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ABSTRACT

The aim of this project is to investi-
gate possibilities of combining distinct
wireless technology standards into one
indoor positioning (IP) framework and
find ways of making it more adaptable
to inconsistent environments and
different user device specifications.

Throughout the project we explore
possibilities of how to combine ad-
vantages of Wi-Fi and Bluetooth based
IP methods into one integrated framework.

As a result, implementation of such
framework is designed, developed and
deployed. A number of additional tech-
niques are then utilized which enables
the IP to reach higher level of accuracy
and precision.
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Reading Guide

This report is organized into the following chapters:

Resume: provides a brief introduction to the research area that we were
working on. Briefly defines what goals we were trying to achieve and
what problems we have faced. Finally a list of our contribution to this
research area is presented.

Positioning Techniques and Technologies: shortly covers available tech-
nologies and indoor positioning techniques. Summary of advantages
and disadvantages of different methods is presented.

Design and Implementation: presents the design of our indoor position-
ing system together with implementation details.

Experiments: is the biggest and most important part of this work. It starts
by presenting the equipment that was used as well as environment that
the experiments were conducted in. Later it describes a number of
techniques that were developed in order to solve the problems defined
in the beginning of this report. Description of each technique together
with experiment results and brief conclusions are presented as well.

Conclusions: gives a summary of the results that were achieved together
with advantages and disadvantages of each method. List of suggestions
for possible future work are also presented.

Appendix A Figures: less important, supplementary figures can be found
in this chapter.

Appendix B Terms and Abbreviations: contains a list of essential terms
and commonly used abbreviations throughout the report. Upon en-
countering unfamiliar abbreviation the reader should refer to this sec-
tion.

We conclude this report by presenting the list of references.



Contents

I_Resumel
2 Positioning Techniques and Technologies|
2.1 Position estimation techniques|. . . . . . . ... .. ... ...
[2.1.1  Triangulation| . . . . . .. . ...
2.1.2 Proximity| . . . . . .. ... ...
[2.1.3  Scene Analysis| . . . ... ... ... L.
[2.2  Different wireless technologies| . . . . . . ... ... ... ...
[2.2.1  Wi-Fi (IEEE 802.11) . . . . . . ... ... ... ....
222 DBluetoothl . . . .. ... .. ... 000
2.2.3  Active Radio Frequency Identification (RFID)|. . . . .
224 Infrared (IR)| . . ... ... ... ... ... ......
[2.2.5  Summary of different technologies| . . . . . ... ...
[3 Design and Implementation|
13.1  Designing relationship between entities| . . . . . . . .. . ...
8.2 Datamodell . . .. ... . oo
3.3 System architecture]. . . . . ..o L0000
3.4 ‘lechnologies used|. . . . . . . .. . . . ... L.
3.5 Position estimation method| . . . . . . ... ... L.
[3.6  Application specification| . . . . . . ... ... L.
8.6.1 Client - server communication| . . . . . . . . ... ..
[3.6.2  Multithreadingl . . . . . . ... ... ...
8.7 Usernterfacel . . . . ... . ... .. L o
[4  Experiments|
4.1 Equpment| . .. .. ... ... ... . L
2 4 1
412 Bluetoothl . . . .. ... .. .. oo
4.2 PEnvironment] . . . ... ... oo oo
421 Access Pomntd . . . .. . ... oo oo
4.2.2  Centralized wireless control system| . . . . . . ... ..
43 Measurements . . . . . ..o oo

12

15
15
15
16
16
17
17
17
18
18
18

20
20
21
24
25
26
27
28
29
29



4.4 T'ypes of experiments|. . . .
4.4.1 Simulation|. . . . . .

4.5.1  Determining the optimal density of reference points|. .

[4.5.2  Quantity of scans per

position|. . . . . ... ... ...

4.5.3  Collecting the radio-map|. . . . . ... ... ... ...

4.6 Parameter determination|. .
[A.6.1 Penalty].. ... ..
4.6.2  Filtering noisy signals|

ET Cased . ...........

4.7.1  Entorcing physical constraints|. . . . . ... ... ...

4.7.2  Sphtting fingerprints by time| . . . . . ... ... ...

4.7.3  Adapting to different network interfaces| . . . . . . ..

|4.7.4  Position prediction based on historical data] . . . . . .

4.7.5  Enabling directionality|. . . . . . ... ... ... ...

[4.7.6  Combining different infrastructures| . . . . . . . . . ..

4.7.7  Real life experiments|

5 Conclusions/

A _Figures
|A.1 Access points in Cassiopeia|

IA.2 Multithreading in our application| . . . . . . ... ... .. ..

A3 Fingerprint collecting phase|

BT [abbreviations
[References]

98

101
101
103
104

105

107



List of Figures

3.1  Entity relationship diagram| . . . . . . . ... ... ... ... 20
3.2 Database schemal . . . . . . ... ... ... 0. 23
[3.3  Performance using histograms| . . . . . . ... ... ... ... 24
[3.4  System architecture]. . . . . . ..o o000 25
B.5 _Client - server communicationl . . . . . . . . . . ... ... .. 28
[3.6  Graphical user intertace] . . . . .. .. ... oL 30
4.1 Mobile phone wrapped into aluminum foil |. . . . . .. .. .. 33
[4.2  Signal strengths obtained trom same position | . . . . . . . . . 35
4.3 Distance comparison| . . . . . . . . ..o 37
4.4  User defined routes used in simulation| . . . .. ... ... .. 39
4.5 Accuracy of position spacing calibration in radio map|. . . . . 42
4.6 Distance error of position spacing calibration in radio map|. . 43
4.7 Quantity of scans per position|. . . . . . ... ... 44
4.8 Positions of reference points| . . . . . . ... ... ... 45
4.9  Example - overlapping MACs| . . . . . . ... ... 47
4.10 Estimation accuracy achieved with different penalties|. . . . . 49
4.11 Error distance achieved with different penalties| . . . . . . . . 50
4.12 Signal strength variation during theday| . . . .. . ... . .. ol
[4.13 Accuracy using different filter bounds| . . . . . . .. ... .. 52
4.14 krror distance achieved with different flters| . . . . . . . . . . 92
[4.15 Reachability degree | . . . . . . . . ... ... 55
4.16 Accuracy summary | . . . . . ... e 55)
|4.17 Average error distance summary|. . . . . . . . ... ... ... 56
4.18 Accuracy comparisSon| . . . . . . . ...t e 56
14.19 Average error distance without graph|. . . . . ... ... ... 57
4.20 Average error distance with reachable nodes set to 3| . . . . . 57
4.21 Computational time| . . . . . . .. ... ... ... ... .. 58
[4.22 Accuracy comparison| . . . . . .. ... ... 60
|4.23 Average error distance without sphitting . . . . . . ... ... 60
[4.24 Average error distance with splittingl . . . . . . ... ... .. 61
4.25 Accuracy comparison| . . . . . . ... .o 63
[4.26 Average error distance without calibration| . . . . . . . .. .. 63
|4.27 Average error distance with calibration| . . . . . . . ... . .. 64




|4.28 Situation when user is in uncertainty zone| . . . . . . . . . .. 65
4.29 Importance of historical positions| . . . . . . . ... ... ... 67
14.30 Result of prediction effect with Realtek RTL81S7TL|. . . . . . 71
[4.31 Result of prediction eftect with HP W400[ . . . . . . ... .. 72
4.32 Average 55 fluctuation in directional fingerprint| . . . . . . . . 74
4.33 Direction accuracy based on directional fingerprint (4 dir.)| . . 75
4.34 Direction accuracy based on directional fingerprint (2 dir.)| . . 75
[4.35 Cardinal directions on themap| . . . . . . ... ... ... .. 7
|4.36 Direction accuracy depending on amount of historical data]. . 79
|4.37 Dividing indoor space into regions| . . . . . . ... ... ... 81
4.38 Dividing indoor space into 4 regions| . . . . . ... ... ... 84
14.39 Dividing indoor space into 6 regions| . . . . . ... ... ... 85
4.40 Accuracy comparison| . . . . . ... ..o 85
|4.41 Average error distance without regions| . . . . . . . . . . . .. 86
[4.42 Average error distance with 4 regiong| . . . . . . . . . ... .. 87
|4.43 Average error distance with 6 regions| . . . . . . . . ... . .. 87
[4.44 Separating positions| . . . . . .. ... 88
14.45 Average signal strength with Asus EeePC| . . . . . .. . . .. 90
4.46 Detection rate Asus FeePCl . . . . . . . ..o 91
14.47 Average signal strength with Compaq nw8440| . . . . . . . .. 92
|4.48 Detection rate with Compaq nw8440[ . . . . . . . . ... ... 92
4.49 Accuracy while using Bluetooth| . . . . . ... ... ... ... 93
14.50 Error distance while using Bluetooth| . . . . . .. . ... ... 94
4.51 Accuracy while using graph model| . . . ... ... ... ... 95
|4.52 Error distance while using graph model|. . . . . . . ... . .. 95
IA.1 Ground floor - where experiments took place] . . . ... . .. 101
A2 Firstfloorl . . . . . . ..o 102
IA.3 Multithreading in our application| . . . . . . . ... ... ... 103
[A.4 Convenient way of collecting fingerprints| . . . . . . . . .. .. 104

10



List of Tables

[3.1  Technologies used throughout the project| . . . . . .. .. .. 25
4.1  Devices that were used in the project| . . . . ... ... ... 32
M2 Roufed . . . . ... 39
4.3 Example - S5 vectors| . . . . . ..o oL 47
4.4 Percentage of signals belonging to specific strength range | . . 53
4.5  Example of prediction’s effects on position estimation|. . . . . 71
[4.6  Bluetooth specification table 2| . . . . .. ... ... ... .. 80
4.7 Summary of approaches| . . . .. . ... 97

11



Chapter 1

Resume

The recent decade has witnessed an increased interest in various location-
based services. While outdoor positioning systems have already matured —
new location-based services that work indoor or both - indoor and outdoor,
are one of the more popular research areas of many companies and scientists.
A few properties of indoor space makes it difficult to use with the existing
positioning techniques that are being used outdoors. First of all - indoor
space is composed of many entities (walls, rooms, doors, etc.) that restrict
the movement of objects. The most commonly used positioning techniques
such as GPS cannot be applied in an indoor environment because the signal
is usually blocked from reaching client’s device. Furthermore, as walls tend
to block and reflect incoming signals — it makes it very difficult to report
position with fairly high level of accuracy and techniques such as those used
in GPS are incompatible.

A lot of research has been carried out in order to find new accurate po-
sitioning techniques that would enable users to identify their position in an
indoor space utilizing the existing infrastructures such as Wi-Fi, Bluetooth,
Infrared or RFID readers. Therefore, instead of discovering new or improv-
ing indoor position estimation methods like triangulation or position finger-
printing this project’s main focus is directed towards increasing indoor
positioning system’s precision and performance by finding new ways of com-
bining different techniques and infrastructures into one integrated system.
Ideally — indoor positioning system should be self-maintainable, only requir-
ing user input when absolutely necessary. Furthermore the system should try
to combine advantages from different available infrastructures and be able to
adapt to different inconsistent environments and distinct client device con-
figurations. The system should also aim to enforce physical constrains of a
floor map (walls and other obstacles) in order to minimize possible position
miscalculations. Finally - even after meeting all the previously described re-
quirements, the positioning system should still be affordable for consumers
with lower budget requiring minimal additional equipment to be purchased.
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Those are the main requirements that this project is focusing on.

Project goals
Throughout the whole duration of the project we were focusing on achiev-
ing the following goals:

e Utilize available infrastructures and integrate indoor positioning tech-
nologies into one system

e Design indoor positioning model adaptable to distinct client device
configurations and current environment.

e Incorporate self-maintainability (updated fingerprints are collected au-

tomatically as described in [4.7.6.2)

e Utilize past trajectories of users (history)

Problem statement
We have encountered the following problems when trying to achieve the
goals mentioned above:

e Clients with distinct wireless interface specifications reporting different
signal strength indications

e Dealing with changing/inconsistent environment where signal strengths
vary throughout the course of the day

e Jumping through walls issue [9]

e Optimal Bluetooth station deployment/placement

In the later chapters of this report we propose solutions to these problems
and present results indicating how efficiently the problems were solved.

Contribution
The following contribution and accomplishments were achieved through-
out the duration of the project:

e Advantages of two distinct wireless infrastructures were integrated into
one indoor positioning system as described in section [4.7.6]

e Proposed an indoor positioning model which attempts to adapt to
different client device specifications as described in section {.7.3]

e Technique described in [4.7.1] similar to those described in works [9],
[10], that utilizes a graph structure in order to enforce physical con-
straints of an indoor space was implemented and integrated into the
system. Our approach slightly differs from the mentioned works as we
introduce a reachability parameter explained in section [4.7.1]
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Designed flexible indoor positioning model presented in which
tries to adapt to inconsistent environments where signal strengths tends
to vary during the course of the day.

Proposed a method that utilizes past trajectories of users during
the position estimation procedure

Indoor direction prediction framework described in was imple-
mented

A complete indoor positioning system with graphical user interface
encapsulating all the above mentioned features was designed, imple-
mented and deployed
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Chapter 2

Positioning Techniques and
Technologies

This chapter elaborates on different wireless technologies and existing po-
sitioning techniques which form the core of the indoor positioning systems.
Advantages and disadvantages of these techniques and technologies are re-
vealed in this chapter.

2.1 Position estimation techniques

In this section general positioning techniques are briefly presented based on
[24], [7], [18], [30], [9], [16]. The choice of particular methods is explained
and emphasised.

There are mainly three position estimation techniques widely used in
positioning systems: triangulation, proximity and scene analysis.

2.1.1 Triangulation

Triangulation is geometric approach of position calculation. It uses proper-
ties of triangles to compute object locations. This technique can be divided
into lateration and angulation methods. In lateration - time-based distance
measurements are utilized, while in angulation angle-based distances are em-
ployed [24]. Distance refers to distance between receiver and transmitter. In
lateration there should be at least three transmitters in order to be able to
estimate correct position [I§].

In indoor space there is almost no line-of-sight (LOS) path between trans-
mitter and receiver. Radio signals reflect off different surfaces and obstacles
creating multipath issues. These issues make triangulation based position
estimation methods which uses time- or angle-based measurements cause
inaccuracy [I7]. Triangulation method is used in outdoor space more suc-
cessfully. Triangulation is not very popular in indoor environment as it
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requires knowing locations of transmitters, in WLAN positioning - location
of access points, which usually are not available. Moreover in case of angula-
tion special receivers are required which are capable to get angle data from
transmitters [30].

2.1.2 Proximity

Proximity method presents position estimation based on closeness of mobile
user actual location to transmitter location ([18], [24]). In this technique
every transmitter is associated with particular position. When mobile user is
in range of such transmitter then user’s position is associated with position of
transmitter. If more than one transmitter is detected, position of transmitter
with strongest signal is selected. This proximity method is efficiently used
with low range signal transmitters like RFID or Infrared. Disadvantage of
this method is that it requires lots of transmitters to be in the area in order
to make positioning very accurate.

Proximity method was used with low range Bluetooth receivers in our
project due to its simplicity and no computations required. When Bluetooth
station is detected position of this station is chosen.

2.1.3 Scene Analysis

Scene analysis methods describe positioning which is based on prior collected
signal data and is more often called fingerprinting. Comparing to triangu-
lation and proximity this technique does not require knowing locations of
transmitters. Fingerprinting technique that we have chosen for WLAN is
based on received signal strengths. These signal strengths obtained from all
transmitters available in certain range are utilized in position calculation.
In this technique two phases exist: offline and online, also called training
and positioning. Offline phase always comes before online. In training stage
fingerprints (collection of signal strengths) are recorded in user-defined po-
sitions in the environment. As a result database of fingerprints known as
radio map is built. During the online phase mobile user reports vector of
received signal strengths which later is compared with fingerprints in radio
map and in consequence position associated with the best matching finger-
print is returned to the user. In order to find the best matching fingerprint
two general models exist: deterministic and probabilistic [13]. In determin-
istic model actual values of signal strengths are used comparing to signal
strength probability distribution in every reference point used by probabilis-
tic method. Probabilistic model was not used in this project due to its com-
putation complexity and lower accuracy compared to deterministic [17]. As a
deterministic model we employed Nearest Neighbor in Signal Space method
which utilizes Euclidean distance formula to compute distances between fin-
gerprints in database and incoming signal vector. The closest fingerprint is
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defined where smallest distance is detected.

It is worth mentioning that fingerprinting technology is not perfect. The
main drawback of fingerprinting method is that it is highly dependent on
transmitters’ infrastructure. If locations of transmitters are changed, radio
map needs to be updated. And of course offline phase is very time consuming
process if indoor area is reasonably wide.

2.2 Different wireless technologies

This section briefly describes today’s most commonly used wireless technolo-
gies that can be utilized by indoor positioning system.

2.2.1 Wi-Fi (IEEE 802.11)

Wi-Fi is probably the most commonly used infrastructure in indoor position-
ing systems. It is mainly because of the fact that it has become a standard
method of communication and is now available in most of today’s institutions
and private apartments. No extra equipment is needed in order to deploy
an indoor positioning system in an environment which already has a decent
Wi-Fi coverage. The solution in that case can be based on software only.
Another advantage of this infrastructure is that it scales easily because of its
rather high radio coverage — usually up to 150 meters in an indoor space and
300 meters outdoors. As a possible disadvantage we could mention that this
infrastructure requires a relatively large amount of power/energy. According
to [2], compared with Bluetooth — Wi-Fi consumes approximately 5 times
more energy. This might be a potential problem in some mobile devices
where energy consumption should be kept to minimum.

There is a number of previous works [I], [29], [9] written on building an
indoor positioning system based on Wi-Fi infrastructure.

2.2.2 Bluetooth

Bluetooth is another very popular wireless technology standard. It was de-
signed mainly for voice and data applications and is integrated into most
of today’s portable electronic devices such as cell phones PDAs and other.
Specifications of Bluetooth are very similar to those of Wi-Fi. The advan-
tage of this wireless technology over Wi-Fi is that it is more targeted towards
smaller devices and hence uses only a small portion of energy compared with
Wi-Fi. This way a user can use indoor positioning system installed on his
mobile phone for a much longer period of time. There are a few different
classes of Bluetooth radios [2] as shown later in table This specifica-
tion defines the radio coverage of a Bluetooth device. It can vary from 1
to approximately 100 meters depending on the clagss. Another advantage
compared with Wi-Fi is that Bluetooth equipment is usually up to 3 times
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cheaper. However the higher range of Wi-Fi can sometimes compensate
that. A more detailed explanation about indoor positioning technique that
was designed on top of Bluetooth technology can be found in [26].

2.2.3 Active Radio Frequency Identification (RFID)

The RFID can be defined as a lower range wireless infrastructure. It is
usually composed of a reader and a number of tags that can be scanned
and identified while being in the range of the reader. The typical range of
this infrastructure is usually between few centimeters up to a few meters.
There are some devices capable of getting the signal from up to 100 meters
but those are rather rare and expensive. The advantage of this technology
is that it is able to quickly identify different objects carrying different tags
based on the information received from the tag. The fact that RFID is not
as popular as the other two wireless technology standards described above
means that usually some additional equipment needs to be purchased before
deploying an indoor positioning system based on RFID.

There are a number of previous works [10], [II] written about RFID
based indoor positioning systems.

2.2.4 Infrared (IR)

IrDA [§] is another short range wireless communication infrastructure which
exchanges data over infrared light. The typical range of this infrastructure
is approximately one meter. The biggest limitation compared with wireless
communication technologies described above is that infrared signal does not
penetrate solid materials. It means that the sender and receiver should have
a line of sight for the communication to be successful. Despite this limitation
there are a some indoor positioning projects [3] that successfully utilize this
technology.

2.2.5 Summary of different technologies

Indoor positioning systems based on short range wireless communication
standards such as RFID, IrDA and part of Bluetooth determine position
of an object based only on object’s presence in a particular area which is
within range of the scanner/receiver. Whenever an object gets in range of
such device we can determine its position with a rather high precision. By
knowing the position of the actual device we can be sure that if the object
was detected by the device — it will be within one meter (depending on
range of the device) from that position and no further location calculations
are necessary.

Using this approach we can determine precise position of an object. How-
ever if we were about to cover a larger indoor area - it would require a great
number of such devices to be purchased and deployed which is both not
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practical and expensive. On the contrary — Wi-Fi infrastructure can cover a
relatively large area but at the same time making it difficult to calculate the
exact position of an object. Additional techniques such as position finger-
printing described in section need to be employed in order to estimate
approximate position of the object. This in turn does not guarantee that
position will be estimated with high precision. Typical precision of indoor
positioning systems based solely on Wi-Fi is approximately from 1 to 6 me-
ters in a stable environment with no wireless signal strength deviations. In
reality — precision may sometimes drop depending on many factors that have
some influence on wireless signal’s strength variation. Because of the nature
of wireless signals and complexity of indoor environment, indoor position-
ing system can sometimes produce very inaccurate results. Indoor space is
usually composed of a variety of objects and obstacles (walls, floors, doors,
etc.) which tend to block or reflect wireless radio signals. Furthermore, some
wireless access points are designed in such way that they increase wireless
signal power level according to the current load/bandwidth. There are also
many other physical factors, such as humidity, that may one way or another
affect the quality of received wireless signal. Such instability has a noticeable
negative effect on the precision of indoor positioning system based on high
range wireless infrastructures such as Wi-Fi because position determination
is usually estimated by assessing received wireless signal strength values as
described in section On the other hand - short range wireless commu-
nication infrastructures are immune to such factors but are usually more
expensive to cover the larger indoor areas.

As pointed out in the paragraph above — the choice of using Wi-Fi or
a low range wireless communication standard for indoor positioning has its
advantages and disadvantages. Finding a novel way to combine two distinct
infrastructures into one unified system would enable us to have a more robust
indoor positioning framework that could combine the advantages from both
approaches. As mentioned in the previous sections — this is one of the main
ideas behind this project. In the latter sections we propose a way of how to
integrate Wi-Fi together with low range Bluetooth infrastructure into one
indoor positioning framework.
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Chapter 3

Design and Implementation

3.1 Designing relationship between entities

In this stage of our work we have decided on what entities our system will
support and what relationships will be preserved between them. In this case
we have designed entity relationship diagram which later was extended and
converted to relational database schema [3:2] Designing such diagram gives
better overview of the system and data which needs to be handled.

: =

00‘
X3

Figure 3.1: Entity relationship diagram

As it is shown in the figure four main entities were considered in
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our positioning system: user, position, signal and access point. User entity
refers to different mobile devices (distinguished by MAC address and name)
which are being tracked or which were used as signal collection contributors.
Collection contributors can be also a part of a tracking process. Requirement
for these mobile devices is that WLAN network card and Bluetooth interface
should be available.

Every signal is collected by user in certain position and specific time.
Signal is specified by strength expressed in dBm. Direction attribute is
designed for direction in which signal was collected. Signal is received from
the certain access point station. There are two types of access point stations
we use: Bluetooth and Wi-Fi. In case of Bluetooth access point station we do
not care about the signal specifications received from this station. Position
on the other hand can be a location of fingerprint or location of access point.
In the system we consider the fact that different users can collect signals
in the same position. One position can be associated with lots of signals
collected by different user. Every position belongs to the certain region,
which denotes particular segment of the building. Regions can also help
to distinguish positions on different floors. As our aim is to employ graph
structure in our system, position must be connected with other position as
explained in [.7.1]

3.2 Data model

In this section database model is described which is converted from entity
relationship diagram. During the system implementation process model was
extended and additional tables were added to the model in order to facili-
tate data manipulation, querying and modification. In general, model can
be divided into connected and isolated tables. Connected tables make funda-
mental part of data model. They are linked between themselves by foreign
keys. While isolated tables have more facilitation function: they are em-
ployed for data backup, temporary results and storing bulk data. Isolated
tables and less relevant or important table fields will not be described deeply.
In database schema in figure [3.2] connected tables are represented. Enti-
ties from ER diagram are converted to appropriate tables in the schema:
users, signals, positions and aps. For convenience purpose every table con-
tains ¢d which is primary key. Every foreign key can be identified by notation
pattern: “referencing table name abbreviation” +“ id”. In database schema
we use foreign keys with “ON DELETE CASCADE” option. For example: if
particular position is deleted record from positions table, records in the tables
referencing positions table are no more valid and therefore also removed.
As a result of M:N relationship between users and positions table userpos
is created. This allows storing user and position id without redundancy in
the referenced tables. In this table those users are saved which have collected
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signals in specific positions in offline phase. Combination of v ¢d and pos_id
is always unique in this table.

In aps table two types of access points are stored: Bluetooth and Wi-Fi.
Bit type iswifi field stands for separating these types. FEvery access point
has a unique MAC address field mac. Field name stores SSID (network
name for WLAN access points) or name of the Bluetooth device. pos_id is
usually associated with position of Bluetooth devices. Wi-Fi access points
locations are not utilized in our system. Keeping further in the maps table
different floor maps are associated: map identifies location of the map file
in the system, floornr — number of the floor. Only chosen Bluetooth devices
which are checkpoints between the floors are associated with the map, in
other cases map id in aps table has null value.

In one of the experiment cases we use graph model where positions are
connected between themselves. Table connections correspond to an edge en-
tity in the graph model. Only two fields are required to represent it: starting
position pos! and ending position pos2. Edge is considered as the shortest
path between two positions. In this table only possible edges are stored re-
specting topology of the building. Moreover as we do not use directional
graph two edges (x,y) and (y,x) are considered as the same and are treated
as a duplicate in this table.

In order to be able to query user history data, poshistory is added to
the database model. As this table is more like bulk table, in other words
huge data storage is involved, to make querying and inserting faster we do
not connect it with userpos table but referencing users and positions tables
directly is done instead. Otherwise using userpos table, before inserting
data it will be necessary to check if combination of particular u_id and
pos_id exists, and perform more join operations, which requires more time
and recourses. On the other hand userpos offline phase data is not mixed
with history in order to keep it less confusing and complicated.

Based on data from poshistory table most of the experiments evaluations
are made. Fields pos id, true pos id, changedbypred pos_ +id are used as
parameters in these experiments evaluations: pos id - identifies position
which was estimated by algorithm and shown on the map, true pos id —
identifies position which is real position of the moving object defined by user
or program, changedbypred_pos id — identifies position which was modified
based on historical data. Field error dist presents error Euclidean distance
between estimated position and true position. Direction refers to online
direction of the moving user, while predict  direction — direction predicted by
formula which will be described in experimental part. Every historical record
is time stamped in héime field up to milliseconds, has a number of access
point seen at that current moment (apcount), and average signal strengths
(avgstrength) from all access points moving user could see at the particular
time in the past. Iswifi refers to the type of visited position estimation either
based on Bluetooth scanning or WLAN scanning results.
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Figure 3.2: Database schema

Finally to achieve higher performance we added histograms table to the
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model. We define histograms as average signals strengths (avrg) grouped by
MAC address of access points. Timezone field defines time interval signal
belongs to. It is used in experiments with the fingerprint splitting by time.
To avoid repetitive aggregate queries used in position estimation method
(line 8) we use histogram approach instead. Performance increases rapidly
and result of comparison can be seen in figure As we can notice, while
using histograms position is computed almost 6 times faster than grouping
signals every time separately. Additionally when more signals collected in one
position and more reference points available in the system, histograms value
increases, as it saves system and especially database, resourses including
time [3:3] Histograms table is populated whenever new signals are collected
in offline phase.

Time

M Histograms

M Signals

Cases

Figure 3.3: Performance using histograms

Isolated tables in database are test  signals, train_ signals, online_ signals,
statisticsFirstZone, statisticsSecondZone and evaluation. Three first tables
have the same structure. Two of them are used in simulation experiments.
Data from both tables is not overlapping among themselves. online_ signals
table is used for collecting data from online phase for testing purpose. statis-
ticsFirstZone and statisticsSecondZone are temporary tables employed while
dividing signals data into train and test, when time intervals are set.

3.3 System architecture

The system is designed as depicted in figure [3.4]
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Figure 3.4: System architecture

User’s portable device is used to continuously scan and upload available
Wi-Fi access point and Bluetooth station signal strengths to the server.
Communication between the client and server is implemented in the form of
a web service. Clients send the most recent scan results to the server and
get an estimated position as a result. This way any device with internet
connectivity can successfully use the system despite of its operating system
and other factors.

Server stores and retrieves location fingerprints in the database. The
application and database server in our case is on the same physical machine.

3.4 Technologies used

Our system implementation is based on the following technologies:

Role Product
Programming language C#
DBMS Microsoft SQL server 2005
Wireless network APIs | Native Wifi [22] and NDIS [25]
Bluetooth API 32feet. NET [19]

Table 3.1: Technologies used throughout the project

The choice of using the following products was dictated by the fact that
the application server in our department was running Microsoft Internet
Information Services (IIS) version 6.0 and had SQL server 2005 installed as
a database management system.

Because we were dealing with machines with different operating systems
we were using two different wireless communication APIs. Microsoft Native
Wifi API was used on the machines with Windows 7 while Network Driver
Interface Specification (NDIS) wrapper library was used on the machines
with Windows XP operating system. Both of those APIs were utilized in an
open source wireless network scanning utility by metageek called inSSIDer
[21] licensed under “Apache License, Version 2.0” free software license. We
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have compiled part of this code into a dynamic link library and used it while
implementing our system.

The API that was used for Bluetooth communication part - 32feet. NET
- is developed by In The Hand Lid. We were using in on top of Microsoft
Bluetooth protocol stack.

3.5 Position estimation method

This section presents position estimation method which is used in our system.

In order to find the closest match in the system’s radio map, nearest
neighbor in signal space (NNSS) technique is used which is commonly used
in the different positioning systems [I] due to its simplicity and reasonable
accuracy. The point of NNSS is to compute distance between signal strengths
associated with particular position and online scan’s signal strengths and
return the minimal distance. To compute the distance between fingerprints
p and g we use Euclidean distance formula

n

> (@ —pi)? p= (p1,p2.-.pn) and q = (q1,¢2---qn) (3.1)

=1

distEucl(p, q) =

In most cases distance between fingerprints correlates with physical dis-
tance between fingerprint positions, lower distance between fingerprints in
most cases means lower distance between positions of fingerprints. However
often some fingerprints may be very similar with fingerprints which are lo-
cated in different places. That is why we apply additional techniques to
control such situations.

Our position estimation method is based on Fuclidean distance calcu-
lation. Pseudo code for this method is presented in the following method
[I] In this method only main and simplified operations are included. In the
simplest version of this method in order to receive best position all radio
map has to be checked (line 4-21). In modified version of the method we
also utilize possible reachable graph nodes and regions to limit
search space. Going further, for every search position signals are selected
(line 5). To make it clear, we map a signal to one record in signals table
as shown in figure 3.2] Every signal record is associated with MAC address
and signal strength obtained from AP. In algorithm we use two functions
to present connection between these entities: MAC(signal) = {signal} —
{MAC address} and SS(signal) = {signal} — {signal strength}. Due to that
fact that in the offline phase we perform more than one scan, there are lots of
MAC duplicates associated with one position and that’s why we use average
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value of SS belonging to particular MAC (line 8).

Function estimatelocation(onlineSignals)

Output: bestPosition

1 dist < 0;

2 bestPosition <+ 0;

3 minDist < max integer value;

a for V position € radiomap do

5 dbSignals < set of signals in DB associated with position;

6 for V onlineSignal € onlineSignals do

7 if MAC(onlineSignal) € {MAC(sig) | sig € dbSignals} then

8 avgss < average signal strength of dbSignals associated
with MAC(onlineSignal);

9 dist < dist + (SS(onlineSignal) - avgss)?;

10 end

11 else

12 | dist < dist + PENALTY;

13 end

14 end

15 dist « \/dist;

16 if dist < minDist then

17 minDist < dist;

18 bestPosition < postion;

19 end

20 end

21 return bestPosition;

In 6-15 lines of the method [I| Euclidean distance is applied with small
modification. We cycle through one scan’s signal set collected in online phase
and check if there is such a signal record in database with same MAC. In
case when such record is not found we apply penalty. Penalty is used to
increase the distance and decrease proximity between SS vectors. Experi-
mental results showed that using penalty, estimation results are improved.
More details about penalty determination and its impact can be found in
the section [4.6.1] Finally the method returns best position where computed
distance in signal space is lowest (line 16-19).

3.6 Application specification

This section briefly describes the process of client — server communication
and provides some specific details of how application is implemented.
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3.6.1 Client - server communication

Using the system can be divided into three phases as illustrated by figure
9.0l

Client Server

Actions on application load

Get info about
L existing bluetooth stations

Online phase actions

Send WiFi signal strengths

Get estimated location

-Offline phase actions

Insert/update
osition fingerprint

Associate Bluetooth stations
with particular positions

Figure 3.5: Client - server communication

First, upon starting the system the client needs to download the list
of deployed Bluetooth devices and coordinates of reference points that are
already in the database. We decided to download Bluetooth device list to
the client because even in situations where there is no or low Wi-Fi signal
coverage — the client can still estimate his position based on Bluetooth and
without having a stable connection to the server.

During an online phase we have a two directional communication. The
client regularly sends its Wi-Fi signal strength indications to the server where
the most probable position is estimated and delivered back to the client.

There are a few actions that can be performed during the offline phase.
The clients might insert a new reference point and upload the position coor-
dinates together with a list of recorded signal strengths to the server. It is
also possible to update the fingerprint of already available reference points
— the newly recorded signal strength values are then stored in the database
together with the initial fingerprint. This way users can maintain updated
radio map throughout the longer periods of time.

During the offline phase it is also possible to deploy additional Bluetooth
devices. It is done by the client by first creating a reference point and later
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telling the server to associate it with a MAC address of the specific Bluetooth
device.

3.6.2 Multithreading

The client side of the system consists of several threads running in parallel.
There are three main threads designed for specific tasks. One of the more
important threads that form the core of our system deals with continuously
scanning and recording available Wi-Fi signal strengths. Similarly, another
thread continuously scans the area for available Bluetooth devices. Wi-
Fi scanning is usually performed once each second while Bluetooth scan is
performed once every 3 seconds. This highly depends on the drivers of the
interface. The main thread is responsible of uploading the scanned result set
to the server and retrieving the estimated position. It also calls the redraw
method which updates user’s current position on the interactive map. The
diagram of such parallel operations is depicted in figure in the appendix
section.

3.7 User interface

In order to control our system more conveniently we have designed graphical
user interface as shown in figure This makes application very interactive
and comfortable to use. Most of the parameters available in the system can
be set in the interface and handled by the core of the application.

In this paragraph we will briefly describe the interface presented in figure
[3.6] There are three main zones on the interface: online signal list (1), pa-
rameter setup, execution and status (2, 3) and map panel. All of them except
1 are input zones, where some information can be passed through interface
to the server. In the 2 and 3 zone we are defining values of parameters. By
checking one of the checkboxes with specific value beside, we invoke one of
the cases presented in experimental part. Offline phase and online phases
are coordinated by pressing appropriate button: Insert or Track.

On the map panel user can eagily set, select and delete positions. After
position is stored in the database it can be connected with other positions.
Bluetooth station and scanning result sets can be associated also only with
stored positions. Colors of the points define purpose of the position: green
position means true or estimated position, blue means position where Blue-
tooth station is located and cyan position is just stored position in database.
When tracking is activated green point starts to show the estimated posi-
tion. In experimental mode true position (green point) is selected by user
and later on results evaluated after pressing Evaluate button. Changing the
floor number will change the map. Positions from the first floor would not
be redrawn on the second floor.
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Figure 3.6: Graphical user interface

We have added Google Maps extensions to our application. Mainly our
program supports raster maps which are loaded from the graphics file. How-
ever this extension can be useful in case when raster map is not available
or to make tracking information easier accessible on the Web. Instead of
raster map we load web mapping service Google Maps. As we have few
approximate mappings between marginal pixels and coordinates (longitude,
latitude), pixel measurement of estimated positions are converted to longi-
tude and latitude coordinates.
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Chapter 4

Experiments

This chapter describes how experiments were carried out and what results
were achieved. Before presenting end results of each experiment that was
conducted - we first define the circumstances that could have had an im-
pact on the accuracy and performance of the system. In section we
describe what equipment was used throughout the whole experiment phase.
The following section defines the environment that we were doing the
experiments in. Sections [£.5] and [4.3] explain how fingerprints were collected
and what measures were used to evaluate the outcome of each experiment.
Sections and then explains different types of experiments that were
carried out and explains a number of parameter values that the system was
using while running and evaluating the experiments. Finally, section is
divided into a number of subsections that present description and illustrate
the results of each experiment.

4.1 Equipment

In this section we describe what equipment was used throughout the whole
project.

4.1.1 Wi-Fi

Table gives a summary of the laptops that were involved in either col-
lecting the location fingerprints or testing the indoor positioning system.
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o ti Network
Laptop g er: e Interface Connectivity
ystem Controller
Asus Windows Realtek
EeePC 901 XP RTL8187 UsB 2.0
HP
Compaq Windows 7 HP WLAN Mini PCl-e
W400
nc6000
. Intel(R)
Corgfjg Wl?&f)ws PRO,/Wireless | Mini PCLe
v 3945ABG
. Intel(R)
Aceggﬁzplre Windows 7 | PRO/Wireless | Mini PCLe
3945ABG

Table 4.1: Devices that were used in the project

The main factor that determines how accurately system can predict lo-
cation of the specific user is closely related with what Network Interface
Controller (NIC) is used to collect the signal strengths of all the available
access points. There are a large number of different wireless NICs available
on the market nowadays. Each has its strengths and weaknesses — hence
they are all unique and you cannot expect that controllers that were made
by different manufacturers will have identical properties and functionalities.
We derive this speculation from our own experience with different types of
portable devices.

In case when you are using indoor positioning system with a NIC which
was not used during the location fingerprint collecting phase — system ac-
curacy usually drops. This is due to the fact that different devices tend to
record different signal strength indications and have different antennas which
determines how large the scanning range is.

As shown in table we had a chance to experiment with three different
NICs. Asus EeePC 901 was the device that we have used the most due to its
low weight and high portability. Important to note that we have connected
an external USB wireless network adapter with the Realtek RTL8187 chipset
and 5dBi gain antenna in order to achieve a better scanning frequency. This
was dictated by the fact that Microsoft’s native wireless API that we were
using is highly dependent on the drivers of the network interface and does
not guarantee that WlanScan() method will send the actual probe requests
as documented in [23]. By using this external USB adapter we were able
to achieve a stable scanning frequency one scan per second. Scanning fre-
quency of all the other devices using integrated wireless network adapters
were approximately one scan per two or three seconds.
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4.1.2 Bluetooth

Because of the fact that we were not able to get the number of working
Bluetooth stations — we have decided to use regular mobile phones with
Bluetooth connectivity. We simply place the phones in strategic locations
where we want our Bluetooth hotspot to be and set it to the “Discoverable
mode” so that later when we come close to that location - phone can be
discovered by the laptop that we use.

Compared with using Bluetooth stations this approach has one disad-
vantage — the client (laptop) has to initiate the Bluetooth scanning. This
in turn brings some noticeable disadvantages: firstly, it wastes more energy
as the client has to scan for available Bluetooth devices on a regular basis.
Second - Bluetooth signal tends to interfere with Wi-Fi signal and may have
a negative effect on scanning available wireless access point signal strengths.
This is especially noticeable when using a laptop with wireless network and
Bluetooth adapters which are both internal.

Due to the limitation of available resources - this approach was the only
way that we could integrate Wi-Fi and Bluetooth infrastructures into one
system. In order to minimize Bluetooth and Wi-Fi interference we have
purchased an external Class 2 mini Bluetooth dongle. Class 2 Bluetooth
devices have detection range of about ten meters - that is still too large
area for our needs. In our case — Class 3 Bluetooth dongle with approximate
operational range with one meter would have been a better solution, however
we were not able to get any of Class 3 Bluetooth devices at the time being
so we had to find a way of how to reduce the scanning range of our dongle.

To be able to control the scanning range and further reduce Bluetooth
and Wi-Fi interference we have experimented with wrapping the dongle and
Bluetooth phones into aluminum foil as illustrated in figure 4.1}

Figure 4.1: Mobile phone wrapped into aluminum foil

Using this approach we were able to reduce scanning range of Bluetooth
dongle down to a few meters and that also helped to minimize the negative
effect that the Bluetooth had on our wireless network adapter.

By using Microsoft Windows Bluetooth stack we were able to achieve a
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scanning frequency of approximately one scan per three seconds.
More analysis about Wi-Fi and Bluetooth signal interference is presented

in section 7.1

4.2 Environment

This chapter describes the environment where experiments, development and
testing of the indoor positioning system took place. It is very important to
mention the environment that the system was evaluated at because the in-
door positioning system could demonstrate completely different results while
being deployed elsewhere. There are a number of factors that have a high
impact on the accuracy of the system such as deployment of the access points
(position-wise), total number of access points available and the stability of
signal strengths throughout the day.

4.2.1 Access Points

We were developing, deploying and evaluating the system in the department
of computer science of Aalborg University.

The total number of physical access points that are deployed throughout
the area is around 35. Figures and located in appendix [A]illustrate
the deployment and radio coverage of all the access points on the ground
and first floor.

As it can be observed — the upper part of the building has a much better
radio coverage compared with the ground floor. It is important to note that
we were not able to change the positions of these access points in any way
so the topic of deploying the available access points is not within the scope
of this project.

There are two different models of access points that are currently in-
stalled: AIR-AP1131AG-E-K9 and AIR-LAP1142N-E-K9. Both models be-
long to the same Cisco Aironet family and share similar characteristics.

The unique feature of these access point models is that they are able
to emit the radio signal on three different channels simultaneously. In our
case — each of the access points were operating on channel 1, 6 and 11 at
the same time. While operating in such mode access point assigns a virtual
Media Access Control (MAC) address for each channel. This means that
our scanning devices were able to identify three different signals that were
coming from a single access point. On average — in each position we were
able to collect approximately 40-65 different MAC addresses even though
there were only 35 physical access points available in total.
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4.2.2 Centralized wireless control system

Another very important factor related to the wireless network deployment
in the department of computer science of Aalborg University is the usage of
centralized wireless control system. By using above mentioned Cisco access
point models it is possible to connect them all to one central device called
Wireless Network Controller (WNC) which can later be used to control the
number different parameters of each access point. According to [4] it makes
it easier to manage such large scale access point deployments as the radio
coverage and signal strength of each access point can be dynamically changed
to better adapt current requirements.

Using this approach the centralized system can automatically increase
emitting radio signal strength of each access point when the load increases.
Similarly — the system might decrease signal strength or completely power off
some of the access points where the radio coverage is good enough. According
to the description from Cisco [5]: when access point can detect three or more
different access point signals with power levels greater than -65 dBm — it
assumes that the area is already covered pretty well and it does not operate
on full power.

Figure [£.2) illustrates the typical signal strength fluctuations during the
whole day. The measurements were taken with the same device that was
positioned in our group room and measured signal strengths from all the
available access points every minute for 24 hours.
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Figure 4.2: Signal strengths obtained from same position
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Figure[d.2] very clearly demonstrates what impact Wireless Network Con-
troller has on the available access point signal strength values. On a typical
day there are a lot of wireless network users in the building that at some point
connect or disconnect to/from the network. It means that signal strengths
from certain access points are constantly changing while trying to adapt to
the current situation.

We can observe that Cisco with its new technologies makes it very easy to
manipulate and deploy wireless networks — however from indoor positioning
point of view — this brings big disadvantages because you cannot expect
the signals from different access points to stay persistent all the time. That
means that it is not possible to have one radio map that could be used all the
time — additional techniques should be employed in order to efficiently use
indoor positioning system in such an environment. As mentioned before —
one of the goals of this project is to make indoor positioning system adaptable
to different situations. This is the reason why this dynamically changing
environment suits us very well.

4.3 Measurements

In our experiments we use different types of measurements in order to present
results of every experiment. Every existing measurement supplements each
other. In general we use three measurement values: accuracy, walking error
distance and Euclidean error distance.

correct(estimations)

Accuracy =
4 all(estimations)

Accuracy is expressed in percentage of correctly estimated positions to
all positions which were calculated using Euclidean distance between values
of the signals, received from the same access point. Error distance is a metric
distance between true position and estimated position. We present two types
of error distances: walking and Euclidean, which are expressed in meters.
Euclidean distance is computed based on Euclidean distance formula
between coordinates of each position. As we have used raster map in our
application pixels were employed to compute distance between positions and
converted to metric measurements. Knowing approximate longitude and
latitude coordinates of the map corners we have expressed the width of the
building in metric form. Lately this value was associated with amount of
pixels representing the same width of the building on the raster map.

However as we are dealing with building topology, shortest walking dis-
tance is usually bigger than Fuclidean distance. In the building topological
constraints exists which not allow people to go through the wall, and jump
through the corner. As in our system topological constraints are expressed
by graph model, walking distance is computed by shortest distance in the
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graph. In other words node in the graph can be reached by other nodes
only through available edges. To compute shortest path in the graph we use
simple breadth-first search (BFS) algorithm. Search is performed by explor-
ing neighboring nodes. If exploring node is not the one you are searching
for, then process continues visiting unexplored neighbors of recently checked
nodes. In the worst case complexity of computing shortest path would be
O(|V|+|E|), where V — vertices, E — edges. SQL function is developed which
recursively crawls connections table in order to find destination node.

In order to save computational expenses we take average scale between
positions, which in our system is approximately 4 meters. Walking distance
measurements are approximated. In almost all cases walking distance is
longer than Euclidean. However in situations where actual distance between
positions is higher than 4 meters, Euclidean distance might be longer.

4 4
() s

Figure 4.3: Distance comparison

In figure we can see graphical presentation of two metric measure-
ments and their difference. Let say, our current location is position 1 and
our destination position is 3B. BF'S first will check nodes 2A, 2B. Having no
luck it will search in the 3rd level: 3A, 3B, 3C. At this moment BFS stops
and it returns result 8. As every edge has the same value 4 and there are
only 2 edges separating destination and current position. Euclidean distance
is shown by dotted line directly connected with 1 and 3B. This distance is
definitely smaller than walking one.

In every case where distance diagrams are presented, average error dis-
tance is included. Only Euclidean average distance is demonstrated, as it is
more precisely computed comparing to walking distance.
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There are few time-based experiments, where performance of some oper-
ation is compared. In that case we use seconds to measure performance.

4.4 Types of experiments

In our project we perform two types of experiments: simulated and real life
experiments. In every type of experiment we use real signal data collected
by computer — it is not generated in any case. Online phase however differs
between both cases. In real life case we physically walk and collect current
signals from the access points, in simulation, movement of the object is
generated and imitated.

4.4.1 Simulation

We employ simulation type experiments to test our most cases. Because of
the huge amount of experiments we need to run and limited time we have
to evaluate our system, this type of the test gives us more flexibility and
control of. We can run it from one place and one computer — no physical
movement is required. Moreover tests are performed few times, which means
it stabilizes the output results. It also has time-saving value.

For simulation type of experiment we use data collected only in offline
phase. Later this collection is divided into two parts: test signals and train-
ing signals. Test signals are used as an input of the experiment, which is
evaluated based on training signals. This idea of test and training division
was taken from data mining, especially classification process.

We have developed procedure divideSignals To Test Train which divides of-
fline phase signal data into not overlapping subsets test and training data.
We have raised the problem to select signals not totally randomly and acci-
dentally, but keeping ratio between test and training data in every position
which was fingerprinted on the map.

Parameters in this procedure are: testRatio — ratio between test and
training data, [HBound and uHBound are lower and upper hour bounds
used to separate data into two time zone regions and only then apply the
ratio. Actually ratio is kept not between amount of signals but between
amount of scans performed in one position. Every scan contains stamp of
AP “seen” at the particular time and it has atomic value. Taking some signals
from one scan and other signals from the other scan will distort evaluation
results. 90% ratio is used as a default, as far less data is required for testing
purposes. For example, if in one position 150 scans were made: having 90%
ratio 135 scans are stored in training signals table, and 25 scans — in test
signals. Test ratio is kept also between scans made in different time zones.
If in one position 180 scans were made: 100 scans in the morning and 80 in
the evening having such lower and upper hour bounds which precisely divide
the day into morning and evening — the output would be 90 scans stored in
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training signals and 10 scans stored in test signals as first time zone, and 72
scans stored in training signals and 8 scans stored in test signals as second
time zone. After having different time zone signals with preserved scans ratio
we can perform time based experiments.

After data is prepared to invoke movement in the system routes must
be constructed. We have proposed three user generated routes. Routes are
generated based on most common paths we tend to follow. Route predefines
sequence of true positions and we ensure that object will visit them.
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Figure 4.4: User defined routes used in simulation

In the picture [£.4) three routes are presented. Every route is connected
together in position 6. It allows running tests using one route back and forth
and then smoothly selecting other route.

Route color

Sequence

Red 6,5, 4,25 3,2 1,2 3, 4,5, 16, 6
Green 6,7,8,09,10, 11, 12, 13, 12, 14, 15, 14, 12, 11, 10, 9, 8, 7, 6
Yellow 6, 17, 18, 19, 20, 21, 22, 23, 24, 23, 22, 21, 20, 19, 18, 17

Table 4.2: Routes

Direction in every route is documented in the following table . These
routes do not change - they are static during all experimental process.
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Algorithm 2: Simulation steps

1 Randomly select the route;

2 repeat

3 Randomly select signals from online signals table of a single scan’s
4 Estimate position based on train signals;

5 Record results in poshistory table;

6 until 30 routes are visited ;
7 Results are evaluated;

Every simulation follows steps presented in algorithm 2 Firstly one of the
routes from table is chosen. Route is needed in order to simulate true
positions of the moving object. If position is 6 then random scan results from
test signals is selected and based on this signals position is estimated. In the
repeat-until loop available date is randomly selected from test signals dates.
True position and estimated position is saved in poshistory table. After loop
results are collected from poshistory table and based on true and estimated
position history accuracy and distance error is computed.

4.4.2 Real life experiments

Few cases in our project were tested in a real situation. We have run these
experiments in order to check how much use we can actually get from the
system we have developed and how much results are different comparing to
simulation results. In real life cases we are walking using similar paths as
showed in the table. We move and scan simultaneously; in reference locations
we stay put for a while. Scanning is performed with Realtek RTL8187L NIC.

It is important to mention that position is estimated based on finger-
prints collected few weeks ago. It means that results may be not as accurate
as if we would have tested it right away after offline phase. Moreover there
are factors of humidity, different flow of moving people, motion of the current
user, interference, which can have a negative impact on signal reception, con-
sequently possible deterioration in position estimation accuracy. Simulation
is much more isolated from these factors.

Real life experiment is executed in similar way as simulation 2| However
because of flexibility reasons route is not predefined for user - it is dynami-
cally composed by testing user (tester) during his walk. If there is predefined
route and fixed speed set, tester is much more constrained and does not have
much control of the movement in case some technical problems occur. True
position is determined by user — position is selected on the map. In situation
when current location is between two reference points, user chooses point
which is closer to the current position. This way of running experiments
brings some error to evaluation results, as user can change position not on
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time. Comparing to simulation real life experiments are less precise. They
are more complicated to be evaluated very accurately.

All signals in database are used to estimate tester’s position instead of
training signals only. Division into test and training signals in real life case
is not needful and not used.

4.5 Data Collection

In this chapter we describe what steps were taken before we deployed the
system for experiments and how data (location fingerprints) were collected.

Before the actual data collection step there were a few tests accomplished
in order to specify the optimal resolution of reference points in the grid and
to select decent quantity of scans in every position.

In the paper [12] authors present suggested values for grid spacing in
WLAN indoor positioning system based on the mathematical model. Ac-
cording to them - the optimal distance should be higher than 1.25 meters.
However due to specific environment we are running our experiments in,
where signal strengths variations are frequent during the day, we calibrate
the optimal resolution and quantity of scanning samples in one position for
our environment in experimental way.

4.5.1 Determining the optimal density of reference points

It is very important to decently define the density (resolution) of points in
radio map. Inappropriately defined resolution might lead position estima-
tion to have high error distances and low accuracy. This happens in case
when spacing is small between positions. Position estimation might become
very poor, because every position is close to each other and their signals
are similar. Not enough information exists to distinguish them and predict
location correctly. On the other hand radio map with low density does not
give much information about moving object and tracking loses his value.

There is actually no guideline available on which optimal resolution of
the radio map should be chosen. As authors claim in [12] grid spacing is not
uniform for every system, because of different building topology and different
amount of APs. Therefore we have made experiments by varying distance
between positions and then logging accuracy results.

In resolution determination experiment we employed only two positions.
Distance between positions was minimized in every following case until re-
sults did not satisfy our expectations. In every position we have collected 50
signal vector samples. Data was collected and tested with Realtek RTL8187L
NIC. Scanning was made with 1Hz frequency. After offline phase signal col-
lection we have done testing with 200 scanning samples. Based on this results
accuracy and error distance is computed.
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Figure 4.5: Accuracy of position spacing calibration in radio map

In figure we can see results of resolution calibration. It is clearly
shown that correctly estimated position accuracy drops down when the dis-
tance between two points is lowered. It can be explained by the fact, that re-
ducing spacing between reference points make fingerprints more similar thus
position estimation less accurate. With 8 meters spacing we have achieved
accuracy 100 %, with 5 meters - 92.16 % and with 3 meters — 73 %. We
have assumed that reducing distance even more, it would negatively affect
accuracy, which does not satisfy our intentions. Furthermore due to chang-
ing nature of signals in our environment we have not considered distances
lower than 3 meters.

The same tendency of results only inversely proportional is noticed also
among error distances. In figure .6 with 8 meters spacing walking and error
distance is equal 0, as all positions were estimated correctly. With 5 meters
resolution we achieve 0.39 meters of walking and 0.36 meters of Euclidean
error distance, while with 3 meters spacing - 0.93 meters of error distance for
both types. In one case distances differs because for walking distance com-
putation we use average resolution value, in other words not very accurate.
For example we set 5 meters between nodes as a walking distance, while in
real Euclidean distance based on coordinates might be 5.1 meters. From fig-
ure [£.6] 3 meter error distance 0.93 still can be applicable, however it worth
to mention that this test was run in nearly ideal environment: online phase
follows the offline phase right after, tester is not moving and only signals in
two positions are considered. More positions can reduce accuracy, as some of
the signal vector samples due to negative factors can be similar at particular
time.
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Figure 4.6: Distance error of position spacing calibration in radio map

Considering facts about environment, as a consequence we have chosen
approximately 4 meters of spacing in the radio map where still we can reach
high accuracy and low distance error. But it does not mean that this res-
olution is kept in every place throughout the all radio map. Spacing varies
between 4 up to 5 meters in the all radio map. On the other hand distance
of 8 meters is too extended to make precise tracking in the system. That
is why we ended up with 4.42 meters of the average resolution in the radio
map.

4.5.2 Quantity of scans per position

Before populating radio map with defined pace of 4 meters we have faced
the uncertainty problem related to amount of scans per position we have to
perform in order to keep position estimation accuracy high. Our expectation
was that small quantity of scans collected during little amount of time can
be influenced by negative Wi-Fi factors or simply some access points can be
not seen during short time and suddenly become visible [12]. Therefore we
assume that with small amount of scans average signal vector value is not
settled down.

In order to find the reasonable number of scans we have run few tests.
Similarly to radio map spacing tests we have two fixed positions where each
position was populated with signals. Distance between reference points was
set to 4 meters based on results from previous test. Amount of scans in
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offline phase was varied from 5 scans up to 50 scans. We have not considered
interval higher than upper bound of 50 scans due to limited time we had.
Hereinafter testing is done from one position. Conclusion is made based
on 200 samples collected in every test. Data was collected and tested with
Realtek RTL8187L NIC.

100

90

80

70

60

50

Accuracy (%)

40

30

20

10

5 15 30 50

Number of scans in one position

Figure 4.7: Quantity of scans per position

The outcome confirmed our expectations. As shown in figure [£.7] in-
crementing quantity of scans results in the growth of accuracy of correct
estimations. Accuracy varies from 61% up to 95.8%. With value of 15
and 30 scans accuracy difference is only 1.6%. Between 30 and 50 scans
variation is 7.2%. Difference between 15, 30 and 50 scans are not so signif-
icant comparing with 5 scans. We could use 15 scans instead of 30 or 50.
However we have decided to collect signal data by scanning every reference
point 50 times. We claim that more signals means more stabilized average
of signal strengths. Furthermore tests are performed right after the offline
phase, which means that signal fluctuation is not that visible comparing to
the fluctuation which can be seen after longer time. That can affect system
performance. Collecting only 15 scans with 1Hz frequency some signals may
not be visible at that particular moment. 15 scans comparing to 50 scans
guarantee less stabilization.

These accuracy values are collected in the environment with two posi-
tions. Expanding radio map can affect the accuracy and error distance.
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4.5.3 Collecting the radio-map

After we have determined the ideal distance between two reference points
and what is the optimal number of scans in each point we then started to
collect the radio-map for the area where the experiments took place in the
later phases.

In total — we have collected position fingerprints from 25 different ref-
erence points covering the building segment that our group room is located
in. Figure [£.8]illustrates the building area and where each reference point is
located.
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Figure 4.8: Positions of reference points
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Two laptops - Asus EeePC 901 and HP Compaq nc6000, with different
NICs were used to collect the fingerprints in each reference point. To form
the radio-map that was used in our experiments we made 50 scans with both
laptops in each position. Two other laptops were not used to collect location
fingerprints intentionally as we had some experiment cases that required a
user not to have his fingerprints in the database.

Additionally, while conducting some experiment cases we needed to have
several fingerprints that were collected during different time of the day. That
is the reason why we have collected fingerprints from all the available refer-
ence points with Asus EeePC twice - once in the morning and later in the
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evening. Signal strength values tend to be more stable during the evening
as there are very few users that might cause signal strength fluctuation.

Furthermore — in order to run direction prediction experiment we needed
to collect fingerprints from each reference point each time facing different
direction. We then collected additional data in each reference point while
facing east, west, south and north — ten scans per direction.

To sum it all up — the fingerprint of each reference point in our system
is comprised of 190 scan results in total.

It took us two days to collect the whole radio-map that later was used
when carrying out the experiments. The whole data was collected approxi-
mately one week before we started to run and evaluate the experiments.

4.6 Parameter determination

Our positioning system depends on few parameters which have an impact on
position estimation accuracy. Before running tests on specific cases our task
was to set these parameters. Each constraint was NOT randomly chosen.
Determination was performed in experimental way - in other words vary-
ing and adjusting the value of parameter which gives the highest results.
Selected parameters were used during all experimental cases. Penalty and
filter parameters are described in the following sections.

4.6.1 Penalty

In position estimation method [I| best position is determined by computing
distances between reference point average signal strengths (SS) and online
scan signal strengths. Every signal sent from access point is associated with
unique MAC address. So in other words we can say that distance is calculated
between identical MACs’ SS. To make it clear, overlapping MACs are sought
between the set of MACs from single online scanning result set and from
single specified fingerprint. There are no MAC duplicates in these sets.
Continuing, let suppose, in situation of different MACs no action is taken.
Finally best reference point is chosen based on the closest and most similar
fingerprint stored in database.

During the testing part we have noticed that in case of different MACs
some additional actions should be taken as some of position because of this
situation might be predicted incorrectly. We employ penalty. In the following
paragraph the motivation and value of penalty is presented based on a simple
example.
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FINGERPRINT 1 | FINGERPRINT 2 | ONLINE SCAN
MAC1 -20 -20 -20
MAC2 - -61 -60
MAC3 - -70 -70
MAC4 -60 -60 -60
MAC5H -50 - -
MAC6 -70 - -
MAC7 -50 - -
MACS - -80 -
MAC9 - -90 -

Table 4.3: Example - SS vectors

Let consider that we have two fingerprints as demonstrated in the table
4.3} FINGERPRINT 1, FINGERPRINT 2.Let say we have 9 access points
associated with unique single MACs. Based on quantity of scans experiment
50 scans are made in one reference point. Therefore duplicate MACs exist.
Identical MACs are grouped together and average of SS is calculated. Sup-
pose, tester is in certain position on the map and once he has scanned for
Wi-Fi signals. In one scan only unique MACs exist. No average is calculated.
Those MACs with SS are presented in the column ONLINE SCAN.

Reference
point 1

- MAC and its average signal strengthin DB
Online signals /

Reference

MAC1 MAC2 point 2

MAC4 MAC3

Figure 4.9: Example - overlapping MACs
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In the figure is visually demonstrated overlapping between similar
MACs comparing ONLINE SCAN with FINGERPRINT 1 and ONLINE
SCAN with FINGERPRINT 2. Blue ring in two cases represent the same
scanning result set. Regarding SS indicated in table almost all over-
lapping MACs share the same values, except MAC2 in FINGERPRINT 2.
Intuitively it seems that reference point 2 has to be the outcome of estima-
tion as there is larger set of visible overlapping MACs with almost the same
SS value. However after computing the distances with Euclidean formula,
the outcome is not expected:

Dist(ONLINESCAN,FINGERPRINT1) =0

Dist(ONLINESCAN,FINGERPRINT2) =1

FINGERPRINT 1 is closer to ONLINE SCAN because of the small dif-
ference of SS in FINGERPRINT 2. In order to avoid such situations penalty
for not overlapping MACs have to be used. In this case underweight must
be added to MAC2 and MACS in the first case. Underweight is added only
to the nonexistent MACs in the particular fingerprint.

Almost in all cases amount of set of fingerprint’s MACs is bigger than
set of MACs from online single scan. That’s because one fingerprint usu-
ally contains more than 50 scans and probability to collect more MACs is
definitely higher. Moreover fingerprints are often collected statically with
NIC which have a good specification and higher coverage range. Applying
penalty for nonexistent MACs in online single scan may negatively influence
distance calculation.

Intuitively penalty must depend on SS from online scan. If signal is
strong then penalty must be higher, if signal is weak penalty must be lower.
That’s why the constant PENALTY in the algorithm [1] must be elaborated:

PENALTY = (S8 + penaltyV alue)?

SS is signal strength of MAC which is absent among fingerprint MACs.
Parameter penaltyValue is value of penalty which was changed and added
for such absent MACs in order to overweight the Euclidean distance between
fingerprint and online signal vector.

We have run few simulation tests with default configuration (random
10 routes) with different values of penalty . According to the scale of
possible SS [-50;-100] we have chosen step values from 50 and 100. Penalty
500 was selected in order to test if very high penalty can overestimate result.
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Figure 4.10: Estimation accuracy achieved with different penalties

As we expected, results in the ﬁgurewhere penalty was ignored (cer-
tain MACs from online scan do not exists in a fingerprint. Marked with “-*
in the diagram), brought the worst accuracy among the others. It demon-
strated very low 25.9% of estimation accuracy. The highest accuracy was
achieved with penalty 100 — 75%. Only small fluctuation is noticed in the
last three cases with penalty 100, 200, 500. It seems that adding higher
penalty than 100 has not much meaning. Results with penalty value 100
differ with penalty 200 only by 1.95% and with 500 only by 2.2%.

Same tendency only inversely proportionally is noticed in distance mea-
surements in the figure L.I1] Error distance is almost not acceptable in case
of penalty value 0 and no penalty. Distance values for no penalty reaches 8.86
meters (Euclidean) and 12.09 meters (walking), while results with penalty
0 present more reasonable errors of 3.87 meters (Euclidean) and 6.46 me-
ters (walking). There is a huge drop between no penalty and penalty 100
— 7.45 meters (Euclidean) and 10.08 meters (walking). This shows about
importance of the penalty and success of the system’s performance.

Error distances with penalty equal or higher than 100 are almost stable
as shown in the figure {11} Applying higher penalty than 100 has almost
no impact on error distance: Euclidean error distance variation is equal to
0.2 meters, while walking error distance variation is only 0.01 meters.
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Figure 4.11: Error distance achieved with different penalties

Because of the highest results achieved we have chosen penalty value 100
to use in all other experiments. Values higher than 100 were not considered
as their outcome was not significantly different.

4.6.2 Filtering noisy signals

In this subsection weak signal filter is presented. It is explained that param-
eter value need to be carefully selected, as too high value can lead to the loss
of vital information and consequently loss of the precision of computation.
Correctly chosen value can improve accuracy of position estimation.

After the long term scanning we have detected interesting feature about
weak signals. Signals with very low strength tend to be very unstable, chaotic
and even random. It means that you cannot expect good outcome from these
signals. Some of them can slightly distort correct position estimation. Our
goal was to find the universal optimal value filter for every NIC we used
and to test out if removing signals below this filter during offline and online
phase can guide system to better results.
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Figure 4.12: Signal strength variation during the day

In the picture [f:12] fluctuation of the signals during whole casual day
is demonstrated. This behavior is also noticeable in figure [{.28canning fre-
quency was 1/60 Hz, in other words single scan was launched every minute.
All data was collected with HP WLAN W400 network card in one position.
From the figure @.12] it can be noticed that weak signals below around -90
dBm are very disorganized and messy. It might be caused by different neg-
ative Wi-Fi factors or just because access point is located far away from the
current position. Those signals do not offer much information which can be
effectively employed in position estimation.

In order to test this phenomenon we have accomplished experiments
where filter is applied. We have run simulation test with 10 randomly se-
lected routes. Realtek RTL8187 NIC was exploited in this test as HP WLAN
W400 NIC was running long term experiment. In simulation test and train-
ing signals are collected from one recently mentioned device (signals from
other devices are not considered), as only filter effect is being checked.

Results of the experiments are presented in figure [f.13] In the first case
filter was not applied and accuracy reached 53.9 %. After elimination of sig-
nals lower than -90 dBm accuracy was slightly improved by 6.9% comparing
to no filter case. Accuracy reached 60.8%. Removing signals lower than -80
dBm accuracy almost have not changed in contrast with the second case.
There is almost invisible difference between filter -90 and filter -80, only —
0.6%.
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Figure 4.13: Accuracy using different filter bounds

In error distance diagram [£.14fhe lowest error distance is reached with
threshold -90 dBm (lower is better). Error distance drops significantly be-
tween first and second cases: from 9.8 meters to 7.93 meters (walking), from
7.59 to 6.35 (Euclidean). Comparing two the next cases walking distance
changes only by 0.3 meters while difference of Euclidean reaches 0.8 meters
almost the same as between two first cases. Finally to sum it up, with -
80 dBm threshold accuracy and error distance is getting slightly worse. It
can be explained that with threshold of -80 dBm there are more valuable
information. If it is eliminated, accuracy can drop slightly more. Choos-
ing threshold of -80dBm is not recommended to use as a universal value
even though the results shows almost equal results comparing to the bound
of -90 dBm. In the next paragraph explanation of this recommendation is
presented.
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Figure 4.14: Error distance achieved with different filters

If we look at the picture more precisely, we will notice that if we
apply threshold -80 dBm we will cut almost half of the signal information
collected by HP WLAN W400 NIC. It means that with different network
cards applying specific filter will receive different results, because different
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network cards have different bounds for weak signals. High quality NIC
in our case Realtek RTL8187 comparing to lower class NIC HP W400 has
different type of signal reception. It tends to collect signals with higher
strength. We have composed the table with percentage of signals with
specific strength to show the difference between signal receptions of two
cards. These percentages are extracted from radio map data. There are
small amount of signals with strength lower than -90 dBm. However as we
have assumed if we apply filter lower than -80 dBm in case of HP W400 we
will remove almost 40% of important information needed for estimation. It
is definitely bad idea to apply filter with threshold -65 dBm in both cases,
where more than 10.5% of data exist in the first case and 40.74% in the
second.

Percentage of signals

Filter bound | Realtek RTL8187 | HP W400
-90 0.7 2.4
-80 2.1 37.38
-65 10.5 40.74

Table 4.4: Percentage of signals belonging to specific strength range

As it was mentioned earlier in the picture [£.13] applying filter with a
bound of -80 dBm we can notice similar results comparing with situation
where threshold of -90 dBm is applied. Recalling to the data in the table [4.4]
we can assume that removing 2.4% of noisy signals with -90dBm bound from
HP W400 will act similarly as filtering 2.1% data with -80 dBm threshold for
Realtek RTL8187. These are only assumptions which were also made based
on long term scanning results from HP W400

Filter with -90 dBm threshold is chosen to be used in every experiment we
have run. There are not much data available in this range for both devices
and they are considered to be noisy, providing little amount of useful
information. Removing those noisy signals can improve system accuracy
However different network cards exist with different type of signal
reception. It means that there is no universal filter value for every network
card.

Because of the limited time we had, filtering tests were not performed
on the all devices, only with Realtek RTL8187 which was used in most ex-
perimental cases. For the future work we suggest to model dynamic filter
threshold for every card based on the percentage of signals in specific strength
ranges.
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4.7 Cases

This section describes all experiment cases we have carried out during the
project. Every case explains a particular technique we have applied to deal
with specific positioning problem. Results and conclusions of each case are
provided as well.

4.7.1 Enforcing physical constraints

Because of the nature of wireless signals and complexity of indoor envi-
ronment, indoor positioning system can sometimes produce very inaccurate
results. Indoor space is usually composed of a variety of objects and obsta-
cles (walls, floors, doors, etc.) which tend to block or reflect wireless radio
signals. This is especially noticeable when user starts moving and changes
his position constantly. Confused by the unstable reflected signal strength
indications the indoor positioning system may estimate a wrong location of
the user while he or she is moving.

In order to reflect the relations between different entities in an indoor
space, a graph model can be utilized. The graph captures all important
physical constraints of a floor plan. By identifying appropriate graph models,
we can make the positioning system more robust to positioning errors that
correspond to users jumping through walls or traveling big distances in a
very short period of time.

In our case each reference point is represented as a graph node. Two
neighbor nodes at position NI and N2 are connected by an edge if the user
can directly travel from NI to N2 without visiting any of the other nodes.
An example of a graph that was used in this experimentation part is depicted
in figure

Another big advantage of using a graph model is that it also limits the set
of possible future locations of a user. When we know the current position and
maximum speed of the user — we can assume that within a specific interval
of time he or she will only be able to reach graph nodes that are connected
by an edge. For example, if we know that a user is currently at node N1 and
we can observe that node N1 is only connected to node N2 then the set of
all the user’s possible locations within a particular time period is N1|J N2.

In the experiments described below we try to experiment by changing
the parameter which defines how many connected nodes can be reached
from user’s current position. We record results of four different cases and
later compare it with the case where no graph was used.

Figure illustrates the definition of reachable nodes. Node pairs A
and B, B and C are connected by an edge. Node A has no direct connection
to node C - hence it is not possible to reach node € from node A in one step
(when reachability is equal to 1).
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Figure 4.15: Reachability degree

For example, let’s assume that user’s current position is A. If we set the
reachability parameter to 1 it means that user from its current position A4 is
only able to travel one graph edge at a time so he is forced to visit position B
before reaching position C. This approach eliminates jumping through nodes
and improves performance of the system. If we set this parameter to 2, then
user is allowed to move two edges in one step - for example from A to C.

4.7.1.1 Results

Figure[d.16]summarizes the average accuracy of our system that was recorded
during this part of experiments. In total — five different tests were carried
out. The horizontal axis of the chart represents the reachability parameter
where symbol “-“ means that no graph structure was used.
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Figure 4.16: Accuracy summary

As it can be observed — the best results were acquired when reachability
parameter was set to 3. Using this approach resulted in a slight increase
of system’s average accuracy compared with the initial case where no graph
was used.
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Figure [f.17] presents results of the same experiment but in different mea-
sures. Here we present the average error of the system that is measured in
meters. Two distance measures are recorded: minimal walking distance and
Euclidean distance.
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Figure 4.17: Average error distance summary

As it can be seen — system’s average error measured in meters has a close
relation with the accuracy. As before - case with reachability parameter set
to 3 was able to demonstrate the lowest average error.

4.7.1.2 Measuring improvement

Accuracy

To better examine the differences of how graph can change the overall
results of indoor positioning system we further investigate results from two
cases. Figure provides more detailed average accuracy results. This
time accuracy is measured in each position separately so that we can better
examine strengths and weaknesses of each approach.
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Figure 4.18: Accuracy comparison
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As it can be seen - there is no major difference between the two cases
in terms of accuracy. In some situations one approach performs better than
the other. Overall — by using the graph, system was able to reach average
accuracy of 67% compared to 62% that was recorded in the initial case.

Average error distance
Figures [£.19 and .20 shows the average error measured in meters for both
cases. As previously — average error distance is presented for each position.
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Figure 4.19: Average error distance without graph
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Figure 4.20: Average error distance with reachable nodes set to 3

As observed from the figures above - the average error measured in Eu-
clidean distance is again similar in both cases. However, if we compare
walking error measures we can observe that the initial approach had a very
high error in position 18 which is 13.7 meters. The case with graph was able
to demonstrate better average error values. The maximum in this case is 8
meters recorded in position 24.

System performance
A more noticeable advantage of this approach is the performance of the
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system. By knowing user’s current position and changing the reachability
parameter we can decrease the set of user’s possible positions. That means
that the system does not have to consider all the other positions that might
not be reachable. As shown in figure[d.21]this might save some computational
power and time.
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Figure 4.21: Computational time

4.7.1.3 Conclusions

In general — by introducing the graph we were able to increase the accuracy of
the system by approximately 5%. The improvement in average error distance
was more noticeable: Euclidean error distance was reduced by 17% while
walking error distance dropped by 19%. However the main improvement
that was achieved while using this method was witnessed in performance of
the system. In the optimal case with the best accuracy — algorithm’s running
time was decreased by 58%. The system has become more than twice as fast
as it was before.

It is very important to mention that our experiment was conducted using
simulation. In the real world environment the improvement could be differ-
ent. We would expect a more noticeable improvement in system accuracy
and average error distance in a real life experiments. The graph structure
should be especially useful in cases where users would start moving. In that
case this approach would restrict frequent position estimation errors.
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4.7.2 Splitting fingerprints by time

In this experiment section we describe a technique that should make the
indoor positioning system more adaptable the environment that we were
performing the tests in.

As described in the previous sections of this chapter we are dealing with
a very dynamic environment where signal strengths of the access points are
constantly changing depending on the current load and many other factors.
It is especially noticeable during the peak hours — when there are many
wireless network users connecting and disconnecting to/from the network
and the load is usually fairly high. During early morning and late evening
the signals tend to be more stable. This behavior can be observed from figure
where most of the signals in the early morning tend to be more stable
that during the day.

In order to reduce the negative effect that the signal strength fluctuations
may have on the indoor positioning system - we have decided to split our
current radio map into two parts according to the time that the fingerprints
were taken. That way - one part contains location fingerprints that are
recorded during the time interval from 8.00 in the morning up to 17.00
(inclusive). The other part is then comprised of all the fingerprints that
were taken from 17.00 and up to 8.00 (inclusive).

Using this approach we can use two different fingerprints depending on
what time of the day the user is using the system. If the user is navigating
during the working hours we only use location fingerprints that were recorded
during that time of the day.

4.7.2.1 Results

To evaluate the results of this approach we have run a test using data col-
lected with Asus EeePC. Fingerprints were collected during a two day period.
Once, during the working hours and another time — in the evening. Again —
two test runs were conducted in order to compare and find the advantages
and disadvantages of this approach over the initial case where no fingerprint
splitting was performed.

Accuracy comparison
Figure presents the accuracy results of both cases.
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Figure 4.22: Accuracy comparison

Both cases showed very good accuracy. In most positions fingerprint
splitting technique was generally a little more accurate. However positions
15, 8 and 5 still have better accuracy in the initial case. The average accuracy
in the initial case is 88%. By using fingerprint splitting technique we were
able to reach the accuracy of 96% which is rather high measure for an indoor
positioning system.

Average error distance
Figure [£.23] shows average error distance of the initial case.
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Figure 4.23: Average error distance without splitting

We can easily identify that positions 18 and 24 were the most difficult to
deal with for the system. The average Euclidean distance in these positions
reached 2.29 and 3.92 meters correspondingly. Average error distance in
other positions is more or less minimal. The average Euclidean error distance
is 0.55 meters. It tells us that the system was very accurate even without
any of the additional techniques.

The results of the case where fingerprint splitting was performed is sum-

marized in figure
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Figure 4.24: Average error distance with splitting

This time the maximum Euclidean error distance is recorded at positions
5 and 8 where it reached the values of 1.48 and 1.54 meters accordingly. The
average Fuclidean error distance is 0.23 meters. Compared with the initial
case — it is a significant improvement.

4.7.2.2 Conclusions

To conclude — we could say that fingerprint splitting is a very effective tech-
nique which can both: significantly increase the accuracy and reduce average
error distance of the system. Another advantage of this approach is that it
does not require doing any of the additional calculations and that is why it
does not have a negative effect on the performance of the system.

Overall — by employing this approach we were able to reach an accuracy
of 96%. Compared with the initial case — the average error distance was
reduced by 58%.

4.7.3 Adapting to different network interfaces

In this experiment are trying to solve a common problem that arises when
a user with different configuration — in this case different wireless network
adapter, tries to use an indoor positioning system that has its radio map
collected by completely different device.

As mentioned in previous sections of this report — different NICs tend to
receive wireless signal strength indications slightly differently. It means that
if radio map was collected with one type of device — the system’s accuracy
will usually decrease while working with other devices with heterogeneous
configurations.

In order to minimize this negative effect — we make sure that the radio
map of our system is collected with at least two different devices. Similarly to
the previous case - this enables us to have a few fingerprints in each reference
point. Each fingerprint is collected with different device.
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Later - when a client connects to the system and starts using it we first
measure what fingerprint is the most suitable for his device. In order to do
that we need to have the following information:

1. Current position of the client
2. An array of signal strength values that were recorded in that position

To implement this idea we can utilize Bluetooth infrastructure as described
in previous section . Whenever the user triggers a Bluetooth hotspot —
the system automatically scans the area for available access point signal
strengths and uploads this information to the database together with the
current position of the user that can be derived from the position of the
Bluetooth device.

After having the array of scanned signal strength measures we can com-
pare it with the existing fingerprints that were inserted by different devices.
To compare it, we use the same formula as during the position estimation
step as described in algorithm I We simply measure the Euclidean distance
between the two arrays. We then use the fingerprint that has the minimum
distance.

Using this method — we can measure how similar user’s current device
is compared with those which were used to collect fingerprint data. Later
— during position estimation phase we only use those fingerprints that are
closest and ignore the other. Bluetooth devices enable us to get this infor-
mation automatically — without requiring any user interaction. It is a good
idea to measure the distance of such fingerprints in several locations as this
might give more realistic results.

4.7.3.1 Results

This section presents the results of applying this approach.

When conducting this experiment we had our radio map collected by two
different devices — Asus EeePC and HP Compaq nc6000. The fingerprint of
each reference point comprised scan results of both devices.

To evaluate this approach we have used Compaq nw8440 that had no
fingerprints in our database. That explains why the overall accuracy and
average error distance measures are not as good as in previous cases.

In order to do a simulation in this experiment — we had to make 10 scans
with Compaq nw8440 in each position that our test routes were composed
of. We stored those results as test data and used fingerprints from other
devices as training data.

Accuracy comparison
Figure presents the summary of system’s accuracy with and without
using this technique.
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Figure 4.25: Accuracy comparison

shown in the figure above the results of this experiment are somewhat

different from all the other cases. In some positions the system was able
to reach better accuracy without using this technique while in others — it
improved the accuracy by a relatively large amount. There is only a single
position — 19, where neither of both cases had an accuracy of 0%.

The average accuracy among all the positions in the initial case is only
10%. After applying this technique it was increased up to 38% which, com-

pared

with the initial case is a noticeable improvement.

Average error distance
Figure [£:26] depicts the average error distance of the initial case.
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Figure 4.26: Average error distance without calibration

Both - Euclidean and walking error distances tend to vary around the

averag
sitions

e error distance which in this case is rather high - 13.94 meters. Po-
labeled as 4, 21 and 25 were the most difficult to deal with for the

system.
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Noticeable improvement can be observed by looking at the figure [4.27]
which represents average error distance after applying this technique.
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Figure 4.27: Average error distance with calibration

Even though there is no major improvement in every position — the av-
erage Euclidean error distance by using this approach was reduced down to
6.86 meters. However there are still some locations that had a rather high
error distance. As an example of such positions we can mention the follow-
ing: 3,9, 11 and 21. The Euclidean distance reached 21.89 meter mark while
walking distance had a maximum of 32 meters.

4.7.3.2 Conclusions

To conclude we can say that this technique does have a positive effect on
systems ability to predict user’s current position correctly. However, as the
results have showed - we cannot expect that the improvement will be achieved
in every position.

In general — by employing this technique we were able to increase system’s
accuracy from 10% to 38%. That might look as a significant achievement,
however it still might be too low in order to be used successfully in some
particular cases.

The average error distance was also cut to half. Compared with the
initial case it was reduced from 13.94 down to 6.86 meters.

4.7.4 Position prediction based on historical data

As we are dealing with changing signal environment, existing topology of the
building and interference issues - estimation results varies in some degree,
depending on the impact of these factors. Sometimes system is not sure
which position is the best for user as estimation outcome might be very
similar. Our goal is to provide additional information to the system which
can help to face indecision and overweight the true position estimation.
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4.7.4.1 Motivation

After few cycles of experiments we have observed interesting feature about
distances computed between online signals result set and fingerprints in the
database (Do not mix it with metrical distances between physical positions!).
There are lots of cases when the best candidates’ distances (the lowest) differs
by a very small amount. Very close similarity we refer to the closest reference
points where ratio between the lowest distance and such estimated distance
is higher than 0.9. Intuitively considering indoor environment we are running
our tests in, we claim that selecting best fingerprint which has slightly smaller
or almost equal distance comparing to neighboring fingerprint is not secure
decision. Signals lean to fluctuate. Every small change in signal strength
makes influence on position estimation. Even standing idle can make system
confused about which location you are currently on.

Figure 4.28: Situation when user is in uncertainty zone

In the figure [4.2§] situation of uncertain position is presented. Let say
your last visited position was A and you have ended up in position X. X
is uncertainty zone, where bounds of neighboring fingerprints intersects. In
this position system has scanned signals from visible access points. After
positioning actions system generated outcome, where A(distB, distC) =€ .
Selecting distB having distB > distC, where |dist B-distC| <= e does not
guarantee the estimation correctness.

There is a fact that users tend to walk the same paths. Every day person
may go to a canteen or to his office leaving repetitive locations. Relying on
this information we can improve accuracy of estimation. We are trying to
make an impact on the final outcome application performs. In experiments
we try to help system to deal with indecision situation like in figure [4.28
and to underweight distance of reference point which he visits most of the
time. We present function and parameters required to determine most visited
position. However we leave some of the parameter calibration for the future
work. Default parameters are chosen.
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4.7.4.2 Analysis

In order to know the past paths of the moving user we have created poshistory
table. We store historical data as a sequence of positions user have visited.
Every set of position, user and time determines one record in the poshistory
table. Joining these records together by incrementing time the paths can be
constructed for every user separately.

We have introduced prediction probability ratio to be able to control the
value of estimated distances between online signal result set and fingerprints.
Prediction probability ratio denotes the probability of certain position being
next after visiting current position. Let say in figure there were three
times user went to position C and two times was located in B after visiting
A. Prediction probability ratio for B would be % and % for C having A as a
current position. This probability is expressed by formula

moddist = ﬂ, ratio € [0, 1] (4.1)
(ratio+1)

We can read this formula as follows: in case where certain fingerprint was
used with higher prediction probability ratio distance is maximized, while
in other cases ratio will have lowering impact on the distance. This formula
is applied only for fingerprints which are very close to online signal vector -
their distances to single online signal vector is very similar. However there
are situations when ratio can be equal to 0 as some of reference points were
never visited before. Therefore to avoid illegal division by 0, distance is
divided by sum of ratio and 1.

Proximity of fingerprints is determined by similar distances, where similar
distances are defined by distance ratio threshold. Distance ratio identify
ratio between shortest distance and distance where certain fingerprint is
used. This distance ratio threshold is set to 0.9 in our system. If distance
ratio is higher than this threshold fingerprints are considered as close and
function is applied for this distances. Calibration of this threshold is left for
future work.

66



Figure 4.29: Importance of historical positions

After historical data analysis we have noticed that based on recorded
data we can say from what direction user was coming and in which direction
he was going expressed by position. Path patterns can be constructed. This
information can point prediction probability ratio to choose more realistic
values. To make it clear, let consider example presented in figure [4.29]
Currently user is located in position marked with X and is going toward
position 1. Previously user visited position 2 and 3 even earlier. Let name
position 3 as history position. Going further, system estimates position
and finds two fingerprints from position 1 and 3 close to ounline signal vector
(fingerprints’ proximity). Suppose, we have following history from poshistory
table:

Trajectory | Frequency
2->3 5
2->1 3

As the result distance from fingerprint 1 will be underweighted more than
fingerprint 3. And predicting in this case will worsen outcome. However if
we consider past positions as a basis for knowing from where user had come,
the result may not be worsen.

Trajectory | Frequency
1->2->3 5
3->2->1 3

After using historical node 3 distance will be lowered between fingerprint
1 and online signal vector. No impact will be made on fingerprint 3 as
there are no such paths where after position 3 through position 2 it reaches
position 3. As we claimed, user tends to walk the same paths. This assures
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position to be estimated in as a most probable location. Of course intuitively
we can ask what if user changed his mind and turned back. The answer is
that there are not many such situations which can distort results. Moreover
here is good explanation why we use only 0.9 distance ratio threshold. This
threshold actually can limit such situations as presented in the picture [4.29
, where metrical distance between fingerprints is reasonable high.

It is worth to mention the fact, that granularity of our radio map is
coarse, where density is only 4 meters in average. Thus as we make scanning
every second, usually same position is recorded few times until it reaches
next position: (A, t1), (A, t2), (A, t3), (B, t4), (B, t5)... These kind of
repeated loops are ignored in our algorithm. As we assume, that they are
providing not much of the useful information. Only unique positions are
taken into account. Moreover if we take these loops into account prediction
probability ratio will be changed. If we consider example and similar
fingerprints A and B having position A as a starting point, ratio in most
cases will overweight for A, as self-repetitions are recorded more often than
transitions. Transition we call a switch from position X to position Y, where
position X is not the same position as position Y. However in the future
work we can exploit loops in more details. After mining self-repetitions from
poshistory table we may more precisely define upcoming position user is
about to visit.

4.7.4.3 Algorithm

SQL function [3| predPosRatio was developed in order to compute prediction
probability ratio for every case where difference of fingerprint’s distances to
online signal vector is not clear. We employ few parameters: last pos id
— last position identification, user — user identification, curdate — current
date, mindelta— amount of minutes where positions are still considered as a
trajectory and hcount denotes amount of historical positions used in position
prediction. We use mindelta as there is situation when user logs his loca-
tion before one day — we do not treat these positions whose time difference
is higher than mindelta as connected. Finally function returns prediction
probability ratios with all computed transitions. Function results are only
used with close fingerprints. For simplicity reasons and lack of the time
only default parameters were used in experimental part. mindelta = 10 min,
hcount = 1. Parameter variation is left for future work. Our task was to
examine if this kind of history based prediction probability ratio can make
positive influence on the accuracy of the system.
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Function predPosRatio(cur_ pos_id, user,curdate,mindelta,hcount)

Output: next transitions

next_transitions < {);

xg < cur_pos_id,;

hist < { T1,..\Theount | Ti # Tit1, time(x;) - time(z;+1) < mindelta,
ie{0,1,.. hcount-1} };

W N =

4 if hist # () then

5 for VY position € history(user) do

6 if position = cur pos id then

7 Xp — position;

8 newhist < { T1,....Thcount | Ti # Tit1,
time(z;) - time(z;41) < mindelta,
ie{0,l,... hcount-1} };

9 if newhist — hist then

10 if ;1 & next transitions then

11 ‘ append x;_1 to next transitions;
12 end

13 else

14 ‘ increment counter of xy_1 € next transitions;
15 end

16 end

17 end

18 end

19 return nezt transitions

20 end

In a first stage of the algorithm [3| (line 3) ordered set of past hcount
positions connected with last position is selected. x; denotes record in the
poshistory table where i varies between 1 and amount of records in poshistory
table. Incrementing 4 index means older record in poshistory table. As it was
mentioned before we apply time condition between positions (only unique
neighboring positions are considered as it was stated earlier . Time
function in algorithm is defined as time(position) = {position} — {time when
this position was visited} . If time between at least two unique neighbor
positions is higher than mindelta ordered set of past positions is considered
as empty set. And if there is no history available (line 4-20), empty set of
ratios is returned by function. In algorithm: history(user) = {user} — {set
of historical positions}. Going further for every position in history belonging
to the user (line 5-18) function searches for position which is equal to the
last position. If such position is detected (line 6-17), it’s historical pattern
is being examined. newhist denotes ordered set of past hcount positions
starting from detected position zy. If same pattern is discovered (line 9-16)
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as from the last pos id — function gets next transition starting from zj
position. Next transitions and their frequency (line 10-15) are collected and
prepared as a return variable. nexzt_transitions is defined as set of {next
transition, amount of such transitions}. As it was mentioned earlier in the
ordered set of historical positions no duplicates exists as we do not consider
repetitive positions.

There is also additional parameter not mentioned in this function, as
it was not used. This parameter allows computing position ratios only for
reachable position from the last position. In other words next transition can
be made only if last visited node is connected by edge with predicted node.
This option allows filtering such fingerprints which position is not connected
with the last position. Reachability value can be varied as in the case of
graph experiment. Due to the limited time this possibility was not exploited
in this function.

4.7.4.4 Results

In this section results of experiments are demonstrated.

We have run this experiment in simulation mode in order to test the
impact of prediction probability ratios on position estimation accuracy. 50
random routes are chosen by application to test the case. Before simula-
tion start poshistory table was not populated with data. User’s history was
generated dynamically during experiment. It means that only after visiting
particular route at least once - prediction ratio function was able to calcu-
late prediction ratios. Method was fully utilized only after few rounds when
particular route was employed.

We have performed experiment twice with different test signals data as
input. Once it was taken from Realtek RTL8187L NIC, next time — HP
WLAN W400. As training signals we used signals collected only with Realtek
RTL8187L NIC.

Before result description some meanings need to be elaborated. In the
table[d.5]effect of prediction is explained. In deterioration prediction changed
position not into true one. Improvement means that prediction ratio has
good influence and estimated position was changed to true one. There is
others effect when prediction changed position but neither changed position
nor estimated was correct. Impact denotes all cases when outcome position
was changed to different position than estimated. No impact occurs when
position changed by prediction is the same as estimated.
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Effect of prediction | Estimated | True | Changed by prediction
Deterioration 1 1 not 1
Improvement 2 1 1

Others 1 2 not 1 and not 2
Impact 1 2 not 1
No Impact 1 X 1

Table 4.5: Example of prediction’s effects on position estimation

In the first experiment we got results as shown in the figure [£.30] where
Realtek RTL8187L NIC input data was used. Every specific effect is ex-
pressed in percentage of all estimation made in particular position. Diagram
was minimized as in positions not included in the graphic prediction has no
impact on position estimation. In all three positions and every time when
prediction was used it brought improvement in estimation.
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Figure 4.30: Result of prediction effect with Realtek RTL8187L

In the second experiment results are totally different. Comparing to the
previous experiment input test signals are taken from HP WLAN W400. In
this case almost in every position prediction had an impact on estimation. In
six positions 1, 3, 12, 13, 14, 15 deterioration reaches 100% of the predictions
which have impact on position calculation. Only in three positions we can
notice improvement (2, 4, 9). There are 8 positions (6, 7, 8, 10, 11, 16, 21,
22) where prediction had changed estimated position, but it did not worsen
or improved (others situation mentioned in the table results. Maximum
improvement (35.7% of all estimations at that position) is detected in posi-
tion 2. The worst case is detected in position 1 with highest deterioration

71



level (85%).

90

80

70
60

50 I

40

m Prediction impact

B Deterioration

30 + H

Improvement

20 A

Percentage of all predictions (%)

10

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Position

Figure 4.31: Result of prediction effect with HP W400

To sum up, in average 29% of all estimation cases prediction had deteri-
oration impact and only 4% brought improvement. In this case we lost more
accuracy of position estimation instead of getting better.

4.7.4.5 Conclusions

We have performed two experiments in order to show that some users can
generate incorrect history and based on that incorrect history prediction
technique can even worsen accuracy of position estimation. Second exper-
iment showed that having device with good specifications and additionally
having data of offline phase signals available in database, can lead to im-
provement of position estimation.

After experiment we have measured distance between collected online
signal strengths by HP WLAN W400 in particular position and available
fingerprint recorded by Realtek RTL8187L NIC. Value of this distance was
different enough to claim that HP WLAN W400 has worse signal perception
quality than Realtek RTL8187L NIC.

This feature must be employed with exceptional caution depending on
category of users’ device.

As mentioned in earlier sections this technique opens lots of space for
examining different parameters and situations. The impact of prediction
probability ratio, proximity threshold of fingerprints and size of historical
positions may be varied depending on different NICs. Consider repetitive
positions in prediction probability ratio. There is also possibility to incorpo-
rate historical trajectories collected from different users with lower influence.

Be aware that in real life case results may be more inaccurate.
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4.7.5 Enabling directionality

Being able to predict in which direction user will be moving can improve
location determination and also facilitate the process of navigation in the
indoor space. There are huge buildings such as clinics and airports where
value of navigation is very high. Direction identification can also be helpful
for blind people as it can serve as a feasible direction guide.

In this section feature of direction determination is presented. We try
to investigate whether it is possible to determine direction, based on the
orientation in which fingerprints were recorded. Graph model and history of
user trajectory was being also employed in order to be able to predict future
direction of the moving object.

Results and conclusions of experiments are also demonstrated in this
section.

4.7.5.1 OfHline phase with orientation

Inspired by [15] and [29] we have collected directional fingerprints. To make
it more precise our goal was to examine how much fingerprint is influenced
by orientation of mobile user. Orientation here means in which direction
user’s antenna is pointing. Like in the paper [15] four cardinal directions
were considered: North, South, East and West. This refers to user facing
one of these directions while fingerprints were recorded.

After collecting signals in one position with different orientation analysis
was made in order to check how different signals are, considering user’s di-
rection. We computed averages of all signal strengths belonging to specific
directional fingerprint in order to compare directional fingerprints. In fig-
ure [4.32 average SS of four directional fingerprints is presented. Difference
between fingerprint’s average SS fluctuates from 1 up to 4.6 dBm. Between
opposite direction (N-S, E-W) difference is 4.5 and 1.4 dBm respectively.
Moreover we have noticed that distinction between neighboring direction
averages is less significant ranging from 0.8 dBm to 2.5 dBm. All in all as
we can see in figure difference is not very high.
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Figure 4.32: Average SS fluctuation in directional fingerprint

In order to increase the diversity between directional fingerprints we have
introduced the offset value. Offset is the distance from the center of the
reference point oriented to the one of directions with specific value. We have
tried only small value equal to around 0.3-0.5 meters. Only small offset
was considered, as making distance larger can negatively influence position
estimation: neighboring fingerprints may become more similar. Variation of
the offset value is left for future work. However applying offset results have
showed almost no changes. Fluctuations between directional SS averages
have almost not changed (0.8 dBm up to 3.87 dBm). Difference between
opposite direction fingerprints was 2.1 dBm in case of North and South and
2.7 dBm in case of East and West.

To test efficiency of fingerprint’s orientation 30 scans with each direc-
tion was collected in one position (number 6 on the map . After that we
scanned signals (100 times) in specific direction and using Euclidean distance
formula, distance between signal vector and four directional fingerprints was
computed. The outcome was the direction with the smallest computed dis-
tance — which means that particular fingerprint was the closest to directional
signal vector. In figure [£:33| results of this experiment are presented. In this
case accuracy in the figure means percentage of correctly determined di-
rection. As we can notice this accuracy in all cases does not reach 60%.
The highest accuracy of 53.3% is obtained when user orientation was north,
while in case of the south — lowest accuracy of 33.3%. All in all, the level of
correctly determined direction is not very high.
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Figure 4.33: Direction accuracy based on directional fingerprint (4 dir.)

Based on evidence from figure .32 where fingerprints collected in oppo-
site direction were more different than neighboring, we tried to determine
direction utilizing only two opposite directional fingerprints. In figure [£.34]
results of this experiment are demonstrated. As we can see accuracy in-
creased up to 80%. 75% was recorded while testing west orientation.
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Figure 4.34: Direction accuracy based on directional fingerprint (2 dir.)

To sum up, these results showed that if more orientations are considered,
lower accuracy can be reached as it is difficult to make distinction between

i)



them. Later this feature is used to employ only possible orientations. For
example, in the corridors there are only two directions user can possibly
move.

We also took in mind the fact that it was tested only in one reference
point and in the static conditions. Populating radio map and considering
user motion, accuracy will decrease due to signal more chaotic reflections
and proximity between fingerprints in the radio map.

4.7.5.2 Direction determination

In this subsection we present the method how we determine future direction
of the mobile user.

As it was reported in previous subsection relying only on directional
fingerprints can bring not very stable and accurate results. To determine
user’s direction we try to employ historical and physical constrains. Graph
model adapted to the radio map reference points can give information to
the system about connected and possible reference points or nodes from the
current position and in that way limit the possibility of direction range. On
the other hand based on history we can say in which direction user tends to
walk.

Before explaining how direction is actually calculated it is important to
mention about the way we determine the direction having two positions.
Firstly in the figure we can see four cardinal directions associated with
our map. Every cardinal direction belongs to specific range of degrees: South
€ [-45, 45), East € [45, 135), North € [135, 180] U (-180, -135), West € [-135,
-45). In order to calculate the direction we utilize arc tangent function and
compute the angle between axis N-S and line which goes through the spec-
ified coordinates (pixels) of two positions. For example vector m denotes
direction West, while m — South.
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Figure 4.35: Cardinal directions on the map

In our direction determination method three cases in which mobile user
can be are distinguished:

1. one possible position exists (end of the graph)
2. two possible positions exist (usually corridors)
3. more than two possible positions exist (intersections)

For example in position 25 possible node is 4, in position 2 — node 1 and
node 3, in position 4 — node 25, 3 and 5. As you can see graph model is
employed in order to define such situations.

For every case we have applied different computations.

In the first case when user has only one position to go direction is esti-
mated trigonometrically between current position and possible position. For
example in position 15, direction will be always east as vector 15, 14 belongs
to [45, 135) degree range.

In the second two we check last position user has visited. This position
is ignored as a future possible position for simplicity reasons and due to the
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fact that users do not tend to change their direction very often. After last
position elimination we apply trigonometric formula and estimate the region
where cardinal direction resides. For example if user came from position 1
and currently is in position two estimated direction will be south.

Third case is more complicated. In this situation we try to exploit and
combine values of prediction probability ratio[3|and relation of current signal
vector and directional fingerprint in order to decide the most probable direc-
tion. In this case few steps are considered to select best suitable direction:

1. Define possible positions based on prediction probability ratio
2. Find possible cardinal directions based on possible positions

3. Compute proximity between signal vector and directional fingerprint
(possible directions only)

4. Combine prediction probability ratio and fingerprint proximity ratio
5. Select direction with maximum probability

Prediction probability ratio is computed using [3| procedure. There is only
one historical position considered in this formula. Let say current position is
4 and historical is 3 (check the figure [£.35). From history we get information
that with such trajectory pattern user went to position 25 twice and to
position 5 even 25 times. Based on available ratios we get two possible
directions: west and east, for west we have ratio % and east % . North
direction is ignored as prediction probability ratio does not exist for position
3. In the third step as we already have possible directions we compute
Fuclidean distance between fingerprint belonging to possible direction and
signal vector. Minimum distance is recorded. In the fourth step we have
introduced formula to combine two values [4.2}

4 1
P(dir) = R predRatio(dir) + 5 proxRatio(dir), dir € possible  (4.2)

Proximity fingerprint ratio is computed as ratio between distances: min-
imal distance and the current distance.

o mandist
proxRatio(dir) = dist(dir)

For example if we have estimated distance showing proximity with “east
fingerprint” equal to 100 and “west fingerprint” equal to 120, then proximity
ratio for east will be 1, and for west — %. Larger distance means lower
ratio and less influence on choosing particular direction. Continuing example
probability for east will be equal to 0.91 and for west - 0.26. We have

chosen constants % and % in order to lower impact of proximity ratio and
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increase the impact of history. As we have seen earlier [£.32] average of signal
strengths tend to vary between directional fingerprints in a very small degree.
Because of that we cannot expect very high direction accuracy thus we cannot
rely on this equally as history. While historical data gives tendency of user
movement which brings more stable outcome. Due to the time limitation we
did not consider other variations of constants.

4.7.5.3 Results

In this experiment we have run simulation to test direction prediction. Addi-
tional features (graph, regions) of the system were ignored in order to make
results more clear. Moreover before test there was no history generated for
user. We used test signals collected by Realtek RTL8187L. Direction predic-
tion is considered as correct if direction between true positions is the same
as direction estimated previously by formula[f.2l Accuracy denotes the level
of correct predictions.

In the figurdd.36] we show results we got after the test. We have divided
simulation results into few sections. In every section growing amount of
predictions or visited positions is presented. After 50 direction predictions
(50 visited positions) accuracy reaches only 66% while after 1200 predictions
it reaches 93.41%. After 300 positions were visited accuracy is stabilizing.
Fluctuation between second case and third is only 3.58%. Direction predic-
tion accuracy grows up proportionally to amount of historical data what is
apparently visible in the figure [4.36]
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Figure 4.36: Direction accuracy depending on amount of historical data
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4.7.5.4 Conclusions

As our solution is based mainly on historical data, more history means better
direction prediction. However as it was mentioned in previous section, if
accuracy of certain device is very low, recorded history will be less accurate
thus it will distort direction prediction results.

Relying only on directional fingerprint information will not bring high
direction accuracy unless directional fingerprints are reasonably dissimilar.
In our experimental environment where signals strengths of access points
tend to fluctuate, small variation between directional fingerprints might be
vanished after certain amount of time. If granularity of radio map is coarse
then collecting directional fingerprints with higher offset value may improve
direction predictability. However to get more precise results it is left for
future investigation.

4.7.6 Combining different infrastructures

As mentioned at the beginning of this report - one of the main ideas behind
this project was to find a way to combine different available infrastructures
into one system and experiment with how can that increase positioning ac-
curacy. We have chosen to use Bluetooth because it is available in most of
today’s electronic devices and there is no need to invest extra funds on the
additional equipment.

We base our main idea on the fact that Bluetooth infrastructure is de-
signed for low power consumption and comes in three predefined standards:
Class 1, Class 2 and Class 3 as shown in table

Class | Operational Range
Class 1 ~100 meters
Class 2 ~10 meters
Class 3 ~1 meter

Table 4.6: Bluetooth specification table [2]

Because of the relatively low range compared with Wi-Fi, Bluetooth sta-
tions can be used to detect clients that come into their scanning range very
accurately. It means that if Class 3 device is used and it detected some
specific user’s Bluetooth-enabled portable device — we can be sure that the
user is within 1 or 2 meters away from the actual station.

The advantage of this approach is that the position of the user can be
determined with a very high precision depending on the range of the station.
However if we were about to cover a large indoor area - it would require a
great number of Bluetooth stations which is both not practical and expensive.
On the contrary - Wi-Fi infrastructure can cover a relatively large area but
at the same time makes it difficult to estimate the exact position of the
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user. By finding a way to combine advantages of both infrastructures we
can noticeably improve the accuracy of indoor positioning system.

4.7.6.1 Dividing indoor space into regions

In this experiment case we use Bluetooth devices in order to divide larger
indoor space into smaller regions. Similar to [I0] - the idea is to place a
Bluetooth device in a strategic location in the indoor space in such way
that it could separate the indoor space into two separate areas. It is very
important to arrange everything in such way that when user walks from one
region into the other — he or she can only do that by being detected by one
of the Bluetooth stations. Figure [£.37] illustrates a possible way to divide
indoor space into 4 separate regions using Bluetooth devices labeled as 5, 7
and 19.
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Figure 4.37: Dividing indoor space into regions

As figure[£.37]suggests — it is a good idea to place such Bluetooth hotspots
in narrow entry spaces such as corridors or doors which connect two different
halls. By doing that - you make sure that the Bluetooth station will be able
to detect the user every time he or she enters a different region.

Similar to the graph case which was documented earlier - this enables us
to reduce the space of user’s possible positions. Once we know that the user
has entered a particular region — we are sure that he or she will stay there
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until we get an indication from a Bluetooth station that the user is entering
another region.

By following this logic we have implemented our indoor positioning sys-
tem in such way that the set of possible positions of the user always belong
to one or two regions at a time. When we know that the user is currently in
region 1 then the set of all the future possible positions of this user belongs
only to this region until some of the Bluetooth stations detect his movement.
If indoor positioning system knows what region the user is currently in — dur-
ing the position estimation phase it only needs to consider those reference
points that are within the area of that particular region.

Using information gathered from Bluetooth devices the system defines
all the possible positions of the user. Later — using Wi-Fi it tries to estimate
a more precise position of the specific user. In short — first Bluetooth infras-
tructure is used to determine what regions the user might be in and later
Wi-Fi is used to predict a more precise position within that region. This
technique guarantees that the maximum average error distance is always
smaller or equal to the size of the region.

There are some specific cases where system cannot tell exactly what
region the user might be in. Using the example from figure imagine a
case where user being in region 1 comes close to Bluetooth station labeled 5.
In that particular time the system cannot always guess what region user is
going to enter. The most probable candidate is region 2 but is not always the
case because user can always turn around and get back to region 1. To solve
this problem, we make sure that whenever user is standing in the Bluetooth
hotspot then the set of all possible future positions is composed from those
regions that the Bluetooth device is separating. In the previous example the
set of all the possible positions of the user would be composed of reference
points from region 1 and 2. Only when the system is sure that the user has
entered region 2 and receives no indication from any of the Bluetooth devices
— it then makes sure that only reference points that belong to region 2 are
going to be considered while estimating the position.

We have implemented our system the following way — whenever we receive
an indication that the user is within detection range of one of Bluetooth
devices — we instantly report that position as user’s current position. This is
because detection range of our Bluetooth devices was reduced down to 1 or
2 meters and if we can determine a position of the user with that accuracy
— we do not need to do any further estimations.

When user is detected at one of the Bluetooth hotspots — system always
return that position as users most probable position. Later the system tries
to figure out what region the user might most probably be in. In most
cases each Bluetooth device connects two regions so later it is important to
determine where the user went upon leaving the Bluetooth hotspot. After
the client is no more detected by the Bluetooth device — the system does 5
scans using the wireless network adapter (it takes at least 5 seconds in our
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case) in order to detect what is the current region of the user. After those
5 scans it evaluates the results and checks what region out of those two is
the most feasible. We have chosen number 5 because of the fact that the
results cannot be divided equally among two regions. After determining the
current region of the user — system then reduces the possible future locations
of the user down to the reference points that belong the current region. This
approach guarantees lower average error distance as well as it improves the
performance of the system.

4.7.6.2 Additional techniques

Another way that we try to utilize this infrastructure is to make our system
self-maintainable to the highest degree possible requiring no user interaction
if possible. As described above — Bluetooth can give us the precise position
of the user. By knowing this ground truth — we can automatically maintain
our radio-map. This is achieved in the following way — whenever the system
detects that the user has entered a Bluetooth hotspot — it then automatically
scans for available access point signal strengths and uploads the results to the
database together with the position that indicated by the Bluetooth device.
That way we can force all the users to update our radio-map on a constant
basis without having them to do anything.

A number of other useful techniques can be implemented by having such
low range infrastructure combined with Wi-Fi. As one of the features of our
system, we have assigned each Bluetooth device a speciffic id. Fach such id
of device that is positioned on ground floor starts with a digit 1 and increases
according to what floor the device installed on. This is useful because when
the system detects that the user is within range of some particular device
— it then checks what floor this device is installed on and if it notices that
the user is using the plan (map) of another floor — automatically changes it
to match the floor that the user is currently in. In order to get the most
from this feature it is advised to have a Bluetooth hotspots positioned near
the stairways at each floor. Then the map will automatically be changed to
match the floor with the minimal delay.

It is usually a good idea to deploy such Bluetooth devices in the area
where Wi-Fi coverage is fairly low. That is dictated by the fact that low
strength Wi-Fi signal is less stable and it makes it very hard to estimate the
correct position of the user.

4.7.6.3 Results

In this section we present results from two different experiments while using
Bluetooth devices to divide our indoor space into different number of separate
regions. Later we compare this approach with the initial case where no
Bluetooth devices were used.
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Accuracy comparison
In order to see the advantages and disadvantages of this approach we have

first made an initial test in order to record what is the current accuracy
and average error distance of the system without using any of the Bluetooth
devices.

Later, we divided the indoor area into 4 separate regions placing Blue-
tooth devices on the strategic narrow places.

Figure depicts the environment and placement of the Bluetooth
devices labeled as 5, 7 and 19.
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Figure 4.38: Dividing indoor space into 4 regions

Having recorded all the accuracy and average error distance results we
have then introduced additional Bluetooth devices. By conducting this test
we wanted to observe how the number and size of the regions would affect
the overall performance of our system. In this case the indoor space was
composed of 6 smaller regions as illustrated in figure
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Figure 4.39: Dividing indoor space into 6 regions

Figure [£.40] presents a summary of system’s average accuracy in each
position while using three different approaches described above.

100

H No Bluetooth

Accuracy (%)

™ 3 Regions
M 6 Regions

mi
i1l
il
il
[
[
LT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 25
Position

Figure 4.40: Accuracy comparison

It is obvious that there was a noticeable improvement in systems accuracy
by utilizing the Bluetooth infrastructure. At 11 out of 25 positions there was
a noticeable increase in accuracy. The most significant improvement was
achieved in positions 5, 6, 7, 10, 11, 21, 25 where compared with the initial
case system’s accuracy has increased up to 100%.
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There was only a single position labeled 9, where accuracy has dropped
when introducing Bluetooth.

Average error distance
This section presents average error distance measures of each case.
Figure [£.41] shows the average error distance of the initial case where no
Bluetooth devices were used.
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Figure 4.41: Average error distance without regions

As it can be seen — Euclidean error distance at positions 10, 11 and 21
reaches 19, 20 and 25 meters correspondingly. The average error distance
among all the positions remains at 8.24 meters.

If we examine the walking distance error in each position - we can clearly
see that there are two major peaks in the diagram. At positions 11 and 21 it
reaches a 40 meter mark which clearly indicates that this approach is surely
not acceptable to be deployed in such an environment that we are currently
dealing with.

The following figure [£-42] illustrates the average error distance of a test
where indoor space was divided into 4 regions with the help of Bluetooth
infrastructure.
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Figure 4.42: Average error distance with 4 regions

This time the error distance stays minimal in all the positions except in
those labeled as &, 9, and 16. The absolute maximum Euclidean distance
error reaches 13 meters in position 9, while maximum average walking dis-
tance error is a bit higher — 15.4 meters, recorded in the same position. In all
the other positions the error distance measure is very low. This is the reason
why average Euclidean distance of all the positions is only 1.64 meters.

A case where indoor space was divided into 6 regions produced very
similar results to the previous test. As figure [f.43]indicates — the results are
almost identical and follow the same trend in all the positions. The average
Euclidean error distance is slightly higher — 1.87 meters.
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Figure 4.43: Average error distance with 6 regions

4.7.6.4 Conclusions

In general — by using this approach we were able to achieve a significant im-
provement in terms of accuracy and greatly reduce the average error distance.
Another speculation that can be derived from the results of this experiment
part is that increasing the number of regions and at the same time making
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them very small — does not guarantee to bring further improvement. As the
last test showed — it is not worth the effort to divide the indoor space in
regions that contain only a few reference points.

Compared with the initial case — overall accuracy has improved by ap-
proximately 35%. From 50% in the initial case it increased to up to 82% and
85%in the latter two cases.

The average Euclidean error distance dropped from 8.24 meters to 1.64
and 1.87 meters. That is an improvement of approximately 80%.

To conclude — it is important to mention that it is worth the time to
experiment with the optimal size of each region. As results of this experiment
have shown — increasing the number of regions does not guarantee that it
will produce better results.

4.7.7 Real life experiments

In this part of our experiment section we will present the results that were
achieved while testing the system in a real world scenario. No simulation
was used this time.

In order to test system’s performance we need to know the exact position
of the user and later compare it with the predicted one. In order to get
this ground truth we have implemented a special “Experiment” mode in
our system as described earlier in the user interface section Whenever
we switch to that mode — we are enabled to indicate our current position by
pressing anywhere on the map. The system then tries to predict our position
and inserts the result together with the actual current position that we most
recently indicated into the database. Using this way the user is responsible
of reporting the correct current position accurately. Otherwise — the test will
provide misleading results. The other question that arises when using this
evaluation approach is:

When should the user indicate that his position has changed from posi-
tion A to position B?

In other words — when should the user click on position B on the map to
indicate that he is currently stationed there?

We answer this question based on logic behind Fuclidean distance. It
should be done whenever we cross the half way between position A and B
as shown in figure [f.44pelow.

Figure 4.44: Separating positions
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The area to the left side of the midpoint belongs to position A, while the
area to the right belongs to position B.

We were trying to follow this method carefully while testing the system
in this real world case. The experiments of this case were conducted using
Asus EeePC. Each experiment took about 10 minutes. We were walking in
a quite slow pace and were constantly indicating our current position to the
system so that it can later compare it with the predicted one.

4.7.7.1 Wi-Fi and Bluetooth coexistence

In the first part of this experiment case we were using both Wi-Fi and Blue-
tooth infrastructures. Because we were not able to get Bluetooth stations
— we were forced to use our laptop to scan for discoverable Bluetooth de-
vices — phones in our case. It means that there were two simultaneous scans
running in the background. We scanned for available Wi-Fi signal strengths
once every second, and every three seconds performed a Bluetooth scan. As
mentioned before those time periods were dictated by our current hardware
and API.

Before this test we have decided to experiment and investigate on how
significant is the level interference between the Wi-Fi and Bluetooth wireless
signals.

In this section we present a summary of how Wi-Fi scanning results might
change in different devices while performing Bluetooth scans simultaneously.

To measure it — we used two different class devices — Asus EeePC and
Compaq nw8440.

In the first test we were trying to measure how the average signal strength
would differ if we had Bluetooth scanning enabled. We have done 35 scans
while having Bluetooth disabled and later we repeated the same procedure
with having Bluetooth enabled. Figurdd.45| presents the results of Asus
EeePC.
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Figure 4.45: Average signal strength with Asus EeePC

Different access point MAC addresses are grouped on the X axis. The Y
axis represents signal strength values of a particular access point averaged
over 35 scans. Blue line represents average accuracy while having Bluetooth
enabled.

The effect negative effect of scanning with both Bluetooth and Wi-Fi
interfaces is best visible in the leftmost, middle and rightmost parts of the
figure. We can see that if the wireless signal strength is in the range of -70
and -90 dBm — it will probably be blocked while performing Bluetooth and
Wi-Fi scans at the same time. However the overall signal strength indication
is not disturbed — signal strengths from the same access points tend to be
very similar in both cases. The only negative effect that Bluetooth brings in
this case is that it prevents some signals to be scanned but there is no major
distortion in the measurement of signal strength.

Figurdd.46] another Bluetooth and Wi-Fi interference measure. In this
test we have recorded how often Bluetooth blocks Wi-Fi signal reception.
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Figure 4.46: Detection rate Asus EeePC

As in the last test — we have made another 35 scans and measured how
many times, out of 35, we could detect a particular access point.

Here - the interference problem is more obvious. We can clearly see that
in almost every case scanning with having Bluetooth disabled resulted in a
much better detection frequency.

In order to figure out how a different device would perform in the same
situation we have conducted the same tests with Compaq nw8440.

Figurdd.47 sums up the average signal strength indication.
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see that in both scanning runs the results are more or less on the same level.
The Bluetooth interference is much less noticeable using this machine.

similar. The difference in barely noticeable.

92

MACaddress

Figure 4.48: Detection rate with Compaq nw8440
It is worth mentioning that this device had both Wi-Fi and Bluetooth



interfaces built in. Despite of this fact the interference between the two was
not noticeable.

The only conclusion that we can make from these tests is that the results
are highly dependable on the configuration of the machine. In some cases
- performing simultaneous scans with both Wi-Fi and Bluetooth interfaces
might cause an obvious interference. While another configuration might be
completely immune to that kind of problems.

In general — it would be a better idea to use Bluetooth stations and make
them scan for the clients that come close. That way clients would need to
use only wireless network interface on their device. However as mentioned
before we were not able to get the required equipment so we were used to
use the alternative approach.

4.7.7.2 Using Bluetooth

In this section we present the results of our first real life test. In this first

experiment we were using Bluetooth devices positioned in the same places

as shown in the previous simulation experiment in sectionfd.7.6] figurd4.38]

As before - the whole experiment area was divided into 4 regions.
Figurdd.49| presents the results of this case.
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Figure 4.49: Accuracy while using Bluetooth

As expected — nodes 5, 7 and 19 - where our Bluetooth devices were
positioned showed quite high accuracy measures compared with the overall
average. The accuracy in all the other ones was clearly lower.

Average accuracy of this case is recorded at 33% level.

Because of the way we evaluate this test — average error distance is a
much more interesting metric for us. Even if we get 0% accuracy we can still
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have average error distance of, say 5 meters, and that would indicate that
the system is actually not that bad.
Figurd4.50] presents the average error distance.

10.00
9.00
8.00
7.00
6.00
5.00
4.00
3.00
2.00
1.00 - _

OOO |. T T T T
456 7 8910111214151617192021

Position

= \Walking Distance

Euclidean Distance

Error Distance (m)

- — - = Average Error

Figure 4.50: Error distance while using Bluetooth

As we can see the results here are very unstable and change from position
to position. In some positions the distance is very minimal while in others
it suddenly jumps up. In position 9 it reaches up to 8 meters. This can
be explained by looking at how regions are arranged. Position number 9
belongs to the one of the longest regions. So when user entered this are the
system was more sensitive to errors because of the fact that region contained
some reference points that were separated by more than 10 meters from each
other.

Average Fuclidean error distance was very similar to average walking
distance in all the positions. Overall average error distance of all the positions
of this case is 3.92 meters.

4.7.7.3 Using graph model

In this section we present results of a very similar test to the one described
above. The only difference is that this time we were using a graph model
as describe in section Based on our previous experience we have cho-
sen the reachability parameter to be 3 as it yielded the best results in the
simulation phase.

Figurdd.51] shows the accuracy results of this case.
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Figure 4.51: Accuracy while using graph model

As we can see from the figure above the accuracy results of this case
tends to follow some trends. Accuracy reaches the maximal value of 90%
in position 5. It then drops and later again increased around the area near
position 17. The overall average accuracy in this test is 36%. It is almost
identical to the previous case.

Figurdd.52] shows the average error distance measurements.
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Figure 4.52: Error distance while using graph model
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There is a clear indication that the area covering reference points from 10
up to 15 is the most difficult for the system to cope with. This can be related
to the fact that this area has a fairly low Wi-Fi signal coverage compared
with the rest of the building. Using the previous method the same area
was the most problematic as well. The maximum average Euclidean error
distance in this case was observed at positions 14 and 15 with the value of
9.91 meters. Average error distance stays at the 4.24 meter mark. This is a
little worse than in the previous case.

4.7.7.4 Conclusions

The system’s accuracy using the graph model is less “jumpy” compared with
the Bluetooth approach. This behavior might be related to the fact that
using Bluetooth we strictly define the available set of user’s current positions
according to what region he or she currently is. As we could see in some
regions accuracy tends to be somewhat higher than in others. That explains
why accuracy of this approach is so dissimilar in different positions. The
results of using the graph model were more uniform — we could identify some
trends and detect what areas caused the most accuracy related problems.

While using Bluetooth it would be a good idea to separate the region
with the lowest accuracy into a few smaller ones. That would significantly
lower the average error distance.

In general — we cannot state that one approach is better that the other.
Decision to use one approach or the other depends on situation and current
environment. It is also important to mention that Wi-Fi and Bluetooth
signal interference issue may have had a negative effect on the results of
experiments where Bluetooth devices were used.
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Approach | Advantages Disadvantages

» Improved precision » Requires additional
equipment and setup
» Maximum error distance » Very sensitive to possible
can be tweaked Bluetooth device faults
Bluetooth » Provides a framework for
additional services and
techniques
» Accuracy is less dependent
on Wi-Fi
» Improved performance of
the system
» Improved precision » Results are solely
dependent on Wi-Fi
Graph » Requires no additional
equipment

» Improved performance of
the system

Table 4.7: Summary of approaches

As shown in table[.7]above both approaches improve the overall precision
of the system. Using Bluetooth has more advantages but at the same time
requires additional equipment. Furthermore — if one of the Bluetooth devices
fails — it may significantly affect the overall results of the system. One of most
important advantages of using Bluetooth over graph is that it enables us to
pick the size of each region which in turn defines what the maximum possible
error distance is. Another big advantage is that it enables a framework to
develop some additional techniques such as those described in section [4.7.3]
This approach is also more appropriate in situations where there are many
clients with different device configurations as it is not solely dependent on
one Wi-Fi infrastructure. Users with different NICs should be able to achieve
better results by using this approach.

By using both approaches we were able to achieve the average error
distance of approximately 4 meters. Knowing the typical precision of indoor
positioning systems where error distance fluctuates between 1-6 meters based

n [I8], [20] and keeping in mind that our tests were carried out in a very
dynamic environment this is a decent achievement.
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Chapter 5

Conclusions

Having analyzed the results of experiments that were carried out throughout
the project we can conclude that techniques described in this report help in
making the indoor positioning system more robust even in environments
where no consistent Wi-Fi signal strength can be expected throughout the
longer periods of time.

Graph model

Incorporating the undirected graph structure into indoor positioning sys-
tem resulted in slightly increased (5%) accuracy. However, a more noticeable
improvement (17%) was observed in the average error distance. Even when
the system still cannot estimate the correct position of the user — using this
approach the estimated position is usually closer to the correct one. Another
advantage of this approach is that by changing the reachability parameter
we can limit the set of user’s possible positions. This way it is possible to
significantly increase performance of the system. Our location estimation
procedure became more than twice as fast using this approach.

In general — we were not able to identify any of disadvantages of this
approach. We expect that this approach would show even more improvement
in real life cases where users tend to move a lot. In such cases this method
should reduce frequent position estimation errors more noticeably. The fact
that it improves both accuracy and performance of the system makes it
applicable in most indoor positioning scenarios.

Combining different infrastructures
The idea of combining high range wireless infrastructure (Wi-Fi) together
with low range (Bluetooth in our case) into a one integrated system showed
a more significant improvement. We observed a 35% increase in accuracy
and average error distance became approximately 5 times lesser.
While employing this approach in a real world situation we got very
similar results compared to those that were achieved while using the graph
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model. This might be because of the fact that we were forced to run two
simultaneous (Wi-Fi and Bluetooth) scans from the same client device which
as documented in section brought some interference issues. To avoid
this issue we would suggest deploying Bluetooth stations and that way mak-
ing them scan for the clients that come close. That would eliminate the
requirement of forcing each client to do two simultaneous scans at the same
time and also reduce energy consumption.

Another advantage of this approach is that it serves as a framework for
additional techniques such as those explained in section which helps
to make indoor positioning systems more adaptable to different client device
configurations and current environment.

Splitting fingerprints by time

Splitting current fingerprints into different sets according to time when
fingerprint was collected is a helpful technique in cases where access point
signal strengths vary during the course of the day. By using this technique
we were able to reach a rather high accuracy level (96%). The average error
distance was reduced to become more than twice as small. However this
technique is intended to improve accuracy in inconsistent environments and
may show different results in environments where signal strength does not
change during longer periods of time.

History based approaches

According to the experiment results, methods that query history of a spe-
cific client while estimating its position should only be used in certain situa-
tions. It is because of the fact that the system cannot guarantee that those
previously recorded positions are estimated correctly. That is the reason
why we apply this approach only in those situations where indoor position-
ing system cannot determine a clear single candidate while choosing the most
probable position.

As shown by tests in section F.7.4.4] this approach may be helpful in
cases where history of previous positions of the client is more or less accurate.
However in cases where collected history is erroneous this approach is not
applicable as it may even worsen the results.

Adapting to different network interfaces

Our effort to make indoor positioning system more adaptable to differ-
ent client device configurations demonstrated improvement in cases where
position fingerprints were collected with different devices. We were able to
increase accuracy of the system by 28% and reduce average error distance to
less than a half.
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Future work

To further improve the ability to adapt to different network interfaces it
would be interesting to experiment with Hyperbolic Location Fingerprinting
[14] - storing Wi-Fi signal scan results as signal strength ratio of available
access points. That might further improve indoor positioning system’s per-
formance when dealing with different network interface interfaces.

Using Bluetooth stations instead of Bluetooth-enabled devices is another
possibility to reach further improvements. As mentioned in section -
this approach should help with minimizing Wi-Fi and Bluetooth signal in-
terference problem. Otherwise — techniques explained in [6] can be employed
trying to minimize the consequences of this interference issue.

Another interesting research area is to experiment with combining Wi-Fi
with other low range wireless technology such as RFID or IrDA. That might
as well help in solving wireless signal interference problem.
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Appendix A

Figures

A.1 Access points in Cassiopeia
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Figure A.1: Ground floor - where experiments took place
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Figure A.2: First floor
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A.2 Multithreading in our application
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Figure A.3: Multithreading in our application
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A.3 Fingerprint collecting phase

Figure A.4: Convenient way of collecting fingerprints
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Appendix B

Terms and abbreviations

AP - Access Point
APIT - Application Programming Interface
BFS - Breadth-first Search Algorithm used in graph theory

BSSID - Basic Service Set Identifier, in an infrastructure BSS, the BSSID
is the MAC address of the wireless access point [28]

dBm - power ratio in decibels referenced to milliwatts [27]
DBMS - Database Management System
ER diagram or ERD - Entity Relationship Diagram

Fingerprint - Vector of received signal strengths at particular position in
indoor space [12]

GUI - Graphical User Interface

GPS - Global Positioning System

ID - Identification

IIS - Internet Information Services

IR - Infrared

IrDA - Infrared Data Association

MAC - Media Access Control address

MU - Mobile or Moving User

N, S, E, W - Directional Coordinates North, South, East, West

NDIS - Network Driver Interface Specification
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NIC - Network Interface Controller also known as Network Interface Card
NNSS - Nearest Neighbor in Signal Space

PDA - Personal Digital Assistant

Radio Map - Fingerprint database

RF - Radio Frequency

RFID - Radio-frequency Identification

RSS - Received Signal Strength

RSSI - Received Signal Strength Indication

SQL - Structured Query Language

SS - Signal Strength

SSID - Service Set Identifier, is a name that identifies a particular 802.11
wireless LAN [28]

Wi-Fi - Wireless Fidelity

WLAN - Wireless Local Area Network
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