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Preface

This report was written during the Dat5 project period by group d505a.

The intended audience of the report are people who have at least the
same general level of knowledge in computer science as the authors,
although little knowledge of GPU programming is assumed.

A note on numbering In this report figures, tables and equations
have a number of the form z.y where z is the page on which they were
inserted and y is a unique number for that page. This should make it
easier for the reader to locate the reference in question, as it will be
found on either that or the next page. We realize this breaks with the
tradition of using section numbers and may produce some confusion,
but we believe that the benefits makes up for these disadvantages once
the reader has read this introduction.

Finally, we would like to thank:

Bent Thomsen for supervising throughout this project.
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For, usually and fitly, the presence of an introduc-
tion is held to imply that there is something of
consequence and importance to be introduced.

Arthur Machen

Introduction

In this report we document and develop an implementation of a toolkit
that enables programmers who have little experience with GPU pro-
gramming to take advantage of the fast parallel computations that to-
days graphics cards are capable of.

The product is aimed at programmers who do not necessarily have a
degree in Computer Science, but the intended reader of the report is
somebody who has at least the equivalent of bachelor degree in Com-
puter Science and has had some experience with compilers and func-
tional languages.

This report is structured as follows: in chapter 2 we introduce the prob-
lem statement as well as the motivation for our project along with a
short history of GPU programming. In the analysis part we present
various things people have used the GPU to gain speedup, then we
describe how OpenCL is structured and how it is used.

In chapter 6 we presents a number of considerations that must be
taken into account in order to improve the performance of the code run-
ning on the GPU. In chapter 7 we look at some ways to measure and
improve programmer productivity, chapter 8 is devoted to paradigms
which have little in common with OpenCL but which may result in im-
proved programmer productivity. Chapter 9 looks at ways one might
benchmark a GPU programming environment.

Chapters 10, 11 and 12 an devoted to documenting how we imple-
mented a small simple proof of concept for a toolkit to make it easier to




CHAPTER 1. INTRODUCTION

program the GPU.

In the final part of the report we evaluate the project and present sev-
eral ideas for extensions and continued development of the toolkit.
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If we can really understand the problem, the an-
swer will come out of it, because the answer is not
separate from the problem.

Jiddu Krishnamurti

Problem statement

A GPU is a very efficient chip for concurrent floating point calculations,
but at present it is programmed in a rather low-level C-like language.
We want to examine whether it is possible to make a better high-level
abstraction, and look at how its performance might be benchmarked
against alternatives, both aimed at the GPU and the CPU.

2.1 Motivation

Before we begin programming the GPU, we have to answer the obvious
question: why?

CPU GPU
4 cores

Figure 11.1: GFLOPS on a Xeon E5420 CPU versus a Tesla C870 GPU
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CHAPTER 2. PROBLEM STATEMENT

The answer is equally simple: because the GPU, when utilized cor-
rectly, can do floating point operations much faster than the CPU. Since
the GPU architecture is parallel by nature, it will become even more
powerful as transistors continue to shrink, giving room for more cores
while the clock-frequency remains relatively unchanged.

Our test equipment contains a quad-core Intel Xeon E5420 processor
and two NVIDIA Tesla C870 GPUs. Even if all four CPU cores are fully
utilized, the Xeon can deliver no more than 40 GFLOPS[Int], while
each Tesla card is able to achieve up to 350 GFLOPS performance (512
GFLOPS peak)[Nvib].

2.2 Differences between the CPU and GPU

It would be wrong to simply compare the theoretic speed of the CPU
and the GPU, because they are two fundamentally different architec-
tures — a GPU is a SIMD[]architecture, whereas the CPU is a SISD?|ar-
chitecture; there are things for which one architecture is better suited
than the other.

Because the CPU operates on one piece of data at a timeﬂ it is not able
to take advantage of situations where the same instruction should be
carried out on different pieces of data; it is certainly possible for it to
do so but it will not happen as fast. On the other hand, it is good at
applying different operations to different data.

Contrary to the CPU, the GPU typically has a larger number of threads
that all run the same instructions on different data, such as computing
the sine value of a large set of input data. The GPU is less efficient in
situations where the operations on the data vary, such as computing
the sine value for some of the input but applying another operation to
the rest. For concurrent operations it can however be very fastﬂ

1Single Instruction, Multiple Data

2Single Instruction, Single Data

3Multicore processors can operate on more than one thing at a time, but most
CPUs today have very few cores compared to even the cheapest graphic cards so it
does not fundamentally change the way things work.

4350 GFLOPS on the Tesla C870[Nvib] versus 40 GFLOPS on the Xeon
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2.2. DIFFERENCES BETWEEN THE CPU AND GPU

Another reason to focus on the GPU model of development is the in-
creasing number of CPU cores. As a result of the continuing shrink-
ing of the transistors, extra space on the CPU die is no longer used to
make it faster, but to give it more and more cores. If Moore’s law stays
true and the number of transistors, and thereby cores, double every
18 months, in 15 year we will see 2048 core processors as common as
dual-cores are today. This means the CPU of 2025 may look more like
the GPU than the CPU of 2010.

2.2.1 A Short Overview of the Architecture of a GPU

This section provides a short overview of the architecture of the GPU;
a more detailed overview will be given in [6]

Host
Input Assembler Setup / Rstr / ZCull

Vix Thr(l-zad Issue Geom Thlread Issue  Pixel Thread Issue

| —
ANEE AR T
=== | | FHE
= =k e e ==

Figure 13.1: Block diagram of a Geforce 8800 graphic card [Nvial.

Figure [13.1) shows a block diagram of the architecture of the Geforce
8800, on which our Tesla cards are based. As seen in the figure the
GPU has a number of blocks, each of which contains a large number of
threads per block. Per specification[Nvil0al, the threads, in groups of
32, must execute the same instruction. This gives some idea about the
cost of running code that treats each piece of data differently.

E5420[Intl.
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CHAPTER 2. PROBLEM STATEMENT

2.3 A short history of GPU programming

While many of the technologies in general purpose GPU programming
are new, it does have a relatively long history dating back to at least
1978[DOLG™, p. 36]. However, it was not until the beginning of the
2000’s that the OpenGL API and DirectX added programmable shading
to their capabilities[Wikc], exposing GPU programming to the mass
market.

Until CUDA and CTM emerged in 2006[Nvi10al[AMDDb], programmable
shaders were practically the only way to program the graphics card in

consumer computers. Shaders were not designed for general purpose

computing and so put limitations on what could be done.

Along with the NVIDIA’s CUDA platform and ATI’s competing CTM
(Close to Metal) programming interface'|came the widespread exploita-
tion of GPUs to accelerate non-graphics related computation. The con-
cept of using GPGPUs (General Purpose Graphics Processing Units) as
a modified form of stream processor has become one of the hot topics
in parallelism, and is considered to be one of the next Big Things in
computing.

LCTM was short-lived and evolved to ATI CAL (Compute Abstraction Layer) as
part of the ATI Stream SDK in December 2007[AMDbl

14
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Analysis
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This is a world of action, and not for moping and
droning in.
Charles Dickens

Various uses of the GPU

This part of the report presents an variety of different things various
people have used the GPU to do. Some of these examples predates the
CUDA framework (they can be found it the survey paper[DOLG™]),
and instead uses programmable shaders to do the GPU calculations
with — a method that is both more difficult (since shader programming
is much more restrictive than CUDA or OpenCL, but works on almost
all GPUs) and unlikely to be as effective; nonetheless some impressive
speed improvements can be found in these examples.

Since there are so many different things one could use GPU program-
ming for, this part does not contain a complete survey. Instead of pre-
senting a complete survey, we aim to give some idea of what GPU pro-
gramming has been used for so that we might better understand its
benefits and disadvantages.

3.1 Cryptography

One of the areas where more computer power is always desirable is the
area of cryptography: if we have enough computational power to en-
crypt something, others will desire more computer power to break the
encryption. If they have enough computer power to break the encryp-
tion, we desire more power to use a better encryption method.

In addition to the aforementioned speed requirements, cryptography is

17



CHAPTER 3. VARIOUS USES OF THE GPU

also well suited for GPU acceleration since many modern encryption
standards, such as AES, encrypt the plain-text as a series of blocks.
Each of these blocks can be encrypted separately from the rest, so a
GPU implementation can take advantage of this to encrypt the input
in parallel.

We will not describe AES in detail here but all the details, as well as
source code, can be found in[Sch95] under the name Rijndael.

[GRV10] describe an implementation of AES which takes advantage of
the GPU to achieve speed-ups of about 5 times, compared to a straight
CPU implementation.

Unfortunately one cannot just use his method directly, because although
the blocks can be encrypted separately doing so means that the blocks

cannot be chained — and an attacker can change the order of a blocks as

well as delete any number of blocks. In addition pattern in the plain-

text may leak into the blocks (see Figure (18.1(a)), alternatively each

encrypted block can be xor’ed against the plain-text on the next block.

Doing so prevents the patterns from showing through the encryption

and means that no part of the file can be changed without the resulting

file being gibberish. This is what has been done to Figure

(a) The original (b) Encrypted with- (¢c) Encrypted with
image[tux] out chained blocks chained blocks

Figure 18.1: An image encrypted with and without chained
blocks[Wikal

This, however, does not mean that the research is not useful: one can
easily decrypt AES with chained blocks in parallel and a server with
more than one client can achieve the speed-up by encrypting more than
one stream at once.

18



3.2. SIMULATIONS

The real benefit of GPU programming would be for those who are in-
terested in breaking encryption. Due to any encryption scheme being
far more difficult to break than to use, the code breaker will need much
more computational power than the user of the code.

Indeed that has already been achieved[Rot] using Amazons new GPU
cluster instance to bruteforce the value of 16 SHA1 hashes in 49 min-
utes (at a cost of only $2.10).

3.1.1 Pyrit

Pyrit is a tool designed to speed up password guessing for wireless
access points protected by WPA-PSK (i.e. access points where each
user authenticates with the same shared key), using both GPUs and
CPUs. According to their own benchmarks, they are able to compute
89.000 keys a second using four GeForce 295GTX cards[prol0], while a
Core2Duo dual-core 2.5ghz with SSE2 can compute only 1.300 keys a
second[prol0].

According to [Anol, on the Amazon GPU cluster instance, Pyrit is ca-
pable of computing about 48088.8 keys per second, utilizing two Tesla
M2050 GPUs and two quad-core CPUs.

3.2 Simulations

Any simulation that can be run on a CPU can in principle be run on
a GPU. The degree to which their speed can be improved, however,
depends on the characteristics of the particular simulation: some are
interactive, e.g. the heart-surgery simulator described in [MHr], some
simulations enable the user to test a large number of possibilities with-
out having to incur the cost of creating them in reality, like the Protein
Structure simulation in [Pha05]. Finally, some of the simulations are
reconstructions of reality, such as the medical image reconstructor in
[PhaO5l].

As computational power increases, more and more simulations which
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CHAPTER 3. VARIOUS USES OF THE GPU

would previously not have been possible to do in real-time, suddenly
become possible. One such example is described in [LLWO04] where
GPUs are used to accelerate fluid computational dynamics to create a
real-time, interactive simulation of realistic flowing water.

Many simulations rely heavily on floating point calculations, and as a
result should be improvable by a great deal if written to take advantage
of the GPU. Indeed the Molecular Dynamics Simulation in [SFEVT09]
claims a speed improvement of 700 times over a single core solution,
when run on a GPU.

3.3 Artificial Intelligence

Artificial intelligence (Al) is a very broad subject and the meaning of
the term is not precisely defined, but informally it is the subject of mak-
ing computers do what was previously considered as requiring human
thought.

The field of AI makes use of a large number of different techniques.
Two of these being used in many different contexts to solve given prob-
lems are Genetic Algorithms, which are inspired by natural evolution,
and Neural Networks, which are inspired by the networks of neurons
in the human brain.

3.3.1 Genetic Algorithms

Genetic algorithms use ideas inspired by natural selection to evolve a
solution to a particular problem. They where first proposed by John
Holland (see the review in [HR75]).

The process of the Genetic Algorithm can be illustrated as follows [WWOQ9]:

1. Randomly generate a number of possible solutions to the problem
we are to find a solution for.

2. Evaluate the fitness of each member, and if the result is good

20



3.3. ARTIFICIAL INTELLIGENCE

enough or there are no more computational resources left, ter-
minate.

3. Select the elements which have a high enough fitness that they
should be used for the next generation, create the next generation
by mixing and mutating these individuals randomly based on the
calculated fitness.

4. Start over with step

Since step [2] often involves a large number of individuals whose fitness
need to be determined, and the determination of the fitness of each ele-
ment can be computed independently of the others, genetic algorithms
would be an excellent candidate for GPU optimization (i.e. it is embar-
rasingly parallel’). One paper[WWO09] describes such optimizations,
with speed-ups between 1.16 and 5.30 on the GPU. Further improve-
ment could properly be achieved since the implementation was done
without CUDA or OpenCL, and the random numbers were generated
on the CPU. Another paper[HBO07] shows speed-ups between 0.21 and
34.63 times, but it depends on which benchmarks are used and on the
choice of GPU and CPU. Both papers show higher speed-ups as the size
of the population increases.

3.3.2 K Nearest Neighbor

The K Nearest Neighbor is a technique useful in solving classification
problems. It works by organizing all the identified items into an N-
dimensional grid and then, for each of the unknown items located, the
k closest identified items, and assign the same classification to the un-
known item as the majority of the neighbors have. The K Nearest
Neighbor technique is widely used [GDBO08], but it is an O(i * u) al-
gorithmﬂ Because of this relatively high amount of computations rela-
tive to the amount of data, it is a good candidate for GPU acceleration.
This has indeed been done a number of times: [GDBO0S8|| got a 120 times

1An embarrasingly parallel workload is one for which little or no effort is required
to seperate the problem into a number of parallel tasks, usually in cases where there
exists no dependency between those tasks.

2Where i is the number of identified and u is the number of unknown items.
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CHAPTER 3. VARIOUS USES OF THE GPU

increase and [QMNO09] got an 88 times increase in performance; oth-
ers such as [LLWJO09] have also implemented a GPU version of this
algorithm.

22



CUDA

NVIDIA’s parallel computing architecture CUDA (Compute Unified De-
vice Architecture) was introduced in November 2006.

With the release of the ATI Radeon 9700 in October 2002, pixel and
vertex shaders were expanded to implement looping and lengthy float-
ing point math[Wikcl]. This indeed made programmable shaders much
more flexible than previously, but nonetheless not nearly as geared
towards General Purpose Computing on the GPU as with the use of
CUDA. While each new version of the Shader Model enables even more
programmability and features through graphics APIs[Wikb], CUDA
and ATI CTM expose the instruction set and memory of GPU hardware
so developers can fully leverage this parallel computation engine.

4.1 Platform & Code Portability

The CUDA platform is designed to support various APIs, namely CUDA
C, OpenCL, Microsoft DirectCompute and CUDA Fortran[Nvil0a]. De-
pending on the chosen API, developed GPU code may be compatible
with other platforms. The two CUDA-specific APIs, C and Fortran,
only support newer NVIDIA GPUs, just like Brook+ from the AMD
Stream SDK[Y| runs exclusively on AMD hardware.

CUDA C currently dominates the GPGPU programming market de-

Tn 2006, the ATI company was acquired by AMD
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CHAPTER 4. CUDA

spite being a proprietary and vendor-locked API. While there are ob-
vious reasons to favor an open and cross-vendor solution like OpenCL,
NVIDIA continuously promote their API as a better alternative, effec-
tively tying users to their platform and defending market share. By
keeping CUDA C ahead of OpenCL, offering the most complete set of
libraries and providing developers with free articles and courses, it con-
tinues to be the preferred choice for GPGPU programming amongst the
majority of developers.[Strbll[Mell]

4.2 CUDAC

CUDA C, commonly referred to as just CUDA, is a collection of NVIDIA
extensions for the C programming language. It allows the programmer
to define kernels: special C functions that are executed a certain num-
ber of times in parallel on the GPU. The contents of these kernels are
restricted to using a subset of C, as not all operations are supported on
the GPU. All memory handling on the GPU device is done manually by
the programmer and data is transfered between GPU and host memory
using special buffers.[NvilOal

4.3 Further Details

OpenCL, which is described in detail in the following chapter, looks and
behaves very similar to the CUDA platform.

The most important difference, and also the main reason to choose
OpenCL, is that it is a heterogeneous platform. CUDA, on the other
hand, is homogeneous, targeting only NVIDIA GPUs.

There are a few differences in terminology as well as some lacking fea-
tures in OpenCL, but otherwise CUDA and OpenCL roughly look the
same.[Strall

24



OpenCL

OpenCL (Open Computing Language) is an open industry standard
for making programs that can be executed on heterogeneous platforms
consisting of GPUs, CPUs, and other processors. It is a framework for
making parallel programming and includes a programming language,
API, libraries and runtime system. Unlike NVIDA’s CUDA and AMD’s
CTM, OpenCL is not bound to any specific hardware.

OpenCL was initially developed at Apple but later a proposal was made
in collaboration with NVIDIA, AMD, IBM and Intel. This proposal was
sent to the Khronos Group which is a non-profit member founded in-
dustry consortium that focuses on creation of open standards of CPU/GPU
acceleration. On December 2008 OpenCL 1.0 was released and on June
14 2010 a version 1.1 was made. Recently various hardware manufac-
turers including NVIDIA and AMD have added OpenCL to their GPU
acceleration frameworks.

5.1 Platform Model

As OpenCL is uniform across different hardware and OpenCL provides
an abstract platform model. Figure shows the OpenCL platform
model that consists of a host processor with some local main memory,
that is connected to one or more compute devices (CD’s). A CD is made
up of many Compute Units (CU’s) and memory regions as will be ex-
plained in subsection [5.3 These CU’s are again made up of many Pro-

25



CHAPTER 5. OPENCL

cessing Elements (PE’s) that are scalar processors running in lock-step.

When relating the platform model to hardware, a host is typically a
CPU and a compute device can typically be a GPU, multi-core CPU or
other processors like the Cell/B.E. A CU is comparable to a multipro-
cessor on a GPU or a core in a multiprocessor CPU. PE’s are comparable
to the smallest core on a GPU that can execute a single thread only On
a CPU a PE is comparable to a Arithmetic Logic Unit (ALU). [Coo010]]

The host interacts with a device by submitting commands. These com-
mands include execution tasks that are to be executed on the PEs. PEs
tasks are executes as Single Instruction Multiple Data (SIMD) or Sin-
gle Program Multiple Data (SPMD) units where each PE has its own
program counter. SPMD are typically executed on general purpose de-
vices such as CPUs while SIMD instructions require vector processors
such as GPUs or vector units in a CPU. [amdal]

Compute Unit
...... cul P
i .
Compute Compute |, Compute Global/Constant ™
Device Device Device Memory Data Cache | . | || Local Memory
T T
- Ei L
u 1L ~ W | Global | | Global /
‘ Interconnect Bus - [Memory | | Memory Private Memory
ﬁ Compute Device
Host Memory
os .
Processor o5l Ll

Figure 26.1: OpenCL Platform Model

5.2 Execution Model

An OpenCL application consists of a host program that runs on the host
processor and kernels that execute on one or more devices. The host
program defines and manages a context in which kernels execute. The
host uses this context to contain and manage the state of the program.

26



5.2. EXECUTION MODEL

An OpenCL kernel is a basic unit of executable code similar a func-
tion written in the OpenCL C programming language. As stated above
the host interacts with the devices by sending commands to command-
queues. These command-queues can contain kernel execution com-
mands, memory commands (transfer or map memory object data) or
synchronization commands that constrain the order of commands.

When kernels are sent for execution the host program creates an N-
dimensional index space called NDRange where 1 < N < 3. Each
index point is associated with an execution instance of the kernel. An
execution instance in OpenCL is called a work-item and is identified
by it’s unique global identifier. A OpenCL work-group contains one or
more work-items and is identified by a work-group unique identifier.
Work-items also have a unique local id within a work-group, therefore
work-items can be identified by their global id or by a combination of
their local id and work-group item. A work-item executes on a single
PE and a work-group executes on a single CU. Relating this to the
platform model a work-group a given work-group executes on a single
CU while a single work-item executes on a single PE.

IEEEEENE
B

L]

Figure 27.1: two-dimensional OpenCL work-group and work-items
lamdal

Figure shows a two-dimensional kernel with 16 indexed work-
groups. Each of these work-groups includes 64 indexed work-items.
The highlighted work-item has a local id of (4,2). It can also be ad-
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CHAPTER 5. OPENCL

dressed by it’s global id by using the highlighted work-group offset
of (3.1) by multiplying it with the work-group dimension length and
adding the local id.

5.3 Memory Model

OpenCL has four different memory regions that are available to work-
items:

Private Private Private Private
Memory Memory Memory Memory

Work- Work- Work- Work-
Item item Item item

Local Memory Local Memory

Work-group Work-group
Compute Device f
Host

Figure 28.1: OpenCL Memory

¢ Global Memory: Allows read/write operations to all work-items in
all work-groups.

* Constant Memory: Allocated by the host and is constant during
the whole execution of a kernel.
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5.4. PROGRAM EXAMPLE

* Local Memory: Local to a work-group and shared by work-items.

¢ Private Memory: Region private to a work-item.

The host memory and device memory are mostly independent of each
other, this is because the host program is defined outside of OpenCL
and programmed to run on the host CPU. The host program uses the
OpenCL API to allocate memory objects to the device global memory.
The host program then interacts with the device in two ways, by ei-
ther explicitly copying data or by mapping and unmapping regions of a
memory object.

To copy data explicitly the host needs to enqueue commands to transfer
data between host memory and device memory. These transfers can be
either blocking or non-blocking. In the case of a blocking transfer the
function call returns when the used resources are safe to reuse. In the
case of a non-blocking transfer the function call returns as soon as the
command is enqueued on the device regardless if the host memory is
safe to reuse.

For the mapping/unmapping method the host allows memory from the
memory object to be mapped into its address space. The host can then
do read/write operations on this region and unmap the region when it
is done using it.

OpenCL defines a relaxed memory consistent model i.e. the state of
memory visible to a work-item is not guaranteed to be consistent across

the collection of work-items at all times [ope]l. To ensure consistency

OpenCL allows synchronization points to be defined in kernels. These

synchronization points are called work-group barriers and when a work-
item executes a barrier it halts and waits until all other work-items in

the work-group have executed the barrier.

5.4 Program Example

Due to the fact that even a small OpenCL program is very large code-
wise we will show pieces of the five main steps that are needed to con-
struct a OpenCL program. The five steps are as listed below:
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Initialization

Allocate resources

Creating programs/kernels

Execution

Tear Down

5.4.1 Initialization

cl_int ciErr;

cl_context c¢cxGPUContext;
cl_device_id cdDevice;
cl_command_queue cqCommandQueue;

clErr = clGetPlatformIDs(1, &cpPlatform , NULL);
cxGPUContext = clCreateContext(0, 1, &cdDevice, NULL,
NULL, ciErr);
cqCommandQueue = clCreateCommandQueue (cxGPUContext,
cdDevice, 0, &ciErrl);

Listing 30.1: Initialization

First when making a OpenCL program you need to define and initial-
ize the variables that are to be used. The first line in the listing de-
fines an integer to hold potential error messages. In line six clErr
gets assigned by clGetPlatform that is a query function that returns
CL_SUCCESS if the function executed succesfully, otherwise it will
output one of two error codes that are either CL_INVALID_VALUE or
CL_OUT_OF_HOST _MEMORY. The first argument is the number of
platform ids that can be added to platforms. The second argument re-
turns a list of platforms found. The third argument returns the number
of available OpenCL platforms that are available.

Line two defines a OpenCL context and on line seven-eight cxGPUCon-
text gets assigned by clCreateContext. The first argument clICreateCon-
text is a list of platforms and in this case zero to make it implementa-
tion defined. The next argument is the number of devices. Argument
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5.4. PROGRAM EXAMPLE

three is a pointer to a list of unique devices. Argument four is a callback
function to report potential errors and in this case it is defined as NULL
meaning that no function is defined. Argument five will be passed with
argument four, but since argument four is NULL argument five is also
NULL. Argument six is the error code that is defined on above. Line
three defines a OpenCL device that is to be associated with a given con-
text. Line Four defines a command-queue that needs to be associated
with a specific context and device. On line nine-ten cqCommandQueue
gets assigned by c/CreateCommandQueue. Arguments one and two are
described above. Argument three specifies a bit-field list of command-
queue arguments that includes in-order or out-of-order executions of
commands and if profiling is enabled. In this case zero stands for out-
of order disabled and the second bitfield is unspecified and profile is by
a minimum always enabled.

5.4.2 Allocate Resources

cl_mem ax mem = clCreateBuffer(context,
CL_MEM _READ ONLY, atom_buffer_size,
NULL, NULL)

ciErrl = clEnqueueWriteBuffer (cqCommandQueue,
cmDevSrcA, CL_FALSE, O,
sizeof(cl_float) = szGlobalWorkSize,
srcA, 0, NULL, NULL) ;

clFinish (cmd_queue) ;

Listing 31.1: Allocation

To be able to send information to your device you need to define a buffer
that will be able to hold your elements. These elements can be of scalar
types, vectors or user-defined structures.

In listing a memory buffer object ax_mem being defined and ini-
tialized in line 1-3. This object is created using the c/CreateBuffer func-
tion that returns a non-zero buffer object and a error code to indicate
success or not. This function takes a context as its first argument and
the second argument is a bit-field used to specify how this memory ob-
ject can be used by kernels. Third argument specifies how much bytes
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of space to be allocated. Fourth argument can be used to point to a al-
ready allocated memory buffer. Fifth argument can be used to return a
appropriate error code.

On line five the function c/EnqueueWriteBuffer is used to enqueue com-
mands to be written from the host memory to a buffer object on the
device. clEnqueueWriteBuffer returns a int error code to indicate if it
succeeded or not.

5.4.3 Creating programs/kernels

cl_program cpProgram;

cl_kernel ckkernel;

cpProgram = clCreateProgramWithSource (cxGPUContext,
1, (const char #x)&cSourceCL,
&szKernelLength, &ciErrl);

ciErrl = clBuildProgram (cpProgram, 0, NULL, NULL,
NULL, NULL) ;

ckkernel = clCreateKernel (cpProgram, "VectorAdd",
&ciErrl) ;

Listing 32.1: Kernel Creation

Listing[32.1]is the creation of the host program and Kernel from source.
A program object cpProgram is created with a given context and loads
the source code specified by &cSourceCL. After the loaded source-code
gets compiled with the function cl/CreateKernel.

At last a kernel object is created with the c/CreateKernel function that

takes the compiled cpProgram kernelname and error code as argu-
ment.

5.4.4 Execution

2 |size_t global_work_size, local_work_size;

3

32




© 0 3 O O

10
11

3 O~ W N -

5.4. PROGRAM EXAMPLE

local_work_size = n;
global_work_size = m;

clSetKernelArg(ckKernel, 0, sizeof(cl_mem),
(void *)&cmDevSrcA) ;

errl = clEnqueueNDRangeKernel (cqCommandQueue,
ckKernel, 1, NULL, &szGlobalWorkSize,
&szLocalWorkSize, 0, NULL, NULL) ;

errl

Listing 33.0: Execution

In listing dimensions of the work-items are defined where global
work-size is the collection of all work-items and local work-items is
their range in a work group.

Before a kernel can be executed it’s arguments need to be set. Kernel
arguments are set by using the API function clSetKernelArg that takes
as input a kernel, index of argument, size of argument and a pointer to
argument value. Now we are ready to enqueue a command to execute
the kernel on a device, this is done with the clEnqueueNDRangeKernel
API function.

5.4.5 Tear Down

ciErrl = clEnqueueReadBuffer (cqCommandQueue, cmDevDst,
CL_TRUE, 0,sizeof(cl_float) =
szGlobalWorkSize, dst, 0, NULL, NULL);

clReleaseKernel (ckKernel) ;

clReleaseProgram (cpProgram) ;

clReleaseCommandQueue (cqCommandQueue) ;

clReleaseContext (cxGPUContext) ;

Listing 33.1: Tear Down

After doing the calculations on the device results need to be written to

host memory from device memory, this is done with the clEnqueueRead-

Buffer function. Finally memory can be released by using the func-
tions in lines four to seven.
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GPU and Utilization

Since GPGPU programming is fairly new and the programmer has to
do most of the memory management himself we need to take a closer
look at the actual GPU that we have available to help us in making
code that utilizes the hardware the most. Since CUDA and OpenCL
terminology is almost the same and we already have listed most of the
OpenCL terminology in section [5| we are going to describe this chapter
in OpenCL terminology unless explicitly mentioned.

We have in our possession two Nvidia Tesla C870 GPUs that are the
first to be made in the Tesla series. Tesla C870 is build on the G80
line of GPUs from Nvidia and is similar to the well known GeForce

8800GTX, but with larger memory and no monitor connection-ports as
the Tesla series are intended for GPGPU.

The C870 GPU has 128 thread processors (128 PEs in OpenCL ter-
minology) where each of these operate at 1,35 GHz and combined are
able to perform over 500 single-precision GFLOPS [Nvi0O8]. It has 1,5
GB dedicated GDDR3 memory running at 800 MHz, 64KB of constant
memory and 8096 registers for holding instructions.

The C870 has a Compute Capability (CC) of 1.0 where devices with
the same major revision number are of the same core architecture and
the minor revision number corresponds to incremental improvement
to the core architecture, possible introducing new features like double
precision floating arithmetic. The most notable differences between the
1.x and the new 2.x is that each CU has 32 PEs instead of the 8 that
our GPU has and two warp schedulers instead of one. [NVI10c].
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Global | off-chip | 1536 MB | 200-800 | no
Total Cycles
private | off-chip | Up to Same as | no
global global
Local on-chip | 16KB register no
per CU | latency
Consta | On-chip | 64KB register | yes
nt cache | total latency
Texture | On-chip | Upto > 100 yes
cache |global |cycles

Table 35.1: C870 Memory Properties
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6.1 Utilization

CPUs and GPUs are architectural different as explained in GPUs
from NVIDIA and AMD have different architectures and furthermore
even GPUs from the same vendor are different. OpenCL is hetero-
geneous and works across different architectures but the performance
will wary depending on which device it is run on. To be able to get maxi-
mum throughput you may need to optimize your code for the individual
architectures. Since our GPU has 1.0 compute capability as mentioned
in [6] this section will be targeted at this particular architecture.

To utilize a GPU [NVI10c] lists 3 different performance strategies

* Maximize parallel execution to achieve maximum utilization;

* Optimize memory usage to achieve maximum memory through-
put;

* Optimize instruction usage to achieve maximum instruction through-
put.

On what performance strategy to use depends on what part of your
code doesn’t perform optimal, therefore optimizing instruction usage of
a kernel when it most likely is memory accesses that are the problem
won’t result in significant performance gains.

6.1.1 Maximum Parallel Execution

To maximize utilization the program should be structured so that it
exposed as much parallelism as possible and efficiently maps this par-
allelism to the various components to keep them busy at all times. At
the application level it should maximize parallel execution between the
host, the device and the bus connecting the host to the device. Serial
workloads should be run on the host while parallel should be run on
the device.

At device level the application should maximize parallel execution be-
tween the CUs of a device. For CC.x only one kernel can execute on a
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device at a time, therefor there should be at least as many work-groups
as there are CUs. Devices that are CC 2.x can have multiple kernels
executing on the same device, so to get maximum utilization multiple
kernels can be queued and run on the same device at the same time.

At the lowest level parallel execution between PEs should be maxi-
mized. This means having enough work-items running to keep as many
as possible PEs occupied at all times, this should be achieved by having
enough warps ready to execute with zero latency.

A warp is not explicitly defined in OpenCL or CUDA but it is useful
to know about them as they are used in memory transfers. When a
CU is given a work-group they are partitioned into warps of 32 work-
items that are aligned by their local id. A warp gets scheduled to a
warp-queue by a warp-scheduler as seen in fig[39.1]

According to [NVI10b] and [RRB*08]] the the number of work-items in
a work-group should be minimum 32 or of a multitude of 32. According
to [Kan10] the work-group size should be a multiple of 64 instead of 32
if you are using a AMD GPU, therefor trying a multiple of 64 should be
a best practice, as using 64 is optimal for both types of GPUs while the
opposite is not.

An SM can perform zero-overhead scheduling to interleave warps and
hide the latency of global memory accesses and arithmetic operations.
When one warp stalls, the CU can quickly switch to a ready warp resi-
dent in the SM. Up to 8 work-groups can run on per CU at any one time
[RRBT08]]. The common reason that a warp is not ready to execute its
next instruction is when its input operands are not yet available and
needs to wait some cycles to get access to them.

Execution time varies depending on the instructions but with device
compability 1.x, all work-items in a warp the scheduler needs to issue
the instruction over 4 cycles for a single-precision floating-point opera-
tion [NVI10c]. If the operands are off-chip, memory latency is around
400-800 cycles.

The number of warps required to keep the warp scheduler busy during
such hight latency periods depends on the kernel code, but in general
more warps are required if the ratio of off-chip memory instructions
is high. As an example: if the ratio is 10 then to hide latency of 600
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cycles, around 16 warps are required for a CC 1.x device.

6.1.2 Memory Throughput

The first step to maximize memory throughput is to minimize data
transfers with low bandwidth, this means minimizing transfers be-
tween host and device and furthermore minimize transfers between
global memory and the device by maximizing use of on-chip memory
and local memory.

Minimizing transfers between host and device is important because of
the 86,4 GBps on-chip memory compared to 8 GBps on a PCI Express
x16 Gen2 [NVI10b] one way of doing this is to move code from the host
to the device to execute, even though that means running a kernel with
low parallel computations. This should only be done if your code has
problems hiding memory latency as it helps keeping the PEs busy.

Batching many small memory accesses into one large transfer is bet-
ter for throughput than doing many small memory accesses. Therefore
accessing global memory should be done with one or more coalesced
accesses. When more than one work-items in a running warp executes
an instruction that accesses global memory, it coalesces all the global
memory accesses from these work-items into one or more memory ac-
cesses.

Global memory supports words of size equal to 1,2,4,8,16 bytes. If ac-
cesses to global memory are not equal to these words or not aligned
(starting address is a multiple of that size) the access does not get co-
alesced correctly and instead gets fragmented into many accesses de-
grading performance. Luckily OpenCL built in types already have this
requirement fulfilled.

The memory model is very similar to OpenCLs but added texture
memory/35.1]

Private memory scope is local to a single work-item but it is off-chip so
it has the same latency and low bandwidth as global memory. Private
memory is used only to hold automatic variables, in case of insufficient
register space [NVI10b].
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Warp Scheduler Warp Scheduler

1 |nstructio?¢\ 1 Instructicd\

8k Entry Register File

Figure 39.1: Warp Scheduler in Interleaving Mode
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Local memory is on-chip and therefore is much faster than global and
private memory. Local memory is organized into equally sized memory
modules, called banks that can be accessed simultaneously. Therefore
any access to local memory that spans over n distinct banks results in
n times the bandwidth of a single bank access. However, if multiple
addresses request access to the same memory bank a conflict occurs
and they have to be serialized. Exception to a bank conflict is if all
threads in a half-warp (16 work-items) adress the same memory bank,
resulting in a broadcast. Ways to make sure that your code minimizes
bank conflicts is by using 32-bit Strided Access [NVI10c] and 32-bit
Broadcast Access[NVI10c].

Constant memory is on-chip, is cached and has a total of 64KB. Reading
from constant memory only requires off-chip read if there is a cache
miss. If for 1.x devices, all work-items in a half-warp want to access
the same memory address it only takes one memory read.However if
constant memory address requests are different for some work-items
they have to be serialized resulting in a reduced throughput.

Texture memory is like constant memory also cached on-chip but op-
timized for 2D spatial locality, so that work-items that have texture
addresses close to each other will gain throughput. Texture memory is
usually preferred over global memory if the memory reads do not follow
the access patterns for coalesced memory reads.

6.1.3 Instruction Throughput

To get maximized instruction throughput a minimize use of instruc-
tions with low throughput and minimize diverging warps should be
used.

If it doesn’t affect the end result arithmetic instructions can trade pre-
cision for speed by using native_x [NVI10c] instead of regular functions
and trading single-precision over double-precision.

Branching or control instruction (if, switch, do, for, while) can really
lower instruction throughput as all PEs in a CU run in lock-step one
instruction at a time. This means that whenever work-items in a warp
diverge, every diverging path needs to be serialized requiring more in-
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structions for the same warp.

When the control flow depends on the work-item ID, the code should
be written to minimize diverging warps, this can be controlled as the
programmer knows which work-items are withing what warp.
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Theirs not to make reply,
Theirs not to reason why,
Theirs but to do and die:
Into the valley of Death
Rode the six hundred.

Alfred, Lord Tennyson. Charge of the Light
Brigade

Programmer Productivity

The speed at which a program runs is only one of the things that must
be considered to evaluate different technologies. Another very impor-
tant consideration is the productivity at which the technology can be
used. For example the virtual machines that is used to run programs
written in languages like RubyE] or PythonE] involve an overhead (either
a memory overhead if a JIT compiler is used, or an overhead to inter-
pret bytecode if it is not) that is not present in a version of the program
that is written in C. Ruby and Python are used because of the, in all
likely-hood correct, assumption that the same program can be written
much faster in Ruby or Python than in C.

While we can quantify the difference between the time it takes two
different programs to execute, measure how much memory they each
use, and so on, it is much more difficult to measure how much effort it
took to write them.

Various techniques have been used as a proxy for the complexity of
writing a computer program:

1. Lines of Code (sometimes Source Lines of Code, not counting blank
lines and comments)

2. Function points

3. Time spend writing it

Ihttp://ruby-lang.org
2http://www.python.org
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There is nothing wrong with these measures per-see, a program with n
lines of code is likely to have been written faster than a program with
20 x n lines of code, but this assumes that the developers writing the
code has about the same skill, understanding of the problems involved,
the techniques and technology used to solve it, etc.

Function points[Jon94, JA] are a different way to estimate the complex-
ity of a software program: here one takes into account what the pro-
gram must do, which external data it works with, what it must do with
this data, etc and uses this to sum up how many points each of these
things take. It does not take into account the skill or familiarity a par-
ticular programmer may have with the system, nor does it account for
how much code is necessary to express a function point. An additional
problem is that two people, even if both have the same training and ex-
perience in the same organization, may estimate the function points for
a given specification with as much as 30% difference[Kem93ll, but even
if the program source code is available, the estimates of its complexity
may differ with as much as 10%[Kem93]. This indicates that function
points, even if it takes the same time to program the code necessary
to create two different function points, is not an accurate or reliable
means of computing the complexity of a program nor is it a good mea-
sure to calculate the costs of developing a program, despite what [JA]
has done.

Item number (3|is properly the simplest way to estimate the complexity
of the program, but it suffers from the same problem as the line of code
metric, in that it depends a lot on the developer who writes the code
and it can only be used after the program has been written.

This means that these ways to measure programmer productivity are
only able to give a very rough suggestion as to the actual complexity of
the task, and the numbers are not useful to quantify the difference.

One of the problems is that we do not have a good model for judging
how programmers develop software.[FRGMSO07]] has done some empir-
ical research on how to model programmer productivity, and while his
data-set is very small and his model for programmer productivity sim-
plified, it is still useful as a good starting point for an actual model for
how programmers work. His model can be found in Figure |44.1

[FRGMSO07] uses timed Markov models to model the process of devel-
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Figure 44.1: Basic overview of the observed process of developing a
program for high performance computing[FRGMSO07], expressed as a
(Timed) Markov Model, without the probabilities. These can be seen in
Table

oping software for high performance computing, but there are several
problems with the model:

1. The data has been collected based on very few samples.

2. Those were students, not professionals who had extended experi-
ence with these tools.

3. As presented, we cannot know how many times the developers
where in each state, nor do we have access to data to answer
questions such as "what is the probability that a program works
after the programmer has debugged it 5 times?" which is almost
certainly not going to be the same as the probability that the pro-
gram works after the programmer has debugged it once; Instead
we only have the average probability that the program worked.

Of these the most important is Item 1) which means that we cannot use
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Current state | Next State | Chance of moving
Test Program 0.237
Test Debug 0.713
Test Run 0.048
Run Optimize 0.699
Run Done 0.035

Table 44.1: The various probabilities for the transit between differ-
ent states as seen in Figure [44.1 These numbers can be seen in
[FRGMSO07, page 4]

the actual numbers to compare with anything, as there simply is not
enough data points to have any statistical confidence in the results.

Item |3|is the most important, however. As the Google Tech talk by one
of the authors of [FRGMS07] points outl] if we can create a tool that
speeds up the time it takes to fix each bug, but which still requires us
to go through the same number of debug-run-debug cycles, at most we
can expect a linear improvement in programmer productivity, whereas
if we can cut down on the number of times the developer has to go
through the cycle, we can obtain a super-linear speedup. Since pro-
grammers spend most of their time debugging[FRGMS07] optimizing
this step is extra important.

Though we do not have the actual numbers, we can write the equation
for the total time taken up by debugging as a recursive equation (where
P, is the probability that debug attempt i is necessary and Time; is the
time taken by debug attempt 7):

(46.1)
(46.2)

TO = Timeo + P1 X Tl
T; = Time; + Py x Tiyy

With this knowledge, we can now design our system such that the risk
of having to debug it is lessened.

IAvailable at http://www.youtube.com/watch?v=2bmd85p9810
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To raise new questions, new possibilities, to re-
gard old problems from a new angle, requires cre-
ative imagination and marks real advance in sci-
ence.

Albert Einstein

Alternate paradigms

Because the OpenCL Kernel language is a variant of C, it is possible
to write any program that can be written in it, but doing so is not
necessarily the most efficient way to program a GPU, because C is not
originally designed to express parallel computations]

We will therefore look at a number of different paradigms that may be
better suited to express the parallelism in the problems which we wish
to compute on the GPU.

The first of these paradigms we will look at is the MapReduce paradigm.

8.1 MapReduce

MapReduce[DGO04] is a concept and the name of the related software in-
vented by Google as a way to abstract computation of terabytes of data
across large clusters of unreliable commodity computers, such that the
person who writes the software does not have to worry about reliabil-
ity, redundancy or how to distribute the tasks between the different
computers[DGO04].

MapReduce is proprietary software and it relies on other software, in-

1C was designed as a language to implement Unix in, without tying it down to
a particular instruction set, though it can be, and has been, used for many other
applications as well
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ternal to Google, such as GFS[DGO04], but the idea behind MapReduce
has been implemented in the open source software Hadoopl[hadl|, avail-
able from the Apache foundation. As such, the examples we provide
here are based on api of the open source implementation, not the pro-
prietary implementation.

MapReduce is based on the idea from functional programming[DGO0A4]]
of the map and reduce functions. Map is a function that takes as ar-
gument a function and a list of values to apply this function to, then
returns a new list where the ith element is the result of applying the
function to the i input element. Assuming that the function does not
have any hidden state (which is often the case in functional program-
ming), it does not matter in what order the function is actually run, nor
does it matter if it is run more than once on some of the input, as long
as there is at least one result for each of the input elements.

An example of a (trivial) use of the map function in Haskell:

double = 2 =
map double [1 2 3 4 5 6 7]

Listing 48.1: A simple use of the map function: Creating a new list
where the i element is 2 x i.

Reduce is similarly a function which takes a function as an argument,
and a list of arguments to run this function on. Unlike the map func-
tion, reduce typically returns fewer arguments than it is given (in
at least one of the examples in [DGO04], the reduce function is simply
replaced with the identity function and in the MapReduce system in
[HFL"08], the reduce step is optional).

foldr (+) 0 [1 2 3 45 6 7]

Listing 48.2: A simple use of the foldr function (Haskells name for
reduce): Summing the numbers from 0 to 7.

One of the simplest examples of MapReduce is the word counting prob-
lem [DGO04, HFL 08, [yahll, where the objective is to count the number
of times a word appears in some, usually very large, text.

public static class Map
extends Mapper<LongWritable, Text, Text,
IntWritable> {
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private final static IntWritable one =
new IntWritable(1);
private Text word = new Text() ;
public void map(LongWritable key, Text value,
Context context)
throws IOException, InterruptedException {
String line = value.toString();
StringTokenizer tokenizer =
new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word . set (tokenizer.nextToken () ) ;
context.write(word, one);

}

Listing 49.0: A mapreduce example: Word counting [yahl].

public static class Reduce extends
Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key,
Iterable<IntWritable> values,
Context context)throws
IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
context.write(key, new IntWritable(sum));
}
}

Listing 49.1: A mapreduce example: Word counting (reduce part)[yahl.

Other examples are Distributed Grep, where the objective is to find
the lines in some text that contains a given word, counting requests
from log files, computing inverse Web-Link graphs, inverted indexes
or the distributed sort[DGO04]. The distributed sort is one example of a
situation where the function for the reduce step is the identity function.

While the MapReduce algorithm was originally meant to be used to di-
vide work between large clusters of commodity machines, it has also
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been used to schedule work on a single multi-core computer[RRPT07[;
finally there have been a number of implementations of MapReduce
for the GPU, both Mars[HFL"08] and Merge[LCWMO8]. The latter is
of particular interest because it uses an entirely new language, devel-
oped for this purpose, and aims at making it easier to program GPUs
(as well as other architectures, such as the Cell processor) for pro-
grammers who are not accustomed to traditional GPU programming.
MapCG[HCC™10] deserve a special mention as well, because it aims to
bridge the gap between CPU and GPU programming by allowing the
programmer to use the exact same source code both on the GPU and
CPU and still make use of the MapReduce concept.

As useful as MapReduce is as an abstraction, there are many situations
in which it is not appropriate and would be of very little use. One of
the most important of these is solving equations by iteration — these are
well suited the be computed by the GPU, since the same data is used
to compute many times, which means that the price paid for sending
the data from main memory to the memory on the GPU have to be paid
only once, but the benefit of faster computation can be reaped many
times.

8.2 Aparapi

Aparapi is a completely new technology, announced by AMD on Octo-
ber 13 and currently available only as an alpha release, which allows
programmers to write code that can be run on the GPU entirely in Java
code, and which relieves them from having to manually allocate mem-
ory on the GPU and schedule which work items should be run when.
Aparapi is meant to run on top of OpenCL and keep the programmer
from having to worry about the details of the underlying software.

On the face of it, Aparapi is a promising new technology, but at least
currently it has a lot of limitations regarding what the programmer
can do in the kernels, and therefore doesn’t live up to the promises of
freeing the programmer from having to learn the differences between
the style of development that they are used to and the way to program
GPUs, since the code they write in Java that is supposed to run on the
GPU is very limited. In particular the following can’t be done[Amd10]:
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1. More than one dimensional arrays.

[\

. The .length field of an array can’t be used, and as a consequence
an array can’t be used in a foreach loop

. Static methods are not supported

. Overloaded methods with different arguments are not supported
. No support for exceptions, throw, catch, etc

. No new objects can be created

. Neither the switch, continue or break statements can be used

L 3 o O s~ W

. No methods from the Java class libraries can be used, except for
java.lang. Math — which are reimplemented to use the GPU in-
structions.

9. In order to get good performance, the programmer still have to
take the underlying limitations of the hardware (no protection
against division by zero to name one example).

10. The double and char data types can’t be used.

Should the programmer do any of this (or violate any of the other re-
strictions, the list is not complete) Aparapi will run the kernel on the
CPUs instead, which means that the programmer will not reap the ben-
efit of the faster floating point operations, but some benefit may still be
achieved, assuming that the program is executed on a computer with
more than one processor.

While it is very early to say, this is properly the biggest issue with
Aparapi — one does theoretically write in Java, but almost everything
a programmer would do in Java can’t be done in Aparapi, but could
be done if one used OpenCL directly; at level of abstraction which is of-
fered by Aparapi, the programmer is properly better of learning enough
C to write the kernel directly.

Aparapi is very early alpha software, and some of these restrictions
seems very likely to be removed in the future. In particular, there is
no reason that the .length field of the arrays couldn’t be sent as extra
arguments to the code that the Java kernel is compiled down to, the
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compiler need then only replace the reads from the length field with
reads from this field. OpenCL already have 2- and 3-dimensional ar-
rays, so again there is no reason not to allow the developer to use these
in Aparapi.

8.2.1 Merge Framework

Merge[LCWMOS8] is a framework for the development of software to
run on the GPU. Like Mars it uses the MapReduce paradigm, but un-
like Mars it is able to automatically schedule different work items to
be run on the available hardware, including different CPU cores, GPUs
as well as any Cell processors that may be available. Unlike both Mars
and Aparapi, it doesn’t attempt to use an already existing language,
but instead uses a language specifically designed to be used for this
purpose.

Designing a new language is both a big advantage — since it can be, and
has been, tuned to the specific requirements of the environment under
which it is supposed to run — and a big disadvantage, since it requires
that every programmer who wishes to make use of this system have to
learn a new language (this is the exact situation which Aparapi wants
to prevent by making it possible for the programmer to write his code
in a language he is already familiar with).

Nevertheless, there is a lot to be gained from writing a specialized pro-
gramming language. A big advantage is that it makes it possible steer
the programmer towards writing programmers in such a way that they
can take advantage of the specific advantages offered by the OpenCL
and steer the programmer away from those features which makes the
program slower. The creators of Aparapi, having chosen Java as their
implementation language, didn’t have this opportunity and as a result
anybody who uses it runs the risk of writing a program which seems
to be fine, but can only run on the CPU (an as such isn’t able to take
advantage of the extra computational power of the GPU).

Listing 52.1: An example of the language used in the Merge framework
1 bundle kmO {
2 void kmdp(Array2D<float> dp,
3 Array2D<float> cc,
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ArraylD<int> assgn,

Array2D<float> ccnew,

ArraylD<int> hist) {

/| Assign observations and compute new cluster
/] centers for next iteration in parallel
mapreduce(int i=0; i < dp.rows; i++)
kmdp(dp[i],cc,assgn[i],

red<sum>(ccnew) ,red<sum>(hist));

1

One of the benefits of OpenCL is that the code that is written can be
run both on the CPU and on a GPU, but the Merge framework language
isn’t designed to do that, rather the idea behind it is that one can write
a program gives the same results, but which can be run on different
architectures and can be written in a way that takes advantage of ben-
efits of a particular architecture.

Finally, Merge Framework is able to dynamically (that is, at run time)
schedule which tasks should run on the available compute devices.
This is especially useful for OpenCL, because it can use both the CPU
and GPU to run tasks on, as well as any Cell-processors that may be
attached to the host machine (CUDA in contrasts only works with a
GPU) - as a result, a host machine nearly always have more than one
OpenCL enabled device (the only machine that doesn’t would be a ma-
chine with only one CPU with only one core, which is increasingly rare,
and either no GPU or a GPU that does not support OpenCL).

8.3 hiCUDA

[HAO09] is an entirely different approach to efficient GPU programming
than the various MapReduce inspired frameworks. hiCUDA is inspired
by OpenMPI| This is a smart because researchers working with high
performance computing are used to working with clusters and they
quite often program these with MPI and OpenMPI. [CR10] evaluated

1General introduction to MPI can be found in [GGKKO03], OpenMPI is an extension
of and implementation of MPI with some special directives which aims to make it
easier to program in.
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several different approaches and found that OpenMPI was both faster
to program and more efficient than alternatives that are better known
outside the high performance computing area, such as pthreadd}

An example of hiCUDA code used to calculate the matrix resulting from
the multiplication of a 64 x 128 with a 128 x 32 matrix can be seen in
Listing Compare this with the same code for a sequential matrix
multiplication (Listing [54.2).

float A[64][128];
float B[128][32];
float C[64][32];

/ /|Randomly init A and B.
randomInitArr ((float=)A, 64%128);
randomInitArr (( float+)B, 128%32);
//C =A « B
for(i=0;i< 64; ++1){
for(j=0;j<32;++j){
float sum = 0;
for(k=0; k< 128; ++k){
sum += A[i][k]* B[kI[j];
}
Clillj] = sum;
}

}
printMatrix ((float+)C, 64, 32);

Listing 54.2: Sequential matrix multiplication code from [HAO09].

This illustrates that surprisingly little code has to be added to make
it possible to GPU accelerate the program, and while the changes does
require some knowledge of GPU programming (it is necessary, for ex-
ample, to know how much memory each multiprocessor has and conse-
quentially how much to copy from global memory at a time) but even
so hiCUDA has been used in at least one case where it took only 4
week to develop the solution, whereas the same solution implemented
in CUDA took 3 months[HA09]. At the same time benchmarks show
that the speed of a hiCUDA program is within 2% of the speed of the

IPhreads gives a much larger degree of freedom for the programmer, but this also
means that it takes more effort[CR10].
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float A[64][128];
float B[128][32];
float C[64][32];

/ /Randomly init A and B.
randomInitArr (( float=)A, 64%x128);
randomInitArr (( float=)B, 128%32);
#pragma hicuda global alloc A[*][*] copyin
#pragma hicuda global alloc B[#*][*] copyin
#pragma hicuda global alloc C[=*][*]
#pragma hicuda kernel matrixMul tblock(4,2) thread
— (16,16)
//IC =A « B
#pragma hicuda loop_partition over_tblock over_thread
for(i=0;i< 64; ++1){
#pragma hicuda loop_partition over_tblock over_thread
for(j=0;j<32;++j){
float sum = O;
for (kk= 0; kk <128; kk += 32){
#pragma hicuda shared alloc A[i][kk:kk+31] copyin
#pragma hicuda shared alloc Bl[kk:kk+32] copyin
#pragma hicuda barrier
for(k=0; k< 32; ++k){
sum += A[1][kk+k]* Bl[kk+k][]];
}
#pragma hicuda barrier
#pragma hicuda shared remove A B
}
Clil[j] = sum;
}
}
#pragma hicuda kernel_end
#pragma hicuda global copyout C[=*][=*]
#pragma hicuda global free A B C
printMatrix ((float*)C, 64, 32);

Listing 54.1: hiCUDA matrix multiplication program from [HAQ9]
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same program, written directly in CUDA.

8.4 Accelerator

Accelerator is a program and API made by Microsoft Research in C#
to allow programmers to use the GPU in their code, without specified
knowledge of how the graphics pipeline works[TPOOG6].

8.4.1 An example of the use of Accelerator

using Microsoft.Research.DataParallelArrays;
static float[,] Blur(float[,] array, float[] kernel)
{
float[,] result;
DFPA parallelArray = new DFPA(array);
FPA resultX = new FPA(Of, parallelArray.Shape);
for (int i = 0; i < kernel.Length; i++) {
int[] shiftDir = new int[] { 0, i};
resultX += PA.Shift(parallelArray, shiftDir) =
B kernellil;
}

FPA resultY = new FPA(Of, parallelArray.Shape);
for (int i = 0; i < kernel.Length; i++) {

int[] shiftDir = new int[] { i, 0 };

resultY += PA.Shift(resultX, shiftDir) * kernell

[ ] il];
}

PA.ToArray(resultY, out result);
parallelArray . Dispose() ;
return result;

Listing 56.1: An Accelerator example of bluring from[TPOQ6].

Unlike programming languages such as C, Accelerator has the data-
parrallel array, rather than a scalar value, as its basic datatype[TPOO06].
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The reason for this is, of course, that Accelerator is designed to make
it easier to run code on the GPU, which is only an advantage if it is
possible to exploit the parallel nature of the GPU.

If we compare the example in Listing with the hiCUDA example
(in Listing |[54.1), a number of things are immediately obvious:

1. With Accelerator we tell the computer what to do, with hiCUDA
we tell the computer how to do it.

2. As a consequence hereof, we expect that we will have to know a
great deal more about the hardware which the code is supposed
to run on to use hiCUDA, whereas one of the goals of Accelerator
was to free us from this problem.

3. If we know enough about the underlying hardware, it is likely
that the code created with Accelerator is not going to run as fast
as if we wrote it with hiCUDA.

Of these [3| observations, observation [3| and observation 2] are the most
interesting points, since they hint at the classic trade-of: languages
which offer a higher abstraction is likely to be less efficient, if used
by a programmer with deep knowledge of the system, than lower level
languages but they are also likely to be faster to develop the program
in.

The benchmarks in [TPOO06] give some evidence of this trade-of: whereas
the benchmarks in the hiCUDA paper[HAOQ9] put them within 2% of
the corresponding CYDA code, Accelerator only gives about 50% of the
speed the hand-tuned code runs at; this number may have improved
since [TPOO06] as written, as it predates both CUDA and OpenCL and
its code-generating capabilities is therefore limited to what can be ex-
pressed with shaders. In addition the benchmarks in the two papers
similar but not equal, which makes direct comparison difficult.

Microsoft research is working on the next version of Accelerator[Resl,
which may improve these benchmarks and will be able to take advan-
tage of CUDA.
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I learned quickly, as I tell my graduate students
now, there are no answers in the back of the book
when the equipment doesn’t work or the measure-
ments look strange.

Martin Lewis Perl

Benchmarks

To be able to meaningfully talk about speed and productivity, we need
a way to measure both the productivity of the programmers who does
the work (we talk about this in Chapter |7 on page 43) as well as the
trade of in terms of speed of the final application.

Unfortunately while benchmarks are easier to make than programmer
productivity is to measure, they are still far from straight forward. Part
of the reason for this is that there are so many different benchmarks to
choose from and not everybody uses the same benchmarks and those
benchmarks does not necessarily measure the same thing.

This does not mean that all benchmarks are equally important; one
of the important benchmarks in high performance computing is the
linpack benchmark, which is used to determine the TOP500 list of
the worlds fastest supercomputers[Fat09]. Unfortunately the linpack
benchmark is not very well suited for our purposes for three reasons:

1. It tests floating-point computations[Fat09], which we already know
are fast on a GPU.

2. It uses double-precision floating point numbers, which the Tesla
cards we have available cannot compute]

3. The benchmark consists of only one kind of computation, which
consists of solving a number of linear-equations expressed as a

IThe Tesla cards we have access to have compute capability 1.0, which, among
other things, do not support double-precision floating point calculations
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(dense) n x n matrix using LU-decomposition.

While we could do the benchmarks with the limited precision available,
it is unlikely to tell us anything we do not already know (specifically
that GPUs are fast at floating-point computations) and while we would
be able to compare the results we would obtain against the different
implementations, we would be unable to compare our results with the
results of anybody else. Reason (3|is the most important though: it is
simply a bad benchmark for what we want to test, since it does not do
much to resemble the variety of work done in real life high performance
computing.

The authors of [Fat09] did implement the linpack benchmark and was
able to achieve almost 100% improvement (from about 40 Giga-flops to
around 70) by moving all the computations from the CPU to the GPU
and further improve this result to about 110 Giga-flops by using both
the GPU and CPU in combination.

An alternative to this benchmarks are some benchmarks that are based
on specific problems taken from program that are used in high per-
formance computing. On such benchmark is the BioPerf benchmark,
which contains problems and sample data-sets from computational bi-
ology such as sequence comparison, phylogenetic reconstructionﬂ and
protein structure prediction[BLLSO06]. It currently contains 10 such
problems[BLLS06]. We will not look at these problems any further,
since it requires some understanding of computational biology, and
that is not relevant for this project.

A similar example of a benchmark derived from the real world is the
NAS benchmark, which is composed of problems taken from large-
scale computational fluid dynamics[BBB*91]. Unlike the problems in
the BioPerf set, the problems in the NAS benchmark are surprisingly
general[BBBT91]:

1. Evaluate an integral based on pseudorandom trials.

2. A multigrid kernel, which tests communication between nodes.

1A technique used to compare genes of different animals to find the evolutionary
development history between different animal species
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3. A conjugate gradient to compute an eigenvalue for a sparse ma-
trix.

A 3D partial differential solver using fast furrier transformﬂ
A kernel to sort large integers.

A system solver (LU) for a block triangular system?

No oue

A solution to compute independent systems of pentadiagonal scalar-
equations?|

8. A solution to compute independent systems of block tridiagonal
equations

These problems are specified in greater detail in [BBBT91].

These benchmarks are somewhat more useful to us, although many of
the problems are overlapping; this overlap is mostly a result of the in-
dented implementation target of these benchmarks: large scale cluster
computers. Since there is no long range communication on the GPU
like one would find on a cluster grid, problems and 8| are mainly
meant to test how different requirements for long distance communi-
cation influence the system performance.

If we remove long distance communication from consideration (while
still considering communication between the individual threads on the
GPU), we can group the benchmarks together:

1. The integration based on pseudorandom values (this is based on

problem [I).

2. A conjugate gradient to compute an eigenvalue for a matrix (this
is based on problem [3).

1Fast furrier transforms is a computationally efficient method for converting a set
of discrete input values to a corresponding frequency spectrum.

2A block triangular system is in this case a triangular matrix with sub-matrices
as its elements.

3That is a diagonal matrix in which the diagonals above and below the diagonal
may also have non-zero elements.

4A block tridiagonal matrix is a matrix in which the diagonal above and below the
diagonal may also have non-zero elements; a block matrix is a matrix in which the
elements are represented as sub-matrices (of equal size) rather than as scalar values.
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3. The fast furrier transformation (this is based on problem [4).
4. A sorting kernel (this is based on problem [5).

5. A solver for linear-equations (this is based on problems [6] [7] and
8).

Finally there was a set of benchmarks in the paper on hiCUDA (see
[HA09] and Section (8.3 on page 53), which the authors called “standard
CUDA benchmarks”[HAO09]. These are:

1. Matrix Multiplication.
Coulombic Potentialll
Sum of Absolute Differences.

Two point Angular Correlation Function?]

A

Rys Polynomial Equation Solverf|

If we ignore the specifics of the equations use in item and b, we
have benchmarks for solving a simulation of interacting points, evalu-
ating a function over an area and solving a polynomial equation.

IThe Coulumb Potential is used to describe charges in water molecules, which
effects how they interact with one another.

2This function is used to compute the probability of finding an astronomical body
a specific (angular) distance from another astronomic body.

3Used to calculate 2-electron repulsion integrals between electrons in molecules.
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How much easier it is to be critical than to be cor-
rect.

Benjamin Disraeli

Criteria for the Solution

As we mentioned in Chapter |7 on page 46, it is more important from
a productivity point of view, to ensure that the solution we implement
lowers the risk of having to debug the code as much as possible, rather
than just speeding each debugging session up (such as by having it give
out error messages that clearly identifies the place where there might
be a problem).

A programmer who uses OpenCL today has to deal with a number
of potentially problematic issues which have been removed for many
many areas of software development, outside of high performance com-
puting:

1. Pointers and pointer arithmetic.
2. Memory and memory handling.
3. Memory bandwidth and cache issues.

4. A limited type-system.

All of these issues except issue (3| comes as a result of the choice to use
C as the language to write the kernels in. This was no doubt chosen
for pragmatic reasons: it is at the same time a relatively low level
language and a language with many programmers know, consistingly
either the first or second programming language on the TIOBE index
since 2001[TIO10].
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The only language more popular than C, as of the 2010 TIOBE lan-
guage index[TIO10], is Java. Unlike C Java does not allow the pro-
grammer to directly change pointers, which removes the complications
given by issue |1, nor is the programmer expected to handle memory di-
rectly (Java has a garbage collector so the programmer does not have to
manually free the memory he has allocated) which greatly helps with
issue |2, since forgetting to deallocate memory is a common source of
bugs.

Memory and pointer bugs are a class of bugs that can be very hard to
track down, because they may not manifest themselves every time the
code is run, making it much more difficult to figure out whether they
are present or, if they have previously been found, have be solved.

The final issue (issue [4) is the type-system. C is able to catch some
of the possible errors a computer programmer may make, such as as-
signing a float value when a pointer is expected, but C there are many
things which the C type system cannot handle, such as polymorphism.
This matters because a programmer may wish to avoid situations such
as the addition of two floats which represents temperatures in different
scales (such as Fahrenheit and Celsius) without first converting them
to a common format, or to ensure that strings are properly escaped
before they are saved in a database.

These issues would suggest that Java would be a better suggestion
than C to write kernels in, but there is at least two big problems with
that:

1. Many things that are often done in Java — such as creating ob-
jects or overriding functions in subclasses — are either very ineffi-
cient on the GPU or outright impossible (function pointers, which
would be necessary to implement functions that can be overrid-
den in subclasses, cannot be implemented on the GPU with cur-
rent hardware). This is the fundamental problem with Aparapi
(see Section 8.2 on page 50).

2. Java is designed to run on a variety of different machines, orig-
inally embedded consumer-electronic applications and later re-
target towards applications for the internet[GJSB05, p. XXII],
but those machines all run one or at most a few independent
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threads, rather than the large number of SIMD threads that are
the basis of the GPU architectures.

What we want to do then is to create a better way to interact with the
GPU than OpenCL or the Java language but at the same time derive
as much advantage as possible from the widespread use of Java.

10.1 Domain specific languages

Since development of entirely new languages is both a large undertak-
ing and simultaneously faces large problems with mainstream adap-
tion, we will instead create a simple embedded Domain Specific Lan-
guage.

Traditional Domain specific languages like Logd'|or SQL|are examples
of DSL which aims to make it much easier to solve a specific set of
related problems rather than making it somewhat easier to solve a
large range of less related problems.

FD 75
RT 54
LT 21
BK 17

Listing 67.1: An example of a simple program in Logo[Ove].

Rather than write this as an entirely new language, we will embed this
into an already existing language. This technique has become fairly
popular in the Ruby world, and the web framework Ruby on Rails uses
this technique in several different places: Listing [67.2 shows an exam-
ple:

class CreatePosts < ActiveRecord:: Migration
def self.up
create_table :posts do I|tl
t.string :name

1One implementation is available at http://www.fmslogo.org/index2.html.
2The language used in many databases management systems.
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t.string :title
t.text :content
t.timestamps
end
end

def self.down
drop_table :posts
end
end

Listing 68.0: Setting up database table in Ruby[Guill]

This leaves but one thing: the choice of language to embed the DSL in.
The obvious choice would be Java, but while a lot of people know Java
and can code in it, Java is rather strict in how much one can change
the language which limits how expressive the DSL can be.

On the other hand Scala, a language which we will present in much
greater detail in the next chapter, has a much more malable syntax.
Indeed BASIC has been embedded in Scala as a DSL:

object Lunar extends Baysick {
def main(args:Array[String]) = {
10 PRINT "Welcome to Baysick Lunar Lander v0.9"
20 LET (’dist := 100)
30 LET (’v := 1)
40 LET (’fuel
50 LET ( ’mass :

1000)
1000)

60 PRINT "You are drifting towards the moon."

70 PRINT "You must decide how much fuel to burn.”
80 PRINT "To accelerate enter a positive number"
90 PRINT "To decelerate a negative"

100 PRINT "Distance " % ’dist % "km, " % "Velocity
— "% v % "km/s, " % "Fuel " % ’fuel

110 INPUT ’burn

120 IF ABS(’burn) <= ’fuel THEN 150

130 PRINT "You don’t have that much fuel"

140 GOTO 100
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150
160
170
180
190
200
210
220
230
240

250

RUN

}
}

LET (’v := v + ’burn * 10 / (’fuel + ’'mass))
LET (’fuel := ’fuel — ABS(’burn))

LET (’dist “dist — ’v)

IF ’dist > 0 THEN 100

PRINT "You have hit the surface"

IF v < 3 THEN 240

PRINT "Hit surface too fast (" % v % ")km/s"
PRINT "You Crashed!"

GOTO 250

PRINT "Well done"

END

Listing 69.0: Lunar Lander written as an embedded DSL in
Scala[Fog09]]

While there are good reason to choose Scala, we will not hide that part
of the choice is due to our personal fondness for the language but that
fondness is based on its expressiveness and compatibility with the Java
platform: both of which are important properties for a language to em-
bed DSLs in.
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If you have tears, prepare to shed them now.
William Shakespeare

Scala

Scala is a modern computer programming language, which was devel-
oped by Martin Odersky. The Scala compiler — called scalac — com-
piles Scala code to jvm byte code (there is also a version which compiles
to .NET bytecode) which means that a Scala program has access to all
the libraries written for the jvm.

Scala, like Java, is an object-oriented language but unlike Java it is
not exclusively so; it also has support for functional programming and
actors. Scala can removes the Java limitation that exceptions which a
method declares it can throw must be captured and it does not require
that a class must be named the same as the file it is in — nor that there
must be no more than one public class in each file.

public class Hello{
public static void main(String[] args){
System . out. println ("hello,_world");
}
}

Listing 71.1: Hello world in Java

The difference between this and the corresponding Scala code is not
that big, but it does show two different things: arrays of things are
specified in the same way any other collection of things is and variable
names are specified before the type, not after.

object Hello {
def main(args: Array[String]) {
println("hello, world");
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Listing 72.0: Hello world in Scala

However this example can be improved by inheriting from the Application

trait:

object Hello extends Application {
println "hello, world"
}

Listing 72.1: An improved version of Hello world in Scala

The benefits of using Scala is more apparent if we choose a more com-
plicated example, so here is one that would require a lot more code to
do in Java:

abstract case class Operation
case class Plus(val lhs: Operation,
val rhs: Operation)
extends Operation
case class Value(val number: int) extends Operation

object Calc({
val calculation = Plus(Value(5),
Plus(Value(6) ,Value(7)))
def calculate(cal: operation) : int = cal match{
case Plus(lhs, rhs) => calculate(lhs) +
calculate(rhs)
case Value(number) => number
}
def main(args: Array[String]) {

println ("The value is: +
calculate(calculation).toString);

Listing 72.2: A simple calculator

There are a number of things to note about that example: case classes
are classes which have special functions that allow us to create them
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without having to write new, and to extract their contents without hav-
ing to specifically assign them one at a time.

Variables are specified like functions, except they use the keyword val
(Akin to the final keyword in Java, but used more often) or var (if the
value of the variable must be allowed to change), but observe that we
do not specify the type of the variable — Scala is able to correctly infer
that the type should be Operation.

Finally Scala — like many functional languages such as Erlang, Haskell
and OCaml — supports pattern-matching, which is what we use to do
the calculations. A more Java like example would have moved the cal-
culation of the value, such that each class was responsible for comput-
ing its own value — but this requires that we have the ability to add
more methods to a class (which may not be the case if we got the class
from somebody else, or it is part of a public API), and means that if
wanted to add the ability to also print it as an arithmetic expression
we would have to add a new method to all the classes.

Extending the Object Calc to print the calculation is rather simple:

def toRPNString(cal: operation): String =
cal match{
case Plus(lhs, rhs) => toRPNString(lhs)+
toRPNString(rhs)+"+"
case Value(number) => number.toString
}
def operationToString(cal: operation): String =
cal match{
case Plus(lhs, rhs) => operationToString(lhs) +
"+ o+
operationToString (rhs)
case \_ => toRPNString(cal)
}

There are many, many more features of Scala but we do not have
the space here to show them all. A tour of Scala can be found at
http://www.scala-lang.org/node/104.

Now that we have presented the language, we will have a look at the
implementation of our software.
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We are happy... we look forward to its implemen-
tation.

Justice Sabharwal

Implementation

In this chapter we describe the implementation of our toolkit, which we
have decided to call it the Light GPGPU Bridge Toolkit, henceforth re-
ferred to simply as the toolkit. Our aim is to develop a proof of concept
for a toolkit which bridge the disparity that exists between how pro-
grammers program ordinary computers and how they have to program
the GPU.

The toolkit does not aim to do all that is required to make the transi-
tion from CPU to GPU programming smooth, so we called it the light
toolkit.

The toolkit share a great deal in common with the Accelerator, but it
does have a number of differences:

1. Accelerator is written in C#, whereas the toolkit is implemented
in Scala. While C# is more flexible than Java, in particular it
does allow a limited form of operator overriding, has support for
anonymous functions and does not require that the name of the
class is the same as the name of the source file but it is not as
flexible as Scala. More importantly though it is possible to write
the majority of the program in Java and write only the part that
needs to use the GPU in Scala.

2. We only write the kernel, whereas Accelerator completely encap-
sulate everything necessary to program the GPU.

3. We make no assumptions about security, all we check for is that
we are not past the length of the first float buffer.
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4. We only support float buffers.

The central class in the compiler is the GPUKernel class, which is the
class from which we construct the instruction tree (the root of this tree
is stored in the variable instruction) and from which we compile the
users instructions down to an OpenCL kernel.

The possible instructions in the language are each represented as a
case class with a simple hierarchy where each class inherit the ab-
stract GPUlInstruction class. Since a few of the instructions take a type
argument, the case classes that represents types all inherit from the
abstract class ArgumentType, which in turn inherit from the GPUIn-
struction class as well.

class GPUKernel(input: GPUFloatArray) {

var instruction:GPUlnstruction = input

def +(rhs:GPUFloatArray)= {
instruction = AddFloatArray(instruction, rhs)
this

}

def —(rhs:GPUFloatArray) = {
instruction = SubtractFloatArray(instruction ,rhs)
this

}

def +(rhs:Float) = {
instruction = AddScalar(instruction ,

B ScalarConstant(rhs))

this
}
def —(rhs:Float) = {
instruction = SubtractScalar(instruction ,
[—=] ScalarConstant(rhs))
this
}
def sin() = {
instruction = SineOfFloatArray(instruction)
this
}

def cos() = {
instruction = CosineOfFloatArray(instruction)
this
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}

def tan() = {
instruction = TangentOfFloatArray(instruction)
this

}

Listing 77.0: The code which builds the tree as the user calls the
functions

As the user calls each function, the corresponding object is made the
root of the instruction tree. This enable us to compile the code by
traversing the tree recursively.

To construct a kernel, the user can write code like

object Lgbt extends Application {
val gpu = new GPUKernel(GPUFloatArray(Array(0f,1f,2f

= )
val gpu2 = gpu.sin + 4 — 2 + GPUFloatArray(Array(3f
— ,41,51))

println (gpu2 compileToKernel)
}

Because all the methods that the user can call to build the kernel re-
turn this, it is possible to chain them to the degree it is desired.

Since the kernel has to be expressed as a C function, we have to find
out which arguments it takes, find a unique name for them and write
the type. We do this by traversing the tree of instructions in pre-
order at each step building a list of the arguments needed for that
subtree.GPUFloatArray (which is a wrapper around an ordinary Scala
float Array) is special because it requires us the add two items to the
list of kernel arguments.

private def kernelArguments(instruction :
[ GPUlnstruction) : List[GPUlnstruction] = {
instruction match {
case AddFloatArray(lhs, rhs) => kernelArguments(
B2 lhs) ++ kernelArguments(rhs)
case SubtractFloatArray(lhs, rhs) =>
B kernelArguments(lhs) ++ kernelArguments

B (rhs)
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case AddScalar(lhs, rhs) if rhs.isInstanceOf[
— ScalarVariable] => List(FloatType()) ++
— kernelArguments(lhs)
case AddScalar(lhs, rhs) => kernelArguments(lhs)
case SubtractScalar(lhs, rhs) if rhs.
B isInstanceOf[ScalarVariable] => List(
= FloatType()) ++ kernelArguments(lhs)
case SubtractScalar(lhs, rhs) => kernelArguments

— (lhs)

case SineOfFloatArray(lhs) => kernelArguments(
B3 lhs)

case CosineOfFloatArray(lhs) => kernelArguments(
B3 lhs)

case TangentOfFloatArray(lhs) => kernelArguments
B1 (lhs)

case a:GPUFloatArray => List(a)
}
}

Once we have a way to find the arguments we have to add to the header,
we can write it:

private def compileHeader() : String = {
var str = new StringBuilder
var first = true
str append "__kernel void kernel("
for(val k <— kernelArguments(instruction)) {
if(first)
first = false
else
str.append(", ")
k match{
case a:ArgumentType => str.append("__global "
— ) .append(a toType).append(" ").append
B (VariableName.getNextVariableName)
case GPUFloatArray(_, name) => str.append("
— __global int ").append(name).append("
B Count, ").append("__global float* ").
B append(name)
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str.append(", __global ").append("float* ").append
- (llout")

str.append(")")

str toString

}

Listing 79.0: Header Compilation

Now that we know how to write the header, we can take a look at the
body:

private def compileBody() : String = {

var str = new StringBuilder

str append "{\n\tint id = get_global_id(0);\n"

str.append("\tif(id < ").append(kernelArguments (
B instruction).first.asInstanceOf[
B GPUFloatArray ].name) . append ("Count) {\n")

str append "\t\tout =" +compileInstructions(
. instruction) + ";\n"

str append "\t}\n"

str append "}"

str toString

Listing 79.1: The template for the body of the kernel

The most interesting thing here is that since a kernel can be though of
as a loop where each iteration is executed in its own thread (with no
guarantee as to the order), we can insert what would otherwise have
been put into a loop directly into the kernel.

Finally we can write the code needed to compile the individual instruc-
tions. This is again done in preorder.

private def compilelnstructions(instruction
[ GPUlnstruction) : String = {
instruction match {
case AddFloatArray(lhs, rhs) =>
— compileInstructions(lhs) + "+" +
— compileInstructions(rhs)
case SubtractFloatArray(lhs, rhs) =>

B compilelnstructions(lhs) + "-" +
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B compilelnstructions(rhs)

case AddScalar(lhs,rhs) => compilelnstructions/(
B lhs)+ "+" + rhs.value

case SubtractScalar(lhs, rhs) =>
B compilelnstructions(lhs) +
B value

case SineOfFloatArray(lhs) => "sin(" +
B compilelnstructions(lhs) + ")"

case CosineOfFloatArray(lhs) => "cos(" +
B compilelnstructions(lhs) + ")"

case TangentOfFloatArray(lhs) => "tan(" +
B compilelnstructions(lhs) + ")"

case GPUFloatArray(arr, name) => name+"[id]"

—"+ rhs.

Listing 80.0: Instruction Compilation

All that is left to do is to put code to compile the header and the body
of the function together:

def compileToKernel() : String = {

var str = new StringBuilder
str append compileHeader ()
str append compileBody ()
str.toString

The rest of the code can be perused on the accompanying cd.
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If you can look into the seeds of time, And say
which grain will grow, and which will not, Speak.

Macbeth, Act I, scene iii

Future work

There are many directions from which one can extend the work we
have presented in this report. The most interesting and useful thing
would be to improve and extend the toolkit as well as the techniques
for benchmarking and the different ways to measure programmer pro-
ductivity.

There are a few specific directions in which the toolkit could be im-
proved:

1. The toolkit should be improved such that it is better able to warn
the user about possible errors.

2. The toolkit should be extended to include summing and multi-
plication of entire arrays as well as allow the user to use the full
range of functions available in OpenCL. Additional improvements
could include adding more advanced and specialized functions
which are not available in OpenCL such as image recognition and
statistical functions.

3. The toolkit is currently implemented in Scala which requires the
programmer to be familiar with this language. To solve this prob-
lem a complete compiler could be made which allowed the user to
implement the kernels in an extension to, or a subset of, Java.

4. The toolkit could be improved such that it can scan already ex-
isting programs and replace parts of them with GPU accelerated
code where such changes could result in faster computation.
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"what ’s done is done".
Macbeth ( Act III, Scene II)

Conclusion

The original goal of this report was to find out if it is possible to develop
something which would allow programmers to develop for the GPU at
a higher level of abstraction than the C-like language which is used in
OpenCL and if so how to benchmark it against other solutions to the
same problem.

We looked into programmer productivity and found that while there
are no productivity studies with a large number of subjects available
we were able to extract some knowledge about what we should do to
minimize the time that the developer needs to spend on debugging
specifically it is more important to lower the number of times a de-
veloper has to go back to debugging before the program is useful than
it is to make each of these debug sessions shorter.

After this we looked at a number of benchmarks for high performance
computing and found that they mostly used a common set of opera-
tions which included matrix multiplication, solving linear equations
and sorting. We likewise found a few measurements of programmer
productivity, however these were of no use.

As a way to improve programmer productivity, we researched a number
of paradigms that are available as alternatives to CUDA and OpenCL.
While these paradigms have their positive and negative sides we chose
OpenCL as our target for making a toolkit because OpenCL is not tied
to down to one hardware platform.

Using this research we implemented a toolkit which allowed users to
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write the OpenCL kernel at a higher abstraction that what they would
otherwise have been able to. In the future works section we docu-
mented a number of ways in which the toolkit could be improved.
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