factor of 1 for sandwich structures and a factor of 5

6 for all other applications.
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2.4. Constitutive Relations

2.4.2 Multiple Layers

When the laminaes are assembled into a laminate the PMD’s are not necessarily equal. Hence a plane
rotation of the constitutive relations of each lamina into the MCS (which is common to all layers) is
thus required. This is conducted as:

Q = T T
θ Q T θ (2.57)

where the rotation tensor is given as:

T θ =



cos2(θ) sin2(θ) 0 sin(θ)cos(θ) 0 0
sin2(θ) cos2(θ) 0 −sin(θ)cos(θ) 0 0

0 0 1 0 0 0
−2sin(θ)cos(θ) 2sin(θ)cos(θ) 0 cos2(θ)− sin2(θ) 0 0

0 0 0 0 cos(θ) −sin(θ)
0 0 0 0 sin(θ) cos(θ)

 (2.58)

Hereby the reduced stiffnesses of a lamina in the MCS yields:

Q =



Q11 Q12 0 Q14 0 0
Q22 0 Q24 0 0

0 0 0 0
Q44 0 0

s ym. Q55 Q56

Q66


(2.59)

2.4.2.1 Lamina invariants

Another way of expressing the reduced stiffnesses is by use of lamina invariants. Lamina invariants
are material properties that are invariant to coordinate transformations. The lamina invariants U1 to
U6 are in fact just reformulations of the reduced stiffnesses where trigonometric identities and several
rearrangements have been employed. The invariants are given as [Tsai and Pagano, 1968]:

U1 = 3Q11 +3Q22 +2Q12 +4Q66

8
(2.60a)

U2 = Q11 −Q22

2
(2.60b)

U3 = Q11 +Q22 −2Q12 −4Q66

8
(2.60c)

U4 = Q11 +Q22 +6Q12 −4Q66

8
(2.60d)

U5 = Q55 +Q66

2
(2.60e)

U6 = Q55 −Q66

2
(2.60f)
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2. Shell Element Theory

Using these invariants the reduced stiffnesses, stored in a vector
*
Q, can be expressed as:

*
Q =



Q11

Q22

Q12

Q55

Q66

Q56

Q44

Q14

Q24



=



U1 U2 0 U3 0
U1 −U2 0 U3 0
U4 0 0 −U3 0
U5 U6 0 0 0
U5 −U6 0 0 0
0 0 −U6 0 0

1
2 (U1 −U4) 0 0 −U3 0

0 0 1
2U2 0 U3

0 0 1
2U2 0 −U3





1
cos(2θ)
sin(2θ)
cos(4θ)
sin(4θ)


= U



1
cos(2θ)
sin(2θ)
cos(4θ)
sin(4θ)


(2.61)

As such the latter is simply a reformulation of how to determine the reduced stiffness components
for a lamina and the immediate application of this does actually not provide anything new. However,
it paves the road for the use of so-called lamination parameters, which can be incorporated in the
formulation when the laminate consists of only a single material (with different orientations in each
layer). This shall be elaborated in the following subsection.

2.4.3 Lamination Parameters

As shown in section 2.3 a product of the strain-displacement matrix and the constitutive matrix has
to be integrated through the thickness in order to get the stiffness matrix. If all layers in the lay-up are
of the same material (but possibly with different angular orientation), this product can be rephrased
in terms of the lamination parameters. The 28 lamination parameters are defined as:

ξA
[1,2,3,4] =

1

2

1∫
−1

[
cos(2θk ) sin(2θk ) cos(4θk ) sin(4θk )

]T
d t (2.62a)

ξB
[1,2,3,4] =

2

2

1∫
−1

t
[
cos(2θk ) sin(2θk ) cos(4θk ) sin(4θk )

]T
d t (2.62b)

ξD
[1,2,3,4] =

3

2

1∫
−1

t 2 [
cos(2θk ) sin(2θk ) cos(4θk ) sin(4θk )

]T
d t (2.62c)

ξE
[1,2,3,4] =

4

2

1∫
−1

t 3 [
cos(2θk ) sin(2θk ) cos(4θk ) sin(4θk )

]T
d t (2.62d)

ξF
[1,2,3,4] =

5

2

1∫
−1

t 4 [
cos(2θk ) sin(2θk ) cos(4θk ) sin(4θk )

]T
d t (2.62e)

ξG
[1,2,3,4] =

6

2

1∫
−1

t 5 [
cos(2θk ) sin(2θk ) cos(4θk ) sin(4θk )

]T
d t (2.62f)

ξH
[1,2,3,4] =

7

2

1∫
−1

t 6 [
cos(2θk ) sin(2θk ) cos(4θk ) sin(4θk )

]T
d t (2.62g)
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2.4. Constitutive Relations

Now changing the thickness coordinate to the physical thickness coordinate z ′ and performing the
integration gives:

ξA
[1,2,3,4] =

1

2

h
2∫

− h
2

[
cos(2θk ) sin(2θk ) cos(4θk ) sin(4θk )

]T 2
h d z ′

= 1

h

NL∑
k=1

(var1)k
[
cos(2θk ) sin(2θk ) cos(4θk ) sin(4θk )

]T
(2.63a)

ξB
[1,2,3,4] =

2

2

h
2∫

− h
2

( 2
h z ′)[cos(2θk ) sin(2θk ) cos(4θk ) sin(4θk )

]T 2
h d z ′

= 4

h2

NL∑
k=1

(var2)k
[
cos(2θk ) sin(2θk ) cos(4θk ) sin(4θk )

]T
(2.63b)

ξD
[1,2,3,4] =

3

2

h
2∫

− h
2

( 2
h z ′)2 [

cos(2θk ) sin(2θk ) cos(4θk ) sin(4θk )
]T 2

h d z ′

= 12

h3

NL∑
k=1

(var3)k
[
cos(2θk ) sin(2θk ) cos(4θk ) sin(4θk )

]T
(2.63c)

ξE
[1,2,3,4] =

4

2

h
2∫

− h
2

( 2
h z ′)3 [

cos(2θk ) sin(2θk ) cos(4θk ) sin(4θk )
]T 2

h d z ′

= 32

h4

NL∑
k=1

(var4)k
[
cos(2θk ) sin(2θk ) cos(4θk ) sin(4θk )

]T
(2.63d)

ξF
[1,2,3,4] =

5

2

h
2∫

− h
2

( 2
h z ′)4 [

cos(2θk ) sin(2θk ) cos(4θk ) sin(4θk )
]T 2

h d z ′

= 80

h5

NL∑
k=1

(var5)k
[
cos(2θk ) sin(2θk ) cos(4θk ) sin(4θk )

]T
(2.63e)

ξG
[1,2,3,4] =

6

2

h
2∫

− h
2

( 2
h z ′)5 [

cos(2θk ) sin(2θk ) cos(4θk ) sin(4θk )
]T 2

h d z ′

= 192

h6

NL∑
k=1

(var6)k
[
cos(2θk ) sin(2θk ) cos(4θk ) sin(4θk )

]T
(2.63f)

ξH
[1,2,3,4] =

7

2

h
2∫

− h
2

( 2
h z ′)6 [

cos(2θk ) sin(2θk ) cos(4θk ) sin(4θk )
]T 2

h d z ′

= 448

h7

NL∑
k=1

(var7)k
[
cos(2θk ) sin(2θk ) cos(4θk ) sin(4θk )

]T
(2.63g)

Next, the strategy is to utilise the results with thickness integrated constitutive properties of section
2.3. To do so the constitutive properties should be transformed from the MCS to the global coordinate
system. This is done by multiplication with the transformation matrix T MG as (where the general idea

23



2. Shell Element Theory

is illustrated by just one of the matrices):

E 1 =
NL∑

k=1
C k

zk∫
zk−1

(1+2z ′γ+ z ′2γ2)d z ′

=
NL∑

k=1
T T

MG Q
k

T MG

zk∫
zk−1

(1+2z ′γ+ z ′2γ2)d z ′

= T T
MG

NL∑
k=1

 Q
k

zk∫
zk−1

(1+2z ′γ+ z ′2γ2)d z ′
 T MG (2.64)

where: T MG Transformation matrix from MCS to global coordinate system.

Realising that if all layers are made of the same material then the constitutive matrix for the different
layers are identical, except for the orientations. Thus the relationship developed in equation (2.61)
can be applied where the invariant matrix, U , can be placed outside the summation due to the ma-

terial being identical through the thickness. However, a problem arises as
*
Q in equation (2.61) is a

1×9 vector, whereas Q in equation (2.59) is a 6×6 matrix, meaning that the vector needs to be trans-
formed into the matrix-form. This can in principle be done by use of two bookkeeping matrices T 1
and T 2 (with the dimensions of the matrices noted below) as:

Q
6×6

= T 1
6×9

( *
Q

9×1
T 2
1×6

)
(2.65)

However, in the current implementation this task is instead done by simply placing the entrances of
the vector at the correct locations in the matrix (which in practice is both easier and also saves com-
putational time). So ignoring the need for transformation from vector into matrix, equation (2.64)
can be further rewritten into:

E 1 = T T
MG U

 NL∑
k=1

[
1 cos(2θk ) sin(2θk ) cos(4θk ) sin(4θk )

]T
zk∫

zk−1

(1+2z ′γ+ z ′2γ2)d z ′
 T MG

= T T
MG U

(
h

[
1 ξA

1 ξA
2 ξA

3 ξA
4

]T +2γh2

4

[
0 ξB

1 ξB
2 ξB

3 ξB
4

]T

+γ2 h3

12

[
1 ξD

1 ξD
2 ξD

3 ξD
4

]T
)

T MG (2.66)

Correspondingly the matrices E 2 to E 5 can be reformulated to give:

E 2 = T T
MG U

(
h2

4

[
0 ξB

1 ξB
2 ξB

3 ξB
4

]T +2γh3

12

[
1 ξD

1 ξD
2 ξD

3 ξD
4

]T

+γ2 h4

32

[
0 ξE

1 ξE
2 ξE

3 ξE
4

]T
)

T MG (2.67a)

E 3 = T T
MG U

(
h3

12

[
1 ξD

1 ξD
2 ξD

3 ξD
4

]T +2γh4

32

[
0 ξE

1 ξE
2 ξE

3 ξE
4

]T

+γ2 h5

80

[
1 ξF

1 ξF
2 ξF

3 ξF
4

]T
)

T MG (2.67b)

E 4 = T T
MG U

(
h4

32

[
0 ξE

1 ξE
2 ξE

3 ξE
4

]T +2γh5

80

[
1 ξF

1 ξF
2 ξF

3 ξF
4

]T

+γ2 h6

192

[
0 ξG

1 ξG
2 ξG

3 ξG
4

]T
)

T MG (2.67c)

E 5 = T T
MG U

(
h5

80

[
1 ξF

1 ξF
2 ξF

3 ξF
4

]T +2γ h6

192

[
0 ξG

1 ξG
2 ξG

3 ξG
4

]T

+γ2 h7

448

[
1 ξH

1 ξH
2 ξH

3 ξH
4

]T
)

T MG (2.67d)
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2.5. Numerical Verification & Performance

Thus expressions for the thickness integrated constitutive properties in terms of the lamination pa-
rameters have been obtained. Hence the stiffness matrix in equation (2.49) may also be expressed in
terms of lamination parameters, and accordingly it must as well be linear in those.

As previously mentioned in section 2.3.2 the explicit thickness integration can also be formulated
in an approximate form where the strain displacement matrix B 3 is set to zero, and thus reducing
the number of integration terms when determining the element stiffness matrix. As a consequence
the stiffness contributions from E 4 and E 5 are neglected. Hence the number of active lamination
parameters is reduced from 28 to 20. Further reductions occur for flat shells i.e. plates due to the pa-
rameter γ= 0 which results in 12 active lamination parameters: ξA

i , ξB
i , and ξD

i . These 12 parameters
are identical to those known from classical laminate plate theory.

2.5 Numerical Verification & Performance

Having obtained new formulations of the stiffness this section serves to verify that the new formu-
lations give meaningful results. In particular it is desirable to know whether stiffnesses obtained by
explicit thickness integration as well as approximated explicit thickness integration give accurate re-
sults. Furthermore it is desirable to investigate the difference in performance between full layer-wise
integration, explicit thickness integration and approximated explicit thickness integration. Such nu-
merical experiments testing the accuracy and performance of the above-mentioned methods have
been conducted by [Hvejsel and Hansen, 2007], wherefrom the results are reproduced. However, as
large parts of the code have been redesigned in order to activate and deactivate the use of lamina-
tion parameters in the calculations of the stiffnesses, it has been found necessary to test whether the
results obtained by [Hvejsel and Hansen, 2007] still hold. As this has in fact been verified, what is
presented in the following subsections are results produced by [Hvejsel and Hansen, 2007] with the
remark that the same experiments conducted with the use of laminations parameters give identi-
cal results. The two characteristics, accuracy and performance, are addressed separately using two
standard examples.

2.5.1 Accuracy — Pinched Hemisphere

In order to test the shell elements’ behaviour in a mixed membrane and bending situation, the exam-
ple used is the double curved pinched hemisphere sketched in figure 2.6. The hemisphere has a hole
in the top in order to avoid triangular elements. As also can be seen in the figure symmetric boundary
conditions are used and hence only a quarter of the geometry is analysed.
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Figure 6.4: Geometry and boundary onditions for topless pinhed hemisphere. Load: F = 2.Dimensions: R = 10.0, t = 0.04, φ = 18.0◦. Isotropi material properties: E = 6.825 · 107, ν = 0.3.For omparison purposes we monitor the radial de�etion of point A. A theoretial lowerbound of 0.0924 is known from an exat solution for a losed pinhed hemisphere. A morerealisti result for the open hemisphere is 0.0940, MaNeal and Harder (1985), whih is usedfor normalization in the following.Convergene is studied by re�ning an N × N mesh applied to one quarter of the hemisphere.The normalized radial displaement of point A is shown graphially in Figure 6.5. Results areshown for all three element formulations and from the graph no di�erene is seen. Convergeneseems to be reahed equally for all three formulations at a mesh size of 32 × 32. Thus theapproximations introdued do not alter the onvergene ompared to the SHELL9 element.Next, we study the in�uene of the urvature to thikness ratio.6.3.2 In�uene of R/h-ratioTo enable expliit thikness integration we assumed the radius of urvature to be signi�antlylarger than the shell thikness, Setion 4.1.4. Now we use the pinhed hemisphere exampleto study the preision of this approximation for varying radius of urvature-to-thiknessratios. The de�etion of point A, obtained by the expliitly integrated element formulations,is ompared to the same displaement obtained by the ompletely numerially integratedformulation, SHELL9. The relative di�erene is de�ned as
D =

(
vExpl
A

vSHELL9
A

− 1

)
· 100% (6.9)In Figure 6.6 the relative di�erene of the displaement of point A ompared to the SHELL9solution is plotted against the radius of urvature-to-thikness ratio of the pinhed hemisphere.For plates (i.e. R

h = ∞) the relative di�erene aused by the approximation is zero. This isre�eted in that the relative di�erene is less than 4% for shells with a R
h -ratio larger than 5and beyond, the error asymptotially approahes zero. For shells in the thin shell range, thatis, R

h > 25 virtually no di�erene is observed, as expeted.The plot shows that the approximation introdued to enable expliit thikness integration isreasonable for radius-to-thikness ratios that are typially modelled as shell strutures. It is

Figure 2.6: Geometry and boundary conditions for the pinched hemisphere. Load F = 2. Dimensions: R =
10.0, t = 0.04,φ = 18.0◦. Isotropic material properties: E = 6.825 · 107,ν = 0.3. Reproduced from [Hvejsel and
Hansen, 2007].
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2. Shell Element Theory

When developing the formulation of the explicit thickness integration the radius of curvature was
assumed to be significantly larger than the shell thickness. Hence, what is interesting to investigate
is the precision of this assumption when varying the ratio of radius of curvature to shell thickness.
The pinched hemisphere is thus analysed for a series of R

t ratios. This task is done using both regular
layer-wise thickness integration, explicit thickness integration and approximated explicit thickness
integration. For comparison the radial displacement of point A is monitored for all analyses.

58 6.3. Numerial auray

0 10 20 30 40 50 60 70
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

PSfrag replaements SHELL9SHELL9ExplSHELL9ExplAppNumber of elements, NNormalizedradia
ldisplaement
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Figure 6.6: Relative di�erene of point A displaements of SHELL9Expl and SHELL9ExplAppompared to omplete numerially integrated 9-node shell element, SHELL9.seen that SHELL9ExplApp is slightly more un-preise than the SHELL9Expl formulation inthe moderately thik shell range but still very lose to the SHELL9 formulation in the thin shellrange. Though the plot displays R
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Figure 2.7: Relative difference in displacement of point A for both analyses conducted with explicit thickness in-
tegration and analyses conducted with approximated explicit thickness integration when compared to analyses
conducted with regular layer-wise integration. Reproduced from [Hvejsel and Hansen, 2007].

The results of the investigation are plotted in figure 2.7. As can be seen from the figure, when the
R
t ratio is above ∼ 25 both explicit thickness integration and approximated explicit thickness inte-

gration give results that are almost identical to the layer-wise thickness integration. For ratios in the
other end of the scale, below ∼ 15, a slight difference between the explicit thickness integration and
the approximated explicit thickness integration is observed. This may be explained by the fact that
the approximate explicit integration was derived upon the notion that the B3 contains higher order
terms of the shell thickness. Thus as the thickness is increased the difference between the two formu-
lations must be expected to likewise increase. Results from analyses with R

t < 10 are also shown in the
plot. However, it might be questioned if such structures should be modelled with shell assumptions
(FSDT). In general it is seen that the explicit thickness integration give accurate results, that only dif-
fer with around 1% when at its most. Also the approximated explicit thickness integration give good
results. A slightly larger relative difference must be expected here though, especially for thick and
curved structures.

The reformulations of this project regarding the use of lamination parameters have been tested
to give the exact same results as the formulations implemented by [Hvejsel and Hansen, 2007]. The
accuracy of the implemented stiffness calculations is thus ensured.
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2.6. Summary

2.5.2 Performance — Rectangular elements

Now knowing that the explicit thickness integration as well as the approximated explicit thickness
integration give reasonably accurate results, the next interesting question is whether the methods
actually give any decrease in calculation time. This question is sought investigated by assembling the
element stiffness matrices of 100 rectangular plates as a function of the number of layers. Since plate
elements are used, the variation of the Jacobian in theory vanishes making a lot of the entrances in
the E i -matrices zero. However, in the experiment these entrances are still present so it should be
representable. The results are shown in figure 2.8.
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Figure 2.8: Time of formulation and assembly of stiffness matrix for 100 elements bye the three distinct methods.
Reproduced from [Hvejsel and Hansen, 2007].

As can be seen from the plot, the time consumption for regular layer-wise integration is proportional
to the number of layers, whereas the time consumption for both the explicit thickness integration
and the approximated explicit thickness integration seem almost constant (or at least have a much
lower proportionality constant). The conclusion is that for structures consisting of only a few layers
a regular layer-wise integration is preferred, whereas for structures with many layers the two explicit
methods are much more efficient, and as more layers are present in the geometry, the larger is the
gain in performance. In the industry structures with several hundred layers are not unusual. Hence
the explicit methods are considered a remarkable improvement. It could, however, be questioned
whether the increase in computational performance with the approximated explicit thickness inte-
gration when compared to the explicit thickness integration is worth the loss in accuracy. This judg-
ment is related to both geometry and the desired results for which reason it must be assessed for each
individual problem.

2.6 Summary

This chapter has introduced the basic concepts of shell element theory. Given both a geometric rep-
resentation and the FSDT assumptions the required strain-displacement relations have been derived
as seen in equation (2.41). The thickness dependency has been explicitly noted as a first step in order
to obtain the derived methods of explicit thickness integration and approximated explicit thickness
integration. These methods are basically constituted by equations (2.49) and (2.51).

Furthermore the constitutive relations have been examined in order to obtain a formulation where
the so-called lamination parameters are incorporated. This has been obtained in the form of equa-
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2. Shell Element Theory

tions (2.66) and (2.67) which when all comes to all renders the stiffness matrix linear in the lamination
parameters. Namely this last property is what is sought utilised in the following parts of the thesis.

At last the derived formulations have been investigated w.r.t. accuracy and performance. The
conclusions of this investigation are that both explicit thickness integration and approximated ex-
plicit thickness integration gives reasonable results when the shell is thin compared to the radius of
curvature, which is in correspondence with the assumptions of FSDT, and that the two explicit meth-
ods give a noticeable increase in computational efficiency.

The next chapter serves to utilise some of the aspects derived in this chapter, in order to overcome
a common problem associated with optimisation of composite structures, namely the presence of
local minima solutions in the design space.
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Chapter

3
Optimisation with Lamination Parameters

In this chapter a new method for optimising layered composite structures is presented. The method is
based upon preliminary ideas presented by [Foldager, 1999] which were revised by [Kann and Sørensen,
2010]. The method utilises lamination parameters to overcome the non-convex nature of the design
space associated with applying fibre orientations as design variables. At first, however, some prelim-
inary concepts are presented regarding optimisation in general and optimisation where lamination
parameters are applied as design variables. Afterwards the optimisation technique used in this thesis
is presented — a technique where the properties of lamination parameters are used but the fibre orien-
tations are kept as design variables.

3.1 Concept of Optimisation

The purpose of performing optimisation is either to maximise or to minimise the performance of a
given problem. In structural mechanics, this is done by reformulating the physical problem into a
mathematical problem, also called an objective function. The purpose of this function is to grade the
performance of the problem by a single value. In structural mechanics the variables of the objective
function are generally based upon the values of the physical parameters i.e. geometric design, fibre
orientation, thicknesses, and material. These variables thus reflect the design of the structure, hence
they are also referred to as design variables. Besides the objective function, constraint functions can
also be formulated. These functions ensure that the criteria which they represent are fulfilled during
the optimisation process by dividing the design space into allowable and inadmissible parts. In gen-
eral two types of constraint functions exist, equality and inequality constraints. Typically, the above
mentioned functions are formulated in a manner which is referred to as The Standard Model. Accord-
ing to [Arora, 2004] this formulation is defined as:

Objective function:

f (*x) = f (x1, x2, ..., xn) (3.1a)

Subjected to the equality constraints:

hi (*x) = hi (x1, x2, ..., xn) = 0, i = 1...p (3.1b)

and the inequality constraints:

g j (*x) = g j (x1, x2, ..., xn) ≤ 0 j = 1...m (3.1c)

where: x1, x2, ..., xn Design variables.
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3. Optimisation with Lamination Parameters

Typically, the objective function is formulated such that the goal is to minimise the function value.
However, if the goal actually is to maximise the value of the objective function, then one simply has
to minimise the negative objective function. Thus for the remaining part of this thesis, optimisation
is always associated with minimisation of the objective function.

The objective and constraint functions can be formulated either as explicit or implicit functions
where an explicit formulation most often is faster to evaluate than an implicit formulation. In struc-
tural optimisation the objective function can rarely be formulated as an explicit function being that
most types of structures are too complicated to be formulated as an explicit mathematical formula.
For structures such as wind turbine blades and aircraft structures where both the geometry and the
load scenarios are complicated, the objective function may rely on results from a finite element model
and thus making the objective function implicit. These types of problems can be solved using a wide
variety of different methods. It is though beyond the scope of this thesis to make a thorough descrip-
tion of all the available methods. However, in structural mechanics numerical optimisation using a
gradient based method is often applied due to its versatility. This type of optimisation will also be one
of the main topics for the remaining part of this thesis.

Depending upon the specific type of problem the structure may be parameterised in different
ways. That is, the choice of design variables can be done in many ways. However, the diverse nature
of the design space associated with different parameterisations in combination with different weak-
nesses of the available optimisers imply that various results might arise for optimisations performed
with different parameterisations and optimisers — even though the global optimum obviously is the
same for all parameterisations. Thus the performance of the optimised design is highly dependent
upon the choice of parametrisation.

3.2 Maximum Stiffness Optimisation

Optimisation of mechanical structures can be performed with various objectives in mind. In the early
design phase topology optimisation may be applied in order to either save material. When it comes
to structures made from composite materials the designer has the ability to tailor the material which
makes it possible to maximise the full potential of the structures. One of the essential properties in
any load carrying structure is the overall stiffness of the structures. One method of maximising the
stiffness is to minimise the compliance and thus reducing the displacements of the loaded structure.
The compliance is defined as the work done by the external loads with full intensity:

C (*x) ≡W (*x) = *D
T *R (3.2)

where: C Compliance.

W Work done by external loads.

*x Design variable vector.

*D Global displacement vector.

*R Global force vector.

For an elastic and conservative material the principle of energy conservation states that the strain
energy, in the state of equilibrium, is equal to the work done by the external loads when these have
increased uniformly from zero [Zienkiewicz and Taylor, 1989]:

U = 1

2
W ⇒ U − 1

2
W = 0 (3.3)
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3.2. Maximum Stiffness Optimisation

where: U Strain energy

It is thus evident that the compliance is directly related to the strain energy. If the structure is in
equilibrium and the material is linear elastic then the strain energy can be determined using finite
element notation as:

U = 1

2
*D

T
K *D = 1

2

nel em∑
e=1

(*d T
e ke

*d e

)
(3.4)

where: K Global stiffness matrix.

ke Element stiffness matrix.

*d e Element displacement vector.

nel em Number of elements.

Thus by minimising the strain energy one also minimises the compliance whereby the stiffness of
the structure is maximised. The only requirements are that the material must be linear elastic and
without damping, and the structure must be in a state of equilibrium. In the context of optimisation
the objective function may be formulated cf. the standard model as:

f (*x) =U (*x) (3.5)

3.2.1 Stiffness Sensitivity

As mentioned in the previous section gradient based methods are often applied in structural optimi-
sation, thus gradient / sensitivity information is needed during the optimisation process. Determin-
ing the sensitivities of the compliance with respect to the design variable xi can be obtained through
the strain energy in equation (3.4). The first derivative of the strain energy with respect to the design
variable xi is determined as:

∂U

∂xi
= 1

2

(
∂*D

T

∂xi
K *D +*D

T ∂K

∂xi

*D +*D
T

K
∂*D
∂xi

)
(3.6)

Due to the symmetry of the stiffness matrix the above expression can be reduced to:

∂U

∂xi
= *D

T
K
∂*D
∂xi

+ 1

2
*D

T ∂K

∂xi

*D (3.7)

The above expression can be used directly to obtain the sensitivities. However, it is necessary to de-

termine the quantity ∂*D
∂xi

whereby the equilibrium equations often have to be solved at least one ad-
ditional time for each design variable. This can be a time consuming procedure. It can, however, be
omitted by applying the following mathematical manipulation. Taking the first derivative of the finite
element equilibrium equations with respect to the design variable xi yields:

K *D = *R ⇒
∂K

∂xi

*D + K
∂*D
∂xi

= ∂*R
∂xi

(3.8)
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3. Optimisation with Lamination Parameters

Now assuming that the loads are assumed to be design independent, the quantity ∂*R
∂xi

= *0, which
reduces the expression:

∂K

∂xi

*D + K
∂*D
∂xi

= *0 ⇒

K
∂*D
∂xi

=−∂K

∂xi

*D (3.9)

By substituting the above expression into equation (3.7) the final expression for the strain energy
sensitivity is obtained as:

∂U

∂xi
=−1

2
*D

T ∂K

∂xi

*D =−1

2

nel em∑
e=1

*d
T
e

∂ ke

∂xi

*d e (3.10)

Applying the above expression the finite element equilibrium equations only have to be solved once
for each optimisation step in the design space, as opposed to if equation 3.7 were used. From here
it is simply a question of determining the stiffness sensitivities for those elements which the design
variables have an effect on and then reuse the element displacements determined from the equilib-
rium equations. The stiffness sensitivities can be determined by applying a perturbation technique
in the form of either a forward/backward- or a central difference approximation, depending upon
the required accuracy. However, if the lamination parameters are applied as design variables then the
stiffness sensitivities can be determined analytically. This is shown in the following.

3.2.2 Stiffness Sensitivity w.r.t Lamination Parameters

In section 2.3.2 the stiffness matrix of an element was derived for the case of an explicit integration
through the thickness. This expression is repeated here for convenience:

ke =
1∫

−1

1∫
−1

(
B T

1 E 1 B 1 + B T
1 E 2 B 2 + B T

1 E 3 B 3

+ B T
2 E 2 B 1 + B T

2 E 3 B 2 + B T
2 E 4 B 3

+ B T
3 E 3 B 1 + B T

3 E 4 B 2 + B T
3 E 5 B 3

)
2
h∆

2
Adr d s (3.11)

The only quantities in the above expression which are dependent upon the lamination parameters
are the thickness integrated constitutive properties represented by the E matrices. Taking the first
derivative of the above with respect to the lamination parameters yields:

∂ ke

∂ξ
j
i

=
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−1
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1
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3.2. Maximum Stiffness Optimisation

where: i = 1,2,3,4.

j = A,B ,D,E ,F,G , H .

It should be noted that the dependence of the constitutive properties upon the lamination param-
eters varies from E1 – E5. Thus the active parts of the above expression depends upon the given
lamination parameter. A complete description of how to determine all the individual sensitivities is
listed in appendix B.

3.2.2.1 Numerical Verification of Sensitivities

The verification of the analytically sensitivity expressions has been done by comparing results ob-
tained from a Matlab program and the finite element program MUST. The Matlab program deter-
mines the sensitivities using a central difference approximation directly of the strain energy, whereas
the analytical expressions have been implemented in MUST. The Matlab program is built around
classical laminate plate theory, thus only 12 lamination parameters are subjected for comparison.
The example used for the verification is a square plate clamped on one side, and pulled uniformly
on the opposite side. In MUST the plate is modelled using nine equally sized nine node elements as
shown in figure 3.1. The dimensions of the plate 1 ·1m, the loads is 3kN distributed uniformly over
the indicated face. The material properties used are shown in table 3.1.
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Figure 3.1: Clamped plate subjected to uniformly distributed force. Fibre orientations are indicated as a small
line in each element.

Quantity E1 E2 E3 G12 ν12 ν23 ν13

Set to 138MPa 9M pa 9M pa 7MPa 0.3 0.3 0.3

Table 3.1: Material properties for Graphite-Epoxy (AS/3501).

The plate consists of 30 layers all with a thickness of 0.001m and an angular orientation of π
2 rela-

tive to the x-direction. In order to minimise boundary effects in the finite element model, element
number 5 is selected for comparison in accordance with Saint-Venant’s principle. The sensitivities
are determined individually and assembled in a vector which is scaled to unit length. Comparing the
results from the two models shows that they produce equal sensitivities down to the third digit, thus
verifying the analytical expressions and their implementation in MUST. The results are shown in table
3.2.
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∂Ud

∂ξA
1

∂Ud

∂ξA
2

∂Ud

∂ξA
3

∂Ud

∂ξA
4

Matlab -0.974712139750969 0 -0.223464190916772 0
MUST -0.974706493423170 -0.000277434293206 -0.223488609380365 -0.000127224803855

∂Ud

∂ξB
1

∂Ud

∂ξB
2

∂Ud

∂ξB
3

∂Ud

∂ξB
4

Matlab 0 0 0 0
MUST 0.000000000000001 -0.000000000000000 0.000000000000000 -0.000000000000000

∂Ud

∂ξE
1

∂Ud

∂ξE
2

∂Ud

∂ξE
3

∂Ud

∂ξE
4

Matlab 0 0 0 0
MUST -0.000000000000000 0.000000000000000 -0.000000000000000 0.000000000000000

Table 3.2: Sensitivities from Matlab and MUST.

3.3 Patches

A patch is a group of elements that share the same set of design variables. This enables the designer
to use a fine mesh so as to obtain a good approximation of the displacement field, while keeping the
number of design variables low so as to reduce the computational time needed for an optimisation
to converge. In figure 3.2 a square plate is modelled with four patches where each patch covers nine
elements.

x

y
z 1

3 4
2

Figure 3.2: A plate divided into four patches, each divided into nine elements.

In this example each element contains one lamina where the fibre orientation is applied as a design
variable. The patch model thus has four design variables. If the patches were removed the model
would have 36 design variables which would increase the amount of time needed for convergence.

Another benefit of applying a patch formulation is that the engineer may use less time on post-
processing the optimised design. This is because larger areas of the structure will have the same value
of the design variable, making it easier for the engineer to translate the result into what is actually
possible to build. The problem with applying a patch formulation is that each patch represents the
average of the covering elements, thus some of the elements in the patch may be assigned a value
of the design variable which may differ from what the optimum value is for that particular element.
Thus the final design may not represent the same optimum design as would arise if the problem was
solved at element level. It is thus up to the engineer to determine how small each patch has to be in
order to obtain a good result, while also keeping the patch big enough so as to use less time on post-
processing and waiting for the optimisation to converge. However, no matter how this ratio is scaled
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the need for post-processing of the optimised design is unavoidable with the current optimisation
techniques as ply continuity is not enforced between the patches.

3.4 Parametrisation

Depending on the chosen parametrisation different limitations are imposed upon the design vari-
ables. The fibre orientations, thicknesses and the lamination parameters can be utilised as continu-
ous variables which can attain any value within their given bounds. The material properties on the
other hand have to fit an existing material whereby the set of allowable values becomes a discrete set.
It is also reasonable to imagine a situation where the manufacturer only has a limited set of fibre mats
each with a predefined thickness and fibre orientation, thus making these properties discrete design
variables. By choosing a discrete formulation the manufacturer may be able to optimise the structure
according to what is possible to build. However, if the goal is to determine the best possible solution
with this material, i.e. to determine the global minimum of the objective function treated with all val-
ues of the design variables possible, a discrete parametrisation of the problem may not contain this
solution due to the limitations imposed on the design variables.

If continuous design variables are applied then the determination of the global minimum may be
possible but certainly not guaranteed even though it may be present in the design space. It is only
possible to guarantee the determination of the global minimum if the design space is convex. This
especially becomes a problem when optimising composite structures using a gradient based method
because both the thicknesses and fibre orientations have a strong non-linear influence on the stiff-
ness of the structure, and as known the stiffness is an important property in structural optimisation.
That is e.g. when maximising the minimum buckling load or when minimising the strain energy. This
specific non-linear relation to the design variables makes the design space non-convex, and thus
gradient based algorithms will typically get stuck in a local minimum. This makes the lamination pa-
rameters introduced in section 2.4.3 interesting because the element stiffness matrix of a laminate is
linear with respect to these, provided that the same material is used throughout the entire thickness
of the laminate. However, when applying lamination parameters as design variables one has to en-
sure that the parameters represent a feasible design which can be realised when the optimisation has
converged. The problems of feasibility and identification are elaborated in the following.

3.5 Characteristics of Lamination Parameters

Much focus has been put on the characteristics of lamination parameters by different researchers. In
particular the problems of feasibility as well as convexity have drawn the attention. These two areas
of interest are elaborated on in the following.

3.5.1 Feasibility

Lamination parameters are defined on the basis of the laminate thicknesses and fibre orientations
and are thus dependent parameters which reflect the laminate design rather than define it. Thus
when applying lamination parameters as design variables one has to ensure that they always repre-
sent a lay-up which can be realised. To further complicate the situation the parameters are mutually
dependent upon one another [Bloomfield et al., 2009]. By definition the lamination parameters can

assign values within the bounds of −1 ≤ ξ
j
i ≤ 1, however, this does not provide sufficient guarantee

that the parameters represent a feasible lay-up thus further constraints have to be formulated.
At the current time the research within the field of feasibility has been concentrated around clas-

sical laminate plate theory where 12 lamination parameters describe the lay-up of the plate. When
applying lamination parameters to determine the stiffness of a shell in a finite element formulation, a
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3. Optimisation with Lamination Parameters

total of 28 lamination parameters can be used. To the knowledge of the authors no literature has been
published regarding feasibility for such a formulation. In the following some research concentrated
around classical laminate plate theory using 12 lamination parameters is presented.

Within the field of laminate plate theory the constraints required to ensure feasibility have still
not been determined for the general case where all possible configurations of ply orientations and
load scenarios are accounted for. However, for specific load scenarios and laminate lay-ups some
constraints on the feasible domain have been determined. The first of these were presented by [Miki,
1982] who determined the bounds of the feasible domain for an orthotropic laminate subjected to
either in-plane or out-of-plane loads. After [Miki, 1982] others also determined constraints for some
special cases, among which are [Fukunaga and Sekine, 1992] who determined the relationship be-
tween the four in-plane parameters and also for the four out-of-plane parameters. Furthermore
[Grenestedt and Gudmundson, 1993] determined a series of constraints, one of which is for an or-
thotropic and balanced plate subjected to coupled in- and out-of-plane loads. They further showed
that the feasible domain containing the lamination parameters must be convex for the general case,
where no restrictions have been made regarding laminate lay-up or loading conditions. What all of
these constraint formulations have in common is that they are valid for all angular configurations,
within their respective restrictions of e.g. orthotropic and/or symmetry. Attempts have also been
made for describing the constraints for a discrete set of ply configurations, here [Bloomfield et al.,
2009] accomplished to describe the fully constrained feasible domain for laminates with 0◦, ±30◦,
±45◦, ±60◦, 90◦ plies. However, the method in [Bloomfield et al., 2009] is not restricted to the pre-
sented set of configurations, but can in theory determine the constraints for any number of prefixed
plies with different angular and thickness configurations. Still, at present time the full set of con-
straints is yet to be determined for the general case, where no restrictions are made with respect
to ply orientations, lay-ups, and loads [Grenestedt and Gudmundson, 1993], [Hammer et al., 1997],
[Bloomfield et al., 2009].

Thus when it comes to optimisation where lamination parameters are applied as design variables,
this has only been done using 12 lamination parameters i.e. plates. In this case, the kinematics are
restricted to be described by use of CLT or FSDT. Furthermore if continuous fibre orientations are
desired the laminate design is restricted either in the form of its load carrying capability or lay-up. For
a discrete set of ply configurations the method presented by [Bloomfield et al., 2009] can be applied.
Both of these options are thus not applicable for optimisation where the laminate lay-up has to be free
from restrictions and neither of them can strictly be applied if the structure has to be modelled using
a shell formulation. These limitations are sought to be bypassed by use of the method presented in
this thesis.

3.5.2 Convexity

Different statements regarding convexity or not of the lamination parameters and formulations of
these have indeed been made. To clarify, here is given a short recap of what, to the knowledge of the
authors, is known regarding lamination parameters and convexity at present time. For the sake of
clarity the expression for the strain energy, in a finite element notation, is repeated from expression
(3.4) here:

U = 1

2

nelem∑
e=1

(*d T
e ke

*d e

)
(3.13)

As shown in section 2.4.3 the element stiffness matrix can be expressed in terms of the lamination
parameters, and it is evident that it is linear in those. Though the stiffness matrix is linear in terms of
the lamination parameters, the dependency of the strain energy w.r.t. the lamination parameters are
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not necessarily so simple, as the displacements are dependent upon the stiffness. For clarification the
expression for the strain energy is here shown with its dependency upon the lamination parameters:

U = 1

2

nel em∑
e=1

(
*d e

(*
ξn

)T
ke

(*
ξ
) *d e

(*
ξn

))
(3.14)

where: X
(*
ξn

)
Indicates that X depends on ξi in some order n.

X
(*
ξ
)

Indicates that X depends on ξi in first order.

As seen the strain energy is dependent upon the lamination parameters in an order of 2n+1. Depen-
dent on n this can obviously be very nonlinear. However, [Svanberg, 1984] showed that stiffness opti-
misation problems in a finite element context, can be shown to be convex if stiffness matrix is linear
w.r.t the design variables and if the design variables furthermore are either linear or convex confined.
This notion was later used by [Grenestedt and Gudmundson, 1993] who showed that the strain en-
ergy is convex when lamination parameters are applied as design variables. The proof utilised that the
lamination parameters are confined in a convex space, as shown by [Grenestedt and Gudmundson,
1993] and by the work done by [Bloomfield et al., 2009], though this work is in fact done discretely. For
the restricted case of either in- or out-of-plane loading conditions [Setoodeh et al., 2006] has proven
that the complementary strain energy, which is equal to the strain energy for a linear elastic mate-
rial, is convex for the given restrictions. Also in the previous work done by the authors [Kann and
Sørensen, 2010], it was shown through numerical experiments that the strain energy density likewise
is convex for either pure in-plane or out-of-plane loading conditions. However, all of the above proofs
regarding convexity have been performed on the basis of plate theory and thus only 12 lamination pa-
rameters have been applied. To the knowledge of the authors, still no one has proven if the 20 or 28
lamination parameters applied in a shell formulation likewise are confined in a convex space, which
is required for archiving the convex stiffness optimisation problem. Furthermore, in order to perform
optimisation with lamination parameters as design variables the feasible domain has to be known.
This has neither been determined for 12, 20 or 28 lamination parameters in a general sense and only
for restricted scenarios when applying 12 lamination parameters. Thus other methods have to be
applied if a restriction free lay-up is wanted.

3.6 Method for Optimisation with Lamination Parameters

As pointed out in the previous section no restriction free method exists for optimising laminated
composite structures where lamination parameters are applied as design variables. However, another
method exists for overcoming the non-convex nature of the design space associated with stiffness
optimisation of composite structures. This method was first presented by [Foldager, 1999] and it is
referred to as a Two-Step Approach. The concept of the method is illustrated in figure 3.3.
With this approach a conventional gradient based optimisation algorithm is utilised where the design
variables are the independent parameters i.e. ply orientations and thicknesses. The optimisation
process from point O to D is elaborated by the following generalised example. In the example the
objective is to minimise the strain energy. The structure is in a state of equilibrium and the loads are
assumed design independent.

The optimisation process sketched in figure 3.3 runs as follows:

1. The optimisation process is initialised with a gradient-based optimiser from some arbitrary
location O using fibre angles and thicknesses as design variables.

2. From the initial location, the optimisation algorithm will typically converge to a solution which
is a local minimum, illustrated by point A. The lay-up here is denoted as a sub-optimal lay-up.
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Figure 3.3: Two-Step optimisation approach. Design variables are ply-orientations and thicknesses

3. From point A an identification process is initialised where the purpose is to determine a new lo-
cation somewhere between points B and C. This identification process is elaborated in section
3.6.1.

4. Assuming the identification was successful and some location E has been determined, the gra-
dient based optimisation algorithm is re-initialised at this location. This leads to the determi-
nation of point D which again may be a local minimum.

5. Located at point D the identification process is repeated. If no new lay-ups can be determined
it is assumed that the global minimum of the objective function has been determined and the
optimisation is terminated.

3.6.1 The Identification Process

The identification process first proposed by [Foldager, 1999] utilises the lamination parameters to
determine a new location in the design space, illustrated in figure 3.3 as point E. In order to clarify
how this is made possible the expression for the strain energy’s dependency upon the lamination
parameters is re-examined:
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As can be seen from the expression the lamination parameters define the stiffness of a given element,
and in turn the level of strain energy. Because point B and C share the same level of strain energy,
they must also share the same structural stiffness due to the loads being design independent. As a
consequence the three points A,B, and C may also share the same set of lamination parameters. The
idea presented by [Foldager, 1999] is to identify other physical lay-ups which produce the same set of
lamination parameters as the lay-up associated with point A. Such lay-ups will produce the same level
of strain energy and hence represent a new location in the design space from which the optimisation
can be re-initiated.

The identification process presented by [Foldager, 1999] is formulated as an optimisation prob-
lem where the objective is to minimise a suitable function — the so-called identification function.
This identification function utilises the physical parameters of the laminate i.e. ply orientations and
thicknesses thus avoiding the problems regarding feasibility. The purpose of the identification func-
tion is thus to compare and grade the lamination parameters from the new lay-up to the lamination
parameters of the old lay-up i.e. the lay-up associated with the local minimum. If a new lay-up is
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3.6. Method for Optimisation with Lamination Parameters

determined the identification process is terminated and the new lay-up is applied in the further op-
timisation of the structure.

However, the identification function presented by [Foldager, 1999] also searched for of lay-ups in
between points B and C, meaning that the identification function accepted lamination parameters
which could be very different compared to those from point A. By accepting different lamination pa-
rameters the identified lay-up will also produce a new stiffness. However, because the displacements
and the loads were kept fixed during the identification, the new lay-up would not be able to produce
the level of strain energy and thus violate the structures state of equilibrium. Further analysis of the
presented identification function revealed other problems. For a detailed analysis of the function the
reader is referred to [Kann and Sørensen, 2010] (available at the in appendix C enclosed CD). A brief
presentation of the main problems are given here though:

Singularities: The function presented by [Foldager, 1999] included singularities for lamination pa-
rameters having values of both 0 and 1, which obviously affects the performance of the pro-
cedure. Furthermore it is a problem of fundamental character that an optimisation algorithm
cannot predict a basic case such as all fibres aligned in the direction of the first axis of the SCS,
which e.g. would be the optimum of a structure in pure tension (that is, pure tension in the
direction of the first axis of the SCS). This was documented in [Kann and Sørensen, 2010].

Variation of sensitivities: The identification function developed by [Foldager, 1999] incorporated
the assumption that the sensitivities of the strain energy density w.r.t. the lamination param-
eters would remain constant through the identification process no matter the step size and
direction. This is obviously not correct, and it was shown by the authors that the sensitivi-
ties associated with the new accepted lamination parameters would often have changed size
compared to the initial sensitivities determined at location A in figure 3.3 [Kann and Sørensen,
2010].

Method of minimisation: The identification function presented by [Foldager, 1999] was minimised
using a gradient based optimiser. However, the identification function itself has later on been
proven to be highly non-convex. Thus the minimisation of the identification function was
prone to get stuck in a local minimum, meaning that the results were not necessarily optimal.
The combination of the non-convexity of the identification function together with the variation
of the sensitivities did that nothing qualified could be said about the results of an identification.
What "saved" the method (in the sense that good results were also obtained) was an "iterative
scheme" were the algorithm was restarted several times with random starting points. Also only
lay-ups which produced similar or lower levels of strain energy would be accepted by the algo-
rithm. Thus the identification process was in fact nothing but a guessing routine. This was also
documented in [Kann and Sørensen, 2010].

The preceding ideas of the method developed by [Foldager, 1999], which bypassed the problems
of feasibility, were quite ingenious. However, as a consequence of the unsatisfactory results associ-
ated with the above mentioned problems, a new identification function was previously developed by
the authors which is presented in the following. This identification function likewise has to be opti-
mised and utilises ply-orientations and thicknesses as design variables, hence avoiding the problem
of feasibility. Also, because of the new formulation the need for the "iterative scheme", where only
lay-ups which produced equal or lower levels of strain energy would be accepted, is eliminated. How-
ever, the task of finding a set of design variables with the exact same lamination parameters can be a
laborious task. This can be eased a little by expanding the interval of accepted lamination parameters.
The formulation of such an expansion is elaborated in the following section.
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3.6.2 Expansion of Lamination Parameters

Expanding the interval of sought lamination parameters enables an acceptance of lay-ups with lami-
nation parameters that are different from those being subjected to identification. However, by chang-
ing the lamination parameters the stiffness of the structure is also changed, and unless the displace-
ments are recalculated the state of equilibrium is violated. Following the mindset from variational
methods a small variation of the stiffness while keeping the displacements fixed still gives a good
approximation of equilibrium though, and thus eliminates the time consuming process of redeter-
mining the displacements. Such a variation can be achieved through a local linearisation of the ob-
jective function i.e. the strain energy with respect to the lamination parameters. The level of variation
is thus controlled by the step size i.e. confidence interval of the linearisation. If the linearisation is
restricted to be in the direction which minimises the value of the objective function, the identified
lay-ups would either give a value equal to or lower than the original level of the objective function.
The procedure is illustrated in figure 3.4.
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Figure 3.4: Strain energy in (a) lamination parameter space, (b) design variable space.

As can be seen in figure 3.4a the linearisation around the original lamination parameter, ξ∗i , is directed
such that the step size, ∆ξ, lowers the value of the objective function. The effect of the expansion is,
in the design space described by the design variables, an expansion of points B and C into the two
intervals B’ and C’, respectively, as illustrated in figure 3.4b.

Expanding the lamination parameters may thus allow for other feasible sets of design variables
to appear in the identification. However, this may not always be the case as the expansion also can
produce an infeasible set of lamination parameters. This effect is illustrated in figure 3.5 where the
expanded region of the lamination parameters is illustrated by the green curve enclosing the hatched
area. As illustrated the expansion has revealed a new set of feasible lamination parameters, indicated
by the green dot, which can be determined through the identification process. However, the expan-
sion has also revealed a new set of infeasible lamination parameters from which no physical lay-up
can be identified, indicated by the black dot.
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Figure 3.5: Matching of design variables through expanded lamination parameters.

It is thus not certain that a new lay-up can be identified by expanding the lamination parameters. It
is also possible that the expansion of one parameter may guide the design variable in one direction,
where the expansion of another parameter may guide the same design variable in the opposite direc-
tion. In such a scenario the expansion has no positive effect. This is illustrated in figure 3.6 where two

lamination parameters are shown as functions of one design variable. An expansion of ξ j
1 allows for a

larger value of the initial design variable, whereas an expansion of ξ j
2 allows for a smaller value of the

initial design variable.
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Figure 3.6: Two lamination parameters as a function of one design variable. In (a) an expansion of ξ j
1 allows

for a larger value of the initial design variable. In (b) an expansion of ξ j
2 allows for a smaller value of the initial

design variable. The green lines represent the expanded regions.

As can be seen in the figure the two expansions of the lamination parameters do not result in them
sharing a common interval described by the design variable, but rather a common point. This means
that the expansion in fact does not open up for any new identifiable design variables and as such the
expansion has no effect.

It can, however, be expected that the positive effect of the expansion may increase as the number
of design variables is increased. If the two lamination parameters from figure 3.6 did share a common
interval it would be confined in the form of a line, which would contain new lay-ups that could be
identified. However, if two design variables were used to define the two lamination parameters the
shared interval could be extended from a line to a surface which would increase the possibility for
identifying a new lay-up. If three design variables were used a shared cubic space could appear and so
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forth. Adding more and more design variables should then further increase the possibility of creating
common multi-dimensional spaces containing more and more different feasible lay-ups which can
be identified.

The above principle of expanding the lamination parameters was verified in the previous work
presented by the authors [Kann and Sørensen, 2010]. The verification was performed by observing
that some of the identified lay-ups had in fact a lower value, and none had a higher value of the
objective function, thus showing that the effect of the expansion was transferred from the lamination
parameters to the design variables.

3.6.3 Identification Formulation

When applying a linearisation of the objective function as a means of expanding the values of the
lamination parameters, a suitable trust region or step size has to be established. If a fixed step size is
applied this value may become too large as the global minimum gradually is approached, resulting in
a linearisation which opens up for the possibility of identifying a new lay-up which has a higher value
of the objective function. This is illustrated is figure 3.7.
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Figure 3.7: Illustration of the problem with a fixed step-size formulation i.e. ∆ξ= const ant .

The above mentioned ambiguity can be removed by incorporating the sensitivities in the determina-
tion of the step size:
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where:
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assembled in a vector.

*
ξ
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The initial set of lamination parameters assembled in a vector.

Thus as the global minimum of the objective function is being reached the step size gradually goes to

zero, and if it is far away from a minimum, i.e

∣∣∣∣∣∣∣∣ ∂ f

∂
*
ξ
∗

∣∣∣∣∣∣∣∣ >> 1, the vector is normalised to unity and the

maximum step size becomes ∆ξ. Thus the expanded region is uniquely defined for each lamination
parameter as:

∆ξi =−di∆ξ (3.17)
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where: ∆ξi Individual allowable variation of each lamination parameter.

∆ξ Fixed step size.

The objective function is, as in the previous work [Kann and Sørensen, 2010], chosen to include sen-
sitivities of the strain energy density w.r.t. the lamination parameters. For other objective functions,
e.g. maximising the minimum buckling load, the sensitivities may be of a different numeric magni-
tude. Thus the determination of∆ξ should be done on the basis of numerical examples. Applying the
above formulations the identification function is defined as:

I =
nLP∑
i=1
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∣∣∣∣∣∣ di > 0

(3.18)

where: ξi (*x) Lamination parameter described by new design variables.

ξ∗i Initial lamination parameter.

di Normalised sensitivity of strain energy density.

nLP Number of lamination parameters.

which can be understood as a mathematical realisation of the expanded interval of accepted lam-
ination parameters accounted for in the previous section. A plot of the function1 is seen in figure
3.8.
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Figure 3.8: Plot of the identification function. ξ∗i = 0, di < 0 and ∆ξi = 0.1.

As can be seen from the formulation new lay-ups which have lamination parameters within their
expanded regions produce an identification function value of zero. If the lay-up has a lamination
parameter outside the expanded region, the function value increases linearly the further away the
new parameter is from the extended region. Whether the expanded region is to the left or the right
of the current parameter is determined by the sign of the gradient for that specific parameter e.g. if
di < 0 the interval is to the right and vice versa.

The value of the lamination parameter being sought identified in the plotted example is ξ∗i = 0
and the sign of the sensitivity is set to di < 0. As can be seen in the figure the step size implemented in
equation (3.18) gives an interval of accepted lamination parameters (indicated by the flat green line)
rather than just a single point.

1Note that the interval has been truncated to [-0.3; 0.3 ] for illustrative purposes.
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3.6.4 Successful Identification — Dependency on the Number of Layers

A successful identification of a new laminate lay-up through a set of lamination parameters is only
possible if other matching lay-ups actually exist. The relationship between design variables and lam-
ination parameters has to be what, for the remainder of this thesis, is referred to as a several-to-one
relationship. That is, there has to be more than one set of design variables sharing the same set of
lamination parameters. If this is not the case and the relationship is one-to-one an identification is
not possible. It is thus essential to ensure that a several-to-one relationship exists between the de-
sign variables and the lamination parameters. The dominating factor for this problem is the number
of design variables used to define the laminate, i.e. the number of plies and hence the number of
ply thicknesses and orientations. If the number of design variables is too small the relationship is
one-to-one, and all sets of lamination parameters giving the same level of strain energy are each con-
nected to each of their unique set of design variables. At a certain level the number of design variables
is great enough to create a several-to-one relationship. This claim shall be underpinned by a small
investigation of the identification process applied on a two-dimensional example.

The two-layer uniform laminated plate is investigated. The lay-up is (θ1@t ,θ2@t ) with fixed thick-
nesses, and the loads are uniform over the plate. The design space is truncated to [0;π[ on both axes
in order to prohibit permutations of ±π. Figure 3.9 shows the design space with values of the strain
energy density on the third axis.

µ2 µ1

Figure 3.9: The design space of the two-layer lami-
nate with values of the strain energy density. Repro-
duced from [Kann and Sørensen, 2010].

µ2 µ1

Figure 3.10: The design space of the two-layer lam-
inate with values of the identification function. Re-
produced from [Kann and Sørensen, 2010].

In the design space an initial point is chosen at *
θ
∗ = [2.53,2.1]T . The point is illustrated with a green

cross. The black crosses represent points with equal strain energy density. These points are thus
points that possibly could be identified in an identification process provided that they give similar
lamination parameters (that is, they should lie within the "expanded region"). The identification
process is now set up with the green cross as initial location. Figure 3.10 shows the same design
space but now with values of the identification function on the third axis. What is seen is that there
is only one single location where the identification function is zero, namely the initial location. This
tells that even though there are several points that share the same level of the strain energy, there are
not a single set of design variables with similar lamination parameters. Hence no new sets of design
variables can be identified. For verification of this point, the lamination parameters of all the black
crosses in figure 3.9 have been determined, and it has in fact been verified that they all give different
lamination parameters. Obviously, a numerical analysis like this is dependent on the resolution. For
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the small analysis conducted here, the design space has been divided into 500× 500 sub-locations
which is believed to be sufficient.

In previous studies the lower bound for the number of design variables was determined through
numerical experiments to be 11, when identifying through a total of 12 lamination parameters [Kann
and Sørensen, 2010]. In the same study it was shown that increasing the number of design variables
likewise increased the rate of success for the identification process. It was thus not a problem to
identify a new lay-up when the laminate was described by e.g. 50 design variables.

As earlier mentioned, the expansion of the interval of accepted lamination parameters has in
earlier studies by the authors been proven to have a positive effect. However, it was also observed
that the expansion only had little influence on the number of identified lay-ups for high numbers
(as e.g. 50) of design variables. This is believed to be the consequence of the increased several-to-one
connection between the lamination parameters and the design variables, meaning that the expanded
interval was in fact not necessary. Obviously the values of the identification function obtained with
and without the expansion differed, but with such high numbers of design variables the number of
identified lay-ups were similar.

3.6.5 Optimisation of Identification Function

As mentioned above the identification function is designed such that a new lay-up is determined by
minimising the function. If a function value of zero is obtained then the new lay-up is within the
accepted interval of the lamination parameters. However, because the lamination parameters are
described by harmonic functions the design space of the identification function becomes discrete.
This is sketched in figure 3.11 where one lamination parameter is sketched as a function of one ply-
orientation — the example is in fact artificially constructed as a simple sine function. Though the plot
actually does not represent a lamination parameter the periodic characteristics are similar, and thus
the points made are valid for lamination parameters as well. Hence the plot will just be referred to as
if it was actually representing a lamination parameter.
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Figure 3.11: Illustration of one lamination parameter described by a harmonic function, blue curve. Black line:
Initial value ξ∗i = 0. Red line: Upper bound of expansion. Green Lines: Expanded intervals. Thick black lines:
Allowed intervals of the design variable.

The blue harmonic curve represents the value of the lamination parameter as a function of the
angular orientation of the ply. The black line represents the initial value of the lamination parameter,
ξ∗i , which in this example is zero. The red line represents the upper bound of the lamination parame-
ter as a consequence of the expansion, this has been greatly exaggerated for illustrative purposes. The
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green lines in between the initial value and the upper bound thus represent the expanded intervals of
the lamination parameter. The thick black lines on the abscissa correspond to the values which the
design variable x can assign.

As can be seen these intervals are scattered along the design space which becomes a problem when
optimising the identification function using conventional gradient based algorithms. These algo-
rithms are prone to get stuck in a local minimum and both of the shown intervals represent their own
optimum solution. Thus a successful identification is highly dependent upon the initial guess of the
new lay-up. It is thus essential to perform an initial search of the design space, and thus determine a
suitable location to initialise the optimisation algorithm from.

This determination of a suitable location can be done in many ways. What is needed is essentially
nothing but a good guess. However, to produce a good guess without evaluating the global objec-
tive function can be quite difficult. The identification function formulated in section 3.6.3 has the
property that it is very computationally lightweight, and as such the cost of evaluating this function
many times is, to a large extent, affordable. Hence, one possible method could be to simply make
a large number of random guesses and hope for it to give good results. In order to do something a
little more structured (but still based on random guesses) a genetic algorithm has been developed,
which incorporates a standard gradient based optimiser to perform local optimisation on the best
performing candidate lay-ups. For a complete description of how the implemented algorithm oper-
ates the reader is referred to appendix A which is taken from the authors previous work [Kann and
Sørensen, 2010]. The combination of a genetic algorithm and the local optimisation on candidate
lay-ups does theoretically not guarantee a solution. However, it has proven itself very useful not only
by the authors but also by [Huang and Haftka, 2005] who used a similar approach for optimisation
of fibre orientation distribution near a hole in composite laminates. The technique has also been
suggested in a more general context to improve the performance of genetic algorithms [North et al.,
1996]. The current implementation of the genetic algorithm applies the method of feasible directions
to perform the local candidate optimisation described in appendix A.1.7. This algorithm is a con-
strained gradient based optimiser and is included in MUST as a part of the DOT optimisation library
originally developed by Vanderplaats Research & Development inc. The only constraints supported
in the current implementation of the genetic algorithm are the bounds on the design variables.

Another aspect of choosing a genetic algorithm is that with this, it is possible to include manufac-
turing constraints as well as discrete domains of definition for the design variables directly into the
identification process. These aspects reach beyond the scope of this thesis and are thus not studied.
However, large parts of the necessary code is actually implemented.

3.7 Optimisation Process

With the addition of the genetic algorithm applied during the identification of a new laminate design,
the optimisation process can be illustrated by the flowchart in figure 3.12.

As can be seen in the figure the optimisation begins with an initial design of the laminate, which is
subjected to conventional gradient based optimisation. This will most likely lead to the determina-
tion of a suboptimal lay-up, from which the lamination parameters are determined and utilised for
the identification process. When a new lay-up has been determined the process is repeated until no
other lay-up can be identified.

Because there is a periodic tendency when optimising with ply orientations, the identification
function may lead to what is believed to be a new lay-up, which in fact may be the original lay-up or a
lay-up simply turned π. The gradient based optimiser will then again initialise the identification of a
new lay-up, which may again determine the same lay-up and thus creating an infinite loop. In order to
avoid this scenario the optimisation process is terminated if ten successive identifications have been
performed, where the gradient based optimiser has been unsuccessful in continuing to reduce the
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Figure 3.12: Overview of the optimisation process given as a flowchart.

value of the objective function in all ten attempts. The reason for the number ten shall be elaborated
in chapter 5. Smarter methods could possibly be used if history of the previous designs were in fact
implemented in the identification process, e.g. a simple improvement could be to prohibit designs
that had already been tried. However, that kind of history is not a part of the current implementation.

3.8 Summary

This chapter has introduced the concept of optimisation with reference to the standard model. Focus
was put on maximising the stiffness, for which reason analytical expressions have been derived in
order to determine the sensitivities of the design variables w.r.t the element stiffness efficiently. The
idea of patch formulations has also been introduced.

Next, feasibility and convexity of the lamination parameters introduced in section 2.4.3 were elab-
orated on with the purpose of utilising these in an optimisation algorithm. The method developed
by [Foldager, 1999] were found to have significant flaws, though the preliminary ideas were quite in-
genious. Thus the overall idea of a two-step approach was adopted, but with a new identification
function and method for minimising this. The new formulation was based on a local linearisation of
the strain energy w.r.t. the lamination parameters.

Previous results by the authors have shown that in order to do a successful identification of a new
lay-up, the relationship between the number of design variables per set of lamination parameter must
be several-to-one. Such a relationship can be accomplished by ensuring a sufficient amount of layers
in the laminate, which in the previous work was found to be at least 11 when utilising 12 lamination
parameters in the identification process.
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Chapter

4
Implementation of Optimisation
Algorithm

The algorithm described in the previous chapter and sketched with a flowchart in figure 3.12 has been
implemented in the finite element analysis tool MUST developed at Aalborg University at the Depart-
ment of Mechanical and Manufacturing Engineering. In the following the implementation of the algo-
rithm is presented together with the different options and their effects.

4.1 Integration Type

The method has been implemented such that it requires the element stiffness matrix to be deter-
mined using explicit thickness integration as presented in section 2.3.2. The support for explicit
thickness integration and approximate explicit thickness integration was implemented by [Hvejsel
and Hansen, 2007]. The current implementation, which is build on top of the explicit thickness inte-
gration, supports both of these methods.

4.2 Number of Applied Lamination Parameters

It is possible to specify the number of applied lamination parameters in the identification function
to either 12, 20, or 28. The specified number is substituted into identification function (3.18), where
nLP is set to the specified number. If this have not been specified the algorithm determines the num-
ber of applied lamination parameters on the basis of the chosen integration type. If the full explicit
thickness integration has been selected then nLP = 28. For the approximate thickness integration the
magnitude of ∆V influences whether 20 or 12 lamination parameters are sought identified. If ∆V = 0
then, as previously mentioned, the shell may be regarded as a plate, hence the stiffness is only de-
pendent upon the first 12 lamination parameters. However, instead of evaluating the value of ∆V the
ratio ∆V

∆A
has been chosen in order to obtain a normalised value for the comparison. Thus if ∆V

∆A
≤ 10−3

the element subjected to identification is treated as a plate. Remark that the stiffness is, nonetheless,
still determined using all 20 parameters during the conventional gradient-based optimisation. Be-
cause of this, the inaccuracy associated with this reduction is considered to be negligible for such a
low value of the ratio ∆V

∆A
.
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4.2.1 Step Size

In the work previously presented by the authors [Kann and Sørensen, 2010] the fixed step size ap-
plied for the expansion of the lamination parameters was set to ∆ξ= 0.01 on the basis of results from
numerical experiments. However, as mentioned in section 3.6.3 the determination of ∆ξ may be
problem dependent, thus a value of 0.01 may prove to be inadequate in the current implementation.
Thus in chapter 5 a series of numerical experiments is performed with different step sizes, so as to
test whether the previous step size is adequate.

4.3 Patches

The identification process has been implemented such that it supports the use of patches in the finite
element model. The implementation has been setup to handle a patch as if it was a single element,
i.e. if no patches are present each element is managed as it if was a patch. As a consequence of the
patch formulation all the elements in the patch must have the same lay-up and material properties in
order for the identification process to produce valid results. In the following subsections a description
of how the algorithm manages the presence of a patch is presented.

4.3.1 Choice of Number of Applied Lamination Parameters

As previously mentioned the chosen type of integration influences how many lamination parameters
are sought identified during the identification process. For the approximate method this could result
in either 20 or 12 lamination parameters depending upon the size of the ratio ∆V

∆A
.

When a new lay-up of a patch is sought identified the patch has to be analysed in order to deter-
mine if it should be identified as a plate or a shell. However, because each element can have its own
distinct value of ∆V

∆A
the decision can only be done when all the elements in the patch has been anal-

ysed. A simple way of deciding if a patch should be identified with 20 or 12 lamination parameters
could be to determining the average ratio for the patch, however, this could lead to a non-conservative
approximation of the patch e.g. if half the elements could be modelled as a plate and the rest as a
shell, then the averaging could lead to the patch being identified as a plate which can be regarded as
an non-conservative simplification of the structure. Thus in order to avoid this scenario the ratio for

the patch,
∆Vp

∆Ap
, is defined as the sum of all the elements ratios:

∆Vp

∆Ap

=
nel emP∑

e=1

∆Ve

∆Ae

(4.1)

where: ∆Vp Variation of Jacobian square root for a patch.

∆Ap Average of Jacobian square root for a patch.

nel emP Number of elements in a patch.

∆Ve Variation of Jacobian square root for element no. e.

∆Ae Average of Jacobian square root for element no. e.

This implementation is believed to be conservative in the determination of whether a patch can be
sought identified as a plate or as a shell.

4.3.2 Lamination Parameters

Because all the elements in a patch are assumed to have the same lay-up and material properties the
patch lamination parameters are simply copied from the first element in the patch, which are then
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supplied to the identification function. It is thus essential that a patch only contains elements with
the same lay-up and material properties, as otherwise the identification process will change the patch
lay-up based on invalid results.

4.3.3 Sensitivities

As mentioned in section 3.6.3 the sensitivities used in the identification function are of the strain
energy density w.r.t. the lamination parameters. The sensitivities of the strain energy density for a
patch are determined as the sum of all the element sensitivities of the strain energy divided by the
patch volume:

∂Ud

∂
(
ξ

j
i

)
p

= 1

Vp

nel emP∑
e=1

∂U

∂
(
ξ

j
i

)
e

 (4.2)

where: Ud Strain energy density.
∂Ud

∂
(
ξ

j
i

)
p

Patch sensitivity of strain energy density w.r.t lamination parameter ξi
j .

Vp Patch volume.
∂U

∂
(
ξ

j
i

)
e

Sensitivity of strain energy w.r.t lamination parameter ξi
j for element no. e.

Because all the sensitivities of the strain energy are summed and afterwards divided by the patch
volume it is possible for the patch to contain different sized elements.

4.4 Pseudo Code for Identification Routine

When the gradient based optimiser has converged the identification subroutine is called from inside
the main optimisation loop. In table 4.1 the pseudo code for this subroutine is presented in order to
give a brief overview of how the identification routine operates.

# 1 Loop for design variables:
# 2 | Loop for associated elements:
# 3 | | If element already has been processed: Go to # 2
# 4 | | If first element in patch: Extract lamination parameters and bounds for all design variables
# 5 | | Determine for element: ∂U

∂ξ
j
i

, Volume, ∆V ,∆A

# 6 | | Mark element as processed
# 7 | | If last element associated with design variable:

# 8 | | | Determine patch sensitivities ∂Ud

∂
(
ξ

j
i

)
p

# 9 | | | Determine if patch is a plate or a shell
# 10 | | | Perform identification of new lay-up
# 11 | | | If new lay-up determined: Replace old design variables with new design variables
# 12 | | End if
# 13 | End loop for elements
# 14 End loop for design variables:

Table 4.1: Pseudo code for identification process.
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4. Implementation of Optimisation Algorithm

4.4.1 Added MUST Files

The implementation of the identification process in MUST has naturally resulted in parts of the orig-
inal code being rewritten. However, a number of new files has also been added. These are listed here
with a brief description of the contents.

• FEShellLamPar.f90

– This module contains routines for shell elements with explicit thickness integration, all
applying lamination parameters.

• Genetic.f90

– These modules contain routines for doing optimisation applying a genetic algorithm.

• IdFunc.f90

– This module contains the identification function.

• LamParOpt.f90

– This module contains the main loop of the identification process as well as other subrou-
tines related to this.

• Mrgrnk.f90

– This module is downloaded from [Olagnon]. It includes routines for ranking an array.

• Refsor.f90

– This module is downloaded from [Olagnon]. It includes routines for sorting an array.

4.4.2 Added Input Commands

The implementation has furthermore resulted in a series of new input commands to MUST needed
to run the optimisation procedure. The commands are listed below together with a description of
what the specific command does.

• lamparoptimisation

– Enable identification

• lamparoptimisation idtype Y

– Enable identification with Y number of lamination parameters applied in the identifica-
tion function. Y can be assigned the following values: 12,20, or 28. If any other value is
assigned, the number of applied lamination parameters is determined on the basis of the
selected thickness integration scheme.

• lamparoptimisation storagemode maxid X

– Enables identification where data is written to the disk for each identification. This will
slow down the process. maxid X specifies how many identifications that are expected to
be performed. If the number X is exceeded the last performed identification will be stored
as number X and thus erase the previous data. The following data is written to the disk:

* Initial lamination parameters for first element in a patch.
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* Sensitivities of the patch strain energy density w.r.t. the lamination parameters.

* Main iteration number corresponding to when the identification was performed.

* Identification number.

* Element number for last element in patch.

* Design variables for each main iteration.

* Objective function value for each main iteration.

• developmentmode showmenewlampars

– When enabled, the lamination parameters after an identification are re-determined and
written to the disk. Remark: Should only be enabled if storagemode is enabled.

These commands are simply added to the traditional MUST input file.
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Chapter

5
Numerical Examples

In this chapter the described two-step method of optimising composite structures using lamination pa-
rameters is tested on several numerical examples. However, first a few characteristics that are common
to all the conducted experiments are presented.

All numerical experiments are, as a first overview, evaluated by observing an iteration history plot
of the strain energy. An Arbitrary example of such a plot is shown in figure 5.1. The plot shows the level
of the average strain energy for all iterations of the main optimisation loop. Performed identification
processes are marked with a red cross. Thus what in general is looked for in the plots is places where
the gradient-based optimisation runs until a certain level of strain energy where after an identifica-
tion process is conducted, resulting in a new set of design variables wherefrom the gradient-based
optimiser can lower the strain energy significantly. This phenomenon is seen around iteration no.
151 in the figure.
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Figure 5.1: Example of iteration history plot of the strain energy.

As described in section 3.7 the main optimisation is stopped if ten successive identifications are
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5. Numerical Examples

observed. This is what is seen in iteration no. 476 in the plot. As seen around iteration no. 300 there
is a good reason why the number of identification processes before a complete stop is as high as
ten — namely that sometimes it takes a couple of identification processes before the gradient-based
optimiser can succeed. Thus the number ten has arisen as a simple estimated sensible trade-off
between being time-efficient and not stopping the process too early.

The value of the strain energy seen on the y-axis is in general scaled by some number inside
MUST. Thus the absolute value on the axis is of no interest — the values can only be used relatively
to each other. For all experiments only the fibre orientations are applied as design variables and the
bounds are set to *x ∈ [−90.9◦;90.9◦].

The experiments have all been performed with the 9-node shell elements available in the MUST
element library.

All numerical experiments are conducted with the gradient-based optimiser chosen as a Method
of Moveable Asymptotes (MMA) with adaptive move-limits. The MMA is applied with standard MUST
options, meaning that the performance should be solid for optimisation of fibre orientations in com-
posite laminates. A detail worth noticing is that the MMA move-limits are not reset when an identi-
fication process has been conducted. The reason for this is that experiments have shown that a reset
at this point might result in a too large step size for the MMA resulting in an increased level of strain
energy. The consequence of the move-limits not being reset is that the move-limits are a bit too tight
right after an identification process. Thus the level of the strain energy does not drop as quickly as
actually should be possible. This is seen in an iteration plot as a rather flat curve following an identifi-
cation process where after the level of strain energy in a few iterations starts to decrease more quickly.
In figure 5.1 this phenomenon is seen right after the identification process in iteration 151.

As for the genetic algorithm used in the identification process, the used options are shown in table
5.1. Further info regarding the genetic algorithm can be found in appendix A.

Quantity Set to More info found in appendix
Number of individuals in the population 500 A.1.1
Tolerance 10−3 —
Maximum number of generations 400 —
Number of optimum individuals to select 5 A.1.9
Percentage of the population selected for mating 90 A.1.3
Number of variables selected for mutation 10 A.1.6
Percentage of the total population selected for mutation 10 A.1.6

Table 5.1: Options used for the genetic algorithm.

Most experiments are conducted using the material properties for graphite-epoxy (AS/3501). These
can be seen in table 5.2. The properties of the table are used in all examples where nothing else is
noted.

Quantity E1 E2 E3 G12 ν12 ν23 ν13

Set to 138MPa 9M pa 9M pa 7MPa 0.3 0.3 0.3

Table 5.2: Material properties for Graphite-Epoxy (AS/3501).

Next some examples of how the optimisation procedure performs are presented.
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5.1. Cantilever Beam Subjected to Uniformly Distributed Load

5.1 Cantilever Beam Subjected to Uniformly Distributed Load

The first numerical experiment conducted is a standard test within minimum compliance fibre angle
optimisation of composite structures, namely a cantilever beam subjected to a uniformly distributed
load. The beam is thus in a state of in-plane loading. The scenario is sketched in figure 5.2. The beam
has a thickness h, and the ratio between the other two dimensions is a/b = 3/1 = 3.

b

a

q

Figure 5.2: Cantilever beam subjected to uniform distributed load. a = 3m, b = 1m, q0 = 8 kN
m .

The classical example has only one layer over the entire plate. However, as earlier mentioned
previous studies have shown that a minimum of 11 layers should be used in order to be able to identify
new sets of design variables. Hence 20 layers are used, in order to be sure that the number of layers is
sufficient. However, with the current loading all layers should give the same orientation, and hence
the results can still be compared to results of the classical problem.

The example is known to show local minimums if the fibre orientations are gradient-based opti-
mised from a vertical orientation of all elements. Hence the example is initiated in this configuration,
first of all to determine a suitable value for∆ξ as mentioned in section 4.2.1. Three examples are con-
ducted with ∆ξ assigned values of 0.01, 0.05, and 0.1, respectively. For these experiments the beam
has been divided into 192 elements which are assembled in 48 patches. The results of the three runs
are shown in figures 5.3, 5.4, and 5.5. All optimisations are run with approximate explicit thickness
integration.
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Figure 5.3: Optimisation of cantilever beam with ∆ξ= 0.01. Final level of strain energy: 0.72.

57



5. Numerical Examples

 0

 1

 2

 3

 4

 5

 50  100  150  200  250  300  350  400  450

S
tr

a
in

 E
n
er

g
y

Iterations

Iteration history
Identification processes

Figure 5.4: Optimisation of cantilever beam with ∆ξ= 0.05. Final level of strain energy: 0.63.
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Figure 5.5: Optimisation of cantilever beam with ∆ξ= 0.1. Final level of strain energy: 0.56.

With each optimisation process having 960 design variables which vary for several hundred itera-
tions it is not really possible to list all design variables in a clear and sensible way. In order to illustrate
the results, the final values of the design variables from the three optimisations are shown as lines in
each element of the geometry indicating the fibre orientations. In order to show all 20 layers, these
are plotted on top of each other. The final design variables of the three optimisations are shown in
figures 5.6, 5.7, and 5.8, respectively.
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5.1. Cantilever Beam Subjected to Uniformly Distributed Load

Figure 5.6: Final design variables for optimisation with ∆ξ = 0.01 illustrated as lines within all elements. In
order to show all layers these are plotted on top of each other.

Figure 5.7: Final design variables for optimisation with ∆ξ = 0.05 illustrated as lines within all elements. In
order to show all layers these are plotted on top of each other.

Figure 5.8: Final design variables for optimisation with∆ξ= 0.1 illustrated as lines within all elements. In order
to show all layers these are plotted on top of each other.

What is seen in the figures is both some elements with a very clear preferred orientation for all layers,
but also some elements where the tendency is not as clear. This is typically due to the optimisation
routine not being able to capture the last effects, but it can also be due to the most optimal material at
that position actually being e.g. an isotropic material. All in all, the picture given by the three figures
is very much alike, and as such it is hard to bring out any significant differences of the three plots.

Each optimisation has in fact been run twice. The results, in terms of strain energy level, are
shown in table 5.3. It should be noted that in the identification processes performed, all patches are
assumed to be plates cf. the criterion in section 4.1. This is obviously in correspondence with what
would be expected and thus just confirms that the criterion at least seems to work for geometries that
are in fact plates.
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∆ξ= 0.01 ∆ξ= 0.05 ∆ξ= 0.1
U FRAFLM U FRAFLM U FRAFLM

First run 0.77 18% 1.11 12% 0.56 22%
Second run 0.72 19% 0.63 21% 0.56 22%

Table 5.3: Final level of strain energy for the three performed optimisations. FRAFLM = further reduction after
first local minimum (when compared to the initial value of the strain energy).

As seen in the figures and the results the three optimisations end up at approximately the same level
of strain energy. The small differences found between the plots can just as well be due to coincidences
as it can be due to the difference in∆ξ. Thus, as the conservative approach is to keep the value as low
as possible and it seems to work with ∆ξ= 0.01 this value is chosen for further studies.

For the chosen value of ∆ξ the results are studied a bit further. As clearly seen in the plot (in
figure 5.3) the identification process does in fact in some cases facilitate further optimisation w.r.t. the
strain energy, where as in other cases there is no effect. In order to study these tendencies, the change
of design variables in the identification processes have been examined and categorised into three
subgroups, namely variables that within a tolerance of 3◦ not have changed, variables that within the
same tolerance have changed 180◦, and variables that have changed to other values. The categories
are referred to as constant, bound switches, and new values, respectively. The number of variables in
each of these groups for the current results are shown in table 5.4.

Iteration no. Identification no. Constants Bound switches New values
119 1 924 36 0
122 2 880 76 4
359 3 919 23 18
454 4 941 0 19
456 5 940 0 20
458 6 938 0 22
460 7 932 0 28
462 8 932 0 28
464 9 923 0 37
466 10 912 0 48
468 11 922 0 38
470 12 920 0 40

Table 5.4: The identification processes of the iteration history plot in figure 5.3. The last identification process is
not presented in the table, as no new design variables are obtained for this identification process.

As seen in the table both instances with bound switches and new values do in fact occur. The
table shows a tendency that changes from one bound to the other (that is, a change of 180◦ in a de-
sign variable) often occur in the identification processes that actually result in further reduction of
the strain energy. As also seen, new values do actually occur in most identification processes. Many
of these changes lie within 3◦–5◦ but there is also a significant amount that change to completely new
values. However, as clearly seen in the last ten identification processes (note that the last identifica-
tion process not is presented in the plot), this does not necessarily mean a further reduction in strain
energy.

Next the same example is studied with mesh refinement in order to see if the tendencies are the
same.
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5.1. Cantilever Beam Subjected to Uniformly Distributed Load

5.1.1 Mesh Refinement

Each element from the previous geometries are now divided into four smaller elements, thus resulting
in 768 elements. However, as the patches are kept as before no new design variables arise. The result,
in terms of a iteration history plot is shown in figure 5.9.
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Figure 5.9: Iteration history of cantilever beam with mesh refinement. Final level of strain energy: 0.64.

The iteration history plot shows a progress of the optimisation which is very much like the previ-
ously seen progresses. The final level of strain energy is 0.64 with a further reduction after first local
minimum of 20%.

The behaviour of the design variables in the identification processes is shown in table 5.5. As can
be seen, the tendency is very much the same. At the identification processes that actually lead to
further reduction of the strain energy there is a significant amount of bound switches. The number
of new values on the other hand seems rather constant for most of the identification processes.

The final design variables are shown as a "through the thickness"-plot in figure 5.10a. The same
example has also been studied by [Stegmann and Lund, 2005] using Discrete Material Optimisa-
tion (DMO). In their example 12 candidate material orientations were applied:±15◦,±30◦,±45◦, ±60◦,
±75◦, 90◦, 0◦. For comparison, the result obtained by [Stegmann and Lund, 2005] is shown in figure
5.10b. What is seen from the figures is an overall tendency towards the same. At the large tensile areas
the alignments there is a quite clear common alignment in both results. Furthermore both methods
agree that the big middle-part of the beam must be aligned at ±45◦ in order to carry shear in the best
possible way. However, there is a slight disagreement of the two methods in the top of the beam.
Here the DMO-method aligns the fibres in the x-direction, whereas the method for optimisation with
lamination parameters, where 20 individually orientated layers are allowed, tends to align some of
the layers with the y-direction. This is believed to a consequence of the loads being applied directly
on top of these patches. This seems to be a general tendency of all optimisations done with several
layers.

As a last experiment with the cantilever beam, the optimisation is conducted still with mesh re-
finement but without patches.
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Iteration no. Identification no. Constants Bound switches New values
148 1 911 48 1
365 2 935 5 20
367 3 932 7 21
470 4 929 12 19
473 5 941 0 19
475 6 931 13 16
546 7 941 0 19
548 8 943 0 17
550 9 940 0 20
552 10 938 0 22
554 11 938 0 22
556 12 933 0 27
558 13 931 0 29
560 14 929 0 31
562 15 934 0 26

Table 5.5: Identification processes of cantilever beam with mesh refinement, i.e. 768 elements. The identification
processes belong to the iteration history plot in figure 5.9.

(a)

DISCRETE MATERIAL OPTIMIZATION OF GENERAL COMPOSITE SHELL STRUCTURES 2021

the orthotropic properties Ex = 54 GPa, Ey = 18 GPa, Gxy = 9 GPa and �xy = 0.25 oriented at
[90, ±75, ±60, ±45, ±30, ±15, 0◦]. The optimization converges monotonically to full DMO
convergence (h99.5 = 1.0) in 157 iterations taking just under 7 min on a desktop PC. The op-
timal fibre angle distribution determined is shown in Figure 6 and agrees very well with the
results obtained by e.g. Pedersen [3]. To illustrate the patch variable methodology the problem
has been solved using 48 patches of 4 × 4 elements, which reduces the number of design
variables to 576 and reduces the runtime by approximately 16%. The resulting optimal fibre
angle distribution is shown in Figure 7.

4.2. Four-point beam bending—fibre angle and material optimization

This example demonstrates the ability of the DMO method to simultaneously choose material
type and material orientation. The domain is as defined for the previous example and a mesh of

Figure 6. Optimal fibre angle distribution in cantilever beam with uniformly distributed top load.
Solved using 768 elements and a single candidate material at [90, ±75, ±60, ±45, ±30, ±15, 0◦].

Figure 7. Optimal fibre angle distribution in cantilever beam with uniformly distributed
top load. Solved using 768 elements in 48 patches of 4 × 4 elements with the same

candidate materials as Figure 6.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 62:2009–2027

(b)

Figure 5.10: Final design variables of the optimised cantilever beam with mesh refinement from optimisation
with (a) lamination parameters and (b) DMO (reproduced from [Stegmann and Lund, 2005]).
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5.1.2 Example without patches

By removing the patch-configuration of the elements, the number of design variables is raised to
15360 making the optimisation much heavier in terms of computational requirements. The iteration
history for the optimisation is shown in figure 5.11. The optimisation results in a strain energy level
of 0.57 with a further reduction after first local minimum of 13%.
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Figure 5.11: Iteration history of cantilever beam with mesh refinement and no patches. Final level of strain
energy: 0.57.

In short words, the more design variables do not give any significant reductions in the strain energy.
The main difference in the optimisation progress is that the first local minimum has a lower level of
strain energy than previously seen.

Again, the final design variables through the thickness are shown in figure 5.12a. Furthermore
results for the same scenario have been obtained by [Stegmann and Lund, 2005] using DMO with the
same candidate material orientations as in the previous example. These results are shown in figure
5.12b. Also [Setoodeh et al., 2006] have obtained the results seen in figure 5.12c using an approach
where the optimisation is performed directly on the lamination parameters as design variables (which
is only possible because the feasibility constraints have been determined for the in-plane loading
scenario). In the article by [Setoodeh et al., 2006] it is shown that the design space is convex for the
given formulation. Because of the convexity the solution obtained by [Setoodeh et al., 2006] is the
global minimum solution.
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(a)
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the orthotropic properties Ex = 54 GPa, Ey = 18 GPa, Gxy = 9 GPa and �xy = 0.25 oriented at
[90, ±75, ±60, ±45, ±30, ±15, 0◦]. The optimization converges monotonically to full DMO
convergence (h99.5 = 1.0) in 157 iterations taking just under 7 min on a desktop PC. The op-
timal fibre angle distribution determined is shown in Figure 6 and agrees very well with the
results obtained by e.g. Pedersen [3]. To illustrate the patch variable methodology the problem
has been solved using 48 patches of 4 × 4 elements, which reduces the number of design
variables to 576 and reduces the runtime by approximately 16%. The resulting optimal fibre
angle distribution is shown in Figure 7.

4.2. Four-point beam bending—fibre angle and material optimization

This example demonstrates the ability of the DMO method to simultaneously choose material
type and material orientation. The domain is as defined for the previous example and a mesh of

Figure 6. Optimal fibre angle distribution in cantilever beam with uniformly distributed top load.
Solved using 768 elements and a single candidate material at [90, ±75, ±60, ±45, ±30, ±15, 0◦].

Figure 7. Optimal fibre angle distribution in cantilever beam with uniformly distributed
top load. Solved using 768 elements in 48 patches of 4 × 4 elements with the same

candidate materials as Figure 6.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 62:2009–2027

(b)

E11 Z 181:0 GPa; E22 Z 10:3 GPa; G12 Z 7:17 GPa;

n12 Z 0:28

The non-dimensional optimal compliances for cantilevers

with different aspect ratios are given in Table 1. The second

column lists the values for constant–stiffness balanced

lamination, while the third column is for generally laminated

constant–stiffness designs. The fourth, fifth and sixth columns

list the optimal values for variable–stiffness designs based on

single layer, balanced lamination (two lamination parameters),

and general lamination, respectively.

For the problem suggested by Pedersen [4], the aspect ratio

is a/bZ3. In that case, the non-dimensional compliance of the

general constant–stiffness design �CgcZ0:0935 and the value of

optimal lamination parameters of V1Z0.4779, V2Z0.3926,

V3Z0.2015, V4ZK0.06850. The optimal single layer vari-

able–stiffness design improves the compliance by 30% to
�CsvZ0:0654. The distribution of the fiber angles for this

example is depicted in Fig. 2. Fiber angle discontinuities seen

in this figure occur at locations where the two principal stresses

are almost equal [13]. Such a phenomena is also known as the

case of the repeated optima [14] and is essentially due to the

non-convexity of the local design problem. As it will be seen

next, there are no discontinuities in optimal distribution of the

lamination parameters as the local design problem is convex.

The optimal general variable–stiffness design based on four

lamination parameters at each node yields a normalized

compliance of �CgvZ0:0592, while the locally balanced

variable–stiffness design based on two lamination parameters

yields a normalized compliance of �CbvZ0:0788. The optimal

distribution of the lamination parameters are depicted in

Fig. 3(a–d) for the general lamination case where the continuity

of the distributions is evident. For general lamination, the

compliance is improved by 36% compared to the optimal

constant–stiffness laminate, and about 9% compared to the

single layer orientation design.

It is observed from Table 1 that balancing the laminate leads

to significantly suboptimal design for short aspect ratio plates. A
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Fig. 3. Optimal distribution of the lamination parameters for the cantilever plate with a/bZ3 (31!11 nodes).

Fig. 2. Optimal distribution of the fiber orientation angles for the cantilever plate with a/bZ3 (31!11 nodes).

Fig. 4. Optimal distribution of the fiber orientation angle for the cantilever plate with a/bZ10 (101!11 nodes).

S. Setoodeh et al. / Composites: Part B 37 (2006) 301–309304

(c)

Figure 5.12: Final design variables of the optimised cantilever beam with mesh refinement from optimisation
with (a) lamination parameters, (b) DMO (reproduced from [Stegmann and Lund, 2005]), and (c) lamination
parameters directly (reproduced from [Setoodeh et al., 2006]).

The figures show a clear tendency towards the same orientations along the edges of the structure.
However, it is also clear that the presented optimisation method with lamination parameter identifi-
cation does not catch the effects of all elements in the middle of the structure. The behaviour of the
design variables in the identification processes are shown in table 5.6.

Iteration no. Identification no. Constants Bound switches New values
210 1 14270 1090 0
355 2 15275 55 30
405 3 15327 21 12

Table 5.6: Identification processes of cantilever beam with mesh refinement and no patches. The identification
processes belong to the iteration history plot in figure 5.11.

The main conclusion of this last optimisation must be that when optimising with single elements
instead of patches, there is an even more significant need for post-processing the optimised design.

Next, experiments with other geometries and load conditions are conducted in order to study
other aspects of the new method.
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5.2 Plate Subjected to Uniform Pressure

In the following example a clamped plate subjected to an out-of-plane load in the form of a uniformly
distributed pressure is optimised. As a consequence of the plate geometry the thickness integration
is performed applying the approximate formulation, hence 12 lamination parameters are applied
during the identification process. The plate and boundary conditions are illustrated in figure 5.13.
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Figure 5.13: Clamped plate subjected to uniformly distributed pressure. Shown with nine patches and initial
fibre directions for all layers. The dimensions of the plate are 1m ·1m and the load is 1kN /m2.

The plate has 30 layers and is meshed with 12×12 equal sized elements. The number of design vari-
ables is 4320 if all elements are treated individually. The optimised lay-up is compared with solutions
obtained using other parameterisations and design variables. At first, however, the plate is optimised
with nine patches covering the plate where each patch contains 4×4 equal sized elements. The num-
ber of design variables is then reduced to 270. The iteration history for the patch formulation is shown
in figure 5.14.
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Figure 5.14: Iteration history for clamped plate subjected to uniformly distributed pressure. Modelled with nine
patches, 144 elements, and a total of 270 design variables. Total number of iterations: 455. Final objective value:
2.26 ·10−3.
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As can be seen from the iteration history, the identification process did not result in the gradient based
optimiser producing a significant reduction of the strain energy, indicating that the first identification
occurred close to the global optimum. The first identification occurred at iteration no. 151 where the
value of the objective function was 2.27 ·10−3. The optimisation ended at iteration no. 455 due to 10
successive identification where the gradient based optimiser was unable to further reduce the objec-
tive function after each identification. The final value of the objective function was 2.27 ·10−3, i.e. the
same as before the first identification. A total of 37 identifications were performed during the opti-
misation. Figures 5.15 and 5.16 show the through-the-thickness lay-ups before the first identification
and at the end of the identification, respectively.

Figure 5.15: Lay-up at first identification viewed
through the thickness of patch model.

Figure 5.16: Final optimised lay-up viewed through
the thickness of patch model.

As the figures show the two designs have not changed significantly, which is also indicated by the
very low decrease of the objective function. Also the two designs show clear tendencies towards a
solution which simply consists of ±45◦, 0◦, and 90◦ ply-orientations. This corresponds to what may
be expected when applying the shown patch subdivision of the plate. However, the final design still
has some plies which are not correctly aligned. These are mainly confined to the middle of the plate
i.e. layers 13-18. This may be a consequence of the bending moments being of a lower magnitude
around these layers, thus the sensitivities for these plies likewise becomes of negligible magnitude
resulting in the optimisation reaching what is interpreted as a minimum. In table 5.7 a brief overview
of the design changes due to the individual identifications is shown.

Iteration no. Identification no. Constants Bound switches New values
151 1 217 31 22
153 2 223 29 18
229 9 234 36 0
231 10 210 36 24
451 36 234 34 2
453 37 241 26 3

Table 5.7: Sample from identification history associated with figure 5.14. New values of design variables deter-
mined as a change by more than 3◦.

The first identification resulted in 31 design variables changing their values of either the lower bound
to the upper bound, or vice versa. Also 22 new design variables were determined, where a new design

66



5.2. Plate Subjected to Uniform Pressure

variable is defined as a change in value by more than 3◦. The new lay-up was, however, also located in
another minimum, since the MMA algorithm only iterated one time before calling the identification
again in iteration no. 153. The second identification did result in a new lay-up from which the MMA
algorithm could continue from, even though the identification determined fewer new lay-ups and
fewer bound switches. This illustrates the complex nature of both the design space and the process
of identification.

5.2.1 Example without patches

Next, the patches are removed so each element can be subjected to identification. The initial design
is kept as shown in figure 5.13. The result is compared with solutions obtained by applying the DMO
method from [Stegmann and Lund, 2005] and the method from [Setoodeh et al., 2006] who optimised
directly with lamination parameters. The latter is only possible due to the fact that the feasible do-
main is known for the four out-of-plane lamination parameters, i.e. ξB

i [Fukunaga and Sekine, 1992].
As in the cantilever beam example in section 5.1.2 the solution by [Setoodeh et al., 2006] represents
the global minimum solution. The iteration, and identification history for the optimisation applying
the identification approach is shown in figure 5.17 and table 5.8, respectively.
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Figure 5.17: Iteration history for a clamped plate subjected to uniformly distributed pressure. Modelled with 144
elements, and a total of 4320 design variables. Total number of iterations: 304. Initial and final objective value:
3.23 ·10−3 and 1.81 ·10−3.

Iteration no. Identification no. Constants Bound switches New values
75 1 4121 199 0

269 2 3863 39 418
300 3 4038 0 282
302 4 3970 0 350

Table 5.8: Identification history associated with figure 5.17.
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The first identification occurred at iteration no. 75 and with an value of the objective function of 1.86·
10−3. As can be seen from table 5.8 the identification was unsuccessful in determining any new values
for the design variables, however, 199 of the design variables was apparently at either their upper
or lower bound, where the identification resulted in the values being swapped to the other bound
value. The second minimum was determined at iteration no. 269 where the value of the objective
function was 1.81 · 10−3. The bound swaps from the first identification thus resulted in the MMA
algorithm being able to reduce the objective function almost 3% before reaching another minimum.
The remaining identifications were successful in determining new values for the design variables,
however, the reduction in the strain energy from iteration no. 269 to the final at 304 was less than
0.5%, which can be regarded as negligible compared to the extra computations required to perform
identification on all the elements in the model. The optimisation was terminated because the genetic
algorithm was unable to determine any new lay-ups. Thus the global minimum was assumed to be
determined. The final lay-up through the thickness is shown in figure 5.18.

Figure 5.18: Final optimised lay-up viewed through the plate thickness.

The final lay-up obtained by the DMO method is shown in figure 5.19. The optimisation with DMO
was performed with 12 candidate materials: ±15◦,±30◦,±45◦, ±60◦, ±75◦, 90◦, 0◦. The lay-up deter-
mined by [Setoodeh et al., 2006] is reproduced in figure 5.20.
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Figure 5.19: Lay-up obtained applying DMO with
12 candidate materials: ±15◦,±30◦,±45◦, ±60◦, ±75◦,
90◦, 0◦. Initial and final objective value: 3.11 · 10−3

and 1.78 ·10−3.

Figure 5.20: Global optimum lay-up archived ap-
plying lamination parameters as design variables.
Modelled with 21×21 nodes. Reproduced from [Se-
toodeh et al., 2006]

As can be seen from figures 5.19 and 5.20 the optimum determined applying the DMO method is
very close to the global minimum solution determined by [Setoodeh et al., 2006]. Because of this
coherence the two results are considered to be valid for comparison. Comparing these results with
the optimised lay-up shown in figure 5.18 some clear tendencies are recognised around the edges
of the plate where the bending moments have a great influence. However, closing in towards the
centre of the plate the lay-up becomes more inconsistent with the other results. The application of
the identification process did thus not produce the exact global minimum solution, however, the final
value of the objective function is only 1.67% higher than the final result obtained by the DMO method.
This small deviation may be regarded as negligible.

5.3 Pinched Hemisphere

In this section the influence of how many lamination parameters that are applied in the identification
process is analysed. In order to do so a curved geometry is required so that more than 12 lamination
parameters are needed for determining the stiffness. The pinched hemisphere, from section 2.5.1, is
applied for the experiments. In this example the pinched hemisphere is loaded in a mixed membrane
and bending situation. Two scenarios are investigated in the experiments.

1. If an successful identification with 12 lamination parameters results in a discontinuity/"jump"
in the value of the objective function, it may be due to a poor representation of the stiffness with
only 12 lamination parameters. The structure is thus too "shell like" and additional lamination
parameters may be required in order to identify a new lay-up with the correct stiffness.

2. In the previous experiments it was shown that with 12 lamination parameters the essential
several-to-one relationship needed for identifying a new lay-up can be found. Here the lower
limit to the number of layers have been estimated to be 11 layers [Kann and Sørensen, 2010].
However, this lower limit is not known for more than 12 lamination parameters. It is thus inves-
tigated whether it is possible to identify new lay-ups on the basis of more than 12 lamination
parameters, that is either 20 or 28.
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In order to test the influence of the structures curvature vs. number of applied lamination pa-
rameters, the experiments are divided into two separate categories where the radius-of-curvature to
thickness ratio, R

h , is the dividing parameter. The first experiments are conducted with R
h = 25, which

may be regarded as a thin curved structure. Next the ratio is changed to R
h = 10, which may be re-

garded as a limit value for applying degenerated shell elements in describing the kinematics of the
structure cf. section 2.5.1. For the sake of consistency, all the examples have been conducted with
the approximative explicit thickness integration scheme, even though this scheme is less accurate for
radius to thickness ratios R

h ≤ 10. As a consequence of the selected integration scheme the experi-
ments are only shown for 12 and 20 lamination parameters, hence no experiments are shown for 28
lamination parameters.

The pinched hemisphere is modelled with a radius, R = 0.5m and all the experiments have been
modelled with 20 layers but with different ply-thicknesses. It is realised that the individual ply-thicknesses
become unrealistically thin by maintaining a radius of 0.5m, however, with the purpose of the exper-
iments in mind this ambiguity can be regarded as insignificant. Because of the symmetry only one
quarter of the sphere is modelled. The model has likewise been subdivided into 20 patches, where
each patch contains 4×4 elements. The model applied is shown with the associated boundary con-
ditions in figure 5.21.
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Figure 5.21: Pinched hemisphere shown with boundary conditions and 20 patches with 4×4 elements in each.
Radius = 0.5m, F = 2000N.

The optimisations are performed with ply-orientations as design variables which, due to the patch
formulation, sums to a total number of 400 design variables.

5.3.1 Pinched Hemisphere R/h = 25

In this subsection the pinched hemisphere is modelled such that it has a curvature-to-thickness ratio
of 25. First the results from one optimisation is presented where nLP = 12, and followed by another
presentation where nLP = 20.

5.3.1.1 Lamination Parameters: 12

In the following experiment 12 lamination parameters have been applied during the identification of
a new lay-up. The iteration and identification history are shown in figure 5.22 and table 5.9, respec-
tively.
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Figure 5.22: Iteration history for pinched hemisphere. R
h = 25, nLP = 12. Initial and final objective value:

2.230176 and 1.481842.

Iteration no. Identification no. Constants Bound switches New values
88 1 359 41 0

176 2 386 9 5
220 3 398 2 0
223 4 385 15 0
289 5 400 0 0
291 6 400 0 0
293 7 393 7 0
296 8 400 0 0
298 9 387 13 0
386 10 380 5 15
428 11 400 0 0
430 12 385 0 15
436 13 400 0 0
438 14 389 8 3

Table 5.9: Identification history associated with figure 5.22. R
h = 25, nLP = 12.

The first local minimum occurred at iteration 88 with a value of 2.134790. The application of the
identification thus resulted in a further reduction after the first local minimum of 31%. The most
substantial reduction occurred after the first identification, and as can be seen from table 5.9 the
first identification resulted in 41 bound switches and 0 new values were determined. As can be seen
from the figure no "jumps" occurred after any of the identifications, indicating that 12 lamination
parameters might be enough for identifying new lay-ups for structures with a R

h value of 25.
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5.3.1.2 Lamination Parameters: 20

In the following 20 lamination parameters have been applied during the identification process. The
iteration and identification history is shown in figure 5.23 and table 5.10, respectively.
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Figure 5.23: Iteration history for pinched hemisphere. R
h = 25. nLP = 20. Initial and final objective value:

2.230176 and 1.927029

Iteration no. Identification no. Constants Bound switches New values
88 1 380 20 0

157 2 389 11 0
239 3 398 2 0
241 4 397 3 0
243 5 400 0 0
245 6 394 5 1
247 7 396 4 0
250 8 400 0 0
252 9 400 0 0

Table 5.10: Identification history associated with figure 5.23. R
h = 25, nLP = 20.

From the table it is seen that only one identification resulted in a design variable being assigned a new
value. The absolute difference between the new and old value was 3.1◦ i.e. just above the tolerance.
It may be argued whether this is a new value or simply a slight adjustment of the old value due to the
linearisation/ expansion of the lamination parameters. Combined with the fact that the final value
of the objective function is 30% higher than for the previous example, it may be reasoned that the
identification was unsuccessful when performed with 20 lamination parameters. The example has
furthermore been optimised two additional times where similar tendencies were observed.
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5.3. Pinched Hemisphere

5.3.2 Pinched Hemisphere R/h = 10

In the following the curvature-to-thickness ratio for the pinched hemisphere is changed to 10, thus
approaching what may be regarded as the limit for where the applied shell theory can produce accu-
rate results. First an experiment where 12 lamination parameters are utilised for the identification is
shown, followed by another experiment with 20 lamination parameters.

5.3.2.1 Lamination Parameters: 12

In this subsection 12 lamination parameters have been applied during the identification of new lay-
ups. The iteration and identification history is shown in figure 5.24 and table 5.11, respectively.
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Figure 5.24: Iteration history for a pinched hemisphere. R
h = 10. nLP = 12. Initial and final objective value:

0.252320 and 0.177776.

Iteration no. Identification no. Constants Bound switches New values
125 1 370 29 1
228 2 378 22 0
263 3 380 8 12
347 4 382 0 18
363 5 376 9 15
439 6 384 0 16
487 7 384 0 16
499 8 397 3 0
501 9 381 0 19
503 10 381 0 19
505 11 365 0 35
564 12 387 0 13

Table 5.11: Identification history associated with figure 5.24. R
h = 10. nLP = 12.
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The first identification occurred at iteration no. 125 with a value of the objective function of 0.2299871.
Thus a further reduction of the objective function after the first identification of 23% was achieved.
The optimisation was terminated because the genetic algorithm was unable to identify any new lay-
up. Studying the iteration history in the figure it can be concluded that no "jumps" have occurred
after any of the identifications. The identified lay-ups were thus able to represent the correct stiff-
ness, even though only 12 lamination parameters were applied during the identification. As with the
previous examples the first identification mainly resulted in design variables located at either their
lower or upper bound having their value interchanged. The design variables which were assigned
new values in the remaining identifications had their values changed by an absolute value somewhat
randomly within the interval ]3◦−177◦[. It can thus be concluded that 12 lamination parameters seem
adequate for identifying a new lay-up for what can be regarded as very curved structures.

Because all the data concerned with the identifications have been stored for the experiments, it is
possible to determine whether the identified lay-ups would have been accepted by the identification
process if 20 lamination parameters had been applied instead of 12. Consider identification no.11,
where 35 design variables were assigned new values. This identification resulted in patches no. 5
and 6 being assigned new lay-ups. In table 5.12 the function values for the two identifications are
presented, both for the applied 12 lamination parameters and for the case were all 20 lamination
parameters have been evaluated in the identification function, i.e. corresponding to nLP = 20.

Patch no. I , nLP = 12 I , nLP = 20
5 0 0.7396
6 0.0003 0.2832

Table 5.12: Function values for identification no.11 for both nLP = 12 and nLP = 20.

As expected the function values for 12 lamination parameters are below the tolerance of 10−3. How-
ever, if all 20 lamination parameters are evaluated, the two lay-ups fail to pass the tolerance level.
Investigating other identifications, both from this example but also from the example where R

h = 25,
shows that fewer lay-ups are accepted if 20 lamination parameters are applied, which indicates that,
as expected, applying 12 lamination parameters is less restrictive than applying 20. It further shows
that it is indeed possible to identify a new lay-up when applying 20 lamination parameters. However,
it is not known if these identified lay-ups were the "driving force" in the further reduction of the ob-
jective function in the associated experiments, or if they were associated with changes which may
be regarded as trivial, i.e. as was encountered in the previous example in subsection 5.3.1.2. In the
following subsection the phenomenon is further investigated with 20 lamination parameters applied
during the identification.
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5.3. Pinched Hemisphere

5.3.2.2 Lamination Parameters: 20

In the following experiment 20 lamination parameters have been applied during the identification of
a new lay-up for the pinched hemisphere. The iteration and identification history is shown in figure
5.25 and table 5.13, respectively.
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Figure 5.25: Iteration history for pinched hemisphere. R
h = 10, nLP = 20. Initial and final objective value:

0.252320 and 0.205777

Iteration no. Identification no. Constants Bound switches New values
125 1 378 22 0
197 2 394 6 0
235 3 398 2 0
237 4 391 8 1
239 5 390 8 2
242 6 396 4 0
337 7 400 0 0
339 8 399 0 1
341 9 399 1 0
343 10 400 0 0
345 11 398 2 0

Table 5.13: Identification history associated with figure 5.25. R
h = 10, nLP = 20

As can be seen from figure 5.25 the final result is almost 16% above the optimised result from
the example where only 12 lamination parameters were applied during the identification, indicating
that the identification may have failed. During the optimisation a total of 4 design variables had their
values changed to new values. As with the previous example, where 20 lamination parameters were
utilised during the identification, the new values have again just been changed enough so they are
above the tolerance of 3◦. Their absolute changes in value are shown in table 5.14.
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Identification no. Absolute change
(
Original

)
4 3.1◦ (20◦)
5 176.1◦ (89.5◦) 176.4◦ (−86.2◦)
8 3.5◦ (23.6◦)

Table 5.14: Absolute changes in design variables.

As can be seen from the table, the design variables have not changed significantly compared to their
previous values. The changes for identifications 4 and 8 may have been a result of the linearisation
of the lamination parameters. The two in identification no. 5 have been turned 180◦ and slightly
changed, perhaps again due to the linearisation and local optimisation. It may then again be argued
whether the identification process have been successful in determining any new lay-ups, or that it
simply has fine-tuned their previous values. Nevertheless, the experiment again verifies that identi-
fying with 20 lamination parameters is more restrictive compared to applying 12.

5.3.3 Summary

In the analysis of the pinched hemisphere four numerical experiments have been presented. The re-
sults have shown that identifying new lay-ups on the basis of just 12 lamination parameters is possible
even for a low curvature-to-thickness ratio e.g. R

h = 10. None of the identifications with 12 lamination
parameters resulted in an increase of the objective function, indicating that the new lay-ups produced
a similar stiffness to the previous lay-ups. By applying the identification process a further reduction
of the objective function was made possible, where the largest reduction after the first identification
was 31% for the example with R

h = 25.
The two experiments where 20 lamination parameters were utilised in the identification process

both performed worse than their equivalent experiments with 12 lamination parameters. Generally
it was observed that fewer design variables were assigned new values, and those that were could be
questioned whether the new value was "different enough" to be categorised as new, or simply a con-
sequence of the expanded lamination parameters. It was further shown that lay-ups identified with
12 lamination parameters, wouldn’t have been accepted if 20 lamination parameters had been ap-
plied. This again indicates that identifying with 20 lamination parameters is more restrictive than
identifying with 12 lamination parameters.

As described in section 3.6.4 the number of design variables influences whether a several-to-one
relationship can be established between the lamination parameters and the design variables. The
poor performance observed when applying 20 lamination parameters may be a consequence of too
few design variables in comparison with the number of applied lamination parameters. Hence the
experiments have been conducted again where the pinched hemisphere was modelled with 40 layers,
i.e. doubling the number of design variables. The experiments showed similar tendencies i.e. few new
design variables were determined when applying 20 lamination parameters and the reductions in
strain energy after the first identification were lower than when applying 12 lamination parameters.
Experiments where the step size ∆ξ was increased to 0.05 were also conducted for the 40 layered
model, however, the same tendencies were observed as previously.

On the basis of these experiments it is not recommended to apply 20 lamination parameters in the
identification process, especially when compared to identifying with 12, which has shown to produce
good results for both plates and thick shell structures.
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5.4. Generic Main Spar

5.4 Generic Main Spar

In the previous sections various benchmark examples have demonstrated that the presented opti-
misation method performs as intended. Several of the examples exhibited local minimum solutions
during the optimisation which were bypassed with success by applying the identification process. In
this section an example with more industrial relevance is presented in the form of a main spar from a
wind turbine blade.

As with other industries that operate in a competitive market parameters such as quality vs. price
and price vs. demand are always analysed and compared by the manufacturers and their competitors.
When it comes to the wind turbine industry, quality can be associated with performance, as their
consumers will be interested in buying a product which can deliver the most power contra the cost
of the product. The performance of a wind turbine is controlled by a vast quantity of parameters e.g.
aerodynamic design, gearbox, electronic controllers, and so on. When it comes to structural design
the weight of the turbine blades are of interest. By lowering the weight of the blades less of the energy
in the moving wind will be required to lift the blade and thus more energy will be transferred to the
drive shaft. In this example the blade is built from two aerodynamic shell profiles which are fused
together around a centre beam, also referred to as the main spar. The main spar is the primary load-
carrying structure of the wind turbine blade. The assembly is sketched in figure 5.26.

Assembly

Leading edge

Trailing edge

Suction side shell

Main spar

Pressure side shell

Flapwise bending

Courtesy of Kühlmeier:

Figure 5.26: Cut-through of windturbine blade, showing outer aerodynamic profile and the main spar. (courtesy
of Lennart Kühlmeier, Vestas Wind Systems A/S)

Because the aerodynamic profile is determined on the basis of aerodynamic performance, not much
weight can be saved from a structural point of view, as the geometry in a sense is predetermined and
the structure does not carry much of the load. Hence focus is turned on the main spar which carries
the main load. As the blade is primarily loaded in flapwise bending much weight can be saved by
building the shear dominated wedges/side panels of the main spar as a sandwich structure. Here
the outer layers can be made from fibre composite materials and the inner part from a light weight
material e.g. foam or wood. The top and bottom sides of the main spar are primarily subjected
to compression or tension, respectively. Hence these parts can with advantage be built from fibre
composite material as well. However, as the presented method in this thesis requires the material
through the thickness to be the same, the sandwich design cannot be realised. Nevertheless, the
example can still be utilised to see how the method performs on real life structures. Thus the light
weight material in the side panels has been disregarded in this example. Originally the main spar
was 25m long, however, in this example the tip of the blade has been removed resulting in the model
having a total length of 14m. The model is divided into three parts named the tip, mid, and root
section. These are shown for the meshed model in figure 5.27.
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Figure 5.27: Meshed model of generic main spar with section names. All dimensions are in metres.

The model is constructed from three different materials. Two directional materials consisting of
unidirectional, and biaxial glass fibre reinforced polymers (GFRP). The third material is divinycell
H130/HC130 which is an isotropic polymer. The materials and their properties are shown in table
5.15.

Quantity E1 E2 E3 G12 G23 G13 ν12 ν23 ν13

Mat 1, UD (GFRP) 45GPa 10GPa 10GPa 5GPa 4GPa 5GPa 0.3 0.005 0.3
Mat 2, BI (GFRP) 24GPa 24GPa 10GPa 4.5GPa 4.5GPa 4.5GPa 0.11 0.3 0.0053

Mat 3,H130/HC130 160MPa - - - - - 0.45 - -

Table 5.15: Material properties for generic main spar model.

The lay-up and applied material for the tip and root sections are shown in table 5.16 and 5.17, respec-
tively.

Layer no. Material no. Orientation (MCS)
1,10 2 +45◦

2-9 1 0◦

Table 5.16: Lay-up for tip section of model.

Layer no. Material no. Orientation (MCS)
1-10 3 −

Table 5.17: Lay-up for root section of model.
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The optimisation of the main spar is focused on the middle section which has been subdivided
into 16 patches, where each patch has 20 layers of unidirectional glass fibre reinforced polymer (ma-
terial no. 1). The design variables are the fibre orientations for each patch, resulting in the model
having 320 design variables. The model with associated boundary conditions and patch layout is
shown in figure 5.28.
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Figure 5.28: Finite element model of generic main spar. Shown with patch numbers, distributed load, and
clamped boundary condition.

The structure is divided into 1680 elements. The load at the tip of the main spar is defined as a force
of 164,729N uniformly distributed over an area of 0.2667m2.

The optimisation has been initialised with the fibre orientations following the "hoop" direction of
the structure, i.e. fibres in patch no. 1 are aligned with the x-axis (SCS) whereas the fibres in patch no.
13 are aligned with the y-axis and so forth. Considering the loading condition this may be regarded
as a poor design. As a consequence of the result obtained in section 5.3 the identification process
has been set to identify new lay-ups on the basis of 12 lamination parameters. The iteration history is
shown in figure 5.29 and the changes in each identification is shown in table 5.18.
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Figure 5.29: Iteration history for generic main spar. Initial vale: 7.94 ·106. Final value: 7.29 ·106.
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Iteration no. Identification no. Constants Bound switches New values
208 1 312 1 7
210 2 289 11 20
294 3 318 2 0
297 4 317 0 3
299 5 313 1 6
301 6 306 0 14
303 7 289 3 28
350 8 300 1 19
352 9 296 2 22
354 10 302 2 16
356 11 311 1 8
358 12 310 0 10
360 13 307 8 5
453 14 319 0 1
455 15 308 0 12
457 16 314 1 5
459 17 300 2 18
461 18 307 2 11
463 19 297 2 21
465 20 309 4 7
467 21 310 3 7
469 22 292 4 24

Table 5.18: Identification history for generic main spar. Associated with figure 5.29.

The value of the objective function at the first identification was 7.43 ·106 resulting in a further reduc-
tion until the final value of 1.9% which may be regarded as negligible. In table 5.18 it is seen that the
identification process resulted in several new design variables being determined during the optimi-
sation. However, the results indicate that the model is relatively simple to optimise. This may be due
to the coarse patch design combined with the simple loading condition. This is further investigated
in the following where the optimised design variables are presented and commented.

The presentation is performed in a qualitative manner rather than a quantitative, as the purpose
of the example is simply to illustrate that the presented optimisation method can be applied on large
real life structures. Hence no in-depth analysis is made with regards to the optimised lay-up. How-
ever, the final lay-up shows that it consists of what may have been expected given the geometry, loads,
and boundary conditions.
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In figure 5.30 the design variables for the side panels, i.e. patches 13,15,14, and 16, are shown for
all the layers in each of the respective patches. Layer no. 1 is the inside layer whereas layer no. 20 is
the outside layer.

Figure 5.30: Final design variables for the four side panels, i.e patches: 13, 15, 14, 16. Each patch no. has been
assigned a unique colour. The third axis shows the fibre orientation (MCS) in the given layer for the specific patch.

As can be seen from the figure the outer layers have been orientated so as to comprehend the
in-plane shearing, whereas the centre layers have been aligned with the length direction of the main
spar. This is believed to be a consequence of the patches being relatively "tall" when measured from
the centre line to the top and bottom of the panels. Had the patches been divided into smaller areas
a more uniform distribution of fibre orientations through the laminate thickness could have been
achieved. I.e. the centre would absorb the shearing forces whereas the upper and lower parts would
be more aligned with the length direction of the main spar.

81



5. Numerical Examples

In figure 5.31 the design variables for the corners are shown i.e. patches 5,11,6,12,7,9,8, and 10.

Figure 5.31: Final design variables for the eight corner patches, i.e patches: 5, 11, 6, 12, 7, 9, 8, 10. Each patch
no. has been assigned a unique colour. The third axis shows the fibre orientation (MCS) in the given layer for the
specific patch.

The remaining patches are for the top and bottom panels, i.e. patches 1,3,2, and 4. As can be seen
from figure 5.32 some of the patches have layers which are not aligned according to what could be
expected. For example patch no. 2 was expected to have all its fibres aligned with the z-axis as it is
loaded mainly in compressive bending. However, the fibres in layers no. 10 and 11 still have their
original alignment. Further analysis shows that these variables have mainly been influenced during
the identification process where their values have been changed repeatedly to either the upper or
lower bound. The misalignment is believed to be a consequence of the patch being loaded primarily
in bending, hence the influence of the centre layers upon the bending stiffness becomes negligible
when compared to the outer layers. This tendency is also present in the other patches shown in the
figure.

Based on the above presentation of the design variables the minimum determined by the opti-
misation process is not the exact global minimum. However, it is believed to be close to it. One of
the more conspicuous observations is the misalignment of the centre layers, which is believed to be
a consequence of the structure being loaded in bending. Performing the optimisation again, now
where the initial fibre orientations are aligned with the z-axis (SCS), should thus reveal if the hypoth-
esis is correct. The results for the top and bottom panels are shown in figure 5.33.
As can be seen from the figure the new initial alignment have resulted in the before mentioned layers
obtaining their expected orientation, hence supporting the above hypothesis. Recalling that the final
value of the objective function was 7.29 ·106 with the previous initial configuration, whereas the final
value for this optimisation was 7.26 ·106 shows the relative small influence of these misaligned centre
layers. It is worth noticing that the second optimisation converged in 59 iterations instead of the
471 iterations needed for the original initial configuration. This indicates that many of the design
variables had been initialised close to their optimum values.
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5.4. Generic Main Spar

Figure 5.32: Final design variables for the four top and bottom patches i.e: 1, 3, 2, 4. Each patch no. has been
assigned a unique colour. The third axis shows the fibre orientation (MCS) in the given layer for the specific patch.

Figure 5.33: Optimised top and bottom patches, i.e patches: 1, 3, 2, 4. Initially aligned with the z-axis (SCS).
Each patch no. has been assigned a unique colour. The third axis shows the fibre orientation (MCS) in the given
layer for the specific patch.
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For comparative reasons the main spar has also been optimised applying the DMO method. Here
twelve candidate materials were applied: 0◦, ±15◦, ±30◦, ±45◦, ±60◦, ±75◦, 90◦. The lay-ups produced
by this method were similar to those presented in the above. The final value of the objective function
was 7.63 ·106 which is in good coherence as the lay-ups were similar.

5.4.1 Summary

In the above it has been shown that the presented method for optimising composite structures can
be applied on real life structures. However, the application of the identification process only resulted
in a further reduction after the first identification of 1.9%. The results indicated that the given patch
subdivision may have been too coarse, resulting in the problem being sufficiently optimised without
the application of the identification process. The effect of the coarse patch design was also observed
for the lay-ups associated with the side panels i.e. patches 13, 15, 14, and 16. Here it was argued that
the optimised lay-up could have been refined if additional patches had been applied in these regions.

It was also shown that if a given laminate has layers which are aligned "incorrectly" and the identi-
fication can determine another lay-up, either by changing the design variable to something new or by
switching the bounds, this new lay-up may still prove to be improper for further optimisation. This
was observed for patches where the main state of stress was normal stresses due to bending. Here
the middle layers in the laminate had little influence on the overall bending stiffness, resulting in the
sensitivities being of too low a magnitude for the gradient based optimiser to "catch" the specific de-
sign variable and adjust it to the "correct" alignment. The misalignment was removed by utilising a
different initial set of values for the design variables which resulted in a relatively low reduction of the
strain energy. The reduction indicated that the misaligned lay-ups had the expected minor influence
upon the stiffness.

Even though the optimisation resulted in a reasonable lay-up this can hardly be applied without
first post-processing the design. E.g. The layers which had been aligned with the length direction
were not exactly aligned, many of them were off by ±2−5◦, which is unpractical from a manufacturing
point of view. This can also be argued for other alignments which are offset from what can be regarded
as "standard" orientations. In order for such problems to be eliminated manufacturing constraints
w.r.t fibre-continuity and -alignment should be implemented in the optimisation and identification
process.
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Chapter

6
Discussions & Conclusions

In this chapter discussions and conclusions are made on basis of the preceding chapters. First different
aspects and results from the thesis will be discussed in a great overview. Afterwards some conclusions
will be drawn.

This thesis has been concerned with the development and implementation of a new method for
performing optimising of laminated composite structures. The method has been implemented into
the finite element analysis and optimisation tool MUST, which is developed and maintained by the
Department of Mechanical & Manufacturing Engineering at Aalborg University.

The new method is based on preliminary ideas of another method originally presented by [Foldager,
1999]. The method by [Foldager, 1999] used a two-step approach in attempt to overcome the non-
convex nature of the design space associated with optimisation of composite structures w.r.t the fibre
orientations. However, the method proved to be flawed and was rejected. The idea of a two-step ap-
proach were quite ingenious though. Thus the preliminary ideas of [Foldager, 1999] were adopted by
the authors of this thesis in an attempt to develop a new and more robust method which was pre-
sented in [Kann and Sørensen, 2010]. The method utilises characteristics of the so-called lamination
parameters to overcome the non-convex nature of the design space associated with performing fibre
angle optimisation of composite laminates. The method was, as well as the method by [Foldager,
1999], developed for application on laminated plates described by CLT or FSDT. The work in this the-
sis has been concerned with expanding the previously presented method so as it could be used on
shell structures in a finite element application. In order to do so the essential lamination parameters
had to be extracted from the finite element equations describing the shell stiffness. This required the
application of explicit thickness integration of the constitutive properties of the shells. This extraction
of the lamination parameters was first shown by [Hvejsel and Hansen, 2007]. With the shell lamina-
tion parameters at hand the new method was formulated for the application on shell structures, as
have been illustrated throughout this thesis.

In order to test the performance of the newly developed method a number of numerical exper-
iments were conducted. In general, the conducted experiments can be divided into two groups,
namely experiments of "academic" character, which are well known examples that are tested with
the new method in order to benchmark its performance against some frame of reference, and exper-
iments of "industrial/practical" character, which are experiments with no frame of reference that are
conducted in order to test the performance in a more real-life context.

Several "academic" benchmark experiments have been conducted and it was shown that the
presented two-step method indeed is capable of bypassing the local minimum solutions often de-
termined when performing stiffness optimisation on laminated composite structures. The final re-
sults from the experiments were compared with both solutions published by other authors and solu-
tions obtained by use of the method of Discrete Material Optimisation, which has been presented by
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[Stegmann and Lund, 2005]. The obtained results proved to be in good coherence with these other
solutions.

Identification of new lay-ups on the basis of 12 lamination parameters have shown to be very
efficient for plates, as well as for both thin and thick curved shells. Experiments have also been per-
formed where 20 lamination parameters were used for identifying new lay-ups for curved shells. This
formulation did, however, prove to be so restrictive with regards to determining new lay-ups that it
is not recommended — especially in the light of the results obtained with 12 lamination parameters.
However, it is clear that if a new lay-up for a curved structure is found by applying only 12 lamination
parameters some information is also lost. This means that the identified lay-up will in fact be more
"different" from the original lay-up than a lay-up identified with 20 lamination parameters would. It
could be argued though that if optimisation is used in the design of a structure, then the exact devel-
opment of the specific design is in some ways a little out of the designers hands anyway, and as such
it might seem as a peculiar principle to keep the lamination parameters on such a tight leash. On the
other hand, applying to few lamination parameters enables the risk that the stiffness change unex-
pected. However, the results of this thesis indicates that the last 8 of the 20 lamination parameters
tend to "follow" the first 12 lamination parameters, thus reducing the risk.

Generally it has been observed that many of the numerical experiments exhibited the first lo-
cal minimum due to the gradient based optimiser being "stuck" on the bounds of the design space.
In these situations the identification process often resulted in the affected design variables having
their value interchanged to the opposite bound value. This substitution of bounds often proved to be
enough for the gradient based optimiser to continue minimising the objective function. The switch-
ing of the bounds was of course only possible because the bounds in the experiments were mirrored
with respect to the same value i.e. [−x◦; x◦]. In general, it also seems that the first identification pro-
cesses characterised by many bound switches are also followed by a rather large decrease in strain
energy over the succeeding iterations. Thus it must be considered to be a significant function of the
identification process. In fact, it might make good sense to structure this part of the identification
process a little more. If such a decrease in the objective function can be obtained by simply switching
a number of bounds, then it might be worth to do some kind of structured switching of bounds prior
to the identification process. A "poor mans approach" to such an improvement could be to do an
expansion of the design space and thus make it contain the same physical lay-ups several times. E.g.
instead of using [−90◦,90◦] as bounds, [−360◦,360◦] could be used. It is worth noticing though that
lay-ups with new values also are seen to reduce the objective function several places. A structures
switching of bounds should not replace the identification process, but simply be run prior to it.

The results also showed that even though a successful identification of a new lay-up could be
performed, it might not result in the gradient based optimiser being able to reduce the objective
function further. This could happen if the identified lay-up also was located in a minimum, or if the
global minimum had been reached. For the latter scenario, it might seem contradictory that other
lay-ups can be identified if the global minimum has been determined. However, because of the pe-
riodic nature of the design space the global optimum solution may be located in several locations
rotated by 180◦. These "redundant" identified lay-ups can thus be regarded as trivial. However, other
lay-ups can also be identified if the optimisation has converged to a, strictly speaking, non-optimum
solution. This can e.g. become a problem for structures loaded in pure-bending. Here the middle
layers have little to none influence on the bending stiffness, and thus they may be aligned somewhat
randomly even if the optimisation has converged to what can be interpreted as a minimum within
the current tolerance. The identification process can thus repeatedly determine new orientations for
these layers, without the gradient based optimiser being able to adjust the fibre direction to the cor-
rect alignment. In order to overcome this ambiguity of repeatedly determining trivial solutions, the
identification process has been set to terminate if ten successive identified lay-ups haven’t resulted
in any further reduction of the objective function. This procedure could be improved significantly
if history of the previous design were available in the implementation. Eliminating previously tried
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designs, and periodic repetitions of it, from the possible outputs could make the routine somewhat
smarter. However, the effect of such an implementation is unknown since this data history is not
enabled at current time.

In general the final designs determined by the optimisation algorithm are not directly applicable
from a manufacturing point of view. This is mainly due to numerical issues. The problem arises at
the areas where the fibres are in fact aligned properly in one direction. Even though the fibres here all
seem orientated at a common angle, they do, with the current tolerances, vary with 0◦–2◦. A similar
problem is observed for the case for the middle layers of a laminate in pure-bending. Here the middle
layers give so little contribution (due to the z ′-coordinate being close to 0) to the bending stiffness
that the optimisation algorithm is simply not able to catch the numerical differences. The result is
that the fibre orientations in such areas are somewhat randomly aligned, even though examining
the equations indicates that there is a preferred orientation. These problems strongly substantiate
the need for post-processing. With the current method, post-processing can simply not be avoided.
However, it is possible to imagine that some of the post-processing could be done automatically if an
algorithm were developed for it. However, it should also be noted that many of these issues would be
solved if the identification process could succeed with only a few layers.

The method has also been tested on what may be referred to as a real life structure. The chosen
structure was a generic main spar which is the primary load carrying structure in some designs of
wind turbine blades. The load scenario applied in the example was bending by a traverse pressure
load at the tip of the main spar. Thus emulating the flap-wise bending occurring in the blade as a
consequence of the wind load. The optimisation resulted in a design which seems reasonable for the
given patch breakdown and load scenario. However, the application of the identification process only
resulted in a further improvement of 1.9% which is regarded as negligible. This low improvement is
believed to be a consequence of the patch breakdown being too coarse in combination with a rela-
tively simple load scenario. Hence, the initial optimisation performed by a gradient based algorithm
was able to determine a design close to the global minimum. Nevertheless, the example showed that
the method can be applied on real life structures.

6.1 Conclusions

The conclusion of the thesis is that a method for doing maximum stiffness optimisation of compos-
ite shell structures have been developed an implemented with success. The results have shown that
local minima can be bypassed by use of the implemented identification process. This identification
process can be performed with either 12, 20, or 28 lamination parameters, thus giving full support for
shell structures. However, the results show that using 20 or 28 lamination parameters is very restric-
tive and hence no new lay-ups are identified. Using just 12 lamination parameters on the other hand,
is seen to give good results both for plates and for curved shells, both provided that the structure is
made with at least 11 layers. Worth mentioning is though that the effect of the (first) identification
process, to a large extent, is that design variables are switched from one bound to the other. Thus
the optimisation process could profitably be performed with an expanded design space. Also the
need for post-processing is apparent in all results obtained. However, the final conclusion shall be
that the method can in fact be applied to real-life structures, provided that the material is the same
throughout the thickness of the laminate.
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Chapter

7
Future Perspectives

In this short chapter some suggestions for further work within the area of this thesis are given.

In the numerical experiments it was noticed that many of the design variables were caught on
the bounds of the design space. This was observed by the fact that many of the initial identifications
resulted in design variables located on a bound having their value changed to the opposite boundary
value. After which the gradient based optimiser was able to reduce the objective function a substan-
tial amount. The applied bounds were obviously too tight as most of the experiments got stuck on
either of the bounds. Thus an expansion of the bounds seem to be appropriate e.g. to [−360◦;360◦].
Thus reducing the possibility of the optimiser getting stuck in a local minimum due to the bounds. Al-
ternatively a loop through the design variables could be initiated, when the gradient based optimiser
has converged, to check if any of them are at the bounds and the ones that are may have their values
switched to the opposite bound. After this the optimiser can be reengaged to see if further reduction
of the objective function has been made possible. If this is not possible the identification process can
be initiated. This procedure is of course only applicable for design variables which represent the fibre
orientations.

The current implementation of the method employs a scheme where if ten successive failed iden-
tification processes have occurred, the optimisation process will be terminated. This has been imple-
mented in order to avoid the scenario where the optimisation algorithm gets stuck in an infinite loop
of successful, but trivial, identified lay-ups. Instead a more systematic solution to the problem could
be applied. If an identification resulted in a lay-up which proved not to be different enough for the
gradient based optimiser to reduce the objective function any further, this lay-up could be stored
and utilised for comparison in the next identification. Thus if this lay-up should appear again in the
next identification it may be disregarded and removed from the current population in the genetic
algorithm. Hence if two successive identified lay-ups were unable to reduce the objective function
any further, the third identification would have two lay-ups to compare the new lay-up against. This
procedure could possibly reduce the amount of computational time required for determining if the
optimisation process has converged to a near global minimum solution.

As previously noted throughout the thesis it is only possible to identify new lay-ups if the essential
several-to-one relationship can be established between the lamination parameters and the design
variables. This requires a minimum of 11 layers in an element when applying ply-orientations as
design variables [Kann and Sørensen, 2010]. However, this requirement may be reduced if thicknesses
are added as design variables. The current implementation does not support thicknesses as design
variables. It is, however, believed to be possible to add thickness support in the genetic algorithm,
both in the form of continues and discrete sets of allowable thicknesses. Most of the functionalities
have already been implemented. What is still needed is bookkeeping as the design variables have to
be separated into two groups, i.e. fibre orientations and ply-thicknesses, in order to apply discrete
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values for the thicknesses.
One of the characteristics with lamination parameters is that there always is a constant number

of parameters, no matter how many layers the laminate consists of. This property can be exploited
to add or remove layers from a laminate during the identification process. The identification algo-
rithm is simply supplied the lamination parameters as usual, however, by supplying a modified set
of bounds which represent the new lay-up, the identification algorithm can determine a lay-up, with
the specified number of plies, which match the supplied lamination parameters. The optimisation
process can thus continue to reduce the objective function with the new lay-up.

The genetic algorithm which has been developed and implemented in MUST does currently only
support constraints in the form of upper and lower bounds on the design variables. However, if thick-
nesses are to be included in future versions of the identification algorithm it would be desirable to
have support for different types of constraints e.g. equality and inequality constraints. The sim-
plest way of adding these constraints is to convert the constrained problem into an unconstrained
problem by penalising the objective function. However, more sophisticated methods have also been
developed specifically for genetic algorithms. Here the reader is referred to i.e. [Nanakorn and Mee-
somklin, 2001]. Note that the local gradient based optimisation in the current implementation is
performed by use of a Methods of Feasible Directions algorithm, which supports both equality and
inequality constraints.

Another form of relevant constraints that could be implemented in future versions are failure
criteria. Furthermore the method has only been applied for minimising the compliance of a laminate.
The application of other objective functions such as maximising the lowest buckling load are just as
essential when dealing with thin composite structures such as laminated plates and shells. Here it
is worth noting that maximisation of the minimum buckling load according to [Svanberg, 1984] also
displays convexity when formulated with lamination parameters as design variables, and thus the
performance of such a formulation can be be expected to be somewhat similar.
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Nomenclature

Latin Letters

B The strain-displacement matrix.
C Compliance.

Ci j kl The constitutive tensor.
di Normalised sensitivity of strain energy density.
*d e Element displacement vector.
*D Global displacement vector.
G Matrix containing shape function derivatives with respect to global coordinates.
h The thickness of the shell.

ha The thickness of the shell in node a.
hl The thickness of the l ’th layer.

*i , *j , *k Global Cartesian base vectors.
J The Jacobian matrix.

ke Element stiffness matrix.
K Global stiffness matrix.

nel em Number of elements.
nel emP Number of elements in a patch.

nLP Number of lamination parameters.
nshel l The number of nodes in a shell element.
nsol i d Number of nodes in a solid element.
N 2D

a Interpolation function for node a — is a function of the natural (r, s)-coordinates.
N 3D

a Interpolation function for node a — is a function of the natural (r, s, t )-
coordinates.

Na,p The partial derivative of Na w.r.t. the variable p.
Qi j The components of the constitutive tensor, which traditionally is denoted as Q

instead of C when dealing with laminaes.
r, s, t Natural curvilinear coordinates.
*R Global force vector.

T MG Transformation matrix from MCS to global coordinate system.
u,p , v,p , w,p The partial derivative of the displacements w.r.t. the variable p.

*u Global Cartesian displacements.
*ua Global Cartesian displacements of node a.
U Strain energy.

Ud Strain energy density.
Vp Patch volume.
W Work done by external loads.
*v3 The thickness direction unit vector.
∆*v a

3 Relative displacements of the node director in node a.

var j = 1

j
(z’ j

k − z’ j
k−1).

x1, x2, ..., xn Design variables.
*x Design variable vector. Note the ambiguity with the next line as well.
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Nomenclature

*x Global Cartesian coordinates of arbitrary point. Note the ambiguity with the pre-
vious line as well.

*x0 Point on the reference surface.
*xa Global Cartesian coordinates of the nodes on the reference surface of a shell ele-

ment.
*x3D

a Global Cartesian coordinates of node a in the solid element.

Greek Letters

γ = 2∆V

h∆A
.

∆Ae Average of Jacobian square root for element no. e.
∆Ap Average of Jacobian square root for a patch.
∆Ve Variation of Jacobian square root for element no. e.
∆Vp Variation of Jacobian square root for a patch.
εkl The strain tensor.
*
θ Fibre orientations assembled in a vector.
*
θ
∗

Initial/suboptimal angles assembled in a vector.
∆ξ Fixed step size.
∆ξi Individual allowable variation of each lamination parameter.
ξ∗i Initial lamination parameter.
*
ξ
∗

The initial set of lamination parameters assembled in a vector.
σi j The stress tensor.

Other Symbols

∂ Differential operator matrix.
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Appendix

A
Genetic Algorithm

This appendix is taken from the authors pervious work and only serves to give the reader an oppor-
tunity to fully understand how the genetic algorithm operates. The algorithm was originally coded in
Matlab but has now been translated into Fortan code and implemented in MUST.

A.1 Description of the Algorithm

The section (and the implemented algorithm) is based on [Sumathi et al., 2008] and [Pohlheim, 2010].

Genetic algorithms are based on an idea to replicate natural evolution. The overall thought is to let
a population of solutions to the problem evolve by breeding for a number of generations and thereby
determine the solution to the problem. Which solutions to "breed" from is selected by a measure of
fitness. Thus such algorithms are popularly said based on the principle of "survival of the fittest".

Components of Genetic Algorithms
Due to the descent from biology, genetics algorithms employ a number of new terms which are not
normally used in the field of mechanics. The most important of these terms are explained in short
here:

Individuals: An individual is to be understood as a possible solution to the problem.

Population: A population is a collection of all the current individuals.

Fitness function: A fitness function is a function which in some way measures how good each
solution is for the current problem. The fitness function can be understood
as a kind of objective function for the genetic algorithm.
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A. Genetic Algorithm

Parent selection: Parent selection is the process where it is decided which of the individuals
from the current population that should be used for breeding. The individ-
uals used for breeding are referred to as parents.

Recombination: Recombination is the process of combining variables from the parents to
obtain new solutions. The process is also referred to as breeding.

Mutation: Mutation is a process incorporated in order to avoid "inbreeding" of the
population.

The latter four of these terms will furthermore be elaborated on in the following overview of the
implemented algorithm.

Brief Overview of Algorithm
A flowchart of the implemented algorithm is shown in figure A.1. In the following each of the boxes/-
subroutines are explained in greater detail.
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A.1. Description of the Algorithm

Initialisation of 

population

Fitness 

function

Survival

Selection

Recombination

Mutation

Optimisation 

of the best 

individual

Evaluation of current 

population

While minimum not found

Minimum 

found?

Yes

No

Store and remove optimal 

individual

Enough 

solutions? No

Yes

Select optimal solution

Stop criterion

New solution

Figure A.1: Flowchart of the implemented genetic algorithm. Each box represents a subroutine. The rhombus
represents an if-statement.
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A. Genetic Algorithm

A.1.1 Initialisation of Population

Before starting the optimisation routine an initial population must be constructed. On beforehand
it is determined how many individuals the population should consist of. The number of individuals
in a population is referred to as Ni nd . The population is simply created by creating Ni nd individuals,
where each individuals design variables are generated as random numbers within the bounds of the
variables.

A.1.2 Fitness Function

The fitness function is a way to quantify how optimal each solution is. The objective is to rank the dif-
ferent individuals of the population depending on their optimality for the problem. Different ranking
methods with both linear and nonlinear variants are available. However, what is used in this report
is simply the identification function. However, genetic algorithms are meant to maximise rather than
minimise, so the values have to be changed. This is simply done as:

f i tness(*θ) = Imax − I
(*
θ
)

(A.1)

where: Imax The maximum value of I found in the population.

A.1.3 Survival

In the survival-routine a predefined percentage of the best individuals of the population is selected
for survival, also called elite survivors. This principal is applied so as to ensure that the best solutions
are not lost due to either breeding or mutation in the next generation. Both uniform and nonuniform
methods can be applied. What is used in this report is a uniform method. The uniform method passes
a fixed percentage of elite survivors from the current generation to the next. The percentage is based
on the percentage of parents which are to be selected for breeding. Thus if 90% of the population
is selected for breeding, then the remaining 10% is selected for survival. However, no matter the
specified percentage it is always ensured that the best individual survives for the next generation.

A.1.4 Selection

The selection routine determines which individuals of the current population that should be used
for breeding. Different selection methods are available. In this project a method called stochastic
universal sampling method (SUS method) is used.

The SUS method is illustrated in figure A.2. All individuals of the population are mapped to a
continuous line segment where each individuals part of the line is equal in size to its fitness value
relative to the sum of all fitness values. If the number of individuals to be selected is Nsel , then a line
with Nsel pointers is generated. The individual, which each pointer points at, is selected for breeding.
The pointer line is generated in two steps, first the location of pointer 1 is determined as a random

number between 0 and
∑Ni nd

i=1 f i tnessi

Nsel
. Secondly the remaining Nsel −1 pointers are distributed evenly

with a distance of
∑Ni nd

i=1 f i tnessi

Nsel
in between them.
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A.1. Description of the Algorithm

Individual 1 2 3 4 5 6 7 8

0 § fi
i=1

1
§ fi

i=1

5
§ fi

i=1

4
§ fi

i=1

3
§ fi

i=1

6

i=1

2
§ fi §fi

i=1

8

i=1

7

§fi

Random number

Pointer 1 Pointer 2 Pointer 3 Pointer 4 Pointer 5 Pointer 6

Figure A.2: Illustration of how the stochastic universal sampling method works. Example where 6 individuals
are selected. The selected individuals are 1, 2, 3, 4, 5, and 7.

The SUS method roughly ensures that an individual with e.g. a 20% fitness value has a 20% chance
of getting selected. The SUS method thus favours individuals with larger fitness values when com-
pared to other selection methods such as the roulette method.

A.1.5 Recombination

Recombination, also called breeding, is the process of generating new solutions based upon other
solutions. In this report a method called arithmetic is applied, however, other methods are also avail-
able. In connection with the methods name, the act of recombination is done as a simple linear
combination of the two parents selected for breeding. The new solution, or child thus consists of
a percentage of each parent, where the percentage is selected as a random number between 0 and
1 for each design variable. As two parents always have to give two new individuals the two linear
combinations are made as:

θ
chi l d1
i = riθ

par ent1

i + (1− ri )θpar ent2

i (A.2a)

θ
chi l d2
i = (1− ri )θpar ent1

i + riθ
par ent2

i (A.2b)

where: θ
chi l d j

i Design variable number i of child number j .

θ
par ent j

i Design variable number i of parent number j .

ri Random number.

A.1.6 Mutation

In order to avoid "inbreeding" (which also is known to give unfortunate consequences in genetic
algorithms) some of the new childrens design variables are changed randomly in a mutation-process.
On beforehand it is selected how large a percentage of the population that should undergo a mutation
process and how many design variables each of these should have changed. The developed mutation
algorithm works in three steps. First the individuals for mutation are selected randomly between the
new children. Next, the design variables which are to be mutated is selected randomly, and at last
the design variables are changed by a random number within the bounds of the selected variable. In
this report a uniform mutation process is implemented, meaning that the percentage of mutation is
constant through out the optimisation. Other methods have also been made available.

When all breeding and mutation are completed the elite survivors selected in the survival-routine
are put into the population as well to give a new complete population.
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A. Genetic Algorithm

A.1.7 Optimisation of the Best Individual

According to [North et al., 1996] local improvement of individuals can greatly improve the perfor-
mance of a genetic algorithm. Thus a selection of the best individuals in the population is selected
for conventional gradient-based optimisation, whereafter they are released back into the population.
If the number of selected individuals is too high, the population may converge rapidly towards a local
minimum before a thorough search of the design space has been made. Thus an upper bound of five
individuals has been implemented.

A.1.8 Evaluation of Current Population

At last before the loop is started over the new population is evaluated w.r.t. stopping criteria. For the
algorithm three criteria have been incorporated:

Stop if:

1. Current generation ≥ Maximum allowable number of generations.

2. (Mean value)-(Min value) ≤ ε.

3. (Min value) ≤ ε.

Here the mean value is the mean of the current population, min value is the minimum value, and ε

is a small number. Criterion nr. 1 ensures that the algorithm does not continue indefinitely, whereas
nr. 2 ensures that the algorithm stops if the population has converged to a suboptimal solution. If the
third criterion is archived the specific solution is stored and removed from the current population.
The motivation for this is that the population may contain better solutions than the current optimum
solution. Here a better solution is defined as a solution which contains angles that differ from the
angles the gradient based optimisation terminated with. If enough solutions have been extracted
from the population, or if one of the other stop criteria is active, the best solution is selected.

A.1.9 Select Optimal Individual

If only one optimum solution has been extracted from the population, this solution is returned as
the new solution and thus ending the identification process. If, however, more solutions have been
extracted the best solution must be identified. Each solution is compared to the initial/suboptimal
angles from which the gradient-based optimiser ended. The comparison between the solutions is
determined as:

q j =
∣∣∣∣∣∣cos

(
2*
θ
∗)

−cos
(
2*
θ j

)∣∣∣∣∣∣ (A.3)

where: q j Norm difference for extracted solution nr. j.

*
θ j Extracted solution nr. j. assembled in a vector

*
θ
∗

Initial/suboptimal angles assembled in a vector.

Because fiber orientations of i.e θ = π gives the same stiffness in a lamina as θ = 0, the factor of
two is introduced in the comparison. Thus ensuring that two equivalent angles produce the same
cosine value. When all extracted solutions have been compared to the suboptimal solution, the solu-
tion which produced the largest difference is selected as the new solution, and thus terminating the
identification process.
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Appendix

B
Stiffness Sensitivities w.r.t Lamination
Parameters

In this appendix the analytic element stiffness sensitivities with respect to the lamination parameters
are derived for each parameter.

B.1 Sensitivity for Element Stiffness Matrix

In section 3.2.2 a general expression for the sensitivity of an element stiffness matrix with respect to
the lamination parameters were derived. This expression is repeated here for conveniens:
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where i = 1,2,3,4 and j = A,B ,D,E ,F,G , H .

Because the lamination parameters have different dependencies with respect to the thickness inte-
grated constitutive properties, the above expression is reduced for each set of lamination parameters.
The dependencies are as follows:

E 1 = E 1

(
ξA

i ,ξB
i ,ξD

i

)
(B.2a)

E 2 = E 2

(
ξB

i ,ξD
i ,ξE

i
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(B.2b)

E 3 = E 3

(
ξD

i ,ξE
i ,ξF

i

)
(B.2c)

E 4 = E 4

(
ξE

i ,ξF
i ,ξG

i

)
(B.2d)

E 5 = E 5

(
ξF

i ,ξG
i ,ξH

i

)
(B.2e)

In the following subsections expression (B.1) is shown for each lamination parameter. These were
first shown by [Hvejsel and Hansen, 2007] and has been verified both analytically and numerically by
the authors.

101



B. Stiffness Sensitivities w.r.t Lamination Parameters

B.1.1 Sensitivity w.r.t Lamination Parameters ξA
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B.1.2 Sensitivity w.r.t Lamination Parameters ξB
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B.1. Sensitivity for Element Stiffness Matrix

B.1.3 Sensitivity w.r.t Lamination Parameters ξD
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B. Stiffness Sensitivities w.r.t Lamination Parameters

B.1.4 Sensitivity w.r.t Lamination Parameters ξE
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B.1. Sensitivity for Element Stiffness Matrix

B.1.5 Sensitivity w.r.t Lamination Parameters ξF
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B.1.6 Sensitivity w.r.t Lamination Parameters ξG
i

∂ ke

∂ξG
i

=
1∫

−1

1∫
−1

(
B T

2

∂ E 4

∂ξG
i

B 3 + B T
3

∂ E 4

∂ξG
i

B 2 + B T
3

∂ E 5

∂ξG
i

B 3

)
2
h∆

2
Adr d s (B.13)

where

∂ E 4

∂ξG
1

= T T
MG Uγ2 h6

192

{
0 1 0 0 0

}T
T MG (B.14a)

∂ E 4

∂ξG
2

= T T
MG Uγ2 h6

192

{
0 0 1 0 0

}T
T MG (B.14b)

∂ E 4

∂ξG
3

= T T
MG Uγ2 h6

192

{
0 0 0 1 0

}T
T MG (B.14c)

∂ E 4

∂ξG
4

= T T
MG Uγ2 h6

192

{
0 0 0 0 1

}T
T MG (B.14d)

∂ E 5

∂ξG
1

= T T
MG U 2γ h6

192

{
0 1 0 0 0

}T
T MG (B.14e)

∂ E 5

∂ξG
2

= T T
MG U 2γ h6

192

{
0 0 1 0 0

}T
T MG (B.14f)

∂ E 5

∂ξG
3

= T T
MG U 2γ h6

192

{
0 0 0 1 0

}T
T MG (B.14g)

∂ E 5

∂ξG
4

= T T
MG U 2γ h6

192

{
0 0 0 0 1

}T
T MG (B.14h)

B.1.7 Sensitivity w.r.t Lamination Parameters ξH
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Appendix

C
CD

The following content is provided on the CD:

• Electronic copy of the report.

• Electronic copies of the following articles/reports:

– [Kann and Sørensen, 2010]

– [Tsai and Pagano, 1968]

– [Miki, 1982]

– [Grenestedt and Gudmundson, 1993]

– [Lipton, 1994]

– [Hammer et al., 1997]

– [Foldager, 1999]

– [Bloomfield et al., 2009]

– [Svanberg, 1984]

– [Fukunaga and Sekine, 1992]

– [Setoodeh et al., 2006]

• The developed edition of MUST. The software is provided both as executable files as well as
source code.

• Relevant FE-examples used in the report.
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