
General-Purpose Computations

10th of January 2011

9th semester of

Software Engineering

Aalborg University

 Søren Alsbjerg Hørup

 Søren Andreas Juul

 Henrik Holtegaard Larsen

Boids Ray Tracing

BrookGPU CUDA OpenCL

The Art of

on Graphics Processing Units

Aalborg University
Department of Computer Science
Selma Lagerlöfs Vej 300
9220 Aalborg
Telephone:(45)99409940
http://www.cs.aau.dk

Title:

The Art of GPGPU

Project period:

September 2nd, 2010 to
January 10th, 2011

Theme:

GPGPU Programming

Group:

d509a
Software Engineering

Authors:

Søren Alsbjerg Hørup
Søren Andreas Juul
Henrik Holtegaard Larsen

Supervisor:

Lone Leth Thomsen

Abstract:
In this report we document our analysis of
General-Purpose computations on Graphics
Processing Units (GPGPU) and the practical
experience that we have gained throughout
the process.
In the analysis chapter, we analyze the di�er-
ences between GPUs and CPUs describe the
architecture of the G80 chip, which is the chip
on the Tesla cards available to us. Also we
take an in-depth look at three GPGPU pro-
gramming languages, CUDA, OpenCL and
BrookGPU, where OpenCL and CUDA is
supported by the the Tesla card, and we �nd
several tools that can help with OpenCL and
CUDA development.
In the development chapter, we implement
two GPGPU powered applications, namely a
ray tracer using CUDA and the Boids �ock-
ing algorithm using OpenCL and Brook+.
Benchmarks are carried out, which are ana-
lyzed and discussed. We �nd that the GPU is
indeed a powerful co-processor, but one must
be able to program it correctly against several
factors to obtain high performance.
Lastly, we compare the three GPGPU lan-
guages, that we found through the analy-
sis, using a number of comparison criteria.
Through the comparison we �nd that CUDA
is the most expressive of the three, and is also
the must mature, while OpenCL is quickly
gaining popularity in the GPGPU �eld.

Copies: 6

Total pages: 117

Appendices: 1

Project �nished: 10th of January 2011

The content of this report is freely available, but publication is only permitted with explicit permission

from the authors.

Preface

Style Guide

The following style is used throughout this report:

Citations are represented as a pair of angle-brackets containing a number.
The number refers to a number in our bibliography. Used as this section
is based on [1] means that the entire section is based on the mentioned
source, unless other sources are explicitly stated.

A citation at the end of a sentence, but right before the full stop, means
that the citation is used exactly for that sentence. A citation after a full
stop means that the citation is applied to the whole paragraph, i.e. more
than one sentence.

Citing a speci�c page, section and chapter, is done with "p.", "sec." and
"chap." respectively, e.g. [1, p. 55], [1, chap. 2], etc.

Prerequisites

The intended readers of this report are students who have passed Software
Engineering 8th semester or equivalent. A basic understanding of the C/C++
language is recommended, as many of the APIs discussed are written in C/C++
or a subset of it.

Terms

The following list introduces the most important terms used throughout this
report.

GPU refers to Graphics Processing Unit, a specialized microprocessor that
accelerates graphics computations.

Concurrency refers to computations done simultaneously, but can be inter-
leaved.

Parallel refers to computations that are done simultaneously and in parallel.

Graphics card refers to a device which has a Graphics Processing Unit (GPU),
memory and a host interface.

Discrete card refers to a graphics card which is not integrated into a system,
but must be installed into an expansion slot, e.g. PCI, PCI-E, etc.

GPGPU refers to General-Purpose Computing on Graphics Processing Units,
i.e. utilizing graphics cards for non-graphical computations.

Device refers to the graphics card containing the GPU.

Device code refers to code which is executed on a device.

Host refers to the host system containing the Central Processing Unit (CPU)
and main memory.

Host code refers to code which is executed on the host.

iii

Interactive framerates refers to the number of frames per second required
by an application, while still being interactive, i.e. handle input from the
users. We de�ne this as at least 30 frames per second.

Rendering refers to the process of creating a 2D image from a 3D scene that
can be displayed.

Enclosed CD

On the enclosed CD the source code developed during this project is available
along with the benchmark results and this report in PDF format.

Thanks

We want to give thanks to our supervisor Lone Leth Thomsen, for guiding and
helping us throughout this project. We would also like to thank Bent Thomsen
for setting up the meeting with Con�Core, Kim Guldstrand Larsen for giving
us suggestions to our problem formulation, and Aage Sørensen who helped us
acquire the needed hardware.

Signatures

. .
Søren Alsbjerg Hørup Søren Andreas Juul

. .
Henrik Holtegaard Larsen

iv

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Other Utilization of GPGPU 2
1.2 Problem Formulation . 4

1.2.1 Practical Experience . 5
1.2.2 Be Scienti�c . 5

2 Analysis 6
2.1 What Is a GPU . 6
2.2 Available Hardware . 8

2.2.1 Problems with Tesla C870 8
2.3 G80 Architecture . 9

2.3.1 Overview . 9
2.3.2 Memory . 11
2.3.3 Summary . 12

2.4 Algorithms Suited for GPGPU Execution 12
2.4.1 Comparison of Performance between GPUs and CPUs . . 13

2.4.1.1 Discussion . 15
2.4.1.2 Our Remarks . 16

2.5 Programming GPUs for General Purposes 16
2.5.1 Stream Processing . 17

2.6 GPU Languages . 18
2.6.1 BrookGPU . 18

2.6.1.1 ATI's Brook+ 19
2.6.1.2 Example . 20

2.6.2 CUDA . 20
2.6.2.1 Architecture . 21
2.6.2.2 Memory . 21
2.6.2.3 Example . 22
2.6.2.4 Compute Capability 24

2.6.3 OpenCL . 25

v

2.6.3.1 Architecture . 26

2.6.3.2 Framework . 27

2.6.3.3 Example . 28

2.6.4 Summary . 29

2.7 Tool Support . 30

2.7.1 CUDA-GDB . 30

2.7.2 Nvidia Parallel Nsight . 31

2.7.3 Nvidia Compute Visual Pro�ler 32

2.7.4 gDEBugger CL . 32

2.7.5 CUDA Occupancy Calculator 33

2.7.6 Conclusion . 33

2.8 Summary . 34

3 Development 35

3.1 Boids Application . 35

3.1.1 The Boids Model . 35

3.1.1.1 Steering . 36

3.1.1.2 Heading . 37

3.1.1.3 Position . 37

3.1.2 Optimizations . 37

3.1.2.1 Sorting . 39

3.1.2.2 Finding neighbors 40

3.1.2.3 Choice of optimization 42

3.1.3 Functional Requirements 42

3.1.4 OpenCL Implementation 42

3.1.4.1 Sort . 43

3.1.4.2 BoidsSimple . 43

3.1.4.3 Boids . 44

3.1.5 Brook+ Implementation 45

3.1.5.1 Sort . 45

3.1.5.2 BoidsSimple . 47

3.1.5.3 Boids . 47

3.1.6 C++ CPU Implementation 47

3.1.6.1 Sort . 47

3.1.6.2 BoidsSimple . 47

3.1.6.3 Boids . 48

3.1.7 Summary . 48

3.2 Ray Tracer Application . 48

3.2.1 Ray Tracing Algorithm 48

3.2.2 Functional Requirements 49

3.2.3 CUDA Implementation 50

3.2.3.1 Work Partitioning (R+P) 50

3.2.3.2 Intersection Bu�er (R) 50

3.2.3.3 Memory (P) . 52

3.2.4 C++ Implementation . 52

3.2.5 Summary . 53

3.3 Summary . 53

vi

4 Benchmarks 54
4.1 Boids Benchmarks . 54

4.1.1 Benchmark Setup . 54
4.1.2 Initial Experiments . 56

4.1.2.1 Results . 57
4.1.3 Benchmark Results . 58
4.1.4 Discussion . 61

4.2 Ray Tracer Benchmarks . 61
4.2.1 Benchmark Setup . 62
4.2.2 Benchmark Results . 64
4.2.3 Discussion . 65

5 Comparison 66
5.1 Criteria for Comparison . 66

5.1.1 Memory . 67
5.1.2 Computation . 67
5.1.3 Learnability . 68
5.1.4 Concurrency . 68
5.1.5 Support . 69

5.2 Ratings . 70
5.2.1 Memory . 70

5.2.1.1 BrookGPU . 70
5.2.1.2 CUDA . 71
5.2.1.3 OpenCL . 71

5.2.2 Computations . 72
5.2.2.1 BrookGPU . 72
5.2.2.2 CUDA . 72
5.2.2.3 OpenCL . 73

5.2.3 Learnability . 73
5.2.3.1 BrookGPU . 73
5.2.3.2 CUDA . 74
5.2.3.3 OpenCL . 75

5.2.4 Concurrency . 76
5.2.4.1 BrookGPU . 76
5.2.4.2 CUDA . 77
5.2.4.3 OpenCL . 78

5.2.5 Support . 78
5.2.5.1 BrookGPU . 79
5.2.5.2 CUDA . 79
5.2.5.3 OpenCL . 80

5.3 Summary . 81

6 Epilogue 85
6.1 Conclusion . 85

6.1.1 Problem Formulation . 86
6.1.2 Practical experience . 87

6.2 Discussion . 88
6.2.1 Implementation Veri�cation 88
6.2.2 Benchmarks . 89
6.2.3 Be Scienti�c . 90

vii

6.2.4 Our Thoughts . 90
6.3 Future Trends . 91

6.3.1 GPGPU Programming is Becoming More Powerful 91
6.3.2 GPGPU Programming is Becoming Easier 91
6.3.3 GPU and CPUs are merging 92
6.3.4 GPGPU is Gaining Momentum 92
6.3.5 Summary . 93

6.4 Future Development . 93

Bibliography 101

A Nvidia G80 102
A.1 Components Details . 102
A.2 Memory . 104

viii

1
Introduction

A GPU is a specialized microprocessor that accelerates graphics rendering, thus
allowing interactive graphic-intensive applications on consumer-level computers,
which would otherwise require a high performance and much more expensive
CPU. [79]

Previous generations of GPUs, prior to 2000, used a �xed-function pipeline,
meaning that the functionality of a GPU was �xed and one could only e�ect the
behavior of the pipeline trough parameters, e.g. one could a�ect how vertices
are transformed by specifying a transformation matrix. [79, sec. 1.1.3][36, p.
96]

In the start of the 2000s, GPU manufacturers introduced programmable
aspects to the GPU pipeline. This allowed more advanced graphical e�ects, such
as bump-mapping, because developers were able to introduce small programs
to the graphical pipeline, called "shaders", which could alter the results of the
graphical computations. In 2002 the �rst GPUs that supported features such
as, loops, branches, variables and �oating point mathematics in pixel shaders
were introduced, thus making GPUs more �exible and more like CPUs. [79,
sec. 1.1.4][36, p. 98]

GPUs have continued to increase in �exibility and todays GPUs even al-
low general purpose computations, other than graphical computations, on the
GPU. This is commonly referred to as General-purpose computing on graphics
processing units (GPGPU) or, and to a lesser degree, GPU Computing. [20]

Examples of GPGPU applications include: neural network that utilizes the
GPU to calculate the product of the neurons, computer vision algorithms that
utilizes the GPU to sample and analyze each separate pixel in real time, Fast
Fourier Transform algorithms which is commonly used in encodings and decod-
ings of audio and video, and many more. [36, p. 99]

1.1 Motivation

Our primary reason for looking at GPGPU programming is that we implemented
a ray tracer for smartphones and CPUs as a part of our 8th semester project.
Ray tracing, however, turned out to be a slow process using only the CPU. We
have since seen several publications where di�erent types of computations have

1

Chapter 1. Introduction

been accelerated using GPUs, we want to investigate whether we can create a
faster ray tracer using GPUs. Another advantage of using a GPU over a CPU
is that we might be capable of achieving comparable levels of performance using
a cheaper systems with GPUs than CPUs.

Performance vs Cost With regards to performance vs cost, we look at the
FLoating point Operations Per Second (FLOPS) since the computations made
in ray tracing is primary done on �oating points. When looking at state of the
art consumer level graphics cards and CPUs, we see that a Radeon HD 5970
graphics card with two ATI Cypress GPUs gives a theoretical peak double-
precision �oating-point performance of 925 gigaFLOPS, while an Intel Core i7
980 XE CPU has a max theoretical performance of 107.55 gigaFLOPS. Thus,
the HD 5970 has nearly 10 times the computational power. [76]

According to EDBPriser.dk at the time of writing, the HD 5970 costs 3985kr
(about 200 megaFLOPS/kr) compared to the 980 XE's price of 6860 kr (about
15 megaFLOPS/kr), making the CPU roughly 13 times more expensive with
regards to double precision cost e�ciency. Of course, theoretical performance
should be taken with a grain of salt, since the actual performance also depends
upon the implemented algorithm, e.g. algorithms requiring heavy synchroniza-
tion may be bounded by memory access latency and not FLOPS.

8th Semester's ray tracer Implementation During the 8th semester we
implemented a ray tracer [27], running on the CPU, and discovered that the
rendering process required a lot of computational resources. We had an hy-
pothesis that the rendering process could be carried out much faster using a
GPU, instead of a CPU, because of the theoretical higher processing power of
GPUs.

Looking at the literature with regards to GPGPU and ray tracing we see that
several publications deal with the problem of creating an e�cient GPU based
ray tracer [17][63][62]; many of which are successful in achieving high frame rates
on consumer level GPUs. Creating an implementation that is accelerated by a
GPU requires a lot of work, and the implementation would not be compatible
with the smartphone that we had access to at the time, thus requiring us to
make two separate code bases which was outside the scope of the 8th semester
project; we therefore want to investigate the potential of using GPGPU for ray
tracing in this project.

1.1.1 Other Utilization of GPGPU

Looking beyond ray tracing on GPU hardware, we see that other algorithms have
been implemented with GPU support with considerable increase in execution
speed.

Crowd Simulation Crowd simulation is the process of simulating a larger
group of actors, such as humans, animals, particles, etc. and their interaction,
which leads to a form of collective behavior [75]. Boids is an algorithm that
allows crowd simulation with regards to how animals exhibit �ocking behavior
[67], speci�cally, the Boids algorithm deals with the simulation of a herd of land

2

EDBPriser.dk

1.1. MOTIVATION

animals, a �ock of birds or a school of �sh; these behaviors are all captured
within the Boids algorithm.

Several parallel CPU implementations of the Boids algorithm exist, such
as [11] for multi-core CPUs and [72] for clusters, but some publications have
also introduced GPU implementations of the Boids algorithm. [64] is one such
publication, where each actor is stored in a two-dimensional data structure, that
is partially sorted at each iteration, thereby allowing e�cient spatial queries.
Two implementations of the algorithm, one targeting the CPU and the other
targeting the GPU, is evaluated. The CPU and GPU version is able to simulate
one iteration of one million actors in 5394ms and 38ms respectively, on a Core 2
Quad 2.4GHz equipped with a Nvidia 8800 GTS graphics card. Thus, the GPU
version is about 140 times faster than the CPU version.

Computer Vision Computer vision in science is the discipline concerned with
the theory behind arti�cial systems that have the ability to extract information
from images, such as photographs, video, scanners, etc. thus allowing computers
to "see". [6, p xiii]

Several publications deal with computer vision. One such publication [1]
from 2008, describes an open-source computer vision and image processing li-
brary for GPUs, called GpuCV. GpuCV was designed to be compatible with
existing applications that utilizes OpenCV, a CPU based computer vision li-
brary, thus allowing transparent utilization of the GPU for existing OpenCV
applications.

Benchmarking is done on a Intel Core2 Duo 2.13 Ghz CPU with 2GB of
Random Access Memory (RAM) and a 1GB Nvidia GeForce GTX280 graphics
card, the images used as input, ranging from 128x128 to 2048x2048 pixels in
size. The results show that GPU support is bene�cial when high resolution
images are used as input, however, at lower resolutions the CPU is in most
cases more e�cient. At high resolutions however, GpuCV achieves speed ups in
the range of 30 to 100 times that of the OpenCV implementation.

Sorting The problem of sorting has also been solved using GPUs, though with
smaller factor speed ups compared to the applications presented above.

A publication [68] from 2008 suggests a hybrid sorting algorithm based upon
quick-sort and merge-sort. Quick-sort is �rst used to divide the input list, that
requires sorting, into L number of sublists, where all elements of sublist i + 1
are higher than the elements of i. L is the number of stream processors on the
GPU, 128 for a GeForce 8800 GTS. Afterwards, a modi�ed version of merge-sort
is used to sort the L sublists.

This approach achieves nearly twice as fast sorting compared to other GPU
sorting algorithms and is over 6 times faster than the Standard Template Li-
brary (STL) quick sort CPU implementation provided by Microsoft. Also, when
utilizing two GPUs, sorting is 11 times faster compared to STL sort. Bench-
marking was carried out using an Intel Core 2 Duo 2.66GHz and two GeForce
8800 GTS 512MB graphics cards. [68, sec. 7.1]

3

Chapter 1. Introduction

1.2 Problem Formulation

The aim of this semesters project is to gain a deeper understanding of GPGPU
related theories and practices, which allows us to implement applications which
can utilize the GPU for computational intensive operations. We have devised a
problem formulation, presented below.

Our main problem is:

Learn the art of performing General-Purpose Computing on

Graphics Processing Units, and the theories that relate to this

subject

From the main problem we have derived the following questions we want to
answer in this project:

• How does the hardware architecture of a GPU look like, com-
pared to a CPU?
In order to e�ciently utilize the GPUs, knowledge of the hardware archi-
tecture might be required

� We have two Tesla C870 graphics cards available, as is described in
Section 2.2. What does the hardware architecture of a Tesla C870
look like?

• What are the characteristics of well suited problems for GPU
execution?
Not all problems, or parts thereof, may be suited for GPU execution. We
wish to identify which type of problems are suited, and which are not

� What are GPUs currently used for other than graphical applications?

� What are the pros and cons of GPUs compared to CPUs?

• Which GPGPU APIs/Languages exist, and how does one use
them?
To better understand how GPGPU programming is done, it is wise to look
at the tools of the trade

� What are the pros and cons of the di�erent APIs/Languages?

� Do any of the languages support high level of abstractions, i.e. are
any of the languages high level programming languages?

� How can a valid comparison of the di�erent languages be carried out?

• Which tools currently exist to help developers with GPGPU
programming?
Tools, such as debugging tools, may make the developer more e�cient at
implementing programs that make use of GPGPU

� Which debugging tools are available?

� Which testing tools are available, e.g. Unit testing?

� What about pro�ling tools?

4

1.2. PROBLEM FORMULATION

• Is it possible to utilizing multiple GPUs in parallel for GPGPU
purposes? using technologies such as SLI and CrossFire
Using several GPUs in parallel may increase performance, as more work
can be done in parallel

� Which problems arise when using multiple GPUs?

1.2.1 Practical Experience

Furthermore we wish to gain practical experiences with GPGPU by implement-
ing a ray tracer and the Boids algorithm on a GPU. The purpose of choosing
two algorithms is to cover a broader area of problems. The Boids implementa-
tion will focus on how to implement data structures and the problems this may
impose.

The ray tracer implementation will use a naive algorithm and instead focus
on improving this algorithm by using the theories from the analysis, e.g. which
types of memory should be used where.

1.2.2 Be Scienti�c

We must be scienti�c in our approach, which means that we must be able to
reason about our choices, e.g. of a speci�c algorithm. Also, the sources we
cite must be scienti�c publications, i.e. peer reviewed published papers, or at-
least some form of recognized documentation, such as an o�cial speci�cation or
company website for a particular product.

5

2
Analysis

In this chapter, we will �rst cover what a GPU is and how it di�ers from a CPU,
and then look at the GPU hardware we have available and how we got it working.
Afterwards, we will analyze the G80 architecture, which is the architecture used
by the Tesla C870 GPU, and look at which problems can be solved using GPUs.
Lastly, we will look at which programming languages programmers can use to
program GPGPUs, and which GPGPU tools are currently available.

2.1 What Is a GPU

GPUs were originally designed for graphics computations and then started
changing to allow more and more general types of computations, they have
a very di�erent designs than CPUs. In order to develop a program that can run
e�ciently on a GPU, we have to understand these di�erences.

The main di�erence between a CPU and a GPU is that a CPU has a few
faster cores, while the GPU has many slower cores.

�If you were plowing a �eld, which would you rather use?... Two
strong oxen or 1024 chickens?� [13]

The reason for CPUs having few but faster cores and GPUs have many
slower cores is that they have di�erent goals. The CPU focuses on low latency,
i.e. making a single instruction execute as fast as possible. The GPU on the
other hand focuses on delivering as high throughput as possible, i.e. the time it
takes to complete a single instruction is less important than the time it takes
to complete all the instructions of a given task.

The di�erence can be illustrated by an example of the addition of two vectors
each containing 2000 elements. Assuming that we have a CPU that can execute
an add instruction in 1ms completing the task would take 1× 2000 = 2000 ms.
On the other hand we might have a GPU that takes 100ms to execute one add
instruction, but can execute 200 add instructions in parallel thereby only taking
2000
200 × 100 = 1000 ms to complete the task.

This has led CPU architects to keep the CPU's Arithmetic Logic Unit (ALU)
busy by using large caches, using prefetching to minimize the latency of memory

6

2.1. WHAT IS A GPU

ALU ALU

ALUALU

Control

Cache

(a) CPU (b) GPU

Figure 2.1: Di�erence between a CPU and a GPU [31]

access, and use complicated control logic such as branch prediction and out of
order execution, thus taking advantage of cycles which would otherwise have
been wasted due to memory access latency. All of this cache and control logic
takes up a relatively large portion of the chip, compared to the space taken by
the ALUs. This is shown on Figure 2.1(a).

On the other hand, GPUs are designed as a very parallel architecture with
many simple cores, containing very simple control logic and small caches. GPUs
also uses Single Instruction, Multiple Data (SIMD) to share a single control unit
between multiple ALU [41] as shown in Figure 2.1(b). The use of SIMD means
that more ALUs can be �tted on to a chip, but this also means that branching
becomes slow. The reason branching becomes slow is that a single control unit
can only follow one branch at a time. All ALUs not taking a given branch must
wait for the ALU, which took the branch, to exit the branch before executing
their own branch. Thus, if we have 8 ALUs per control unit, we have a worst
case performance of 1/8th the performance of a program without any branches.

To keep the ALU busy during memory access without the use of advanced
control and large caches, the GPU instead rely on latency hiding, that is, having
many lightweight threads ready to execute, such that the GPU can start running
one of these when another thread is waiting for memory access.

These two design philosophies have led to a big di�erence in the theoretical
peak performance of GPU and CPU. The performance is usually measured in
FLOPS, as shown in Figure 2.2. The GPU has about a 10 times more compute
power than a CPU and the di�erence appears to be growing. In recent years,
CPU has hit a limit in the increase in sequential execution speed due to power
consumption [71]. This has led CPU designers from the uni-processor design
to multi-core design, i.e. multiple cores per die, which in turn means that the
processing power of CPUs increases every year due to more cores, and not due
to increased clock-frequency.

GPUs usually comes on a discrete card with its own RAM. Therefore, it
is much easier for hardware manufactures to move to new RAM technologies
or make a wider memory busses since it does not have to remain backward
compatible with old hardware [31]. This means that GPUs usually have a much
higher memory bandwidth than the CPUs. As shown in Figure 2.2, a GPU can
have access to RAM that has above 10 times the bandwidth of the RAM that
a CPU has access to.

7

Chapter 2. Analysis

Figure 2.2: Performance comparison of GPU and CPU [31][61]

2.2 Available Hardware

We have a workstation with two Nvidia C870 Tesla cards at our disposal. These
cards support Compute Uni�ed Device Architecture (CUDA) of compute capa-
bility 1.0, which is the �rst version of CUDA released, and have a theoretical
performance of 518.4 gigaFLOPS with a memory bandwidth of 76.8 GB/sec.
Compute capability version de�nes which CUDA features are supported, e.g.
compute capability 1.1 introduces atomic operations on integers in global mem-
ory. The compute capability depends on the GPU architecture and can be seen
as an abstraction of the features of the architecture. The fact that the Tesla
C870 only support 1.0 means that the programs we wish to run on these GPUs,
can only use the features available in compute capability 1.0. Also, any op-
timizations must be based on this compute capability's speci�c requirements,
e.g. memory access requirements. The architecture of the Tesla C870 is ana-
lyzed further in Appendix A, but we will give the most important details in
Section 2.3.

Beside the Tesla cards, we have two developer computers with Nvidia graph-
ics cards: Quadro FX880M, supporting compute capability 1.2 and a Quadro
140M, supporting compute capability 1.1, and we have a Radeon HD 2900XT
from ATI with a theoretical performance of 475 gigaFLOPS with a memory
bandwidth of 106 GB/s [23].

2.2.1 Problems with Tesla C870

The two Tesla C870 cards are installed in a LENOVOThinkStation D10 6427H6G
with a Intel Xeon E5420 Quad core CPU, with a theoretical performance of 40
gigaFLOPS [28], and 4GB PC2-5300 RAM running Windows 7 enterprise 64-
bit. Since the Tesla cards do not have any display output, and since they take
up both of the Peripheral Component Interconnect Express (PCIe) X16 slots on
the motherboard, an old ATI Mach64 VT2 Peripheral Component Interconnect
(PCI) graphics card was initially installed in the system.

8

2.3. G80 ARCHITECTURE

However, after trying di�erent drivers and searching for similar problems on
the Internet, we found the installation guide for the Tesla C1060, which states
that the Tesla C1060 only works with other Nvidia graphics cards that are com-
patible with the same drivers as the Tesla C1060, when running Windows.[49]
This was not mentioned in any of the o�cial documentation for the Tesla C870
that we were able to �nd [47][48][46], but since the C1060 is a newer card com-
pared to the C870, we assumed that a Nvidia graphics card is also required
with the C870, and thus the root of our problems. After discovering this, we
installed a Quadro FX 1400 card which used the same driver as the Tesla cards.
This setup worked as intended, but the Quadro FX 1400 took up one of the
two available PCIe 16x slots. The Tesla cards also uses PCIe 16x thus only one
Tesla C870 could be used.

We therefore acquired a GeForce 8400GS with 512MB RAM that uses the
PCIe X1 interface. The system however was unable to register this card when
it was inserted. We assume this is due to the motherboard for some reason
not supporting PCIe X1 graphics cards even after updating to the newest Basic
Input Output System (BIOS) version. At the time of writing, the BIOS version
is 2XKT31A. Also, the graphics card was tested in another system where it
worked perfectly, i.e. it was not faulty.

Having concluded that the motherboard did not support PCIe x1 graphics
cards, we found a GeForce 8400GS with 256MB RAM that uses the older PCI
interface. Using this graphics card, we managed to get both Tesla C870 cards
running using Windows.

In total this process took us about a month, with work on and o�. A lot of
time was spend on other tasks, as we were waiting for new hardware.

2.3 G80 Architecture

Because Tesla C870 graphics cards implements the G80 architecture, this sec-
tions covers the most important details of the G80 architecture. The architec-
ture is described in much more detail in Appendix A.

Nvidia is somewhat secretive about the details of their chips, therefore the
following is based on information from people working for Nvidia found ind [35]
and [54] supplemented with details found in [7] and [69].

2.3.1 Overview

In Figure 2.3 we show the high level components of the G80 and how it interacts
with the other components outside the GPU. At the top of the Figure 2.3 is
the host system, with the host CPU and system memory that can communicate
with each other through a bridge, this is usually the north bridge but might
also be integrated in the CPU itself.

As shown on Figure 2.3, all communication such as issuing instructions or
copying memory between the host system and the GPU, goes through the host
interface, this is usually the systems PCIe bus. When GPGPU work is as-
signed the GPU the compute work distribution takes care of splitting the
work in to smaller groups which are then assigned to one of the 8 Texture

Processor Cluster (TPC), that performs the actual computations. The TPC

usually requires access to the Dynamic Random Access Memory (DRAM) on the

9

Chapter 2. Analysis

graphics card, and can access it through the interconnection network on the
chip, that connects each of the TPC to each of the 6 DRAM banks on the graphics
card. Each of these banks has its own level 2 cache.

GPU

Host CPU Bridge
System

Memory

Host
Interface

Input
assembler

Vertex work
distribution

Viewport/
clip/setup/
raster/zcull

Pixel work
distribution

Compute
work

distribution

Interconnection network

ROP L2

DRAM

TPC TPCTPCTPCTPCTPC TPCTPC

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

Figure 2.3: The architecture of the G80 GPU. The crossed out components are
those that are of no interest to GPGPU. [35]

As shown in Figure 2.4, each TPC has a number of subcomponents, it has
a single SM Controller (SMC) which controls two Streaming Multiprocessor

(SM) and a texture unit. All communication between the SMs and the texture
unit goes through the SMC, the SMC also decides which SM can access the texture
unit at any given time. The texture unit is in charge of texture memory ac-
cess and has a small read only L1 cache.

As shown in Figure 2.5 each SM consists of a number of subcomponents. It has
an instruction cache and a multithreaded instruction unit that con-
trols the eight Streaming Processor (SP) and two Special Function Unit

(SFU). The SP executes simple �oating point and integer operations and the SFU
performs more advanced functions such as fast approximations of sin and cos.
In addition to this, the SM has a read only constant cache and a read/write
shared memory.

10

2.3. G80 ARCHITECTURE

TPC

Geometry
controller

SMC

SM SM

Texture unit

Tex L1

Figure 2.4: Components of the TPC on the G80 the component that are crossed
out is of no interest to GPGPU. [35]

2.3.2 Memory

The Tesla C870 features a number of di�erent memory types, where some or
located on-chip and other are located o�-chip.

• 8192 32 bit registers per SM

• 16KB shared memory per SM

• 8KB constant cache per SM

• 8KB L1 texture cache per TPC

• 1536MB o� chip DRAM

These memory types are described in more detail in Section 2.6.2 and in Sec-
tion A.2.

Memory access to DRAM is much slower than memory access to registers,
typically 400 to 800 clock cycles. To avoid stalls when performing computa-
tions that require DRAM access, the program should feature many thousands
of threads such that it can switch between threads when one of them stalls. This
means that the memory access latency is hidden away by having many threads.

As an example, consider a program which that performs one DRAM access
per 10 instructions that are executed. Each performed instruction takes four
clock cycles, and assuming that the DRAM latency is 600 clock cycles, we
require 480 threads to hide this latency, since (480/32)×10×4 = 600, where 32
is number of threads that goes into a warp. A warp is basically a collection of
32 threads that execute the same program on di�erent data concurrently and is
the smallest scheduable unit on the GPU. Warps are explained in more detail
in Section A.1.

11

Chapter 2. Analysis

SM

I cache

MT issue

C cache

SP

SFU

Shared
memory

SP

SP SP

SP SP

SP SP

SFU

Figure 2.5: Components of the SM on the G80 [35]

2.3.3 Summary

During this section we have analysed and described the G80 chip, e.g. which
components it has, which memory types are available and how they are best
accessed. This may useful when optimizing code for this architecture.

2.4 Algorithms Suited for GPGPU Execution

As described in Chapter 1, the primary usage of GPUs are the rendering of real
time 3D graphics, such as in games, CAD applications, media players, etc. This
means that GPGPU tasks have to exhibit many of the same characteristic as
real time 3D graphics to obtain high performance. The aim of this section is to
gain an overview of what these characteristics are, and how these characteristics
in�uence the solutions used on the GPU compared to the solution used on the
CPU.

Some of the things that characterize real time 3D graphics are:

• The computational requirements are very large. Each frame contains mil-
lions of pixels and each pixel requires hundreds of operations to calculate

12

2.4. ALGORITHMS SUITED FOR GPGPU EXECUTION

its color. With multiple frames calculated each second real time 3D graph-
ics requires many billions of calculations each second. [60]

• There are large opportunities for parallelism. Execution of programmable
vertices and fragment/pixel shaders can easily be parallelized since they
have no side e�ects. Thus, there are often millions of vertices and frag-
ments in each frame, that can be processed in parallel. [60]

• There are opportunities for instruction stream sharing. Shaders are often
executed on vertices and fragments that are close to each other. This
locality leads to shaders often following the same control �ow and thus
are well suited for a SIMD style of execution. [16]

• Throughput is more important than latency. There is a large di�erence
between the speed of the human visual system and the speed of modern
processors. The human visual system, i.e. the processing of images in
humans through eyes and the brain, works on a millisecond scale while
processors work on a nanosecond scale, thus the time individual operations
take is unimportant. Therefore the graphics pipeline is often quite deep,
hundreds or thousands of cycles. [60]

• Well suited for read only caches that capture spatial locality. Graphics
rendering involves few write operations, usual the only write operations
performed by the graphics pipeline is outputting the �nal colors of the
pixels. Instead, graphics involves a lot of read operations with a high
level of spatial locality, e.g. a shader which applies texturing to one of
the pixels of an object reads in data from on or more textures stored in
memory, and there are a large chance that texturing neighboring pixels
will involve accessing texture data close by. [16]

• Memory bandwidth is more important than memory latency. Graphics are
well suited for wide memory busses since memory accesses often exhibit a
high degree of spatial locality that allow to coalesce to fewer accesses. Data
required by each stage in graphics pipeline are well suited for pre-fetching,
thereby reducing the cost of high latency memory access. Additionally,
the parallel nature of graphics rendering allows for latency hiding as was
described in Section 2.1. [16]

2.4.1 Comparison of Performance between GPUs and CPUs

Several types of problems have been solved with a substantial speed up using
GPUs instead of CPUs, as we described in Section 1.1. This has lead to claims
such as GPUs being superior to CPU in compute intensive applications. Sci-
enti�c publications that support this claim are however hard to �nd, since not
many publications deal with comparing CPU performance with GPU perfor-
mance, other than comparing the theoretical performance or use a unoptimized
single threaded version of the application on the CPU.

We have however found a publication [34] from 2010 by the Intel's Through-
put Computing Lab and Architecture Group that deals with the issue of com-
paring the performance of several applications executing on a multi-core CPU
and on a Nvidia GPU. [34] tries to void studies claiming 10x - 1000x speed up

13

Chapter 2. Analysis

of using GPUs for data intensive applications, and concludes based upon bench-
marks done on a Core i7 960 CPU and a GTX280 GPU, that the GPU achieves a
speed up of only 2.5x on average. This might be due to other researchers GPU
performance analysis have neglected CPU optimizations and concentrated on
the GPU implementation.

The GPU implementations achieve only 2.5x normalized speed up on av-
erage, even though the theoretical performance of the CPU is only 102.4 gi-
gaFLOPS compared to the GPU's 933.1 gigaFLOPS. The 622 of the 933.1
gigaFLOPS are available when using a fused multiply-add operation, and by
using a multiply operation on the special function unit. Thus, the GPU is
theoretically 9 times faster than the CPU but it cannot be expected that all
applications can achieve this speedup.

The benchmarks in [34] are carried out using 14 algorithms implemented and
optimized for both platforms. Four of the algorithms are described below, with
emphasis on how they perform on the GPU compared to the CPU, and why the
performance speed ups are as it is. The four algorithms were chosen because
they are known to us. The description of the algorithms and the implementation
optimizations are based upon [34].

Radix Sort is a multi-pass algorithm that sorts one digit of the input each
pass, from least to most signi�cant digit. Due to each pass induces sorting, i.e.
data rearrangement, several memory scatter and gather operations are carried
out. The best implementation on the CPU is by utilizing the large cache, thus
performing the scatter oriented rearrangements within this cache and thereby
avoiding the costly memory operations into main memory.

Since the GPU has a much less cache memory, as described in Section 2.3.1,
in the form of shared memory, the Radix sort is rewritten using a technique
called split, such that it requires less memory for each pass but with the trade-
o� of using more scalar operations. Also, since GPU are best suited for read
only operations that capture spacial-locality, Radix Sort is not well suited for
the GPU because of its use of memory scatter operations, i.e. operations that
write to seemingly unordered locations in memory.

This is also evident on the performed benchmark, where Radix Sort performs
worse on the GPU than on the CPU, only a factor 0.76 of CPU performance is
achieved.

Volumetric Ray Casting is a technique used to visualize 3D datasets such
as data gathered from medical CT scanners. In Volumetric Ray Casting, rays
are traced through the 3D dataset which in the end generates a pixel based
upon the opacity, color, etc. of the dataset.

Tracing several rays in a SIMD like pattern is challenging, since the rays
may access incoherent memory, e.g. rays can be scattered in several di�erent
directions when tracing through the dataset. This reduces performance, since
incoherent memory access on GPUs are generally more expensive compared to
CPUs.

Volumetric Ray Casting is however a very compute intensive application,
and the GPU implementation achieves a 1.8 speed up compared to the CPU.

14

2.4. ALGORITHMS SUITED FOR GPGPU EXECUTION

Fast Fourier Transform is a standard signal processing algorithm used to
convert signals from the time domain to the frequency domain, and vice versa.
That is, instead of representing the signal as a signal amplitude change over time,
it is instead represented as how much much signal lies within each frequency
band over a range of frequencies.

Fast Fourier Transform (FFT) improves the Discrete Fourier Transform al-
gorithm from O(n2) to O(n ∗ log n) operations, which are mainly composed of
multiply-adds �oating point arithmetic operations. However, the data access
patterns of FFT are non-trivial, making FFT hard to parallizable e�ciently in
a SIMD like pattern.

However, moving FFT from the CPU to the GPU yields a performance speed
up of 3.0. This speed up can be explained by the extensive use of multiply-adds,
which the GPU does well.

Collision Detection among convex objects, i.e. any two points within the
object can be joined by a line segment that lies within the object, is commonly
used in physics based simulators and computer games. A large fraction of the
execution-time is spent on vertex computations, such as determining the closest
vertex of a given position and direction, making collision detection on convex
objects compute bound.

Also, data parallelism can be exploited, because the vertices and edges that
make up an object are independent from other objects' vertices and edges, and
can therefore be processed in parallel. This maps well to the SIMD architecture
of the GPU.

In addition, texture memory can be used to speed up memory reads on the
GPU. These optimizations make the GPU perform 14.9 times better than the
equivalent CPU implementation and is thus a good �t for GPU execution.

2.4.1.1 Discussion

Looking at the benchmark results from [34] we see that speed ups ranging from
0.5 to 14.9 were achieved on the GTX280 GPU compared to the Core i7-960
CPU, resulting in an average performance increase of a factor 2.5. This perfor-
mance increase is smaller than what has previously been achieved with GPUs,
and with similar benchmark speci�cations, and the following is a discussion on
why this might be the case.

According to [34], one reason that some applications run much better on
the CPU is due to the CPUs huge cache, compared to that of the GPU. Recall
from Section 2.1, that the GPU relies on latency hiding by having hundreds of
threads ready to be executed, however, this is not always possible depending on
the application, e.g. due to synchronization constraints, or simply because the
application requires too much register- or shared memory, thereby rendering it
impossible to execute enough threads concurrently to achieve e�cient latency
hiding. The CPU does not su�er as much from this problem, since the CPU
caches can in many instances hold large portions of the working set and the CPU
program is normally not bound as much by register or memory constraints.

Looking at the results from this publication compared to other publications
that deal with performance increase using GPUs, we only see one application
that achieves above the 10x speed up mark, namely the collision detection al-
gorithm with its 14.9 speed up, while other authors claim 100-1000x speed up.

15

Chapter 2. Analysis

[34] speculate that the reason for the speed up seen in prior papers, is mainly
due to the CPU implementations being non-optimized versions, and in many
cases single-threaded applications. Five references are made to publications that
perform similar optimizations on CPU code, and the results are that the CPU
and GPU implementations are much closer with regards to performance, thereby
supporting this view. Also, some of the CPU implementations are executed on
low-end CPUs, while their GPU counterparts are executed on high-end GPUs,
thereby increasing the performance gap signi�cantly.

Nvidia has given a rebuttal, in a blog post [50], to the results presented above
claiming that the [34] is an attempt to promote the CPU, that the code that was
run on the GPU was in unoptimized form, and that speed ups from 100x-300x
have been seen by hundreds of developers. Also according to Nvidia, another
contributing factor is that [34] compares the Core i7 960 (released October 09)
with the GTX280 (released June 08), and Nvidia believes that using a newer
GPU, with a newer and more advanced architecture, would yield much better
performance.

The blog post also cites 10 publications which achieve 100x-300x speed up
using GPUs. Looking at the publication claiming the highest speed up, 300x,
on a Monte Carlo simulation [15] using a Nvidia 8800GT GPU compared to a
Xeon Processor running 1.86GHz, we see that the GPU implementation uses
single precision fast math, i.e. faster but less accurate single precision �oating
point operations, while the CPU implementation uses accurate double precision
operations [15, p. 10]. Also, the CPU implementation is a C++ implementation
called tMCimg, from 2004, which is apparently not being maintained [18]. In
addition, the 300x speed up is only achieved when using non-atomic operations,
which due to race conditions, can give incorrect results [15, p. 11]. When
using atomic operations and normal �oating point math, the speed up around
40x, which is signi�cantly lower. Taking into account that double precision
arithmetic on the CPU might be slower than single precision, e.g. due to the
increased amount of memory usage, the 40x speed up might be reduced further
to 20x speed up.

2.4.1.2 Our Remarks

Based upon our analysis of the results presented in this section, we �nd that
the 300x speed up is questionable at best, but we also agree that even a 10-40x
speed up is signi�cant. Also, newer GPUs such as the ones using the Fermi
architecture are much better at performing GPGPU than their predecessors,
e.g. due to cheaper unconcealed memory access, and especially at performing
double precision arithmetics.

According to the information and discussion above, we should not expect
that the GPU implementations of the ray tracer and Boids application are able
to utilize the Tesla card to its maximum.

2.5 Programming GPUs for General Purposes

With the move from the �xed-function pipeline, to a programmable one, pro-
grammers are able to write their own programs that are executed on the GPU
in the form of shader programs.

16

2.5. PROGRAMMING GPUS FOR GENERAL PURPOSES

When programming GPUs for general purposes using shader languages, such
as the High Level Shader Language (HLSL) or the OpenGL Shading Language
(GLSL), one has to transform the problem into the graphical domain before
solving it, i.e. one has to represent the general problem as a rendering problem.

Mapping steps frequently include [24, chap. 1]:

1. The copying of input data from the host to a portion of texture memory
on the device.

2. Writing a pixel shader that computes some function based upon each pixel
in the texture.

3. Setting up an o�-screen bu�er in which to store the result.

4. Invokes the pixel shader by rendering a 3D primitive to the o�-screen
bu�er.

5. Copies the resulting pixels from the o�-screen bu�er back to the host.

Although these steps allows GPGPU programming, they do so in a graphical
context. Instead, one may utilize higher level languages, such as CUDA, Open
Computing Language (OpenCL) and BrookGPU, which completely hides the
graphical context, and instead provides the programmer with an abstraction.

2.5.1 Stream Processing

The following is based upon [29].
The Stream Processing paradigm advocates that input data is gathered into

so called �Streams�, in which each element can be operated on by one or more
�kernels� in parallel. A kernel is a program that takes as input a stream and
produces a stream as output with the computed result. A stream is a set of
data.

This style of programming is frequently referred to as �gather, operate, and
scatter�, since source data is gathered into streams, then operated upon by a
kernel containing several operations, and then scattered back into memory.

Stream Processing not only allows a kernel to operate on multiple elements
in parallel, due to each element being independent of the other, but also al-
lows e�cient utilization of memory because of the producer-consumer nature of
Stream Processing. The producers' input and output data can in many cases
be coalesced, which in turn will improve performance since only one transaction
is required.

Larger granularity of pipelining can be performed when working on streams,
by performing pipelining on the di�erent stages rather than at instruction level.
An example of this pipelining could be the Direct3D 9 graphics pipeline as
shown in Figure 2.6.

The input to the graphics pipeline is a stream of Vertex Data and Primitive
Data, this data is given to the �rst stage of the pipeline, which is the Tessellation
stage where higher-order primitives are converted to vertices, thereby producing
a new stream of vertices.

This stream of vertices are are then passed as input to the Vertex Processing
stage which transforms the vertices, e.g. using a rotation matrix, thereby crating
a new stream of rotated vertexes.

17

Chapter 2. Analysis

Vertex Data

Primitive
Data

Tessellation
Vertex

Processing
Geometry
Processing

Pixel
Processing

Texture
Sampler

Textured
Surface

Pixel
Rendering

Figure 2.6: The Direct3D 9 Graphics Pipeline [38]

These are passed to the Geometry Processing stage, where they are rasterized
thereby producing a stream of fragment; in DirectX terminology fragments are
called pixels.

The fragment stream is then passed to the Pixel Processing stage where
texturing is performed using the Texture Sampler to read the texture color for
a given fragment.

The Pixel Processing stage produces a stream of fragments, which are passed
to the Pixel Rendering stage where alpha blending and depth testing is per-
formed, before the �nal stream of fragments are produced which can be shown
on the screen.

2.6 GPU Languages

This section will introduce three GPGPU languages: BrookGPU, which is based
upon the stream processing paradigm, CUDA, which is a GPGPU language
and architecture developed by Nvidia, and OpenCL, which is an open GPGPU
speci�cation very similar to CUDA.

2.6.1 BrookGPU

This section is based on [12].
BrookGPU is a programming language and runtime system that allows de-

velopers to utilize the GPU as a streaming co-processor, using the stream pro-
cessing programming paradigm.

The Brook language extends ANSI C with data-parallel constructs such as
streams and kernels, which allows the developer to de�ne streams of data and
write compute kernels, which can be transmitted to and carried out on the GPU.

The BrookGPU architecture consist of The Brook Compiler (BRCC) and
the Brook RunTime library (BRT). BRCC takes as input .br �les that contain a
mix of C and Brook code, and translates these with the help of BRT into C++
source �les which are later compiled into an executable. The BRT is a class
library that provides a generic and device independent interface for the BRCC,
but with a device dependent implementation. [9]

Two well know implementations of BRT exists, one utilizes the Open Graph-
ics Library (OpenGL) 1.3 or newer Application Programming Interface (API)

18

2.6. GPU LANGUAGES

as backend, while the other utilizes the Direct3D 9 or newer API as backend.
All GPUs that support at least one of the two APIs should be complaint with
Brook and thus allow developers to utilize such GPUs for GPGPU purposes.
[8]

2.6.1.1 ATI's Brook+

Even though Brook supports GPGPU programming using Direct3D and OpenGL
backends, it do so through a �graphical� context, although abstracted away by
the runtime library, it utilize a graphics API that is optimized for drawing
graphics and not optimized for GPGPU.

Brook+ is ATI's extension to the Brook language that allows developers to
speci�cally write GPGPU code targeted ATI graphics cards; in Brook+, the
BRT implementation targets ATI's Compute Abstraction Layer (CAL). CAL
is a device driver for stream processors, speci�cally ATI GPUs, which allows
stream programming closer to the GPU hardware, without using a graphics
API. [4, sec. 1.1]

Host and Kernel

Code splitter

Host Code

(C)

CPU

Emulation

Code (C++)

Kernel Compiler

ATI Stream

Processor

Device Code

(IL)

Host code + Kernel

code

(.br source file)

Stream Runtime

Stream Processor

Backend (CAL)
CPU Backend

BRCC

BRT

Figure 2.7: The architecture of ATI's Brook+, showing how Brook source code
is compiled for use on CAL enabled devices. [4, p. 23]

As depicted on Figure 2.7, BRCC �rst splits the Brook program into the host
code and the kernel code. The kernel code is compiled into either C++ code,
which is later compiled to runs on the host, or into ATI's Intermediate Language
(IL), which is later compiled to run on the device. Obviously, to harness the
power of ATI GPUs, one would target IL code; CPU code is used primarily as
a reference implementation to ease kernel debugging, since debugging tools for
the GPU exists [4, sec. 2.2.4].

IL code is passed to the BRT, where it is later compiled by the CAL com-
piler for the speci�c GPU architecture. This allows IL code to run on many
di�erent ATI GPUs, as long as the instruction-set is supported by the CAL
compiler. Also, IL code and device-speci�c code can be optimized by hand,
thereby potentially improving kernel performance. [4, sec. 3.1.2.2]

19

Chapter 2. Analysis

2.6.1.2 Example

Codeexample 2.1 shows a simple Brook program which sums two newly initial-
ized matrices together.

1
#include <s td i o . h>

3 // ke rne l d e f i n i t i on , runs on the GPU
ke rne l void sum (f loat a<>, f loat b<>, out f loat c<>)

5 {
c = a+b ;

7 }
// hos t code , runs on the CPU

9 int main (int argc , char∗∗ argv)
{

11 int i , j ;
//2D stream dec l a r a t i on s o f 10x10 :

13 f loat a<10 ,10>;
f loat b<10 ,10>;

15 f loat c<10 ,10>;
//2D arrays d e c e l e r a t i on s o f 10x10

17 f loat input_a [1 0] [1 0] ;
f loat input_b [1 0] [1 0] ;

19 f loat output_c [1 0] [1 0] ;
// i n i t i a l i z e the 2D arrays

21 for (i =0; i < 10 ; i++)
{

23 for (j =0; j < 10 ; j++)
{

25 input_a [i] [j] = (f loat) i ;
input_b [i] [j] = (f loat) j ;

27 }
}

29 //copy the 2D arrays to the GPU
streamRead (a , input_a) ;

31 streamRead (b , input_b) ;
// c a l l the ke rne l

33 sum(a , b , c) ;
// ge t the r e s u l t from the GPU

35 streamWrite (c , output_c) ;
}

Codeexample 2.1: Sum.br: Sums together two matrices, a and b, and stores the
result in c. [4]

The sum kernel takes as input, two 2D streams and returns, as output, a 2D
stream containing the matrix summation. The operations are done in parallel
on the GPU.

The main function allocates three 2D streams and three 2D arrays that make
up the matrices. It then initializes the matrices, copies them to the GPU using
the streams as references and schedules the sum kernel to the GPU.

Lastly, the result of the computation is copied from the GPU to the host
program, by copying the content of the output stream to the output_c array
on the host.

2.6.2 CUDA

This section is based on [54].

20

2.6. GPU LANGUAGES

CUDA is general purpose parallel computing architecture developed by Nvidia
to provides a uni�ed way of performing GPGPU on Nvidia GPUs. As such
CUDA supports a number of di�erent languages and APIs those o�cially sup-
ported by Nvidia are: CUDA C, OpenCL, DirectCompute and CUDA Fortran.
[55, sec. 1.2]. CUDA C and CUDA Fortran are Nvidia's own languages that pro-
vides a small number of extensions to the C and Fortran languages, respectively,
that enables programmers to use the GPU.

In this section we will focus on CUDA C since C appears to be a much
more popular language than Fortran [32]. CUDA comes in a number of di�erent
compute capabilities that describes the di�erent features supported in CUDA. In
the following, we will assume a compute capability of 1.0, as this is supported by
the Tesla cards at our disposal as described in Section 2.2. A further description
of the di�erent compute capabilities is given in Section 2.6.2.4.

2.6.2.1 Architecture

CUDA C enables developers to write kernels that run on the GPU. In CUDA
C, a kernel is executed by a number of concurrent threads. These threads are
organized into a one-dimensional, two-dimensional, or three-dimensional thread
blocks. As stated in Section A.1, a thread block is equivalent to Coopera-
tive Thread Array (CAT)s in the G80 architecture. Thread blocks are further
organized in a grid of thread blocks, which can be one-dimensional or two-
dimensional [55, sec. 2.2].

As a consequence of this, the programmer �rst need to de�ne the size of
the thread blocks and the size of the grid when lunching a kernel on the GPU.
Each thread executes the same kernel, which de�nes the work to be done. From
the kernel, each thread can be identi�ed by its thread- and block id, allowing it
to work on di�erent pieces of data based upon its id. Kernels can only access
data stored in memory on the graphics card, which means that the programmer
needs to manage all memory on the host and device, and data needs to be copied
between the two using host functions provided by CUDA.

If multiple CUDA capable GPUs are present in the system, these can all be
utilized. This however requires that the programmer writes an explicit multi
GPU capable application, i.e. an application that distributes work between more
devices and not only one. CUDA also imposes that each device gets its own
CPU thread; this must also be handled by the programmer. [55, sec. 3.2.3]

2.6.2.2 Memory

As shown in Figure 2.8, there are a number of di�erent read and write memories
in CUDA C that are shared on the thread, thread block and grid level. These
memories have di�erent performance characteristics and must in most cases be
managed by the programmer.

Local Each thread can use up to 16KB of memory, called local memory, that
is only accessible within the given thread. This memory is relatively slow as it is
stored in DRAM on the graphics card and performs as described in Section A.2,
i.e. global memory access have latency of 400-600 cycles. Use of local memory
is manage by the CUDA C compiler and is primary used for large structures

21

Chapter 2. Analysis

that would use to much register space, e.g. arrays containing many elements, or
if kernel consumes more registers than available on the GPU.

Shared Threads in a thread block have access to 16KB of memory, called
shared memory, which is shared between the threads in the block. Shared mem-
ory is fast on chip memory as described in Section A.2. Since shared memory is
fast, it is often used by programmers as a cache to increase performance when
working with data stored in slower memory.

Global All threads both in the same grid and between grids have access to
a large shared memory space, called global memory, that resides in DRAM on
the graphics card. The size of the global memory is limited by the amount of
DRAM on the graphics card. Performance of global memory is a�ected by the
access pattern of programs, e.g. un-coalesced memory access results in much
worse performance. This is described in much more detail Section A.2.

Read only In addition to these types of memories, there are also two types
of read only memory areas that are shared between all threads.

The �rst of these is constant memory, which is limited to a size of 64K. Con-
stant memory is optimized for broadcasting a memory read to multiple threads
and is cached on chip. The performance is described further in Section A.2.

The second type of read only memory is called texture memory and is cached
on chip and optimized for 2D spatial locality [54, sec. 5.3.2.5]. A kernel can at
most use 128 texture memories, in addition to this limitation, texture memory
is also limited in the maximum number of elements depending on whether it is
a 1D, 2D or 3D texture.

A 1D texture can be at most 8192 or 227 elements wide, depending on how it
is allocated. A 2D texture can contain 65536× 32768 elements and 3D texture
can contain 2048× 2048× 2048 elements. The performance of texture memory
is described in greater detail in Section A.2.

2.6.2.3 Example

Codeexample 2.2 shows an example of CUDA code, which adds two vectors of
1000000 elements. Line 1 to 6 is the kernel that is to run on the GPU. All kernels
in CUDA C must be denoted by the __global__ key word, but otherwise look
like a normal C function.

Line 3, the element of the vectors a given thread is to work on is calculated
based on the thread id, block ids and block size.

Line 4 and 5, it is checked if the element to work on is within the size of the
vectors, if it is, the two elements are added together.

Line 7 to 38 denotes the code which is executed on the host. Line 9 indicates
the number of elements in the vectors. Line 10 to 13 allocates host memory for
the vectors. Line 14 to 18 �lls the vectors with values. Line 19 to 24 allocates
device memory for the two input vectors and the output vector on the graphics
card. Line 25 and 26 copies the input vectors from the host to the device. Line
27 and 28 calculates the number of thread blocks required in a grid with a given
number of threads in a thread block, in this case 256, to process all elements in
the vectors. Line 29 launches the kernel with the previously calculated number

22

2.6. GPU LANGUAGES

Thread Block

Grid 0

Grid 1

Block (0, 0) Block (1, 0) Block (2, 0)

Block (0, 1) Block (1, 1) Block (2, 1)

Block (0, 0) Block (1, 0)

Block (0, 1) Block (1, 1)

Block (0, 2) Block (1, 2)

Per-thread
local memory

Per-block
shared

memory

Global
memory

Thread

Figure 2.8: Shows the memory access model on CUDA. [54]

of blocks per grid and 256 threads per block. Line 30 copy the result of running
the kernel from device memory back to host memory. Line 31 to 36 frees all the
allocated memory both on device and host.

__global__ void addVector (f loat ∗ A, f loat ∗ B, f loat ∗ C, int

e lements)
2 {

int i = blockDim . x ∗ blockIdx . x + threadIdx . x ;
4 i f (i < elements)

C[i] = A[i] + B[i] ;
6 }

int main ()
8 {

int e lements = 1000000;
10 s i ze_t s i z e = elements ∗ s izeof (f loat)

f loat ∗ host_A = (f loat ∗) mal loc (s i z e) ;
12 f loat ∗ host_B = (f loat ∗) mal loc (s i z e) ;

23

Chapter 2. Analysis

f loat ∗ host_C = (f loat ∗) mal loc (s i z e) ;
14 for (int i = 0 ; i < elements ; i++)

{
16 host_A [i] = i ;

host_B [i] = i ∗2 ;
18 }

f loat ∗ device_A ;
20 cudaMalloc(&device_A , s i z e) ;

f loat ∗ device_B ;
22 cudaMalloc(&device_B , s i z e) ;

f loat ∗ device_C ;
24 cudaMalloc(&device_C , s i z e) ;

cudaMemcpy(device_A , host_A , s i z e , cudaMemcpyHostToDevice) ;
26 cudaMemcpy(device_B , host_B , s i z e , cudaMemcpyHostToDevice) ;

int threadsPerBlock = 256 ;
28 int blocksPerGrid = (s i z e + threadsPerBlock − 1) threadsPerBlock ;

addVector<<blocksPerGrid , threadsPerBlock>>(device_A , device_B ,
device_C , e lements) ;

30 cudaMemcpy(host_C , device_C , s i z e , cudaMemcpyDeviceToHost) ;
cudaFree (device_A) ;

32 cudaFree (device_B) ;
cudaFree (device_C) ;

34 f r e e (host_A) ;
f r e e (host_B) ;

36 f r e e (host_C) ;
return 0 ;

38 }

Codeexample 2.2: Example code, which sums two vectors together. This is a
modi�ed version of the example found on page 22 in [54]

2.6.2.4 Compute Capability

The compute capability of Nvidia GPUs consists of a major and a minor revi-
sion number. The major revision number denotes the overall core architecture,
while the minor revision number denotes an incremental improvement on the
overall core architecture, e.g. such as the addition of a new feature. Compati-
bility of GPGPU programs written targeting di�erent compute capabilities are
guaranteed on the binary level, but only from minor revision number to the
next. Compatibility is not guaranteed between major revisions, i.e. compatibil-
ity between 1.0 and 1.3 is guaranteed, but 1.3 to 2.0 is not.

Parallel Thread Execution (PTX) code is an intermediate assembly language
used by CUDA. At compile time, the CUDA application is compiled to PTX
code, which is later compiled at runtime to native code on the device. PTX
allows CUDA programs to use higher compute compatibility, than was avail-
able when the CUDA program was written, and can therefore insure forward
compatibility of CUDA programs. Thus, PTX circumvents the restriction of bi-
nary compatibility between major revisions thus allowing better cross-platform
support. [55, sec. 3.1.4]

The following a short list of features introduced after compute capability
1.0, which is the compute capability that the Tesla cards support. For a more
in depth look, see [55].

• 1.1 Added the possibility of performing atomic operations on 32-bit inte-
gers in global memory, this has among other things been used to implement
dynamic memory allocation from within a kernel[26].

24

2.6. GPU LANGUAGES

• 1.2 Added the possibility of performing atomic operations on 64-bit inte-
gers in global memory.

• 1.2 Added the possibility of performing atomic operations on 32-bit inte-
gers in shared memory.

• 1.2 Number of registers per SM increased from 8K to 16K often allowing
more threads to run concurrently thus allowing for better latency hiding.

• 1.2 Better coalescing of non-sequential and misaligned accesses to DRAM.

• 1.3 Added support for double precision �oating point numbers.

• 2.0 Number of registers per SM increased from 16K to 32K often allowing
more threads to run concurrently thus allowing for better latency hiding.

• 2.0 Amount of shared memory per SM increased from 16K to 48K.

• 2.0 Part of the shared memory can be used as L1 cache, reducing accesses
latency to DRAM.

• 2.0 Added the possibility of performing atomic operations on 32-bit �oat-
ing points in global and shared memory.

• 2.0 Added the possibility of using function pointers to _device_ function,
i.e. functions that can be called within kernels.

• 2.0 Added support for recursion on _device_ functions.

• 2.1 Can issue two instruction instead of just one at each instruction issue
time.

The list shows that there have been a lot of changes since the release of
the �rst CUDA enabled graphics cards: the GeForce 8800 GTX and GeForce
8800GTS released November 8th 2006 [77]. This relative fast change with six
di�erent compute capabilities in just over 4 years shows that CUDA is in a rapid
development, constantly adding new features and trying to make it easier, and
more powerful, to develop faster running CUDA programs. This however also
means that it can be hard to optimize programs since the hardware is constantly
changing and programmers have to think about what compute capability they
want to target, e.g. if programmers wish to support compute capability 1.0
devices, they must avoid using atomic operations on integers.

Since the Tesla C870 only supports a compute capability of 1.0, we must
avoid using features found in newer compute capabilities.

2.6.3 OpenCL

OpenCL is an open standard for parallel programming across CPU's, GPU's and
other processors such as Accelerators. The aim of OpenCL is to provide e�cient
access to di�erent processing platforms, be it CPU's, GPUs, etc. produced by
di�erent vendors such as Intel, AMD, Nvidia, etc, while at the same time provide
software developers with a highly portable and well speci�ed execution, memory
and programming models. [30, sec. 1]

25

Chapter 2. Analysis

2.6.3.1 Architecture

OpenCL consists of an API, used by the host application to coordinate parallel
computations across heterogeneous processors, and a cross-platform program-
ming language based upon ISO C99, which is used to write kernels. In addition,
OpenCL provides an runtime system and a compiler, that takes care of things
like allocating GPU memory, sending queued work to the GPU, compiling ker-
nels, etc. [30, sec. 3]

The core architecture of OpenCL can be divided into four models: the Plat-
form, Memory, Execution and Programming model.

Platform Model As shown on Figure 2.9, the OpenCL platform model con-
sist of one host connected to one or more compute devices, where each device is
composed of one or more Compute Unit (CU)(s). Thus, if the system contains
multiple GPUs, multiple devices will be present which can be utilized by the
application. A CU contains one or more Processing Element (PE)(s), and each
PE functions either as a SIMD unit, thus executing a stream of instructions in
lockstep, or as a Single Program, Multiple Data (SPMD) unit, where each PE
maintains its own program counter. Also, multiple OpenCL platforms can be
provided by di�erent compute device vendors, such as AMD, Nvidia, Intel, etc,
and platforms can have di�erent OpenCL versions, e.g. 1.0 or 1.1. [30, sec. 3.1]

Processing
Element

Compute
Unit

Compute
Device

Figure 2.9: The Platform Model of OpenCL. [30, p. 19]

Execution Model OpenCL programs can be divided into two parts, the ker-
nel programs and the host program. Kernels execute on one or more compute
devices, such as a GPU or CPU, and are submitted for execution by the host
program running on the host processor. Before a kernel is submitted, an N-
dimensional index space (NDRange) is de�ned, which speci�es the total num-
ber of work-items. A work-item is one instance of a kernel that executes the
same code but may follow di�erent execution path and operate on di�erent
data elements; thus, work-items are similar to CUDA threads, which were de-
scribed in Section 2.6.2. Work-items are grouped into work-groups, similar to
thread-blocks in CUDA. [30, sec. 3.2]

26

2.6. GPU LANGUAGES

Memory Model OpenCL de�nes four distinct memory regions accessible by
kernels: Global Memory, Constant Memory, Local Memory and Private Mem-
ory. The memory model is very similar to the memory model used by CUDA.
Global memory can be read and written to by both host code and kernel code;
however, only host code may allocate global memory. Constant memory is
read and writable by host code, but read-only by kernels. Local memory, i.e.
shared-memory using CUDA terms, is read and writable by all work-items in a
work-group, and each work-group has its own local memory which other work-
groups, and the host, have no read/write access to. In addition, each work-item
has read/write access to its own chunk of private memory. [30, sec. 3.3]

OpenCL employ a relaxed memory consistency model which means that
memory state between work-items are not guaranteed, except for local memory
between work-items, which is consistent when, and only when, at a barrier, i.e.
when all work-items have synchronized. This rule also applies to consistency of
global memory within a work-group, however, there are no memory consistency
guarantees between work-groups. [30, sec. 3.3.1]

Programming Model OpenCL supports two programming models: the Data
Parallel Programming Model and the Task Parallel Programming Model.

The Data Parallel Programming model de�nes a computation as a sequence
of instructions operating on multiple elements in memory. The index space de-
�nes the work-items, i.e. how many work-items per dimension, that are executed
on the OpenCL device. OpenCL uses a relaxed version of the data parallel pro-
gramming model, meaning that a strict one-to-one mapping between work-items
and the data elements are not required, as is the case with stream processing
languages such as BrookGPU, as was described in Section 2.6.1. Also, OpenCL
supports implicit and explicit grouping of work-items into work-group, i.e. the
programmer can either let OpenCL manage the size of work-groups, or explicitly
de�ne the number of work-items in work-groups which might improve perfor-
mance. [30, sec. 3.4.1]

The Task Parallel Programming Model allows the execution of a single in-
stance of a kernel, independent of any index space, on a CU. This is equivalent
to executing a kernel with a work-group containing only one work-item. This
programming model can be used to express parallelism using vector data types
implemented by the device, enqueue tasks and executing native kernels, such as
a CUDA kernel. [30, sec. 3.4.2]

2.6.3.2 Framework

The OpenCL standard also de�nes an OpenCL framework that is used by appli-
cation developers to take advantage of OpenCL enabled platforms. The OpenCL
framework de�nes three components: the OpenCL Platform layer, the OpenCL
runtime and the OpenCL Compiler. [30, sec. 3.5]

The OpenCL Platform layer component is used by the host program to dis-
cover OpenCL enabled devices. This component also allows query operations on
the devices, to determine their capabilities, and allows the creating of OpenCL
contexts; an OpenCL context is used by the OpenCL runtime for managing
allocated memory and kernels, among other things [30, sec. 4.3].

The OpenCL Runtime allows the host program to enqueue commands for a
device, such as the execution of a kernel, initiation of a memory write, initiation

27

Chapter 2. Analysis

of a memory read, and the allocation and deallocation of memory. A typical
usage scenario of the runtime component is: allocate device memory, copy data
to the device, execute a kernel, copy back the result and release the allocated
device memory. [30, sec. 5.1-5.2]

TheOpenCL Compiler takes as input OpenCL kernels written in the OpenCL
C programming language. The OpenCL C programming language is based upon
a subset of C99 with added extensions, such as built-in scalar, vector data types
and arithmetic operations on these [30, sec. 6]. The OpenCL compiler allows
both online and o�ine compilation of kernels, i.e. the kernel source is compiled
at runtime when needed, or the kernel source can be compiled to object code
and afterwards loaded by the host application [30, sec. 5.4].

2.6.3.3 Example

Codeexample 2.3 shows the same matrix summation algorithm implemented in
OpenCL; note that the OpenCL kernel code is de�ned as an inline string in the
example, thus using the OpenCL compiler in on-line mode.

#include<CL/ c l . h>
2 #define MAXPLATFORMS 1

#define MAXDEVICES 1
4 const char∗ programSource =

"__kernel void MatrixSum (__global f l o a t ∗ a , __global f l o a t ∗ b ,
__global f l o a t ∗ c) "

6 "{"
"unsigned i n t address = get_global_id (0) + get_global_id (1) ∗

get_globa l_s ize (0) ; "
8 "c [address]=a [address]+b [address] ; "

"}" ;
10

const int dataS ize = 8192 ;
12 f loat vectorA [dataS i ze] [dataS i ze] ;

f loat vectorB [dataS i ze] [dataS ize] ;
14 f loat vectorC [dataS i ze] [dataS i ze] ;

int main (int argc , char ∗∗ argv)
16 {

c l_int e r r o r ;
18 // f i r s t g e t the a v a l i a b l e p la t forms , ATI, CUDA, e t c .

cl_platform_id plat formIDs [MAXPLATFORMS] ; // max one p la t form
20 c l_uint s i z eP la t fo rmIDs ;

c lGetPlat formIDs (MAXPLATFORMS, platformIDs ,& s i zeP la t fo rmIDs) ;
22 cl_platform_id se l ec tedPlat fo rmID = plat formIDs [0] ;

//we assume tha t we have only one p la t form
24 // ge t the dev i c e s a s soc i a t ed with the p la t form

cl_device_id dev i c e s [MAXDEVICES] ;
26 c l_uint s i z eDev i c e s ;

// ge t the number o f GPU dev i c e s :
28 e r r o r = clGetDeviceIDs (se l ectedPlat formID ,CL_DEVICE_TYPE_GPU,

s i z eDev i c e s , dev ices ,& s i z eDev i c e s) ;
// crea t e an OpenCL contex t and command queue

30 c l_context context = clCreateContext (NULL, s i z eDev i c e s , dev ices ,
NULL,NULL,& e r r o r) ;

c l_device_id s e l e c t edDev i c e = dev i c e s [0] ;
32 cl_command_queue commandQueue = clCreateCommandQueue (context ,

s e l e c t edDev i c e ,0 ,& e r r o r) ;
// compile the OpenCL program :

34 cl_program program = clCreateProgramWithSource (context , 6 ,
programSource ,NULL,& e r r o r) ;

e r r o r = clBuildProgram (program , 0 , 0 , 0 , 0 , 0) ;

28

2.6. GPU LANGUAGES

36 // crea t e a handle to the newly compiled ke rne l program :
c l_kerne l k e rne l = c lCreateKerne l (program , "MatrixSum" , &e r r o r) ;

38 // cons t ruc t data :
for (int y = 0 ; y < dataS ize ; y++)

40 {
for (int x=0; x < dataS ize ; x++)

42 {
vectorA [y] [x] = (f loat) x ;

44 vectorB [y] [x] = (f loat) y ;
}

46 }
// a l l o c a t e source GPU memory us ing CPU memory as source , and

a l l o c a t e GPU mem for output
48 cl_mem gpuVectorA = c lCrea t eBu f f e r (context ,CL_MEM_READ_ONLY |

CL_MEM_COPY_HOST_PTR, s izeof (f loat) ∗ dataS ize ∗dataSize , vectorA
,& e r r o r) ;

cl_mem gpuVectorB = c lCrea t eBu f f e r (context ,CL_MEM_READ_ONLY |
CL_MEM_COPY_HOST_PTR, s izeof (f loat) ∗ dataS ize ∗dataSize , vectorB
,& e r r o r) ;

50 cl_mem gpuVectorC = c lCrea t eBu f f e r (context ,CL_MEM_WRITE_ONLY,
s izeof (f loat) ∗ dataS ize ∗dataSize ,NULL,& e r r o r) ;

// s e t up the input arguments f o r the ke rne l
52 c lSetKerne lArg (kerne l , 0 , s izeof (cl_mem) ,&gpuVectorA) ;

c lSetKerne lArg (kerne l , 1 , s izeof (cl_mem) ,&gpuVectorB) ;
54 c lSetKerne lArg (kerne l , 2 , s izeof (cl_mem) ,&gpuVectorC) ;

// launch the ke rne l on the GPU
56 int b lo ckS i z e = 16 ;

s i ze_t workSize [2] = {dataSize , dataS i ze } ;
58 s i ze_t l o c a l S i z e [2] = { b lockS ize , b l o ckS i z e } ;

e r r o r = clEnqueueNDRangeKernel (commandQueue , kerne l , 2 ,NULL,
workSize , l o c a l S i z e , 0 ,NULL,NULL) ;

60 // b l o c k u n t i l f i n i s h e d .
clEnqueueReadBuffer (commandQueue , gpuVectorC ,CL_TRUE, 0 , s izeof (

f loat) ∗ dataS ize ∗dataSize , vectorC ,NULL,NULL,NULL) ;
62 c lF i n i s h (commandQueue) ;

}

Codeexample 2.3: Sum.c: Sums together two matrices, a and b, and stores the
result in c.

2.6.4 Summary

In this section, we covered BrookGPU, which provide GPGPU abstraction on
top of graphics APIs such as DirectX and OpenGL, but also have vendor speci�c
backends, such as ATI Cal.

CUDA was also covered, which introduced a more powerful GPGPU ar-
chitecture and language extensions for Nvidia GPUs. CUDA provides its own
language, CUDA C, which is an extension of C thereby allowing kernel invoca-
tions.

Lastly, OpenCL was covered, which has many of the same features that
CUDA does. OpenCL is however an open speci�cation, thus allowing much
better cross platform support, as several vendors may implement this speci�ca-
tion.

Also, we implemented an example in each of the three languages thereby
gaining our �rst GPGPU experience.

29

Chapter 2. Analysis

2.7 Tool Support

Several tools exist that can help with CPU programming, such as debuggers,
Integrated Development Environment (IDE)s, unit testing, performance pro�l-
ers, etc. These types of tools helps with regards to programming productivity,
and we wish to investigate if such tools are available when doing GPGPU pro-
gramming.

We will primarily look for performance pro�lers, IDEs and debuggers, be-
cause this is the tools that we frequently use when doing programming for the
CPU.

Through the investigation, we have found standalone debuggers: CUDA-
GDB and gDEBugger CL, a standalone pro�ler: Compute Visual Pro�ler, an
extension to Microsoft Visual Studio (VS): Parallel Nsight and a occupancy
calculator. These are described in more detail below.

2.7.1 CUDA-GDB

The GNU Project Debugger (GDB) is an open-source debugger that is fre-
quently found available in GNU like operating systems, such as Linux, but also
runs on Windows. The debugger supports many programming languages, such
as Ada, C, C++, and many more, and it supports di�erent instructions-sets,
such as x86 and ARM. The debugger does not come with any GUI and is
command-line only. However, several front-ends have been developed; the ma-
jority of the front-ends are plugins for existing IDEs, such as Netbeans, Eclipse,
VS and more. [70][78]

CUDA-GDB is an extension to the x86/x64 version of GDB, speci�cally ver-
sion 6.6. It provide an all-in-one debugging environment, for both host code and
CUDA code, on actual hardware in real-time. CUDA-GDB is only supported
on devices of compute capability 1.1 or later, meaning that it is not possible to
use CUDA-GDB with our Tesla cards, due to them being 1.0. CUDA-GDB is
only supported on Linux at the time of writing, though a MacOS preview vesion
is available also. [42]
We do however have access to two 1.1 capable GPUs in our developer laptops.
Albeit much weaker than the Tesla cards, these allow us to debug our applica-
tions before running them on the Tesla powered workstation.

CUDA-GDB provides seamless native hardware debugging, by allowing break-
points in both kernel and host code, and by allowing �ne grained stepping. Thus,
when the program is about to execute a kernel, control is handed to the devel-
oper who is then able to step through kernel code at warp level, i.e. each time
the developer issues a next command all 32 threads in the warp are advanced
to the next instruction. Breakpoints in kernel code are also supported. [43, p.
5]

In addition to stepping using commands such as next, commands such as
print can be used to display the content of memory on the device. The content
of any variable can be shown, including variables that are allocated in GPU
memory regions such as shared, local and global memory. Also, special CUDA
runtime variables such as threadId, that contains the id of the current thread,
can be shown. [43, p. 6]

CUDA-GDB allows switching between di�erent devices, SMs and warps,
when using multiple devices in an application. This allows the developer to

30

2.7. TOOL SUPPORT

switch to di�erent devices in real-time, and monitor the state of these. In addi-
tion, the developer can switch directly to the di�erent warps thereby allowing
breakpoints and monitoring of variables for that particular warp. With the
introduction of version 3.0, CUDA-GDB now allows switching between CUDA
blocks and CUDA threads, thus giving a better one-to-one mapping between
the code and execution, and allows easier debugging. [43, p. 7]

Figure 2.10: Screenshot showing parallel-source debugging through Emacs using
CUDA-GDB [51]

As with GDB, CUDA-GDB does not feature its own GUI but allows seamless
integrations with several editors and IDEs. Speci�cally, the Emacs editor has
extensive support for CUDA-GDB and allows parallel-source debugging, mean-
ing that one can debug both host and device code in the same window. This
is depicted in Figure 2.10, where the program counter reaches the acos_main

kernel and debugging control is transfered into the kernel source.
Programs being debugged in CUDA-GDB are limited to one GPU, i.e. multi-

GPU programs are not supported. In addition, using the debugger on a machine
with only one GPU requires that the window manager, such as X11, is not
running. This can be circumvented by using two GPUs, i.e. one for the Window
system and the other for the application, or using remote desktop tools such
as VNC. Lastly, debugging kernels that utilize texture memory is not currently
supported. [43, p. 18]

2.7.2 Nvidia Parallel Nsight

This section is based upon [59][58].
Nsight is a plugin for VS that provides a development environment for mas-

sively parallel computing targeting both CPUs and GPUs. Nsight comes in two
versions, a free standard version and a paid professional version. A trial version
of the professional edition is also available.

Both versions seamless integrate with the development environment of VS
2008 and 2010, and provide debugging support for CUDA and Microsoft Direct-
Compute. As with CUDA-GDB, Nsight allows developers to set breakpoints,
examine the memory content of variables and switch between threads. In addi-
tion, Nsight allows shader debugging and pro�ling in DirectX 10 and 11 graphic
development, thereby helping graphics developers �nd bugs and optimize the
shader code for better performance. In addition to local debugging, Nsight al-
lows remote debugging of CUDA programs, i.e. the application being debugged

31

Chapter 2. Analysis

is running on a remote computer.
The professional edition supports CUDA and OpenCL kernel pro�ling, which

can help �nd bottlenecks in the kernel code and help with optimization. Also,
CUDA debugging is extended with data breakpoints, e.g. break whenever vari-
able X is written to, and Tesla Compute Cluster support, i.e. a cluster of com-
puters with Tesla cards.

As with CUDA-GDB, Nsight requires a GPU with at least compute capa-
bility of 1.1, thus the Tesla is not supported. Also, two GPUs are required
when performing local debugging since the window manager occupies one of the
GPUs; this is however not a requirement when performing remote debugging.

2.7.3 Nvidia Compute Visual Pro�ler

The following is based upon [57] and the documentation accessible through the
tool.

Nvidia Compute Visual Pro�ler is a cross-platform performance pro�ling
tool that gives developers a visual representation of the resource consumption of
their GPGPU application, thus allowing identi�cation of potential performance
bottlenecks. The pro�ler supports both CUDA and OpenCL applications, and
runs on both Mac, Windows and Linux.

Features including but not limited to:

• Showing the execution time of kernels.

• Showing the amount of register and private memory usage for each thread.

• Showing the ratio of active warps of total warps per SMs. A ratio below
1.0 indicates that not all active warps are scheduled to the SM, which can
be caused by the total amount of warps requires too many registers to �t
onto a single SM.

• Showing the amount of branches in a kernel, including how many divergent
branches were taken. A divergent branch is when a thread in a warp follows
a di�erent execution path and can reduce performance, since threads not
following a execution path gets disabled.

• Showing the number of texture cache hits or misses.

• Showing the amount of global memory read and writes, and how many
were coalesced. Recall that non-coalesced memory access reduces perfor-
mance.

2.7.4 gDEBugger CL

The following is based upon [66].
While the previous tools do have some limited form of OpenCL support,

most of the debugging features are CUDA only. Graphic Remedy aims to rec-
tify this with the upcoming debugger, pro�ler and memory analysis tool called
gDEBugger CL.

gDEBugger CL provides Graphical User Interface (GUI) support for edit-
ing kernels, examining OpenCL memory bu�ers using graphical representation,
among other things. gDEBugger CL includes similar features found in Nvidia
Parallel Nsight, where some are listed below:

32

2.7. TOOL SUPPORT

• Locate performance bottlenecks using the built in pro�ler.

• Edit and continue OpenCL kernels on the �y, i.e. while the OpenCL ap-
plication is running.

• Set conditional breakpoints on OpenCL errors, breakpoints on function
calls, etc.

• Monitor the OpenCL memory consumption and view the content of mem-
ory bu�ers as an image or as raw data.

gDEBugger CL is set for release ultimo 2010, a free beta version is available
but requires that one joins the beta program provided by Graphic Remedy.

2.7.5 CUDA Occupancy Calculator

The following is based upon [44].
CUDA Occupancy Calculator allows developers to compute the occupancy

of a given kernel, on a speci�c compute capable device version, by entering
information about the kernel into a Excel document. Occupancy is the ratio of
active warps to the maximum number of warps supported by one SM, where an
occupancy of 1.0 means that the SM is executing the maximum possible number
of concurrent threads.

Given a CUDA kernel program, the CUDA compiler can output the number
of registers required by an instance of that kernel program. This register count
can be entered into the CUDA Occupancy Calculator, along with how much
shared memory per thread-block is used by the program and the block size, i.e.
how many threads there are per block, this results in an occupancy ratio telling
how e�ciently the SMs are utilized.

The tool supports di�erent compute capable devices, from 1.0 to 2.0, and
it can draw graphs that show the capacity of these devices. Also, given the
information above, the tool can output what the limiting factors are, e.g. limited
by register count, shared memory, etc.

2.7.6 Conclusion

Throughout the analysis we have looked at di�erent tools to help with GPGPU
based development. We did not �nd any tools related to testing, such as
integration- and unit testing, and most tools that we did �nd was somewhat
limited compared to the ones for CPU based development.

The debuggers that we have found all require two GPUs, one for the Window
manager and the other for actual debugging. Also, the debuggers require at least
compute capability of 1.1, where the Tesla cards only support 1.0, making it
impossible to debug directly on the Tesla powered machine. We do however
have access to two developer laptops, that both feature a GPU with compute
capability of at least 1.1. We are unable to e�ciently utilize these GPUs for
debugging, since we have to shut down the Window manager when doing so.

Based upon the information above, we �nd that the Nvidia Compute Visual
Pro�ler and the CUDA Occupancy Calculator are the most useful. The reason
being that the debuggers requires two GPUs and a pro�ler allows us to pro�le
our GPGPU applications, thus making it easier to reason about the bottlenecks,

33

Chapter 2. Analysis

and �x these. The Occupancy Calculator allows us to reason about how well our
applications utilizes the GPU and how we can increase occupancy by decreasing
shared memory or register usage.

2.8 Summary

In Section 2.2 we looked at the GPU hardware that we have available, namely
the Tesla C870 graphics cards which supports compute capability 1.0. Getting
the Tesla cards working was not as clear cut as we had hoped. We got it working
after acquiring a GeForce 8400GS for the older PCI interface.

In Section 2.1 we looked at what a GPU is and how it di�ers from the CPU.
We found that a GPU has many weak cores, compared to the CPU which has few
strong cores, and that the GPU is dependent upon latency hiding by interleaving
threads waiting for memory with thousands threads waiting to be executed.
Also, we looked at a concrete architecture, namely the G80 architecture which
supports compute capability 1.0, and found that this architecture is composed of
SMs, which are the main component of interests when performing GPGPU and
which contains SPs and SFUs, where the SP performs the common arithmetic
operations and SFU performs the special functions such as sinus and cosines.
Also, we found that the G80 architecture has di�erent memories, where some
are located on-chip thus improving performance.

In Section 2.4 we looked at which problems are suited for GPGPU execution.
We found that they must be highly parallel and allows for many thousands of
threads. Also, the computational requirements must be high, as the GPU is
best suited for compute intensive tasks. Additionally, we found a publication
from Intel stating that GPUs are not as great for general purposes as many
researchers say they are. But even so, they concluded that the particular GPU
was on average 2.5x faster than the CPU.

In Section 2.5 we analyzed three programming languages for GPGPU pro-
gramming. We found that BrookGPU supported di�erent backends, such as
DirectX and OpenGL, while also supporting vendor speci�c backends, such as
ATI Cal. We found that CUDA was developed by Nvidia, and that CUDA is
only supported on Nvidia GPUs. OpenCL is however an open speci�cation,
and can therefore be implemented by many di�erent vendors. Additionally,
we found that CUDA and OpenCL's programming model introduced several
types of memory types, which must be exploited explicitly by the programmer
to increase performance, and that both CUDA and OpenCL supports multiple
GPUs.

In Section 2.7 we found several tools which can help with GPGPU pro-
gramming. Sadly, the debuggers only supports higher compute capable devices,
higher than our Tesla's compute capability 1.0. We did however �nd that the
Occupancy Calculator and the Nvidia Compute Visual Pro�ler both supports
compute capability 1.0 and thus we can use these.

34

3
Development

To gain GPGPU programming experience, we will implement two applications,
the Boids application and the ray tracer application. Also, the applications will
be used to assess how easy or how hard it is to do GPGPU programming using
the platforms that we have available, i.e. using Brook+, CUDA and OpenCL.

For the �rst application, we have chosen to implement the Boids algorithm
that was brie�y introduced in Section 1.1, speci�cally, the optimization tech-
nique presented in the paper [64]. This optimization is interesting because it
utilizes a two-dimensional structure that allows e�cient spatial queries among
actors, and because it has been successfully implemented in CUDA allowing one
million actors at interactive frame-rates; the algorithm will be explained in closer
detail in Section 3.1. The Boids application will be implemented in OpenCL,
Brook+ and C++ targeting x86, such that we can compare the implementations
and how they perform.

For the second application, we have chosen to implement a ray tracer similar
to the one we developed on 8th semester, because we have experience in doing
ray tracing and we know that ray tracing is a parallizable compute intensive
application. The ray tracer will be implemented using CUDA. The primary
aim of the GPU ray tracer is to improve performance through GPU speci�c
optimizations, such as using shared memory, texture memory, optimizing block
sizes, etc.

3.1 Boids Application

The aim of this section is to cover the Boids application. We will �rst explain
the overall Boids algorithm that is the core of this application, including some
optimizations. Afterwards, we will cover the functional requirements of this ap-
plication, i.e. the features, and then cover the GPU and CPU implementations.

3.1.1 The Boids Model

The following is based upon [65].
Boids is a computer model that models the behavior of animal �ock motions,

such as �sh schools or bird �ocks. It was devised in 1986 by Craig Reynolds and

35

Chapter 3. Development

Seperation Alignment Cohesion(a) Seperation

Seperation Alignment Cohesion(b) Alignment

Seperation Alignment Cohesion(c) Cohesion

Figure 3.1: The three steering behaviors

introduces three simple steering behaviors, which describe how each individual
actor maneuvers, based on the position and direction of its �ock-mates.

The three steering behaviors are Separation, Alignment and Cohesion as
shown on Figure 3.1. Common to all steering behaviors is that each actor is
only in�uenced by other actors in a certain neighborhood around itself. The
neighborhood of an actor is given by a distance, sometimes also refereed to as
radius, from the center of the actor and the direction of the actor. One way to
think about the neighborhood is as a way of limiting the perception of an actor,
e.g. if a �sh is swimming in murky water it can only see a limited distance and
in a limited angle angle in front of it. For simplicity we will always assume that
actors have 360 degrees vision thus we can ignore the direction when taking
about neighborhood.

An actor has a position and heading vector. The heading vector denotes the
current heading of the actor, i.e. in which direction the actor is traveling and
its speed. Each time the actors are updated a steering vector is calculated. The
steering vector denotes in which direction the actor is currently steering, i.e. is
the actor turning to the left or the right, and how fast is the actor turning. The
computation of each these vectors are described below.

3.1.1.1 Steering

The steering vector is calculated based on the three steering behaviors shown
in Figure 3.1.

Separation The separation steering behavior in�uences the actor such that
it tries to steer away from local �ock-mates, thereby reducing the density of the
�ock.

The arrow shows the steering direction in which the actor should turn to
avoid crowding. The steering direction can be found by computing a vector from
the position of each neighbor within the actors neighborhood to the position
of the actor. Afterwards, all vectors are divided twice by the distance to the
particular �ock-mate, and summed into one vector which is the separation vector
shown on Figure 3.1(a). The �rst division �nds the unit vector, while the second
division makes sure that �ock-mates close by have a greater in�uence on the
separation vector, i.e. the actor will avoid local �ock-mates more than distant
�ock-mates.

36

3.1. BOIDS APPLICATION

Alignment The alignment steering behavior in�uences the actor's heading
based upon the heading of other actors within its neighborhood. An alignment
vector, shown on Figure 3.1(b) by a thick arrow, determines the steering di-
rection of the actor with relation to the �ock-mates' heading. The alignment
vector can be computed by taking the average of the other �ock-mates' headings,
represented by the thin arrows in Figure 3.1(b).

Cohesion The cohesion steering behavior in�uences the actor such that it
tries to stay coherent with the �ock-mates within its neighborhood. As shown
on Figure 3.1(c), a cohesion vector can be computed based upon the average
position of the �ock-mates.

Combination The three steering behaviors can be combined by summing
the separation, alignment and cohesion vectors; this will produce the �ocking
behavior. Also, weights can be added to each behavior, which in�uences how
much a single behavior will dominate the overall �ocking.

3.1.1.2 Heading

In each iteration of the Boids algorithm the heading vector of each actor is
updated by adding the steering vector to the current heading vector of the
actor. To limit the acceleration and turning speed of the actors the length
of the steering vector can be limited before adding it to the heading, e.g. by
normalizing the steering vector. The top speed of actors can be limited by
putting an upper limit on the length of the heading vector e.g. by normalizing
the heading vector.

3.1.1.3 Position

The position of the actors is updated at each iteration by adding the heading
vector of an actor to the current position vector of the actor.

3.1.2 Optimizations

Recall that the behavior of each actor depends upon the position and heading
of its �ock-mates within a certain neighborhood. The naive implementation of
this is O(n2), where n is the number of actors, because each actor must look at
all other actors and determine if each of them is within the neighborhood, and
if so, use it to calculate the steering behaviors.

This can be substantially improved if we use a spatial data structure such as
a quad tree and index the actors into such a tree; this is shown on Figure 3.2. A
quad tree is a two dimensional data structure where each node in the quad tree
is subdivided into four quadrants. Thus, each node has four child nodes, one
for each quadrant. This allows faster range searches, because only child nodes
that are intersected by the search area needs to be checked.

A quad tree however requires that we are able to split and merge nodes
when actors change position. This requires some form of dynamic memory
management, i.e. splitting a node requires sub-nodes to be allocated by a mal-
loc like function. Dynamic memory allocation is not supported by our GPU
[45], utilizing a quad tree therefore requires that we either pre-allocate enough

37

Chapter 3. Development

Figure 3.2: A quad-tree containing all actors. The �gure on the left shows how
the actor positions are contained within quadrants. The �gure on the right
shows the actual tree representation.

memory beforehand, or that we move the tree update functions from the GPU
to the CPU. Pre-allocating enough memory beforehand requires that we imple-
ment some form of atomicity on the memory, to avoid race conditions between
threads, otherwise multiple threads might try to use the same portion of the
pre-allocated memory. Our GPU however does not support atomic operations,
and we are therefore stuck with moving the tree-update function to the CPU or
serializing the tree updating on the GPU.

Due to these problems, we have looked at another alternative. [64] proposes
to use a �ne-grain grid to reduce the complexity of �nding the actors in a
neighborhood in crowding algorithms such as Boids.

The idea is to place each actor into a two-dimensional matrix, or three-
dimensional matrix when working in 3D, and sort according to the relative
position of each actor. This is shown on Figure 3.3, where each actor on the left
is stored into the matrix on the right. The matrix on the right is sorted in such
a way that actors appearing from the top-left have lower x,y coordinates than
the actors appearing at the bottom-right.

7
5

8

1

6

3

4

2

9

1 2 3

46 5

78 9

x

y

x

y

Figure 3.3: The actors in a two dimensional world are mapped to the matrix
according to their relative position to each other

38

3.1. BOIDS APPLICATION

Using this approach the problem of �nding the actor in a neighborhood can
be split in two parts on which involves sorting the actors in the matrix and one
that �nds the actors in a neighborhood using the sorted matrix.

3.1.2.1 Sorting

Every time an actor moves the matrix has to be sorted, this can in the general
case be done in O(log(n) ∗ n) time. [64] argues that even though actors change
position, the matrix is still close to being sorted because of the spatial locality
of the actors, i.e. an actor moving will in most cases end up in the cell right
next to it.

Therefore [64] suggests to use a partial sorting algorithm, i.e. an algorithm
that sorts at most k iterations, thereby producing a matrix which is k iterations
closer to being sorted. Thus, according to [64], running a partial sort on the
matrix will in most cases produce a sorted matrix. The authors however do not
provide any evidence for this claim, other than stating that no artifacts where
encountered during their experiments.

The sorting algorithm used to perform the partial sort is an odd-even trans-
position sort that runs one iteration. The odd-even transposition sort is closely
related to bubble-sort. The way the odd-even transposition sort perform the
partial sort on the x and y dimensions, is by �rst comparing an element on an
even row with the element on the next row and swamping them if required, and
then comparing an element on an odd row with the element on the next row and
swamping them if required. When this has been done on all rows the algorithm
does the same on columns this is shown on Figure 3.4. Thus a single iteration
of the odd-even transposition sort does not guarantee that the resulting matrix
is sorted, only that it is closer to being sorted.

x

y

x

y

Sort Even Sort Odd

Figure 3.4: The partial sorting algorithm is based upon bubble-sort. The x and
y dimensions are sorted by �rst comparing and swapping even elements, and
afterwards odd elements.

Odd-even transposition sort can however still be used to perform a full
sort, like bubble-sort, if the odd-even transposition sort is set to only termi-
nate whenever no new swaps are detected in an iteration, this means that only
few iterations are required when the matrix is close to being sorted. Using a
full sort when the matrix is close to being sorted, should therefore not impact

39

Chapter 3. Development

performance much, since the sorting algorithm would terminate after only a few
iterations.

3.1.2.2 Finding neighbors

There are number of di�erent ways of �nding out which actors are within a given
neighborhood. Bellow we Will describe the approaches we have investigated.

Extended Moore Neighborhood [64] proposes an approach for �nding the
actors in a neighborhood inO(1) time by using an extended Moore neighborhood
instead of using a circle with a given radius used in [65]. Finding all �ock-mates
within a given square with width w, the algorithm simply returns all actors
within w

2 cells of the given actor. Thus, if w = 2, the 8 immediate actors are
returned, if w = 4, the immediate 24 actors are returned, see Figure 3.5, and
so on. While this approach might prove realistic "enough", i.e. that it gives
results indistinguishable from using a radius, it does not follow the Boids model
entirely.

Figure 3.5: Illustrates Extended Moore Neighborhood with w = 2

Rings On The Water A solution to �nding all the actors within a neigh-
borhood based on distance would be to start by checking all the immediate
neighbors of the actor. If one of the actors is within the radius then check the
next square of neighbors, and so on, like rings om the water, until non of the
actors on the periphery of the square is within the radius.

This, however, will increase the needed computations, as a full square will
be tested, even though just one �ock-mate was within radius in the previous
square.

The worst-case complexity of this is O(n), and happens when the size of the
square reaches a size such that all �ock-mates are within it, before all actors
within the radius is reached. However, the worst-case performance is rarely
observed due to the separation behavior of the actors, i.e. actors try to keep
some distance to other actors.

To implement this we only need an additional integer of memory to hold the
size of the square thus it should not impose any great memory limitations.

Pruned Neighbor Search Finding all �ock-mates within the actor's radius
can be done by iteratively checking the distance to each �ock-mate in neigh-
boring cells, and their neighbors. This is shown on Figure 3.6, where the white

40

3.1. BOIDS APPLICATION

x

y

1 2 3

4

567

8

9 10 11 12 13

14

15

16

1718192021

22

23

24

25 26 27

28

29

30

Figure 3.6: The white actor performs a spatial search, thereby �nding all �ock-
mates within its radius

actor performs a search and �nds all �ock-mates that are within its radius. The
numbers in Figure 3.6 indicate the order in which the check to see if an actors
is within the neighborhood is performed. The actors that are part of the neigh-
borhood is indicated by a dark background and the actors there are checked is
indicated by a lighter background.

The white actor �rst �nds its immediate neighbors, these are checked and
deemed within its radius. Afterwards, their neighbors are checked, where three
are found to be within the radius of the white actor. The neighbors of these
three are then checked, but none are within the radius of the white actor and
the algorithm can thus terminate.

The worst-case complexity of this is O(n) in this case but only happens when
all �ock-mates are within the radius of the actor.

This algorithm requires that a list of actors are generated upon termination,
which means that we have to preallocate an n sized array that can store these
actors, where n is the maximum number of actors that can be stored. This is
however a local list, i.e. no synchronization or atomic operations are required,
thus we can simply allocate an n sized array in private memory and we do not
have to worry about race conditions.

41

Chapter 3. Development

3.1.2.3 Choice of optimization

Recall that the Quad tree optimization requires that we can dynamically allocate
memory, this is not possible on the Tesla C870 GPU. Instead, we choose to
implement the algorithm proposed in [64], since they achieve good results; about
a million actors at interactive frame rates. We will implement a partial and a
full version of the sorting, and the pruned neighbor search algorithm the we
propose in Section 3.1.2.2 in addition to the extended Moore neighborhood that
[64] utilizes. The reason being that we are able to compare the simpler version
of Boids to the more complex version, and see how this performs on the CPU
and GPU.

We chose to implement the pruned neighbor search rather than the rings on
the water approach as it limits the needed number of computations, and requires
a more complex data structure, which is the purpose of this implementation.

3.1.3 Functional Requirements

The functional requirements of the Boids application are as follows:

• All actors exist in 2D space, i.e. each actor has an x and y coordinate

• Must be able to render and display the actors

• Actors must implement Separate, Alignment and Cohesion as de�ned
above.

• In addition, actors must steer towards the mouse position, thus allowing
simple interaction between the user and actors

• Must work with at least 1 million actors

In the end, we will have an interactive application that allows several actors
�ocking around the common aim of getting close to the mouse.

3.1.4 OpenCL Implementation

Recall from Chapter 3 that we have decided to implement the Boids Application
using OpenCL and Brook+ for the GPU. This section will cover the implemen-
tation details that we �nd interesting, with regards to the OpenCL implemen-
tation. We have chosen to only support a single GPU, since this makes for a
better comparison with the Brook+ implementation, due to we only have one
GPU with Brook+ support.

The Boids application can be divided into three steps. 1) The sorting of the
matrix, i.e. sorting all the actors with regards to their relative position, 2) the
actual Boids algorithm, i.e. actors compute their �ocking behavior based upon
the position and heading of close by �ock-mates, and 3) the neighbor search,
i.e. �nding the �ock-mates within a given neighborhood.

We have seperated these steps into four kernels: the SortPartial kernel,
the Sort kernel, the BoidsSimple kernel and the Boids kernel.

42

3.1. BOIDS APPLICATION

3.1.4.1 Sort

The sort kernels takes as input a N × N matrix containing all n actors, and
sorts these in-place using the odd-even transposition sort algorithm introduced
in Section 3.1.2.1, i.e. by swapping even and odd rows, and then swapping even
and odd columns.

Two versions of the Sort kernel have been implemented, one making a partial
sort and one performing a full sort. The two version are nearly identical, except
that the partial version always terminates after one iteration thus performing a
maximum of O(n) swaps, while the full version terminates only when no new
swaps are needed, which in the worst case is O(n2).

Sorting is carried out by N threads, where N = 1024 when n = 1, 048, 576
actors. The N threads performs the element swapping on the N rows and the
N columns. To avoid race conditions, a barrier is placed between the swapping
of elements row-wise and swapping of elements column-wise. Codeexample 3.1
shows a stripped down version of the Sort kernel. The thread id is used to
indicate what row and column that the thread will work on.

__kernel void Sort (__global struct Actor∗ ac t o r s)
2 {

// ge t the id o f the column or row
4 int id = get_global_id (0) ;

bool done = f a l s e ;
6 while (! done)

{
8 done = true ;

//perform even and odd swapping o f rows−wise
10 // elements on row id in the ac tor matrix

i f (e lements were swapped)
12 done = f a l s e ; //not in the p a r t i a l ver s ion

}
14 b a r r i e r (CLK_GLOBAL_MEM_FENCE) ;

done = f a l s e ;
16 while (! done)

{
18 done = true ;

//perform even and odd swapping o f column−wise
20 // elements on column id in the ac tor matrix

i f (e lements were swapped)
22 done = f a l s e ; //not in the p a r t i a l ver s ion

}
24 }

Codeexample 3.1: Stripped down version of the Sort kernel

3.1.4.2 BoidsSimple

The BoidsSimple Kernel takes as input a N × N matrix of actors, a two di-
mensional �oat that represents the location in which the actors �ocks to, and
returns a new N ×N matrix of actors which holds the new state of the actors.

The BoidsSimple kernel is a simpler version of the Boids algorithm, which
does not use a radius but instead utilizes a �xed rectangular window in which
local �ock-mates are found, as described in Section 3.1.2.2.

One instance of the kernel is created for each actor, and each thread carries
out the computations for exactly that actor, i.e. separation, alignment and co-

43

Chapter 3. Development

hesion behaviors. Since the actor's velocity and position changes are written to
a new matrix, no race conditions are present.

3.1.4.3 Boids

The boids kernel takes the same input and returns the same output as the
BoidsSimple kernel, and uses the same matrix data structure. The two kernels
are thus very similar, except that the Boids kernel iterates through a list of
�ock-mates, which are all within a certain radius, instead of looking at a �xed
number of �ock-mates as the BoidsSimple kernel does.

The Boids kernel calls a GetNeighbors function, which takes as input the
matrix containing the actors, a pointer to an integer array which is used as
output, and an integer that denotes the maximum size of the integer array
to avoid over�ows. The GetNeighbors function �nds all �ock-mates who are
within the actor's radius, unless the maximum is reached. If this maximum
is chosen su�ciently large, this should not have a large impact on the result
of the algorithm since the maximum will only rarely be reached, and even if
the maximum is reached, the actors will still �ock with many if its �ock-mates.
The �ock-mates' matrix positions, who are within the radius, are stored in the
integer array. Afterwards, the GetNeighbors function returns the number of
�ock-mates that were found.

As described in Section 3.1.2.2, all �ock-mates within the radius of a given
actor can be found by �rst checking all the immediate neighbors, check their
neighbors, and so on. This can be implemented on the CPU by recursively
adding �ock-mates to a list if they are deemed within the radius of the actor, i.e.
the function recursively calls itself on neighboring �ock-mates if it is determined
that they are within the radius of the given actor.

Recursion is however not supported in the OpenCL C language, meaning
that the implementation must be recursion free. The recursion free version uses
a processed pointer, which is moved whenever the neighbors of a �ock-mate has
been processed and saves the �ock-mates within the radius in a list.

At the start of the algorithm processed = 0 and the neighboring �ock-
mates of the actor is added to a list, called neighbors, if the neighbors are
within the radius of the actor. Afterwards, the algorithm iteratively adds the
neighbors of the �ock-mate located at the processed index, to the neighbors
list if they are deemed within the radius of the actor. The processed pointer is
incremented, and the next �ock-mate in the neighbors list is processed in the
same manner. This is done until the list is �lled or all �ock-mates in the list
have been processed.

Each instance of the Boids kernel must call the GetNeighbors function,
meaning that each thread must dynamically allocate memory to hold the result
of the GetNeighbors function. Dynamic allocation of memory is currently not
possible in OpenCL and we therefore have to preallocate enough memory to
hold the result, prior to running the Boids kernel. "Enough" memory depends
on the input, i.e. one million and one actors can potentially have one million
neighbors, which in total is many more actors than we can handle due to memory
constraints. For each thread, we preallocate an array in private memory of size
100 that can hold the �ock-mates' indexes into the actor matrix. The size of 100
means that an actor can maximum "see" and act upon 100 of its �ock mates.
This size was chosen arbitrarily. Had we used recursion, we would still have a

44

3.1. BOIDS APPLICATION

limit on how many actors we could investigate due to stack limitations.
The choice of private memory stems from the fact that private memory is

fast on-chip memory in OpenCL, compared to CUDA's local memory which is
located o� chip. However, after further investigation, we found that Nvidia's
implementation of OpenCL puts private memory o� chip [56] which might im-
pact performance; but since we focus on data structures in this implementation,
we have chosen not to optimize the usage of memory. This issue is discussed
further in Section 4.1.4.

3.1.5 Brook+ Implementation

Here we will cover the implementation details of the Brook+ implementation.
We will primary focus on the di�erences between the OpenCL implementation
and the Brook+ implementation.

3.1.5.1 Sort

The biggest di�erences between the Brook+ and OpenCL implementations is
in the sort kernels. Since the HD 2900XT graphics card does not support
scatter operations [2] the sort kernels had to be rewritten to only perform gather
operations. Since output streams are write only we have split the sort up in
four kernels: One that sort on even rows, one that sort on odd rows, one that
sort on even columns and one that sort on odd columns.

As an example, one of the sort kernels that performs partial sorting starting
on even rows are given in Codeexample 3.2. First the kernel determines if it is
working with an even or odd row. If it is working on an even row a check, to
determine if there is a row after the row currently being processed, is performed
to ensure that the bounds of the matrix is not exceeded. If the bound of the
matrix would be exceeded the actor at the current position is written to the
output stream.

If the bounds of the matrix is not exceeded, a comparison of the x-position
of the actor at the current row and at the next row is performed. If the actor in
the next row have a lower x-position, the two actors are not ordered correctly
and the actor in the next row is written to the output stream, to perform the
�rst half of the swap of the two actors. If the actor in the next row have a
higher x-position, the actors are ordered correctly and the actor at the current
position in the matrix is written to the output stream.

If the kernel is working on an odd row, a comparison between x-position
of the actor at the current row and the x-position of the actor at the previous
row is performed. If the actor in the previous row has a higher x-position the
actors are not ordered correctly, and the actor from the previous row is written
to output stream, thus performing the other half of the swap of the two actors.
If the actor in the previous row has a lower x-position, the actors are ordered
correctly and the actor at the current row is written to the output stream.

ke rne l void xEven (f l o a t 4 inputActors [] [] , out f l o a t 4 outputActors
<>, int s izeX)

2 {
int odd = (in s t ance () . x) % 2 ;

4 i f (! odd)
{

6 i f (i n s t ance () . x +1 < sizeX)

45

Chapter 3. Development

{
8 i f (inputActors [i n s t ance () . y] [i n s t ance () . x] . x > inputActors [

i n s t ance () . y] [i n s t ance () . x+1] . x)
{

10 outputActors = inputActors [i n s t ance () . y] [i n s t ance () . x+1] ;
}

12 else

{
14 outputActors = inputActors [i n s t ance () . y] [i n s t ance () . x] ;

}
16 }

else

18 {
outputActors = inputActors [i n s t ance () . y] [i n s t ance () . x] ;

20 }
}

22 else

{
24 i f (inputActors [i n s t ance () . y] [i n s t ance () . x] . x < inputActors [

i n s t ance () . y] [i n s t ance () . x−1] . x)
{

26 outputActors = inputActors [i n s t ance () . y] [i n s t ance () . x−1] ;
}

28 else

{
30 outputActors = inputActors [i n s t ance () . y] [i n s t ance () . x] ;

}
32 }

}

Codeexample 3.2: Example of a sort kernel in Brook+

To perform a partial sort, �rst the kernel that starts on even rows is called,
followed by the one that starts on odd rows, then the one that starts on even
columns and �nally the one that starts on odd columns.

To perform a full sort each of the sort steps might need to be called multiple
times. To determine if more iterations of sorting is required on either rows or
columns an additional output stream is used. The kernels that sorts on even
positions writes an 1 to this stream, each time an actor is written to a position
that is di�erent from the actors position in the input stream, and a 0 if no
change has taken place.

The kernels that work on odd positions also output a stream of 1 and 0 in
the same manner as the kernels that works on even positions, except that the
odd kernels also takes the stream of ones and zeros produced by the even kernels
as input, and produces a 1 if this stream contained a 1. Thus after calling an
even kernel followed by the corresponding odd kernel we have a stream that
contains a 1 in all the position where either of the kernels swapped an actor and
a 0 in all other positions, i.e. if the stream contains only zeros the actors are
fully sorted.

To avoid writing the content of the entire stream to host memory and check-
ing each position for a 1 or a 0, to determine if the actors are fully sorted or
the sort kernels needs to be called again, an additional kernel is used. This
extra kernel is a reduction kernel that calculates the sum of all the values in the
stream as shown in Codeexample 3.3 thus only one value needs to be written
to host memory and if this value is di�erent from 0 the sort kernels are called
again.

46

3.1. BOIDS APPLICATION

1 reduce ke rne l void sum(f loat a<>, reduce f loat b)
{

3 b += a ;
}

Codeexample 3.3: Reduction kernel there calculates the sum of all elements in
the stream a

3.1.5.2 BoidsSimple

The Brook+ implementation of the BoidsSimple kernel is fairy similar to the
OpenCL implementation the biggest di�erence is that the OpenCL implemen-
tation uses a structure of two �oat2's, a �oat2 is a two dimensional vector, to
represent the position and direction of each actor, since the use of structures
caused problems with the brook+ compiler. Instead we used a �oat4, a �oat4
is a four dimensional vector, where the x and y dimensions is used to represent
the position and the z and w dimension to represent the direction of an actor.

3.1.5.3 Boids

We have chosen to not implement the pruned neighbor search since it would
be vary time consuming to implement without using scatter operations. Also
it would require a lot of kernels to be called by the CPU, thus causing poor
performance due to the overhead involved in each kernel call. The reason that
many kernel calls are required is that output streams is write only, thus every
time a kernel needs to read an actor from the list of actors in the neighborhood,
that has been added by the same kernel call, a new kernel call is required.

3.1.6 C++ CPU Implementation

The C++ CPU implementation is very similar to the OpenCL implementation,
as the C++ implementation is a back-port of the OpenCL implementation. To
gain multi-threading support, we have used the Parallel Patterns Library. This
library was made available with the release of Visual Studio 2010 and the C++
0x standard.

3.1.6.1 Sort

The Sort kernel has been ported to C++ from OpenCL and the code is nearly
identical. One exception is that the C++ Sort implementation was not made
multi-threaded, since the patterns library did not appear to feature any barrier
construct and thus only utilizes one core. This could however have been avoided
by rewriting the Sort implementation, but this was not done. One must be
aware of this when performing benchmarks.

3.1.6.2 BoidsSimple

This implementation is nearly a one-to-one port of the OpenCL version, with
only a few di�erences. The primitive vector types, such as float2, are replaced
with the host equivalent types, such as cl_float2.

47

Chapter 3. Development

Also, the OpenCL language directly supports arithmetic operations on vector
types, e.g. vector4 a = b + c is supported, where b and c are also vector4 types.
This is not supported on the host, we therefore implemented simple helper
functions such as the Add function, which takes as input two cl_�oat2 and
returns the vector sum of these.

Lastly, we have used the Parallel Patterns library to make BoidsSimple

multi threaded, since no barrier constructs were required as was the case with
the sorting. This is done by using the parallel_for construct, which makes a
for loop run in parallel, thus processing the actors in parallel.

3.1.6.3 Boids

The Boids kernel has been back-ported in the same manner as the BoidsSimple
kernel, and is therefore a nearly one-to-one port of the OpenCL version.

3.1.7 Summary

During this section we have described the Boids algorithm and possible opti-
mizations. We have also described how we implemented the algorithm chosen
in OpenCL, Brook+ and C++ and which problems was encountered during the
implementation.

3.2 Ray Tracer Application

This section gives a short introduction of raytracing, followed by the functional
requirements to our GPU Ray Tracer (GRT) and CPU Ray Tracer (CRT) im-
plementation. Afterwards, we will describe the actual CUDA implementation,
and shortly cover the CRT implementation.

The purpose of implementing the GRT is experimenting with techniques for
optimization on the CUDA platform, speci�cally for the Tesla C870 as explained
in Appendix A, rather than using data structures to achieve better performance.

3.2.1 Ray Tracing Algorithm

This section introduces the basic concepts of ray tracing and is based on the
ray tracing analysis found in our 8th semester report [27, sec. 2.5.3].

Ray Tracing is a technique to render 3D geometry, and bases itself upon the
way light interacts with objects in the real world. At least one ray is traced
through each pixel of the image, known as primary rays. If a ray intersects an
object, such as a polygon or a sphere, secondary rays are generated and traced.
Three types of secondary rays are commonly found in ray tracer: re�ection-,
refraction- and shadow-rays.

Re�ection rays are, as the name indicates, used to simulate re�ection found
on re�ective materials such as a mirror or water.

Refraction rays are used to simulate the type of refraction commonly found
when a photon passes through objects made of materials such as glass or water.

Shadow rays are traced between object intersections and light sources. If
the Shadow ray intersects an object before reaching the light source, the light
source is not applied.

All rays are illustrated in Figure 3.7.

48

3.2. RAY TRACER APPLICATION

Furthermore, a shading technique can be applied to the objects in the scene
using Ray Tracing. Like the implementation in our 8th semester project, we will
use Phong shading, which combines ambient, di�use and specular lighting, as
shown on Figure 3.8. [27, sec. 2.5.1]

R1

R2

P1

P2

Camera

Light

L1

L2

V
Object 1

Object 2

Figure 3.7: Shows the primary ray V and secondary rays:
R1, R2, P1, P2, L1, L2. L1 and L2 are shadow rays. P1 and P2 are
refraction rays. R1 and R2 are re�ection rays. [27]

Figure 3.8: The Phong shading components. [80]

3.2.2 Functional Requirements

The functional requirements of the GRT application are:

• Trace primary.

• Trace secondary rays: re�ection and shadow rays.

• Use spheres as primitives.

• Use point lights.

• Compute the resulting color of rays and lights.

49

Chapter 3. Development

• Display the resulting image.

• The camera position c is always (0, 0, 0) and the camera direction vector
is (0, 0, 1).

• The �eld of view (FOV) of the camera can be changed.

• Looking from the cameras point of view, positive- x, y and z coordinates
are right, up and forward, negative is the opposite, left, down and back-
wards.

3.2.3 CUDA Implementation

This section describes the parts of the implementation that have been special-
ized for the GPU, either for the purpose of performance or because CUDA
requires it, e.g. because CUDA does not support recursion. Sections concerning
performance is marked with a P in the headline and sections concerning CUDA
requirements are marked with a R in the headline.

3.2.3.1 Work Partitioning (R+P)

The image plane, the image where a primary ray is shot from each pixel, is
partitioned in such a way that one thread is allocated to rendering each pixels.
The threads are grouped in 2D thread blocks, with pixels adjacent to each
other, e.g. 8 × 8 or 16 × 16 pixels, and the thread blocks are grouped in a 2D
grid block. In our implementation, we are limited by the number of available
registers. We therefore choose a thread block size of 8× 8 threads, as this gives
better utilization of the SMs.

An alternative would have been creating a queue of primary and secondary
rays to be traced and let all threads participate in the tracing. However, this will
require that the queue is �rst build, then synchronized to the device, afterwards
a kernel is started that traces the rays. The result of the trace would be new
rays that are added to the queue, if any, and a partial color for the pixel. The
process would be repeated until no new secondary rays were generated, which
would result in the �nal rendered image.

Because of the many memory accesses required by this method, synchro-
nization and kernel startups, this method imposes large overhead. However,
this method also has the ability to sort rays, such that better cache locality can
be achieved [19], with increased control �ow complexity. Also, as explained in
Section 1.2.1, the aim of this implementation is to optimize for CUDA, and not
optimize the speed of the ray tracer by implementing data structures. We will
therefore not use this method.

3.2.3.2 Intersection Bu�er (R)

A common approach to ray tracing is with the use of recursion, however, CUDA
does not support recursion on devices with lower compute capability than 2.0
as described in Section 2.6.2.4. Recall from Section 2.2 that the Tesla C870
only has compute capability 1.0. Instead, the ray tracer is implemented with an
intersection bu�er for each pixel, to store the data needed when computing the
color, after tracing the rays. This is depicted on Figure 3.9. The intersection

50

3.2. RAY TRACER APPLICATION

bu�er is kept in shared memory, as described later in the section. The elements
depicted on Figure 3.9 is explained here:

• Number of objects - The number of rays traced

• Origin x, y, z - The point, for which the �rst ray has its origin

• Object id - Id of the object intersected by the ray

• Intersection x, y, z - Point of which the ray and the object with object id
intersects

Note that each Intersection acts as origin for the succeeding Intersection, e.g.
ib is the origin of ia as illustrated on Figure 3.9, except for the �rst Intersection
which uses the Origin point as origin.

The ray tracer only traces up to a maximum of intersections, but the bu�er
needs to be able to contain this maximum, and is therefore statically sized to
handle this, i.e. the bu�er is allocated before the kernel is run. The number of
intersections actually contained in the bu�er is stored in the �rst cell Number
of objects, as depicted on Figure 3.9.

Number of objects

Origin x
Origin y
Origin z

Object id

Intersection x
Intersection y
Intersection z

Intersection x
Intersection y
Intersection z

...

I
n
t
e
r
s
e
c
t
i
o
n

M
a
x

I
n
t
e
r
s
e
c
t
i
o
n

1

Object id ib

ia

Figure 3.9: This �gure depicts the structure of the intersection bu�er of ray
intersections

When the intersection bu�er has been build, it can be iterated backwards in
order to calculate the resulting color of the pixel. The intersection and object id
data is used to determine which lights in the scene apply light to the point, i.e.
which light rays are not intersected by other objects, what the color of object
is, and the level of light re�ected from an object.

As mentioned, the Number of objects data speci�es how many rays have been
traced, such that the color function only consider valid data in the bu�er.

51

Chapter 3. Development

3.2.3.3 Memory (P)

Three types of memory have been used for the ray tracer: global, texture and
shared.

Global memory is used for storing the resulting color of each pixel. The
reason for using global memory is that the data is needed on the host and
only global memory allows this, because constant and texture is read-only and
private and shared is only accessible per thread and thread block, respectively.
The global memory is only written to once per thread and only read on the host
when the ray tracer has �nished ray tracing a scene.

Texture memory is used for storing the needed data for objects and lights,
e.g. position, radius, color and intensity. Texture memory is used because we do
not need to update this data, that is, it adheres to the read-only requirement,
and read-only memory can thus be used which is faster than global memory
because it is cached. Although texture is read-only, animations can be done by
moving objects on the host and copying the new data to the texture memory
between each rendering, this is however not a functional requirement and there-
fore not implemented. We chose texture memory instead of constant memory,
as constant is limited to 64KB, and texture memory can hold 227 elements for
a 1D texture.

Shared memory is used for the intersection bu�er, described above, as it is
faster than global. Local memory could have been used, but shared memory
is faster since shared memory is on-chip where local memory is o�-chip. The
amount of shared memory available, i.e. 16KB for the Tesla C870, limits the
number intersection that can be traced, as for each trace an intersection possibly
needs to be stored.

If for example an 8× 8 thread block is used, with the intersection bu�er as
described above, each thread will use up 16 bytes for Number of objects and
Origin, leaving 16384−16∗8∗8−10

8∗8 ≈ 239 bytes per thread for intersections. Note
the −10, these 10 bytes are used by the CUDA system. Each intersection takes
up 16 bytes, thus 239

16 ≈ 14 intersections are the theoretical maximum imposed
by the thread block size. If more intersections are needed, the thread block size
must be lowered, e.g. from a 8× 8 to a 4× 4 block size.

For comparisons sake, we have also implemented a ray tracer which uses
global memory for objects and lights instead of texture memory, and private
memory instead of shared memory for the intersection bu�er. Apart from the
changes of memory types, the source codes are equivalent, this will help us
reason about the a�ect of or optimizations.

3.2.4 C++ Implementation

The code for the CRT is based on the C++ ray tracer we wrote for the 8th

semester student project. This ray tracer was used on single core computers,
and was therefore not multi-threaded.

To gain multi-threading support, we have used the Parallel Patterns Library
that allows easy parallelization of loops using lambda expressions as we did with
the C++ Boids implementation.

The screen is divided into N horizontal part, where N is the number of cores
of the CPU, i.e. 4 cores for our quad processor. Each part is thereafter rendered
in parallel on the CPU, and combined to form a complete image on the screen.

52

3.3. SUMMARY

3.2.5 Summary

In this section we have described the basics of how ray tracing and phong shading
can be performed, de�ned functional requirements of the ray tracer implemen-
tation should adhere to. We also described how the GRT was implemented, in-
cluding alternatives and why they were not chosen, and given a brief description
of how we have extended the CRT with multi-threading support. Benchmarks
using the ray tracers will be performed in Section 4.2.

3.3 Summary

This chapter covered the development of the Boids application and the ray
tracer application.

The Boids application was implemented in OpenCL and C++, and we chose
the acceleration strategy proposed in [64], where all actors are indexed into a
two dimensional matrix thereby allowing faster neighbor searches. With this
acceleration structure, it should be possible to simulation at-least one million
actors at interactive frame rates, i.e. at least 30 frames per second.

The ray tracer was implemented in CUDA targeting Nvidia GPUs. Shared
memory was used to store the resulting intersections between the primary rays
and spheres, and the intersections between the secondary rays and spheres,
which should be faster compared to saving them in global or local memory. The
spheres were kept in texture memory, not global memory, thus decreasing the
bandwidth usage, since it is cached on chip.

Benchmarks will be carried out in Chapter 4 using both the ray tracer and
the Boids application.

53

4
Benchmarks

This chapter covers the benchmarks using the Boids application, which was
described in Section 3.1, and ray tracer applications, which was described in
Section 3.2.

The aim of this chapter is to get benchmarking data which says something
about the performance of the GPU compared to the performance of the CPU,
and which can be discussed.

4.1 Boids Benchmarks

We start by describing how the Boids application is con�gured for benchmarking
and then describe the initial experiments, which is used to determine how to
benchmark the system in a way that re�ects the systems performance best.
Afterwards we presents the results and discuss them.

4.1.1 Benchmark Setup

To determine the performance of the three implementations, i.e. the OpenCL,
Brook+ and C++ CPU implementations, we will benchmark each implementa-
tion with 1024 × 1024 actors, roughly a million actors. This is the number of
actors that [64] uses in their benchmarks, and this allows us to better reason
about the performance compared to theirs.

We measure the performance of our implementations the same way as [64]
does, by running each benchmark for 300 seconds and record how many iter-
ations were calculated during this time. To increase consistency of the result,
each benchmark is run 10 times and the average of these runs is calculated.

Recall that the functional requirements of the Boids implementations stated
that the actors should follow the mouse, Section 3.1.3. During benchmarking
however, the mouse will be disabled to avoid external in�uences, instead, the
actors will �ock around x, y = (0, 0). In addition to disabling the mouse, the
rendering of the actors will also be disabled, such that the rendering process
does not in�uence the performance of the implementations.

The actors will initially be placed evenly in a grid, with a distance of 2 to
each horizontal and vertical neighbor. This is to avoid worst-case performance

54

4.1. BOIDS BENCHMARKS

Figure 4.1: The Boids setup after a few iterations, containing roughly a million
actors. The actors are �ocking to the middle of the screen.

at the start of each benchmark, i.e. if all actors were placed at x, y = (0, 0), all
actors would be within each others radius resulting in all actors having to check
all other actors. The setup is shown on Figure 4.1, where some iterations have
passed. Note that each individual actor is had to see, since the setup contains
roughly one million actors.

In addition to these requirements, we will perform benchmarks using a com-
bination of the following con�gurations on both the CPU and GPU implemen-
tation:

• Benchmark using partial sort, in which only k iterations of the sort al-
gorithm is done, as described in Section 3.1.2.1. In our case k is set to
1.

• Benchmark using full sort, which performs a full sort of the data structure
as described in Section 3.1.2.1

• Benchmark using the Pruned Neighbor Search algorithm, in this chapter
referred to as complex, described in Section 3.1.2.2, with radius = 2. See
the left �gure in Figure 4.2.

• Benchmark using the Extended Moore Neighborhood search algorithm,
in this chapter referred to as simple, described in Section 3.1.2.2, with

55

Chapter 4. Benchmarks

Figure 4.2: Illustrates Pruned Neighbor Search (complex) and Extended Moore
Neighborhood (simple)

radius = 2, thus returning only the 24 closest neighbors. See the right
�gure in Figure 4.2.

The hardware used in the benchmarks is the LENOVO ThinkStation de-
scribed in Section 2.2, which is equipped with a Tesla C870 for the OpenCL
benchmarks, and a Radeon HD 2900 XT for the Brook+ benchmarks.

Since the proximity of the actors can in�uence the performance of the al-
gorithm, we will also run a benchmark where the algorithm has run a number
of iterations such that the performance has stabilized. We assume that actors
coalesce or disperse from their original positions in the grid, and at some point
achieve a relatively stable �ock. To determine the number of iterations needed
to achieve a stable �ock, we will run an experiment for each con�guration.

4.1.2 Initial Experiments

We expect the time it takes to calculate each iteration will increase as the actors
�ock closer around x, y = (0, 0), because more and more actors comes inside
each others radius. In order to �nd out when the performance of the algorithm
begins to stabilize, i.e. when there is no longer any general increase or decrease
in performance, we will execute the Boids algorithm for 2000 iterations, and
measure the execution time for each iteration.

This approach is however problematic, since using the complex search algo-
rithm causes the kernel to take more than 2 seconds to execute, which means
that the Timeout Detection and Recovery (TDR) feature of Windows causes
Windows to reinitialize the graphics drivers, thus restarting the GPU. Windows
does this to ensure the responsiveness of the GUI. The number of seconds before
the TDR kicks in can be changed by altering the TdrDelay registry key under
HKLM\System\CurrentControlSet\Control\GraphicsDrivers. [39]

By simple trial and error we �nd that 300 is a good amount of time, thus
ensuring that the TDR does not kick in during experimentation.

With regards to the partial sort and simple neighbor search algorithms, we
do not expect much change in performance over time, because these algorithms
always operate on a simple number of actors. On the other hand, we expect the
full sort and the complex search algorithm to perform worse if the actors are
situated close together.

We expect the full sort will perform worse because there is a greater possibil-
ity that an actor gets moved multiple positions in the matrix, thereby increasing
the number of iterations to sort the matrix.

56

4.1. BOIDS BENCHMARKS

0

20

40

60

80

100

120
1

6
0

1
1

9
1

7
8

2
3

7
2

9
6

3
5

5

4
1

4
4

7
3

5
3

2
5

9
1

6
5

0

7
0

9
7

6
8

8
2

7
8

8
6

9
4

5

1
0

0
4

1
0

6
3

1
1

2
2

1
1

8
1

1
2

4
0

1
2

9
9

1
3

5
8

1
4

1
7

1
4

7
6

1
5

3
5

1
5

9
4

1
6

5
3

1
7

1
2

1
7

7
1

1
8

3
0

1
8

8
9

1
9

4
8

m
s

Iteration

Partial Sort Simple boids SMA(Partial Sort) SMA(Simple boids)

Figure 4.3: The time taken to compute a partial sort and Boids using simple
neighbor search for a given iteration on the GPU

We expect the complex search algorithm will perform worse because each
actor will have more �ock-mates within its radius, which must be taken into
consideration when calculating the steering behaviors, as was described in Sec-
tion 3.1.1.

Recall that we perform these experiments to �nd out in which iteration the
positioning of the actors has reached a su�ciently stable grouping, that is, there
is no longer any general increase or decrease in performance. Since there will
always be some di�erence in performance from one iteration to the next, we will
be calculating a Simple Moving Average (SMA) over the past 50 iterations to
help spot more general trends.

The experiments will be run using the OpenCL implementation because we
expect that the other implementations will be a�ected by the grouping of actors
the same way, due to all the implementations using the same algorithms.

Also, to make it easier to reason about the results, we will measure the
sorting time and the Boids algorithm independently.

4.1.2.1 Results

As expected, the experiments show that the simple neighbor search algorithms
are not a�ected by the positioning of the actors as seen both in Figure 4.3 and
Figure 4.4 where it takes around 60ms in all iterations.

The partial sort appears to be somewhat a�ected by the positioning of the
actors, this is most likely because actors more frequently change positions in
the matrix when actors are closer together. Still, in the partial sort, actors are
moved at most one position in the matrix thereby posing an upper limit to the
number of operations performed by the algorithm. As shown in Figure 4.3, the
limit appears to be reached after about 1000 iterations when the performance

57

Chapter 4. Benchmarks

0

100

200

300

400

500

600

1

6
0

1
1

9
1

7
8

2
3

7
2

9
6

3
5

5

4
1

4
4

7
3

5
3

2
5

9
1

6
5

0

7
0

9
7

6
8

8
2

7
8

8
6

9
4

5

1
0

0
4

1
0

6
3

1
1

2
2

1
1

8
1

1
2

4
0

1
2

9
9

1
3

5
8

1
4

1
7

1
4

7
6

1
5

3
5

1
5

9
4

1
6

5
3

1
7

1
2

1
7

7
1

1
8

3
0

1
8

8
9

1
9

4
8

m
s

Iteration

Full sort Simple boids SMA(Full sort) SMA(Simple boids)

Figure 4.4: The time taken to compute a full sort and Boids using simple
neighbor search for a given iteration on the GPU

starts to stabilize, this is also the case with the partial sort with complex search,
even though hard to see on Figure 4.5.

As expected, the complex search algorithm is also a�ected by the positioning
of the actors. The results of the experiments shown in Figure 4.6 and Figure 4.5
clearly show that the performance decreases over the �rst 1000 iterations. The
execution time increases from just a couple of hundred ms to over 14000ms for
a single iteration, but after 1000 iterations the performance decrease starts to
stabilize.

The performance of the full sort decreases as we expected. This is shown on
Figure 4.4 where the performance appears to decrease over all 2000 iterations.
The full-sort in Figure 4.6 appears to stabilize after 1500 iterations, which was
not the case on Figure 4.4. This might be because the complex search algorithm
allows for better �ocking due to its use of a radius, i.e. more actors can be
considered when calculating the steering behaviors, thus creating a more ordered
matrix which is easier to sort.

4.1.3 Benchmark Results

Based on the experiments, we have decided to start the benchmarks after itera-
tion 1500, since we have a relatively stable �ock of actors. After 1500 iterations
all the algorithms appears to have stabilized, except the full sort. Figure 4.7
shows the number of iterations completed by the di�erent implementations in
the 300 seconds the benchmark was running.

Figure 4.8 shows the speed up achieved by the di�erent implementations
relative to the CPU implementation.

58

4.1. BOIDS BENCHMARKS

0

2000

4000

6000

8000

10000

12000

14000

1

6
2

1
2

3

1
8

4

2
4

5

3
0

6

3
6

7

4
2

8

4
8

9

5
5

0

6
1

1

6
7

2

7
3

3

7
9

4

8
5

5

9
1

6

9
7

7

1
0

3
8

1
0

9
9

1
1

6
0

1
2

2
1

1
2

8
2

1
3

4
3

1
4

0
4

1
4

6
5

1
5

2
6

1
5

8
7

1
6

4
8

1
7

0
9

1
7

7
0

1
8

3
1

1
8

9
2

1
9

5
3

m
s

Iteration

Partial sort Complex boids SMA(Partial sort) SMA(Complex boids)

Figure 4.5: The time taken to compute a partial sort and Boids using complex
search for a given iteration on the GPU

0

2000

4000

6000

8000

10000

12000

14000

16000

1

6
2

1
2

3

1
8

4

2
4

5

3
0

6

3
6

7

4
2

8

4
8

9

5
5

0

6
1

1

6
7

2

7
3

3

7
9

4

8
5

5

9
1

6

9
7

7

1
0

3
8

1
0

9
9

1
1

6
0

1
2

2
1

1
2

8
2

1
3

4
3

1
4

0
4

1
4

6
5

1
5

2
6

1
5

8
7

1
6

4
8

1
7

0
9

1
7

7
0

1
8

3
1

1
8

9
2

1
9

5
3

m
s

Iteration

Full sort Complex boids SMA(Full sort) SMA(Complex boids)

Figure 4.6: The time taken to compute a full sort and Boids using complex
search for a given iteration on the GPU

59

Chapter 4. Benchmarks

1

10

100

1000

10000

100000

Full complex Partial complex Full simple Partial simple

It
e

ra
ti

o
n

s

CPU OpenCL Brook+ CPU 1500 OpenCL 1500 Brook+ 1500

Figure 4.7: Benchmark results for the CPU and OpenCL implementations of the
Boids algorithms. Simple refers to the use of the Extended Moore Neighborhood
search algorithm while complex refers to the use of the Pruned Neighbor Search
algorithm. Full refers to the use of a full sort while partial refers to the use of
a partial sort. 1500 refers to a benchmark starting at iteration 1500.

0,1

1

10

100

Full complex Partial complex Full simple Partial simple

Sp
e

e
d

 u
p

OpenCL Brook+ OpenCL 1500 Brook+ 1500

Figure 4.8: Speedup of the di�erent Boids implementations relative to the CPU
implementation. Simple refers to the use of the Extended Moore Neighborhood
search algorithm while complex refers to the use of the Pruned Neighbor Search
algorithm. Full refers to the use of a full sort while partial refers to the use of
a partial sort. 1500 refers to a benchmark starting at iteration 1500.

60

4.2. RAY TRACER BENCHMARKS

4.1.4 Discussion

Figure 4.8 shows that the complex search algorithm in three out of four cases
is slower on the GPU than the CPU. Only in the case where complex search
is used in conjunction with a full sort and when run after 1500 iteration can
the GPU outperform the CPU and even so only by a little. The reason that
we do not see better performance from the GPU, even though it has a theoret-
ical performance of 518.4 gigaFLOPS against the 40 gigaFLOPS of the CPU,
is that the complex search does not �t well with the characteristic described
in Section 2.4. More speci�cally it performs a lot of writes to memory when
adding neighbors to the list and it performs scattered memory accesses leading
to low memory throughput. Some of this should have been alleviated by using
private memory which according to the OpenCL speci�cation is located close
to itsPE[30, p. 24], but Nvidia has chosen to implement private memory in
DRAM, which is not close to the PE as we initially expected.

When looking at the simple neighbor search algorithm we see that the GPU
outperforms the CPU in all benchmarks, however, we do not see anything close
to the theoretical 518.4

40 = 12.96 speed up for the OpenCL implementations. This
is most likely because we do not use any of the on-chip memory on the GPU,
thus its performance is severely limited by the available memory throughput,
which is already decreased by the many uncoalesced memory accesses performed
when sorting.

For the Brook+ implementation we see a greater increase in performance
than the OpenCL implementations, in fact the partial sort, simple neighbor
implementation goes beyond the theoretical speed up of 475

40 = 11.875, with a
speed up of around 30 and 23 for the benchmarks from iteration 0 and 1500
respectively.

One reason for this large speed up compared to the OpenCL implementation
is that Brook+ automatically make use of the GPU on chip memory. We also
suspect the use of a four dimensional vector to represent an actor helps increase
performance, since this is a primitive implemented in hardware on the Radeon
HD 2900 XT, where the Tesla C870 can only operate on scalar values. When
comparing partial sort with fully sort implementations, we see that the Brook+
implementation has a much larger performance decrease compared to the CPU
implementation, from a speed up of 30 to a speed up of around 3, and a speed
up of 23 to a speed up of less than 2, than the OpenCL implementation. This
may be caused by the Brook+ implementation has to copy data to the CPU for
each iteration of the odd-even sort to check if the sorting is completed, and the
lunch a new kernel if it is not. This process creates a considerable overhead,
which the other implementations do not have.

4.2 Ray Tracer Benchmarks

This section will cover the benchmarks using the ray tracer application. We will
�rst cover the setup that we will use, i.e. the scene and con�guration of the ray
tracer benchmark. Afterwards, the actual benchmarks are performed and the
results are shown and discussed.

61

Chapter 4. Benchmarks

4.2.1 Benchmark Setup

To benchmark the GRT and CRT implementation, we have de�ned a scene
setup. An alternative would have been to use a scene de�ned by other researcher,
however our implementation only support spheres, thus complex objects cannot
be rendered which means that our ray tracer cannot render such scenes.

De�ning a scene allows us to reason about the performance of the GRT and
the CRT which we developed through our 8th semesters project. The results
are not a�ected by the complexity of the scene, since the scene is used by both
ray tracers. The computations of the scene should be fairly static, since no
animations are present, i.e. the execution time of one frame will not be much
di�erent from the last frame.

We will measure the performance of the implementations by running each
benchmark for 300 seconds, and record how many frames were rendered in this
time. To assure consistency of the result each, benchmark is run 10 times and
the average of these runs are calculated.

The scene we have chosen for the benchmarks is de�ned as follows, and
shown on Figure 4.9:

• 289 spheres with a radius of 10 are placed in a 17×17 grid, with a distance
of 30 between each horizontal and vertical neighbor sphere. The upper left
sphere in the grid is located at (−240,−240, 1024), i.e. sphere i, j in the
grid is located at (−240 + 30 ∗ i,−240 + 30 ∗ j, 1024).

• 10 lights are placed on a straight line with an horizontal distance of 20
between them. The left most light is located at (−90, 0, 512), i.e. light i
on the line is located at (−90 + i ∗ 20, 0, 512).

• The resolution of the image is set to 512× 512 pixels.

• All of the spheres has a re�ective surface.

• A max of three re�ection rays are traced per pixel.

• The �eld of view is π/6 ≈ 30◦.

We have chosen 289 spheres since each sphere takes up 32 bytes of memory,
i.e. three �oats for coordinates, three �oats for color, one �oat for diameter and
one �oat for the re�ection constant. This means that the 289 objects exceeds
the available texture memory cache, which is 8KB at maximum [54, p. 148],
the benchmark scene thus poses a challenge for the GPUs memory system.

We chose 10 lights instead of just one since this poses a greater computational
challenge, thus our benchmark scene with 289 spheres o, and 10 lights l with a
naive implementation will have to make 289 intersection checks for each primary
ray, and 288 intersection tests per secondary ray, as secondary rays do not need
to check with its own origin object. This means that for a scene with 512× 512
pixels p, and a maximum of two secondary rays s, we need p2×((o×s+1)−s) =
5152×((289×3)−2) = 226, 754, 560 intersections for a worst case, i.e. all primary
rays intersect an object and each secondary ray does as well. Furthermore, each
found ray intersection needs to check if any object blocks the light sources, this
results in p2 × l × (o − 1) × (s + 1) = 5122 × 10 × 288 × 3 = 778, 567, 680
intersection tests. The total number of intersection tests in the worst case is

62

4.2. RAY TRACER BENCHMARKS

Figure 4.9: The scene used in the ray tracer benchmark.

63

Chapter 4. Benchmarks

0

100

200

300

400

500

It
e

ra
ti

o
n

s

CPU Global local Texture shared

Figure 4.10: Benchmark results for the ray tracers

0

1

2

3

4

5

6

7

8

9

Texture shared Global local

Sp
e

e
d

 u
p

Figure 4.11: Speed up for the di�erent ray tracer implementations relative to
the CPU implementation

therefore 1, 005, 322, 240. Initial tests of the benchmark scene shows that only
about 60% of the primary rays intersects a sphere, this however still poses a
signi�cant work load.

Recall from Section 3.2 that one of the goals of the GRT implementation
was to experiment with the use of di�erent memory types in CUDA to increase
performance. To show the di�erence in performance caused by using di�erent
types of memory in CUDA, we will also include results where texture and shared
memory is not used.

4.2.2 Benchmark Results

Figure 4.10 shows the Benchmark results for the di�erent ray tracer implemen-
tations.

Figure 4.11 shows the speed up achieved by the di�erent GPU implementa-
tions of the ray tracer compared to the CPU implementation.

64

4.2. RAY TRACER BENCHMARKS

4.2.3 Discussion

When looking at the results of the benchmarks in Section 4.2.2, we see that the
GPU implementation which uses texture and shared memory, referred to as the
optimized implementation, is about twice as fast as the GPU implementation
which only uses global and local memory, referred to as the unoptimized im-
plementation. The reason for this is that global and local memory resides in
the relatively slow and high latency DRAM on the graphics card, while shared
memory resides solely in much faster and lower latency on-chip memory, and
the texture memory is cached on-chip thus avoiding some DRAM access.

In theory, the di�erence in latency between the di�erent types of memory
should not have a large impact on performance if there are enough threads
running on the GPU, since the latency of memory access can be hidden. The
number of threads that can run concurrently on the GPU is limited by the use
of registers and shared memory, thus, to investigate the latency hiding ability of
the two GPU-based implementations, we use the CUDA Occupancy Calculator
described in Section 2.7.5.

Using the �ptxas-options=-v compiler option to determent the resources
used by each implementation, we see that the unoptimized implementation uses
39 registers and 42 byte shared memory while the optimized implementation
uses 32 registers and 4132 byte shared memory.

Using the CUDA Occupancy Calculator we see that both implementations
can at maximum run 192 concurrent threads per SM, which is just 25% the
maximum possible. Had the unoptimized version been able to run more threads
concurrently, we expect there would have been less of a gap between the two im-
plementations' performances, as it would have been able to better hide memory
latency. Using a GPU with more register memory and with the same amount
of shared memory, such as a GPU with compute capability 1.2, we might see
that the unoptimized implementation is faster, since this implementation is lim-
ited by register used, while the texture and shared memory implementation is
limited by use of shared memory, as described in Appendix A.

When comparing the GPU implementations to the CPU implementation,
we see that neither of them achieves the theoretical speed up of 518.4

40 = 12.96
we would expect when looking and the theoretical performance of the CPU and
GPU.

However the theoretical peak performance of the GPU is only reached when
performing fused multiply-add operations on the SP and multiply operations
on the SFU simultaneously, as described in Section A.1. We assume this is
not always possible as it would require an application that only made use of
multiply or add operations, performed twice as many multiply operations as
add operations, and a compiler which produces optimal code.

If we instead assume that we can not perform fused operations, the GPU
has a performance of 518.4

3 ×2 = 345.6, thus we would only expect to see a speed
up of 345.6

40 = 8.64 which is quit close to the speed up we actually see for the
implementation using texture and shared memory.

65

5
Comparison

This chapter covers the comparisons of the three GPGPU languages, includ-
ing their architectures, that we found through the analysis in Section 2.6, and
that we used during development of the ray tracer Application and the Boids
Application as described in Chapter 3.

The aim of the comparisons is to determine the properties of the GPGPU
languages and architectures, and formalize our understanding these properties.

The assessments are based on theory found in the analysis of the languages
in Section 2.5, and the experiences obtained through the implementations in
Chapter 3.

We start by de�ning the criteria we will be comparing each languages to,
and afterwards perform the actual comparison using these criteria.

5.1 Criteria for Comparison

Like [10] and [14] we will set up criteria in order to compare GPGPU program-
ming platforms. These criteria will help us ensure that the architectures and
languages are compared on the same basis.

To simplify the comparison, we will merge the architecture and language
comparison unless explicitly stated, e.g. when we talk about CUDA we mean
both the architecture de�ned as CUDA and the CUDA C language, we thus
introduce the term platform. A computing platform is de�ned as hardware and
software framework that allows software to run [74].

[10] focuses on how languages perform with regards to teaching computer
science students programming, and its criteria thus focuses on ease of learning,
these criteria can help us assess and compare the learning curve of languages.

[14] focuses on comparing concurrent languages and lists properties which
can be used to rank languages' functionality, these can likewise be used to
compare GPGPU languages.

The criteria below are inspired by both [10] and [14], and based on the
experience we gained through the development process in Chapter 3.

Each criterion is rated between two extremes and displayed on a �gure, such
as Figure 5.1. The thick line indicates the rating for the particular language.

66

5.1. CRITERIA FOR COMPARISON

Private memory Shared memory

Figure 5.1: Example of criterion rating

5.1.1 Memory

The type- and management of memories in�uences how a program is written, e.g.
a program written in a programming language that supports random memory
allows the program to randomly access memory when necessary. The opposite
situation is where only a small part or a single element of memory is accessible
to each part of the program, e.g. as known from stream processing.

Memory types Shared memory allows easy thread communication and al-
lows threads to work on the same set of data, thereby allowing very �ne grained
parallelism, although this can lead to race conditions. Private memory does not
have the risk of race conditions, because memory is private to each thread, but
the granularity that can be achieved is more coarse unless some form of message
passing is used. Also, as no memory is shared, no locks are required.

Private memory Only private memory is available to threads in the kernel,
thus no data can be shared between threads.
Shared memory Only shared memory is available and all memory is shared
between all threads.

Memory management Automatic memory allocation and deallocation means
that the programmer does not have to de�ne what type of memory is allocated
and how much is allocated and deallocated, which means that the compiler or
runtime component makes these decisions for the programmer. In manual al-
location and deallocation, the programmer has to explicitly de�ne the type of
memory and how much is allocated, and explicitly free up the memory when
done.

Manual The programmer explicitly de�nes the data type, what type of mem-
ory, e.g. private or shared, and how much memory should be allocated. The
programmer also manually frees up memory when done.
Automatic The compiler or runtime is in charge of allocating and freeing mem-
ory, and automatically �gures out the memory type.

5.1.2 Computation

The computational ability of the architecture a�ects how problems can be
solved, e.g. if loops are not allowed these must be unrolled at compile time
or explicitly unrolled by the programmer.

Standard compliant If the platform is not standard compliant, the pro-
grammer needs to be aware of this and take this in to consideration, e.g. the
programmer must know whether the architecture supports the IEEE �oat and

67

Chapter 5. Comparison

double precision �oat standards if the correctness of the application depends on
these.

Not standard compliant No standards are guaranteed.
Fully standard compliant All standards are followed.

Branching Branching allows the control �ow to be altered, when certain con-
ditions are ful�lled or by following pointers. This can make code more readable,
as it can be segmented in functions and loops does not have to be unrolled, too
much branching however might a�ect performance [54, E.2].

No branching No branching is supported.
Branching Full branching is supported.

5.1.3 Learnability

In this context we de�ne learnability as how easy it is to learn the syntax,
semantics and framework of the platform, and how easy it is to program the
platform for a programmer who has no previous experience with GPGPU pro-
gramming. Learnability is important for programmers new to a platform, but
also for correctness, e.g. if the platform has special case rules, the programmer
needs to know this to avoid the problems that may arise, for example when
comparing Strings in java .equals() must be used, where primitives, such as
int, uses == [10].

Abstraction Abstraction needs to be balanced, i.e. if the level is too low, it
may become tedious and error prone, while too high level, might make it hard to
learn and even inhibit the programmer in understanding what is actually going
on on the hardware, thereby hindering optimization [10].

Low-level No details are abstracted away.
High-level All details are abstracted away.

5.1.4 Concurrency

Concurrency is what enables the speed gain on GPUs, and is thus an important
part of GPGPU programming.

Determinism Execution order a�ects the way computations should be han-
dled, that is, if no particular order is ensured the developer needs to setup
barriers if threads depend on data computed by other threads. If the execution
order is guaranteed, this may a�ect the overall speed as latency hiding can not
be achieved to the same degree as described in Section 2.1.

Nondeterministic There is no guaranteed order of execution between threads,
one thread may execute all steps before all other threads.
Deterministic The execution order of threads is known to the programmer.

68

5.1. CRITERIA FOR COMPARISON

Concurrency management Automatic concurrency relieves the program-
mer from the task of de�ning which parts of the source code should be run
concurrently, however the compiler needs to be able to make sound decisions
about this, and may not be able to optimize the code as much as a programmer
could.

Manual concurrency The programmer explicitly programs the concurrent parts
of the program.
Automatic concurrency The compiler automatically makes relevant parts of the
program concurrent.

Fault restriction A fault restricted platform prevents the programmer from
introducing concurrency faults, such as race conditions. Fault restriction in-
creases the reliability of the program, but the programmer may feel inhibited
in his expression power, as the programmer may not explicitly in�uence the
behavior of the program. A very expressive model allows the programmer to
express exactly the intended behavior, but also requires care in not introducing
concurrency faults.

Expressive model The programmer can express exactly how the program should
behave, but needs to take care not to introduce concurrency faults.
Fault restricted This model restricts the developer from introducing concurrency
errors such as deadlocks, this may however restrain the programmer.

5.1.5 Support

Even though a platform might in theory provide programmers with the needed
GPGPU functionality, the platform must also be well supported before pro-
grammers will use it, or can use the platform e�ectively. In the absence of any
implementations of the platform, programmers will have little desire to use the
platform for actual development. The same applies if the implementations, e.g.
the compiler or tool-chain, are no longer being developed and therefore have a
low maturity level.

Cross-platform If a programmer is to develop an application targeting com-
puter architecture(s), the programmer must know how well the platform is sup-
ported on the computer architecture(s). A platform which has several imple-
mentations targeting di�erent computer architectures has greater cross-platform
support than a platform with few implementations, though several implemen-
tations may make it harder to optimize.

One implementation One implementation of the platform exists, thus programs
developed for the platform have little cross-platform support.
Several implementations Several implementations of the platform exist, thus
programs developed for the platform have great cross-platform support.

Maturity Even though implementations of a platform exist for several com-
puter architectures, the implementations might be of low quality or have little
to no documentation. Also, further development of the platform might have

69

Chapter 5. Comparison

ceased and be out of date. The maturity of the platform is therefore an impor-
tant aspect for programmers.

Immature The platform has low level of maturity.
Mature The platform has high level of maturity.

5.2 Ratings

In this section we will rate all three platforms using the criteria found above.

5.2.1 Memory

This section rates BrookGPU, CUDA and OpenCL using the Memory types
and Memory management criteria.

5.2.1.1 BrookGPU

BrookGPU is rated as follows:

Memory types Kernels in BrookGPU can have two types of parameters: in-
put/output streams and constants. Each thread has access to only one position
in a stream, e.g. thread number 11 can access element 11 in the input and
the output streams. Constant memory, however, can be randomly read by all
threads.

Due to the limitations of how memory can be accessed in BrookGPU, we
argue that the memory model is more private than shared as showed on Fig-
ure 5.2.

Private memory Shared memory

Figure 5.2: Brook memory type rating

Memory management Memory management in BrookGPU is very similar
to C's memory management model, except when working on streams. The only
di�erence for the programmer is that stream memory is de�ned using <>, as
described in Section 2.6.1, while constant memory is not. We therefore rate
BrookGPU's memory management somewhat manual, as shown on Figure 5.3,
since one has to explicitly de�ne the size, types, etc of the streams.

Manual Automatic

Figure 5.3: Brook memory management rating

70

5.2. RATINGS

5.2.1.2 CUDA

CUDA is rated as follows:

Memory types CUDA supports several variants of memory: global which
all threads can access, shared which only threads in the same thread block
can access and private which is only access to the individual thread, and two
read only memories. We thus argue that CUDA should be rated more global
than private Figure 5.4, as both types are available, but more global memory is
available compared to private memory.

Private memory Shared memory

Figure 5.4: CUDA memory type rating

Memory management CUDA requires that all memory is explicitly allo-
cated and deallocated, except for registers, local and shared memory. Local
memory is known as private memory in OpenCL, and is used when all registers
are used and for large data structures that can not �t in registers, as described
in Section 2.6.2.2. Local memory can not be manually allocated, freed or de-
�ned when to be used, and is thus automatically managed. Shared memory is
automatically managed, but must be preceded with the __shared__ keyword,
e.g. __shared__ float foo[20];. Because registers and local memory are au-
tomatically managed, while global, texture and constant memory are manually
managed, we rate CUDA more manually managed than automatic managed, as
shown on Figure 5.5.

Manual Automatic

Figure 5.5: CUDA memory management rating

5.2.1.3 OpenCL

OpenCL is rated as follows:

Memory types As with CUDA, OpenCL supports both private and global
memory type. Private is very much like CUDAs local memory, but is manually
managed. Local memory, which is the same as shared memory in CUDA, is local
to all threads in a workgroup. And global, which is the same as global memory
in CUDA. We therefore rate OpenCL as CUDA, as shown on Figure 5.6.

Memory management OpenCL supports is very similar to CUDA, however
private memory needs to explicitly de�ned by preceding the declaration with
__private__, thus we rate OpenCL a bit more manual as shown on Figure 5.7.

71

Chapter 5. Comparison

Private memory Shared memory

Figure 5.6: OpenCL memory type rating

Manual Automatic

Figure 5.7: OpenCL memory management rating

5.2.2 Computations

This section rates BrookGPU, CUDA and OpenCL using the Standard compli-
ant and Branching criteria.

5.2.2.1 BrookGPU

BrookGPU is rated as follows:

Standard compliant The backends of BrookGPU, e.g. DirectX, OpenGL,
CAL, etc. de�ne what standards are used when performing �oating point arith-
metic. Thus, BrookGPU does not guarantee any standards as shown on Fig-
ure 5.8.

Not standard compliant Fully standard compliant

Figure 5.8: Brook standard compliant rating

Branching BrookGPU supports branching only if the underlying backend
supports it, e.g. branching is not supported in pixel shaders prior to 3.0. Brook+
does however support branching, as does newer pixel shader versions, i.e. 3.0+.
In addition, function calls are not supported in BrookGPU, meaning that all
functions must be inlined and recursion is therefore not supported. Based upon
this information, we rate it as between full branching and branching as shown
on Figure 5.9.

5.2.2.2 CUDA

CUDA is rated as follows:

Standard compliant CUDA does not fully adhere to the IEEE standard,
however this is only a problem for �oats, as described in Appendix A. Thus we
rate standard compliance as shown on Figure 5.10.

72

5.2. RATINGS

No branching Branching

Figure 5.9: Brook branching rating

iNot standard compliant Fully standard compliant

Figure 5.10: CUDA standard compliant rating

Branching CUDA supports full branching in loops, if-statements and func-
tion calls, though branching can reduce execution speed, as only one branch can
be followed at a time, as described in Appendix A. Furthermore, recursing is
not supported. Based on the drawback to branching and no recursion, we rate
CUDA has having close to full branching support as shown on Figure 5.11.

No branching Branching

Figure 5.11: CUDA branching rating

5.2.2.3 OpenCL

OpenCL is rated as follows:

Standard compliant OpenCL allows the programmer to specify certain �ags
when compiling an OpenCL kernel, e.g. using fast math thereby sacri�cing pre-
cision. This also allows the programmer to specify whether a standard must
be followed, thereby in�uencing correctness. OpenCL de�nes which standards
should be followed, however not all IEEE 754 is followed to the letter [22, 9.3.9],
thus we rate OpenCL a little less than fully standard compliant as shown on
Figure 5.12.

Branching As with CUDA, OpenCL supports branching except for function
calls, i.e. functions are inlined, and no recursion. We therefore rate OpenCL as
CUDA, this is shown on Figure 5.13.

5.2.3 Learnability

This section rates BrookGPU, CUDA and OpenCL using the Abstraction cri-
teria.

5.2.3.1 BrookGPU

BrookGPU is rated as follows:

73

Chapter 5. Comparison

Not standard compliant Fully standard compliant

Figure 5.12: OpenCL standard compliant rating

No branching Branching

Figure 5.13: OpenCL branching rating

Abstraction BrookGPU comes with C functions that can be used to operate
streams and kernels, e.g. streamRead(s, data); �lls the stream s with the data
contained in data. In addition, arithmetic and vector functions are provided
to kernels. Also, the Brook language is based upon C, with some extensions
that allow programmers to declare streams and kernels, e.g. float s<10,10>;

declares a two dimensional stream of �oats.
Kernels in Brook looks very much like normal functions, as seen in Codeex-

ample 5.1. The angle brackets denote the streams, while the reduce keyword
denotes that this kernel is a reduction kernel, i.e. a kernel that reduces a stream
to a smaller stream or simply a scalar value.

void reduce sum(f loat a<>, reduce f loat r e su l t <>)
2 {

r e s u l t = r e s u l t + a ;
4 }

Codeexample 5.1: A reduction kernel, that reduces the 'a' stream and stores
the result in the 'result' stream

Assuming the programmer knows the C language, we estimate that learning
the Brook language is not very di�cult, since the language extensions are few.

Based on this information we rate the BrookGPU as somewhat high-level,
as shown on Figure 5.14.

Low-level High-level

Figure 5.14: Brook abstraction rating

5.2.3.2 CUDA

CUDA is rated as follows:

Abstraction High-level commands exist, such as cudaMallocPitch and cuMemAllocPitch,
which allocates padded memory, i.e. memory which has been aligned by padding
extra bytes to the data. These two functions abstract away the task of padding
memory in a way appropriate to the hardware executing the program. [54, sec.

74

5.2. RATINGS

5.3.2.1.2][52]
There exist both a high-level and low-level API for allocating texture memory
[54, sec. 3.2.4.3]. However, CUDA does not abstract away things such as how
many threads should be executed or memory allocation for all types of memory,
thus we rate it less high-level than BrookGPU, as seen on Figure 5.15.

Low-level High-level

Figure 5.15: CUDA abstraction rating

5.2.3.3 OpenCL

OpenCL is rated as follows:

Abstraction The OpenCL framework provides access to GPGPU functiona-
lity on Nvidia and ATI GPUs, and among others, by providing a low level C
API that can be used to issue memory reads, writes, start kernels, query devices,
etc.

Any programming language that can interact with C libraries can be used
as host language, e.g. C++, C#, Java, Python, and many more. This means
that programmers do not have to learn a speci�c language to write the host part
of the OpenCL application. The programmers still need to learn the API and
how the framework is used. In addition, OpenCL introduces di�erent memory
types, such as private, local and global memory. Exploiting these memory types
in the right situation is in many cases crucial to achieve good performance, as
is the case with CUDA. Managing these types of memory is an extra burden on
the programmer, and must be learned.

OpenCL has many similarities with CUDA, but the way OpenCL launches
kernels is much more low level compared to that of the CUDA runtime. In
OpenCL, a kernel is launched as shown in Codeexample 5.2, where the
clSetKernelArg function is called for each argument passed to the kernel, and
the clEnqueueNDRangeKernel function is called which executes the kernel. This
is in contrast to the CUDA runtime, which uses a language extension to make
kernel scheduling much cleaner, as previously seen on Codeexample 2.2. The
programming overhead of using this low-level kernel invoking makes the platform
more complex, as more functions needs to be know by the programmer, we thus
rate OpenCL more low-level than CUDA as shown on Figure 5.16.

. . .
2 c lSetKerne lArg (kerne l , 0 , s izeof (cl_mem) ,&gpuVectorA) ;

c lSetKerne lArg (kerne l , 1 , s izeof (cl_mem) ,&gpuVectorB) ;
4 c lSetKerne lArg (kerne l , 2 , s izeof (cl_mem) ,&gpuVectorC) ;

int b lo ckS i z e = 16 ;
6 s i ze_t workSize [2] = {dataSize , dataS i ze } ;

s i ze_t l o c a l S i z e [2] = { b lockS ize , b l o ckS i z e } ;
8 e r r o r = clEnqueueNDRangeKernel (commandQueue , kerne l , 2 ,NULL,

workSize , l o c a l S i z e , 0 ,NULL,NULL) ;
. . .

10 }

75

Chapter 5. Comparison

Codeexample 5.2: Launching a kernel in OpenCL requires many lines of code

Low-level High-level

Figure 5.16: OpenCL abstraction rating

5.2.4 Concurrency

This section rates BrookGPU, CUDA and OpenCL using the Determinism,
Concurrency management and Fault restriction criteria.

5.2.4.1 BrookGPU

BrookGPU is rated as follows:

Determinism Execution order of threads is not known to the programmer.
However, all instances of a kernel will always �nish executing before the next
kernel is started. We thus rate BrookGPU as between deterministic and non-
deterministic as shown on Figure 5.17.

Nondeterministic Deterministic

Figure 5.17: BrookGPU determinism rating

Concurrency management BrookGPU automatically parallelizes the stream
processing on the GPU, without the programmer stating it explicitly and the
parallelization only depends on the sizes of the stream. Thus, BrookGPU pro-
vides almost automatic concurrency as shown on Figure 5.18.

Manual concurrency Automatic concurrency

Figure 5.18: BrookGPU concurrency management rating

Fault restriction Locking and synchronization are not supported in BrookGPU,
because of its stream like behavior not supporting random access to streams,
i.e. two threads cannot access the same position in streams. The only exception
is when writing reduction kernels, this must be explicitly stated by the devel-
oper, i.e. that the kernel is a reduction kernel by using the reduce keyword.

76

5.2. RATINGS

Deadlocks and live-locks can therefore not occur, and we rate BrookGPU as
fault restricted as shown on Figure 5.19, since the expressiveness of BrookGPU
is very limited, i.e. random access between threads, synchronization and locking
mechanisms are not supported.

Fault restricted Expressive model

Figure 5.19: BrookGPU fault restriction rating

5.2.4.2 CUDA

CUDA is rated as follows:

Determinism On CUDA all threads are executed nondeterministically to
hide memory latency, thus we cannot assume at any time that any of the
other threads are done or at a certain point in the code, except when using
_syncthreads() which acts as barrier but only for threads in the same thread
block. Furthermore, all instances of a kernel can be forced to be executed be-
fore running the next kernel. Based on this we rate determinism less than fully
nondeterministic as shown on Figure 5.20.

Nondeterministic Deterministic

Figure 5.20: CUDA determinism rating

Concurrency management CUDA requires that the programmer explicitly
de�nes kernels that should be executed on the device, however, the device takes
charge of spawning new threads and interleaving them to hide memory latency.
The developer only speci�es how many threads should be in a thread block, and
how many thread blocks should be in a block grid. We therefore rate CUDA as
somewhat manual, as shown on Figure 5.21.

Manual concurrency Automatic concurrency

Figure 5.21: CUDA concurrency management

Fault restriction CUDA does not have locks, however, CUDA supports
atomic operations, thus locks can be implemented by the programmer if needed.
CUDA does not make any restriction and the programmer has to handle all risks
in the program, e.g. race conditions on global and shared memory. We therefore
rate CUDA as somewhat expressive, as shown on Figure 5.22.

77

Chapter 5. Comparison

Fault restricted Expressive model

Figure 5.22: CUDA fault restriction rating

5.2.4.3 OpenCL

OpenCL is rated as follows:

Determinism As with CUDA and BrookGPU, only the execution order of
kernels can be deterministic. Thus, the execution order of threads is very non-
deterministic, though having barriers. Execution order of kernels does not have
to be, we thus rate OpenCL as CUDA. Figure 5.23.

Nondeterministic Deterministic

Figure 5.23: OpenCL determinism rating

Concurrency management As with CUDA, OpenCL requires that the pro-
grammer de�nes the number of work-items (threads) that are to be executed on
the device. However, OpenCL does not require that the programmer de�nes the
number of work-groups (thread blocks), and can optionally leave this decision to
the underlying implementation, e.g. an Nvidia OpenCL implementation might
use a work-group size of 8x8 work-items while another implementation might
use a size of 2x2. This means that OpenCL can be regarded as having more
automatic concurrency compared to CUDA and we thus rate OpenCL as shown
on Figure 5.24.

Manual concurrency Automatic concurrency

Figure 5.24: OpenCL determinism rating

Fault restriction OpenCL allows threads to access the same data in global
memory, thus race conditions can occur. These must be explicitly taken care
of, e.g. by making sure that no race conditions can occur by using the Atomics
extension provided by newer version of OpenCL, or by making avoiding this
behavior. We thus rate OpenCL the same as CUDA as shown on Figure 5.25.

5.2.5 Support

This section rates BrookGPU, CUDA and OpenCL using the Cross-platform
and Maturity criteria.

78

5.2. RATINGS

Fault restricted Expressive model

Figure 5.25: OpenCL fault restriction rating

5.2.5.1 BrookGPU

BrookGPU is rated as follows:

Cross-platform BrookGPU has several implementations, some using DirectX
9, some using OpenGL and some even using a proprietary instruction format
such as CAL. This makes BrookGPU very cross-platform as shown on Fig-
ure 5.26.

One implementation Several implementations

Figure 5.26: OpenCL cross-platform rating

Maturity BrookGPU has more or less been abandoned in favor of OpenCL.
The original implementation, dubbed BrookGPU, is only available as source
code and has to be compiled manually for programmers to use. Brook+ from
ATI is however still available, but still only in an beta release, and newer versions
have not been released since Marts 2009 [3]. We therefore rate BrookGPU as
very immature as shown on Figure 5.27, due to BrookGPU being abandoned.

Immature Mature

Figure 5.27: BrookGPU maturity rating

5.2.5.2 CUDA

CUDA is rated as follows:

Cross-platform CUDA has implemented Standard Development Kit (SDK)s
for Windows, Linux and Mac, however, CUDA was created and is maintained by
Nvidia, and only implemented on Nvidia graphics cards. We thus rate CUDA
as only a little cross-platform as shown on Figure 5.28.

Maturity CUDA has been public available since 2007, and several updates
and the highest compute capability is currently 2.1. CUDA comes with a range
of tools, such as pro�lers and debuggers. We thus rate CUDA very mature, as
shown on Figure 5.29.

79

Chapter 5. Comparison

One implementation Several implementations

Figure 5.28: CUDA cross-platform rating

Immature Mature

Figure 5.29: CUDA maturity rating

5.2.5.3 OpenCL

OpenCL is rated as follows:

Cross-platform OpenCL is an open speci�cation, and implementations cur-
rently exist both for Nvidia, AMD GPUs and CPUs, making OpenCL applica-
tions very cross-platform. However, OpenCL requires architecture support for
complex computations, such as branching, making OpenCL unfeasible for older
generation of GPUs. We thus rate OpenCL as being less cross-platform than
BrookGPU, but more so than CUDA, as shown on Figure 5.30.

One implementation Several implementations

Figure 5.30: OpenCL cross-platform rating

Maturity We have used Nvidia's OpenCL implementation for CUDA enabled
GPUs, while not as error prone as BrookGPU, we still �nd the CUDA imple-
mentation more stable. This is however getting much better, and we believe
that many of the quirks that haunt the CUDA OpenCL implementation will
dissipate over time. Furthermore, the �rst CUDA SDK was released early 2007
and the �nal speci�cation of OpenCL, not implementation, was released late
2008. Based on this information we rate OpenCL less mature than CUDA, as
shown on Figure 5.31.

80

5.3. SUMMARY

Immature Mature

Figure 5.31: OpenCL maturity rating

5.3 Summary

To gain an overview of the platforms ratings, this section will brie�y cover all
the platform's ratings and compare them to each other. Lastly, we will end this
chapter with an end rating of BrookGPU, CUDA and OpenCL.

Memory types CUDA and OpenCL supports private and shared memory
types, and allow random access to these. BrookGPU is much more limited, and
is thus much more private memory oriented. This is shown on Figure 5.32.

Private memory Shared memory

CUDA

OpenCL

BrookGPU

Figure 5.32: Comparison of CUDA, OpenCL and Brook memory type rating

Memory management All three platforms are rated as having some degree
of manual memory management. BrookGPU is much simpler with regards to
memory allocation and is thus rated less manual than OpenCL and CUDA.
OpenCL allows programmers to specify private memory, while CUDA does not,
thus OpenCL is rated more manual memory management than CUDA. This is
shown on Figure 5.33.

Manual Automatic

CUDAOpenCL BrookGPU

Figure 5.33: Comparison of CUDA, OpenCL and Brook memory management
rating

Standard compliant None of the platforms are rated as being fully standard
compliant with regards to IEEE. BrookGPU is much less standard compliant
than OpenCL and CUDA, due to BrookGPU not de�ning which standards are
followed, or not. This is shown on Figure 5.34.

Branching OpenCL and CUDA support the same level of branching, while
BrookGPU is more limited in this regard. This is shown on Figure 5.35.

81

Chapter 5. Comparison

Not standard compliant Fully standard compliant

CUDA

OpenCL

BrookGPU

Figure 5.34: Comparison of CUDA, OpenCL and Brook standard compliant
rating

No branching Branching

CUDA

OpenCL

BrookGPU

Figure 5.35: Comparison of CUDA, OpenCL and Brook branching rating

Abstraction BrookGPU is rated as being the platform having the highest
abstraction, due to much of the low level functionality being abstracted away.
OpenCL is more low level, since OpenCL's API exposes functions that are
abstracted away in both BrookGPU and CUDA, e.g. scheduling of a kernel
is done using several low level functions. CUDA is rated as being in-between
the two, since CUDA provides a language extension to the C language thereby
writing kernels easier. This is shown on Figure 5.36.

Low-level High-level

OpenCL

CUDA

BrookGPU

Figure 5.36: Comparison of CUDA, OpenCL and Brook abstraction rating

Determinism Due to BrookGPU being a simpler platform and BrookGPU
not allowing for much random access, we rate BrookGPU as being balanced
between nondeterministic and deterministic. CUDA and OpenCL are both rated
as being very nondeterministic. This is shown on Figure 5.37.

Concurrency management BrookGPU leans more towards automatic con-
currency than OpenCL and CUDA, due to BrookGPU being more abstract in
nature. CUDA is much more manual, because the programmer is required to
specify the number of threads and thread blocks used by the CUDA application.
OpenCL is also manual, but leans more to the middle compared to CUDA, be-
cause OpenCL does not require that the programmer speci�es the number of
work-groups. This is shown on Figure 5.38.

Fault restriction Due to BrookGPU being very simplistic in expression power,
fewer concurrency faults can be generated by the programmer compared to

82

5.3. SUMMARY

Nondeterministic Deterministic

OpenCL
CUDA

BrookGPU

Figure 5.37: Comparison of CUDA, OpenCL and Brook determinism rating

Manual concurrency Automatic concurrency

OpenCLCUDA BrookGPU

Figure 5.38: Comparison of CUDA, OpenCL and Brook standard compliant
rating

OpenCL and CUDA, which support random access and synchronization mech-
anisms. CUDA and OpenCL are therefore much more expressive in nature,
compared to BrookGPU. This is shown on Figure 5.39.

Fault restricted Expressive model

OpenCL

CUDABrookGPU

Figure 5.39: Comparison of CUDA, OpenCL and Brook fault restriction rating

Cross-platform BrookGPU has support for several types of backends, e.g.
OpenGL, DirectX and CAL. This makes BrookGPU very cross-platform with
regards to which GPUs can be used for GPGPU. CUDA on the other hand
is only implemented on Nvidia graphics cards, thus CUDA is much less cross-
platform. OpenCL is also very much cross-platform, due to the speci�cation
being open. OpenCL has higher requirements than BrookGPU, as does CUDA,
making OpenCL unsuitable for GPUs that do not support random access to
memory, such as scatter operations. This is shown on Figure 5.40.

Maturity CUDA is a very mature platform and is currently in use in many
di�erent applications. BrookGPU has been abandoned in favor of OpenCL, and
not much support is available. OpenCL is gaining momentum in the industry,
is supported by many di�erent vendors and applications are emerging with
OpenCL support. The Nvidia implementation of OpenCL is however not as
mature as their CUDA implementation. This is shown on Figure 5.41.

BrookGPU vs OpenCL vs CUDA

BrookGPU Through the comparison, we see that the stream based model
BrookGPU uses is simple compared to the two other platforms, e.g. BrookGPU

83

Chapter 5. Comparison

One implementation Several implementations

OpenCL
CUDA BrookGPU

Figure 5.40: Comparison of CUDA, OpenCL and Brook cross-platform rating

Immature Mature

OpenCL CUDABrookGPU

Figure 5.41: Comparison of CUDA, OpenCL and Brook maturity rating

mainly utilizes private memory and the stream model restricts the concurrent
model in that only one thread can be run for each element in the stream.

OpenCL and CUDA OpenCL are CUDA very close with regard to the
criteria we rate. On our scale, ranging from 0 to 10, they are rated with one
in distance or at the same level, except for cross-platform, which is because
OpenCL is an open standard and CUDA is a Nvidia-only platform.

84

6
Epilogue

This chapter concludes upon the project as a whole. First we will cover the
conclusion by answering the questions that we put forth in the problem formu-
lation. We will then give a discussion of the results that we achieved throughout
the project. Lastly we will take a step back and look at where GPGPU pro-
gramming is heading, and suggest projects for our next semester.

6.1 Conclusion

The aim of this project was to learn the art of GPGPU and the theories that
relate to this subject. The primary motivation for this project was our 8th

semester project, where we developed a ray tracer for the x86 and ARM CPUs.
This ray tracer, however, turned out to run quit slowly on the CPU, and we spec-
ulated at that time that it might be possible to achieve a substantial speed up
by using the GPU to do most of the computations. The reason that we thought
we could achieve a speed up, was that GPUs have a much higher theoretical
performance than equivalent generation of CPUs, especially when looking at
performance per dollar.

In this project, we �rst performed an analysis of the di�erence between
CPUs and GPUs, made an in depth analysis of G80 GPU architecture, and
which problems are well suited for GPU execution. Furthermore we have looked
at BrookGPU, OpenCL and CUDA and which tools are available when doing
GPGPU programming.

In order to gain experience with GPGPU programming, we implemented
two applications: Boids in Brook+ and OpenCL, and a ray tracer in CUDA.
Both of these applications were benchmarked against CPU implementations, to
determine if any speed up was gained. Lastly, we compared the languages to
�nd the properties of the languages.

Recall that we asked several questions in Section 1.2, these will now be
answered. Afterwards, we will talk about the practical experience that we have
gained through this project.

85

Chapter 6. Epilogue

6.1.1 Problem Formulation

As described in Section 1.2 we asked several questions regarding GPGPU pro-
gramming and set forth to answer these by doing a broad analysis of GPGPU
related theories and practices. In this section, we will answer the questions that
we asked in Section 1.2

How does the hardware architecture of a GPU look like, compared
to a CPU? A GPU di�erentiate from the common x86 CPU in several ways:
a) A GPU is more focused on throughput while CPUs are more focused on
latency. b) A GPU has many relatively weak and simple cores while the CPU
has less but much more complex and powerful cores. c) A GPU features several
types of memory, such as private, shared, global and texture memory. The CPU
typically only has main memory with L1 and L2 caches sitting in front. d) A
GPU rely on latency hiding by having several thousands of threads ready to be
executed whenever a high latency instruction is encountered. The CPU uses
many transistors on latency reducing features, such as branch prediction and
cache memory, which are traded away for more FLOPS on the GPU. e) A GPU
often make use of SIMD to �t more ALUs on a die e.g. each SM on the G80
can be viewed as a 32 way SIMD processor. f) CPU source code is typically
compiled to the native instruction set of the CPU, e.g. x86 instructions. This
is seldom the case for GPUs, instead the kernels are compiled to intermediate
assembly code, such as PTX, and just in time compiled at runtime.

What are the characteristics of well suited problems for GPU exe-
cution? GPUs are primarily used to render 3D graphics. The problems that
can be solved on the GPU therefore have to exhibit the same properties as 3D
graphics problems, to be best suited for GPU execution. Some of these proper-
ties are: a) 3D rendering is a highly parallel problem, e.g. execution of shaders
can be done in parallel. b) Memory access is very spatial, this is for example
seen when accessing texture where the texture cache is optimized for spatial
locality. c) Throughput is more important than latency, i.e. a problem that
must be solved with low latency demands is not well suited for GPU execution.
d) Memory latency is less important, but high throughput is important. The
memory bandwidth of GPUs are much higher than their CPU counterparts, but
so is the memory latency.

These properties were de�ned in Section 2.4, along with an analysis of the
performance between an Nvidia GPU and an Intel CPU. The GPU was found
to be 2.5 times faster on average, with only a small number of problems that
exhibited better performance on the CPU. Even though the theoretical perfor-
mance of the CPU was 102.4 gigaFLOPS and the theoretical performance of
the GPU was 933.1 gigaFLOPS.

Which GPGPU APIs/Languages exist, and how does one use them?
We have analyzed and compared three general purpose platforms: CUDA,
OpenCL and BrookGPU. We see that BrookGPU has a simple memory and
concurrency model, but is also very restricted, where CUDA and OpenCL are
much more advanced and expressive.

The analysis in Section 2.5 describes the features in each platform and shows
examples of the code. In Chapter 5 we setup criteria for comparison of the

86

6.1. CONCLUSION

three platforms and compared them. We found that OpenCL and CUDA are
very similar with regards to their memory model, abstraction and concurrency
management. CUDA is however a more mature platform, while OpenCL is
much more cross-platform capable.

Which tools currently exists to help developers with GPGU program-
ming? Throughout Section 2.7, we analyzed several tools which can help with
GPGPU programming.

We found debuggers, such as CUDA-GDB and gDEBugger CL, which allow
debugging on kernel level in CUDA and OpenCL applications. Unfortunately,
the Tesla C870 does not support debuggers because of its low compute capability
of 1.0, but new generations of graphics cards with higher compute capability do
support debugging.

Pro�ling tools were also found which can help �nding bottlenecks in pro-
grams, by analyzing the resource usage of kernels and their memory access
patterns. We were however unable to �nd any testing tools, i.e. unit testing and
integration testing tools.

We were also unable of �nd any tools to help in the development of BrookGPU
applications.

Is it possible to utilize multiple GPUs in parallel for GPGPU pur-
poses? Using techniques such as SLI and CrossFire While analyzing
CUDA and OpenCL in Section 2.6.2 and Section 2.6.3, we discovered that it is
indeed possible to utilize multiple graphics cards for GPGPU purposes. How-
ever, automatic utilizing of multiple GPUs is currently not possible in CUDA
or OpenCL, one has to explicitly write the application such that it can utilize
multiple GPUs. This requires more work by the programmer, especially with
regards to CUDA, which requires each device having its own CPU thread.

Implementations To gain experience with GPGPU programming we have
implemented two applications: Boids and ray tracer. The Boids application
was done in OpenCL and Brook+ and focused on data structure optimizations.
Di�erent versions of the Boids application were made, one based on the op-
timizations proposed in [64] which does not follow the Boids model entirely,
while another was made which does. And �nally, two implementations were
made using a combination of the optimizations to allow for a comparison of
performance.

The ray tracer was done in CUDA and focused on memory optimizations.
Two version of the ray tracer were made and benchmarked, one which was
optimized using texture and shared memory and one which only used global
and local memory.

We also implemented a CPU C++ Boids application, and improved the ray
tracer from our 8th semester project with multi-threading support.

6.1.2 Practical experience

We have gained practical experience due to our choice of implementing a ray
tracer and Boids application, which we might not have gained if we had chosen
only to perform an analysis of the GPGPU theories and practices.

87

Chapter 6. Epilogue

We learned that a Nvidia Graphics Card is required to provide display output
when using the Nvidia C870 Tesla card.

We gained practical experience in developing applications in CUDA C, OpenCL
and Brook+, and by benchmarking our applications we gained experience in
which optimizations work well on GPUs and which do not.

We have shown that some applications are not well suited for execution
on GPUs. This is shown by the complex Boids applications which in most
cases achieve worse performance on the GPU than the CPU. The speed ups
range from 0.2 to 1.3 when comparing the OpenCL implementation to the CPU
implementation.

On the other had, we have shown that some application can achieve a sub-
stantial speed up on the GPU. The simple Boids application in the OpenCL
implementation achieves a speed up of 4, while the Brook+ implementation
achieves a speed up of around 30, in comparison to the CPU implementation.

We were also able to con�rm that a ray tracer can be implemented on a GPU
with a signi�cant speed up compared to the CPU. In the optimized version, we
saw a speed up of 8 which is close to the theoretical maximum of the GPU,
when not using multiply-add. The unoptimized version achieved a speed up
of 4, thus also showing that using on chip memory on the GPU can lead to a
substantial increase in performance.

6.2 Discussion

In this section we will discuss the implementation veri�cation, i.e. to which
degree it was done, the benchmark results and give reason for abnormalities.
Lastly we will consider the chosen references and for their validity or missing
thereof.

6.2.1 Implementation Veri�cation

We have implemented several algorithms on several platforms: Boids on OpenCL,
Brook+ and in C++, a ray tracer in CUDA and used a C++ version from our
previous project, which was con�gured to generate the same result. However
we do not formally concern ourself with verifying the correctness of these imple-
mentations. This poses a uncertainty for the results, as a wrongly implemented
algorithm may perform better but yield the wrong result.

To increase our con�dence in the implementations correctness we compared
their output, e.g. by taking screenshots after k iterations and compare how
closely the images resemble, in all cases we found these comparisons had su�-
cient resemblance, e.g. in the Boids applications the actors moved in the same
patterns and exhibited the separation, alignment and cohesion properties. Fur-
thermore we set up function requirements which should be followed when im-
plementing the algorithm and benchmark setups which de�ned how the con�gu-
ration of the algorithm should be, when running the implementation, such that
this would be persistent across the implementations, allowing to argue for the
validity of our results.

The benchmarks are carried out on both CPU implementations and GPU
implementations, to evaluate the e�ectiveness of writing GPU-programs. How-
ever, the fairness of this comparison can be argued to be little, as we chose

88

6.2. DISCUSSION

problems that were well suited for GPU execution, i.e. adhere to the properties
described in Section 2.4. Furthermore we used a lot of time optimizing the ray
tracer for texture and shared memory, though this time usage can be explained
by us being inexperienced in the platforms and thus requiring more develop-
ment time. The CPU implementation of Boids was a backport of the OpenCL
implementation, and thus not optimized in any way, apart from being partly
parallelize. This may explain that some of the implementations gave a relatively
large speed up on the GPU.

6.2.2 Benchmarks

As discussed in Chapter 4, we do not see the theoretical maximum speed up in
all benchmarks. In some cases, the GPU implementation is even slower than
the CPU implementation, and in other cases, we see several factors of speed up.

Boids Benchmark With regards to the Boids Section 4.1, we see that a per-
formance increase has been achieved on both applications. The simple version
of the Boids application achieved a speed up of 30, compared to the CPU, when
using the Brook+ implementation. This might be due to the Brook+ version
automatically uses texture memory. Also, the Brook+ implementation was ex-
ecuted on an ATI Radeon 2900XT card, which has higher memory bandwidth,
thus improving the performance of the application. The speed-up of 30 is actu-
ally higher than the theoretical maximum. This might be due to the ATI Radeon
2900XT having higher memory bandwidth and that the CPU implementation
is not be optimized, due to it being a back-port of the OpenCL version.

The OpenCL version achieved much less of a speed up on the Tesla C870,
which might be due to the absence of any memory optimizations, due to unco-
alesced memory access or because the occupancy rate of the kernels are too low
to e�ectively carry out latency hiding.

With regards to the complex version of Boids, the GPU version generally
achieve worse performance then the CPU, which might be due to private memory
in Nvidia's OpenCL implementation is o�-chip and that the pruned neighbor
search algorithm has many uncoalesced memory accesses.

The Boids benchmarks are done on two di�erent cards, as the Tesla card did
not support Brook+. The Nvidia Tesla C870 for the OpenCL implementation
and a ATI Radeon 2900XT for the Boids+ implementation. The two cards
have di�erent architecture, which make the results di�cult to compare, e.g.
the 2900XT has about 100 GB/sec where the C870 only has about 76 GB/s
bandwidth. Instead we compare the theoretic achievable speed-up with the
speed-up actually found in the implementations. This however relies on FLOPS
and thus does not account for memory bandwidth.

Ray Tracer With regards to the ray tracer application, we see a speedup in
both the unoptimized and optimized implementations. The optimized version
is roughly twice as fast as the unoptimized version. this is due to the use
of the texture memory cache, which decrease the bandwidth demands of the
application, and the use of shared memory for the intersections, which is faster
on-chip memory compared to the use of local memory.

89

Chapter 6. Epilogue

6.2.3 Be Scienti�c

Recall from Section 1.2 that we must be scienti�c in this project, which means
that our choices must be reasonable and that our sources must be scienti�c. We
have achieved this by mainly relying on peer-reviewed publications and sources
from companies, and organizations, which are the creator of the product, e.g.
Nvidia is often used as source for sections concerning CUDA and for OpenCL the
�Khronos OpenCL Working Group� is frequently cited, as they are the creators
of the OpenCL standard. We argue that these sources are reliable as they either
are peer-reviewed and thus checked for errors or is the creator of the product in
question and therefore know how it is implemented and functions. A company
may bene�t from overstating a product's abilities, therefore we are sceptical
when concerned with praises of products given by the company producing the
product. Furthermore we mainly use documents describing with hard facts,
such as documentation of an API set. Sources are mainly used when reasoning
about a choice, e.g. the choice of using texture and shared memory in the ray
tracer was due to Nvidia stating that bandwidth and latency could be improved
by using these.

We also have a few other sources, such as Wikipedia and PCWorld. Wikipedia
has sparked a lot of dispute as some argue that because it is editable by all,
it may lead to incorrect articles and allow us to change the article such that it
suits the point we are trying to state. Others argue that it is, to some degree,
trustworthy as it is peer-reviewed, although not necessarily in a scienti�c com-
munity. This has lead to a professor banning Wikipedia and Google as research
sources for her students [73].
Some cases removes the possibility for using other sources, e.g. in Section 2.6.2.4
we cite the Wikipedia page about GeForce 8 ([77]), as we were unable to �nd
the release date of the Nvidia 8800 GTS in any o�cial Nvidia documents or
scienti�c publications. The date is used to reason that CUDA has evolved a
lot since the �rst release. We only use these sources like Wikipedia when the
correctness is of less importance for the statement we are trying to give, e.g.
CUDA has evolved a lot since the �rst release, even though Nvidia 8800 GTS
was released years earlier than the cite stated.
We also cite forum posts, however these forum posts were made by a researcher
at Nvidia and contained information about a Nvidia tool and dynamic memory
allocation on their GPUs. We therefore argue that this information is trustwor-
thy.

6.2.4 Our Thoughts

At the beginning of this project we had no prior experience with GPGPU, except
a little experience with graphics programing in OpenGL and DirectX. Coming
into the project, we had expectations that we could achieve very high speed ups,
since we had seen publications claiming 100X - 1000X speed ups. However, as
we progressed with the project we found that such claims were unrealistic, since
they were often due to the use of unoptimized CPU implementations.

At the beginning of the project, we also thought that GPGPU would require
much more graphics like programing than is does. It turns out that GPGPU is
more high level then we expected, though it still requires the use of C, which
might be scary for programmers used to only doing programming in more high

90

6.3. FUTURE TRENDS

level languages, such as Java, Haskel and C#. We were also pleasantly surprised
by the amount of tools available to help programmers, even though we would
have liked to see more help in optimizing the code and testing tools.

Even though the speedups of 100X - 1000X have to some extend been dis-
missed, we still see a substantial speed up in some applications. Therefore, we
still think that GPGPU is bene�cial, especially when concerning performance
vs cost.

6.3 Future Trends

This section looks at where the future trends of GPGPU programming are
heading, by stating four trends that we have witnessed while doing this project,
and citing sources which support these trends.

6.3.1 GPGPU Programming is Becoming More Powerful

Looking at the Tesla C870 GPU that we have access to, we see that it is limited
with regards to which programming languages are supported, the abstraction
these languages provide, and their expressive power. Looking beyond the Tesla
we see that the architectures of new GPUs are getting more advanced, with
increasing performance especially in the area of coalesced memory access, and
new instructions that provides more expressive power to the programmer, e.g.
programmers are able to utilize atomic operations on devices with compute
capability 1.1.

Fermi Architecture [53]
Looking at the state of the art Nvidia Fermi architecture, used in graphics

cards such as the high-end Tesla C2050 and mid-end GT420, we see that many
new performance increasing features have been added, such as L1 and L2 cache
support, support for concurrent kernels, two warp schedulers, etc.

In addition, the Fermi architecture supports PTX 2.0 which introduces sev-
eral new features not found in PTX version 1.x, which is used in 1.x compute
capable devices. New features include full IEEE 32-bit �oating point precision,
64-bit addressing, better pointer support, function pointers, virtual functions
as seen in C++, exception support, new/delete operators for dynamic memory
management.

All these features allow more expressiveness compared to older generations
of GPUs, and allow languages with increasing abstraction. Nvidia has already
utilized many of these features in their new CUDA SDK version 3.2, where they
added support for C++ but with a few limitations, e.g. virtual functions are
not yet supported but will be added in the near future.

6.3.2 GPGPU Programming is Becoming Easier

The increasing interest of GPGPU programming has spawned numerous publi-
cations on this subject. Many of the publications deal with the question of how
GPGPU programming can be done easier.

One such publication [33] from November 2010 proposes an OpenMP based
programming interface called OpenMPC. This interface provides a high level

91

Chapter 6. Epilogue

abstraction from the CUDA programming model. OpenMPC automatically
optimizes the code and performs auto-tuning, i.e. �gures out the thread block
sizes, to increase performance. Programs written using this abstraction achieve
88% of the performance of their hand written counterparts, thus there is room
for improvement.

Another publication [37] from September 2010 describes a language exten-
sion, called Nikola, which supports computations on arrays and is embedded
into the Haskell language. A compiler backend is implemented targeting CUDA
code, thus allowing array computations on the GPU. Nikola automatically mar-
shals data to and from the GPU, automatically creates and manages memory,
automatic loop parallelization, and more. Their benchmarks show that the
performance overhead of Nikola is negligible, when using static compiling, and
negligible on large data sets, when using runtime compilation.

6.3.3 GPU and CPUs are merging

Most of the GPGPU publications that we have seen, utilize some discrete graph-
ics card, i.e. a standalone graphics card that is installed in the computer. The
reason for this is that the GPUs on discrete graphics cards are much more power-
ful compared to their integrated counterparts, which have much less processing
power and video memory. Intel and AMD are however in the process of merging
the GPU with the CPU, by installing a GPU directly into the architecture of
the CPU, thus increasing the processing power of the CPU.

The i5-540m CPU from Intel integrates a 45nm GPU on its chip, thereby
allowing GPU accelerated video, such as full HD movie playback, and acceler-
ated 3D graphics, such as in computer games and CAD applications. Albeit,
the GPU is much weaker than some of the discrete solutions available, it is
however much more powerful than many of the GPUs that are integrated on
the chipset. Also, moving the GPU from the chipset, and discrete solution, to
the CPU, allows for more e�cient performance which leads to better battery
life in notebooks, and physical space, which leads to thinner notebooks. Lastly,
moving the GPU closer to the CPU, and thus closer to main memory, allows for
much faster memory transfers between host and GPU, thus allowing faster syn-
chronization between the CPU and GPU. Thus is very useful for some GPGPU
applications, e.g. applications that issue many memory transfers, and kernel
invocations between host and device. [40]

AMD have also come up with a CPU chip with integrated GPU, called
AMD Fusion. AMD Fusion is an Accelerated Processing Unit (APU), which
integrate the general purpose computation design of the CPU, with the more
vector processing design of the GPU into one package. As with the i5, moving
the GPU closer to the CPU and main memory leads to lower latency to and
from memory. AMD provides OpenCL support for their APU, meaning that
OpenCL applications can make use of this new architecture from the start. [5]

6.3.4 GPGPU is Gaining Momentum

It appears that GPGPU acceleration is a powerful tool for current and future
applications. This is evident looking at how companies such as Intel and AMD
are pushing to include GPU like components in their CPUs.

92

6.4. FUTURE DEVELOPMENT

Most applications however do not utilize the potential that lies in GPU ac-
celerating their computations. [5, 7] gives some examples of companies that
are pushing GPU support onto their products. Adobe have implemented GPU
support when decoding video streams in their Flash Player 10.1. This allows
more e�cient video playback on GPU enabled systems as the CPU power con-
sumption is reduced, thereby extending battery life.

[5, 7] also mentions a recently started up company at Silicon Valley, whom
are working on a software solution that can clean up video �les using GPUs,
thereby compensate for noise, pixilation, graininess, poor focus, and more.

A publication [25] from October 2010 presents a framework called Packet-
Shader, which can utilize the GPU and CPU to perform high throughput packet
switching in networks. Their results show that they achieve 28 Gbps of through-
put using two consumer GPU and a Quad core CPU, compared to 6 Gbps using
the CPU alone. Also, the packet generator that they use can maximum generate
28 Gbps worth of packets, meaning that their benchmark results are capped at
28 Gbps and that their solution might support higher throughput than can be
measured using their equipment.

Amazon announced in November that they now provide clusters of GPUs
in their compute cloud. This allows organizations to o�oad their compute
intensive operations to the Amazon cloud. They provide a subscription based
services and on-demand service, i.e. pay by the hour with no obligations. [21]

6.3.5 Summary

We have seen that GPGPU programming is becoming a more powerful tool with
the advent of new GPU architectures and support for more languages, such as
C++. Also, even though GPGPU programming is becoming more powerful,
we have also witnessed that GPGPU programming is becoming easier since
new architectures have more memory, and much more forgiving with regard to
uncoalesced memory access, and new abstractions have been introduced thus
making GPGPU programming higher level. Also, we have seen the trend that
GPUs and CPUs are merging into a APU, with decreased latency between
the GPU and the CPU components compared to current technologies, and we
believe that at some point this will be the norm. Big players such as Amazon
now have GPU powered compute clusters that can be rented by developers for
a fee, and several papers have been published on the context of GPGPU, we
therefore argue that GPGPU is currently gaining momentum and not only in
the scienti�c community.

6.4 Future Development

In this section we will end this project by talking about some of the ideas that
we have for a 10th semester project.

Automatic GPU Parallelization Many programmers today are pro�cient
in a high level programming language, such as C#, with garbage collection
support and advanced exception handling. We argue that it is hard for these
programmers to utilize the power of the GPU, since they are required to write

93

Chapter 6. Epilogue

and invoke kernels on the GPU, while managing the di�erent memory types
explicitly.

CUDA and OpenCL bindings exist for C#, but these bindings provide a
very thin abstraction on-top of CUDA, i.e. programmers still have to think
in kernels and memory types. Instead, we propose an extension to C# that
automatically parallelizes parts of the C# code, and moves these parts to the
GPU. Thus, the programmer just has to annotate which part of the code they
wish to move to the GPU, the low level details such as allocating and copying
memory, selecting the best thread-block size, writing the kernel, invoking the
kernel, etc. are handled by the underlying system.

Testing Support When performing our analysis of GPGPU tools we did
not come across any tools that relate to unit testing and integration testing.
Testing is an important part of software development, especially when dealing
with critical systems, and this is currently lacking for GPGPU applications on
the device side, i.e. unit testing of kernels is not possible.

We propose a tool that can perform unit and integration testing of kernels,
and that can automatically create stubs and mock objects when required. Also,
this tool would have some form of IDE support, e.g. Visual Studio 2010 using
parallel Nsight.

Performance Analysis Tool CUDA and OpenCL both have pro�lers avail-
able that can be used to measure the performance of kernels. The pro�ler is
however quite limited with regards to giving tips on how to improve the per-
formance of a given kernel. Currently, programmers can run the pro�ler on an
OpenCL or CUDA program and get information on how well the program used
the resources of the GPU, but not exactly where the resources were used or
which bottlenecks are present.

We propose a tool that given an OpenCL or CUDA kernel, is able to measure
exactly where the bottlenecks of the code are and give tips on how to improve
execution performance. We claim such a tool will help programmers, such as
us, write more e�cient kernels.

94

Bibliography

[1] Yannick Allusse, Patrick Horain, Ankit Agarwal, and Cindula Saipriyadar-
shan. Gpucv: A gpu-accelerated framework for image processing and com-
puter vision. In ISVC '08: Proceedings of the 4th International Symposium
on Advances in Visual Computing, Part II, pages 430�439, Berlin, Heidel-
berg, 2008. Springer-Verlag.

[2] AMD. ATI Stream SDK v1.4-beta System Requirements.
http://developer.amd.com/archive/gpu/ATIStreamSDKv1.4Beta/

pages/ATIStreamSystemRequirements.aspx#cards. Last seen: 22th of
December 2010.

[3] AMD. Ati stream software development kit (sdk) v1.4-beta.
http://developer.amd.com/archive/gpu/ATIStreamSDKv1.4Beta/

Pages/default.aspx#five. Last seen online 14th of December 2010.

[4] AMD. User Guide - ATI Stream Computing. AMD, april 2009.

[5] AMD. Amd fusion family of apus: Enabling a superior,immersive
pc experience. http://sites.amd.com/us/Documents/48423B_fusion_

whitepaper_WEB.pdf, 2010. [Online; accessed 16-December-2010].

[6] Dana H. Ballard and Christopher M. Brown. Computer Vision. Prentice
Hall, 1982.

[7] Daniel J. Bernstein, Tien-Ren Chen, Chen-Mou Cheng, Tanja Lange, and
Bo-Yin Yang. Ecm on graphics cards. In EUROCRYPT '09: Proceedings
of the 28th Annual International Conference on Advances in Cryptology,
pages 483�501, Berlin, Heidelberg, 2009. Springer-Verlag.

[8] BrookGPU. BrookGPU: Getting Started. http://graphics.stanford.

edu/projects/brookgpu/start.html. Last seen: 27th September 2010.

[9] BrookGPU. BrookGPU System Architecture. http://graphics.

stanford.edu/projects/brookgpu/arch.html. Last seen: 26th Septem-
ber 2010.

95

http://developer.amd.com/archive/gpu/ATIStreamSDKv1.4Beta/pages/ATIStreamSystemRequirements.aspx#cards
http://developer.amd.com/archive/gpu/ATIStreamSDKv1.4Beta/pages/ATIStreamSystemRequirements.aspx#cards
http://developer.amd.com/archive/gpu/ATIStreamSDKv1.4Beta/Pages/default.aspx#five
http://developer.amd.com/archive/gpu/ATIStreamSDKv1.4Beta/Pages/default.aspx#five
http://sites.amd.com/us/Documents/48423B_fusion_whitepaper_WEB.pdf
http://sites.amd.com/us/Documents/48423B_fusion_whitepaper_WEB.pdf
http://graphics.stanford.edu/projects/brookgpu/start.html
http://graphics.stanford.edu/projects/brookgpu/start.html
http://graphics.stanford.edu/projects/brookgpu/arch.html
http://graphics.stanford.edu/projects/brookgpu/arch.html

Bibliography

[10] Benjamin M. Brosgol. A comparison of ada and java as a foundation teach-
ing language. Ada Lett., XVIII(5):12�38, 1998.

[11] Niel Brown. Boids simulation: Part 5. http://chplib.wordpress.com/

2009/09/16/boids-simulation-part-5/, 2009. [Online; accessed 24-
December-2010].

[12] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian,
Mike Houston, and Pat Hanrahan. Brook for gpus: stream computing on
graphics hardware. ACM Trans. Graph., 23(3):777�786, 2004.

[13] Seymor Cray. http://en.wikiquote.org/wiki/Seymour_Cray. His re-
sponse when asked his opinion on clusters.

[14] Birthe Damborg and Anders Mørk Hansen. A Study in Concurrency. Aal-
borg University, 2007.

[15] Qianqian Fang and David A. Boas. Monte carlo simulation of photon mi-
gration in 3d turbid media accelerated by graphics processing units. Opt.
Express, 17(22):20178�20190, Oct 2009.

[16] Kayvon Fatahalian and Mike Houston. A closer look at gpus. Commun.
ACM, 51:50�57, October 2008.

[17] Tim Foley and Jeremy Sugerman. Kd-tree acceleration structures for a
gpu raytracer. In HWWS '05: Proceedings of the ACM SIGGRAPH/EU-
ROGRAPHICS conference on Graphics hardware, pages 15�22, New York,
NY, USA, 2005. ACM.

[18] Center for Biomedical Imaging Harvard. Monte carlo photon transport.
http://www.nmr.mgh.harvard.edu/DOT/resources/tmcimg/, 2004. [On-
line; accessed 30-November-2010].

[19] Kirill Garanzha and Charles Loop. Fast ray sorting and breadth-�rst packet
traversal for gpu ray tracing. Computer Graphics Forum, 29(2):289�298,
2010.

[20] GPGPU.org. About GPGPU.org. http://http://gpgpu.org/about.
Last seen: 20th october 2010.

[21] GPGPU.org. Amazon announces gpus for cloud computing. http:

//gpgpu.org/2010/11/22/amazon-ec2-gpu, 2010. [Online; accessed 29-
November-2010].

[22] Khronos OpenCL Working Group. The OpenCL Speci�cation, version 1.1,
Document revision: 36. Khronos, 2010.

[23] GURU3D. Jetway Radeon HD 2900 XT Cross�re review . http://www.

guru3d.com/article/jetway-radeon-hd-2900-xt-crossfire-review/

2. Last seen: 3th of January 2011.

[24] Dominik Göddeke. GPGPU::Basic Math Tutorial. http://www.

mathematik.uni-dortmund.de/~goeddeke/gpgpu/tutorial.html. Last
seen: 20th September 2010.

96

http://chplib.wordpress.com/2009/09/16/boids-simulation-part-5/
http://chplib.wordpress.com/2009/09/16/boids-simulation-part-5/
http://en.wikiquote.org/wiki/Seymour_Cray
http://www.nmr.mgh.harvard.edu/DOT/resources/tmcimg/
http://http://gpgpu.org/about
http://gpgpu.org/2010/11/22/amazon-ec2-gpu
http://gpgpu.org/2010/11/22/amazon-ec2-gpu
http://www.guru3d.com/article/jetway-radeon-hd-2900-xt-crossfire-review/2
http://www.guru3d.com/article/jetway-radeon-hd-2900-xt-crossfire-review/2
http://www.guru3d.com/article/jetway-radeon-hd-2900-xt-crossfire-review/2
http://www.mathematik.uni-dortmund.de/~goeddeke/gpgpu/tutorial.html
http://www.mathematik.uni-dortmund.de/~goeddeke/gpgpu/tutorial.html

BIBLIOGRAPHY

[25] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. Packetshader:
a gpu-accelerated software router. In Proceedings of the ACM SIGCOMM
2010 conference on SIGCOMM, SIGCOMM '10, pages 195�206, New York,
NY, USA, 2010. ACM.

[26] Chuntao Hong, Dehao Chen, Wenguang Chen, Weimin Zheng, and Haibo
Lin. Mapcg: writing parallel program portable between cpu and gpu. In
Proceedings of the 19th international conference on Parallel architectures
and compilation techniques, PACT '10, pages 217�226, New York, NY,
USA, 2010. ACM.

[27] Søren Alsbjerg Hørup, Søren Andreas Juul, Benjamin Krogh, and Hen-
rik Holtegaard Larsen. Distributed Rendering for Mobile Devices - Using
Ray Tracing. Aalborg University, 2010.

[28] Intel. Intel xeon processor. http://www.intel.com/support/

processors/xeon/sb/CS-020863.htm, 2010. [Online; accessed 29-
November-2010].

[29] Mendel Rosenblum Jayanth Gummaraju. Stream Processing in General-
Purpose Processors. http://userweb.cs.utexas.edu/users/skeckler/

wild04/Paper14.pdf. Last seen: 20th of September 2010.

[30] Khronos OpenCL Working Group. The OpenCL Speci�cation, version
1.0.29, 8 December 2008.

[31] David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel
Processors: A Hands-on Approach. Morgan Kaufmann, 1 edition, February
2010.

[32] langpop. Programming language popularity. http://langpop.com/. [On-
line; accessed 27-November-2010].

[33] Seyong Lee and Rudolf Eigenmann. Openmpc: Extended openmp pro-
gramming and tuning for gpus. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC '10, pages 1�11, Washington, DC, USA, 2010.
IEEE Computer Society.

[34] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun
Kim, Anthony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas
Chennupaty, Per Hammarlund, Ronak Singhal, and Pradeep Dubey. De-
bunking the 100x gpu vs. cpu myth: an evaluation of throughput computing
on cpu and gpu. SIGARCH Comput. Archit. News, 38:451�460, June 2010.

[35] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym. Nvidia
tesla: A uni�ed graphics and computing architecture. IEEE Micro, 28:39�
55, 2008.

[36] David Luebke and Greg Humphreys. How gpus work. Computer, 40(2):96�
100, 2007.

[37] Geo�rey Mainland and Greg Morrisett. Nikola: embedding compiled gpu
functions in haskell. In Proceedings of the third ACM Haskell symposium
on Haskell, Haskell '10, pages 67�78, New York, NY, USA, 2010. ACM.

97

http://www.intel.com/support/processors/xeon/sb/CS-020863.htm
http://www.intel.com/support/processors/xeon/sb/CS-020863.htm
http://userweb.cs.utexas.edu/users/skeckler/wild04/Paper14.pdf
http://userweb.cs.utexas.edu/users/skeckler/wild04/Paper14.pdf
http://langpop.com/

Bibliography

[38] Microsoft. Direct3D Architecture (Direct3D 9). http://msdn.microsoft.
com/en-us/library/bb219679(VS.85).aspx. Last seen: 1th of December
2010.

[39] Microsoft. Timeout detection and recovery of gpus through wddm. http:
//www.microsoft.com/whdc/device/display/wddm_timeout.mspx. [On-
line; accessed 13-December-2010].

[40] PCWorld Nate Ralph. Intel's 2010 'arrandale' laptop cpus: Core i5-540m
impressions. http://www.pcworld.com/article/185857/intels_2010_

arrandale_laptop_cpus_core_i5540m_impressions.html, 2010. [On-
line; accessed 16-December-2010].

[41] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable
parallel programming with cuda. Queue, 6(2):40�53, 2008.

[42] Nvidia. CUDA-GDB. http://developer.nvidia.com/object/

cuda-gdb.html. Last seen: 14th of November 2010.

[43] Nvidia. CUDA-GDB (NVIDIA CUDA Debugger). http:

//developer.download.nvidia.com/compute/cuda/3_0/toolkit/

docs/CUDA_GDB_v3-0.pdf. Last seen: 14th of November 2010.

[44] Nvidia. CUDA Occupancy Calculator. http://forums.nvidia.com/

index.php?showtopic=31279. Last seen: 17th of November 2010.

[45] Nvidia. Dynamic Global Memory Allocation ? faulty documentation - mal-
loc within Kerne. http://forums.nvidia.com/index.php?showtopic=

189389. Last seen: 30th of December 2010.

[46] Nvidia. Gpu computing technical brief version 1.0.0. http://www.nvidia.
com/docs/IO/43395/Compute_Tech_Brief_v1-0-0_final__Dec07.pdf,
2007. [Online; accessed 29-November-2010].

[47] Nvidia. Nvidia tesla gpu computing solutions for hpc. http://www.

nvidia.com/docs/IO/43395/tesla_product_overview_dec.pdf, 2007.
[Online; accessed 29-November-2010].

[48] Nvidia. Nvidia tesla c870 gpu computing processor board. http://www.

nvidia.com/docs/IO/43395/C870-BoardSpec_BD-03399-001_v04.pdf,
2008. [Online; accessed 29-November-2010].

[49] Nvidia. Tesla c1060 installation guide. http://www.nvidia.com/docs/IO/
56484/NV_C1060_UserManual_Guide_FINAL.pdf, 2008. [Online; accessed
29-November-2010].

[50] Nvidia. Blog: Nvidia ntersect - �gpus are only up to 14 times faster
than cpus� says intel. http://blogs.nvidia.com/ntersect/2010/06/

gpus-are-only-up-to-14-times-faster-than-cpus-says-intel.

html, 2010. [Online; accessed 30-November-2010].

[51] Nvidia. Cuda-gdb with emacs. http://developer.download.nvidia.

com/pix/CUDA/cuda-gdb.png, 2010. [Online; accessed 14-November-2010].

98

http://msdn.microsoft.com/en-us/library/bb219679(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb219679(VS.85).aspx
http://www.microsoft.com/whdc/device/display/wddm_timeout.mspx
http://www.microsoft.com/whdc/device/display/wddm_timeout.mspx
http://www.pcworld.com/article/185857/intels_2010_arrandale_laptop_cpus_core_i5540m_impressions.html
http://www.pcworld.com/article/185857/intels_2010_arrandale_laptop_cpus_core_i5540m_impressions.html
http://developer.nvidia.com/object/cuda-gdb.html
http://developer.nvidia.com/object/cuda-gdb.html
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/CUDA_GDB_v3-0.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/CUDA_GDB_v3-0.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/CUDA_GDB_v3-0.pdf
http://forums.nvidia.com/index.php?showtopic=31279
http://forums.nvidia.com/index.php?showtopic=31279
http://forums.nvidia.com/index.php?showtopic=189389
http://forums.nvidia.com/index.php?showtopic=189389
http://www.nvidia.com/docs/IO/43395/Compute_Tech_Brief_v1-0-0_final__Dec07.pdf
http://www.nvidia.com/docs/IO/43395/Compute_Tech_Brief_v1-0-0_final__Dec07.pdf
http://www.nvidia.com/docs/IO/43395/tesla_product_overview_dec.pdf
http://www.nvidia.com/docs/IO/43395/tesla_product_overview_dec.pdf
http://www.nvidia.com/docs/IO/43395/C870-BoardSpec_BD-03399-001_v04.pdf
http://www.nvidia.com/docs/IO/43395/C870-BoardSpec_BD-03399-001_v04.pdf
http://www.nvidia.com/docs/IO/56484/NV_C1060_UserManual_Guide_FINAL.pdf
http://www.nvidia.com/docs/IO/56484/NV_C1060_UserManual_Guide_FINAL.pdf
http://blogs.nvidia.com/ntersect/2010/06/gpus-are-only-up-to-14-times-faster-than-cpus-says-intel.html
http://blogs.nvidia.com/ntersect/2010/06/gpus-are-only-up-to-14-times-faster-than-cpus-says-intel.html
http://blogs.nvidia.com/ntersect/2010/06/gpus-are-only-up-to-14-times-faster-than-cpus-says-intel.html
http://developer.download.nvidia.com/pix/CUDA/cuda-gdb.png
http://developer.download.nvidia.com/pix/CUDA/cuda-gdb.png

BIBLIOGRAPHY

[52] Nvidia. cudamallocpitch. http://developer.download.nvidia.com/

compute/cuda/2_2/toolkit/docs/online/group__CUDART__MEMORY_

g80d689bc903792f906e49be4a0b6d8db.html, 2010. [Online; accessed
30-November-2010].

[53] Nvidia. Next generation compute architecture. http://www.nvidia.

com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_

Architecture_Whitepaper.pdf, 2010. [Online; accessed 16-December-
2010].

[54] Nvidia. NVIDIA CUDA C Programming Guide (Version 3.1.1). Nvidia,
2010.

[55] Nvidia. NVIDIA CUDA C Programming Guide (Version 3.2). Nvidia,
2010.

[56] Nvidia. Nvidia opencl best practices guide. http://www.nvidia.com/

content/cudazone/CUDABrowser/downloads/papers/NVIDIA_OpenCL_

BestPracticesGuide.pdf, 2010. [Online; accessed 3-December-2010].

[57] Nvidia. Nvidia visual pro�ler. http://developer.nvidia.com/object/

visual-profiler.html, 2010. [Online; accessed 16-November-2010].

[58] Nvidia. Parallel nsight. http://www.nvidia.com/object/

parallel-nsight.html, 2010. [Online; accessed 14-November-2010].

[59] Nvidia. Parallel nsight - features. http://www.nvidia.com/object/

parallel-nsight-features.html, 2010. [Online; accessed 14-November-
2010].

[60] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, and J.C.
Phillips. Gpu computing. Proceedings of the IEEE, 96(5):879 �899, May
2008.

[61] John Owens. Eec 277: Graphics architecture.
https://smartsite.ucdavis.edu/access/content/group/

41cdf6c8-0223-40c9-a69a-1543d7ea2575/lectures/1-intro.pdf.
Last accessed: 3th of january, 2011.

[62] Jacopo Pantaleoni, Luca Fascione, Martin Hill, and Timo Aila. Pantaray:
fast ray-traced occlusion caching of massive scenes. In SIGGRAPH '10:
ACM SIGGRAPH 2010 papers, pages 1�10, New York, NY, USA, 2010.
ACM.

[63] Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared
Hoberock, David Luebke, David McAllister, Morgan McGuire, Keith Mor-
ley, Austin Robison, and Martin Stich. Optix: a general purpose ray tracing
engine. In SIGGRAPH '10: ACM SIGGRAPH 2010 papers, pages 1�13,
New York, NY, USA, 2010. ACM.

[64] Erick Baptista Passos, Mark Joselli, Marcelo Zamith, Esteban Walter Gon-
zalez Clua, Anselmo Montenegro, Aura Conci, and Bruno Feijo. A bidi-
mensional data structure and spatial optimization for supermassive crowd
simulation on gpu. Comput. Entertain., 7(4):1�15, 2009.

99

http://developer.download.nvidia.com/compute/cuda/2_2/toolkit/docs/online/group__CUDART__MEMORY_g80d689bc903792f906e49be4a0b6d8db.html
http://developer.download.nvidia.com/compute/cuda/2_2/toolkit/docs/online/group__CUDART__MEMORY_g80d689bc903792f906e49be4a0b6d8db.html
http://developer.download.nvidia.com/compute/cuda/2_2/toolkit/docs/online/group__CUDART__MEMORY_g80d689bc903792f906e49be4a0b6d8db.html
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/cudazone/CUDABrowser/downloads/papers/NVIDIA_OpenCL_BestPracticesGuide.pdf
http://www.nvidia.com/content/cudazone/CUDABrowser/downloads/papers/NVIDIA_OpenCL_BestPracticesGuide.pdf
http://www.nvidia.com/content/cudazone/CUDABrowser/downloads/papers/NVIDIA_OpenCL_BestPracticesGuide.pdf
http://developer.nvidia.com/object/visual-profiler.html
http://developer.nvidia.com/object/visual-profiler.html
http://www.nvidia.com/object/parallel-nsight.html
http://www.nvidia.com/object/parallel-nsight.html
http://www.nvidia.com/object/parallel-nsight-features.html
http://www.nvidia.com/object/parallel-nsight-features.html
https://smartsite.ucdavis.edu/access/content/group/41cdf6c8-0223-40c9-a69a-1543d7ea2575/lectures/1-intro.pdf
https://smartsite.ucdavis.edu/access/content/group/41cdf6c8-0223-40c9-a69a-1543d7ea2575/lectures/1-intro.pdf

Bibliography

[65] Craig Raynolds. Boids - background and update. http://www.red3d.com/
cwr/boids/, 2010. [Online; accessed 26-October-2010].

[66] Graphic Remedy. gDEBugger CL. http://http://www.gremedy.com/

gDEBuggerCL.php. Last seen: 17th of November 2010.

[67] Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral
model. In SIGGRAPH '87: Proceedings of the 14th annual conference
on Computer graphics and interactive techniques, pages 25�34, New York,
NY, USA, 1987. ACM.

[68] Erik Sintorn and Ulf Assarsson. Fast parallel gpu-sorting using a hybrid
algorithm. J. Parallel Distrib. Comput., 68(10):1381�1388, 2008.

[69] Rys Sommefeldt. NVIDIA G80: Architecture and GPU Analysis. http:

//www.beyond3d.com/content/reviews/1/. Last seen: 14th of October
2010.

[70] Open source Community. GDB: The GNU Project Debugger. http://

www.gnu.org/software/gdb/. Last seen: 14th of November 2010.

[71] David Tarditi, Sidd Puri, and Jose Oglesby. Accelerator: using data par-
allelism to program gpus for general-purpose uses. In ASPLOS-XII: Pro-
ceedings of the 12th international conference on Architectural support for
programming languages and operating systems, pages 325�335, New York,
NY, USA, 2006. ACM.

[72] Kevin M. Greenan Thomas E. Portegys. Managing �ocking ob-
jects with an octree spanning a parallel message-passing computer
cluster. http://www.acs.ilstu.edu/faculty/portegys/research/

ptree-PDPTA03.pdf, 2003. [Online; accessed 24-December-2010].

[73] Education Editor Times Online, Alexandra Frean. White bread
for young minds, says university of brighton professor. http:

//technology.timesonline.co.uk/tol/news/tech_and_web/the_

web/article3182091.ece. Last seen online 20th of December 2010.

[74] Wikipedia. Computing platform � wikipedia, the free ency-
clopedia. http://en.wikipedia.org/w/index.php?title=Computing_

platform&oldid=401695834, 2010. [Online; accessed 13-December-2010].

[75] Wikipedia. Crowd simulation � wikipedia, the free encyclo-
pedia. http://en.wikipedia.org/w/index.php?title=Crowd_

simulation&oldid=385547491, 2010. [Online; accessed 20-October-
2010].

[76] Wikipedia. Flops � wikipedia, the free encyclopedia. http://

en.wikipedia.org/w/index.php?title=FLOPS&oldid=390775620, 2010.
[Online; accessed 20-October-2010].

[77] Wikipedia. Geforce 8 series � wikipedia, the free encyclo-
pedia. http://en.wikipedia.org/w/index.php?title=GeForce_8_

Series&oldid=401029719, 2010. [Online; accessed 8-December-2010].

100

http://www.red3d.com/cwr/boids/
http://www.red3d.com/cwr/boids/
http://http://www.gremedy.com/gDEBuggerCL.php
http://http://www.gremedy.com/gDEBuggerCL.php
http://www.beyond3d.com/content/reviews/1/
http://www.beyond3d.com/content/reviews/1/
http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/
http://www.acs.ilstu.edu/faculty/portegys/research/ptree-PDPTA03.pdf
http://www.acs.ilstu.edu/faculty/portegys/research/ptree-PDPTA03.pdf
http://technology.timesonline.co.uk/tol/news/tech_and_web/the_web/article3182091.ece
http://technology.timesonline.co.uk/tol/news/tech_and_web/the_web/article3182091.ece
http://technology.timesonline.co.uk/tol/news/tech_and_web/the_web/article3182091.ece
http://en.wikipedia.org/w/index.php?title=Computing_platform&oldid=401695834
http://en.wikipedia.org/w/index.php?title=Computing_platform&oldid=401695834
http://en.wikipedia.org/w/index.php?title=Crowd_simulation&oldid=385547491
http://en.wikipedia.org/w/index.php?title=Crowd_simulation&oldid=385547491
http://en.wikipedia.org/w/index.php?title=FLOPS&oldid=390775620
http://en.wikipedia.org/w/index.php?title=FLOPS&oldid=390775620
http://en.wikipedia.org/w/index.php?title=GeForce_8_Series&oldid=401029719
http://en.wikipedia.org/w/index.php?title=GeForce_8_Series&oldid=401029719

BIBLIOGRAPHY

[78] Wikipedia. Gnu debugger � wikipedia, the free encyclopedia. http://en.
wikipedia.org/w/index.php?title=GNU_Debugger&oldid=396109819,
2010. [Online; accessed 14-November-2010].

[79] Wikipedia. Graphics processing unit � wikipedia, the free ency-
clopedia. http://en.wikipedia.org/w/index.php?title=Graphics_

processing_unit&oldid=391476688, 2010. [Online; accessed 20-October-
2010].

[80] Wikipedia. Phong shading � wikipedia, the free encyclopedia. http://en.
wikipedia.org/w/index.php?title=Phong_shading&oldid=395725735,
2010. [Online; accessed 23-November-2010].

101

http://en.wikipedia.org/w/index.php?title=GNU_Debugger&oldid=396109819
http://en.wikipedia.org/w/index.php?title=GNU_Debugger&oldid=396109819
http://en.wikipedia.org/w/index.php?title=Graphics_processing_unit&oldid=391476688
http://en.wikipedia.org/w/index.php?title=Graphics_processing_unit&oldid=391476688
http://en.wikipedia.org/w/index.php?title=Phong_shading&oldid=395725735
http://en.wikipedia.org/w/index.php?title=Phong_shading&oldid=395725735

A
Nvidia G80

As we have access to two Tesla C870 cards which are based on the G80 GPU
architecture, we will give a description of the parts of this architecture that are
of interest for GPGPU. This can help reason about performance of CUDA and
OpenCL applications on the G80 architecture.

We have previously given an overview of the components that make up the
G80 chip in Section 2.3. Here we will give a more detailed description of each of
these, such that we can better reason about why GPGPU applications behaves
as they does.

Nvidia is somewhat secretive about the details of their chips. The following
is therefore based on information from people working for Nvidia, found ind [35]
and [54], supplemented with details found in [7] and [69].

A.1 Components Details

As mentioned in Section 2.3, the host interface on the G80 is usually the
PCIe bus, more speci�cally the high bandwidth 16 lanes PCIe slot. PCIe v
1.0 gives a bandwidth of 4 GB/s between the G80 and host system. This is
relatively low compared to the 25.6GB/s between an Intel Core i7-980X CPU
and main memory, this means that the host interface can easily become a
bottleneck if programmers do not take this into consideration, i.e. by reducing
or batching data transfers between the GPU and the CPU.

Work given to the GPU is split into a number of CATs. A CAT is equivalent
to a thread block in CUDA, or a work group in OpenCL. A CAT is a collection
of 1 to 512 threads, that can execute the same program concurrently. When
work is received by the GPU, the compute work distribution, running at
600MHz, assigns a CAT to be executed on a SM in a round-robin fashion.

When a SM has su�cient resources to execute a CAT, the SMC creates the
CAT and assigns a thread ID (TID) to each thread in the CAT.

The multithreaded instruction unit of the SM executes threads in what
Nvidia calls warps. A warp is a group of 32 parallel threads running the same
program. Each SM manages a pool of 24 warps. Each SM can thus have up to
768 concurrent threads.

102

A.1. COMPONENTS DETAILS

Table A.1: Operations performed by the SP

Operation Data type Operations per clock cycle

add 32bit �oating point 1
multiply 32bit �oating point 1

multiply-add 32bit �oating point 1
add 32bit integer 1

logical operation 32bit integer 1
bit shift 32bit integer 1
compare 32bit integer 1
multiply 24bit integer 1

type conversion all 1

At each nstruction issue time, the multithreaded instruction unit se-
lects a warp which is ready to execute and issues its next instruction, thus
allowing for latency hiding when some of the warps are waiting for memory.
The multithreaded instruction unit runs at half the speed of the SP and
SFU, i.e. 1350MHz

2 = 675MHz. It does this since the SP and SFU take multiple
cycles to execute an instruction of all threads in a warp.

The reason that multithreaded instruction unit can a�ord to poten-
tially execute an instruction on a new warp at every instruction issue time, is
that there is zero cost context switch between warps. This is achieved by keep-
ing the context of each warp in register and shared memory in the SM, i.e. the
context is not �ushed to DRAM.

The SM has 8192 32 bit registers, 16KB of shared memory and a 8KB
constant cache, these are shared between warps. Thus, to have the maxi-
mum number of threads running on a SM at a time, thereby achieving the best
possible latency hiding, each thread can only use 8192

768 ≈ 10 registers. 768 must
be evenly divisible by the size of the CATs, the size of the CATs must be evenly
divisible by 32 and each CAT must use no more than 16384

n B of shared memory
where n is the number of CATs, e.g. if the size of a CAT is 256 threads, note
that 768

256 = 3 and 256
32 = 8 and are thus evenly divisible, maximum latency hiding

can be obtained by using fewer than 10 registers and less than 16384
3 ≈ 5461B

of shared memory, where 16384 is the amount of shared memory on each SM.

Each thread in a warp must execute the same program, i.e. start from the
same program address. They are however still allowed to branch independently
of each other. This is achieved by deactivating the threads that did not take a
given branch, leading to a decrease in performance. Thus, a SM can be regarded
as a 32 way SIMD processor. Note that threads in di�erent warps may branch
without any decrease in performance.

The SP and SFU, both running at 1350MHz, execute the actual instructions
on the threads within a warp. Each SP can execute one of the operations in
Table A.1.

All operations take 1 clock cycle in Table A.1, thus all of these operations
take 4 clocks cycles to complete for the entire warp, since there are eight SPs
per SM, and each warp has 32 threads, i.e. 32

4 = 4 cycles. The two SFUs can
execute the operations in Table A.2.

The SFUs can perform a multiplication on all threads in a warp, in only 4

103

Appendix A. Nvidia G80

Table A.2: Operations performed by the SFU

Operation Data type Operations per clock cycle

multiply 32bit �oating point 4
reciprocal 32bit �oating point 1

reciprocal square root 32bit �oating point 1
base 2 logarithm 32bit �oating point 1
base 2 exponential 32bit �oating point 1

sine 32bit �oating point 1
cosine 32bit �oating point 1

clock cycles, while the other operation takes 16 clock cycles. Because the SP and
SFU can execute independently, a single SM has a theoretical peak performance
of two FLoating point OPeration (FLOP) per SP, in the form of a multiply-add
instruction, and four FLOP per SFU, in the form of multiplications. Combined,
the total theoretical performance is: (2 × 8 + 4 × 2) × 1350 = 32400 = 32.4
gigaFLOPS per sm.

Note that the G80 does not support double precision �oating points [54,
C.1.2], and that the implementation of single precision �oating points is not
fully IEEE 754 compliant. This means that some computations might give
di�erent results on the GPU, compared to the CPU. Some of the most important
di�erences are listed below, for a full list see [54, G.2].

�Denormalized numbers are not supported and are converted to zero, un-
der�ows are �ushed to zero, in multiply-add the mantissa of the intermediate
multiplication is truncated, division is implemented using the reciprocal in a non
standard compliant way, square root is implemented using the reciprocal square
root in a non-standard-compliant way and for addition and multiplication only
round to nearest even and round towards zero are supported.� [54, G.2]

A.2 Memory

There are a number of di�erent memory types on the Tesla C870 some on the
G80 chip and one o� chip, these are listed below:

• 8192 32 bit registers per SM

• 16KB shared memory per SM

• 8KB constant cache per SM

• 8KB L1 texture cache per TPC

• 21KB L2 cache per DRAM memory bank

• 1536MB o� chip DRAM

As mentioned, a SM constantly switches execution between warps that are
ready to execute the next instruction. The most common reason for a warp not
being able to execute its next instruction, is that the input operands for that
instruction are not available yet. This means that the latency of the di�erent
types of memory can have a big impact on performance. [54, sec. 5.2.3]

104

A.2. MEMORY

Latency can even exist when all input operands are in the registers. This
happens if an instruction is dependent on the result of the previous instruction,
and thus have to wait for that instruction to �nish executing. Since it typically
takes about 22 clock cycles for an instruction to move through the execution
pipeline, and since it takes 4 cycles to execute one instruction for all 32 threads
in a warp, we need at least 22/4 =≈ 6 warps to hide the latency, thus achieving
full e�ciency.

Access to DRAM is much slower than registers, typically 400 to 800 clock
cycles. The amount of warps required to hide this latency depends on the code
being executed, i.e. if the program has a high number of instructions which do
not require access to DRAM, fewer warps are required compared to a program
with a lower number of instructions that do require access to DRAM. As an
example, assuming that we have a program that performs 10 instructions per
DRAM access, each instruction takes 4 clock cycles, and that DRAM latency is
600 clock cycles, we need at least 15 warps to hide this latency, since 15×10×4 =
600.

As previously mentioned, the DRAM on the G80 is split in to 6 banks on
the Tesla C870 card. Each bank has 256MB of GDDR3 memory clocked at
800MHz and is connected to the G80 using 64 pins. Since GDDR3 can transfer
4bits per pin in two clock cycles, this gives a maximum bandwidth per bank of
4× 64× 800

2 = 102400 102.4 Gbit or 102400
8 = 12800 = 12.8 GB/s thus the total

bandwidth on the card is 12800× 6 = 76800 = 76.8 GB/s.
All DRAM access is performed as either 32, 64 or 128 byte memory trans-

actions and these transactions must be naturally aligned aligned, i.e. o�sets in
memory must be a multiple of the transaction size of the architecture.

Each thread in a warp can access di�erent memory addresses, which means
that a lot of bandwidth is potentially wasted on data that is not used. To
avoid this, memory access can coalesced into fewer memory transactions, this
is done by �rst splitting the threads of a warp into two half-warps, each having
16 threads. Coalescing within each of these half-warps happens if the following
requirements are met:

• The threads of the half-warp must access a 4, 8 or 16 byte word

• if the size of the word is 4 bytes all 16 words must by in the same 64 byte
segment

• if the size of the word is 8 bytes all 16 words must by in the same 128 byte
segment

• if the size of the word is 16 bytes all 8 words must by in the same 128 byte
segment and the other 8 words must be in the next 128 byte segment

• the n'th thread in the half-warp must access the n'th word

Thus, accessing 4 and 8 byte words is translated to one memory transaction,
and access to 16 byte words is translated to two transactions. If these require-
ments are not met, 16 transactions of 32 byte are performed for each half warp,
resulting in worse performance.

To illustrate the e�ect of di�erent memory access patterns assume all 32
threads in a warp accessing 4 byte words in the sequential and aligned pattern

105

Appendix A. Nvidia G80

Address

Threads

128 160 192 224 256 288

0 31

Address

Threads

128 160 192 224 256 288

0 31

Address

Threads

128 160 192 224 256 288

0 31

Figure A.1: Aligned and sequential memory access. [54, �gure G-1]

shown in Figure A.1. This pattern results in one 64 byte memory transaction
at address 128 and on 64 byte memory transaction at address 192.

If two threads in the �rst and second half-warp accesses 4 byte words in a non
sequential manner, as shown in Figure A.2, it requires a total of 32 transactions
of 32 byte i.e. 8 transactions at address 128, 8 transactions at address 160, 8
transactions at address 192 and 8 transactions at address 224, thereby wasting
bandwidth and reducing performance.

Address

Threads

128 160 192 224 256 288

0 31

Address

Threads

128 160 192 224 256 288

0 31

Address

Threads

128 160 192 224 256 288

0 31

Figure A.2: Non sequential memory access. [54, �gure G-1]

If memory is accessed in a misaligned manner as shown in Figure A.3, 32
memory transactions of 32 byte are used as follows: 7 transactions at address
128, 8 transactions at address 160, 8 transactions at address 192, 8 transactions
at address 224 and 1 transaction at address 246.

Address

Threads

128 160 192 224 256 288

0 31

Address

Threads

128 160 192 224 256 288

0 31

Address

Threads

128 160 192 224 256 288

0 31

Figure A.3: Misaligned memory access. [54, �gure G-1]

The constant cache can be used to speed up access to DRAM. To do this,
the memory must be read-only and only 64KB in size. As with normal DRAM
access, the warp is split in to two half warps. Within each half warp, a request
is split up to a request per address in the original request. Each of the requests
are then serviced by the constant cache, in the case of a cache hit, and as a
normal DRAM access in the case of a cache miss. Thus, the constant cache

can decrease DRAM bandwidth usage by avoiding memory access for already
cached addresses and by avoiding multiple threads reading the same address. On
the other hand, it can also decrease performance when accessing many di�erent
memory addresses, since multiple memory accesses is created for what could
have been a single memory access for normal DRAM.

Another way of speeding up DRAM access is with the use of the texture

cache, which is designed to capture 2D spatial locality, i.e. threads in the same
warp which access addresses close together will achieve better performance. A
cache hit is designed to reduce the DRAM bandwidth demands, but not the
latency of DRAM access. So applications with a memory access pattern that
does not �t well for coalescing of normal DRAM, or with the use constant

106

A.2. MEMORY

cache, can potentially get better performance by using the texture cache.
The texture cache is however not kept coherent with DRAM so it should only
be used for read only memory.

Each of the SM has 16KB of shared memory, which can be shared between
threads running on the SM. The shared memory is split into 16 banks, each of
these banks has a bandwidth of 32bits every two clock cycles so the performance
depends on the division of memory access between banks. Access to shared

memory is split into two half warps, thus threads from each half warp can not
access a bank simultaneously. To reduce con�icts between banks, memory is
split between banks in 32-bit words, thus if an application accesses subsequent
elements in an array of 32-bit words there are no bank con�icts and all threads in
a half-warp can be serviced in two clock cycles. On the other hand, subsequent
elements in an array of 8-bit words generates 4 bank con�icts and thus takes 8
clock cycles.

107

	Introduction
	Motivation
	Other Utilization of GPGPU

	Problem Formulation
	Practical Experience
	Be Scientific

	Analysis
	What Is a GPU
	Available Hardware
	Problems with Tesla C870

	G80 Architecture
	Overview
	Memory
	Summary

	Algorithms Suited for GPGPU Execution
	Comparison of Performance between GPUs and CPUs
	Discussion
	Our Remarks

	Programming GPUs for General Purposes
	Stream Processing

	GPU Languages
	BrookGPU
	ATI's Brook+
	Example

	CUDA
	Architecture
	Memory
	Example
	Compute Capability

	OpenCL
	Architecture
	Framework
	Example

	Summary

	Tool Support
	CUDA-GDB
	Nvidia Parallel Nsight
	Nvidia Compute Visual Profiler
	gDEBugger CL
	CUDA Occupancy Calculator
	Conclusion

	Summary

	Development
	Boids Application
	The Boids Model
	Steering
	Heading
	Position

	Optimizations
	Sorting
	Finding neighbors
	Choice of optimization

	Functional Requirements
	OpenCL Implementation
	Sort
	BoidsSimple
	Boids

	Brook+ Implementation
	Sort
	BoidsSimple
	Boids

	C++ CPU Implementation
	Sort
	BoidsSimple
	Boids

	Summary

	Ray Tracer Application
	Ray Tracing Algorithm
	Functional Requirements
	CUDA Implementation
	Work Partitioning (R+P)
	Intersection Buffer (R)
	Memory (P)

	C++ Implementation
	Summary

	Summary

	Benchmarks
	Boids Benchmarks
	Benchmark Setup
	Initial Experiments
	Results

	Benchmark Results
	Discussion

	Ray Tracer Benchmarks
	Benchmark Setup
	Benchmark Results
	Discussion

	Comparison
	Criteria for Comparison
	Memory
	Computation
	Learnability
	Concurrency
	Support

	Ratings
	Memory
	BrookGPU
	CUDA
	OpenCL

	Computations
	BrookGPU
	CUDA
	OpenCL

	Learnability
	BrookGPU
	CUDA
	OpenCL

	Concurrency
	BrookGPU
	CUDA
	OpenCL

	Support
	BrookGPU
	CUDA
	OpenCL

	Summary

	Epilogue
	Conclusion
	Problem Formulation
	Practical experience

	Discussion
	Implementation Verification
	Benchmarks
	Be Scientific
	Our Thoughts

	Future Trends
	GPGPU Programming is Becoming More Powerful
	GPGPU Programming is Becoming Easier
	GPU and CPUs are merging
	GPGPU is Gaining Momentum
	Summary

	Future Development

	Bibliography
	Nvidia G80
	Components Details
	Memory

