
....

Antonio Arfè, Pierre Deguy, Lou Guillot, Thibaut Le Guilly and
Regis Louge

Android Application for Aalborg

University

SSE3 Project
Sept 2010 - Dec 2010

To be evaluated on January 17th 2011

Department of Computer Science
Aalborg University
Selma Lagerlöfs Vej 300
DK–9220 Aalborg Ø
DENMARK

Faculty of Engineering and Science
Aalborg University

Department of Computer Science

TITLE:

Android Application for Aalborg
University

PROJECT PERIOD:
SSE3,
Sept 1st 2010 -
Dec 20th 2010

PROJECT GROUP:
d522a

GROUP MEMBERS:
Antonio Arfè, Pierre Deguy,
Lou Guillot, Thibaut Le Guilly,
Regis Louge

SUPERVISORS:
Mads Christian Olesen, Arne Skou

CENSOR:
Rene R. Hansen

NUMBER OF COPIES: 8

REPORT PAGES: 84

APPENDIX PAGES: 7

TOTAL PAGES: 92

SYNOPSIS:

Nowadays, all universities provide their
own dedicated intranet systems. However,
only few of them provide students and
teachers features like internal communica-
tion system, context aware information in
the campus and perhaps, all of this acces-
sible from a smartphone.
We propose an Android OS application
dedicated to the students of Aalborg Uni-
versity, capable to achieve two main func-
tionalities accessible from a smartphone: a
Chat System and an Indoor Geolocation
System.
The Chat is based on a Peer-To-Peer ar-
chitecture, no server either administrators
intervention is needed. Building a Zero
Configuration network, the system uses the
XMPP protocol combined with JmDNS in
order to allow students to multicast their
presence over the network and see other
connected users in order to discuss with
them.
The Indoor Geolocation System uses the
access points’ RSS of the already exist-
ing WiFi infrastructure; no administra-
tor’s intervention neither particular hard-
ware is needed. We apply a Finger-
printing methodology. It creates on each
smartphone, with a user-based training, a
database of fingerprints containing sniffed
RSS, BSSID and location-name. An algo-
rithm is later applied to estimate the user’s
location against the database.
The results of different experiments and
several prototypes’ implementation are
also presented. We detail the difficulties
that have been encountered and the pos-
sible solutions using concepts such as elec-
tion algorithms, the final results and future
improvements.

2

Contents

1 Introduction 5
1.1 Summary . 7

2 Requirements 8
2.1 User’s requirements . 8
2.2 System’s requirements . 8

3 Prerequisites 13
3.1 Indoor Geolocation and Smartphones . 13

3.1.1 Geolocation: the broad picture . 13
3.1.2 Geolocation in Android based smartphones 20

3.2 Chat Systems Technologies . 21
3.2.1 Existing Chat Systems . 21
3.2.2 Overview of the Architectures . 22
3.2.3 Peer-To-Peer system middlewares . 26
3.2.4 Pure Peer-To-Peer XMPP Middleware: Smack API and the XMPP ex-

tensions . 28
3.2.5 XMPP security considerations . 33

4 Experiments 34
4.1 Wireless Received Signal Strength fluctuations 34

4.1.1 Merging the Probabilistic Analysis with the Distribution graphs information 43
4.1.2 Comparison with the Redpin Experiment 44

4.2 The basic sniffer application on Android . 46

5 Design 48
5.1 Indoor Geo-positioning on a smartphone: Feasible approach 48

5.1.1 Feasible Technologies . 48
5.1.2 Feasible Methodologies . 48
5.1.3 The Design of the Fingerprinting system 51

5.2 Chat Design . 56
5.2.1 Feasible Chat middlewares . 56
5.2.2 Feasible technologies to set up P2P networks 57
5.2.3 Setting up the P2P chat system using XMPP and JmDNS 57

6 Implementation 60
6.1 Geolocation Prototype . 60

6.1.1 Introduction . 60
6.1.2 Application Class Description . 61

3

6.1.3 Positioning Algorithm . 64
6.2 Peer-to-Peer Chat Prototype . 65

6.2.1 Introduction . 65
6.2.2 First Prototype: Multicast Issues on Android Phones and the University

network . 65
6.2.3 Second Prototype: Using the Link Local Smack API 73
6.2.4 Third Prototype: JmDNS Presence . 76

7 Conclusions 78
7.1 The Geolocation System . 78

7.1.1 The accuracy . 79
7.2 The Communication System . 80
7.3 Future Work . 81

7.3.1 Geolocation . 81
7.3.2 Chat . 81
7.3.3 Merge the Geolocation and Communication systems 81

References . 84
Appendix . 85

Long time experiment graphs over AP2 and AP3 85
Long and Short experiment, mass distribution of the data 85
Geolocation Testing and Accuracy . 85
CD-Rom . 91

4

Chapter 1

Introduction

People, and especially the new generation, spend more and more time using new technologies:
computers, mobile phones, MP3 players and similar devices are essential for anyone. In ad-
dition to this, now more than ever, these devices are constantly connected among each other,
often using the Internet as a common medium, eventually creating a large, highly mobile and
ubiquitous network.

Looking at this from a student’s point of view, without access to the Internet, he could not
access his courses’ schedule, register to courses, receive or send e-mails and be quickly aware of
the latest news concerning exam dates, meeting times or simple Friday bar meeting. In addition
to that, if we think about new students just arrived at the university (number which could have
an order of hundreds of people in Aalborg University), they are also in strong need of guidance
through all the services which are offered. These can be printers or wireless networks, library
access or secretary opening hours. Moreover, a lot of new students could be wondering: “Where
am I in the campus right now? And where is the main Auditorium?”.

Hence, for this purpose, the Internet is even more effective when provided on a phone, since
a student will usually be in need of these information when he is around the campus, in his
department, or just going from his room to the library, wondering if the latter would still be
open. The type of access to the Internet, through a mobile, makes the communication and the
retrieving of information “real-time”.

Moreover, nowadays a smartphone is inevitable in a student’s pocket, and in order to realize
our SSE3 project, we decided to develop an application that might be useful for the students of
Aalborg University (AAU). The main idea we had in mind concerned the possibility for a student
to fetch information on his mobile using the university website (or specifically the department’s
website). Then we thought that it could be practical for teachers to directly communicate
with students, maybe with a chat system, and last, for students to know where they are in the
campus, allowing possibility to receive context-aware information. Eventually, our application
focuses on two features that demonstrated to be the most challenging, summarized below:

• Communication among students and teachers in the campus area.

• Geolocation of a student in the campus.

The application will be helpful for the students as well as the teachers. It will make commu-
nications easier and more straightforward. For a teacher it could be possible to cancel a course
shortly before its beginning, or just to change the room without having to go around looking for
the students who did not know about the last-minute changes. With the Geolocation feature,
new students will be able to get quickly use to the new campus, classrooms, buildings and other
facilities.

5

Figure 1.1: Market Share of Android Phones and iPhone from January 2010 to August 2010

Having well defined the main purposes, we immediately went through an important choice:
to make this application as useful as possible and to reach a large amount of people, we had
to choose between the two most popular mobile operating systems: Android OS and iPhone OS.

As students interested in new technologies, we have observed the growing of Android over
iPhone all around the world and especially in Aalborg University. To confirm this observation,
the Nielsen company [19] published a survey on acquired smartphones from January to August
2010. We see in Figure 1.1 that Android has climbed and is now the most popular operating
system. These two kind of smartphones combine cell phone, email, internet, camera, GPS and
other features. Apple phones provide an intuitive interface on a large and clear screen, and
its security is reinforced by the fact that Apple must approve all applications distributed on
the Apple Application Store. On the other hand, Android is an open platform, thus, manufac-
turers have the choice of which hardware to use and developers do not need a license to program.

By combining all these points, we thought that for our university it would be better to
provide an open application, not specifically bounded to any vendor, either of software or
hardware. That meant targeting the Android OS. Moreover, if the trend of Figure 1.1 will be
confirmed in the following months, the number of sold smartphones equipped with Android OS
could rapidly increase, giving the possibility to our application to reach a longer life-cycle and
more possibilities of testing/improvements. This choice will also give us the ability to try the
application on different mobiles, since the Android OS is available for several devices, thing
which is not possible when using the Apple iOS only available on iPhone and iPad.
Our attempt is then to provide AAU with an Android application that responds to the students’
needs in terms of communication and context-aware information through the possibility of
knowing where they are.

6

1.1 Summary

As the application is formed by two different parts, namely, the communication among students
and the location service, the report will usually provide two different sections in each Chapter.
The first one regarding the location and the other one regarding the communication system.
This would hopefully bring clarity to the whole report, avoiding to mix requirements, prereq-
uisites, design choices and implementation descriptions which are related to two completely
different topics. The remainder of this report is structured as follows:

Chapter 2 shows the requirements of our project, both in terms of user requirements and
in term of system requirements. In Chapter 3 we describe the prerequisites for the two main
parts of our application. Concerning the location, Section 3.1 gives an overview of different
Geolocation techniques, to later go through the existing technologies and the methodologies
built upon them. We finish the section by providing information about how to use Geolocation
technologies on Android based phones. The other section 3.2, concerning the Communication
System, which we implement in the form of a chat, starts describing three of the most famous
chat systems available nowadays, chosen for their different architectural designs. Later on in the
section, we formalize advantages and disadvantages of the two main architectural design possi-
bilities: the Client-Server and the Peer-to-Peer (P2P). Then we focus on giving an insight on
some middlewares which provide P2P communications. We conclude this section by introducing
pure P2P XMPP middleware and some security considerations about the XMPP protocol.

The following Chapter 4, reports the experiments we have made to strengthen our under-
standing of the Geolocation topic. Section 4.1 provides the result of an experiment concerning
the power fluctuations of wireless signals in an indoor environment. Section 4.2 explains our
attempt to build a basic sniffer application using the Android OS, to test the ease of use of the
Geolocation technologies provided by the Google OS.

The next Chapter 5 provides key aspects of our design. For the Geolocation, Section 5.1,
based on the knowledge acquired in the prerequisites, gives the reasons why we chose the wire-
less technology and the Fingerprinting methodology. Moreover, the high level design of the
system and its components’ interactions are shown as well. Section 5.2, shows the Design of the
Chat system. We discuss the opportunities given by XMPP and the reasons why we preferred
it. Then we present the technologies available to set up a network with minimal efforts, in
particular, a P2P network. At the end, we give an overview of the steps needed to create a chat
connection using XMPP and JmDNS.

Chapter 6 contains information about Geolocation and the Chat prototypes. We will see
first how the Geolocation one (Section 6.1) has been implemented, taking a look at its structure,
and at the positioning algorithm (Section 5.1.3.4) that was used. Then we will go through the
implementation of the different P2P chat prototypes in Section 6.2. The first one will reveal
us multicast issues on some of the Android phones and on the University wireless network.
The second one will test the functionalities of the Link Local Smack API. We will see for this
prototype a deeper description of its structure, and the JmDNS issue that was revealed by it.
The third prototype has been implemented to find out if the previously mentioned issue was
coming from the JmDNS library or from the Smack API.

Finally Chapter 7 discusses the conclusions and possible future work to improve the ap-
plication for both the Geolocation and the Chat system. For the Geolocation the testing and
accuracy results are also provided.

7

Chapter 2

Requirements

This project’s goal is to create an optimal and reliable solution for an Android Application for
the university. Overall, this application will integrate several functionalities. In this part user’s
and system’s minimal requirements are presented.

2.1 User’s requirements

Several requirements could be coming from the choice of creating a Communication/Geolocation
system. We go through them to later pick the most interesting and challenging ones. The first
functionality of the application is the RSS, shown in Figure 2.1 which is meant to show news
from the departments’ RSS feed and it allows the user to subscribe to them. The second one is
the course functionality shown in Figure 2.2, where the user is able to subscribe to courses in
order to have links and information about them. It is directly linked to the third function which
is the schedule. Indeed, for all the selected courses, their schedule appears directly linked to the
information about the different lectures. Then the last basic functionality shown in Figure 2.3
is a simple Frequently Asked Questions that allows the user to have answers and to add new
questions. Moreover, context-aware information, like knowing if the room we are standing in
front is used by a teacher, could also be available.

Having all that figured out, we wanted to focus on the two following functionalities: the real
time indoor positioning and the communication system; this because several other requirements
could be built on the top of these. The first one shown in Figure 2.4(a) will allow the user,
at all time, to know his position inside the buildings. The idea is to create an indoor mobile
Geolocation system for the Computer Science Department at first and for the whole university
in a second time. On the top of it, we could add functionalities such as guidance system or
context-aware information.

The chat system functionality shown in Figure 2.5 will be an indoor chat system which will
allow students to communicate together. There will also be chat rooms where people are able
to discuss about specific topics. This may also allow the teacher to make announcements, last
minute modifications, etc. Incoming events will be announced to the users using notifications,
as shown in Figure 2.4(b), so that it will not be necessary to use the application at all time to
receive them.

2.2 System’s requirements

In order to satisfy user’s requirements, the system must be composed by a mobile phone using
the Android operating system. The application can be downloaded for free. This system is ini-

8

(a) RSS functionality main
screen

(b) RSS functionality sec-
ondary screen

Figure 2.1: RSS Functionality screens

(a) Course Selection Func-
tionality main screen

(b) Course Selection Func-
tionality pop up adding
course to calendar

Figure 2.2: Course Selection Functionality screens

9

(a) FAQ functionality main
screen

(b) FAQ functionality sec-
ondary screen

Figure 2.3: FAQ Functionality screens

(a) Positioning Functional-
ity screens

(b) Notifications Function-
ality screens

Figure 2.4: Positioning and Notifications Functionalities

10

(a) Chat functionality Con-
tact screen

(b) Chat functionality Chat
Rooms screen

(c) Chat functionality
Chats screen

(d) Chat functionality Con-
versation screen

Figure 2.5: Chat Functionality screens

11

tially developed only for the Cassiopea building, then it will evolve to cover the entire University.

The chat system is a service:

• created for both personal and professional use. Indeed teachers and students can exploit
it to exchange information on courses, general topics, etc. This is why the technology
needs to be strong and rely on several users in order to avoid a single point of failure.

• that should not use any server to be instantiated. This allows the system to obtain the
equality of the peers, avoiding set up mechanisms to decide who is a server and who is a
normal user.

• which needs to provide alerts about the incoming messages. Indeed the problematic is
that the user should be able to know that messages have arrived when he is not using the
application.

• which would also provide presence status in order for the user to be aware of who is using
the application.

Indoor positioning system has to be implemented:

• using an existing infrastructure and only technologies available on modern smartphones,
such as GSM, GPS, WiFi or Bluetooth. This avoids to spend money and time on the
deployment of new infrastructures and research time focusing on specific techniques and
methodologies for indoor positioning.

• having a mean distance error of less than 10 meters in order to achieve a room accuracy.

• having a minimal intervention from administrators to set up the application. Thus, the
system can be autonomous.

• in a way that when few information sources are available, it is still possible to estimate
the user’s location.

The technical explanations concerning all these modules are provided further. Eventually,
the indoor Geolocation and the Chat systems are the kernel of our application in terms of
research, time and difficulties.

12

Chapter 3

Prerequisites

The section will be structured in two main parts describing the different methodologies and
possibilities we have to realize the modules of:

• Indoor Geolocation and Smartphones

• P2P Chat

3.1 Indoor Geolocation and Smartphones

This section briefly introduces the concept of Geolocation and provides an overview of the
today’s technologies and different methodologies built upon them. After presenting the general
concepts and background, it will narrow down its focus to the indoor Geolocation, giving more
information on the techniques feasible for its requirements. In the end, the possibilities that the
Android platform provides concerning the use of the technologies required for the Geolocation
are shown.

3.1.1 Geolocation: the broad picture

Geolocation[42] is the practice of retrieving the geographical position of a device. Nowadays
it has become a recurrent and requested feature to accomplish a variety of different tasks and
to provide a wide range of services. Just to mention some of the services already available or
in current development: Turn by Turn navigation, context-aware information supply, location-
based games and social networking. To achieve Geolocation of a device, we cannot set the
context in which we are trying to realize it apart; that is because different contexts will have
different requirements concerning accuracy, energy consumption, reliability and several other
demands. Figure 3.1 gives an overview of the different contexts and accuracy requirements in
which Geolocation can be applied; the figure will be further discussed as soon as the different
technologies are presented.

Thus, given a specific context, different methodologies and technologies might be helpful
to reach the goal of locating a device, some of them are interchangeable and others are only
suitable for a specific need (e.g. the GPS technology in its basic form, even though it is one of
the most accurate and reliable methods, cannot be used in an indoor environment).

3.1.1.1 Overview of the Geolocation Technologies and Methodologies

One important point to clarify before going on is that, concerning Geolocation, technologies
and methodologies are two different concepts, even though they seem strictly correlated and

13

sometimes overlap each other. Technologies concern all the hardware, transmission systems,
receivers, protocols and infrastructures used to gather the information needed for the location,
e.g. the strength of a received signal or the identifiers of some transmitting towers. The
methodologies instead, are usually seen as built upon the technologies; they compute the final
position of the device using different algorithms and measurement techniques1.

This section will follow a two-step structure, briefly presenting:

1. Geolocation Technologies, Section 3.1.1.2.

2. Geolocation Methodologies (measuring principles and positioning algorithms), Section
3.1.1.3.

Even though the overview is quite wide, the point of this section is not to go deep in
overwhelming details on all the methodologies and technologies; it is only meant to show the
product of our research in finding the best suitable combination of technology and methodology
for our final purpose: the indoor location of a smartphone device. Further references and links
to all the information presented in the following paragraphs can be found in [32].

3.1.1.2 Geolocation Technologies

Geolocation technologies can be categorized in several ways, taking into account features such
as cost, coverage scale, hardware complexity and many others characteristics.

As suggested in the indoor positioning techniques overview provided by Liu et al. [32], the
Geolocation technologies can be summarized in 5 main groups, further explained in the following
paragraphs. Others solutions are also available, such as the mix of different basic technologies
and sensors or the positioning “Cordless Phone System” (CPS), but we do not include them in
our survey as they might be seen as extensions of the basic technologies.

• UWB, proprietary microwave solutions.

• RF and IR, RF and Ultrasonic hybrid methods.

• WLAN, Bluetooth, Zigbee, HomeRFPositioning.

• GPS, DGPS, Wireless assisted GPS.

• GSM, CDMA /3G mobile cellular network.

The corresponding positions on the scale/accuracy graph can be seen in Figure 3.1. The
vertical axis shows the scale of applicability, from indoor to broad and open space scenarios
while the horizontal axis shows the resolution which might be achieved, from an order of 10
centimeters to some kilometers.

UWB (Ultra WideBand) and proprietary microwave solutions The UWB technology
(see Figure 3.2(a)) uses dedicated hardware capable of transmitting very short-pulsed frequency
signals (from 3.1 to 10.6 GHz). Using such a short cycle of frequencies, it overcomes the problem
of interferences with other radio systems and the presence of walls and objects. It can achieve
a very high accuracy (20 cm) and the energy consumption is kept low by the use of these high
frequencies.

1In this paper we will often use the term Geolocation methodologies or positioning algorithms/measurement
techniques with a similar meaning.

14

+

Figure 3.1: The five Geoposition families and the place they cover on the scale/resolution graph [32]

Radio Frequency Identification: RF and IR, RF and Ultrasonic hybrid methods
The Radio Frequency technologies (see Figure 3.2(b)) use two main components: RFID readers
(fixed) and RFID tags (movable, active or passive). For example, a reader can be placed on a
door, and a tag applied on the device (or the person) which needs to be positioned. The range
and the consumption depend on the use of the active or passive tags; the range usually varies
between 1-2 meters to tens of meters, while the energy consumption may considerably vary.

WLAN (Wireless Lan) and WPAN (Wireless Personal Area Network) The Wire-
less Lan IEEE 802.15 (see Figure 3.3(a)) is the dominant local wireless networking standard,
while other minor technologies using a different range of frequencies, fall in the WPAN cate-
gory (Wireless Personal Area Network, IEEE 802.15.4-2006 or ISO/IEC 18000-7). The main
difference is the distance range and the data rate: WLAN usually goes between 50-100 meters
with a high data throughput, while the WPAN has a range of 10 meters at most, and data rate
around 250 Kbit. It is worth mentioning the most used WPAN technologies on the market:

• Bluetooth, IrDA, UWB, Z-Wave.

• DASH7 (ISO/IEC 18000-7).

• ZigBee.

• 6LoWPAN.

GPS (Global Position System) and its variance: Wireless Assisted-GPS GPS (see
Figure 3.3(b)) is the most successful system for outdoor environment Geolocation. It uses 27
satellites in orbit around the Earth and as soon as four of them are visible by the mobile receiver
the position can be calculated. It needs a GPS receiver installed. The accuracy varies from 2
to 100 meters. The original version of the GPS is bounded to the possibility of the receiver

15

(a) UWB technologies and its scale/resolution (b) RF technologies and their scale/resolution

Figure 3.2: Geolocation technologies and the range of applicability

to have a direct line of sight (LOS) with 4 satellites. Indeed, a variance has been created for
indoor positioning: the Wireless Assisted-GPS [20] and SuperSense2. These improved versions
of the GPS aim to locate the mobile device even in a city-like scenario, where no line of sight
is available. When the power of the received GPS signal is too low they will lean on a network
(it might be wireless internet network) to obtain information about the position of the device.

GSM, CDMA/3G mobile cellular network It is the network commonly used for mobile
telephonic communications (see Figure 3.3(c)). The strength of the signal received by the mobile
can be measured and used to calculate the distance from the transmitting antenna (often more
than one) and hence the position of the mobile. The position is calculated using different
algorithms, such as: Enhanced Observed Time Difference (EOTD), Time Of Arrival (TOA),
Angle of Arrival (AOA) and CELL ID (the most commonly used). The accuracy varies from
200m to 10+ Km.

3.1.1.3 Geolocation Methodologies

A precise and complete positioning system is very difficult to obtain, due to the presence of
not always measurable variables (e.g. walls and floors’ thickness) and the low probability of
having a direct line of sight. The information provided by the different technologies section
(Section 3.1.1.2) concerning the strength (in dBm) of these signals, says that it may consider-
ably vary depending on the number of people present in the building, their movements and the
possibility of having a direct (and clean) LOS. For example, an empirical experiment reporting
the variations of wireless access points’ signal strength, measured from a static point (laptops
placed in the same position for a week), during typical office workdays, can be found in the
paper describing the Redpin application [12], which is an indoor localization system through
user collaboration and in our experiments section (Section 4.1).

There are mainly three methodologies, each of them uses different algorithms and calcula-
tions to elaborate the position of an object in space:

1. Triangulation.

2. Proximity.

3. Scene Analysis (Fingerprinting).
2created by the two companies Atmel and U-blox, http://www.atmel.com and http://www.U-blox.com

16

(a) WLAN technologies and their scale/resolution (b) GPS technologies

(c) GSM technologies

Figure 3.3: Technologies and scope

Triangulation It mainly consists of 6 different techniques. These techniques calculate an
approximate value of the distances between the mobile target and one (usually more) station,
using time, strength, phase and angle of the signals 3. Figure 3.4 gives an idea of how the
Triangulation works for the methods which includes the estimation of the distance; it estimates
the distance of (at least) 3 points around the location to build 3 circumferences and find the
unique intersection point among them. The location of the target is usually triangulated with
some mathematical or probabilistic calculations.

1. TOA - Time Of Arrival
It uses the idea that the distance between the mobile target and the stations is proportional
to the propagation time of a signal.

2. TDOA - Time Differences Of Arrival
It performs several TOA measurements and examines the difference in time among them,
avoiding to rely on only one value.

3. RTOF - Roundtrip Time Of Flight of the signal
It measures the time of flight of the signal traveling from the target to the receiver and
its way back.

3triangulation, in the main paper we have used for this literature review ([12]) is often used as a synonymous
for Trilateration. Actually Triangulation is retrieving a location measuring the angles around the point we want
to locate, while Trilateration attempts to measure the distances from it and the known points around. We will
keep them as synonymous.

17

Figure 3.4: An example of Triangulation using one of the distance-based method. The distance between
the location and three surrounding known points is estimated. From the distances (acting
as a radius), 3 circumferences can be drawn. From the intersection of the 3 circumferences
an unique point will be retrieved, representing an estimation of the location we were looking
for

4. RSS-based - Received Signal Strength based
The idea is that the received signal strength is proportional to the distance from the
transmitter. Empirical models are used to obtain the distance from the measured strength.

5. POA - Phase Of Arrival
It uses the phase of the signal, which, during the transmission, suffers from a delay that
can be measured at the receiver station.

6. AOA - Angle Of Arrival
It uses directional antennas to draw a line from the receiver to the target. Then, it uses
the crossing of three or more lines to retrieve the target position.

The main requirements and possible problems of the 6 triangulation techniques are sum-
marized in Table 3.1. The time-based methods are usually in need of timestamps, and time-
synchronization. The RTOF though, only needs one clock, residing on one device, to calculate
the timing [12]. Of the 3 problems presented, the last one, the responder’s delay, concerns the
fact that if the device that sends out the signal is very close to the device to locate, the time
the signal will take to ”fly” from one place to another will be very short, and the time spent by
the devices to receive and elaborate the signal could be much longer than the time of flight we
want to measure.

All the Triangulation methodologies have one or more a-priori requirements. For example
Triangulation, with all of its variants, needs a map with the absolute or relative positions4

of the signal sources (e.g. when a device receives 4 signals from 4 different transmitters, to
apply a triangulation method it is necessary to know the 4 transmitters’ positions). Thus,
Triangulation heavily relies on the availability of a map of all the interesting transmitters’

4absolute location means locating a device using a coordinate system, while relative location means locating
a device using some other environment information (e.g. the device is located in number 23 at the 2nd floor of
the Computer Science Department)

18

Triangulation techniques
TOA TDOA RTOF RSS-b POA AOA

Requirements
Map of the receivers’ locations x x x x x x
Time synch. between trans. and receiver x x
Add timestamps into the signals x x x
LOS (Line Of Sight) x
No. of received signals ≥ 3 (for 3D) x x x x x x
Complex hardware x
Problems
Environment (walls, buildings etc.) x x x x x x
Multipath Effect and Shadowing x x x
Responder’s answer delay in short dis-
tances

x x x

Table 3.1: The Triangulation Methodologies: a-priori requirements and possible drawbacks affecting
them.

position. Triangulation methods, especially the ones based on time measurements, suffer from
the presence of environmental variables, such as walls or lack of LOS and other problems such
as the Multipath Effect5 or the Shadowing6 which might attenuate or heavily reduce the speed
and strength of the signal; for these reasons, combinations of the above mentioned techniques
are often implemented.

Proximity It is the simplest and least accurate method. It approximates the position of the
device to a circumference around the closest and strongest antenna receiving the signal.

Scene Analysis (Fingerprinting) This method[32] collects, for the place where we want to
achieve Geolocation, an a-priori list of information concerning, for example, the measurements
of the signal strength of the available access points. After that, the location of the user is
calculated by comparing the current signal strength with the ones in the a-priori list; eventually,
the predicted location will be the one where the values of the measured signal strengths are as
close as possible to the ones in the list. To sum up, the Fingerprinting methodology consists in
two phases:

Offline Phase : Creation of a table containing coordinates and labels of the environment (e.g.
room number, city name) plus the corresponding observed signal strength values.

Online Phase : The current signal strength values are compared with the ones in the table.
To compare and pick the location with the highest probabilities, different methodologies
can be applied.

5A wireless signal emitted from a known source can be received two or more times by a station, due to several
causes (e.g. the signal will follow, if possible, the direct LOS to the station, but it can also start bumping on
some walls before reaching the destination for the second time). These different components of the same signal
might interfere with each other, creating the so called Multipath Effect.

6It is a special case of the Multipath Effect where two or more received components of the same signal interfere
with each other to the point that they are not discernible anymore (e.g. they arrive to the destination with the
same frequency and amplitude but with an opposite phase, the result will be an empty signal).

19

Related work on Fingerprinting in an indoor environment: The Redpin project
To gather information, either theoretical and practical, concerning the Fingerprinting location
methodology, a good start is the Redpin project[11] which describes a method and an implemen-
tation of a Fingerprinting system applied to a company or university-like environment (several
floors, numbered rooms, good wireless access points coverage, either in power or in numbers).
The Redpin application has very few constraints and a-priori requirements; the most important
is that it needs the collaboration of the users to train the system, especially during the initial
phase. To support their choice of user-trained system, they also cite website such as Wikipedia
or OpenStreetMap, completely based and running on users’ intervention. The Redpin project
implements the Fingerprinting system above a distributed architecture, composed of mobile
smartphones working as RSS’s sniffers from the APs and a server to which is addressed the
storing of the fingerprints and the positioning calculation. The Database of fingerprints is cre-
ated by collecting the received signals from all the available sources among GSM towers, wireless
access points and static Bluetooth equipments.

As the calculations and the storing is done on a server, the system is continuously work-
ing, retrieving data from the phones and checking the user’s location in the Database. In case
the server considers the user’s location as unknown, which means that no fingerprint in the
Database is “close” enough according to a manually set threshold, the user will be asked with
a popup to insert the name of the new location. As they state in Chapter 4, using a server to
store fingerprints and retrieve the location sacrifices the users’ privacy, but it is necessary to
guarantee the collaboration, higher accuracy and area-coverage. Concerning the location calcu-
lations, it is done on the server by using a simple algorithm: it measures the “distance” between
the current measured fingerprint and all the entries in the Database; the distance is a number
which decreases if an AP is present both in the current fingerprint and in the Database entry
and increases if it is not present. Moreover, the distance increases or decreases also depending
on the measured RSS values, if the RSS of an AP in a fingerprint in the Database is very close
(it is not specified in the Redpin paper if they use different threshold levels or just one) to the
current one, the distance will decrease. At the end, the fingerprint with the smallest distance
is elected as the estimated user’s location.

In a further improvement, described in [13] and called Asynchronous Interval Labeling, they
noticed through an experiment (see Section 4.1.2 for a comparison of this experiment with our
experiments) that an important source of uncertainties is the high short-time variations of the
APs’ RSS. Moreover, in their system, the user is asked to intervene whenever the application
does not recognize a location, even when he is not moving. So the user can get annoyed by
the redundant queries. For that they decided to measure many fingerprints for each location,
and to do it in an automatic way, they used the accelerometer (it measures the acceleration
of the mobile, namely, if the device is moving and in which direction) to notice when the
mobile is moving or not. As far as the phone is still, they measure multiple fingerprints for the
same location. This way they avoid with overwhelming the user of redundant location labeling
queries.

3.1.2 Geolocation in Android based smartphones

Android has three ways to perceive users’ location [7]:

• GPS (accurate but energy consuming and presenting reception problems when indoor).

• Cell tower.

20

• WiFi.

Possible sources of error are:

• Trade-off among number of location sources versus speed, battery efficiency and accuracy.

• The user is moving.

• Accuracy of the different location sources.

Eventually, Android has a class, LocationManager, which might retrieve either the GPS
position (method GPS PROVIDER()) or a mix of both Cell tower and WiFi spot information
(method NETWORK PROVIDER()). For both techniques Android will provide latitude/-
longitude data plus some optional data if available. The reliability and the accuracy of the
information heavily rely on the possibility to use GPS satellites and the number and distance
of GSM antennas connected to the mobile [41] 7.
These classes provide the geographical position and the possibility to run an application once
reached a specific location[6].

3.2 Chat Systems Technologies

This section introduces the notion of a chat system and provides an overview of the different
existing systems, their features and architectures. After having given the general information
about what already exists, the section will focus on the architectures’ possibilities, namely,
Client-Server, Peer-to-Peer (P2P). For each one of them, we list the advantages and disadvan-
tages.

This gives us a deeper insight on the possibilities we have to build a Chat system and will
help us make reasonable choices during the Design part.

3.2.1 Existing Chat Systems

Instant messaging is a real-time text-based communication between people who use devices able
to connect to networks, such as computers, phones, etc.

3.2.1.1 Windows Live Messenger

This instant messaging client was created by Microsoft in 1999 and is now used by about 330
millions users per month [45]. The protocol used by Windows Live Messenger consists in sending
messages between a client and a server. For instance if a contact signs out, the server sends a
particular message to the client, which will mark the contact as offline. This network relies on
different types of servers to handle the communications. They are detailed in Table 3.2.

3.2.1.2 Facebook Chat

More than 500 million persons use the Facebook chat, which was created in April 2008. The
chat service is directly available in the browser, at the bottom of Facebook pages. In order
to receive messages from a user, the client pulls update from the server, the Web layer takes
care of these web requests. Chat loggers are servers which store conversations between the page
loads. Presence servers receive periodic updates from channel clusters. In each cluster we find
an array that keeps available users. This system is illustrated in Figure 3.6.

7To calculate the mobile position through the GSM signal, Android uses a map where each antenna is linked
to its specific location. The map is created by continuously retrieving information from Android users which are
using a GPS and WiFi equipped mobile

21

Figure 3.5: MSN Messenger architecture

Server Function
Dispatch Server Tracks locations for the notification servers and com-

municate the IP address of these server to clients.

Notification Server Provides a presence service (notifications about online
status for instance)

.NET Passport Login
Server

Part of the authentification process, provides a single
sign in for all Internet services.

Switchboard Server Provides an instant messaging service between two
clients.

Table 3.2: MSN Messenger Servers and Functions

3.2.1.3 Skype Chat

Even if Skype is famous for allowing people to make voice calls over the Internet, it is also
an instant messaging system, which is based on a P2P protocol. Thus it requires minimal
centralized infrastructure. The information about users using Skype is distributed among clients
(or nodes) in the network [9]. There are three kinds of entities called ordinary nodes, supernodes,
and login server. Figure 3.7 shows the architecture of Skype. Each client keeps the IP address
and port numbers of reachable supernodes. A supernode can be attributed to a client with good
bandwidth, no firewall, and adequate processing power. Supernodes relay communications for
clients behind firewalls.

3.2.2 Overview of the Architectures

This section provides an overview of the two main architectures which could be used to imple-
ment a chat system. For each of them, we focus on describing the advantages and disadvantages,
in order to compare them and to pick the one that best suits our requirements for the Chat
system. One more thing to notice is that these two architectures can also be mixed and used
in ways that allow to take advantage of both of them.

22

Figure 3.6: Facebook chat architecture [31]

3.2.2.1 Client-Server

The client-server model of computing is a distributed application structure that partitions tasks
or workloads between the providers of a resource or service, called servers, and service requesters,
called clients [2]. Often clients and servers communicate over a computer network on separate
hardware, each one of them being customized for their designed purpose, but both client and
server may reside in the same system. A server machine is a host that is running one or
more server programs which share their resources with clients. It often features higher-powered
central processors, more memory, and larger hard disks than clients. A client does not share
any of its resources. We can find a lot of different servers: for example web, FTP, Database,
mail, chat and terminal servers. For example, web services are implemented on servers. For
each kind of server, there is the associated client: a Web browser will be in communication with
a Web server for example.

History Client-server communication principles and techniques have closely paralleled the
development of the open source operating system movement, as well as trends in programming
language design and use [25]. The first use of the concept of client-server programming, as it is
represented in its current form came with the 1977 release of the Unix operating system for the
DEC VAX computer, as implemented at the University of California, Berkeley.

With the introduction of networking in minicomputers, the Unix system was enhanced
with the addition of ”sockets”. The implementation of sockets gave rise to the now familiar
system of host names, domain names and common service-port associations. The immediate
follow up in the implementation of sockets was the desire to simplify and organize the process
of creating connections between programs. For this project, engineers at Sun Microsystems,
implemented a system called ”remote procedure call” (RPC). The driving philosophy is that
requests from a server should look, as much as possible, like local function requests in the
user’s application. Hence the terminology ”procedure call”. Sun used RPC to implement their
”network file system” which was the first successful attempt to make the file systems of many
computers appear to users as one file system.

23

Figure 3.7: The architecture used by Skype

Composition of a Client-Server network Client devices are typically computers with
network software applications installed that request and receive information over the network.
Mobile devices as well as desktop computers can both function as clients. One server generally
supports numerous clients, and multiple servers can be networked together in a pool to handle
the increased processing load as the number of clients grows.

How it works The client-server model can be used on the Internet as well as local area
networks (LANs). Network clients initiate communication sessions making requests to a server
(that is to say sending messages). Servers respond to their clients by acting on each request
and returning results. Thus, they are able to provide a function or a service. Functions can
be e-mail exchanges, web accesses and Database accesses. Many business applications being
written today use the client-server model, as well as the Internet’s main application protocols,
such as HTTP, SMTP, Telnet, and DNS.

24

Advantages and Disadvantages

Advantages

1. Because a client-server architecture enables the roles and responsibilities of a computing
system to be distributed among several independent computers that are known to each
other only through a network we have an additional advantage to use this architecture:
greater ease of maintenance. For example, it is possible to replace, repair, upgrade, or even
relocate a server while its clients remain both unaware and unaffected by that change.

2. Since data storage is centralized, updates to that data are easy to administrate.

3. Client-server networks generally offer advantages in keeping data secure. In fact all data is
stored on the servers, which generally have far greater security controls than most clients.
Servers can better control access and resources, to guarantee that only those clients with
the appropriate permissions may access and change data.

Disadvantages

1. As the number of simultaneous client’s requests to a given server increases, the server can
become overloaded.

2. The client-server paradigm lacks robustness. With this model, if clients’ requests can not
be fullfiled, resources are not available anymore. More precisely, clients could not access
to the data from the server. If it is a mail server, persons running clients will not be able
to access to their mail anymore.

3.2.2.2 Peer-to-Peer

P2P is a communication model in which each part has the same capabilities (and responsibilities)
and all of them can initiate a communication session [44]. It uses distributed resources (i.e.
computing power, networking resources) to perform a task (like content delivery, collaboration
or e-commerce) in a decentralized manner.

It differs from the client-server and the master-slave model. In some cases, P2P communica-
tions are implemented by giving each communication node both server and client capabilities.
P2P provide opportunities for real-time communication and ad-hoc collaboration. It is usually
used as a file sharing mechanism too, and it allows files to be swapped directly between user’s
computers using the same networking program instead of having the file first stored on a server.
This means that when you use P2P services, people are actually connecting directly to your
computer to retrieve files, and not to a server which would act as a “middle man” [3]. This type
of sharing became very popular with the famous Napster service as well as Gnutella, Grokster,
KaZaA, etc. It was used to share copyrighted files. Movie productors and record labels showed
their concern by suing some P2P users.

In recent years the P2P abbreviation has taken another meaning: People-to-People. Thus it
has become a marketing abbreviation for selling P2P software and for creating businesses that
can help individuals on the Internet to meet one another or to share some common interests
[36].

Composition of a Peer-to-Peer network A P2P network is made of ”peers”. Each peer
is an equal partner. All client versions of Windows, Mac and Linux can function as nodes in a
P2P network and allow their files to be shared thanks to an additional software [4].

25

How it works Generally speaking, the user must first download and execute a P2P net-
working program [44]. After launching the program, the user enters the IP address of another
computer belonging to the network (typically, the Web page where the user got the download
will list several IP addresses as places to begin). When the computer finds other network mem-
bers online, it will connect to them. Users can choose how many member’s connections to seek
at one time.

Advantages and Disadvantages

Advantages

• First, it does not depend on a centralized server. There is no central decision point and it
is dynamic in the sense that there is an unpredictable set of participants. Thus, we avoid
the loss of our system in case of a breakdown of one or several servers (no single point of
failure).

• A P2P system is self organizing, that is to say there is no permanent infrastructure and
no centralized administration.

• It can share load by using computer resources (memory and CPU).

• It is possible to avoid the expenses involved in maintaining a centralized server. Moreover,
it can provide anonymity in case it is needed.

Disadvantages

• The system is not centralized, making administration difficult.

• The security could be an issue, as a malicious client can try to be a part of the network.
There is no filter by default to avoid a specific client to join the network. Maybe a
mechanism for the identification should be implemented.

• Data updates may need to be distributed and applied to each peer in the network, which
is both time-consuming and error-prone, as there can be thousands or even millions of
peers.

3.2.3 Peer-To-Peer system middlewares

Middleware is a term that is difficult to define. A popular definition given by Bernstein [10]
defines middleware as programming interfaces and protocols that sit ”in the middle”, in a layer
above the operating system and networking software and below industry specific applications.
A middleware provides services that can be used to rapidly develop and deploy distributed
applications. CORBA, J2EE, JMS and COM are some popular middleware solutions. These
existing middleware solutions were not designed for P2P computing. The infrastructure pro-
vided by the existing middlewares can be used for synchronous/asynchronous communication
between peers, but they do not support P2P specific concerns like overlay network management,
message multicast and resource discovery. P2P middlewares address these concerns which were
not supported in the older middlewares, and provide services which can be used in the P2P
domain. They can be developed using existing lower-level middleware solutions like SOAP or
CORBA.

26

P2P middlewares provide software components that can be used for rapidly developing P2P
applications. P2P applications developed using P2P middlewares built upon tested components
and services and hence tend to be more reliable and bug-free. Current middlewares have differ-
ent levels of support and use different approaches, for developing P2P applications [38].

We have focused ourselves on few middlewares to select the one which fits the best.

3.2.3.1 XMPP (eXtensible Messaging and Presence Protocol)

XMPP (also known as Jabber) is a technology for real-time communication. XMPP is an open
technology for streaming XML over a network [1]. It is well-known and it is intended for instant
messaging but it can be used for developing other type of P2P applications [38]. The connecting
peers are able to receive presence information about other peers. Thanks to XMPP, we can
have a state of presence for each contact and we can chat in real-time. We can talk with several
persons at the same time too. We are able to use voice and video (thanks to Jingle). XMPP
is an open standard and the authentication is ensured by SASL. The connection is secured by
TLS between clients and servers and the encryption uses GPG or E2E (see Section sec:security).
Extensibility is one of the greatest strengths of XMPP.

Peers in Jabber networks can be uniquely identified by a Jabber Identifier (JID). A JID
is of the form [peername@]domain[/resource]. The domain name represents the Jabber server
to which the peer connects. Jabber enables any two peers on the Internet to exchange XML
documents containing communication messages (message document), resource availability infor-
mation (presence document) or query/response messages (Info/Query (IQ) documents). The
structure of these XML documents is defined by Jabber. All the XML documents can be ex-
tended to include extra information within a tag. IQ(Info/Query) documents provide a simple
request/response framework within Jabber. It allows peers to pass XML-formatted queries and
responses back and forth. A query tag can be used to extend IQ documents.
One of the drawbacks of XMPP is that it uses a hybrid P2P architecture. The Jabber server
is used for authenticating peers and resolving JID to a physical network address. But peers
can exchange data directly by establishing a connection which is brokered using Jabber servers
[38]. XMPP is decentralized: it is similar to the e-mail network. That is to say anyone could
implement their own Jabber server. There are tens of thousands of Jabber servers running on
the Internet today. The most famous service using XMPP is Google Talk. It is used by clients
such as Trillian, Pidgin or Adium (for Mac OS X)

3.2.3.2 Pastry

Pastry is a decentralized object location and routing sub-system for P2P applications. It is
self-organizing. Pastry provides an API which can be used to develop P2P applications. Each
node in the pastry network is assigned a unique node id.

When presented with a message and an ID, Pastry efficiently routes the message to a peer
with the node id that is numerically closest to the key, among all currently live pastry nodes.
The expected number of routing steps is O(log2 N) where N is the number of peers in the
network. Eventual delivery of a message is guaranteed in Pastry. It chooses a route which
is likely to be the best respect to proximity metrics [38]. To support the routing procedure,
each pastry node maintains its routing state consisting of three tables providing information
about nearby and numerically close nodes. Pastry has the ability to take into account network
locality when routing messages: a message is not only sent to the numerically closest nodeId to
the message key, it also chooses the physically shortest way to go there.

27

New nodes joining a Pastry network send a join message with a key to the network through a
boot strap node obtained through external means. The join message is routed to the numerically
closest node. All the nodes in the route path of the message respond with their state tables
(used for routing messages) and the information is used to populate the state tables of the new
node.[27] Pastry cannot be used to multicast messages on the overlay to search for an object
matching a search criterion.[38]

3.2.3.3 Other P2P Middlewares

There are other P2P system Middlewares that we could use. To quote few of them: JXTA,
SpeakEasy and Chedar.

1. JXTA (content-management application domain): JXTA is a specification for developing
P2P applications. A JXTA specification does not guarantee interoperability among differ-
ent JXTA implementations. It is based on 6 different protocols. They use XML schema
to describe the format of the exchanged messages between peers to perform a service. It
uses TLS for security.

2. SpeakEasy (or ObjE): SpeakEasy is a technical framework for developing P2P applications
which support ad-hoc collaboration. In SpeakEasy any entity that can be accessed over
a network (eg, printer, file, URL) is cast as a component. It contains a security layer.

3. Chedar (CHEap Distributed ARchitecture): Chedar is totally decentralized and can be
used as a basis for P2P applications. It combines four different topology management al-
gorithms and provides functionality to monitor how the P2P network is self-organizing.[8]

These systems have been developed for general purpose applications and they do not provide
any specific features dedicated to a chat module.

3.2.4 Pure Peer-To-Peer XMPP Middleware: Smack API and the XMPP
extensions

Based on the fact that we will maybe need XMPP for the implementation of our chat module,
we decided to search for appropriate tools to implement it. To do so, we focuses our research
on three main points:

• These tools have to be Java based as the Android implementation is so.

• They have to be compatible with Android or at least possible to make it compatible.

• They have to provide serverless functionality as we want our chat to be based on P2P.

3.2.4.1 XMPP Java based tools

Throughout all the research, we found out that people all around the Internet tried to implement
their own Java tools to use XMPP. Indeed, as XMPP is a technology used to create a lot of
chat clients for the well-known server such as Google Talk, programmers tend to provide a lot of
XMPP tools. Nevertheless our attention was attracted by the work of Ignite Realtime [18]. This
community aims at providing tools for the users and the developers of their open source Real
Time Communication projects. Among others, they implemented a tool called OpenFire which
is used to set up servers for Real Time Collaboration using XMPP. Not only do they provide this
kind of software, they also provide their APIs to implement clients for them. Among them, the

28

Smack API which is an Open Source XMPP client library for instant messaging and presence.
And the main characteristic that attracted us was that this API is pure Java. This API differs
in many ways from the other APIs that we managed to find. Indeed, the fact that it comes
from a strong programmers community makes it evolutive and effective. For example, during
the whole implementation process, we experienced some troubles with the multicast that we
will describe later on, and so we asked for some help to one of the programmer and he had
no problems helping us enjoyed by the fact that we wanted to implement his work on new
technologies.

3.2.4.2 Overview of the Smack API

This API provides useful and easy to use tools for XMPP Clients. For example, sending a text
message to a user can be accomplished in only a few lines of code:

XMPPConnection connection = new XMPPConnection(” jabber . org”) ;
connection . connect () ;
connection . log in (”mtucker” , ”password”) ;
Chat chat = connection . getChatManager () . createChat (” jsmith@jivesoftware . com” ,

new MessageListener () {
public void processMessage (Chat chat , Message message) {
System . out . pr int ln (”Received message : ” + message) ;
}
}) ;
chat . sendMessage (”Hello ! ”) ;

These tools provided by the Smack API allow the developer not to code at the packet level or
not to be familiar with XMPP XML.

3.2.4.3 Compatibility with Android

The next step of this research was to make sure that this API was compatible with Android
and so implementable on an Android phone. One strong point is that the majority of the
applications that aim at testing XMPP clients Android applications uses the Smack API. We
wanted to make sure that there were no problems and we implemented a little application using
the API recreating a Gtalk client (see Chapter 6). We experienced an easy way to implement
such an application and had good results.

3.2.4.4 XMPP Server

One of the main problems with this API is that it is using an external XMPP server. For our
example implementation it was a Google Talk server. And this brought issues since we do not
want to use any server and only Link Local connections between the peers of our network.

3.2.4.5 Link-Local Implementation

We thus searched for an implementation of this feature throughout the community website
and forum. It happened that in the years 2008/2009 there was a project of doing a patch for
the API integrating such a feature. Unfortunately this patch was not efficient for an Android
implementation at that time. Indeed, the developers have encountered issues with the phones
that were random and unpredictable. As those studies were made on Android 1.0 and 1.5, we
decided to take a look at it with the new version of Android, the 2.1-update1. We thus dug
into the Link Local Smack API designed by Jonas Adahl [30].

29

3.2.4.6 XEP-0174 Extension for XMPP - Serverless Messenging

Among all the possible extensions available for XMPP, listed on the XMPP webpage ([22]), the
number XEP-0174 called Serverless Messaging provides the possibility to start direct XMPP
client-to-client interactions, without the need of a server for the authentication of the partici-
pants. The previously cited API aims at adding this feature to the actual Smack API. It uses
the principles of the zero-configuration networking. It is called Zeroconf [15], namely, it at-
tempts to create a usable Internet protocol (IP) small/local network without manual operator
intervention or any special configuration servers.

Zeroconf, main technologies This paragraph briefly presents the main Zeroconf technolo-
gies that allow a user to automatically connect computers, networked printers, and other network
devices without being expected to know all the set-up parameters. Here are listed its three main
technologies:

• Assignment of IP addresses for networked devices (link-local address autoconfiguration).

it makes that sure all the devices have got an IP address that is unique over the local
network.

• Multicast Domain Name System services (mDNS).

It provides automatic resolution and distribution of computer hostnames in a small-
/local network where no conventional DNS server has been installed (e.g. a printer service
could be named “printer.local“).

• Automatic location of network services.

A service will advertise itself over the whole local network (e.g. the printer service
will advertise itself on the networks as ”printer-local“).

Without Zeroconf, one must previously set up special services, like Dynamic Host Con-
figuration Protocol (DHCP) and DNS, or set up each computer’s network settings manually.
The XMPP Serverless messaging extension is typically restricted to a local network (or ad-hoc
wide-area network), because of how zero-configuration networking works.

How ServerLess Messaging XMPP works In this paragraph we attempt to describe
how the serverless mechanism works, and we will do it thanks to an example, inspired by the
XEP-0174 documentation. We have two hosts, A and B. We want to know how A can start a
connection with B on an ad-hoc basis. First of all, A has to advertise itself (as a service) as
a serverless address in order for B to dynamically find it. A does this by running a daemon
supporting both:

• DNS-based Service Discovery (”DNS-SD”, defined in DNS-Based Service Discovery [14]).

• Multicast DNS (”mDNS” as defined in Multicast DNS [39]).

By running this deamon the client A obtains the publication of its service via mDNS and the
start of a listener to get incoming connections from B (or others) directed to A. On the other
side, B can receive these multicasted messages and reply back.

30

3.2.4.7 Multicast DNS (mDNS)

Multicast DNS [39] is a way of using standard DNS programming in small
networks where no DNS server is available. It has been provided by the
participants of the IETF (Internet Engineering Task Force) ZeroConf Net-
work and DNSExt working groups. While this requirement could have been
met by designing an entirely new protocol, they chose to adapt the DNS
protocol. In this way, programmers would not have to implement their
application in different ways if they want it to work in large configured
networks and small ZeroConf ones. It also allows the application currently
released to work with mDNS in ZeroConf networks without any changes.

What is Multicast ? Multicast is a way of distributing information
from a sender to a group of receivers. The receiver that is interested in the
messages sent to that group just joins it. Those subscriptions to groups
allow the switches and routers to establish a route between the sender and
the receivers. In multicast, each packet is issued only once and then is
routed to all machines within the multicast group without any content being
duplicated on a physical line. Thus the network copies the data [43].

A multicast group consists of a set of machines. It is fully dynamic and
open, that is to say that a station can join or leave the group at any time,
there is no limitation of sources, a station can even send a packet in a group
without joining.

The Internet Protocol (IP) uses addresses from 224.0.0.0 to
239.255.255.255 for multicast. The 28 least significant bits represent the
group address. Multicast addresses 224.0.0.1 to 224.0.0.255 are local and
reserved for the operation of network protocols. When a machine wants to
send a packet to a multicast group, it sends the packet to the IP address
that identifies the group (for instance 224.1.5.6). The reception is performed
by a router subscribed to the group and then the packet is duplicated and
sent.

mDNS Names Multicast DNS specifies a special DNS top-level domain
”.local.” for link local domains. The names in these domains are meaningful
only on the link where they originate. The DNS request for names ending
with ”.local.” must be sent to the mDNS multicast address 224.0.0.251. The
DNS request for other names may also be sent to this address if no DNS
server is available. This allows computers in a local network to be able to
communicate with each other even when disconnected from the internet.

mDNS queries There exist three types of multicast DNS queries. One-shot queries made by
conventional DNS clients, one-shot queries accumulating multiple responses made by multicast
aware DNS clients, and continuous ongoing multicast DNS queries made by IP network browser
software. Multicast DNS clients have to send multicast DNS queries from UDP port 5353 (which
is assigned to mDNS), and listen to multicast DNS replies sent from the same UDP destination
port, at the mDNS multicast address 224.0.0.251.

One-shot mDNS queries The basic mDNS client can simply send DNS request blindly
to the address 224.0.0.251:5353. When a client queries a name that falls into the reserved mDNS

31

domains, instead of using a unicast DNS server, the query is sent to 224.0.0.251:5353. These
simple rules are enough to implement a minimal mDNS client. This kind of clients will typically
take into consideration only the first DNS response that they will receive, which in some cases
can be insufficient.

One-shot mDNS queries accumulating multiple responses For certain tasks, it can
be useful for mDNS clients to wait for multiple replies to a single mDNS query. This kind of
clients have to be aware that receiving a reply does not indicate that it might not receives
other. And while simple mDNS clients will retransmit their queries until they receive one
response, more complex clients could retransmit their queries until they receive a satisfying
collection of replies. When such clients retransmit a query for which they have already received
responses, they must indicate to responders which have already replied, that their replies have
been received, in order to improve the network efficiency.

Continuous mDNS querying When using one shot querying, the transaction starts
when the query is issued by the client, and ends when the desired responses have been received.
But in certain systems, such as a software displaying a list of printers in a network, it can be
useful to have a mechanism which would be aware of the incoming and outgoing devices in order
to insure to the user a reliable list of available printers. Such kind of software should use the
Time To Live (TTL) value included in the replies, which indicate the time for which a response
is valid. Before the TTL for a reply has expired, the software should reissue a query in order
to check if the device which replied before is still alive.

Multiple questions per query It is possible for mDNS client to embed multiple ques-
tions in a single query. The result of that is exactly the same than issuing several questions in
multiple queries, but it improves the efficiency of the network.

Questions requesting unicast responses Responding to question with multicast has
the benefit that all the participants of the network are able to see the response. However, in
some case, it may be unnecessary that all the participants receive a response. The first bit in
the class field of a DNS question can be set in order to ask for a unicast response from the
repliers. The unicast responses can be useful for a incoming client in the network, since it may
ask for a lot responses that all of the others participant may already be aware of, and would
flood the network for useless purpose. However, if a responder sends a respond that has not be
sent for a long time (according to TTL), it may choose to multicast this response anyway.

Responding Response can be issued by responder when responding to a question from a
querier, or when a responder has an announcement that it considers useful for the other par-
ticipants of the network. When responding to a multicast question, a random delay is inserted
for responding, in order to avoid that all the responders replies at the same time, which would
lead to a collision in the network. When a responder responds to a multiple question query and
has multiple responses to deliver, it should aggregate as many as it can to send them in a single
multicast DNS response packet, in order to improve the network efficiency.

3.2.4.8 JmDNS

JmDNS is a Java implementation of mDNS. The project was created in 2002 by Arthur Van
Hoff and was originally called JRendezVous.

32

Java, as a high level language, is not the most appropriate one for low level networking, but
is really convenient for service registration and discovery. JmDNS provides a pure Java and
easy to use mDNS implementation that runs on most of the Java virtual machines.

3.2.5 XMPP security considerations

The following information come from the XMPP standards foundation [34] and Wikipedia.

Authentication and Encryption XMPP networks use:

• TLS (Transport Layer Security) for channel encryption. TLS is a cryptographic protocol
that provides confidentiality and integrity of exchanged data. It uses symmetric cryptog-
raphy for privacy and a keyed message authentication code for message reliability.

• SASL (Simple Authentication and Security Layer) for authentification. SASL is a frame-
work for authentication and authorization. It decouples authentication mechanisms from
application protocols, allowing any authentication mechanism supported by SASL to be
used from any application protocol capable of using SASL. Authentication mechanisms
can also provide a layer of data integrity that can provide services for data security and
confidentiality of data.

• DNS (Domain Name System) for validation of server hostnames. DNS allows to a establish
a correspondence between an IP address and a domain name and more generally to find
information from a domain name.

These 3 different technologies allow to ensure the identity of sending entities and to encrypt
XML streams. The use of TLS and SASL for the XML stream have to be negotiated to secure
communication between serverless entities. Sometimes an entity can accept an unencrypted
and unauthenticated channel and in this case the client has to warn the user that the channel
is neither authenticated nor encrypted.

33

Chapter 4

Experiments

In this section we describe the experiments we have carried out, before starting the architec-
ture design of our system. The aims of these experiments are the following: (i) to give us a
better understanding on some characteristics of the wireless signals (namely, the signal strength
fluctuations over short and long term), which will be useful for our Geolocation system; (ii) to
have a quick glance on what is possible to gather, in term of network data, with the Android
OS on a mobile. On the results of these experiments we eventually base or refine some of our
final design decisions.

4.1 Wireless Received Signal Strength fluctuations

One thing we have noticed, during our review of Geolocation methodologies in section 3.1.1.3,
is that the RSS values may suffer high fluctuations, due to several different causes. One of
them is the presence of fixed or mobile objects, as well as people, covering/uncovering the line
of sight (LOS) between the transmitter and the receiver, thus absorbing a part of the signal
power. Another cause is the presence of other signals overlapping the frequency range of the
standard WLAN IEEE 802.11 [28], thus interfering with it. Actually, even the presence of
different transmitters carrying the same wireless signals may create a background noise which
may interfere with the final RSS value.

Why we carry out this experiment Given the above mentioned problems, with this exper-
iment we want to measure, in a university-like indoor environment, how strong and frequent the
fluctuations of the RSS values are. We do this to be able, once obtained the measurements, to
study the RSS variation ranges over time, the minimum and maximum values in which we could
assume the variation will take place, and to look for possible patterns, like peaks or general
RSS degradation/improvement in particular time of the day.

Deployment As we are interested in the global wireless RSS signal fluctuations, it seems fair
to assume that the same variations will affect in similar ways all kind of wireless devices. Thus,
using a laptop equipped with an internal wireless network card, a workstation with a wire-
less antenna, or a WiFi equipped smartphone, should provide similar patterns and fluctuation
ranges. We carried out the experiment from our grouproom, which is the only place where we
have access to workstations that can run for a long time.

We used both a laptop and a workstation, equipped with the network cards provided in
Table 4.1:

34

Installed on Brand Network Controller No. Antennas

Laptop Intel Intel Corporation PRO/Wireless 3945ABG
[Golan] Network Connection (rev 02)

1(internal)

Workstation D-Link Texas Instruments ACX 111 54Mbps Wireless
Interface

1(external)

Workstation SMC Atheros Communications Inc. AR5008 Wireless
Network Adapter (rev 01)

3(external)

Table 4.1: Network Cards used to deploy the experiment

Settings and Timing Basically, we sniff all the access points (AP) in range and write down
a tuple for each of them, with BSSID (which is the MAC address for an access point), RSS
value, the NOISE (not all the network cards provide this information) and a timestamp. It is
important to notice that we were not associated to any of the university’s wireless networks, in
order not to create interferences or RSS variations due to dataload or similar causes.

To gather the data, we used a Unix Bash script, split up into two main parts: a small client
which permits to set the number and the frequency of the scans and the actual scanner routine,
which uses the command:

iwlist [interface] scan

where interface is just the name of the wireless interface used (e.g. wlan0 or wlan1), plus
an egrep command executing a regular expression [24] to get only the MAC address, relative
RSS value in dB and noise (if available on the network card). The data were stored for further
analysis in a file with a Database-compatible format like:

MAC;RSS(dB) ; Noise (dB) ; Timestamp(AAAA/MM/DD−HH:MM: SS)

00 :23 :F8 :DA:A5:3C;−79;90;2010/11/04−19:09:51
00 :15 :F2 :DF:34 : 9E;−68;90;2010/11/04−19:09:51

Concerning the amount of measured data, due to the large number of APs present in the
building (around 35) and the frequency/length of the experiments (see next paragraph for de-
tails), we ended up having files containing around 20.000 tuples for each network card. Thus,
we decided to create a Database to easily perform query operations and make the analysis phase
easier. We chose an SQLite Database among other possibilities for one main reason: it is the
standard Database used by the Android OS and it could turn out useful in case we would need
some data to setup a small archive of fingerprints during the testing.

Eventually, we carried out two experiments which we call Short Time Experiment and Long
Time Experiment.

Short Time experiment We used the workstation and the laptop in the grouproom to
perform short but very frequent measurements of the signals in a couple of hours during the
morning of a typical working day. This experiment was focused on understanding what could
the variation range of a particular AP’s signal strength be, measuring it with different devices
at the same time and in an ordinary office-day (people entering the room, using mobiles and
laptops close to the receiving antennas etc.). The experiment has been carried out from 10:30

35

AM to 12:30 AM, sniffing the wireless channel every 10 seconds; all of the available network
cards have been used.

Long Time experiment We wanted to measure the fluctuations over a week, looking for
possible patterns due to the crowding of the building in the early morning or emptying of the
same in the afternoon/evening. We used only the workstation in the grouproom, equipped
with two PCI network cards: the Dlink and SMC ones. We carried out measurements every 2
minutes for 8 days.

Results and graphs The number of APs sniffed was quite large, sometimes more than 40,
and the value of the average RSS measured over 2 hours, was often strangely equal for groups
of 5-6 APs. For example, 5 different MAC addresses, supposingly bounded to 5 different APs
in different rooms, were retrieving the same average power regardless their position. This lead
us to discover that the wireless network in our department uses a particular infrastructure from
Cisco, which has affected the experiments throughout their time. We briefly introduce the
system and its characteristics below in this section.

After all, we decided to analyze the data coming from the three strongest sources that we
call AP1, AP2 and AP31. This data selection has actually good reasons to stand:

• in an office/university environment, it is likely that the wireless system in the building
has been set up in a manner where only two or three main APs can be sniffed from a
single room (this is obviously caused by the optimization of the ratio between covered
area versus the number of APs needed).

• the minimum RSS gap between the third average strongest received signals (measured on
all the 3 network cards), and the 4th, is at least 10dB, while the average gaps between
the 1st and the 2nd or the 2nd and the 3rd goes in average from 1-2dB to a max of 9dB
(measured on the laptop). Thus, we are very interested in understanding their behaviour
which will be probably be the same in other places in the building.

We describe the obtained results in two separated paragraphs for the short and the long time
experiments, but right before, we introduce the Cisco infrastructure of our university.

The Cisco Wireless Control System (WCS) in our department . The WCS [16] is
a centralized management system which groups all the information and activities related to a
Wireless network deployed on a large scale building or campus area. The WCS system relies
on Cisco proprietary hardware, in our case, the Wireless System Module (WISM) [17]; this is
a controller on which can be attached hundreds of Cisco wireless switches and routers2. The
WCS actually aims to carry out an efficient Wireless network with minimum administrators
intervention. It creates a self-optimizing WLAN, that means the network will automatically
react to different workload situations, catch interference sources and optimize the coverage area
and connection quality, operating on the endpoints APs.

Among the different self-optimizing features offered by WCS, two of them have directly
affected our experiment: the MAC splitting technology and the RSS automatic leveling. Both
of these features are Cisco proprietary systems and, especially for the MAC splitting, it has
been hard to find more information than a brief overview in the Cisco documentation. Hence,
we mainly describe here the effects they have produced on the experiments.

1only AP1 and AP2 have been used in the Short time Experiment
2in our department the Cisco Aironet lightweight access points are in use

36

• MAC splitting technology: it associates several virtual MAC addresses to one AP. That
means that one could sniff several different signals (each associated with a unique MAC)
with several different RSS strength, all coming from the same physical AP source. This,
of course, creates confusion as it is hard to understand which signals carry a real physical
MAC (a known AP in a known position) and which are just carrying a virtual MAC and
could be associated to any APs in the building.

• RSS leveling: this creates controlled fluctuations of the APs emitted signal power, in case
of either overcrowding or high inactivity in a given spot. (e.g. the emitted power of an
AP present in an auditorium might be increased/decreased in case of a lecture).

Now, these two particular Cisco features apply in our department, but not in all the en-
vironments (especially the ones not covered by a Cisco system), so we did not try to dig and
completely solve the matter. Instead we just used the list of the real MACs present in the build-
ing and filter them out. Later on, we also noticed that the real MACs were always associated
with one particular network BSSID, which is ”AAU-1X” the main campus network. This could
probably apply to all the networks covered by the Cisco WCS, but, as we could not find further
information in the Cisco documentation, we cannot be sure about it.

The presence of this particular system, dynamically changing the behaviour of the APs,
makes it difficult to find reliable patterns and trends on the RSS sniffed values as the values are
not only affected by workload and noises, but also by interventions of the WCS controller.

Short Time experiment results The results of the experiment can be seen in Figure 4.1
and Figure 4.2, where the data are represented without any interpolation to catch the whole
possible variations and the min and max values. The transparent stripes indicate the probable
data variations around the mean value, according to the standard deviation values, explained
later in Table 4.2. The first thing that can be noticed is the high fluctuation of the value
received by the Intel card on the laptop compared with the two workstations. Moreover, not
shown on the graphs, we have noticed that the laptop’s card was usually sniffing a larger number
of different APs. This could be for two reasons:

• being a laptop network card devoted to a mobile use, it could have a lower threshold
concerning the minimum RSS necessary to connect to an AP; namely, to be connected is
more important than having a good connection. It will try to connect to any available
(and accessible) networks, despite the possible low RSS and consequent low quality. This
is probably due to the fact that it could be used in places where there are few or no
networks at all.

• in a mobile device, to reach the aim of connecting even in low-power wireless signal
situations, a very sensitive radio receiver could be used. This could lead to a noisyer
listening (due to the presence of other signals) and a subsequent difficult filtering of the
noise.

On the other two workstation’s network cards, the Dlink and the SMC, the sniffed APs were far
less (the Dlink has even an hardware limit to 16 received APs) and the values were, similarly,
varying far less than on the mobile card, probably for the opposite reasons addressed for the
mobile card environment.

37

Short Time experiment conclusions This discussion confirms that we have to take
great care while analyzing the data provided by our application based on a smartphone: it
could apply the same idea as the laptop network card concerning the wireless networking: pro-
moting the connectivity over the quality, resulting in a more highly variable RSS.

In addition to this difference among the mobile and fixed network cards, Table 4.2 shows
that the value of the standard deviation is lower on the 2 workstation’s network cards compared
to the one on the laptop. That means that in average the measured values will fluctuate over 5
or 6 dB around the mean value for the laptop. If the same experiment would be carried out on
a smartphone, the value of the standard deviation could prove to be very useful in case there is
the possibility of several (real-time) measurements of the same AP. That is because it could be
used to retrieve from the measured data an estimation of the RSS mean value. Thus, we have
to keep this in mind, in case we need to improve the reliability and accuracy of the Geolocation.

One more problem is that, as can be seen in Figure 4.2(a), the variability of the RSS mea-
sured by the laptop, is not related to the same variations observed by the other two network
cards; e.g. the RSS of the laptop in the end of the graph is going down, while the RSS of
the Dlink is going up. Hence, looking at the graphs, it does not appear a clear and evident
correlation in the way the different cards perceive noise or disturbances.

Moreover, over the total number of measurements made in 2 hours (this number is different
among the 3 cards due to the different scan speed, reasonably related to hardware parameters),
the cards were sometimes not able to sniff AP1 and AP2 at all, even though they are the
strongest and closest APs (see last two lines of Table 4.2). Fortunately, this phenomenon does
not happen with a high probability. The probability that an AP is not sniffed at all is usually
0% but in two cases. On the Dlink card, the 34% might be explained by the fact that the card
is sniffing only the 16 most powerful sources, namely, the AP1 could have been sniffed with a
lower RSS compared to the other 16 APs. When the same problem occurs on the laptop, with
a 14% of disappearance, we could address a similar reason, where instead of cutting the number
of observed APs, a threshold is applied: an AP is not provided if the observed RSS is lower than
a certain threshold. To conclude, now we know that card manufacturers deal in different ways
the measuring and retrieving of RSS values, and this also applies to a smartphone’s network
card.

To summarize what we learnt from the Short time experiment:

• The RSS observed variations depend more on the used network card than on the noise
and disturbance conditions

• A laptop/mobile network card seems to present a higher variance and standard deviation
than workstation cards.

• Even the strongest and closest AP RSS might not be retrieved in case, in the measurement,
its value is particularly low (e.g. minus 20dB from the average), according to hardware
specific parameters.

Long Time experiment results Table 4.3 shows the statistical results, while Figure 4.3, 7.3
and 7.4 show the variations over one week of the three strongest APs received from our room.

The data observed by the two cards don’t seem to follow an homogeneous pattern. If noise
sources are present, affecting at the same time all the signals present on the channel, it is not

38

(a) Intel network card (laptop)

(b) Dlink network card (workstation)

(c) SMC network card (workstation)

Figure 4.1: Short Time Experiment data: measurements for 2 hours on the strongest sniffed AP, AP1
with MAC 00:17:DF:2D:B2:90

39

(a) Intel network card (laptop)

(b) Dlink network card (workstation)

(c) SMC network card (workstation)

Figure 4.2: Short Time Experiment data: measurements for 2 hours on the second strongest AP, AP2
with MAC 00:1C:0E:42:D0:00

40

AP1 AP2

Intel(L) Dlink(W) SMC(W) Intel(L) Dlink(W) SMC(W)
Average(dB) -59,12 -60,3 -55,96 -67,25 -63,59 -64,9
Variance 33,53 7,92 21,59 47,23 6,38 14,32
Standard Deviation 5,8 2,82 4,65 6,88 2,53 3,79
Max Variation ob-
served (dB)

33 28 37 32 13 34

No. measures / AP
presence

700/678 700/465 684/683 700/600 700/699 684/683

Prob. AP not sniffed
(%)

0% 34% 0% 14% 0% 0%

Table 4.2: Short Time Experiment: statistical analysis over the measurements made by the three dif-
ferent network cards on the two strongest APs, AP1 and AP2, in two hours on a Thursday
morning. The row “No. of measures / AP presence“ represents, on the left, the number of
total measurements performed by the card and on the right, the number of times the AP has
been detected (see the Short Time Experiment Results paragraph for more information).
L=laptop and W=workstation

easy to identify them on the graphs, as the Cisco WCS might be unevenly changing the APs
transmitted power to counteract an re-optimize the interferences or network loads.

We were looking for patterns over this mass of measurements (more than 4400), for example,
if at a certain time the RSS received from a particular station were going up or down on both
network cards. Despite the possible problems created by the Cisco system, we wanted, observing
the data over a whole week to be able to detect worst-case bounds. For example, knowing the
maximum range of variation (in dB) of an AP over a week, it is possible to retrieve a good
bound for it, in case we will use a methodology based on the RSS measurements.

Moreover, some large scale pattern (over a day or just 6-8 hours) can be observed indeed:

• On Saturday and Sunday the signals observe the same range of variation (5-10dB) over
the whole day, for both cards and all the APs, creating a solid stripe on the graphs.

Probably this is because there are almost no people in the building during these 2
days, so the dataload of the WiFi network does not change and the Cisco system does not
intervene.

• Every working day, from 8:00 to 18:00, the signals show clear fluctuations compared to
the rest of the nightly hours.

This is caused by the people’s presence in the building, moving, using the WiFi
network or just gathering in a room for a lecture.

• The cards don’t follow the same pattern while measuring the same signal. However they
do show a similar pattern as the two described above.

• The problem of the AP’s RSS not received at all is still present, in different percentages,
again depending on the hardware used.

41

(a) Dlink AP1 (b) SMC AP1)

Figure 4.3: Long experiment: AP1

42

AP1 AP2 AP3

Dlink(W) SMC(W) Dlink(W) SMC(W) Dlink(W) SMC(W)
Average(dB) -60,54 -59,13 -62,07 -63,10 -66,72 -67,57
Variance 21,40 16,13 23,52 13,85 4,57 18,90
Standard Deviation 4,63 4,02 4,85 3,72 2,14 4,35
Max Variation ob-
served (dB)

36 44 34 38 17 33

No. measures / AP
presence

5397/4284 4597/4527 5397/3086 4597/4548 5397/5130 4597/4581

Prob. AP not sniffed
(%)

21% 2% 43% 1% 0,5% 0%

Table 4.3: Long Time Experiment: statistical analysis over the measurements made by the two different
network cards on the three strongest APs, AP1, AP2 and AP3. The row “No. of measures
/ AP presence“ represents, on the left, the number of total measurements performed by the
card and on the right, the number of times the AP has been detected. W=workstation

4.1.1 Merging the Probabilistic Analysis with the Distribution graphs infor-
mation

To understand which were the most probable RSS values coming out from the measurements, we
decided to graph their probability mass function; even though our data do not perfectly match
any known probability distributions, in some cases they resemble to a non balanced Gaussian
bell which can be seen in Figure 4.4, while, especially in the long time experiment more than
one mean value is present (probably caused by the variations created by the Cisco system. See
Figure 4.5), creating two or more peaks inside the bell.
Connecting together the information about the standard deviation found in Table 4.2 and 4.3,
and the information coming from the non balanced bell of the mass distributions, we can notice
one important thing: even though the standard deviation is in average quite low for all the
measurements (from 2 to 7dB) because the mass of data just moves around the mean value,
we could still end up in the situation where a sniffed RSS is on the low side of the unbalanced
bell. Namely, we get an RSS much smaller than the mean value (in Figure 4.5 can be seen an
example of this problem: the values in the bottom of both the graphs, being very distant from
the middle of the bell). Moreover, as stated in the experiments’ conclusions, we also observed
a percentage of total ”disappearance” of an AP, where even the strongest APs are sometimes
not retrieved at all in a measurement. This could be seen as a particular case of unbalanced
bell, where the observed AP’s RSS value is so low that it is not retrieved at all.

These problems have to be addressed in our application, as the risk to get RSS values very
far (in negative) from the mean value, or even disappear, could heavily influence the reliability
and accuracy of the location system.

One possible technique to measure an RSS value as close as possible to the “real” mean
value, could come from the observation that the bells created by the distributions are either
quite balanced (especially in the case of the workstation’s cards), or unbalanced with the highest
point of the bell being a high RSS and the rest of the bell fading away with smaller RSS (see
Figure 4.4). This can lead to a technique were, given several measurements made in a short

43

time, more importance will be given to the highest ones, which should be closer to the “real”
mean value of the bell.

All the graphs are shown in an overview picture for both Short and Long Time experiment
in the Appendix, in Figure 7.5 and 7.6, where it is easy to appreciate the similar distribution
pattern followed by all the measurements.

4.1.2 Comparison with the Redpin Experiment

A similar experiment has been carried out by the earlier mentioned Redpin project (see Section
3.1.1.3). They used 5 laptops in 3 different rooms of the same building, but close enough to be
able to sniff the same APs. They ran the experiment for a week sniffing measurements every
minute. Their conclusion are mainly:

• The RSS of an AP varies depending on the used network card

• A short and a long term variation are observed

• Different APs have different variances

For these reasons, they came up with the Asynchronous Labeling Technique described in
Section 3.1.1.3, using the accelerometer to detect the stillness or the moving of the phones and
later on averaging a large number of measurements from the same location, in order to cope
with these variations. This experiment can be compared to our Long Time Experiment, they
have a similar frequency of the scans (1 minute versus 2 minutes in our experiment) and the
same duration of one week. Concerning the Short Time Experiment, we can’t really relate to
their experiment, as the frequency we used was much higher (10 seconds). We have actually
performed the experiment with such a high frequency because, first of all, we noticed that
the RSS values measured by two fast (5-10 seconds) consecutive scans were different, and we
were also addressed of this problem by Scientific Assistant R. Hansen, which is working in our
department on algorithmic strategies to improve Geolocation using Fingerprinting [26].

In the following paragraphs we show the similarities and the differences among our experi-
ments’ conclusion and the ones from Redpin

Similarities

• Different network cards present different variations.

• The patterns are different. From a room one could receive a pattern and from another
room the pattern could be different. We experienced the same with two laptop receiving
the same AP’s RSS from the same point.

• High long-term variations during the morning. We noticed the same, even with the pres-
ence of the Cisco System (see Section 4.1).

Differences

• Their results are more stable than ours on long-term variations, because in our experiments
the signals are affected by the university’s Cisco system, which rises or lowers the single
AP’s signal power depending on network load and usage.

• They do not talk about the AP disappearance problem, either they did not experience it,
or they just did not notice it. In our case, it is important to take it into account, because,
as in each room we usually sniff 2, 3 or 4 APs, one completely missing AP can make the
difference while performing the Geolocation.

44

Figure 4.4: Short Time Experiment, snapshot of the mass distributions of the data measured in 2
hours from AP1, by the Laptop and the SMC network cards (around 1000 measurements).
Vertical axis: scale of observed RSS values - Horizontal axis: number of time a particular
RSS value has been observed.

Figure 4.5: Long Time Experiment, snapshot of the mass distributions of the data measured in one
week from AP2 by the Laptop, and from AP3 by the SMC network card (around 5000
measurements). Vertical axis: scale of observed RSS values - Horizontal axis: number of
time a particular RSS value has been observed.

45

• We measure short time variations even in less than a minute.

• As the RSS variance heavily depends on the Network card used, it is important to make
things clear about which network card is being used for measuring. It is not clear in their
experiment.

4.2 The basic sniffer application on Android

Why we carry out this experiment In order to be able to implement a Geolocation
application under Android, we had to know if some WiFi sniffing tools were available. In fact,
we could have implemented our own sniffing tool but this would have been a long and hard
work.
After searching for a while the Android website, we found a WifiManager that is able to detect
all the APs surrounding the device. So we decided to look for some example of this tool in order
to see what information we would be able to retrieve thanks to it.
The best example we found [23] was listing all the configured networks on the device. We then
modified it a little in order to make it list all the available APs. Thanks to this simple example,
we were able to see that it was possible to retrieve the MAC addresses, the RSS and the names
of the networks, as we can see in Figure 4.6.

Figure 4.6: Screenshot of the experiment

46

Main Used Code Here are listed some snapshots of the main methods we used from the
Android libraries to make the basic sniffer work.

// Setup WiFi , r e t r i e v e the WifiManager serv i ce
w i f i = (WifiManager) getSystemService (Context .WIFI SERVICE) ;

// Start the scanning
w i f i . startScan ()

// The scanning i s done asyncronously
// We have to r e g i s t e r a rece iver to rece ive the r e s u l t s
r eg i s t e rRece ive r (rece iver , new In t entF i l t e r (WifiManager .

SCAN RESULTS AVAILABLE ACTION)) ;

// Retrieve the scan r e s u l t in a l i s t
List<ScanResult> r e s u l t s = w i f i . getScanResults () ;

47

Chapter 5

Design

In this chapter we show the decisions we made based on the notions presented in the previous
prerequisites Chapter 3 and on the practical experience given by the experiments reported in
Chapter 4. The structure of the chapter follows the same scheme as before: first, the Design
choices and reasons for the Geolocation part are presented, then, in the following section, the
same information are provided for the chat system.

5.1 Indoor Geo-positioning on a smartphone: Feasible approach

After the overview given on the broad topic of Geolocation, we can focus on the technologies
and methodologies which could fit our scenario: Indoor Geolocation on a Smartphone.

5.1.1 Feasible Technologies

First of all, concerning the technologies, we were interested in picking only the ones widely
available on modern smartphones. As of today (2010), smartphones from different manufactur-
ers are usually equipped with GPS, WiFi, GSM and Bluetooth. That means, if we look back
at Figure 3.1, we can see that all the UWB, proprietary solutions and the RF family are not
attractive in our case; the remaining choices can be seen in Figure 3.3.

Moreover, we have a requirement concerning indoor positioning, that means we would like
to achieve a room-resolution location, preferably less than 10 meters. This choice curtails down
the options to actually only one family: the WiFi technology. The GSM family, even though
it overlaps the WLAN technologies in a small zone of the diagram as we can see in Figure 5.1,
is discarded because it only retrieves an accuracy of 10 meters on the border of its scope; that
means one would try to implement a state of the art GSM location system, integrating the most
reliable methodology, just to reach the goal of the 10 meters accuracy. Thus, we will focus
our attention on the WiFi network, namely on the access points antennas carrying
its signals.

5.1.2 Feasible Methodologies

Of the three main methodologies outlined in Section 3.1.1.3, two are actually the real competi-
tors: Triangulation and Scene Analysis (Fingerprinting). The third solution, the Proximity,
although very simple, provides an accuracy which is surely lower than the other two. This is
because, taking into account only one antenna, it will retrieve the same position for all the
points in its range, and sometimes antennas are placed very far from each other, definitively
more than 10 meters.

48

Figure 5.1: Overlap zone between WLAN and GSM technologies. GSM reaches a 10 meter resolution,
equivalent to the WLAN, only at the border of its scope.

Triangulation versus Scene Solution (Fingerprinting) Comparing the requirements we
have shown in Chapter 2 with the methodologies description provided in Section 3.1.1.3, we
outline the following results:

• Triangulation needs an a-priori map with the relative or absolute positions of the access
points.

• Fingerprinting permits to deploy the system without having a pre-specified map, though,
it needs the participation of the user to train the system (see Redpin [11]). Moreover, using
a Database of the fingerprints on the phone, the users can asynchronously participate in
the deployment of the system (by collecting fingerprints in different locations), requiring
no server and less administrator intervention.

• Triangulation needs to calculate the approximate distance to an access point using the
received power of the signal (which is a source of uncertainties). Fingerprinting does not;
it just compares the received values with the ones in the Database.

• Triangulation needs at least 3 access points (4 in case of floor detection) to be applied.
Fingerprinting might still give a result (probably imprecise) with 2 access points.

• The experiments we made show that the RSS values can vary in average, between plus-
minus 30dB on a value of 70dB, even if the device is in the same place. Retrieving a
distance from these data is more difficult than just comparing these data. In both cases
one needs a probabilistic model, and it seems to be a good idea to process the data as
little as possible, as every mathematical or probabilistic approximation might deteriorate
the possibility of getting the right location. In the Fingerprinting method there is one
step less: the calculation of the distance is not done, that means one less possible cause
of errors (see Table 5.1)

Table 5.1 actually shows the steps needed by the two methodologies. The Triangulation
will always start with getting or making a precise map of the building, providing the exact

49

position of the antennas, either in terms of GPS or just the position relative to the building
size. For the Fingerprinting method, the first step concerns the creation of a Database
containing several measurements (fingerprints) which will be used as a base to compare
the location observed by the user. The second step is common to both: the reading of
the RSS value from the surrounding APs. The third step is actually present only in the
Triangulation, and it retrieves (applying probabilistic methods) the distance of the AP
given its RSS. The fourth and last step is, for the first methodology, the triangulation
of the position using at least three known points while for the Fingerprinting it concerns
the lookup and comparison operation in the Database containing the list of fingerprints
collected in the first step.

• Fingerprinting could be implemented using a shared map between the devices and shar-
ing information among them while Triangulation will usually not be in need of sharing
information among the devices. This way, as in the Redpin project, the users could help
during the deployment phase, requiring very few administrators’ intervention.

Phase 1 Phase 2 Phase 3 Phase 4

Triangulation Map Get RSS Estimate Distance Triangulate

Fingerprinting Create Database Get RSS - Estimation against the Database

Table 5.1: Triangulation and Fingerprinting Geolocation methodologies, the general steps needed to
perform a location estimation

Even though Fingerprinting has its own drawbacks, compared to Triangulation and matching
our requirements, it seems to suit well our Geolocation system. Moreover, after having a meeting
with a scientific assistant, Rene Hansen, who is working in our department on algorithmic
strategies to improve Geolocation using Fingerprinting [26], we were able to point out some
more features favoring Fingerprinting. We report them here.

• On the question of why the Redpin project [11] uses an easy algorithm to calculate the clos-
est fingerprint, while we have reviewed several different methodologies concerning prob-
ability and mathematical equations, and whether it is better to use the same approach
as Redpin or to focus on the more formal and known approaches, he pointed out that in
the last decade everybody was focusing on getting the best possible accuracy, hence prob-
abilistic methodologies and mathematical approaches flourished in several studies. But
sometimes this approach is not worth the effort, especially in common practical applica-
tions where an accuracy of 4 or 5 meters is still considered room-accuracy. Thus the focus
moved more on the real life applications and the functionalities, which do not require a
particular accuracy as far as the system accomplishes its task. Hence, it is fine to use a
simple algorithm if it provides the necessary accuracy and gives good practical results.

• On the matter of why the Fingerprinting methodology is being preferred to Triangulation,
he pointed out that Triangulation is usually less precise than Fingerprinting, for one main
reason: its exact calculation of the location relies on data which are not exact. Actually
these data are estimated as distances over the RSS values received from the different
APs. If there is no a line of sight (our case) these data are highly changeable, that means
estimated distances themselves will be highly changeable, resulting in a highly changeable

50

final location. The Fingerprinting instead, gets the same highly changeable RSS data, but
it does not retrieve a distance from them, it only compares them with the other available
fingerprints in the Database. Moreover, the officer of the building will not always be able
to provide the position of all the access points in the building.

5.1.3 The Design of the Fingerprinting system

Our Fingerprinting system will be composed of 4 main components. Here we introduce them
one by one and then we report the use case diagram to highlight the possible user’s interactions
with the system, and the sequence diagrams of the main activities, namely, the addition of a
new fingerprint in the Database and the retrieving of the user’s position. Moreover, not listed as
a stand-alone component (but just referenced as part of the GUI) there is the user’s intervention
which plays an important role to make the system work.

• Android GUI - retrieving the results and receiving user’s inputs

• Sniffer - sniffes the available APs and their RSS, to get the current fingerprint. This
component is very similar to the one described in the experiments section (see Section
4.2)

• Fingerprinting Database - to store the fingerprints for further analysis

• Algorithm - to compare current fingerprint with the Database’s entries

5.1.3.1 Android GUI and the user intervention

The simple GUI we have created shows on the mobile the options that a user have concerning the
Geolocation: insert a new fingerprint and retrieve its position. As explained in the prerequisites
in Section 3.1.1.3 about the Fingerprinting methodology, we need an offline and online phase.
To keep these two phases as less separate as possible (in order to make the system usable right
away), we use the user’s intervention to build a Fingerprinting Database. The user, in order
to be able to use the system in a particular location, has to insert some fingerprints of that
location in the Database. This procedure is shown by the sequence diagram in Figure 5.2. The
objects that we do not describe here as main components are just objects which are supposed
to help during the sequence, and are not playing an important role. At first, the user will press
the button in the GUI (MainActivity) concerning the insertion of a new fingerprint. Then the
application will ask him to insert a new name for the location. After having inserted the name,
a scan will be started and a new fingerprint will be created in the Database, containing the
name of the location plus the list of APs and relative RSS values currently sniffed. So far, in our
system, we do not address any ways to check the validity and the accuracy of the data provided
by the user. This could be added later on with an input checking and maybe some standardized
ways to input the names of the rooms, corridors, entrances etc. The second functionality, the
retrieval of the user position, is shown in Figure 5.3. The user clicks on the button “Where am
I” on the GUI and a sniffing procedure will start, obtaining the currentFingerprint of the
user’s location. The currentFingerprint will be given to the AlgorithmPerformer which will
read all the fingerprints in the Database, compare them with the currentFingerprint (see
Section 5.1.3.4 for details about the algorithm), and give back the estimated location.

5.1.3.2 Database Design Possibilities

Need For Database As we saw before, we want to store the fingerprints in the phone. There
are several solutions to do so. The first one would be to write all the data into a file and search

51

Figure 5.2: Sequence diagram showing the insertion of a new fingerprint in the Geolocation application

in this file every time we need to retrieve the data. But this solution is not optimal because
we would need to create complex functions and to organize the file really well in order to make
sure that we do not make mistakes.

Database Manager A more obvious solution is to use a Database. In fact, Database manager
already included tools that facilitates the management of the data. Moreover, Android proposes
the use of SQLite, which is a really easy way to use Database manager. Given that choice, we
still have to decide the structure of the Database.

Two possible structures of the Database:

1. The first idea we had was to use a unique Database table to store all the data. Since the
number of access point can be different for each fingerprint, the data would have been
stored in one cell, separated by punctuation signs in order to be able to differentiate them.

2. The second solution is to use two separated Database tables. In the first one, we would
record each fingerprint with a unique ID. In the second one, we would record the data of
the fingerprints, as well as the fingerprint ID which each data is associated with, in order
to have a link between the fingerprints and their data.

Stored Information When designing the Database, we had to think about which data we
would store in it. We chose to store the current date of each fingerprint, the name of the room
corresponding to it (entered by the user/recorder), and then for each sniffed access point, the
MAC address and the power of the received signal.

5.1.3.3 Database Design Choice

Choice Of The Database Structure After analyzing the different solutions that we saw
before, we decided to go for the second one. In fact, in the first solution, in order to retrieve the

52

Figure 5.3: Sequence diagram showing the steps needed to retrieve the user’s location

data of one fingerprint, it would have been necessary to load all of them into the RAM memory
before being able to use them while the second solution allows us to make queries for particular
data without having to retrieve the other ones.

ID Date Room

0 10/10/2010 0.1.12

1 23/10/2010 1.0.1

2 29/10/2010 Cafeteria

3 11/11/2010 1.0.5

Table 5.2: Example of the Database table used to store the fingerprints

5.1.3.4 Positioning Algorithm

Here we will describe the algorithm that we will use to determine the position of the user. This
algorithm has been inspired by the algorithm used in the Redpin project [11]. It compares a
scan of the access points which has been performed right before, and the data of the scans
stored in the Database (the fingerprints). The goal is to give points to the fingerprints in the
Database to determine which one matches the best the current position of the user. The points
are given by comparing the strength of the signals, and the number of sniffed access points.
Here are the three main points that will compose this algorithm:

• Retrieve all the fingerprints that contain identical access points

53

ID FPID MAC Adress RSS

0 0 00:22:3f:c2:0f:90 -70

1 0 00:13:5e:56:0a:c0 -83

2 1 00:23:be:46:ae:30 -67

3 1 00:25:33:12:c1:50 -81

Table 5.3: Example of the Database table used to store the fingerprints’ data

• Compare the signal strength of each retrieved fingerprint for each access point.

if the difference is less than 10, give 3 more points to the fingerprint.

else if the difference is less than 30, give 1 more point to the fingerprint.

else take 1 point back from the fingerprint.

• Compare the number of access points contained in the fingerprints, and subtract a number
of points from the fingerprint corresponding to the difference.

Additional logic to perform the Location As discussed in Section 4.1.1 we are aware
of three main problems which could influence the sniffed RSS value and the accuracy of our
location system as a side effect:

1. The Cisco System which uses virtual MAC addresses and can “randomly” rise up or lower
down the strength of the APs depending on several factors (see Section 4.1).

2. The measurements of RSS values very low and far from the mean value.

3. The probability of not sniffing an AP at all, even if it is one of the strongest ones (we also
call this the ”disappearance” problem).

For the first problem, we do not have a final solution as the information we gathered about
this proprietary system are not enough. For the virtual MAC addresses we just use the list
of real MAC addresses present in the building. For the “random” RSS variations, we mainly
rely on the probabilistic characterization of the problem done in the experiment Chapter (see
Section 4.1), particularly in the Long Time Experiment. With this experiment we manage to
know the worst case of RSS variations observed during a week and try to empirically come out
with a threshold which permits our algorithm to give a reasonable amount of points during the
fingerprints comparison routine. We cannot know if the worst case variations created by the
Cisco System might be bigger in the future (e.g. an AP’s RSS mean value is 80dB and change
to 40dB at some point in the future). In that case, our system might suffer from inaccuracy
problems.

For the other two problems, we addressed a possible solution at the end of Section 4.1.1.
Both when we insert a new value in the Database and when we retrieve the user’s position, we
make three consecutive scans and get the highest RSS value observed for each sniffed AP. This
way, with very high probability, we avoid to store in the Database a fingerprint in which there
is one main AP missing 1. Concerning the highest value, as shown in Figure 4.4 (especially

1Moreover, as we usually sniff only from 2 to 5 APs, the lack of one of them could create big issues

54

concerning the Laptop results) and in the Appendix in Figure 7.5, we count on the fact that
the distribution bell is not perfectly balanced, but is actually inclined with its mean toward the
highest RSS values. Thus, the highest value should be the closest to the ”real” mean. This
technique should give us good accuracy on the short term, but we cannot be sure to be able
to overcome the problems introduced by the Cisco System over the long term. For example, as
shown in Figure 7.6, during the long term the Cisco System introduces different peaks which
represent several highest RSS values that an AP has had during the whole week.

Of course, the choice of the highest value will not be static, we will try to implement it in a
way that it could be changed at any time, maybe by getting an average instead of a maximum.

A possible problem: the moving of the access points One last problem we have
thought about during the Design phase is what would happen if an AP is moved or replaced.
This is, of course, a situation which should not happen every day, but it can affect the accuracy
of the system as the Fingerprinting Database will be inconsistent after the moving.

To address some possible solutions, we directly asked by mail the Redpin project author
Philipp Bolliger [11]. He said that the current (implemented) version of Redpin only marginally
takes this into account. The basic idea of Redpin is to train the system while using it, hence
the users will train the system over a long period of time. Should the environment change,
e.g. moving APs, Redpin just creates new readings and adds these to the known fingerprint
of a location. As fingerprints get bigger and bigger this way, we could think of a mechanism
to automatically delete old readings, more precisely the ones that contain measurements of the
”old” APs. This, however, is not implemented in Redpin yet.
Another possible solution has been given to us by Rene Hansen [26]. He said that it was a
known problem and different solutions might help. One of them clusters the fingerprints in the
Database and erases the whole cluster if some new measurements addressed by the same APs
are found very different from the ones in the Database. Eventually, we decided not to dig into
this matter as our main aim is to create a working Geolocation Prototype which could be lately
refined with these solutions.

55

5.2 Chat Design

This section provides the design decisions we made for the chat part of the application. We
first discuss the architecture we chose, among the two main types presented in the previous
prerequisites Chapter 3. Later on in the section we explore the choice of the middlewares
providing support for the chosen architecture. We will then figure out how to merge the different
technologies we decided to use in order to create an efficient application.

Figure 5.4: Use case diagram of the chat system

In this use case diagram, we can notice that there are two main activities for the chat: one
user (either a student or a teacher) will be able to:

1. see a list of available persons connected to the network.

2. communicate with a specific user of this network by reading and writing messages.

5.2.1 Feasible Chat middlewares

1. First of all, we use XMPP instead of other P2P middlewares because it provides specific
tools to develop instant messaging applications.

2. Moreover, XMPP is very widely used. There is a lot of XMPP servers running on the
Internet today. Google has based its own chat system on it. Being an open source
middleware, XMPP takes advantage of the huge community that works hard to make it
more and more efficient, for example by building APIs for different programming languages
including all sorts of extensions available with this protocol. It should indeed receive more
improvements compared to other middlewares. This community also provides help during
the development process, such as ours, in the form of forum threads, etc.

3. All the currently available P2P protocols have been designed with a desktop environment
in mind [21]. But we are in an embedded environment, more precisely we use phone
devices so we have to use a middleware which takes care of our resources. We need thin
peers considering they are phones. According to the table of [21] we have thin peers with
XMPP compared to JXTA for example. We have generally speaking better performance
for XMPP.

4. In XMPP, the support for real-time data streaming is good, which is only average for
JXTA according to [21].

56

5. We have a good interoperability with other clients using XMPP. It is not the case for all
middlewares: for example JXTA has a poor interoperability. Moreover, thanks to the help
of the community, it can be improved.

5.2.2 Feasible technologies to set up P2P networks

To use properly our middleware and to be able to launch the chat system, we need a network.
Because we do not want the presence of a server at all (see Chapter 2) we have to set up a
network composed of peers (to create the P2P network). Each of them has the same function
and will run exactly the same program. To set up this network, we have to distinguish two
different cases: the first one when a peer has to create the network (because it does not exist
yet) and the second one when peers join the network.

The XMPP middleware could allow us to create a network from the beginning to the end
but the problem is it uses an hybrid architecture (see Chapter 3) and we do not want a server in
our network (even for authentication for example). So we would prefer avoiding this situation
considering the disadvantages already evoked. As stated in the Chapter 3, the Link Local
implementation of the Smack API respects all of our needs. We thus decided to use this
modified API made by Jonas Adahl to begin our implementation.

5.2.3 Setting up the P2P chat system using XMPP and JmDNS

In this section, we will introduce the functioning of the modified API called Link Local Smack
API. We will go through the different steps of the two main used technologies XMPP and
JmDNS.

5.2.3.1 Setting up an XMPP chat system

To begin, here is the typical way of setting up an XMPP chat client:

1. Create an XMPP connection to the XMPP Server.

2. Authenticate to the XMPP Server.

3. (Server Side) Register the presence of the client.

4. (Server Side) Maintain a list of presences of the clients.

5. a Engage a discussion with another client through the server.

b Engage a direct link discussion with another client.

The sequence diagram shown in Figure 5.5 illustrates those points.

5.2.3.2 Setting up a JmDNS presence

Then, here is the typical way of setting up a JmDNS presence service:

1. Create a presence.

2. Listen to all the presences on the network.

3. Multicast our presence on the network.

4. Maintain a list of presences in the client.

The sequence diagram shown in Figure 5.6 illustrates those points.

57

!"##$%&&'()*%&"+*&,()*-*).

/%01#+(2+3'4456'7

$%&&'()1)%1)8'1(8+)16'7-*('

(7'+)'9:

,;)8'&)*(+)'9:

<')7*'-'#7'6'&('=*6)9:

7');7'6'&('=*6)9:

>*60?+.=*6)9:

#7'6'&('=*6)'&'7

#7'6'&(',>>'>@"%>*A*'>@<'B%-'>9:

7'B%-+?@+>>*&3@B%>*A*(+)*%&

<'A7'68=*6)9:

/%01#+(2+3'4456'7

C&*)*+)'1+1(8+)

6'&>$8+)C&*)*+)*%&9:

+>>9:

"'66+3'=*6)'&'7

+>>9:

C&(%B*&3"'66+3'9:

B'66+3'

>*60?+."'66+3'9:

Figure 5.5: Client Side Sequence Diagram for the setting up of a XMPP chat connection

Figure 5.6: Client Side Sequence Diagram for the setting up of a JmDNS presence discovery

58

5.2.3.3 Bypassing the XMPP server connection

Now that we do not want to have any server in the network, the goal is to bypass the 4 first
steps of setting up an XMPP chat system using the first 3 steps of the JmDNS presence tool.
When the presences are set up we use the step 5b of the XMPP set up to discuss with other
clients:

1. Create a presence (JmDNS).

2. Listen to all the presences on the network (JmDNS).

3. Multicast our presence on the network (JmDNS).

4. Maintain a list of presences in the client (JmDNS).

5. Engage a direct link discussion with another client (XMPP).

5.2.3.4 Engage a direct link discussion with another client

When a chat is engaged between two clients, they engage an xml stream between themselves to
exchange messages in close to real time [29]. The messages that are received are parsed by the
client to be usable for the application. In order to engage the chat here are the steps for the
engaging client:

1. Listen for Chat services on the network.

2. Create a chat with the information contained in the presence of the desired client.

3. Listen for Messages on that Chat service.

4. Exchange messages.

Here are the steps for the engaged client:

1. Listen for Chat services on the network.

2. If a new chat is created listen for Messages on that chat.

3. Exchange messages.

The sequence diagram 5.5 also illustrates this discussion process.

59

Chapter 6

Implementation

6.1 Geolocation Prototype

In this section we describe the prototype of the Geolocation application.

6.1.1 Introduction

When we finished designing the different properties of the Geolocation part, we decided to
implement a first prototype in order to adjust the parameters and the decision algorithm. This
prototype is able to record positions during an offline phase, and determines the current position
of a user during the online phase. In order to debug this program and perform the scan, the
easiest way would have been to use the Android emulator included in the Android SDK plug-in
for Eclipse. But this emulator does not allow us to use the WiFi functionalities, and because
the cell phones that we used were not made for developers, we were not able to access the files
containing the results of the scans. So we decided to add to this prototype an activity that
would allow us to display the scan results and to remove some records from it.

60

6.1.2 Application Class Description

Class Diagram Figure 6.1 is a class diagram of the application that allow us to visualize the
structure of this application, and the relations between the different classes that compose it.

Figure 6.1: Class diagram of the Geolocation prototype

61

Main Menu class This class is the entry point of the prototype. As we can see on Figure
6.2, it allows the user to navigate through the different activities of the application thanks to a
list.

Figure 6.2: Screenshot of the main menu of the application

Geopositioning (Geolocation) class This class is the one which performs the location
process. It performs a scan of the available WiFi networks and uses the AlgorithmPerformer
object to compare the current scan to the one stored in the Database. The result is given in a
list of rooms that match the current position giving a specific rank . To each room is associated
a grade that gives the probability of being the one in which the user is. For the final version of
the application the user should only receive one result corresponding to the best match.

(a) Screenshot of the Geolocation ac-
tivity while the application is comput-
ing the position

(b) Screenshot of the Geolocation ac-
tivity when giving the results

Figure 6.3: Screenshots of the Geolocation activity

62

AddData class This class is used to add fingerprints to the Database. The user has to input
a name for its current position, and click the scan button that will launch the recording process.
This process is composed of scanning the available WiFi networks, and adding the results to
the Database.

Figure 6.4: Screenshot of the activity that add data to the scan

WifiScanReceiver class This class is used to receive the event corresponding to the end of
a WiFi network scan. In fact, since the scan is performed asynchronously, an object is needed
to treat the end of it. This class is also used to parse the incoming data from the scan. In fact,
the only data that are needed to perform the location are the BSSID (or MAC addresses) and
the RSS. This object will then only transmit these information to the other objects. In the last
implementation of the algorithm, we also decided to perform several scans in order to prevent
any hardware from errors which could lead to not detecting some of the WiFi networks. This
object is the one which will relaunch the scan a certain amount of times. It is also in this part
of the application that the parsing of the ”real MAC addresses” is performed. In fact, we saw
that the access points of the university are creating some virtual MACs that do not correspond
to our APs, so we had to select only the real ones in order to avoid any issues.

scanManager class This class manages all the scan functionalities. It is used to create the
scan and the tables, to add, delete or retrieve data from these tables. Several functions have
been implemented in order to be able to retrieve different data from different arguments.

DisplayFPDB class This class has been created for debugging purposes, in order to be able
to display the scan, and to delete some of the records from it. When in ”display mode”, the click
on one of the items of the displayed list of fingerprints will show the associated data. When in
”deleting mode”, the click on one of these items will delete the fingerprint and all the associated
data.

63

(a) Screenshot of the activity that displays
the fingerprints contained in the scan, and
allows to delete them

(b) Screenshot of the activity that displays
the data of the fingerprints contained in the
scan

6.1.3 Positioning Algorithm

This Section describes more deeply the positioning algorithm that is used to calculate the
position of a user. The way of attributing points to fingerprints can be seen in Section 5.1.3.4.

i n i t i a l i z e numberOfAPInScan to the number of access points detected by the scan
i n i t i a l i z e c l o se s tF ingerpr int to −1
i n i t i a l i z e f ina lL i s tOfF ingerpr int s a hashtable of <Fingerprint , score> pa i r s

FOR each access point detected by the scan

l i s tOfF inge rpr in t s = a l l the f i ng e rp r i n t s from the database containing
the current access point

FOR each f inge rp r in t in l i s tOfF inge rpr in t s

c lo se s tF ingerpr in t = check i f the l e v e l o f the current
f i nge rp r in t i s c l o s e r than the previous one , i f yes , update

c lo se s tF ingerpr in t

attr ibutePointsToFingerprint (f i nge rp r in t)
ENDOFFOR

UPDATE close s tF ingerpr in t in f ina lL i s tOfF ingerpr int with score =
current score + 1

ENDOFFOR

FOR each f inge rp r in t in f ina lL i s tOfF ingerpr int s

UPDATE f inge rp r in t with score = current score − (absolute value of (
number of access points in f i nge rp r in t − numberOfAPInScan)

ENDOFFOR

64

6.2 Peer-to-Peer Chat Prototype

6.2.1 Introduction

For the implementation part of the P2P chat system, we went through several issues. In order to
target the source of these issues, we implemented 3 main prototypes which are described in this
section. The aim of having those prototypes is to make sure that the multicast is functional on
Android phones with the Android OS and the university network as a requirement for XMPP
Link Local, then to make sure that the Link Local Smack API is fully usable and finally to
make sure that JmDNS works also on Android OS.

6.2.2 First Prototype: Multicast Issues on Android Phones and the Univer-
sity network

6.2.2.1 Multicast Issues on Android Phones

When we conducted the research about the different usable tools, and chose JmDNS among them
we discovered that a lot of Android developers did not manage to make a proper application
due to the fact that Multicast has a lot of problems on Android. It appeared that the OS itself
and for certain cases the phones refused to use Multicast.

Why we implemented this prototype The main tool to use JmDNS is the Multicast,
indeed all the services provided for that tool use a Multicast socket and Datagram Packages
sent through that socket. It is thus very important that that functionality can be provided by
the Android OS. Being a Java based OS, it is probable that thes tools are usable for Android.
Since the problems were mainly encountered for old Android OS (mainly 1.0 and 1.5) we wanted
to see if they remained on the newest versions of Android.

Deployment This program is aimed at being really simple and only uses the basic require-
ments of the multicasting under Android. We based our implementation on an example program
found on theInternet [5]. We decided to implement a little program aiming at sending and re-
ceiving messages through a Multicast socket between our two evaluation phones:

• HTC Hero, firmware version: 2.1-update1, software version: 3.32.405.1.

• HTC Wildfire, firmware version: 2.1-update1, software version: 1.25.405.1.

The Multicast Lock Normally the WiFi stack filters out packets not explicitly addressed
to one device. This is why Android provides a Multicast lock that allows the user to use
Multicast by acquiring it as the following code shows:

WifiManager w i f i = (WifiManager) getSystemService (Context .WIFI SERVICE) ;
mcLock = w i f i . createMulticastLock (”mylock”) ;
mcLock . acquire () ;

This basically counters the first issue of the Multicast not functioning by unlocking it. Then,
we just initiate a TextEdit and a Button in order to get the message and send it. We use the
following code in the onClickListener of the button:

Str ing msg = et . getText () . toStr ing () ;
socket . send (new DatagramPacket (msg . getBytes () , 0 , msg . getBytes () . length ,

InetAddress . getByName(” 224 .0 .0 .174 ”) , 5353)) ;

65

We send a Datagram Packet on the address 224.0.0.174, this is basically one of the address
used to perform Multicast DNS. 5353 is the port. Now, for the receiver, we open a Multicast
socket and join the group in which the messages will be sent as shown in the code below:

[. . .]
socket = new MulticastSocket (5353) ;
socket . joinGroup (InetAddress . getByName(” 224 .0 .0 .174 ”)) ;
[. . .]
new DatagramListener (socket , tv) . s ta r t () ;

We use the address 224.0.0.174 again to send and receive the message properly and we
initiate a DatagramListener (tv is the TextView for the output of the program). Here is how
we receive the Datagram Packet using the socket opened before:

DatagramPacket recv = new DatagramPacket (buf , buf . length) ;
socket . r ece ive (recv) ;

HTC Hero and HTC WildFire Multicast Communication We connected the two
phones on the same WiFi network and ran this test application. For both of them the Multicast
Lock was successfully acquired.

• When we send a message with the HTC Wildfire, it receives its own message and the HTC
Hero receives it too.

(c) HTC WildFire sends the message (d) HTC Hero receives the message

Figure 6.5: Sending a message with the HTC WildFire

66

• When we send a message with the HTC Hero, it receives its own message but the HTC
WildFire does not receive any message.

(a) HTC Hero sends the message (b) HTC Wildfire does not receive the message

Figure 6.6: Sending a message with the HTC Hero

In order to know if the problem was coming from the HTC Hero or the HTC Wildfire, we
ran an experiment with Wireshark, a network protocol analyzer [40]. This experiment showed
us that the HTC Hero successfully sent its message, the problem thus seems to come from the
HTC WildFire. After a lot of research, we managed to see that the problem comes from a file
called ”wpa supplicant” in the HTC WildFire (and other phones such as the HTC Desire [35]).
It is the daemon program that controls the wireless connection. For the WildFire, this wpa
supplicant does not allow the reception of Multicast messages. Since JmDNS is working with
services and service discovery, in order to discover services, we need Multicast questions and
answers. This is why it is impossible to run JmDNS on HTC WildFire, and apparently with
some similar other devices.

HTC Hero and Computer Multicast Communication We connected the phone and
the computer on the same WiFi network and ran this test application on the HTC Hero. We
implemented also a little Java program that does exactly the same thing.

• When we send a message with the computer, it receives its own message and the HTC
Hero receives it too

• When we send a message with the HTC Hero, it receives its own message and the computer
receives it too

67

We could thus conclude that the P2P chat that we want to implement can be done on the
HTC Hero using a Java application to test it.

Peer-to-Peer chat for Android ? These experiments showed us that if such an application
can be built, some devices will not manage to run it and it brings a problem of consistency.
Indeed, this application is aimed to be used by all the students of the university whatever phone
they are using. And it happens that if one of them has a ”non working” wpa supplicant he will
not be able to use it.

Possible solution In order to solve the problem of Multicasting there are several possibilities
that could be implemented. One of them would be to use an election algorithm. The principle
is to isolate two entities in the network.

Election Algorithm Example: Bully Algorithm This solution is based on an election
algorithm [33]. The goal is to elect a master that will have the role of coordinator of the ”working
phones” entity. The election requirements are:

• E1: (safety) A participant process pi has either electedi = ⊥, or electedi = p, where p is
the non-crashed process having the largest process identifier.

• E2: (liveness) All processes pi participate and will at some point in time set their electedi

variable to a value different from ⊥ or crash.

• ⊥ = undefined.

One of these algorithm is called the bully algorithm, it is based on the election of a coordinator
based on the process ID. Indeed when the coordinator fails, an election is initiated. This is how
an election is done [37]:

1. p sends an election message to all processes with higher numbers.

2. If no one responds, p wins the election and becomes coordinator.

3. If one of the higher-ups answers, it takes over. p’s job is done.

The idea is to select the process with the largest identifier as the coordinator:

1. When a process p detects that the coordinator is not responding to requests, it initiates
an election:

2. If a process receives an election message from a lower numbered process at any time, it:

a sends an OK message back.

b holds an election (unless it is already holding one).

3. A process announces its victory by sending all processes a message telling them that it is
the new coordinator.

4. If a process that has been down recovers, it holds an election.

The Figure 6.7 is an example of the bully algorithm, the process 7 being the coordinator
and having failed.

68

(a) Process 4 holds an election (b) Process 5 and 6 respond, telling 4 to
stop

(c) Now 5 and 6 each hold an election (d) Process 6 tells 5 to stop

(e) Process 6 wins and tells everyone

Figure 6.7: Bully Algorithm Example

69

”Working Phones” Entity Inside this entity we will use the election algorithm (ring-
based algorithm, bully algorithm, etc.) to elect a master. This master will be the central guide
of all the ”non working” phones. Indeed, every peer, and so the master, possess a list of the
”non working” phones models. We can add the field ”model” in the presence of each peer for
the master to retrieve it and check if it is in the list or not. If it is not, it will act normally and
respond to the service discovery. On the other hand if it is, we begin the process of sending
information. Based on the fact that a working peer knows about the presence of everyone in the
network, the master will send, in an unicast way, the presences to the ”non working” phones.
As every peer of this entity will receive the adding and the removing of the presence of a peer
from the ”non working” phone entity, each and everyone of them possess the list of the ”non
working” phones on the network. Thus when the master crashes, the new elected master would
have all the tools to take its place.

”Non Working Phones” Entity The peers of that entity will just send their presence
when they arrive on the network with their phone model and receive the information about the
network from the master of the working phones entity so a user of a ”non working” phone is
able to see the presence of everyone and chat with them.

Connection between ”Non Working Phones” and the master Here are the different
steps that should be followed by the network in order to establish a connection between the
”non working” phones and the master.

• When the master is elected, it runs a TCP server in order to be able to establish a
persistent connection with the ”non working” phones to send them presence modifications.

• A ”non working” phone multicasts its presence to the mDNS network, and listens for a
unicast response from the master.

• The master detects that a ”non working” phone appeared in the network, and sends a
message to it to give its network address.

• The ”non working” phone receives the information from the master and establishes a TCP
connection with it as a client, in order to receive all the presence modifications that could
occur in the network.

70

Here is the pseudo code of the master behaviour when a presence is added in the network:

List<String> NonWorkingPhonesModels
List<Presence> PresencesOnTheNetwork
Str ing MastersName
List<String> NonWorkingPhones
List<UnicastSocket> NonWorkingPhonesSockets

When rece ivePresence (pr)
PresencesOnTheNetwork . add(pr)
I f myName == MastersName

I f NonWorkingPhonesModels . geItemByName(pr . getModel ()) != null

UnicastSocket socket = new UnicastSocket (pr .
getIpAddress ())

ForEach Presence p In PresencesOnTheNetwork
socket . send (p)

ForEach UnicastSocket us In NonWorkingPhonesSockets
us . send (pr)

NonWorkingPhonesSockets . add(socket)
Else

ForEach UnicastSocket us In NonWorkingPhonesSockets
us . send (pr)

EndIf
EndIf

End When

Here is the pseudo code of a peer behaviour when it has just been elected master:

List<String> NonWorkingPhonesModels
List<Presence> PresencesOnTheNetwork
Str ing MastersName
List<String> NonWorkingPhones
List<UnicastSocket> NonWorkingPhonesSockets

When iAmTheMaster ()
NonWorkingPhonesSockets . c l ea r ()

ForEach Presence pr In PresencesOnTheNetwork
NonWorkingPhonesSockets . add(new UnicastSocket (pr . getIpAddress ()

)
End When

Figure 6.8(a) is a scheme of the network using the proposed solution. This solution respects
the rule of not having a single point of failure. But the problem showed in the Figure 6.8(b) is
that if there are only ”non working” phones on the network the communication fails. One of
the solutions that we can have, shown in Figure 6.8(c) is to run a Java application on a fixed
computer running in the network. This brings a single point of failure but in the only scenario
where there are only ”non working” phones in the network.

71

(a) Election Algorithm Solution

(b) Election Algorithm Solution Failure Scenario, only
”non working” phones are present in the network

(c) Election Algorithm Solution Failure Scenario: possible
solution, a Java application running on a machine in the
”working phones” entity

Figure 6.8: Election Algorithm Solution Scheme

72

6.2.2.2 Multicast Issues on the University Wireless Network

Why we carry out this experiment Not only does the Multicast needs to work on Android
phones, it also have to work on the university network for the application to be completely usable
by the students inside the university.

Deployment We ran the same Multicast test Java program on two computers using the
network AAU-1x.

Observations We had absolutely no signs of messages received or sent on both of the appli-
cations, the universitynNetwork seems to not allow the Multicast or broadcast at all.

Possible solution One of the main possible solution is to create a WiFi network like AAU-1x
that allows Multicast.

6.2.3 Second Prototype: Using the Link Local Smack API

After having chosen to use Link Local XMPP using JmDNS services, we decided to implement a
prototype of the P2P chat application. As we only have one phone that could handle Multicast
(HTC Hero) we also used a test application in Java.

We would like to thank Jonas Adahl who first implemented the Link Local Smack API based
on the Smack API. He has been really helpful throughout the whole programming process. This
prototype is based on the testMDNS program provided by the Link Local Smack API.

6.2.3.1 Class Description

Class Diagram The Figure 6.9 is a class diagram of the application that allows us to visualize
the structure of this application, and the relations between the different classes composing it.

73

F
ig

u
re

6.
9:

C
la

ss
di

ag
ra

m
of

th
e

P
ee

r-
to

-P
ee

r
ch

at
pr

ot
ot

yp
e

74

Chat Module Activity This is the main activity of the prototype, it is only aimed at
launching the different activities inside the tabs of the application.

Rooms and Chats Activities These classes are not implemented yet in the prototype, they
exist because in the future they will be used for the Chat Rooms and the different discussions
inside the Rooms as stated in the requirements.

ContactsActivity class It is the main activity of the prototype, indeed it is the activity that
initiates all the connections and displays the different users online, thanks to their presence.
We begin by acquiring the Multicast Lock to allow us to use the Multicast. Then we retrieve
the IP address of our phone that will be useful later on. We then set our name for our presence
on the network and set this Link Local Presence, it can contain a lot of information such as
the name, the nickname, the email address etc. Since JmDNS is a service registration and
discovery protocol, we create what we call a Link Local Service that will be the core of our
application using the presence. It initiates the JmDNS Daemon, creating the necessary tools
provided by the library JmDNS (the Multicast socket, etc.) and running them. It also starts the
presenceDiscoverer which is used to basically discover the adding and removing of the presences
on the network. It also starts its own presence service. When the service is created, it is
important to create Listeners in order to react whenever something happens on the network:

• Service State Listener to provide tools whenever there is a changing in the state of the
service.

• Presence Listener to react whenever a new presence is added or removed. We use a custom
Listener for the presence in order to add them in the list of contacts available.

• We need to use a wrapper as we are using the service discovery, this wrapper is called
Link Local Service Discovery Manager.

• Chat Listener to react when there is an incoming chat or when you want to initiate a chat
with a user. It uses the class LLChat (Link Local Chat) which is provided by the API
and provides all the necessary tools to send and receive messages between users.

We then initiate the Link Local Service Listener Daemon.

Conversation Activity class This class aims at giving the Chat between two users a graph-
ical interface. It is the direct link between the user and ContactActivity Chat Listener.

6.2.3.2 Presence issues

After having implemented the prototype we experienced many troubles with the presences.
Indeed, the Android Application seemed to retrieve the presence of the Java application only
once when it is launched first. After having studied the traffic with Wireshark, we discovered
that the Android application did not respond to the queries sent by the Java application.
After having discussed with Jonal Adahl, it seemed that the problem came from the API, not
completely efficient.

75

6.2.4 Third Prototype: JmDNS Presence

As the chat was completely functional, we decided to build a second prototype using only
JmDNS to implement the presences between the users.

6.2.4.1 Description class

As shown on Figure 6.11 the class diagram is fairly simple, we only have one activity Con-
tactsActivity and another class CustomListener. The other classes are used for the graphical
interface.

ContactsActivity class After having created and set up the graphical interface, we initiate
the JmDNS network. To do so, we create the Multicast lock and acquire it in order to be able
to use Multicast. Then we create the JmDNS connection and register to our presence service.
The third step is to add a service type listener and a service listener to our JmDNS connection.
These listeners are implemented with the CustomListener class.

CustomListener class This listener aims at adding to the friends list the name of a pres-
ence when it is Multicasted on the network and removing it from the list when its removal is
multicasted on the network. It also implements a resolved listener to be able to retrieve all the
information about the service. Thanks to the library JmDNS 3.2.2 this very important feature
has been completely repaired.

Conclusions This prototype works perfectly and we can see on Figure 6.10 that the adding
and removing of the presences appear in the application.

(a) Application run on the first
phone

(b) Application run on both
phones

(c) Application quit on the first
phone

Figure 6.10: Screenshots of the presence prototype

76

Figure 6.11: Class diagram of the Peer-to-Peer chat presence prototype

77

Chapter 7

Conclusions

We have presented a smartphone based application which provides two main features to Aalborg
University: a way to easily communicate among students, teachers and employees, and a location
system for them to know their position inside the campus’ buildings. Our choices to provide
these two services lead us to the use of a P2P chat system for the communications and a
Fingerprinting methodology based system for the Geolocation. We designed and developed the
two systems separately, because the problems addressed were different and spanning over several
topics, like Networking, Distributed Systems, etc. We had the opportunity to use Android OS
equipped smartphones. This OS, not only does it provides the openness and free availability
of its programming tools, but also is widely chosen by the smartphone users. In the following
Sections we describe our conclusions for both the Geolocation System and the Communication
System.

7.1 The Geolocation System

We first reviewed the five main categories of available technologies for the Geolocation, and
found out that actually only two of them could fit our indoor environment: the GSM and the
WiFi. The WiFi has been chosen because the maximum accuracy obtainable with the GSM is
only 10 meters, and, in addition to the difficulty of achieving such a precision, it could have
been barely enough to obtain a 10 meter room accuracy. The next step has been to review
the Geolocation methodologies feasible over the WiFi technology. Actually, only two were a
real possibility: the Fingerprinting and the Triangulation. The Fingerprinting methodology
over the Wireless network has been chosen as it requires less a-priori requirements than for the
Triangulation methodology. For example, the position of all the WiFi access points present in a
building, the need of at least 3 access points to perform a location and the need of administrator’s
intervention to deploy and set up the system are requirements affecting only the Triangulation
methodology. We designed the system in 4 main parts, a GUI, a Sniffer, a Database and an
Algorithm. All of them are deployed on the same phone in one application, in order to make
each device stand alone, capable to run and geolocate itself without the need of any server
or other mobiles. The logic of our system has, of course, taken the greatest effort. First of
all, we tried to review and study all the problems which converge to create the main issue for
a WiFi RSS-based Geolocation system: the access point’s signal strength variations. To do
so, we made our own experiments and 2 prototypes of the application. Thanks to these, we
were able to have an idea of the rapidity of these changes, their behaviour, and their average
variances. Moreover, we also ran into a problem, the Cisco WCS System, actually confined to
our university environment, which adds further variations to the RSS values.

78

7.1.1 The accuracy

Eventually, we made some tests to understand the overall reliability and accuracy of the system.
We stored in the Database several fingerprints, measured at the ground floor and at the upper
floor of our building, writing down on a map, as shown in Figure 7.1. The full map we have
used is reported in the appendix in Figure 7.7.

Figure 7.1: Small snapshot of the Department’s map and the names we have given to the fingerprins
measured at the ground floor (G), the same system has been used for the fingerprints at
the upper (U) floor

We focused our measurements in the corridors, where the user is probably more willing
to know their location than when they are inside a room. Moreover it is more difficult to
differentiate two locations when they are not separated by any walls. The measurements were
taken every 5 meters.
Two testings have been carried out: one using only the ground floor, to simulate a building
which has only one floor, and another one using the 2 floors present in the building. The results
are shown in Figure and 7.2(b), where the colored dots should give a visual idea of the number
of times the system has retrieved the user’s position: Green bullet : right position or within 5
meters; Orange bullet : within 10 meters; Red bullet : within 15 meters or at the wrong floor. For
example, given the user’s position in location G32, if the system estimates its position as G32,
we put a green dot in the table, if it estimates location G35 we put an orange dot, and a red one
if the position it retrieves as best estimation is G25 (¡15 m) or U26 (wrong floor). The results
we obtained show that the system is able to geolocate a person within an accuracy of 5 meters
in roughly 80% of the cases, and within 10 meters in 97% of the cases, while almost no cases
of accuracy within 15 meters have been observed. Some wrong floor estimations are present,
in small number though, we think it might come from the fact that in our building mainly all
the APs are upstairs (28) and just 6 are present at the ground floor. Making the estimation
from the ground floor depends mostly on the upstairs’s APs. Of course, a much more intensive
testing should be done, including a wider coverage of the building, which could lead to more
uncertainties as the fingerprints Database will grow and the estimation will take into account
several more fingerprints. Though, we can imagine good possibility for improvements, especially
concerning the problems we have experienced. These are addressed in the future work Section
7.3.

79

(a) Accuracy of the Geolocation application consider-
ing only the ground floor, 37 user’s localization were
performed. In the Database, only fingerprints from
the ground floor were present

(b) Accuracy of the Geolocation application when
fingerprints from both upper and ground floor are
present in the Database. 45 user’s localization were
performed.

Figure 7.2: Accuracy of the Geolocation System: percentage of the times the system manages to re-
trieve the exact user’s location (ok) and when it does it within 5, 10 or 15 meters. The
colored dot represents the number of times (per each stored location) the user’s location
has been found: GREEN - in the exact place (ok) or within 5 meters, ORANGE - within
10 meters, RED - within 15 meters or at the wrong floor (in both cases, out of the 10
meters requirement)

7.2 The Communication System

Based on our requirements, we had two major points that we needed to take into account for our
Communication System: the fact that it is a chat system and the fact that it has to be purely
P2P. We thus reviewed the existing chat technologies that could fit for our application. One of
them was widely used by a lot of well known chat clients such as Google Talk, the Extensible
Messaging and Presence Protocol (XMPP). The main problem about XMPP is that it is based
on a hybrid P2P system. Indeed, it works with an XMPP server to authenticate and then lets
the clients discuss in P2P. To bypass that authentication process, we discovered that XMPP
integrates extensions. One of them called XEP-0174 is used to implement serverless XMPP
messaging using a tool called multicast DNS which was fully implementable on Android based on
the fact that a library called JmDNS (Java multicast DNS) was available. In order to implement
such an application our attention was drawn into an API which provides all the tools in Java
to use efficiently XMPP: the Smack API. Luckily a developer from the Jivesoftware community
implemented a patch to this API to integrate the extension XEP-0174. Unfortunately this
patched API called Link Local Smack API is not fully operational for Android phones, because
of the fact that some phones do not allow the multicast, the implementation of this new API
have thus been dropped. Nevertheless, we managed to implement a only presence prototype
proving that the presence should be working with the API, as the P2P communication part of

80

the API works perfectly in our first implementation. To sum things up, our communication
system is not fully operational for now, but all the solutions have been well thought and as
shown in the future work Section 7.3, will be determinant for our application to work.

7.3 Future Work

7.3.1 Geolocation

The Geolocation part of this project enabled us to be able to locate an user in a building thanks
to the WiFi access points. But this work could be improved in many ways.

Moving access points One of the improvements that could be implemented in the Geolo-
cation is the correction of the problem of moving access points mentioned in Section 5.1.3.4.

Using other kind of network In order to improve the accuracy of the positioning, a possible
solution would be to use the GSM and Bluetooth networks and to incorporate these network in
our fingerprints. In fact, the more data we have, the more precise the positioning will be. We
note that this idea comes from the Redpin [11] project.

Using BIM (Building Information Modeling) To improve our application, we could use
BIM. This is the process of generating numeric data in order to model a building. It contains
a lot of information, from the position of the walls to the composition of the ground. The part
which could be interesting for us would be the modeling of the map of the building, and the
position of the elevator and stairs. In fact, this could enable the generation of a map and the
display the user’s position in it, and to guide the user through the building if he needs to know
the path to a certain place. We are also aware that this kind of information is mandatory in
Denmark for buildings bigger than a certain size.

7.3.2 Chat

Modifying the API After having discussed the issues we encountered during the experiments
and implementation of the chat module with the programmer of the Link Local Smack API,
we discovered that it is not working yet. The point is that the link local presences are not fully
operational. Having that said and based on the fact that our implementation with JmDNS
presences worked, we will be working on the modification of the API to make it operational for
other users of the community.

Android election algorithm As stated in our possible solutions in Chapter 6, we need to
implement an election algorithm to make it work. In the future we will try to implement an
election algorithm usable for P2P networks with Android OS. Based on this implementation we
will be capable of making the application operational for every Android phone users.

7.3.3 Merge the Geolocation and Communication systems

As our prototypes are now distinct, we want to merge them into the application, not only
as separated modules but also as evolutive tools for one another. Indeed, in order to update
the Database of fingerprints of every user of the application, we will be working on XMPP
extensions (XEP-0096) that provides File Sharing over XMPP in order to share the fingerprints
on different phones and treat them in order to have efficiency on every phone.

81

Bibliography

[1] ?, About xmpp. http://xmpp.org/about/.

[2] , Client server model - what is client server network technology. http://en.
wikipedia.org/wiki/Client%E2%80%93server_model/.

[3] , Peer-to-peer - definition. http://www.bleepingcomputer.com/glossary/
definition125.html/.

[4] , peer-to-peer network definition from pc magazine encyclopedia (for picture napster
and bittorrent). http://www.pcmag.com/encyclopedia_term/0,2542,t=peer-to-peer+
network&i=49056,00.asp/.

[5] J. Adahl, Issue 2323: Setting interface for a multicast socket fails. http://code.google.
com/p/android/issues/detail?id=2323.

[6] G. Android, Locationmanager. http://developer.android.com/reference/android/
location/LocationManager.html.

[7] , Obtaining user location. http://developer.android.com/guide/topics/
location/obtaining-user-location.html, 2010.

[8] M. W.-N. K. Annemari Auvinen, Mikko Vapa and J. Vuori, Chedar: Peer-to-peer
middleware acm,.

[9] S. A. Baset and H. Schulzrinne, An analysis of the skype peer-to-peer internet tele-
phony protocol, (2004), pp. 1067–1080.

[10] P. A. Bernstein, Middleware: A model for distributed system services. communications
of the acm,, (1996).

[11] P. Bolliger, Redpin – adaptive, zero-configuration indoor localization through user col-
laboration, in Proceedings of the First ACM International Workshop on Mobile Entity
Localization and Tracking in GPS-less Environment Computing and Communication Sys-
tems, San Francisco, USA, Sept. 2008. (Best Presentation Award).

[12] P. Bolliger, K. Partridge, M. Chu, and M. Langheinrich, Improving location
fingerprinting through motion detection and asynchronous interval labeling., in LoCA,
T. Choudhury, A. J. Quigley, T. Strang, and K. Suginuma, eds., vol. 5561 of Lecture
Notes in Computer Science, Springer, 2009, pp. 37–51.

[13] , Improving location fingerprinting through motion detection and asynchronous interval
labeling, in Fourth International Symposium on Location- and Context-Awareness (LoCA
2009), 7-8 May 2009, Tokyo, Japan, A. Quigley and T. Choudhury, eds., LNCS, Berlin
Heidelberg New York, 2009, Springer, Springer.

82

http://xmpp.org/about/
http://en.wikipedia.org/wiki/Client%E2%80%93server_model/
http://en.wikipedia.org/wiki/Client%E2%80%93server_model/
http://www.bleepingcomputer.com/glossary/definition125.html/
http://www.bleepingcomputer.com/glossary/definition125.html/
http://www.pcmag.com/encyclopedia_term/0,2542,t=peer-to-peer+network&i=49056,00.asp/
http://www.pcmag.com/encyclopedia_term/0,2542,t=peer-to-peer+network&i=49056,00.asp/
http://code.google.com/p/android/issues/detail?id=2323
http://code.google.com/p/android/issues/detail?id=2323
http://developer.android.com/reference/android/location/LocationManager.html
http://developer.android.com/reference/android/location/LocationManager.html
http://developer.android.com/guide/topics/location/obtaining-user-location.html
http://developer.android.com/guide/topics/location/obtaining-user-location.html

[14] S. Cheshire, Dns service discovery. http://www.dns-sd.org/.

[15] , Zero configuration network. http://www.zeroconf.org/.

[16] Cisco, Cisco wireless control system. http://www.cisco.com/en/US/products/ps6305/
index.html/.

[17] , Cisco wireless service module. http://www.cisco.com/en/US/prod/collateral/
modules/ps2706/ps6526/prod_qas0900aecd8036434e.html/.

[18] I. Community, Igniterealtime open source community. http://www.igniterealtime.
org/.

[19] T. N. Company, Google: Gsm antennas mapping. http://www.nielsen.com.

[20] G. Djuknic and R. Richton, Geolocation and assisted gps, Computer, 34 (2001), pp. 123
–125.

[21] J. A.-K. J. R. J. S. Erkki Harjula1, Mika Ylianttila1, Plug-and-play application
platform: Towards mobile peer-to-peer, (2004).

[22] T. X. S. Foundation, Available extensions for the xmpp protocol. http://xmpp.org/
extensions/.

[23] M. Gargenta, Sniffer example. http://marakana.com/forums/android/examples/40.
html.

[24] J. Goyvaerts, Regex, Regular Expressions Tutorial.

[25] J. Graf, History and trends in client-server software design. http://www.helium.com/
items/1309939-client-server-trends-xmlrpc-rpc-sockets-soap-mashup/.

[26] R. Hansen, R. Wind, C. Jensen, and B. Thomsen, Algorithmic strategies for adapting
802.11 location fingerprinting to environmental changes, 2010.

[27] N. Hatt, Middleware: A model for distributed system services. communications of the
acm,, (1996).

[28] T. W. G. f. W. S. IEEE 802.11 Wireless Local Area Networks, Wireless lan
standards. http://www.ieee802.org.

[29] IETF, Extensible messaging and presence protocol (xmpp): Instant messaging and pres-
ence. http://xmpp.org/rfcs/rfc3921.html#XMPP-CORE.

[30] JonasAdhal, Xep 0174 (link local) support in smack). http://issues.igniterealtime.
org/secure/ViewProfile.jspa?name=jadahl.

[31] E. Letuchy, Erlang at facebook, Facebook, 2009.

[32] H. Liu, H. Darabi, P. Banerjee, and J. Liu, Survey of wireless indoor positioning
techniques and systems, IEEE Transactions on Systems, Man, and Cybernetics, Part C, 37
(2007), pp. 1067–1080.

[33] B. Nielsen, Distributed mutual exclusions and elections. https://intranet.cs.aau.dk/
fileadmin/user_upload/Education/Courses/2010/DS/Slides/mutex.pdf.

83

http://www.dns-sd.org/
http://www.zeroconf.org/
http://www.cisco.com/en/US/products/ps6305/index.html/
http://www.cisco.com/en/US/products/ps6305/index.html/
http://www.cisco.com/en/US/prod/collateral/modules/ps2706/ps6526/prod_qas0900aecd8036434e.html/
http://www.cisco.com/en/US/prod/collateral/modules/ps2706/ps6526/prod_qas0900aecd8036434e.html/
http://www.igniterealtime.org/
http://www.igniterealtime.org/
http://www.nielsen.com
http://xmpp.org/extensions/
http://xmpp.org/extensions/
http://marakana.com/forums/android/examples/40.html
http://marakana.com/forums/android/examples/40.html
http://www.helium.com/items/1309939-client-server-trends-xmlrpc-rpc-sockets-soap-mashup/
http://www.helium.com/items/1309939-client-server-trends-xmlrpc-rpc-sockets-soap-mashup/
http://www.ieee802.org
http://xmpp.org/rfcs/rfc3921.html#XMPP-CORE
http://issues.igniterealtime.org/secure/ViewProfile.jspa?name=jadahl
http://issues.igniterealtime.org/secure/ViewProfile.jspa?name=jadahl
https://intranet.cs.aau.dk/fileadmin/user_upload/Education/Courses/2010/DS/Slides/mutex.pdf
https://intranet.cs.aau.dk/fileadmin/user_upload/Education/Courses/2010/DS/Slides/mutex.pdf

[34] P. Saint-Andre, Xep-0174: Serverless messaging. http://xmpp.org/extensions/
xep-0174.html.

[35] P. Schauss, Issue 8407: Htc desire android 2.1-update1 does not receive udp broadcasts.
http://code.google.com/p/android/issues/detail?id=8407.

[36] B. Schell and C. Martin, peer-to-peer - computer dictionnary definition. http://
computer.yourdictionary.com/peer-to-peer/.

[37] scribd, Bully election algorithm. http://www.scribd.com/doc/6919757/
BULLY-ALGORITHM.

[38] A. Singh and M. Haahr, A survey of p2p middlewares, (?).

[39] M. K. Stuart Cheshire, Dns-based service discovery. http://tools.ietf.org/html/
draft-cheshire-dnsext-dns-sd/.

[40] R. Technology, Wireshark foundation. http://www.wireshark.org/.

[41] X. website, Google: Gsm antennas mapping. http://eng.xakep.ru/link/50814/.

[42] Wikipedia, Geolocalisation. http://fr.wikipedia.org/wiki/G%C3%A9olocalisation.

[43] , Multicast. http://en.wikipedia.org/wiki/Multicast.

[44] D. Wolff, What is peer-to-peer ? definition from whatis.com. http://
searchnetworking.techtarget.com/definition/peer-to-peer/.

[45] www.syngress.com, Msn messenger architecture and protocol. http://www.scribd.
com/doc/6915637/Msn-Messenger-Architecture.

84

http://xmpp.org/extensions/xep-0174.html
http://xmpp.org/extensions/xep-0174.html
http://code.google.com/p/android/issues/detail?id=8407
http://computer.yourdictionary.com/peer-to-peer/
http://computer.yourdictionary.com/peer-to-peer/
http://www.scribd.com/doc/6919757/BULLY-ALGORITHM
http://www.scribd.com/doc/6919757/BULLY-ALGORITHM
http://tools.ietf.org/html/draft-cheshire-dnsext-dns-sd/
http://tools.ietf.org/html/draft-cheshire-dnsext-dns-sd/
http://www.wireshark.org/
http://eng.xakep.ru/link/50814/
http://fr.wikipedia.org/wiki/G%C3%A9olocalisation
http://en.wikipedia.org/wiki/Multicast
http://searchnetworking.techtarget.com/definition/peer-to-peer/
http://searchnetworking.techtarget.com/definition/peer-to-peer/
http://www.scribd.com/doc/6915637/Msn-Messenger-Architecture
http://www.scribd.com/doc/6915637/Msn-Messenger-Architecture

Appendix

Wireless Signal Strenght variations experiment: Long time ex-
periment graphs over AP2 and AP3

Wireless Signal Strenght variations experiment: Mass distribu-
tion of the data in the Short Time Experiment and in the Long
time one over AP1, AP2 and AP3

Geolocation Testing and Accuracy: the department’s map and
the names given to the fingerprints

85

(a) Dlink AP2 (b) SMC AP2

Figure 7.3: Long experiment: AP2

86

(a) Dlink AP3 (b) SMC AP3

Figure 7.4: Long experiment: AP3

87

Figure 7.5: Short Time Experiment, mass distribution of the data measured in 2 hours from AP1,
AP2 and AP3 measured by the 3 network cards. On the vertical axe there is the scale of
observed RSS values while the horizontal axe shows the number of time that a particular
RSS value has been observed.

88

Figure 7.6: Long Time Experiment, mass distribution of the data measured in one week from AP1,
AP2 and AP3 measured by the 2 worksation’s network cards. On the vertical axe there is
the scale of observed RSS values while the horizontal axe shows the number of time that a
particular RSS value has been observed.

89

Figure 7.7: A part of the department’s map we have covered with the fingerprints and the names we
have given them. The maps show the Groundfloor and the correspondent Upper floor. We
kept the names constant, changing only the U (Upper floor) and G (Groundfloor). The
“SLV300-CS-APx” are the names of the APs present at the floor; the APs present at the
groundfloor are very few and not visible in this map.

90

CD-Rom

Here is a CD-Rom containing the source code of our Android application.

91

	Introduction
	Summary

	Requirements
	User's requirements
	System's requirements

	Prerequisites
	Indoor Geolocation and Smartphones
	Geolocation: the broad picture
	Geolocation in Android based smartphones

	Chat Systems Technologies
	Existing Chat Systems
	Overview of the Architectures
	Peer-To-Peer system middlewares
	Pure Peer-To-Peer XMPP Middleware: Smack API and the XMPP extensions
	XMPP security considerations

	Experiments
	Wireless Received Signal Strength fluctuations
	Merging the Probabilistic Analysis with the Distribution graphs information
	Comparison with the Redpin Experiment

	The basic sniffer application on Android

	Design
	Indoor Geo-positioning on a smartphone: Feasible approach
	Feasible Technologies
	Feasible Methodologies
	The Design of the Fingerprinting system

	Chat Design
	Feasible Chat middlewares
	Feasible technologies to set up P2P networks
	Setting up the P2P chat system using XMPP and JmDNS

	Implementation
	Geolocation Prototype
	Introduction
	Application Class Description
	Positioning Algorithm

	Peer-to-Peer Chat Prototype
	Introduction
	First Prototype: Multicast Issues on Android Phones and the University network
	Second Prototype: Using the Link Local Smack API
	Third Prototype: JmDNS Presence

	Conclusions
	The Geolocation System
	The accuracy

	The Communication System
	Future Work
	Geolocation
	Chat
	Merge the Geolocation and Communication systems

	References
	Appendix
	Long time experiment graphs over AP2 and AP3
	Long and Short experiment, mass distribution of the data
	Geolocation Testing and Accuracy
	CD-Rom

