
Applications of Groebner Bases
to Coding Theory

MAT6
M.Sc. Thesis in Mathematics

Supervisors: Diego Ruano and Olav Geil

Nicola Marchetti

Aalborg University

Department of Mathematical Sciences

Fredrik Bajers Vej 7 G • 9220 Aalborg East • Denmark

Department of Mathematical Sciences
Fredrik Bajers Vej 7G
9220 Aalborg East
Telephone 99 40 88 04
Fax 98 15 81 29
http://www.math.aau.dk

Title: Applications of Groebner Bases
to Coding Theory

Project period: MAT6, spring semester 2010

M.Sc. candidate:

Nicola Marchetti

Supervisors: Diego Ruano and Olav Geil

Pages number: 71

Finished: June 15, 2010.

Summary:

This MSc in Mathematics thesis deals with the
application to coding theory of concepts related to
Groebner bases theory.
We first recall the concepts of polynomials, ideals,
monomial orders and polynomial division. Next,
modules are introduces, discussing on the associ-
ated monomial orders and Groebner bases.
Thereafter, we recall the theory of cyclic codes,
which are then used afterwards to build quasicyclic
codes. In particular, we discuss linear codes, and
then cyclic codes. For the latter, we focus on the
problem of factorizing xn−1. Later on some basic
theory is recalled, and thereafter one introduces
the concept of zeros and minimum distance of a
cyclic codes. At last, we treat BCH and Reed-
Solomon codes.
We then introduce quasicyclic codes and the re-
lated algebraic theory. We will especially focus
on studying quasicyclic codes’s algebraic struc-
ture by using the tool of Groebner bases of mod-
ules. Finally, we deal with the decoding of qua-
sicyclic codes in Groebner basis form, and with
the decoding of restriction-1 1-generator quasi-
cyclic codes. Further, some decoding algorithms
for Reed-Solomon codes are discussed, and we then
deal with the decoding of quasicyclic codes formed
by blocks, constituted in turn by Reed-Solomon
codes.

The content of this project is freely available, and its usage is allowed by properly referring to it.

3

Preface

This thesis is the outcome of a project done during the 2010 spring MAT6 semester at Aalborg
University.

The project is inspired by the discussions that took place in occasion of the weekly meetings with
the supervisors, and the main reference material is listed in the Bibliography, at the end of the
report.

Several examples have been put in the report, in order to better the understanding of the theoretical
concepts, and in this respect the computer algebra system Singular has been used as a support.

The MSc in Mathematics candidate Nicola Marchetti would like to express his gratitude to the
supervisors, Dr. Diego Ruano and Associate Prof. Olav Geil, for their constant support throughout
all the duration of the project.

5

Contents

1 Introduction 9

2 Modules 10

2.1 Polynomials and Ideals . 10

2.2 Monomial Orders and Polynomial Division . 11

2.3 Modules over Rings . 13

2.4 Monomial Orders and Groebner Bases for Modules 19

3 Cyclic Codes 25

3.1 Linear Codes . 25

3.2 Cyclic Codes . 26

3.2.1 Factoring xn − 1 . 28

3.2.2 Basic Theory of Cyclic Codes . 30

3.2.3 Zeros of a Cyclic Code and Minimum Distance of Cyclic Codes 31

3.2.4 BCH Codes . 33

3.2.5 Reed-Solomon Codes . 34

4 Quasicyclic Codes and their Algebraic Structure 36

4.1 Introduction to Quasicyclic Codes . 36

4.2 Algebraic Theory of Quasicyclic Codes . 37

4.3 Study of Quasicyclic Codes’s Algebraic Structure through Groebner Bases of Modules 38

5 Decoding Issues related to Quasicyclic Codes 48

6

5.1 Summary on Quasicyclic Codes’ Algebraic Structure 48

5.2 Decoding of Quasicyclic Codes in Groebner Basis Form 49

5.3 Decoding of Restriction-1 1-generator Quasicyclic Codes 52

5.4 RS Decoding Algorithms . 55

5.5 Decoding of QC Codes Formed by RS Codes . 68

7

Chapter 1

Introduction

This MSc in Mathematics thesis deals with the application of concepts related to Groebner bases
theory, studied during the former semester MAT5, to coding theory. This report is structured into
four main chapters, i.e.:

• Chapter 2, Modules: we first recall the concepts of polynomials, ideals, monomial orders and
polynomial division. Next, modules are introduces, discussing on the associated monomial
orders and Groebner bases;

• Chapter 3, Cyclic Codes: this chapter is devoted to recalling the theory of cyclic codes,
which are then used in Chapter 4 to build quasicyclic codes. In particular, we discuss linear
codes, and then cyclic codes. For the latter, we focus on the problem of factorizing xn − 1.
Later on some basic theory is recalled, and thereafter one introduces the concept of zeros
and minimum distance of a cyclic codes. At last, we treat BCH and Reed-Solomon codes;

• Chapter 4, Quasicyclic Codes and their Algebraic Structure: this chapter introduces quasi-
cyclic codes and the related algebraic theory. The last part of the chapter focuses on studying
quasicyclic codes’s algebraic structure by using the tool of Groebner bases of modules;

• Chapter 5, Decoding Issues related to Quasicyclic Codes: the last chapter first deals with the
decoding of quasicyclic codes in Groebner basis form, and with the decoding of restriction-1
1-generator quasicyclic codes. Later on, some decoding algorithms for Reed-Solomon codes
are discussed, and the last section deals with the decoding of quasicyclic codes formed by
blocks, constituted in turn by Reed-Solomon codes.

The main personal contributions of the thesis consist on:

• Re-elaboration of material from state-of-the-art, including further comments, proofs and
examples when it was found appropriate;

• Use of Singular computer algebra system [2005 Greuel, Pfister & Schoenemann] throughout
the report, presenting some original examples of application of the theoretical concepts which
are the subject of this thesis.

9

Chapter 2

Modules

In this chapter, we will first recall some concepts on polynomials, ideals, monomial orders and
polynomial division. We will then discuss modules over rings, and we will conclude the chapter
dealing with monomial orders and Groebner bases for modules.

2.1 Polynomials and Ideals

Let us first define monomials and polynomials:

Definition 2.1. A monomial in x1, . . . , xn is a product of the form

xα1
1 · x

α2
2 · · ·xαn

n (2.1)

where all of the exponents α1, . . . , αn are nonnegative integers. The total degree of this monomial
is the sum α1 + · · ·+ αn.

We can simplify the notation for monomials as follows: let α = (α1, . . . , αn) be an n-tuple of
nonnegative integers. Then we set

xα = xα1
1 · x

α2
2 · · ·xαn

n

We let |α| = α1 + · · ·+ αn denote the total degree of the monomial xα.

Definition 2.2. A polynomial f in x1, . . . , xn with coefficients in a field k is a finite linear
combination (with coefficients in k) of monomials. We will write a polynomial in the form

f =
∑
α

aαx
α, aα ∈ k (2.2)

where the sum is over a finite number of n-tuples α = (α1, . . . , αn) ∈ Zn≥0. The set of all polyno-
mials in x1, . . . , xn with coefficients in k is denoted k[x1, . . . , xn].

10

In the following definition, we introduce a terminology which we use when dealing with polynomials:

Definition 2.3. Let f =
∑
α aαx

α be a polynomial in k [x1, . . . , xn].

i. We call aα the coefficient of the monomial xα.

ii. If aα 6= 0, then we call aαx
α a term of f .

iii. The total degree of f , denoted deg(f), is the maximum |α| such that the coefficient aα is
nonzero.

For example, x3y + x2 + y is a polynomial in F2[x, y], with three terms and total degree four.

One can show that, under addition and multiplication, k[x1, . . . , xn] satisfies all the field axioms,
except for the existence of multiplicative inverses, e.g. there is no multiplicative inverse for x1, as
1/x1 is not a polynomial. Such a mathematical structure is called a commutative ring, and that
is why we usually refer to k[x1, . . . , xn] as a polynomial ring.

Let us define the following algebraic object:

Definition 2.4. A subset I ⊂ k[x1, . . . , xn] is an ideal if it satisfies:

i. 0 ∈ I

ii. if f,g ∈ I, then f+g ∈ I

iii. if f ∈ I and h ∈ k[x1, . . . , xn], then hf ∈ I

Let us introduce a first example of an ideal:

Definition 2.5. Let f1, . . . , fs be polynomials in k[x1, . . . , xn]. We set:

< f1, . . . , fs >=

{
s∑
i=1

hifi : h1, . . . , hs ∈ k[x1, . . . , xn]

}
(2.3)

Let us introduce the concept of ideal generated by f1, . . . , fs:

Lemma 2.1. If f1, . . . , fs ∈ k[x1, . . . , xn], then 〈f1, . . . , fs〉 is an ideal of k[x1, . . . , xn]. One will
call 〈f1, . . . , fs〉 the ideal generated by f1, . . . , fs.

2.2 Monomial Orders and Polynomial Division

Let us first note that we can reconstruct the monomial xα = xα1
1 · · ·xαn

n from the n-tuple of
exponents α = (α1, . . . , αn) ∈ Zn≥0. We then have a one-to-one correspondence between the
monomials in k[x1, . . . , xn] and Zn≥0. Moreover, any ordering > we establish on the space Zn≥0

11

will give us an ordering on monomials: if α > β according to this ordering, we will also say that
xα > xβ .

Since a polynomial is a sum of monomials, we would like to be able to arrange the terms in a
polynomial in a certain order, either ascending or descending, in an unambiguous way. In order to
be able to do this, we must be able to compare every pair of monomials to establish their proper
relative positions; by doing so, we say we require our orderings to be linear or total orderings, i.e.
for every pair of monomials xα and xβ , just one of the following statements should be true:

xα > xβ , xα = xβ , xα < xβ (2.4)

Concerning the ordering, the sum operation on polynomials presents no problems, while the mul-
tiplication is a bit more tricky, as the leading term in the product could be different from the
product of the monomial and the leading term of the original polynomial (remark : we will in-
troduce formally the concept of leading term in a while, basically we will define it as the biggest
monomial, with associated coefficient, according to a certain ordering we assume). We will then
require that all monomial orderings have the following additional property: if xα > xβ and xγ is
any monomial, then we require that xαxγ > xβxγ . In terms of the exponent vectors, this means
that if α > β in our ordering on Zn≥0, then, for all γ ∈ Zn≥0, we have that α+ γ > β + γ.

With the above in mind, we introduce the following

Definition 2.6. A monomial ordering > on k[x1, . . . , xn] is any relation > on Zn≥0, or equiv-
alently, any relation on the set of monomials xα, α ∈ Zn≥0, satisfying:

i. > is a total ordering on Zn≥0.

ii. If α > β and γ ∈ Zn≥0, then α+ γ > β + γ.

iii. > is a well-ordering on Zn≥0. This means that every nonempty subset of Zn≥0 has a smallest
element under >.

We will now introduce three examples of monomial orderings, namely the lexicographic order, the
graded lex order, and the graded reverse lex order.

Definition 2.7. (Lexicographic Order) Let α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Zn≥0. We say
α >lex β if, in the vector difference α − β ∈ Zn, the leftmost nonzero entry is positive. We will
write xα >lex x

β if α >lex β.

In practice, when we work with polynomials in up to three variables, we call the variables x, y, z
instead of x1, x2, x3. We once again assume, unless differently stated, that the alphabetical order
x > y > z on the variables is used to define the lexicographic ordering. As a consequence, when
dealing with n variables, we have that x1 > · · · > xn.

Definition 2.8. (Graded Lex Order) Let α, β ∈ Zn≥0. We say α >grlex β if

|α| =
n∑
i=1

αi > |β| =
n∑
i=1

βi, or |α| = |β| and α >lex β (2.5)

12

Definition 2.9. (Graded Reverse Lex Order) Let α, β ∈ Zn≥0. We say α >grevlex β if

|α| =
n∑
i=1

αi > |β| =
n∑
i=1

βi, or |α| = |β| and the rightmost nonzero entry of α−β ∈ Zn is negative

(2.6)

Let us introduce the following definition:

Definition 2.10. Let f =
∑
α aαx

α be a nonzero polynomial in k[x1, . . . , xn] and let > be a
monomial order.

i. The multidegree of f is

multideg(f) = max(α ∈ Zn≥0 : aα 6= 0) (2.7)

(the maximum is taken with respect to >).

ii. The leading coefficient of f is

LC(f) = amultideg(f) ∈ k (2.8)

iii. The leading monomial of f is

LM(f) = xmultideg(f) (2.9)

(with coefficient 1).

iv. The leading term of f is
LT(f) = LC(f) · LM(f) (2.10)

2.3 Modules over Rings

Modules are to rings what vector spaces are to fields. A geometric structure on a variety often
corresponds algebraically to a module or an element of a module over the coordinate ring of the
variety.

If R is a commutative ring with identity, an R-module is defined as follows.

Definition 2.11. A module over a ring R (or R-module) is a set M together with a binary
operation, usually written as addition, and an operation of R on M , called (scalar) multiplication,
satisfying the following properties:

i. M is an abelian group under addition. That is, addition in M is associative and commutative,
there is an additive identity element 0 ∈M , and each element f ∈M has an additive inverse
−f satisfying f + (−f) = 0.

ii. For all a ∈ R and all f ,g ∈M , a(f + g) = af + ag.

13

iii. For all a, b ∈ R and all f ∈M , (a+ b)f = af + bf .

iv. For all a, b ∈ R and all f ∈M , (ab)f = a(bf).

v. If 1 is the multiplicative identity in R, 1f = f for all f ∈M .

The simplest modules are those consisting of all m×1 columns of elements of R with componentwise
addition and scalar multiplication:

a1

a2

...
am

+


b1
b2
...
bm

 =


a1 + b1
a2 + b2

...
am + bm

 (2.11)

c


a1

a2

...
am

 =


ca1

ca2

...
cam

 (2.12)

for any a1, . . . , am, b1, . . . , bm, c ∈ R. We call such column a vector and the set of all such Rm.

We can obtain other example of R-modules by considering submodules of Rm, i.e., subsets of Rm

which are closed under addition and scalar multiplication by elements of R and which are then
modules in their own right.

As an example, we can consider the set of all column vectors which can be written as an R-linear
combination of a finite set of vectors f1, . . . , fs:

{a1f1 + · · ·+ asfs ∈ Rm, where a1, . . . , as ∈ R} (2.13)

This particular R-module is denoted 〈f1, . . . , fs〉. We will now prove that:

Theorem 2.1. We have that M = 〈f1, . . . , fs〉, as defined in Eq. (2.13), is an R-module.

Proof. Let us start by proving property (i) of Def. 2.11. The addition is associative, in fact:(
s∑
i=1

aifi +

s∑
i=1

bifi

)
+

s∑
i=1

cifi =

s∑
i=1

aifi +

(
s∑
i=1

bifi +

s∑
i=1

cifi

)

by repeatedly applying component-wise the addition associativity for rings. Similarly, by repeat-
edly applying component-wise the addition commutativity for rings, we obtain that:

s∑
i=1

aifi +

s∑
i=1

bifi =

s∑
i=1

bifi +

s∑
i=1

aifi

Moreover, there is an additive element 0 ∈M , being that element 0 =
∑s
i=1 0fi, where 0 is additive

identity element for R, and each element f ∈M has an additive inverse −f satisfying f +(−f) = 0,
being that inverse for

∑s
i=1 aifi, equal to

∑s
i=1(−ai)fi, where −ai are the additive inverses of the

ai in R, and we repeatedly apply this component-wise.

14

As per property (ii) of Def. 2.11, we have that:

c(

s∑
i=1

aifi +

s∑
i=1

bifi) = c

s∑
i=1

aifi + c

s∑
i=1

bifi

by repeatedly applying component-wise the distributivity of multiplication with respect to addition
for rings.

Property (iii) of Def. 2.11 follows from repeatedly applying component-wise multiplication com-
mutativity for commutative rings and property (ii) of Def. 2.11.

Property (iv) of Def. 2.11 follows from repeatedly applying component-wise multiplication asso-
ciativity for rings.

If 1 is the multiplicative identity in R, property (v) of Def. 2.11 follows from Eq. (2.12).

Submodules of Rm when R is a polynomial ring can exhibit a behavior that is quite different from
vector spaces, as it will be shown in the following example.

Example 2.1

Let us consider R = k[x, y, z]. Let M ⊂ R3 be the module 〈f1, f2, f3〉 where

f1 =

 y
−x
0

 , f2 =

 z
0
−x

 , f3 =

 0
z
−y

 (2.14)

The set {f1, f2, f3} is minimal, in the sense that M 6= 〈fi, fj〉, 1 ≤ i < j ≤ 3. Indeed, considering
〈fi, fj〉 = 〈f1, f2〉 we have that:

〈f1, f2, f3〉 = 〈f1, f2〉 (2.15)

a1f1 + a2f2 + a3f3 = a4f1 + a5f2 (2.16)

a1

 y
−x
0

+ a2

 z
0
−x

+ a3

 0
z
−y

 = a4

 y
−x
0

+ a5

 z
0
−x

 (2.17)

 a1y + a2z
−a1x+ a3z
−a2x− a3y

 =

 a4y + a5z
−a4x
−a5x

 (2.18)

which is verified if

a1 = a4 (2.19)

a2 = a5 (2.20)

a3 = 0 (2.21)

from which we see that the only way to get M by 〈f1, f2〉, is to have a3 = 0. Analogously we can
prove that M 6= 〈f1, f3〉 and that M 6= 〈f2, f3〉.

The set {f1, f2, f3} is R-linearly dependent, i.e. there exist a1, a2, a3 ∈ R = k[x, y, z], not all zero,
such that a1f1 + a2f2 + a3f3 = 0, where 0 is the zero vector in R3. Indeed by solving

a1

 y
−x
0

+ a2

 z
0
−x

+ a3

 0
z
−y

 =

 0
0
0

 (2.22)

15

i.e.

a1y + a2z = 0 (2.23)

−a1x+ a3z = 0 (2.24)

−a2x− a3y = 0 (2.25)

we get that any triple (zxa3,− yxa3, a3)T is solving Eq. (2.22), and not only (0, 0, 0)T .

The calculations above show that this is an example of a submodule of k[x, y, z]3 in which there
is a minimal generating set which is not linearly independent. This phenomenon cannot occur in
any vector space.

Part of the reason why the concept of a module is very useful is that it simultaneously generalize
the concepts of ideal and quotient ring. This is confirmed by the following result:

Theorem 2.2. An ideal I ⊂ R is an R-module, and every module M ⊂ R is an ideal.

After defining any algebraic structure, one usually defines maps that preserve that structure. Ac-
cordingly, we now define module homomorphisms, the analogues of linear mappings between vector
spaces.

Definition 2.12. An R-module homomorphism between two R-modules M and N is an R-
linear map between M and N , i.e. a map ϕ : M → N is an R-module homomorphism if for all
a ∈ R and all f ,g ∈M , we have

ϕ(af + g) = aϕ(f) + ϕ(g)

The definitions of kernel and image carry over homomorphisms from rings to modules:

Definition 2.13. If ϕ : M → N is an R-module homomorphism between two R-modules M and
N , define the kernel of ϕ, denoted ker(ϕ), to be the set

ker(ϕ) = {f ∈M : ϕ(f) = 0}

and the image of ϕ, denoted im(ϕ), to be the set

im(ϕ) = {g ∈ N : there exists f ∈M with ϕ(f) = g}

The homomorphism ϕ is said to be an isomorphism if it is both one-to-one and onto, and two R-
modules M,N are called isomorphic, written M ∼= N if there is some isomorphism ϕ : M → N .

When we introduce the notions of linear combinations and linear independence and R is not a
field, e.g. R = k[x1, . . . , xn], the theory of modules begins to develop a different flavor from the
theory of vector spaces. As in linear algebra, we have the following definition:

Definition 2.14. A subset F = {f1, . . . , fn} of a module M is linearly independent over R (or
R-linearly independent) if the only linear combination a1f1 + · · · + anfn with ai ∈ R and fi ∈ F
which equals 0 ∈M is the trivial one in which a1 = · · · = an = 0. A set F ⊂M which is R-linearly
independent and which spans M is said to be a basis for M .

16

While every vector space over a field has a basis, not every module has one.

Example 2.2

Let us denote by 〈F 〉 the submodule generated by a set F . If 〈F 〉 = M , we say that F spans
(or generates) M . Let us consider the ideal M = 〈x, y〉 ⊂ R = k[x, y], which is the same as the
R-module generated by x and y in R. The set {x, y} is not a basis for M as a module because x and
y are not linearly independent. For example, there is a linear dependence relation y · x− x · y = 0,
but the coefficients y and x are not 0. On the other hand, since {x, y} spans M , it is a basis for
M as an ideal. Thus the meaning of the word “basis” depends on the context.

The following proposition gives a characterization of module bases:

Proposition 2.1. Let M be a module over a ring R. A set F ⊂ M is a module basis for M if
and only if every f ∈M can be written in one and only one way as a linear combination

f = a1f1 + · · ·+ anfn

where ai ∈ R and fi ∈ F .

Unlike vector spaces, modules need not have any generating set which is linearly independent.
Those that do are given a special name:

Definition 2.15. Let M be a module over a ring R. M is said to be a free module if M has a
module basis (i.e., a generating set that is R-linearly independent).

Example 2.3

The R-module M = Rm is a free module. The standard basis elements

e1 =


1
0
0
...
0

 , e2 =


0
1
0
...
0

 , . . . , em =


0
0
0
...
1


form one basis for M .

On the other hand, an example on non-free module is given by any R-module (ideal) M ⊂ R =
k[x1, . . . , xn] which requires more than a single polynomial to generate it. Indeed this kind of
modules cannot be generated by an R-linearly independent set, since any pair of polynomials
f1, f2 ∈ R that might appear in a generating set satisfies a non-trivial linear dependence relation
f2f1 − f1f2 = 0 with nonzero coefficients f2, −f1 in R.

The fact that some modules do not have bases raises the issue of how to explicitly handle the
computations in modules. Let us first note that one not only needs a generating set, but also the
set of all relations satisfied by the generators, otherwise we have no way of knowing in general if
two elements expressed in terms of the generators are equal or not.

17

Let us spend a few more words about relations. Suppose that F = (f1, . . . , ft) is an ordered t-tuple
of elements of some R-module M , so that f1, . . . , ft ∈ M . Then a relation on F is an R-linear
combination of the fi which is equal to 0:

a1f1 + · · ·+ atft = 0 ∈M

We think of a relation on F as a t-tuple (a1, . . . , at) of elements of R, or equivalently as an element
of Rt. Such relations are called syzygies. We have the following result:

Proposition 2.2. Let (f1, . . . , ft) be an ordered t-tuple of elements fi ∈ M . The set of all
(a1, . . . , at)

T ∈ Rt such that a1f1 + · · · + atft = 0 is an R-submodule of Rt, called the (first)
syzygy module of (f1, . . . , ft), and denoted Syz(f1, . . . , ft).

Prop. 2.2 allows us to be precise about what it means to know all relations on a fixed set of
generators of a module. If there are t generators, then the set of relations is just a submodule
of Rt. Hence, we know all relations on a set of generators of a module if we can find a set of
generators for the first syzygy module.

Since we think of elements of Rt as column vectors, we can think of a finite collection of syzygies as
columns of a matrix. If M is a module spanned by the t generators f1, . . . , ft, then a presentation
matrix for M is any matrix whose columns generate Syz(f1, . . . , ft) ⊂ Rt.

Example 2.4

The fact that some modules do not have bases and the fact that even when they do have, we
may not be able to find them, raised the question of how to explicitly handle computations in
modules. We already mentioned that we do not only need a generating set, but also the set of all
relations satisfied by the generators.

For instance, suppose we know that M is a Q[x, y]-module and that f1, f2, f3 is a generating set.
If we want to know whether 2f1 + 3f2 + 3yf3 and f1 + 2f2 + 4yf3 represent the same element, then
we have to verify if the difference, f1 + f2 − yf3, equals zero in M .

If we knew that every relation on the f1, f2, f3 was a Q[x, y]-linear combination of the relations
3f1 + (x − 1)f2 = 0, 2f1 + (x + 2y − 2)f2 − yf3 = 0, and f2 − f3 = 0, then we can settle the
problem provided we can decide whether f1 + f2 − yf3 = 0 is a Q[x, y]-linear combination of the
given relations, which it is, indeed, since:

3f1 + (x− 1)f2 = 0 (2.26)

2f1 + (x+ 2y − 2)f2 − yf3 = 0 (2.27)

f2 − f3 = 0 (2.28)

if we sum together Eq. (2.26), Eq. (2.27) multiplied by −1, and Eq. (2.28) multiplied by 2y, we
obtain:

f1 + f2 − yf3 = 0

If A is a presentation matrix for a module M with respect to some generating set of M , then we
say that A presents the module M . Note that the number of rows of A is equal to the number of
generators in the generating set of M .

18

The presentation matrix of a module M is not unique. It depends on the set of generators f1, . . . , ft
that one chooses for M , and the set of elements a1, . . . , at that one chooses to span the module of
syzygies on the chosen set of generators of M .

The importance of presentation matrices is that once we have a presentation matrix A for a module
M , we have a concrete set of generators and relations for M (actually for an isomorphic copy of
M), and so we can work concretely with M .

We conclude this section by making some considerations about finitely generated and non-finitely
generated modules. We say that M is finitely generated, if there is a finite set that generates M .

Example 2.5

M = k[x] as a module over R = k is not finitely generated, in fact one generating set to generate
a polynomial of any degree is e.g.

{
1, x, x2, x3, . . .

}
. As an example, to generate 1 + x+ x2 + x3,

we need to do 1 · 1 + 1 · x+ 1 · x2 + 1 · x3, where 1 ∈ R = k.

Instead, M = k[x] as a module over R = k[x] is finitely generated, indeed one generating set to
generate a polynomial of any degree is e.g. {1}. Considering the same polynomial as before, i.e.
1 + x+ x2 + x3, we need to do (1 + x+ x2 + x3) · 1, where 1 + x+ x2 + x3 ∈ R = k[x].

2.4 Monomial Orders and Groebner Bases for Modules

In this section, R will stand for a polynomial ring k[x1, . . . , xn]. Here we will shortly introduce a
theory of monomial orders in the free modules Rm and introduce Groebner bases for submodules
M ⊂ Rm. We will see in a while that, once we introduce the terminology needed to extend the
notion of monomial orders to the free modules Rm, the module case follows the ideal case almost
exactly.

Let ei be the standard basis vector in Rm, i.e. the column vector with a 1 in the i-th row and a 0
in all other rows. A monomial m in Rm is an element of the form xαei for some i. Every element
f ∈ Rm can be written as a k-linear combination of monomials mi

f =

m∑
i=1

cimi

where ci ∈ k, ci 6= 0.

Example 2.6

For example, in k[x, y]3

f =

 −2x3y + 1
x2 + 2xy
−y


= (−2)

 x3y
0
0

+ 1

 1
0
0

+ 1

 0
x2

0

+ 2

 0
xy
0

+ (−1)

 0
0
y


= −2x3ye1 + e1 + x2e2 + 2xye2 − ye3

19

If m, n are monomials in Rm, m = xαei, n = xβej , then we say that n divides m if and only if
i = j and xβ divides xα.

If m and n are monomials containing the same basis element ei, we define the greatest common
divisor, GCD(m,n), and least common multiple, LCM(m,n) to be the greatest common divisor
and least common multiple, respectively, of xα and xβ , times ei. On the other hand, if m, n
contain different standard basis vectors, we define LCM(m,n) = 0.

We say that a submodule M ⊂ Rm is a monomial submodule if M can be generated by a collection
of monomials. As for monomial ideals, f is in a monomial submodule M if and only if every term
belonging to f is in M . Monomial submodules have properties that are analogous to those of
monomial ideals, as we can see from the following proposition:

Proposition 2.3. The following holds:

i. Every monomial submodule of Rm is generated by a finite collection of monomials.

ii. Ascending Chain Condition (ACC). Every infinite ascending chain M1 ⊂ M2 ⊂ · · · of
monomial submodules of Rm stabilizes. That is, there exists N such that MN = MN+1 =
· · · = MN+l = · · · for all l ≥ 0.

iii. Let {m1, . . . ,mt} be a set of monomial generators for a monomial submodule of Rm, and
let ε1, . . . , εt denote the standard basis vectors in Rt. Let mij = LCM(mi,mj). The syzygy
module Syz(mi, . . . ,mt) is generated by the syzygies σij = (mij/mi)εi− (mij/mj)εj, for all
1 ≤ i < j ≤ t.

Proof. (ii): We know from Th. 2.2 that if a subset M ⊂ R is a module over R, then M is an ideal
in R, and we can therefore prove the ACC considering ideals.

Given the ascending chain I1 ⊂ I2 ⊂ I2 ⊂ I3 ⊂ · · · , consider the set I =
⋃∞
i=1 Ii. We first show

that I is also an ideal in R (we have to prove that the infinite sum of ideals is still an ideal, as the
fact that a property is valid for a finite number of elements does not imply in general that it is
still true for an infinite number of elements).

We have that 0 ∈ I, as 0 ∈ Ii for all i (from the definition of ideal). Moreover, if f, g ∈ I, by
definition we have that f ∈ Ii, g ∈ Ij for some i and j, possibly different. However, since the
ideals Ii form an ascending chain, relabeling such that i ≤ j, we will have that both f, g ∈ Ij , but
since Ij is an ideal, then the sum f + g ∈ Ij too, and hence f + g ∈ I.

Finally, if f ∈ I and r ∈ R, then by the definition of I, f ∈ Ii for some i, and r · f ∈ Ii, by one of
the properties of an ideal, as Ii is an ideal. But as Ii ⊂ I, then we have r · f ∈ Ii ⊂ I. We have
then proved that I is an ideal.

By the Hilbert Basis Theorem, the ideal I must have a finite generating set: I = 〈f1, . . . , fs〉. But
each of the generators is contained in some one of the Ij , say fi ∈ Iji , for some ji, i = 1, . . . , s.
Let us take N to be the maximum of the ji. Then by definition of ascending chain, we have that
fi ∈ IN for all i, but then

I = 〈f1, . . . , fs〉 ⊂ IN ⊂ IN+1 ⊂ · · · ⊂ I

where the ascending chain condition stabilizes with IN , since all the subsequent ideals in the chain
are equal, as by having I ⊂ IN ⊂ IN+1 ⊂ · · · ⊂ I, then IN = IN+1 = · · · .

20

Extending the theory of Groebner bases to modules will involve three things:

• defining orders on the monomials of Rm;

• constructing a division algorithm on elements of Rm;

• extending the Buchberger’s algorithm to Rm.

The definition of a monomial order on Rm is the same as the definition in R, namely:

Definition 2.16. An ordering relation > on the monomials of Rm is a monomial ordering if:

i. > is a total order;

ii. for every pair of monomials m, n ∈ Rm with m > n, we have xαm > xαn for every
monomial xα ∈ R;

iii. > is a well-ordering.

Some of the most useful monomial orders on Rm come by extending monomial orders on R itself.
We will introduce in a while two particularly natural ways to do this. First we have to choose
an ordering on the standard basis vectors, and we choose to use the “downward” ordering on the
entries in a column (although we could have chosen any other ordering):

e1 > e2 > · · · > em

Let us now introduce the following definition:

Definition 2.17. Let > be any monomial order on R.

i. (TOP extension of >). We say xαei >TOP x
βej if xα > xβ, or if xα = xβ and i < j.

ii. (POT extension of >). We say xαei >POT x
βej if i < j, or if i = j and xα > xβ.

In Def. 2.17, TOP stands for “Term Over Position”, meaning that a TOP order sorts monomials
first by term order on R, then breaks ties using the position within the vector in Rm. POT order
works the other way around, from which the name “Position Over Term”.

Example 2.7

Let us now use Singular to make some considerations on the vector f from Example 2.6 and
on monomial orders. We consider the field k = Q. Let us consider an example with the TOP
extension of lexicographic order, and the “upward” ordering e1 < e2 < e3 on the standard basis
elements of the module k[x, y]3:

> ring R = 0,(x,y),(lp,C);

% 0 indicates the fields of rationals; (lp,C) indicates the TOP extension of lex order

% C indicates upward ordering on the standard basis elements

21

> vector f=[-2x3y+1,x2+2xy,-y];

> f;

-2x3y*gen(1)+x2*gen(2)+2xy*gen(2)-y*gen(3)+gen(1)

% gen(i) is the i-th vector of the standard basis

and let us see how to order the same vector, but accordingly to POT order:

> ring R = 0,(x,y),(C,lp);

% (C,lp) indicates indicates the POT extension of lex order

> vector f=[-2x3y+1,x2+2xy,-y];

> f;

-y*gen(3)+x2*gen(2)+2xy*gen(2)-2x3y*gen(1)+gen(1)

Once we have an ordering > on monomials, we can write any element f ∈ Rm as a sum of terms

f =

t∑
i=1

cimi

with ci 6= 0 and m1 > m2 > · · · > mt. We define the leading coefficient, leading monomial, and
leading term of f as in the ring case:

LC>(f) = c1

LM>(f) = m1

LT>(f) = c1m1

Now that we have a monomial ordering in Rm we can divide by a set F ⊂ Rm in the same way
we did in R:

Theorem 2.3. (Division Algorithm in Rm). Fix any monomial ordering on Rm and let
F = (f1, . . . , fs) be an ordered s-tuple of elements of Rm. Then every f ∈ Rm can be written as

f = a1f1 + · · ·+ asfs + r

where ai ∈ R, r ∈ Rm, LT(aifi) ≤ LT(f) for all i, and either r = 0 or r is a k-linear combination
of monomials none of which is divisible by any of LM(f1), . . . ,LM(fs). We call r the remainder on
division by F .

As we know, the division algorithm behaves best when the set of divisors has the defining property
of a Groebner basis; let us then introduce the definition of Groebner bases for submodules:

Definition 2.18. Let M be a submodule of Rm, and let > be a monomial order.

i. We will denote by 〈LT(M)〉 the monomial submodule generated by the leading terms of all
f ∈M with respect to >.

ii. A finite collection G = {g1, . . . ,gs} ⊂ M is called a Groebner basis for M if 〈LT(M)〉 =
〈LT(g1), . . . ,LT(gs)〉.

22

The properties of Groebner bases for ideals of R with respect to division, extend immediately (and
with the same proofs) to submodules of Rm, e.g.

Proposition 2.4. Let G be a Groebner basis for a submodule M ⊂ Rm, and let f ∈ Rm. Then:

i. f ∈M if and only if the remainder on division by G is zero.

ii. A Groebner basis for M generates M as a module: M = 〈G〉.

Some care must be put when dealing with point (ii) of Prop. 2.4. In general, it is not true that a
Groebner basis is a basis for M as an R-module, indeed a Groebner basis is a set of generators for
M , but it need not be linearly independent over R.

(Monic) reduced Groebner bases may be defined as for ideals [2006 Cox, Little & O’Shea]:

Definition 2.19. A monic reduced Groebner basis for a polynomial module M is a Groebner
basis G for M such that:

i. LC(p) = 1 for all p ∈ G.

ii. For all p ∈ G, no monomial of p lies in 〈LT(G− {p})〉.

and there is a unique (monic) reduced Groebner basis for each submodule in Rm once we choose
a monomial order.

As we showed in Prop. 2.3 (ii), another property that extends from ideals of R to submodules of
Rm is the Ascending Chain Condition (ACC).

We now focus on the extension of Buchberger’s algorithm to the module case. Let us first introduce
the following definition:

Definition 2.20. Fix a monomial order on Rm, and let f ,g ∈ Rm. The S-vector of f and g,
denoted S(f ,g), is the following element of Rm:

S(f ,g) =
m

LT(f)
f − m

LT(g)
g

where m = LCM(LT(f),LT(g)).

The foundation for an algorithm that allows to compute Groebner bases for submodules of Rm is
the following generalization of Buchberger’s Criterion:

Theorem 2.4. (Buchberger’s Criterion for Submodules). A set G = {g1, . . . ,gs} ⊂ Rm

is a Groebner basis for the module it generates if and only if the remainder on division by G of
S(gi,gj) is 0 for all i, j.

To compute Groebner bases, we need a version of Buchberger’s Algorithm. Using Th. 2.4, the
Buchberger’s algorithm extends immediately to the module case:

23

Theorem 2.5. Let F = (f1, . . . , ft) where fi ∈ Rm, and fix a monomial order on Rm. The

following algorithm computes a Groebner basis G for M = 〈F 〉 ⊂ Rm, where S(f ,g)
G′

denotes the
remainder on division by G′, using Th. 2.3

Input: F = (f1, . . . , ft) ⊂ Rm, an order >.
Output: a Groebner basis G for M = 〈F 〉, with respect to >.
G := F
repeat
G = G′

for each pair f 6= g in G′ do
S := S(f ,g)

G′

if S 6= 0 then
G := G ∪ {S}

end if
end for

until G = G′

24

Chapter 3

Cyclic Codes

This chapter is devoted to recalling the theory of cyclic codes, which are then used in Chapter 4
to build quasicyclic codes. In particular, we discuss linear codes, and then cyclic codes. For the
latter, we focus on the problem of factorizing xn − 1. Later on some basic theory is recalled, and
thereafter one introduces the concept of zeros and minimum distance of a cyclic codes. At last, we
treat BCH and Reed-Solomon codes.

3.1 Linear Codes

Among all types of codes, linear codes are studied the most, since because of their algebraic
structure they are easier to describe, encode and decode with respect to nonlinear codes.

Let Fnq denote the vector space of all n-tuples over the finite field Fq. An (n,M) code C over Fq is a
subset of Fnq of cardinality M . We usually write the vectors in Fnq in the form (a1, a2, . . . , an) and
call the vectors in C codewords. Codewords are sometimes specified in other ways, e.g. by using
the polynomial representation used for codewords in cyclic codes, which we will discuss in Section
3.2.

If we do not impose further structure on a code, its usefulness would be limited. The most useful
additional structure to impose is that of linearity; in this respect, if C is a k-dimensional subspace
of Fnq , then C will be called an [n, k] linear code over Fq. The linear code C has qk codewords.

The two most common ways to present a linear code are with either a generator matrix of a parity
check matrix. A generator matrix for an [n, k] code C is any k × n matrix G whose rows form a
basis for C. In general there are many generator matrices for a code. For any set of k independent
columns of a generator matrix G, the corresponding set of coordinates forms an information set
for C, and the remaining r = n − k coordinates are named a redundancy set and r is called the
redundancy of C.

Since a linear code is a subspace of a vector space, it is the kernel of some linear transformation.
In particular, there is an (n− k)× k matrix H, called a parity check matrix for the [n, k] code C,

25

defined by
C =

{
x ∈ Fnq | HxT = 0

}
An important invariant of a code is the minimum distance between codewords. The (Hamming)
distance d(x,y) between two vectors x,y ∈ Fnq is defined to be the number of coordinates in
which x and y differ. The (Hamming) weight wt(x) of a vector x ∈ Fnq is the number of nonzero
coordinates in x.

We will prove the following properties of the distance function d(x,y):

Theorem 3.1. The distance function d(x,y) is a metric over the vector space Fnq , i.e. d(x,y)
satisfies the following four properties:

i. (non-negativity) d(x,y) ≥ 0 for all x,y ∈ Fnq

ii. d(x,y) = 0 if and only if x = y

iii. (symmetry) d(x,y) = d(y,x) for all x,y ∈ Fnq

iv. (triangle inequality) d(x, z) ≤ d(x,y) + d(y, z) for all x,y, z ∈ Fnq

Proof. (i) We have that d(x,y) ≥ 0 for all x,y ∈ Fnq , since the weight cannot be negative.

(ii) Also, d(x,y) = 0 if and only if x = y, since wt(x−x) = wt(0) = 0, and only the null codeword
has weight 0.

(iii) We have that d(x,y) = d(y,x) for all x,y ∈ Fnq , since x − y has 0’s in exactly the same
coordinates as y − x, and therefore wt(x− y) = wt(y − x).

(iv) We prove the triangle inequality considering the i-th coordinate in the two cases yi = xi ∨ yi =
zi and yi 6= xi ∧ yi 6= zi. Assume first that yi = xi, then we have that

d(xi, yi) + d(yi, zi) = d(xi, xi) + d(xi, zi) = d(xi, zi)

since d(xi, xi) = 0. Assume then that yi 6= xi ∧ yi 6= zi; therefore

d(xi, yi) + d(yi, zi) = 2 (3.1)

Since d(xi, zi) ≤ 1, as either xi = zi or xi 6= zi, considering also Eq.(3.1) we have that

d(xi, yi) + d(yi, zi) > d(xi, zi)

Finally, we have proved that
d(xi, zi) ≤ d(xi, yi) + d(yi, zi)

3.2 Cyclic Codes

The aim of this section is to introduce the important class of cyclic codes and their properties.
The main reference of this section is [2003 Huffman & Pless]. Many families of codes including the

26

Golay codes, the binary Hamming codes, and codes equivalent to the Reed-Muller codes are either
cyclic or extended cyclic codes.

While studying cyclic codes of length n, it is convenient to label the coordinate positions as
0, 1, . . . , n − 1 and think of these as the integers modulo n. A linear code C of length n over Fq
is cyclic provided that for each vector c = (c0, . . . , cn−2, cn−1) in C the vector (cn−1, c0, . . . , cn−2),
obtained from c by the cyclic shift of coordinates i 7→ i+ 1 (mod n), is also in C.

When examining cyclic codes over Fq, it is usual to represent the codewords in polynomial form;
indeed, there is a bijective correspondence between the vectors c = (c0, . . . , cn−2, cn−1) in Fnq and
the polynomials c(x) = c0 + c1x+ · · ·+ cn−1x

n−1 in Fq[x] of degree at most n− 1. We order the
terms of the polynomials from the smallest to the largest degree. From notation’s point of view,
we will use interchangeably the vector notation c and the polynomial notation c(x).

Notice that if c(x) = c0 + c1x+ · · ·+ cn−1x
n−1, then xc(x) = cn−1x

n+ c0x+ c1x
2 + · · ·+ cn−2x

n−1,
which, in case xn were set equal to 1, would represent the codeword c cyclically shifted of one
position to the right. More formally, the fact that a cyclic code is invariant under a cyclic shift
implies that if c(x) is in C, then so is xc(x) provided that we multiply modulo xn − 1.

Indeed, let us write the shifted codeword’s associated code polynomial

c̃ = cn−1 + c0x+ c1x
2 + cn−2x

n−1

Thus we have that
c̃ = xc(x)− cn−1(xn − 1)

from which we see that
c̃ ≡ xc(x) (mod xn − 1)

i.e., c̃ and xc(x) are congruent in the ring of polynomials Fq[x] (mod xn − 1).

The above discussion suggests that the proper context for studying cyclic codes is the residue class
ring

Rn = Fq[x]/(xn − 1) (3.2)

Under the correspondence of vectors with polynomials, cyclic codes are ideals of Rn and ideals of
Rn are cyclic codes. We therefore have that the study of cyclic codes in Fnq is equivalent to the
study of ideals in Rn. Let us prove this [lecture cyclic]:

Proposition 3.1. The polynomial rendering of a cyclic code is an ideal of the ring Fq[x] (mod xn−
1).

Proof. We know that c(x) ∈ C (mod xn−1) if and only if xc(x) ∈ C (mod xn−1). Since additional
shifts do not take us out of the cyclic code C, we have

xic(x) ∈ C (mod xn − 1)

for all i. By linearity, for any ai ∈ Fq

aix
ic(x) ∈ C (mod xn − 1)

and moreover
d∑
i=0

aix
ic(x) ∈ C (mod xn − 1)

27

i.e., for every polynomial a(x) =
∑d
i=0 aix

i ∈ Fq[x], the product a(x)c(x) (mod xn−1) still belongs
to C.

As C, being linear, is closed under polynomial addition, we have that the polynomial rendering of
a cyclic code is precisely an ideal of the ring Fq[x] (mod xn − 1).

The correspondence of Prop. 3.1 was first noted by Prange, and opened the way for the application
of algebra to cyclic codes.

We will see later on (see Section 3.2.2) that the study of ideals in Rn depends on factoring xn− 1,
the latter being the subject of Section 3.2.1.

3.2.1 Factoring xn − 1

Let us first introduce some important concepts that we will use later on.

Definition 3.1. A cyclic group is a group G containing an element g such that G = {gn : n ∈ Z}.
The element g is called a generator of G, and we say that G is generated by g.

Let us define by F∗q the group of nonzero elements in Fq. From [2003 Huffman & Pless], Th. 3.3.1,
pg. 104, we have that:

Theorem 3.2. It holds what follows:

i. The group F∗q is cyclic of order q − 1 under the multiplication of Fq.

ii. If γ is a generator of this cyclic group, then Fq = {0, 1 = γ0, γ, γ2, . . . , γq−2}, and γi = 1 if
and only if (q − 1)|i.

Each generator γ of Fq is called a primitive element of Fq.

When analyzing the field structure, it is useful to know the number of primitive elements in Fq and
how to find them all once one primitive element has been found. Since F∗q is cyclic, let us recall
a few things about finite cyclic groups. In any finite cyclic group G of order n with generator g,
the generators of G are precisely the elements gi where gcd(i, n) = 1. We let φ(n) be the number
of integers i with 1 ≤ i ≤ n such that gcd(i, n) = 1; φ is called the Euler totient ot the Euler
φ-function. So there are φ(n) generators of G. The order of an element α ∈ G is the smallest
positive integer i such that αi = 1.

Let us also introduce the following Theorem ([2003 Huffman & Pless], Th. 3.3.3, pg. 105):

Theorem 3.3. Let γ be a primitive element of Fq.

i. There are φ(q−1) primitive elements in Fq; these are the elements γi where gcd(i, q−1) = 1.

ii. For any d where d|(q − 1), there are φ(d) elements in Fq of order d; these are the elements
γ(q−1)i/d where gcd(i, d) = 1.

28

An element ξ ∈ Fq is an n-th root of unity provided ξn = 1, and is a primitive n-th root of unity
if in addition ξs 6= 1 for 0 < s < n.

From the above, it follows that:

Proposition 3.2. A primitive element γ of Fq is therefore a primitive q − 1-st root of unity.

Proof. From Th. 3.2(ii) we have that γi = 1 if and only if (q − 1)|i, which is certainly true for
i = q − 1 (and implying that i ≥ q − 1), but then we have no such i that is such that i < q − 1 by
the previous argument, which means that γq−1 = 1, but γs 6= 1 for 0 < s < q− 1, implying that γ
is a primitive q − 1-st root of unity.

A primitive element γ of Fq is therefore a primitive (q− 1)-th root of unity if and only if n|(q− 1).

We want to find the irreducible factors of xn− 1 over Fq. There are two possibilities: either xn− 1
has repeated irreducible factors or it does not; the study of cyclic codes focuses primarily on the
latter case. From [2003 Huffman & Pless] we know that xn− 1 has no repeated factors if and only
if q and n are relatively prime, which is the case we assume in this section.

To help factor xn − 1 over Fq, it is useful to find an extension field Fqt of Fq that contains all
of its roots. In other words, Fqt must contain a primitive n-th root of unity, which occurs when
n|(qt − 1) by Th. 3.3. Define the order ordn(q) of q modulo n to be the smallest positive integer
a such that qa ≡ 1 (mod n). Fqt , which contains all the roots of xn − 1, is called a splitting field
of xn − 1 over Fq.

Let also s be an integer with 0 ≤ s < n. The q-cyclotomic coset of s modulo n is the set

Cs = {s, sq, . . . , sqr−1}(mod n) (3.3)

where r is the smallest positive integer such that sqr ≡ s (mod n). The distinct q-cyclotomic cosets
modulo n partition the set of integers {0, 1, 2, . . . , n− 1}.

We can now introduce the following result on the factorization of xn − 1:

Theorem 3.4. Let n be a positive integer relatively prime to q. Let t = ordn(q). Let α be a
primitive n-th root of unity in Fqt .

i. For each integer s with 0 ≤ s < n, the minimal polynomial of αs over Fq is

Mαs(x) =
∏
i∈Cs

(x− αi)

where Cs is the q-cyclotomic coset of s modulo n.

ii. The conjugates of αs are the elements αi with i ∈ Cs (we recall that two elements of Fqt
which have the same minimal polynomial in Fq[x] are called conjugate over Fq).

iii. Furthermore,

xn − 1 =
∏
s

Mαs(x)

is the factorization of xn − 1 into irreducible factors over Fq, where s runs through a set of
representatives of the q-cyclotomic cosets modulo n.

29

3.2.2 Basic Theory of Cyclic Codes

We saw above that cyclic codes over Fq are precisely the ideals of

Rn = Fq[x]/(xn − 1)

One can show that Fq[x] is a principal ideal domain, and that the ideals of Rn are also principal,
and hence cyclic codes are principal ideals of Rn. When writing a codeword of a cyclic code as
c(x), we technically mean the coset c(x) + (xn − 1) in Rn, but in order to simplify the notation,
we write c(x) even when working in Rn. Thus we think of the elements of Rn as the polynomials
in Fq[x] of degree less than n with multiplication being carried out modulo xn − 1.

To distinguish the principal ideal ((g(x)) of Fq[x] from that ideal in Rn, we use the notation 〈g(x)〉
for the principal ideal of Rn generated by g(x). The following theorem states that there is a bi-
jective correspondence between the cyclic codes in Rn and the monic polynomial divisors of xn−1.

Theorem 3.5. Let C be a nonzero cyclic code in Rn. There exists a polynomial g(x) ∈ C with the
following properties:

i. g(x) is the unique monic polynomial of minimum degree in C,

ii. C = 〈g(x)〉, and

iii. g(x)|(xn − 1).

Let k = n− deg(x), and let g(x) =
∑n−k
i=0 gix

i, where gn−k = 1. Then:

iv. the dimension of C is k and {g(x), xg(x), . . . , xk−1g(x)} is a basis for C,

v. every element of C is uniquely expressible as a product g(x)f(x), where f(x) = 0 or degf(x) <
k,

vi.

G =


g0 g1 g2 · · · gn−k 0
0 g0 g1 · · · gn−k−1 gn−k
· · · · · · · · · · · · · · ·

0 g0 · · · gn−k



↔


g(x)

xg(x)
· · ·

xk−1g(x)

 (3.4)

is a generator matrix for C, and

vii. if α is a primitive n-th root of unity in some extension field of Fq, then

g(x) =
∏
s

Mαs(x)

where the product is over a subset of representatives of the q-cyclotomic cosets modulo n.

30

Let us notice that part (ii) of Th. 3.5 shows that Rn is a principal ideal ring. Moreover, Th. 3.5
shows that there is a monic polynomial g(x) dividing xn − 1 which generates C. The following
corollary states that the monic polynomial dividing xn − 1 which generates C is unique.

Corollary 3.1. Let C be a nonzero cyclic code in Rn. The following are equivalent:

i. g(x) is the monic polynomial of minimum degree in C.

ii. C = 〈g(x)〉, g(x) is monic, and g(x)|(xn − 1).

The polynomial g(x) of Cor. 3.1 is called the generator polynomial of the cyclic code C. By the
corollary, this polynomial is both the monic polynomial in C of minimum degree and the monic
polynomial dividing xn − 1 which generates C. So there is a one-to-one correspondence between
the nonzero cyclic codes and the divisors of xn−1, not equal to xn−1. In order to have a bijective
correspondence between all the cyclic codes in Rn and all the monic divisors of xn − 1, we define
the generator polynomial of the zero cyclic code {0} to be xn − 1 (note that xn − 1 equals 0 in
Rn).

3.2.3 Zeros of a Cyclic Code and Minimum Distance of Cyclic Codes

Let t = ordn(q), and α be a primitive n-th root of unity contained in Fqt . Further, let C be a
cyclic code in Rn = Fq[x]/(xn − 1) with generator polynomial g(x). By Th. 3.4(i) and 3.5(vii),
g(x) =

∏
sMαs(x) =

∏
s

∏
i∈Cs

(x − αi), where s runs through some subset of representatives of
the q-cyclotomic cosets Cs modulo n. Let T =

⋃
s Cs be the union of these q-cyclotomic cosets.

The roots of unity Z =
{
αi|i ∈ T

}
are called the zeros of the cyclic code C and

{
αi|i 6∈ T

}
are the

nonzeros of C.

The set T is called the defining set of C. Note that if we change the primitive n-th root of unity,
we change T ; so T is computed with respect to a fixed primitive root.

We have the following relations between T and the generator polynomial g(x):

Corollary 3.2. Let t = ordn(q), and α be a primitive n-th root of unity contained in Fqt . Moreover,
let C be a cyclic code in Rn with generator polynomial g(x). Also, let T be the defining set computed
with respect to α. Then it holds that:

i. c(x) belongs to C if and only if c(αi) = 0 for each i ∈ T ;

ii. the defining set T , and thus either the set of zeros or the set of nonzeros, completely deter-
mines the generator polynomial g(x);

iii. the dimension of C is n− |T | as |T | is the degree of g(x).

Proof. This is a direct consequence of Th. 3.5 (in particular, see point (vii)).

With any code, it is important to be able to determine the minimum distance in order to determine
its correcting capability; it is then helpful to have bounds on the minimum distance, particularly

31

lower bounds. Several lower bounds are known for the minimum distance of a cyclic code, and
the oldest of these bounds is the Bose–Ray-Chaudhuri–Hocquenghem Bound, usually called BCH
bound, fundamental in the definition of BCH codes, which we will discuss in next section. The BCH
bound depends on the zeros of the code and especially on the ability to find strings of consecutive
zeros.

Before proceeding with the BCH bound, we state a lemma that will be used in the proof of the
BCH Bound, about the determinant of a matrix, called Vandermonde matrix, which we define as:

Definition 3.2. Let α1, . . . , αs be elements in a field F. The s × s matrix V = [vi,j], where
vi,j = αi−1

j is called a Vandermonde matrix. The transpose of this matrix is also called a
Vandermonde matrix.

Let us now introduce the afore-mentioned lemma:

Lemma 3.1. Let detV =
∏

1≤i<j≤s(αj−αi), then V is nonsingular if the elements α1, . . . , αs are
distinct.

We say that the defining set T for C contains a set of s consecutive elements S provided there is a
set {b, b+ 1, . . . , b+ s− 1} of s consecutive integers such that

{b, b+ 1, . . . , b+ s− 1} mod n = S ⊆ T

We can now state the following theorem:

Theorem 3.6. (BCH Bound) Let C be a cyclic code of length n over Fq with defining set T . Let
d denote the minimum weight of C, and assume T contains δ − 1 consecutive elements for some
integer δ. Then d ≥ δ.

Proof. By assumptions, the zeros of C include δ− 1 zeros such that αb, αb+1, . . . , αb+δ−2. Let c(x)
be a nonzero codeword in C of weight w, and let

c(x) =
w∑
j=1

cijx
ij , where cij 6= 0, j = 1, . . . , w

Assume to the contrary of the thesis that w < δ. As c(αi) = 0 for b ≤ i ≤ b+ δ − 2, we can write

MuT = 0

where

M =


αi1b αi2b · · · αiwb

αi1(b+1) αi2(b+1) · · · αiw(b+1)

...
αi1(b+w−1) αi2(b+w−1) · · · αiw(b+w−1)


and u = (ci1 , ci2 , · · · , ciw). Since u 6= 0, M must be a singular matrix (it is indeed equivalent to
state that M is nonsingular and that the equation MuT = 0 has only the trivial solution u = 0,
which is not the case here). Being M singular, we have that detM = 0.

32

We can write detM = α(i1+i2+···+iw)bdetV , where V is the Vandermonde matrix

V =


1 1 · · · 1
αi1 αi2 · · · αiw

...
αi1(w−1) αi2(w−1) · · · αiw(w−1)


Being the αij distinct by assumption, by Lemma 3.1 we have that detV 6= 0, from which follows
that detM 6= 0, having then a contradiction with the above statement detM = 0. Therefore we
conclude that it must be w ≥ δ.

3.2.4 BCH Codes

We will examine here one of the most important families of cyclic codes known as BCH codes,
and in next section a subfamily of these codes called Reed-Solomon codes. Because of their burst
error-correction capabilities, Reed-Solomon codes are used to improve the reliability of data storage
systems.

BCH codes are cyclic codes designed to take advantage of the BCH bound (Th. 3.6). We would
like to construct a cyclic code C of length n over Fq with simultaneously high minimum weight and
high dimension.

The requirement of having high minimum weight, by the BCH bound, can accomplished by choosing
a defining set T for C with a large number of consecutive elements.

Let us first prove the following result:

Proposition 3.3. The dimension of C is n− |T |.

Proof. The proof follows from Th. 3.5, as |T | is the degree of g(x)),

Then, as the dimension of C is n− |T |, we would like |T | to be as small as possible. So if we would
like C to have minimum distance at least δ, we can choose a defining set as small as possible that
is a union of q-cyclotomic cosets with δ − 1 consecutive elements.

Let δ be an integer with 2 ≤ δ ≤ n. A BCH code C over Fq of length n and designed distance δ is
a cyclic code with defining set

T = Cb ∪ Cb+1 ∪ · · · ∪ Cb+δ−2 (3.5)

where Ci is the q-cyclotomic coset modulo n containing i.

The following theorem characterizes the minimum distance of a BCH code:

Theorem 3.7. A BCH code of designed distance δ has minimum weight at least δ.

Proof. The defining set (3.5) contains δ − 1 consecutive elements. The result follows by the BCH
bound.

33

By varying the value of b, one produces a variety of codes with possibly different minimum distances
and dimensions. When b = 1, C is called a narrow-sense BCH code. If n = qt − 1, then C is called
a primitive BCH code (as with any cyclic code).

3.2.5 Reed-Solomon Codes

A Reed-Solomon code, abbreviated RS code, C over Fq is a BCH code of length n = q − 1. Then,
as ordn(q) is the smallest positive integer a such that qa ≡ 1 (mod n), we have that ordn(q) = 1,
being in fact q1 ≡ 1 (mod n). This implies that all irreducible factors of xn− 1 are of degree 1 and
all q-cyclotomic cosets modulo n have size 1.

If C has designed distance δ, the defining set of C has size δ− 1 and is T = {b, b+ 1, · · · , b+ δ − 2}
for some integer b.

Let define by Aq(n, d) the maximum number of codewords in a code over Fq of length n and min-
imum distance at least d. We have the following result concerning Aq(n, d):

Theorem 3.8. (Singleton Bound) For d ≤ n,

Aq(n, d) ≤ qn−d+1 (3.6)

Furthermore, if an [n, k, d] linear code over Fq exists, then k ≤ n− d+ 1.

A code for which equality holds in Eq.(3.6) is called maximum distance separable, abbreviated
MDS. No code of length n and minimum distance d has more codewords than an MDS code with
parameters n and d; equivalently, no code of length n with M codewords has a larger minimum
distance than an MDS code with parameters n and M .

By Prop. 3.3, we have that

k = n− |T | = n− (δ − 1) = n− δ + 1

since the defining set of C has size δ − 1.

By Th. 3.7 we then have that

k = n− |T | = n− (δ − 1) = n− δ + 1 ≥ n− d+ 1 (3.7)

being d ≥ δ.

Finally, by the Singleton bound we have that

n− d+ 1 ≥ k

Then Eq.(3.7) becomes

k = n− |T | = n− (δ − 1) = n− δ + 1 ≥ n− d+ 1 ≥ k (3.8)

We see from Eq.(3.8) that both inequalities are equalities implying d = δ and k = n − d + 1 (the
latter, being the equality in the Singleton bound verified, means that the code is MDS).

We summarize the above discussion in the following theorem:

34

Theorem 3.9. Let C be an RS code over Fq of length n = q − 1 and designed distance δ. Then:

i. C has defining set T = {b, b+ 1, . . . , b+ δ − 2} for some integer b

ii. C has minimum distance d = δ and dimension k = n− d+ 1

iii. C is MDS.

35

Chapter 4

Quasicyclic Codes and their
Algebraic Structure

This chapter introduces quasicyclic codes and the related algebraic theory. The last part of the
chapter focuses on studying quasicyclic codes’s algebraic structure by using the tool of Groebner
bases of modules; for this chapter, we mainly refer to [LallyPhD].

4.1 Introduction to Quasicyclic Codes

Definition 4.1. An (n, k) linear block code C over Fq is a quasicyclic code if every cyclic shift
of a codeword by r places, for a fixed 1 ≤ r < n, results in another codeword. In other words, for
each c = (c1, c2, . . . , cn) ∈ C then c

′
= (cn−r+1, . . . , cn, c1, c2, cn−r) ∈ C.

Labeling the positions of the n-tuples in C, 1, 2, . . . , n, the code is invariant under the permutation
π acting on the positions of each codeword:

π : i→ i+ r mod n, i = 1, 2, . . . , n (4.1)

where by n in this notation we practically mean 0 (the standard notation would indeed go from
0, . . . , n− 1).

It is easy to see that the class of quasicyclic codes is a natural generalization of the class of cyclic
codes, the cyclic codes being that subclass where r = 1.

Notice that a quasicyclic code C will also be invariant under cyclic shifts by tr places, for any
integer t. We call the smallest number l, such that C is invariant under l-cyclic shifts the index of
C. Obviously it is a divisor of the total length of the code, i.e. n = lm for some multiple m.

In general we characterize a quasicyclic code by a generator matrix G, where the rowspace of G is
equal to the code. We do not restrict ourselves to the ’strict’ definition of generator matrix, which
requires the rows of G to be linearly independent, and where the dimension of C is equal to the
number of rows in G. The most intuitive example of a generator matrix for a quasicyclic code over

36

Fq of length ml, index l, is of the form

G =


a11 a12 · · · a1l a21 a22 · · · a2l · · · am1 am2 · · · aml
am1 am2 · · · aml a11 a12 · · · a1l · · · am−1,1 am−1,2 · · · am−1,l

...
. . .

. . .
...

a21 a22 · · · a2l a31 a32 · · · a3l · · · a11 a12 · · · a1l


(4.2)

with each aij ∈ Fq and each row being an l-cyclic shift of the previous row. The rowspace of G is
invariant under permutation (4.1) and is thus a quasicyclic (ml, k) code where k ≤ m the number
of rows of G.

Since the code is spanned by all l-cyclic shifts of the top row vector

a = (a11 a12 · · · a1l a21 a22 · · · a2l · · · am1 am2 · · · aml) ∈ Fnq

this is called a 1-generator quasicyclic code, the top row being that generator. If the rows of G are
linearly independent, then we have a (ml,m) code.

4.2 Algebraic Theory of Quasicyclic Codes

Let T be the cyclic shift operator acting on the vectors in Fnq so that

Tv = T (v0, v1, . . . , vn−1) = (vn−1, v0, v1, . . . , vn−2)

for v ∈ Fnq . A subset C of Fnq is said to be invariant under T if TC = {Tv|v ∈ C} ⊆ C.

Let us define the operator T i in a recursive way on Fnq :

T iv = T (T i−1v), i = 1, 2, . . .

and T 0 = 1 is the identity mapping on Fnq . A quasicyclic (n, k) code C over Fq is a linear subspace
of Fnq which is invariant under T r for some integer r, 1 ≤ r ≤ n. The smallest such integer is called
the index of C. We have the following result on the index of a quasicyclic code:

Theorem 4.1. If a quasicyclic code C is invariant under T r, then its index l is a divisor of r, and
also a divisor of the total code length n, so that n = ml for some m.

Notice that if n is prime, the notions of quasicyclic code and of cyclic code of length n coincide.

Let us now look at quasicyclic codes as modules. If f ∈ Fq[x] and n = ml then Fnq can be viewed
as an Fq[x]-module by defining

fa = f(T l)a

for a ∈ Fnq . With this definition of Fq[x]-multiplication a quasicyclic code of block length n = ml
and index l is an Fq[x]-submodule of Fnq .

Since xn/l − 1 = xm − 1 is the smallest polynomial which annihilates Fnq , the ideal I = 〈xm − 1〉 is
the annihilator of Fnq denoted Ann(Fnq).

37

Formally, we define the annihilator as follows:

Definition 4.2. Let R be a ring and M be a module, and choose a subset S of M ; the annihilator,
AnnRS, of S is the set of all elements r ∈ R such that rs = 0 for each s ∈ S, is the set of all
elements that annihilate S.

Thus

fv = 0 for all f ∈ I for all v ∈ Fnq
We can therefore view Fnq as a module over the quotient ringR/I, whereR = Fq[x] and I = 〈xm−1〉,
by defining

(f + I)v = fv, v ∈ Fnq
The quasicyclic codes are just the R/I submodules of Fnq .

A T l-subspace C of Fnq , i.e. one which is invariant under T l, is said to have a single generator if

C has a basis of the form c, T lc, T 2lc, . . . , for some c ∈ Fnq . Such T l-subspaces of Fnq correspond
exactly to those R/I-submodules of Fnq which are called 1-generator quasicyclic codes, i.e. where
C = 〈c〉 = {fc|f ∈ R/I} for some c ∈ Fnq and C has generator matrix of the form

G =


c
T lc
T 2lc

...
T (m−1)lc


In the following section we will make use of the theory of Groebner bases to provide a new char-
acterization of quasicyclic codes, exploiting the inherent good properties of these bases.

4.3 Study of Quasicyclic Codes’s Algebraic Structure through
Groebner Bases of Modules

In [1997 Little, Saints & Heegard], the authors use the theory of Groebner bases of modules to
develop a tool for analyzing Hermitian codes. The main idea is to use a cyclic group of auto-
morphisms of the code to represent it as a module over the polynomial ring F [x].

In [2001 Lally & Fitzpatrick], authors use the same approach as [1997 Little, Saints & Heegard],
but to gain insights on the algebraic structure of quasicyclic codes. From now on, unless otherwise
specified, by the word “code” we mean “quasicyclic” code.

Let us first explain the philosophy behind [2001 Lally & Fitzpatrick], thereafter we will go into
more details of that work. A code C of index l and length n = ml is an R/I-submodule of the
module (R/I)l, where R = Fq[x], I = 〈xm−1〉 ⊂ R and Fq is a finite field of characteristic p. Each
codeword

c = (c(0,0), . . . , c(0,l−1), c(1,0), . . . , c(1,l−1), . . . , c(m−1,0), . . . , c(m−1,l−1)) ∈ C

38

is associated with the polynomial vector

c = (c0 + I, c1 + I, . . . , cl−1 + I) ∈
(
R

I

)l
where ci(x) + I = c(0,i) + c(1,i)x + · · · + c(m−1,i)x

m−1 + I ∈ R/I. We will usually drop the coset
notation, referring to elements c + I of R/I as just c and writing

c = (c0, c1, . . . , cl−1) ∈ C

where deg(ci) < m for all i = 1, 2, . . . , l − 1 and multiplication is performed mod xm − 1.

Labeling the positions of the n-tuple c ∈ C by 1, 2, . . . , n, the code is by definition invariant under
the permutations π acting on each codeword’s positions

π : i 7→ i+ l mod n

for i = 1, . . . , n, and hence invariant under the cyclic group of automorphisms{
1, π, π2, . . . , πm−1

}
where xm = 1 is the identity permutation. It is this group of automorphisms which gives rise to
the R/I-module structure of quasicyclic codes and allows us to apply the techniques of Groebner
bases to the module context.

There exists a surjective homomorphism φ between the polynomial vectors in Fq[x]l = Rl and
those in (R/I)l defined by

φ : Rl →
(
R

I

)l
f = (f1, . . . , fl) 7→ (f1 + I, f2 + I, . . . , fl + I)

The kernel of this map is the submodule K̃ in Rl

K̃ = ker(φ) =

{
f ∈ Rl | φ(f) = 0 ∈

(
R

I

)l}

where the zero vector is 0 = (I, I, . . . , I) ∈ (R/I)l. More specifically,

K̃ = ker(φ) =
{
f = (f1, . . . , fl) ∈ Rl | fi = k(xm − 1) for some k ∈ Fq[x], 1 ≤ i ≤ l

}
therefore K̃ is the submodule generated by the set of elements

κ̃ = {(xm − 1, 0, . . . , 0), (0, xm − 1, 0, . . . , 0), . . . , (0, . . . , 0, xm − 1)}
= {ki = (xm − 1)ei, i = 1, . . . , l} ∈ Rl (4.3)

There exists an isomorphism

Rl

K̃
∼=
(
R

I

)l
between (Rl)/K̃ and (R/I)l given by the map

θ : (f1, f2, . . . , fl) + K̃ 7→ (f1 + I, f2 + I, . . . , fl + I)

39

and thus a one-to-one correspondence between the submodules C of (R/I)l and the preimage
submodules C̃ of Rl which contain K̃.

Above, one has made use of an idea that is the analogous for submodules of a result we already
know for ideals [2006 Cox, Little & O’Shea]:

Proposition 4.1. Let I be an ideal in k[x1, . . . , xn]. The ideals in the quotient ring k[x1, . . . , xn]/I
are in one-to-one correspondence with the ideals of k[x1, . . . , xn] containing I (that is, the ideals J
satisfying I ⊂ J ⊂ k[x1, . . . , xn]).

A k-generator code C generated by elements a1, . . . ,ak ∈ (R/I)l is the submodule =〈a1, . . . ,ak〉 ⊂
(R/I)l. Its preimage submodule C̃ is the R-submodule in Rl generated by a1, . . . ,ak ∈ Rl and the
elements of K̃

C̃ = 〈a1, . . . ,ak, (x
m − 1)e1, . . . , (x

m − 1)el〉 ⊂ Rl (4.4)

We will now find a Groebner basis of the preimage submodule C̃ ⊂ Rl. We use the POT monomial
order with e1 > e2 > · · · > el and the lex order.

Let C̃ be a submodule in Rl which contains K̃ = 〈{(xm − 1)ei | i = 1, . . . , l}〉. Let G̃ be minimal
Groebner basis of C̃ with respect to the formerly defined fixed monomial order, such that C̃ = 〈G̃〉.
Since K̃ ⊂ C̃ contains a vector (xm−1)ei for each i = 1, . . . , l with LM ((xm − 1)ei) in i-th position,
there exists g ∈ G̃ such that LM(g) divides LM ((xm − 1)ei) and hence the leading monomial of g
is in i-th position; thus, for each i = 1, . . . , l there exists g ∈ G̃ such that LM(g) = Xei for some
power X = xβ ∈ R (remark : we dot use for these objects the name monomial, as we already use
this in the context of modules; further, we talk about powers and not power products, since we
are dealing with the one-variable case, therefore we are dealing with trivial products, in just one
variable).

Let g1 and g2 be two elements in G̃ as in the above paragraph, with leading monomials in the
same position, say LM(g1) = Xei and LM(g2) = Y ei for some i, 1 ≤ i ≤ l. Since one of Xei
or Y ei can be reduced by the other in Rl, it follows that if G̃ is a minimal Groebner basis, then
it contains exactly l elements, each with leading monomial in a different position, and we write
G̃ = {g1, . . . ,gl}, and by reordering we may suppose LM(gi) = Xiei, i = 1, . . . , l for some powers
Xi ∈ R.

Since in our case we have that LM(gi) = Xiei, i = 1, . . . , l, by the properties of POT monomial
order e1 > e2 > · · · > el, there are non nonzero monomials occurring in the j-th position for all
j, 1 ≤ j ≤ i− 1 and a nonzero leading monomial must occur in the i-th position.

Therefore we have that gi has the form gi = (0, . . . , 0, gii, gi,i+1, . . . , gil) ∈ Rl and gii 6= 0, i.e. the

elements of G̃ have the form:

g1 = (g11, g12, g13, . . . , g1l) (4.5)

g2 = (0, g22, g23, . . . , g2l) (4.6)

g3 = (0, 0, g33, . . . , g3l) (4.7)

...

g3 = (0, 0, . . . , 0, gll) (4.8)

where the monic polynomials 0 6= gii ∈ R, i = 1, . . . , l are called the diagonal elements of G̃.

40

We now investigate the form of a Groebner Basis (GB) G̃ = {g1,g2, . . . ,gl} of the submodule
C̃ ⊂ Rl, and some properties which result from such form.

Let us first notice that the diagonal elements of a GB G̃ of C̃ can be seen as a generalization of the
generating polynomial of a cyclic code (see Eq.(3.4)).

The diagonal elements fulfil the following property:

Theorem 4.2. For each i, 1 ≤ i ≤ l, the diagonal element gii divides xm − 1.

Proof. We saw before that, since K̃ ⊂ C̃ contains a vector (xm − 1)ei for each i = 1, . . . , l with
LM ((xm − 1)ei) in i-th position, there exists g ∈ G̃ such that LM(g) divides LM ((xm − 1)ei)
and hence the leading monomial of g is in i-th position, that is the diagonal element gii divides
xm − 1.

Each nonzero element of C̃ may be expressed in the form (0, . . . , 0, cr, . . . , cl), where r ≥ 1 and
cr 6= 0. We now prove that cr is divisible by the corresponding diagonal element grr:

Theorem 4.3. If an element f ∈ C̃ has leading monomial in the r-th position, then grr divides
the polynomial entry in this r-th position.

Proof. By writing (0, . . . , 0, cr, . . . , cl) as an Fq[x]-linear combination
∑l
i=1 aigi, from Eqs.(4.5)÷(4.8)

we can say that

cr =

l∑
i=1

airgir

=

r∑
i=1

airgir

where the second equality comes again from the Eqs.(4.5)÷(4.8), i.e. from the fact that gir =
0, i = r + 1, . . . , l.

But the gir = 0, i = 1, . . . , r − 1 do not contribute to cr as well, being c = (0, . . . , 0, cr, . . . , cl),
and therefore g1, . . . ,gr−1 does not play a role in generating c since, if they would, we would have
nonzero elements in the first r − 1 components of c.

Before proceeding, let us introduce a definition which we will use in a while:

Definition 4.3. Let us write the polynomial f ∈ Fq[x], f 6= 0, as a sum of terms in decreasing
order f = a1x

α1 + a2x
α2 + · · ·+ asx

αs , where 0 6= ai ∈ Fq, and xα1 > xα2 > · · · > xαs . We define
the leading power of f , written LP(f), to be LP(f) = xα1 .

We will now prove two more results telling more about G̃ = {g1,g2, . . . ,gl}.

41

Theorem 4.4. Let G̃ be a Reduced Groebner Basis (RGB) of C. Then for each i, 1 ≤ i ≤ l,
the diagonal element gii is a monic polynomial and the nonzero off-diagonal polynomials gij of the
element gi are restricted in degree such that

deg(gij) < deg(gjj) ≤ m

for all j, 1 ≤ i < j ≤ l.

Proof. Since G̃ is an RGB, LC(gi) = 1 for each i, 1 ≤ i ≤ l. Now LM(gi) = LP(giiei) and so
LC(gi) = LC(gii) = 1. Thus gii is monic for each i, 1 ≤ i ≤ l.

Furthermore, being G̃ an RGB, the are no nonzero polynomials in gi that are divisible by LM(gj)

for any j 6= i, 1 ≤ j ≤ l. Thus for each i, 1 ≤ i ≤ l, gi = (0, . . . , 0, gii, gi,i+1, . . . , gil) ∈ G̃, LM(gj)
does not divide any monomials in gijei, for each j, i < j ≤ l, and hence LP(gjj) does not divide
gij for each j, 1 ≤ i < j ≤ l as terms in R.

The latter is true in R = Fq[x] if and only if deg(gij) < deg(gjj) for each i, j, 1 ≤ i < j ≤ l.
Finally, as gjj divides xm − 1 for each j, 1 ≤ j ≤ l then deg(gjj) ≤ m.

Theorem 4.5. Let G̃ be an RGB of C̃. The element gi is contained in K̃ if and only if gi =
(0, . . . , 0, gii, gi,i+1, . . . , gil) = (xm − 1)ei.

Proof. The element gi ∈ G̃ has leading monomial in the i-th position and gii|xm − 1. Assume
gi ∈ K̃, where K̃ = 〈{(xm − 1)ei | i = 1, . . . , l}〉, then the polynomial gii must be a multiple of
xm − 1, and so we have gii = xm − 1.

Therefore, gi = (0, . . . , 0, xm−1, gi,i+1, . . . , gil) and since (xm−1)ei ∈ C̃, then f = gi−(xm−1)ei =

(0, . . . , 0, 0, gi,i+1, . . . , gil) ∈ C̃.

Since G̃ is a GB for C̃, the element f ∈ C̃ can be reduced to 0 modulo G̃. Now, since no LM(gj)
will divide f for j = 1, . . . , i (see Eqs.(4.5)÷(4.8)) we must have that the element f can actually be
reduced to 0 modulo gi+1,gi+2, . . . ,gl.

Since deg(gij) < deg(gjj) for each j > i it follows that gi,i+1 = · · · = gil = 0, and then

gi = (0, . . . , 0, xm − 1, gi,i+1, . . . , gil)

= (0, . . . , 0, xm − 1, 0, . . . , 0) = (xm − 1)ei

The converse is simple to prove. If gi = (xm − 1)ei, being K̃ = 〈{(xm − 1)ei | i = 1, . . . , l}〉, then
gi ∈ K̃ by definition.

Any triangular set G̃ is a Groebner basis of the submodule of Fq[x]l that it generates. The condition

that the submodule should contain K̃ is equivalent to the existence of a matrix Ã ∈ Matl(F[x])
(with Matl(F[x]) indicating the square matrices of size l × l defined over F[x]) such that

ÃG̃ =


a11 a12 · · · a1l

a21 a22 · · · a2l

...
...

. . .
...

al1 al2 · · · all




g11 g12 · · · g1l

0 g22 · · · g2l

...
...

. . .
...

0 0 · · · gll

 = (xm − 1)I (4.9)

42

where I is the identity matrix. It is immediate to prove that

Proposition 4.2. The matrix Ã is upper triangular.

Proof. From ÃG̃ = (xm− 1)I we have that Ã = (xm− 1)IG̃−1 = (xm− 1)G̃−1, but being G̃ upper
triangular, also G̃−1 is upper triangular, and so is Ã too.

We will now prove that the entries of Ã can be computed recursively from those of G̃:

Theorem 4.6. The set G̃ is a Groebner basis of a submodule Fq[x]l containing K̃ if and only if
there exist aij for 1 ≤ i, j ≤ l satisfying

aij =


0 if j < i
xm−1
gii

if j = i
−1
gjj

(∑j−1
k=i aikgkj

)
if j > i

(4.10)

Moreover the corresponding equations with the roles of gij , aij interchanged also hold, and m −
deg(gii) = deg(aii) for all i. The Groebner basis is reduced if and only if deg(gii) > deg(gji) for
all j < i, if and only if deg(aii) > deg(aij) for all j > i.

Proof. We already know from Prop. 4.2 that Ã is upper triangular, so we have that aij = 0 if
j < i. Further, by writing the equations associated to the diagonal elements of (xm − 1)I in Eq.
(4.9), we have:

a11g11 = xm − 1 (4.11)

a21g12 + a22g22 = xm − 1 (4.12)

... (4.13)
l∑
i=1

aligil = xm − 1 (4.14)

and knowing that aij = 0 if j < i, we get that

aij =
xm − 1

gii
if j = i (4.15)

At last, writing the equations corresponding the upper triangular part of (xm − 1)I in Eq. (4.9),
we have:

a11g12 + a12g22 = 0 (4.16)

a11g13 + a12g23 + a13g33 = 0 (4.17)

... (4.18)

43

from which we get

a12 =
−1

g22
(a11g12) (4.19)

a13 =
−1

g33
(

2∑
k=1

a1kgk3) (4.20)

... (4.21)

from which we can generalize to

aij =
−1

gjj
(

j−1∑
k=i

aikgkj) if j > i (4.22)

Eq. (4.10) holds also when interchanging the roles of gij and aij , if we assume to work over the
field of fractions of Fq[x], indeed in this case the factors are invertible.

Suppose that the Groebner basis is reduced so that deg(gii) > deg(gji) for all j < i (see Th. 4.4).
The equation

aiigi,i+1 + ai,i+1gi+1,i+1 = 0

e.g. a11g12 + a12g22 = 0 in Eq. (4.9), implies either that

gi,i+1 = ai,i+1 = 0

as we know from Eq. (4.10) that aii 6= 0 and from [2001 Lally & Fitzpatrick] (pg. 159) we know
that gi+1,i+1 6= 0, which follows indirectly from the fact that the diagonal components of G̃, gii,
divide xm − 1 for all i), or that

deg(aii) + deg(gi,i+1) = deg(ai,i+1) + deg(gi+1,i+1)

from which it follows that

deg(aii)− deg(ai,i+1) = deg(gi+1,i+1)− deg(gi,i+1) > 0

where the inequality sign follows from Th. 4.4.

Using an induction argument, if deg(aii) > deg(aij) for j = i+1, . . . , k−1 and deg(aik) ≥ deg(aii)
then the last summand on the left-hand side of the equation

deg(aii)deg(gik) + deg(ai,i+1)deg(gi+1,k) + · · ·+ deg(ai,k−1)deg(gk−1,k) + deg(aik)deg(gkk) = 0

has degree strictly greater than the degrees of the others (see Th. 4.4) and, as just mentioned
above, deg(aik) ≥ deg(aii) > deg(aij), j = i + 1, . . . , k − 1), which is a contradiction; indeed in
that case, the equation above would then simplify to aikgkk = 0, and since we know that gkk 6= 0,
which implies that aik = 0, with k > i, but this contradicts Eq. (4.10). Hence, deg(aik) < deg(aii)
for all j > i by induction, and the proof in one direction is complete. The converse is true by a
symmetrical argument.

A generating set for the code C ⊆ (R/I)l can be found by mapping each element gi ∈ G̃, 1 ≤ i ≤ l,
of the GB for C̃ ⊆ Rl into (R/I)l

φ : gi = (0, . . . , 0, gii, gi,i+1, . . . , gil)

7→ (0 + I, . . . , 0 + I, gii + I, gi,i+1 + I, . . . , gil + I) ∈
(
R

I

)l
(4.23)

44

When G̃ is an RGB, considering the elements gi ∈ G̃ such that gi 6∈ K̃, 1 ≤ i ≤ l, these elements
have polynomial entries of degree less than m, and we can therefore drop the coset notation and
write the corresponding i-the generator of the code C as

φ(gi) = (0, . . . , 0, gii, gi,i+1, . . . , gil) ∈ G

where the entries of φ(gi) are identical to those in gi = (0, . . . , 0, gii, gi,i+1, . . . , gil) ∈ G̃.

Moreover, an element gi ∈ G̃ such that gi ∈ K̃, then satisfies

φ(gi) = (0, . . . , 0) ∈
(
R

I

)l
i.e. the zero element in (R/I)l and is thus omitted from the generating set for C. We call this
generating set G a GB generating set for the code C, written C = 〈G〉; dropping the coset notation,
we can write

G =
{
φ(gi) | gi ∈ G̃,gi 6∈ K̃, 1 ≤ i ≤ l

}

Example 4.1

Let us consider a code of index l = 3 and length n = ml = 21, thus m = 7, over F2 gener-
ated by elements

a1 = (x5 + x4 + 1, x4 + x3 + x+ 1, x4 + x3 + x2)

a2 = (x4 + x3 + x2 + 1, x, x4 + x3 + x+ 1)

in (R/I)l = (F2[x]/〈x7− 1〉)3. The GB for C̃ = 〈a1,a2, (x
7− 1)e1, (x

7− 1)e2, (x
7− 1)e3〉 ∈ Rl (see

Eq. (4.4)) comprises the rows of  f2 f2
1 x2

0 f3 f1f3

0 0 x7 − 1

 (4.24)

with f1 = x + 1, f2 = x3 + x + 1, f3 = x3 + x2 + 1 so that x7 − 1 = f1f2f3, so the diagonal
components of (4.24) are divisors of x7 − 1. The corresponding RGB generating set of C1 consists
of the rows of (

f2 f2
1 x2

0 f3 f1f3

)
since the third row of (4.24) is mapped by φ to the zero element of (R/I)l, i.e. (0, 0, 0).

Let us now see how this can be implemented through Singular:

ring R = 2,x,(c,lp);

% 2 indicates the binary field; (c,lp) indicates the POT extension of lex order

% c indicates downward ordering on the standard basis elements

> vector a1=[x5+x4+1,x4+x3+x+1,x4+x3+x2];

> vector a2=[x4+x3+x2+1,x,x4+x3+x+1];

> vector a3=[x7-1,0,0];

> vector a4=[0,x7-1,0];

> vector a5=[0,0,x7-1];

45

> module M=a1,a2,a3,a4,a5;

> print(M);

x5+x4+1, x4+x3+x2+1,x7+1,0, 0,

x4+x3+x+1,x, 0, x7+1,0,

x4+x3+x2, x4+x3+x+1, 0, 0, x7+1

> option(redSB);

> module N=std(M);

> print(N);

0, 0, x3+x+1,

0, x3+x2+1, x2+1

x7+1,x4+x2+x+1,x2

> N;

N[1]=[0,0,x7+1];

N[2]=[0,x3+x2+1,x4+x2+x+1]

N[3]=[x3+x+1,x2+1,x2]

> poly f1=x+1;

> poly f2=x3+x+1;

> poly f3=x3+x2+1;

> f2*gen(1)+f1^2*gen(2)+x2*gen(3);

[x3+x+1,x2+1,x2]

> f3*gen(2)+f1*f3*gen(3);

[0,x3+x2+1,x4+x2+x+1]

% the above verifies that we get the first two rows of (4.24) correctly

We will prove in a while a results which will tell us how, from the diagonal elements gii, 1 ≤ i ≤ l
of a GB, we can determine the dimension of the code. Let us first introduce two results, which we
will then use to prove the afore-mentioned result on the code’s dimension:

Definition 4.4. Given f ∈ Fq[x], we call the unique remainder r ∈ Fq[x], reduced with respect to
G, with G Groebner basis, the normal form of f with respect to G, denoted NG(f).

Theorem 4.7. Let us consider the quotient module Rl/M , for M a submodule of Rl and G =
{g1, . . . ,gt} a Groebner basis for M . The set of all cosets containing monomials M in Rl such
that LM(gi) does not divide X for all i = 1, . . . , t, is a basis for the Fq vector space Rl/M .

Let us now see how we can determine the code’s dimension from the diagonal elements gii, 1 ≤ i ≤ l:

Theorem 4.8. The dimension k of the code C ⊆ (R/I)l is the number of monomials Xei = xsei
not in normal form in C̃, whose exponents satisfy s ≤ m− 1. Thus the dimension of C is

k = ml −
l∑
i=1

deg(gii)

where G̃ = {g1, . . . ,gl} is a GB for C̃.

Proof. From Th. 4.7 a basis for Rl/C̃ as a vector space over Fq is the set of all cosets of monomials
X in Rl such that LM(gi) does not divide X, i.e., the cosets of all monomials in

{X = xrei | 0 ≤ r ≤ deg(gii)− 1}

46

Similarly the set of all cosets of the monomials in {X = xrei | 0 ≤ r ≤ m− 1} is a basis of the
Fq-vector space Rl/K̃ since {(xm − 1)ei | i = 1, . . . , l} is a GB of K̃.

Since

dim(C̃/K̃) = dim(C̃)− dim(K̃)

= dim(Rl)− dim(K̃)−
[
dim(Rl)− dim(C̃)

]
= dim(Rl/K̃)− dim(Rl/C̃)

we have that the dimension of C̃/K̃ as an Fq-vector space is the number of monomials in {X = xrei | 0 ≤ r ≤ m− 1},
subtracted those in {X = xrei | 0 ≤ r ≤ deg(gii)− 1}, i.e. the dimension of C̃/K̃ is the number of
monomials xsei such that deg(gii) ≤ s ≤ m− 1, i = 1, . . . , l, that is the set of monomials xsei not
in normal form in C̃ (being s ≥ deg(gii) with G̃ GB of C̃), where s ≤ m− 1.

The cosets of C̃/K̃ are in one-to-one correspondence with the elements of C ⊆ (R/I)l due to
isomorphism

θ : (g1, . . . , gl) + K̃ 7→ (g1 + I, . . . , gl + I)

and therefore the dimension k of the code C is the number of elements in the set

{X = xsei | deg(gii) ≤ s ≤ m− 1}

and therefore, subtracting for each i, from the m elements such that xs | 0 ≤ m − 1 the deg(gii)
elements such that xs | 0 ≤ deg(gii)− 1 , we have that the dimension k is given by

k =

l∑
i=1

(m− deg(gii))

= ml −
l∑
i=1

(deg(gii))

Example 4.2

Continuing from Example 4.1, we have that, being l = 3, m = 7 and the diagonal elements
g11 = x3 + x+ 1, g22 = x3 + x2 + 1, g33 = x7 − 1, the dimension k of the code C is

k = ml −
l∑
i=1

(deg(gii)) = 7 · 3− (3 + 3 + 7) = 8

47

Chapter 5

Decoding Issues related to
Quasicyclic Codes

This chapter, after a short summary on quasicyclic codes’ algebraic structure, deals with the
decoding of quasicyclic codes in Groebner basis form, and then with the decoding of restriction-1
1-generator quasicyclic codes. Later on, some decoding algorithms for Reed-Solomon codes are
discussed, and the last section deals with the decoding of quasicyclic codes formed by blocks,
constituted in turn by Reed-Solomon codes.

5.1 Summary on Quasicyclic Codes’ Algebraic Structure

Let C be a quasicyclic code of length lm and index l over Fq. In the former Chapter, we have
discussed a unique reduced triangular generating set of a code C, regarded as a R-submodule of
Rl, where R = Fq[x]/〈xm − 1〉.

The code is the image of an Fq[x]-submodule C̃ of Fq[x]l containing K̃ = 〈(xm− 1)ei, i = 1, . . . , l〉,
under the natural homomorphism ϕ : Fq[x]l → Rl, (c1, . . . , cl) 7→ (c1 +〈xm−1〉, . . . , cl+〈xm−1〉).
The Reduced Triangular Basis (RTB) of C̃ is a unique set of vectors G̃ = {gi = (0, . . . , gii, . . . , gil), i = 1, . . . , l}
where:

i. the diagonal element gii is monic and nonzero;

ii. for the off-diagonal elements it is deg(gki) < deg(gii) for k < i.

The set G in Rl consisting of the elements of G̃ not mapped to zero under ϕ forms an R-generating
set for the code C. The dimension of code C can be obtained directly from the diagonal elements
as lm−

∑l
i=1 deg(gii) =

∑l
i=1(m− deg(gii)).

48

5.2 Decoding of Quasicyclic Codes in Groebner Basis Form

For any given information vector

v = (v1, . . . , vl) ∈ (R/〈xm − 1〉)l

where deg(vi) < m− deg(gii), the codeword c = (c1, . . . , cl) ∈ C is

c = v1g1 + v2g2 + · · ·+ vlgl (5.1)

where gi is the i-th row of the matrix G̃ representing the triangular set of rows G̃ = {g1, . . . ,gl}

G̃ =


g11 g12 · · · g1l

0 g22 · · · g2l

· · · · · ·
0 0 · · · gll

 (5.2)

Then we can rewrite Eq. (5.1) as

c = (v1g11, v1g12 + v2g22, . . . , v1g1l + v2g2l + · · ·+ vlgll) mod xm − 1 (5.3)

Suppose that c = (c1, c2, . . . , cl) ∈ C is transmitted over a channel and an erroneous vector r =
(r1, r2, . . . , rl) ∈ (R/〈xm − 1〉)l is received. We denote by e the error vector

e = (e1, e2, . . . , el) ∈ (R/〈xm − 1〉)l

where
r = c + e

and the component polynomials are

ri = ci + ei for all i, 1 ≤ i ≤ l

We denote by wt(a) the number of nonzero coefficients in a. The weight of the vector v =
(v1, . . . , vl) ∈ (R/〈xm − 1〉)l, written wt(v), is equal to

wt(v) =

l∑
j=1

wt(vj)

that is, the sum of the partial weights in v where vj , 1 ≤ j ≤ l, is a vector component. We denote
by d∗i , 1 ≤ i ≤ l, the BCH distance of the cyclic code generated by gii 6= xm − 1, 1 ≤ i ≤ l, and

d∗i = #ConsecutiveRoots(gii) + 1

in the splitting field Fqt of xm − 1 over Fq.

From Eq. (5.3) we have that the first partial codeword

c1 = v1g11 mod xm − 1

is a codeword in the cyclic code generated by g11, and so the polynomial

r1 = c1 + e1 = v1g11 mod xm − 1

49

can be decoded correctly to c1 if the error polynomial e1 is of weight at most

t1 =

⌊
d∗1 − 1

2

⌋
The information polynomial v1 can be retrieved by direct division, being

deg(v1) < m− deg(g11)

and therefore

c1 = v1g11 mod xm − 1

= v1g11

The polynomial

r2 = c2 + e2

= v1g12 + v2g22 + e2 mod xm − 1

thus

r
′

2 = r2 − v1g12

= v2g22 + e2 mod xm − 1

can be decoded correctly to c
′

2 = v2g22, which is a codeword in the cyclic code generated by g22,
if the error polynomial has weight

wt(e2) ≤ t2 =

⌊
d∗2 − 1

2

⌋
We can compute directly the partial codeword

c2 = c
′

2 + v1g12 mod xm − 1

since we have that
deg(v2) < m− deg(g22)

In a similar way, for each i = 2, . . . , l

ri = ci + ei

=

i∑
j=1

vjgji + ei mod xm − 1

where

r
′

i = ri −
∑

j = 1i−1vjgji

= vigii + ei mod xm − 1

can be decoded correctly to c
′

i = vigii ∈ 〈gii〉 ⊆ R/〈xm − 1〉, if the weight of the error polynomial
is such that

wt(ei) ≤ ti =

⌊
d∗i − 1

2

⌋

50

The partial codeword

ci = c
′

i +

i−1∑
j=1

vjgji mod xm − 1

and the information polynomial

vi =
c
′

i

gii

can be found directly if

deg(vi) < m− deg(gii)

If for some i, 1 ≤ i ≤ l, there exists gi ∈ G̃ for which φ(gi) 6∈ G then gi ∈ K̃ with gii = xm − 1
which is mapped to the zero vector in (R/〈xm − 1〉)l. In this case we can omit the information
component vi and the generator gi from the encoding procedure in Eq. (5.3), and we get

ri = ci + ei

=

i−1∑
j=1

vjgji + ei mod xm − 1 (5.4)

where

ri −
i−1∑
j=1

vjgji = ei mod xm − 1 (5.5)

and

ci = ri − ei mod xm − 1

can be computed from the previous steps, Eq. (5.4) and Eq. (5.5), without any need for cyclic
decoding at this stage. The polynomial ri can then contain an arbitrary number of errors and we
then write

ti = m when gii = xm − 1

Summarizing, we can then decode each polynomial ri to ci and thus retrieve the original codeword

c = (c1, . . . , cl) ∈ C

subject to the condition

wt(ei) ≤ ti for each i, 1 ≤ i ≤ l

where the last equation imposes an upper bound on the number of errors which can be successfully
decoded.

Let us introduce the following definition [LallyPhD]:

Definition 5.1. Let the set G̃ = {g1,g2, . . . ,gl} ⊆ Rl be a GB for a submodule C̃ ⊆ Rl. We say
that G̃ is an r-level GB for C̃ if there exists gr ∈ G̃, 1 ≤ r ≤ l, such that gr 6∈ K̃ and gj ∈ K̃ for
all j, r < j ≤ l. The corresponding GB generating set G for the code C we also term an r-level
GB generating set as it contains at most r generators

G =
{
φ(gi)|gi ∈ G̃, gi 6∈ K̃, 1 ≤ i ≤ r

}

51

A particular case of the algorithm described above, is that of a 1-level GB code. A code C ⊆
(R/〈xm − 1〉)l of index l and length ml has a 1-level GB if it is generated by a single generator
g1 ∈ (R/〈xm − 1〉)l of the form

g1 = (g11, f1g11, . . . , fl−1g11) ∈ (R/〈xm − 1〉)l

where g11 divides xm − 1 and deg(fi) < m − deg(g11), 1 ≤ i ≤ l − 1. Each codeword c =
(c1, c2, . . . , cl) ∈ C has the form

c = ag1

= (a1g11, af1g11, . . . , afl−1g11) mod xm − 1 (5.6)

where a is an information polynomial with deg(a) < m− deg(g11). If the transmitted codeword is
erroneously received as

r = c + e

where e is the error vector

e = (e1, e2, . . . , el) ∈
(
R

I

)l
and component polynomials are

ri = ci + ei for all i, 1 ≤ i ≤ l

The first received polynomial

r1 = c1 + e1 = ag11 + e1 mod xm − 1

can be decoded correctly to c1 by cyclic decoding if

wt(e1) ≤ t1 =

⌊
d∗1 − 1

2

⌋
and the remaining partial codewords are given by (see Eq. (5.6))

ci = afi−1g11 = fi−1c1 mod xm − 1 2 ≤ i ≤ l

and ti = m, i = 2, . . . , l. We then see that a code in 1-level GB form can be decoded correctly if
at most t1 errors occur in the first m-tuple of received digits and any number of errors can occur
in the remaining (l − 1)m digits.

Notice that since fi, 1 ≤ i ≤ l − 1 are not necessarily relatively prime to xm − 1, the partial
codewords do not all lie in the same cyclic code. Thus the information vector a may not be
recoverable from any ri other than r1 (if fi, not relatively prime with respect to xm − 1, it is
mapped to zero by φ). In the next section, we will see how to impose restrictions such that this
will be possible [LallyPhD].

5.3 Decoding of Restriction-1 1-generator Quasicyclic Codes

Given the 1-generator code with generator g = (g1, g2, . . . , gl) we can permute the “partial gener-
ators” of this vector to obtain a generator σg = (gσ(1), gσ(2), . . . , gσ(l)) of an equivalent code with
the same weight structure.

Let us introduce the following theorem:

52

Theorem 5.1. A 1-generator code generator code generated by g = (g1, g2, . . . , gl), of dimension
k = m− deg(g), where g = gcd(g1, g2, . . . , gl, x

m − 1), has a 1-level GB and all codes generated by
permutations of its partial generators have 1-level GBs if and only if g is of the form

g = (f1g, f2g, . . . , flg) ∈ (R/〈xm − 1〉)l , fi ∈ R (5.7)

where g|xm − 1, gcd(fi, (x
m − 1)/g) = 1 and deg(fi) < m− deg(g), 1 < i ≤ l.

We refer to 1-generator codes with generator g of the form as in Eq. (5.7) as restriction-1 codes.

We now present a decoding algorithm for a subclass of restriction-1 1-generator codes, which can
correct a greater range of error patterns than the 1-level decoding algorithm discussed in Section
5.2.

Let m be relatively prime to the characteristic of the field F = Fq. Let C ⊂ (R/〈xm − 1〉)l be a
1-generator code of index l and length ml, generated by the single generator of the form

g = (f1g, f2g, . . . , flg) ∈ (R/〈xm − 1〉)l, fi ∈ R (5.8)

where g|xm − 1, gcd(fi, x
m − 1) = 1 and deg(fi) < m − deg(g), 1 ≤ i ≤ l. From Th. 5.1 we see

that the code C is a restriction-1 1-generator code, of dimension k = m − deg(g) and minimum
distance

dmin ≥ ld∗ = l(#ConsecutiveRoots(g) + 1) (5.9)

Each codeword c = (c1, c2, . . . , cl) has the form

c = ag

= (af1g, af2g, . . . , aflg) mod xm − 1 (5.10)

where a ∈ R is an information polynomial of deg(a) < m, and each partial codeword afig, 1 ≤
i ≤ l, is a partial codeword in the cyclic code of length m generated by gcd(fig, x

m− 1) = g for all
i = 1, . . . , l. If any partial codeword ci, 1 ≤ i ≤ l, of the codeword c ∈ C is known then all other
partial codewords can be found from the equations (see Eq. (5.10)):

cj = cif
−1
i fj mod xm − 1 (5.11)

for each j 6= i, 1 ≤ j ≤ l, since gcd(fi, x
m − 1) = 1 and f−1

i exists modulo xm − 1.

We denote by D the minimum distance of the code C; according to [LallyPhD], we can choose the
multipliers f1, f2, . . . , fl in the generator g to find a code of the same length, index and dimension
for which D is as large as possible and often very much larger than the lower bound ld∗,

D = dmin ≥ ld∗

Suppose that the codeword c = (c1, c2, . . . , cl) ∈ C is transmitted over a channel and the vector
r = (r1, r2, . . . , rl) ∈ (R/〈xm − 1〉)l is erroneously received. We denote by e the error vector

e = (e1, e2, . . . , el) ∈ (R/〈xm − 1〉)l

where
r = c + e = (c1 + e1, c2 + e2, . . . , cl + el)

and the component polynomials

ri = ci + ei for all i, 1 ≤ i ≤ l

53

We now describe a bounded distance decoding algorithm for this code which can correct any
pattern of at most t errors where

t = min

{
l
⌊
d∗−1

2

⌋
+ l − 1⌊

D−1
2

⌋
and if t < b(D−1)/2c can also correct certain patterns of up to b(D−1)/2c errors. The algorithm
is based on successive repetitions of the same cyclic decoding procedure:

Input: r = (r1, r2, . . . , rl), g = (f1g, f2g, . . . , flg)
Initialization: set c = (0, 0, . . . , 0), i = 0
while i < l do

i=i+1;
Decode ri as a cyclic codeword in 〈g〉 ⊆ R/〈xm − 1〉
if ri decodes to a cyclic codeword c

′

i then

Compute c
′

j = c
′

if
−1
i fj mod xm − 1 for all j 6= i, 1 ≤ j ≤ l

Construct the codeword c
′

= (c
′

1, c
′

2, . . . , c
′

l) ∈ C ⊆ (R/〈xm − 1〉)
if wt(|c′ − r|) ≤ b(D − 1)/2c then

set c = c
′

break;
else

next;
end if

else
if ri not decoded then

next;
end if

end if
end while
Output: c = (c1, . . . , cl)

Example 5.1

Let us make a couple of examples, with d∗ = #ConsecutiveRoots(g) + 1 in turn assumed to
be even and odd.

Consider the binary code C(28, 3, 16) of index l = 4 and length ml = 7l = 28 generated by

g = (1 + x+ x2 + x4, 1 + x+ x2 + x4, 1 + x+ x2 + x4, 1 + x+ x2 + x4) ∈ (R/〈x7 − 1〉)4

The designed minimum distance of the cyclic code 〈1 + x+ x2 + x4〉 ⊆ R/〈x7 − 1〉 is d∗ = 4. The
minimum distance of the code C ⊆ (R/〈x7 − 1〉)4 is D = 16 = ld∗ and so the decoding algorithm
introduced above can correct all patterns with the following number of errors

t = min

{
l
⌊
d∗−1

2

⌋
+ l − 1 = 4

⌊
4−1

2

⌋
+ 4− 1 = 7⌊

D−1
2

⌋
=
⌊

16−1
2

⌋
= 7

i.e. t = 7 errors.

54

Consider the binary code C(28, 4, 12) of index l = 4 and length ml = 7l = 28 generated by

g = (1 + x+ x3, 1 + x+ x3, 1 + x+ x3, 1 + x+ x3) ∈ (R/〈x7 − 1〉)4

The designed minimum distance of the cyclic code 〈1 + x + x3〉 ⊆ R/〈x7 − 1〉 is d∗ = 3. The
minimum distance of the code C ⊆ (R/〈x7 − 1〉)4 is D = 12 = ld∗ and so the decoding algorithm
introduced above can correct all patterns with the following number of errors

t = min

{
l
⌊
d∗−1

2

⌋
+ l − 1 = 4

⌊
3−1

2

⌋
+ 4− 1 = 7⌊

D−1
2

⌋
=
⌊

12−1
2

⌋
= 5

i.e. t = 5 errors.

5.4 RS Decoding Algorithms

Let us fix a field Fq and a primitive element α, and consider the Reed-Solomon code C ⊂ Fq/〈xq−1−
1〉 given by a generator polynomial

g = (x− α) · · · (x− αd−1) (5.12)

of degree d− 1. We assume that d = 2t+ 1 for some t ≥ 1, then by the following result

Proposition 5.1. Let C be a code with minimum distance d. All error vectors of weight ≤ d− 1
can be detected. Moreover, if d ≥ 2t + 1, then all error vectors of weight ≤ t can be corrected by
nearest neighbor decoding.

any error vector of weight t or less should be correctable.

Let c =
∑q−2
j=0 cjx

j be a codeword of C. Since C has generator polynomial g(x), then in Fq[x], c is
divisible by g. Suppose that c is transmitted, but there are some errors, so the received word is
y = c + e for some e =

∑
i∈I eix

i, where I is called the set of error locations and the coefficients
ei are known as the error values. To decode we must thus solve the following problem:

Problem 5.1

Given a received codeword y, determine the set of error locations I and the error values ei.

We can determine whether errors have occurred by computing the values Ej = y(αj), j = 1, . . . , d−
1. If Ej = y(αj) = 0 for all j = 1, . . . , d− 1, then y is divisible by g (see Eq.(5.12)). Assuming the
error vector has a weight at most t, y must be the codeword we intended to send.

If some Ej 6= 0, it means there are errors; we can try to use the information included in the Ej to
solve Problem 5.4. Note that the Ej are the values of the error polynomial for j = 1, . . . , d− 1:

Ej = y(αj) = c(αj) + e(αj) = e(αj) (5.13)

being c a multiple of g (see Eq.(5.12)). The polynomial

S(x) =

d−1∑
j=1

Ejx
j−1 (5.14)

55

is called the syndrome polynomial for y. We can see from Eq.(5.14) that this polynomial has degree
lower than or equal to d− 2.

By extending the definition of Ej = e(αj) to all exponents j we can consider the formal power
series

E(x) =

∞∑
j=1

Ejx
j−1 (5.15)

Suppose we knew the error polynomial e. Then, from Eq.(5.13) we have that

Ej =
∑
i∈I

ei(α
j)i =

∑
i∈I

ei(α
i)j (5.16)

Let us make some manipulations with Eq.(5.15). First, let us plug Eq.(5.16) into Eq.(5.15), ob-
taining:

E(x) =

∞∑
j=1

Ejx
j−1 =

∞∑
j=1

∑
i∈I

ei(α
i)jxj−1

We can also write that

E(x) =

∞∑
j=1

∑
i∈I

ei(α
i)jxj−1

=
∑
i∈I

∞∑
j=1

eiα
i(αix)j−1

=
∑
i∈I

eiα
i
∞∑
j=1

(αix)j−1

=
∑
i∈I

eiα
i
∞∑
k=0

(αix)k

where the last equality follows from the index change k = j − 1. We can further write:

E(x) =
∑
i∈I

eiα
i
∞∑
k=0

(αix)k

=
∑
i∈I

eiα
i

1− αix

which we can rewrite as

E(x) =
∑
i∈I

eiα
i

1− αix

=
∑
i∈I

eiα
i

∏
j 6=i, j∈I(1− αjx)∏
i∈I(1− αix)

=
Ω(x)

Λ(x)
(5.17)

56

where

Ω(x) =
∑
i∈I

eiα
i
∏

j 6=i, j∈I

(1− αjx) (5.18)

Λ(x) =
∏
i∈I

(1− αix) (5.19)

The roots of Λ are precisely the α−i for i ∈ I. Since the error locations can be determined from
these roots, we call Λ the error locator polynomial. From Eqs.(5.18)-(5.19) we see that

deg(Ω) ≤ deg(Λ)− 1

Moreover
Ω(α−i) = eiα

i
∏

j 6=i, j∈I

(1− αjα−i) 6= 0 (5.20)

hence Ω has no roots in common with Λ (being j 6= i in Eq.(5.20), see also Eq.(5.19)). From this,
and the fact that Ω and Λ are products of linear terms (see (5.18)-(5.19)), we deduce that the
polynomials Ω and Λ must be relatively prime.

Let us consider the “tail” of the series E and do some manipulations of it

E(x)− S(x) =

∞∑
j=d

(
∑
i∈I

ei(α
i)j)xj−1

=
∑
i∈I

∞∑
j=d

eiα
i(αix)j−1

=
∑
i∈I

eiα
i
∞∑
j=d

(αix)j−1

=
∑
i∈I

eiα
i(αix)d−1

∞∑
j=1

(αix)j−1

=
∑
i∈I

eiα
i(αix)d−1

∞∑
k=0

(αix)k

=
∑
i∈I

eiα
i(αix)d−1 1

1− αix

= xd−1
∑
i∈I

eiα
id 1

1− αix

= xd−1

∑
i∈I eiα

id
∏
j 6=i, j∈I(1− αjx)∏

i∈I(1− αix)

= xd−1 Γ(x)

Λ(x)
(5.21)

where Γ(x) =
∑
i∈I eiα

id
∏
j 6=i, j∈I(1 − αjx) and Λ(x) as already defined in Eq.(5.19), with

deg(Γ(x)) ≤ deg(Λ(x))− 1.

From Eq.(5.17) we have that
Ω = ΛE (5.22)

57

and from Eq.(5.21) we have that

E = S + xd−1 Γ

Λ
(5.23)

and therefore, plugging (5.23) into (5.22), we obtain

Ω = ΛE

= ΛS + xd−1Γ

= ΛS + x2tΓ (5.24)

where the last equality comes from the previous assumption d = 2t+ 1, and thus d− 1 = 2t.

It might be in some cases more convenient to look at (5.24) as a congruence, i.e.

Ω ≡ ΛS mod x2t (5.25)

Conversely, if (5.25) holds, there is some polynomial Γ such that (5.24) holds. The congruence
(5.25) is called the key equation for decoding.

The derivation of the key equation (5.25) assumed that e was known; let us now consider an actual
decoding problem, and assume an error vector of weigth at most t.

Given the received word y, S is computed:

S(x) =

d−1∑
j=1

Ejx
j−1 =

d−1∑
j=1

y(αj)xj−1

The key equation (5.25) can then be viewed as a relation between the known polynomials S, x2t,
and the unknowns Ω, Λ.

Suppose that a solution (Ω,Λ) of the key equation is found, which satisfies the following degree
conditions {

deg(Λ) ≤ t
deg(Ω) < deg(Λ)

(5.26)

where the first condition comes from the fact that we assumed the error vector of weight at most t
and the second is a direct consequence of Eqs.(5.18)-(5.19), and in which Ω, Λ are relatively prime.

The following result tells us that a solution of the key equation (5.25) satisfying the degree condi-
tions (5.26) is unique, up to a constant multiple:

Theorem 5.2. Let S be the syndrome polynomial corresponding to a received word y with an error
of weight at most t. Up to a constant multiple, there exists a unique solution (Ω,Λ) of (5.25) that
satisfies the degree conditions (5.26), and in which Ω and Λ are relatively prime.

Proof. We know that the error locator Λ and the corresponding Ω give one such solution; let (Ω,Λ)
be any other. Let us write the congruences

Ω ≡ ΛS mod x2t (5.27)

Ω ≡ ΛS mod x2t (5.28)

58

and multiplying (5.27) by Λ and (5.28) by Λ we get

ΩΛ ≡ ΛSΛ mod x2t (5.29)

ΩΛ ≡ ΛSΛ mod x2t (5.30)

and subtracting (5.29) and (5.30) we obtain

ΩΛ ≡ ΩΛ mod x2t

Since the degree conditions (5.26) are satisfied for both solutions, both sides of this congruence are
actually polynomials of degree at most 2t− 1, so it is

ΩΛ = ΩΛ (5.31)

Now, from (5.31) we can write
Λ = ΩΛ/Ω (5.32)

and since Λ, Ω are relatively prime, we have that no factor of Λ is canceled by any factor of Ω,
and thus from (5.32) we see that Λ|Λ. Similarly we can show that Λ|Λ, therefore Λ, Λ differ at
most by a constant multiple. Similarly for Ω, Ω and since from (5.31) we can write

Ω/Ω = Λ/Λ

the constants must agree.

Given a solution of (5.25) for which the conditions of Th. 5.2 are satisfied, we can then determine
the solutions of Λ = 0 in F∗, and hence the error locations; if α−i appears as a root, then i ∈ I is
an error location.

Th. 5.2 and the previous discussion show that solving the decoding problem 5.1 can be accom-
plished by solving the key equation (5.25). We will now see how the theory of module Groebner
bases proves to be useful here.

Given the integer t and S ∈ Fq[x], consider the set of all pairs (Ω, Λ) ∈ Fq[x]2 satisfying (5.25):

K =
{

(Ω,Λ) : Ω ≡ ΛS mod x2t
}

(5.33)

K is a Fq[x]-submodule of Fq[x]2, and every element of K can be written as a combination, with
polynomial coefficients, of the two generators

g1 = (x2t, 0) (5.34)

g2 = (S, 1) (5.35)

We will now show that (5.34)-(5.35) is a Groebner basis for K with respect to one monomial order
on Fq[x]2. Moreover, one of the special solutions (Λ,Ω) ∈ K given by Th. 5.2 is guaranteed to
occur in a Groebner basis for K with respect to a second monomial order on Fq[x]2. These results
will form the ground for two different decoding methods, which we will discuss later on.

Let us first investigate some facts about submodules of Fq[x]2 and monomial orders. We here
restrict our attention to submodules M ⊂ Fq[x]2. The following result tells us that a k-vector
space k[x]2/M is finite-dimensional if and only if M has generators of a certain form (we will see
later on that the generators of (5.33), i.e. (5.34)-(5.35) are actually of this kind).

59

Proposition 5.2. Let k be any field, and M be a submodule of k[x]2. Let > be any monomial
order on k[x]2. Then the following conditions are equivalent:

i. The k-vector space k[x]2/M is finite-dimensional.

ii. 〈LT>(M)〉 contains elements of the form xue1 = (xu, 0) and xve2 = (0, xv) for some u, v ≥ 0.

Proof. Let G be a Groebner basis for M with respect to the monomial order >. As we know from
ideals theory, the elements of k[x]2/M are linear combinations of monomials in the complement
of 〈LT>(M)〉. There is a finite number of such monomials if and only if 〈LT>(M)〉 contains
multiples of both e1 and e2 (in other words, we do not end up with a complement of 〈LT>(M)〉
that correspond to an infinite region in the plane identified by e1 and e2).

Every submodule we consider from now on in the present section, will satisfy the equivalent con-
ditions in Prop. 5.2.

The monomial orders that we consider in decoding can be described as follows:

Definition 5.2. Let r ∈ Z, we define an order >r by the following rules:

i. xmei >r x
nei if m > n and i = 1, 2;

ii. xme2 >r x
ne1 if and only if m+ r ≥ n.

For example, with r = 2, the monomials in k[x]2 are ordered by >2 as follows: e1 <2 xe1 <2

x2e1 <2 e2 <2 x
3e1 <2 · · · where e.g. x2e1 <2 e2, as m+ r = 0 + 2 ≥ n = 2.

Let us now see how Groebner bases for submodules with respect to >r orders look like:

Proposition 5.3. Let M be a submodule of k[x]2, and fix r ∈ Z. Assume 〈LT>(M)〉 is generated
by xue1 = (xu, 0) and xve2 = (0, xv) for some u, v ≥ 0. Then a subset G ⊂ M is a reduced
Groebner basis of M with respect to >r if and only if G = {g1 = (g11, g12), g2 = (g21, g22)}, where
the gi satisfy the following two properties:

i. LT(g1) = xue1 and LT(g2) = xve2 for u, v as above;

ii. deg(g21) < u and deg(g12) < v.

Proof. Suppose G is a subset of M satisfying conditions (i),(ii). By (i), the leading terms of the
elements of G generate 〈LT(M)〉, so by definition G is a Groebner basis for M .

Condition (ii) implies that no terms in g1 can be removed from G by division with respect to g2,
and similarly for the terms in g2, so G is reduced.

Conversely, if G is a reduced Groebner basis for M with respect to >r it must contain exactly two
elements, say g1, g2. Because of the assumption that 〈LT>(M)〉 is generated by xue1 = (xu, 0)
and xve2 = (0, xv) for some u, v ≥ 0, and since we assume here that G is a reduced Groebner basis,
condition (i) must hold.

Finally, again because we assume G is a reduced Groebner basis, condition (ii) must hold.

60

An important consequence of Prop. 5.3 is the following observation:

Corollary 5.1. Let G =
{

(S, 1), (x2t, 0)
}

be the generators for the module K of solutions of the
key equation (5.25) in the decoding problem with syndrome S. Then G is a Groebner basis for K
with respect to the order >deg(S).

Note that LT>deg(S)
((S, 1)) = (0, 1) = e2, indeed:

LT>deg(S)
((S, 1)) = LT>deg(S)

((LP(S), 1))

= LT>deg(S)
((xdeg(S), 1))

= LT>deg(S)
(xdeg(S)e1 + e2) = e2 (5.36)

where the first equality uses Def. 4.3, and the last one comes from applying Def. 5.2. Equa-
tion (5.36) means that the module of solutions of the key equation always satisfies the finiteness
condition from Prop. 5.2.

Let us finally introduce a definition and a general result, before going to the main point of this
section.

Definition 5.3. Let M be a nonzero submodule of k[x]2. A minimal element of M with respect
to a monomial order > is a g ∈M \ {0} such that LT(g) is minimal with respect to >.

For example, (S, 1) is minimal with respect to the order >deg(S) in 〈(S, 1), (x2t, 0)〉, indeed

e2 = LT ((S, 1)) <deg(S) LT
(
(x2t, 0)

)
= x2te1

being m + r = 0 + deg(S) < n = 2t, since deg(S) ≤ d − 2 (see Eq.(5.14)), and we have assumed
d = 2t + 1 at the beginning of the present section, therefore deg(S) ≤ 2t − 1, which leads to
m+ r = 0 + deg(S) ≤ 2t− 1 < n = 2t.

Notice that the leading terms LT
(
(x2t, 0)

)
= x2te1 and LT ((S, 1)) = e2 generate 〈LT(K)〉 with

respect to the >deg(S) order.

The following result tells us that once we fix an order >r, a minimal element for M with respect
to that order is guaranteed to appear in a Groebner basis for M with respect to >r.

Proposition 5.4. Fix any >r order on k[x]2, and let M be a submodule. Every Groebner basis
for M with respect to >r contains a minimal element of M with respect to >r.

We will now discuss the main point of this section. Let us first prove a result that states that
the special solution of the key equation (5.25) guaranteed by Th. 5.2 can be characterized as the
minimal element of the module K with respect to a suitable order:

Proposition 5.5. Let g = (Ω,Λ) be a solution of the key equation (5.25) satisfying the degree
conditions (5.26) and with components relatively prime (which is unique up to constant multiple
by Th. 5.2). Then g is a minimal element of K under the >−1 order.

61

Proof. An element g = (Ω,Λ) ∈ K satisfies deg(Λ) > deg(Ω) if and only if its leading term with
respect to >−1 is a multiple of e2. The elements of K given by Th. 5.2 have this property and have
minimal possible deg(Λ) (by uniqueness statement of Th. 5.2), so their leading term is minimal
among leading terms which are multiples of e2.

Aiming for a contradiction, suppose that g is not minimal, or equivalently that there is some
nonzero h = (A,B) in K such that LT(h) <−1 LT(g). Then by what said above, LT(h) must be
a multiple of e1, i.e. it LT(h) must appear in A, so

deg(Λ) > deg(A) ≥ deg(B) (5.37)

where the first inequality in (5.37) comes from the assumption that h is minimal (and in particular,
with respect to g).

Being both h and g solutions of the key equation we have that

A ≡ SB mod x2t (5.38)

Ω ≡ SΛ mod x2t (5.39)

Multiplying (5.38) by Λ and (5.39) by B:

ΛA ≡ ΛSB mod x2t (5.40)

BΩ ≡ BSΛ mod x2t (5.41)

and subtracting (5.40) and (5.41), we have

ΛA ≡ BΩ mod x2t (5.42)

Now, by the degree conditions (5.26) we know that deg(Λ) ≤ t and deg(Ω) < deg(Λ), therefore
deg(Ω) ≤ t− 1.

Further, from (5.37) it follows that deg(A) ≤ t− 1 (being deg(A) < deg(Λ) and deg(Λ) ≤ t).

Therefore, while the product on the left side of (5.42) has degree at most 2t − 1, the product on
the right side has degree at most 2t− 2, which is an absurd.

Combining Prop. 5.5 and Prop. 5.4, we see that the special solution of the key equation that we
seek can be found in a Groebner basis for K with respect to the >−1 order. This leads to at least
two possible ways to decode:

i. We can use the generating set {
(S, 1), (x2t, 0)

}
for K, apply Buchberger’s algorithm, and compute a Groebner basis for K with respect to
>−1 directly. Then the minimal element g will appear in the Groebner basis (see Prop. 5.4).

ii. We can alternatively make use of Corollary 5.1); since G =
{

(S, 1), (x2t, 0)
}

is already a

Groebner basis for K with respect to the order >deg(S), we can convert
{

(S, 1), (x2t, 0)
}

into a Grorbner basis G′ for the same module, but with respect to the >−1 order (using an
appropriate algorithm, i.e. the FGLM algorithm). Once we get the basis with respect to the
>−1, we proceed as in approach (i), since we know by Prop. 5.4 that the minimal element
in K will be an element of G′ .

62

Another possibility would be to build up the desired solution of the key equation inductively,
solving the congruences

Ω ≡ ΛS mod xl

for l = 1, . . . , 2t in turn. This approach gives one way to understand the operations from the
well-known Reed-Solomon decoding algorithm due to Berlekamp and Massey.

Example 5.2

We will now see a practical example of application the decoding method (i) above. We will
accompany the calculations with the corresponding implementation in Singular.

Let us consider the Reed-Solomon code over F9 with k = 3 (we then also know that n = q − 1 =
9− 1 = 8, d = q − k = n− k + 1 = 8− 3 + 1 = 6, t = bd−1

2 c = b 6−1
2 c = 2) and generator matrix

G =

 1 1 1 1 1 1 1 1
1 α α2 α3 α4 α5 α6 α7

1 α2 α4 α6 1 α2 α4 α6

 (5.43)

Let us now recall the following result:

Proposition 5.6. Let C be the Reed-Solomon code of dimension k and minimum distance d = q−k
over R = Fq. Then the generator polynomial of C has the form

g = (x− α) · · · (x− αq−k−1) = (x− α) · · · (x− αd−1)

where α is a root of the minimal polynomial associated to Fq.

For example, the generator polynomial for the code we consider in this example is

g = (x− α)(x− α2)(x− α3)(x− α4)(x− α5) (5.44)

where α is a root of the minimal polynomial associated to F9:

> ring R=(3^2,alpha),x,(lp,c);

> minpoly;

1*alpha^2+2*alpha^1+2*alpha^0

> poly g=(x-alpha)*(x-alpha2)*(x-alpha3)*(x-alpha4)*(x-alpha5);

> g;

x5-x4+alpha*x3+x2+alpha*x+alpha3

We use the TOP ordering (command (lp,c)), since the order >−1 corresponds to it.

We assume to transmit the codeword c = 1 + x + x2 + x3 + x4 + x5 + x6 + x7 ∼ 11111111,
corresponding to the first row of matrix G in (5.43):

> poly c=1+x+x2+x3+x4+x5+x6+x7;

We can verify that c is actually a codeword, by verifying that the remainder of the division by the
generator polynomial g is zero:

63

> division(c,g);

[1]:

_[1,1]=x2-x+alpha5

[2]:

_[1]=0

Let us assume that during the transmission of c, an error e = 2x + 2 ∼ 22000000, such that the
received message is

y = c+ e = 00111111 ∼ x2 + x3 + x4 + x5 + x6 + x7

> poly e=2x+2;

> poly y=c+e;

y;

x7+x6+x5+x4+x3+x2

The syndrome of the received codeword is

s(x) =

d−1∑
j=1

y(αj)xj−1 =

5∑
j=1

y(αj)xj−1 = y(α) + y(α2)x+ y(α3)x2 + y(α4)x3 + y(α5)x4

> poly s1=subst(y,x,alpha);

> poly s2=subst(y,x,alpha2);

> poly s3=subst(y,x,alpha3);

> poly s4=subst(y,x,alpha4);

> poly s5=subst(y,x,alpha5);

> poly s=s1+s2*x+s3*x2+s4*x3+s5*x4;

> s;

alpha7*x4+alpha2*x2+alpha3*x+alpha6

At this point, we define the module M from the generators g1 = (x2t, 0), g2 = (s(x), 1) ∈ F9[x]2:

> vector g1=[x4,0];

> vector g2=[s,1];

> module M=g1,g2;

> M;

M[1]=x4*gen(1);

M[2]=alpha7*x4*gen(1)+alpha2*x2*gen(1)+alpha3*x*gen(1)+alpha6*gen(1)+gen(2)

> print(M);

x4,alpha7*x4+alpha2*x2+alpha3*x+alpha6,

0, 1

We now calculate the RGB of M with respect to >−1:

> option(redSB);

> module G=std(M);

64

> G;

G[1]=x2*gen(2)-x*gen(1)+alpha5*x*gen(2)+alpha5*gen(1)+alpha7*gen(2)

G[2]=x2*gen(1)+alpha*x*gen(1)-gen(1)+alpha6*gen(2)

Since the first generator of the GB is smaller, with respect to >−1, than the second one, then
g1 = (α5 − x, α7 + α5x+ x2), this is the minimal element g we look for:

> G[1]<G[2];

1 % the condition at the line above is verified

> print(G);

-x+alpha5, x2+alpha*x-1,

x2+alpha5*x+alpha7,alpha6

and therefore (Ω,Λ) = (α5 − x, α7 + α5x + x2) is the solution of the key equation which verifies
the conditions of Prop. 5.5:

> poly E=G[1][1];

> E;

-x+alpha5

> poly L=G[1][2];

> L;

x2+alpha5*x+alpha7

Before going ahead, let us state the following proposition [2007 Martinez Moro, Munuera Gomez & Ruano],
which will be useful in next steps:

Proposition 5.7. Let us consider the error locator polynomial Λ(x) =
∏
i∈I(1 − αix) and the

error evaluator polynomial Ω(x) =
∑
i∈I eiα

i
∏
j 6=i, j∈I(1− αjx). Then:

i. if η1, . . . , ηr are the roots of Λ(x), then its inverses η−1
1 , . . . , η−1

r are the locations of the
errors;

ii. given the values of α1, . . . , αr corresponding to the error locations as per point (i), the error
values are

ej =
−Ω(α−1

j)

Λ′(α−1
j)

, j = 1, . . . , r (5.45)

where Λ
′
(x) indicates the first derivative of Λ(x). Equation (5.45) is called the Forney formula

for the error value.

The errors positions are then determined from the roots of Λ(x) = α7 +α5x+x2, and to calculate
them we will make an exhaustive search, considering as values for the substitution αi with the
exponent i going from 1 to the code length n = 8:

> subst(L,x,alpha);

alpha7

65

> subst(L,x,alpha2);

alpha5

> subst(L,x,alpha3);

-1

> subst(L,x,alpha4);

alpha5

> subst(L,x,alpha5);

1

> subst(L,x,alpha6);

-1

> subst(L,x,alpha7);

0

> 1/alpha7;

alpha

> subst(L,x,alpha8);

0

> 1/alpha8;

1

We obtained that α7, α8 are the roots of Λ. Being η1 = α0 = (α8)−1, η2 = α1 = (α7)−1, we have
that the errors have occurred in the positions 1 and 2 (or equivalently, in the independent term
and in the one in x).

Now that we have determined the errors positions, we can obtain the errors values too, by using
the evaluator polynomial Ω(x) = α5 − x, and the first derivative of the locator polynomial, i.e.

Λ
′

= dΛ
dx = α5 + 2x (see Prop. 5.7 (ii)):

e1 =
−Ω(α8)

Λ′(α8)
=
α2

α6
= −1

e2 =
−Ω(α7)

Λ′(α7)
=
α6

α2
= −1

> L;

x2+alpha5*x+alpha7

> poly LP=2x+alpha5;

> LP;

-x+alpha5

> subst(-E,x,alpha8);

alpha2

> subst(LP,x,alpha8);

alpha6

> poly e1=alpha2/alpha6;

> e1;

-1

> subst(-E,x,alpha7);

alpha6

> subst(LP,x,alpha7);

alpha2

> poly e2=alpha6/alpha2;

66

> e2;

-1

> poly e_rx=e1+e2*x;

> e_rx;

-x-1

Therefore the error is e(x) = −1− x ∼ e = 22000000 and the decoded codeword is

cdec(x) = y(x)− e(x) = 1 + x+ x2 + x3 + x4 + x5 + x6 + x7 ∼ 11111111

which is correct as we expect, since two errors occurred and our error correction capability is up
to t = 2 errors.

> poly c_dec=y-e_rx;

> c_dec;

x7+x6+x5+x4+x3+x2+x+1

Let us assume now that we have t = 3 errors.

> poly c=1+x+x2+x3+x4+x5+x6+x7;

> poly e=2+2x+2x2;

> poly y=c+e;

> y;

x7+x6+x5+x4+x3

... % we calculate s and M as above

> option(redSB);

> module G=std(M);

> G;

G[1]=x2*gen(2)+alpha5*x*gen(1)+alpha2*x*gen(2)+alpha7*gen(1)+alpha5*gen(2)

G[2]=x2*gen(1)+alpha6*x*gen(1)+alpha5*x*gen(2)+alpha5*gen(1)+alpha3*gen(2)

> print(G);

alpha5*x+alpha7, x2+alpha6*x+alpha5,

x2+alpha2*x+alpha5,alpha5*x+alpha3

> G[1]<G[2];

1

> poly E=G[1][1];

> poly L=G[1][2];

> subst(L,x,alpha);

alpha6

> subst(L,x,alpha2);

alpha3

> subst(L,x,alpha3);

-1

> subst(L,x,alpha4);

alpha

> subst(L,x,alpha5);

alpha

> subst(L,x,alpha6);

67

alpha5

> subst(L,x,alpha7);

alpha6

> subst(L,x,alpha8);

-1

and we see from the fact that we cannot find a root of Λ(x), that we are not capable to correct
the 3 errors that have occurred. Now, in this case we could not correct the errors, but the fact to
have more than 2 errors (our RS code’s correcting capability) could alternatively have lead to the
case that we were detecting another codeword, still part of the codebook, but different than the
transmitted one.

5.5 Decoding of QC Codes Formed by RS Codes

Example 5.3

Let us see an example of QC code over Fq = F9, with index l = 2, and length n = m · l = 8 · 2 = 16
(m is what we have called n in Example 5.2), generated by

g = (f1g, f2g) ∈
(
R

I

)2

(5.46)

where g as in (5.44), with g|xm−1, gcd(fi, x
m−1) = 1 and deg(fi) < m−deg(g), 1 ≤ i ≤ l; further,

we have that in our case R/I = F9/〈x8−1〉. The minimum distance is D = l·d = 2·6 = 12 (where d
is the distance of the RS code considered also in Example 5.2), and the decoding algorithm we have
introduced in Section 5.3, can correct at most t errors, where t =

⌊
D−1

2

⌋
=
⌊

12−1
2

⌋
=
⌊

11
2

⌋
= 5.

Let us assume we want to transmit the information polynomial a (which in our example is a =
x2 − x+ α5), with deg(a) < m− deg(g). As we know, each codeword has the form

c = ag = (af1g, af2g) mod xm − 1 (5.47)

We report below the Singular code:

> ring R=(3^2,alpha),x,(lp,c);

> poly g=(x-alpha)*(x-alpha2)*(x-alpha3)*(x-alpha4)*(x-alpha5); % generator polynomial

> division(x8-1,g);

[1]:

_[1,1]=x3+x2+alpha3*x+alpha % quotient

[2]:

_[1]=0 % remainder

% from the above we see that g|x^8-1

> poly a=x2-x+alpha5; % information polynomial

We now consider f1, f2 which appear in (5.47), e.g. f1 = x2, f2 = 1, and calculate their inverses.
We want to find f−1

1 such that f1f
−1
1 = 1, i.e. x2f−1

1 = 1, and this is f−1
1 = x6, since x2x6 = x8 ≡

1 mod x8 − 1. Trivially, f−1
2 = 1.

We report below the QC encoding procedure:

68

> division(a*f1*g,x8-1);

[1]:

_[1,1]=x+1

[2]:

_[1]=x7+x6+x5+x4+x3+x2+x+1 % a*f1*g mod x^8-1

> poly c1=x7+x6+x5+x4+x3+x2+x+1;

> division(a*f2*g,x8-1);

[1]:

_[1,1]=0

[2]:

_[1]=x7+x6+x5+x4+x3+x2+x+1 % a*f2*g mod x^8-1

> poly c2=x7+x6+x5+x4+x3+x2+x+1;

> vector c=[c1,c2]; % transmitted codeword of the QC code

> print(c);

[x7+x6+x5+x4+x3+x2+x+1,x7+x6+x5+x4+x3+x2+x+1]

Some errors happen during the transmission and affect our QC codeword c = (c1, c2):

> poly e1=2x+2;

> poly e2=2x7+2;

> poly r1=c1+e1;

> poly r2=c2+e2;

> vector r=[r1,r2];

> print(r);

[x7+x6+x5+x4+x3+x2,x6+x5+x4+x3+x2+x]

We then decode r1 as we did for the RS code in section 5.4 (RS code which constitutes the l = 2
blocks of the QC code considered in this example), as we considered the same codeword, i.e.
c1 = 1 +x+x2 +x3 +x4 +x5 +x6 +x7 and the same error, i.e. e = 2 + 2x, obtaining cdec = c1. At
this point we apply the algorithm introduced in Section 5.3 for decoding of restriction-1 1-generator
QC codes:

> poly c1_prime=c1;

> c1_prime;

x7+x6+x5+x4+x3+x2+x+1

> poly c2_prime=c1_prime*inv_f1*f2;

> division(c2_prime,x8-1);

[1]:

_[1,1]=x5+x4+x3+x2+x+1

[2]:

_[1]=x7+x6+x4+x3+x2+x+1 % c2_prime mod x^8-1

> c2_prime=x7+x6+x5+x4+x3+x2+x+1;

> vector c_prime=[c1_prime,c2_prime];

> c_prime-r;

x7*gen(2)+x*gen(1)+gen(1)+gen(2)

> print(c_prime-r);

[x+1,x7+1]

and since wt(|c′−r|) = 4 ≤
⌊
D−1

2

⌋
= 5, we then exit the WHILE cycle when executing the decoding

69

algorithm of Section 5.3, since our QC code can correct up to min
(
l
⌊
d−1

2 + l − 1
⌋
,
⌊
D−1

2

⌋)
=

min(5, 5) = 5:

Let us now see what happens when we have 3 errors in the block corresponding to l = 1 and 2
errors in the block corresponding to l = 2; this is still within the error correcting capabilities of
our QC code, i.e. 5.

> poly e1=2+2x+2x2;

> poly e2=2+2x;

> poly r1=c1+e1;

> r1;

x7+x6+x5+x4+x3

> poly r2=c2+e2;

x7+x6+x5+x4+x3+x2

> vector r=[r1,r2];

We cannot decode r1 (see last part of Example 5.2). We therefore move to the second WHILE
cycle, i.e. i+ 1 = 2, where we can decode the RS codeword c2

> poly c2_prime=1+x+x2+x3+x4+x5+x6+x7;

> poly c1_prime=c2_prime*inv_f2*f1;

> division(c1_prime,x8-1);

[1]:

_[1,1]=x+1

[2]:

_[1]=x7+x6+x4+x3+x2+x+1 % c1_prime mod x^8-1

> c1_prime=x7+x6+x4+x3+x2+x+1;

> vector c_prime=[c1_prime,c2_prime];

> c_prime-r;

x2*gen(1)+x*gen(1)+x*gen(2)+gen(1)+gen(2)

> print(c_prime-r);

[x2+x+1,x+1]

and since wt(c
′−r) = 5 ≤

⌊
D−1

2

⌋
= 5, our QC code can handle the fact that the first block cannot

be decoded, recovering the whole information from the second block.

70

Bibliography

[1970 Hartley] Rings, Modules and Linear Algebra, B. Hartley & T.O. Hawkes, Chapman & Hall
Mathematics Series, Cambridge University Press, 1970.

[1997 Little, Saints & Heegard] On the structure of Hermitian codes, J. Little, K. Saints & C.
Heegard, J. Pure Appl. Algebra, no. 121, pp. 293-314, 1997.

[LallyPhD] PhD dissertation, K. Lally.

[2001 Lally & Fitzpatrick] Algebraic structure of quasicyclic codes, K. Lally & P. Fitzpatrick, Dis-
crete Applied Mathematics, no. 111, pp. 157-175, 2001.

[2002 Lally] Quasicyclic codes - some practical issues, K. Lally, International Symposium on In-
formation Theory (ISIT), June-July 2002.

[lecture cyclic] http://www.math.msu.edu/∼jhall/classes/codenotes/Cyclic.pdf

[2003 Huffman & Pless] Fundamentals of Error-Correcting Codes, W.C. Huffman & V. Pless,
Cambridge University Press, 2003, ISBN 0-521-78280-5.

[2004 Cox, Little & O’Shea] Using Algebraic Geometry, D. Cox, J.Little & D. O’Shea, Springer,
2004, ISBN 0-387-20706-6.

[2005 Greuel, Pfister & Schoenemann] SINULAR 3.0, A Computer Algebra System for Polynomial
Computations, G.-M. Greuel, G.Pfister & H. Schoenemann, Centre for Computer Algebra,
University of Kaiserslautern, http://www.singular.uni-kl.de, 2005.

[2006 Cox, Little & O’Shea] Ideals, Varieties and Algorithms, D. Cox, J.Little & D. O’Shea,
Springer, 2006, ISBN 978-0-387-35650-1.

[2007 Martinez Moro, Munuera Gomez & Ruano] Bases de Groebner: aplicaciones a la codifica-
cion algebraica, E. Martinez Moro, C. Munuera Gomez & D. Ruano Benito, Escuela Vene-
zolana de Matematicas, 2007, ISBN 978-980-261-087-7.

71

