
Master Thesis: Programming Technologies

End-user Programming

Aalborg University:

Software Engineering, SW10, Spring 2010

Anh Tuan Nguyen Dao & Peter Heino Bøg

June 14, 2010

Department of Computer Science

Software

at Aalborg University

Selma Lagerlöfs Vej 300

9220 Aalborg Ø

Telephone: +45 9940 9940

Fax: +45 9940 9798

E-mail: i16@cs.aau.dk

http://www.cs.aau.dk

Title:

End-User Programming

Theme:

Master Thesis

Programming Technologies

Project Unit:

Software Engineering

10th semester, Spring 2010

Project Group:

d609a

Participants:

Anh Tuan Nguyen Dao

Peter Heino Bøg

Supervisor:

Kurt Nørmark

Copies: 4

Page Count: 100

Appendix: A-G

Finished: June 14, 2010

Synopsis:

The theme of this project is end-user programming,

and we focus on how to teach programming to end-

users who had never programmed before. We de-

velop a tool (prototype) as an extension to a draw-

ing application along with a domain specific script-

ing language. The prototype uses the principles of

self-disclosing in the concept of Learning by Obser-

vation. The goal is to teach end-users to program us-

ing the designed scripting language while they use the

drawing application. Furthermore, we develop an al-

gorithm to recognize iterative tasks such that a script

could be generated to complete the tasks. The proto-

type and the scripting language are expansions of the

work, done in our previous project, SW9.

We end with a usability test which proves part of our

hypotheses, such as self-disclosing works as a learn-

ing concept. However, we did not prove this entirely

for the group of end-users, we originally intended, but

more for end-user programmers. Overall, the project

and test are a success, and we find several interest-

ing conclusions about the field of end-user program-

ming.

The contents of this thesis is freely available, but publication (with reference source) may only happen af-

ter agreement with the authors.

3

Preface

This thesis documents a project made by the Software Engineering group d609a at the

Department of Computer Science at Aalborg University. It is made on the 10th semester,

SW10, and the group is part of the Programming Technology department. The theme of

this semester is End-User Programming. The project period started at February 1st, 2010,

and ended June 14th, 2010, and it is a continuation of the previous project, SW9.

The reader is expected to have a basic knowledge in programming and computer science

in general. It is, however, not required to have read the previous project report from SW9.

Whenever the words “we” and “our” are used it refers to the authors of this thesis.

Throughout the thesis we might use “he” or “his” in reference to a person, such refer-

ences should be read as “he/she” and “his/her” respectively.

References to literature and sources in this thesis are written in square brackets, such as

[nov], and references to figures and tables in the appendix are written with a letter and a

number, such as Listing C.3. The bibliography can be found in Appendix A. The code de-

veloped for this project can be found on the appertaining CD-ROM, refer to Appendix F.

The order of the content in this thesis does not necessarily reflect the chronological or-

der of our work during the project period.

We would like to thank our testers:

Allan, Bo, Carsten, Daniel, Helena, Joan, Kaj, Kaj, Kasper,

Kim, Lars, Luxshan, Martin, Peter and Simon

And an extra thanks to Allan for lending us his camera.

Group d609a

Anh Tuan Nguyen Dao Peter Heino Bøg

4

Contents 5

Contents

1 Introduction 7

1.1 Previous Work . 8

1.2 Development Strategy . 10

1.3 Thesis Structure . 10

2 Background 11

2.1 Definitions and Usages . 11

2.2 End-User Programming . 13

2.3 Learning Barriers . 19

2.4 Main End-User Programming Research Threads 22

3 Analysis 25

3.1 Our Focus . 25

3.2 Programming by Demonstration . 26

3.3 Learning by Observation . 30

3.4 Discussion . 32

4 Problem Statement 35

4.1 Hypotheses . 35

4.2 Delimitations . 36

5 Design 39

5.1 Scripting Language . 40

5.2 Architecture . 46

5.3 Iterative Task Recognition . 50

5.4 Minor Design Improvements . 59

6 Contents

5.5 Implementation . 60

6 Usability Test 65

6.1 Purpose and Goals . 65

6.2 Testing Methods . 66

6.3 Approach . 67

6.4 Preparation . 69

6.5 Test Round 1 and Results . 76

6.6 Test Round 2 and Results . 83

6.7 General Feedback . 87

6.8 Result Discussions . 88

7 Epilogue 95

7.1 Conclusion . 95

7.2 Project Evaluation . 97

7.3 Future Work . 99

7.4 Putting DASA Into Perspective . 100

A Bibliography i

B Thoughts v

C Scripting Language Syntax vii

D Scripts xi

E Test Material xiii

E.1 Introduction Questions . xiii

E.2 Assignments . xiv

E.3 Questionnaire . xvii

F CD-ROM xxi

G Danish Synopsis xxiii

7

Chapter 1

Introduction

Nowadays, we find computers everywhere, laptops, desktops, in washing machines, cell

phones etc., and they are there to support us in our daily lives and works. Even with

their presences all around us, it is far from all users who know what the computers are

capable of; These machines are very good at processing information and doing repetitive

tasks. Ideally, every computer users know how to utilize the full computer power, but this

is far from the reality. The majority of computer users are end-users who are computer

users with no programming skills. These end-users interact with the computers through

computer programs (applications) with graphical user interfaces (GUI) provided by the

software designers. It is like Alice looking at the garden in Wonderland through a key-

hole, as phrased by David Canfield Smith et al. in an article about end-user programming

[SCT00a]—a restriction for end-users.

While the restriction is a wall between the end-users and their computers, one goal

with end-user programming research is to break down this wall by empowering the end-

users with the programming skills. However, the general problem is that many end-users

simply do not have time or are inclined to learn a programming language; others can-

not see the need of programming, because the existing applications are sufficient to their

needs. Programming by Demonstration (PBD) is a concept to help end-users obtaining the

programming skills.

Another goal in the end-user programming research is to empower those end-users

who already are on the other side of the wall, end-user programmers, with software en-

gineering principles. End-users programmers are not novice nor professional program-

mers, they are programmers whose job functions are other than programming. The general

problem with end-user programmers is the lack of reliability and security in the software

8 Chapter 1. Introduction

created by these programmers. A spreadsheet debug agent is a system to help end-user

programmers creating more reliable spreadsheet programs.

In this project, we deal with the general problem of empowering end-users with pro-

gramming skills. We propose a prototype of an existing concept, Learning by Observation

(LBO), combined with the PBD principles, and we believe this prototype can teach end-

users the fundamental programming principles. The prototype is aimed for end-users who

do not have time to learn to program, but can also appeal to some end-user programmers.

1.1 Previous Work

This project is SW10 and is an indirectly continuation of the previous project, SW9. We

did some experiments in SW9, and the result is an application which works as the basement

for the prototype in this project. Figure 1.1 shows a screenshot of the original DrawTools

application before our experiments, and Figure 1.1 shows how the same application looks

like after our experiment.

DrawTools is a drawing application created by “Alex Fr” for a tutorial and released on

The Code Project.1 It is written in C# using Visual Studio2, and has been chosen because

of its simplicity in both design and interface.

1Link to the article on codeproject.com: http://www.codeproject.com/KB/graphics/

drawtools.aspx.
22005 edition, but we converted it to 2008

http://www.codeproject.com/KB/graphics/drawtools.aspx
http://www.codeproject.com/KB/graphics/drawtools.aspx

1.1. Previous Work 9

Figure 1.1: A screenshot of the original DrawTools application.

Figure 1.2: A screenshot of how the original DrawTools application looks like after our experi-

ments in SW9.

10 Chapter 1. Introduction

1.2 Development Strategy

For the analysis, our approach is as following. We first make analysis in the area of end-

user programming to get some background knowledge. The result of the analysis give us

a problem which we try to find a solution for. For the solution, we make further analysis

within the area of the found problem and looking at some related work.

The development process is iterative with incremental implementation of the proto-

type. We do not use a development method fully, but are still inspired by Scrum, because

of its short iteration circuits (sprints). In the same way are we planning the development

phase with design, implementation and internal black box tests.

To test our prototype, we use a usability testing method. Like the development phase,

the test phase is also iterative with several testing rounds and implementation improvement

phases in between.

1.3 Thesis Structure

The following is a list of chapters in this thesis with a description of what each chapter is

about.

Chapter 2, Background, this chapter gives an overview of the area of end-user program-

ming.

Chapter 3, Analysis, this chapter gives a more concrete analysis of the area with focus on

parts that are related to our work.

Chapter 4, Problem Statement, the consists of hypotheses and delimitations for this project.

Chapter 5, Design, this chapter describes the design of our prototype in details. This in-

cludes new features and improvements of existing.

Chapter 6, Test, this chapter documents our preparation and results for the usability test of

our prototype.

Chapter 7, Epilogue, in this chapter we conclude our work with this thesis. In addtion,

we also make a critical evaluation of the project period, and putting our prototype into

perspective regarding to the area of end-user programming.

Finally, we have several appendices which includes the bibliography.

11

Chapter 2

Background

In this chapter, we describe broadly the area of end-user programming as a result of our

analysis in this area. We start with some definitions and usages to clarify some terms

used throughout this thesis. Following, is a section about what an end-user programmer is

along with different end-user programming approaches. We also describe problems which

end-users are facing when learning to program, the so-called learning barriers. Finally, we

finish this chapter with a section about two main end-user programming research threads.

Decisions, based on this chapter and related to our project, are reserved and described

in the next chapter.

2.1 Definitions and Usages

The following sections we define some of the more important terms used throughout this

thesis.

2.1.1 Programming

Before we can discuss about end-user programming, we need a clear definition of what

we mean by programming. Different sources on the Internet define programming in many

ways, such as “the writing of a computer program” (answers.com), “creating a sequence

of instructions to enable the computer to do something” (thefreedictionary.com), and “the

act, process, or work of writing or developing computer programs” (yourdictionary.com).

All of these are repeated throughout the Internet, but are all too unspecific, e.g. requiring a

further definition of what a program is, and finally it is not obvious where these definition

12 Chapter 2. Background

originates from.

Kelleher and Pausch [nov], on the other hand, defines programming as the following:

“The act of assembling a set of symbols representing computational actions.

Using these symbols, users can express their intentions to the computer and,

given a set of symbols, a user who understands the symbols can predict the

behavior of the computer.”

As they also mention in their article, this definition excludes many programming by

demonstration systems (like some mentioned by Cypher et al. [CHK+93]). These sys-

tems use internal heuristics to generate a program for the user which makes it impossible

for the user to accurately predict what program will be produced.

This definition is much more specific, and we feel this describe our own definition of

programming the best.

In our case it is defined as programming to use the scripting language to do the job,

but it is not programming to draw and let the application create a script to finish the job as

the result of this approach cannot always be predicted accurately.

The set of symbols mentioned in the definition of programming can be seen as the

programming language. However, some authors define a programming language as a

machine-readable artificial language that is able to express all algorithms, meaning it is

Turing complete. This excludes some of the languages and systems mentioned by Kelleher.

2.1.2 End-User

In the area of computer science, end-users are consumers of software applications. More

generally, an end-user is “the ultimate user for which something is intended”, according

to Webster’s Online Dictionary.

If we consider software applications as tools for end-users, then programming lan-

guages are also tools and software in some sense. A programmer who uses a programming

language created by another programmer must then be an end-user per definition. How-

ever, users who know how to do programming are not our primary target group, hence, we

reconsider the definition of the term end-users.

Throughout this master thesis, we use the term end-users to cover users who know how

to use a computer and applications which are within their job domain with no programming

skills. As an example, a secretary needs to write letters and handle accountings, she uses

a text editor and a spreadsheet application, but she does not know about other kind of

2.2. End-User Programming 13

software applications. She is an end-user. A novice programmer who uses a programming

language created by professional programmers is not an end-user.

2.1.3 Repetitive and Iterative Tasks

In general, the term iteration is a synonym for a repetition, but in the context of this thesis

we draw a distinction between these two terms. We define an iteration to be a set of actions,

and a repetition is two consecutive iterations. Notice that an iteration can consist of one

action.

We then draw a distinction between an iterative task and a repetitive task. An iterative

task consists of two or more iterations, and a repetitive task consists of two or more itera-

tions with possible pause in-between the iterations. E.g. performing a search and replace

of a certain word in a text document two or more times is an iterative task wherein the

search and replace actions together forms one iteration. On the other hand, checking email

everyday is a repetitive task. Generally, iterative tasks are a subset of repetitive tasks.

In this thesis we consider the problems related to tasks which are iterative. It means

that a user can only complete these tasks by repeatedly performing an action or series of

actions consecutively.

2.2 End-User Programming

This section gives an introduction of end-user programming. It starts with a definition

of what an end-user programmer is followed by different kind of end-user programming

approaches which all are different from the traditional semantic programming approach.

2.2.1 End-User Programmer

There are different kinds of programmers: Professional, novice and end-user [MKB06].

The professional programmer is someone whose primary job function is to develop or

maintain software. The primary goal for these programmers is to use programming to de-

velop the software program itself. These programmers typically have significant training in

programming, e.g. with a bachelor in computer science or higher. The novice programmer

is basically a professional programmer in training and will end up with the same theory

knowledge as the professional programmer already have.

The end-user programmer is one who do programming, but not as the primary job func-

14 Chapter 2. Background

tion. Generally, the end-user programmers have no interest in the programming process

itself, but use programming to support in their primary job such as accounting, designing a

web page, doing office work, scientific research, entertainment, etc. [BAM06]. Such pro-

gramming is end-user programming. For example, a teacher creates a spreadsheet to track

the grades of the students, and a graphical designer creates a script to apply modifications

to a large number of photos.

2.2.2 End-User Programming Approaches

The term end-user programming covers the area of programming which aims for end-users

whose primary jobs are other than programming. Furthermore, programming in this con-

text is not only meant as traditional semantic programming with general purpose program-

ming languages like C, C#, Java etc., but can be as simple as altering predefined application

preferences. The key purpose with end-user programming is to empower end-users with

the ability to customize an application or solve computable tasks through programming,

and thereby, obtaining better results or solve problems more effectively. In the following,

we describe different end-user programming approaches, starting with the simplest one.

Preferences Programming

Preferences are predefined alternatives provided by the application designer and used to

accommodate the need of different types of end-users and usages. They are an easy way

for an application designer to add alternatives, but they easily get too complicated which

sets a limitation on how many preferences there can be in an application.

Figure 2.1 is a screenshot of the preferences dialog available in the Opera Browser. It

is a good example of how several preferences can be changed to fit the need of as many

end-users as possible. Most preferences, however, only have a few prefixed options to

choose from through either a drop-down selection box or a checkbox. This limits the

amount of possible changes an end-user can really do. Figure 2.1 also shows that there are

several other pages placed as tabs in the same dialog box. This amount of choices can be

overwhelming to any user and even the programmer behind the application. Many larger

applications have an even more extensive preferences dialog, such as Adobe Acrobat and

Visual Studio.

In general, preferences give only a limited number of alternatives and is not general-

ized enough to be considered as traditional programming [CHK+93].

2.2. End-User Programming 15

Figure 2.1: The preferences dialog available in the Opera Browser.

Programming by Demonstration

Macro recorders are used to record users inputs for later to repeat them. These recorded

inputs are low-level events such as a mouse click at position x,y which makes it hard to

reproduce the exact same effect, if for instance the end-user was clicking on a button at

the position x,y, and the window of the application is moved when re-executing the macro.

Programming by demonstration, also known as programming by example, is basically a

macro recorder which instead of recording low-level events, produces a generalized pro-

gram of mid-level events or user actions. So instead of move mouse to position (x,y) and

click, it would say click on button Z or invoke command of button Z. In general, the end-

user is teaching the PBD system what to do by showing the actual actions to the system.

An example of a PBD based application is Stagecast Creator created by David Canfield

Smith, Allan Cypher and Larry Tesler [SCT00b] aimed for children to learn to program

by using rule-based programming style. Stagecast Creator is a simulation game which lets

the end-users create rules by demonstrating the simulation the rules, and by combining

the rules the end-users can create small games or simulations. Figure 2.2 shows a picture

16 Chapter 2. Background

of a pirate game created in Stagecast Creator. In this game, the creator has defined some

rules for when the pirate moves round on the map and what should happen when the

pirate hits a chest—defining if-condition rules. The Stagecast Creator also supports use of

variables which gives end-users opportunities to create more complex rules. Other similar

applications as Stagecast Creator are ToonTalk1 and Scratch2 which are also aimed for

children.

There exist two PBD systems, Eager created by Allan Cypher[Cyp93] and Familiar

by Gordon W. Paynter[Pay00], which are not game simulations and aimed for a different

group of end-users, namely adults. We will return to these PBD systems later in Sec-

tion 3.2.

Figure 2.2: A screenshot of a pirate game in Stagecast Creator.

1More about ToonTalk at http://www.toontalk.com
2More about Scratch at http://scratch.mit.edu

http://www.toontalk.com
http://scratch.mit.edu

2.2. End-User Programming 17

Spreadsheet Programming

Spreedsheets are one of the most used systems in the world, both businesses and individ-

uals use spreedsheets to create simple calculations or even large and complex financial

models [RA09]. In spreadsheets end-users create formulas and build models in the form

of functions and cell references, thus, a spreadsheet becomes a program in some sense.

In essence, the end-users do first-order functional programming in spreadsheet program-

ming [RA09]. Spreadsheet programming does not require any programming skills, since

end-users create functions as mathematical expression and can switch between graphical

interaction and programmatic interaction [DB09]. Furthermore, spreadsheets also con-

stantly give feedback to the end-users as they make progress even when the program is not

complete or contain errors. This means that the end-users can keep making progress with-

out getting interrupted with compile and tests of programs as with textual programming.

Microsoft Excel is an example of a very popular spreadsheet application, shown in Fig-

ure 2.33 This example shows how rich Microsoft Excel is with functionalities for creating

charts and models.

Figure 2.3: A picture of Microsoft Excel which contains a lot of spreadsheet related functionalities.

3This picture is found at http://pubpages.unh.edu/~pit2/excel.htm.

http://pubpages.unh.edu/~pit2/excel.htm

18 Chapter 2. Background

Script Programming

Script programming is when programming using a scripting language. A scripting lan-

guage is a small language, often with a vocabulary specially designed for the application

and its domain. These languages are also known as extension languages or embedded

languages, because they differ from the application code. Scripting languages are the one

of these programming approaches which is closest to a system programming language.

Examples of such languages are Tcl4, Lua5 and Visual Basic for Application (VBA)6.

Typically, these languages are tools for end-users to customize and control one or more

applications and are less daunting than system programming languages, but can still be

too complex for some end-users. This approach is considered as programming with some

limitations within the application domain. E.g. scripts in Microsoft Word’s VBA can only

be used for functionalities within the application itself such as open a new document and

apply a template.

John K. Ousterhout[Ous98] furthermore describes scripting languages as “glue lan-

guages”. This is because they are also often used to glue together components that might

have be written in a system programming language. One of the great advantages of using

scripting languages for such a task is because they tend to be typeless. That way their

interfaces do not need to be prepared for all kinds of types that the different system pro-

gramming language have. Scripting languages are also usually not compiled, but instead

interpreted. This of course reduces performance as the interpreter needs to do error check-

ing every time the script is executed. It will, however, also decrease development time as

the programmer do not need to compile before testing. This is an advantage for end-user

programmers as they can see the result of their newly written code much faster.

Just-in-Time Programming

Unlike the previous programming approaches which are programming solutions, the just-

in-time programming approach is a situation wherein an end-user can be and try to solve

through programming [Pot93]. By programming solutions, we mean the different way of

programming as described in the previous programming approaches such as rule-based

programming in PBD system, first-order functional programming in spreadsheet program-

ming etc. The fact is that any programming system or language can be used in just-in-time

4Tcl website: http://www.tcl.tk
5Lua website: http://www.lua.org
6VBA website: http://msdn.microsoft.com/en-us/isv/bb190538.aspx

http://www.tcl.tk
http://www.lua.org
http://msdn.microsoft.com/en-us/isv/bb190538.aspx

2.3. Learning Barriers 19

programming, e.g. C, PBD or a scripting language.

This programming approach occurs when an end-user encounters a computable sub-

task and creates a program to solve it [Pot93]. The end-user creates the program, executes

it and then discards it. When the subtask has been solved with the program, the end-user

continue with the original task. The goal of just-in-time programming is to let the end-

user programmatically solve a subtask of a main task, which is already in progress, more

effectively. In other words, the end-user creates a program when needed—just in time

programming.

2.3 Learning Barriers

Ko, Myers and Aung [KMA04] describes six types of learning barriers for end-users when

they try to learn and use programming languages and their environments. They made

a study of beginner programmers learning Visual Basic.NET as a base for these barriers.

Following, is a list of these barriers where the headline (bold text) and the short description

(italic text) are taken from their article, while we add our interpretation of it:

Design “I don’t know what I want the computer to do”

Many beginner end-user programmers simply do not know how to look at a problem

in an algorithmic way. This makes it impossible for them to even begin expressing

the problem in a way a computer would understand.

Selection “I think I know what I want the computer to do, but I don’t know what to use”

If an algorithmic solution has been found, the next big problem is how to express it in

a certain language such that the compiler/interpreter can understand it. This includes

using the correct components, structures and functions which might be difficult to

find even if a help-system exists as the end-user might not now what to search for.

Coordination “I think I know what things to use, but I don’t know how to make them

work together”

This barrier exists when the end-user know what components to use, but do not

know how to make them work together, e.g. as a result of wrong assumptions of the

components behavior. One test-subject called it “the invisible rules”.

Use “I think I know what to use, but I don’t know how to use it”

The use barrier happens when end-users know what to use, but not how to use it.

20 Chapter 2. Background

This is often because the actual use of the component or structure is somehow hidden

or obscure.

Understanding “I thought I knew how to use this, but it didn’t do what I expected”

The understanding barrier often exists at compile or runtime when the code do not

do as expected, and the end-user do not know what part of the code is right and

wrong. At compile time this might be due to a bad respond from the compiler which

might say it is missing a symbol at some line, but the end-user do not know where

this symbol should be.

Information “I think I know why it didn’t do what I expected, but I don’t know how to

check”

If an end-user has an idea of what might have gone wrong at compile or runtime,

the end-user might have problems figuring out how to check for this. This could

be because, the end-user simply does not notice different information given by the

system, but the system might also lack these information all together.

Ko, Myers and Aung relates these six learning barriers to Norman’s Gulf of Execution

and Evaluation [Nor88]. The gulf of execution is the difference between a user’s intentions

and the available actions, while the gulf of evaluation is the effort of deciding if the expec-

tations have been met. Design, Coordination and Use share characteristics with only gulf

of execution while Understanding only shares with gulf of evaluation. The last two, Selec-

tion and Information shares characteristics with both gulfs. To bridge the gulf of execution

Norman suggests that the system should have a visible constraints on what actions are

possible, e.g. by explaining the “invisible rules” mentioned with the Coordination barrier.

Bridging the gulf of evaluation Norman suggests that the system states are accessible and

understandable relative to a user’s expectations, e.g. by providing an extensive debugging

tool which shows the content of each variable or otherwise illustrates what the program

has done and is going to do.

The six learning barriers are related in such a way that fixing one of them might reduce

how much another barrier occurs. Ko, Myers and Aung found that in Visual Basic.NET

Selection, Use and Coordination barriers most often led to Understanding and Information

problems which could imply that many problems related to the debugging phase actually

originates from invalid assumptions of the usage of different components and structures.

Locating these barrier relations for a system can therefore give a good illustration of where

the main focus should be when changing the system.

2.3. Learning Barriers 21

2.3.1 Programming Barriers

Kelleher and Pausch [nov] defines a taxonomy for end-user systems. The taxonomy sepa-

rates all of the systems into groups of what their main purposes are, starting with whether

they are meant to teach the end-user how to program or if they are used to empower the

end-user with a new tool to solve a task. They also explain what kind of problems or

barriers exists within each of these groups. Furthermore, they describe two kind of more

general barriers, and these are mechanical and sociological barriers.

The mechanical barriers are primarily about the programming language which the sys-

tem is using. One common problem is that they are heavily influenced by the prevalent

general-purpose language of the time of the system. Typically this means that C have influ-

enced many systems from the 80s, Java have influenced systems from the 90s and C# have

influenced recent systems. Many end-user programming systems have, however, been in-

spired by existing end-user systems such as Logo. This both include the basic concept

behind the system, e.g. the Logo Turtle, and the language syntax, as a dialect of Lisp. The

main problem with this is the fact that many of these systems are either too difficult for

an end-user, or they get obsolete to quickly as a new prevalent general-purpose language

arrives. Those systems which are not heavily influenced by a general-purpose language,

have a different problem. They are too different which makes it more difficult for an end-

user to make the move from the learning language to a general-purpose language. Kelleher

and Pausch bring up the idea of an intermediate language between the learning languages

and the general-purpose languages to make the transition easier.

The sociological barriers is about why some end-users choose not to program. The

first reason is because, they do not see a reason to do so. This would require a advertising

campaign rather than a system. The second reason is the social support. It is more fun and

easier to learn in groups, but in the area of programming, it can be difficult to find such

a group in the near vicinity of the end-user. Some systems try to handle this problem by

creating online communities where end-users can share examples and their experience.

22 Chapter 2. Background

2.4 Main End-User Programming Research Threads

End-user programming has many research threads, and they all deal with the problem of

end-user programming from different perspectives. In this section we introduce two main

research threads and clarify which direction we cover in this thesis.

2.4.1 End-User Development

This research thread is also known as end-user software engineering [KW09]. It is not

about turning end-user programmers into software engineers, nor does it ask them to think

in software engineering terms in a software engineering cycle—requirements specifica-

tion, design and reuse, test and verification etc. [Bur09, KW09]. The focus of this study

is to develop methods to empower end-user programmers with the ability to create reli-

able software using software engineering concepts. The idea is to create behind-the-scene

reasoning tools which monitor end-user programmers as they do programming. The tools

functioning as guards against possible software errors and help the end-user programmers

to detect and localize them. Furthermore, the target group of end-users for this research is

those end-users who already do end-user programming.

Because of the huge number of end-user programmers, there is a potential danger with

software programs created by these programmers, they riddle with errors [Har04]. Spread-

sheet programming is widely used by end-user programmers [Bur09], and it is also in this

programming approach where we find many examples of serious consequences caused by

errors in spreadsheet programs7. Margaret Burnett, in her research of end-user develop-

ment, propose a tool WYSIWYT - What You See Is What You Test8 which help test and verify

data dependencies in spreadsheet programs. This approach helps end-user programmers

to be aware of errors in spreadsheet programs which otherwise are not visible—recall that

in spreadsheet programming, the end-user programmer is not interrupted by errors.

2.4.2 Programming by Demonstration

There are two types of PBD systems which aim at different groups of end-users. The first

type is simulations (Stagecast Create, ToonTalk), they are aimed for children, but study

has shown that also adults find these PBD systems interesting [SCT00a]. The goal of

7Spreadsheet mistakes stories can be found at http://www.eusprig.org/stories.htm
8More about WYSIWYT can be found in [Bur09], [KJR00]

http://www.eusprig.org/stories.htm

2.4. Main End-User Programming Research Threads 23

these systems is to learn end-users to think algorithmic while solving problems regarding

creation of simulations and games in PBD environments. E.g. end-users indirectly learn

if-statements when creating rules in Stagecast Creator. Imperical evidence shows that chil-

dren who uses Stagecast Creator tend to continue with programming, and some children

also turn to textual programming later on.

The second type of PBD systems is recorder, aimed for adults. The goal of these

systems is not to learn end-users programming, but rather aid them in their daily work with

a computer. Macro recorder, Eager and Familiar are examples of such systems. Unlike

Eager and Familiar, the macro recorder requires end-users to implicitly demonstrate what it

should do. It is therefore more appropriate to categorize the macro recorder as a simulation,

but is mentioned under recorders, since we have chosen to divide the PBD systems after

their goals.

2.4 Summary

At the beginning of this chapter we made several definitions starting with our understand-

ing of what programming is. Afterwards we defined what an end-user and end-user pro-

grammer is and what the difference between repetitive and iterative tasks are. We then

looked at different programming approaches such as preferences, programming by demon-

stration, spreadsheet programming and script programming. Here we also introduce the

term of just-in-time programming.

The next part of the chapter described the different learning barriers that an end-user

might encounter named design, selection, coordination, use, understanding, information

and coordination.

Finally, we describe the two main threads in the end-user programming research area.

25

Chapter 3

Analysis

In this chapter, we describe and discuss about more domain specific topics regarding to

our prototype. The chapter starts with a section about our decisions based on the previous

background chapter. These decisions lead our focus on two main topics, Programming by

Demonstration and Learning by Observation. We describe some related work, and how

the work can be used for our prototype.

3.1 Our Focus

Based on the background chapter, we here take some decisions regarding to the end-user

programming area. The decisions are to narrow down our focus on some topics related to

our intentional prototype.

From the broad analysis of end-user programming, we find an interesting problem

about end-users. Recall that end-user programming is about empowering end-users with

programming skills or empowering end-user programmers with software engineering prin-

ciples.

We choose to focus on end-users and not end-users programmers, but our goal is to

turn end-users into end-user programmers. We have seen that PBD is aimed for end-users,

and we, therefore, decide to look further into related work in this area. However, PBD is

time consuming, and end-users are not inclined to learn to program, but this is due to the

time required of the learning process. Therefore, we believe that a concept called Learning

by Observation is the solution for the time consuming problem.

26 Chapter 3. Analysis

3.2 Programming by Demonstration

In this section we describe two systems that uses programming by demonstration and

attempts to recognize iterative work patterns, Eager and Familiar.

3.2.1 Eager

Eager is an old tool created by Allan Cypher [Cyp93]. It is written in LISP and uses

the programming by example approach by monitoring user activities in an HyperCard

environment. Every action is monitored and when Eager detects a repetitive pattern in the

user actions, it starts predicting the next action of the user. If the actions matches what

Eager has predicted, it creates a program which will be executed and complete the task

automatically. The goal of Eager is to help end-users solve repetitive tasks more effectively

without doing textual programming. However, unlike PBD systems like Stagecast Creator

or ToonTalk, the end-users use indirectly programming by demonstration. This means that

the end-users do not explicitly create rules, like in Stagecast Creator, but rather just do

their tasks.

Figure 3.1 shows an example of how Eager works. A user has a stack of messages each

with different subjects (a), and the goal is to create a list with all subjects (b). When the

user copies the subject from a message and paste it into the new list the second time (c),

Eager will detect this repetitive pattern and start its prediction. It marks the right arrow (c),

since it anticipates, the user will click there next. In (d) it anticipates, the user will copy

the subject, type “3.” in the subject list (e) and then paste the copied subject into the list

(f). If the user then clicks on the Eager icon (cat face), Eager will create a program and

execute it which will complete the task automatically.

3.2.2 Familiar

In Gordon W. Paynter’s PhD thesis from 2000 [Pay00] he introduces a system called Fa-

miliar. It runs only on a Macintosh and uses AppleScript to record a users action and

represent them as a script that can be altered. The goal of Familiar is to let an end-user

record his actions so it can be used as the first iteration in a loop or just as a general macro

that might be used later. Many of the examples Paynter describes involves working with

folders and files in Macintosh Finder.

The actions that Familiar records are what Paynter calls mid-level events. He uses the

3.2. Programming by Demonstration 27

Figure 3.1: Example of how Eager works. This tool is created by Allan Cypher [Cyp93]

same kind of division in events as we did in our SW9 project[DB09], meaning low-, mid-

and high-level where low is the individual mouse and keyboard events and high are very

specific description of what has been done. The mid-level events are not as expressive as

the high-level but more general such that it can be used for several situations. These events

are represented in AppleScript and can therefore easily be used by both the end-user and

the Familiar system.

Paynter uses machine learning to guide prediction and infer conditional rules. For

this he uses the C4.5 decision tree learner described by Quinlan in 1993 [Qui93]. These

decision trees are created from training examples which consists of one instance attribute

value and several argument values. The instance attribute is the result from a prediction.

Therefore the decision tree is constructed using the relations between the argument values

with all leaf nodes being a value of the instance attribute. An example Paynter uses takes

a list of matches that were either played or not depending on the weather conditions, such

as temperature, humidity and wind speed. Each weather condition is an argument and

whether the match is played or not is the instance attribute that can be one of two values:

yes and no. A prediction is therefore done by traversing the tree using the known attribute

values and ending at a leaf node.

28 Chapter 3. Analysis

3.2.3 Version Space Algebra

Tessa Lau, Steven A. Wolfman, Pedro Domingos and Daniel S. Weld [LWDW03] defines

the problem of solving repetitive tasks using programming by demonstration as:

“A repetitive task may be solved by a program with a loop; each iteration of

the loop solves one instance of the repetitive task. Given a demonstration, in

which the user executes the first few iterations of the program, the system must

infer the correct program.”

They setup this as a machine learning problem, and have developed a framework that uses

the concept of version spaces algebra to learn a machine complex functions and related

inputs and outputs. Version space algebra is the authors own expansion of the version

space concept described by Mitchell in 1982 [Mit82].

Version Space

Mitchell describes different approaches to the problem of formulating a general description

of a class of objects from a set of examples, which he sees as a search problem. He divides

the problem into three main parts:

1. Input observations (or instances) represented in some language, called the instance

language.

2. Learned generalizations corresponding to sets of the instances and formulated in a

second language, called the generalization language.

3. A matching predicate that matches generalizations to instances.

Using these the program needs to infer the identity of a target generalization using a set

of training examples. These training examples are instances defined to be either part of

(positive) or not part of (negative) the target generalization.

An important aspect of each of the approaches to solving the problem is the structure

of the items in the generalization language. He uses the relation known as more-specific-

than. This gives that every generalization is more specific than the previous, meaning it

is a proper subset of the previous. This will give a tree of generalizations that can be

searched through using different strategies: Depth-first, specific-to-general breadth-first,

and version space.

In depth-first searching one generalization is selected as the current best hypothesis

which for each new training examples is made more and more general. If it at some

3.2. Programming by Demonstration 29

point cannot be consistent with a training example the algorithm must backtrack and find

a different hypothesis that does.

Breadth-first search will have several alternative hypotheses, thereby avoiding back-

tracking, but it also requires more checks for each new training example as many hypothe-

ses might still be consistent.

In both of the previous strategies it is required to keep a list of all previous training

examples and test them on any new hypothesis. The version space strategy avoids this by

also removing hypotheses that are to general to be consisting with a training example. It

can be seen as having both an upper and lower bound on possible hypotheses.

The Algebra

The version space algebra consists of the possibility to combine several version spaces

using join or union and to transform one version space to another. As the theory behind

the version space algebra is not relevant for this project we do not describe it any further.

The training examples used in version space to teach the machine would in our case

be the users actions performed on the interface as part of an iteration.

Tessa Lau et al. illustrates the use of version space algebra by creating a small text

editing tool they call SMARTedit. In this application they define the inputs and outputs

to be application states of the form (T, L, P, S) where T is the text buffer (the whole

text currently in the editing field), L is the caret location (R,C) consisting of a row and

a column, P is the content of the clipboard buffer and S is the currently highlighted or

selected substring which will always be a subpart of T . The machine is then fed a start

state and an end state as the input and output. These states will be a combination of several

user actions such that the difference between two states could be the complete movement

of the caret to a new location or the complete deletion of a word. This will remove noise

created by user mistakes such as moving to far or deleting to much.

The authors also raise the question of when an iteration starts and how to find it. They

divide this in three forms of segmentation:

Full segmentation The user tells exactly when an iteration starts and when it stops.

Start segmentation The user only tells exactly when one iteration starts but not when it

stops. Therefore the sequence of actions could contain more than one iteration and

the last could even be only partial.

No segmentation The user never say when an iteration starts or stops. The machine will

30 Chapter 3. Analysis

here contain a complete list of all user actions since the start of the application and

treat each of them as a possible start of an iteration. This will create a lot of version

spaces and will eventually require a large amount of memory and CPU power to

handle.

We believe that they treat the no segmentation option wrongly introducing to much

overhead. There should only be created version spaces for action that could possibly have

anything to do with the recent actions. This will continually remove unusable version

spaces and only create new ones if no version space is currently available (else they would

be part of some other possible iteration). The concept of version space algebra is only used

for actually finding iterative tasks. The authors do not focus on how this could eventually

be used for generating a script the end-user could edit and use.

3.3 Learning by Observation

Originally the CAD application AutoCAD were created by AutoDesk as a command line

software where different commands, such as rectangle and undo, could be invoked to

manipulate the drawing. Eventually AutoCAD adopted an interactive GUI where the same

commands could be invoked using toolbars and the mouse. The command line still exists

and DiGiano, Chris and Eisenberg[DE95] describes how a user learns how to use it by first

using the toolbars and then observing how the commands are expressed in an output field.

This concept of learning is called learning by observation (LBO) and it is not only limited

to computer science. Children of both humans and animals do the same when growing up,

as they replicates what their parents are doing.

3.3.1 Self-Disclosing

When AutoCAD display the commands invoked in an output field it is called self-

disclosing. Self-disclosing is the term for when you expose some information about your-

self and in the area of computer science it can more accurately be expressed as when you

perform an action in an application and this application tells you more precisely what you

have done. This is done in a language that the application can understand such that a

disclosed command can be used again to perform the exact same action.

During their work DiGiano and Eisenberg[DE95] described three properties for self-

disclosing programmable applications which enables learning by observation, such as Au-

3.3. Learning by Observation 31

toCAD. If these properties are fulfilled the self-disclosing of commands will work as what

they call context-sensitive help systems which teaches the command language while the

user is completing their original task. The following list of the properties were originally

part of our previous report[DB09]. Digiano and Eisenberg formalized the properties as fol-

lowing (italic text) where we have given each a headline (bold text) and a short explanation

of how we understand it:

1. Disclosing for every action: For every elementary mouse action which has a com-

mand language analog, the system will disclose that expression to the user.

The display of the command in the output field for the user to see.

2. Groups of disclosed expressions: The system will indicate groups of disclosed ex-

pressions connected with a single operation.

Any group of commands are visualized in some way, e.g. by using indention or by

not writing a special command start as it is done in AutoCAD.

3. Identical result from programming: Had the user entered the most recently dis-

closed group of expressions instead of specifying the operation through direct ma-

nipulation, the results would have been identical.

Writing the commands for creating a rectangle in AutoCAD with the same input

would create the exact same rectangle as done with the mouse.

Digiano and Eisenberg also describes six guidelines for the pedagogical use of self-

disclosure. These are formalized as following (italic text) where we have given each a

headline (bold text) and a short explanation of how we understand it:

1. Generalizable: Disclosures should be maximally generalizable.

E.g. consistency by objects in the language having a connection to objects in the

application.

2. Experimentation: The system should facilitate experimentation with disclosures.

E.g. by having the possibility to undo and redo, easily editable arguments and rein-

terpretation, and easily use of methods in other scenarios (like in a loop).

3. Scaffolding: Self-disclosure should be scaffolded.

Incremental learning by e.g. gradually introducing more complex parameters for a

method.

32 Chapter 3. Analysis

4. Coverage: Disclosures should provide coverage of essential programming concepts.

As much as possible of the application (toolbars, menu commands, user actions)

should be disclosed.

5. Combination of access: Designers should be able to specify operations through a

combination of direct manipulation and textual commands.

Like in AutoCAD where you can start the rectangle command through the command

window and then select the corners with the mouse. This will gradually increase the

knowledge of how to manipulate objects.

6. Unobtrusive and browsable: Disclosures should be unobtrusive and browsable.

Meaning the disclosing should not interrupt the end-users work, but still be easy

accessible e.g. through a history of disclosures (like the output field in AutoCAD).

We fulfilled all of these properties and guidelines, except for scaffolding in the previous

semester, and we will continue fulfill them.

3.4 Discussion

Following is a discussion about what we have found in our analysis. We use this as a

stepping stone towards our problem statement.

3.4.1 The End-User Problem

There are three main groups of end-users, those who want to learn to program and the

programming process itself, those who want to use programming as an aid to their primary

job function, and those who see no point or need with programming. End-users in the third

group have typically no interests in computer or not more than necessary to use it as an

entertainment source for gaming, film, music etc. Therefore, we omit this group in our

discussion.

End-users who want to learn to program are inclined to use the time it takes to learn to

program. These end-users are typically children, but can also be adults who like to create

small games and simulations on their computers. For this group of end-users, the problem

is less about the time required; the bigger problem is how to teach them to program. PBD

systems like Stagecast Creator and ToonTalk are examples of simulations which let end-

users create small games or simulations by making rules and manipulate objects. The

3.4. Discussion 33

underlined purpose is to teach them programming principles, like the if-statement principle

when they create rules for object.

For the second group of end-users who are not interested in the programming process

itself, they are not inclined to spend time to learn it. This group is typically adults who

need to do their daily work more efficiently. They consider the relation between the costs,

risks and benefits of spending time on other things than their primary tasks. Investing

time on learning to program can be very risky, even for a small specific task. The result

may not reflect the actual intentions of the end-users, and that is a big drawback for the

end-users, because their goal is to finish the task and not learning to program. In such

situation, the benefits seems to be none. However, if the result is positive, not perfect, but

positive enough in such a way that part of the task could be automated, that gives a huge

benefit in the long run. The cost of time in total will be less than doing the task manually

for larger tasks. PBD systems like Eager, Version Space and Familiar can help the second

group of end-users to do their tasks more efficiently by providing a script to finish the task.

However, the purposes of these systems are to help them solve the task more efficiently

rather than learning them to program. Their focuses are on how to detect repetition and

generation of scripts.

The Possible Solution

We propose a tool which uses PBD principle and the Learning by Observation (LBO)

concept. Chris DiGiano in his work with LBO and self-disclosing pointed out that users

of AutoCAD have gone from using mouse to draw to using commands after a period of

time [DiG96]. This result is useful for us, as our goal is to help the second group of

end-users to start programming, so they can, through programming, do their tasks more

efficiently. Our idea is to introduce end-users to their actions as disclosures, so they can

learn how to do the same actions by commands. Furthermore, we introduce the end-users

to loop constructions by a PBD system which detects iterative actions and propose a script

to the end-users as a disclosure as well. The end-user can use the auto-generated script to

finish their tasks. Ideally, the end-users detect and understand the disclosures and thereby

learning to program. The overall principle of our tool is to teach the end-users to program

while they work in their normal working environment. They do not need to put away their

work to learn to program, but can gradually get insights in the programmatic access to

their working applications—they can do just-in-time programming.

34 Chapter 3. Analysis

3.4 Summary

This chapter started with a clarification of what part of the end-user programming area

will be our main focus, turning end-users into end-user programmers. We then explore

this area further, and we start with three programming by demonstration systems, Eager,

Familiar and Version Space Algebra. All of these systems tries to recognize iterative tasks

performed by the user, using different algorithms and approaches. Afterwards we explorer

the concept of learning by observation and specially self-disclosing. Here we introduce

three properties and six guidelines for applications that uses self-disclosing. The chapter

ends with a discussion about the end-user problem which results in a description of a

possible solution. This leads to the problem statement in the next chapter.

35

Chapter 4

Problem Statement

In this chapter we specify the problem we work with during the project period. First, we

define a set of hypotheses we are going to prove. Secondly, we need to restrict the project

to both what we believe is possible within the time frame of the project, but also to specify

more precisely what parts of the end-user area we are working with. In Section 7.1, we

give the answers to the hypotheses based on our usability test results.

4.1 Hypotheses

To help us keep focus on the problem, we are dealing with in this project period, we have

defined two hypotheses. Following is a short description of each of the hypotheses.

Hypothesis 1: We can teach end-users, with basic computer knowledge, the fundamen-

tal principles behind programming by using the concept of learning by observation and an

improved environment with several kinds of feedback.

We believe that the concept of learning by observation is a good approach for end-users to

learn a scripting or programming language. The concept combined with an environment

which contains several kinds of feedback such as syntax highlighting, command and ar-

gument information, abstraction to scripting, and debug and error reporting, works as an

assistant to end-users. In the long run, they learn how to program by observing the dis-

closures, both as command and generated script, and the usage of abstraction to construct

scripts.

36 Chapter 4. Problem Statement

Hypothesis 2: A task with iterative actions is completed more efficiently by an end-user

who uses a script constructed by an automatic recognition of these actions.

This hypothesis is a continuation of the first one. By analyzing the actions of the end-user,

we detect redundant actions within a task and predict how to automatically solve the rest

of the task. The result of the prediction is a script generated by our iteration recognition

tool. There are two usages of the generated script. One usage is to reduce the time an

end-user spend on the task or solving it more efficiently by using such a script. The other

usage is part of the learning by observation concept and uses it to teach end-users how to

create loops.

4.2 Delimitations

In this project, we continue working with the drawing tool application, DrawTools, from

the previous project. This section shortly describes our focus in this project.

4.2.1 Target Groups

We believe it to be impossible to learn end-users, who have no computer knowledge, the

fundamental principles of programming. Likewise, end-users who have had extensive

training in programing, such as novice and professional programmers, are not part of our

target group either. This group may feel that different features used to help an end-user are

actually annoying and are barriers. Therefore, our target groups are end-users with basic

computer knowledge and end-user programmers who have tried only very little program-

ming. We have depicted in Figure 4.1 how our prototype covers the end-user group and

end-user programmer group.

Figure 4.1: An illustration of our target groups for our prototype.

4.2.2 Iterative Task Recognition

We will expand our application with several new features, including iterative task recog-

nition. The goal is not to create a general purpose iterative task recognition system, but

4.2. Delimitations 37

to create a system which is specific for the drawing tool application and for some specific

iterative tasks within the application. In many cases, however, such iterative tasks could be

transformed into another domain such as text editing, without major changes. Therefore

we will have that in mind during the design, but not if the situation requires it we will

choose a domain specific solution.

We have chosen three iterative tasks from the list of examples from the previous report

[DB09] which our iterative recognition system must at least be able to handle.

• Drawing the same shape many times in a pattern.

E.g. 360 lines in a circle or many rectangles inside each other. This will contain

differences in positions and size that follow a pattern.

• Drawing a gradient.

Fading from one color to another color. This will contain differences in color that

follow a pattern.

• Drawing a specific figure several times.

E.g. a night sky of stars. This will contain a set of shapes that relative to each others

position follow a pattern, here forming a star.

In addition, we will also refine the visual feedback of our tool in the drawing appli-

cation. However, the refinements are limited to code and syntax highlighting, code assist

and error reporting. These features will improve the usability of our tool and will give

better assistance to the end-users when learning to program. Even though these features

are not our major concern in this project, we will still implement these to give a feel of

completeness of our tool which will give better and more reliable test results at the end.

39

Chapter 5

Design

In this project we develop a prototype application to illustrate and test the ideas, we have

for end-user programming. We call the application DASA which is an abbreviation for

Drawing And Scripting Assistant, and in this chapter we describe the design of it.

In the previous semester we tried to leave as much of DrawTools, the original applica-

tion, untouched as possible as we tried to create a sort-of plugin that could be used with

any application. This semester, however, we decide to make several changes to the original

DrawTools code simply to create a better application which we can use for testing some

of our ideas for end-user programming.

To add new ideas and improve already implemented ideas, we also need to make

changes to what we already added to this tool. Some of these changes includes the script-

ing language, Simple Disclosure, Command And Scripting Language (SDCASL), archi-

tecture and the addition of an algorithm for discovering and solving iterative tasks. In

the following sections, we describe some of these changes and additions, we make to our

prototype.

At the end of this chapter, there is a short description of the actual implementation

of the design. It does not focus on the actual code, but on the different areas of the user

interface, and how well we are following the self-disclosing properties and guidelines.

40 Chapter 5. Design

5.1 Scripting Language

In the following sections, we describe different aspects of our scripting language such as

commands and language structures. We call the language SDCASL, which is an abbrevi-

ation of Simple Disclosure, Command And Scripting Language.

The bases for the scripting language were developed during the previous semester.

Back then, we first tried to develop it for a command line and, therefore, it was only

possible to express commands. Later, we turned it into a scripting language by adding

common language structures such as if-statements, for-loops and variable assignments.

These are more or less kept the same way in the current version, but other structures have

been added since.

Because it was first made for a command line, we decided that each line in a script

would only contain one command or structure element. This removed the need for an end-

of-command character, such as semicolon (“;”), which is used in several other languages.

This will also remove a common error with missing semicolon made by an end-user with

limited knowledge in programming.

5.1.1 Commands

A command is the same as an action, you want the application to perform. An example

of a command is rectangle which will draw a rectangle. Such a command has a name,

and often several synonyms. When the command is used in a script (or in the command

line) it can be called by either its name or any of its synonyms. We have added the usage

of synonyms for two reasons. The first reason is to make it faster to write a command

that usually have a long name (such as movetofront which has the synonym mtf). The

second reason is to make it easier for an end-user to guess a command and get it right. This

is at first based on our guesses of what names end-users might think of, but after a testing

round we might discover more possible synonyms. A good example of this is drawline

which is a synonym for the line command, which actually draws a line.

Most of the commands can take arguments. In the last semester, we experimented with

three kinds of argument approaches: Ordered, keyword and sloppy. These approaches are

illustrated in Listing 5.1. Furthermore, we experimented with variable-length arguments

which we do not explain further here, as it can be seen as an expansion of the ordered

argument approach.

5.1. Scripting Language 41

1 method (width : integer, message : string, show : bool)

2

3 ordered (100, "hello", false)

4 keyword (message="hello", width=100, show=false)

5 sloppy (false 100 "hello")

Listing 5.1: The three argument approaches, ordered, keyword and sloppy, are here used to invoke

the method with a parameter list defined as shown.

Ordered arguments is the most commonly used in programming languages. Here the

definition of a method (or in our case a command) has a specific set of parameters in a

certain order. When this method is called, the arguments must be in the same order and

all of them must exist. By looking only at the code, it is in this case not possible to see

what parameter each argument corresponds to. It is, however, possible in the keyword

arguments approach. Here each argument needs to have a keyword specifying what pa-

rameter the value corresponds to. This also means that the arguments can be written in any

order. The sloppy arguments approach requires a kind of heuristic algorithm which tries

to predict what parameter each value corresponds to. It does this by looking at the type of

the value. If there exists more than one parameter of the same type, we will always assign

the value to the first parameter which have not yet any value assigned to it.

We tried and succeeded in creating the algorithm for the sloppy arguments, but after

a few tests we realized that it simply was not as intuitive and helpful as, we first thought.

Therefore, we changed it to use the keyword argument approach instead. One of the

reasons for this, was the great information an end-user would get from seeing existing

code, e.g. through the disclosures, which we explain later in Section 5.2.5.

When we had found the approach, we wanted to use, we made it possible for each pa-

rameter to have several synonyms as well. Again for the same reasons as for the synonyms

for the commands.

In this semester, we will only make minor changes to the commands. First several

commands had shortcut synonyms of only one character, e.g. r for rectangle and x

for exit. Especially the last shortcut (x) gave us a problem as many users, including

ourselves, would use a variable called x which would give unexpected results, because

of a minor bug in the parser. This made us aware of it, and we decided that all of these

single character synonyms should to be removed, and all other synonyms needs to be

checked for similar often used variable names. Our language do support having variables

and commands in different namespaces such that a variable can have the same name as a

command, but we still felt, we had to change them as we expect, it could be confusing for

42 Chapter 5. Design

an end-user.

Other changes include the addition of new commands, restructure of parameters for

some commands and a different order of some of the parameter synonyms such that more

commonly used or more readable synonyms are used as the name of the parameter.

5.1.2 Language Structures

In the previous semester, we only added three common language structures: if-statements,

for-loops and variable assignments. This provided the three elements required (conditional

branching, looping and variables) for a language to be Turing-complete. In this semester,

we have added one more structure: foreach-loop. For all of these structures, we used

English verbs to make it easier to understand. This is instead of the more common use of

different kinds of brackets in other languages such as C and Lisp. We considered using

indention as a scope rule as well, like it is done in Python, but we decided not to as it

increased the possible errors made by the end-user.

If-statement

A normal if-statement needs a condition, a body to be performed when the condition is

true, and a body to be performed when the condition is false. The whole if-statement starts

with the verb if which is also used in several other languages. For the same reason, the

two bodies are separated by the verb else. It should be noticed that the else-part is not

required. The whole if-statement is ended with the verb end which is also what ends the

for- and foreach-loops. To make a clear separation between the condition and the first

body, and also to make it look more like a regular English sentence, we have added the

verb then. In this semester, we also need to allow the verb do here as it is used in all the

other statements and therefore seem logical for some end-users to use.

The condition in the if-statement were designed to include both regular English verbs,

but also characters commonly used in programming. Therefore, it is possible to express

and using both and, && and &, and or using both or, || and |. The single & and | are

normally used for bitwise operations, but our language should not support such details, and

we have therefore added them as condition operators for convenience. For the is-equal-to

operator, we have added both single = and double ==. The reason being that we believe

most end-users see a single equal as the most logical way of expressing it. We have also

added two ways of expressing not-equal-to, != and <>, as both are fairly common in other

languages.

5.1. Scripting Language 43

1 if color = red then

2 # true statements

3 else

4 # false statements

5 end

Listing 5.2: A basic if-statement in SDCASL with both bodies.

For-statement

A regular for-loop structure will increase the value of a variable by one for each iteration it

performs. Some languages give the programmer the possibility to increase it by more than

one, or decrease it or even handle several variables in the same loop. In the last semester,

we decided to keep it as simple as possible, therefore the for-loop in our language can

only increase the value by one. However, we still wanted to support changing the name

of the counting variable, which gives the possibility to have several nested loops without

any interference. Just as with the if-statement we have tried to have the for-loop sound

like a normal English sentence saying that we want to count the value of a variable from

the start value to the finish value. We make use of noise verbs such as to to increase the

readability. The for-loop structure has not been changed for the current semester.

1 for i = 1 to 10 do

2 # statements

3 end

Listing 5.3: A basic for-loop in SDCASL counting the variable i from 1 to 10.

Foreach-statement

The new structure we want to add for this semester is a foreach-loop. The purpose of this

structure is to loop through all drawn objects one by one. Together with special variables

(see Section 5.1.3), this will give the end-user the possibility to check different values

about each object and set different values accordingly. To avoid always looping through

all the objects in the drawing, we want to add a variable keyword that express what type of

object we intend to loop through. These keywords will be: all, rectangle, ellipse,

line and selected. The selected keyword will make it loop through the currently se-

lected objects no matter their type. We will add synonyms for these keywords as well as

some end-users might want to write them in plural instead or use another word such as

square or circle. Since it sounds a bit weird to say foreach all do, we will add the

44 Chapter 5. Design

structure forall do which does exactly the same. This structure is domain specific, but

could easily be transformed to similar uses in other domains by changing the keywords.

1 foreach rectangle do

2 # statements

3 end

Listing 5.4: A basic foreach-loop in SDCASL that loops through all rectangles in the drawing.

5.1.3 Other Features

Our scripting language, SDCASL, have a few other features which we will describe here:

Random, mathematical calculations, special variables and commenting.

Random

To have the possibility to draw an object at a random location with a random size or

with a random color, we need a random structure. In most other languages it is done by

calling a special function or instantiating a special object and then calling its methods.

Our language does not support these approaches and instead, we added a special keyword

(named random) in the previous semester. This keyword will generate a random number

between 0 and the number written right afterwards, such that random 100 will generate a

random number between 0 and 100, both included. It is fairly simple to generate a number

between to other values simply by adding the start number as an offset. So 25+random

50 will generate a random number between 25 and 75. We were aware that this might

not be as intuitive for all end-users, and we therefore had to add an easy way to insert

this keyword through interaction with the user interface where the user could specify the

number range. This eventually made us add similar interface approaches for all the other

structures in the language. For this semester, we have not changed the way the random

structure works.

Mathematics

In the previous semester, the language did have the ability to express mathematical calcu-

lations using the very common operators of + (addition), - (subtraction), * (multiplication)

and / (division) together with numbers (integers and doubles) and variables. However,

the mathematical operations did not follow normal mathematical conjunction rules; Mul-

tiplication and division should be calculated before addition and subtraction. Instead it

calculated each operator, one by one, from left to right, meaning that an expression like

5.1. Scripting Language 45

5 + 2 ∗ 2 is calculated to be 14 and not 9 as what would normally be the case. In this

semester, we need to change this, and here we can look at how we did the conditions (in

the if-statements) where normal conjunction rules between and and or did apply.

Special Variables

As a result of the added foreach-statement (see Section 5.1.2), we also need to add what

we call special variables. These are variables that can be used just like any other variables

in the scripting language, but instead of just containing a value, they will be linked to

the currently selected object. One good example of a special variable which we need is

color which simply contains the color of the currently selected object. If we then add

a new color to this variable the color of the selected object should also change. When

used together with the foreach-statement, we can e.g. check the color of an object and then

change it to something else accordingly. As with almost anything else in SDCASL these

special variables should also have synonyms for both convenience and helpfulness. It is

worth noticing that all of these special variables will be domain specific, but the concept

itself might still be useful in several other domains, e.g. the color in a text editor.

Comments

Almost all other languages have a way to add pieces of text to the code which the parser

will ignore. We usually know these as comments, and it is a great way to describe what

is happening in a piece of code that could otherwise be difficult to understand. In the first

semester, we did not add any way to add comments to scripts which we will change in this

semester. The main reason is the possibility to add explanations to generated scripts, and

for example to scripts that can be of great help for end-user to understand the code. To

follow the rules set for our language, only one element per line, we have decided to only

add what we call full-line comments. Contrary to normal inline or single-line comments, it

is not possible to add a comment after another statement in a full-line comment. To indicate

that a line is a comment we want to use the hash character (#) as it is both readable and

commonly used in several other languages. At the same time, # is not used for anything

else in the language. Because we use the full-line approach, we do not need the use of

block or multi-line comments.

46 Chapter 5. Design

5.2 Architecture

The following sections describe some of the more important parts of the architecture in

DASA.

5.2.1 DrawTools Elements

One of the key elements of the original DrawTools is the shapes which you draw. A

shape in this application is either a rectangle, ellipse or a line. They all only consist of a

border around the edges (one edge for the line), and the border has a certain width (the

penwidth) and a color. Unlike most other drawing applications, they do not have a fill

color. DrawTools contains methods for handling selecting, moving and resizing a shape.

We do not need to make many changes to these methods.

The shapes are drawn on a special draw area. It keeps track of already drawn shapes,

and it also handles the undo/redo of draw actions. In this semester, we need to change the

undo/redo such that we can easily undo the whole result of a script execution rather than

just a single action. This feature will give an end-user the possibility to preview the effect

of their script before deciding whether they want to keep it or not.

Finally, there are tools which is used for the actual drawing. These change the way

the mouse interacts with the special drawing area. The default tool will handle selecting,

moving and resizing shapes, while other tools will draw one of the shapes, depending on

what tool has been selected. In later sections, we will describe changes, we have made to

disclose actions, and these changes requires changing the tools as well.

5.2.2 Parser and Interpreter

In our application, we will have several places that need to parse a script and some of

these need to interpret it as well. Because of this, we need to have both the parser and

the interpreter to be as general as possible and accessible from anywhere. The solution to

the latter requirement is to use a Singleton pattern. This is what we did in the SW9, and

we do not intend to change that. But both the parser and interpreter need improvements.

First, there will be several additions to the scripting language, as previously explained in

Section 5.1, which of course both the parser and interpreter need to be able to handle.

Second, the error reporting of both the parser and interpreter were lacking and especially

the interpreter did not handle errors in a script well.

5.2. Architecture 47

The error system needs to work in such a way that if an error have been found, a mes-

sage describing the error, including the line number, should be generated and saved. If the

error happens during interpretation, it should stop while it tries to continue during parsing

to find as many errors as possible. The error description will have to be as expressive as

possible, include suggestions on why it occurred and code examples of how it can be done

correctly. Many error messages, we normally would see in an IDE such as Visual Studio,

are simply too complex for most end-users with no training in programming or debugging.

In the design of the scripting language, we decided that each line could only contain

one language structure. Therefore, the actual parsing is simply done line by line. Because

of this, and how the rest of the language is designed, we can also make assumptions of what

language structure a line contains simply by looking at the first word. If it is recognized

as a language keyword, e.g. if or foreach, we can parse the rest of the line according to

that. If not, then we can try to parse it as either a variable assignment (where a variable

will be the first word), a procedure call (where the procedure name will be the first word)

or a command (where the command name will be the first word). The parsing of each

line will construct one token which contains the important data from the line and which

can then later be used in the interpretation. E.g. an assignment token contains the name

of the variable and an expression it should be assigned to, but not the ’=’ character or any

whitespaces as these are not important for the interpretation. The expression is also parsed

and saved as a type which will be described later in Section 5.2.4.

5.2.3 Commands

We developed the commands during the previous semester, SW9. Each command has

a unique name and several unique synonyms, e.g. the rectangle command can also

be written as rect, rec and drawrectangle. Each command can also have several

parameter sets. These parameter sets are lists of types. To continue the example, the

rectangle command have two parameter sets:

• Two positions, specifying the top-left corner and the bottom-right corner of the rect-

angle.

• One position, specifying the top-left corner, and two integers, specifying the width

and height of the rectangle.

These parameters also have a set of synonyms such that e.g. the width of a rectangle could

be written as both width and w. Finally, these commands can be executed to perform their

48 Chapter 5. Design

actions with the parameter set which have been set to be used. The rectangle command

can only draw a new rectangle shape, but other commands can do several actions, such as

the set command which can change both the color and/or the penwidth of the shapes.

For this semester, we need to expand these commands such that we can get more infor-

mation about each of them, e.g. for parsing error reporting or the iterative tasks recognition

algorithm explained in Section 5.3.

5.2.4 Types

SDCASL have special types that are not always directly mappable to native C# types. One

example being a color which can both be expressed as a English color name (e.g. blue), a

red-green-blue value (e.g. 255,37,128) and in hexadecimal (e.g. #FF2590). Therefore,

during the previous semester, we developed a type system that can handle these special

types. This type system was originally used for the command line with sloppy arguments

(see Section 5.1.1). Later, however, it was also used for the ordered arguments and then

again for the scripting language.

The type system used in the previous semester had limitations, meaning that these

types could only be used as the arguments for commands. To make it possible to use

these types in variables and in the condition of an if-statement, we have to expand the type

system. This requires the use of operator overloading in the application language C#. This

will allow us to add two positions together or check whether a color is red.

Some types are aggregated by one or more types. A good example of this is a position

which consists of two integers divided by a comma (,). In SDCASL it is possible to

express these integers as expressions which includes the use of variables and mathematical

operations. These expressions are parsed and expression tokens are created to later be

interpreted. If the parsing fails, it means that there is something wrong with the script,

and the parsing of the whole script should fail. All of this were done during last semester,

but the mathematical operations did not follow normal mathematical rules as described in

Section 5.1.3.

As with any other language the conditions of an if-statement can be evaluated to either

true or false. When this condition is parsed condition tokens are created which are later

used during interpretation.

5.2. Architecture 49

5.2.5 Disclosures and Actions

In the previous semester, each shape was expanded such that it could disclose the creation

and manipulation of itself. For two reasons, we need to change this. First, it is no longer

only the creation and manipulation of shapes that should be disclosed, but also many other

actions. Second, we need an easy way to add actions to our iterative task recognition

algorithm (see Section 5.3) which is best done in the same way these actions are disclosed.

Figure 5.1 is an illustration of how the drawing of a shape will create an action that contains

all the information needed to both disclose it and add it to the algorithm.

Figure 5.1: Illustration of an action performed on the draw area.

5.2.6 Procedures

Iterative tasks are the same task repeated continuously, recall the definition from Sec-

tion 2.1.3. In programming, this can be done using a loop. Repetitive tasks on the other

hand are the same task done several times, but with possible other tasks in between. There-

fore, it cannot be solved using a loop, but instead by making an abstraction of it which

then can be invoked when needed. This is what a macro recording in an application or a

function in programming can be used for.Our iterative task recognition, described later in

Section 5.3, will discover the iterative tasks and give a solution to them, but cannot handle

the repetitive tasks. Instead we will introduce procedures.

A procedure in DASA can be seen as a small script that can be invoked with arguments.

It should be able to create one from both the current script, but more importantly also from

the disclosure box. When it is created from the disclosure box, it will contain a series of

commands where the arguments can be generalized. The arguments to be generalized is

positions, colors and penwidths. This makes it possible to draw new objects that have the

same sizes as the original objects, but are located at a different position and with a different

color and penwidth.

50 Chapter 5. Design

5.3 Iterative Task Recognition

In the following sections, we describe the design of our iteration recognition algorithm.

First, we study the problem of recognizing iterations in a stream of actions. We then design

the actual algorithm followed by how to generate a script to complete the iterations.

5.3.1 The Problem

In the following, we will describe the problem behind discovering iterative patterns in user

actions.

Figure 5.2 illustrates how a tree have been drawn using a circle as the crown and a

rectangle as the trunk. When we draw a second tree using the same construction, meaning

the same type of commands, we have done a repetition which we want the algorithm to

recognize. The input for the algorithm is then the commands shown in Listing 5.5. Each

of these commands are used as input one by one, and not all together at the same time. The

first two commands are part of the first iteration while the last two are part of the second

iteration. Figure 5.3 is an illustration of this scenario with a longer history than just the

four commands. For the algorithm these commands will be objects which contain the type

of commands, the name that should be used in a script, and all its arguments and their

names and values.

Figure 5.2: Two trees drawn using a circle and an rectangle.

1 rectangle first=132,200 second=168,300 color=brown penwidth=5 (first begins)

2 ellipse first=100,100 second=200,200 color=green penwidth=5

3 rectangle first=332,200 second=368,300 color=brown penwidth=5 (second begins)

4 ellipse first=300,100 second=400,200 color=green penwidth=5

Listing 5.5: Input for the algorithm. A circle drawn will be disclosed as the command ellipse.

Command 1 and 2 are part of the first iteration while 3 and 4 are part of the second

iteration.

5.3. Iterative Task Recognition 51

Figure 5.3: Illustration of the history, list of commands, and how the last four commands are rec-

ognized as the first and second iterations of a complete repetition which makes them

part of an iterative task. Here for illustrative purpose L, C and R are the commands for

drawing a line, a circle and a rectangle. Other commands can also be in the history.

The output from the algorithm should then be a script, using SDCASL. This script

should consist of a loop which contains the two commands, rectangle and ellipse.

The arguments of both of these commands need to use a loop variable to construct values

that would construct the same two trees on the first two iterations. Following runs should

construct new trees at the same distance as the distance between the first two trees. The end

result is illustrated in Figure 5.4, and the script that constructs this is shown in Listing 5.6.

In this situation only the two positions, which represents the upper left and lower right

corners of the drawn object, are different.

1 for i = 2 to 10 do

2 rectangle first=i*200+132,200 second=i*200+168,300 color=brown penwidth=5

3 ellipse first=i*200+100,100 second=i*200+200,200 color=green penwidth=5

4 end

Listing 5.6: Script that is outputted from the algorithm. Notice that the loop starts on 2, as the first

two iterations, 0 and 1, have already been done by the user.

Figure 5.4: The outcome of running the script that was outputted by the algorithm.

In the following sections, we will refer to iterations in several situations. In the exam-

ple above, the end-user has performed two iterations, each consisting of two commands.

We refer to these as the first and second iterations. Since this algorithm only checks for

iterative tasks, the first command in the second iteration will come right after the last

command in the first iteration, in other words, no commands between the mentioned com-

mands.

52 Chapter 5. Design

5.3.2 Iterative Tasks Recognition Algorithm (ITRA)

In this section, we describe how we design our own algorithm for discovering iterations

and the generation of a script.

This algorithm is inspired both by Version Space Algebra, see Section 3.2.3, and Fa-

miliar, see Section 3.2.2. However, we do not use any of them directly as we find them

too complicated compared to the our need for the prototype. The algorithm, we design is

much simpler.

Algorithm

Before we can go deeper into what the algorithm does, we need to have a better under-

standing of the different elements of the problem. This algorithm is run each time a new

command is added to a history of used commands. The history will start from the be-

ginning of the application which Tessa Lau et al. calls no segmentation as the user will

never specify when their iterative task actually starts (see Section 3.2.3). The history can

be formalized as:

history = {c1, c2, . . . , cm}

where m is the total number of commands in the history, and cm is the newest added

command. The algorithm is looking for repetition in the form of two complete iterations,

right after each other, which consists of similar commands.

Two commands do not need to be exactly the same to be similar as that would rarely

be the case for drawing actions. Drawing the exact same circle on the exact same location

have no extra effect. It is possible to do the same action with two different commands, e.g.

drawing a circle with either the circle command or the ellipse command, recall that

circle is a synonym for ellipse. Furthermore, we also have situations where the same com-

mand might have been used, but with different parameter sets which gives two completely

different results. The set command is an example as it can be used to change either the

color or the penwidth of a shape (or both at the same time). More formally, we can express

similarity as ca ≈ cb.

5.3. Iterative Task Recognition 53

We call the two completed iterations for the first iteration and the second iteration, and

they both consist of at least one command. We can formalize the iterations as1:

I1 = {ci, ci+1, . . . , ci+n−1} = {I1c1 , I1c2 , . . . , I1cn}

I2 = {ci+n, ci+n+1, . . . , ci+n+n−1} = {I2c1 , I2c2 , . . . , I2cn}〈
I1cj ≈ I2cj , j = 1 . . . n

〉
n is the number of commands in each iteration, which can be from 1 to m

2 , and i is the

index in history of the first command in the iterations. This means that this first command

is not necessarily the first command in the history (I1c1 is not necessarily equal to c1).

For these two iterations to be complete, which is required for us to have discovered an

iterative task, two rules need to be fulfilled.

• The last command in the first iteration needs to be directly followed in the history

by the first command in the second iteration. Or more formally: I1cn needs to come

right before I2c1 in history.

• The last command in the second iteration needs to be the last command in the his-

tory. Or more formally: I2cn and cm is the same.

Figure 5.5 illustrates the above formalization and how the possible iterations change

when new commands are added to the history. It also shows how a new command can ruin

complete iterations, but at the same time create new possible iterations.

During the search for iterative tasks, we might find several possible complete first

and second iterations. The most frequent cause being the continuous use of the same

command. E.g. drawing six lines in a row will discover three different complete iterations,

of one, two and three commands each, illustrated in Figure 5.6. For generating the script

we will need to pick the most likely of all of these. There can be several ways to find this,

but for simplicity we will only look at the number of commands in the iterative tasks and

pick the one with the most (meaning the iterations with the highest n). Another approach

could be to calculate a score based on the commands in use and the relationship between

them.

Listing 5.7 is the algorithm expressed in pseudo-code. The newCommand is the per-

formed command while the history is the history of all the commands performed (ex-

cept for the newest). possibleRepetitions is a list of the currently possible repetitions

found during previous runs of the algorithm.
1The second formalization is for simplicity later on.

54 Chapter 5. Design

(a) The situation after a C command is added.

(b) The situation after an R command is added.

(c) The situation after an L command is added.

Figure 5.5: Example of the history, list of commands and how the possible iterations change when

new commands are added. In Figure 5.5(a) a C command have just been added. Two

possible first iterations (I11, I12) have been found as they both start with the C com-

mand. The iteration (L C L C) has previously been found, but is no longer possible,

because of added commands. In Figure 5.5(b) an R command has been added, and

the second possible first iteration (I12) from before is now complete (I1complete
2). The

other possible iteration (I11) has been removed as it is no longer possible. Furthermore

a new possible first iteration (I13) have been found. In Figure 5.5(c) an L command

has been added which make the complete iterations (I1complete
2 and I2complete

2) from

before impossible, and they are removed together with the I13 which is also impossi-

ble. Instead two new possible first iterations (I14, I15) are found.

Figure 5.6: An illustration of how the continues use of the same command, here line (L), will

produce several complete iterations. The one with the most commands (best score),

here 3, will be chosen as the default repetition.

5.3. Iterative Task Recognition 55

1 function AddRepetitiveCommand(newCommand, history, possibleRepetitions)

2 foreach oldCommand in history do

3 if newCommand is similar to oldCommand then

4 add new Repetition(firstIteration=oldCommand, secondIteration=newCommand)

to possibleRepetitions

5

6 add newCommand to history

7

8 foreach possibleRepetition in possibleRepetitions do

9 if firstIteration in possibleRepetition overlaps secondIteration in

possibleRepetition then

10 remove possibleRepetition from possibleRepetitions

11 if newCommand is similar to nextCommand in firstIteration in

possibleRepetition then

12 if nextCommand in possibleRepitition is the last then

13 add possibleRepetition to finalRepetitions

14 else

15 remove possibleRepetition from possibleRepetitions

16

17 if finalRepetitions is not empty then

18 call GenerateScript(finalRepetition with best score)

Listing 5.7: Pseudo-code for the algorithm to discover iterative patterns.

Line 2 to Line 4 goes through the history of commands and finds any command that is

similar to the newly added command. If one is found a new possible repetition is created

with the old command as the first command in its first iteration and the new command as

the first command in its second iteration. Line 2 to Line 4 goes through all of the currently

possible repetitions found to see if they are still possible.

The check on Line 12 will be true if the two iterations in this repetition is complete.

In that case, it is added as one of the final repetitions. A repetition is no longer possible

if the new command can no longer be part of the second iteration or the two iterations

overlaps (meaning they were complete when the previous command were added). It will

be removed if that is the case. At the end the method GenerateScript() is called to

generate the script for the repetition with the best score. This generation will be described

in the next section.

Script Generation

For generating a script to complete the found iterations, we need to go through two phases.

First, finding the differences in the argument values for each command, and second, print-

ing a script with a for-loop containing the commands where each argument value is an

56 Chapter 5. Design

expression which uses the found differences together with the for-loop variable.

Finding the differences can be done domain independent as each argument can be cal-

culated without knowing what it is used for. However, knowing the domain can make

some of these calculations easier and more reliable. In the following, we will introduce

the comparison approach that we will use, we call it normal comparison approach. Af-

terwards, we shortly describe another approach which attempts to make a more correct

comparison by using the domain.

In the normal comparison approach each argument of each command in the first it-

eration is compared to the same argument of the same command in the second iteration.

Figure 5.7 illustrates this on a simple two-command iteration situation. The difference

between the two arguments are then combined with a base value and a for-loop counter

variable to express the correct value. This approach is domain independent as all the cal-

culations behind it are done by the argument type objects and not the algorithm.

(a) Graphical illustration. (b) Command and argument illustration.

Figure 5.7: Normal comparison approach where each position argument is compared to the same

position argument in the other iteration.

The main problem with the normal comparison approach is that the slightest error,

which is very likely if the objects are drawn by hand, can result in a very unexpected

drawing. This is because both the size of each object and its location is changed accord-

ing to the previous iteration and not the other objects in the same iteration. Figure 5.8

illustrates this.

Copying Shapes

A very simple way to make sure that all shapes are exactly the same is to make a direct

copy of the first iteration and use that in the subsequent iterations. This way any small flaw

made during the second iteration will be removed. The second iteration is only used to get

the distance between each figure. This approach is also domain dependent. Figure 5.9

5.3. Iterative Task Recognition 57

Figure 5.8: Illustration of how a small error can become quite large after only a few iterations,

when the script is generated using the normal comparison approach.

illustrates this.

For the user the result of copying would, however, not be as expected if these minor

differences between the iterations were intended, e.g. such that the shapes would gradually

increase or decrease in size. Therefore we cannot use this approach as the only solution,

but it could be presented as an alternative.

If the user intended to create exact copies of the drawing, it is possible to use the list of

disclosed commands instead and fairly easily create a loop. Of course, this is the purpose

of ITRA, but it also raises the point that an exact copy, which fixes mistakes, might not be

the user’s first choice.

(a) Graphical illustration. (b) Command and argument illustration.

Figure 5.9: Copy comparison approach where only the first position from the second iteration (the

small light grey tree) is used.

ITRA Improvements

We have found a couple of improvements to the automatic generation of iterative scripts

which are not important to the actual algorithm, but will improve the user experience.

Even though these improvements are domain specific, the ideas behind them can be used

for any domain.

58 Chapter 5. Design

Noise, Knowing the Commands

When a user is using an application, it is very likely that that user will perform actions

which in reality does not affect the final outcome, either because another action will over-

write this or because the action is somewhat empty. This is called noise. Therefore we

need to normalize the command history, before the algorithm can work with it. This is

done by removing noises.

In Section 3.2.3, we described how Tessa Lau et al. removes noises by only using the

first and last state of a sequence of similar states, such that the complete movement of the

caret in a textbox or the complete deletion of a word is used. We can use a similar approach

to detect and remove noise in our system, but just as with Tessa Lau et al., we can only do

this for a specific domain.

There are two main reasons why an action can be classified as noise. Either it is

overwritten by a following command, or it is empty. The most obvious example of a

command that is overwritten, is the use of the undo command which will remove the

previous command from the history. ITRA needs to detect this command (and its “sister”,

redo) and change its own history accordingly. The set command is used to specify the

color and/or pen width of a shape. Several set commands in sequence may overwrite each

other. The same is the case for the select command where new shapes will be selected

every time it is used. Finally, a select command can be overwritten by the unselect

command.

Empty actions are action that do not change the state of the application. The best

example of this is the unselect if it is used when no shape is currently selected. This

includes situations where it is used several times in a row, but also when the user tries to

select nothing which will be treated as an unselect.

Alternatives, Knowing the Attributes

Some commands have different ways to handle their action depending on what kind of

arguments they receive. An example of this is the line command to draw a line. It can

either be done by specifying a start position and an end position, or by specifying the start

position, a length and an angle. A script to solve an iterative task using the line com-

mand will look very different depending on what set of arguments are used. Figure 5.10

illustrates this in two different situations: Drawing a circle of lines, and drawing several

parallel lines. The generated scripts can be seen in Appendix D.

5.4. Minor Design Improvements 59

(a) (b)

Figure 5.10: Illustration of how two sequences of line commands would produce different results

depending on what arguments where used in the algorithm. Figure 5.10(a) uses the

start and end position arguments while Figure 5.10(b) uses the start position, length

and angle.

A good solution to this problem would be to create both scripts and present them to

the user. Deciding which might be the best default choice could probably best be accom-

plished by using version space algebra.

5.4 Minor Design Improvements

In this section, we describe the design of different minor elements, we add to our applica-

tion to increase usability.

5.4.1 Color Picker

The original DrawTools had a properties form where the user could set the color and pen

width of the currently selected and future objects. In this semester, we will add individual

forms and buttons on the toolbar. These buttons will illustrate the chosen color and pen

width by simply showing them. The selected color will be shown as the background of

the button with the text Color as the caption. However, there is a problem if both the

background and foreground colors are very dark or very bright, therefore we will use a

small function which calculates how bright the selected color is and sets the foreground

color to either black or white accordingly.

60 Chapter 5. Design

5.4.2 Syntax Highlighting

Having syntax highlighting in a scripting box will increase readability. Having a color that

expresses errors in the code as well will also increase writeability. Each line in SDCASL

can only consist of one language element, and therefore we have decided to color the

whole line instead of just keywords. Another reason for this is to illustrate larger blocks

of code instead of small pieces that not necessarily seem to have any connections. This

will improve the understanding of how the different language structures are expressed and

separate commands from other structures and vica versa.

The actual color used for the different language elements should use mainly blue and

green colors as a red color is used to illustrate errors. The reason being that red is of-

ten interpreted as danger, and is usually the color used in computer science to express a

problem.

5.5 Implementation

In this section, we describe the final implementation of design. In order to keep things

simple, we will not go into details on how our ITRA, parser and interpreter is actually

implemented, but instead focus on the different areas of the user interface. Figure 5.11

is a screenshot of the final application as it looked in test round 2 (see Chapter 6). Fig-

ure 5.12 illustrates the different main areas of the application interface, and the following

is a description of each of them:

A The drawing area where shapes are displayed, and where users can draw them manually

with the mouse.

B The command line where users can write and execute single commands.

C The disclosure box where all actions performed are disclosed. A second tab shows

parsing errors encountered when executing a script.

D The procedure box where all the created procedures are shown and can be manipulated.

E The scripting box where users can write scripts and execute them. The toolbar have

several buttons to easily add different language structures to the script.

F The generated script box where the iterative task recognition algorithm discloses scripts

it creates.

5.5. Implementation 61

The following changes were made to the interface after test round #1:

• The question mark button was added to the command line (B).

• The buttons at the procedure box (D) were added.

• The toolbar of the scripting box (E) was changed and expanded.

• The buttons of the generated script box (F) were moved, and the box itself was

colored yellow instead of gray.

Figure 5.11: Screenshot of the DASA as it looked after test round 2.

Figure 5.12: The different areas of DASA. A is the drawing area, B the command line, C the

disclosure box, D the procedure box, E the scripting box and F the generated script

box.

62 Chapter 5. Design

5.5.1 Self-disclosing

In this section we will describe how the final application fulfills most of the properties and

guidelines for self-disclosing, see Section 3.3.1. Most of these were already fulfilled in

application from the previous semester, but have been improved for this semester.

Properties

• Disclosing for every action

Even more actions than the in the previous semester are now disclosed, with mean-

ingful arguments.

• Groups of disclosed expressions

The few connected actions there exists in DASA is combined into one command

instead of being disclosed as a group.

• Identical result from programming

Everything is disclosed in exactly the way the command should be written in the

command line or a script to get exactly the same result.

Guidelines

• Generalizable

The commands have names such as rectangle which can be directly transformed

to a rectangle in the drawing.

• Experimentation

The application have undo and redo features that allow the user to try out a command

and then revert the result. This feature will undo the execution of a whole script as

well.

• Scaffolding

As the application is used, more and more will be learned through the disclosures.

However, what is disclosed will always use the same synonym for a command and

the arguments as we believe it to be confusing for the end-user if the same action

would suddenly disclose something differently.

5.5. Implementation 63

• Coverage

Almost everything performed with the drawing area of the application will result in

a disclosed command. This is the actions performed that would make sense to use

in a script. Disclosing certain actions such as the creation or deletion of a procedure

will only confuse the end-user more than providing a useful feature.

• Combination of access

Most actions which requires more than one mouse gesture can still be done by only

one command, but the complete drawing can be done with a combination of mouse

gestures, command line, procedures and scripts.

• Unobtrusive and browsable

Both disclosure and the generation of a script is done without interrupting the user

in any way. If more than one script is generated all of them can be seen, and all

disclosed commands will exists

5.5 Summary

In this chapter, we have described how the scripting language, SDCASL, has been de-

signed in the previous semester, and what additions and improvements we needed to add

in this semester. These included addition of new commands, improvements to existing

commands and addition of foreach loop and special variables.

Furthermore, we described the improvements made to the architecture of DASA in

order to accommodate the new features such as ITRA. The purpose of ITRA was to rec-

ognize iterations and generate a script. However, there were several problems, like noise

and attributes comparison, which we discussed how could be solved.

Finally, we described primarily different areas of the implemented user interface in

DASA, and how well it followed the properties and guidelines for self-disclosing.

65

Chapter 6

Usability Test

In this chapter, we first describe the purposes and our goals with the usability testing.

Based on the purposes and goals, we describe some testing methods which we are going

to use. We then describe the approach and the preparation for the usability tests. Finally,

we document the test results along with the general feedback from the test participants,

and the result are discussed with relation to the end-user programming and DASA.

6.1 Purpose and Goals

The overall purpose of our usability testing is to achieve test results which can make base

for the proof of the hypotheses. We are interested in showing that the concept of learning

by observation as used in DASA can teach the end-users to start programming or using

programming to solve their tasks. Moreover, we want to see if DASA can be of any help

or has any effect on the way end-users interact with an application—that is, changing their

work habits.

Furthermore, we want to see how well DASA and the chosen level of abstraction match

different groups of end-users. We also have different expectations for each group of end-

users which are described in Section 6.4.2. Additionally, we partly focus on how learning

by observation and DASA can best be presented to the end-users. In the long run, we

expect to get some insights of how end-users, when they use programming to solve a task,

think and how they go about the transformation from a solution to a piece of code.

66 Chapter 6. Usability Test

6.2 Testing Methods

Based on our goals for this usability testing, we use a combination of different test meth-

ods. In the following, we describe the chosen methods and argue for the choices.

6.2.1 Pre-Test

Before we start the actually usability test, we make a pre-test with a random selected test

person with knowledge about programming. This pre-test is a black-box test with the

purpose of finding possible bugs. The test person simply try out DASA. The primarily

focus is on finding and fixing possible bugs in the application before the actual usability

test.

6.2.2 Usability Test

For the testing of DASA, we use usability testing[HS07], because DASA is a GUI-based

tool which makes usability testing very suitable. This kind of test is, however, very time

consuming regarding to test preparation, the test itself and test result analysis; All this sets

the limitation on how many test persons, we are capable of using for our test, and we need

to choose carefully the right test persons. Instead, we can choose to make an open beta

test which requires less preparation, and we can reach out to more test persons. In such a

test, we can simply put DASA on a website with a feedback form, and then everyone can

participate in the test and give feedbacks through the website.

One of our goals for the testing is to get insights in working behavior of the end-

users. With an open beta test, we cannot follow or monitor the test persons during the

test. We need to be able to observe how the test persons react or think when they tumble

upon a problem and try to solve it by programming; Why it did or did not worked. These

observations cannot be obtained by using an open beta test. The test persons can even omit

to submit feedbacks in such a test which is a loss of potential valuable test data. Another

problem is that we need to test DASA on some specific group of test persons which we

cannot be sure to get in the open beta test. In other words, we lack control in an open beta

test.

6.3. Approach 67

6.2.3 Interview and Questionnaire

There are mainly three kind of interviews[HS07]: open-ended, structured and semi-

structured interviews. In an open-ended interview, the interviewer is given the control

of the interview by asking very opened questions. There is no agenda for an open-ended

interview. As the name imply the structured interview are very structured. Each questions

is planned upfront, and the answers are to be about these questions only. Finally, in a

semi-structured interview there are some topics which must be covered, but within these

topics the interviewee takes control of the interview.

A questionnaire is similar to an interview, but has no interviewer. It can consist of

open or closed questions. The test persons answer the questions alone by themselves

which removes the factor of influence by the interviewer. The results of this technique is

democratic, because all the test persons will have exactly the same questions and the same

answer options.

We choose to use an open-ended interview, because the test persons can give their

personal opinions about DASA. In addition, we use a questionnaire to check if the test

persons have learned or remembered anything from the usability test.

6.3 Approach

The test phase is structured as three iterations and consist of a pre-test and two usability test

rounds; We call the testing iterations pre-test, test round 1 and test round 2, respectively.

The results of each test iteration will make base for improvements to the application in

order to remove critical bugs and problems. Therefore, the conclusion is based mostly on

the final usability test round rather than the pre-test and first usability test.

In the following, we describe our test approach in details and the testing methods used

in each iteration.

6.3.1 Pre-Test

In the first iteration, we make a pre-test with one test person who are not part of the

project group. The main purpose of this test is to get general feedbacks, bugs and usability

problems with DASA. This pre-test is a black-box testing without any special setup, only

note takers to record bugs and problems. The test person simply tries out DASA and report

any issue to the note takers.

68 Chapter 6. Usability Test

The improvements of DASA are based on the results of this pre-test, and all reported

bugs and usability problems are rectified before the next testing iteration.

6.3.2 Test Round 1 and 2

The structure of test round 1 and 2 are the same, but have slightly different goals. In the

first round, the goal is partly to test the usability of DASA and partly to find bugs and

usability issues. A sub-conclusion about end-user programming is drawn from the results

of this test round, and the bugs and usability issues are rectified before test round 2. In the

second test round, the focus will be on getting insights and results to make base for the

proof of our thesis. The conclusion of the test phase will mainly be based on the test round

2, because critical usability issues are removed within the pre-test and test round 1.

Both test rounds start with an introduction of the usability test. This includes some

questions for categorizing the test persons, guide lines and introduction of the graphical

user interface (GUI) of DASA, so the test persons have a chance to solve assignments pre-

pared for the usability test (see Section 6.4.5). Only one test person is doing the usability

test at a time. After the introduction, the test persons receive the assignments. They have

one hour to solve as many assignments as possible; There are eight assignments. A person

is beside the test persons during the usability test in order to help the participants if they

get stuck—a test monitor[HS07]. When the test persons are finish with the assignments,

they receive a questionnaire with questions related to DASA. Finally, we finish the whole

usability test with an open-ended interview as an evaluation of the test process, so the test

persons can give some general feedbacks.

As for the data collecting method, we use a video camera which records both picture

and sound. For the recording of computer screen data, we use an application called Fraps1

(see Section 6.4.1 for the usability testing setup). Only the usability test and the open-

ended interview are recorded, because the introduction part is the same for all test persons.

The usability test results are analyzed after each test round, and changes and improve-

ments to DASA are done between the first and second test round. Only very critical bugs

are fixed between the test persons in order to avoid some barriers which can potentially

block for some test results or insights.

1Homepage of Fraps: http://www.fraps.com/

http://www.fraps.com/

6.4. Preparation 69

6.4 Preparation

In the following sections, we describe the preparation of the usability test. This includes

the setup, questions to categorize the test participants, assignments and questionnaire.

6.4.1 Setup

For the setup, we use a computer with a screen capturing program, Fraps, which captures

what the test participants do on the computer. Meanwhile, we capture the reactions of the

test participants by a video camera. Figure 6.1 illustrates how the setup looks like from

above.

Figure 6.1: An illustration of the test setup showing a computer, a test person (circle), a camera

angled at the test person and the test monitor (circle with a cross).

6.4.2 Target Groups

We choose to make the usability test on a range of different end-users with different knowl-

edge level about programming. The range is divided into three groups. The first group con-

sists of end-users who do not know how to program. The second group of end-users who

have tried to program a few times, but are not skilled end-user programmers or novice

programmers. The third group are novice programmers who are becoming professional

programmers.

We strive to get an equal amount of end-users in each group, and of both genders to get

a more clear view of the differences between the groups in the way they learn and DASA.

Common for these groups is that they all know how to use a computer.

70 Chapter 6. Usability Test

Group 1 (G1) Never tried programming.

Group 2 (G2) Tried programming before, but is not a skilled end-user programmer or

novice programmer.

Group 3 (G3) Novice or professional programmer who do programming on a daily basis.

6.4.3 Questions to Categorize Test Persons

In order to categorize the test persons, we have a list of questions primary on programming

subject. Based on their answers to these introduction questions, we will place them into

the right group. These questions can be found in Section E.1.

6.4.4 Result Expectations

The following sections are descriptions of how we expect each testing group to perform

during the test.

Group 1

This group is the most difficult group when it comes to programming, because they only

have little basic computer knowledge. By this, we mean that they might be good in one

application which they use on daily basis, but have difficulties when working in another

application environment. Going from the basic computer knowledge to start doing pro-

gramming seems to be a huge step. Nevertheless, that is what DASA is for; To help

end-users to start programming. We expect this group to be able to solve the assignments

which have no programming tasks, but they will have troubles with the programming tasks.

However, we believe they do understand some elements and ideas in DASA.

Group 2

We believe this group can understand most of the information presented in DASA, because

they already have a basic computer knowledge and a little knowledge in programming. We

expect these test persons to have a minor understanding of the conditions and iterations

used in programming, but we do not necessary expect them to be able to formulate it in

a way, the computer can understand. Therefore, we expect the results will show that they

are capable of catching the idea using programming to solve computable tasks and be able

to solve many of the assignments with programming. Their scripts might not look perfect,

but should do what they expected the scripts to do.

6.4. Preparation 71

Group 3

We expect this group to solve the assignments without any problems, because they already

have training in programming. However, the challenge for this group is still the unknown

scripting language and the application environment which counts for all three test groups.

Unlike the other groups, this group should be able to understand the scripting language

fully after being introduced to it. Therefore, this group is more a control group rather than

a test group.

6.4.5 Assignments

In the following, we describe the eight assignments for the usability test in plain text2.

The precise description of the tasks in the assignments, in the original Danish version,

are found in Section E.2. We have written the assignment in Danish in order to remove

the language as a factor which can affect the usability testing, as all test participants are

Danish. Five of the eight assignments are introduction assignments which introduce the

test participants to the different tools available in DASA. The last three assignments let the

test participants solve the assignments independently. In addition, the difficulties of the

assignments are increasing in each assignment.

Assignment #1 - Basic Shapes

This assignment introduces the test participant to the basic drawing tools, rectangle, ellipse

and line. The test participant is asked to draw a rectangle, an ellipse and a line. No re-

quirements of size or color. In addition, we ask the test participant to notice the disclosures

box.

Figure 6.2: An example of the three basic shapes.

2For the interested reader, we show how these assignments are meant to be solved in some video clips

which can be found in the enclosed CD-ROM.

72 Chapter 6. Usability Test

Assignment #2 - Coloring the Shapes

In this assignment, the test participant is asked to color the shapes from the previous as-

signment. The rectangle must be red, the ellipse blue and the line green. The purpose of

this assignment is partly to introduce the test participant to how to color their shapes, and

partly to see whether the test participant can relate their mouse actions with the disclosures.

Assignment #3 - Usage of Commands

The test participant is to draw a circle with 250 pixels in radius and with a center at

300,300. This must be done with a command, and the idea is to force the test partici-

pant to use the disclosures box to find the right command for drawing a circle. However,

the assignment asks the test participant to draw a circle, but the disclosures box has only

shown the ellipse command from assignment #1. Furthermore, the arguments to the

disclosed ellipse command are not radius nor center, so the test participant must intu-

itively guess the radius and center arguments. The purpose of this challenge is to see if our

design of the language is intuitive enough, and how the end-user thinks and do in such a

situation where they feel a bit lost.

Finally, the test participant is asked to move the circle with the mouse and then move

it back with a command. The circle must also be colored blue, and the pen width must be

5 pixels. These tasks are to see if the test participant understands the usage of disclosures

box and its disclosures.

Assignment #4 - Create a Procedure

In this assignment, we want to introduce the test participant to procedures and how these

can be created from disclosures. The test participant is asked to draw a bicycle with the

mouse. This bicycle must be duplicated five times at different positions and with different

colors. The goal in this assignment is to see whether the test participant understands the

idea and advantage of making an abstraction to many actions.

This assignment was changed between the first and the second test round. In the first

test round the test participants were only supposed to draw a square and then color it

before eventually creating the procedure. The result from the first test round have shown

that none of the test participants did understand the purpose of the assignments regards

to the procedure. With the new assignment, we have tried to make it more obvious that a

procedure should be used.

6.4. Preparation 73

Figure 6.3: An illustration of a bicycle for the assignment #4.

Assignment #5 - Usage of Script

This assignment is different from the previous assignment, because it does not ask the test

participant to draw figures, but instead manipulate with an existing drawing with scripts.

The existing drawing shows three red rectangles above a black line and three green rect-

angles below the black line. First the test participant is asked to change the colors of the

rectangles, the red ones to blue, and the green ones to red. We have drawn many differ-

ent shapes on top of the drawing, so the test participant cannot use the mouse to select or

move the colored rectangles, but is forced to use a script. After the color changing, the test

participant must switch the positions of the colored rectangles (see Figure 6.4).

The purpose is to see if the test participant can transform an idea to a solution into

a script to solve the problem. For a non-programmer this assignment seems to be very

difficult, however, this challenge can show us if DASA can be of any help in the learning

process of creating a script.

Figure 6.4: An illustration of the task asked in assignment #5.

74 Chapter 6. Usability Test

Assignment #6 - Drawing Circles

This is the first of the three independent assignments. The test participant is asked to draw

30 circles with increasing radius. How the test participant is to solve this assignment is not

told in the assignment. The purpose of this assignment is to see whether the test participant

is capable of solving the assignment through programming by using the knowledge from

the previous assignments. Furthermore, we want to see if the test participant recognizes

and modifies a generated script in the generated script box to solve the assignment. In

fact, there are many ways to solve this assignment, and the interesting part is how the test

participant choose to solve it.

Figure 6.5: An example of how the result of assignment #6 can be.

Assignment #7 - The Wild Forest

In this assignment, the test participant is asked to draw a picture of a forest with a house

and a sun. 30 trees represent the forest, and how these are drawn is up to the test par-

ticipant. The main purpose in this assignment is to see whether the test participant has

learned anything from the previous assignments, and if the test participant is able to solve

the assignment with a script. In addition, we are interested in seeing how the test partici-

pant thinks when trying to solve a problem with programming, and if DASA can ease the

programming process. Possible good solutions would be to use a procedure with a loop

and a random-structure.

6.4. Preparation 75

Figure 6.6: An example of how the wild forest with a house and a sun can be drawn.

Assignment #8 - Coloring the Wild Forest

This assignment is a continuation of the previous assignment. The test participant is asked

to color the drawn picture, and like the previous assignment, the interesting part in this

assignment is to see how the test participant decide to solve this task. Furthermore, we can

use this assignment to see what part or how much of the tools and techniques introduced

in the introduction assignments are remembered, and in such case why the test participant

remembers some tools and techniques and not other. Good choices for a solution here

would be the use of foreach- and if-structures in a script.

6.4.6 Multiply Choice Questions

After the usability test, the test participants answer a multiply choice questionnaire con-

sisting of two parts. The first part has a total of eleven questions each with four to six

possible answers. Ten of the eleven questions have one correct answer, the last question

is about how the test participant will solve a problem wherein all answers to that question

are correct.

The second part consists of six questions about how useful the test participant thinks

different parts of the prototype is. All questions has a “do not know” option.

The first part of the questionnaire was changed between the first and second test rounds

as it was simply not precise enough.

76 Chapter 6. Usability Test

6.4.7 Interview

To complete the test we will have an interview with the test persons. Both group members

will be present as this is an open-ended discussion based on what they have answered on

the questionnaire and on what happened during the test. From there the interview can go

in any direction that we or the test person believe to be interesting and relevant for our

project.

6.5 Test Round 1 and Results

In the following, we describe the results obtained during the first test round. This includes

both problems, successful results and general observations. The results are divided into the

corresponding assignments. The final section is a walk-through of some of the problems

found during the usability test, and a description of how we intend to implement solutions

for them before the second test round.

6.5.1 Participants

There were 5 participants in the first test round in total. Based on the introduction ques-

tions, we divide these into the testing groups and listed them in Table 6.1.

Table 6.1: Participants in the first test round.

Group participant Programming skill Computer usage Assignments

G1 A Never programmed Daily All

B Only spreadsheets 3 times/week All, but 7 and 8

G2 none

G3 C Novice programmer Daily All

D Novice programmer Daily All

E Novice programmer Daily All

6.5.2 Assignment #1 - Basic Figures

In this assignment, G1 had difficulties with using the basic drawing tools. This issue is not

related to our part of DASA, because it is outside our test scope, but it still has an effect on

the test results. G1 did not notice the disclosure box in this assignment even when stated

6.5. Test Round 1 and Results 77

in the assignment that they should be caution about it. A problem here might be the many

boxes (disclosures, procedures, generated script, script) give a disoriented effect on the

test participants whom already are nervous in such a usability test.

As a success result, all from G3 noticed the disclosures box and also understood what

it disclosed. However, some test participants in G3 did not get the point of having such a

disclosures box at this point. Unlike G1, the G3 are used to program in heavy editors with

even more boxes than in DASA, and, therefore, were comfortable with the GUI.

6.5.3 Assignment #2 - Coloring the Shapes

There were no problems in this assignment, but there were an observation which should

be mentioned. There are two buttons which can be used to choose the color of a figure. All

test participants from G3 used the left one, which is an icon illustrating colors and lines,

while G1 all used the right one which is a button with the current color as the background

color and the text “Color”.

A success in this assignment was that almost all test participants understood the dis-

closures and the purpose of these at this point.

6.5.4 Assignment #3 - Usage of Commands

Only one from each test group managed to guess that radius and center could be used

as arguments to the command circle. The rest tried with arguments which were dis-

closed. In addition, when using the move command, only two from G3 tried to call the

command with missing arguments. The rest was unaware about the optional arguments.

G1 in general, had difficulties with the understanding of arguments. They only typed the

values and omitted =, or they tried to set the command equal to a value. E.g. circle=250

for a circle with radius 250. Also, one from G1 intuitively wrote circle with radius

2503 for the same task.

A success is that all test participants used the disclosures box to find out how to write

a command. Also the commands set and move were quickly discovered. There was a bit

confusion about values to the move command. Some test participants saw the values as

absolute coordinates rather than relative values.

3This is a translation of: “cirkel med radius 250” which was originally written.

78 Chapter 6. Usability Test

6.5.5 Assignment #4 - Create a Procedure

The main problem in this assignment was none of the test participants understood the

purpose of this assignment. There were also different understandings of what a procedure

was in the context of the test. The reason for this problem might be found in the problem

that all test participants had problems with creating a procedure. There was no help in the

assignment nor the tool to create a procedure. There were only three Create Procedure

buttons placed three different places, but these confused the test participants even more,

because they had different effects.

Finally, when the test participants created a procedure, they had problems with invok-

ing the procedure. One from G3 tried to use the play button, belonging to the command

line, to invoke the procedure. When the test participants figured out that they could select

disclosures and create a procedure, they wanted to edit the existing procedures, but this

option was not available.

Without telling how they could select more disclosures at a time, they figured it out by

holding down the ctrl key. This is a positive observation. Clearly, the test participants

have seen such a select box somewhere else or intuitively used the same method as when

selecting more objects in e.g. Windows OS.

Another positive thing to say in this assignment was that all test participants did man-

age to generalize position and color when creating the procedure. Whether this is because

of the assignment which told them to work with position and color or the options were

intuitive was not clear though.

6.5.6 Assignment #5 - Usage of Script

G1 had problems with understanding loops and if-statement and could not see the benefits

of using them. However, they did all manage to create a foreach-loop through the icon

on top of the script box. While modifying the script, test participants needed to undo

changes, but DASA did not support this.

Again in this assignment, the disclosures box had shown to be a valuable tool for the

test participants. They used it very often as a look-up dictionary to remember command

and argument names. In this assignment, they used it to look-up the set command.

6.5. Test Round 1 and Results 79

6.5.7 Assignment #6 - Drawing Circles

It turned out that none of the test participants noticed the generated script box or even

understood the information in that box.

G3 quickly solved the assignment by creating their own scripts. This was what we

expected from G3, since none of them noticed the generate script box. This can somewhat

be regarded as a success, but not useful information in the sense of the test purpose of this

assignment.

6.5.8 Assignment #7 - The Wild Forest

One from G1 did not reach this assignment, and the other from G1 did finish the assign-

ment, but with much of help from the test monitor. The test participant did find out to use

a foreach-loop, but could not see how to combine with a condition. G3 did solve the

assignment easily, but there were many bugs related to the script execution which affected

the results for this assignment. Therefore, the results should not be taken too seriously.

A positive notice was that two from G3 and one from G1 remembered about proce-

dures and used these to create trees. In addition, all from G3 used the random keyword,

which had not been introduced, to create a script to draw the trees at random positions.

6.5.9 Assignment #8 - Coloring the Wild Forest

Only one from G1 reached this assignment and managed to finish it with help from the

test monitor. It was clear, that the test participant in G1 had difficulties with solving the

assignment alone, but the test participant did get some ideas to how the assignment could

be solved. The problem was to get started.

Two from G3 and one from G1 used a foreach-loop on the type of figures with

the set color command to color the trees. This was a success, because they remem-

bered how to apply changes to a number of figures with the same shape. However, all of

them were surprised about the sun and house were colored too when they colored the tree

leaves (circles) and tree body (rectangles) respectively—we name to this issue the “sun-

shine problem”. The last test participant from G3 used the select command to select

all figures with the type of circle, instead of the foreach-loop, but wondered about the

sunshine problem too.

80 Chapter 6. Usability Test

6.5.10 General Observations

Most of the test participants used common shortcuts, ctrl+z (undo) and ctrl+a3 (select

all), when drawing, but they did not exist. This problem confused the test participants,

because they are used to use these shortcuts in e.g. Windows OS and other applications

such as a text processor. Intuitively, they also expected the shortcuts to be a standard

features in the scripting box as-well.

When changing the color of a figure, test participants tend to click on an area showing

the current color in the properties box rather than the ... button, because they did not

know what that button means. Furthermore, the commands ellipse and rectangle

were used for drawing a circle and square which confused the test participants. Generally,

DASA lacked information about commands, disclosures and scripting language syntax.

Test participants from G3 even suggested a code assist for the command line which can

provide them with information of commands and their parameters.

If we look at how G1 and G3 try to complete the assignments, it was clear that G3

already know how to program. They had a tendency to find smart solutions to the problems

stated in the assignment which sometimes let them to solve a whole assignment in one

step. E.g. one from G3 insisted to create procedures for creating a tree, a house and a sun

in assignment #7. All these procedures were then executed in one step. One from G1, on

other hand, created a procedure for creating a tree, and manually execute each tree, and

then added the house and the sun.

6.5.11 Solutions

The following is a description of several possible solutions to the problems we have found

during the first test round. We prioritize the problems, so we can make sure, we get the

most important solutions implemented before the second test round. Each is prioritized in

respect to how serious the problem is and how easy (and time consuming), we expect it to

be to implement the solution. Furthermore we have noted whether the problem relates to

the application, to the domain or to end-user programming in general.

Use of topleft as argument instead of upperleft (serious, easy, usability)

During the test we saw several try to write topleft when they were specifying the

position of an object, even when they had already seen the same being known as

upperleft. It is easy to change this as all parameters that use upperleft should

just had another synonym added.

6.5. Test Round 1 and Results 81

Buttons below the procedure list (serious, easy, application)

It took a while for all participants before they discovered the right-click menu for

the procedure list. Therefore, we need to add buttons for the most important options

below the procedure list just as we have with the disclosure list.

Command information window (serious, hard, usability)

All participants needed more information about what commands were available, and

how they could be used.

Adding a command information window which shows all its synonyms and all the

possible parameters would greatly help. It would even give the users a place to

discover new commands instead of only through the disclosure list. Adding the

possibility to right-click a disclosed command and then get information about that

one would speed up the information search. Our system already have a way to

access command and parameter information internally, so it would mostly just be a

question of presenting it in an understandable way.

Shortcuts such as ctrl+z and ctrl+a should be added (cosmetic, easy, usability)

The common shortcuts ctrl+z and ctrl+a were known by all participants, but

our application do not support these.

DASA do, however, support other common shortcuts such as ctrl+c, and the other

shortcuts should just be added in the same way.

Removing the firsti and lasti variables from a generated script (cosmetic, easy,

application)

These variables were originally added to ease the editing of the script, but it turned

out to be confusing for participants who were not used to programming as they did

not see them as variables, but more like special keywords.

Simply removing them and writing their value in the for-structure is easily done

and should be less confusing.

Edit of procedure (serious, difficult, application)

Several participants wanted to edit a procedure, they had created, but this is not

supported by DASA.

The solution is to add a new popup window which can be used to edit the script

inside the procedure. Because of the way we have created the different parts of the

application, it should be fairly easy to add syntax highlighting and other features to

this new script editing box.

82 Chapter 6. Usability Test

Appending disclosed commands to existing procedures (cosmetic, easy, application)

In addition to the edit of a procedure. it was requested to have a way to easily ap-

pend disclosed commands to a procedure.

This feature can be added in the form of an option to the right-click menus of both

the disclosure list and the procedure list. This should then simply append the se-

lected disclosed commands to the currently selected procedure.

Changing the looks of the script generating box (serious, medium, usability)

No participants took notice of the script generation box even when a new script had

been generated. Some mentioned that the problem might be because of the color

gray, and it, therefore, had the look of a disabled windows control.

We need to change its colors and add some other attractions, e.g. a flashing icon, to

make user more aware of its existence.

Write out all “create procedure” buttons (cosmetic, easy, application)

Some participants were confused that there were three buttons with the text “create

procedure”.

A simple solution to this is to write more descriptive descriptions in the buttons.

Auto-completion/suggestion when writing a script (cosmetic, hard, usability)

Many programmers are used to scripting environments where a small box is show-

ing while writing. In this box is a list of all the possible keywords and variables

which can be written at the current location. This makes it easy, and very quick to

write correct code. This box can also include argument information for a function

call.

As with the command information window, our system already have a fairly quick

way to access command and parameter information. The difficult part is the box

which needs to work perfectly as even the slightest problem with this will give con-

fusing problems.

Shortcuts to the drawing tools (cosmetic, easy, application)

One participants were annoyed with the click on a shape icon on toolbar for each

shape to draw. They suggested a keyboard shortcut.

As an idea, we could use ctrl+p, r, e or l.

6.6. Test Round 2 and Results 83

6.6 Test Round 2 and Results

In the following, we describe the results obtained during the second test round. This in-

cludes both problems, successful results and general observations. The results are divided

into the corresponding assignments. These results are the base for the following sections

that discuss the different aspects of DASA in relation to the end-user research field and the

drawing domain.

6.6.1 Participants

In the second test round there were a total of 10 participants. Based on their answers to

the introduction questions, we have divided them into the three testing groups as listed

in Table 6.2. The spreading of the end-users in the groups did not end as we originally

intended.

Table 6.2: Participants in the second test round.

Group participant Programming skill Computer usage Assignments

G1 F Never programmed Daily Up to 5

G2 G A little C# Daily All

H PHP, Spreadsheets Daily All

I A little PHP Daily All

J A little PHP Daily All

G3 K Novice programmer Daily All

L Novice programmer Daily All

M Novice programmer Daily All

N Novice programmer Daily All

O Novice programmer Daily All

6.6.2 Assignment #1 - Basic Figures

None had problems with drawing the figures and saw the disclosures box, but G1 did not

understand precisely what it was at this point.

84 Chapter 6. Usability Test

6.6.3 Assignment #2 - Coloring the Shapes

After the test participants draw a line in the previous assignment, they had to color the

figures, but there was a problem with choosing the color while having the line selected.

Several test participants could not understand why the line was colored while their inten-

tions were to color the rectangle. They simply missed the selection mark on the figures.

Nevertheless, at this point all test participants understood the simple disclosures such as

set color and command name, but G1 still had problems with understanding the argu-

ments.

While coloring the figures, one from G2 double clicked on a figure and expected it

to show the properties of the figure, but there was no such option available. One from

G1 and G2 entered the figure properties through the upper menu of the application (Edit-

>Properties) when changing the color rather than using the color icon in the toolbar.

6.6.4 Assignment #3 - Usage of Commands

A problem in this assignment was that G1 and few test participants from G2 used the

ellipse command with the arguments shown in the disclosures box, and they all get

stuck. After some help from the test monitor, they managed to draw a circle with circle

command. After drawing the circle, the assignment asked test participants to move the

circle. The problem was that when they did so, they did not see the move command which

was disclosed to help them move the circle back as a part of the assignment. To find help,

they found the “command information” feature which is a popup window with information

about all the commands. However, the boxes in the command information are all empty

by default, and this was a problem, because it confused the test participants. Furthermore,

G1 and one from G2 did find information about commands in the popup, but did not

understand the provided information.

A success was that all test participants used the disclosures box to track back how

to draw a circle, but started out to use the arguments shown with the disclosure (which

were topleft and bottomright rather than center and radius). One from G2 tried

intuitively to use center and radius as arguments right away, others found this in the

command information box. Also when coloring the circle with a command, all test par-

ticipants found the set color in the disclosures box. Some used intuitively the set

penwidth to set the pen width of the circle, while others again used the help in the com-

mand information.

6.6. Test Round 2 and Results 85

6.6.5 Assignment #4 - Create a Procedure

A big lost at this point was one from G1 gave up. The test participant was too confused

and needed very much help from the test monitor. Beside that, most test participants had

problems when it came to creating a procedure as the assignment asked them to do. They

did not know how to get started. With a little help from the test monitor, they managed to

create a procedure from the disclosures, but with only one disclosed command which was

not enough. They tried to append the missing disclosed commands to their procedure, but

the generalization of arguments was not applied to the new appended disclosures. That

confused the test participants to start all over again. One from G3 thought the script box

was the procedure wherein the test participant added disclosed commands.

Although there were problems with getting started to create a procedure, the success

was that the test participants understood the idea of generalizing the position and color

arguments when creating the procedure. In addition, G2 and G3 tried to call their created

procedure with a script, but failed. Instead they tried to call it through the command line

which was a success. Only one from G1 executed manually the procedure.

An unexpected observation was one from G3 tried to select all shapes in the draw area

and drag the whole drawing into the script box. The test participant intuitively thought,

DASA would automatically generate a script for that drawing. Few other tried to select

the whole bicycle and right click to create a procedure, but this was not possible. Fur-

thermore, one from G2 tried to execute a procedure as an argument to a command run

procedure=bicycle.

6.6.6 Assignment #5 - Usage of Script

A problem in this assignment is that half of all test participants spread among the three

groups started with using the command select with color as an argument, but this

argument was not a part of that command. In addition, one from G3 used the select

command inside a foreach-loop, because the test participant did not expect, the loop

would select an object when executed.

Successfully, all test participants did find the foreach-loop through the icons above

the script box, but G1 and most of G2 did not know how to get further. With some help

from the test monitor, they did manage to finish the assignment. All from G2 and most

from G3 used a single = in their if-statement even when == was also supported. This was

a success regarding to our expectations, because we expected most test participants would

use the first syntax.

86 Chapter 6. Usability Test

An interesting observation was two from G2 tried to select the rectangles in the assign-

ment with the constructions foreach red rectangle do and select rectangle

color=red respectively. These constructions were not supported, but an intuitive syntax.

6.6.7 Assignment #6 - Drawing Circles

One from G2 detected the generated script, but did not understand what DASA generated

and how to use it. This was a problem, because the generated script should help the test

participants to solve the assignment more efficiently. A general problem with this gener-

ated script was that all test participants, but one from G2 and two from G3, overlooked the

it. However, they tried to create a script by themselves which was a positive observation.

Those test participants who detected the auto-generated script also changed and executed

it correctly. This was only a minor success, because only one from G2 detected it, and we

expected all from G3 to find and use the generated script easily.

Most test participants from G3 went straight to the script box and created a loop which

draw the circles without any problems. Those who did not remember the command for

drawing a circle used the command information and the disclosures box to remind them-

selves the name.

6.6.8 Assignment #7 - The Wild Forest

One from G2 started with drawing a tree manually and then used copy paste to make more

trees. The problem was that this participant did not remember much of the introduced tools

in the previous assignments. It did not seem like the test participant had an understanding

of DASA. Other problems were related with the syntax of the random-structure. The test

participants intuitively used the structure with two arguments, random 100 400, to get

a random number between the defined range.

All, except for one from G2, first draw the tree by hand and then created a procedure

of the disclosures. They also created a script with the usage of the procedure. This was

a success even when they actually tried different approaches at the beginning, but these

approaches were still within programming.

6.6.9 Assignment #8 - Coloring the Wild Forest

One test participant from G2 did not reach this assignment, but for all other test participants

in G2 and G3, this assignment might be too easy. It did not challenge the test participants

enough as they solved it very fast and easily. However, one test participant from G2 forgot

6.7. General Feedback 87

the foreach-loop construction and used the select structure again.

A success was though that all test participants from G2, except for one, and G3 used

foreach-loop as they have been introduced in assignment #5.

6.7 General Feedback

In this section, we shortly describe some of the results from the multiply choice questions

and the interviews.

6.7.1 Multiply Choice

The multiply choice part of the test was supposed to give us a picture of whether the

test participants had learned what we wanted them to learn. The questions themselves,

however, could have been better outlined.

Of the 11 questions in the first part, 8 were answered in the same and correct way by

all test participants. One question was answered correctly by half of all test participants. It

turned out that the question was ambiguous, so the rest of the answers could also be seen

as correct. One question askied the test participants how to solve a task whereof half chose

top solve it by programming, and the rest chose to solve it by other ways.

The last part of the multiply choice questions were about how useful the test partici-

pants felt, different parts of DASA were. For both the disclosure, procedures and scripting

the general opinion were very positive. There were no clear picture of how useful the iter-

ative task recognition was as almost half of the test participants answered “do not know”,

and the rest were scattered. This was a result of the fact that several test participants simply

did not notice the generated script. The overall opinion about the tool were positive.

6.7.2 Interview

We primarily asked the test participants what they thought about four elements: The as-

signments, the disclosure box, the scripting language and the application in general. We

also asked several users what could be the reason for them not noticing the generated

scripts and command information. The rest of the interviews was more specific for each

test participant.

The general opinion about the assignments were positive. They were not difficult

as first feared, but it was not clear whether they introduced the different aspects of DASA

88 Chapter 6. Usability Test

good enough. All test participants agreed that the disclosures box was a great feature which

helped them to learn the commands, but also remember them as they could go back in their

history. Most test participants were positive about SDCASL and think it was simple and

understandable. The opinions about the whole application were also fairly positive, but

several mentioned that they would not use it — some simply because they would require a

lot more from a drawing application. One find no need to learn to program, because need

of the test participant was already covered by exiting applications.

To the question why some test participants did not notice the generated scripts and the

command information, there were no clear answer. Some mentioned that they did see the

generated scripts, but they simply did not understand what it was or how to use it, and the

command information was not visible enough.

One test participant pointed out that the test participant generally need very detailed

explanations in order to understand things. Other also pointed out that they are not so

quickly to learn new things. They felt, they did not had time enough DASA, so they found

it difficult to use. Also the English language in DASA was a barrier which slowed down

the test participants further.

6.8 Result Discussions

In the following sections, we discuss the results from the test in relation to the field of

end-user programming and drawing domain.

6.8.1 Results Discussion Related to End-User Programming

The following discussion of results from the usability test involves the learning barriers

described in Section 2.3: Design, selection, coordination, use, understanding and infor-

mation. We point out the problems and relate them to the learning barriers.

The overall general observation of our usability test was that the groups of test par-

ticipants were solving the assignments very differently. So in order to give a structured

discussion, we divide the discussion into smaller parts with relation to their respective

test groups. We refer to the test participants to those from test round 2 if nothing else is

mentioned.

6.8. Result Discussions 89

Test Group 1

As expected, group 1 had problems with programming. One test participant gave up after

assignment #4 (Section 6.6.5), but was urged to continue and did finish assignment #5

with very much help; DASA could not help the that participant to overcome the design

barrier regarding to programming. When it came to creating procedures as an abstraction

or grouping of commands, the test participants did not understand the idea at first (Sec-

tion 6.6.5). From test round 1 results, we saw that one of the test participants in test group

1 did not reach further than assignment #7 (Section 6.5.2), but required very much help

from the test monitor.

The general observation of group 1 was that they did know what to do, but did not know

what to use in order to obtain their goals (Section 6.5.9)—the selection barrier. However,

with some help they did manage to use programming to solve some tasks, but could not

understand the idea and meaning of it—the use barrier. Also the barrier of coordination

occurred when they figured out that they need an if statement in an assignment, but they did

not know how to combine it with other structures such as a foreach-loop (Section 6.5.8).

If we solely base our sub-conclusion on the test results, we saw that DASA was too

difficult for test group 1 to use. It did not totally break or lower some of the learning bar-

riers. Nevertheless, the open-ended interview with the test participants after the usability

test revealed some factors which can explain why DASA did not work for this group (Sec-

tion 6.7.2). One test participant said that everything must be explained e.g. why to use a

foreach-loop, before the participant can make use of it. Other test participants said that

they just need more time to use DASA, because at the end of the usability test, they began

to understand the idea of solving iterative tasks by programming, but need more time to

get more comfortable with it. Furthermore, some test participants said that the difficulties

were also caused by the English language in DASA, as they could not understand some

of the keywords. So more in-depth explanations, changing language in the application to

their speaking language and more time, and DASA might give some positive results for

test group 1. Nonetheless, the general result and observation is that DASA was too difficult

for end-users with only little basic computer knowledge.

90 Chapter 6. Usability Test

Test Group 2

The test results for test group 2 have shown that test participants in this test group under-

stood and made much better use of DASA than group 1. The reason is because they already

have much more computer knowledge than group 1, some have even tried to program a

little. Although they have a minor programming experiences, most of the test participants

still faced the same barriers like those in group 1, selection, coordination and use barriers,

but to a less degree. Most of the test participants managed to overcome the mentioned

barriers by searching for help within DASA such as using command information or sim-

ply try out a script (Section 6.6.4). In other words, they keep continuing instead of giving

up. Two features in DASA were specially helpful for the test participants search for help.

First, all test participants expressed that the disclosure box helped them learn about the

possible commands and the syntax for using them (Section 6.6.4). Later, the disclosures

were also used as a reminder for when they were to use the commands in a script. The

feature of inserting language structures through forms were also very helpful as it made it

easier for the test participants to learn and try out the different aspects of the scripting lan-

guage. Both of these features did not help group 1 as much as originally hoped, however.

The reason still being the general lack of programming knowledge and training.

One test participant in group 2 did not overcome the coordination barrier when it came

to using a loop structure (Section 6.6.7). The test participant was confused about how to

use the incrementing variable in a for loop. Several other test participants hit the under-

standing barrier when they thought they knew how to use some script structure, but their

script did not do as they expected (Section 6.6.6). In continuation hereof, they faced the

information barrier, since most of the test participants did not know how to fix their script;

One did the same mistake in a later assignment(Section 6.6.9). In general, this test group

lacked the debugging skills which test participants in group 3 are possessing.

The sub-conclusion for group 2 is that the test participants were capable of learning

to use if statement and loop structures, but sometimes faced the understanding barrier and

then the information barrier in the continuation of the first barrier. DASA seemed to help

this test group to overcome the selection, coordination, and use barriers which test group

1 also faced, but did not overcome. However, some test participants from group 2 still had

problems with the coordination barrier (Section 6.6.6), so test participants from this group

had different ways of learning things. This indicated that DASA did not manage to help all

test participants from this group, but was capable of helping most of the test participants

to learn a new scripting language and start programming.

6.8. Result Discussions 91

During the interview, one participant from group 2 mentioned that he could not see the

point of programming as all the applications he used were able to do what he required of

them. This is an example of the sociological barrier, see Section 2.3.1.

Test Group 3

As for test group 3, we have not much to discuss about their test results. For most of

the assignments, they went straight to the scripting box and solved the tasks eagerly with

programming (Section 6.6.6). Again the feature of inserting language structures through

forms proved helpful when they needed to learn the syntax of the scripting language. We

expected this on beforehand.

A Problem with Iterative Task Recognition

The usability test did not give enough data about the iterative task recognition for us to

make any definite conclusions. The main reason for this were that only a few of the test

participants actually used it. The test, however, showed that it is important to make the

end-user more aware of the features in an application. When a new script were generated

it were shown together with a green colored status message at the bottom of the window.

However, this simply was not enough for most of the test participants to notice it. Those

who did, had trouble comprehending what exactly it was. Group 3 did understand the

generated script, but would rather create their own.

6.8.2 Results Discussion Related to the Domain

Most of the observations we have done during our testing rounds regarding the drawing

domain, have to do with the drawing area of the application or the usage of some of the

commands. However, also a few observations about how the scripting language was used

are interesting.

All test participants recognized the three shapes, rectangle, ellipse and line, and most

had no problem at all drawing them using a click-and-drag approach. This approach is

a common approach in other drawing applications too, including Microsoft Paint which

is included in the Windows operating system. One difference between DASA and Paint,

however, is that once a shape has been drawn in Paint, the shape cannot be changed4, while

DASA offers the possibility to manipulate with drawn shapes. For most of our test partic-

4The newest version of Paint which is included in Windows 7, have added the possibility to manipulate

the size of the last drawn shape.

92 Chapter 6. Usability Test

ipants, this possibility was a surprise as many actually expected to be able to manipulate

their drawn shapes through menus or by double clicking. The eight handles shown when a

shape is selected, did not seem to be unfamiliar either. An interesting observation with the

selection, however, is that most test participants selected and moved shapes by clicking on

their periphery, which must be because they expected that they could click through the in-

ner area of a shape. The few that did select by clicking inside the shape also expected there

to be a fill-color, which is usually the case for other drawing applications. As with many

other aspects of our application several test participants intuitively used ctrl+click to

add shapes to the current selection. This is a trait learned from the Windows operating

system together with the use of the ctrl+a, z, x, c, and v keyboard shortcuts which were

also used frequently.

Even though all recognized the three shapes, some was confused about the lack of

differences between an ellipse and a circle, and between a rectangle and a square. Math-

ematically, there is a difference between these, but in DASA they are treated as the same,

which did lead to some scripts not doing what the participants intended (Section 6.5.9).

Therefore, it is important to take the correct meaning of geometric terms into account when

dealing with the drawing domain.

The use of a coordinate system in a drawing tool is not uncommon, but only few ap-

plications actually make use of it for other than displaying the mouse position. It seemed,

however, that only G1 had slight problems grasping this. One reason could be that G2

and G3 had all tried to program before, and the exact same coordinate system is used for

application development to specify the position of buttons, input boxes etc. Some test par-

ticipants did question where the (0,0) coordinate was in DASA, but fairly quickly realized

that it is in the upper left corner.

When the test participants understood the drawing area had a coordinate system, all

values of two numbers divided by a comma were recognized as a coordinate set in the

drawing. They all also recognized the use of X and Y for this. This even made some test

participants to not pay attention to what was written elsewhere in a window, when they

saw two input boxes with the labels X and Y. Whenever a position needed to be specified

in DASA, it was possible to click on the drawing to easily use that position, but during

the entire test only one participant discovered this even though the text “(click on the

drawing)” was written right above the coordinate input boxes.

Since DASA disclosed an English name for a color, whenever possible, all the test

participants used this, and thereby could guess the name of a color, they had not used

6.8. Result Discussions 93

before (Section 6.6.3, Section 6.6.9 and others). The few, from G2 and all from G3,

who actually did see another way to illustrate a color (the red,green,blue approach, e.g.

255,37,144), did not seem to be confused about this. G3 had without a doubt seen

this during their studies, while those from G2 have seen this in relation to their work with

HTML. Expressing colors using a hash symbol with values in hexadecimal (e.g. #FF2590)

was not seen during the test as it was not disclosed, and the test participants might think it

was not possible.

The disclosure box works well in a drawing domain, as long as the commands are ex-

pressive enough. Most of the names we chose for the commands and their parameters were

positively received. One observation, however, show that when using a scripting language

and a command line, the test participants will rather write topleft and bottomright

than upperleft and lowerright, probably because it sounded more exact.

Generating a script to finish iterative tasks is certainly possible in a drawing domain.

The domain, however, does contain a lot of noise and some effort is required from the

user to actually get a usable script. The user has to know how the generation of a script

works in order to draw in a way where it would produce the correct script, e.g. ending an

iteration by unselecting a shape to avoid manipulating the wrong shape in the next iteration

(Section 6.6.3). The script which is generated, however, can be very confusing, and maybe

even scary for G1 and G2. Hiding this script and just make previews of what will happen

when it is executed, like it is done in Eager, could be a better approach for our target

groups.

94 Chapter 6. Usability Test

6.8 Summary

In this chapter, we have described the purpose and goals of our usability testing. The

primary goal was to achieve some test results to use as a base to prove or disprove the

hypotheses. In addition, we would also like to find some insights on how end-users are

dealing problems with programming. These goals set some requirements for our choice of

testing methods, and we find usability testing suitable for our test. We structured the test

phase in iterations whereof the first two iterations were to help finding bugs and critical

issues in DASA.

Furthermore, we described the preparations of the usability test which included the

questions to categorize test participants, assignments and a questionnaire. We also de-

scribed some expectations for the three different test groups of our usability test. For the

test results, we discussed and related problems and successes with the area of end-user

programming and the domain. The general results are that part of DASA was too difficult

for test group 1 and worked for most test participants from test group 2. For test group 3,

it seemed like DASA was too easy to use.

95

Chapter 7

Epilogue

In this chapter we will first conclude on the whole project, based primarily on the hypothe-

ses and the results from the test. Next we will evaluate our own work during this project

period, followed by a description of some of the ideas we have for possible future work

that could be done with the product. Finally we will put our tool, DASA, into perspective

and look at how it can be used in the field of end-users, beyond the drawing domain.

7.1 Conclusion

To conclude on this project, we return to the hypotheses from Section 4.1. We conclude on

each of the hypothesis individually and base this on the results from the usability testing.

Hypothesis 1: We can teach end-users, with basic computer knowledge, the fundamen-

tal principles behind programming by using the concept of learning by observation and an

improved environment with several kinds of feedback.

During our usability test, we saw several end-users who quickly learned how to perform

actions using a command line or a script and express both conditions and loops using SD-

CASL. The commands were learned by looking at the disclosed actions in the disclosure

box. Some further commands were guessed based on this, others were discovered using

the interface of the application which provided the needed information. The conditions,

loops and other structures of SDCASL were primarily learned by using the interface as

well, where special forms, used to easily insert language structures into a script, teached

these structures through learning by observations.

96 Chapter 7. Epilogue

We originally intended our prototype and language to teach the fundamentals of pro-

gramming to end-users with no programming knowledge, but we did not see much success

for this group. DASA, and maybe SDCASL, is still to complicated for them. We had much

more success with those end-users who have had minor experiences with programming,

partially because they had already been introduced to the fundamental principles of pro-

gramming such as conditions and loops. Because of these two observations, we believe

that a longer test period with an improve test setup will prove that learning by observa-

tion approaches, such as self-disclosing, and an improved working environment will help

end-users to learn programming.

Figure 7.1 shows our intended target group, see Section 4.2, and the group which

DASA seems to have actually been a success to.

Figure 7.1: An illustration of which part of the users our application actually ended up helping.

Our original plan is shown in light gray.

Hypothesis 2: A task with redundant actions is completed more efficiently by an end-user

who uses a script constructed by an automatic recognition of these actions.

A major problem with the test regarding this hypothesis is that only a few participants

actually noticed and used the recognition of iterative tasks. From this, we can conclude,

it is important to make end-users more aware of all the features an application contains

which can help in their work. This could be done both in the interface itself, but also by

a better introduction to it through a manual or a “tip-of-the-day” message. The last two

options could not be part of this test and as with the first hypothesis a longer test period in

an improved test setup could help.

The test participants who did see the generated script were divided into two groups:

Those who successfully used it and understood how it worked, and those who did not

understand it, and therefore chose not to use it. This shows that the generated script was to

complicated for one who had just learned SDCASL, or maybe even to program. Because

of the complication with the generated script, we can conclude that an application with

such a feature, needs to make the user more aware of this feature.

7.2. Project Evaluation 97

7.2 Project Evaluation

In this section, we do a critical evaluation of our own work, both the overall process and

with more focus on the testing phase.

7.2.1 Project Period

As with many previous projects we had a slow start—also called “student disease”—

because of confusion about what to do in the project, and the problem statement was

not clarified. In an attempt to overcome the slow start, we created a schedule for the whole

semester which did help us. The schedule, however, were flawed in the sense that some

activities were estimated to take less time than what they actually did. This let to many

changes during the project period. There were a lot of pressure to finish the prototype

in time before the usability testing, because it was postponed few times. Even with the

pressure, we did manage to finish a decent prototype and ran two test rounds with a total

of 15 participants, which we feel was a great success.

7.2.2 Test

In the short run and regardless of the results, our usability testing was a success, but during

the test period we faced some issues which had some impact on our test results.

Test Participants

Firstly, the test participants. Recall that we had divided test participants into three groups

with different programming knowledge level and had two test rounds. We originally

planned to have an equal number of test participants in each test group, more precisely

two test participants in each group for each test round. It all ended with an unbalanced

distribution of the test participants, one missing in group 1 due to a cancellation and more

than planned for group 2 and 3. This unbalancing was because of a mistake when we

invited the test participants. In several cases, it turned out that the test participants did not

match the test group, we had beforehand categorized them to be in. To avoid this mistake,

we should make a short interview with the test participants before inviting them.

98 Chapter 7. Epilogue

Test Monitor

During the usability testing, we changed the test monitor. It can be discussed whether

this was right to do or not. In order to keep the same setup for the usability testing,

the test monitor must be the same person for all test participants along with assignments,

environment etc. If this should be a real usability testing, the test monitor must be a person

with no relation to the testing product group in order to keep the neutrality between the

testing product and the test participants. However, there are two downsides with such a test

monitor in relation to DASA. Firstly, DASA is a prototype and can have bugs and errors.

A person with no relation to our product has no idea how to help the test participants

if a critical error occurs, and the application halts. Secondly, the test participants in our

case were often family members and friends, so in the attempt to make these participants

as comfortable as possible, we decided to switch the test monitor when needed. So an

advantage of switching the test monitor in our case was that the test monitor knew the

test participant, which meant that it was easier for him to know what the test person was

thinking and could easier help the test participant in the right way.

A Too Narrowed Usability Testing Setup

DASA is a prototype for a concept that is supposed to be used over a longer period of time

and gradually teach the end-users programming while assisting in their daily work. Our

usability testing was limited to one hour for each test participant and used an environment

which the test participants normally would not use. This setup simply cannot show for sure

whether the concept works or not. It can give some small insights and ideas to some im-

provements, but not conclusive evidence of success. Ideally, DASA should be distributed

to test participants who should work with it on a daily basis for a month. Afterwards they

should be given a real programming assignment with e.g. a general purpose programming

language to test whether they learned the fundamentals of programming. Another way is

to implement the concept in a larger drawing application which features plugins, such as

Paint.NET1, and use the already existing community to find test candidates.

1Homepage for Paint.NET: http://www.getpaint.net/

7.3. Future Work 99

7.3 Future Work

DASA is only a prototype and can be improved in several ways. First, there still exists

bugs which of course needs to be removed in future versions. Second, we found several

possible improvements during both the first and second test round which could be added

such as auto completion and a better scripting enviroment. These will improve DASA both

as an application, but also as a tool to teach end-users how to program. The concept behind

DASA could also be used outside the application. A future work would be to implement

the important parts of DASA into other applications. These applications should then be

used by end-users for their daily work. Therefore, using a well-known application and add

our concept as a plugin would be a preferred approach. This will allow us to properly test

the concept in practice over a longer period of time.

100 Chapter 7. Epilogue

7.4 Putting DASA Into Perspective

DASA is currently specialized in the drawing domain, but most of the main features can

be inserted into another domain with none or very little changes. The scripting language,

SDCASL, is designed to be domain independent. Only one construct, foreach, and one

feature, the special variables, make use of domain specific rules, but the idea behind both

of them can be used for most other domains. The commands used in the language all

follow the same basic domain independent rules and, therefore, all of them can be changed

or removed, and new commands can be added for any other domain. The same is the

case for the types available. A color type might not be needed for one domain while

another domain needs a color expressed with values between 0 and 1. The iterative task

recognition algorithm, ITRA, only requires domain specific rules for the noise reduction

as knowledge about the commands is required in order to specify what noise is. The rest

of the algorithm in its current state is domain independent as it uses the commands and

types for the comparison and calculations. It can, however, be improved if the comparison

approach is changed to be domain specific. The current implementation of procedures is

very domain dependent as it only works with three kinds of arguments: Positions, colors

and penwidth. The idea behind the procedures can, however, still be moved to a different

domain. One of the biggest successes for this project, the disclosure box, can be moved

to any other domain without changes. It uses the rules set for commands and types and

simply disclose these. What is needed for a new domain, is to find when these commands

are completed and should be disclosed which is very different in e.g. a text-editing domain

than in a drawing domain.

i

Appendix A

Bibliography

[BAM06] Margaret M. Burnett Brad A. Myers, Andrew J. Ko. Invited research

overview: End-user programming. 2006.

[Bur09] Cook C. Rothermel G. Burnett, M. End-user software engineering. 2009.

[CHK+93] Allan Cypher, Daniel C. Halbert, David Kurlander, Henry Lieberman, David

Maulsby, Brad A. Myers, , and Alan Turransky. Watch What I Do. The MIT

Press, 1993. [Online; http://acypher.com/wwid/index.html].

[Cyp93] Allan Cypher. Eager: Programming repetitive tasks by demonstration. In

Allan Cypher, editor, Watch What I Do, page Chapter 9. The MIT Press,

1993.

[DB09] Ahn Tuan Nguyen Dao and Peter Heino Bøg. Specialization - program-

ming technologies: End-user programming, 2009. Report for our pre-

vious semester. [Online; https://services.cs.aau.dk/public/tools/

library/details.php?id=1263152583].

[DE95] Chris DiGiano and Mike Eisenberg. Self-disclosing design tools: a gentle

introduction to end-user programming. In DIS ’95: Proceedings of the 1st

conference on Designing interactive systems, pages 189–197, New York, NY,

USA, 1995. ACM.

[DiG96] Christopher John DiGiano. Self-Disclosing Design Tools: An Incremental

Approach Toward End-User Programming. PhD thesis, The University of

Colorado at Boulder, 1996.

http://acypher.com/wwid/index.html
https://services.cs.aau.dk/public/tools/library/details.php?id=1263152583
https://services.cs.aau.dk/public/tools/library/details.php?id=1263152583

ii Appendix A. Bibliography

[Har04] W. Harrison. From the editor: The dangers of end-user programming. Soft-

ware, IEEE, 21(4):5–7, July-Aug. 2004.

[HS07] Jenny Preece Helen Sharp, Yvonne Rogers. Interaction Design: Beyond

Human-Computer Interaction (2 edition). Wiley, England, 2007.

[KJR00] Margaret M. Burnett Justin Schonfeld T. R. G. Green Gregg Rothermel Karen

J. Rothermel, Curtis R. Cook. Wysiwyt testing in the spreadsheet paradigm:

an empirical evaluation. 2000.

[KMA04] Andrew J. Ko, Brad A. Myers, and Htet Htet Aung. Six learning barriers in

end-user programming systems. In VLHCC ’04: Proceedings of the 2004

IEEE Symposium on Visual Languages - Human Centric Computing, pages

199–206, Washington, DC, USA, 2004. IEEE Computer Society.

[KW09] Abraham R. Beckwith L. Burnett M. Erwig M. Lawrence J. Lieberman H.

Myers B. Rosson M. Rothermel G. Scaffidi C. Shaw M. Ko, A. and S. Wei-

denbeck. The state of the art in end-user software engineering. 2009.

[LWDW03] Tessa Lau, Steven A. Wolfman, Pedro Domingos, and Daniel S. Weld. Pro-

gramming by demonstration using version space algebra. Mach. Learn.,

53(1-2):111–156, 2003.

[Mit82] Tom M. Mitchell. Generalization as search. Artificial Intelligence, 18:203–

226, 1982.

[MKB06] Brad Myers, Andrew Ko, and Margaret Burnett. Invited research overview:

End-user programming, 2006. [Online; accessed 10-September-2009, http:

//www.cs.cmu.edu/~bam/papers/EUPchi2006overviewColor.pdf].

[Nor88] D. A. Norman. The Design of Everyday Things. Doubleday, New York, NY,

USA, 1988.

[nov]

[Ous98] John K. Ousterhout. Scripting: Higher level programming for the 21st

century. IEEE Computer Magazine, March 1998. [Online; accessed 14-

December-2009, http://home.pacbell.net/ouster/scripting.html].

http://www.cs.cmu.edu/~bam/papers/EUPchi2006overviewColor.pdf
http://www.cs.cmu.edu/~bam/papers/EUPchi2006overviewColor.pdf
http://home.pacbell.net/ouster/scripting.html

iii

[Pay00] Gordon W. Paynter. Automating iterative tasks with programming by demon-

stration. PhD thesis, The University of Waikato, Hamilton, New Zealand,

2000.

[Pot93] Richard Potter. Just-in-Time Programming. The MIT Press, 1993. Chapter

27 in [CHK+93].

[Qui93] J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1993.

[RA09] Martin Erwig Robin Abraham, Margaret Burnett. Spreadsheet programming.

2009.

[SCT00a] David Canfield Smith, Allan Cypher, and Larry Tesler. Novice programming

comes of age. In Henry Lieberman, editor, Your Wish Is My Command, page

Chapter 1. Morgan Kaufmann, 2000.

[SCT00b] David Canfield Smith, Allen Cypher, and Larry Tesler. From the editor: The

dangers of end-user programming. 2000.

iv Appendix A. Bibliography

v

Appendix B

Thoughts

From the experiences obtained during this project, we got some further thoughts about

end-user programming. We believe that programming language should be a part of the

primary school as a course equal to learning a second (foreign) natural language. In the

following, we will clarify our thoughts about this idea.

Learning a programming language is just like learning a new natural language. The

difference is that the programming language is an artificial language which makes it un-

natural to human beings. One might believe that an end-user with good skills in speaking

languages should be well prepared for learning a programming language, but that is just

not the case. If we look at high level programming language such as C, C#, Java etc., they

are using English words and phrases which should be recognizable for end-users. Basi-

cally, these high level programming languages are a very restricted form of the speaking

language, English— they have no ambiguity. So the problems might be in the restrictions

of the programming languages which many end-users cannot comprehend, because they

are used to express themselves in a speaking language which has fluent rules. By this we

mean that the speaking languages evolves over time, and the same rule might be changed

later on when enough people accepts it. In addition, some words can be self-defined by

some local people and have different meanings from other local people, but that does not

mean, the definitions are wrong, it is just fluent.

If we look at the programming language as a restriction of a speaking language, we

can relate it to mathematics. Mathematics is based on some final definitions and logical

compositions, just like a programming language. It is also, in some sense, an artificial

language. Our point here is not what equalities there is between mathematics and a pro-

gramming language, but rather why most people in the world know mathematics—not

vi Appendix B. Thoughts

necessarily at a scientific level, but at the basic level. Mathematics is a need whether we

like it or not. It is the fundamental building blocks for our own mental development such

as learning to think logically. The question is if we are not facing the same need as mathe-

matics yet?—although the computer age, compared to the age of mathematics, is still very

young. Nevertheless, we have experienced ourselves how basic computer usage course

was introduced late in the primary schools, but was later shifted to be introduced earlier

in the primary schools after our own graduations. People realized that computer knowl-

edge is a need even when at this time, computers were not so widespread as today. The

computer course became a course of equal importance as music or art courses.

Today, computers are very widespread, and we find them everywhere—from cell

phones to kitchen equipments to bathroom facilities etc.— and we need to communicate

with these machines without realizing it. Of course, there are interfaces to help end-users

communicate with the computers, but in restricted form and often not exactly what the

end-users need, so they are obliged to compromise their actual needs. Computers are here

to stay, and they get more advanced and powerful each day. We need to learn how to re-

ally communicate with these machines. Programming language is the remedy, as we have

experienced, it is difficult for end-users to learn. Therefore, we suggest that programming

language should be a course in the primary schools. An existing or perhaps a new common

end-user friendly programming language can be used for the course. In this way, end-users

are already prepared to think programmatic from their young ages, just like when they start

learning basic mathematics or basic language grammar.

vii

Appendix C

Scripting Language Syntax

In this appendix we describe the entire syntax of our scripting language, SDCASL, using

the Backus-Naur Form (BNF). It consists of rules, which state that the left side (a non-

terminal which is a name enclosed in ’<’ and ’>’) can be replaced by (::=) the right side

(any non-terminals and terminals). Any key or expression that is not found on the left side

is called a terminal, hence any that can be found is known as non-terminals. There can

be an unspecified amount of whitespaces on both sides of any terminal and non-terminal,

and therefore only whitespaces inside an expression (what is enclosed by ”) is important.

The line character (|) is used as a choice between either side of it, meaning one the left

side can be replaced by several sequences of terminals and nonterminals each divided by

a line. The terminal <EOL> stands for the end of a line (or more correctly an end-of-

line character). The terminal ε (epsilon) is used to represent and empty sequence, or no

terminals and non-terminals.

Script

A script written in the script box of DASA, and as the content of a procedure, starts with

the rule <script>. Listing C.1 shows the first basic elements of such a script.

1 <script> ::= <statement> <statementlist>

2 <statementlist> ::= <EOL> <statement> <statementlist>

3 | ε

4 <statement> ::= <command>

5 | <structure>

6 | <assignment>

7 | <procedure>

8 | <comment>

9 | ε

Listing C.1: The basic syntax for a script.

viii Appendix C. Scripting Language Syntax

The rules that are not specified in the listing will be specified later in this appendix.

Command Line

A script written in the command line only consists of one line. Instead of the <script>

rule it starts with the <commandline> rule and can be seen in Listing C.2.

1 <commandline> ::= <command>

2 | <assignment>

3 | <procedure>

Listing C.2: The syntax for the command line.

Structures

Structures are the basic language elements and the definition of these can be found in

Listing C.3.

1 <structure> ::= <for> | <if> | <foreach> | <forall>

2 <for> ::= "for" <variablename> "=" <expression> "to" <expression>

3 "do" <EOL> <statements> <EOL>

4 "end"

5 <if> ::= "if" <condition> ("then"|"do") <EOL> <statements> <EOL>

6 "else" <EOL> <statements> <EOL>

7 "end"

8 | "if" <condition> ("then"|"do") <EOL> <statements> <EOL>

9 "end"

10 <foreach> ::= "foreach" <objecttype> "do" <EOL> <statements> <EOL> "end"

11 <forall> ::= "forall" "do" <EOL> <statements> <EOL> "end"

12 <objecttype> ::= "all" | "selected" | "rectangle" | "ellipse" | "line"

13 <assignment> ::= <variable> "=" <variablevalue>

14 <variablevalue> ::= (a legal type)

15 <procedure> ::= <procedurename> <argumentlist>

16 <variable> ::= <variablename>

17 | <specialvariable>

18 <variablename> ::= [A-Za-z0-9]

19 <procedurename> ::= [A-Za-z0-9]

20 <comment> ::= "#" (the comment string)

21 <specialvariable> ::= (a known special variable name)

Listing C.3: The syntax for the language structures.

ix

Command

The syntax for any command that we have defined in DASA, such as rectangle and

set, are specified in Listing C.4.

1 <command> ::= <commandname> <argumentlist>

2 <commandname> ::= (a known command name or synonym)

3 <argumentlist> ::= <argument> <argumentlist>

4 <argument> ::= <argumentname> "=" <variablevalue>

5 <argumentname> ::= (a known argument name or synonym)

Listing C.4: The syntax for one command.

Condition

A condition is used in an if-structure and is evaluated to either true or false. Its defini-

tion is shown in Listing C.5.

1 <condition> ::= <expression> <booloperator> <expression> <conditionlist>

2 <conditionlist> ::= <conditionoperator> <expression> <booloperator>

3 <expression> <conditionlist>

4 | ε

5 <conditionoperator> ::= "&" | "|" | "&&" | "||" | "and" | "or"

6 <booloperator> ::= "=" | "==" | "!=" | "<>" | "<" | ">" | "<=" | ">="

Listing C.5: The syntax for the if-conditions.

Expression

An expression is defined in Listing C.6 and is used at several places in the syntax.

1 <expression> ::= <negative> <expressionpart> <expressionlist>

2 <expressionlist> ::= <operator> <negative> <expressionpart> <expressionlist>

3 | ε

4 <expressionpart> ::= <variable> | <random> | <number>

5 <negative> ::= "-" | ε

6 <random> ::= "random" <number>

7 <number> ::= (an integer or a double)

8 <operator> ::= "+" | "-" | "*" | "/"

Listing C.6: The syntax for expressions.

x Appendix C. Scripting Language Syntax

xi

Appendix D

Scripts

This appendix contains scripts used in the thesis. These scripts are all written in SDCASL

used in DASA. For further explanation of the syntax and semantics of SDCASL refer to

Appendix C and our previous report [DB09].

Attribute Differences

The following script is used to illustrate how performing the same actions can generate

two very different results from the algorithm depending on what parameter set is used. An

illustration of this can be seen in Figure 5.10.

1 # parameter set: from and to

2 for x=0 to 18 do

3 line from=100,200 to=x*-3+200,x*-18+200

4 end

5

6 # parameter set: from, length and angle

7 for x=0 to 18 do

8 line from=100,200 length=100 angle=x*-10

9 end

Listing D.1: Drawing a circle of lines using two different parameter sets.

xii Appendix D. Scripts

xiii

Appendix E

Test Material

E.1 Introduction Questions

This is the introduction questions used to categorize the test participants in the appropriate

testing groups.

• What is your job function?

• Do you use a computer on a daily basis?

• Do you know what programming is?

• Do you know what a programming language is?

• Have you ever tried to create a program or solve a task by programming?

• Do you use spreadsheets e.g. Excel?

• Are you familiar with creation of mathematical expressions in spreadsheets?

• Did you know, mathematical expressions in a spreadsheet is actually programming?

• Do you want to learn how to program?

• Have you used a drawing program e.g. Photoshop or AutoCAD?

xiv Appendix E. Test Material

E.2 Assignments

Following are the texts from the assignments used for the test in the original Danish ver-

sion. These are the assignments as they looked for test round 2, where assignment #4 had

been changed. All the figures can be seen in the thesis, Section 6.4.5.

Opgave 1 - Basale Figurer

Dette er den første opgave i en serie af 8 opgaver. I denne opgave skal du lære at benytte

tre basale tegneværktøjer, så du kan gøre dig bekendt med tegneprogrammet. Når du teg-

ner, er det vigtigt, at du lægger mærke til Disclosures-boksen. Boksen findes i bunden

af programmet.

Opgaven består i at tegne: en rektangel, en cirkel og en streg.

Hvor stor hver figur skal være, er helt op til dig.

Opgave 2 - Farvelægning

Dette er opgave 2, som omhandler farvelægning af figurer. Opgaven er en fortsættelse af

opgave 1. Det er igen vigtigt, at du lægger mærke til Disclosures-boksen, som du kan

finde i bunden af programmet.

Du skal farve figurernes streger med følgende farver:

• Rektanglet skal være rød.

• Cirklen skal være blå.

• Stregen skal være grøn.

Opgave 3 - Brug af Kommandoer

Dette er opgave 3, og du skal i denne opgave tegne med præcision, så vi vil introducere

dig for yderligere et værktøj, kommandolinjen. Det er igen vigtigt, at du lægger mærke til

Disclosures-boksen.

E.2. Assignments xv

Gør følgende:

• Tegn, vha. kommandolinjen, en cirkel med radius 250 og centerpunktet skal være i

punktet 300,300. Du må ikke bruge musen!

• Brug musen til at flytte cirklen lidt til højre.

• Flyt cirklen tilbage på dens tidligere position; Positionen skal være præcist den

samme. Du må IKKE bruge fortryd.

• Farv cirklen blå vha. en kommando.

• Sæt cirklens tykkelse til 5 pixel vha. en kommando.

Opgave 4 - Lav en Procedure

Dette er opgave 4. Du skal i denne opgave introduceres for procedurer, som er en grup-

pering af kommandoer. Du starter med at tegne et sæt af flere figurer i samme farve. Sættet

danner et billede af en cykel. Derefter skal billedet tegnes med andre farver og positioner.

Gør følgende:

• Tegn et billede af en sort cykel (se eksemplet for neden). Du må gerne bruge musen.

• Lav en procedure ud fra kommandoer, som er blevet vist i disclosures-boksen. Husk

farven og positionen skal kunne ændres!

Hjælp: se om der er noget, du kan bruge ved at højreklikke i disclosures-boksen.

• Kald proceduren 5 gange med forskellige farver og positioner.

Opgave 5 - Brug af Script

Dette er opgave 5 og er den sidste introduktionsopgave i testen. Denne opgave består i

at ændrer på et eksisterende billede ved hjælp af et script. Du starter med at indlæse et

eksisterende billede, som vi har lavet. Boksen i øverste højre hjørne bliver din primære

skriveboks.

Billedet indeholder røde og grønne firkanter, der er placeret hhv. over og under den

sorte streg. Der er desuden en masse streger og figurer for at besværliggøre opgaven.

xvi Appendix E. Test Material

Du skal gøre følgende:

• Alle røde firkanter skal farves blå.

• Alle grønne firkanter skal farves rød.

• Alle firkanterne skal bytte plads således, at de blå flyttes ned under den sorte streg,

og de røde flyttes oven over stregen.

Hjælp: Farven på firkanterne kan bruges som en betingelse.

Opgave 6 - Tegn Cirkler

Dette er opgave 6 og er en selvstændig opgave. Du bestemmer selv, hvordan du løser op-

gaven ud fra beskrivelsen og kriterier for opgaven. Du skal i denne opgave lægge mærke

til boksen nederst i højre hjørne.

Gør følgende:

• Du skal nu tegne 30 cirkler af stigende størrelser. Du må gerne bruge musen.

• Start med en lille cirkel og tegn derefter yderligere cirkler af større radius.

Opgave 7 - Den Vilde Skov

Dette er opgave 7. I denne opgave skal du bruge de værktøjer, du har afprøvet undervejs i

de forrige opgaver. Det er dog helt op til dig, hvordan du vælger at løse opgaven.

Du skal nu tegne et billede efter følgende beskrivelser og kriterier.

• Billedet illustrerer en skov med 30 træer, et hus midt i skoven, samt en sol.

• Hvert træ laves vha. et rektangel og en cirkel, der hhv. er stammen og kronen på

træet. De skal placeres således, at de danner et billede af en skov.

• Huset laves vha. et rektangel og to streger, der hhv. er selve huset og taget. Huset

skal have en dør, samt to vinduer. Disse laves med rektangler.

• Billedet skal have en sol, som laves vha. en cirkel.

E.3. Questionnaire xvii

Opgave 8 - Farvelægning af Den Vilde Skov

Dette er opgave 8 og den sidste opgave i testen. Opgaven her er en fortsættelse af opgave

7. I denne opgave skal du igen bruge de værktøjer, du har afprøvet undervejs i de forrige

opgaver. Det er dog helt op til dig, hvordan du vælger at løse opgaven.

Du skal nu farvelægge billedet med den vilde skov fra forrige opgave efter følgende

beskrivelser og kriterier.

• Husets tag skal være rød (de to streger).

• Alle trækroner skal være grønne.

• Alle træstammer skal være brune.

• Solen skal være gul, også dens stråler.

E.3 Questionnaire

This is the original Danish version of the questionnaire given to each test person from the

second test round, after they finished the assignments.

Del 1

1. Hvad er den nederste venstre boks til?

(a) At tegne

(b) Scripting

(c) Udførte kommandoer

(d) Auto-genererede script

(e) At vise oprettede procedurer

(f) Ved ikke

xviii Appendix E. Test Material

2. Hvad er den øverste højre boks til?

(a) At tegne

(b) Scripting

(c) Udførte kommandoer

(d) Auto-genererede script

(e) At vise oprettede procedurer

(f) Ved ikke

3. Hvad er den nederste højre boks til?

(a) At tegne

(b) Scripting

(c) Udførte kommandoer

(d) Auto-genererede script

(e) At vise oprettede procedurer

(f) Ved ikke

4. Hvad vises der i “Dislosures”-boksen forneden?

(a) Tilfældigt tekst

(b) Kommandoer

(c) Programmets statusbeskeder

(d) Ved ikke

5. Hvad er en “procedure”?

(a) En kommando

(b) Et programmeringssprog

(c) En gruppering af handlinger

(d) Ved ikke

6. Hvad er et “script”?

(a) Et talesprog

(b) En række instruktioner til computeren

(c) Et computersprog

(d) Ved ikke

E.3. Questionnaire xix

7. Hvad betyder set color = red?

(a) At farve en figur rød

(b) At tegne en firkant

(c) At lave en procedure

(d) Ved ikke

8. Hvad gør kommandoen rec color=red w=100 h=50 pen=5?

(a) Tegner en cirkel med farven rød

(b) Tegner et rektangel med 100 i bredde og 50 i højde

(c) Kommandoen virker ikke

(d) Ved ikke

9. Hvad er en if-sætning?

(a) Et loop

(b) En kommandor

(c) En betingelse

(d) Ved ikke

10. Hvad er et “loop/løkke”?

(a) En metode til at gentage handlinger flere gange

(b) En kommando

(c) Et script

(d) Ved ikke

11. Hvis der er 100 firkanter af forskellige størrelser, og du vil kun farve dem med en hvis

bredde. Hvad gør du?

(a) Jeg farver de udvalgte firkanter med musen

(b) Jeg kan benytte et for-loop med en betingelse for firkantens bredde

(c) Jeg udfører en kommando på de udvalgte firkanter

(d) Ved ikke

xx Appendix E. Test Material

Del 2

1. Hvor nyttigt syntes du, disclosures er?

Ubrugeligt - Unyttigt - Nyttigt - Meget nyttigt - Ved ikke

2. Hvor nyttigt syntes du, procedurer er?

Ubrugeligt - Unyttigt - Nyttigt - Meget nyttigt - Ved ikke

3. Hvor nyttigt syntes du, scripting er?

Ubrugeligt - Unyttigt - Nyttigt - Meget nyttigt - Ved ikke

4. Hvor nyttigt syntes du, auto-genereringen er?

Ubrugeligt - Unyttigt - Nyttigt - Meget nyttigt - Ved ikke

5. Hvor nyttigt syntes du, vores værktøj er til at hjælpe dig gennem opgaverne?

Ubrugeligt - Unyttigt - Nyttigt - Meget nyttigt - Ved ikke

6. Hvad er dit generelle indtryk af hele applikationen?

Ubrugeligt - Unyttigt - Nyttigt - Meget nyttigt - Ved ikke

7. Kan du se andre former for applikationer, hvor disse funktionaliteter kunne være nyt-

tige?

(a) Nej

(b) Ja, hvilke?

(c) Ved ikke

xxi

Appendix F

CD-ROM

The CD-ROM that comes with this thesis contains the following:

• This thesis in PDF format.

• Figures from this thesis in their original format.

• Source code and binaries for the product, DASA.

• The report for the previous semester in PDF format (SW9).

• Source code for the previous semester product (SW9).

• Binaries for DASA used during both test rounds.

• Example scripts written in SDCASL.

• Videos of our solutions to the test assignments.

• Raw test data.

xxii Appendix F. CD-ROM

xxiii

Appendix G

Danish Synopsis

Following is the danish translation of the synopsis for this project.

Temaet for dette projekt er end-user programmering og vi fokusere på hvordan vi kan lære

programmering til end-users der aldrig har programmeret før. Vi udvikler et værktøj (pro-

totype) som en udvidelse til en tegne applikation sammen med et domæne specifikt script

sprog. Prototypen bruger principperne ved self-disclosing i konceptet Læring ved Obser-

vation. Målet er at lærer end-users at programmere ved brug af det designede script sprog

mens de bruger tegne applikationen. Ydermere udvikler vi en algoritme til at genkende

iterative opgaver således at et script kan blive genereret til at færdiggøre opgaven. Pro-

totypen og script sproget er udvidelser af det arbejde vi foretog i vores tidligere projekt,

SW9.

Vi slutter med en brugbarheds test der beviser dele af vores hypoteser, såsom at self-

disclosing fungere som et lærings koncept. Men, vi beviste ikke dette helt for den gruppe af

end-users vi oprindeligt havde udtænkt, men mere for end-user programmøre. Overordnet

er projektet og testen en succes og vi finder flere interessante konklusioner omkring emnet

end-user programmering.

	Introduction
	Previous Work
	Development Strategy
	Thesis Structure

	Background
	Definitions and Usages
	End-User Programming
	Learning Barriers
	Main End-User Programming Research Threads

	Analysis
	Our Focus
	Programming by Demonstration
	Learning by Observation
	Discussion

	Problem Statement
	Hypotheses
	Delimitations

	Design
	Scripting Language
	Architecture
	Iterative Task Recognition
	Minor Design Improvements
	Implementation

	Usability Test
	Purpose and Goals
	Testing Methods
	Approach
	Preparation
	Test Round 1 and Results
	Test Round 2 and Results
	General Feedback
	Result Discussions

	Epilogue
	Conclusion
	Project Evaluation
	Future Work
	Putting DASA Into Perspective

	Bibliography
	Thoughts
	Scripting Language Syntax
	Scripts
	Test Material
	Introduction Questions
	Assignments
	Questionnaire

	CD-ROM
	Danish Synopsis

