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Abstract: 

The main purpose of this paper is to 
propose a solution to remove errors due 
to spurious reflections which can occur 
during the scanning of shiny surfaces. 
As glass objects and semi transparent 
objects, shiny surfaces are one of the 
main problems in 3D scanners based on 
triangulation. Different techniques which 
deal with the same problem are 
investigated. One of these methods was 
chosen in order to be implemented and 
tested. This technique uses a 3D data 
cloud density. The data cloud density of 
a 3D point is all the points that remain 
in the close vicinity of that point. 
Furthermore, the basic 3D laser scanner 
system is described in order to 
understand the theory around the data 
cloud density method. 

An implementation and performance 
tests were done to prove the relevance 
of this method in the detection and the 
suppression of errors in cloud of points 
created by 3D laser scanners. There is 
no doubt about the advantage this 
method has to find false points in a set 
of measured points. However, the 
velocity of this technique can be 
problematic in certain area. 

A better implementation has to be found 
to conclude if this method can be used 
in industrial area or not. 
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Preface 
 

This report is the result of a 10th semester Computer Vision and Graphics project at 
Aalborg University in the spring 2010, running from the 1st of February to the 3rd of June. 
The project is proposed by INROPA, and the solution is developed to fit the requirements 
set forth by the firm. 

The intended audience is not expected to have any prior knowledge about Computer 
Vision or Image processing. The target audiences for this report are people interested in 
3D scanner laser and their current limits. 

The report is divided into six parts: Pre-analysis, Analysis, Implementation, Test, Project 
closure and Appendix. 

If the reader is interested in the implementation of the solution, a brief description of the 
code is found in part III. The source code of the implementation is moreover enclosed on 
the CD-ROM. 

A full bibliography is located in the end of the report. The citations are referenced using 
the surname of the first author followed by the publishing year, e.g. [J. Chen et al, 1998]. 

 

 

 

         Cao-long HUYNH  

 ________________________ 
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2. Pre analysis 

 

In this part, the problem statement is defined, taking into account INROPA 
requirements. The 3-D scanner of INROPA is quickly described in order to understand 
better how to answer the problem statement. Then one method is chosen upon several 
methods briefly described at the end of this part. This method will be described in the 
Analysis part. 

 

2.1. Introduction 

Companies all over the world are using painting robots to maintain competiveness. 
Nowadays, since the price of industrial paint robots decreased drastically from their 
invention, almost all general industries can afford them [Wikipedia, 2007]. However, 
programming a robotized painting line to new objects implies stopping the production line. 
Moreover, the process is time-consuming and not without a cost for the industries [A. 
Pichler et al, 2004]. To make this process automatic, the painting robot must be aware of 
the following characteristics of the object to paint: the shape, the surface structure and 
the orientation. Nowadays, this can be done with the technology of laser scanning. In this 
way, INROPA developed a system using a laser scanner to create a 3D model of the 
object to paint in order to program painting robots. This system which is a triangulation-
based sensors system will be described in the section 2.2 of this paper [K. A. Nissum et 
al, 2005]. 

Most of object surfaces in industry are made of polished metal or plastic. These 
materials are likely to reflect laser light in a specular way. The cameras used as sensors 
can interpret those specular components or noisy reflections as the main signal. In this 
case, the system will return false range values and then the range image would contain 
several spurious peaks and blobs which don’t belong to the object [E. Trucco et al, 1994]. 
INROPA, in a perspective of improving the robustness of 3-D measuring in general, wants 
to optimize their laser scanning system by removing the potential errors due to specular 
reflections. 

 

2.1.1. Problem statement 

The laser scanning system of INROPA is based on the triangulation of a laser line 
light. As the system is used in industry, it often scans shiny and specular surface objects. 
Those kinds of objects can give spurious errors in the 3-D mesh produced by the INROPA 
software. Figure 2.1(a) and figure 2.1(b) show two types of errors from INROPA mesh 
reconstruction. The first type of error is a single point, more or less isolated. The second 
type of error is a blob of points. These second errors are mostly far from the mesh itself.  
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(a) 

Figure 2.1: (a) Dot type errors from spurious reflections seen on a mesh file of INROPA. 

 

(b) 

Figure 2.1: (b) blob type errors from spurious reflections seen on a mesh file of INROPA. 
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Easily detected by a human-being, those spurious peaks and blobs constituted a 
major problem for an automatic system. Indeed, the automatic teaching system cannot 
make the difference between an error and the real surface of the object. The INROPA 
system has to be entirely automatic and it has to reduce the programming of painting 
robot from several hours to only a few minutes. The software-based solution has to 
remove all errors, and this, in less than 30 seconds. It must have the possibility to be 
integrated in the software of INROPA which is coded in C/C++, OpenCV and DirectX [K. A. 
Nissum et al, 2010] [K. A. Nissum et al, 2005]. 

 

2.2. INROPA 3-D scanner description 

INROPA (Intelligent Robot Painting) developed a 3D scanner based on the 
triangulation of a laser light. The solution includes a hardware set up and a software 
which utilizes computer vision techniques to create a 3D CAD model of the scanned 
object. This system is briefly described in this part to understand the context in which 
this project is. 

2.2.1. Hardware 

The hardware used by INROPA is a 3D laser scanner where the sensors are 
cameras and the light sources are laser lines. The complete set up is composed by 4 
lasers lines and 4 cameras. Each one is link and calibrate depending on each laser line. 
The laser are calibrated and positioned in order to have their laser plane superposed 
which simplifies the calculation of the laser line plane location (figure 2.2(a)). By doing 
that, the laser light hits all the surface of the object to be scanned. Each camera is 
calibrated depending on each respective laser. Therefore, the whole object is viewed and 
scanned without moving either cameras or light sources.  

 

 

(a) 

Figure 2.2: (a) Calibration of the 4 cameras in order to have a common laser plane. 
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In this system, the object is moving and the optical set up is fixed. Figure 2.2(b) 
illustrates it. The object scanned is the parallelepiped. It is transported using two 
suspension hooks attached to a suspension conveyor. It is translated horizontally to the 
laser scan line [K. A. Nissum et al, 2010]. Figure 2.2(c) shows how the object is hit by 
the laser line. 

 

   

(b)                                                              (c) 

Figure 2.2: (b) Set up of the laser scanner: the object is moving horizontally to the laser 
scan line (c) the object is hit by the laser scan line. 

The object does not stop during the whole process of scanning and the software 
computes all ranges of points on the fly. This software is briefly described in the following 
section. 

2.2.2. Software 

The software of INROPA is coded in C/C++ and follows these steps: 

• Images acquisition 
• Images segmentation 
• Triangulation 
• Mesh construction 

Theoretically, a video is captured and process automatically by the software, then 
all images are segmented. Range of all points is found by processing the triangulation 
step on all images which gives, as output, a cloud of points. This cloud of points is finally 
processed and the mesh of the object is stored in an STL file. 

The process below is the most simple but it requires a computer which can store 
huge amounts of data. Indeed, video sequences are often in high resolution. They are 
therefore, quite heavy. Clouds of points computed from industrial objects which can 
easily reach millions of points, are also space consuming [K. A. Nissum et al, 2010].  

Thus, the system doesn’t store, neither video sequences, nor clouds of points. 
Each image is directly processed and the range of all points is triangulated into mesh on 
the fly.  
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2.3. Problem identification 

Errors encounter in meshes are due to unwanted reflections. In this part, brief 
reflection rules are enounced to have a better understanding of the phenomena that 
provoke spurious peaks and blobs in the mesh. First, two different types of reflection are 
explained. Then, geometrical issues are described to show how the laser light can be 
reflected uncontrolled by the surface of an object. 

2.3.1. Brief optical assessments on reflection 

Shiny surfaces as polished metal or plastic reflect light in a mixed diffuse and 
specular way. A diffuse reflection can be encounter when the light strikes a matte or 
rough surface. The ray bounces off in all directions. The energy of the incident ray is 
thereby shared between all the diffused rays. Figure 2.3(a) shows how the light is 
reflected on diffused surface.  

               

(a)                                                           (b) 

Figure 2.3: (a) Representation of a diffused reflection. (b) Representation of a specular 
reflection. 

 

In opposite of that, the reflection is called specular when the incident ray gives a 
unique reflected ray. This phenomenon follows the 3 laws of reflection:  

• The incident ray, the reflected ray and the normal to the reflection are in 
the same plane which is called the plane of incidence 
 

• The angle between the incident ray and the normal is equal to the angle of 
the reflected ray and the normal (figure 2.3(c)). 

 
• The light path is reversible 

 

Two examples of these reflections: the screen of a cinema is a diffused surface 
and a planar mirror is a specular surface [Wikipedia, 2010]. 
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(c) 

Figure 2.3: (c) 2nd law of reflection: θ1 the angle between the incident ray and the normal 
θ2 the angle between the reflected ray and the normal. 

The main difference of the specular and the diffuse reflection is the repartition of 
the energy between only one or multiple reflected rays. A polished metal or plastic object 
is considered as mixed diffuse and specular surface: most of the energy is given to a 
small amount of rays which are reflected to the same direction. The rest of the energy is 
then spread to others rays which diffuse the light (figure 2.3(d,e,f)) [I. Ihrke et al, 2008]. 

 

 
Figure 2.3: (d) Diffusal reflection, (e) Nearly ideal specular reflection, (f) Mixed diffuse 

and specualr reflection. 

 

2.3.2. Spurious reflections on a laser scanner 

Even if industrial objects have often mixed diffuse and specular reflection surfaces, 
3D laser scanner are nowadays enough robust to create a usable 3D mesh. However, 
problems of unwanted reflections can appear with some specific but common situation. 
Objects having concave, convex geometry are susceptible to give multiple reflections. In 
that case, sensors can be easily confused by noisy reflections [D. J. Svetkoff, 2000]. 
Figure 2.3(g) shows how a concave geometry in an object surface can produce some 
secondary reflections. Since the object is considered as mixed diffuse and specular 
reflection surface, the first specular reflection gives the view of the true point whereas, 
the second reflection which comes from one diffused ray of the laser light gives a false 
point Y. 
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(g) 

Figure 2.3: (g) Concave geometry which can cause false range recording. 

 

Moreover, objects surfaces presenting holes and sharp edges can also be 
susceptible to the occurrence of spurious reflections since those geometries can produce 
total or partial occlusion [E. Trucco et al, 1994]. Figure 2.3(h) shows a rectangular hole 
in an object surface. The laser light hits the true point T inside the hole and is reflected. 
Two reflections can potentially arrive to the sensor: the 1st one, directly from the point T, 
and the 2nd one which is the result of a second reflection on one of the edge of the hole. 
The direct reflection from the true point T is occluded by the hole. Thus, the sensor only 
gets the second reflection from the reflection on the edge of the hole, on point F. Since 
all observed points must belong to the laser plane, the system records the incorrect point 
Y instead of the true point T. 

 

(h) 

Figure 2.3: (h) Rectangle hole on an object surface which can cause false range recording. 
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2.4. Filtering methods description 

In this section, four different methods to filter spurious reflections are briefly 
described. Each method works during different step of the scanning process seen in the 
section 2.2. These are presented in order to choose the most relevant techniques for the 
project which is then analyzed in the Part II. 

2.4.1. Hardware filter 

 

Two methods are described in this part. They both use new hardware setups that 
have to be added to the basic laser range scanning. 

 

Direct calibration method 

This first method is set up before the acquisition of the image and is based on the 
fact that unwanted reflections occur depending on camera position. So the main idea is 
to put more than one camera for one laser source light. By doing that, two images can be 
produced and compared to find incorrect points [E. Trucco et al, 1994]. 

Figure 2.4(a) shows what can be the setup of this method. Two cameras are 
positioned to the left and the right side of the object. After calibrating them to have the 
same origin reference, the two cameras can produce two theoretically identical range 
images. 

 

(a) 

Figure 2.4: (a) Set up for the direct hardware filtering. 

To find the false range values, cloud of points from both left and right cameras 
must be compared. A true point must satisfy the following constraints: 

• Since the source of light is not moving, the laser can only hit a surface 
once. So, for a set of one light source and two cameras, if more than one 
point belonging to the same laser plane are find in the cloud of point, all 
the points are deleted. 

• If a point is observed by both cameras, then the range values ZL(t) and 
ZR(t) given respectively by the left and the right cameras must be equal 
considering a margin of error 𝜏𝜏. More over the local surface normal 𝑛𝑛�⃗ p(t) of 
the point must be the same for both cameras considering a margin of error 
𝜏𝜏2. 
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• If a point is only recorded on data cloud of one camera, it means, it exists 
another true point recorded by the other camera which could obscure the 
view of this point. Hence, any single point only existing on one cloud of 
points which are not obscured by another point from the other cloud of 
points are removed. 

The benefits of this method are that most of the errors can be removed easily 
since if any point has different range from the right cloud of point to the left cloud of 
point, then they are removed. Moreover, the set up of two cameras for one source of 
light can help to record a full range image from all angles without additional source of 
light. The drawback is that this method requires calibration of two cameras. Besides, the 
processing of two clouds of points can be time consuming because industrial object 
meshes are usually made of millions of points. 

 

Polarization filtering 

This method uses a polarized laser light and measure the polarization state of the 
reflected light to distinguish the true laser line and the spurious reflections. Since this 
polarization value changes for each reflection on the object, this method can separate the 
true laser line and spurious reflections [J. Clark et al, 1996]. 

To have a better understanding of this method, a really brief recall of basic facts 
about light polarization is enounced. A ray of light is composed of the electric field 
waveform 𝐸𝐸�⃗ (t) and the magnetic field waveform 𝐻𝐻��⃗ (t). Those two waveforms are 
orthogonally to each other and they form a plan called the plane wave (figure 2.4(b)). 
Considering only the electric field waveform 𝐸𝐸�⃗ (t) to represent the light, this vector can be 
decomposed into two components Ex(t) and Ey(t). In an unpolarized light, Ex(t) and Ey(t) 
are non-deterministic which means that 𝐸𝐸�⃗ (t) can’t be described except statistically. 
Whereas in a polarized light, Ex(t) and Ey(t) oscillate in a deterministic way, in phase or 
not, which leads to a linear or elliptical polarization. 

  

 

(b) 

Figure 2.4: (b) Ray of light with the electric field and magnetic field waveform 𝐸𝐸�⃗ (t) and 
𝐻𝐻��⃗ (t) in the case of a linear polarization. 
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The technique consists in polarized linearly the laser source light and find the 
changes in all reflections gathered by the camera (figure 2.4(c)). To find the changes, 
the reflections pass through a linear polarizer before hitting the CCD captor of the 
camera. By doing this, the intensity of the resulting polarized light is a function of (𝜃𝜃 − 𝛽𝛽) 
called the transmitted radiance sinusoid (TRS) where 𝜃𝜃 is the orientation of the incident 
polarized light and 𝛽𝛽, the orientation of the linear polarizer. The system calculates the 
TRS for each pixel of the laser line reflection and compares values between them [J. 
Clark et al, 1996]. 

However, even if polarization status between the main reflection and the 
unwanted reflection are different, the polarization value of the main reflection is not 
constant and changes according to the shape of the object. To predict the polarization of 
the main reflection, the system is based on the Fresnel reflectance model. Since the 
orientations of unwanted reflections are very different from the orientation of the primary 
reflection, the system can identify the true laser line reflection [J. Clark et al, 1996]. 

 

 

(c) 

Figure 2.4: (c) Set up of the polarization filter method. 

The benefits of this method are that the system not only rejects all inconsistent 
range values but identifies the true laser line projected on the object. This allows the 
process to work directly on the direct captured image without waiting a rending of the 
cloud of points. The drawbacks are that the setting up of filter and the calibration of them 
can be time consuming and hard to do it automatically. This method depends also on the 
accuracy of the Fresnel reflectance model which is applicable only for smooth surface 
which means that the result depends mostly on the physical properties of the scanned 
object and not the geometry. 

2.4.2. Segmentation filtering 

In this method, there is no need to change the basic set up of the 3D laser 
scanner. It is software based and the algorithm works on the segmentation part. The first 
step of this method consists on finding the center of the center of the peak of the 
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reflected laser line. Considering the set up figure 2.4(d), which is a basic 3D laser 
scanner, after the segmentation step, the resulting image at the time t looks like the 
figure 2.4(e). There are no spurious reflections on this sample and the laser line can be 
easily distinguished. 

 

            

(d)                                                                (e) 

Figure 2.4: (d) Basic laser scanner (e) segmented image at the time t. 

 

In calculating the 3D coordinates, a histogram of the gray level intensity for each 
pixel in a single column is made (figure 2.4(f)). The idea is to find the center of the 
maximum peak which represents the center of the laser line. Theoretically, a laser beam 
can be considerate as a punctual source of light or at least the distribution of the light is 
a Gaussian one. Therefore, the center of the maximum peak is the center of the laser line. 
However, the distribution is not exactly a Gaussian one because of several factors, for 
instance multiple reflections can cause that (figure 2.4(g)) [J. Chen et al, 1998].   

 

 

(f) 

Figure 2.4: (f) Gray level for each pixel in a single column of the segmented image. 
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(g) 

Figure 2.4: (g) Non Gaussian distribution. 

 

Thus the first step of the method is to run a new algorithm, more efficient, to 
determine the center of the center of the peak of the reflected laser line. To simplify the 
calculation, a threshold is chosen P=K (figure 2.4(f)). 

This algorithm is based on finding the pixel which divides the total integral area S 

by two. First, the algorithm finds the point (Xi,Yi) where SLi < 𝑆𝑆2. SLi is the integral area 

from the left side of (Xi,Yi). Then, it finds the point (Xi+1,Yi+1) which is the second next 

pixel from (Xi,Yi) and where SLi+1 > 𝑆𝑆2. The pixel (X,Y) between (Xi,Yi) and (Xi+1,Yi+1) is 

then the center of the center of the peak of the reflected laser line. With this first step, 
the accuracy of the scanning is improved by 2.5 [J. Chen et al, 1998]. 

 

The second step is to remove spurious reflections. Figure 2.4 (h) shows the 
resulting image at the time t with spurious reflections. Then, a histogram of the gray 
level intensity for each pixel in a single column is made (figure 2.4(i)). In this case, two 
distinct peaks can be seen. According to reflection assessment of part 2.3.1, the lowest 
peak comes from spurious light since the intensity of the light from secondary reflections 
is lower than from the main reflection. The first algorithm cannot now be applicable since 
it is based on the total integral area S [J. Chen et al, 1998]. 
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(h) 

Figure 2.4: (h) segmented image at the time t with spurious reflections. 

 

Two solutions can be then considered: adapt the threshold P=K according to the 
gray level of the spurious reflection or only use the algorithm on the region near the 
maximum peak. The first solution cannot be used since the gray level of the spurious 
light cannot be characterized by a deterministic way. The region near the maximum peak 
is called the Valid Window (VW) thereafter [J. Chen et al, 1998].  

 

 

(i) 

Figure 2.4: (i) Gray level for each pixel in a single column of the segmented image with spurious 
reflections. 

So the whole method starts with the search of the maximum peak to determine 
the VW. Then, the algorithm to determine the center of the center of the peak of the 
reflected laser line is run as seen before. 

The benefits of this method are that there is no need to modify the setup of the 
laser scanner. Moreover, the algorithm is working only on the VW which means that the 
number of processes is relatively small for each column. The drawbacks are the 
undeterministic gray level of the spurious reflection light. Thus, there is a possibility that 
the system doesn’t delete all the errors due to spurious reflections. Besides, since the 
algorithm is run for each column of each image of the video, this method can be very 
time consuming and process consuming too.  
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2.4.3. Mesh filtering 

The last method uses the 3D data cloud density. The algorithm is run after the 
recording of all the 3D points and before the tessellation and the creation of the final 3D 
mesh. The density of a 3D point, according to [D. Yang et al, 1999], is the number of 
measured points in the close vicinity of that point. Considering the 3D point Pj(xj,yj,zj), 
the data cloud density of Pj is all the 3D points restrained inside a parallelepiped 
[Ux,Uy,Uz] where Pj(xj,yj,zj) is the center of the parallelepiped (figure 2.4(j)). 

For the point Pj(xj,yj,zj): 

The data cloud density of Pj is: 𝐷𝐷𝑆𝑆𝑗𝑗  = �𝑃𝑃𝑖𝑖(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖)�
(𝑥𝑥𝑗𝑗 − 𝑈𝑈𝑥𝑥) <  𝑥𝑥𝑖𝑖 < (𝑥𝑥𝑗𝑗 + 𝑈𝑈𝑥𝑥)
(𝑦𝑦𝑗𝑗 − 𝑈𝑈𝑦𝑦) <  𝑦𝑦𝑖𝑖 < (𝑦𝑦𝑗𝑗 + 𝑈𝑈𝑦𝑦)
(𝑧𝑧𝑗𝑗 − 𝑈𝑈𝑧𝑧) <  𝑧𝑧𝑖𝑖 < (𝑧𝑧𝑗𝑗 + 𝑈𝑈𝑧𝑧)

� 

 

The density of Pj(xj,yj,zj) is then: Densityj = ∑(𝑃𝑃𝑖𝑖 ∈  𝐷𝐷𝑆𝑆𝑗𝑗 ) 

 

 

(h) 

Figure 2.4: (h) Graphical representation of the data cloud density of a 3D point Pj(xj,yj,zj). 

 

The errors due to unwanted reflections are points or blobs of points more or less 
far from the object as we identified them in the problem statement part 2.1.1. Depending 
on the thresholds Ux, Uy and Uz, a spurious point’s density value is lower than the real 
points’ one. With this assertion, errors from unwanted reflection are easy to detect and 
delete. 

The benefits of this method are the fact that the algorithm is run after the capture 
of all the 3D points which means it can be run only once. It is also an only-software 
based solution and thus, it is not affected by the calibration, the characteristic of 
hardware used and the setup of the 3D laser scanner since all the distances computed 
are relative to the point Pj(xj,yj,zj). The drawback is the fact that the algorithm needs to 
compute all the cloud of points which, in the case of an industrial object, can be very 
heavy: around 2 millions of points. Therefore, the method can be very time consuming. 
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2.5. System requirements 

In the previous chapter, several techniques are described according to the initial 
requirements from INROPA. In this section, one technique is chosen for further study and 
implementation following the new inherent requirements. 

The first two methods are hardware based techniques. Even if they can provide a 
really good accuracy concerning the detection of spurious reflections errors, both need 
the set up of new hardware on INROPA 3D laser scanner. First, the price of the solution 
can be considered to be too expensive, secondly, partial or all INROPA system have to be 
modified to be adapted to the new setup. 

Two methods can therefore be considered: the segmentation and the mesh 
filtering since both are only-software based. Moreover, they can be both implemented in 
C/C++ and then easily integrate in INROPA software. However, these methods can be 
really time consuming considering the size of an industrial object. 

Comparing the errors identified in the problem statement part 2.1.1, the mesh 
filtering can provide a better result and a more robust solution than the segmentation 
filtering. Anyway, the system must be capable of the following: 

• Computing a file .xyz of at least 2 millions points. 
• Finding all errors and delete them without destroying the shape of the 

mesh. 
• Creating a new file .xyz of the cloud of points without errors 
• Finishing all process in less than 30 seconds. 

To have a better understanding on how the mesh filtering method can fulfill these 
requirements, the basic 3D laser scanner process and methods to achieve each 
requirement are described and analyzed in detail in the following part. 
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3. Analysis 

In this part, steps to create a 3D model are described in order to understand how 
the mesh filtering method can work to delete the errors from spurious reflection. Camera 
calibration and camera setup are not analyzed since it is not the point of this paper to 
deal with hardware setup. 

 

As said below, before the steps to create a 3D model illustrated figure 3(a), 
camera calibration and camera setup steps are needed because the system must 
determine an origin to calculate the range of 3D points. Moreover, many parameters as 
the shape of the scanned object or distortion from the camera can interfere into the 
image data acquisition. These variations can be controlled in the camera setup.  

 

 

(a) 

Figure 3: (a) Steps to create a 3D model including the filtering step to delete errors from 
unwanted reflection. 

 

Concerning the construction of 3D CAD model steps, first, the direct image is 
captured in the Image data acquisition step from the cameras. Then, the image 
preprocessing approach to determine the scan line location in the Image segmentation 
step is then described. Those two steps can be defined as the acquisition and the 
identification parts. 

After getting raw data from cameras, the system needs to compute them in order 
to determine range of each 3D point and create the final 3D model. Those parts are 
named triangulation and tessellation or mesh construction and can be defined as the 
processing and the creation parts. 

Between the triangulation and the tessellation, the chosen method to remove 
unwanted reflections errors is applied in the Mesh filtering step as shown in figure 3(a). 
This method is described in detail in the last part of the analysis and will be implemented 
in the following chapter. 
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3.1. Three-dimensions model creation 

In this section, the creation of a 3D model is described step by step to understand 
how the mesh filtering method can work to delete the errors from spurious reflection. 
These steps include the Image segmentation step, the triangulation and the tessellation 
(figure 3(a)). The image data acquisition is not described in this paper since this step 
only depends on the software choice. 

 

3.1.1. Image segmentation 

In a 3D laser scanner, the first part is to determine the scan line location from the 
raw image given by the camera. There are two options concerning the scanning of an 
object by a laser scanner: the object can be stationary and the laser line plan is moving 
or the opposite. In both case, the system has to be able to define three distinct zones 
which are, the vertical plane, the horizontal plane and the object. Those planes need to 
be identified in order to know where is the laser line and therefore, to be able to 
triangulate the position of 3D points. 

 

Identification of the laser plan 

On a 3D scene, the different planes can be easily distinguished. However, the 
system has to define the three planes on the 2D images given by cameras. Figure 3.1(a) 
shows the different planes from a basic setup of a laser line scanner. The laser line 
source which creates the laser plane hits the scene. This creates two unchanged lines, 
one on the vertical plane and the other one on the horizontal plane. 

 

 

(a) 

Figure 3.1: (a) Representation of the different plane on a laser scanner scene. 

 

The projected laser line can be defined in three areas: the vertical area, the 
horizontal area and the object view. When those areas are detected, the orientation and 
the direction of the laser line reflected on the vertical area and on the horizontal area 
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have to be detected. This operation will permit to estimate the orientation of the scan 
plan and then to find the range of points via the triangulation step. Since the intersection 
of the laser plane with the vertical plane and with the horizontal plane stay unchanged as 
long as the object doesn’t pass through, the system can define both planes and 
characteristics of intersection lines on a 2D image. In figure 3.1(b), the area in red 
corresponds to the vertical plane and the green one corresponds to the horizontal plane. 
Those two parts will remains unchanged all along the scanning of the object. The area in 
between these two planes is assumed to contain the object. 

 

 

(b) 

Figure 3.1: (b) Identification of the horizontal and vertical plane on the 2D output image. 

After finding characteristics of the reflected laser line on vertical and horizontal 
plane, the system can isolate the object reflected laser line. In the following part, basic 
edge detection is explained. Then, the practical method to isolate the laser line is 
described, and a preprocessing technique to find the coordinate of the laser line reflected 
on the object is explained. 

 

 

Edge detection principle 

In this part, the general edge detection principle is described and then applies on 
the segmented image of the laser line previously obtained. 

The edge detection is based on the detection of pixels corresponding to an abrupt 
changing of the intensity in a gray level image. The main method to find these pixels is 
to find maxima of the first-order derivative expression or the local directional maxima of 
the gradient magnitude. For a numeric image, each pixel is associated with a value 
between 0 to 255. In calculus, the first-order derivate is a measure of how a function 
changes as its input changes. In this case, the first-order derivate is simplified because 
the edge detection only makes a comparison between the derivates without taking in 
account their value. Thus, the first-order derivate for a pixel is the difference between 
the values of both adjacent pixels. Figure 3.1(c) shows a grid of pixels a to i. 
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(c) 

Figure 3.1: (c) Pixel grid containing 9 pixels: a to i. 

 

The first-order derivates of the pixel e are: 

• Dxe = f - d 
• Dye = b - h 

 

In this view, three main methods can be described: the Prewitt edge detection, 
the Sobel edge detection and the Canny edge detection [Wikipedia Edge detection, 2010]. 

 

 

The Prewitt edge detection is the most basic filter used to detect edge from a 
numeric picture. This technique utilizes two kernels 1x3 and 3x1: one horizontal hx = 

[−1 0 1]  and one vertical hy =�
−1
0
1
� with gives to table Gx and Gy. These tables are then 

combined to give a common table G, filled with the first-order derivate of each pixel of 
the image, where the system can find maxima and therefore, edges pixels. 

 

 

The Sobel edge detection is more efficient than the Prewitt model. It uses two 

kernels of 3x3 instead of kernels of 1x3 and 3x1: one horizontal hx = �
+1 0 −1
+2 0 −2
+1 0 −1

� and 

one vertical hy =�
+1 +2 +1
0 0 0
−1 −2 −1

�. The convolution of the vertical and the horizontal kernels 

with the source image give two tables Gx and Gy. With these data, the gradient’s 
direction is: 

𝜃𝜃 = arctan(
𝐺𝐺𝑦𝑦
𝐺𝐺𝑥𝑥

) 

The main problem of these two methods is that they are very sensible to the noise. 
The Canny edge detection is an evolution of the Sobel edge detection. Indeed, it uses the 
same kernel as the Sobel edge detection but before using it, the Canny edge detection 
uses a Gaussian filter to remove noises. Then a hysteresis thresholding is applied to 
refine the edge tracing. 
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A 2D isotropic Gaussian filter has the form: 

𝐺𝐺(𝑥𝑥,𝑦𝑦) =  
1

2𝜋𝜋𝜎𝜎2 𝑒𝑒
−𝑥𝑥²+𝑦𝑦²

2𝜎𝜎²  

Where 𝜎𝜎, is the standard deviation of the distribution. Figure 3.1(d) shows a 2D Gaussian 
distribution with 𝜎𝜎 = 1. This is the representation of the following 5x5 Gaussian filter B 
with 𝜎𝜎 = 1: 

 

𝐵𝐵 =
1

273
⎣
⎢
⎢
⎢
⎡
1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1⎦

⎥
⎥
⎥
⎤
 

 

 
(d) 

Figure 3.1: (d) 2D Gaussian distribution with 𝜎𝜎 = 1. 

 

Usually, the size of the kernel filter is smaller than the filtered picture and the 
bigger the filter is, the less it is sensible to noise.  

After removing noises, the Canny edge detection finds the intensity gradient of 
the image with the same operator as the Prewitt and the Sobel edge detection and 
detects the edges by keeping maxima of gradient intensity values. However, the only 
intensity is not sufficient to decide whether a point corresponds to an edge or not. To be 
more accurate, the system has to compute the gradient’s direction as in the Sobel edge 
detection:  

𝜃𝜃 = arctan(
𝐺𝐺𝑦𝑦
𝐺𝐺𝑥𝑥

) 

With the gradient’s direction, maxima can be characterized as local or not. For instance, 
if 𝜃𝜃 = 0° then, the point will be considered to be on the edge is its intensity is greater 
than the intensity of the adjacent north and south pixels. 
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Finally, a hysteresis thresholding is applied on the resulting image. This requires 
two thresholds: one high and one low. 

For all pixels, if his intensity gradient is: 

• Lower than the low threshold, the pixel is rejected 
• Higher than the high threshold, the pixel is considered as it belongs to an edge 
• Between the two threshold, the pixel is considered as it belongs to an edge only if 

it is connected to one pixel already valid 

At the end of the process, the output of this method is a binary image where there 
are pixels which belong to an edge and the others [Wikipedia Edge detection, 2010]. For 
example, you can see figure 3.1(e) the input image of a valve and the result after a 
Canny edge detection figure 3.1(f). 

 

                

(e)                                                                (f) 

Figure 3.1: (e) Input image before the edge detection (f) resulting image from a Canny edge 
detection. 

In theory, edge detection can be applied to detect the laser line reflection but this 
is a really complex process. A more appropriate method is described in the following 
section. 

 

Laser line location method 

In the analysis, the object scanned is a metal beam with the same shape as the 
one shown figure 3.1(g).  

 

 

(g) 

Figure 3.1: (g) Shape of the metal beam used in the analysis. 
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The method consists on the comparison between two images at a time. The first 
image is captured without the object: only the background with the reflected laser line on 
the vertical and horizontal plane (figure 3.1(h)). This image is also used to define the 
laser plane location. The second image is the one where the system must locate the laser 
line edge (figure 3.1(i)). The subtraction of both images isolates the laser line reflected 
on the object (figure 3.1(j)). Then segmentation is applied with a binary transfer function 
using a threshold to remove noise and to prepare the image for the calculation of the 
laser line location [K. A. Nissum et al, 2005]. 

 

                 

(h)                                                                (i) 

Figure 3.1: (h) Image of the background (i) Image to be segmented. 

 

                 

(j)                                                                  (k) 

Figure 3.1: (j) Subtraction between (h) and (i) (k) Segmented image ready for the edge 
detection. 

At this step, the laser line location can be found using the segmented image figure 
3.1(k). Since there are only two type of pixel, black or white, which compose the 
segmented image, the calculation of the location can be done by using a kernel. Figure 
3.1(l) shows three different kernels. Pixel in gray with the value of 0 is the one which is 
examined. The first one is a 1x2 kernel which considers any black pixel which has the left 
pixel in white as it belongs to an edge. In the three examples, all pixels scanned belong 
to an edge but it is obvious that this kernel only find pixel from the left side of edges. 
The second one is a 1x3 kernel. This one is a little more advanced than the first but still 
only detects pixels from the left side of edges. The third kernel is a 3x3 mask with the 
following restrictions: only one of the pixels 4 and 6 in the kernel must be black, and at 
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least half of the 8-connected pixels must be black. This kernel is more advanced compare 
to the first ones but all three kernels are only usable for locating non horizontal scan 
lines since restrictions are put on the horizontal connected pixels. Other kernels can be 
used but with restrictions on the vertical connected pixels [K. A. Nissum et al, 2005]. 

This last method is rapid and simple and gives a usable location of the laser line 
but it depends on the setup and the quality of the segmentation. Another method can be 
perform on the segmented image and was described in the 2.4.2 part using the centroid 
algorithm. 

3.1.2. Triangulation 

After segmented the image, the system has to determine the coordinates of points 
from the scan line reflected on the object. These coordinates have to be identified 
according to the reference coordinates from the camera calibration. To do that, the scan 
plane has to be estimated and the light source calibrated. Both of these two steps are 
liked. That means if the scan plane is successfully estimate, the light source is, in the 
same time, calibrated. One method to estimate the scan plane is described in the 
beginning of this section. It is then, followed by the description of the principles of 
geometric triangulation. 

 

Scan plan estimation 

In chapter 3.1.1, the method to identify the vertical plane and the horizontal plane 
is enounced. The scan lines corresponding to both horizontal and vertical plan can 
therefore be found through the image plane figure 2.4(h) using an appropriate kernel. 
Two points are then picked from each of the scan lines in order to transform them into 
3D vectors λh and λv. This process is done with the world coordinate found with the 
calibration of the camera. 

To estimate the scan plane, the system needs a direction and a reference point. 
The cross product of λh and λv gives the normal vector of the plane. The intersection of λh 
and λv gives the reference point Pref (figure 3.1(l)) [K. A. Nissum et al, 2005].  

 

 

(l) 

Figure 3.1: (l) Characterization of the laser scan plane. 
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Optical triangulation 

The 3D laser scanner is based on optical triangulation. The goal of this step is to find the 
coordinates of a given pixel Pi, intersection between the scan plane and the ray from the 
center of the camera. Figure 3.1(m) shows the intersection between the ray from the 
center of the camera and the scan plane. 

 

 

(m) 

Figure 3.1: (m) Intersection between the ray from the center of the camera and the scan plane. 

 

A ray in 3-dimensions coordinates is represented as following:  

𝑝𝑝 = 𝑞𝑞 +  𝜆𝜆𝜆𝜆 

Where p is a given point which lies on the ray, q is the reference point, λ is a positive 
parameter and v is the direction of the ray (figure 3.1(n)). 

 

 

(n) 

Figure 3.1: (n) Representation of a line in 3D coordinates. 

 

A plane in 3-dimensions coordinates is represented as following: 

𝑛𝑛�. (𝑝𝑝 − 𝑞𝑞) = 0 

Where p is a given point which lies on the plane, q is the reference point and 𝑛𝑛� the 
normal vector of the scan plane (figure 3.1(o)). 
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(o) 

Figure 3.1: (o) Representation of a plane in 3D coordinates. 

 

Using the notification of the figure 3.1(m), the equation of the laser plane is: 

𝑃𝑃 =  �𝑝𝑝 � 0 =  𝑛𝑛�. (𝑝𝑝 −  𝑝𝑝𝑟𝑟𝑒𝑒𝑟𝑟 )� 

The equation of the ray from the center of the camera is: 

𝐿𝐿 = �𝑝𝑝 � 𝑝𝑝 = 𝑐𝑐𝑟𝑟𝑒𝑒𝑟𝑟 + 𝜆𝜆𝜆𝜆� 

The intersection of these two occurs when:  

𝑛𝑛�. �𝑐𝑐𝑟𝑟𝑒𝑒𝑟𝑟 + 𝜆𝜆𝜆𝜆 − 𝑝𝑝𝑟𝑟𝑒𝑒𝑟𝑟 � = 0 

And the solution of this equation for λ is: 

𝜆𝜆 =
𝑛𝑛�. (𝑝𝑝𝑟𝑟𝑒𝑒𝑟𝑟 − 𝑐𝑐𝑟𝑟𝑒𝑒𝑟𝑟 )

𝑛𝑛�𝜆𝜆
 

With that parameter, the intersection pi is then equal to: 

𝑝𝑝𝑖𝑖 =  𝑐𝑐𝑟𝑟𝑒𝑒𝑟𝑟 +
𝑛𝑛�. (𝑝𝑝𝑟𝑟𝑒𝑒𝑟𝑟 − 𝑐𝑐𝑟𝑟𝑒𝑒𝑟𝑟 )

𝑛𝑛�
 

The normal vector 𝑛𝑛� and 𝑝𝑝𝑟𝑟𝑒𝑒𝑟𝑟are known from the scan plan estimation and 𝑐𝑐𝑟𝑟𝑒𝑒𝑟𝑟  is 
known from the calibration of the camera. Thus, it is easy to calculate pi [D. Lanman et al, 
2009]. 

In INROPA system, the laser and the optical set up is stationary which means that 
all points computed with the optical triangulation method will remains in the same plan. 
To correct that, each point has to be translated for each scanned image. This translation 
depends on the frame rate and the velocity of the conveyor. Indeed, the distance 
between each image, and so between each point in the direction of the conveyor 
movement is equal to: 

𝐷𝐷 =
𝜆𝜆𝑐𝑐
𝑟𝑟𝑟𝑟

 

Where fr is the frame rate and vc is the velocity of the conveyor. 

Starting for the first point, each next point has to be separated from the last point 
of the distance D. So if the first frame in which the scan plane intersects the object is 
taken as the origin, for a given point pj of the jth frame, the translation is equal to: 
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𝐷𝐷𝑗𝑗 =
𝜆𝜆𝑐𝑐
𝑟𝑟𝑟𝑟

. 𝑗𝑗 

The direction of the translation depends of the direction of the conveyor. Since this 
movement is a straight horizontal line, it is easy to find the direction of the translation [K. 
A. Nissum et al, 2005]. 

 

3.1.3. Mesh construction 

The last step is to link all the points from the cloud of points to make a mesh and 
create the 3D object. This is called the tessellation. One of the most fundamental 
structures in computational geometry is the Delaunay triangulation. In this part, the 
theory of Delaunay is presented, followed by the practical application of this method. 

 

Theory of Delaunay triangulation 

The definition of the Delaunay triangulation of a set of points is a triangulation 
where no point of the set of points is inside the circumcircle of any triangle of the 
triangulation [Wikipedia D. triangulation, 2010]. Unlike others method such as the 
adjacent pixel tessellation, the Delaunay triangulation is possible on sets of points which 
are not in a fixed grid. It is based on the Voronei diagram. 

The Voronei diagram is defined as the union of all Voronei polygons. Considering S 
a set of N points randomly positioned on the plan P (figure 3.1(p)). A Voronei polygon 
Vor(p) associate to a point p of S is all points in the region of the point p which are closer 
to the point p than to any other point in S: 

 

𝑉𝑉𝑉𝑉𝑟𝑟(𝑝𝑝) = {𝑥𝑥 ∈ 𝑃𝑃 | ∀ 𝑞𝑞 ∈ 𝑆𝑆,𝑑𝑑(𝑥𝑥,𝑝𝑝) ≤ 𝑑𝑑(𝑥𝑥, 𝑞𝑞)} 

 

The Voronei polygon is illustrated figure 3.1(q) and the Voronei diagram is illustrated 
figure 3.1(r). 

 

 

(p) 

Figure 3.1: (p) S Set of N points. 
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(q)                                                                  (r) 

Figure 3.1: (q) Voronei polygon (r) Associated Voronei diagram. 

 

The Voronei diagram follows three properties: 

• Each vertex of the Voronei diagram is the intersection of exactly three Voronei 
edges. 

• For each vertex, the circumcircle of the associated triangle doesn’t contain any 
other point of the set of points. 

• Each Voronei edge is shared by exactly two points. 

 

Each Voronei polygon is then associated to one vertex of the Delaunay 
triangulation. Delaunay vertexes are connected only if their associated Voronei polygons 
are neighbors. The Delaunay triangulation is the straight-line dual of the Voronei diagram 
(figure 3.1(s)). 

 

 

(s) 

Figure 3.1: (s) In red, the straight-line dual of the Voronei diagram (r). 

To the end, the triangulation of Delaunay is unique; it is a complete triangulation 
and has the following property: the circumcircle of each triangle doesn’t contain any 
other point [K. Chakib, 1999]. 
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Practical approach of the Delaunay triangulation 

Two practical methods are described in this part. Both of them are based on 
Voronei diagram properties.  

The first method uses a FIFO list to determine the order of the creation of 
triangles. Figure 3.1(t) depicted the basic process to create a triangle from the set of 
points. The first edge of the triangle is created by connecting the two points which lie 
closest to one another. The third point has to follow two properties of a Delaunay 
triangle: 

• The three points has to lie on the same circle: the circumcircle of the triangle. 
• No other points than the three vertexes have to be inside the circumcircle of the 

Delaunay triangle. 

The first step is to find a point that lies on the same circle as the two first points 
of the first edge (figure 3.1(t)(iii)). Then, the algorithm determines if there is one co-
circular point inside the range of the first circle. If there is, this point become the new 
third point of the Delaunay triangle (figure 3.1(t)(iv)). This loop is running until no other 
closer co-circular point is found. Then the triangle is made (figure 3.1(t)(vi)). 

 

 

(i)                                    (ii)                                    (iii) 

   

(iv)                                        (v)                                     (vi) 

Figure 3.1: (t) Creation of the first triangle in a set of points. (i) is the set of points, the first edge 
is made (ii), then the first third point is found (iii). A second third point is found and replaces the 

first one (iv). The loop continues till there is no other closer co-circular point (v). Then the triangle 
is made (vi). 
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Now that the first triangle is created, the three edges of this triangle become the 
starting point of the creation of the others triangle. This method uses a First-In-First-Out 
(FIFO) list to determine which edge is used to create the next triangle. Figure 3.1(u) 
shows the order given to edges of the first triangle.  

 

 

(u) 

Figure 3.1: (u) Order given to edges of the first triangle. 

 

To create the other triangle, the process to create the first triangle is used again. 
However, in order to avoid that the edges of the next triangle cross the first ones another 
process has to be add. Figure 3.1(v)(i) shows a potential third point for the next triangle. 
The vector from the starting edge to this point is then compared to the vector from the 
first triangle. If both vectors point in the same direction, then, the potential third point is 
rejected. The case that the potential third point is accepted is pictured figure 3.1(v)(ii). 

 

               

(i)                                                                  (ii) 

Figure 3.1: (v) (i) the potential point pointed by the red vector is rejected since both red and blue 
vectors are pointing in the same direction. (ii) shows the case where the potential point is accepted. 

 

After the creation of the second triangle, the first edge is deleted from the FIFO 
list and the second edge becomes the first one. However, there are two particular cases: 

• When the creation of the next triangle edges includes one already created edge 
• When no acceptable points exist 

In the first case, illustrated figure 3.1(w), the creation of the triangle has to connect only 
two points. Indeed, only one edge is needed to complete the triangle. As a consequence, 
the already created edge has to be deleted from the FIFO list in order to not created 
duplicate triangles. Therefore, every time a triangle is created, it is required to read the 
whole FIFO list and detect the already made connections. 
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(i)                                (ii)                                 (iii) 

Figure 3.1: (w) (i) Edge processing (ii) Existing edge (iii) new edge processing 

In the second case, if there is no acceptable point for the current edge, for 
example, near the border of the cloud of points, the edge is removed from the FIFO list 
without the creation of any new edges. 

When the FIFO is empty all edges have been processed and the Delaunay 
triangulation of the cloud of points is complete [Preparata & Shamos, 1985]. 

 

The second method transforms the 3-dimensional problem in a 2-dimensional 
problem. Indeed, instead of creating triangle using a FIFO list to sort them, this second 
method scan in only one direction the points from the set of points. In figure 3.1(x), the 
green line represents the scanning line. When the scanning line encounters a point, the 
system tries to connect this point with the others points already scanned. To do this, it 
uses the same process as the precedent method to create the first triangle. Figure 
3.1(x)(iii) depicts the case of a rejected edge creation. The edge which links the point b 
to the point c is accepted since it does not create a triangle. However, the edge which 
links the point c to the point a is rejected. The purple circle is the circumcirlce of the abc 
triangle. The point d which is inside the purple circle is also co-circular with the points a 
and b, and it is closer than the point c. According to the properties of a Delaunay triangle, 
the point c is rejected as the third vertex of the Delaunay triangle . 

When the scan line reaches the end of the cloud of points all the points are 
connected and the mesh is complete. 

 

The two methods described above uses two different approaches. The first creates 
triangles starting from one edge and finding the appropriate third vertex to complete the 
triangle. The second starts from the third vertex and try to find the appropriate edge. 
Since the Delaunay triangulation is unique, the two methods give at the end the same 3D 
mesh. As it is not the main focus of this project to find the best way to create a 3D mesh, 
there is no comparison between the two methods. 
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(i)                               (ii)                                (iii) 

 

(iv)                                      (v) 

Figure 3.1: (x) (i) The scan line in green encounter the first point (ii) The first edge is created (iii) 
the creation of the abc triangle is rejected (iv) creation of Delaunay triangles (v) the process 

continue till the end of the cloud of points. 

 

3.2. Mesh filtering analysis 

This part is the analysis of the method chosen in the part 2.5 of this paper. The filtering 
occurs between the triangulation and the tessellation part, when the creation of the cloud 
of points is complete. 

As seen in the previous part 2.4.3, the method uses the density of 3D points to find 
errors due to unwanted reflections. Considering the point Pj(xj,yj,zj) which belong to the 
set of points S. The data cloud density of Pj is: 

𝐷𝐷𝑆𝑆𝑗𝑗  = �𝑃𝑃𝑖𝑖(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖)�
(𝑥𝑥𝑗𝑗 − 𝑈𝑈𝑥𝑥) <  𝑥𝑥𝑖𝑖 < (𝑥𝑥𝑗𝑗 + 𝑈𝑈𝑥𝑥)
(𝑦𝑦𝑗𝑗 − 𝑈𝑈𝑦𝑦) <  𝑦𝑦𝑖𝑖 < (𝑦𝑦𝑗𝑗 + 𝑈𝑈𝑦𝑦)
(𝑧𝑧𝑗𝑗 − 𝑈𝑈𝑧𝑧) <  𝑧𝑧𝑖𝑖 < (𝑧𝑧𝑗𝑗 + 𝑈𝑈𝑧𝑧)

� 

Where Ux, Uy, Uz are known fixed variables. 

And the density of Pj is: 

𝐷𝐷𝑒𝑒𝑛𝑛𝐷𝐷𝑖𝑖𝐷𝐷𝑦𝑦𝑗𝑗 = �(𝑃𝑃𝑗𝑗 ∈  𝐷𝐷𝑆𝑆𝑗𝑗 ) 

Since false 3D points are assumed to have a 3D density lower than the real 3D points, 
the right cloud of points have the following equation: 

𝑆𝑆 = �𝑃𝑃𝑗𝑗 �𝐷𝐷𝑒𝑒𝑛𝑛𝐷𝐷𝑖𝑖𝐷𝐷𝑦𝑦𝑗𝑗 > 𝐷𝐷𝑒𝑒𝑛𝑛𝐷𝐷𝑖𝑖𝐷𝐷𝑦𝑦𝑒𝑒𝑟𝑟𝑟𝑟𝑉𝑉𝑟𝑟𝐷𝐷 � 

Where 𝐷𝐷𝑒𝑒𝑛𝑛𝐷𝐷𝑖𝑖𝐷𝐷𝑦𝑦𝑒𝑒𝑟𝑟𝑟𝑟𝑉𝑉𝑟𝑟𝐷𝐷  is a variable fixed at the beginning. 
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[J. Chen et al, 1998] 

Figure 3.2(a) shows how the algorithm can be used in INROPA system. The errors 
far from the edges of the object are easily identified by the algorithm because there 
density is very low. However, the threshold fixed by the variable 𝐷𝐷𝑒𝑒𝑛𝑛𝐷𝐷𝑖𝑖𝐷𝐷𝑦𝑦𝑒𝑒𝑟𝑟𝑟𝑟𝑉𝑉𝑟𝑟𝐷𝐷  is not the 
only one which has to be adapted to the system. Indeed, the data cloud density depends 
on three different thresholds: Ux, Uy, Uz. These variables determine also the 3D density of 
a point since it is related to the data cloud density. 

 

                                 

(i)                                                                  (ii) 

Figure 3.2: (a) The cubes represent the 3D kernel used by the 3D data cloud density method, the 
blue one scans an error, the red one scans a real point (i) errors far from the edge of the 3D object. 

(ii) errors near the edge of the 3D object. 

 

To explain that, the figure 3.2(b) takes the problem in two dimensions. If the 
threshold Ux is too wide compare to the average distance between two points on the x-
axis, the density of errors will be the same as real points. This is depicted figure 3.2(b); 
the error point E has the same density as the point A, then the algorithm considers the 
point E as a real point. The same problem happens if the threshold Uy is too wide and it 
can be also extended in three dimensions with the threshold Uz. 

 

 

(b) 

Figure 3.2: (b) Ux is too wide. DensityE = DensityA = 3. 
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As seen before, the threshold Ux, Uy, Uz have to be calibrated. The variable Ux 
depends on the distance between 3D points on the x-axis. Hence, the calibration of Ux 
depends on the velocity of the conveyor and the frame rate of the camera: 

𝑈𝑈𝑥𝑥 = 𝜆𝜆
𝜆𝜆𝑐𝑐
𝑟𝑟𝑟𝑟 

Where Vc is the velocity of the conveyor, fr is the frame rate of the camera and λ 
an independent fixed variable. 

The threshold Uy and Uz depends on the focal length of the camera. Figure 3.2(c) 
shows how this parameter can change the distance between 3D points on the y-axis. 
Considering f the focal length of the camera and Δp the distance between the two 
illuminate points in the image plane. When the focal length f increase, Δp increase as 
well. This figure can be extended to the z-axis since during the 3D scanning, the object 
only translate on the x-axis. 

 

 

(c) 

Figure 3.2: (c) Influence of the focal length on the distance Δp between two illuminate points in 
the image plane. 

Characteristics of hardware are needed to calibrate those thresholds Ux, Uy, Uz. For 
the INROPA system, the distance between two points on the x-axis is 10mm. The 
distance between two points on the y-axis and z-axis is 1cm [K. A. Nissum et al, 2010]. 
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Part III 
 

Implementation 
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4. Implementation 

In this part the implementation of the filtering method described in part 3.2 is 
explained. First of all the design of the implementation is enounced and the choice of the 
technology used is justified. Then, the first prototype is explained following by a memory 
test which leads to an improvement of the first code. The second code is the final 
implementation provided in this paper. 

 

4.1. Design 

The existing system of INROPA is coded in C/C++. One of the requirements for 
this project is that the implementation has to be compatible with the current system. The 
choice to implement the method in C is then a logic choice. Moreover, the software has 
to be able to compute a cloud of millions points. Using a low-level programming language 
is more relevant since one of the success criteria is to have a low-time consuming 
software. The following part describes the algorithm used on the implementation. 

The input for the implementation is a .xyz file. The format of the xyz file used is 
as follows: 

 

Each line of the file corresponds to one point of the cloud of points. The simpler is the 
input file, the quicker is the processing of the file. The output file is also a .xyz file which 
can be triangulated into a 3D mesh. 

 

Flowchart of the algorithm 

Figure 4.1(a) is the flowchart of the algorithm used in the implementation of the 
3D data cloud density method. The first step is to read the xyz file. After storing all data 
into an array, each coordinates of each point are compared to each other in order to find 
the density of each point. Density values are then store into an array to be process after. 
If the density of a point is inferior to the threshold Densityerror, the point is rejected and 
not copied into the new xyz file. 

 

Integration of the implementation 

According to [K. A. Nissum et al, 2010], INROPA software doesn’t store the cloud of 
points and makes the triangulation of 3D points on the fly. The implementation made in 
this project only computes xyz file and returns a xyz file as well. A converter is then 
needed to change the stl file output of INROPA software into a xyz file. Then, a converter 
xyz into stl is also needed to give back a stl file to INROPA software. Figure 4.1(b) shows 
an overview of the integration. 
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(a) 

Figure 4.1: (a) Flow chart of the algorithm. 
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(b) 

Figure 4.1: (b) Overview of the implementation integration in INROPA system. 

 

4.2. 1st implementation 

The first implementation follows the flow chart depicted figure 4.1(a). The header 
of the implementation is as follows: 

 

In the declaration of variables, ux, uy and uz represent the three thresholds from 
the data cloud density. Those variables have to be calibrated following the rules 
enounced in the part 3.2. The variable Derror have to be calibrated depending of the 
minimum density of real points. 
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The core of the implementation is the comparison method. This method compares 
each point coordinates to another point coordinates as following: 

 

Comparisons are made between absolute values since the calculation is made on 
Euclidean distance. First, coordinates on x-axis are compared. If the Euclidean distance is 
superior that the threshold Ux, then, there is no need to compare the others coordinates. 
The same reasoning is made for the y coordinates. If the comparison point is considerate 
to be in the neighborhood of the compared point, the density of the compared point is 
increase by one. All density values are stored in a N dimension array. 

 

4.3. Memory test 

The first implementation gives good results in term of errors deletion. However, 
since the implementation is coded in C, the program is limited in memory by the stack 
address space. Indeed, the memory test reveals that the first implementation cannot 
compute a file of more than 130284 lines. 

This is due to the creation of the static array of the cloud of points: 

 

The stack address space cannot create an array of more than 130284 rows 
because the buffer space is limited. One solution of that problem is to read the file each 
time a new point is compared. This approach is made in the second implementation 
described in the following part. 

4.4. 2nd implementation 

Unlike the first implementation which creates N dimensions arrays, the second 
implementation only create a two dimensions array which will be mentioned in the 
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following as the comparison array. The first row of this array contains data of the 
compared point and the second row contains data of the comparison point. Each time the 
comparison loop starts again, the first row of the array has to be updated with data of 
the next point. To do that, the program needs to remember the number of the last line 
read.  In C, the notion of line in a file doesn’t exist. To read a file line by line, the 
function fseek() is used: 

 

The function fseek(File * stream, lont int offset, int origin) sets the position 
indicator associated with the stream to a new position defined by adding offset to a 
reference position specified by origin. Each time the comparison loop starts, the function 
fseek() is launched and positions the reader cursor at the beginning of the next line to 
read. Then the function fscanf() read the line and update the first  row of the comparison 
array. The function ftell() is used to remember the position of the reader cursor in order 
to read the next line during the forthcoming comparison loop. 

Another difference between the first and the second implementation is the fact 
that density values are not anymore store in an N dimensions array. Instead, the density 
value of the compared point is stored in a simple variable. At the end of each comparison 
loop, the density value is directly compared to the density threshold: 

 

Since in this implementation, there isn’t creation of N dimensions array, the problem of 
memory is solved.   
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5. Tests 

In this part, several tests are performed in order to determine if the 
implementation can answer the problematic enounced in the problem statement part 
2.1.1. To make the tests, models have to be generated. In the first sections, the 
implementations of testing tools are described. Then, two tests are performed in order to 
know if the implementation reaches the success criteria. 

 

5.1. Implantation of the model generator 

In order to perform tests, a model of a real cloud of points needs to be generated. 
Figure 5.1(a) shows how the model has to be, according to [K. A. Nissum et al, 2010]. 
This is the representation of a metallic beam. Since metallic beam are made of shiny 
material like polished metal, it is relevant to create a model from this object. Moreover 
the shape of these objects is susceptible to give spurious reflections. 

 

(a) 

Figure 5.1: (a) Shape of the model. 

 

5.1.1. Point generator 

The first part of the implementation is the point generator. Each face is 
decomposed into several lines which are generated one after the other. Figure 5.1(b) 
show how a face is generated. 

 

(b) 

Figure 5.1: (b) Generation of a face by the point generator. Each picture is taken at a different 
time of the creation of a face. 
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Each face is generated separately without taking account the points created by 
the other faces. Therefore, the point generator will create duplicate points which will 
distort the 3D data cloud density. Figure 5.1(c) shows an example of this phenomenon. 
The first face is generated on the xy plane. Then the second face is generated on the xz 
plane. The red points represent the duplicate points. 

 

(c) 

Figure 5.1: (c) The creation of two faces which generate duplicate points (in red). 

5.1.2. Deletion of duplicates 

To generate a workable, the model generator must delete all duplicate points. To 
do that, a simple algorithm is used to compare all the points with each other: 

 

When a point is detected as a duplicate of another one, this point is not written in 
the new xyz file and the algorithm starts to compare the next point. Moreover, to 
optimize the algorithm, the point number one is compared to all the other N points. Then 
the point number two is compared to all other N points minus the first point and so on. 
So the point number n is compared to N-(n-1) next points. 

 

5.2. Implementation of the converter stl to xyz 

To confirm that our implementation work in real situation, the implementation of a 
converter stl file to xyz file is necessary. When storing a stl file, there are two 
fundamentally different ways to do it; as ASCII or binary files. The binary stl file 
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describes each triangle with twelve 32-bit-floating point numbers whereas the ASCII stl 
file described each triangle twelve floating point numbers. In order to extract coordinates 
of points, an ASCII stl file is used. 

The structure of ASCII stl file is as following: 

 

Each triangle is defined by a normal vector and three vertexes. To convert a stl 
file into a xyz file, the first step is extract the vertex coordinates. Then, since each vertex 
is shared by three triangles, the converter needs to delete all duplicate points.  

To read the file, the function fgetc() is used. When the program finds the words vertex, it 
starts to write the coordinates of the vertex in a xyz file. 

The next step is to delete the duplicate points. Theoretically, the program to delete 
duplicate points described in the previous 5.1.2 can manage to do it in the resulting xyz 
file. However, a real stl file usually contains millions of faces which mean even more 
vertex coordinates. The time of computing all those points with the previous program can 
be a real problem. Thus, the following Linux/UNIX command line can be use: 

sort file.xyz | unic > newfile.xyz 

 

5.3. Velocity test 

To do the velocity test, several models have to be created. Indeed, the velocity of 
the implementation depends directly on the number of points of the cloud of points. All 
models have the same shape, only the number of points is different. Figure 5.3(a) shows 
the first model with 2000 points. 

 

(a) 

Figure 5.3: (a) Testing model with 2000 points. 
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5.3.1. Test from model 

The velocity test consists on running the implementation with several models. For 
each model, the number of points is changed, starting from 2000 points to 20000 points, 
each time increasing the number of point by 2000. Then, each time the number of points 
increases by 10000 until 100000. Finally, the number increases by 100000 each time 
until 1000000. 

The success criterion for this test is to be able to compute a cloud of 1000000 
points in less than 30s. 

 

Results 

The results for the first series of models is presented figure 5.3(b). It is obvious 
that the implementation is far too slow. Therefore, the success criterion of time 
consuming is not reach with this implementation. 

 

(b) 

Figure 5.3: (b) Results of the time processing of the 1st series of models. 

 

Improvement in the implementation 

The first velocity test shows that the implementation is far too slow to be 
workable. This problem comes from the fact that for each comparison, the program 
needs to read the xyz file. Another solution to avoid the memory errors from the stack 
address space is to use the dynamic allocation of memory. Then, the only limits of 
memory come from the hardware of the computer which runs the program. 

The implementation is the same as the first implementation described in part 4.2, 
but instead of creating fixed N dimensions arrays, all arrays are dynamically allocated via 
the function malloc(): 

 



CVMT 2010 
Aalborg University: Department of Electronic System 
 

Page 53 sur 64 
 

The velocity test is then remade with the new implementation. 

Results 

The results for the first series of models is presented figure 5.3(c). Compare to 
the first implementation, the time of processing decrease by 99%. For cloud of points of 
less than 20000 points, the implementation reaches the success criterion of time 
consuming. 

 

 

(c) 

Figure 5.3: (c) Results of the time processing of the 1st series of models. 

 

The results for the second series of models is presented figure 5.3(d). The time of 
processing is still decent: to process a cloud of 100000 points, the implementation needs 
around two minutes. However, the success criterion of time consuming is reached only if 
the cloud of points is composed by less than 50000 points. 

 

 

(d) 

Figure 5.3: (d) Results of the time processing of the 2nd series of models. 
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To have an idea how the time consuming grows depending on the number of 
points of the model, the results for the second series of models is presented figure 5.3(e). 
For a cloud of one million points, the time processing exceeds the 30 seconds success 
criterion. 

 

 

(e) 

Figure 5.3: (e) Results of the time processing of the 3rd series of models. 

 

 

5.4. Quality test 

The quality test consists on processing 4 different models and finding if the 
implementation detects and deletes the errors. Each of these models has one kind of 
errors presented in part 2.1.1. Figure 5.4(a) and figure 5.4(b) depict the 4 models used 
in these tests. Each point is separated of 0.5 units from each others. 

 

             

(i)                                                              (ii) 

Figure 5.4: (a) (i) the first model: the error is a single point far from the edge of the object      
(ii) the second model: the error is a single point near to the edge of the object. 
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(i)                                                              (ii) 

Figure 5.4: (b) (i) the third model: the error is a blob far from the edge of the object (ii) the forth 
model: the error is a blob near to the edge of the object. 

During the test, the thresholds ux, uy, uz of the data cloud density is varied five times; {1, 
2, 5, 10}. Each time, the threshold Densityerror is varied from 8 to 2. 

5.4.1. Test from model 

The implementation is run 8 times for each type of error. The following table 
summarizes the results of the 32 tests where “Ok” means that all the errors are deleted 
and “No” means that none of the errors are deleted: 

 Model n°1 Model n°2 Model n°3 Model n°4 

Ux = Uy = Uz = 1 

Densityerror = 8 
Ok Ok Ok Ok 

Ux = Uy = Uz = 1 

Densityerror = 2 
Ok 

Half: points 
closest each 

others 

Half: points 
closest each 

others 
Ok 

Ux = Uy = Uz = 2 

Densityerror = 8 
Ok Ok 

Half: points 
closest to the 

edge 
No 

Ux = Uy = Uz = 2 

Densityerror = 2 
Ok -1: the farthest 

from the blog 

-1: the farthest 
from the blog 
and the edge 

No 

Ux = Uy = Uz = 5 

Densityerror = 8 
Ok Ok No No 

Ux = Uy = Uz = 5 

Densityerror = 2 
Ok No No No 

Ux = Uy = Uz = 10 

Densityerror = 8 
Ok No No No 

Ux = Uy = Uz = 10 

Densityerror = 2 
Ok No No No 
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The test is relevant for the model n°1, in any circumstances. Obviously, if the 
range of the 3D kernel is as big as the distance the error lies from the object, the result 
would be different. For an isolated blob, the densityerror must not be equal or inferior to 
the number of points which constitute the blob. Otherwise, there is a risk that the error is 
not detected since points from the blob increase their density each other. For the models 
number 3 and 4, the smaller 3D kernel range is, the better the detection will be.  

 

5.4.2. Test on INROPA file 

The last step of the test is to compute INROPA file to confirm that the 
implementation work on a real file. The stl file of INROPA has more than 1.2 millions of 
points. In order to decrease the time of processing, only a chosen part of the cloud of 
points will be process. Figure 5.4(c) shows a representation of the stl file of INROPA.  

 

(c) 

Figure 5.4: (c) Representation of the stl file of INROPA. 

Using the converter stl to xyz implemented on the part 5.2, the respective xyz file 
is created. Figure 5.4(d) shows the representation of this cloud of points via Matlab. The 
red area represents the part of the cloud of points which will be process. Both blob error 
and single point error are present inside this area. 

 

 

(d) 

Figure 5.4: (d) Selection of the test area of INROPA file. 
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There is 38657 points in the selected area. The process of this set of points last 
13.492 s. To find the best thresholds, several tests were performed. Figure 5.4(e) shows 
one of the several tests. One of the most efficient thresholds setting is: Ux = 7, Uy = 10, 
Ux = 20, Denserror = 9 (figure 5.4(f)). 

 

(e) 

Figure 5.4: (e) One of the several test to find the right thresholds settings. 

 

 

(f) 

Figure 5.4: (f) Efficient thresholds setting. 
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Part V 
 

Project closure 
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6. Discussion 

This part contains a discussion of the problem areas which have been faced 
throughout the project. The results of the test chapter are then discussed to give a 
direction for further development. 

 

This project has been proposed by the company INROPA who has specific initial 
requirements. The solution had to be software based since the modification of the 
hardware could be problematic. The choice of the system to analyze was therefore 
restricted to two methods. The segmentation filtering and the 3D data cloud density 
method. The INROPA system captures and process images from camera on the fly which 
means that it is difficult to have raw video data to test and implement the segmentation 
filtering method. This leads inevitably to the choice of the 3D data cloud density method. 

 

Implementation evaluation 

To implement a method properly, raw data to process are needed. The system of 
INROPA creates a mesh from 3D points on the fly. Thus, the raw cloud of points is not 
accessible. However, the system stores the mesh construction in an STL file. The ASCII 
STL file from INROPA contains the coordinates of more than 2 millions of triangles and 
weight 714 megabytes. Free visualization software doesn’t have the possibility to read an 
ASCII STL file of 2 millions. The initial implementation used a generated cloud of points 
to test the efficiency of the program. Hence, a new implementation was needed since a 
memory error occurs. The next implementation was then too slow to perform the testing 
part. Finally, a third implementation had to be made. The one used in the testing part. 

Test evaluation 

During the testing part, the idea was to create model to perform different tests 
since the raw stl file was assumed to be inoperable. The creation of a generator of cloud 
of point was needed. After the implementation of the converter stl to xyz done, news 
requirements arise. Indeed, during the velocity test, it occurs that the velocity law is not 
a linear function: the time of processing increases very fast when the number of points 
increases. Even optimized, the implementation is still too slow considering the 
requirements of INROPA. 

Concerning the quality tests, since the implementation takes more than 3 hours to 
process the real cloud of point from INROPA, it was necessary to partition the cloud of 
point in order to compute them. 

Future development 

The main improvement of the current implementation is the time of processing. 
Indeed, this is the only success criterion not reached. The logic of comparison needs to 
be revised. Another way to improve it would be to automatically cluster huge cloud of 
point into smaller one. Indeed, the velocity law is not linear; processing multiple small 
clouds of points would decrease the total time of processing. 

Moreover an automatic way to calibrate thresholds can be found. It would make 
the system more polyvalent and more robust. 
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7. Conclusion 

The main purpose of the project was to implement a method to remove errors from 
spurious reflection due to uncontrolled reflection on shiny surface. This project was 
proposed by the company INROPA which has a desire to find a software based solution to 
avoid errors from spurious reflection. Through a preliminary analysis of four eventual 
solutions, the 3D data cloud density method has been chosen considering the 
requirements of INROPA. 

The creation of a tree-dimensions model can be divided into four main steps: the image 
data acquisition, the image segmentation, the triangulation and the mesh construction. 
Since the solution has to be run between the triangulation and the mesh construction, 
the steps to create a tree-dimensions model are described in the analysis part to have a 
better understanding of the process. 

The main idea of the 3D data cloud density method is to find the number of nearby other 
3D points. The most basic way to store a cloud of point is to use the xyz file format. 
Therefore, the implementation has to be able to read a xyz file and to compare all points 
between each others. In the implementation part prototype are made. Those prototypes 
are then tested.  

Based on the tests performed, it is concluded that the 3D data cloud density method is 
an efficient technique to find errors from spurious reflections. The velocity of the 
technique depends essentially on the implementation. However, for an industrial usage, 
the implementation created in this paper has to be improved in order to decrease the 
processing time. 
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9. Appendix A: The enclosed CD-ROM 

 

The enclosed CD-ROM has the following contents: 

 

1. Implementation/ 
The source code of the final implementation developed in this project. 
 

2. Report/ 
The final project report in portable document format (pdf) 
 

3. Application/ 
The source code of the .xyz viewer in Matlab 
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