Game On Demand Service

The Player

A
y

Client @

@ Server

Architecture Proposal € Prototype

DAT5-project by
— Group d501a—
Jais Heslegrave & Thomas Justesen

January 3, 2011 at Aalborg University

(8

AALBORG UNIVERSITET

Student Report

Titel:
Game On Demand Service

— Architecture Proposal & Prototype. . .

Theme:

Distributed System, Game on Demand

Project period:
DATS5, fall 2010

Project group:
d501a

Authors:
Jais Heslegrave
Thomas Justesen

Supervisor:
René Rydhof Hansen

Printcount:
4

Nr. of pages:
52

Appendix:

A cd with source and executable and a

list of acronyms.

Completed & signed:

January 3, 2011 at Aalborg University

Department of Computer Science

Aalborg University
Selma Lagerlofs Vej 300
Phone +45 9940 9940
Fax +45 9940 9798
http://www.cs.aau.dk

Abstract:

Game On Demand (GoD), a service that
enables for streaming of games. The
idea has risen from the Video On De-
mand (VoD)-service, which allows a user
to rent, buy or just view a streamed video
on any capable receiver. The same can
be done for games, given the user has a
device capable of accessing an ip-network,
viewing streamed video and intercepting
and sending enough inputs for the game
to function. Such a service could be of
interest for both consumers and for the
game developers.

This report is minded on the network
aspects of a GoD-service. It proposes a
client/server architecture for a possible
finally implemented solution. The report
also evaluates on described prototype
implementations of key components of the
proposed architecture.

The evaluation has lead to believe, that a
GoD service is indeed possible and plausi-
ble. For it to function properly however,
it demands a lot of optimizing of various
functionalities in all parts of the service.
Even commercial implementations of GoD
services that exist today, which have been
under development for several years, suffer
from a noticeable delay.

The contents of this report is accessible without limitation, publication, however, is
only allowed through an agreement with the authors.

http://www.cs.aau.dk

Contents

Contents
Preface

1 Introduction
1.1 Problem Statement
1.1.1 Limitations

2 Analysis

2.1 Streaming Methods oo
2.1.1 3D Streaming oL
2.1.2 Audio/Video Streaming

2.2 Video Capture
221 Capturing
2.2.2 Taksi & Hooking

23 Video Coding
2.3.1 Choice of Standard
2.3.2 The H.264/AVC Video Coding Standard

2.4 Routing Schemes oo

2.5 Input Handling

2.6 Network Transmission Protocols
2.6.1 Bootstrap Connection
2.6.2 Input Connection
2.6.3 Stream Connection

2.7 Other Solutions oL
2.7.1 OnLive
2.7.2 StreamMyGame
2.7.3 Under Development

3 Design

3.1 Choice of Protocols L

3.2 Service Architectureo
3.2.1 Server Components,

iii

w

o~ -1 O O Ut ot

23

il

Contents

3.2.2 Client Components
3.3 Functionality of Server & Client
3.3.1 Server Functionality
3.3.2 Client Functionality

4 Prototype

4.1 Development Tools & Language
4.2 Components
4.2.1 Video Capture
422 Encoding oL
4.2.3 Transmission
4.2.4 Receiving, Decoding, Playback
4.3 Implementation Difficulties
4.4 Debugging Tools
4.4.1 Practical Utilities
4.4.2 Debugging in RT'PService
443 A Dummy Client

4.4.4 The Threaded Version of The RTPService

5 Evaluation

5.1 Prototype Performance
5.1.1 Testing
5.1.2 Gameplay Performance
5.1.3 TImprovements.

5.2 Performance of Other Solutions

5.3 Conclusion

Bibliography

A List of Abbreviations & Acronyms

Preface

This report has been written during the DAT5-project period by group d501a
at Aalborg University. The theme is “Distributed System, Game on Demand”.

References to sources are marked by [ABc#|, where ABc# refers to the related
literature in the bibliography at the end of the report.

The appendix to the report is found as the last chapter of the report and on
a compact disc, located on the very last page of the report. Furthermore, the
source code created during the project are on the disc.

The entire report is written in English and no translation will be accessible.
Abbreviations and acronyms are at first appearance written in parentheses,
to avoid breaking the reading stream. They are also found in a list in the
appendix. The report is written in IXITEX and is accessible as a PDF-document.

A special thanks for e-mail correspondence with help, knowledge and code
examples to Theofilos Karachristos [KAMO08| and to Jori Liesenborgs for help
on JRTPIib [Liel0], your knowledge on the subject was very helpful.

Signatures:

Jais Heslegrave Thomas Justesen

1 (Ae~— /"77“”?&) -,de»1(.)‘3/!(,

i

CHAPTER].

Introduction

This chapter introduces the project itself, the report, the product
and it specifies the problem statement.

Consider the concept of Video On Demand (VoD), where the users have the
opportunity to rent and stream any available movie or video content directly
to the living room. Thus providing a service, enabling users to watch movies
without having to buy the movie or store them anywhere. Then imagine the
same sort of system for video games. A user would be able to remotely play
a video game that is streamed to the local device/computer. Such a solution
would, in theory, render investments in newer high-level hardware unnecessary
for the consumer. It might also save game developers the trouble of having
to develop the games for several hardware-profiles. Such a service could be
referred to as a Game On Demand (GoD) service.

A GoD-service will consist of a few key aspects for it to function properly
and by the standards of today, it must be capable of streaming the game in
high quality and without a noticeable delay. There will need to be a machine
that serves the game, it has to be powerful enough to handle one or more of
the games wanted in the service but also powerful enough to handle the send-
ing/receiving mechanism. The server-side would also need a certain amount
of bandwidth to handle both incoming and outgoing traffic, needed for the
GoD-service. There are a number of possible solutions for actually streaming
the game, they all have disadvantages and advantages and they will be consid-
ered in this report. The client theoretically needs some sort of input-controller
(could be keyboard and mouse), it will need enough bandwidth to supply a
fluid stream and sending the inputs and enough power to ensure fluid playback
of the streamed game.

The main focus of this report is on the networking aspects of the system, so
much attention will be paid to the protocols, network problems and network
structure of the system. The project is not minded on creating a final solution,

1

2 Chapter 1. Introduction

but on determining the feasibility of the service as an implemented solution,
based on the knowledge accumulated by analyzing and prototyping the smaller
aspects of this service. More on the goal of the project is found in the problem
statement.

This chapter includes the introduction, as well as the problem statement de-
scribing the problems tackled in this project and what approaches are taken.
It also describes some limitations as to what will and will not be developed.
The second chapter analyses the problems and concerns related to the project,
such as how to implement a streaming service, what protocols to use and which
encoding schemes to utilize. Several other solutions to the game streaming ser-
vice are also described. In the third chapter, the design of the architecture of
the service is detailed, and each component of the service, as well as how they
are supposed to interact is explained. The argument for the chosen protocols
can also be found here. Chapter four details the implementation of the ser-
vice, dealing with the third party libraries used, as well as the code used to
mesh them together. The reasoning for choosing certain libraries is mentioned
here as well. The final chapter evaluates on the project, the process and the
implementation, and describes some of the concerns related to designing and
implementing a finished service, this chapter also concludes on the project as
a whole.

1.1 Problem Statement

The main focus for this project is a part of the specialization semester, where
the goal is to learn more about distributed systems. This particular project
is about the challenges encountered while developing a service for streaming
games from a server to a client, thus allowing low-end computers to play high-
end games. The project is also intended as a stepping stone for a Master’s
project. The project can be summarized as follows:

e Analyze the components necessary to construct a functional game stream-
ing service.

— Propose an architecture for such a service.

— Compare different possible components for each role in the archi-
tecture.

e [mplement non optimized key parts of the game streaming.
e Evaluate the performance possibilities of such a service.

— Network characteristics.

— Gameplay performance.

1.1.1. Limitations 3

1.1.1 Limitations

Due to time constraints, and very basic knowledge of streaming implementa-
tion of the authors, the entirety of the proposed service in this report will not
be implemented, instead there is a focus on getting the streaming part to work
to some degree.

CHAPTER 2

Analysis

This chapter analyzes the various aspects needed for the project.
This includes subjects such as coding of video, streaming of such,
network distribution protocols, 1/0 handling and other ezisting so-
lutions.

2.1 Streaming Methods

For a streaming service dedicated to streaming games and allowing remote
clients to play, there exist several different possibilities for providing such a
service. The chosen method will dictate what kind of client can use the service,
but also effects the quality of the service.

2.1.1 3D Streaming

The 3D streaming approach utilizes the fact that many newer games use some
form of graphics abstraction layer, such as Direct3D, OpenGL or Graphics De-
vice Interface (GDI). The Application Programming Interface (API) calls from
the games to these graphic libraries can be intercepted from the game process
running on the server. Once intercepted, these API calls are transmitted to
the client, the client will then pass these API calls to the graphics abstraction
layer locally, to generate the graphics of the game on the client side. Audio
has to be transmitted seperately and synchronized. This approach requires less
processing time from the server, as the graphics API calls are intercepted and
transmitted to the remote client. However, the client must be able process the
graphics, so a very lightweight client is impossible in this setup. This method
also requires that it is possible to get into the inner workings of the games, to

5

6 Chapter 2. Analysis

intercept the graphics layer calls. An example of how this could work can be
seen in Figure 2.1.

Service Client Game Process
Graphics Graphics API
Renderer Interceptor

[

f !
4 Graphics API Call

Receiver L
Transmission

Figure 2.1: 3D Streaming Figure

2.1.2 Audio/Video Streaming

This method involves capturing the video and audio from the running game
process on the server side using a capturing tool. When captured, this feed is
transmitted to the client as a streaming video. This method requires the server
to do more work as it has to encode the video and audio into an appropriate
format before transmitting it to the client. The client only has to be able to
decode and play the stream in order to use the service, input concerns not
withstanding. The client can take the form of a seperate program, mobile
application, or browser applet.

The method chosen for the service implemented in this project is the Au-
dio/Video streaming approach, as the 3D Streaming requires intimate knowl-
edge of the games and the graphics abstraction layer API in order to intercept
API calls. In addition, tools exist to actually capture video and audio from
running processes as detailed in the following section.

2.2 Video Capture

Video capturing tools are many and varied, but a more thorough look at some
of the available tools is needed to select the right tool for the job. This section
describes some of these tools, both proprietary and open source. Also some
details relating to hooking into software and capturing from the framebuffer
are included.

2.2.1. Capturing 7

2.2.1 Capturing

Many different tools exist for capturing audio and video from other programs,
for the purposes of making movies or streaming online. Most of them are
typically used to upload tutorial videos or game footage to YouTube to show
the world. XFire and UStream are services that allow you to record your
desktop and stream it to online viewers. They are free to use, but are not open
source, so it is difficult to go into further details about their implementation.
Fraps is a different approach, it records from a running program and saves it
as a video file on your computer, which you can later upload. It is, however,
not free to use, and thus proprietary, which makes it impossible to find details
about its inner workings. Taksi is similar to Fraps, in that it allows you to
record video from a running application and save it as a video file locally. Tt
also allows you to choose a Video For Windows (VFW) codec (which is a codec
installed to be available for a multimedia framework developed by Microsoft,
used by for instance Taksi) to encode the video, and even allows you to record
from a single application at a time, and not the entire desktop. Taksi is also
open source, allowing a closer look at the inner workings of the program, and
ultimately allowing modification for use in this project.

2.2.2 Taksi & Hooking

Taksi has been chosen as the hooking, and capturing part of our solution,
this is done because Taksi is open source and free, allowing examination and
modification of the code to suit our needs.

Taksi works by utilizing hooking. This is a process called a hook, which can
intercept function calls, messages or events, in the case of Taksi the hook is
into a graphical program’s DirectX, OpenGL or GDI API calls. It intercepts
these calls and reads the frame from them, while also allowing the APT calls
to proceed as normal afterwards. Taksi now passes the intercepted frame to
a chosen VEW encoder, and writes the finished encoded frame to the disk in
a target file. Hooking works by Taksi injecting its library into the memory of
the process to be hooked, it finds the appropriate places in the memory where
the DirectX Present and Reset methods are called. Afterward the hooking
method interjects a jump instruction to the Taksi library’s frame capturing
code, which is run first, before the DirectX API calls are allowed to proceed.
Taksi captures the frame by copying the contents of the backbuffer to be dis-
played on the screen |KAMOS|. The Present method of the DirectX API is
used to display the contents of the program’s backbuffer in the appropriate
window or frontbuffer. The Reset method is used to clear the presentation
parameters of the backbuffer, to alert of fullscreen changes or window resiz-
ing. Depending on the quality and speed of the chosen encoding, the frame

8 Chapter 2. Analysis

capturing can actually slow the hooked process down. The captured frame is
output in Red, Green & Blue (RGB) 4:4:4 format.

2.3 Video Coding

For the solution covered in this report, video streaming is used. There are
several different formats and container types for video and audio, all special-
ized for their respective purpose. In this case, high resolution such as High
Definition (HD) is a must, to keep up with the quality of a consumer game
nowadays. It must, however, still be possible to stream through the Internet.
Throughout this section the video coding standard and features are described,
mostly with respect to the features that increase the coding’s efficiency for
streaming. Notice that the standards are all on the format of the coding and
decoding of video formats, to give way for innovation in the area of encoding.

2.3.1 Choice of Standard

Since there are such a large number of possible video coding formats, the
one chosen for the prototyping in this project, is based upon effectiveness,
but also availability in open source and popularity. In a search for video
streaming codecs, names like MPEG-1, MPEG-2, MPEG-4 and H.261-H.264
emerge, some might also think of the DivX codec. It is important to distinguish
between file formats or container formats like AVI (and the widely used FLV,
on webpages) and the encoding format of a video. The file format is a wrapper
of one or more encoded streams (e.g. video, audio and maybe subtitles), while
the encoding format is the format the actual video stream inside the file format,
is stored in.

The question of what to choose for this given purpose, needs a little research.
For instance, the format of DivX was originally intended as an alternative to
DVD, as an attempt to compress an entire movie to the size of a CD-ROM
(~650 MB), instead of ~4.7 GB on the DVD. Although DivX is possible for
streaming purposes as well [Zim03], it is not made for it, and it resembles the
MPEG-4 which is minded on streaming.

A more reasonable approach would therefore be to look into the standards
made by Moving Pictures Experts Group (MPEG). MPEG is part of the
International Standards Organization (ISO/IEC) standardization group, for
creating new coding formats for video and audio. Their most popular coding
formats are MPEG-1, MPEG-2 and MPEG-4 where MPEG-4 is a preferred
coding format by most video streamers at the present time. The International
Telecommunication Union (ITU-T) have standardized a number of relatively

2.3.1. Choice of Standard 9

similar coding standards as MPEG, they are called H.261 to H.264. The
wish for a collaborated standard of the MPEG-4/H.264 formed a Joint Video
Team (JVT) which consists of I[TU-T, MPEG and a third party called Video
Coding Experts Group (VCEG).

After having mapped the popular standards in video streaming, it is time
to determine which coding standard is best for the prototype. To avoid the
need for testing the various different possibilities, we look to existing papers
describing recent experimentation on the performance of the popular coding
standards. Although most of the recent papers are minded on performance
over wireless network, and what TEEE 802.11 technology is best, they still
provide some insight into what the best video coding would be. One such
paper is [KGW09], that elaborates on some knowledge on popular video coding
formats. The two top candidates are the MPEG-4 and the H.264, where
the important differences are bandwidth usage, error sensitivity and encoding
power needed. The numbers for bandwidth are backed up by performance
comparison performed by [OBLT04]. It is found, that the H.264 encoding
have better average bit rate savings, than the other candidates. See Table 2.1,
for a reference on the characteristics of the popular coding standards.

Codec Bandwidth needed Error Encoding
Name for PAL Sensitivity Computing Power
MPEG-1 8 Mbps Low Small (x386)
MPEG-2 5 Mbps Medium Medium (x486)
MPEG-4 | 3-6 Mbps (Variable) Medium High (x586)
H.264 1 Mbps High Very High (Dual Core)
Table 2.1: Characteristics of popular coding standards (Source [KGWO09])

As seen in Table 2.1, the H.264 uses less bandwidth, but as a trade off is
more sensitive to errors and uses more computing power for the encoding
process. The MPEG-4 uses more bandwidth, but is more tolerant of errors and
uses a little less computing power. These arguments point in the direction of
MPEG-4 as the best proposed video coding format, because we might need the
extra computational power for computations on highly demanding computer
games this GoD-service might provide. Error tolerance is also of the essence,
and a high number of consumers cannot be expected to have a fast Internet
connection (mobile broadband for instance, seems to be increasingly popular)
and as “Most of the latency is in the last mile” (Steve Perlman, OnLive CEO
|Gral0]). The preferred choice for a final implemented solution would be the
MPEG-4 coding format. There is no apparent open source available port of
an MPEG-4 encoder, so for this small scale prototype, we will settle for H.264,
for which the Fast Forward Moving Pictures Experts Group (FFmpeg) has
developed an open source implementation, in the form of a VFW codec and

10 Chapter 2. Analysis

a stand-alone encoder. The difference between MPEG-4 and H.264 are rather
minute in the FFmpeg implementation, which is a result of the JVT-groups
combined work on a new version of MPEG-4/H.264 coding format.

2.3.2 The H.264/AVC Video Coding Standard

To understand why the H.264 video coding standard is recommendable for
streaming (as previously noted in Table 2.1), it is necesarry to observe the
network-related built-in features of the standard. This section provides a quick
overview and explanation of the features of the coding standard, that makes it
one of the best video streaming coding standards available at the moment. The
information on the subject of the H.264 coding standard is gathered mostly
from the standard for a Real-Time Transport Protocol (RTP) Payload For-
mat for H.264 Video in RFC 3984 [WHS™05] and from an Owerview of the
H.264/AVC Video Coding Standard [WSBLO03|. Since, as mentioned in Sec-
tion 2.3, the standard is only for the actual format of the coded video and the
decoding of the video, there is no information on how the third party encoder
has implemented these features.

The standard contains two layers; one to address the representation of the video
content (the Video Coding Layer (VCL)), and another to address network
abstractions (the Network Abstraction Layer (NAL)). A short description and
listing of optimizing features in the two layers are in their respective sections.

VCL-layer & Features

As mentioned, the VCL-layer takes care of the representation of the video as
moving images. Each video has a number of images per second (for video
normally 24), these images are known as frames. To be able to perform com-
pression, known as encoding for video, on these frames there must be a way to
exclude similarities within the frames of the video. This is done by placing a
grid over each of the frames and thereby splitting the video into smaller pieces.
These pieces are called macroblocks, and for H.264 (H.264) the macroblocks
initially consist of 16 x 16 pixels. The bagic encoding of the video is to avoid
saving or sending unchanged areas of each frame. If for instance the contents
of a macroblock is unchanged since last frame, there is no reason to use re-
sources on this particular macroblock. Hereby in this little example, the video
is a macroblock smaller in size. This adds up, if done for each unchanged area
of all frames in the entire video.

The splitting of the frames are in H.264 part of a larger hierarchy, as each
macroblock is contained within a group of macroblocks and a macroblock.
Such a group is referred to as a slice. A slice allows for a faster scan for

2.3.2. The H.264/AVC Video Coding Standard 11

changes in the frame, the groups can be nested as well. This feature makes it
possible to create new frames only containing the changing parts of the video.

Once in a while, especially when streaming a video, a part of the video may
be corrupted or lost. This problem will result in holes in the video or areas
where some part of the frames are not correct, in relation to the rest of the
frame. Therefore, there has to be some kind of fail over. In H.264 there
are two kinds of frames being sent or stored, this is the Intra-frame and the
predictively coded frames. Predictively coded means, that in H.264 some of
the macroblocks are predicted to avoid more data loss failures. The prediction
is based on the macroblocks’ contents over the last few frames. Therefore the
predictively coded frames are small in size and holds only the new information
of the video frame. The Intra-frame is a frame that works a reference for the
predictively coded frames, and is a frame that is large in size, because it holds
the entire data of the frame.

Another way to compress the video and save space in the stream or file, is
to convert the colour space to YCbCr, and also by reducing the resolution of
the sampling of the information for Cb and Cr. This conversion makes sense,
because the human perception abilities are based on details of brightness and
then on colour. YCbCr follows this idea, as the various components are; luma
(Y) and chroma (CbCr). Luma is brightness, Cb is the amount the colour
deviates from gray toward blue and Cr is the amount the colour deviates from
gray toward red. The human visual system is more sensitive to luma than
chroma, therefore H.264 samples the brightness twice as much as it samples
the chroma. Such a sampling is called 4:2:0, and each of these samples has
a precision of 8 Bits. This means that each macroblock covers 16 x 16 luma-
samples, 8 x 8 Cb-samples and 8 x 8 Cr-samples.

NAL-layer & Features

The purpose of the NAL-layer, is to provide an abstraction to available net-
work protocols. Hereby, the layer maps from the H.264 VCL-data to the
transportation layers, this could be file formats, but also RTP for instance.

The data has been coded and therefore compressed at this point, and the next
step is to either send it or store it in a file. To enable this data is organized into
something called NAL units, which first holds a byte with header information
and the remaining is the video data. This means that the NAL unit is already
a small packet. Instead of packet sized NAL units, it is also possible to get the
data in a Byte-stream format, which is needed in some systems. In the case of
a Byte-stream there are identifiable boundaries of the NAL unit’s beginning
and end.

There is some data information that seldom change for a video, this informa-

12 Chapter 2. Analysis

tion can be contained in Parameter Sets. There are two types of the parameter
sets, one for the sequence that hold information for a sequence of video frames,
and one for the single frame. Both the sequence and the picture parameter
sets can be sent ahead of the NAL unit, thus making it more robust towards
errors.

There are many features in the H.264 video coding standard and further details
can be found in for instance [WSBL03| along with [KGW09].

2.4 Routing Schemes

Since this project is about utilizing a network connection, it makes sense to
consider what kind of routing schemes are plausible, for the proposed system.
There are a number of different routing schemes and they all have their own
features, making them effective for various situations. A short description of
the different possibilities is listed below. The different schemes are depicted in
Figure 2.2.

- e s

e =0 O o 0 o |82 g
@) @)

O O O ER

(@) (b) (© (d) () ¢

Figure 2.2: Example of the different Routing Schemes. (a) is Anycast, (b) is
Broadcast, (¢) is Multicast, (d) is Unicast and (e) is Geocast.

Anycast (a) is a routing scheme used, if any one receiver is needed. A data-
gram package is sent from a single sender, to a single receiver from a
group of possible receivers. Often the receiver is the closest to the sender
in the group. One to one.

Broadcast (b) is a routing scheme used, when all nodes in a group needs to
receive a datagram simultaneously. One sender tries to reach all possible
receivers with this scheme. One to all.

Multicast (¢) isused for sending to many nodes in a group, but not all. Only
the interested receivers get the datagram that is sent using multicast.
One to many.

Unicast (d) is used to deliver a datagram to a single specific receiver. If the
datagram is for one receiver by one sender, unicast is the routing scheme
to do this. One to one.

2.5. Input Handling 13

Geocast (e) is used, if a datagram are for a specific region. It is a special
multicast delimited by geographic region. One to many.

To use in a solution proposed by this project, the probable routing scheme
would be unicast, or maybe even multicast in some situations. Unicast is
a natural selection, because there is one user connected to one game server,
therefore the client sends to one server, and the server sends to one specific
client. Multicast will make sense, if it should be possible to follow another
player’s progress in a game. Multicast will provide the possibility to stream
ones gameplay to many clients, who might be interested in following a partic-
ular client’s progress.

2.5 Input Handling

In order for the streaming service to make any sense, the user input from the
client side needs to be collected, sent across the network and then fed into the
game that is run on the server. This is a necessity in order for the client to be
able to play and interact with the game remotely.

There are two different ways of capturing the input on the client side, either the
client receives all the input from mouse and keyboard and parses it, which in
turn will require the client to know every possible input combination. Or, the
client simply intercepts the raw message input data containing the keyboard
and mouse input and sends it to the server to be fed into the running game
directly.

The server needs to receive these raw input messages from the client, and insert
it into the event queues for the game process. The game will then react to the
input and the visual feedback will be streamed to the client.

2.6 Network Transmission Protocols

For a final implementation, three different types of data needs to be sent
through network interfaces. These types are split into a bootstrapping of
the service, the input from the client and the audio/video stream from the
server. This section provides argumentation for what transmission protocols
are recommended for the different purposes.

Fach data type to transmit, are described under its own section below.

14 Chapter 2. Analysis

2.6.1 Bootstrap Connection

The bootstrapping connection is used to initialize the session of connections
between the client and server. This is therefore the first connection between
the client and server, and it should be handshaking data for the service. Hand-
shaking involves, for a final implemented solution, some authentication data
and it involves information about game to play and the IP /port for the server
entitled to run the game.

The data for this connection is important, and it has to be reliable that all the
information reaches both ends. Speed of the transferring data is not important
at this stage.

A very good solution for this connection is to create a Transmission Control
Protocol (TCP) socket connection between the requesting client and the (au-
thentication) server. The standard of TCP version 4 is described in RFC 793
[Pos81|, and belongs to the Transport Layer. The purpose of TCP is to create
and sustain a stable connection between two end points in a network, allow-
ing for data exchange. TCP is often used in connection with the Internet
Protocol (IP) in the Internet-/Network- Layer, to route messages across the
network participants. This correlation is referred to as the Internet Protocol
Suite (TCP/IP). The ability for TCP to create a direct connection between
endpoints makes it ideal for the purpose of the Bootstrap connection. See
Figure 2.3 for a small example of the bootstrap connection, using TCP.

Bootstrap, Setup,

Login/Connect Game Launch

Figure 2.3: Example of the Bootstrap Connection. Client is on the left side
and Server is on the right.

2.6.2 Input Connection

The purpose of the input connection is to send the inputs from the client to
the server. This is inputs from controllers, as for instance keyboard keys and
mouse positions. For this data connection, there is expected to be many inputs
and they may be very rapid (this may depend on the type of game — if it is
a fast paced game like an First Person Shooter (FPS) e.g.). Therefore the
speed of the data connection is of the essence in this connection. For most
games, key presses and mouse positions are often repetitive, which means that
it might not be a problem if some of the data are lost. Although it is tolerable

2.6.3. Stream Connection 15

to lose a few of the inputs, it cannot happen too often, as it will be a nuisance
for the player.

To handle this connection a User Datagram Protocol (UDP) socket will be a
possibility. As opposed to TCP, the UDP protocol is more minded on speed
than reliability. The standard of UDP is formed in the RFC 768 [Pos80| and is,
as TCP, part of the Transport Layer. UDP is also part of the Internet Protocol
Suite, but differs with TCP by not demanding anything of the transmission
paths through the network. The IP is forced to find a route through the
network participants for each datagram sent by the UDP. This behavior does
not ensure datagram delivery, but it allows for a timely delivery, which makes
UDP a reasonable choice for the Input connection. In Figure 2.4 there is a
small example of the input connection.

Input Transmitter Input Receiver

Figure 2.4: Example of the Input Connection. Client is on the left side and
Server is on the right.

2.6.3 Stream Connection

As with the input connection, it is more important for the audio/video stream-
ing to be fast than reliable. If a screen update does not arrive at the client’s
side, another will arrive shortly.

A possibility is to use the UDP connection here as well, but there are proto-
cols already designed and optimized for streaming of video and audio. One
of such is the RTP, as stated in the book RTP [Per03], RTP is standardized
for streaming audio and video in RFC 3550 [SCFJ03| by the Internet Engi-
neering Task Force (IETF) and later adopted by ITU-T. This standardization
means it is easier to find support for RTP in both players and programming
libraries. RTP is part of the Application Layer and uses the UDP protocol
in the Transport Layer, and therefore utilizes the timely delivery of the UDP
socket.

RTP works by packing the data into packets with added header information
to inform the receiver of how to handle the containing data. The RTP header
has a minimum size of 96 bit or 12 byte and can be larger if using optional
extension header information. The header of the RTP packet is constructed
as seen in Table 2.2, and is explained in the following description.

16 Chapter 2. Analysis

Bit |01][2]3|47][8]915] 16-31
0 Ver. [P[X|[CC|M| PT | Seq. Nr.
32 Timestamp

64 SSRC Identifier

96 CSRC Identifiers

96+32xCC Profile-specific Ext. Header 1D ‘ Ext. Header Length
128132 CC Extension Header

Table 2.2: The header format of a RTP packet. From bit 96 the header
information is optional. Source RFC 3550 [SCFJ03].

Ver. (Version) indicating the version of the protocol. Default is version 2.
(2 Bits)

P (Padding) indicating if there are extra bytes in the end of the packet (if
it needs a certain size). (1 Bit)

X (Extension) indicating if there are Extension headers before payload data
in the packet. (1 Bit)

CC (CSRS Count) indicating the number of CSRC Identifiers in the header.
(4 Bits)

M (Marker) indicating (at application level) if the packet is of special rele-
vance. (1 Bit)

PT (Payload Type) indicating the type of the data in the payload. (7 Bits)

Seq. Nr. (Sequence Number) indicating the order of the packets, is in-
cremented by one for each packet. (16 Bits)

Timestamp indicating time for synchronizing of the feed. (32 Bits)

SSRC indicating the synchronization source of the stream, a unique identifier
for the source in the RTP session. (32 Bits)

CSRC indicating source IDs for all the sources that are contributing to the
stream, if more than one exist. (32 Bits per CSRS, hence 32xCC)

Profile-specific Ext. Header ID indicating a profile-specific identifier. (16
Bits)

Ext. Header Length indicates the length of the extension header. (16 Bits)

Extension Header indicating the actual extension header. (32 Bits per
header unit)

2.6.3. Stream Connection 17

Figure 2.5 is an example of the stream connection.

Audio/Video Audio/Video
Receiver Transmission

Figure 2.5: Example of the Stream Connection. Client is on the left side and
Server is on the right.

When using RTP, there is also the possibility of extending the use, with op-
tional additions in Session Description Protocol (SDP), Real-Time Transport
Control Protocol (RTCP) or Real-Time Streaming Protocol (RTSP). More
details on the SDP, RTCP and RTSP protocols follow.

Session Description Protocol

SDP is an Application Layer protocol, usable as a format for describing a
media stream during its initialization. It is designed to supply parameters,
options and descriptions needed for the stream to be understood correctly by
the receiver. The standard is described in RFC 2327 [HJ98|.

SDP is originally made for the Session Announcement Protocol (SAP), but has
proved itself useful as a supplement for other media protocols, such as RTP.
It is not designed to stream any media, so it is supposed to be a supplement
to the existing stream solution.

The SDP format is a newline-separated series of fields containing a single
character as identifier, followed by an equal-sign (=) and then the value of the
field (= « indicates that the field is optional). There are three main sections
in the SDP format to group the fields. The sections are Session, Time and
Media that contains fields and values to either describe the current session,
the timing or the media in the stream. Some relevant fields are displayed in
Table 2.3.

Real-Time Transport Control Protocol

The purpose of the RTCP is to supply statistics on the RTP media stream.
The statistics are transmitted both to the sender and the receiver of the media
stream and the purpose of the statistics, is to detect transmission faults and
can be used for adaptive media encoding on the server side. RTCP runs side by
side with a RTP stream and can manage timing between a stream of video and
a stream of audio. The RTCP standard is described in RFC3550 [SCFJ03].

18 Chapter 2. Analysis

Session Description ‘ Time Description Media Description

v = (protocol version)
o = (originator and ses-
sion identifier)

s = (session name)

t = (time the session is
active)

a = * (zero or more ses-
sion attribute lines)

m = (media name and
transport address)

a = * (zero or more me-
dia attribute lines)

Table 2.3: Some relevant fields in SDP. Source RFC 2327 [HJ98].

Since RTP can multicast, RTCP also has to provide this feature. In multi-
casting, the traffic increases proportionally with the number of participants.
To avoid network congestion, RTCP has built-in bandwidth management by
dynamically controlling the report frequency.

RTCP has the following message types:

Sender Report (SR) is sent by the server in controlled frequencies. It holds
information such as an absolute timestamp, allowing RTP streams with
video and audio to be synchronized.

Receiver Report (RR) is sent by the client. It holds information on the
quality of service.

Source Destination (SDES) is source identifier information, as a canonical
end-point identifier or CNAME to all the participants. It may also be
information such as stream-owners e-mail or stream description.

End of Participation (BYE) is sent to signify a closing stream, or a par-
ticipant leaving the session.

Application-specific Message (APP) is used for application specific ad-
ditions to the stream. Can be used, if extra (custom) information is
needed, for the application.

2.7. Other Solutions 19

Real-Time Streaming Protocol

To give the client the ability to control a stream. It is designed to send simple
commands between client and server, such as PLAY or PAUSE, to control the
media stream.

RTSP is another independent Application layer protocol that are often used
together with RTP, but not only minded on RTP. RTSP normally use TCP
as Transport layer. The standard of RTSP is defined in RFC 2326 [SRLIS].

A short description of the possible commands are listed below.

OPTIONS will return the enabled request types the server has available for
the current session.

DESCRIBE is to provide a description of the stream available. This is de-
scriptions formed in SDP format (seen in Section 2.6.3), and holds the
same kind of information.

SETUP is performed to start up the stream session and must be done before
a PLAY request. The request specifies how the stream is transported.
Contained in the request are the Uniform Resource Locator (URL) and
port for the RTP and/or RT'CP stream. Server response is the needed
information for the streams to run.

PLAY is to start the stream. The PLAY request can be combined with a
range parameter, to play a certain part of the stream.

PAUSE it to simply pause the stream. The stream will resume when using
the PLAY request again.

RECORD is to a stream from the client to the server, for storage.

TEARDOWN is to stop and terminate the session and media streams.

2.7 Other Solutions

A number of other solutions exist currently to stream games and play them
remotely, which have different uses and applications. Such solutions include
OnLive and StreamMyGame, as well as solutions currently under development,
such as Games@Large and Gaikai. These applications share the ability to run
games on one machine, while streaming the visual and audial output to a
client on a different machine, allowing this client to be the player of the game.
They, however, have different motivations, implementations and uses, of this
functionality, and they are described below.

20 Chapter 2. Analysis

2.7.1 OnLive

The OnLive [TealOb| service provides a game streaming service, as well as
servers to stream the game from. A user of OnLive would sign up for the
service, download a small client application. After having purchased access
to a given game, the user will be able to run the game on OnLive’s data
centres, and stream it to their end user client. This allows a user to play high-
end games on low-end machines. The service also provides for the usage of
a MicroConsole, which is similar to a set top box, connected to a compatible
HDTYV, which allows a user to play OnLive games directly from their TV.

The service also provides a variety of community related features, such as
spectating or cross-game chat. The software and hardware used for OnLive
are proprietary, and as such it is difficult to descern how OnLive implements
streaming, input handling, and other features. OnLive is available in the
United States and in Europe, and was generally received well [BA10], some
concerns do remain about how this service will perform under massive pressure,
such as the millions of users on Steam [Stel0].

2.7.2 StreamMyGame

StreamMyGame [TealOc| is a software solution to stream games from one
computer to another, the difference between StreamMyGame and OnLive, is
that while OnLive requires you to use their servers and pay to stream and play
the games, while StreamMyGame has you set up your own server with your own
games that you or others can connect to using the StreamMyGame application
and play remotely. It can be used both over Local Area Network (LAN), but
also over the Internet if the users and server have sufficient bandwidth for the
service. Other features of StreamMyGame includes allowing the user to record
their gameplay for upload to media sites such as YouTube.

The service is free to use, however, if a user wishes to provide streaming in high
quality, then a subscription fee is required. The software for StreamMyGame
is thus also proprietary, and unavailable for examination, so it is impossible to
know the implementation details of the service and components.

2.7.3 Under Development

Several other solutions dealing with streaming games remotely in some form
are under development, some of them as a response to OnLive. One of these is
Gaikai [TealOa], which uses streaming of games to allow users to play games
to demo the experience right in their browser using Flash, before purchasing
the game. Gaikai is currently in closed beta.

2.7.3. Under Development 21

Another system under development is called Games@Large, which is detailed
in a series of research articles [JBDG109]|, [JBDGT10], [LLJ*10] and [JFET09].
This service aims to allow streaming of games to some extent, the status of
the development of this service is as of this time unknown, however.

CHAPTER 3

Design

This chapter provides an overview of the design proposed for a final
implementation of the project. It describes the architecture of the
service, the various components, details about the service as a whole
and how the service should be incorporated as a Client/Server net-
work architecture. The architecture also details which components
make up the client and the server, and which of the many protocols
are used to connect the functions of the client and server together.

3.1 Choice of Protocols

Prior to defining an architecture for the proposed GoD-service, this section
considers choices for the different protocols needed in the various functions
in the service. The different functions of the service require different services
from the chosen protocol, as argued in Section 2.6. Thus it makes sense to
choose a seperate one for each functionality, based on its use.

For the Authentication part of the service, the TCP has been chosen. This is
based on the need for a reliable, two-way connection between the client and
the server. The TCP is designed for creating a reliable connection between
two end parties, which makes TCP a reasonable choice.

UDP is an ideal candidate for the Input Handling functionality. Lost packets
can be tolerated since input is often repetitive. Speed is also an important
factor for the choice of protocol, for the input messages, as low latency and
response is essential in many games. UDP is designed for timely deliveries,
which makes it useful in this functionality.

To implement the streaming service, RTP has been chosen, which works on top
of UDP. This protocol has been developed specifically for streaming video and

23

24 Chapter 3. Design

audio, and is therefore optimized for the purpose. RTP is also standardized
and is supported by many existing implementations.

All the background analysis for these choices can be found in Section 2.6.

3.2 Service Architecture

The architecture proposed for the final service is detailed in this section, it
is the ideal architecture for a completed service. Not all of it will be imple-
mented. It details both the client and the server part of the service, as well as
each of their components. The architecture schematic also includes abstrac-
tions over the various protocols used to communicate between the components
of the client and the server based on the analysis in Section 2.6. The proposed
architecture for the service is depicted in Figure 3.1. In Figure 3.1, service
components are depicted using boxes, while client-/server- functionality is de-
limited by dashed lines.

As shown in Figure 3.1, the architecture consists of a client and a server.
These components come together to provide different functions to the entire
service, and it gives a satisfactory overview of how the complete service is en-
visioned. These components are also intended to use many of the approaches
and techniques described in Chapter 2. The server components and the client
components are explained in the following sections, and the functionality pro-
vided by collaboration of components, is described in Section 3.3.

3.2.1 Server Components

As seen in Figure 3.1, the server consists of a number of different components.
To provide a better understanding of the server architecture, this section ex-
plains the components one by one. A more complete description of the server
components’ collaboration and use is in Section 3.3.1. Notice the dashed lines
in the server side of Figure 3.1 represents an opportunity to split the service
between application implementations or, for a more final implementation, it
can signify splitting of the components over a number of servers in a cluster.

The server components are as follows:

Game Process The actual game, played by the user on the client. For a non
demanding game the server might be able to run more than one game.

Video/Audio Capture The capture of video and audio from the game pro-
cess, done by hooking into the process.

3.2.1. Server Components

Client Server

[
[
Game Process

i

Video/Audio
Playback Capture
Decoder Encoding

i

Receive

1

Transmission

Input Receiver

'

Input Processing
Queue

Input Capture

:

Input Transmitter

Bootstrap, Setup,

Login/Connect Game Launch

Storage
Profile
Games

Saves

Figure 3.1: Streaming Service Architecture

Encoding The codec chosen to encode the captured video and audio, so it is

suitable for transmission over the network.

Transmission Transmitting the encoded frames over the network using the

RTP protocol.

Input Receiver UDP socket receiving the sent input from the client.

Input Processing Queue Queue of received input from the client that is to

be fed to the game process.

26 Chapter 3. Design

Bootstrap, Setup, Game Launch Initial connection handshakes with the
client, setup of connections and launching of the chosen game, as well
as loading the profiles and saves associated, using TCP. For a final
implemented solution, this component would be a reasonable choice for
a resource manager in the cloud of game servers. It could be responsible
for choosing a server to run the game for the client.

Storage Storage of the game software, user profiles and game saves.

3.2.2 Client Components

As the server part in Figure 3.1, the client also consists of a number of com-
ponents. This section explains the components of the client side. Contrary
to the server, the dashed lines only signify the possibilities of dividing the
client-part into different executables. It will make more sense to have all the
components implemented in a single client application though. The Video/Au-
dio component however, could be made as a standalone part, if the service is
set to multicast the video feed to other interested viewers. More details on
the correspondence between the various components, will be found in Section
3.3.2.

The client consists of the following components:
Video/Audio Receiver Receiver of the RTP packets, containing the en-
coded frames from the server.

Decoder Decoder of the encoded frames, so they can be displayed on the
client-side.

Playback Display the decoded frames as video with sound on the client.

Input Capture Capture the raw input from the user who is playing the game
remotely.

Input Transmitter Transmit the raw input to the server using UDP.

Login, Connect Connect, login and authenticate with the server to load the
appropriate profiles, saves and games on the server using TCP.

3.3 Functionality of Server & Client

The different components work together in a multitude of ways to create dif-
ferent parts of the service, for example, the video capture, encoding and trans-
mission part of the server work together to create the game streaming func-
tionality. Some of these functions could possibly be divided to run on multiple

3.3.1. Server Functionality 27

machines if relevant, such as the login and connection bootstrapping function-
ality. This could profitably be run on a dedicated authentication server, tuned
for handling these types of requests. The other parts of the server service,
devoted to running and streaming the games, could be handled on machines
optimized for games.

3.3.1 Server Functionality

This section follows up on the architecture in Figure 3.1, with more details
about the collaboration between the components of the server part. The server
is divided into three different major functions; Game Streaming, Input Han-
dling and Authentication, which are elaborated in the following sections.

Game Streaming

The Game Streaming part of the server encompasses hooking into the actual
game process, intercepting the frames and streaming the game as a video
feed. The intercepted frames are passed to the encoding component, which
encodes the frame using the chosen H.264 encoder. Once properly encoded,
the frames are passed to the transmission component, which encapsulates the
frame in an RTP packet. The packet is transmitted, over the IP-network,
to the client. The game process that is hooked, is fed input from the Input
Handling functionality.

Input Handling

The components that make up the Input Handling functionality on the server
are tasked with receiving the input from the client, which are sent using UDP
datagrams. Once received and unwrapped, it will be enqueued in the input
queue for the appropriate game process. The queued input is fed into the game
process, which handles it as if the user had been playing locally. The new game
state is then displayed for the client, via the Game Streaming functionality.

Authentication

The Authentication functionality of the server is for the clients of the GoD-
service, to authenticate and login to the service. If the service is run on a larger
scale, in a server cloud, the Authentication component could run on a different
server, dedicated to authentication requests. The idea is that clients wishing
to use the streaming service, establish a TCP connection to the authentication
server, login using their username and password, and then pick whichever of

28 Chapter 3. Design

their games they want to play via the service. The games, profiles, saves along
with other persistent data, are stored on a different dataserver and loaded
to a server suited for running the game. The RTP and UDP services of the
input and streaming parts can begin communicating with the client after it
has authenticated.

3.3.2 Client Functionality

The functions of the client, depicted in the architecture 3.1, is detailed in this
section. This is a description of how the different components in the client
communicate and create a complete functionality for the client. The client is
divided into three different major functions; Game Streaming, Input Handling
and Authentication, which are elaborated upon in the following sections.

Game Streaming

The client houses a Game Streaming part. This involves receiving the incoming
RTP packets from the server, and unwrapping these packages, to extract the
encoded video and audio data inside. These encoded frames are sent to the
decoder, which decodes them using the chosen codec, so they can be displayed
on screen for the user. Ideally this process can happen without significant
delay, so the user can play the game properly.

Input Handling

Input Handling is done by the client, so the user’s input, meant for the game,
can be captured and sent to the server and thereby delivered to the actual
game process. The Input Capture component captures the raw input directly
from input devices, so the client is not concerned with determining which
buttons were pressed. This input is sent to the server via UDP datagrams to
be received by the game process in the end.

Authentication

Concerning login and connecting to the service, the client has a component,
that will establish a TCP connection to the server. This allows the client to
enter needed login information, thus assuring security for the games and the
users persistent data. Once logged in, the client can select which game to play
and load profiles, to use the service properly.

CHAPTER 4

Prototype

In the Prototype chapter, it is detailed how the prototype parts of
the streaming service are actually implemented. This includes in-
formation on development tools used for the project, arguments for
choice of the language C++, detasls on how the various third party
libraries contribute to the implementation, as well as the C++ code
that tie these third party libraries together. This chapter also ex-
plains several significant problems encountered during the imple-
mentation process.

It has been chosen to only implement part of the proposed service from the
architecture in Chapter 3.2. Only the streaming part of the service is actually
implemented and functional, using various third party libraries.

4.1 Development Tools & Language

For the development of this prototype, the choice of programming language
is C++. A primary reason for this choice is that Taksi is written in C++
and that the implemented features (such as hooking and capturing, which are
outside the scope of this project) in Taksi forms an important base for the
service.

Taksi was initially created as a Microsoft Visual Studio project, so it was
chosen as development environment for continued work on this project. The
prototype consists of a Taksi project and the needed libraries from Jori’s Real-
Time Transport Protocol Library (JRTPIlib), an implemented RTP server to
stream the data and debugging utilities implemented to locate problems in the
implemented prototype and execution flow.

29

30 Chapter 4. Prototype

4.2 Components

This section details the implementation of the various components that make
up the streaming part of the service. This includes many third party libraries,
as well as code that make these third party libraries work together.

4.2.1 Video Capture

The video capturing components used in the service are implemented using an
open source program and library called Taksi, described in Section 2.2.2. The
Taksi program allows for hooking directly into a running game, and captures
frames directly from the backbuffer of the game.

Taksi is used nearly as is, with a few modifications. Instead of writing the
captured frames to a video file on the disk, Taksi has been modified to send
these encoded frames to the RTP server to be further processed. The Taksi
default Graphical User Interface (GUI) is still used as GUI for the streaming
service, as it starts sending as soon as Taksi hooks into a process and starts
recording.

The main change done to Taksi is in the CAVIFile.cpp file, where the frames
are sent to the RTP server, instead of being written to the file. This is shown
in Code Example 4.1.

1337 SendPackage (pCompBuf, (size_t) nSizeComp);
1338 dwBytesWrittenTotal +— (DWORD) nSizeComp;

Code Example 4.1: The code inserted into the Taksi program, that sends
frames to the RTP server.

In this code, the SendPackage method is used, while the original Taksi code
that writes to a file on the disk has been out commented. The SendPackage
method takes a pointer to whatever data is to be sent, and the length of this
data as arguments. The second line increments the internal Taksi counter of
how many bytes have been written so Taksi knows that it is making progress
with its frames.

4.2.2 Encoding

The Taksi program, that is used as a base for the capturing, furthermore allows
for a choice of a VFW encoder to easily be used to encode the frames into an
appropriate format. For this the x264vfw encoder [xT10], has been chosen.
This encoder allows several different customization options, related to speed
and quality of encoding, which can be seen on Figure 4.1.

4.2.3. Transmission 31

x264vfw configuration - S l — et)
Basic Encoder
Preset: Tuning: Profile: Level:
Ultrafast ﬂ ‘ None j |A|.rlu j |A|.rlu j
Fast Decode v
Zero Latency v libx264 core 107 r1745bm 4785 8e
Rate cortrol Sample Aspect Ratio
Single pass - quantizer-based (CGF) j SAR width ’17
Guantizer ’517 SAR height ’17
] Debug
1 {High quality) {Low quality) 51 Log level None <
I Create stas file M
Stats file: M
|. %264 stats J Disable all CPU optimizations r
Output Decoder & AVl Muxer

Cutput mode: VFW FourCC:
G ~| [h284 +| I VitualDub Hack

25 FFMPEG

Cutput file:
[Disable decoder v
Extra command line for advanced users)
2]
Load Defaults Build date: Oct 18 2010 22:55:45 0K | Cancel |

Figure 4.1: A screenshot showing how the H.264 encoder has been configured.

In order for the basic streaming service to work, the settings for the encoder
have been set to fastest encoding speed and lowest possible quality, this can
be seen in Preset being set to “Ultrafast”, and Quantizer being set to “Low
Quality”. This is done so the streaming service actually works, due to RTP
library used for transmitting packages not supporting splitting of the packets
for bigger payloads. If packet splitting was implemented, the quality of the
encoding could be increased, but the fast speed of the encoding is still a factor.

4.2.3 Transmission

The implementation of the RTP server is created as a Microsoft Visual Studio
project called RTPService. This is the setup of the RTP server with all the
necessary initial configurations and it also holds the SendPackage method.
The RTPService is the connection between the encoded video data from Taksi
and the JRTPlib RTP library.

In Code Example 4.2, the includes, defines and global accessible variables for
the RT'PService project are shown.

1 #include "RTPService.h'
2 #include "PracticallUtils.h"

32 Chapter 4. Prototype

3 #include <crtdbg.h> //for _ASSERT
4 //JRTP includes

5 #include "RTPSession.h"

6 #include "RTPIPvjAdddress.h"

7 #include "RTPSessionParams.h”

8 #include "RTPUDPv4Transmitter.h"

10 #define MCAST IP "239.216.30.54"
11 #define MCAST PORT 4000
12 #define SERVER PORT 5000

14 #define MAX PACKET SIZE ((1024 % 64) — 1)

16 PracticalUtils utils("RTPSerwvicelog.tzt");
17 RTPSession rtpSession;

18 int counter = 0;

19 bool sessionCreated = false;

Code Example 4.2: The RTP server component. Includes, defines and variable
initialization.

More detail of Code Example 4.2 is in the following line-by-line description:

Lines 58 are the references to include the needed methods of the JRTPlib.

Lines 10—14 are defines of the constants for the server setup. Notice that the
IP of the server in RTPService, is set for multicasting. This is to enable
testing of the multicasting possibilities of the service. Otherwise the
ports for the server and service, and a delimiter for a maximum package
size are defined here.

Lines 16-19 holds initialization of some globally accessible variables needed
primarily for debugging, but also to store the created RTP session in a
location reachable by all the methods that need it.

The first step towards creating the RTP server, is to initialize a Windows
Socket, to use in the RTP server. Code Example 4.3 indicates how this is done
using the WSAStartup method.

58 int InitRTPStream()
59 {
60 utils.logThis("InitRTPStream ezecuted...");

62 //WSACleanup called in StopRTPServer

63 WSADATA wsaData;

64 WORD wVersionRequested = MAKEWORD(2, 2);
65 WSAStartup(wVersionRequested, &wsaData);

67 return RunRtpServer();
68 }

4.2.3. Transmission 33

Code Example 4.3: The RTP server component. InitRTPStream method.

As seen in Code Example 4.3, the Init RT PStream executes the RunRtpServer,
which is responsible for starting the RTP server using the JRTPlib. The
RunRtpServer can be seen in Code Example 4.4.

80 int RunRtpServer ()

81 {
82 int res = 0;
83 utils.logThis("RunRtpServer ezecuted...");

85 //setup session parameters

86 RTPSessionParams sessParams;

87 sessParams.SetSessionBandwidth (MAX_PACKET_SIZE);

88 sessParams.SetOwnTimestampUnit (1.0 / 30.0); //80 wideo
frames per second

80 sessParams.SetUsePollThread(l); // Background thread to call

virtual callbacks

90 sessParams.SetMaximumPacketSize (MAX_PACKET_SIZE);

91 //setup transmission parameters

92 RTPUDPv4TransmissionParams transParams;

93 transParams.SetPortbase (SERVER_PORT) ;

95 //CREATE THE SESSION

96 utils.logThis("Creating RtpSession...");

97 int status = rtpSession.Create(sessParams, &transParams);
98 if (ReportError(status))

99 return —1; //unable to create the session

100 utils.logThis ("RtpSession created with portbase " + utils.
itos (SERVER_PORT) + "\n");
101 sessionCreated — true;

103 //SET TRANSMISSION DEFAULTS

104 rtpSession.SetDefaultPayloadType(96);

105 rtpSession.SetDefaultMark(false);

106 rtpSession.SetDefaultTimestampIncrement (160);

108 //ADD THE MULTICAST to our destination

109 unsigned long intIP = inet_addr (MCAST_IP);

110 _ASSERT (intIP != INADDR_NONE);

111 intIP = ntohl(intIP); //put in host byte order
112 RTPIPv4Address rtpAddr(intIP, MCAST_PORT);

113 status — rtpSession.AddDestination(rtpAddr);

115 // Only if there are an error, this will have an impact.
116 ReportError(status);

118 return status;
119 }

Code Example 4.4: The RTP server component. RunRtpServer method.

34 Chapter 4. Prototype

Further details on what RunRtpServer in Code Example 4.4 does, is in the
following line description.

Lines 86—-93 creates and defines session parameters. These parameters define
the maximum packet size allowed to be sent, a timestamp unit based on
having 30 frames per second and the server port for the transmission.

Lines 96—101 creates a session based on the session parameters defined in
lines Lines 86—93.

Lines 104-106 defines default transmission parameters. One of these is pay-
load type, which is chosen to be 96 as this is one of the non-reserved
payload types for dynamic types. Another is whether the single packet
should have the marker bit set, by default. The third default parameter
is the timestamp increment between packages.

Lines 109-113 sets the defined multicast ip address to the session.

Lines 116—118 checks if errors occurred when creating the session and re-
turns the result.

At this point, a socket is opened, the server is started and a session is created.
Code Example 4.5 shows how the prototype sends the data from the Taksi
library to the RTP session. Notice that lines 33—52 are all for debugging and
uses more computational resources.

21 int SendPackage(const void xdata, size_t len)

22 {
23 int res = 0;
24 utils.logThis("SendPackage ewecuted...');

25 utils.logThis("”Sending Package of size " + utils.itos(len));

27 if (!sessionCreated)

28

29 utils.logThis("foops, session not created..");
30 InitRTPStream();

31}

33 #ifdef DEBUG

34 voidx localData = malloc(len);

35 size_t locallen = len;

36 memcpy (localData, data, locallen);

38 if (counter < 60)
39

40 string filename = "PointerDumps - SendPackage - Serwver " +
utils.itos(counter) + ".tzt";
41 charx charfilename = new char|[filename.size() + 1];

42 strcpy(charfilename, filename.c_str());

4.2.3. Transmission 35

44 utils.DumpPointer (charfilename, localData, locallen);

46 ++counter;

47 delete charfilename;

a8}

50 res — rtpSession.SendPacket(localData, locallen);

51 utils.logThis("Status of the send package: " + utils.itos(
res));

52 #else

53 res = rtpSession.SendPacket(data, len);

54 #endif

55 return res;

56 }

Code Example 4.5: The RTP server component. SendPackage method.

Further details on the lines of Code Example 4.5 are in the description below.
The lines marked with “Debugging” are lines only run in a debug-build.

Lines 27—-31 makes sure that a session has been created. It is important that
the session is properly created before the the RTP-server tries to send
anything, else it will fail. The SendPackage method is also responsible
for starting the RTP server at first run, it will also fail however, if it tries
to create a second session.

Lines 36-48 (Debugging) These lines are explained in detail in Section 4.4
about debugging tools used.

Lines 53—-55 simply sends the data to the RTP session, which builds a packet,
transmits it over the network and finally returns the status of the trans-
mission.

During the prototyping, a problem with the video stream not displaying cor-
rectly on the client side, caused many different experimentations with the
prototype. Most of this experimentation is mentioned in Section 4.4 about the
debugging tools created and used in the prototype, while Section 4.3 about
the difficulties, describes the most important problems that were faced during
the prototyping. The experimentations also lead to a threaded version of the
RTP service, which is also mentioned in further detail in Section 4.4. Both
the server prototype source codes are located on the CD-ROM attached as
appendix.

36 Chapter 4. Prototype

4.2.4 Receiving, Decoding, Playback

To avoid having to implement a complete prototype client, video decoder and
player, it was chosen to use VideoLAN Client (VLC) to view the RTP stream.
VLC is freely available as open source and feature, amongst other things,
the ability to receive RTP streams, decode H.264 video and display the video
frames. This is an easy way to test the streaming of video.

To ease the process of testing the stream and opening the video feed in VLC,
an SDP-file was created. This file was created with the knowledge of Section
2.6.3 about SDP. The contents of the file is seen in Code Example 4.6.

o=VideoServer 305419896 9876543210 IN IP4 239.216.30.54

s=VideoStreamTesting

t=0 0

c=IN IP4 239.216.30.54

m=video 4000 RTP/AVP 96

a=rtpmap:96 H264/90000

a=fmtp:96 packetization—mode=0; profile—level—id=4D4033; sprop
—parameter—sets—Z01AM5ZkBQHtCAAAAwAIAAADAYR4wZU=,a048g)—

N O O e W N

Code Example 4.6: The SDP file used to receive from the streaming service.
The lines of Code Example 4.6 are explained in the following description.

o contains an identifier for the session and the originating ip of the session.
This is defined as the multicast ip the server was set to use.

s contains a simple name for the session.

t specifies the time in which the session is active, this is zeros because there
are no limits on this.

c is another line indicating the origin of the session, still refers to the multicast
ip set for the server.

m is the media name and a transport for the address. It specifies that video is
sent on port 4000, using RTP and that this video feed uses the dynamic
payload type of 96.

1. a is an attribute that informs that the stream identified by payload type
96 is an H.264 stream with a clock rate of 90000. This is a demand
proposed for the standard in RFC 3948 [HSVT05].

2. a holds sequence parameter and picture parameter sets (sprop-parameter-
sets). Without these, the decoder would not be able to properly decode
the image. This is a base-64 encoded representation of the bits that
indicate profile id, level id flags and chroma and luma information and

4.3. Implementation Difficulties 37

scaling for the encoded video. The comma seperates the sequence param-
eter set from the picture parameter set. This is all specified to further
detail in the recommendation for H.264 by ITU-T in [itul0].

This information can also be sent inline, for each packet, but this is data
that does not change during the video stream, so it was chosen to save the
bandwidth for the video stream instead.

4.3 Implementation Difficulties

During the development of this project, several difficulties arose, some of
which perhaps were underestimated. The development and implementation
dealt with the key features of encoding and streaming video, which are barely
scratched at the surface in the Analysis Chapter. As such, working with tech-
nically heavy topics such as these demands significant expertise, which cannot
realistically be acquired during a small development period as was the case for
this project. This expertise also had to be built from the ground up, as we
were novices in these fields. Thusly, the development of the streaming service
in this project, is based on a very basic level of skills in the area of video
encoding and streaming. Trying to grasp these topics at a novice level also
meant that debugging errors was made more difficult.

Furthermore, to facilitate development of this service, several third party li-
braries were chosen for specific tasks in the service implementation. Many
of these libraries were the only choice for certain aspects of the service, such
as Taksi, and some of them suffered from being infrequently maintained and
sparsely documented. Other choices were restricted by propriety. Working
with these third party libraries and making them work together in many cases
proved to be a much greater challenge than anticipated, and thus turned out
to be a lot more time consuming and problematic part of the development
process than was originally planned.

4.4 Debugging Tools

As mentioned in Section 4.3, there were a number of problems during the
prototyping. Mostly because it was first time experience with video capturing,
encoding and streaming, but also because different third party libraries are
used. The result was, that we could not be sure where the problems occurred,
so we needed to create our own debugging tools to find the culprit of the
problems. Since many hours were spent on resolving these problems, this
section about the tools used documents the time spent.

38 Chapter 4. Prototype

4.4.1 Practical Utilities

Practical utilities were created as a class of utilities that were useful for debug-
ging the code. These utilities could be used where needed, and proved very
useful in locating the problematic areas of the execution flow.

Code Example 4.7 shows one of a number of simple conversion methods. This
particular one converts from an integer to a string, this is useful to be able
to print the integers or if we need to concatenate it with a string. All the
conversion methods follow the same bagic principle as in Code Example 4.7.

8 string PracticalUtils::itos(int i)

o {

10 stringstream s;
11 s << 1ij

12 return s.str();
13 }

Code Example 4.7: The Practical Utilities. ItoS method.

The LogThis method in Code Example 4.8, is used to log any desired string
to a file with a timestamp. This is a useful feature when we need to create a
log of what has happened at what time. This code has been widely used to
check if the code is executed in a proper manner. Notice that LogThis does
nothing if the build is not a debug build, to save system resources in a release
build.

20 int PracticalUtils::logThis(std::string logthis)

30 {

31 #ifdef DEBUG

32 ofstream out(fileName, ios::app);
33 if (lout) {

34 cout << "Cannot open file.\n";
35 return 1;

36}

38 time_t rawtime;

30 time (&rawtime);

40 out << ctime(&rawtime) << " :: " << logthis << "|n" << endl;
41 out.close();

42 #endif

43 return 0;

44 }

Code Example 4.8: The Practical Utilities. LogThis method.

The DumpPointer method in Code Example 4.9 is used to get the raw data
from any pointer and dump it directly to a file. This method is highly useful
for instance to see whether the data is the same on the client as it was on the
server.

4.4.2. Debugging in RTPService 39

60 int PracticalUtils::DumpPointer (charx FileName, const voidx

ptr, size_t size)

70 {

71 #ifdef _DEBUG

72 FILE xfp;

73 size_t count;

75 fp — fopen(FileName, "w");

76 if (fp = NULL)

77 |

78 logThis("failed to open PointerDumps.tzt");

79 return 1;

80 }

81 count = fwrite(ptr, 1, size, fp);

83 string success;

84 if (fclose(fp) — 0)

85 success — '"succeeded";

86 else

87 success — "failed";

89 logThis("Wrote " + itos(count) + " bytes to PointerDumps.
tzt. fclose(fp) " + success + ".\n");

90 #endif

91 return 0;

92 }

Code Example 4.9: The Practical Utilities. DumpPointer method.

4.4.2 Debugging in RTPService

In Section 4.2.3, the Code Example 4.5 has some debugging lines. These need
some further explaining and are elaborated upon in the following description.

Lines 34-36 (Debugging) creates a local buffer of the video data, and in-

formation of the size of the data. This is done by creating a new pointer
and copying the data to the new pointer, called local Data. This is to test
if it was necessary to create a local buffer for the data, this could have
been a reason for some problems that occurred with the data sending. It
turned out that the buffer is not strictly necessary, but an implemented
First In First Out (FIFO) queue, working as a buffer, might be a good
idea to avoid sending bursts of packets by adding a small delay. This is
backed up in [HP08] which holds simulations of packet loss performance
under varying network conditions with path diversity.

Lines 38-48 (Debugging) dumps the contents of the first 60 pointers with

data, to their own file. This provides the ability to find errors in the

40 Chapter 4. Prototype

application flow. It is possible to see what data the pointer holds at the
moment, and this can be compared with later dumps of the data, either
on the client side or other places in the application flow, to see if the
data is still as expected, and assure that it has not been corrupted or
changed unexpectedly.

Furthermore there is a small method to translate and print error codes includ-
ing descriptions (where available), provided by the JRTPlib as return values.
This method is listed in Code Example 4.10.

70 int ReportError(int errCode)
71 {

72 int isErr = (errCode < 0);
73 if (isErr) {

74 std::string stdErrStr = RTPGetErrorString(errCode);

75 utils.logThis("Error " + utils.itos(errCode) + ": " +
stdErrStr.c_str() + "\n");

76}

7 return isErr;

78 }

Code Example 4.10: The RTP server component. ReportError method.

The ReportError method in Code Example 4.10 is simple. It checks if the
errCode parameter is below zero, if so, it is an error and it gets an error
description string from the JRTPIlib and prints it using the practical utilities.

4.4.3 A Dummy Client

To test the data on the client’s side of the video stream, a small and simple
dummy client was created. This client simply joins the multicast ip group,
and receives any packages that are sent by the server. This dummy client
runs as a console application and also uses the JRTPIlib to handle the RTP
data. When a packet is received by the client, it prints the length of both
the packet and the payload to the screen, and dumps the data to a file using
the DumpPointer method from Code Example 4.9. This it to ensure that all
packages arrive and that the data has not been corrupted on its way.

4.4.4 The Threaded Version of The RTPService

As a solution to the network congestion problem, related to sending bursts of
packages, a threaded version of the RTPService was attempted. The differences
between the threaded version and the other version, is that the threaded server
only sends packages within fixed intervals, and it uses a local data buffer. This

4.4.4. The Threaded Version of The RTPService 41

means that instead of sending the packet as soon as it is encoded, it is stored
in a local buffer in the threaded RTPService and when the fixed interval has
passed, the server sends the contents of the buffer.

This prototype is a bad solution for the problems, because many frameupdates
might be lost, since the local buffer is overwritten for each frameupdate. This
might also mean, that the big reference frames are not sent, which will be bad
for the stream. The buffering for this solution could be improved by creating
a FIFO queue buffer instead of overwriting.

The threaded solution was not inteded as a final solution, it was rather a way
to control when and how often packages are sent during the program execution.
It was an experiment to see how this affected the stability of the stream. The
source for the threaded solution can also be found on the CD-ROM in the
appendix.

CHAPTER 5

Evaluation

This chapter holds the evaluation of the implemented prototype of
the service. It holds small testing experiments, results and evalua-
tion of these and conclusion on the project itself.

5.1 Prototype Performance

This section discusses the implemented prototype. Aspects such as testing, the
performance and what must be done to improve the prototype, are described
in the section.

5.1.1 Testing

Due to the many problems encountered during the implementation of the ser-
vice prototype, it was relevant to perform a series of tests and use various
testing tools to try to debug the complicated mesh of third party libraries
working together.

One of the tests performed was using the tool Wireshark [TealOd], this tool
allows interception of all kinds of packets sent and received on a computer,
and examining the contents of these packets. This tool facilitated interception
of the packets sent by the stream service server, to see if it was actually RTP
packets being sent, and what these packets looked like. This gave some assur-
ance that the service was actually transmitting packets properly, and not just
failing to transmit.

Another type of debugging performed was to implement several package dumps
at various points in the service, as described in Section 4.4.1 and seen in Code
Example 4.9. This meant that the intercepted frame was written to a binary

43

44 Chapter 5. Evaluation

file on the disk before being packetized by the RTP library. Another dump was
implemented after the RTP packet had been created, and the entire packet
was written to a binary file on the server as well. In addition to this, two
dumps were also implemented on the simple dummy client that could receive
the RTP packets, mentioned in Section 4.4.3. This client wrote the received
packet, and the payload of the packets, to seperate files. The package dumps
helped with debugging the service. Even though the binary files were largely
unreadable to a human, they still revealed fatal flaws in the implementation
due to discrepancies in package sizes between what was supposedly sent from
the server, and what was received by the client.

Furthermore, various settings for the encoder were tried. The source of the
problem was uncertain, and it could very well be the settings in the encoder
configuration that produced problems. After getting the video stream to work,
these settings were alsu used to tweak the setup. The configuration options
are easily managable in a GUI for the x264 VFW encoder, as seen in Section
4.2.2.

The SDP settings were also subject to much trial and error. As seen in Sec-
tion 4.2.4 and Code Example 4.6, most of the settings are simple and hard to
set wrong. The sprop — parameter — sets however are in base-64, and origi-
nates from hexadecimal values indicating various flags, luma/chroma settings,
ids and scalings of the video encoding, this therefore was subject to much
experimentation.

5.1.2 Gameplay Performance

Games usually depend on fast responses and update times, so the user can
react to events that happen in the game appropriately, and have a satisfying
gameplay experience. This means a game with a significant delay between
sending input to the game and the reaction in the game, will decrease enjoy-
ment, and perhaps replace any enjoyment with frustration.

The implemented game streaming prototype service, suffers from a significant
delay between the game updating server side, to the client witnessing these
updates. This means that currently the service is not suited for the intended
purpose of game streaming.

5.1.3 Improvements

In order to make the service work properly and to a satisfactory level, a number
of improvements could be made, that could potentially make the service live
up the demands and the gameplay performance requirements.

5.2. Performance of Other Solutions 45

One of these improvements is to implement packet splitting for the RTP server,
such that it is possible to send bigger payloads than the limit of 65Kb, and
have a higher quality image for the client. This can be done by splitting the
payloads up in smaller chunks of less than 65Kb in size, and transmitting
these using the RTP server. The RTP packets’s payloads can be reassembled
by the client, provided each packet that makes up a bigger payload has the
same timestamp, and only increments the sequence number to allow the client
to know how to reassemble the larger payload. The final chunk of the bigger
payload then needs the marker set to signify this. Implementing this type of
packet splitting would allow the service to transmit larger frames, and thus
allow for an increase in image quality.

Another improvement possible, is to throttle the rate at which packets are
transmitted, as discussed in Section 4.4.4 about the threaded version of the
RTPService, this theory is backed up by [HP08| on the packet loss performance
under different network conditions. Too many packets at once, can choke
the network and the client, resulting in higher packet loss and thus lowering
the quality and increase the latency of the service. In order to alleviate this
problem, packet throttling could be implemented in the server, such that only
X packets are transmitted every Y seconds. This could be implemented by
keeping track of the time since the last packet was sent, and then transmitting
another if enough time has elapsed.

These improvements will help better the service, both in quality and latency.

5.2 Performance of Other Solutions

It was possible to test two of the existing solutions available mentioned in
Section 2.7. The two tested solutions are StreamMyGame and OnLive, which
are both proprietary. The fact that none of them are openly available, makes it
difficult to perform precise testing and measurements of delays between input
and reaction. This section provides a subjective evaluation of the solutions.
Both solutions cost a subscription fee, but trial versions are available, upon
which these tests are based.

OnLive offers the ability to play some games on a trial basis. It is simple to
install and it takes short time to get into a game. The look and feel of the
client is good, but playing a game can be frustrating, because there is a delay
long enough to be a nuisance between input and reaction. The games can be
played, but for a fast paced game, it is a delay that will keep many people from
using the service. It is important to point out, however, that the OnLive client
informed it had detected a high latency for the connection, and thus warned
about lowered quality of gameplay experience. This latency issue might be a
result of not having any OnLive servers in Europe yet. Opening the service for

46 Chapter 5. Evaluation

Europe is also a recent development, which might be a reason that no servers
are available locally.

StreamMyGame provides the possibility to setup a server on the user’s com-
puter, and play games remotely. The trial version of this gives full access to
the service, but with reduced resolution. The look and feel of StreamMyGame
is not as professional as OnLive, but it has lower delay. The lower delay in
this case, is due to the server (in the setup we tested it) running on the same
wired LAN as the client, and it may also be because the resolution is small.

5.3 Conclusion

A GoD service is possible and plausible, at the moment two implemented
proprietary solutions of two different types of GoD systems exist. OnLive
stores the games on remote servers, while StreamMyGame allows the user to
setup a server locally. This also means that the experience was very different
between the two services, where the US-based OnLive service suffers from too
much delay when used from Europe, while the StreamMyGame trial version
has too low resolution to be a reasonable comparison. Testing of our own
solution, has shown that when using the service on a wired LAN connection, a
significant delay exists, which meant that it was unsuited for any real gameplay.
This delay can come from encoding speed, package loss, as well as other factors.
Issues such as these can be solved by tweaking encoder settings, choosing a
different encoder, and implementing some degree of package throttling to not
drown clients or stress the network.

A number of different network protocol possibilities for the service have been
analyzed and from this, it was argued which suited the different connection
needs for a finally implemented solution. The result was a proposed complete
architecture of a final GoD service, described and explained in Section 3.2.

Finally a prototype was implemented, to explore what kind of problems existed
and had to be addressed, if such a proposed GoD service was to be finally
implemented. This proved to be no easy task, and the fact that we had novice
experience with many of the parts of such a system, resulted in a very steep
learning curve for solving many of the problems.

It is clear why it has taken a company like OnLive eight years [TealOb| to
perfect such a system. There are certainly many aspects that need to be fully
optimized, for such a system to properly function and even be playable, but it
is certainly possible.

Bibliography

[BA10]

[Gral0]

[HJ98]

[HPOS|

[HSV+05]

[itul0]

[JBDG09)

[JBDG*10]

Rich Brown and Dan Ackerman. Onlive cnet review, 2010.
http://news.cnet.com/8301-17938_105-20009033-1.html.

Kris Graft. Onlive turned on (interview), 2010. http://www.
gamasutra.com/view/feature/5861/onlive_turned_on.php.

M. Handley and V. Jacobson. SDP: Session Description
Protocol. RFC 2327 (Proposed Standard), April 1998.
Obsoleted by RFC 4566, updated by RFC 3266.

Richard Haywood and Xiao-Hong Peng. On packet loss
performance under varying network conditions with path
diversity. In Proceedings of the 2008 International Conference on
Advanced Infocomm Technology, ICAIT 08, pages 106:1-106:7,
New York, NY, USA, 2008. ACM.

A. Huttunen, B. Swander, V. Volpe, L. DiBurro, and
M. Stenberg. UDP Encapsulation of IPsec ESP Packets. RFC
3948 (Proposed Standard), January 2005.

ITU-T Recommendation H.264 : Advanced video coding for
generic audiovisual services, March 2010.
http://www.itu.int/rec/T-REC-H.264-201003-I/en.

A. Jurgelionis, F. Bellotti, A. De Gloria, P. Eisert, J.P.
Laulajainen, and A. Shani. Distributed video game streaming
system for pervasive gaming. STreaming Day, 2009.

A. Jurgelionis, F. Bellotti, A. De Gloria, J.P. Laulajainen,

P. Fechteler, P. Eisert, and H. David. Testing cross-platform
streaming of video games over wired and wireless LANs. In 2010
IEEE 2jth International Conference on Advanced Information
Networking and Applications Workshops, pages 1053-1058.
IEEE, 2010.

47

http://news.cnet.com/8301-17938_105-20009033-1.html
http://www.gamasutra.com/view/feature/5861/onlive_turned_on.php
http://www.gamasutra.com/view/feature/5861/onlive_turned_on.php
http://www.itu.int/rec/T-REC-H.264-201003-I/en

48

Bibliography

[JFE+09)

[KAMOS)

[KGW09)

[Liel0]

[LLIT10]

|OBL*04|

[Per03]

[Pos80]

[Pos81]

[SCFJ03]

[SRLYS]

[Stel0]

A. Jurgelionis, P. Fechteler, P. Eisert, F. Bellotti, H. David, J.P.
Laulajainen, R. Carmichael, V. Poulopoulos, A. Laikari, et al.
Platform for distributed 3D gaming. International Journal of
Computer Games Technology, 2009:1-15, 2009.

T. Karachristos, D. Apostolatos, and D. Metafas. A real-time
streaming games-on-demand system. In Proceedings of the 3rd
international conference on Digital Interactive Media in
Entertainment and Arts, pages 51-56. ACM, 2008.

Aleksander Kostuch, Krzysztof Gierlowski, and Jozef Wozniak.
Performance analysis of multicast video streaming in ieee 802.11
b/g/n testbed environment. In Jozef Wozniak, Jerzy Konorski,
Ryszard Katulski, and Andrzej Pach, editors, Wireless and
Mobile Networking, volume 308 of IFIP Aduvances in Information
and Communication Technology, pages 92-105. Springer Bostonn,
2009. 10.1007/978-3-642-03841-9 9.

Jori Liesenborgs. Jrtplib website, 2010.
http://research.edm.uhasselt.be/jori/.

A. Laikari, J.P. Laulajainen, A. Jurgelionis, P. Fechteler, and
F. Bellotti. Gaming Platform for Running Games on Low-End
Devices. User Centric Media, pages 259-262, 2010.

J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke,
F. Pereira, T. Stockhammer, and T. Wedi. Video coding with
h.264 /avc: tools, performance, and complexity. Circuits and
Systems Magazine, IEEE, 4(1):7-28, 2004.

Colin Perkins. Rip: audio and video for the internet.
Addison-Wesley Professional, first edition, 2003.

J. Postel. User Datagram Protocol. RFC 768 (Standard),
August 1980.

J. Postel. Transmission Control Protocol. RFC 793 (Standard),
September 1981. Updated by RFCs 1122, 3168.

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP:
A Transport Protocol for Real-Time Applications. RFC 3550
(Standard), July 2003. Updated by RFCs 5506, 5761, 6051.

H. Schulzrinne, A. Rao, and R. Lanphier. Real Time Streaming
Protocol (RTSP). RFC 2326 (Proposed Standard), April 1998.

Steam. Steam user stats, 2010.
http://store.steampowered.com/stats/.

http://research.edm.uhasselt.be/jori/
http://store.steampowered.com/stats/

49

[TealOa]
[TealOb|
[TealOc]

| TealOd]|

[WHS*05]

[WSBLO03]

[xT10]

[Zim03)]

Gaikai Team. Gaikai website, 2010. http://www.gaikai.com.
OnLive Team. Onlive website, 2010. http://www.onlive.com.

StreamMyGame Team. Streammygame website, 2010.
http://www.streammygame . com.

Wireshark Team. Wireshark website, 2010.
http://www.wireshark.org.

S. Wenger, M.M. Hannuksela, T. Stockhammer, M. Westerlund,
and D. Singer. RTP Payload Format for H.264 Video. RFC 3984
(Proposed Standard), February 2005.

T. Wiegand, G.J. Sullivan, G. Bjontegaard, and A. Luthra.
Overview of the h.264/avc video coding standard. Circuits and

Systems for Video Technology, IEEE Transactions on,
13(7):560-576, 2003.

x264 Team. x264 sourceforge website, 2010.
http://x264vfw.sourceforge.net/.

Roger Zimmermann. Streaming of divx avi movies. In
Proceedings of the 2003 ACM symposium on Applied computing,
SAC ’03, pages 979-982, New York, NY, USA, 2003. ACM.

http://www.gaikai.com
http://www.onlive.com
http://www.streammygame.com
http://www.wireshark.org
http://x264vfw.sourceforge.net/

APPENDIX A

List of Abbreviations &
Acronyms

VoD Video On Demand 1
GoD Game On Demand 1
APl Application Programming Interface, 5
GDI Graphics Device Interface...........oo i 5
VFW Video For Windows....... ..o 7
HD High Definition 8
MPEG Moving Pictures Experts Groupo .. 8
ISO/IEC International Standards Organization............................ 8
RGB Red, Green & Blue 8
ITU-T International Telecommunication Union............................ 8

IEEE Institute of Electrical and Electronics Engineers

JVT Joint Video Team........ .. e 9
VCEG Video Coding Experts Group.........ooeiiiiiiiii .. 9
FFmpeg Fast Forward Moving Pictures Experts Group.................... 9

MPEG-1 MPEG-1

MPEG-2 MPEG-2

MPEG-4 MPEG-4

H.261 H.261

H.264 H.204 e 10
AVC Advanced Video Coding

51

52 Appendix A. List of Abbreviations & Acronyms

RTP Real-Time Transport Protocol i oot 10
VCL Video Coding Layer 10
NAL Network Abstraction Layer i, 10
TCP Transmission Control Protocol............. i... 14
IP Internet Protocol o 14
TCP/IP Internet Protocol Suite................. 14
FPS First Person Shooter.......... i 14
UDP User Datagram Protocol........o i, 15
IETF Internet Engineering Task Force, 15
SDP Session Description Protocol............ ... i 17
RTCP Real-Time Transport Control Protocol 17
RTSP Real-Time Streaming Protocol 17
SAP Session Announcement Protocol il 17
SR Sender Report 18
RR Receiver Reporto 18
SDES Source Destinationooutitma i 18
BYE FEnd of Participation i 18
APP Application-specific Messageo i 18
URL Uniform Resource Locator..........o i, 19
LAN Local Area Network 20
JRTPIib Jori’s Real-Time Transport Protocol Library 29
GUI Graphical User Interface.......... ... i 30
VLC VideoLAN Cliento e 36

FIFO First In First Out. i 39

	Contents
	Preface
	Introduction
	Problem Statement
	Limitations

	Analysis
	Streaming Methods
	3D Streaming
	Audio/Video Streaming

	Video Capture
	Capturing
	Taksi & Hooking

	Video Coding
	Choice of Standard
	The H.264/AVC Video Coding Standard

	Routing Schemes
	Input Handling
	Network Transmission Protocols
	Bootstrap Connection
	Input Connection
	Stream Connection

	Other Solutions
	OnLive
	StreamMyGame
	Under Development

	Design
	Choice of Protocols
	Service Architecture
	Server Components
	Client Components

	Functionality of Server & Client
	Server Functionality
	Client Functionality

	Prototype
	Development Tools & Language
	Components
	Video Capture
	Encoding
	Transmission
	Receiving, Decoding, Playback

	Implementation Difficulties
	Debugging Tools
	Practical Utilities
	Debugging in RTPService
	A Dummy Client
	The Threaded Version of The RTPService

	Evaluation
	Prototype Performance
	Testing
	Gameplay Performance
	Improvements

	Performance of Other Solutions
	Conclusion

	Bibliography
	List of Abbreviations & Acronyms

