
Position Tracking using a self
learning mobility model

Group 11gr1001

Troels Laursen
Nikolaj Pedersen

Aalborg University, Spring 2011

The Faculties of Engineering, Science and
Medicine
Department of Electronic Systems
Frederik Bajers Vej 7
Phone: +45 96 35 86 00
http://es.aau.dk

Title: Position Tracking using
a Self Learning Mobility Model
Theme:
Design of distributes systems
Project period:
February 1st - June 1st, 2011

Project group: 11gr1001

Group members:
Troels Laursen
Nikolaj Pedersen

Supervisors:
Assoc. Prof. Tatiana Kozlova Madsen
Stud. Ph.D. Jimmy Jessen Nielsen

Number of copies: 5
Number of pages: 43
Appended documents:
(X appendix, 1 CD-ROM)
Total number of pages: 66
Finished: June 2011

Abstract:
The objective of this Project is to test different approaches
for filtering position measurements in a positioning sys-
tem when tracking a moving object. Several different
filters was tested based on mobility models of different
complexity.
The first filter used does not utilizi any mobility model,
the second filter uses movement speed, the third filter
uses movement speed and direction in an attempt to
favor straight line movement. The last filter we propose
is an adaptive version that uses training measurements to
learn movement patterns and thereby pay regards to any
geographical depended mobility changed.

All the filters is tested in a variety of different simulations
where a simple noise model is used. The adaptive model
is found to be best, an improvement of 15% in off-line
mode and 19% in on-line mode when comparing with the
directional mobility model.

The adaptive model was tested with different variance of
noise which give some results that needs to be investigated
further.

As a further development some runtime optimizations is
interesting and should be possible.

Chapter 1

Preface

This report is the documentation of the project concerning position determination in noisy
environments using training data. The project is conducted by two 10th semester students of
Networks and Distributed Systems at Department of Electronic Systems.

Determination of position is something almost every cellphone can do today. However, in most
cases GPS is used. The problem with GPS is the use of satellites which means it does not work
indoor, and has trouble working in the centre of big citeis due to the many high-rise buildings.

1.1 Study Programme

The project is in line with the curriculum which says ’skills thought in previous courses must be
used’. This project involves theory from Graph theory, Markov chains and probability theory.

1.2 Notes and References

The report makes use of cross references. Figures, tables, and source code excerpts are numbered,
and these numbers are used in the text. In some cases, the size of the figures and tables makes
it necessary to place it on the following page. When abbreviations is used first time the full
name is written with the abbreviation in brackets thereafter only abbreviation is written, a list a
abbreviations can be found in appendix D on page 63.

When using external sources, information about the source is given in the bibliography in
appendix D on page 65. The source information is referenced by a text and year encapsulated in
brackets. A reference to the example source is [Example 08b].

1.2.1 Author Signatures

Nikolaj Bisgaard Pedersen Troels Laursen

3

Table of Contents

1 Preface 3
1.1 Study Programme . 3
1.2 Notes and References . 3

Table of Contents 4

2 Introduction 7
2.1 Indoor Position Systems . 7
2.2 Motivation . 9

3 Proposal 11
3.1 Moving Average (Filter One) . 11
3.2 Mobility Models . 12
3.3 Viterbi (Filter Two) . 13
3.4 Reduced Complexity Viterbi (Filter Three) . 14
3.5 Directional Viterbi (Filter Four) . 15
3.6 Adaptive Viterbi (Filter Five) . 16

4 Evaluation 19
4.1 Simulation Setup . 19
4.2 Pedestrian Simulation . 20
4.3 Noise Parameter . 22

5 Results 27
5.1 Preliminary Tests . 27
5.2 Test of Four Different Scenarios . 30
5.3 Final test . 38
5.4 Noise test . 40

6 Closure 41
6.1 Conclusion . 41
6.2 Future Work . 42

A A? 43
A.1 The process . 43

B Viterbi 45
B.1 Hidden Markov Models . 45
B.2 Viterbi . 46

C Results From Four Different Scenarios test 51

4

TABLE OF CONTENTS

C.1 Line test . 51
C.2 90◦ Turn Test . 54
C.3 180◦ Turn Test . 56
C.4 Soft Turn Test . 59

D Abbreviations 63

Bibliography 65

5

Chapter 2

Introduction

Tracking various items and even people has for years been the objective for many engineers and
scientists. The result of this great interest has been a variety of different tracking technologies e.g.
LOng RAnge Navigation (LORAN), Global Positioning System (GPS), Intel Precision Location
Technology (PLT) and Cambridge Positioning System (CPS) [Hoo11].

Traditionally positioning systems were reserved for military applications and safety related
ship and aircraft borne systems. Ship borne safety related systems used LORAN for determining
location and speed, but since selective availability for GPS was turned off and high quality signals
became available for civilian use these systems shifted to the use of GPS for positioning. Many
systems are now using GPS for positioning, but also many new Mobile Device (MD) are equipped
with GPS [Wik11].

GPS is in a number of situations not working well enough for the standard MD applications
due to obstructed Line Of Sight (LOS) with the satellites for example indoors and in dense urban
areas where tall buildings can obstruct LOS.

2.1 Indoor Position Systems

Indoor positioning systems are still used in more and more applications. Many museums, shopping
malls and airports are currently investigating the possibility of using indoor positioning systems
for guidance, geographical advertisements and costumer behavior statistics.

The mentioned limitations of GPS of indoor use has caused many different approaches for
using other system than GPS when indoors. Some of the approaches is based on different radio
technologies e.g. Bluetooth, Wireless Fidelity (Wi-Fi) and Radio Frequency IDentification (RFID).
The advantage of using these short range technologies is that in many urban areas and buildings
they are already present solving other tasks. The use of short range technologies for assisting
GPS in indoor and urban areas can be achieved by many different methods e.g. Radio Signal
Strength (RSS), Time Of Arrival (TOA), Angle Of Arrival (AOA) and Time Difference of
Arrival (TDoA) [SCGL05], [STK05], [GG05], [PAK+05]. Some of them can be used without
disturbing the normal use of the short range radio technology. Common for them all is the
requirement of multiple access points within reach of the MD.

All of these technologies will deliver a position that is subject to various amounts of noise on the
measurement. In a Bluetooth setup using RSS an average error of 90 cm was measured[RPN+08].

An example of a combined guidance and geographical advertisement system is the SITA
developed indoor Wi-Fi based positioning system implemented in Copenhagen International
Airport. The system has an accuracy of approximately three meters and besides helping passengers
find their way around the airport, and give them geographical information it also helps airport
officials improve the design of the airport, direct the flow of passengers and shift employees to
improve security matters [Neg11].

7

CHAPTER 2. INTRODUCTION

Another example of a working indoor positioning system is the MediaCart. The MediaCart is
a shopping cart that by using a RFID scanner scans the proximity for RFID tags and thereby
becomes aware of it is location, which then is used to give the shopper adverts about products
in the proximity of the shopper. The shopper can make an online shopping list which then is
displayed on a screen on the shopping cart together with a map showing where the next item
is located compared to the shoppers location. The system is also used to give the advertisers
statistical information of their products and the effectiveness of their adverts [Med10].

2.1.1 System Overview
A short range radio technology positioning system can be divided in four independent parts. One
part concerns what type of radio technology (e.g. Bluetooth, Wi-Fi and RFID) and how these
technologies are used (e.g. TDoA, TOA and RSS). The next part concerns converting the incoming
measurement to actual positions which can be done in a number of ways depending on how these
measurements are obtained (e.g. Sensor fusion and fingerprinting). The third part is the filtering
or smoothing part whose purpose is to attenuate the noise. The last part is the application, which
can be everything from an indoor guidance system to supervision of people or animals. This is
illustrated in Figure 2.1.

Figure 2.1: Block diagram of a short range radio technology positioning system.
From radio signals to a indoor guidance system. Each box includes some examples of
what type of technology they can consist of

The part about filtering and smoothing will be the focus of this report.

Initial Problem Definition

How can filtering or smoothing of the measurements improve the accuracy of the position.

2.1.2 Mobility in systems
Indoor positioning systems based on short range radio technologies will give noisy input measure-
ments which is why filtering or smoothing is required. The filtering or smoothing can be done in
various ways, but the users behaviour can often be used to increase the performance for the filter.
If for instance the object is a train the movement would be very straight with few soft turns and
speed changes. However, if the user is a pedestrian the probability of changing course and speed
will be higher. This information of the user is known as a mobility model and can generally be
divided in three categories[NHM+11].

• State-space models

• Memoryless random models

• Geographical models

State-space Models

A state-space model is a model which utilizes kinematic parameters such as position, linear and
angular velocity, accelerations, etc. These parameters are used to form a state vector that describes
the physical possible trajectory of the user. This state vector can be used to restrict the types
of allowable maneuvers. If for instance the input measurements suggest that a pedestrian has
moved 100 meters in one second, which is probably not the case but a result of measurement noise.

8

2.2. MOTIVATION

An example of such a model is the constant velocity model where the allowable velocity for the
object is restricted by a maximum and a minimum velocity. Other examples are the improved
version of the constant velocity model, the less drunk model[RPN+08] where the trajectory angle
is restricted to form more straight paths.

Memoryless Random Models

Memoryless random models are simple and allow rapid change in velocity and direction. They do
not restrict the dynamics to what is possible as state-space models do. An example of a memoryless
random model is the random waypoints model where every possible outcome of all dynamics are
allowed, which means that the object can travel with unlimited speed. Another model is the
Brownian motion, which describes how a particle moves in fluids.

Geographic Models

Geographic models are unlike state-space models not defined for the object but for some geographical
points. Geographic models can for instance decrease the probability for the object passing trough
obstacles and adjust the speed for some areas. An example of a geographic model is the pathway
mobility model which increase the probability for the object to travel within some specified paths.
The geographic model is sometimes used for map matching.

These mobility models are then usually used by a particle filter or a Kalman filter sequentially
with the incoming position measurements[RPN+08], [Thr00] and [GB00].

2.2 Motivation

The most common model to use when filtering position measurements are a state-space model
based on expected behavior of the object. This is the obvious choice when the object is known.
However, in for example indoor environments where walls and furniture delimit user movements,
it is beneficial with a geographical mobility model that knows which movements are possible and
typical at certain geographical points. However, obtaining this information of the most probable
behavior can be a tedious task of typing probable behavior for each geographical point in a map.
This project suggests a self learning geographical mobility model that dynamically sets the typical
behavior of the object for all points in a map. This means for instance if the user typically changes
speed or direction on a certain geographical point the self learning algorithm will eventually learn
this behavior and include it in the mobility model for the geographical point.

2.2.1 Refined Problem Definition
How can filtering or smoothing of the measurements improve the accuracy of the position by using
a mobility model describing the user behavior and through the use of an self-learning geographical
dependent mobility model.

9

Chapter 3

Proposal

Noise is in many positioning systems a hurdle that has to be addressed [RPN+08], [SCGL05] and
[GG05]. This chapter will address the issue of noisy position measurements. For simplicity reasons
the possible positions is limited to fall within a certain grid of cells (occupancy grid map) [Mil97].
This means that a position measurement is moved to be at the nearest grid cell. This goes for both
the noisy data and the actual positions. Furthermore it has been chosen yet again for simplicity
reasons that the only possible moves for the object which is tracked is to a neighboring grid cells.

Many methods for removing or reducing noisy position measurements have been proposed
[RPN+08] and [GG05]. This chapter starts off by proposing the use of a Moving Average filter to
do a simple smoothing of the noise (Section 3.1). Then by using a Hidden Markov Model (HMM)
to model the behavior of the tracked object (see Section 3.2). We propose using Viterbi to find the
most probable path (see Section 3.3). The Viterbi algorithm is then reduced in complexity (see
Section 3.4). The model used for the Viterbi and the reduced Viterbi algorithms are assuming
equal probabilities for the object to move in all directions. This is changed in the directional
Viterbi to be depended from the state before so that the probability for going in a straight line is
increased (see Section 3.5). Finally, we propose a Viterbi algorithm that uses an adaptive model
which changes according to movement patterns in some training trajectories (see Section 3.6)

3.1 Moving Average (Filter One)

One of the simplest filters that can be used to filter or smooth is the Moving Average. In Eq. (3.1)
the Moving Average in general terms is presented where Z is the noisy input and X is filtered or
smoothed. For this project a Moving Average with filter order of 4 is chosen. The filter order of
four is believed to be the best compromise in the trade-off with delay and smoothing performance.

X(n) = Z(n) + · · ·+ Z(n− i+ 1)
i

(3.1)

X(1) = Z(1) i = 4

X(2) = Z(2) + Z(1)
2 i = 4

X(3) = Z(3) + Z(2) + Z(1)
3 i = 4

X(4) = Z(4) + Z(3) +X(2) + Z(1)
4 i = 4

X(5) = Z(5) + Z(4) +X(3) + Z(2)
4 i = 4

...

11

CHAPTER 3. PROPOSAL

The way the first five values are calculated is shown after Eq. (3.1). This is done for both
X-coordinates and Y-coordinates separately and fitted to the closest grid-point. A Moving Average
filter works as a low-pass filter, which will remove some of the fluctuation of the noisy inputs, but
also add a delay which eventually leads to errors.

The Moving Average filter does not use any knowledge about how the tracked object moves.
Knowledge about the tracked object can improve the filter performance [RPN+08], [SCGL05] and
[PAK+05].

3.2 Mobility Models

A model of the system creating the measurements is needed in order of implementing a filter that
by using this extra information increases the accuracy of the positions. This model will in the case
of a positioning system consist of both a mobility model and a noise model that hides the actual
positions. Because of the choice of using a grid, it is logical to use a HMM [RPN+08] to model
the behaviour of an object. A HMM consist of four parts: a set that contains all the different
states in the Markov model, a matrix containing the different probability to change from one state
to another, an emission part that contains the set of possible measurements and a matrix that
contains the probabilities of a particular measurement depending on the state.

The state part, which is all the different grids, is also the hidden part which is desired to
estimate. All the states are given names as in a X-Y-coordinate system. The set containing all
the states is called Z. Because every state has two variables, a transition probability needs to
have four index-variables, for instance from state 6,7 to state 6,8 a6,7,6,8 = 0.0625. This is then
arranged in a transition probability matrix called A since four dimensional matrices are hard to
draw two of the variables are locked in the matrix in Eq. (3.2) (here 6,7 is the locked values). Most
of the values in Eq. (3.2) are zero because in the chosen model, it is only possible to move to
neighboring grid cell. The transition probability matrix, A, is what is needed to make a Markov
model. Making it hidden requires the emission set and the emission probabilities.

a6,7,:,: =

. . .
...

...
...

...
...

· · · 0.0 0.0 0.0 0.0 0.0 · · ·
· · · 0.0 0.0625 0.0625 0.0625 0.0 · · ·
· · · 0.0 0.0625 0.5 0.0625 0.0 · · ·
· · · 0.0 0.0625 0.0625 0.0625 0.0 · · ·
· · · 0.0 0.0 0.0 0.0 0.0 · · ·

...
...

...
...

...
. . .

(3.2)

The measurements are also positions consisting of a X and Y component since these are
dependent on the actual position(state). The emission probabilities are also arranged in a four
dimensional matrix called B. They are written slightly different because the emission probabilities
are more like a function of the measurement (observation) bstate (obs). The B matrix depends on
the noise model and differs depending on the noise. In some cases the probabilities of beginning
in the different states π is provided, but in other cases they will have to be calculated from the
transition matrix A. When modeling positions the probabilities of the beginning state is an uniform
distribution.

To find the best set of state transitions and output probabilities some kind of algorithm is
needed.

12

3.3. VITERBI (FILTER TWO)

3.3 Viterbi (Filter Two)

On of the ways to find the most probable path of states in a HMM when only a set of measurements
is available is to use the Viterbi algorithm [JM00]. The Viterbi algorithm basically works around
two equations, Eq. (3.3) and Eq. (3.4). The first equation, Eq. (3.3), used to initialize the Viterbi
algorithm. The state the calculations are done for is denoted k. x0 is the first emission and πk is
the probability of beginning in state k. V is the probability of being in that state at time t.
The main part of the algorithm is the second equation, Eq. (3.4), Z is a set containing all the
states, and t is the time variable as moving through the observations.

V0,k = bk (x0) · πk (3.3)
Vt,k = bk (xt) ·MAXz∈Z(az,k · Vt−1,z) (3.4)

This then of course has to be done of all k in states.
At the end of and observation sequence the most probable state is found using Eq. (3.5).

zT = MAXz∈Z(VT,z) (3.5)

Where T is the number of measurements.
This needs to be back traced in order to give a path instead of just the most probable end

state. To do this the state z in Eq. (3.4) that yielded the highest value is saved.

Algorithm and Complexity

When written like an algorithm Eq. (3.3) becomes Algorithm 1. This algorithm’s complexity is
only dependent on Z the number of states O(Z).

for z in Z do
trellis[0][z] =πz · bz (obs[0])
path[0][z] = z

end
Algorithm 1: Eq. (3.3) written as an algorithm

Because Eq. (3.4) needs to be sweeped through the entire measurement, an extra loop running
through t is added.

for t in range(1,length(obs)-2) do
for z in Z do

for x in Z do
(newprob = trellis[t-1][x]·axz · bz (obs[t]))
if newprob > prob then

prob = newprob
state = x

end
end
trellis[t][z] =prob
path[t][z] = state

end
end

Algorithm 2: Eq. (3.4) written as an algorithm

To calculate the max probability in Eq. (3.4) a sweep through all the possible values is
done; thus complexity O(Z). Because this is inside the other two loops, the total complexity is
O(T · Z2). The last part of finding the most probable walk is done with Algorithm 3 that sim-

13

CHAPTER 3. PROPOSAL

ply back traces from the most probable end state. This functionality gives a complexity of O(Z+T).

state = max(trellis[length(obs)-1][z],z) for z in Z
walk[length(obs)] = state
for t in range(1,length(obs)-2) do

walk[length(obs)-t]=path[length(obs)-t+1][state]
state= walk[length(obs)-t]

end
return walk

Algorithm 3: The terminate phase of the Viterbi algorithm

The complexity of the total algorithm is O(T · Z2) which comes from Eq. (3.4). The variables
are the amount of states Z and the length of the observation sequence T . This makes the algorithm
very computationally heavy because the number of states are high, which makes the algorithm
very heavy for the task of finding the way through a large map. In Appendix B the calculations of
running a simple example through the Viterbi algorithm.

3.4 Reduced Complexity Viterbi (Filter Three)

It has been realized that the normal Viterbi algorithm was very computationally heavy when used
to find a path through a map. It has also been realized that many of the calculations the algorithm
has been performing where multiplication operations where at least one of the values where zero
or very close to zero. In other words, this was an obvious place for improvement.
The first part was to look at all the zeros in the mobility model and instead add a functionality
that finds all the non zero values; this function is called neighbors. The complexity of the neighbors
function has to be considered and needs to be designed differently depending on the mobility
model. The use of neighbors reduces the complexity to O(T · Z ·N) where N is the number of
states it is possible to arrive from. This means the transition matrix A can be reduced in size so
that the probability for a transition from one particular state to another state can be a 3x3 matrix
as shown in the matrix in Eq. (3.6). This optimization is at the cost of some extra calculations,
which is a trade-off between whether memory usage or runtime. This optimization is not done in
Algorithm 4 but is done in Algorithm 6.

a6,7,:,: =

0.0625 0.0625 0.0625
0.0625 0.5 0.0625
0.0625 0.0625 0.0625

 (3.6)

The second possible optimization is to make the first loop dependent on the noise. It is not
necessary to calculate the possibility for all states only the ones close to the measurement i.e. the
states where the probability in the B matrix is above 10−14. Using a variance of one gives a 15x15
matrix. Only the trellis values for this 15x15 matrix is calculated instead of the entire map. These
are all changes taking places in Algorithm 2 and is shown in Algorithm 4.

14

3.5. DIRECTIONAL VITERBI (FILTER FOUR)

for t in range(1,length(obs)-1) do
N= noise states(obs[t])
for z in N do

S = neighbors(z)
for x in S do

(newprob = trellis[t-1][x]·axz · bz (obs[t]))
if newprob > prob then

prob = newprob
state = x

end
end
trellis[t][z] = prob
path[t][z] = state

end
end

Algorithm 4: The reduced complexity Viterbi Algorithm

If these two reductions in complexity is applied in cases significantly different than this it might
increase runtime and introduce errors. Special considerations has to be placed at the functions
noise states(obs[t]) and neighbors(z) as they need to have a low complexity due to the high number
of calls.

3.5 Directional Viterbi (Filter Four)

The filtering method proposed in [RPN+08] is a particle filter with a mobility model based on
a HMM. The model is describing a pedestrian where the probability for a straight trajectory is
increased and the probability for a fluctuating trajectory is decreased.

In an attempt to improve the performance of the Viterbi algorithm, a modification is made to
account for the direction the tracked object is heading. This is done by looking at where the object
came from and update the A matrix so the probability for going further in the same direction is
higher. This means that the A matrix gains two extra dimensions.

The movement in Figure 3.1 is a −1,+1 movement.

Figure 3.1: Example of a (−1,+1) movement

A 3x3 matrix exists for all 9 possible movements. The A matrix for the case illustrated in
Figure 3.1 is shown in Eq. (3.7). The used A matrix is shifted after each step if for instance the
step is to the current cell (meaning ”not going anywhere”) the A matrix from last step is used.
The first step which is the movement case (0, 0) has an A matrix identical to the standard A
matrix from Section 3.4 Eq. (3.6).

a6,7,0,2,:,: =

0.05 0.125 0.15
0.0 0.5 0.125
0.0 0.0 0.05

 (3.7)

15

CHAPTER 3. PROPOSAL

As seen in Eq. (3.7) the possibility of the next state being backwards is illuminated. The
trajectories are not expected to be completely straight; thus the probability of making a slight
turn is set to be almost equal to going straight.

Including knowledge about the previous state increases the memory usage, which is why the
previous mentioned memory optimization from Section 3.4 is applied here as well.

The directional version of the Viterbi algorithm differs from the Viterbi algorithm. Both
the initial and the main part of the algorithm is changed. The new algorithms can be seen in
Algorithm 5 and in Algorithm 6

for y in Y do
trellis[1][y] =πy · by (obs[0])
path[1][y] = y
dir[1][y] = (2,2)

end
Algorithm 5: Modified version of Algorithm 1 to also include direction

for t in range(2,length(obs)) do
for y in Y do

S = neighbors(y)
for x in S do

dif =y+1-x
(newprob = trellis[t-1][x]·ax,dif,dir[t−1][x] · by (obs[t]))
if newprob > prob then

prob = newprob
state = x

end
end
trellis[t][y] =prob
path[t][y] = state
if path[t][y]=path[t-1][y] then

dir[t][y]=dir[t-1][y]
else

dir[t][y] = y+1-state
end

end
end

Algorithm 6: The Directional Viterbi Algorithm

The directional version of Viterbi should improve the performance when tracking objects with
a straight trajectory with minor soft turns, but the algorithm is expected however have some
problems with sharp and sudden turns.

3.6 Adaptive Viterbi (Filter Five)

An attempt to improve the algorithms ability to remove the noise is done by making a version
where the transition matrix A is adaptive. It takes basis in the directional Viterbi in Section 3.5
but with some added extra functionalities. These extra functionalities update the transition matrix
A for a given state (grid point) so it fits the statistical behaviour for the state (grid point). This
means for instance if some amount of training trajectories shows a significantly high probability
for changing course on a specific state (grid point). The A matrix is updated accordingly.

The training data for the filter will have to be contiguous in the sense that each step between
grids has be to a neighboring grid point. This requires some filtering or a composition algorithm
for the training data.

Two versions of the adaptive Viterbi algorithm is proposed: one that is self learning adaptive
where the output from the adaptive Viterbi algorithm is used to update the transition matrix A.
This functionality is shown in Figure 3.2. The self learning adaptive version uses itself to filter the
training trajectories so they are contiguous. The self learning algorithm updates sequentially with

16

3.6. ADAPTIVE VITERBI (FILTER FIVE)

the incoming positions. This means in practice that the self learning algorithm can be implemented
and update itself sequentially with filtering.

Figure 3.2: The adaptive Viterbi algorithm self updating version

The other version of the adaptive Viterbi uses some external function to connect the training
data in a trajectory and then uses the update function to update the A matrix off-line, meaning
that this, the external, version of the adaptive Viterbi algorithm updates the A matrix before
implementation. The external adaptive Viterbi is shown on Figure 3.3. When the external adaptive
Viterbi is filtering no feedback is fed to the algorithm, which means that no matter how the filtered
data acts the A matrix is not updated. However, this can be seen as an advantage due to the fact
that the self learning adaptive Viterbi potentially can be unstable.

The composition part can either be a filter that makes a trajectory and suppresses noise, or it
can be some algorithm that connects the noise in a trajectory. An investigation on whether to use
a filter or just a connector will have to be done.

Figure 3.3: The adaptive Viterbi algorithm external updating version

17

CHAPTER 3. PROPOSAL

The Directional Viterbi algorithm is identical to the previous one described in Section 3.5. The
new thing here is the update function which can be implemented by using a forgetting factor ff .
The update function takes contiguous trajectory and uses it to update the transition matrix A. In
order to update a transition matrix element like Eq. (3.8) the previous position is needed to find
the right element, and the next position is needed to know which value to increase.

Transition matrix element before update:

a6,7,0,2,:,: =

0.05 0.125 0.15
0.0 0.5 0.125
0.0 0.0 0.05

 (3.8)

Transition matrix element after update with a forgetting factor of 0.05:

a6,7,0,2,:,: =

0.0476 0.119 0.191
0.0 0.476 0.119
0.0 0.0 0.0476

 (3.9)

This can the be written as an algorithm. See Algorithm 7.

for t in range(2,length(path)-1) do
x = path[t]
y = path[t]-path[t-1]+2
z = path[t+1]-path[t]+2
axy(z) = axy(z) + ff
axy = axy

1+ff
end

Algorithm 7: The Update Function

Some consideration has to go into the ff because if it is too high, the filter will not converge
but if it is too low it will take a very long time for it to converge.

18

Chapter 4

Evaluation

In order to test the performance of the filters described in Chapter 3 either measurements or
simulations have to be preformed. A real life measurement would require a full test setup with
Access points, a user and a large room with space for all the different tests. Furthermore the test
setup would require distance measurements of the user in order of obtaining actual paths will be
needed in order to evaluate the performance of the filters. The adaptive filter also requires a large
number of training paths for it to do the self learning. To do both these tasks will be very time
consuming.

The noise characteristics in a real life measurement will depend on a number of factors like:
walls, obstacles, humidity, temperature etc. and a variety of different factors depending on which
method the positions are obtained with (e.g. RSS, TOA and TDoA). The advantage of a real life
measurement is at the same time the drawback for the measurements. Results from a real life
measurement would be valid and a good test for the filters, but it is only a test for the specific
noise characteristics of that setup.

Simulations, however, is a good opportunity for a controlled test with the opportunity of
changing a lot the parameters and test the filters with different noise characteristics. The actual
path and training paths are very easy to obtain.

For this project the chosen approach for testing the filters is simulation. This has been approach
chosen because of the opportunity for testing the filters with different noise characteristics and
due to fact that real life measurements are very time consuming.

4.1 Simulation Setup

When measuring performance for the filters various test scenarios are used. It is chosen that the
filters should be applicable for a pedestrian in an office environment.

Four different scenarios are chosen to evaluate the filter performance for the individual filters.
The four different scenarios are showed and explained below.

• Straight line

• 90◦ turn

• 180◦ turn on a straight line

• Soft turn(Circle)

The four scenarios are illustrated in Figure 4.1
The four different scenarios found in Figure 4.1 are chosen because they are considered the

components in a pedestrian’s walking pattern. The filters are tested with these four different
scenarios in order to investigate the differences in the filters when filtering these paths.

19

CHAPTER 4. EVALUATION

Figure 4.1: The four different scenarios. A is the straight line, B is the 90◦ turn, C
is the 180◦ turn and D is the soft turn(circle)

4.2 Pedestrian Simulation

The four test scenarios are tested individually as components in how the movement pattern for a
pedestrian looks like, but a test of a pedestrian is also needed.

The simulations of a pedestrian are done by selecting a map and divide the map in a grid of
50X50 squared cells illustrated in Figure 4.2. Each cell represent a possible position which in
this case gives 2500 different positions (except from the walls). The green lines together with the
border of the illustration are walls.

The map with all the way points

Grid numbers in X−direction

G
ri
d
 n

u
m

b
e
rs

 i
n
 Y

−
d
ir
e
c
ti
o
n

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

Figure 4.2: The map used to simulate the movement of a pedestrian. The green lines
are walls and the red squares are start positions.

To make the number of possible jumps from one cell low it is decided that the only possible
move is to stay or move to a neighboring cell.

The red squares in Figure 4.2 are the chosen way points. A pedestrian walking from one point
to another will walk the shortest path with few direction changes. The chosen trajectories for

20

4.2. PEDESTRIAN SIMULATION

the pedestrian is the shortest path between all of the red squares which gives 30 different paths.
Furthermore, four paths running from one way point through another way point and to an end
way point are added which gives a total of 34 paths.

The shortest path from all way point to all way points are found by using a path search
algorithm.

4.2.1 Path Search Algorithm
The path search algorithm has to find the shortest path between two points and do it within a
reasonable time. The Figure 4.3 shows how the map is converted to a graph which enables the use
of path search algorithms in order to find a path between two or more points on the map. The
blue dot on Figure 4.3 (a) is indicating the starting point where the grey neighboring nodes are
the possible first move from the starting point. The Green dot is the next step where all the grey
neighboring nodes are the possible second move. This is illustrated on Figure 4.3 (b) where the
blue dot is represented as a blue square at the root. The second step is the green square. Both the
green and the blue squares are connected with their neighboring nodes i.e. the possible moves
from the green and the blue node respectively.

Figure 4.3: This figure illustrates how the map is converted to a graph. (a) shows
a map where the blue dot is the root, and the green is the next root on the path.
(b) shows how the graph looks like with the blue node as the first root and then the
green as root. In (a) the grey squares are the neighboring squares to the blue root
and the green root.

It is obvious that for a 50x50 map the complete graph will become big and complicated so it is
desirable to find an algorithm that can find the shortest path without having to explore the entire
map.

Depth-First search

The depth-first algorithm starts at the root and explores the map by going as far as possible
without visiting previous visited nodes. When the algorithm has reached a dead-end it starts to
backtrack, which means going one step back and going another way; again without visiting nodes
that have already been visited. Depth-first can be used to explore an entire map, but it takes
time linear to the size of the map, and in case of a 50x50 map it will take a lot of time before
it will find the goal node. However, even after it has found the goal node there is no guarantee
that it has found the shortest path. There is now way to guarantee the shortest path when using
Depth-first[Joh].

Breadth-First search

The Breadth-first algorithm is much like the depth-first algorithm. The difference lies within the
way it explores. Breadth-first starts at the root and finds all the children for the root and then

21

CHAPTER 4. EVALUATION

explores all the grand children and so on. Breadth-first has the same exploring capabilities as
depth-first with regards to time. This means that in case of a 50x50 map it will take a lot of time
to find the goal node. The only way to be sure that we have found the shortest path is to explore
the entire map, which is very time consuming[Joh].

A?

The A? search algorithm is unlike Depth-first not just exploring a random way and unlike Breadth-
first exploring every possible route. The A? algorithm explores the most promising way first by a
heuristic evaluation function. The evaluation function is a sum of the cost from the starting node
to the current node and a distance measure from the current node to the goal node. Often the
distances are calculated using the euclidean distance or Manhattan distance. A? guaranties the
shortest path solution and because of the prioritisation done by the heuristic evaluation A? often
finds the shortest path within a reasonable amount of steps, however, the worst case performance
is not very good.[Les05]

4.2.2 Comparison
In order to compare the three algorithms the pro and cons of the different algorithms is investigated.

The Depth-first algorithm is very good in terms of best case search times. This is due to the
fact that if Depth-first finds the goal in the first path (meaning no backtracking) it will go very
fast also in the case of worse case it will only have to visit the every node once. Depth-first is very
computationally easy and does not require a lot of calculations which effects the search time even
in the case of some very long detours and backtracking. One of the biggest problems are that
there is no guaranties for the shortest path or a very logical path. Actually, a dept-first is excellent
for generating mazes if set to explore the entire map.

The Breadth-first algorithm will in have to explore the entire map if it is to guarantee the
shortest path when operating with different edge values, this makes it very computational heavy
for a big map. If operating without edge values, best case is when the goal is reached. Worst case
is always exploring the entire map.

The A? algorithm is more complicated than the other algorithms because it requires a heuristic
function. Nonetheless, the best case will have a high search time because the algorithm will still
have to calculate the heuristic function for each step which will take some time. The worst case
search time is very high because of the calculations done by the heuristic function and the fact that
the worst case would be exploring the entire map. Unlike the other algorithms they will often end
up close to the best case depending on the map if the map is a maze A? will preform very bad, but
for a map with a low number of obstacles it will preform very well. One of the biggest advantages
of this algorithm is its guarantee to find the shortest path and good scaling for big maps.

Based on the above mentioned comparison A? is chosen because it can guarantee the shortest
path plus it will work well for a map containing obstacles.

The A? algorithm is described and implementation is explained in Appendix A. On Figure 4.4
a path found by the A? algorithm is illustrated.

The path found by A? does not have any fluctuation in the velocity. A? finds the shortest path
which means that no cell is visited more then once. By introducing a function which runs through
each step in the path and with a probability of 0.5 inserts a step to the same cell, the velocity is
changed. This gives the probability for staying in the same cell of 0.5.

4.3 Noise Parameter

The input noise characteristics for a positioning system depends on various factors like the
technology, the method and other factors like humidity and temperature.[GG05] If for instance
the method is RSS the mean and variance of the noise would depend on where the actual position
is due to walls, furniture and other things that can obstruct LOS or give reflections. With another
method like TOA the noise mean and variance can vary due to timing issues like if the transmitter
and the receiver are asynchronous in time and if the transmit time or receive time takes longer

22

4.3. NOISE PARAMETER

Map with the all the paths starting from one way point

Grid numbers in X−direction

G
ri
d
 n

u
m

b
e
rs

 i
n
 Y

−
d
ir
e
c
ti
o
n

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

Figure 4.4: This figure shows the all the paths starting from one way point. Note
that there are six different paths where one of them are hidden behind another (from
the start to the upper right corner)

then anticipated. Not only the method can introduce deviation in the noise mean and variance,
but also the technology can introduce some parameters for the noise like if the technology is used
for other applications and other factors like the antenna and amplifier. If the noise model has to
account for all these factors the model will become very complicated, and it would be very hard to
compare results. Therefore it is chosen to model the noise as a normal distributed random variable
which also is proposed in [PAK+05]. The noise is chosen to be additive because additive noise has
the highest significance as stated in [PAK+05].

After noise has been added the positions from the positioning system (see Section 2.1.1,
Figure 2.1) becomes observable for the filtering part. The observable sequence is illustrated in
Figure 4.5 as X(n)

Figure 4.5: Block diagram for the simulation model. The observable sequence X(n)
and the non-observable sequence which is the actual positions Y (n) (walk). The noise
is denoted W (n)

The observable sequence X(n) is given by

X(n) = Y (n) +W (n) n = 1, 2 . . . (4.1)

Where the noise W (n) is a normal distributed random variable given by the probability density
function

f(x) = 1√
2πσ2

e−
(x−µ)2

2σ2 (4.2)

W (n) is denoted

W ∼ N
(
µ, σ2) (4.3)

23

CHAPTER 4. EVALUATION

Where the mean is µ and the variance is σ2.
The map is a 50x50 square map, and the possible jumps are limited to the neighboring squares,

which makes the channel model reasonable to simulate using a normal distribution with mean
µ = 0 and variance σ2 = 1. The mean is assumed always to be µ = 0, but the variance can deviate
which makes it a parameter that will have to be investigated.

A walk with and without noise is illustrated in Figure 4.6. The red line is the walk with noise
mean µ = 0 and variance σ2 = 1. The green line is the same as the red line expect for the variance
of the noise which is σ2 = 2. The blue line is the without any noise.

5 10 15 20 25 30 35 40 45
−5

0

5

10

15

20

25

30

35

40

45

Figure 4.6: A walk with and without noise. The blue line is the without noise. The
red line is the walk with noise where mean µ = 0 and the variance σ2 = 1. The green
line is the walk with noise where mean µ = 0 and the variance σ2 = 2

24

4.3. NOISE PARAMETER

The distance at each step is calculated from the noise to the actual walk in Figure 4.7. The
green lines with green circle end markers are the euclidean distance for each step from the noise
with variance σ2 = 2 to the actual walk. The red lines with red squared end markers are the
distance for each step from the noise with the variance σ2 = 1 to the actual walk.

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

7

Figure 4.7: The distance from the actual walk to the noise at each step. The green
lines with green circle end markers are the distance to the noise with variance σ2 = 2
and the red lines with red squared end markers are the distance to the actual walk
from the noise with variance σ2 = 1

25

Chapter 5

Results

In this chapter all the results from the different tests are presented. The tests can be divided into
three sections.

• Preliminary test

• Test of four different scenarios

• Pedestrian simulation

5.1 Preliminary Tests

In order to perform the larger tests some small tests has been conducted in order to find the right
settings for the bigger test.

The two filters; Viterbi (filter two) and Reduced complexity Viterbi (filter three) described in
Section 3.3 and Section 3.4 respectively is tested for run time performance and filter performance.
This is done in Section 5.1.1.

The forgetting factor of the adaptive filter is a variable that needs to be tested in the pursuit
of finding the best forgetting factor. The test is done in Section 5.1.2.

The adaptive Viterbi has two different implementation methods: the self learning adaptive
Viterbi and the external adaptive Viterbi. The test is done in Section 5.1.3.

5.1.1 Filter Time Measurements
Two versions of the Viterbi algorithm has been developed. One algorithm that calculates probabil-
ities for the entire map see Section 3.3 and one that only calculates probabilities for the part of a
selected part of the map see Section 3.4 in order to reduce complexity.

The two Viterbi algorithms where tested for one path, which for both of them gave a mean
euclidean distance to the actual path of 0.7251. The execution time was, however, very different.
For the one utilizing the entire map the run time was 2887.8 seconds and for the limited one it was
13.73 seconds. Because these two algorithms give the same results but one of them has significantly
lower runtime, it is chosen only to use the reduced complexity version in the following tests - from
here on named Viterbi.

5.1.2 Different Forgetting Factors for the Adaptive Filter
The self adaptive filter is tested with three different forgetting factors 0.01 0.005 and 0.002. A
sample of 500 walks on the same path is generated and is filtered with the different forgetting
factors, the mean error is calculated and plotted to see if an evolution in the error can be seen.

27

CHAPTER 5. RESULTS

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5
Error

walk number

M
e
a
n
 E

rr
o
r(

c
e
ll)

0 50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8

1

walk number

M
e
a
n
 E

rr
o
r(

c
e
ll)

Smoothed error

0.002 0.005 0.01 Viterbi

Figure 5.1: The evolution of the error in the self adaptive filter for different forgetting
factors.

The evolution of the error seen in Figure 5.1 is in the first subplot very hard to conclude
anything from except that it has a slight downward-slope. In order to better highlight any evolution
the data is run through a smoothing filter with a window size of 15, this filter removes some of the
samples in the beginning and in the end. In the smoothed plot the evolution is easier to see. The
downward-slope is easily seen. Especially at the start of the test with a forgetting factor of 0.01 is
used. The higher forgetting factor does not appear to converge to a higher value than the lower
forgetting factors. The number of training samples and the forgetting factor are chosen based on
the results from the test shown in Figure 5.1. Here on the forgetting factor is set to 0.005 and the
number of training samples is 200.

5.1.3 Different Composition Filter for the Adaptive Filter

In Section 3.6 it is suggested to use to different filters input filters to insure the measurements are
next to each other; one is simply just connecting the measurements to form a trajectory (simple
composition), whereas the other is Viterbi.

It is easily seen from Figure 5.2 that Viterbi is a better filter than the simple composition
filter. In order to find out how much better a hypothesis test is performed. The type of test
performed is a paired one-sided t-test. In this type of test a new variable is made, Wi =
Mean simplei −Mean viterbii Where Mean simplei is the mean error of walki when using the
simple filter for training and Mean viterbii is the mean error when using Viterbi.
Mean and standard deviation of W is calculated to:

W̄ = mean(W) = 0.1016 (5.1)
SW = std(W) = 0.0889 (5.2)

28

5.1. PRELIMINARY TESTS

0 10 20 30 40 50 60 70 80 90
0.2

0.4

0.6

0.8

1
Smoothened result

Walk number

M
e
a
n
 e

rr
o
r(

c
e
ll)

0 10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1
Mean error result for two different input filters

Walk number

M
e
a
n
 e

rr
o
r(

c
e
ll)

Figure 5.2: Input filter test. The upper graph shows the mean error for the 100 walks
for each composition filter. The red line is for Viterbi filter. The blue line is for the
simple composition filter. The lower graph is the same as the upper just smoothened
with a moving average with a window size of 5.

A hypothesis is set up where µ0 improvement.

H0 : µ(W) ≤ µ0 (5.3)
H1 : µ(W) > µ0 (5.4)

In order to test the hypothesis Eq. (5.5) and Eq. (5.6) from [Ros04] is used. Where α is the
significances level.

accept H0 if

√
n ·
(
W̄ − µ0

)
SW

≤ tα,n−1 (5.5)

reject H0 if

√
n ·
(
W̄ − µ0

)
SW

> tα,n−1 (5.6)

The improvement µ0 is swept from 0 to 0.2 with a step size of 0.01 and an improvement of 0.08 is
found with a 95% confidence interval. Here on the composition filter will be Viterbi

29

CHAPTER 5. RESULTS

5.2 Test of Four Different Scenarios

The four scenarios described in Section 4.1 is used for testing the four different filters i.e. the
moving Average, the Viterbi, the directional Viterbi and the adaptive Viterbi filter. Each test is
done once for all four filters, and the mean euclidean distance from the actual path to the filtered
path at each step is calculated and used comparison. The input data at each test is the same for
all four filters.

The Adaptive Viterbi filter is trained with 200 paths for the specific test that all are added
with noise before the test is done. The adaptive Viterbi filter is configured with a forgetting factor
of 0.005 see Section 5.1.2.

A larger version of the figures can be found in Appendix C

5.2.1 Line Test
The line test is described in Section 4.1 as scenario A. The scenario is a straight line from point
(10,25) to (40,25) and the input for the filters are the actual path added with noise and random
velocity (see Section 4.3).

10 20 30 40
22

23

24

25

26

27

28

Grid number in X−direction

G
ri
d

 n
u

m
b

e
r

in
 Y

−
d

ir
e

c
ti
o

n

Line test for the Moving Average filter

10 20 30 40
22

23

24

25

26

27

28

Grid number in X−direction

G
ri
d

 n
u

m
b

e
r

in
 Y

−
d

ir
e

c
ti
o

n
Line test for the Viterbi filter

10 20 30 40
22

23

24

25

26

27

28

Grid number in X−direction

G
ri
d

 n
u

m
b

e
r

in
 Y

−
d

ir
e

c
ti
o

n

Line test for the Directional Viterbi filter

10 20 30 40
22

23

24

25

26

27

28

Grid number in X−direction

G
ri
d

 n
u

m
b

e
r

in
 Y

−
d

ir
e

c
ti
o

n

Line test for the Adaptive Viterbi filter

Figure 5.3: The line test for the four filters. The red line indicates the actual path.
The Green indicates the path added with noise which is the input for the filters. The
Blue line is the output from the different filters

On Figure 5.3 the top left plot shows the results from the Moving Average filter. The output

30

5.2. TEST OF FOUR DIFFERENT SCENARIOS

from the Moving Average filter is shown as the blue line. The green line is the actual walk added
with noise, and the red line is the actual path. Figure 5.3 shows a small deviation in the Y-direction
for the Moving Average filter, this means the Moving Average filters look to perform quite well for
a straight line. However, the error in the X-direction (the velocity) is not displayed in Figure 5.3,
but the error can be seen in Figure 5.4 where the Moving Average does not appear to perform that
well compared to the other filters. The mean error for the Moving Average in the line test is 0.928.

The Viterbi filter results for the line test are shown on Figure 5.3. Compared with results from
the Moving Average filter next to it, the Viterbi filter seems to perform worse, but according to
Figure 5.4 this is not the case. The Viterbi filter has a mean error for the line test of 0.643.

The directional Viterbi filter results for the line test is also shown in Figure 5.3 this time
in the bottom left corner. The directional Viterbi performs remarkable better than the Moving
Average and Viterbi filter. The modification done for the directional Viterbi filter compared with
the standard Viterbi proves to increase the performance for the line test. The error for the di-
rectional Viterbi can be found in Figure 5.4. The mean error for the directional Viterbi filter is 0.614.

The line test for the Adaptive Viterbi filter is performed with the external adaptive Viterbi
filter trained with 200 walks before the test and with a forgetting factor of 0.005. The results are
shown in Figure 5.3 and are very similar to the results from Viterbi and directional Viterbi show
in the same figure. The mean error for the adaptive Viterbi filter in the line test is 0.651. The fact
that the adaptive Viterbi performs worse than both Viterbi and directional Viterbi can be a result
of the high fluctuation in the mean error for the adaptive Viterbi shown in Figure 5.1, a test with
more sample is performed in Section 5.3.

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

Sample number

D
is

ta
n
c
e
 f
ro

m
 a

c
tu

a
l
p
a
th

Adaptive Viterbi (Red) mean = 0.65089 and directional Viterbi (Black) mean = 0.61428

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

Sample number

D
is

ta
n
c
e
 f
ro

m
 a

c
tu

a
l
p
a
th

Moving average (Blue) mean = 0.92778 and Viterbi (Green) mean = 0.64285

Figure 5.4: The error in the line test. The upper graph shows the error for the
Moving Average (blue), and the green lines are the error for the Viterbi filter. The
bottom graph shows the directional Viterbi filter (Black) and the adaptive Viterbi
(Red)

The Moving Average filter has the worst performance which was expected. The Moving Average

31

CHAPTER 5. RESULTS

filter does not use any information about mobility of the object. The directional Viterbi has the
best performance in line test. This proves a better performance when the correct mobility model
is used to filter the incoming positions. The adaptive Viterbi was excepted to perform close to
the directional Viterbi. However, this was not the case. It actually performed worse than Viterbi,
which was very surprising. The standard Viterbi is only using the information that the object
only moves to the neighboring cells or stays in the same cell with equal probability. The adaptive
Viterbi should have learned the very straight movement pattern and performed better than the
standard Viterbi. The most probable explanation for this is the high fluctuation in the mean error
for the adaptive filter.

5.2.2 90◦ Turn Test
The 90◦ turn test is described in Section 4.1 as scenario B. The test is conducted by connecting two
straight lines from (40,25) to (40,40) and from (40,40) to (25,40). As in the line test the external
adaptive Viterbi filter is trained with 200 walks added with noise and the filter’s forgetting factor
is set to 0.005.

20 25 30 35 40 45
20

25

30

35

40

45

Grid number in X−direction

G
ri
d
 n

u
m

b
e
r

in
 Y

−
d
ir
e
c
ti
o
n

Ninety degree test for the Moving Average filter

20 25 30 35 40 45
20

25

30

35

40

45

Grid number in X−direction

G
ri
d
 n

u
m

b
e
r

in
 Y

−
d
ir
e
c
ti
o
n

Ninety degree test for the Viterbi filter

20 25 30 35 40 45
20

25

30

35

40

45

Grid number in X−direction

G
ri
d
 n

u
m

b
e
r

in
 Y

−
d
ir
e
c
ti
o
n

Ninety degree test for the Directional Viterbi filter

20 25 30 35 40 45
20

25

30

35

40

45

Grid number in X−direction

G
ri
d
 n

u
m

b
e
r

in
 Y

−
d
ir
e
c
ti
o
n

Ninety degree test for the Adaptive Viterbi filter

Figure 5.5: The ninety degree turn test for the four filters. The red line is the actual
path. The Green is the walk added with noise which is the input for the filters. The
Blue line is the output from the different filters

The 90◦ turn test results for the Moving Average filter is shown in Figure 5.5 in the top left
corner. The results found in Figure 5.5 seems good compared with the other three filters, but as
shown in Figure 5.6 the error for the Moving Average is relatively high. The Moving Average filter
performs well according to Figure 5.5 because the noise is centered around the actual path, but

32

5.2. TEST OF FOUR DIFFERENT SCENARIOS

as Figure 5.6 states, the error in the velocity is relatively high. The mean error for the Moving
Average filter in the 90◦ test is 1.

The Viterbi filter results for the 90◦ turn test are shown in Figure 5.5. The results show some
deviation from the actual path where the noise diverge from the actual path. The error seen on
Figure 5.6 is a little lower than the Moving Average. It can be seen that in the 90◦ both the
Moving Average and the Viterbi filter are not performing very well. The mean error for the Viterbi
filter in the 90◦ is 0.775.

The results for the directional Viterbi in the 90◦ turn test are shown in Figure 5.5 lower left
corner. The results looks like the results from the standard Viterbi filter. The directional Viterbi
is more willing to go in a straight line which is the difference for the two filters both in results and
implementation. Looking at sample number 20 - 25 on Figure 5.6 it is easily seen where the 90◦
turn is. The directional Viterbi filter is not performing very well in this 90◦ turn. The mean error
for the directional Viterbi filter in the 90◦ test is 0.689.

The results for the adaptive Viterbi filter for the 90◦ turn test is shown in Figure 5.5. The
results are very similar with those from the directional Viterbi which probably is because of the
resemblance of the two filters when filtering a straight line. The 90◦ turn test is basically two
straight lines. The adaptive Viterbi filter was expected to perform better in the turn, but both
Figure 5.5 and Figure 5.6 shows no significant performance improvement compared with both
Viterbi and the directional Viterbi. The mean error for the adaptive Viterbi filter in the 90◦ turn
test is 0.645.

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

Sample number

D
is

ta
n
c
e
 f
ro

m
 a

c
tu

a
l
p
a
th

Adaptive Viterbi (Red) mean = 0.64496 and directional Viterbi (Black) mean =0.68893

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

Sample number

D
is

ta
n
c
e
 f
ro

m
 a

c
tu

a
l
p
a
th

Moving average (Blue) mean =1.0006 and Viterbi (Green) mean = 0.77536

Figure 5.6: The error for the four filters in the 90◦ turn test. The upper graph
shows the Moving Average (blue) and the Viterbi (green). The lower graph shows
the directional Viterbi (black) and the adaptive Viterbi (red). In both graphs the
90◦ turn is at sample number 20 - 25.

On Figure 5.6 the error for all four filters are shown. The Moving Average filter is the worst

33

CHAPTER 5. RESULTS

with a mean of 1 where Viterbi has 0.776, directional Viterbi has 0.689 and the adaptive Viterbi
has 0.645. directional Viterbi and adaptive Viterbi is performing equally in the turn (sample
number 20-25) which means that for this specific example no major improvements have been
obtained using the adaptive Viterbi over the directional. The difference in the two mean values is
probably due to fluctuations in the error measurements like seen in Figure 5.1.

5.2.3 180◦ Turn Test

The 180◦ turn test is described in Section 4.1 as scenario C. The test is conducted by combining
two straight lines from (10,20) to (40,20) and from (40,20) to (10,20).

The adaptive filter is trained by 200 walks added with noise and configured with a forgetting
factor of 0.005

10 20 30 40
15

20

25

Grid number in X−direction

G
ri
d
 n

u
m

b
e
r

in
 Y

−
d
ir
e
c
ti
o
n

180 degree test for the Moving Average filter

10 20 30 40
15

20

25

Grid number in X−direction

G
ri
d
 n

u
m

b
e
r

in
 Y

−
d
ir
e
c
ti
o
n

180 degree test for the Viterbi filter

10 20 30 40
15

20

25

Grid number in X−direction

G
ri
d
 n

u
m

b
e
r

in
 Y

−
d
ir
e
c
ti
o
n

180 degree test for the Directional Viterbi filter

10 20 30 40
15

20

25

Grid number in X−direction

G
ri
d
 n

u
m

b
e
r

in
 Y

−
d
ir
e
c
ti
o
n

180 degree test for the Adaptive Viterbi filter

Figure 5.7: The 180◦ turn test for the four filters. The red line are the actual path.
The Green are the walk added with noise which is the input for the filters. The Blue
line is the output from the diffrent filters

The Moving Average filter results from the 180◦ turn test is shown in Figure 5.7. Judged from
Figure 5.7 the Moving Average filter performs very well compared to Viterbi, directional Viterbi
and adaptive Viterbi, but according to Figure 5.8 the Moving Average is not very good. The mean
error for the Moving Average filter in the 180◦ turn test is 0.99.

The Viterbi filter results are shown in Figure 5.7. The Viterbi filter performs better than the
Moving Average filter. The turn can be seen in Figure 5.8 in sample number 60-70. The Viterbi

34

5.2. TEST OF FOUR DIFFERENT SCENARIOS

filter does not perform particular different when turning 180◦. The mean error for the Viterbi
filter in the 180◦ turn test is 0.7.

The directional Viterbi filter for the 180◦ turn test results are found on Figure 5.7 in the
bottom left. The directional Viterbi filter performs slightly better than the standard Viterbi filter
with a mean error of 0.683 which is approximately 0.017 better. Such a small difference might just
be a result of the fluctuation in error measurements.

The adaptive filter results are shown in Figure 5.7. The results are significantly better than
for all the other filters. In Figure 5.8 the adaptive Viterbi filter is compared with the directional
Viterbi. The figure states a clear improvement for the adaptive Viterbi filter. The mean error for
the adaptive Viterbi filter in the 180◦ turn test is 0.584.

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

Sample number

D
is

ta
n
c
e
 f
ro

m
 a

c
tu

a
l
p
a
th

Adaptive Viterbi (red) mean = 0.58361 and directional Viterbi (green) mean = 0.68396

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

Sample number

D
is

ta
n
c
e
 f
ro

m
 a

c
tu

a
l
p
a
th

Moving average (Blue) mean = 0.99023 and Viterbi (green) mean = 0.69982

Figure 5.8: The error for the four filters in the 180◦ turn test. The upper graph
shows the Moving Average (blue) and the Viterbi (green). The lower graph shows
the directional Viterbi (black) and the adaptive Viterbi (red). On both graphs the
180◦ turn is at sample number 65 - 75.

The error for the four filters in the 180◦ turn test is shown on Figure 5.8. The 180◦ turn is
located at sample number 65 - 75. The adaptive Viterbi is performing slightly better than the
other filters in the turn. The adaptive Viterbi performance is significantly better than the other
filters, but like the other test this might just be a result of fluctuation.

5.2.4 Soft Turn Test
The soft turn test is described in Section 4.1 as scenario D. The test is conducted using a circle
divided in cells. Like the other tests the adaptive filter is trained using 200 walks and configured
with a forgetting factor of 0.005.

The Moving Average filter results can be seen in Figure 5.9. The result seems good, and it
looks like the Moving Average filter is working very well for a soft turn. However, looking at
Figure 5.10 it becomes clear that the filter has a high number of errors. The mean error for the
Moving Average filter in the soft turn test is 0.917.

35

CHAPTER 5. RESULTS

10 15 20 25 30 35 40
10

15

20

25

30

35

40

Grid number in X−direction

G
ri
d

 n
u

m
b

e
r

in
 Y

−
d

ir
e

c
ti
o

n
Arc test for the Moving Average filter

10 15 20 25 30 35 40
10

15

20

25

30

35

40

Grid number in X−direction

G
ri
d

 n
u

m
b

e
r

in
 Y

−
d

ir
e

c
ti
o

n

Arc test for the Viterbi filter

10 15 20 25 30 35 40
10

15

20

25

30

35

40

Grid number in X−direction

G
ri
d

 n
u

m
b

e
r

in
 Y

−
d

ir
e

c
ti
o

n

Arc test for the Directional Viterbi filter

10 15 20 25 30 35 40
10

15

20

25

30

35

40

Grid number in X−direction

G
ri
d

 n
u

m
b

e
r

in
 Y

−
d

ir
e

c
ti
o

n

Arc test for the Adaptive Viterbi filter

Figure 5.9: The soft turn test for the four filters. The red line is the actual path.
The green line is the walk added with noise which is the input for the filters. The
Blue line is the output from the different filters

The results from the Viterbi filter in the soft turn test is shown in Figure 5.9 upper right corner.
The results seems very good which also is the case for Figure 5.10. The mean error for the Viterbi
filter in the soft turn test is 0.598, which is very low.

The directional Viterbi filter result for the soft turn test can be found in Figure 5.9 lower left
corner. The directional Viterbi filter is not performing that good, it is clear that the filter in this
test seems to be going a little to much straight which is why it performs worse than the standard
Viterbi and the adaptive Viterbi filter. The mean error for the directional Viterbi filter in the soft
turn test is 0.623.

The results for the adaptive Viterbi filter can be found in Figure 5.9. The adaptive Viterbi
filter is the best filter for the soft turn test which can be seen in Figure 5.10. The mean error for
the adaptive Viterbi in the soft turn test is 0.589.

36

5.2. TEST OF FOUR DIFFERENT SCENARIOS

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5

2

2.5

Sample number

D
is

ta
n

c
e

 f
ro

m
 a

c
tu

a
l
p

a
th

Adaptive Viterbi (red) mean = 0.58915 and directional Viterbi (green) mean = 0.62256

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5

2

2.5

Sample number

D
is

ta
n

c
e

 f
ro

m
 a

c
tu

a
l
p

a
th

Moving average (Blue) mean = 0.91693 and Viterbi (green) mean = 0.59813

Figure 5.10: The error for the filters in the soft turn test. The upper graph shows
the Moving Average (blue) and the Viterbi (green). The lower graph shows the
directional Viterbi (black) and the adaptive Viterbi (red)

On Figure 5.10 the error for all the filters can be found. The worst performance is by the
Moving Average which has some outliers compared with the other filters. The directional Viterbi
has the second worst performance which makes sense due to the fact that the directional Viterbi
filter is optimized to perform better in a straight line. The adaptive Viterbi and the standard
Viterbi is performing close to equally.

It is hard to conclude munch from these test as only one walk is used in this test, but the
expected problems for the directional viterbi to turn appears to be correct. In order to test the
performance of the different filters more walks needs to be run though.

37

CHAPTER 5. RESULTS

5.3 Final test

A final test of the filters on all the 34 paths from Section 4.2 is performed. The four filters chosen
for this test is the moving average, Viterbi , directional Viterbi and external adaptive Viterbi. The
reason the self adaptive Viterbi is left out is because it has to sweep though a big amount of data
for training, whereas the external adaptive Viterbi can be trained significantly faster due to the
lower complexity of normal Viterbi.

The test is set up by running 10 walks of every path though all four filters, the external adaptive
filter is trained with 300 samples first, a forgetting factor of 0.005 is used. Two parameters are
saved for further analysis; the filtered walk and position the filter deems most likely for every
observation. This will be referred to as off-line and on-line test parameters.

5.3.1 Preliminary Results
The mean error is calculated for all four filters, and both test parameters

Filter Error off-line Error on-line
Moving average 1.12 1.12
Viterbi 0.67 1.13
Directive Viterbi 0.67 0.99
Adaptive Viterbi 0.56 0.78

Table 5.1: Mean Errors for the different filters

The mean error for both parameters is the same for the moving average filter because it does
not use any information about the following measurements. It was expected that the Viterbi was
significantly worse in the case of the on-line parameter because it has difficulties with the ends of
the walks. Also the filters as expected preform better off-line that on-line due to more information
being available.

5.3.2 Hypothesis Testing
The mean errors is a good preliminary result but able to say something about the actual difference
in performance between two filters a hypothesis tests is performed. The type of hypothesis test
used is the paired one-sided t-test. A new variable W is created this is difference in mean error of
the two filters Xi − Yi = Wi where Xi is the means error of the i’th walk of one filter and Xi is
the other. The W variable is then tested for mean. Because a positive performance is expected
the variable µ0 that represent the improvement is introduced and swept from 0 to 0.8 with a step
size of 0.01, and α the significance level set to 95%.

H0 : µ(W) ≤ µ0 (5.7)
H1 : µ(W) > µ0 (5.8)

In order to test the hypothesis Eq. (5.9) and Eq. (5.10) from [Ros04] is used.

accept H0 if

√
n · (W − µ0)

sW
≤ tα,n−1 (5.9)

reject H0 if

√
n · (W − µ0)

sW
> tα,n−1 (5.10)

n is the number of samples and sW is the sample standard deviation.
The performance off-line of the filters is tested against each other.

38

5.3. FINAL TEST

Filter Viterbi Directive Viterbi Adaptive Viterbi
Moving average 0.43 0.43 0.54
Viterbi - - 0.09
Directive Viterbi - - 0.10

Table 5.2: The improvementµ0 where the hypothesis is still accepted

Filter Viterbi Directive Viterbi Adaptive Viterbi
Moving average - 0.12 0.32
Viterbi - 0.13 0.33
Directive Viterbi - - 0.19

Table 5.3: The improvementµ0 where the hypothesis is still accepted

The performance on-line of the filters is tested against each other.
The Adaptive filter is the best in all cases especially in the on-line case it preforms significantly

better. An improvement over directional Viterbi of 15% for the off-line case and 19% for the
on-line case is found.

39

CHAPTER 5. RESULTS

5.4 Noise test

Furthermore a test on the self adaptive filters is performed in which different variance in the noise
is used see Figure 5.11. In order to see if variance has any influence on the evolution of the error.
Because of the filter uses feedback it might become unstable with high levels of noise, a forgetting
factor of 0.005 is used.

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3
Error

Walk number

M
e
a
n
 E

rr
o
r(

c
e
ll)

0 50 100 150 200 250 300 350 400 450
0

0.5

1

1.5

2

2.5

Walk number

M
e
a
n
 E

rr
o
r(

c
e
ll)

Smoothed error

σ=1 σ=2 σ=4

Figure 5.11: The evolution of the error in the self adaptive filter for different variances.

For σ = 1 and σ = 4 there appears to be a drop in the start but not for σ = 2 which is a bit
odd and might require further investigation. This indicates that more functionalities than a simple
feedback loop is present.

40

Chapter 6

Closure

6.1 Conclusion

The main purpose of this project was to investigate how filtering or smoothing of position mea-
surements can improved the accuracy of the positions, by using knowledge about the mobility of
the user and through the use of a self-learning geographical dependent mobility model.

Through the proposal, different filters have been proposed to reduce noisy position measure-
ments. A Moving Average filter was proposed as a simple way of smoothing noisy position
measurements. Then the use of HMMs to model the behavior of a user. This lead to using
knowledge about the mobility of a pedestrian which changed the model to enhance straight
trajectories. Finally this lead to changing the mobility model so that it adapts to different user
behavior geographically. This means that the last proposed model was able to learn a user behavior
by using training data. All the filters, except the Moving Average, used Viterbi to find the most
probable path.

All the filters was tested on four simple scenarios which was believed to be the components in
a pedestrians trajectory. The simulations was done by taking the actual paths and add them with
Gaussian noise. The results from the test showed the Adaptive Viterbi filter performed best in all
test except for one test which was a straight line test where the Directional Viterbi performed best.

The filters was also tested in a simulation of a pedestrian where a path search algorithm was
used to generate actual paths which then was added with noise. The test had 34 different paths
which all was filtered 10 times. The adaptive Viterbi filter was trained with 300 measurements
for each 34 paths. The mean error (euclidean distance to the actual path at each step) for each
filter was found for both the one step (on-line) and in the finished path (off-line). The mean error
is calculated for all filters and shown in Table 6.1, this shows an improvement for the adaptive
Viterbi filter.

Filter Error off-line Error on-line
Moving average 1.12 1.12
Viterbi 0.67 1.13
Directive Viterbi 0.67 0.99
Adaptive Viterbi 0.56 0.78

Table 6.1: Mean Errors for the different filters in the pedestrian test

41

CHAPTER 6. CLOSURE

Based on the results from the pedestrian simulation a paired one-sided t-test of means was
carried out to test all the filters against each other. The test shows an improvement of 0.1 for the
adaptive Viterbi over the directional Viterbi in the off-line test. The result from the on-line test
was 0.19, which corresponds to an improvement of for the off-line test of 15% and for the on-line
test 19%.

The last test done was a noise test different variance levels in the noise was tested with the
adaptive Viterbi filter. The test was done to investigate if the filter would become unstable if the
variance of the noise increases. The test did not reveal any significant signs of instability. However,
the test revealed some odd drops in the mean error which for the future should be investigated.

6.2 Future Work

There is still some work to be done before a actual implementation is ready, a further investigation
with different standard deviations and the effects on the performances of the filters is needed.
The odd results found in Section 5.4 indicates that there might be a problem which will have to
investigated further.

The two versions of the adaptive Viterbi filter, the external updating adaptive Viterbi and the
self updating adaptive Viterbi, has not been test thoroughly to see which one of them performs
the best in all situations. This will have to be investigated further.

An other topic that has to be further investigated is runtime optimization of the adaptive filter.
It should be possible to use the same technique as for Viterbi to remove the last dependency of
the complexity on the map size, it is only an implementation problem.

Also since most positioning system uses a particle filter and the fact that a version of the
particle filter that uses a directional model already has been made [RPN+08] a version using a
geographical adaptive mobility model would be a good next logical step.

42

Appendix A

A?

In order of finding the shortest path from a node A to goal node B, an algorithm called A? can be
used. A? is a ”best-first” search algorithm which utilizes the relative distance to find the shortest
path. The ”best-first” search rely on a sum of the relative distance and the cost of taking the
current route from the start node to the current node. The distance from the current node to the
goal node is calculated by some distance measure for example Manhattan distance or euclidean
distance [Les05]. The cost of taking the current route is denoted g (x) and the distance to the goal
node is denoted h (x). The distance plus cost sum is denoted f (x) = g (x) + h (x).

A.1 The process

The flowchart on Figure A.1 illustrates how the A? algorithm works. The algorithm starts by
setting some initial values for closedset, openset, came from, g (x), h (x) and f (x). The values
can be seen in Figure A.1

closedset is the nodes that has been visited.
openset is the nodes a possible path has been found to but has yet visited.

Where as: g (x), h (x) and f (x) is values calculated for every node in openset, and came from
is set in all to previous node in all openset nodes. The Function neighbors return the neighbors of
the node it is called with.

43

APPENDIX A. A?

Figure A.1: Flowchart for the A? algorithm

44

Appendix B

Viterbi

In order to do the filtering of the HMM’s the viterbi algorithm is used, a simple introduction to
the functionality of the viterbi algorithm is provided in this appendix.

B.1 Hidden Markov Models

A HMM is a Markov model where it is impossible to observe the state of the Markov model directly
instead it is possible to observe a set of emissions from the HMM, in many system the states of the
Markov model and the emissions is the same, especially in communication systems, this makes a
bad example because both internal states and emissions have the same name but is not the same.
Instead an example with to internal states rainy and sunny, in order to tell the weather and 3
emissions states run, swim, gym. This HMM is show i Figure B.1
The different statesSi and emissionsEj

• State 1 sunny

• State 2 rainy

• Emission 1 run

• Emission 2 swim

• Emission 3 gym

In this example the following start probability’s πi is used.

• Start Sunny π1 = 0.6

• Start Rainy π2 = 0.4

The used state transition probabilities aij is

• Sunny to rainy a12 = 0.3

• Sunny to sunny a11 = 0.7

• Rainy to rainy a22 = 0.6

• Rainy to sunny a21 = 0.4

45

APPENDIX B. VITERBI

Also emission probability’s bj (k) is needed in order to have a HMM

• Sunny gives Run b1 (1) = 0.6

• Sunny gives Swim b1 (2) = 0.3

• Sunny gives Gym b1 (3) = 0.1

• Rainy gives Run b2 (1) = 0.1

• Rainy gives Swim b2 (2) = 0.4

• Rainy gives Gym b2 (3) = 0.5

Figure B.1: Example of a Hidden Markov Model

The output from this HMM could be (run,gym,swim) all of the different combination of sunny
and rainy can give this output but some is more likely that others.

B.2 Viterbi

When the output of a HMM is used to determine the states of the Markov model the Viterbi
algorithm is used. In order to do this the viterbi algorithm generates something called the viterbi
trellis.
In this example calculation of the viterbi trellis if the output from the HMM is Run, Swim, Gym,
Run E1 = 1 E2 = 2 E3 = 3 E4 = 1.

The first emission is run or emission 1 to calculated the probability of being in the different
states this is calculated from πi and bj (k). In the first case i and j is the same number.

State 1:

P (S1 = 1|E1) = π1 · b1 (1) (B.1)
= 0.6 · 0.6 = 0.36 (B.2)

State 2:

P (S1 = 2|E1) = π2 · b2 (1) (B.3)
= 0.4 · 0.1 = 0.04 (B.4)

46

B.2. VITERBI

Figure B.2: First step of the viterbi algorithm trellis

The first step of the viterbi trellis is illistrated in Figure B.2.
The Emission in the second step is Swim E2 = 2. Since the probabilities now shift to being the

dependent on the previous state, the transition probabilities aij is now used. Since only the most
probable path is interesting the maximum of P (S1 = i, S2 = j|E1, E2) needs to be found. This
can require many calculations depending on the amount of states.

State 1:

P (S1 = 1, S2 = 1|E1, E2) = P (S1 = 1|E1) · a11 · b1 (2) (B.5)
= 0.36 · 0.7 · 0.3 = 0.0756 (B.6)

P (S1 = 2, S2 = 1|E1, E2) = P (S1 = 2|E1) · a21 · b1 (2) (B.7)
= 0.04 · 0.4 · 0.3 = 0.0048 (B.8)

State 2:

P (S1 = 1, S2 = 2|E1, E2) = P (S1 = 1|E1) · a12 · b2 (2) (B.9)
= 0.36 · 0.3 · 0.4 = 0.0432 (B.10)

P (S1 = 2, S2 = 2|E1, E2) = P (S1 = 2|E1) · a22 · b2 (2) (B.11)
= 0.04 · 0.6 · 0.4 = 0.0096 (B.12)

In the next state the previous states probabilities is needed so the maximums for each state is
saved with the information for where they came from see Figure B.3.

47

APPENDIX B. VITERBI

Figure B.3: Second step of the viterbi algorithm trellis

In the third step the procedure from the second step is repeated.
State 1:

P (S2 = 1, S3 = 1|E1, E2, E3) = P (S1 = 1, S2 = 1|E1, E2) · a11 · b1 (3) (B.13)
= 0.0756 · 0.7 · 0.1 = 0.005292 (B.14)

P (S2 = 2, S3 = 1|E1, E2, E3) = P (S1 = 1, S2 = 2|E1, E2) · a21 · b1 (3) (B.15)
= 0.0432 · 0.4 · 0.1 = 0.001728 (B.16)

State 2:

P (S2 = 1, S3 = 2|E1, E2, E3) = P (S1 = 1, S2 = 1|E1, E2) · a12 · b2 (3) (B.17)
= 0.0756 · 0.3 · 0.5 = 0.0756 (B.18)

P (S2 = 2, S3 = 2|E1, E2, E3) = P (S1 = 1, S2 = 2|E1, E2) · a22 · b2 (3) (B.19)
= 0.0432 · 0.6 · 0.5 = 0.001728 (B.20)

The trellis is updated with the third step, see Figure B.4.

Figure B.4: third step of the viterbi algorithm trellis

In the fourth step only the same procedure is used and the resulting trellis is seen in Figure B.5

48

B.2. VITERBI

Figure B.5: Example of viterbi algorithm trellis

When the end of the viterbi trellis has been reached the node with the highest value is chosen
and used to find the most likely path. This would give the result sunny, rainy, rainy, sunny as the
states of the HMM.

If the viterbi trellis is long the resulting numbers can become very small and this gives a
problem on many computer systems, but since it is relationship between the different probability’s
and not the value of them that is interesting this is solvable by using either logarithmic or timing all
the probability’s with the same value. The algorithm when written is basically an initialize-phase,
a main-phase, and a terminate-phase.

B.2.1 Initialize Phase

The initialize phase calculates the probability of being in the different states the from the first
observation using the begin probability’s and the emission probability’s see Algorithm 8, this is
also the first step in the viterbi trellis and the path.

for y in states do
trellis[1][y] =πy · by (obs[0])
path[1][y] = y

end
Algorithm 8: The initialize phase of the viterbi algorithm

B.2.2 Main Phase

The main phase consist of 2 for loop’s inside each other one that sweeps though the observations,
and an other to move though all the states. For all the states the probability of being in that
state has to be found, this is the maximum probability of all previous states timed with the
transition probability’s and the emissions probability. It is in the main-phase where the complexity
of O(T ∗ |Y |2) comes where T is the length of the observation sequence and Y is the number of
states.

for t in range(2,length(obs)) do
for y in states do

(prob,state) = max(trellis[t-1][x]·axy · by (obs[t]),x) for x in states
trellis[t][y] =prob
path[t][y] = state

end
end

Algorithm 9: The main phase of the viterbi algorithm

49

APPENDIX B. VITERBI

The maximum probability of all states is saved and so is the state that lead to this maximum
in order to be capable to backtrack the path.

B.2.3 Terminate Phase
Takes the highest end value and move backwards though the trellis in order to find the most
probably path.

state = max(trellis[length(obs)][y],y) for y in states
walk[length(obs)] = state
for t in range(1,length(obs)-1) do

walk[length(obs)-t]=path[length(obs)-t+1][state]
state= walk[length(obs)-t]

end
return walk

Algorithm 10: The terminate phase of the viterbi algorithm

The returned walk is the walk that most probable gave the sequence of observations in the case
of high noise levels it will probably not be the true path but closer to the true path than before.

50

Appendix C

Results From Four Different Scenarios test

This appendix contain the results from Section 5.2.

C.1 Line test

The line test is described in Section 4.1 as scenario A. The scenario is a straight line from point
(10,25) to (40,25) and the input for the filters are the actual path added with noise and random
velocity (see Section 4.3).

5 10 15 20 25 30 35 40 45
22

23

24

25

26

27

28

Grid number in X−direction

G
ri
d

 n
u

m
b

e
r

in
 Y

−
d

ir
e

c
ti
o

n

Line test for the Moving Average filter

Figure C.1: The line test for the Moving Average filter. The red line are the actual
path. The Green are the path added with noise which is the input for the filter. The
Blue line is the output from the Moving Average filter

51

APPENDIX C. RESULTS FROM FOUR DIFFERENT SCENARIOS TEST

5 10 15 20 25 30 35 40 45
22

23

24

25

26

27

28

Grid number in X−direction

G
ri
d

 n
u

m
b

e
r

in
 Y

−
d

ir
e

c
ti
o

n

Line test for the Viterbi filter

Figure C.2: The line test result for the Viterbi filter (blue). The green line is the
input for the filter which is the actual path (red) added with noise

5 10 15 20 25 30 35 40 45
22

23

24

25

26

27

28

Grid number in X−direction

G
ri
d

 n
u

m
b

e
r

in
 Y

−
d

ir
e

c
ti
o

n

Line test for the Directional Viterbi filter

Figure C.3: The results for the directional Viterbi filter in the line test. The green
line is the input which is the actual path (red) added with noise. The blue line is the
output for the filter

52

C.1. LINE TEST

5 10 15 20 25 30 35 40 45
22

23

24

25

26

27

28

Grid number in X−direction

G
ri
d

 n
u

m
b

e
r

in
 Y

−
d

ir
e

c
ti
o

n

Line test for adaptive Viterbi filter

Figure C.4: The results for the line test of the adaptive Viterbi. The green line is
the path added with noise (the input for the filter). The red line is the actual path.
The blue line is the output for the filter

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

Sample number

D
is

ta
n
c
e
 f
ro

m
 a

c
tu

a
l
p
a
th

Adaptive Viterbi (Red) mean = 0.65089 and directional Viterbi (Black) mean = 0.61428

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

Sample number

D
is

ta
n
c
e
 f
ro

m
 a

c
tu

a
l
p
a
th

Moving average (Blue) mean = 0.92778 and Viterbi (Green) mean = 0.64285

Figure C.5: The error in the line test. The upper graph shows the error for the
Moving Average (blue), and the green lines are the error for the Viterbi filter. The
bottom graph shows the directional Viterbi filter (Black) and the adaptive Viterbi
(Red)

53

APPENDIX C. RESULTS FROM FOUR DIFFERENT SCENARIOS TEST

C.2 90◦ Turn Test

The 90◦ turn test is described in Section 4.1 as scenario B. The test is conducted by connecting two
straight lines from (40,25) to (40,40) and from (40,40) to (25,40). As in the line test the external
adaptive Viterbi filter is trained with 200 walks added with noise and the filter’s forgetting factor
is set to 0.005.

20 25 30 35 40 45
20

25

30

35

40

45

Grid number in X−direction

G
ri
d

 n
u

m
b

e
r

in
 Y

−
d

ir
e

c
ti
o

n

Line test for Moving Average filter

Figure C.6: The results for the Moving Average filter. The green line is the actual
path (red) added with noise which is the input for the filter. The blue line is the
output for Moving Average

20 25 30 35 40 45
20

25

30

35

40

45

Grid number in X−direction

G
ri
d

 n
u

m
b

e
r

in
 Y

−
d

ir
e

c
ti
o

n

Test for the Viterbi filter

Figure C.7: The results for the Viterbi filter on the 90◦ turn test. The blue line is
the output from the filter. The red line is the actual path. The green line is the
actual path added with noise which is the input for the filter

54

C.2. 90◦ TURN TEST

20 25 30 35 40 45
20

25

30

35

40

45

Grid number in X−direction

G
ri
d

 n
u

m
b

e
r

in
 Y

−
d

ir
e

c
ti
o

n

Line test for the Directional Viterbi filter

Figure C.8: The results for the directional Viterbi filter in the 90◦. The blue line is
the output for the filter where the green line is the input which is the actual path,
the red line, added with noise

20 25 30 35 40 45
20

25

30

35

40

45

Grid number in X−direction

G
ri
d

 n
u

m
b

e
r

in
 Y

−
d

ir
e

c
ti
o

n

Test for the adaptive Viterbi filter

Figure C.9: The results from the adaptive Viterbi filter in the 90◦ turn test. The
blue line is the output from the filter. The red line is the actual path. The green line
is the actual path added with noise which is the input for the filter

55

APPENDIX C. RESULTS FROM FOUR DIFFERENT SCENARIOS TEST

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

Sample number

D
is

ta
n
c
e
 f
ro

m
 a

c
tu

a
l
p
a
th

Adaptive Viterbi (Red) mean = 0.64496 and directional Viterbi (Black) mean =0.68893

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

Sample number

D
is

ta
n
c
e
 f
ro

m
 a

c
tu

a
l
p
a
th

Moving average (Blue) mean =1.0006 and Viterbi (Green) mean = 0.77536

Figure C.10: The error for the four filters in the 90◦ turn test. The upper graph
shows the Moving Average (blue) and the Viterbi (green). The lower graph shows
the directional Viterbi (black) and the adaptive Viterbi (red). In both graphs the
90◦ turn is at sample number 20 - 25.

C.3 180◦ Turn Test

The 180◦ turn test is described in Section 4.1 as scenario C. The test is conducted by combining
two straight lines from (10,20) to (40,20) and from (40,20) to (10,20).

The adaptive filter is trained by 200 walks added with noise and configured with a forgetting
factor of 0.005

56

C.3. 180◦ TURN TEST

5 10 15 20 25 30 35 40 45
15

16

17

18

19

20

21

22

23

24

25

Grid number in X−direction

G
ri
d

 n
u

m
b

e
r

in
 Y

−
d

ir
e

c
ti
o

n

Test for the Moving Average filter

Figure C.11: The results for the Moving Average for the 180◦ turn test. The blue
line is the output from the filter. The green line is actual path added with noise
which is the input for the filter. The red line is the actual path

5 10 15 20 25 30 35 40 45
15

16

17

18

19

20

21

22

23

24

25

Grid number in X−direction

G
ri
d

 n
u

m
b

e
r

in
 Y

−
d

ir
e

c
ti
o

n

Test for the Viterbi filter

Figure C.12: The results from the Viterbi filter in the 180◦ turn test. The red line is
the actual path. The green is the actual path added with noise and the blue line is
the output from the filter

57

APPENDIX C. RESULTS FROM FOUR DIFFERENT SCENARIOS TEST

5 10 15 20 25 30 35 40 45
15

16

17

18

19

20

21

22

23

24

25

Grid number in X−direction

G
ri
d

 n
u

m
b

e
r

in
 Y

−
d

ir
e

c
ti
o

n

Test for the Directional Viterbi filter

Figure C.13: The directional Viterbi results for the 180◦ turn test. The blue line is
output from the directional Viterbi filter and the green is the input for the filter. The
green line is the actual path (red line) added with noise

5 10 15 20 25 30 35 40 45
15

16

17

18

19

20

21

22

23

24

25

Grid number in X−direction

G
ri
d

 n
u

m
b

e
r

in
 Y

−
d

ir
e

c
ti
o

n

Test for the adaptive Viterbi filter

Figure C.14: The adaptive Viterbi filter results for the 180◦ turn test. The blue line
is the output from the filter. The red line is the actual path. The green line is the
actual path added with noise which is the input for the filter

58

C.4. SOFT TURN TEST

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

Sample number

D
is

ta
n
c
e
 f
ro

m
 a

c
tu

a
l
p
a
th

Adaptive Viterbi (red) mean = 0.58361 and directional Viterbi (green) mean = 0.68396

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

Sample number

D
is

ta
n
c
e
 f
ro

m
 a

c
tu

a
l
p
a
th

Moving average (Blue) mean = 0.99023 and Viterbi (green) mean = 0.69982

Figure C.15: The error for the four filters in the 180◦ turn test. The upper graph
shows the Moving Average (blue) and the Viterbi (green). The lower graph shows
the directional Viterbi (black) and the adaptive Viterbi (red). On both graphs the
180◦ turn is at sample number 65 - 75.

C.4 Soft Turn Test

The soft turn test is described in Section 4.1 as scenario D. The test is conducted using a circle
divided in cells. Like the other tests the adaptive filter is trained using 200 walks and configured
with a forgetting factor of 0.005.

59

APPENDIX C. RESULTS FROM FOUR DIFFERENT SCENARIOS TEST

10 15 20 25 30 35 40
10

15

20

25

30

35

40

Grid number in X−direction

G
ri
d

 n
u

m
b

e
r

in
 Y

−
d

ir
e

c
ti
o

n

Test for the Moving Average filter

Figure C.16: The Moving Average filter results from the soft turn test. The blue line
is the output from the filter. The green line is the input for the filter which is the
actual path (red line) added with noise

10 15 20 25 30 35 40
10

15

20

25

30

35

40

Grid number in X−direction

G
ri
d

 n
u

m
b

e
r

in
 Y

−
d

ir
e

c
ti
o

n

Test for the Viterbi filter

Figure C.17: The Viterbi filter results for the soft turn test. The red line is the actual
path and the green is the actual path added with noise which is the input for the
filter. The blue line is the output from the filter

60

C.4. SOFT TURN TEST

10 15 20 25 30 35 40
10

15

20

25

30

35

40

Grid number in X−direction

G
ri
d

 n
u

m
b

e
r

in
 Y

−
d

ir
e

c
ti
o

n

Test for the Directional Viterbi filter

Figure C.18: The directional Viterbi filter results for the soft turn test. The green
line is the actual path added with noise. The red line is the actual path. The blue
line is the output from the filter.

10 15 20 25 30 35 40
10

15

20

25

30

35

40

Grid number in X−direction

G
ri
d

 n
u

m
b

e
r

in
 Y

−
d

ir
e

c
ti
o

n

Test for the adaptive Viterbi filter

Figure C.19: The adaptive Viterbi filter results for the soft test. The blue line is the
output from the filter. The red line is the actual path and the green line is the actual
path added with noise which is the input for the filter

61

APPENDIX C. RESULTS FROM FOUR DIFFERENT SCENARIOS TEST

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5

2

2.5

Sample number

D
is

ta
n

c
e

 f
ro

m
 a

c
tu

a
l
p

a
th

Adaptive Viterbi (red) mean = 0.58915 and directional Viterbi (green) mean = 0.62256

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5

2

2.5

Sample number

D
is

ta
n

c
e

 f
ro

m
 a

c
tu

a
l
p

a
th

Moving average (Blue) mean = 0.91693 and Viterbi (green) mean = 0.59813

Figure C.20: The error for the filters in the soft turn test. The upper graph shows
the Moving Average (blue) and the Viterbi (green). The lower graph shows the
directional Viterbi (black) and the adaptive Viterbi (red)

62

Appendix D

Abbreviations

AOA Angle Of Arrival
AP Access Point
CPS Cambridge Positioning System
GPS Global Positioning System
GSM Global System for Mobile Communication
HMM Hidden Markov Model
LORAN LOng RAnge Navigation
LOS Line Of Sight
MD Mobile Device
PLT Intel Precision Location Technology
RFID Radio Frequency IDentification
RSS Radio Signal Strength
TDoA Time Difference of Arrival
TOA Time Of Arrival
Wi-Fi Wireless Fidelity

63

Bibliography

[GB00] Walter R. Gilks and Carlo Berzuini. Article - Following a moving target - Monto carlo
inference for dynamic Bayesian models. 2000.

[GG05] Fredrik Gustafsson and Fredrik Gunnarsson. Mobile Positioning Using Wireless
Networks - Possibilities and fundamental limitations based on available wireless network
measurements. 2005.

[Hoo11] Andreas Van Hooijdonk. Many positioning systems exist, 2011. http://www.
gps-practice-and-fun.com/positioning-systems.html.

[JM00] Daniel Jurafsky and James H. Martin. Speech and Language Processing. Prentice Hall,
2000.

[Joh] Richard Johnsonbaugh. Discrete Mathematics, chapter 9. Jk Computer Science and
Mathematics.

[Les05] Patrick Lester. A* pathfindig for beginnners, 2005. http://www.policyalmanac.org/
games/aStarTutorial.htm.

[Med10] MediaCart. MediaCart website, 2010. http://www.mediacart.com.

[Mil97] Adam Milstein. Report - Occupancy Grid Maps for Localization and Mapping. Univer-
sity of Waterloo, 1997.

[Neg11] Christine Negroni. Tracking Your Wi-Fi Trail, 2011. http://www.nytimes.com/2011/
03/22/business/22airport.html?_r=2&ref=technology.

[NHM+11] Jimmy Jessen Nielsen, Jose Holgado, Tatiana Kozlova Madsen, Claus Pedersen,
Bernard Henri Fleury, Francisco Quiros, Igor Arambasic, Na Yi, Yi Ma, Dirk Slock,
Benôıt Denis, Hadi Noureddine, Löıc Brunel, Damien Castelain, Bernard Uguen, Fer-
nando Rivas, Esther López, Francisco de Arriba, Marios Raspopoulos, George Agapiou,
Joaquim Bastos, Senka Hadzic, Hugo Marques, Armin Dammann, Christian Mensing,
and Ronald Raulefs. D1.1 scenarios and parameters, 2011.

[PAK+05] Neal Patwari, Joshua N. Ash, Spyros Kyperountas, Alfred O. Hero III, Randolph L.
Moses, and Neiyer S. Correal. Locating the Nodes - Cooperative localization in wireless
sensor network. 2005.

[Ros04] Sheldon M. Ross. Introduction to Probability and Statistics for Engineers and Scientists
3. ed., pages 293–321. Academic Press, 2004.

[RPN+08] Janne Dahl Rasmussen, Achuthan Paramanathan, Yassine Nassili, Anders Grauballe,
and Mikkel Gade Jensen. Report - Indoor positioning - Based on Bluetooth. Aalborg
University, 2008.

65

http://www.gps-practice-and-fun.com/positioning-systems.html
http://www.gps-practice-and-fun.com/positioning-systems.html
http://www.policyalmanac.org/games/aStarTutorial.htm
http://www.policyalmanac.org/games/aStarTutorial.htm
http://www.mediacart.com
http://www.nytimes.com/2011/03/22/business/22airport.html?_r=2&ref=technology
http://www.nytimes.com/2011/03/22/business/22airport.html?_r=2&ref=technology

BIBLIOGRAPHY

[SCGL05] Guolin Sun, Jie Chen, Wei Guo, and K.J. Ray Liu. Signal Processing Techniques in
Network Aided Positioning - A survey of state-of-the-art positioning designs. 2005.

[STK05] Ali H. Sayed, Alireza Tarighat, and Nima Khajehnouri. Network-Based Wireless
Loaction - Challenges faced in developing techniques for accurate wireless location
information. 2005.

[Thr00] Sebastian Thrun. Article - Probabilistic Algorithm in Robotics. 2000.

[Wik11] Wikipedia. Global positioning system, 2011. http://en.wikipedia.org/wiki/
Global_Positioning_System.

66

http://en.wikipedia.org/wiki/Global_Positioning_System
http://en.wikipedia.org/wiki/Global_Positioning_System

	Preface
	Study Programme
	Notes and References

	Table of Contents
	Introduction
	Indoor Position Systems
	Motivation

	Proposal
	Moving Average (Filter One)
	Mobility Models
	Viterbi (Filter Two)
	Reduced Complexity Viterbi (Filter Three)
	Directional Viterbi (Filter Four)
	Adaptive Viterbi (Filter Five)

	Evaluation
	Simulation Setup
	Pedestrian Simulation
	Noise Parameter

	Results
	Preliminary Tests
	Test of Four Different Scenarios
	Final test
	Noise test

	Closure
	Conclusion
	Future Work

	A-star
	The process

	Viterbi
	Hidden Markov Models
	Viterbi

	Results From Four Different Scenarios test
	Line test
	Ninety Degree Turn Test
	One Eighty Degree Turn Test
	Soft Turn Test

	Abbreviations
	Bibliography

