
Applying Reinforcement Learning

to RTS Games
Master’s Thesis

Allan Mørk Christensen, Martin Midtgaard,

Jeppe Ravn Christiansen & Lars Vinther

Aalborg University,

Computer Science, Machine Intelligence

Spring 2010

Department of Computer Science, Software

at Aalborg University, Denmark

Title:

Applying Reinforcement Learning

to RTS Games

Theme:

Machine Intelligence

Project Unit:

Software Engineering

Master’s Thesis, Spring 2010

Project Group:

d613a

Participants:

Allan Mørk Christensen

Jeppe Ravn Christiansen

Martin Midtgaard

Lars Vinther

Supervisor:

Yifeng Zeng

Report Count: 7

Page Count: 74

Appendix: A-D

Finished: June 3, 2010

Synopsis:

This master’s thesis documents the work

of applying reinforcement learning on

various subtasks in a commercial-quality

RTS game.

Some of the main problems when working

with reinforcement learning are conver-

gence rates, handling concurrent agents,

and minimising the state space. Some

ideas to solve these problems, are to in-

clude time as an important factor dur-

ing learning, and to decompose the state

space by identifying independent objects

in the game world. Regarding concurrent

agents, we investigate how much infor-

mation each agent needs about the other

agents in order to behave optimally.

We found that, given certain restrictions

on the scenarios, we are able to improve

convergence rate as well as minimising

the state space for a task. We also iden-

tify how much concurrency information is

suitable for concurrent agents in various

scenarios. Finally, we provide a short dis-

cussion of how we can combine our so-

lutions to solve even more complex prob-

lems.

The contents of this report is freely available, but publication (with reference source) may only happen after agree-

ment with the authors.

Preface

This report documents a project made by the Software Engineering group d613a in the

spring of 2010, and is the final part of a Machine Intelligence master’s thesis. This

project is about using reinforcement learning concepts in RTS games to create a com-

puter opponent.

The reader is expected to have basic knowledge of RTS games, which is the type

of game that experiments in reinforcement learning will be conducted in. Thorough

knowledge about reinforcement learning is also expected.

References to literature and sources used in this report are written in square brack-

ets, such as “[RM02]”, and can be found in Appendix C. The report is accompanied by

a CD-ROM, that contains an electronic copy of the report, electronic versions of figures

and the source code used to conduct our experiments.

Allan Mørk Christensen Jeppe Ravn Christiansen

Martin Midtgaard Lars Vinther

I

Contents

1 Introduction 1

1.1 RTS games . 2

1.2 AI Challenges . 2

1.3 Learning . 3

2 Reinforcement Learning in RTS Games 5

2.1 Related Work . 5

2.2 Challenges in Reinforcement Learning . 6

2.3 Hierarchy of RTS Tasks . 7

2.4 Techniques . 8

2.5 Balanced Annihilation . 12

3 Time-based Reward Shaping 15

3.1 Introduction . 15

3.2 Related Work . 17

3.3 Time-based Reward Shaping . 17

3.4 Experiments . 21

3.5 Conclusions and Future Work . 24

4 Concurrent Agents 25

4.1 Introduction . 25

4.2 Related Work . 27

4.3 Concurrent State Space . 27

4.4 Experiments . 30

III

CONTENTS

4.5 Results—Convergence Speed . 35

4.6 Results—Policy Equivalence . 44

4.7 Conclusions and Discussions . 48

5 Parametrised State Spaces 51

5.1 Introduction . 51

5.2 Related Work . 53

5.3 Parametrised State Spaces . 53

5.4 Comparison with Other Approaches . 56

5.5 Experiment . 61

5.6 Results . 66

5.7 Conclusions and Discussions . 68

6 Epilogue 71

6.1 Conclusions and Discussions . 71

6.2 Future Work . 73

A State Count Calculation I

A.1 Approach 3 Calculation . III

B Threat Map V

B.1 Defining Threat . V

B.2 Applying Threat . VI

B.3 Retrieving Threat . VI

B.4 What-if Analysis . VII

C References IX

D CD XIII

IV

CHAPTER 1

Introduction

This chapter gives a general introduction to all the topics covered in the report, espe-

cially in regards to AI in RTS games and reinforcement learning. The rest of this report

is roughly divided into five parts, where three of them can be seen as independent

papers.

The first part covers the general concept of how to apply reinforcement learning in RTS

games, and introduces the game, techniques and ideas that will be used throughout

the report.

The second part, Chapter 3, explores the possibilities to use time as reward-shaping.

This is roughly our paper presented at ADMI10[CMCV10], which then again is based

on our previous report on this subject[CMCV09]. The scenario used in this paper con-

sists of a single agent which learns how to build a small base as fast as possible in

Balanced Annihilation, the RTS game described in Chapter 2.

The third part, Chapter 4, presents in-depth work with concurrent agents. We exper-

iment with how to let multiple identical agents cooperate to achieve a common goal

using reinforcement learning, and exactly what information they should share. The

common goal in the scenario used for the experiments, is letting multiple agents coop-

eratively build a base in Balanced Annihilation.

The fourth part, Chapter 5, introduces a novel approach to minimising a state space

when the agent has to choose one among a large number of similar actions. This re-

search is done in the context of learning our agent how to attack resource buildings

owned by the enemy.

Finally, in Chapter 6, we conclude, discuss and reflect on the previous three experimen-

tal parts.

1

CHAPTER 1: INTRODUCTION

1.1 RTS games

Real-Time Strategy(RTS) games are a genre of war games in which opposing forces

fight to destroy each other. The opposing forces fight to secure parts of a map, to

gain control over resources and strategic locations. Resource gathering is an important

part of most RTS games, and resources are normally scattered across the map, so map

control is also important. The opposing forces act by producing buildings and armed

forces, these are then used to pressure the opponent, which in the end should lead to

victory, e.g. when the opponent has lost all its units.

The sequence of buildings a player constructs early in the game is known as the build

order, this often has a great impact on the early strategy of the player. If a player focuses

on resource gathering early on, then he will be exposed to early attacks. But if a player

chooses to focus on attacking early on, he would risk not having a solid economy later

in the game.

Another important part of RTS games is when and where to attack, once you have an

army. This problem depends a lot on distances, due to the limited movement speed of

units. If one attacks far from his base, he is more vulnerable to counter attacks, as he

can not use his attacking force to defend his base. Also, if the agent ordered some units

to attack the enemy far away, the situation at the attack destination may very well have

changed before the units arrive.

1.2 AI Challenges

This section is based on a section from our previous report [CMCV09], but we consider

it important to mention some of the challenges with AI development for RTS games,

and some of the problems which exist in current RTS agents.

Creating a competitive agent for an RTS game is a complex task. Many actions have to

be carried out concurrently in different areas of the game, e.g. creating units, attacking

and building a base, while still maintaining an overall strategy. Furthermore it has to

be handled without using too much computational power from the computer, as the

game itself has to be rendered fluently to the player.

RTS agents are becoming more and more clever but they are still nowhere near the level

of good human players. Some of the major problems with general RTS agents are lack

of planning, and hard-coded build-orders, each described in the following sections.

2

CHAPTER 1: INTRODUCTION

1.2.1 Lack of Planning

One problem with RTS agents is that they are not able to make intelligent strategic

decisions. Humans are far superior in this area. Furthermore, the agent should be able

to adapt this strategy using changes in the environment and weaknesses found in their

opponents.

1.2.2 Hardcoded Build-orders

In the beginning of an RTS game, one normally has to build up a base in order to get

resources and be able to build an army. This phase is critical, meaning that starting

out poorly will set you far behind your opponent. It is therefore common for RTS

agents to just use a predefined script of what to build and in what order. While this is

good if you know the perfect build order, it is not very open to adaptation to changing

environments. This is also sometimes used to decide when to attack, meaning that the

agent might always attack after building 5 army units, or after 5 minutes of the game.

Human players will be able to recognise this behaviour, and easily perform counter-

measures in order for him to win the game.

1.3 Learning

Reinforcement learning [SB98] is an interesting area within machine learning. Algo-

rithms within reinforcement learning deal with an agent learning an optimal policy via

interaction with its environment. Instead of using some predefined scripted policy, the

agents will learn a policy using reinforcement learning. Even though both approaches

uses a defined policy, reinforcement learning allows for handling of more states (and

thereby in-game situations) than would be feasible with a scripted policy, and allows

adaptation to changes in the game.

1.3.1 Reinforcement Learning

In reinforcement learning, the agent is given a reward from its environment illustrating

the quality of taking a specific action. The reinforcement learning algorithms depend

on a value function to represent the value of being in any given state. The higher the

value, the better. This function can take all the possible future rewards into account, so

the algorithms can pick the actions leading to the best future states as well. Eventually

the agent is able to learn a so-called optimal policy illustrating the best action to take in

3

CHAPTER 1: INTRODUCTION

any given state. The value function can be implemented as a simple two-dimensional

table, but sometimes this is infeasible due to the size of the table.

Online reinforcement learning means that the agent learns as it plays the game. This

allows it to adapt completely to the behaviour of the opponent, as well as allowing a

dynamic adjustment of the difficulty level. In offline learning, on the other hand, the

agent is trained during development before the game is deployed. In this case, the

agent is, e.g. trained against experts or another instance of the same agent, and will not

continue to adapt after release of the game.

1.3.2 States

State spaces consist of a number of state variables representing the parts of the en-

vironment that are interesting for the learning agent. In practice, each of these state

variables are often split into a number of discrete intervals, {0− 1, 1− 3, 4− 7}. When

implementing a scripted policy states have to be handled explicitly. In practice this

could very well mean an if -condition for every single state variable interval, e.g.

i f (var > 1)elsei f (var > 3)else.... Since a policy learned even for relatively simple

problems could very well cover thousands of game states, it would be infeasible to

cover these states with a scripted policy.

The reason why reinforcement learning is better at handling many states is that it does

not need a programmer to explicitly handle every case, it can instead learn a proper

policy by playing a lot of games, and this process can often be automated. The devel-

opers of the agent are only required to hand the learning agent qualitative information

about which changes in the game state are good, and which are bad. The agent will

then learn a policy from this, and thereby it will eventually have a proper response for

all the states that it encountered while learning.

1.3.3 Adaptation

If online learning is used with reinforcement learning, this allows the agent to adapt

its policy to changes, e.g. if the opponent continually plays defensively, the agent will

become better at handling that. If this should be supported with a scripted policy, it

may require a new policy to be scripted, and then a decision module to choose between

the available policies. This decision module could be based on opponent classification,

which would have to choose the best policy for a given opponent class. Of course this

could also be used with reinforcement learning, thus requiring a policy to be learned

against all classifications.

4

CHAPTER 2

Reinforcement Learning in RTS

Games

This chapter gives an overview of the general use of reinforcement learning in RTS

games. Previous work on reinforcement learning, unsolved problems, and the RTS

game of choice for the later experiments, will be described.

We will present a simplified hierarchy of tasks in an RTS game. It is a subset of these

tasks that we will later solve using reinforcement learning in the following chapters.

A brief introduction is given to the reinforcement learning algorithms that will be used

in our experiments. Namely, SMDP and multi-agent SMDP. Additionally, various ter-

mination strategies in multi-agent SMDP problems are introduced.

Finally, the RTS game of choice for our reinforcement learning studies is presented:

Balanced Annihilation. Relevant game information, and the settings for the scenarios

used for the experiments are described.

2.1 Related Work

Related work specific to each chapter of the report can be found in the respective chap-

ter right after the introductory sections. The related work specified in this section is

about reinforcement learning in RTS games in general, and does not include specific

work about the sub-problems that will be discussed in the later chapters of this report.

Kresten et al previously applied reinforcement learning in a simple

RTS game[AZCT09], and how to make online learning feasible by decomposing the

state space into a hierarchy of tasks. They looked at all aspects of an agent in an RTS

game, where we will go in-depth with specific areas, base-building and attacking, and

5

CHAPTER 2: REINFORCEMENT LEARNING IN RTS GAMES

experiment with more advanced scenarios for these aspects.

Marthi et al apply hierarchical reinforcement learning to RTS tasks [MRLG05]. They

solve problems in which an agent controls multiple units simultaneously, both regard-

ing base-building, resource collection and attacking.

The work of Kresten et al, and Marthi et al proves that a complete hierarchical division

of all tasks in an RTS game is possible, and this is very important for the research

we will present in this report. Hierarchical decomposition implies that we are able to

identify isolated subtasks which can be solved independently. Each of the three main

parts in this report will address one such isolated subtask while addressing various

problems related to reinforcement learning.

2.2 Challenges in Reinforcement Learning

This section is based on our previous report[CMCV09]. We choose to include it in this

report as well, because we find that it is important to mention some of the problems

associated with using RL for RTS games, as we will try to tackle some of these problems

later in this report.

Some of the challenges associated with using reinforcement learning for implementing

an agent, for an RTS game, are described in the following sections.

2.2.1 Concurrent Actions

In RTS games, many actions are executed concurrently. Obviously there is a need to

both build units and attack at the same time. The problem is that these actions af-

fect each other. For example, if you attack the opponent with all your units, and at

the same time start building some resource building in your base, how should re-

ward be distributed? If you lose the game because of the first action, the second ac-

tion should not be penalised. Also, concurrent agents cooperating in achieving the

same goal should not be encouraged to work against each other. Concurrent rein-

forcement learning is currently an area of much interest to many machine intelligence

researchers[MRLG05][OV09].

2.2.2 State Space Size

The size of the state space in an RTS game can be very large and thus it can be a good

idea to make certain abstractions over the state space of such a game. If the state space

6

CHAPTER 2: REINFORCEMENT LEARNING IN RTS GAMES

becomes too large, storing the value function as an ordinary two-dimensional table of

real values becomes infeasible, and function approximators may need to be used in

order to limit the memory usage of the value function [SB98]. A very large state space

also makes learning more time consuming, as it takes longer time to visit all possible

states, and thereby the convergence rate is affected.

Another way to limit the size of the value function is to implement hierarchies in the

state space, where each node has its own value function. This is still not a perfect

solution though, since a certain level in the hierarchy may still depend on a lot of state

information. Chapter 5 describes a novel approach to minimising state spaces given

some constraints on the type of task to solve.

2.3 Hierarchy of RTS Tasks

Figure 2.1 illustrates a simplified hierarchy of tasks in a general RTS game. All the tasks

considered here can be split into actual primitive actions in our game.

At the top we have the three overall tasks: Attack, Build and Navigate. The two first

represent the problems to which we are going to apply reinforcement learning. If we

assume that we have learned an optimal policy for all subtasks in the hierarchy, we

will be able to answer questions such as, “given the current game state, which action

will be optimal; building something or attacking something?”. Each of the subtasks in

the hierarchy will then be able to answer more specific questions such as the Attack

subtask: the policy learned for this task, should be able to answer the question “where

is the best place to attack right now?”. Finally, the somewhat simple task of navigat-

ing will be handled using a standard A*-algorithm instead of reinforcement learning,

which could in fact have been used, though it is less applicable in an RTS game due to

the enormous state space it would have.

We do not cover the decision making of all the tasks in the hierarchy, which is required

to have a fully functioning agent which is able to play an RTS game. We do not consider

when and what type of units to build, and how this should be weighted compared to

constructing buildings and attacking. In this thesis we focus solely on isolated prob-

lems found in some of the subtasks in the hierarchy.

7

CHAPTER 2: REINFORCEMENT LEARNING IN RTS GAMES

RTS

Actions

Attack Build Navigate

Resources Units Commander Unit Building
Go to

location
Production

Figure 2.1: A hierarchy of actions in an RTS game.

2.4 Techniques

In this section we describe the various reinforcement learning techniques and termi-

nology that will used in the later chapters. The problems that will be used are single-

and multi-agent SMDP problems, which can be solved with an SMDP variant of Q-

learning. Regarding multi-agent problems, there are various termination strategies to

consider, and we coin our use of the term “identical agents”.

2.4.1 SMDP

A semi-Markov Decision Process, SMDP, is a simple generalisation over MDPs, where

an action does not necessarily take a single time step, but can span several time steps.

The state of the environment can change multiple times from an action has been initi-

ated until the next decision is initiated. Rewards are also slightly different from those

of standard MDPs, as the decision maker will both receive a lump sum reward for tak-

ing an action and also continuous rewards from the different states entered during the

decision epoch. This all means that SMDPs can describe more scenarios and environ-

ments than MDPs.[RR02]

Formally an SMDP can be described as the 5-tuple (S, A, T, F, R), where:

• S : the finite state set

• A : the finite set of actions

• T : the transition function defined by the probability distribution T(s′|s, a)

• F : the probability of transition time for each state-action pair defined by

8

CHAPTER 2: REINFORCEMENT LEARNING IN RTS GAMES

F(s′, τ|s, a)

• R : the reward function defined by R(s′|s, a)

The F function specifies the probability that action a will terminate in s′ after τ time

steps when starting from s.

2.4.2 Multi-agent SMDP

A multi-agent SMDP (MSMDP) problem is an SMDP problem in which there are mul-

tiple agents acting concurrently. These concurrent agents can both be cooperative and

opposing agents. Cooperative agents help each other to reach either a common or

individual non-conflicting goals, where opposing agents, on the other hand, have con-

flicting goals, which means that only one or some of the agents can reach their goal.

There are different approaches to solving MSMDPs, where either the agents are con-

trolled asynchronously or synchronously (at the same time). If controlling the agents

synchronously, the actions of all agents will have to be chosen at the same time, thus

making the action space the cross-product of the action spaces for all agents. If control-

ling agents asynchronously, a new action is chosen at the end of each decision epoch for

each agent, i.e. we do not choose new actions for all agents, but only one—namely the

one that just finished its action. In the asynchronous case the state-space may increase

in size since we need to know what the other agents are doing to make the right choice.

2.4.3 MSMDP Action Termination Strategy

If all units are controlled by a single agent, we need to consider when to have decision

epochs. This is especially true if the units carry out parallel actions of varying time

durations.

Rohanimanesh and Mahadevan introduced[RM02] three types of parallel termination

schemes:

τany The decision epochs occurs when any action has terminated, where all other par-

allel actions are interrupted.

τall The decision epochs occurs immediately after all parallel actions have terminated,

where previously terminated parallel actions take the idle action while waiting.

τcont A decision epoch occurs every time an action terminates, but only for that agent,

leaving the others to complete their current actions.

9

CHAPTER 2: REINFORCEMENT LEARNING IN RTS GAMES

Task Termination Strategy

In the experiments in Chapter 4, we do not use a single agent to control our units,

but instead we use separate agents to control each unit. This means that we do not

need to synchronise our decision epochs. This can be compared to the decision epoch

termination strategy τcont as this works in a similar way.

We choose this in order to focus on minimising the state space instead of the action

space.

When multiple agents have to cooperate to complete a common goal, only one of the

agents will be the one who carries out the final action that will complete the goal. How-

ever, since other agents at this point might still be in the middle of some other action,

we need to consider when to terminate the overall task. This is what we call the task

termination strategy. The three termination strategies described in this section can be

applied at this task level even though we control each unit with a separate agent. This

will be further discussed in Chapter 4.

2.4.4 Identical Agents

In multi-agent systems it is possible that several of the agents are similar or even iden-

tical, meaning that the agents have the same actions available to them, and they are

equally good at completing them. If the agents also share the same goal, then it is

possible for the agents to share the same Q-table. This could potentially increase the

learning speed, as all the agents will learn from the shared experience of all agents.

2.4.5 Q-Learning

Q-learning is an algorithm for finding an optimal policy for an MDP (not SMDP). It

does so by learning an action-value function (or Q-function) that returns the expected

future reward of taking an action in a specific state. Q-learning does not need a model

of its environment to be able to learn this function. The Q-function is a mapping from a

state and an action to a real number, which is the expected future reward: Q : S× A 7→
R.

After the Q-function has been learned, it is trivial to find the optimal policy, as one

simply has to choose the action with the highest return from the Q-function in a given

state.

Learning the Q-function is done using an action-value, and with an update rule shown

in Equation 2.4.1. In addition, the algorithm chooses its actions in an ε-greedy manner.

10

CHAPTER 2: REINFORCEMENT LEARNING IN RTS GAMES

It has been shown that by using this update rule the algorithm converges to Q∗, the

optimal value function, and using this to choose actions will result in the optimal policy,

π∗ [SB98].

Q(st, at)← Q(st, at) + α[rt+1 + γ max
a

Q(st+1, a)−Q(st, at)] (2.4.1)

Q-learning is called an off-policy algorithm as it does not use its policy to update the

Q-function, but instead uses the best action given its current Q-function. This however

is not necessarily its policy, as the algorithm will have to perform exploration steps

from time to time. These exploration steps are needed for the algorithm to converge

to an optimal solution as it will have to take all actions in all states to be sure that it

converges to the optimal policy.

Sutton et al [RR02] proposed an algorithm, SMDPQ, which extends Q-learning to sup-

port SMDPs by changing the update rule. Normally the discount factor, γ, is multiplied

with the expected future reward, as all actions in MDP problems are assumed to take

constant time to complete. In the modified version, the discount factor is raised to the

power of the number of time steps that the action took to complete. This results in

a new update rule given in Equation 2.4.2, where Rt is the discounted accumulated

reward up to time step t.

[Q(st, at)← Q(st, at) + α(Rt + γk max
a

Q(st+1, a)−Q(st, at))] (2.4.2)

2.4.6 Reward Shaping

Ng et al. [NHR99] proposed reward shaping to speed up Q-learning while preserving

the policy optimality. Every optimal policy in an MDP, which does not use reward

shaping will also be an optimal policy in an MDP which uses reward shaping, and

vice versa. Formally reward shaping introduces a transformed reward function for the

MDP: R′(s, a, s′) = R(s, a, s′) + F(s, a, s′), where F : S× A× S 7→ R. To achieve this, we

need a function Φ(s) that can calculate a value based on state s, which should represent

the potential of the state, making it comparable to another state. The potential-based

shaping function is formally defined as:

F(s, a, s′) = γΦ(s′)−Φ(s) (2.4.3)

An example of such a function could be the negative euclidean distance to a goal from

a current position in a grid world. As a rule of thumb, Φ(s) = V∗M(s), where V∗M(s)

11

CHAPTER 2: REINFORCEMENT LEARNING IN RTS GAMES

means the value of the optimal policy for MDP M starting in state s, might be a good

shaping potential.

2.5 Balanced Annihilation

Balanced Annihilation is a game developed for the open-source engine Spring RTS. It

is a well balanced modern RTS game comparable to commercial closed-source games.

All Spring RTS games have very good support for AI implementation in many lan-

guages. We will be using the C++ interface to develop our agent.

In this section we will briefly describe the game and the two common RTS AI problems

that we will solve using reinforcement learning, base-building and attacking.

Figure 2.2: A screenshot of the scenario in Balanced Annihilation. This shows the state

of the game after five metal extractors, one solar collector, and two k-bot labs

have been build. The construction unit is currently in the process of build-

ing a third k-bot lab. At the top of the screen a white and a yellow indicator

can be seen, representing the current level of metal end solar energy, re-

spectively.

2.5.1 Overview

Balanced Annihilation is based on the first 3D RTS, Total Annihilation. The game is

designed such that resources are consumed and produced continuously. Furthermore,

resources are not gathered by worker units, but by resource buildings. Other notable

12

CHAPTER 2: REINFORCEMENT LEARNING IN RTS GAMES

buildings include production buildings, which are able to produce both attack- and

construction units. These are also the two basic types of units. Furthermore, both types

of units are available in four flavours: k-bots, tanks, boats and aircrafts.

Every player starts a game with a single unit called the “commander”, which is a spe-

cial type of builder-unit. Killing this special unit is actually the goal of the opponent.

This means that even though one player has a huge advantage in number of units and

buildings, a seemingly weak other player can win the game immediately by killing this

single “commander” unit. Figure 2.2 shows a graphical example state of the game.

2.5.2 Building a Base

One of the problems of an RTS game that we will address using reinforcement learning

in this report is getting a number of builder-units to cooperate in building a strong

base quickly. A good base composition is needed to be able to produce attack units

fast enough. This is achieved by constructing enough resource buildings to support

both the builder-units and the production buildings. If insufficient resource buildings

are constructed, then the production of units and the construction of buildings will be

slowed down. On the other hand, if too many resource buildings are constructed, then

time is wasted that could have been used to construct more production buildings and

thereby speed up the production of attack units.

There is a trade-off between constructing resource buildings and production buildings

to make sure that the workers are acting in a near-optimal way. In most RTS games this

is scripted by an expert, who knows the game and therefore knows an effective build

order. We propose to learn a good build order using reinforcement learning, where the

goal is to create a number of production buildings, leaving the agent with a good econ-

omy after each one of these is done, while not wasting time building excessive resource

buildings. Practically this could be used to learn a good base building order for any RTS

game, instead of letting an expert decide on a scripted build order. Furthermore this

easily allows for a more complex scenario, differentiating resource production and unit

costs from game to game, or map to map, without needing specifically created policies

for each of these scenarios.

2.5.3 Battle

The other RTS problem that we will address using reinforcement learning in this report

is how to attack the enemy. Attacking is essential to winning any RTS game, so careful

decision making is necessary before sending units on an attack mission, since a wrong

13

CHAPTER 2: REINFORCEMENT LEARNING IN RTS GAMES

decision may result in a huge loss for our agent. A good player should be able to exploit

weaknesses in the defense of his opponent, e.g. by attacking unprotected resource

buildings, and thereby destroying a part of the economy of the opponent without the

player losing any units. It is therefore important to know when and where to attack,

and this depends on the sizes and compositions of the armies as well as the general

state of the map, e.g. locations of bases, armies, resource buildings etc.

A sufficient representation (state space) of the game world for learning to attack may

very well include so many state variables and so many discrete intervals that reinforce-

ment learning could become infeasible. We need to investigate ways to abstract away

some of this information so that we will be able to represent the value of an attack in a

more compact, yet useful way.

14

CHAPTER 3

Time-based Reward Shaping

Abstract. Real-Time Strategy (RTS) games are challenging domains for AI, since

it involves not only a large state space, but also dynamic actions that agents ex-

ecute concurrently. This problem cannot be optimally solved through general Q-

learning techniques, so we propose a solution using a Semi Markov Decision Pro-

cess (SMDP). We present a time-based reward shaping technique, TRS, to speed

up the learning process in reinforcement learning. Especially, we show that our

technique preserves the solution optimality for some SMDP problems. We evalu-

ate the performance of our method in the Spring game Balanced Annihilation, and

provide some benchmarks showing the performance of our approach.

3.1 Introduction

Reinforcement learning is an interesting concept in game AI development since it

allows an agent to learn by trial-and-error by receiving feedback from the environ-

ment [SB98]. Learning can be done without a complete model of the environment

which means that reinforcement learning can be applied to even complex domains.

Reinforcement learning has been applied to many types of problems, including many

different board games [Gho04], a simple soccer game [Lit94] and robot naviga-

tion [Mat94]. In the context of RTS games, reinforcement learning has been applied to

a small resource gathering task [MRLG05], and a commercial real-time strategy game

(RTS) called MadRTS [SHS+07].

The benefit of applying reinforcement learning is to create adaptive agents (Non-player

characters in computer games) that may change their behaviour according to the way

opponents play throughout games. Generally, reinforcement learning requires that the

problem shall be formulated as a Markov decision process (MDP). This demands that

environmental states, as well as actions, must be well defined in the studied domain.

15

CHAPTER 3: TIME-BASED REWARD SHAPING

However, a complex and dynamic RTS game always involves a very large state-action

space. Moreover, agents’ actions may last several time steps and exhibit a dynamic

influence on the states. Both of these problems prevent a fast convergence to an optimal

policy in RTS games. Recently, Kresten et al. [AZCT09] showed that the hierarchical

decomposition of game states may mitigate the dimensional problem. This chapter

will investigate solutions to the second problem and speed up the convergence using

relevant techniques.

We resort to Semi Markov Decision Processes (SMDPs) that extend MDPs for a more

general problem formulation. SMDPs allow one single action to span multiple time

steps and change environmental states during the action period. This property matches

well with solutions to the dynamic actions within RTS games of our interest. However,

the problem of slow convergence occurs when an optimal policy needs to be compiled

in a short period of gameplay.

To speed up the learning process, we present a time-based reward shaping technique,

TRS, which makes it possible to apply the standard Q-learning to some SMDPs and

to solve SMDPs in a fast way. We let the agent get a negative reward only after it

completes an action, and the reward depends on how much time it takes to complete

the action. This means that after many trials, the agent will converge towards the fastest

way of completing the scenario, since all other solutions than the fastest possible one

will result in a larger negative reward. Our proposed approach puts some constraints

on the properties of the SMDP problems to which time-based reward shaping can be

applied without compromising the solution optimality.

We compare TRS to the Q-learning algorithm SMDPQ presented by Sutton et al [RR02].

SMDPQ extends Q-learning to support SMDPs by changing the update rule. We the-

oretically analyse the equivalence of optimal policies computed by both SMDPQ and

our proposed method, TRS, given the constraints. We evaluate performance of TRS on

a scenario in the RTS game of Balanced Annihilation and show a significant improve-

ment on the convergence of SMDPQ solutions. We also apply TRS to other reinforce-

ment learning methods such as Q-learning with eligibility traces, Q(λ), and show that

this also can be successfully extended to support some SMDP problems.

The rest of this chapter is organized as follows. Section 3.2 describes related work on

using reinforcement learning in computer games. Section 3.3 presents our proposed

method, TRS, and analyse the policy equivalence. Subsequently, Section 3.4 provides

experimental results to evaluate the method. Finally, Section 3.5 concludes our discus-

sion and provides interesting remarks for future work on this topic.

16

CHAPTER 3: TIME-BASED REWARD SHAPING

3.2 Related Work

Reinforcement learning methods have been well studied in the machine learning area

where much of the work focuses on the theoretical aspect of either the performance im-

provement or the extension from a single-agent case to a multi-agent case. Good survey

papers can be found in [KPLM96]. Although reinforcement learning techniques have

been demonstrated successfully in a classical board game [Tes94], computer games are

just recently starting to follow this path [Man04].

RTS games are very complex games, often with very large state- and action-spaces and

thus when applying reinforcement learning to these problems we need ways to speed

up learning in order to make the agent converge to an optimal solution in reasonable

time. For example, some methods like backtracking, eligibility traces [SB98], or reward

shaping [Lau04] have been proposed for this purpose. Laud demonstrates[Lau04] that

reward shaping allows much faster convergence in reinforcement learning because the

reward horizon is greatly decreased when using reward shaping, i.e. the time that

passes before the agent gets some useful feedback from the environment is decreased.

Meanwhile, Ng et al. [NHR99] prove if the reward shaping function takes the form of

the difference of potentials between two states the policy optimality is preserved.

The Q-learning variant SMDPQ[RR02] is used for proving policy equivalence with TRS

on the supported SMDP problems.

3.3 Time-based Reward Shaping

We observe that reward shaping can be used to extend the standard Q-learning algo-

rithm to support SMDPs. In this section, we firstly propose a time-based reward shap-

ing method, TRS, and discuss the solution optimality in connection with SMDP. Then,

we elaborate the validity of our proposed method through two counter examples.

3.3.1 Our Solution

We propose the simple solution of using the time spent for an action as an additional

negative reward given to the agent after it completes that action. Formally, we define

the time-based shaping function in Equation 3.3.1.

F(s, a, s′) = −τ(a) (3.3.1)

where τ(a) is the number of time steps it takes the agent to complete action a

17

CHAPTER 3: TIME-BASED REWARD SHAPING

As the time spent for an action is independent of transition states, the reward shap-

ing is not potential based. Consequently, we can not guarantee the solution optimality

for any SMDP problem. However, we observe that solution optimality may be pre-

served for some SMDP problems if the problem satisfies some properties. As shown in

[NHR99] the shaping function F must not allow a cycling sequence of positive reward,

since this will result in the agent finding a suboptimal solution.

We begin by showing that using reward shaping (in Equation 3.3.1), the agent will

never learn a solution consisting of a cyclic sequence of states for which the individual

rewards total to a positive reward. Then, we proceed to prove a guaranteed consis-

tency between the optimal policy when learning by our approach, time-based reward

shaping, and when using an approach like SMDPQ, i.e. that our approach converges

to the same policy as SMDPQ.

No Cyclic Policy

As shown in Equation 3.3.1, only negative reward is given in the learning process so

that it is clear that no cyclic sequence of states can result in a positive reward. This

ensures that the possible cyclic issue of a poorly chosen reward function can not occur

in our solution.

Policy Equivalence

In SMDPQ the algorithm selects the fastest path to the goal, by discounting the reward

over time, while our approach gives a negative reward for each time step used until

termination. Both of these approaches make sure that a faster path has a higher reward

than all of other paths. This however is only true if the reward received at the terminal

states is the same for all terminal states. If they were to differ, the two approaches

are not guaranteed to find the same policy, as the negative reward earned by the time

spent, together with the discounting, may have conflicting “priorities”.

The Q functions for TRS and SMDPQ , denoted QTRS and QSMDPQ, can be seen respec-

tively in Equation 3.3.2 and Equation 3.3.3. The shown values are only for special cases

where α is 1 for both approaches and γ is 1 for QTRS and between 0 and 1 for QSMDPQ.

τ is here the time to termination by taking action a in state s and following the policy

after this. The equation shows that any action that leads to a faster termination, will

have a higher Q-value, and as this is the case for both algorithms they end up with the

18

CHAPTER 3: TIME-BASED REWARD SHAPING

same policy.

QTRS(s, a) = r− τ (3.3.2)

QSMDPQ(s, a) = γτ ∗ r (3.3.3)

Formally, we assume that a specific group of SMDPs shall have the following proper-

ties:

1. Reward is only given at the end, by termination,

2. The goal must be to terminate with the lowest time consumption,

3. The reward must be the same for all terminal states.

Then, time-based reward shaping preserves the solution optimality of SMDPQ as indi-

cated in proposition 1. However, the policies can be equal even though the restrictions

do not hold, but this is not guaranteed.

Proposition 1 (Policy Equivalence).

∀s : arg max
a

Q∗TRS(s, a) = arg max
a

Q∗SMDPQ(s, a)

When using a MDP algorithm to solve the problem, we note that our approach is not

simply a matter of guiding the learning, but actually giving it essential information to

ever finding the optimal policy. When the algorithm converges the agent will choose

a policy allowing for the fastest solution of the given problem—measured in time and

not number of actions. The application of the reward penalty encourages the agent

to achieve a goal as fast as possible, thus making our approach independent of game-

specific properties such as specific units etc.

3.3.2 Counter Examples

Here we present two examples of why the previously mentioned properties on appli-

cable SMDPs have to be obeyed in order for TRS to converge to the optimal policy, i.e.

the same as the SMDPQ algorithm. We create examples for properties 1 and 3, and

show that if the properties are not obeyed, the two algorithms are not guaranteed to

converge to the same optimal policy.

19

CHAPTER 3: TIME-BASED REWARD SHAPING

Rewards in Non-Terminal States

Figure 3.1 shows an example of why it is important that any other reward should only

be given in terminal states in order for Q-learning w/ TRS to converge to the same opti-

mal policy as SMDPQ. For this case we use γ = 0.99, define the actions of the environ-

ment as A1, A2 and A3, and the time steps required to take transitions as τ(A1) = 1,

τ(A2) = 2, τ(A3) = 50. This results in the optimal policy using Q-learning w/ TRS

would go directly from S to T, but the optimal policy for SMDPQ would be from S to

T through S′.

S

S’

TA1

A2 A3

r = 50

r = 100

Figure 3.1: A case illustrating a counterexample of why it is important that rewards

are only given in terminal states.

The following shows the calculations resulting in the optimal policy using Q-learning

w/ TRS:

QTRS(S, A1) = (100− τ(A1))γ = 98.0

QTRS(S, A2) = (50− τ(A2))γ + (100− τ(A3))γ
2 = 96.5

While the optimal policy using SMDPQ is calculated as follows:

QSMDPQ(S, A1) = γτ(A1)100 = 99.0

QSMDPQ(S, A2) = γτ(A2)50 + γτ(A2)+τ(A3)100 = 108.3

The goal of a TRS problem should be to reach termination in the fewest time steps,

which means that giving rewards in non-terminal states, and thereby not obeying the

restrictions, will result in a possible suboptimal solution.

Different Rewards in Terminal States

Figure 3.2 shows that it is important that all terminal states must yield the same re-

ward in order to assure that Q-learning w/ TRS converges to the same optimal policy

as SMDPQ. In this case the following parameter values are used: γ = 0.99, τ(A1) =

20

CHAPTER 3: TIME-BASED REWARD SHAPING

S

T2

T1A1

A2

r = 50

r = 100

Figure 3.2: A case illustrating a counterexample of why it is important that all the

rewards given in terminal states need to be the same.

60, τ(A2) = 1. This results in the optimal policy using Q-learning w/ TRS would go

from S to T2, but the optimal policy for SMDPQ would be T1 instead.

The following shows the reward calculations for the optimal policy using Q-learning w/

TRS:

QTRS(S, A1) = (100− τ(A1))γ = 39.6

QTRS(S, A2) = (50− τ(A2))γ = 48.5

While the reward calculations using SMDPQ are as follows:

QSMDPQ(S, A1) = γτ(A1)100 = 54.7

QSMDPQ(S, A2) = γτ(A2)50 = 49.5

All terminal states in a TRS problem must yield the same reward, and if this is not

obeyed the optimal policy will, as exemplified above, not be guaranteed to be equiva-

lent to the optimal policy of SMDPQ.

3.4 Experiments

To test the proposed time-based reward shaping, we set a simple scenario in the RTS

game Balanced Annihilation which can be described as an SMDP problem. The optimal

solution for this problem is learned using Q-learning and Q(λ)[SB98] with time-based

reward shaping, and the proven SMDP approach SMDPQ[RR02].

3.4.1 Game Scenario

The scenario is a very simple base-building scenario. The agent starts with a single

construction unit, a finite amount of resources and a low resource income. The agent

21

CHAPTER 3: TIME-BASED REWARD SHAPING

controls the actions of the construction unit, which is limited to the following three

actions:

• Build a k-bot lab, for producing attack-units (production building)

• Build a metal extractor, for retrieving metal resources (resource building)

• Build a solar collector, for retrieving solar energy (resource building)

All actions in the scenario are sequential, as the construction unit can only build one

building at a time. The goal of the scenario is to build four of the production buildings

as quickly as possible (in terms of game time). The build time depends on whether we

have enough available resources for constructing the building; e.g. if we have low re-

source income and our resource storage is empty, it takes much more time to complete

a new building than if we have high resource income. Therefore the optimal solution

is not to construct the four production buildings at once, without constructing any re-

source building, as this would be very slow.

As state variables, the number of each type of building is used; the number of produc-

tion building has the range [0; 4], and the number of each of the two types of resource

buildings has the range [0; 19]. This results in a state space of 5× 20× 20 = 2000 and

an state-action space of 2000× 3 = 6000. This means that it is not possible for the agent

to take the current amount of resources into account, as this may vary depending on

the order in which the buildings have been constructed. We do not think that this will

have a great impact on the final policy though.

3.4.2 Results

Figure 3.3 shows the results of four different settings of reinforcement learning in the

scenario: Standard Q-learning and Q(λ) with time-based reward shaping, and SMDPQ

both with and without time-based reward shaping.

The standard MDP Q-learning algorithm extended with time-based reward shaping

shows a significant improvement over standard SMDPQ. SMDPQ with reward shap-

ing also provides much faster convergence than standard SMDPQ. However, there is

no difference on applying reward shaping to standard MDP Q-learning and SMDPQ.

This can be explained by the fact that SMDPQ and our reward shaping both help solve

the problem as fast as possible, since the reward decreases as time increases. The al-

gorithms are not additive, so applying one time penalty-algorithm to another does not

increase the convergence rate. In addition, both algorithms only pass reward back one

step, and thus the two approaches converge at the same rate.

22

CHAPTER 3: TIME-BASED REWARD SHAPING

Figure 3.3: A graphical representation of the convergence of the different approaches

for SMDP support in Q-learning. Q-learning values are: α = 0.1, ε = 0.1,

γ = 0.9. Exponential smoothing factor = 0.02. This experiment was done

on the base-building scenario.

When using the MDP algorithm on the scenario, which is in fact an SMDP problem, this

kind of reward shaping is actually necessary in order to make the algorithm converge

to a correct solution. Without reward shaping, the agent would know nothing about the

time it took to complete an action, and so it would converge to the solution of building

four production buildings in as few steps as possible, namely four. This solution is not

the optimal one in terms of game time, since the production of resources would be very

low given the fact that the agent does not build any resource buildings.

From Figure 3.3 it is not clear whether or not SMDPQ without reward shaping actually

ever converges to the optimal policy. In this experiment SMDPQ converged to the

optimal policy after approximately 22000 runs, but this result is not a part of the figure,

since it would obfuscate the other information contained within the graph.

Adding eligibility traces, in this case Q(λ), to Q-learning with TRS further improves

the convergence rate, as it can be seen in Figure 3.3.

3.4.3 Discussion

By improving the convergence speed, we can reduce the time spent on learning, and

this is especially important when each learning episode is very long. In this case we

achieved an improvement in convergence speed from 22000 episodes to 700 episodes.

If each episode is very long, in terms of wall-time, this may result in a problem being

feasible to learn and not taking several hours or even days to learn.

TRS can be a good choice when using reinforcement learning for a subtask in a game,

where the agent must solve a problem as fast as possible and can not fail to achieve the

23

CHAPTER 3: TIME-BASED REWARD SHAPING

goal. This however does not include an RTS game as a whole, as it is possible to fail

to achieve the goal, by losing the game. General reward shaping can be applied to all

MDP problems, but it is especially important in games, where the state space can be

very large. Another task which could be solved using TRS is pathfinding (in general).

3.5 Conclusions and Future Work

Scenarios in computer games are often time dependent and agents’ actions may span

multiple time steps. We propose an SMDP solution to have agents learn adaptive be-

haviours. We make a further step to speed up the learning process through reward

shaping techniques. We propose a time-based reward shaping method, TRS that gives

reward according to the number of time steps it took to complete an action. In par-

ticular, we show that our method may result in the same policy as SMDP solutions

for some specific problems. Our experiments on the Balanced Annihilation game show

that applying time-based reward shaping is a significant improvement for both general

Q-learning, SMDPQ and Q(λ), allowing fast convergence when solving some SMDPs.

In addition, the technique allows us to solve SMDP problems with the standard Q-

learning algorithm.

We found a way to use reward shaping in Q-learning that reduced the number of runs

needed to converge for a restricted group of SMDP problems. It would be interest-

ing to see if this, or some similar approach, could be applied in a more general case.

There is already a general concept of reward shaping, which has been proved to work.

But we feel that some more specific concepts about including time usage in reward

shaping could really be beneficial. Improvements of this approach could result in elim-

inating the restrictions for applicable SMDP problems, optimally allowing support for

any SMDP problem.

Applying TRS to more advanced problems could also be done, to show whether this

approach is too limited. An example of such an advanced scenario could be one with

cooperative agents. This is especially relevant in RTS games, where units need to co-

operate in order to achieve their goals faster.

24

CHAPTER 4

Concurrent Agents

Abstract. Using reinforcement learning with cooperating or competing concur-

rent agents requires the state space to include information about the other agents.

No previous publications have specifically investigated different approaches to in-

clude such information in the state space, and compared their performance, so this

will be the main focus for this research. Examples of concurrency information to

consider includes which actions are being carried out by which agents, and how

far these actions are from being completed. We will also investigate how much

abstraction can be done on this information while still ensuring convergence to a

near-optimal policy. We present four approaches to including concurrency infor-

mation in a state space and compare their performance in an RTS base-building

scenario.

4.1 Introduction

In RTS games, it is often the case that several agents must either cooperate or compete

to solve a goal. Reinforcement learning is a commonly used approach for solving such

problems, since it allows learning without a complete model of the environment. When

dealing with reinforcement learning there are two main problems to consider; the size

of the state space represent the state of the environment, and the speed at which it is

possible to converge to an optimal policy. In addition, for multi-agent problems, there

is the problem of implementing inter-agent communication, since each agent may need

information about the other agents in the environment.

In this chapter we investigate how to minimise the information about concurrent

agents represented in the state space, in order to allow faster convergence to an optimal

policy for a multi-agent problem, while still being able to converge to a near-optimal

solution.

25

CHAPTER 4: CONCURRENT AGENTS

Others have investigated how to use reinforcement learning with multiple agents

[MMG01][Tan93], but have not investigated how to optimally represent the required

concurrency information. We introduce four different approaches to representing con-

currency information, compare their convergence rate and the learned policies, and

discuss in which cases each could be useful.

To experiment with the different approaches for designing the concurrency state

spaces, we will use a scenario set in an RTS game, where the agents cooperate to com-

plete a base-building scenario. In Chapter 3 we investigated how to solve such a simple

base-building scenario in an RTS game using a single builder agent. However, letting

multiple builder agents cooperate to complete the task of building a base in an RTS

game is more complex. This type of problem may be classified as an MSMDP problem

(Multi-agent SMDP problem).

In the scenario that we will use to conduct the experiments, it is important that the

agents are heavily dependent on each other, making cooperation very important. We

achieve this in our scenario, by letting the action chosen by one agent heavily influ-

ence the time it will take any other agent to complete an action. This is due to the

fact that resources will be shared between all cooperating agents, making cooperation

very important in this extended version of our initial single-agent scenario described

in Section 3.4.1.

Through experimentation in this scenario we will investigate the performance of the

four state space approaches, and thereby show how much information is required to

allow convergence to an optimal policy with a fast convergence rate, for concurrent

identical agents. Furthermore, we will investigate how the termination strategies men-

tioned in Section 2.4.3 can be used to interleave the tasks, and whether this influences

the requirements on the state-space information concerning concurrency.

In Section 4.2 we present some of the related work on this topic, and further specify

which area we will contribute to. Section 4.3 defines the four state space approaches

for including information about the actions of the concurrent agents in the state space.

The scenario and reinforcement learning set up used to experiment with the state space

approaches is described in Section 4.4, of which the results of are described in Sec-

tion 4.5 and Section 4.6. Lastly we conclude and discuss the usefulness of the findings

in Section 4.7.

26

CHAPTER 4: CONCURRENT AGENTS

4.2 Related Work

Makar et al[MMG01] extended MAXQ to support multi-agent problems. This allowed

them to limit the concurrent state-space by only using information about higher-level

joint actions instead of primitive actions.

Ming Tan[Tan93] looked at the importance of having information about the concurrent

agents, compared to letting the agents be independent. As information for the coopera-

tive concurrent agents, he studied three types of shared information: sharing sensation,

sharing episodes and sharing learned policies.

Common for the related work is that it does not carry out an in-depth study about

which information, about the actions of the concurrent agents, should be shared in or-

der for multiple agents to cooperate in an MSMDP problem. Here we will look at how

little information can be sufficient, and how much information can be added before it

becomes irrelevant.

4.3 Concurrent State Space

When implementing learning with concurrent agents, we need to include information

about the other agents in the state space. This means that for n agents we need infor-

mation about n − 1 concurrent agents. First of all, this information needs to include

which action each of the concurrent agents is currently executing. We need to consider

that some scenarios might involve complex problems, where e.g. the actions chosen by

one agent have an impact on another action being carried out by another agent. To en-

sure support for this and other possible scenarios, we need to figure out what level of

information is optimal to represent in the state-space: e.g. complete action information

for each agent, or some abstraction of this.

In this section we will present four different approaches to designing the concurrent

part of the state space. Each approach contains a varying amount of information about

the concurrent agents and their current actions. In the following state space repre-

sentations, a represents the number of actions (excluding the mandatory nil-action). n

represents the total number of agents.

For each approach we calculate how many states are required to represent the state

space depending on the concurrency variables. These calculations can give a good idea

of how fast it will be possible to converge, using that particular approach to design the

concurrent state space.

27

CHAPTER 4: CONCURRENT AGENTS

4.3.1 Approach 1

In this approach we include action information about all agents. For all concurrent

agents we want to know if it has not yet started any action (nil-action), or which of the

a actions it is currently executing. This means, that an agent knows exactly which action

each of the other agents is executing, and that the state space will grow exponentially

in the number of agents. The number of states needed to represent the information for

this approach, can be calculated using Equation 4.3.1.

f1(a, n) = (a + 1)(n−1) (4.3.1)

4.3.2 Approach 2

Approach 2 adds additional information about the concurrent agents. If an agent is

carrying out one of the a actions, we want to know how far that action is from being

completed. This means that we will need to define a state variable representing time

intervals to illustrate how far an executing action is from completion. If we define t

time intervals for that variable, the number of states in the concurrent state space can

be calculated by Equation 4.3.2.

f2(a, n, t) = (a ∗ t + 1)(n−1) (4.3.2)

A reasonable number of time intervals may be around 3, which could represent the

beginning, middle and end of an action-execution. This is what we have used in our ex-

periments. This too will grow exponentially, but at an even greater rate than approach

1, since more information is added to the state space.

4.3.3 Approach 3

In approach 3 we try to limit the amount of information in the concurrent state space.

Since all the agents in our scenario are clones, it is irrelevant to know which of the

concurrent agents are executing which action, and therefore we can neglect this infor-

mation. Instead, for each action, we just include the number of agents that are currently

carrying out that action. Since e.g. the case where all actions are being executed by all

agents can not happen, but all agents can execute the same single action, the number

of states can not simply be calculated by na. Instead the calculation is less straight for-

28

CHAPTER 4: CONCURRENT AGENTS

ward, but the already known definition of Pascal’s triangle1 can be used to calculate

the required number of states, as seen in Equation 4.3.3. The logic used to find this

calculation, can be seen in Appendix A.

pascal(n, k) =
n!

k!(n− k)!

f3(a, n) = pascal(n + a− 1, a)

f3(a, n) =
(n + a− 1)!
a!(n− 1)!

(4.3.3)

4.3.4 Approach 4

Instead of including the exact number of agents executing each action, it might be suf-

ficient to include some abstraction of this number. We let i represent the number of

states that this action-information is divided into. Examples of ways to represent the

action-information could be: number of agents executing an action or the percentage

of agents executing an action.

As a specific example, the most restrictive abstraction could be just to represent

whether an action is being carried out by any concurrent agent, or not (i=2). If i ≥ n

then this approach will simply be equal to Approach 3, so this is not what is intended.

If i < n then the number of states needed to represent the concurrent state space is

rather complex to calculate, compared to the previous approaches.

An upper-bound for the number of states used for this approach can be calculated as

seen in Equation 4.3.4.

f4(a, i) = ia (4.3.4)

We have not found a compact mathematical function capable of calculation the exact

number of states, so instead we can illustrate the calculation using the pseudo-code

algorithm presented in Appendix A. Using this algorithm, the exact number of states

can simply be calculated as calc-states(a, i, n).

1Ask Dr. Math—Pascal’s triangle: http://mathforum.org/dr.math/faq/faq.pascal.triangle.html

29

http://mathforum.org/dr.math/faq/faq.pascal.triangle.html

CHAPTER 4: CONCURRENT AGENTS

4.4 Experiments

This section introduces the settings, in which our experiments with the state space

approaches presented in Section 4.3 will be conducted.

First we describe the reinforcement learning methods and settings which are used

throughout all experiments. This is followed by a detailed description of the scenario

in Balanced Annihilation, and the main problem within this scenario that we will solve

using reinforcement learning. Afterwards, we define how we give reward to the con-

current agents. All approaches will be tested with two of the task termination strategies

(τall and τcont) mentioned in Section 2.4.3 to show whether this yields different results.

The third task termination strategy, τany, will not be considered because the actions in

our scenario does not make sense to interrupt, since half a building is not useful.

4.4.1 Reinforcement Learning

In our experiments the multiple concurrent agents take actions individually, one at a

time. However, since they are identical agents, as described in Section 2.4.4, they do

not each learn their own Q-table, but share a common Q-table, which they all read from

and update accordingly. But other than this, they act on their own, keep their own state

information and history, and updates according to this information. Using a common

Q-table is possible because all the agents are identical in our experiment.

To conduct the experiments on our proposed state space designs, we use well-known

reinforcement learning algorithms. The SMDP variant of Q-learning, with a reward-

function inspired by TRS, is used as base for solving the MSMDP problem. For all

experiments, Q-learning is set up using the following constants: γ = 0.9, α = 0.1,

ε = 0.1. For ε we do not use any decay, to allow fair comparison between the results.

This means that faster convergence than what is shown in the results, can rather easily

be achieved—e.g. by using Q(λ). Furthermore, the results will not show convergence

towards an optimal policy since there will be constant exploration.

We will compare the four approaches from Section 4.3, to find the sufficient amount of

information about concurrent agents required to converge to a good policy and with a

good rate. This is a state space-size versus information-detail comparison.

4.4.2 Scenario

In our multi-agent scenario in the Spring-based RTS game Balanced Annihilation, each

agent controls one worker that has the following actions:

30

CHAPTER 4: CONCURRENT AGENTS

• Build a k-bot lab, for producing attack-units (production building)

• Build a metal extractor, for retrieving metal resources (resource building)

• Build a solar collector, for retrieving solar energy (resource building)

Every completed production building is set to continuously build a predefined attack-

unit in order to simulate the normal use of a production building. This means that the

resource usage is increased every time a production building is completed.

Constructing the different buildings has different effects on the economy. The produc-

tion cost of each building and the time it takes to construct it, is unique for each type

of building. When a building has been completed it will either produce or consume

resources indefinitely. Production buildings consume a lot of metal and energy while

producing attack-units. The metal extractor consumes energy while producing metal,

and lastly the solar collector produces energy without any consumption.

If the energy production and storage is so low that it can not cover the needs from

other buildings and workers, then the metal production as well as the construction of

buildings, will be slowed down accordingly. If the metal production and storage is not

sufficient for the construction of buildings, the construction rate will also be slowed

down. This all means that the action choice of one agent may drastically change the

time it takes the other agents to complete their actions.

The goal of each episode in the learning session is to build ten production buildings

in what we consider a reasonable time, while still leaving a reasonable economy after

each production building is completed. This can be accomplished by building resource

buildings before the production buildings finish. The motivation for having a good

economy after each production building is finished, is that the agent can then produce

attack units at full speed. The agent will also be able to change its strategy easier, if it

has a good economy. In practice it is not too important how exactly time and economy

is weighted compared to each other in these experiments, even though varying weights

will give varying policies. In our experiments we just use predefined weights that

result in what we consider reasonable time and economy. Later, in Section 4.6, we look

into how exactly the time impacts the learned policy.

4.4.3 State Space Design

We already covered the four different approaches to storing concurrent agent informa-

tion, so the only additional state space information we need to consider for this scenario

is economy.

31

CHAPTER 4: CONCURRENT AGENTS

The last time we considered the base-building-scenario, in Chapter 3, we included

building-counts in the state-space. While this worked very well, it was still limited

in the sense that the agent would only know what to do, up to the point of what the

state space was able to represent. Furthermore, since the goal of building four con-

struction buildings was used during learning, it is natural to assume that the policy to

which the agent converged would not necessarily involve having a usable base before

reaching the goal of four constructing buildings. E.g. the agent may first build a lot of

metal extractors, followed by a lot of solar collectors, followed by four k-bot labs. The

new state space should be able to address this issue.

To overcome these issues, we redefine the state space completely. Instead of looking

at building-counts, we look at metal and energy economy, dividing each into usable

discrete intervals. The terminal action in this state space is to just build a single pro-

duction building, and reward is given according to the time it took, and the economy

after this action has been completed.

This also means that while we still include a fixed goal of building ten production

buildings, this does not limit the learned policy to only support up to ten production

buildings, since the limit lies only in the configuration of the simulator used for the

learning process. The goal is just set in order to allow the agents to reach all states

related to the economy.

In Balanced Annihilation the economy consists of two types of resources: metal and

energy. For each of these there is a current storage, income and usage at any given time

in the game. The economy is shared among all units in a team—hence the cooperative

agents controlling the builder-units also have to consider the shared resources.

We choose to represent the storage and the gain (income minus usage) as two state

variables in discrete intervals for each resource type. These intervals are necessary as

we do not support an infinite state space, which would be the result if we just used the

storage and gain directly in the state space. The intervals start at a low value where

any thing that is below this value will be represented by the first interval state, and

everything above the highest interval value is represented by the last interval state.

The values that are in between the low and the high value are divided into a number of

intervals to keep the state space size to a minimum. The number of intervals is chosen

in such a way that we have enough states to represent enough important states, but

few enough to still keep the state space small enough. Specifically in this setup, we use

evenly divided intervals of 6 to 10 states for each value to represent.

32

CHAPTER 4: CONCURRENT AGENTS

4.4.4 Reward

Since the goal is to build production buildings as fast as possible, while leaving the

agents with a predefined reasonable economy afterwards, these are also the two factors

that must have an impact on the returned reward for completing the scenario.

Economy

The reward that will be issued to all agents after a production building has been com-

pleted, is partly calculated by looking at the economy after completion. The reward

is first calculated by looking at the worst of either current metal- or energy-gain, rep-

resented as a [0; 100] reward. To this the lowest of either metal- or energy-storage is

added in the form of a [0; 100] reward, resulting in a total reward of [0; 200] for one

production building. The only time this reward is issued is after a production building

has been built, and this reward is given to all the agents. All agents get the exact same

common reward, so that there will not be any battle between the agents who, e.g. gets

to build the production building.

Time

A good economy is not enough to be a good base builder in a competitive RTS game,

speed is very important too. A fast build order is often key when it comes to winning

the early game. To get a faster completion time, the agent needs to know that a faster

solution is a better solution, therefore we could use some of the principles from Time-

based Reward Shaping(TRS), described in Chapter 3. This means that the agent will

get a negative reward for each time step it uses, so that if it wastes any time it will get a

lower reward. This reward is given after each action, and only to the single agent that

completes the action. We can directly influence how important the speed is compared

to the economy, by scaling the punishment the agent gets for each time step. Specif-

ically in this scenario, a negative reward of 1 will be given for each time step in the

game.

TRS is not used as reward shaping in order to speed up the convergence rate as we did

in Chapter 3. In this case we are not interested in keeping the same policy as without

TRS, on the contrary we want our policy to be affected by the inclusion of TRS. The

policy we are interested in is faster and should differ significantly from the policy we

would get, if we choose not to give this negative reward.

33

CHAPTER 4: CONCURRENT AGENTS

4.4.5 Interleaving Tasks

With the goal of the scenario in mind, we define a task as the completion of a single

production building. Since we reward each agent based on the time it took to complete

a task, and based on the economy after completion of that task, each agent may build

an arbitrary number of other buildings before constructing the production building.

The reason for this is that the agent may get a higher reward if it initially builds some

resource buildings—this will be the case if an agent starts a task with a really poor

economy. This means that each task has many decision epochs for which termination

strategy can be considered, but here we will only consider the termination strategy for

the tasks.

As mentioned in Section 2.4.3, we use what can be considered τcont for the decision

epochs, and now we want to consider whether this is also possible as task termination

strategy. By this we mean that whenever an agent finishes its last action in a task, it can

continue with the next task even though other agents might still be completing their

last action in the previous task. However, this requires some extra considerations about

when the agents get their rewards.

Therefore we both consider the straightforward τall approach where building a single

production building is a goal, which should be completed x times each episode, and

the τcont approach where the goal is to complete x production buildings each episode.

τall

Using this approach the agents will keep starting new actions as long as a production

building has not been finished. When a production building has been finished, the

agents will complete their current tasks and terminate after this. This means, that when

completing multiple tasks, agents will be idling, while they wait for the other agents to

finish, before they can start with the next task.

τcont

The problem with the above approach, of wasting time on idling, can be avoided by

letting the agents start the next task before the other agents have finished their previous

task. Using this approach we do not allow the agents to idle. Instead of letting the

agents idle while the remaining agents are still executing their last action, the finished

agents continue towards the next goal of building the next production building. This is

a much more efficient approach, considering that no time is wasted on idling, and the

34

CHAPTER 4: CONCURRENT AGENTS

extra time can be used to get an even better economy than would be possible otherwise.

As earlier mentioned, this approach leaves some considerations regarding when to give

the agents reward. When it is tested in our scenario, the reward is given to all agents

every time a production building has been completed. However, the reward is actually

only picked up by each agent when they complete their current action—hence the only

agent that receives it immediately is the agent that completes the production building.

4.4.6 Simulator

When working with reinforcement learning you often have to change, e.g. the state

space and other learning variables, and this can be very cumbersome to work with if

you have to wait a long time for the results of your changes. We therefore developed a

simulator that can simulate a limited part of Balanced Annihilation, more precisely the

economics of base building. The simulator does not take into account the placement

of buildings, and thus not the time it would take a builder to move from build-site to

build-site. Furthermore, it does not in any way simulate opponents or combat, as this

is not part of the scenario we are working on here. However, a policy learned in the

simulator should be fine to use in the real game, as the economics work in the same

way, and the time it takes to move around has a minor impact on the policy. More

information on the simulator can be found in our previous report[CMCV09].

4.5 Results—Convergence Speed

Here we compare the results from our experiments carried out on the four concurrent

state space designs presented in Section 4.3, for 2 to 10 cooperative agents.

For reference, Table 4.1 shows the varying number of states required to represent the

cooperative agents in the four approaches.

The figures in the following sections will show the convergence graphs for the experi-

ments with varying settings. In the four following sections, showing the results of the

experiments with the state-space approaches for 2 to 10 agents, each figure will contain

four graphs; one for each of the cooperative state space approaches. In the legends of

these graphs, these will be referred to as S1, S2, S3, S4. S0 simply implies that no coop-

erative information is used. Following that notation, will be a notation showing the N

number of agents used for that particular graph, shown as xN.

Each experiment is carried out both with interleaved and non-interleaved tasks to il-

lustrate the differences between these two approaches.

35

CHAPTER 4: CONCURRENT AGENTS

Agents State-space 1 State-space 2 State-space 3 State-space 4

2 4 10 4 4

3 16 100 10 7

4 64 1000 20 8

5 256 10000 35 8

6 1024 100000 56 8

7 4096 1000000 84 8

8 16384 10000000 120 8

9 65536 100000000 165 8

10 262144 1000000000 220 8

Table 4.1: Number of states required for 2 to 10 agents for each of the state space ap-

proaches, given that a = 3, i = 2 and t = 3

4.5.1 No Cooperative Information

As a reference for the later results, we first show how important information about the

other concurrent agents is in the state space. To do this, we show how the learning per-

forms for two agents with interleaved and non-interleaved tasks using no information

about the other agents. The results can be seen in Figure 4.1.

1 2 3 4 5 6 7 8 9 10

x 10
5

−4000

−3000

−2000

−1000

0

1000

Number of runs

R
ew

ar
d

S0 x2 SMDPQ w/ Interleaved tasks
S0 x2 SMDPQ

Figure 4.1: Learning with 2 agents, using no cooperative information in the state

space, both with interleaved and non-interleaved tasks.

In the two settings the learning does converge to some policy, but as it can be seen in the

following experiments, where cooperative information is used, the policy learned with

non-interleaved tasks are by no means optimal. Furthermore, it is clear that both the

convergence speed and the reward received with interleaved tasks are better that with

36

CHAPTER 4: CONCURRENT AGENTS

non-interleaved. This fact will be described later in Section 4.5.2 when more results

have been compared.

However, in this experiment, with only 2 agents and no cooperative information, with

non-interleaved tasks the overall reward and policy confidence is much lower than

with interleaved tasks—even worse than what we will see in the later experiments

with cooperative information. This is due to the fact that time has a very big influence

on the reward in this set-up, which means that when looking at the goal of building

a single production lab, the optimal policy is to only build that, resulting in very bad

economy and acceptable time consumption. In this case, this means that the agents

both only build the production building during each task completion. Even though

this is the best solution for this specific set-up of the problem, letting the time have less

impact on the reward, will make the agent choose are more far-sighted solution, as we

will later see in Section 4.6. As we further discuss later, these problems does not have

as huge an impact when using interleaved tasks.

4.5.2 2 Agents

As it can be seen in Figure 4.2, having only two concurrent agents does not show any

significant difference in convergence rate for the different state space approaches ex-

cept approach 2. This approach has significantly more information than the other ap-

proaches and therefore a much larger state space, which means that it converges slower.

The other three approaches has exactly the same amount of information and therefore

converges equally fast.

1 2 3 4 5 6 7 8 9

x 105

−2000

−1500

−1000

−500

0

500

Number of runs

R
ew

ar
d

S1 x2 SMDPQ
S2 x2 SMDPQ
S3 x2 SMDPQ
S4 x2 SMDPQ

Figure 4.2: Learning with 2 agents, using Approach 1-4 with non-interleaved tasks.

What should be noted is that with non-interleaved tasks, after several runs approach 2

37

CHAPTER 4: CONCURRENT AGENTS

actually outperforms the other approaches because of the extra information; showing

that the information actually is helping the agent. When interleaved tasks on the other

hand is used, as seen in Figure 4.3, all approaches converge to a much better solution

(higher reward), which seems to be near-optimal since approach 2 does not outperform

the others in this case.

1 2 3 4 5 6 7 8 9 10

x 10
4

−3000

−2000

−1000

0

1000

Number of runs

R
ew

ar
d

S1 x2 SMDPQ w/ Interleaved tasks
S2 x2 SMDPQ w/ Interleaved tasks
S3 x2 SMDPQ w/ Interleaved tasks
S4 x2 SMDPQ w/ Interleaved tasks

Figure 4.3: Learning with 2 agents, using Approach 1-4 with interleaved tasks.

The fact that interleaved tasks allows the agents to find a better solution is because

the concurrent agents are able to improve the economy by building resource build-

ings, while they, with non-interleaved tasks, would have spent some time idling. They

are also able to build production buildings from different tasks simultaneously, which

could significantly reduce the time needed to solve the goal.

Another interesting note about using interleaved tasks, is that with two agents and

cooperative information, they converge to a policy with the same reward as without

cooperative information (as shown in Section 4.5.1), i.e. in this case the cooperative

information adds no value. This will be further explained when more experiments

have been conducted, in Section 4.5.5.

4.5.3 3 Agents

As it can be seen in Figure 4.4, approach 2 converges much more slowly than before

because of the large increase in state space size for each increment in number of agents.

Eventually it still converges to a higher reward than the other approaches with non-

interleaved tasks, but this information has been removed from the graph to focus on

the other approaches.

38

CHAPTER 4: CONCURRENT AGENTS

1 2 3 4 5 6 7 8 9 10

x 105

−1200

−1000

−800

−600

−400

−200

0

200

400

600

Number of runs

R
ew

ar
d

S1 x3 SMDPQ
S2 x3 SMDPQ
S3 x3 SMDPQ
S4 x3 SMDPQ

Figure 4.4: Learning with 3 agents, using Approach 1-4 with non-interleaved tasks.

The remaining approaches now slowly start to show differences because they represent

different information at this point. Using interleaved tasks, as seen in Figure 4.5, shows

similar results.

1 2 3 4 5 6 7 8 9 10

x 10
5

0

200

400

600

800

1000

Number of runs

R
ew

ar
d

S1 x3 SMDPQ w/ Interleaved tasks
S2 x3 SMDPQ w/ Interleaved tasks
S3 x3 SMDPQ w/ Interleaved tasks
S4 x3 SMDPQ w/ Interleaved tasks

Figure 4.5: Learning with 3 agents, using Approach 1-4 with interleaved tasks.

It should be noted that the reward received when using any of the approaches is higher

with three agents than with two. This is because more agents working together to

achieve the goal, means that it can be achieved faster, and with a better economy. How-

ever, since the goal is to only build ten production buildings, there can also be too many

agents. This will be further explained later, in Section 4.5.6.

39

CHAPTER 4: CONCURRENT AGENTS

4.5.4 4 Agents

Figure 4.6 shows that approach 4 converges to a worse solution than the other ap-

proaches with non-interleaved tasks. The very limited information is now becoming

a problem in order for the agents to get the same reward as the other approaches.

Though, an interesting result shown by this experiment is that with interleaved tasks,

approach 4 actually performs very well, seen in Figure 4.7. It is the first to converge

to, what seems to be, the same reward as the other approaches. This will be discussed

further in the next experiment.

Approach 2 is naturally even worse in convergence rate than before, but it still con-

verges to a better solution than the others with non-interleaved tasks.

0 0.5 1 1.5 2 2.5 3 3.5

x 106

−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Number of runs

R
ew

ar
d

S1 x4 SMDPQ
S2 x4 SMDPQ
S3 x4 SMDPQ
S4 x4 SMDPQ

Figure 4.6: Learning with 4 agents, using Approach 1-4 with non-interleaved tasks.

4.5.5 5 Agents

As it can be seen in Figure 4.8 having 5 agents shows the clearest distinction between

the approaches until now. The number of states used for each approach is now varying

from 8 to 10000 states used for the cooperative information.

Now it also becomes partly visible that when using approach 4 with interleaved tasks,

it actually converges to a policy with a reward which is a bit lower than approach 3, as

seen in Figure 4.9, but it still converges at the fastest rate.

The reason why approach 4 with interleaved tasks is able to achieve almost the same re-

ward as approach 3 with interleaved tasks for agent counts less than 5, is that when in-

40

CHAPTER 4: CONCURRENT AGENTS

0.5 1 1.5 2 2.5 3 3.5

x 10
6

−500

0

500

1000

1500

Number of runs

R
ew

ar
d

S1 x4 SMDPQ w/ Interleaved tasks
S2 x4 SMDPQ w/ Interleaved tasks
S3 x4 SMDPQ w/ Interleaved tasks
S4 x4 SMDPQ w/ Interleaved tasks

Figure 4.7: Learning with 4 agents, using Approach 1-4 with interleaved tasks.

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 106

−1500

−1000

−500

0

500

1000

Number of runs

R
ew

ar
d

S1 x5 SMDPQ
S2 x5 SMDPQ
S3 x5 SMDPQ
S4 x5 SMDPQ

Figure 4.8: Learning with 5 agents, using Approach 1-4 with non-interleaved tasks.

terleaved tasks are not used, the agents are forced to synchronise their decision epochs

after a production building has been built. This means that most of the economy state

variables will end up having the exact same value, resulting in a higher chance that

the economy states at decision epochs will be the same for all agents. However, when

using interleaved tasks, the agents will often not have synchronised decision epochs,

allowing them to make better use of the economy state variables.

In practice this allows the agents to learn a policy that makes use of these economy

variables as a substitution for the concurrency variables present, e.g. in approach 3.

41

CHAPTER 4: CONCURRENT AGENTS

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
6

−400

−200

0

200

400

600

800

1000

1200

1400

Number of runs

R
ew

ar
d

S1 x5 SMDPQ w/ Interleaved tasks
S2 x5 SMDPQ w/ Interleaved tasks
S3 x5 SMDPQ w/ Interleaved tasks
S4 x5 SMDPQ w/ Interleaved tasks

Figure 4.9: Learning with 5 agents, using Approach 1-4 with interleaved tasks.

Though, it is important to note that even though the cooperative information is less

important with interleaved tasks, it still allows convergence to a better policy when the

number of agent increases. This will be thoroughly explained and illustrated in Sec-

tion 4.6 where we compare the policies learned from this experiment with interleaved

tasks with and without cooperative information from approach 3.

Approach 2 is getting less and less computationally feasible—simply requiring way too

many runs to converge compared to the other approaches.

4.5.6 5+ Agents

Approach 4 clearly is the fastest to converge compared to the others when the number

of agents is increased. However, its limited information in the state space makes it

impossible to converge to a policy that is as good as what the other approaches allow.

Furthermore, the more agents that are used with this approach (with a fixed i), the more

random the obtained solution seems, meaning that the state space is not representative

enough for the state of the game.

Even though approach 2 contains so much information that it can converge to a better

solution than the others with non-interleaved tasks, it is computationally infeasible for

more than five agents.

We consider approach 3 the best for this scenario. It is one of the first to converge

42

CHAPTER 4: CONCURRENT AGENTS

to a near-optimal policy, and it is only beaten after exponentially many more runs by

approach 2, when not using interleaved tasks.

Therefore we now purely look at how approach 3 performs with more than five agents,

specifically with 6-10 agents. The results can be seen in Figure 4.10 and Figure 4.11.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 106

−2000

−1500

−1000

−500

0

500

1000

Number of runs

R
ew

ar
d

S3 x6 SMDPQ
S3 x7 SMDPQ
S3 x8 SMDPQ
S3 x9 SMDPQ
S3 x10 SMDPQ

Figure 4.10: Learning with 6-10 agents, using Approach 3 with non-interleaved tasks.

Naturally, the convergence rate decreases when agents are added, but since the state

space size is kept at a minimum, it scales acceptably. The results show that it still is

practically possibly to converge with up to 10 agents within a reasonable time, com-

pared to what is needed, e.g. for two agents to converge. As a comparison, 10 agents

with approach 3 actually converges faster than 5 agents with Approach 2.

With non-interleaved tasks approach 3 converges after 100,000 runs with 2 agents, and

with 10 agents it converges after 5,000,000 runs, which we consider very reasonable

compared to the performance of the other approaches. With interleaved tasks these

numbers are even better; 20,000 runs with 2 agents, and 600,000 with 10 agents.

As an interesting fact, having more than 5 agents in this scenario now slowly decreases

the total reward for every extra agent that is being used—as opposed to the reverse

tendency, which showed while using 5 and less agents. This is because the goal is still

limited to building ten production buildings, and having too many agents that all have

43

CHAPTER 4: CONCURRENT AGENTS

1 2 3 4 5 6 7 8 9 10

x 105

0

500

1000

1500

Number of runs

R
ew

ar
d

S3 x6 SMDPQ w/ Interleaved tasks
S3 x7 SMDPQ w/ Interleaved tasks
S3 x8 SMDPQ w/ Interleaved tasks
S3 x9 SMDPQ w/ Interleaved tasks
S3 x10 SMDPQ w/ Interleaved tasks

Figure 4.11: Learning with 6-10 agents, using Approach 3 with interleaved tasks.

to perform actions means that an excessive amount of economy buildings are being

built.

4.6 Results—Policy Equivalence

We have now shown how the presented concurrency approaches converge, we will

now investigate what differences this leads to in the learned policies. Apart from com-

paring policies learned with varying concurrent state-space information, we also look

into policy differences gained with interleaved tasks and altered time impact on the

reward.

Comparing policies can be a difficult task as all action choices for all the possible states

the agent can be in, have to be compared. A more simple way to compare the policies

learned by our agents could be to compare the rewards received from a single run, this

however does not show any differences between two policies that get the same reward

with different policies. A reasonable middle course is to compare what actions an agent

takes at any given time, during a single run following a policy. This allows us to show a

table view of what each agent is doing at any time for a policy, giving a good overview

for comparison.

The following sections compare policies to illustrate differences in various policies

which were discussed throughout Section 4.5. Each policy is illustrated using a table,

with one row for the actions of each agent, and each cell represents an action. There are

44

CHAPTER 4: CONCURRENT AGENTS

no distinct columns, as the width of each cell represents the time spent on completing

that action. Each cell is labelled with one of three action identifiers, which are defined

as follows: S=resource building (solar), M=resource building (metal), L=production

building (k-bot lab). A blank cell represents an idling agent.

It must be noted that, when comparing the time it takes to reach the goal of the

episodes, it is not important to look at the time it takes to complete all the shown

actions. Since the number of built production buildings is not included in the state-

space, the agent might start to build extra production buildings while completing the

10th, which is the actual goal. Hence, the important time to look at is when the 10th

production buildings has been completed.

4.6.1 Cooperative Information: Full vs. Limited vs. None

Here we look at the impact of cooperative information in the state space on the learned

policy. We use approach 4 for this with i = 1, 2, ∞ , representing none, limited and full

cooperative information, respectively. The policies for this comparison can be seen in

Figure 4.12, Figure 4.13 and Figure 4.14.

This shows that the policies with full cooperative information and limited (i = 2) coop-

erative information are actually very similar, where having full information only shows

a marginally faster solution. Without cooperative information the policy learned is very

poor, spending too much time on building an excessive amount of economy buildings

near the end. This strange behaviour is an example of lacking information in the state-

space resulting in somewhat random behaviour.

Figure 4.12: Full cooperative information

Figure 4.13: Limited cooperative information

45

CHAPTER 4: CONCURRENT AGENTS

Figure 4.14: No cooperative information

4.6.2 5 vs. 10 Agents

As mentioned earlier, solving the problem of building 10 production buildings is op-

timal with 5 agents, because adding more agents forces the agents to build more re-

sources than necessary. Here we illustrate the difference in the policies learned with

5 and 10 agents. The policies for this comparison can be seen in Figure 4.12 from the

previous comparison and Figure 4.15.

Ten agents did in this example-run learn a policy which allows completion of the

episode marginally faster than five agents. However, the initial economy is too weak

to support ten simultaneous actions in the beginning of the episode. This fact can be

seen exemplified when all the agents complete their first action, they spend much more

time on completing these than is necessary later in that episode, or was necessary with

five agents.

Figure 4.15: 10 agents with interleaved tasks

4.6.3 Interleaved Tasks vs. Non-Interleaved Tasks

Here we investigate differences in the policies with interleaved and non-interleaved

tasks. We know that idling time will be introduced with non-interleaved tasks, so it

is impossible for this approach to complete its goal faster than with interleaved tasks,

but it does result in a completed and operational base after each task has terminated.

The interleaved approach does not result in a policy where the construction of produc-

tion buildings is as evenly spread throughout the episode as with non-interleaved, but

still gives a better policy than was possible to achieve with the approach presented in

46

CHAPTER 4: CONCURRENT AGENTS

Chapter 3. This difference could very well change with adjusted weights for the time

and economy reward. The policies for this comparison can be seen in Figure 4.12 from

the earlier comparison and in Figure 4.16.

As expected, the agents take much longer to complete the goal with non-interleaved

tasks. However, as it can be seen in the illustration, the agents have a good base with

both economy and production buildings throughout the complete run. Since the ter-

mination of each task is synchronised, we can also see that it almost always is the first

agents that make the decision to create a production building. This is because the agent

number matches the order in which the agents are asked to take their decision in each

decision epoch. Furthermore, it might seem like a bad policy that within most of the

task completions, more than one agent is building a production building, which results

in the agents actually creating 19 instead of 10 production buildings. This just means

that the economy already is perfect, so it does not really matter what action the agents

choose at this point, and hence chooses to build a production building. Building these

extra buildings does not waste any time, since they will be completed at the exact same

time as the other production buildings being built in that task completion.

Figure 4.16: 5 agents with non-interleaved tasks

4.6.4 Time Impact

In Section 4.5.1 we mentioned how the the weighting of time in the reward function

influences the policy. In this section we look at three policies, where in the first, the

time factor used is the same as in all other results, a negative reward of 1 for each time

step in the game (= a factor of 1/1), and in the others the factor is 1/5 and 1/10. The

policies for this comparison can be seen in Figure 4.12 from the earlier comparison,

Figure 4.17 and Figure 4.18.

The results show that with 1/5 time factor the agents actually learn a policy that

completes the goal faster than the other two. Even though this might seem counter-

intuitive, it is because giving less priority to time, and thereby giving higher priority

to the economy, makes the agents more far-sighted. However, if the time impact is too

small, as seen in policy with the 1/10 factor, the need to also include time becomes

visible, because the agents at this point begin spending more time to solve the goal of

47

CHAPTER 4: CONCURRENT AGENTS

the episode.

Figure 4.17: 5 agents with non-interleaved tasks and 1/5 time impact

Figure 4.18: 5 agents with non-interleaved tasks and 1/10 time impact

4.7 Conclusions and Discussions

In this chapter we showed how much information about concurrent actions should be

represented in the state space in an MSMDP problem using reinforcement learning.

In the scenario in which the experiments were carried out we found the state space

approach that allowed fast convergence to an optimal policy, while allowing very good

scalability in regards to number of concurrent agents. While the scenario is very specific

towards an RTS game subtask, it can still be generalized to other problems involving

concurrent identical agents.

Regarding the state space approaches, it could seem natural to include information

about which action each agent is carrying out (approach 1), but since the agents are

identical, this includes irrelevant information in the state space. Instead we got the best

performance and scalability by only representing how many agents are carrying out

each action (approach 3). Even though this might seem logical for some, we have now

documented the performance differences of these approaches. If this still gives too bad

scalability with too many agents, this approach can be limited even more, by limiting

the agent-count for each action, if a good policy is acceptable instead of the optimal-

policy (approach 4). Finally, we showed that in some cases, where convergence speed

is irrelevant, it might be beneficial to include information about the time remaining for

completing each currently executing action in the state space (approach 2).

Finally we showed how interleaved tasks can be used to solve the somewhat same

problem more efficiently, finding an optimal policy which is better than the optimal

policy found in the problem with non-interleaved tasks. At least in our scenario, the

48

CHAPTER 4: CONCURRENT AGENTS

use of interleaved tasks also made better use of the state space, because the agents are

not forced to make decisions at largely similar game-states, and thereby the economy

state variables can be used as a substitution for concurrency state variables.

For all the approaches discussed here we did comparisons of the policies learned. This

was done since two runs converging to the same reward, does not mean that their poli-

cies are identical. The comparisons were done by comparing action-choices through-

out a complete run for each policy, and this gave a solid base for comparison. We also

showed how significant the time impact is on the reward for our scenario.

49

CHAPTER 5

Parametrised State Spaces

Abstract. We present a novel approach, called parametrised state spaces, to min-

imising the state space in reinforcement learning. This approach can be applied

when the task is to choose one among a large, and potentially varying, number of

similar actions. In this case it means that the task always terminates after having

completed one action. This can be seen in contrast to hierarchical reinforcement

learning, where the decomposition allows us to represent distinct subtasks in each

hierarchy node, and potentially more than one subtask must be terminated before

the parent task can terminate. The parameter values used in a parametrised state

space allow us to perform a large amount of assumptions as well as abstractions,

so we only need to represent state variables pertaining to a single optimal action,

rather than representing all actions in the state-action space.

5.1 Introduction

When dealing with reinforcement learning in complex domains like an RTS game, often

this implies very large state-action spaces. Actually the size of a state space grows

exponentially when new state variables are added. Measures to address this curse of

dimensionality [BM03] need to be invented so that we will be able to efficiently apply

reinforcement learning to complex domains. The curse of dimensionality also affects

the convergence rate, since a very large state space will require many runs in order for

the agent to find an optimal policy.

Previous research has focused on decomposing a state space into a hierarchy of sub-

tasks, e.g. hierarchical reinforcement learning with the MAXQ framework [Die00].

Such a way of minimising a state space assumes that it is possible to clearly divide the

actions in a monolithic state-action space into separate state-action spaces, where each

one only models elements with which the subtask is concerned. This is only possible if

51

CHAPTER 5: PARAMETRISED STATE SPACES

the utility of each action does not depend on all state variables in the state space, or the

state variables on which each action depends, model significantly different elements in

the game world. If this is the case, then the actions can be regarded as dissimilar, and at

least partially, independent actions. They are thus eligible for being decomposed into

separate subtasks each with their own state spaces.

A problem arises if a state-action space contains several very similar and independent

actions, which only differ by a few parameters. Furthermore, if these actions can be

modelled by very similar state variables, also only differing by a few parameters, it is

hard to decompose the state-action space in a way that improves the convergence rate.

A further complication is introduced if a parent task always only needs to execute one

of its child tasks in order to terminate. In a hierarchical approach, one would normally

create the state space of the parent using information about the termination conditions

of several of its child nodes. If always only one of the child nodes need to terminate,

the state space of the parent node can not, e.g. keep track of how far this parent task

is from being completed. Thus it needs to include much more information in its state

space in order to decide between the different children.

A limitation in both flat and hierarchical state spaces is that they force the designer

to put an upper limit on the number of actions. Since games are very dynamic in

their nature, we can easily imagine cases where the number of similar actions can be

arbitrarily large depending on the game state. Such a situation will be extremely hard,

if not impossible, to implement with the traditional flat and hierarchical approaches.

These facts indicate that we need to take a different approach if we want to efficiently

be able to learn in such a domain, where we have to choose between an arbitrarily large

collection of similar independent actions.

In this chapter we propose a novel approach, called parametrised state spaces, to effi-

ciently solve the problem of choosing a single action of a collection of similar actions,

where the single action terminates the overall task. We show how this approach allows

us to minimise a state space, which would otherwise have to include an extremely large

amount of information. The key observation on which our proposition is based, is that

the exponential growth when adding new state variables in a flat state space seems un-

necessary, since we know that the independent actions are very similar in their nature.

We exploit the fact that the actions are similar, and at least partially independent, in or-

der to find a collection of common state variables, which are able to describe the utility

of all these actions. By doing this we avoid having to include separate state variables

modelling each of the similar actions.

In Section 5.2 we will present some of the related work on hierarchical reinforcement

52

CHAPTER 5: PARAMETRISED STATE SPACES

learning, and in Section 5.3 we will describe parametrised state spaces in-depth, as

well as provide some examples to facilitate the understanding of the idea. Section 5.4

compares the size of parametrised state spaces to the size of flat and hierarchical ap-

proaches. In Section 5.5 we describe how we apply parametrised state spaces in a

hierarchy of tasks, and introduce some test scenarios, and in Section 5.6 we discuss the

results of the experiments. Finally in Section 5.7 we conclude on our work and provide

topics for future work on parametrised state spaces.

5.2 Related Work

Hierarchical reinforcement learning refers to the idea of decomposing a complex task

into subtasks to minimise the size of the state space for the various tasks. Designing a

hierarchy of subtasks solving the overall task has been shown to yield a smaller state

space while still ensuring good performance using, e.g. the MAXQ framework [Die00],

later extended to the multi-agent case [MM01], and HAM (Hierarchies of Abstract Ma-

chines) [PR98].

In the MAXQ framework the number of child nodes for each node in the hierarchy is

assumed to be known when designing the hierarchy, i.e. a parent node having three

children means that three subtasks constitute the task of solving the parent task. The

child nodes of a parent task in the hierarchy are assumed to be dissimilar tasks, which

learn based on their own local Q-table and local reward function. Each child node

contributes with its own unique part to solving some overall parent task, and typically

more than one subtask must be completed before the parent task is completed.

Parametrised state spaces differ from normal hierarchical reinforcement learning by ad-

dressing the issue of having to choose among a large, and potentially varying, amount

of similar actions. Completing either of these actions solves the overall task to which a

parametrised state space is applied, meaning that we will not have to complete more

than one of these actions.

5.3 Parametrised State Spaces

Representing a state space in a way that makes it contain a sufficient amount of useful

information, and at the same time minimising its size, is two contradictory goals. The

motivation behind minimising the state space size is to minimise the learning required

(the time to learn) and the space needed for storing the Q-table.

53

CHAPTER 5: PARAMETRISED STATE SPACES

We propose an approach to task decomposition which we call parametrised state

spaces. The main idea behind this is that the agent at each decision epoch has to choose

among a varying amount of similar actions, while avoiding explicitly representing all

those similar actions in the state-action space. Scenarios of this kind can be seen as

multiple-choice scenarios. For a state space including several similar actions, we need

to identify a collection of common state variables which is able to represent the util-

ity of these similar actions, so we do not have to include many closely related state

variables in the state space. The current state of a parametrised state space can be eval-

uated by passing it a collection of parameter values, with which the state variables are

concerned.

5.3.1 Example 1: Magic Boxes

Imagine a scenario where the agent is located in a room that changes state periodically

according to some arbitrary state variables. At each decision epoch the agent has to

open one of a varying amount of magic boxes, and the reward received depends on the

current state of the room, and some details specific to the magic box.

Without a parametrised state space we would have to include an action for each magic

box (thereby putting an upper bound on this number directly in the state space). In

addition we would have to model relevant details about each magic box in the state

space, resulting in a very large state-action space. Assuming that the reward of opening

one magic box does not depend on the state of any of the other magic boxes, it can be

considered a “waste” of state space to include complete information about all magic

boxes, since the actions are similar and independent.

Implementing this scenario in a parametrised state space would allow us to pass the

details of the various magic boxes as a parameter to the state, and then only model

one magic box and some details about the room in the state space. This dramatically

decreases the required number of states and actions in the state-action space. In fact

we have just made the size of the state-action space completely independent of the

number of magic boxes, whereas before it scaled exponentially in the number of boxes.

Parametrising a state space may in some cases allow us to decompose a large prob-

lem into several smaller problems, which means that we can define a state space for

only a small part of the game world and ignore the rest. The higher the degree of in-

dependence between each magic box in our example, the higher the gain of using a

parametrised state space to represent the problem.

54

CHAPTER 5: PARAMETRISED STATE SPACES

5.3.2 State Selection

Given a list of parameter values we evaluate the different possible states, look up action

values in a table and ultimately end up with a specific state and action choice. In

contrast to normal Q-learning where the only task is to select an action, a parametrised

state space also requires that we select a state out of all the possible choices. We may

even apply exploration policies as known from normal Q-learning so that in some cases

we choose a different state than the one that yields the highest expected value (an

exploration step).

5.3.3 Filtering the Game World

In order to apply the idea of parametrised state spaces we need to be able to “filter” the

game world according to a set of parameters, and this logic is application-specific. In

general, the parameters used in the parametrised state space must have some influence

on the returned state.

Parametrising the state space actually allows the agent to filter out a large part of the

game world. When our agent has decided on an action, it is not important to know

any details of other objects in the game world, assuming that the utility of the action

does not depend on the state of any other object in the game world. Thus we omit

this irrelevant information from the state space and only focus on the information that

is important—information specific to whatever game object is given by the parameter

values.

5.3.4 Example 2: Attacking in Balanced Annihilation

In this section we show a small example illustrating the practical use of parametrised

state spaces in Balanced Annihilation.

The illustration in Figure 5.1 represents a situation where our attack group, represented

by the star, can perceive the world in a number of different ways. The dots represent

resource buildings of a particular type, and the shading of the cells indicates the threat

in that cell. Darker shading means more threat. In this example, the agent can choose

three different focuses on the game world—the attack group itself and one of the fol-

lowing:

• The group of resource buildings in the top left cell

• The group of resource buildings in the top right cell

55

CHAPTER 5: PARAMETRISED STATE SPACES

• The group of resource buildings in the bottom left cell

Figure 5.1: A view of a part of the game world. The star represent our attack group

and the dots represent resource buildings of a particular type. The shading

of the cells illustrate the threat in that cell. Darker shading means more

threat.

The three groups of resource buildings are fed as a parameter to the state, so now the

task is to evaluate which choice would return the best value. The agent may choose

one of three different focuses on the game world in relation to the resource buildings: a

single heavily protected resource building, three less heavily protected resource build-

ings, or four resource buildings placed in an area where the enemy has no military

presence. Clearly the best focus will be to consider the game world as consisting of the

four resource buildings in the top left cell, and ignoring all the other resource buildings.

In practice when feeding the locations of the resource buildings to the parametrised

state space, the three configurations are evaluated. The way that the evaluation is done

is that a unique state identifier is calculated based on properties of each of the three

groups in turn and then we perform a lookup in the Q-table. After all the different

states, three in this case, have been evaluated, it would be the action of attacking the

buildings in the top left cell which yields the highest reward. Using parametrised state

spaces allows us to represent all the resource buildings and the threat associated with

their locations in a very compact way since we only need to concern ourselves with a

single group of resource buildings at a time.

5.4 Comparison with Other Approaches

In this section we will compare our parametrised state space design approach to two

other approaches: flat and hierarchical. We use the example from Section 5.3.1 as a

56

CHAPTER 5: PARAMETRISED STATE SPACES

base for the comparison between the different approaches. To ease the comparison we

assume that at all times our agent can take at most three actions and that these actions

are primitive, i.e. we have a room with at most three similar magic boxes. In addition,

we assume that the three actions are independent tasks, where the utility of each action

can be determined by a total of 100 states.

We present a few equations to illustrate various state-action space sizes. In these equa-

tions numChoices means the number of actions (magic boxes), and in f oSize means the

required number of states needed to represent the utility of a single independent action.

5.4.1 Flat State Space

If the state space is flat it means that it must be able to describe an entire task in all its

relevant details and include all the actions the agent is able to take. Since we have three

actions, where the utility of each can be determined by 100 states the total size of the

state-action space is 100 · 100 · 100 · 3 = 300000.

100

100

100

Figure 5.2: Visual representation of a flat state space with three independent actions.

We represent it as a cube because the state space must be able to represent

the utility of three independent actions.

Here we store all information at a single level, and we observe that the state-action

space grows exponentially when we add new independent actions. This will quickly

become too large to handle if we have more than a few independent actions, each need-

ing information specific to that action to represent its utility.

The total size of such a state-action space can be expressed by Equation 5.4.1:

Size f lat = in f oSizenumChoices · numChoices (5.4.1)

5.4.2 Hierarchical State Space

When we have several similar actions it is very hard to decompose the flat state space

into a hierarchy of subtasks since the actions depend on largely similar state variables.

Additionally, in normal hierarchical reinforcement learning several of the subtasks are

partial solutions to the parent task, whereas in our scenario each of the subtasks are

57

CHAPTER 5: PARAMETRISED STATE SPACES

in fact the complete solution to the parent task, but each one yielding very different

utility.

Hierarchical reinforcement learning is very cumbersome to apply to problems of this

type. This is due to the fact that the termination of a single child task is able to terminate

its parent task, thus making it impossible in the parent node to keep track of how far

this parent task is from completion. This means that the parent node would actually

need to model the entire problem in order to be able to choose which of its child nodes

to execute—making it equal to the flat approach in Figure 5.2. Each of the child nodes

constituting the three primitive tasks would be “stateless” since they do not need to

model anything. They simply get a reward from the environment, which is passed

back to the parent node—thus we only add more overhead when applying hierarchical

reinforcement learning to problems of this kind.

Figure 5.3 illustrates the hierarchical decomposition. We have the flat state space at the

top level and primitive tasks as leaf nodes.

1 1 1

100

100

100

Figure 5.3: Visual representation of a hierarchical state space with three independent

actions. At the top level we have a flat state space to indicate the utility of

each subtask. The subtasks are primitive tasks which return immediately.

The total size of such a state-action space can be expressed by Equation 5.4.2:

Sizehierarchical = in f oSizenumChoices · numChoices + numChoices (5.4.2)

An alternative view of the problem may include a selector mechanism as the parent

node. This mechanism will be responsible for choosing which of the subtasks the agent

is going to solve. Each of the subtasks can then be modelled with a state-action space of

100 (1 action and 100 states to represent the utility). The drawback of this approach is

that each of the subtasks will use their own local Q-table, meaning that the first Q-table

represents the utility of opening the first box and so on. Since the three tasks are similar

it can be considered a waste to learn each of the three Q-tables individually, since in fact

the utility of all three subtasks can be learned collectively. This is the main idea behind

58

CHAPTER 5: PARAMETRISED STATE SPACES

parametrised state spaces.

Figure 5.4 illustrates hierarchical decomposition using a selector mechanism. The se-

lector queries its children in order to find out which one is the optimal action given the

current state.

100 100 100

Selector

Figure 5.4: Visual representation of a hierarchical state space with three independent

actions and a selector mechanism. At the top level we have a selector

mechanism which can query each of its child nodes to find out which one

yields the best reward in a given state. Each child node learns its own

Q-table.

5.4.3 Parametrised State Space

With a parametrised state space we can exploit the fact that the tasks are similar, mean-

ing that all subtasks can use the same Q-table and thus share the same state space. This

results in a much smaller state space since we now only need to store information about

a single task in the state space, and we can simply let a state selector perform a lookup

in the Q-table for each possible task to see which is the better task given the current

game world.

Figure 5.5 represents a parametrised state space. At the top level we have a selector

mechanism which can query each of its child nodes to find out which one yields the

best reward in a given state. The various child nodes are not modelled explicitly in

the state space, as illustrated by the dashed lines. Rather, learning is done in a single

Q-table.

The total size of a parametrised state space can be expressed by Equation 5.4.3:

Sizeparametrised = in f oSize (5.4.3)

59

CHAPTER 5: PARAMETRISED STATE SPACES

100 100 100

Selector

Figure 5.5: Visual representation of a parametrised state space with three indepen-

dent actions and a selector mechanism. At the top level we have a selector

mechanism which can query each of its child nodes to find out which one

yields the best reward in a given state. The child nodes are not modelled

explicitly in the state space. At runtime the selector examines the param-

eter values in order to find out how many actions are available for execu-

tion. Learning is then done in a single Q-table rather than a Q-table for

each action.

5.4.4 Parametrised State Spaces vs. Hierarchical Decomposition

We observe that parametrising the state space allows us to efficiently solve an entirely

new class of problems: namely problems where we only have to complete one of a col-

lection of actions, where each choice has some degree of independence from the other

choices. In addition, if each choice is largely similar to the other choices—only differing

by whatever is given in the parameter values, a parametrised state space allows us to

only store one Q-table instead of one Q-table per hierarchical node (subtask).

In hierarchical decomposition the state spaces of the different nodes in the hierarchy

are not the same, and thus need separate Q-tables to represent their value functions.

This is because the child nodes in hierarchical reinforcement learning are designed to-

wards solving dissimilar tasks. If they were to solve similar tasks we would introduce

redundant learning, and thus wasting a lot of resources. Hierarchical reinforcement

learning, e.g. MAXQ, is a good solution when we need to solve a collection of dissimi-

lar tasks. In addition, hierarchical reinforcement learning is not very well suited when

we only need to complete one of several subtasks in order to terminate the parent task,

since this would imply a much larger state space in the parent node.

It is hard to do an actual comparison between parametrised state spaces and hierarchi-

60

CHAPTER 5: PARAMETRISED STATE SPACES

cal reinforcement learning since the two approaches solve two very different classes of

problems, and both are good solutions to the problems they are designed for.

An added bonus is that a parametrised state space is completely independent of the

number of subtasks. The flat and hierarchical approaches can only be applied if we

can guarantee that there will never be more than n subtasks, since we need to model

all subtasks explicitly. Using a parametrised state space allows the number of indepen-

dent similar subtasks to increase or decrease arbitrarily, since the state space is only

concerned with the state of one of these subtasks. The selector mechanism queries

the Q-table a number of times depending on the parameter values, i.e. once for each

unique state we are able to produce from the parameter values, and finally it selects the

action with the highest reward.

5.5 Experiment

In this section we describe how we apply a parametrised state space to some of the

nodes in a hierarchy of tasks. First we describe a simple hierarchy of tasks constituting

the overall task of attacking in Balanced Annihilation. Then we describe how we design

the parametrised state space and show some additional benefits of using such a state

space. We also provide a few test results run in Balanced Annihilation proving that it

is possible to obtain a reasonable policy using parametrised state spaces.

5.5.1 Design of the Hierarchy

The task of attacking in Balanced Annihilation is very complex, and requires the state

space to include much information in order for the agent to make qualified decisions

about what to attack at any given time.

We decompose the various attack actions into a simple hierarchy to gain an overview

of the overall task of attacking in Balanced Annihilation. The hierarchy is by no

means complete—in a full hierarchy we would need, e.g. to include child nodes for

Production, but it illustrates how parametrised state spaces can be applied to some of

the nodes in an already existing hierarchy of reinforcement learning tasks.

At the top level we have four different basic types of targets for our attacks:

1. Enemy resource production buildings

2. Enemy units

61

CHAPTER 5: PARAMETRISED STATE SPACES

3. Enemy Commander unit

4. Enemy unit production buildings

This means that we can choose to either attack the resource production of the enemy,

or minimise the military presence of the enemy by attacking his army or his unit pro-

duction. The reason for treating an attack on the Commander unit as a separate action

is that if we kill the enemy Commander, we win the game, and thus this is our ulti-

mate goal. The two nodes, Attack and Resources, which have children, are special

selector nodes, meaning that they should terminate only one of their children, and not

potentially several of them as in normal hierarchical reinforcement learning.

Figure 5.6 illustrates the hierarchy.

ResourcesUnits Commander

Solar Collector

Wind Generator

Metal Extractor

Attack

Production

Figure 5.6: The hierarchy of tasks which constitutes the overall task of attacking in

Balanced Annihilation.

A good place to apply a parametrised state space in this hierarchy would be the child

nodes of the Resources nodes. Since these three nodes are concerned with learning the

value of attacking a single specific building, or group of buildings, of similar types, they

fit perfectly with the constraints of parametrised state spaces. The following section

will describe how we design the state space for attacking resource buildings, which

could also be used for production buildings.

5.5.2 State Space Design

The way that most players build their bases in an RTS game may be exploited when de-

signing the state space. In a base the buildings are often built relatively close together,

and occasionally when expanding their base, some players tend to forget about pro-

tecting their new resource buildings. Therefore, the variables in the state space should

take into account if there are several instances of a specific resource building grouped

62

CHAPTER 5: PARAMETRISED STATE SPACES

closely together, because often this will be the case. In addition we need to consider the

threat at the different locations at which the enemy has constructed resource buildings

in order to find any unprotected buildings.

State Space Explosion

Since we need to include information about threat on the map, this implies the use

of our threat map, which is described in Appendix B. Including the entire threat map

in the state space is infeasible since this would require 464 states (64 threat map cells,

each of which may be in one of four states). This means that we cannot have complete

information about the threat distribution across the map, but we still need to know the

threat level at an arbitrary number of locations on the map.

Including the entire threat map can be avoided when using a parametrised state space

as we shall see in this section. Instead of modelling the location and threat of all re-

source buildings, it will suffice to only model these details of a single group, and let the

state be parametrised by a resource building group. Now the state space is only con-

cerned with one group of resource buildings even though in reality there will be many

more groups of resource buildings, but we do not need to include this information in

the state space.

Imagine that we have already decided on which group we want to attack, then we

do not need to know the threat at various other locations on the map, which does not

influence our attack. Parametrising the state space puts a filter on the game state so we

only need to include the necessary information.

State Space Representation

We represent our parametrised state space as the following variables:

• SizeO f BuildingGroup

• DistanceToGroup

• ImaginaryIn f luenceAtGroup

• SpeedO f MilitaryGroup

• In f luenceAtStartLocation

The first three variables depend on the parameter, i.e. the particular group of resource

buildings currently under consideration. It is obvious that different parameter values

will likely yield different states, and thus different values in the Q-table. The variable

ImaginaryIn f luenceAtGroup is explained in Appendix B.4

63

CHAPTER 5: PARAMETRISED STATE SPACES

Limiting the Number of State Variable Values

Parametrised state spaces may allow further optimisations to the learning process in

terms of state space size. One of the main contributors to the state space size is the

number of unique values each of the state variables in the state space may take. The

different values of the state variables are used as basis for decision making, and thus

we must be very careful when limiting the number of values, since we may accidentally

remove information that is vital for the agent to perform optimally.

Parametrised state spaces may allow us to eliminate certain variable values as seen

in the following example: our SizeO f BuildingGroup variable defined in the previous

section represents the size of a given group of resource buildings. If the size is zero,

it means that the group is empty, and we will not be able to attack it—thus, we can

omit the value zero from this variable, and thereby saving state space size. We can

assume in the state space design that a group of resource buildings will always exist—

if no groups exist we will not have any parameters to pass to the state, thus it will

never be evaluated and will simply be set to a nil-value. In this way we can avoid

wasting room in our state space for states which do not allow our agent to take any

actions. Using a different approach may have forced us to explicitly model the case

where SizeO f BuildingGroup would be zero.

5.5.3 Test Design

Since an attack is treated as an atomic action where learning terminates immediately

after the agent completes a single action, we cannot test convergence speed, nor policy

optimality for parametrised state spaces, compared to other approaches, e.g. flat or

hierarchical reinforcement learning. In fact, comparing parametrised state spaces with,

e.g. flat reinforcement learning is not possible since the resulting state-action space

would simply be too huge. In addition we would need to put some upper limit on

the number of groups of resource buildings we would like to be able to handle, and

thereby limiting the action-space size, since we need one action for each group. The

size of the state space given in Section 5.5.2 is approximately 500, so it would explode

to 500n where n is the maximum number of groups we would like our agent to be able

to handle. If a given game state only has, e.g. 2 groups of resource buildings, and our

state space represents up to 10 groups, this clearly shows that much of the state space

will be wasted using a flat approach. In addition, the size of the state-action space will

be 50010 · 10.

It would only be possible to directly compare the parametrised approach with either

64

CHAPTER 5: PARAMETRISED STATE SPACES

a flat or a hierarchical approach, if we could be certain that we would always have at

most n actions in our game world (and of course assuming that the resulting flat state

space has a manageable size). Since this is not the case for our game world this type of

comparison is not possible here.

Instead we choose to create a few scenarios where we have a single attack group, a

number of enemy units, and some enemy resource buildings. We will then monitor the

decision made by our agent so we can see if this decision could be regarded as optimal

given the scenario. Before running these scenarios we trained our agent against another

agent, which was already developed for Balanced Annihilation.

Scenario 1

Figure 5.7: A scenario illustrating decision making of our reinforcement learning at-

tack agent. The circles represent resource buildings, the star represents our

attack group, and the shading in the tiles illustrate threat. Darker shading

means more threat.

In the first scenario we have three building groups of different sizes. The first thing we

do, is to feed the locations of these buildings to a state selector mechanism. Given the

configuration in Figure 5.7 our agent is able to generate three different states from the

overall global state. Each of these three states corresponds to different state identifiers

which can be looked up in the Q-table to find the best state (the one with the best Q-

value). In this case the optimal decision may be to attack the group to the top left since

it is located in an area with no threat, and so we can expect this action to have the

best Q-value given our reward function. Attacking the other groups may result in our

attack group taking damage, and thus we get a smaller reward from these actions.

65

CHAPTER 5: PARAMETRISED STATE SPACES

Scenario 2

Figure 5.8: Another scenario illustrating decision making of our reinforcement learn-

ing attack agent. The circles represent resource buildings, the star repre-

sents our attack group. There is no threat in any of the cells containing

resource buildings.

In the second scenario, shown in Figure 5.8, our agent is still able to generate three

different states, but this time it is not the amount of threat that decides which group to

attack. A part of the state space definition includes information about how far away a

given group is, and the number of buildings in it. We can expect that in this scenario

the optimal action would be to attack the group to the bottom left of our army, since this

is a large, unprotected group in contrast to the smaller group to the right. The group at

the top left corner will also be a good target for our attack group, but it is likely that it is

not as feasible to attack as the bottom group. This is further explained in Section 5.6.2.

5.6 Results

The reward function used when attacking resource buildings gives reward according

to the amount of damage our attack group took while carrying out the attack action. In

addition reward is given for the amount of buildings that we succeeded in destroying—

destroying more resource buildings yields a greater reward, up to a limit of three since

the SizeO f BuildingGroup state variable is divided into these intervals {1, 2, 3+}, mean-

ing that our state space does not distinguish between, e.g. three and four resource

buildings in the group, so destroying either amount must yield the same reward. A

poor reward is returned if our attack group took a lot of damage while carrying out the

attack.

66

CHAPTER 5: PARAMETRISED STATE SPACES

The exact reward calculation can be seen in Algorithm 2.

Algorithm 1 Code for calculating reward for attacking resource buildings

unitsKilledCounter = GetUnitsKilled()

reward = (unitsKilledCounter/totalUnitsToKill)*100

reward *= (unitsKilledCounter/3)*unitDamageRatio

The unitsKilledCounter variable keeps track of the number of resource buildings we

destroyed in the attack up to a maximum of three. The variable totalUnitsToKill keeps

track of the total number of buildings in the group (also to a maximum of three), and

unitDamageRatio is a variable with values ranging from zero to one indicating how

much damage our group took. A value of one means that no units took damage, and a

value of zero means that all our units were completely destroyed.

Given our constraint of only considering building group sizes of up to three, means that

completely destroying a group of three buildings without taking any damage yields a

reward of 100 (the maximum achievable reward).

5.6.1 Scenario 1

The three states that our agent is able to create from the scenario given in Figure 5.7

yield three different rewards. We will describe the three possible states in the following:

Top Left Group: Attacking this group yields a reward of approximately 33, which

means that each time our agent encountered this state during learning it suc-

ceeded in destroying the building in the nearby group without any of its own

units taking any damage.

Top Right Group: Attacking this group yields a reward of approximately 25 meaning

that we can expect our units to take a lot of damage if we choose to go there. It is

not clear how many of the buildings we may be able to destroy.

Bottom Left Group: Attacking this group yields a reward of approximately 11, mean-

ing that this state is even worse. This is due to the smaller potential pay-off, i.e.

the group of resource buildings is smaller than the top right group.

Our agent chooses to attack the unprotected building because it does not run the risk

of encountering any enemy units, and so it can safely destroy that building.

67

CHAPTER 5: PARAMETRISED STATE SPACES

5.6.2 Scenario 2

It is also possible to generate three unique states from scenario 2 Figure 5.8. The fol-

lowing is a description of the results of this experiment:

Top Right Group: Attacking this group yields a reward of approximately 33. This

means that during learning, each time our agent encountered this state it suc-

ceeded in destroying the one building in the nearby group without any of its

own units taking any damage.

Top Left Group: Attacking this group yields a reward of approximately 80 meaning

that during learning we often succeeded in destroying the entire group of re-

source buildings, but we run the risk that our units may take damage while at-

tacking. This is due to the greater distance they must travel to get to the location—

they may run into enemy units along the way. Apparently this happened during

learning, else we would get a reward of 100.

Bottom Left Group: Attacking this group yields a reward of 100, meaning that every

time we encountered this state we succeeded in destroying all buildings in the

group, without taking any damage.

This scenario illustrates that our agent learns that it may be more dangerous to launch

an attack on a group of resource buildings which is far away compared to a nearby

group. This, of course, is due to the fact that the environment is non-stationary, and so

it may change at any given time, e.g. our attack group may run into a group of enemies

during its travel to the resource buildings.

5.7 Conclusions and Discussions

We have investigated a novel approach to limiting the curse of dimensionality in state-

action spaces when choosing one among an arbitrarily large collection of similar ac-

tions. We showed that our approach, parametrised state spaces, is able to produce a

much smaller state space than what is possible with both a flat, and a hierarchical ap-

proach. When implementing a hierarchical solution with a selector mechanism at the

top level we need to learn separate Q-tables for each of the similar subtasks. When im-

plementing normal hierarchical decomposition for similar subtasks we only make the

collective state space even bigger, because of the fact that the termination of a single

subtask terminates the parent task.

68

CHAPTER 5: PARAMETRISED STATE SPACES

The flat and hierarchical approaches are counter-intuitive to use for problems where we

have to execute one of a collection of similar actions to complete the overall task—they

introduce either redundant learning or much too large state spaces. This proves the

need for an approach like parametrised state spaces. For our scenario, namely attacking

resource buildings in RTS games, we further need to be able to support an arbitrary

number of available actions each having their own distinct utility. This is possible if

using a parametrised state space, and it adds some flexibility to our approach.

We showed how we can exploit the similarity of the tasks, in order to avoid includ-

ing multiple similar Q-tables, and we also showed how this affects the size of the state

space. Finally, we carried out a few experiments to test if the agent has learned a mean-

ingful policy by setting up a few scenarios within Balanced Annihilation. We found

that parametrising the state space allows us to find a good policy.

As possible future work we will need to investigate the possibilities for applying a

parametrised state space to a multi-agent system. Possible solutions could be to include

information about the other concurrent agents as a parameter to the state space, in

order to avoid representing vast amounts of concurrency information directly in the

state space when dealing with a very large multi-agent system.

69

CHAPTER 6

Epilogue

In this chapter we take a look at what was covered in this report, and what contribution

it has made to the field of reinforcement learning. Especially the three central parts of

the report are drawn in, and concluded upon in regards to each other.

Lastly, we consider future work. We describe what needs to be studied in order to be

able to create a fully functioning opponent for a commercial class RTS game.

6.1 Conclusions and Discussions

This report covered many aspects of reinforcement learning in RTS games. In this sec-

tion we give an overview of what was achieved in each area, and how these areas might

be possible to combine.

We started out with applying reinforcement learning to a very simple scenario consist-

ing of a single agent building a base. We showed that by using TRS with Q-learning

it is possible to converge to an optimal policy even though the problem is in fact an

SMDP problem. In addition, applying TRS to the Q-learning algorithm makes it con-

verge much faster in comparison to SMDPQ, since the time penalty works as a heuris-

tic. However, TRS has a number of constraints which must be respected, else it is not

guaranteed that we converge to the same policy as SMDPQ.

Following the simple scenario of building a base with a single agent, we moved on

to expand that to a multi-agent scenario. This required a rework of the state space,

and inclusion of information about concurrent agents in this. We compared four ap-

proaches, each with a varying amount of concurrent information. The results showed

that for concurrent identical agents, in most cases, the optimal concurrent information

is to include the number of agents carrying out each action. Limiting the number of

possible values for each state variable in the concurrent state space could be beneficial

71

CHAPTER 6: EPILOGUE

if an optimal policy is not required, and in some cases including the time remaining for

completion of each action could result in an even better policy.

We came up with a novel approach to representing scenarios where the agent has

to choose between one of many similar actions. Our approach, called parametrised

state spaces, allows us to represent a complex problem in a really compact way. We

showed how our approach differs from a hierarchical approach, and also how the two

paradigms can be combined by applying parameters to some of the nodes in a rein-

forcement learning hierarchy. Parametrised state spaces are especially effective when

the number of similar actions is not known in advance, and can be possibly arbitrarily

large. Such a task is impossible to represent in flat reinforcement learning due to the

state space explosion. If we used hierarchical reinforcement learning, we would either

introduce redundant learning, or make the state space explosion problem even worse.

Thus parametrising the state space allows us to efficiently solve a new class of prob-

lems, namely problems where we have to select one of a large collection of similar and

independent tasks, while still preserving a minimal state space.

Reinforcement learning might be considered overhead to use in some of the discussed

scenarios. Even though convergence is possible, it requires so many trials that it is

infeasible to use for online learning in most RTS scenarios. If it is necessary to do

offline-learning before releasing the agent for a game, then scripting the agent could

probably be easier if the scenario is not too complex. However, even when using off-

line reinforcement learning it is possible to cover many more game states than would

be practically possible to cover with scripted policies. Optimally, using reinforcement

learning, means that no considerations have to be made about any type of game strat-

egy by the developer. As long as the state-action space and reward function is set up

properly, any RTS scenario is possible to solve optimally. Though, in order to do this in

most RTS games, some sort of opponent modelling would also be necessary to include.

We studied some of the important learning problems of an agent for an RTS game,

and found efficient ways to apply reinforcement learning to several of these problems.

While they were exemplified in RTS scenarios, the solutions can easily be generalised to

a wider class of learning problems. Having time as an important factor when learning

a policy, having multiple concurrent agents, and minimising the state space, are all

relevant topics to almost any learning problem.

72

CHAPTER 6: EPILOGUE

6.2 Future Work

We investigated several theoretical aspects of applying reinforcement learning to an

RTS game, and complemented this with some practical examples and test scenarios.

However, more work is needed to have a fully functioning opponent for Balanced An-

nihilation, and there are some theoretical aspects that should be further studied. This

section will discuss some of the key elements which our agent lacks in order to be able

to play Balanced Annihilation.

6.2.1 Building Units

We have not looked into the decision of when and which units to construct. This is an

important task to consider if we were to make a complete RTS opponent, as the right

unit composition can mean success or failure in battle. We would need some clever

higher level decision process that would decide how to allocate resources between unit

and building construction. Furthermore, we would need to decide on what units to

build. This decision module needs to take into account the known enemy units, and

then try to come up with a good counter measure for those.

6.2.2 Attacking

We looked into the problem of what to attack, and this is a very important part of the

decision making in RTS games. But to make a complete RTS agent, we need to know

when to attack, and also how we should control our units in battle, i.e. micromanage-

ment of units. The agent should never attack unless it would improve its position in

the game, so it is important to also find out when to attack. Furthermore, we need to

make sure that the agent controls the units properly when in battle. This includes not

sending the artillery in at the front line and other suboptimal strategies.

6.2.3 Defences

The best defence is a good offence, but sometimes the agent will be forced to rely on its

defences. To be considered a complete RTS opponent, our agent should also be able to

intelligently build and place defensive structures and place its army in well-protected

positions. This however is not a trivial algorithm as the agent will have to consider

paths on the map and the placement of the already existing defences.

73

CHAPTER 6: EPILOGUE

6.2.4 Commander

The RTS agent needs to be able to control the commander as well as a varying number

of workers simultaneously, and we currently do not have support for this. We would

have to handle the commander as a special builder unit, as it builds faster than any

other builder, and thereby uses more resources. We would also need to be able to

determine when it would be beneficial to create another worker, as we start out with

just the commander.

6.2.5 Multiple Agents with Parametrised State Spaces

The combination of concurrent agents and parametrised state spaces could yield inter-

esting results. This would make it possible to implement scenarios where a collection

of similar agents are cooperating to complete one of a collection of similar actions. Hav-

ing multiple agents cooperate using a parametrised state space would make it possible

to solve complex multi-agent SMDP problems with a drastically minimised state space,

thereby allowing an improved convergence rate for such complex problems.

74

APPENDIX A

State Count Calculation

Regarding state space information for concurrent agents, we find that it does not make

sense to keep track of specific agents, when all the agents in the scenario are identical.

This means that we can reduce the state-space significantly, simply by looking at how

many agents are carrying out each action, instead of keeping track of what action each

agent is carrying out.

To calculate the number of states required to represent this information, we use Algo-

rithm 2. This algorithm loops through each combination of agents assigned to actions,

and discards the states that are unreachable or ignorable, thereby only counting the

reachable states. The value returned from the algorithm is this total number of unique

states. The algorithm is called with three arguments: a, i and n. Where a is the the

number of actions, i is the limit of the number of agents that can do a specific action

that we keep track of, and n is the total number of agents.

The possible states found by the algorithm when called with the arguments n = 3, a =

2, i = ∞, can be seen in A.1. The arguments mean that we have to keep track of 2 other

agents, being able to do 2 actions, with no limit on the number of agents we want to

track for each action. This results in 6 states, as the algorithm excludes states that are

unreachable, e.g. where 2 actions are being carried out by 2 agents each (This state is

unreachable as we only keep track of 2 agents and not 4).

If we are only interested in knowing what actions are being carried out, and not how

many agents are carrying out each action, then we could change i to 2. This allows for

two states to be used per action, and the found states would now be the ones shown

in A.2. This results in less states than the previous approach, but we also have less

information represented.

I

APPENDIX A: STATE COUNT CALCULATION

Algorithm 2 Pseudo-code for calculating number of states used by Approach 3 and 4

with identical agents, depending on a, i and n

function calc− states(a, i, n)

bool good = true;

int count = 0;

actions[a] = 0;

while good do

count++;

good = inc(actions, 0, a, i, n);

end while

return count;

end function

function INC(actions, x, a, i, n)

if x >= a then

return f alse;

end if

actions[x]++;

if actions[x] >= i or sumO f Elements(actions) >= n then

actions[x] = 0;

return inc(actions, x + 1, a, i, n);

end if

return true;

end function

Table A.1: States found by calc-states(2,∞,3)

action1 action2

1 0 0

2 1 0

3 2 0

4 0 1

5 1 1

6 0 2

II

APPENDIX A: STATE COUNT CALCULATION

Table A.2: States found by calc-states(2,2,3)

action1 action2

1 0 0

2 1 0

3 0 1

4 1 1

A.1 Approach 3 Calculation

In Approach 3 we do not differentiate the agents in the state-space, meaning that we

only keep track of how many agents are executing each action and not what agents

are executing what actions. This can be represented by a number of integers, one for

each action. However the sum of these integers must not be larger than the number of

agents that you are keeping track of, as these states would be unreachable. Algorithm 3

calculates the number of unique reachable states.

Algorithm 3 Pseudo-code for calculating number of states used by Approach 3, de-

pending on a and n

function f3(a, n)

return calc-states(a, ∞, n);

end function

Table A.3 shows the result of running the algorithm with a and n ranging from 0 to 10.

If you compare the table with Pascals triangle you will see that the table just needs a

minor offset adjustments to be identical to Pascals triangle. This means that we can find

a lot simpler way of calculating the total number of states, instead of the comprehensive

algorithm, by using the formula for a cell in Pascals triangle.

III

APPENDIX A: STATE COUNT CALCULATION

a\n 0 1 2 3 4 5 6 7 8 9 10

0 1 1 1 1 1 1 1 1 1 1 1

1 1 1 2 3 4 5 6 7 8 9 10

2 1 1 3 6 10 15 21 28 36 45 55

3 1 1 4 10 20 35 56 84 120 165 220

4 1 1 5 15 35 70 126 210 330 495 715

5 1 1 6 21 56 126 252 462 792 1287 2002

6 1 1 7 28 84 210 462 924 1716 3003 5005

7 1 1 8 36 120 330 792 1716 3432 6435 11440

8 1 1 9 45 165 495 1287 3003 6435 12870 24310

9 1 1 10 55 220 715 2002 5005 11440 24310 48620

10 1 1 11 66 286 1001 3003 8008 19448 43758 92378

Table A.3: Table of the returned state counts found using Algorithm 3 with a and n

ranging from 0 to 10

IV

APPENDIX B

Threat Map

The threat map, is very important when we need to determine which areas on the

battlefield are safe, and which are not. The threat map is layered on top of the real

map, and divides it into a discrete set of cells. Each cell represents the threat that our

agent, and the enemy agent, is able to inflict in that cell.

B.1 Defining Threat

The first question that pops up when designing a threat map is how to define “threat”.

In our case we define it as how threatening we are compared to the opponent at a given

area on the map. The amount of damage depends on the type of enemy units in the

cell, i.e. some units are more powerful against some units than against other units, and

some units are not able to hit each other at all.

To simplify the interface to the threat map, we define four results that a query for threat

in a given cell may return:

1. No enemy threat

2. Inferior

3. Equal

4. Superior

The first case illustrates the situation where the opponent is not able to inflict any dam-

age to our units in a specific cell. All other results should be self-explanatory except in

the case where both sides are able to inflict damage to each other in a given cell. We

define that a side can only be considered superior or inferior if there is at least a 25 %

V

APPENDIX B: THREAT MAP

difference in the amount of damage the two sides are able to inflict. In addition, the

amount of damage itself must exceed a lower threshold. In all other cases, the threat in

the cell is considered equal between the two sides.

B.2 Applying Threat

Special care needs to be taken when both applying and retrieving threat values in the

threat map. E.g. when inserting a unit in a threat map it would be a poor solution to

simply add threat to the single cell that corresponds to the position of the unit. Instead,

we choose to add threat to some of the neighbouring cells as well. The neighbours to

which we should also add threat are determined by the range of the weapons which the

unit carries. If the range of a given weapon allows the unit to shoot as far as the centre

position of a neighbouring cell, threat is added to that cell as illustrated in Figure B.1.

Figure B.1: Illustration of how we apply threat to cells. The black squares illustrate

centres of threat cells. The black dot is the position of a friendly unit, and

the circle is the range of one of its weapons. The blank squares are threat

cells.

In this case threat is added to the two cells which have their centres contained within

the circle.

B.3 Retrieving Threat

When retrieving a threat value for a given cell in the threat map it would give a very

distorted image of the real situation if we simply returned the single value for the given

cell. Instead we take an average over the given cell and all of its immediate neighbours

so that the threat is divided across more cells, allowing our agent to take a safer path

VI

APPENDIX B: THREAT MAP

around a group of really superior units.

Figure B.2 is an example of a threatmap where threat is retrieved as a single large value

stored in a single cell.

Figure B.2: Threatmap with naive threat calculation. The shaded area illustrates

threat. The blank squares illustrate cells with no threat. The black dot

illustrates the position of a friendly unit.

Using such a threatmap would indicate that it is completely safe to move units next

to the area with high threat (where we are inferior). However, if those enemy units

generating the high amount of threat moved just a short distance, we would suddenly

discover that our own units are in a really unsafe place, but at this point it may be too

late (our units may get killed quickly). This threatmap does not take into account the

fact that it is dangerous to have weaker units stand close to superior enemy units.

Figure B.3 is an example of a threatmap where the threat is retrieved as an average of

at most 9 different threat cells (the cell itself, and all its immediate neighbours).

Using such a threatmap allows our agent to recognise a potentially dangerous situa-

tion before it moves any units near a given location. This means that we can use the

threatmap to perform, e.g. advanced pathfinding where we find a safe path to travel

by walking in a safe distance around dangerous positions on the map. Finding a safe

path would be much more difficult with the threatmap illustrated in Figure B.2.

B.4 What-if Analysis

An important functionality of the threatmap is that it should support some degree of

what-if analysis, i.e. we should be able to answer questions such as: “if we moved

group x to this new location how would this change our threatmap?”. This would

VII

APPENDIX B: THREAT MAP

Figure B.3: Threatmap with averaged threat calculation. The shaded areas illustrate

threat. The blank squares illustrate cells with no threat. The black dot

illustrates the position of a friendly unit

allow us to detect if moving a group of units would result in our base being vulnerable

to enemy attacks, and it can also be used to calculate a safe path through the map,

where we avoid confronting any superior enemy units.

VIII

APPENDIX C

References

[AZCT09] Kresten Toftgaard Andersen, Yifeng Zeng, Dennis Dahl Christensen, and

Dung Tran. Experiments with online reinforcement learning in real-time

strategy games. Applied Artificial Intelligence, 23(9):855–871, 2009.

[BM03] Andrew G. Barto and Sridhar Mahadevan. Recent advances in hierarchical

reinforcement learning, 2003.

[CMCV09] Allan Mørk Christensen, Martin Midtgaard, Jeppe Ravn Christiansen, and

Lars Vinther. Reinforcement Learning in RTS Games, 2009.

[CMCV10] Allan Mørk Christensen, Martin Midtgaard, Jeppe Ravn Christiansen, and

Lars Vinther. Time-based Reward Shaping in Real-Time Strategy Games.

In ADMI10, 2010.

[Die00] Thomas G. Dietterich. Hierarchical reinforcement learning with the maxq

value function decomposition, 2000.

[Gho04] Imran Ghory. Reinforcement learning in board games, 2004.

[KPLM96] Kaelbling, L. P., M. L. Littman, and A. W. Moore. Reinforcement learning:

a survey. Artificial Intelligence Research 4, pages 237–285, 1996.

[Lau04] Adam Daniel Laud. Theory and application of reward shaping in rein-

forcement learning, 2004.

[Lit94] Michael L. Littman. Markov games as a framework for multi-agent rein-

forcement learning. In Eleventh International Conference on Machine Learning,

pages 157–163, 1994.

[Man04] Manslow. Using reinforcement learning to solve ai control problems. AI

Game Programming Wisdom 2, pages 591–601, 2004.

IX

APPENDIX C: REFERENCES

[Mat94] Maja J. Mataric. Reward Functions for Accelerated Learning. In Eleventh

International Conference on Machine Learning, pages 181–189, 1994.

[MM01] Rajbala Makar and Sridhar Mahadevan. Hierarchical multi agent reinforce-

ment learning, 2001.

[MMG01] Rajbala Makar, Sridhar Mahadevan, and Mohammad Ghavamzadeh. Hier-

archical multi-agent reinforcement learning. In Eleventh International Con-

ference on Machine Learning, pages 246–253, New York, NY, USA, 2001.

ACM.

[MRLG05] Bhaskara Marthi, Stuart Russell, David Latham, and Carlos Guestrin. Con-

current hierarchical reinforcement learning, 2005.

[NHR99] Andrew Y. Ng, Daishi Harada, and Stuart Russell. Policy invariance under

reward transformations: Theory and application to reward shaping. In

In Proceedings of the Sixteenth International Conference on Machine Learning,

pages 278–287. Morgan Kaufmann, 1999.

[OV09] Robert B. Ollington and Peter W. Vamplew. Concurrent q-learning: Rein-

forcement learning for dynamic goals and environments, 2009.

[PR98] Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies

of machines, 1998.

[RM02] Khashayar Rohanimanesh and Sridhar Mahadevan. Learning to Take Con-

current Actions. In NIPS, pages 1619–1626, 2002.

[RR02] Malcolm Ross and Kinsella Ryan. Hierarchical reinforcement learning: a hy-

brid approach. PhD thesis, The University of New South Wales, New South

Wales, Australia, 2002. Supervisor-Sammut, Claude.

[SB98] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-

duction. MIT Press, 1998.

[SHS+07] Manu Sharma, Michael Holmes, Juan Santamaria, Arya Irani, Charles Is-

bell, and Ashwin Ram. Transfer Learning in Real-Time Strategy Games

Using Hybrid CBR/RL. In 20th international joint conference on Artifical in-

telligence, pages 1041–1046, 2007.

[Tan93] Ming Tan. Multi-agent reinforcement learning: Independent versus coop-

erative agents. In ICML, pages 330–337, 1993.

X

APPENDIX C: REFERENCES

[Tes94] G. Tesauro. Td-gammon, a self-teaching backgammon program, achieves

master-level play. Neural Comput. 6(2), pages 215–219, 1994.

XI

APPENDIX D

CD

The CD contains the following items:

• Report

An electronic copy of the report.

• brAIn

The source code of the reinforcement learning framework developed for Spring:

Balanced Annihilation throughout this project.

• RL-Learner

The simulator used for the experiments done on the base-building scenarios.

Reinforcement learning configuration is done by giving arguments to the exe-

cutable, the proper arguments can be seen by giving the “–help”-argument. The

output of the RL-Learner can both be used for plotting graphs and be handed

to the Policy illustrator. The source code is compatible with both gcc and Visual

Studio.

• Q-Reader

A C# visual viewer for the files containing the Q-tables, generated by both brAIn

and RL-Learner. Includes both the C# source code, and the .NET windows exe-

cutable.

• Policy Illustrator

The JavaScript/HTML script that is used to illustrate a multi-agent base-building

policy in a table overview.

• Utilities

A collection of different utilities created to improve the workflow of experiment-

ing with Reinforcement Learning—including the Maple and MatLab worksheets

XIII

APPENDIX D: CD

for generating the graphs.

• Data

The data files used to plot the graphs included in the report.

XIV

	Introduction
	RTS games
	AI Challenges
	Learning

	Reinforcement Learning in RTS Games
	Related Work
	Challenges in Reinforcement Learning
	Hierarchy of RTS Tasks
	Techniques
	Balanced Annihilation

	Time-based Reward Shaping
	Introduction
	Related Work
	Time-based Reward Shaping
	Experiments
	Conclusions and Future Work

	Concurrent Agents
	Introduction
	Related Work
	Concurrent State Space
	Experiments
	Results—Convergence Speed
	Results—Policy Equivalence
	Conclusions and Discussions

	Parametrised State Spaces
	Introduction
	Related Work
	Parametrised State Spaces
	Comparison with Other Approaches
	Experiment
	Results
	Conclusions and Discussions

	Epilogue
	Conclusions and Discussions
	Future Work

	State Count Calculation
	Approach 3 Calculation

	Threat Map
	Defining Threat
	Applying Threat
	Retrieving Threat
	What-if Analysis

	References
	CD

