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Abstract:

We analyse the state-of-the-art recommendation
systems based on the tensor factorization tech-
niques. The comparison of these systems is pro-
vided, the possible problems and the drawbacks
are identified. We developed the HOSVD recom-
mendation system. Using the implemented rec-
ommender system the experiments are conducted
and the results are reported. The majority of the
identified problems are verified during the exper-
iments. Moreover, we propose a number of the
possible solutions and improvements to the prob-
lems. Finally, we describe the main goals of our
work during the next semester.
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CHAPTER
1

Introduction

A common user of the internet has to struggle through a constantly increas-
ing amount of the irrelevant information. Nowadays, recommendation sys-
tems try to attack this problem providing the personalised recommendations
to the user. These applications try to guide the user with the personalised
and adjusted information based on her interests.

Recommendation systems analyse users preferences and habits for the better
estimations of the personal recommendations. The more informative users
interests are, the more accurate information can be recommended. The
state-of-the-art recommendation systems are able to reveal the recommen-
dations that have no or little textual similarities to the users preferences.
This is possible because of the semantic similarities between them.

To simplify a management (sorting, categorizing and also recommending) of
the information and the content, a new innovative technique, called tagging,
has emerged. This practice allows to utilize a collaborative and social power
of the users, where each user can freely assign a tag to the content item (e.g.
web link, photo, video, article).

Tensor factorization is a widely spread technique that has been applied in
the various domains and recently has become popular in the area of the rec-
ommendation systems. The triple relations of user-tag-item can be captured
by the tensors. During the factorization process there can be revealed the
latent relations between the involved objects.

The goals of our project are to analyse the recommendation systems based
on tags and the tensor factorization techniques, identify the shortcomings
of them and propose the possible solutions to overcome them. We present
the analysis of a number of the techniques in this area. We design and
implement the recommendation system based on the some ideas presented in
analysis. The drawbacks of the analysed techniques are identified during the
experiments. Based on the gained knowledge and the conducted experiments
we will propose the extensions to these systems. Finally, we will identify the
most promising directions for the further improvements.
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CHAPTER
2

Analysis

In this chapter an analysis for our project will be made. Firstly, we will
introduce the main types of the recommendation systems, where we try to
point out the main advantages and disadvantages of a particular system.
In the second part, we will present the state-of-the-art recommenders – the
majority of them are based on the tensor factorization techniques. However
we also cover a single hybrid tag-based recommender system extended with
a semantic factor. In the end of this chapter, the recommenders will be
compared and evaluated from the different aspects. Finally, we will provide
the statements for the chosen direction of our project.

2.1 Overview of the recommendation systems
The main types of the recommendation systems will be analysed in the
following section. We will try to include the most important advantages
and disadvantages of each introduced type.

2.1.1 Content-based

Content based (CB) [16] recommenders analyse titles of items and profiles
of users. The profile of a user shows his/her preferences. The recommenda-
tions are generated by computing the similarities between the user profile
and the items known by a system. Such recommenders can be used for var-
ious purposes, e.g. to recommend items to buy, articles to read, historical
objects to visit.
It is easy to implement such systems and they provide the recommendations
within the acceptable time frame.
However, the quality of the recommendations depends on the textual in-
formation – it can be affected negatively because of the differences (of the
textual representation) between the items and the profiles. The textual rep-
resentations can be dissimilar at all, but the meanings can be semantically
similar. Therefore, extensions should be introduced to improve the quality
of the recommendations. Furthermore, CB recommenders tend to perform
poorly when the profiles of the users are less informative – systems must
take care of so called cold-start ([10]) problem when little or almost nothing
is known about the preferences of the user.
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2.1. OVERVIEW OF THE RECOMMENDATION SYSTEMS

Case-based

Case-based recommenders [22] are special type of CB systems. These sys-
tems use some concrete criteria (cases) (that are common for a group of
objects) to decide about the similarities between items and users profile.
For example, a user can specify which cases (features) should be satisfied
for an item (e.g. size, weight, color etc.), not caring about titles of the items.
Systems can easily identify the items that satisfy the cases.

2.1.2 Collaborative Filtering

Collaborative Filtering (CF) [21] [14] is a process of filtering for particular
information or patterns from a data set that is provided by the collaborative
work of users (e.g. virtual agents, human beings). The recommendation sys-
tems use collected data by the collaborative users to provide the suggestions
what a particular user may be interested in by knowing the preferences (e.g.
likes or dislikes) of the user. In other words, the recommenders try to find
the behaviour patterns for a particular user as similar as possible to the
behaviour of the other users in a collaboratively combined data set based
on the similar preferences between the users. The assumption is that "those
who agreed in the past tend to agree again in the future". The example of
a recommendation system based on CF could be a system that proposes to
read a book for a user knowing what types of the books this particular user
likes or dislikes and analysing all the likes and dislikes of the users known
by the system.
It is one of the most popular method to provide the recommendations. The
biggest advantage of such systems is the usage of the users opinions that
are considered as important and relevant for the others. It is also easy to
implement such systems and they perform well using dense data set ([23]).
The main disadvantages occur when data is sparse – most often it affects the
performance negatively. Also, the quality of the recommendations depends
on the opinions of the users, i.e. if there are only the few common interests
it is possible that the system will recommend the items without common
interests.

2.1.3 Other systems

The systems as demographic, utility-based and knowledge-based are not so
popular these days. However, we will briefly describe each of them:

• Demographic system categorizes users based on the personal at-
tributes (preferences). It is able to provide the recommendations for
a demographic group knowing the preferences of the group and the
features of the items.
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2.1. OVERVIEW OF THE RECOMMENDATION SYSTEMS

• Utility-based system provides the recommendations based on the
utility. The utility is computed for each item and a particular user.
The most problematic and challenging step is to compute and estimate
the utility function.

• Knowledge-based system uses a function that can compute how a
specific item meets the preferences for a given user. Recommendations
are provided based on the output of the functions.

2.1.4 Hybrid-based

Hybrid-based recommendation systems [3] combine the advantages of two
or more recommendation systems to minimize the disadvantages of each
of them and to benefit for the quality and performance of the recommen-
dations. Most often CB, CF systems are combined to achieve the better
recommendations.

2.1.5 Tag-based

Tagging is an activity when a user associates an item with the arbitrary
word(s), called tag(s). The tags describe a content of the item and interests
of the user. Tagging process can be modelled as:

Tagging : (U, T, I) (2.1)

where U is a user that tags an item I with a tag T .
This activity simplifies a process of categorizing and retrieving content and
takes advantage of the collaborative tagging – where more users are involved
into the tagging of the same content. Tag-based recommenders [15] analyse
tags, discover preferences of a given user and provides suggestions for the
user which items could be interesting. The main advantage of the tag-
based recommenders is that user preferences and interests are expressed by
used tags of the given person. Therefore, these recommenders provide more
accurate and personalized recommendations.
On the other hand, majority of the tag-based recommenders consider only
textual (syntactical) similarities among tags. It causes problems when there
are tag synonyms and according to the syntactical similarity these relations
will not be revealed. The similar problem can occur when a given tag has
more different meanings – so called polysemy. These issues are handled
by various techniques which extend standard tag-based recommenders and
provide semantically more accurate recommendations (as analysed in the
sections 2.2, 2.3.1).
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2.2. HYBRID TAG-BASED RECOMMENDER SYSTEM WITH
PERSONALIZATION

Folksonomy

It is common that tagging systems enable social connectivity (e.g. Delicious,
Flickr) via common interests which are revealed using the same tags. A term
folksonomy ([15]) means a "user-generated and distributed classification sys-
tem" that evolves when a group of the users "collectively tag resources". The
main features of the folksonomies are ability to adapt (change) rapidly, flex-
ibility, "free-for-all collaborative customisation and their serendipity", infor-
mation classification. The benefits of the folksonomies are as follows:

• able to index and cluster the information;

• able to identify the communities;

• allow searching and browsing of the information;

• are utilised as data sources for the collaborative recommender systems.

2.2 Hybrid tag-based recommender system with
personalization

The authors of an article [8] introduce a hybrid extension for a tag-based
recommender system. The extension is based on the semantic factor (as
explained in a section 2.2.1): the recommender system is able to provide
the recommendations based on the semantic meanings of tags, not only the
syntax similarities between the tags. A number of the recommendation
systems rely on the syntactical similarities between the tags. Such systems
may not be able to discover the semantic differences between the tags like
Java (may have a meaning of a programming language or an island), apple
(a fruit) and Apple (a company), jaguar (an animal) and Jaguar (a car).
A hybrid approach embraces both: a similarity calculus and a semantic
factor. The similarity calculus is enriched with the factors as follows:

• Tag Similarity (TS) is a combination of cosine similarity (CosSim)
for the text and a semantic similarity (SemSim) between the tags
which is presented in a section 2.2.2. TS formula is:

TS(Di; Dii) = CosSim(TDi ; TDii) ∗ SemSim(TDi ; TDii), (2.2)

where T is a set of the tags of a particular document, Di and Dii are
the particular documents from a set of the documents D.

• Tag Popularity (TP) is a total number of tag appearances in the
available resources. The more times a tag appears in the resources,
the more popular it is.
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2.2. HYBRID TAG-BASED RECOMMENDER SYSTEM WITH
PERSONALIZATION

• Tag Representativeness (TR) reflects how good a particular tag
represents a document (the tag was assigned to a given document).

• Affinity between user and tag (AF) measures how often a tag is
used by a user. The more often tag is used by a user, more precisely
it reflects the interests of a user. This is an important factor for the
personalization of the recommendation results. AF formula is:

AF(u, t) = card{r ∈ Documents | (u, t, r) ∈ R,R ⊆ U × T ×D}
/card{t ∈ T | (t, u) ∈ Ru, Ru ⊆ U × T},

(2.3)

where card (cardinality) is the size of a set, u is a particular user, t is
a particular tag, r is a particular resource, R is a set of resources, U
is a set of users, T is a set of tags and D is a set of documents.

The final hybrid similarity score (HS) is calculated as follows:

HS(Di; Dii) = [(DsDi +DsDii)× TS(Di; Dii)]×AF(u, t), (2.4)

where Ds is a document score, defined as follows:

Ds =
n∑
i=1

TPi ×
n∑
i=1

TRi, (2.5)

where n is a total number of the known tags by a system, TPi is a tag popu-
larity of a particular tag and TRi is a tag representativeness of a particular
tag.

2.2.1 Semantic similarity factor

The semantic similarity factor reflects the relations between the syntactically
different tags in the different tag sources. There is considered two types of
the relations between the tags:

• synonyms, e.g. house and apartment;

• equivalency in a context, e.g. java, programming.

2.2.2 Semantic similarity

There are utilized the two data sources for the semantic relations: WordNet
dictionary [28] and "ontologies from open linked data published on the Web"
[2]. To compute a semantic similarity score, the tags must be found out in
the semantic source and then the score (SemSim) can be computed by the
following formula:

SemSim(s, t) = WNSim(s, t)×OntoSim(s, t) | {(s, t) ∈ T}, (2.6)
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2.2. HYBRID TAG-BASED RECOMMENDER SYSTEM WITH
PERSONALIZATION

where s and t are the particular tags from the tags set T , WNSim is a
similarity score retrieved using WorldNet and OntoSim is a similarity score
computed using the ontologies:

• WNSim is issued when two tags are chosen for the comparison. This
score is calculated using a formula proposed by Wu and Palmer [29]:

WNSim(s, t) = 2 ∗ depth(LCS)/ [depth(s) + depth(t)] , (2.7)

where s and t are the source and target words that are compared;
"depth(s) is the shortest distance from a root node to a node S on the
taxonomy"; "LCS denotes the least common sub-submer of s and t".

• OntoSim considers the tags as the classes. This formula is calculating
three types of the relations between the two classes (tags). The types
are as follows:

– Hierarchical relation (HR)
– Negative relation (NR)
– Positive relation (PR)

The relations are retrieved using Sparql queries1. Finally, the ontolog-
ical similarity is calculated as follows:

OntoSim(s, t) =
n∑
i=1

HR(s, t) ∗
n∑
i=1

NR(s, t)/
n∑
i=1

PR(s, t), (2.8)

where s and t are the tags from the set of tags T .

2.2.3 Evaluations

The biggest advantage of the semantic extension for the recommender sys-
tem using tags is ability to consider the semantic relations between the syn-
tactically different tags. The results of the experiments show that in most of
the cases, the semantic similarity score was higher than the syntax similarity
score between the sets of the tags that shared at least one a syntactically
equivalent tag. Furthermore, the formulas used by the recommender are not
computationally expensive that should benefit to the overall performance of
the recommender. The usage of WorldNet and linked data resources assure
that rich and constantly being updated dictionaries are used to calculate
the semantic similarity score. However, the results of the experiments show
that 59% of the recommendations were accepted and 41% were rejected by
the users. These may indicate that the recommender needs an improvement
to provide the results of a higher acceptance level. Also, the recommender

1http://www.w3.org/TR/rdf-sparql-query
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2.3. HOSVD BASED RECOMMENDER SYSTEMS

can not deal with the misspelled tags that affect negatively the quality of
the recommendations. The usage of the WorldNet and linked data resources
may cause the performance problems because queries must be executed via
internet and the response time to the queries can affect negatively the over-
all performance of the recommender. Finally, the authors of [8] suggest
to extend a semantic factor "by measuring the tag pair co-occurrence" that
should help to provide the better recommendation results.

2.3 HOSVD based recommender systems
In this section, we will analyse the recommendation systems based on tensor
factorization using Higher Order Singular Value Decomposition (HOSVD).
Furthermore, the possible extensions for HOSVD systems will be introduced
and analysed.

2.3.1 Recommendation systems based on tensors dimension-
ality reduction

The state-of-the-art recommendation systems exploit the provided data (users
- u, information items - i, tags - t) only in 2-dimensional relations. These
pairs: (users, tags), (users, information items), (tags, information items)
are analysed by the different types of the algorithms [3] which try to dis-
cover the most relevant and suitable content – tags or information items for
the users. However, the mentioned algorithms do not reflect 3-dimensional
base of the provided data and therefore, they are not able to analyse all the
relationships between the triplets of data.
Researcher Symenonidis et al. (2008) [24] realised that involving and ex-
ploring existent relationships between tags, users and information items can
reveal more relevant outcomes. This approach is exploring the complex
3-dimensional relations and is able to detect the latent associations which
provide the better recommendations. The technique is based on a Singu-
lar Value Decomposition (SVD) [7] which computes matrix approximation.
Usage data of a recommendation system are represented by a 3-dimensional
tensor – A, where for a particular user with a selected information item and
an assigned tag is stated a weight 1 and for all other cases where is not
created relation a weight is 0, see the following function:

au,i,t ∈ A, au,i,t =
{

1, (u, i, t) is an existing relationship in a system
0, no association between (u, i, t)

(2.9)
We are including an illustrative example to better describe the tensor re-
duction technique. We assume a small recommendation system – with 3
different users, 3 different information items – articles and 3 tags. The
associations between these objects are showed in the Table 2.1.
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2.3. HOSVD BASED RECOMMENDER SYSTEMS

Users Information items Tags Weights
U1 I1 T1 1
U2 I1 T1 1
U2 I2 T2 1
U3 I3 T3 1

Table 2.1: The associations between the objects

According to the usage data, we are able to construct the basic tensor A
which is depicted in the Figure 2.1. The constructed tensor is unfolded into
the three new matrices (A1, A2, A3) (each is put together from the basic
tensor where the different perspectives are applied).
From the depicted tensor there were created the three new matrices which
are denoted as the 1-mode, 2-mode and 3-mode matrices.

Figure 2.1: Tensor construction according to the users preferences table and
i-th mode matrices

A higher-order singular value decomposition is an extended version
of the SVD applied to the multi-dimensional matrices. The basic SVD for
a matrix FD1×D2 is expressed by this formula:

FD1×D2 = UD1×D1 .SD1×D2 .V
T
D2×D2 (2.10)

The unfolded i−th mode matrices from the constructed tensor A are subject
of the SVD. It results into creation of Un, Sn, V n matrices (see Figures 2.2
and 2.3) with the U1 and S1 matrices respectively, V 1 T is not depicted due
to the huge size and is not required in the further computations), the most
important are U1, U2, U3 as they contain the orthonormal vectors – singular
vectors of 1-mode, 2-mode and 3-mode matrices.
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−0.53 0.00 −0.85
−0.85 0.00 0.53
0.00 1.00 0.00


Figure 2.2: Application of the SVD to the 1st mode matrix - U1 matrix1.62 0.00 0.00

0.00 1.00 0.00
0.00 0.00 0.62


Figure 2.3: Application of the SVD to the 1st mode matrix - S1 matrix

We are storing the c −most singular values of i − th mode matrices to be
able to construct the core tensor S:

S = A×1 (U (1)
c1 )T ×2 (U (2)

c2 )T ×3 (U (3)
c3 )T (2.11)

We are able to reconstruct A′ which is approximation of the basic tensor A
according to the formula:

A′ = S ×1 U
1
c1 ×2 U

2
c2 ×3 U

3
c3 (2.12)

In the following Figure 2.4, there are showed a core tensor S and the recon-
structed tensor A′.

Figure 2.4: The core tensor S and the reconstructed tensor A′

From the new tensor A′ we are able to recommend tags or information
items with the highest weights to a given user. We can observe that a new
association was discovered between User 1 and Tag 2 and Information Item
2.
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2.3. HOSVD BASED RECOMMENDER SYSTEMS

Evaluations

The proposed method was compared with the two state-of-the-art recom-
mendation algorithms: Folkrank [13] and Collaborative Tag Suggestions [30].
The latter one is denoted also as PR (Penalty Reward algorithm). Authors
of the tensor reduction algorithm evaluated the given algorithms on two dif-
ferent data sets – Bibsonomy is a social bookmarking system for scientific
publications and Last.fm is a music website with well developed collabora-
tive tagging recommendation system. Each data set was divided into two
different sets (a testing set – 25% of tags and a training set – 75% of all
tags). According to the training set, algorithms suggested possible tags for
a particular user and a given information item. The results showed that the
tensor reduction clearly overcomes the other methods. The main advantage
of the described algorithm is that it exploits the relationships between all
the three different types of the objects (users, tags and information items) of
a provided data set and also reveals the latent relationships between these
objects.

2.3.2 Multiverse recommendation using N-dimensional ten-
sors factorization

Authors of [14] present Collaborative Filtering (see section 2.1.2) method
based on Tensor Factorization (TF). TF is based on a Matrix Factorization
(MF) and it enables to model User-Item-Context N-dimensional tensor. This
model is called Multiverse Recommendation (MR). It is possible to include
N various aspects (variables) of a context, like geo-location, time, the gender
of an author etc. As a result, N-dimensional tensor can be constructed and
factorized. After the factorization of such tensors there can be provided
context-aware recommendations.

Model

To be able to provide the better recommendations based on various settings
it is crucial to extend "standard" approach of two-dimensional matrix of
user-item relations. This framework proposes to extend a two dimensional
matrix with the third dimension of context relation and this results into a
tensor (see Figure 2.5). To be able to support N context variables, their
own TF method is used. This model is called Multiverse Recommendation
because of an ability to bind possibly N different contexts.

Matrix Factorization

It is assumed that ratings (likes or dislikes) of a user on items can be rep-
resented in a sparse matrix Yn×m where n is a number of users and m is a
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Figure 2.5: HOSVD tensor factorization model

number of items. A concrete value for a particular user on a particular item
is denoted by Y ∈ Yn×m. The MF process results into two matrices: U ∈
Rn×d and B ∈ Rm×d such that F := UBT approximates Y where U is a
concrete value for a user and B is a concrete value for an item (in this case
– book).

Tensor Factorization

Tensor Factorization extends the MF in such way that the N-dimensional
TF is able to handle N-dimensional data (N variables of a context).
For the simplicity the authors of [14] describe a tensor with a single variable
C for the context. Therefore, the tensor Y will be three-dimensional and it
is denoted as follows: Yn×m×c where n is a number of users, m is a number
of items and c is a number of contextual variables where ci ∈ {1, ..., c}. The
value of a rating Y ∈ Yn×m×c can vary from 0 to 5. Then the rating Y ∈
{0, ..., 5}n×m×c where 0 means a rating for a particular item by a particular
user is unknown.
There are used two tensor operations to compute a binary tensor D:

• tensor-matrix multiplication denoted by ×U where subscript indicates
the direction of a multiplication.

• tensor outer product denoted by
⊗

So, the binary tensor is D ∈ {0; 1}n×m×c whenever entries Yijk are known
where i is user, j is item and k is context.
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2.3. HOSVD BASED RECOMMENDER SYSTEMS

HOSVD-decomposition

The illustration of High Order Singular Value decomposition (HOSVD) is
shown in the Figure 2.5. Three-dimensional tensor is decomposed (dur-
ing the process of factorization) into the three matrices: U ∈ Rn×dU , B ∈
Rm×dB , C ∈ Rc×dC and a central tensor S ∈ RdU×dB×dC . Then a factoriza-
tion function is:

Fijk = S ×U Ui∗ ×B Bj∗ ×C Ck∗ (2.13)

This function enables to control dimensionality of the factors by adjusting
parameters dU , dB, dC .

Finalization

A number of operations must be executed to accomplish the algorithm of
the tensor factorization:

• Loss function L(F,Y) that penalizes the distance between the esti-
mated tensor F and observed tensor Y. Loss function takes into ac-
count just the observed values – the missing values are not included
into the calculations.

• Regularization Ω[U,B,C] is needed to ensure that a loss function is
not leading to overfitting and that a complexity of a model (composed
of U , B, C and C) does not grow boundless.

• Optimization R[U,B,C, S] is minimizing a regularized risk that is a
combination of L(F, Y ) and Ω[U,B,C].

Algorithm

Algorithm is "easy to implement" and it can be executed in parallel. The
complexity is O(KdUdBdC) where K is a number of ratings and dU , dB, dC
are the dimensions of the factors.

Evaluations

Multiverse Recommendation framework enables to model N-dimensional
tensor and therefore, it supports N contextual variables. Because of this fea-
ture, the recommendations can be made with considering various settings,
like: geo-location, time etc. Besides of it the algorithm can be implemented
in parallel that would improve time performance. However, as more contex-
tual variables will be used, a performance will decrease. Furthermore, unlike
most of the recommender systems, this framework can handle all the data
set with all the involved contextual information: there is no need to make
pre-filtering nor post-filtering for the data set. Because of this no data is lost
and the better recommendations can be made. Also, it should be possible
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2.3. HOSVD BASED RECOMMENDER SYSTEMS

to tune up the algorithm to perform better and/or provide better results
when applying it to the concrete data set and a type of recommendations.
The experiments show that this framework is able to provide the more ac-
curate recommendations because of the usage of the contextual variables.
It also outperforms the non-contextual recommenders and even the "current
state-of-the-art context-aware recommendation approaches".

2.3.3 Extensions for HOSVD based recommender systems

Authors of an article [25] further investigate tensor based recommendation
systems and provide "a unified framework for providing recommendations
in social tagging systems based on ternary semantic analysis". The most
notable features that are introduced for the tensor based recommendation
systems (as analysed in a section 2.3.1) are as follows:

• the usage of kernel-SVD smoothing technique to reduce a data spar-
sity;

• the reduction of dimensions for matrices;

• a handling of arrival of new users, tags and items.

Kernel-SVD smoothing technique

Sparsity for three dimensional data is a problem that can affect the results of
an algorithm. To overcome this problem kernel-SVD can be applied instead
of basic SVD (as analysed in a section 2.10) in three unfolded matrices (A1,
A2, A3). Kernel-SVD is an operation of SVD "in the Kernel-defined feature
space".
The entries of each unfolding Ai (1 ≤ i ≤ 3) are mapped to a higher dimen-
sional space using a function φ. Therefore, each matrix Ai can be encoded
in a matrix Fi where each element axy of Ai can be mapped to the corre-
sponding element fxy of Fi:

fxy = φ(axy) (2.14)

Now, SVD can be applied using Fi:

Fi = U (i)S(i)(V i)T (2.15)

The resulting U (i) matrices can be used to construct a core tensor S (as
analysed in a section 2.11).
The authors of [25] introduce one more optimization: to avoid expensive
computation of Fi, "all computations must be done in the form of inner
products". Because we are interested to compute only the matrices with the
left singular vectors, we can define a matrix Bi:

Bi = FiF
T
i (2.16)
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Because Bi is computed using the inner products of Fi, we can express Bi
using the results of a kernel function. This technique is called "kernel trick"
and enables to avoid the computations of an expensive Fi. We know each
U (i), V (i) are orthogonal and S(i) is diagonal, it follows (from the Formulas
2.15 and 2.16):

Bi = (U (i)S(i)(V i)T )(U (i)S(i)(V i)T )T = U (i)(S(i))2(U i)T (2.17)

Therefore, each U (i) can be computed diagonalising each matrix Bi "and
taking its eigen-vectors".
Authors explicitly mark that for the experiments they used Gaussian kernel:

K(x, y) = e
‖x−y‖2

c (2.18)

that is a common function to compute kernel SVD for many applications.
Parameter c is computed as a "standard deviation in each matrix unfolding".

Reduction of dimensions

To filter out noisy approximations, the dimensions of a matrix can be re-
duced. It will contribute for the performance and the quality of the recom-
mendations. This can be done eliminating "the small singular values that
introduce noise". So, resulted matrices from the SVD are reduced to the
c higher singular values and the corresponding singular vectors. This re-
duction operation is called thin-SVD which is optimal in that way that it
computes rank-c approximation with the minimum Frobenius norm. The
reduced matrix is denoted as rank-c approximation.
The ci-top singular values and the corresponding left singular vectors from
U (i) are taken from computed SVD "on the unfolded matrix Ai of a i-mode".
The selected sizes of c1, c2 and c3 determine the size of a core tensor S.
However, to select sizes for c1, c2 and c3 is a difficult task. A practical ap-
proach would be to choose sizes for c1, c2 and c3 by preserving some amount
(expressed by percentages) of information of original S(1), S(2) and S(3).
Authors give a hint that at least 70% of original data should be retained in
S(1), S(2) and S(3).

Arrival of new Users, Tags and Items

Normally, as the new users, tags or items are inserted into the system, the
expensive computations (as shown in the Formulas 2.11 – 2.12) should be
re-executed and a tensor A′ (that gives the recommendations) should be
re-created. There is a possibility to avoid expensive re-computations by the
following solutions which depends on the size of an update (how many new
users, tags and items are inserted):
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• for the small amount of new data, folding − in technique is recom-
mended;

• for the larger updates, Incremental SVD technique is recommended.

Folding-in technique When adding a new user, the 1-mode matrix un-
folding A1 must be re-computed. As a result, a new row (u) will be appended
to the matrix A1. Because of the changes to A1, its SVD has to be com-
puted. To avoid the expensive computations, we can re-use the "existing
basis U (1)

c1 of left singular vectors, to project the u row onto the reduced
c1-dimensional space of users in the A1 matrix". This operation is called
folding − in:

unew = u · V (1)
c1 · (S

(1)
c1 )−1 (2.19)

where unew is a new mapped row that will be appended to the end of U (1)
c1 .

V
(1)
c1 and (S(1)

c1 )−1 are the dimensionally reduced matrices computed when
SVD was applied on a original A1 (before inserting a new user).
To update tensor A′ we have to execute the operations identified by the
Formula 2.16. We must note that only U (1)c1 has been changed. Because of
it, A′ update can be done:

[S ×2 U
(2)
c2 ×3 U

(3)
c3 ]×1 U

(1)
c1 (2.20)

where the left factor (in the brackets) is unchanged and could be preserved
in memory.
For inserting new items and tags the folding-in (Formula 2.19) must be
applied for 2-mode unfolding (A2) and 3-mode unfolding A3 of a tensor A,
respectively.

Incremental SVD technique When applying folding-in technique to
update SVD, the space becomes not orthogonal and it can cause incorrect
recommendations. When the size of update is not big, this problem may
not occur.
The incremental SVD technique is proposed to handle large updates, but
due to the complexity of this method, the details of it can be found in the
article [25] and section 4.4.2.

2.4 Recommender systems based on other factor-
ization techniques

In this section we will analyse the recommendation systems based on tensor
factorization using Ranking with Tensor Factorization (similar approach to
the HOSVD), Canonical Decomposition and Non-Negative Tensor Factor-
ization techniques.
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2.4.1 Tensor factorization with post-based ranking interpre-
tation scheme

Rendel et al. [17] proposed a different approach for creating the initial
tensor which expresses user - item - tag associations. Instead of using the
0/1 interpretation scheme (as introduced in the formula 2.9), they use so
called post based ranking interpretation. They observed and noticed the
following drawbacks of 0/1 scheme:

• The semantics are incorrect because the case when a user has observed
a given item but not tagged with a particular tag t and the situation
when the user has never explored a particular item are the same. In
both situations the initial tensor is filled with 0.

• Approach of fitting values 1 and 0 into the tensor is an unnecessary
constraint. The important is only to distinguish between positive and
negative cases (the positive relation should be represented with a larger
value than the negative one).

• In the most of data sets the amount of 0 reaches about 99% of all
entries in the tensor and it is causing a sparsity problem.

Post-based Ranking Interpretation (PBRI) scheme distinguishes three dif-
ferent situations to achieve more accurate semantics. It reflects the following
associations:

• The positive case – a user marked a given item with a particular tag.
Formally defined as:

T+
u,i := {t|(u, i) ∈ Ps ∧ (u, i, t) ∈ S}

• The negative case – a user has observed a given item but has not
tagged it.

T−u,i := {t|(u, i) ∈ Ps ∧ (u, i, t) /∈ S}

• The not observed case – a user has not visited a given item.

where the tagging information from the past is represented by S ⊆ U×I×T .
The observed items by users are denoted as: Ps := {(u, i)|∃t ∈ T : (u, i, t) ∈
S} The ranking constraint is defined in this way:

ypu,i,t1 > ypu,i,t2 ↔ (u, i, t1) ∈ T+
u,i ∧ (u, i, t2) ∈ T−u,i

The introduced interpretation solves the mentioned drawbacks of the 0/1
scheme. From the semantic point of view, it distinguishes three different
cases and makes difference between not observed relationships and negative
associations. The constraint requires only the smaller values for the negative
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cases and it does not have to be set to 0 weight. The not observed values
are not considered during the training. However, this approach has to be
optimized to satisfy as many rankings as possible. Authors proposed to
use AUC – area under ROC-curve (receiver operating characteristic) to find
optimal rankings constraints [26].
A tensor factorization model called Ranking with Tensor Factorization (RTF)
is similar to the HOSVD. An estimated tensor Ŷ is constructed by multi-
plying three different features matrices Û , Î, T̂ with a core tensor Ĉ.

Ŷ = Ĉ ×u Û ×i Î ×t T̂

These matrices and the core tensor are model parameters with the following
sizes:

Ĉ ∈ RkU×kI×kT , Û ∈ R|U |×kU

Î ∈ R|I|×kI T̂ ∈ R|T |×kT

The low rank matrices Û , Î, T̂ are conditioned by these kU , kI , kT dimen-
sions respectively. The model parameters are denoted as 4-tuple: θ̂ :=
(Ĉ, Û , T̂ , Î). They have to be learned according to the optimization crite-
rion that uses the PBRI and maximizes the ranking by AUC for a given
tagging of an user u for an item i as:

AUC(θ̂, u, i) = 1
|T+
u,i|T

−
u,i|

∑
t+∈T+

u,i

∑
t−∈T−u,i

s(ŷu,i,t+ − ŷu,i,t−)

Where the s is s-shaped logistic function:

s(x) = 1
1− e−x

Then, the optimization task is defined as:

argmaxθ̂
∑

(u,i)∈Ps

AUC(θ̂, u, i)

The optimization is done only with observed data (Ps). The intention is to
minimize the training error for models which can lead to overfitting. There-
fore, authors proposed to use regularization where an objective function is
minimized by gradient descent. The details of the regularization can be
found in the paper [17].

Comparison with HOSVD

This factorization technique – solves the following important issues of the
HOSVD:
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• HOSVD cannot deal with missing values, they are filled with 0.

• To prevent over-fitting, HOSVD should use regularization.

Both models compute tensor factorization in off-line mode, and then recom-
mending is based on the estimated tensor in on-line mode. Therefore, it is
able to produce relatively good results in short time.

Evaluation

Authors conducted experiments on the two different data sets – BibSonomy
and Last.fm. The algorithm was compared with HOSVD, FolkRank and
PageRank. Almost in all the experiments RFT overcomes other competitive
techniques. Surprisingly, even when the dimensions of low rank matrices
in RTF are smaller than dimensions of model matrices in HOSVD – RTF
outperforms HOSVD.

2.4.2 Tensor factorization based on canonical decomposition

Recommendation systems that utilize tensor factorization techniques have
been shown to provide high quality recommendations and quite often over-
come the other state-of-the-art approaches like FolkRank, PageRank and
Collaborative Filtering. The most common are the factorization models
based on a Tucker Decomposition [27]. The factorization algorithms de-
scribed in this analysis part: HOSVD 2.3.1, Ranking Tensor Factorization
2.4.1 are special extensions of the Tucker Decomposition (TD). The main
disadvantage of TD is cubic computational time which is infeasible for large
data sets. Therefore, we will try to inspect and describe another tensor
factorization approach – Canonical Decomposition (CD) also known as Par-
allel Factor Analysis (PARAFAC). This decomposition technique is not so
popular as HOSVD and to the best of our knowledge we know only one
tag-based recommendation system (the main principles will be described in
the end of this section) which utilizes an extension of CD [18].
CD is widely used in the different research areas – chemometrics, psycho-
metrics and signal processing [6]. The main advantage in comparison to
TD is linear computation time which depends on the dimension parameter
(the differences between PARAFAC/CD and HOSVD techniques are more
precisely described in the section 5.2.6).
The idea is for a given tensor Y ∈ RT×U×R to find three component matrices
(also called as the loading factors), such that:

• T = [t1, t2, . . . , tkt ] ∈ RT×kt

• U = [u1, u2, . . . , uku ] ∈ RU×ku

• R = [r1, r2, . . . , rkr ] ∈ RR×kr
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which participate in the following factorization:

Ŷ =
k∑

f=1
tf ◦ uf ◦ rf + E (2.21)

where k = min(kt, ku, kr) is the dimension parameter and E ∈ RT×U×R is
error tensor. Graphical representation is depicted in the Figure 2.6. The
most popular method to find solution for the given model is to use alter-
nating least squares (ALS) algorithm. It estimates loading factors T,U,R
during more iterations until there is only little change in factor matrices.
Each component is estimated by least squares regression according to other
two components and approximated tensor (i.e. component matrix T is es-
timated by U,R and Ŷ ). There exist different versions of ALS algorithms
which are suitable for various situations. To find appropriate dimension
parameter k, there must be considered a trade-off between computational
accuracy and performance. The computational complexity is linear O(k)
as the basic model contains only one sum over the |k| entries. Obviously,
PARAFAC/CD decomposition is faster than Tucker Decompositions (where
three nested sums must be executed - O(k3)).

Figure 2.6: Graphical representation of the canonical decomposition.

Rendle et al. [18] proposed tag based recommendation system which exploits
an extension of the Canonical Decomposition. The tensor is approximated
by the following mathematical model called PairWise Interaction Tensor
Factorization (PITF):

Ŷ =
k∑

f=1
ûu,f .t̂

U
t,f +

k∑
f=1

îi,f .t̂
I
t,f

PITF is the special case of CD, where the dimension parameter is 2.k and
the following holds:

ûCDu,f =
{
ûu,f , iff ≤ k
1, else
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îCDi,f =
{

1, iff ≤ k
îi,f−k, else

t̂CDt,f =
{
t̂Ut,f , iff ≤ k
t̂It,f−k, else

The matrices ûCD, îCD and t̂CD could be used in the basic factorization for-
mula 2.21. We described the main principles of their factorization method, a
reader that is interested in the learning algorithm for the model parameters
Û , Î, T̂U , T̂ I and other details can find out more in a given paper [18].

Evaluations

The main contribution is significantly improved time performance compared
to the other systems based on tensor factorization. As time complexity was
improved some could expect decreased quality of recommendations, how-
ever in almost all cases this method outperformed the other state-of-the-art
systems like HOSVD, RTF-TD, PageRank and FolkRank. The Canonical
Decomposition/PARAFAC methods represent faster solution for the tensor
factorization in comparison to the more popular HOSVD technique. On the
other hand training a mathematical model for CD can be computationally
demanding and it requires to find appropriate learning function which will
be computationally not expensive and precise enough.

2.4.3 Recommendations based on non-negative tensor fac-
torization

Authors of an article [4] introduce a framework for generating recommen-
dations incorporating prior knowledge into the non-negative tensor factor-
ization (NTF). The NTF is another decomposition technique for extracting
relations from the multidimensional data. It means that the latent semantics
can be revealed from the given data set knowing some facts from the past.
Authors provide an example of 3-dimensional data relations: blog entries
where author, blog title and a timestamp are the dimensions. The NTF is
universal for extracting the relations from the multidimensional data and
can be easily used for our domain where we analyse the relations of author,
resource and tag.
NTF is a promising technique because it "extracts characteristics jointly
from the different data dimensions". It is an advantage because each of the
data dimension affects each other in a "joint way". The main advantage of
the NTF is that approximated tensor will contain only positive values there-
fore, there will not be any problems with the interpretation of the results.
The basic NTF does not use prior knowledge for extracting the relations.
The authors propose an extension to NTF where the prior knowledge is
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incorporated in such way that the extracted relations reflect (are compati-
ble with) the prior knowledge. The extension is called FacetCube. For our
model, the prior knowledge can be the known facts of a previous activity
of a user, e.g. which resources were tagged and which tags were used for
that. Knowing this, FacetCube framework should be able to reveal new
relations that can be presented as the recommendations for the user, e.g.
which resources should be interested for a user.

Standard NTF

To apply tensor factorization we need to construct a data tensor. We will
use 3-dimensional data of users, resources and tags. The third-order tensor
A ∈ RI×J×K+ will represent this data where I, J and K are the dimensions
of the data of users, resources and tags, respectively. A value (A)ijk = aijk
can represent, for example, how many times user i tagged a resource k with
a tag j.
When a standard NTF [6] is applied and the outcomes are as follows:

• the first outcome is facet matrices that represents the most significant
data characteristics for a single dimension. The number of the facet
matrices is the same as the order of a tensor. Each column of each
facet matrix represents exactly one facet of a corresponding dimension
of data. For example, the facet matrix for tagged resources by users
are: X ∈ RI×L+ , Y ∈ RJ×M+ and Z ∈ RK×N+ where each column of
X, Y and Z represents most important (active) users, mostly tagged
resources by the most popular tags.

• the second outcome is a core tensor C which is in the same order as
an initial tensor, just usually much smaller when measuring the sizes.
This core tensor represents all the correlations among all the facets in
all data dimensions: C ∈ RL×M×N+ where L, M and N are the number
of facets for users, resources and tags, respectively.

The goal of the NTF is to compute the core tensor C, the facet matrices X,
Y and Z in a such way that they all together [C, X, Y, Z] "approximate A
in an optimal way". The quality of A can be measured by the error rate.
The most common error measure is KL-divergence. So, the goal of NTF is
to find C, X, Y and Z with a minimal error rate:

errorKL = KL(A‖[C, X, Y, Z]). (2.22)

FacetCube framework

FacetCube framework extends standard NTF by incorporating the prior
knowledge to the process of a decomposition. There are presented two vari-
ants of a framework:
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• Facets are restricted to be in a sub-space defined by the user.

• Facets are fixed by the user.

Also, FacetCube can be unrestricted (no prior knowledge is used) and in
that case it would use standard NTF.

Restricted facets The assumption is that there is provided a sub-space
from which the facets are derived. We can re-write the 2.22 equation:

errorKL = KL(A‖[C, IIX, IJY, IKZ]), (2.23)

where II , IJ and IK are the identity matrices of dimensions I, J and K,
respectively. If we would consider every facet in Y as a point in a structure
formed by {~e1, ..., ~eJ} where ~ej is a vector with dimension J (for example
the j-th element being 1 and the others – zeros), the number of resources
can be huge (space J) that makes difficult to find reliable facets. In this
case, users prior knowledge can play significant role by reducing J space to
a concrete sub-space. If we assume a given prior knowledge for resources
as a set of basis YB = {~b1, ...,~bM ′} then we can assume that the search
space is formed by YB. According to our example, if the prior knowledge
of favourite (imported) resources is incorporated, the search space for the
resources to recommend would be smaller. The Figure 2.7(b) illustrates it.
We can extend the 2.23 equation:

Figure 2.7: Variants of a FacetCube: (a) unrestricted search space, restricted
search space (b) and fixed (c) data dimensions. Figure is taken from [4]

errorKL = KL(A‖[C, X, YBY,Z]), (2.24)

where Y is basis-restricted dimension with YB and all columns of YB sums
to 1.
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Fixed facets These may be fixed for the exact data dimensions. The
example of a such fixation may be the requirement to generate recommen-
dations from top-level resources only. The other example could be to gen-
erate recommendations only using a concrete set of tags. Therefore, we can
extend standard NTF with the following equation:

errorKL = KL(A‖[C, X, Y, ZB]), (2.25)

where ZB represents the fixed dimensions and each column of ZB sums to
1.

Overall picture To summarize all three variants as mentioned above and
shown in Figure 2.7, we can re-write standard NTF function:

errorKL = KL(A‖[C, XBX,YBY,ZBZ]), (2.26)

where XB, YB and ZB are the given prior knowledge; X, Y , Z and C need
to be computed. We can observe that:

• when XB, YB and ZB are provided as the identity matrices we have
standard NTF;

• when any of the XB, YB or ZB are provided and X, Y and Z need to
be computed, we have basis-restricted search space;

• when any of the XB, YB or ZB are provided and any of X, Y or Z is
fixed to be identity matrix, we have fixed search space.

An iterative algorithm Authors of a [4] propose an algorithm (Section
3.4) for "computing optimal solutions" using FacetCube framework. They
present the algorithm in a general way – basis-constrained form. They also
show it can be re-used in a case of the other two models (unconstrained and
fixed).

Evaluations

The proposed "novel" extension of NTF, called FacetCube, "naturally" em-
braces 3-dimensional data relations. One of the major benefit of this frame-
work is that it allows to incorporate a prior knowledge of the users. Because
of it, the outcomes of the recommendations can be controlled (can be per-
sonal) and the search space are decreased and it also affects performance
positively. Furthermore, authors claim that an optimal solution can be
found using the algorithm they proposed. Even more, authors presented a
pseudo code for the algorithm. They also conducted experiments on a large,
real world data set (using proposed algorithm) and the results are promis-
ing. Finally, the approximated tensor contains only the positive values so
there are no problems with the interpretation of the results.
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2.5 Project domain
Recently tensor based recommendation systems have emerged [24], [14].
These systems are able to reveal the semantic relations between users, items
and tags because they use three-dimensional relations of {user, tag, resource}.
Existing algorithms analyse two-dimensional relations {user, tag}, {user,
resource}, {resource, tag} and are not able to provide the same quality of
recommendations as tensor based ones [25]. Such systems can be used to
generate various combinations of the recommendations [15]. There can be
recommended:

• N tags with the highest score for a given user u and resource r;

• N resources with the highest score for a particular user u and a par-
ticular tag t;

• other users (that used a particular tag t) for a particular user u, that
used the same tag t;

using tensor based recommender.
We choose to investigate tensor based recommendation systems, because:

• promising results are shown when comparing tensor based recom-
mender with the state-of-the-art recommendation algorithms;

• most of the best performing models in the Neflix Challenge2 competi-
tion were based on the matrix and tensor factorization [18].

• various combinations of the recommendations can be provided;

• there may be performance issues (as analysed in 5.1) when applying
such systems for a real world applications. Our main goal is to inves-
tigate if and how the performance of an algorithm can be improved
without loosing a quality of the recommendations or having a minimal
impact on a quality.

2.6 Conclusion

2.6.1 Types of the recommendation systems

During the analysis we presented different types of the recommendation
systems. These are as follows:

• Content based recommendation systems analyse the titles or descrip-
tions of the resources and the profiles of the users to make the rec-
ommendations. Users profiles should be informative and reflect the

2http://www.netflixprize.com
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preferences of the users. Based on this, the recommendations can be
made. Such systems are quite popular due to the simplicity.

• Collaborative filtering systems capture the power of a collaborative
actions. Such systems can recommend the items to the other users
when knowing the preferences for the items of a current user. The
main idea is that "those who agreed in the past tend to agree again in
the future".

• Hybrid based systems are the combinations of two or more other rec-
ommendation systems. The combination is made using the benefits of
each system and trying to solve the weak parts of them.

• Tagging is an action when user u tags an item i with a tag t. Tag is
an arbitrary word describing the tagged item.
Tag based recommenders are very flexible – they allow to make seman-
tic recommendations. Also, the social factor is revealed – it is possible
to find users with the common interests. Groups of users generate the
classification systems for the various items and is called folksonomy.
We described a hybrid tag-based recommendation system, which com-
bines syntactical and semantic similarities among the tags to provide
more accurate results. The semantic factor reveals relations among
synonyms and also among the tags from the same domain (i.e. Java,
programming).

• Other systems like (demographic, utility-based, knowledge-based) are
not so popular these days.

2.6.2 Tensor based recommendation systems

We can divide tensor based recommendations into the systems that employ
HOSVD technique for tensor factorization and the systems that use the
other techniques.

HOSVD based recommender systems

Symenonidis et al. (2008) [24] introduced recommendation algorithm where
the relationships between users, resources and tags are represented in three
dimensional matrix called tensor. Each tagging activity for a given resource
from a particular user is represented by value 1 in the initial tensor, all
other cases are represented with 0. The core principle is with the usage of
the decomposition technique HOSVD obtain an approximated tensor which
should reveal the latent relationships and patterns of the users. The tensor
is split into three so called mode matrices by applying different perspectives
to the initial tensor. The Singular Value Decomposition is the factorization
method used for all the three mode matrices. The approximated tensor is
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computed by multiplying the results from SVD of the mode matrices. The
recommendations are obtained from the approximated tensor by inspecting
the entries belonged to a given user and resource or tag.
Another novel system ([14]) was analysed – it supports relations between
users, item and context. Context can be expressed as a number of vari-
ables (like time, location, tag). Therefore, it is called N-dimensional tensor
factorization. For the simplicity authors presented a model just with a sin-
gle contextual variable and therefore the factorization technique is quite
similar to 3-dimensional tensor factorization. However, there are proposed
to use various optimization functions like loss function, regularization and
optimization to achieve the better performance and quality.

Extensions for HOSVD based recommender systems are as follows:

• Handling sparsity. Sparsity is a severe problem affecting perfor-
mance and quality negatively. One of the possible solution is to use
kernel-SVD smoothing – the contents of the matrices are mapped (en-
coded) to the new matrices. The new matrices are smaller and less
sparse. SVD is applied on the new matrices.

• Reducing the dimensions of matrices. The low and similar values
in a core tensor may introduce noise and affect performance negatively.
To deal with it the analysed idea proposes to reduce the original size
of data keeping 70% of the original data.

• Handling the changes of data. Due to the complexity of such
systems it is required a lot of computational power to build the ap-
proximation tensor that is used to provide the recommendations. Fur-
thermore, as the data changes (new users, resources and/or tags are
introduced), the naive solution would be to re-compute the approx-
imation tensor. However, we analysed the proposed extensions that
can help to handle the changes of data – folding-in (for small changes)
and incremental SVD (for big changes) techniques.

Recommendation systems based on the other factorization tech-
niques

Introduced recommendation system by Rendel et al. [17] with post-based
ranking interpretation scheme is using a similar factorization technique as
HOSVD. The main differences are:

• The interpretation scheme (function which is used when the initial
tensor is created) is different. Authors point out the three possible
situations – a positive case (a user tagged a particular resource); nega-
tive case (a user has explored a particular resource but has not tagged
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it with a given tag); not observed case (a user has not explored a
given resource). This interpretation is semantically more accurate and
provides better recommendation results. However, the interpretation
constraints must be trained.

• As the interpretation constraints have to be trained, the outcome from
this learning process are the model parameters – matrices that are used
for the computation of the approximated tensor.

The recommendations are obtained in the same way as it is described in the
section 2.3.1.

Recommendation systems based on a canonical decomposition The
tensor is approximated according to the three component matrices also called
as loading factors. These factors have to be trained, the most common al-
gorithm for the learning is Alternating Least Squares. The components are
estimated iteratively until there is only small change. The main advantage
is linear computation time in comparison to the HOSVD, however training
can be computationally demanding. This factorization technique is not so
popular in the area of the recommendation systems. We analysed system
with PairWise Interaction Tensor Factorization, that is an extension of the
CD. The factorization model is composed from the two sums of the four
different loading factors. This model clearly outperformed the other factor-
ization techniques like HOSVD or RTF in time performance and almost in
all cases provided the best accuracy of recommendations.

Recommendation systems based on a non-negative tensor factor-
ization A novel framework, called FacetCube is based on non-negative
tensor factorization proposed in the article ([4]). This framework is general
enough to extract data characteristics for various purposes, including rec-
ommendation. NTF naturally fits for the multidimensional data because it
is able to produce a good approximation model. FacetCube extends NTF
incorporating prior knowledge of the users. It enables to reduce the search
space of the data relations and benefits for the performance. There can be
three modes of the recommendation generation: with unrestricted search
space (no prior knowledge is used); from a sub-space which defined by the
prior knowledge of the users and a fixed space that is provided by the users.

2.6.3 Comparison of tensor based techniques

We will compare the common features of all the analysed techniques based on
tensor factorization. The shared aspects of the given models are presented3

in the Table 2.2.

3The worst evaluation is one star (?) and the best is five stars.
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Technique Time
performance

Quality of the
recommendations

Advantages Disadvantages

HOSVD (2.3.1) ? ? ? ? Reveals latent se-
mantics

Runs slowly for
real world data
set. Big sparsity

Multiverse (2.3.2) ?? ? ? ?? N different con-
textual variables
are supported

Performance is af-
fected negatively
as the size of vari-
ables grow

RTF (2.4.1) ? ? ? ? ? ?? More accurate
interpretation
scheme for data
relations. Model
parameters are
trained

Unacceptable
performance

PITF (2.4.2) ? ? ? ? ? ? ? ?? Running time is
linear

–

FacetCube (2.4.3) ?? ? ? ?? Running time is
linear. Incorpo-
rates prior knowl-
edge

Unacceptable
performance (if
not based on CD)

Table 2.2: Comparison of tensor based techniques

The considered systems were precisely described in the previous sections,
now we will elaborate on the features as time performance and quality of
the recommendations:

• The HOSVD was the first technique utilizing the tensor factoriza-
tion for the tag-based recommendations. Time performance of the
proposed model is not optimized, because authors were assuming that
factorized tensor will be computed in the offline mode. The algorithm
outperforms the state-of-the-art recommenders. However, there were
introduced other techniques that tend to perform better concerning
time and quality.

• Multiverse performs better than HOSVD, but in case when more
than 3 dimensions are considered – it can be practically impossible
to apply this method to the real world application. The accuracy of
the recommendations should be improved by the incorporating more
contextual variables into the model.

• RTF performs significantly faster than HOSVD and also provide more
precise recommendations. This is affected by the novel interpretation
scheme. The performance is still not good enough for tensor factoriza-
tion in online mode, also the interpretation scheme must be trained.

• PITF takes an advantage of the other type of tensor factorization
technique (CD) which runs in a linear time. The quality of the rec-
ommendations is not significantly improved and is comparable to the
RTF.

• FacetCube is able to incorporate the prior knowledge which improves
the quality of the recommendations. It is important that approximated
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tensor contains only the positive values and the interpretation of the
results is not complicated. The performance is not acceptable if the
NTF is not based on the CD technique.
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CHAPTER
3

Design

In this chapter the design of the implemented recommendation system based
on the HOSVD tensor factorization will be presented. Firstly, the general
structure of the system will be introduced. Secondly, we will present each
part of the system more precisely. Moreover, the main data structures and
algorithms will be defined. Finally, we will state which open source frame-
works are used in our system.

3.1 Architecture
We have chosen to implement a recommendation system based on the tensor
factorization technique as analysed in the section 2.3.1.
The architecture of our system is composed of several layers. The general
structure is shown in the Figure 3.1.

Figure 3.1: General overview of the system

The system is designed to be easily extended with the multiple recommen-
dation techniques while using the same database, data structure, utilities,
statistics and the presentation layers. We designed and implemented the
p-core extension for the basic HOSVD based recommender.
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3.2 Detailed overview

3.2.1 Database layer

We use the samples of the real world data sets (as described in the section
4.1) to generate recommendations. The data is stored in the databases. We
choose to use Hibernate framework1 for the object/relational persistence
and query service. We are able to manipulate with the data as the objects.
Also, we are able to bind a number of the databases to the system – each of
the data set are stored in the different databases. Moreover, the databases
can be different – e.g. MySQL, PostgreSQL, Oracle. The structure of a
database layer is presented in the Figure 3.2.
We designed an importer of the data sets in case data set is not available in a
dump file format. The importer can be extended to implement the database
scheme of a concrete data set. The concrete importer will be invoked to
import data when a data set will be chosen by the user using Graphical
User Interface (GUI) of the system.
We designed a simple but efficient cache technique to minimize the creation
time of the initial tensor. We store the results of each different query for
each different persistence manager (i.e. for each different database) in a
memory to boost the performance. It is possible because we use read only
operations to construct the initial tensor, provide recommendations and the
other actions. The data is imported before using the Queries API and this
is executed only once when data is not imported. Caching technique could
be easily extended in case we would need to use write/update operations
for the other actions than data import.

3.2.2 Data structures

We divide the data structures that are required for our system, into the two
parts: the structures needed for the database layer and the others (mostly
used in the statistics layer).

The data structures of the database layer capture the trinary rela-
tions of user-tag-resource (Figure 3.3). There is an interface DefaultEntity
that identifies an object of a database. The abstract classes DefaultUser,
DefaultTag and DefaultResource implement DefaultEntity and repre-
sent user, tag and resource respectively. There are the unique implementa-
tions for each of the abstract class per each data set.

The other data structures as Recommendation, Statistics, AverageStatistics
are used to represent the generated recommendation for the user and to pro-
vide information about the statistics of the recommendation(s).

1http://www.hibernate.org
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Figure 3.2: Database layer with caching service

3.2.3 Utilities layer

There is a number of utilities (helpers) classes used:

• Settings – used for generating the recommendations: identifies the
currently selected data set.

• RandomUtil – used for generating the recommendations: helps to split
the data set of a user into the training and the evaluation sets (as
described in the section 4.3.2).

• IOUtil – used for managing Input/Output operations. Also, writes
the average statistics to the file.

• CollectionsUtil – used for manipulating the objects of a type Collection.

3.2.4 Recommender

The recommender layer can be split into the several parts:

• Generating initial tensor

• Computing tensor factorization

• Generating a list of recommended resources
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Figure 3.3: Data structures of the database layer

Generating initial tensor

To generate the initial tensor, a user must be provided (for who the rec-
ommendations will be computed) and a number of users to be used. We
provide the algorithm (see Algorithm 1) of the initial tensor creation.
We describe the main ideas of the algorithm:

• Users set users is generated.

• Tags set tags is resolved. These are the tags used by the users.

• Resources set resources is resolved. These are the resources tagged
with the tags by the users.

• Iterate through all the users, tags and resources. Resolve if a current
resource is tagged by the current tag and user. If so – mark the
existing relationship in the tensor.

• Store the empty relations (if a user does not tag a resource with a
tag) of a current user. These relations will be used to resolve the
recommendations.

Computing tensor factorization

To compute a tensor factorization, the initial tensor has to be defined. We
provide the algorithm of the tensor factorization (see Algorithm 2).
We describe the key points of the algorithm:
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Data: User user, number of users size
Result: Initial tensor initialTensor

1 Generate a set of users ;
2 for i ← 0 to size do
3 get user u, add it to the users set users
4 end
5 Get a set of tags used by the users ;
6 Get a set of resources tagged by the tags and by the users ;
7 initialTensor = new

double[sizeOfTags][size][sizeOfResources] ;
8 int userIndex = 0;
9 foreach user u ∈ users and userIndex < size do

10 for tagIndex ← 0 to sizeOfTags do
11 for resourceIndex ← 0 to sizeOfResources do
12 if a current user tagged a current resource with a current

tag then
13 initialTensor[tagIndex][userIndex][resourceIndex]++;

14 end
15 end
16 end
17 if current user == u then
18 StoreEmptyRelations (initialTensor);
19 end
20 userIndex++;
21 end

Algorithm 1: The algorithm for creating the initial tensor

• Firstly, the initial tensor is split into the three mode matrices and the
Singular Value Decomposition is computed for each mode matrix.

• Secondly, the dimensions are reduced for the matrices that are results
from the Singular Value Decomposition for each mode matrix. These
reduced matrices are multiplied to compute a core tensor.

• Finally, the reduced matrices are transformed, multiplications are ap-
plied. The factorized tensor is computed.

Generating a list of recommended resources

When the factorized tensor is computed, the recommendations can be re-
solved. It is possible to do this because the empty relations are known. The
value of an empty relation is the coordinate in an approximated tensor. It
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Data: Initial tensor
Result: Factorized tensor

1 Splits initial tensor into the first, second and third mode matrices and
computes SVD for each mode matrix;

2 splitIntoModeMatrices (tensor);
3 Computes a core tensor: applies dimensional reduction, executes
matrices multiplication;

4 computeCoreTensor (){
5 matrixDimensionalReduction ();
6 multiplyDifferentMatrices ();
7 };
8 Computes factorized tensor: transforms the three reduced matrices,
applies matrices multiplication;

9 computeFinalTensor (){
10 transformMatrix (reducedMatrix1,firstMatrixDimensions);
11 transformMatrix (reducedMatrix2,secondMatrixDimensions);
12 transformMatrix (reducedMatrix3,thirdMatrixDimensions);
13 multiplyDifferentMatrices ();
14 };

Algorithm 2: The algorithm for tensor factorization

is iterated through the list of the empty relations and checked if a score in a
concrete coordinate of the factorized tensor is positive. If so – the resource
is resolved and an object of Recommendation is created and added to the
list of recommendations. Finally, the list of the recommendations is sorted
by the scores.

p-core recommender

This recommender uses the same algorithms as a basic recommender. The
only difference is how the sets of users, tags and resources are generated
– it is done as described in a section 4.3.3. As the sets are resolved, the
algorithms of a basic recommender are used to provide the list of the rec-
ommendations.

3.2.5 Statistics layer

This is a collection of the simple helper classes that computes metrics and
provides the additional information about the recommendations. The met-
rics are: precision, recall and f-measure (as described in 4.2.1). While ana-
lyzing the additional information it is possible to know which tags were used
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by the user and which tags were used to tag a resource. Also, the training,
evaluation sets and a top-N list (as described in 4.3.6) can be resolved.

3.2.6 Graphical User Interface

Using the GUI a user is able to select the data set, a particular user for who
the recommendations will be generated, the factorization method. In case
basic method is selected, the user has to provide a number of random users
to be used to construct the initial tensor. Otherwise, a user has to provide
the value for the variable p for p-core based factorization method.
The screenshots of the application are provided in the Figures 3.4, 3.5 and
3.6.

Figure 3.4: The main window of a recommender system

Figure 3.5: The main window with the generated recommendations

3.3 The Open source frameworks
We use the following frameworks for our recommender system:
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Figure 3.6: The statistics window for the generated recommendations

• Colt2 – to execute various mathematical operations on tensors and
matrices. It has a rich API and performs well. It is developed by the
scientists of CERN3 and it is used for the CERN projects.

• Hibernate – to manipulate data as the objects of Java. We described
our choice of Hibernate in the section 3.2.1.

3.4 Conclusion
We presented the design of the recommendation system based on the HOSVD
tensor factorization technique. The main advantages of this system are as
follows:

• Database layer enables to manipulate data items as objects. A number
of the different databases can be bound to the system.

• Flexible Recommendation layer can be easily extended or the new
factorization techniques can be implemented.

• Statistics layer can represent the statistics for any factorization tech-
nique. New metrics can be easily added.

• Graphical User Interface is simple to use.

• We use the powerful open source frameworks to minimize the efforts
and time when manipulating with data and tensors (also matrices).

2http://acs.lbl.gov/software/colt/
3http://www.cern.ch
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CHAPTER
4

Experiments

In this chapter we will present the goals, ideas and the results of the exper-
iments. We will introduce the data sets and describe the methods of our
experiments. Furthermore, we will present the results and the evaluations
of the experiments.

4.1 Data sets

4.1.1 MovieLens

We have integrated a MovieLens data set provided by a GroupLens Research
[19] to use as a data source when providing the recommendations. We have
chosen a data set that contains 10680 unique resources tagged by 71567
different users with 16518 unique tags. In total, there are tagged 71155
resources using at least one or more tags by the users.

4.1.2 Delicious.com

To be able to compare the differences of a performance, quality and the
statistics between the provided recommendations using a large data set (in-
troduced in a section 4.1.1) and a small one, we have incorporated to use
another data set provided by Choudhury, M. D. ([5]).
This data set contains tagged links by the users of a social bookmarking
website Delicious.com.
The data set contains only 67 distinct resources, 1292 distinct tags, 2388
unique users and in totally there are 8915 relations of user-tag(s)-resource.

4.2 Experimental evaluation
We have to define the evaluation techniques precisely so we will be able to
conclude the performance, the quality and the precision of the recommen-
dations. Also, we will try to identify which settings – reduction coefficients
suit the best when providing the recommendations using the real world data
sets (as introduced in a section 4.1).
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4.2.1 Evaluation methods

We will use the evaluation methods which are commonly used and accepted
in this research area. The methods are used to evaluate our conducted
experiments from the different aspects. We focus on the following aspects
and methods:

• Time performance of a given method or an algorithm – we will measure
the duration of a recommendation process.

• We will measure the sparsity of the used data to provide the recom-
mendations.

• The accuracy and quality of the recommendations (concrete metrics
can be found in the following section) – the intention is to measure and
observe how the precise and accurate are personalised recommended
items for a given user with his own interests and preferences.

The precision of the recommendations

We use the following commonly used metrics:

• Precision is the ratio of the number of recommended relevant items or
tags (we consider only items from the evaluation part of the data set)
from the top-N list of entries to N .

precisionN = |{relevant documents} ∩ {returned top-N documents}|
|{returned top-N documents}|

• Recall is the ratio of the number of recommmended items or tags from
the top-N list of entries to the total number of items or tags set by a
given user from the evaluation part of data set.

recallN = |{relevant documents} ∩ {returned top-N documents}|
|{relevant documents}|

Documents in the formulas represent resources or tags that were rec-
ommended to a particular user.

• F-measure is a metric which involves the previously described recall
and precision indicators. There is computed an average of both met-
rics. The best results of the recommendations are achieved when F-
measure reaches one.

F-measure = 2 . precisionN .recallN
precisionN + recallN
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4.3 Experimental configuration

4.3.1 Environment and programming language

All the experiments will be conducted on Windows 7 32–bit operating sys-
tem running on Intel Core 2 Duo @ 2.66GHz CPU with 4, 00 GB (3, 25 GB
usable) RAM. The recommendations will be generated using our own im-
plementation (as designed in a chapter 3).
The recommender is implemented using Java 6 programming language.

4.3.2 Data sets

To be able to conduct the experiments, we have to prepare the data sets.
Each data set will be divided into the two parts: the first part will represent
a training data which will be used for computing the personalised recom-
mendations for a user. The second part of a data set – evaluation part –
will be used to verify the quality and the accuracy of the recommendations
– to find out how many tags or resources from the evaluation part were
recommended for a given user. We will divide the original data set into the
training and the evaluation parts with a ratio 75%:25%, respectively.
The data sets are split according to the data of a user, for whom the rec-
ommendations will be provided.

4.3.3 p-core

To make the data more dense we will apply so called p-core filtering – which
means each user, resource and a tag has to appear at least p times in the data
set [9]. Our implemented system will generate a list of the recommendations
of the items for a selected user with the particular tags. We will use the
following p-core values:

• 150, 120 and 90 for the MovieLens data set;

• 15 and 12 for the Delicious.com data set.

4.3.4 Reduction coefficients

To find out how the reduction coefficients c1, c2 and c3 influence the quality
of the recommendations, we will generate the recommendations for the same
six users using all the combinations of the coefficients from the following set:
{0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95}.
The coefficients are reducing the sizes of the resulting matrices from the
SVD for the i-th mode matrices. For more details, please see the formulas
2.11, 2.12.
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4.3.5 Users

Using a given p-core value and a combination of the coefficients, we will
compute recommendations for the six different users:

• two the most active users;

• two users with an average activity;

• two the least active users.

The average values of the recommendation results for these users will be
reported.

4.3.6 Top-N list

To be able to count precision, recall metrics and f -measure, we will consider
the first top-10 recommendations as a top-N list. The recommendations will
be sorted according to the values provided by the factorized tensor.

4.4 Results

4.4.1 Results of the experiments using MovieLens data

We conducted a number of the experiments using MovieLens data set. The
results are presented in the following table: 4.1.

p-core Size (users ×
resources ×

tags)

Reduction
coefficients

Sparsity Average
precision

Average
recall

F-
measure

Average
factor-
ization
time

150 108× 30× 75 c1 = 49
c2 = 14
c3 = 64

99.672% 67.4% 67.4% 0.674 1549 ms

120 133× 67× 99 c1 = 86
c2 = 23
c3 = 55

99.802% 36.6% 32.5% 0.343 14835
ms

90 167× 120×
159

c1 = 75
c2 = 102
c3 = 119

99.884% 31.6% 24.3% 0.268 187642
ms

Table 4.1: Results for the MovieLens data set

According to the presented results we can conclude the following findings
and observations:

• Time performance – when the size of a tensor increases, the recom-
mendation process takes more time. The main reason is the computa-
tionally expensive tensor factorization.
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• Reduction coefficients – when they are optimized, the more accu-
rate results are obtained. The coefficients have to be estimated each
time the size of the input data is changed. Also, we discovered that
when the coefficients are not optimal, the quality and the time of the
recommendations are affected negatively.

• Training set – when the size of a training set is relatively small, the
precision and recall metrics decrease. Therefore, the considered least
active users negatively influenced the average metrics.

• Sparsity – when the value of a p-core is greater, the more relations
between the users, tags and resources are involved in the tensor factor-
ization. Therefore, a sparsity decreases and the more precise results
are provided.

• Empty relations – during the experiments, we could observe the
cases when a particular user did not interact with the set of resources
and tags. This resulted into involving useless information to the initial
tensor and to the following factorization process.

• Memory requirements – we experienced that the HOSVD factoriza-
tion requires a lot of memory resources. Due to the exceeded memory
limits, the recommendations were not computed when the size of the
tensor was greater than 251 users, 338 tags and 382 resources (p-core
= 50).

4.4.2 Results of the experiments using Delicious.com data

We conducted a number of the experiments using Delicious.com data set.
The results are presented in the following table: 4.2.

p-core Size (users ×
resources ×

tags)

Reduction
coefficients

Sparsity Average
precision

Average
recall

F-
measure

Average
factor-
ization
time

15 55× 67× 125 c1 = 19
c2 = 24
c3 = 94

99.869% 25% 25% 0.25 5831 ms

12 97× 67× 187 c1 = 34
c2 = 27

c3 = 140

99.90% 33.3% 33.3% 0.333 27466
ms

Table 4.2: Results for the Delicious.com data set

Based on the results of the experiments, we can conclude that the observa-
tions described in the previous section (4.4.1) are still preserved.
However, we discovered that a problem of a small training set was more
severe:
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• Training and Evaluation set – most often the recommendations
were computed using a very small training set and even smaller eval-
uation set (we split the users data to the training and the evaluation
sets with a ratio 75%:25%, respectively). A small size of the evaluation
set influences the precision metric negatively. This is because we re-
strict top-N list to the size of the evaluation set if the size is less than
a constant N , e.g. if the size of the evaluation set is 1, the resource
from this set must appear in the top-1 position. Such cases make pre-
cision and recall metrics inappropriate and unsuitable. Therefore, the
average precision, the recall and the F-measure results in the previous
table have no information value about the quality of the recommenda-
tions. This experience will force us to replace the given Delicious.com
dataset with the larger one so the evaluation set will be big enough.
We will exchange this data set during the next semester.
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CHAPTER
5

Problems and proposals

The possible extensions and improvements for the recommendation systems
based on a tensor factorization technique will be introduced. We will state
the problems of these systems identified during the analysis and the ex-
periments. Finally, we will present the proposals that could eliminate or
minimize the impact of the described problems.

5.1 Recognized problems for tensor based recom-
menders

The introduced recommendation algorithms based on the tensor factoriza-
tion overcome most of the state-of-the-art techniques and provide the accu-
rate and precise results.
However, we identify the problems and issues of such systems. They are
based on the theoretical knowledge gained during the analysis and the prac-
tical experience from the conducted experiments. We will describe them in
the following sections.

5.1.1 Time performance

The introduced techniques in the sections 2.3.1, 2.3.2, 2.4.1 must compute
tensor factorization in the offline mode because of the long-lasting computa-
tions. We verified this during the experiments as explained in the paragraph
of the section 4.4.1. This problem depends on the size of the data set – using
the real world data, a process of the tensor factorization becomes computa-
tionally excessive and expensive. Furthermore, when the additional dimen-
sions are introduced the factorization turns into the unfeasible process (i.e.
we assume a tensor with 4 dimensions, where each dimension has 100 items.
The resulted tensor contains 100 millions entries). Therefore, four and more
dimensional tensors can be only a concern of the theoretical studies. During
the HOSVD factorization three distinct operations of the Singular Value
Decomposition must be applied to the i-th mode matrices. The results are
multiplied among each other to obtain a core tensor. In addition the re-
sults are multiplied with the core tensor to obtain the final approximated
tensor which will be used for the recommendations. The execution time of
the mentioned operations depends on the sizes of the involved matrices and
tensors.
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RECOMMENDERS

5.1.2 Incomplete interpretation scheme

The basic HOSVD model (2.3.1) interprets the input data and builds the
initial tensor in a semantically restricted way. It considers only the two
distinct interpretation cases, the former is when a particular user has tagged
a given resource with a tag (positive case) and the latter is for all other
situations. The second interpretation case is represented with a 0 weight
and occupies over 99% of all entries in the initial tensor (2.4.1). This causes
a sparsity problem which is described later in this section. The described
interpretation scheme does not reflect correctly the preferences of a user
and the recommendation results are not so accurate. There is no distinction
between so called the negative cases – when a user has observed a resource
but has not assigned any tag to it and a resource was not observed by the
same user.

5.1.3 Sparsity

Sparsity is a severe problem that affects negatively the time performance of
a recommender and mainly the quality of the recommendations – it is clear
from the experimental results presented in the sections 4.4.1 and 4.4.2.
We observed the initial tensors have mostly empty relations (when the val-
ues in these tensors are zeros). The empty relations do not benefit to the
time performance nor quality. The experimental results show that the least
sparsity was greater than 99% – therefore, we consider reducing a sparsity
as a key aspect to achieve more accurate recommendations.

5.1.4 Memory

Analysing the results of the conducted experiments we made an observation
in the paragraph of the section 4.4.1 that a tensor factorization process
requires a significant amount of the memory resources. The need for the
resources increases more dramatically when there is used a bigger data set.
We must to admit that the experiments were conducted using the samples
of the real world data sets and we faced the memory problems generating
recommendations using these snapshots. To be exact – the memory was
consumed by the tensors which are the 3 dimensional matrices and the
other matrices that are created and used during the computations. Each
tensor/matrix is filled with the values of a type double. Each entry of
a tensor/matrix consumes 8 bytes of a memory. During the factorization
process there are created the following data structures:

• initial tensor (using a huge amount of data);

• factorized tensor (the same size as the initial one);

• core tensor (usually smaller than the initial one);
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• three mode matrices (where the amount of rows is the same as 1 of
the 3 dimensions in the initial tensor and the amount of columns is
the result of the multiplication between other 2 dimensions of the
initial tensor) and other temporary matrices as the inner results of the
computations.

It is clear that the demands for a memory are very high when using the real
world data sets and it complicates the process of a tensor factorization.

5.1.5 Training set

Almost every learning technique in the area of machine intelligence performs
better when there is provided a big enough training set. It is crucial to pro-
vide as rich as possible data set for the recommender because the precision
metrics directly depend on a size of the training set (as observed in the
paragraph of the section 4.4.1).
However, it is important to avoid overfitting of the recommender with a
training set – the quality of the recommendations and the time performance
can decrease just because of a too large initial tensor.

5.1.6 Reduction coefficients

During the HOSVD factorization, the outcome matrices from the SVD of
the i-th mode matrices are reduced by the reduction coefficients c1, c2, c3
and used to construct a core tensor S by the formula 2.11. The authors pro-
pose this reduction to remove a ’noisy’ information and suggest to set these
parameters to the 70% of the most singular values. During the experiments
we found out that this is not always the most accurate solution and it varies
for each data set and even these parameters are distinct for the each mode
matrix involved in the factorization. These parameters have to be tuned
either when a new data set is introduced or when a size of the existing one
is significantly changed. It is a computationally expensive process, but it
must be considered to achieve the most accurate recommendations.

5.2 Proposed improvements
We mentioned the various issues for the algorithms based on the tensor
factorization technique in the previous section 5.1. We will try to introduce
the different techniques which could decrease the impact of the existing
problems or even solve them. Also, we will try to involve pre- and post-
filtering techniques to address the problems.
We describe the main principles of each method, how they could improve
the existing techniques and how they could be implemented.
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5.2.1 Pre-filtering

Proposal

Contextual information is used to select only the appropriate users, tags
or resources and filter out not related information. For the recommenda-
tion systems based on a tensor factorization, there must be built a multi-
dimensional tensor. Our idea is to apply pre-filtering in a such way it would
reduce and minimize one or more dimensions of the initial tensor. The re-
sulted tensor will contain only the relevant entries and then the HOSVD
would be applied. This approach could be used when the contextual recom-
mendation is required. The advantage of pre-filtering is that the amount of
users, resources and tags will be smaller, but more dense as only the similar
or close tags, users and resources will be involved. On the other hand a
tensor factorization would be computed each time the recommendations are
required by the user.

Addressed problems

This proposal could decrease the impact of the following problems:

• sparsity;

• memory;

• time performance;

• training set;

• cold start problem;

• eliminates the problem of handling data updates.

During the experiments we observed that a factorized tensor can be com-
puted in about 1.5 second and provide the most precise recommendations
compared with the other results. Also, the initial tensor was the least com-
pared to the others used. However, the sparsity still was unacceptably high.
There will be no need to implement the complex solutions to handle arrival
of new users, tags and resources (as analysed in a section 2.3.3) because the
tensor factorization will be re-computed each time when the recommenda-
tions are requested.
The Figures 5.1 and 5.2 represent the idea – a huge initial tensor with sparse
data could be reduced to the small personal tensor with dense data.

Idea of the implementation

These facts inspire a proposal that may minimize or eliminate the mentioned
problems:
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Figure 5.1: A huge initial tensor with sparse data

Figure 5.2: A small personal initial tensor with dense data

1. When generating the recommendations, build the personal initial ten-
sor for the user for which the recommendations will be provided. Such
tensor will be tuned to provide the recommendations for a single user
only.

2. Personalized tensor must be small enough (having a similar number of
the relations as the case of the experiments – 108×30×75 (tags × users
× resources)) – it will not consume a lot of memory, the computations
will be executed within the acceptable time frame.

3. The training set must be enriched with the tags that have the highest
similarity scores with the preferences of a current user (Tag Similarity,
as analysed in the section 2.2, formula: 2.2). The resources, tagged
by these tags, can be easily resolved and incorporated into the initial
tensor. As a result – a rich training set will be used. It would also
decrease a cold start problem.

4. More dense data should decrease the sparsity.
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5. There will be no need to handle new data – the recommendations
would be generated in 1.5 second or even faster – it means there is no
need to store a computed factorized tensor in a memory nor manage
it.

Because of a rich training set it would be possible to recommend up to
N − 1 resources to the user (where N is a number of the distinct resources
in the initial tensor and at least one resource should be tagged by the user
to compute Tag Similarities). Such number of the recommendations should
be large enough to satisfy the needs of the users.
Tag similarities can be computed in the off-line mode and stored for the
re-use – there is no need to re-compute the similarities as the textual repre-
sentation and the semantic meaning stay the same once computed.
We assume the proposed extensions for building personalized tensor will not
be computationally expensive. Even more, they can be implemented in our
current system (as designed in the section 3).

5.2.2 Post-filtering

Proposal

Similar proposal to the pre-filtering, the only difference is that filtering
according to a given contextual information is performed after the tensor
factorization is computed. This method alone would not improve time per-
formance nor storage demands but could offer contextual based recommen-
dations.
We propose to compute the recommendations for the p most active users
using their data to create the initial tensor and apply post-filtering for the
set of the recommended resources.

Addressed problems

We assume incorporating partly p-core filtering (when only the p most active
users and their data is used) with post-filtering could help to improve the
results and decrease the impact of these problems:

• memory;

• time performance;

• training set;

• eliminates the problem of handling data updates.

The experimental results showed that using the data of the most active users,
the most popular tags and resources the time performance and quality of
the recommender is promising. However, in most of the cases the user, for
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which the recommendations need to be computed, will not be among the
most active users and the factorized tensor will not reveal the recommenda-
tions for a user. This problem may be solved finding the N most relevant
recommendations for a current user between the top recommendations for
the p most active users. The idea of a proposal is shown in the Figure 5.3

Figure 5.3: Post-filtering applied to the top recommendations for the p most
active users and the tags used by the user

Idea of the implementation

These are the key points to realize the proposal:

1. Resolve all the tags used by the user.

2. Make the initial tensor using the data of the p most active users.

3. Compute the recommendations for these active users using their train-
ing sets.

4. Compute the similarities between the tags of a user and the tags of
recommended items as analysed in the section 2.2.

5. Pick the N most similar tags and resolve the resources were tagged by
them. This will be the list of the recommendations for a user.
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This proposal does not address so many problems as a pre-filtering, but
we think it is worth investigating it. Nevertheless, the memory and time
performance problem will be minimized because of the partly applied p-core
method. The most active users will have rich training sets. The sparsity
should not be so high as using the random data. The recommendations can
be computed from the scratch, because of the acceptable time performance
– there is no need to handle the new data. However, it may be difficult to
choose an optimal value for p.

5.2.3 Correlated feature hashing

Proposal

Another proposal is to reduce the size of the initial tensor using a correlated
feature hashing function. The idea is to share and group tags with the
similar meaning. To group similar tags we would use DICE coefficient:

DICE(i, j) = 2.cooccur(i, j)
occur(i) + occur(j)

where each word i is from all tags and j belongs to the top F most frequent
tags. We took inspiration from [1] where authors used this hashing function
in information retrieval algorithm and reduced dictionary size from 2, 5 mil-
lion words to 30000 most frequent words with relatively good results. Our
idea is to reduce a number of all tags to the F most frequent and then apply
tensor factorization.

Addressed problems

We believe hashing function would help to achieve an improvement because
of these minimized problems:

• sparsity;

• memory;

• time performance.

It is clear that with a help of a hashing function the size of an initial tensor
will be much smaller, so it should reduce sparsity and the needs for the
memory. The recommendations should be also computed faster. The tensor
factorization must be re-computed only when new tags are introduced or
when tags frequency will be changed.
One of the possible drawbacks of this proposal may be the need of fre-
quent clustering of the tags and the algorithm to identify the resources
using hashed tags (when new tags will be introduced). We will expand on
these issues in the following section.
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Idea of the implementation

We present the key points of our proposal:

1. Identify the most frequently used tags.

2. Apply hash function and cluster the tags into the groups.

3. Build the initial tensor using only the most frequently used tags.

4. Execute tensor factorization.

5. Compose a list of recommendations.

The main challenge may be to identify a real recommended resource know-
ing a recommended hashed tag. It would be possible to do this if a unique
identifier would be assigned to a tag. Also, the binary relations of the unique
identifier and a value of a hash function on the real tag should be preserved.
Furthermore, there is needed an algorithm to check if a current resource is
tagged with one of the most frequently used tag. If not – if it belongs to the
group of the tags identified by the current frequent tag.
Also, it is needed to handle the new tags – the hash function should be
re-applied when a new tag is introduced or the frequencies of a tag usage
had change.
Moreover, it is possible that this method could reduce the training set dra-
matically and affect negatively the quality of the recommendations.

5.2.4 Sparse matrices

Proposal

We designed and implemented the recommender based on a tensor factor-
ization technique not caring about the density of the data. As it turned
out, the real world data is sparse and it affects negatively the outcomes of
a recommender. The idea is to take an advantage of the existing sparse
data structures to present the initial tensor and all the other tensors and
matrices.

Addressed problems

It is possible that using the adapted data structures for the sparse data we
could reduce the following problems:

• sparsity;

• memory;

• time performance.
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In stead of trying to solve the sparsity trying to use pre-filtering (as proposed
in the section 5.2.1) or the hashing (as proposed in the section 5.2.3), this is a
proposal to use the special data structures and algorithms that are specially
designed to perform well using the sparse data.

Idea of the implementation

The open source framework Colt (as introduced in the section 3.3) offers
the API for the sparse tensors and matrices. It is claimed it is very efficient
handling data – the zero values do not require any memory. Moreover, the
values that become zeros are ready to release the memory. The memory is
reclaimed automatically by Colt, but it is possible to execute this operation
manually. Furthermore, the time complexity issuing the basic operations on
the matrices/tensors built using sparse data structures, is O(1).
There is a number of the recently proposed ideas how to improve the time
performance when computing a factorization using the sparse data: [11],
[12], [20]. There is suggested to take an advantage of a modern hardware of
the computers – to employ the parallel computers or the processors of the
multiprocessor workstations. It means the factorization algorithm must be
highly scalable.

5.2.5 Different interpretation schemes

Proposal

The idea is to create the initial tensor with the different interpretation
schemes. The 0/1 scheme given by the formula 2.9 in the section 2.3.1 is se-
mantically restricted. During the experiments, where the basic 0/1 scheme
was used – we could observe that the quality of the recommendations was
not good enough. Therefore, we will consider the possible extensions of the
0/1 scheme and mainly we will try to integrate Post-Based Ranking Inter-
pretation scheme (PBRI). PBRI interprets the input data in a different way
and it solves the semantic drawbacks of the 0/1 scheme. The comparison
of both interpretation methods is analysed deeply in the section 2.4.1. We
believe that usage of this scheme could significantly improve the quality of
the recommendations because of these arguments:

• Authors of the paper [17], clearly showed the contribution of the PBRI
in the experiments part (this method outperformed HOSVD factoriza-
tion with the 0/1 scheme and the other state-of-the-art recommenda-
tion systems).

• We could verify during the experiments that constructing the initial
tensor should be applied with more than just two semantically distinct
cases as the 0/1 scheme does.
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We will try to modify and combine PBRI with the different factorization
techniques that were introduced in the analysis part. According to the
conducted experiments we will propose the most appropriate interpretation
function.

Addressed problems

This proposal could partially solve the following problems:
• sparsity;

• quality of the recommendations.

Idea of the implementation

The idea is to replace the current 0/1 function with the proposed schemes
and in combination with the different factorization techniques try to ob-
serve the quality of the recommendations. The described PBRI consists of
the ranking constraints and the learning phase – therefore, we will have to
adjust our architecture to allow learning process before a factorization will
be applied.

5.2.6 Various factorization techniques

Proposal

We will inspect and explore the possible tensor decomposition techniques.
Most of the current approaches are based on Higher Order Singular Value
Decomposition (HOSVD). This technique decomposes the initial tensor into
the core tensor and the factor matrices for each dimension (users, tags and
resources). The approximated tensor is the result of a multiplication be-
tween the core tensor and the factor matrices (see the formula 2.12 in the
section 2.3.1). This multiplication is implemented as a nested sum of degree
3 and we can conclude that time complexity for predicting one relation be-
tween user, tag and resource is O(k3), where k = min(c1, c2, c3). However,
there exist the other factorization methods like: Non-Negative Tensor Fac-
torization (NTF) and Canonical Decomposition (CD) also called Parallel
Factor Analysis (PARAFAC). The main advantage of CD is a better time
complexity as was showed in the section 2.4.2 – the proposed recommender
has a linear time complexity and provides at least as good results as the
other systems based on HOSVD factorization. The difference between the
HOSVD factorization and CD technique is that a core tensor is a diagonal
tensor, therefore the following holds for the entries of the tensor:

ŝu,i,t =
{

1, if u = i = t

0, else
(5.1)
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The final tensor is approximated according the formula 2.21 in the section
2.4.2. The linear time complexity of the CD is caused by the construction of
the core tensor and therefore there is only need for one loop which iterates
through the diagonal entries of the tensor. The NTF is the special case
of factorization when values in the approximated tensor can be only non-
negative. We could observe negative values in the resulted tensor during the
experiments and these cases were confusing, hardly interpretable. Therefore,
the NTF could remove this problem by the non-negative constraints. The
time complexity of the NTF depends how the core tensor is constructed –
either linear when the core tensor is diagonal or cubic time when the core
tensor contains entries not only on the diagonal positions. Our intention is
to replace HOSVD factorization with the CD and NTF techniques and find
out if the given methods will improve the time performance and quality of
the recommendations.

Addressed problems

This proposal could decrease the impact of the following problems:

• time performance;

• negative values in the approximated tensor.

The proposed CD has linear time complexity, which clearly overcomes the
HOSVD factorization. The only issue is the trade-off between the time
performance and quality of the recommendations.
The usage of the NTF should solve the problem of the negative values in
the approximated tensor.

Idea of the implementation

The mentioned techniques would replace the HOSVD factorization, therefore
integration into our current architecture should be smooth and easy-going.
The implementation of the factorization methods will be done according the
pseudo code and formulas from the articles [18], [6] and the other available
literature.

5.3 Conclusion
We proposed a number of the possible extensions which we will implement
and evaluate during the next semester. The proposed techniques were de-
veloped and formulated in a such way that the recognized problems will be
eliminated or the impact of them would be decreased. We assume they could
benefit for achieving the improvements for the tensor based recommender
systems. There is a number of the possibilities to combine the mentioned
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techniques into the hybrid approaches, but a number of the experiments will
have to be conducted to verify our assumptions.
In the following Figure 5.4 we present the ideas how our proposals could be
combined:

• Preparation of data. Pre-filtering proposal could be applied no
matter which tensor factorization technique will be chosen. More over,
we could try to apply hash function to make the initial tensor smaller.

• The proposed interpretation schemes are independent from the
other phases like: preparation of data, factorization techniques etc.
Therefore, we will try to investigate which interpretation scheme is
the most suitable and best performing within the all combinations of
the other phases (i.e. different factorization techniques, pre-filtering
etc). We expect that improved interpretation scheme should provide
more precise and personalised results. It is possible that during the
experiments we will observe and discover some unknown facts, aspects
which will help us to propose a custom interpretation scheme.

• Factorization techniques. The techniques running in a linear time
could greatly impact the time of the production of the recommenda-
tions. However, we were not able to test the quality of the factorization
techniques running in the linear time.

• Filtering results. This step of the production of the recommen-
dations is independent from the other proposals and could be applied
freely no matter which factorization technique or interpretation scheme
is used.

61



5.3. CONCLUSION

Figure 5.4: The combination of the proposed improvements
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CHAPTER
6

Conclusion

The recommendation systems based on the tensor factorization techniques
were the main concern of our studies during this semester. The systems
based on the different factorization techniques like: Higher Order Singu-
lar Value, Non-Negative Tensor factorization and Canonical Decomposition
were described.

During the analysis we discovered that these systems outperform the cur-
rent state-of-the-art recommenders. However, they have the drawbacks that
should be considered and resolved. Also, we investigated the hybrid recom-
mendation system that is not based on the tensor factorization. This system
is interesting because of the ideas how to calculate similarities between the
syntactically different tags. We provided a comparison table that shows the
main advantages and disadvantages of the different factorization methods
from the various perspectives.

During the design phase we made the main decisions about the recommen-
dation system. The recommender layer was designed according to the model
described in the section 2.3.1. We described the main layers of the applica-
tions as Database, Data structures, Utilities, Recommender, Statistics and
Graphical User Interface.

We conducted a series of the experiments using the implemented system.
We have chosen to use two different data sets that are the samples of the
real world data. According to the results of the experiments we discovered
and proved the number of problems that our investigated recommendation
system suffers from.

We proposed a number of possible solutions to the known problems from
the analysis and the problems discovered during the experiments. We have
grouped the proposals according to the problems they are addressing. Each
of the idea can be implemented independently to the other ideas. Moreover,
the combination of the ideas can be chosen to achieve the best results.

The main goals of our work during the next semester are as follows:

1. Investigate each of the discussed proposals deeply. Generate new ideas
based on the most promising. Provide and extend the arguments why
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the proposed ideas can work or can not.

2. Implement a prototype of the recommendation system that will em-
brace the best ideas how to improve the process of the recommenda-
tion. Conduct the experiments using the prototype and the same data
sets to discover and verify the expected improvements.

3. Precisely define the advantages of the most promising factorization
techniques. Provide an extensive overview of them, extended with the
most contributing techniques from the other phases (techniques used
within the interpretation schemes, preparation of data and filtering
results phases).

4. Propose a recommendation system that embraces the currently known
advantages and our proposals that minimize or eliminate the current
problems.
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