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Preface
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The report serves as a master thesis in computer science for Lasse Jacobsen, Morten
Jacobsen and Mikael H. Møller and is a continuation of a DAT5-project, documented
in a report entitled Extending Timed-Arc Petri Nets [27].

Chapter 1 (Introduction), Chapter 2 (Preliminaries), Chapter 3 (Extended Timed-
Arc Petri Nets) and Section 4.1 (Problems of Interest) have for the most part been
overtaken from the DAT5 report and reused in this thesis. The verification times
for UPPAAL in Section 12.2 have also been overtaken from previous experiments.
Further, parts of Chapter 11 (TAPAAL) have to a lesser extent been overtaken from
the DAT5 report. Finally, Appendix A (except for the last section) have been included
from the DAT5 report for comparison.

Furthermore, a paper entitled Undecidability of Coverability and Boundedness for
Timed-Arc Petri Nets with Invariants has been published (see [28]). The main parts
of this paper have been reprinted in Section 4.3.

We would like to thank our supervisor Jǐŕı Srba for his feedback and suggestions, as
well as discussions throughout the project. Furthermore, we would like to thank Ken-
neth Yrke Jørgensen for his help and ideas regarding TAPAAL and the translations.
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Chapter 1

Introduction

Increasing demands on the reliability and safety of embedded software systems have
fueled the need for extensive research into formal modeling and verification. Often,
these embedded systems rely on timing-constraints (e.g. deadlines). To this end,
discrete models have been extended to time-dependent models such as Networks of
Timed Automata (NTA) [5, 6], Time Petri Nets (TPN) [33, 34] and Timed-Arc Petri
Nets (TAPN) [13, 24]. These models are among the most studied time-dependent
models. For a comparative overview of these models the reader is referred to [40].

Timed automata (TA) were introduced by Alur and Dill [5, 6]. A TA is a time-
extension of a finite automaton where continuous and synchronous clocks can be used
to model time constraints. An NTA is then a parallel composition of TA where different
automata are allowed to communicate over channels.

In 1962, Carl Adam Petri introduced the Petri net model in his dissertation [37].
Since then, Petri nets has become a well-established and popular model of distributed
systems, in part thanks to their intuitive graphical representation. TPN is a well-
known time extension of Petri nets which was introduced by Merlin and Farber [33, 34].
In this model, time intervals are assigned to transitions which denote its earliest and
latest firing time. This can be intuitively explained as each transition having its own
clock which is ticking once the transition becomes enabled. A transition must fire
before its latest firing time. However, it is possible that an enabled transition becomes
disabled before it is fired (e.g. by firing another transition).

Another well-known time-extension of Petri nets is TAPN, introduced by Bolognesi
et al. [13] and Hanisch [24]. In TAPN each token is assigned a real number indicating
its age. Time intervals on arcs from places to transitions restrict which tokens can be
used to fire transitions. Note that both discrete and continuous time versions of the
timed-arc Petri net model have been introduced. In this report, we will focus on the
continuous time version of the model. Recent work on the verification tool TAPAAL
[1] by Byg et al. [17] extended the timed-arc Petri net model with invariants on places
which gives an upper bound on the age of tokens in a place and so-called transport
arcs which allow for transporting tokens between places while preserving their ages.

Recently, a substantial amount of research has focused on the correspondence be-
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Chapter 1 – Introduction

tween time-dependent formalisms. This has led researchers to develop several transla-
tions between these formalisms (see e.g. [12, 13, 15, 17, 18, 39]) in order to establish
a correspondence between them up to some notion of equivalence (e.g. bisimula-
tion [15, 18]). However, each translation requires a distinct proof of correctness, even
though the translations often use the same ideas, e.g. simulating a single step in one
model by a number of steps in another model. For a more complete overview of these
translations the reader is referred to [36, 40].

In this thesis, we study TAPN extended with invariants, transport arcs and in-
hibitor arcs. We prove that invariants alone is enough to make boundedness and cov-
erability undecidable, which was published in a recent paper [28] (the results of this
paper are included in Section 4.3). In respect to formal verification of time-dependent
models we present Timed Computation Tree Logic (TCTL) in its full generality, un-
like much work on TCTL where maximal runs are not handled in full detail (see e.g.
[18, 36]). Further, we identify a class of translations that preserve TCTL (or a specific
subset of TCTL) by developing a general framework (motivated by [18]), which works
at the level of timed transition systems, making it independent of the modeling for-
malism. We then develop two novel translations from TAPN to NTA and apply the
framework to these in order to prove that they both preserve the full TCTL. Following
this, we further extend the TAPN model such that each token carries both its age and
an integer value and sketch how to extend the translations. Finally, we compare the
performance of our translations to previous translations from TAPN to NTA.

1.1 Introductory Example

We shall now informally introduce the model we use in this report, called timed-arc
Petri net with inhibitor arcs, transport arcs and invariants. To do so we shall use a
model of a rollercoaster which is illustrated in Figure 1.1.

The model of the rollercoaster contains a number of places (drawn as circles),
transitions (drawn as black squares) and arcs from places to transitions or transitions
to places. Time intervals are associated with arcs from places to transitions. Further,
the places in the model may contain tokens, each of which is associated with a real
number signifying the age of the token. In the example, there are two tokens in the
place called station, both with age 0.0. Invariants may be assigned to places which
restrict the ages of the tokens in that place. In our example, the place first half has
an associated invariant of [0, 4] (written inv: ≤ 4). There are different types of arcs:
normal arcs (normal arrow tip), transport arcs (diamond arrow tip) and inhibitor arcs
(circle arrow tip). The precise semantics of the model will be made clear later in this
report. Intuitively, the normal arcs from places to transitions will consume tokens of
appropriate ages and normal arcs from transitions to places will produce tokens of age
zero. A transport arc works in a similar fashion except that any token produced will
have the same age as the one consumed. Inhibitor arcs are used to test for the absence
of tokens of certain ages in places.

The idea of the model is that we have two trains for the rollercoaster. The roller-
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Section 1.1 – Introductory Example

station #2

{0.0, 0.0}

first half
inv: ≤ 4

second half
inv: ≤ 7

emergency

depart halfway

return

fail1 fail2repair

[0,∞) [0,∞
)

[4, 4]:1

[0,∞)

[0,∞
)

[7, 7]

[0,∞)

[0
,∞

)
[0,∞

)

[5
,∞

)

1

Figure 1.1: A rollercoaster modeled as a timed-arc Petri net with inhibitor arcs, trans-
port arcs and invariants.

coaster must ensure the safety of the passengers which means that the two trains
cannot be in the same part of the track at once. Further, since a train may experience
some sort of failure at any given time during its trip around the rollercoaster, the
system must ensure that the other train is stopped when there is an emergency. Thus,
a train can only leave the station and enter the first half of the track if there is no
emergency and no other train in the first half of the track (inhibitor arcs are used to
check for the absence of tokens in these places) and similarly for entering the second
half of the track. As a concrete example, say the first train fails in the second half
of the track while the second train is on the first half. In this case, the second train
will be stopped before it enters the second half of the track so there can be no crash
between the two. It takes 4 time units for a train to run through the first half of the
track and 3 time units to run through the second part. Thus, a full trip around the
track takes 7 time units. Once the first train enters the second half of the track, the
other train may leave the station. In the event that a train fails, it takes at least 5
time units to repair it and return it to the station.

Once we have a model of a system, we want to verify if certain properties are
satisfied. For instance, we might want to verify if it is possible for the two trains to be
in the same part of the track of the rollercoaster at once (except for the station). This
property is a safety property because the proof of the property is a finite sequence of
steps describing how to reach the situation where both trains are in the same part of
the track. Naturally, if we can find such a sequence, we can conclude that there is an
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Chapter 1 – Introduction

error in the mode,l as it should not be possible for the two trains to be in the same
part of the track at once. As another example of a property consider one that checks
if it is possible for the two trains to run forever without any emergency. This is a
liveness property because the proof is an infinite sequence of steps describing how the
trains can run forever without an emergency.
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Chapter 2

Preliminaries

In this chapter, we shall introduce some basic concepts and notation which we will use
through this report.

We let N = {1, 2, 3, . . .} denote the set of natural numbers and we let N0 = {0}∪N.
In a similar way, we let R denote the set of real numbers and R≥0 denote the set of
non-negative real numbers (including 0). We shall use the notation 2S , for some set
S, to denote the power set of S, that is, the set of all subsets of S.

A multiset is a pair S = (D, f) where D is a set and f : D −→ N0 is a multiplicity
function that for a given element d ∈ D returns the number of occurrences of d in
the multiset. We will now define some of the standard operators on multisets. Let
S1 = (D, f1) and S2 = (D, f2) be multisets over the same set D. Then count, union,
subtraction, inclusion, size and membership are defined as

• S1(d) = f1(d) for all d ∈ D,

• (S1 ∪ S2)(d) = f1(d) + f2(d) for all d ∈ D,

• (S1 \ S2)(d) = max(0, f1(d)− f2(d)) for all d ∈ D,

• S1 ⊆ S2 if ∀d ∈ D . f1(d) ≤ f2(d),

• |S1| =
∑
d∈D

f1(d), and

• d ∈ S1 if f1(d) > 0.

For notational convenience, we will use multisets as ordinary sets with the defined
operations implicitly interpreted over multisets. An example of the union operator is
{2, 2, 4.5} ∪ {2, 3.1} = {2, 2, 2, 3.1, 4.5}. A multiset S is finite if |S| < ∞. We let the
set of all finite multisets over a set S be denoted by B(S).

For a binary relation R on some set X, the reflexive closure of R is a binary relation
R′ such that,

• R′ is reflexive, i.e. xR′ x for all x ∈ X,
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Chapter 2 – Preliminaries

• R ⊆ R′, and

• for any relation R′′, if R ⊆ R′′ and R′′ is reflexive, then R′ ⊆ R′′, that is, R′ is
the smallest reflexive relation containing R.

Similarly, the transitive closure of R is a binary relation R′ such that,

• R′ is transitive, i.e. if xR′ y and y R′ z then xR′ z for all x, y, z ∈ X,

• R ⊆ R′, and

• for any relation R′′, if R ⊆ R′′ and R′′ is transitive, then R′ ⊆ R′′, that is, R′ is
the smallest transitive relation containing R.

For a binary relation −→ over some set X, we shall use the notation −→∗ to mean
the reflexive and transitive closure of −→.

We shall now define the notion of a timed transition system.

Definition 1 (Timed Transition System) A timed transition system (TTS) is a
tuple T = (S,−→,AP, µ) where

• S is a set of states (or processes),

• −→⊆ (S×S)∪(S×R≥0×S) is a relation on states called the transition relation
consisting of discrete actions and time delays,

• AP is a set of atomic propositions, and

• µ : S −→ 2AP is a function assigning sets of true atomic propositions to states.♦

We write s −→ s′ (resp. s
d−→ s′ for some d ∈ R≥0) instead of (s, s′) ∈−→ (resp.

(s, d, s′) ∈−→ for some d ∈ R≥0) for some s, s′ ∈ S.
As evident by the definition, there are two types of transitions in a TTS. Transi-

tions of the type s −→ s′ are ordinary transitions that result from performing actions.

Transitions of the type s
d−→ s′ for some d ∈ R≥0, are delay (or time-elapsing) transi-

tions. For s
d−→ s′ we shall sometimes refer to s′ as s[d]. We write s −→ (resp. s

d−→
for some d ∈ R≥0) whenever s −→ s′ (resp. s

d−→ s′ for some d ∈ R≥0) for some s′ ∈ S
. Similarly, we write s 6−→ (resp. s 6d−→ for some d ∈ R≥0) whenever there is no state

s′ such that s −→ s′ (resp. s
d−→ s′ for some d ∈ R≥0).

We require that the TTS satisfy the following standard conditions for delay tran-
sitions (see e.g. [12]). For all d, d′ ∈ R≥0 and s, s′, s′′ ∈ S we have:

1. Additivity: if s
d−→ s′ and s′

d′−→ s′′ then s
d+d′−→ s′′,

2. Continuity: if s
d+d′−→ s′′ then s

d−→ s′
d′−→ s′′ for some s′,

3. Zero delay: s
0−→ s for each state s, and

6



4. Determinism: if s
d−→ s′ and s

d−→ s′′ then s′ = s′′.

The first requirement states that if we can delay for d time units and thereby reach
a state s′, and subsequently delay d′ to reach a state s′′ then we can also delay d+ d′

time units from s and reach s′′. The second requirement states the inverse of the first,
that is if we can delay for d + d′ time units in s to reach s′′, then we can also do
two subsequent delays of d and d′ and reach the same state (through the intermediate
state s′). The third requirement states that the only state we can reach from a state
s by delaying 0 time units is s itself. Finally, the fourth requirement states that delay
transitions are deterministic, i.e. we will always reach the same state from a state s
when we delay d time units.
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Chapter 3

Extended Timed-Arc Petri Nets

In this chapter, we shall explore our extension of the timed-arc Petri net model. Specif-
ically, our model is an extension of the work by Byg et al. [17]. We extend their model
with inhibitor arcs.

3.1 Basic Definitions

We shall now define our extended timed-arc Petri net model. We will first define the
set of well-formed time intervals as the subset of time intervals satisfying the following
abstract syntax where a ∈ N0, b ∈ N and a < b:

I ::= [a, a] | [a, b] | [a, b) | (a, b] | (a, b) | [a,∞) | (a,∞) .

We denote the set of all well-formed time intervals by I. Further, the set of all well-
formed time intervals for invariants is denoted IInv and is defined according to the
following abstract syntax:

IInv ::= [0, 0] | [0, b] | [0, b) | [0,∞) .

The predicate r ∈ I is defined for r ∈ R≥0 in the expected way.

Definition 2 (TAPN) A Timed-Arc Petri Net with invariants, inhibitor arcs and
transport arcs, abbreviated TAPN, is a tuple N = (P, T, F, c, Ftarc , ctarc , Finhib , cinhib , ι)
where

• P is a finite set of places,

• T is a finite set of transitions such that P ∩ T = ∅,

• F ⊆ (P × T ) ∪ (T × P ) is a set of normal arcs called the flow relation,

• c : F |P×T −→ I is a function assigning time intervals to arcs from places to
transitions,
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Chapter 3 – Extended Timed-Arc Petri Nets

• Ftarc ⊆ (P ×T ×P ) is the set of transport arcs that satisfy for all (p, t, p′) ∈ Ftarc

and all r ∈ P :(
(p, t, r) ∈ Ftarc ⇒ p′ = r

)
∧
(
(r, t, p′) ∈ Ftarc ⇒ p = r

)
∧

(p, t) /∈ F ∧ (t, p′) /∈ F,

• ctarc : Ftarc −→ I is a function assigning time intervals to transport arcs,

• Finhib ⊆ P × T is the set of inhibitor arcs satisfying for all (p, t) ∈ Finhib and all
p′ ∈ P

(p, t) /∈ F ∧ (p, t, p′) /∈ Ftarc ,

• cinhib : Finhib −→ I is a function assigning time intervals to inhibitor arcs, and

• ι : P −→ Iinv is a function assigning invariants to places. ♦

Note that we shall sometimes refer to less general models than the one above. For this
we will use a special abbreviation: TAPN(inv) refers to a timed-arc Petri net model
extended with invariants, TAPN(tarc) refers to one extended with transport arcs and
TAPN(inhib) refers to one extended with inhibitor arcs.

For a given transition t ∈ T we will define the preset of t as the set of all input
places and the postset as the set of all output places. Formally, the preset is defined
as •t = {p ∈ P | (p, t) ∈ F ∨ ∃p′ ∈ P . (p, t, p′) ∈ Ftarc}. Note that the places from
which there are inhibitor arcs to the transition t are not included in the preset. For
our purposes we will only need the preset to refer to all places from which tokens will
be consumed when firing t, hence the exclusion. Similarly, the postset is defined as
t• = {p ∈ P | (t, p) ∈ F ∨ ∃p′ ∈ P . (p′, t, p) ∈ Ftarc}.

We say that a transition t is of degree 2 if |•t| = |t•| = 2. We say that a TAPN N
is of degree 2 if all transitions in the net are of degree 2.

3.2 Example

In order to provide some intuition for the TAPN model before introducing the formal
semantics, we will now give an example which introduces the various features of the
model in a step-by-step manner. We will start with a basic timed-arc Petri net and then
gradually decorate that example with transport arcs, invariants and finally inhibitor
arcs while explaining the intuition behind the change in behaviour of the net, induced
by these additions.

The basic timed-arc Petri net is presented in Figure 3.1. It includes two transitions
t0 and t1 and 5 places pi, 0 ≤ i ≤ 4. There are tokens of age 0.0 in the places p0, p1
and p2. Initially, only t0 is enabled because its input place p0 contains a token of an
age which satisfies the constraint on the arc from p0 to t0. Transition t1 requires a
token of any age in p1 but also a token of an age in the interval [4, 5] in p2 which is
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p0

0.0

p1

0.0

p2

0.0

p3

p4

t0

t1

[0,∞)

[0,∞)

[4,
5]

Figure 3.1: A basic timed-arc Petri net.

why t1 is not enabled initially. Since t0 is enabled, we can fire it whereby we would
remove a token of an appropriate age from p0 and produce a token of age 0.0 in each
of the places p3 and p4. However, we could also choose to do a time delay of, say, 4.5
time units, whereby all tokens in the net would grow 4.5 time units older. Since all
tokens are now of age 4.5 both t0 and t1 are enabled since both would have tokens of
appropriate ages in all their input places.

Let us now introduce transport arcs into our example net. Specifically, we will
replace the normal arcs from p0 to t0 and from t0 to p4 with a transport arc from
p0 through t0 to p4 as illustrated in Figure 3.2. Note that the : 1 on the transport
arc is there to help distinguish where each token goes in case we have more than one
transport arc through the transition.

p0

2.5

p1

2.5

p2

2.5

p3

p4

t0

t1
[0,∞)

[4,
5]

[0,∞):1

: 1

Figure 3.2: A timed-arc Petri net with transport arcs.

For the sake of illustration, assume that we have initially made a time delay of
2.5 time units such that all tokens are now of age 2.5. Transition t0 is still the only
enabled transition in net at this point, however there is a difference when we choose
to fire t0. By firing t0 we will still remove a token of appropriate age from p0 and
produce a token of age 0.0 in the place p3 as before. However, due to the transport
arc we will produce a token at p4 of the same age as the token we removed from p0,

11



Chapter 3 – Extended Timed-Arc Petri Nets

i.e. of age 2.5 in this case. In this way, the transport arcs allow us to preserve the age
of tokens as we transport them around the net.

Let us now add invariants to our example net. Specifically, we will add invariants
to the places p2 and p4 that disallow tokens older than 5, as illustrated in Figure 3.3.

p0

5.0

p1

5.0

p2

5.0

inv: ≤ 5

p3

p4

inv: ≤ 5

t0

t1
[0,∞)

[4,
5]

[0,∞):1

: 1

Figure 3.3: A timed-arc Petri net with transport arcs and invariants.

Note that by convention, if no invariant is given for a place then this implicitly
means that the invariant for this place is [0,∞). Assume that we have done a time
delay such that all tokens are of age 5.0. At this point we cannot do any further time
delays because that would violate the invariant at p2. We are forced to fire either t0 or
t1, both of which are enabled. Thus, invariants facilitate urgency in the model. One
of the particularities of the use of invariants and transport arcs is demonstrated by
the invariant of the place p4, which has implications for the transition t0 because of
the transport arc from p0 through t0 to p4. Since transport arcs preserve the ages of
tokens we can only fire t0 when there is a token of age smaller than or equal to 5 in
p0, otherwise the token produced at p4 would violate the invariant on that place.

Finally, let us introduce inhibitor arcs into our example. Specifically, we will replace
the arc from p2 to t1 with an inhibitor arc as illustrated in Figure 3.4. Intuitively,

p0

0.0

p1

0.0

p2

0.0

inv: ≤ 5

p3

p4

inv: ≤ 5

t0

t1
[0,∞)

[0,∞):1

: 1

[4,
5]

Figure 3.4: A timed-arc Petri net with transport arcs, invariants and inhibitor arcs.
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an inhibitor arc is the opposite of a normal arc. For instance, t1 will now be enabled
whenever there is a token of any age in p1 and no token with an age which belongs
to the interval [4, 5] in p2. Thus, initially both t0 and t1 are enabled since there are
tokens in p0 and p1 with appropriate ages, and there is no token with an age between
4 and 5 in p2. In this way, inhibitor arcs allow us to test for the absence of tokens of
a certain age in an input place.

This concludes our introductory example to the various features of the TAPN
model.

3.3 Semantics

We will now define the semantics of the TAPN model. To do so, we shall first define
the concept of a marking on a TAPN.

Definition 3 (Marking) Let N = (P, T, F, c, Ftarc , ctarc , Finhib , cinhib , ι) be a
TAPN. A marking M on N is a function M : P −→ B(R≥0), such that for every place
p ∈ P and every token x ∈ M(p) it holds that x ∈ ι(p). The set of all markings over
N is denoted M(N). ♦

A marked TAPN is defined as a pair (N,M0) where N is a TAPN and M0 is the
initial marking on N . Note that we only allow initial markings where all tokens have
age 0.

Definition 4 (Enabledness) Let N = (P, T, F, c, Ftarc , ctarc , Finhib , cinhib , ι) be a
TAPN. We say that a transition t ∈ T is enabled in a marking M if

• in all places p ∈ •t where (p, t) ∈ F there is a token x with an age belonging to
the time interval on the arc from p to t, i.e.

∀p ∈ •t s.t. (p, t) ∈ F . ∃x ∈M(p) . x ∈ c(p, t) ,

• in all places p ∈ •t where (p, t, p′) ∈ Ftarc for some p′ ∈ P then moreover the age
of the token x in p must satisfy the invariant at p′, i.e.

∀p ∈ •t s.t. (p, t, p′) ∈ Ftarc . ∃x ∈M(p) . x ∈ ctarc(p, t, p′) ∧ x ∈ ι(p′) ,

• in all places p ∈ P where (p, t) ∈ Finhib there is no token with an age belonging
to the time interval on the inhibitor arc from p to t, i.e.

∀p ∈ P s.t. (p, t) ∈ Finhib . ¬∃x ∈M(p) . x ∈ cinhib(p, t) . ♦

Definition 5 (Firing Rule) Let N = (P, T, F, c, Ftarc , ctarc , Finhib , cinhib , ι) be a
TAPN, M some marking on N and t ∈ T some transition of N . If t is enabled in the
marking M , it can be fired, whereby we reach a marking M ′ defined as

∀p ∈ P . M ′(p) =
(
M(p) \ C−t (p)

)
∪ C+

t (p)

where

13



Chapter 3 – Extended Timed-Arc Petri Nets

• for every p ∈ P such that (p, t) ∈ F
C−t (p) = {x} where x ∈M(p) and x ∈ c(p, t),

• for every p ∈ P such that (t, p) ∈ F
C+
t (p) = {0},

• for every p, p′ ∈ P such that (p, t, p′) ∈ Ftarc

C−t (p) = {x} = C+
t (p′) where x ∈M(p), x ∈ ctarc(p, t, p′) and x ∈ ι(p′), and

• in all other cases we set the above sets to ∅.

Note that there may be multiple choices for the sets C−t (p) and C+
t (p) for each p. We

simply fix these sets before firing t. ♦

Let us now define the notion of a time delay in our model. To do so, we shall introduce
an addition operator on multisets. For a multiset B = (R≥0, f) and a non-negative
real d ∈ R≥0, we define the addition operator in the following manner,

• (B + d)(x) =

{
f(x− d) if x− d ≥ 0

0 otherwise

where x ranges over the elements of R≥0.

Definition 6 (Time Delay) Let N = (P, T, F, c, Ftarc , ctarc , Finhib , cinhib , ι) be a
TAPN and M some marking on N . A time delay d ∈ R≥0 is allowed if (x+ d) ∈ ι(p)
for all p ∈ P and all x ∈ M(p), i.e. by delaying d time units no token violates the
invariants. By delaying d time units we reach a marking M ′ defined as M ′(p) =
M(p) + d for all p ∈ P . ♦

The semantics of a TAPN is given by a timed transition system. Specifically, a
TAPN N = (P, T, F, c, Ftarc , ctarc , Finhib , cinhib , ι) defines a TTS T (N) = (M(N),−→
,AP, µ) where the set of states are the markings on N and the transition relation −→
is defined such that M −→M ′ if by firing transition some transition t in marking M

we get to marking M ′ and M
d−→M ′ if by delaying d time units in marking M we get

to marking M ′. The set of atomic propositions AP and the labeling function µ are

adopted from Byg et al. [17] and are defined as AP def
= {(p ./ n) | p ∈ P, n ∈ N0 and ./

∈ {<,≤,=,≥, >}} and µ(M)
def
= {(p ./ n) | |M(p)| ./ n and ./ ∈ {<,≤,=,≥, >}}.

The intuition is that a proposition (p ./ n) is true in a marking M if the number of
tokens in the place p satisfies the proposition with respect to n.

14



Chapter 4

Undecidability Results for
Timed-Arc Petri Nets

In this chapter, we will present an overview of undecidability results for various ex-
tensions of the standard TAPN model. We shall focus on three problems, namely
reachability, coverability and boundedness.

4.1 Problems of Interest

Let us define the three problems for TAPN, starting with reachability. Reachability
simply asks whether a given marking is reachable from the initial marking in some
TAPN N .

Definition 7 (Reachability) Given a marked TAPN (N,M0) and a marking M ∈
M(N). M is said to be reachable if M0 −→∗ M . ♦

For some M ′ ∈ M(N) we let M(N,M ′) denote the set of reachable markings in
N from the marking M ′. The coverability problem is defined as follows.

Definition 8 (Coverability) Let (N,M0) be a marked TAPN and let M ∈ M(N)
be a marking. M is said to be coverable if there exists a reachable marking M ′ ∈
M(N,M0), such that M(p) ⊆M ′(p) for all places p ∈ P . ♦

Usually, coverability is used to prove safety properties. This is done by specifying
a marking that characterizes bad behaviour and asking whether it is possible to cover
that marking. For example, if we model some form of mutual exclusion protocol, we
can ask whether we can cover a marking where there is more than one process in the
critical section. If we can, the protocol is not correct.

For boundedness, we generally consider two variants, which are inter-related. The
first is k-boundedness.

Definition 9 (k-boundedness) A marked TAPN (N,M0) is said to be k-bounded
if there exists a k ∈ N such that the total number of tokens in the net does not exceed
k for any marking reachable from M0. ♦
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We define boundedness in terms of k-boundedness.

Definition 10 (Boundedness) A marked TAPN (N,M0) is said to be bounded if it
is k-bounded for some k ∈ N. ♦

Note that if a net is not k-bounded for some given k ∈ N, then we cannot conclude
that it is unbounded. It may be k′-bounded for some k′ > k. If a net is unbounded
however, then we may conclude that it is not k-bounded for any k ∈ N. The reason
for this distinction, is that while boundedness is undecidable [28], k-boundedness is
decidable. Boundedness is useful because reachability and coverability are decidable
for bounded nets. This follows from the fact that there are only finitely many reachable
markings in a bounded net since techniques such as regions [5, 6] or zones [9] can be
used to represent continuous time in a finite way.

We shall later use a slightly different definition of boundedness, which we call
place-boundedness to distinguish the two.

Definition 11 (Place-boundedness) A marked TAPN (N,M0) is place-bounded if
there exists some k ∈ N such that the total number of tokens in any place does not
exceed k for any marking reachable from M0. ♦

It is clear that boundedness and place-boundedness are related. If a marked TAPN
is place-bounded for some k, then we know that it is k′-bounded where k′ = |P | · k.
Similarly, if it is k-bounded then we know that it is place-bounded for k also.

4.2 Overview

We shall now give an overview of the known undecidability results for various exten-
sions of TAPN. However, we will first briefly introduce the notion of a two-counter
Minsky machine (2-CM).

Definition 12 A Two-Counter Minsky Machine (2-CM) with two non-negative regis-
ters r1 and r2 is a sequence of instructions (I1 : Ins1; I2 : Ins2; . . . Ie−1 : Inse−1; Ie :
HALT ) where for every j, 1 ≤ j < e, Insj is one of the two types:

• ri := ri + 1; goto Ik; where i ∈ {1, 2} and k ∈ {1, 2, . . . , e} (Increment).

• if ri > 0 then ri := ri − 1; goto Ik; else goto I`; where i ∈ {1, 2} and k, ` ∈
{1, 2, . . . , e} (Test and decrement).

The last instruction is always the HALT instruction. A configuration of a 2-CM is a
triple (j, v1, v2) where j ∈ {1, 2, . . . , e} is the index of instruction Ij to be executed
and v1 and v2 are the values of the registers r1 and r2, respectively. ♦

The computational step relation of a 2-CM is defined as expected and we use the
notation (j, v1, v2) → (j′, v′1, v

′
2) to denote that we perform the current instruction Ij

with values v1 and v2 in the registers, resulting in the configuration (j′, v′1, v
′
2).
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Definition 13 (The Halting Problem for 2-CM) Given a 2-CM, is it possible to
reach the halt instruction from the initial configuration (1, 0, 0), i.e. (1, 0, 0) →∗
(e, v1, v2) for some v1, v2 ∈ N0? ♦

Theorem 14 (Minsky [35]) The halting problem for 2-CM is undecidable. ♦

Ruiz et al. [38] showed that for a slighty more general TAPN model (they allow
real numbers in intervals on input arcs), the reachability problem is undecidable by
reduction from the halting problem for 2-CM1. They essentially create a weak simu-
lation of a 2-CM, in the sense that the behaviour of the 2-CM can be simulated in
the net, though additional behaviour is possible. However, clever exploitation of time
delays ensures that both registers can only be emptied completely if a faithful simu-
lation of the 2-CM is performed in the net, thereby ensuring that a specific marking
is reachable iff the 2-CM halts.

Abdulla and Nylén [3] showed that for Timed Petri Nets (TdPN) (essentially a
TAPN where intervals are also present on output arcs, and the age of a produced
token is non-deterministically chosen to be in this interval) the coverability problem is
decidable. Specifically, they introduce the notion of existential zones, which represent
(possibly infinite) upward-closed sets of markings (a set S is upward-closed if for all
markings M,M ′ it holds that if M ∈ S and M ⊆ M ′ then M ′ ∈ S). The algorithm
works by backward analysis. Specifically, they perform a fixpoint iteration, generating
larger and larger upward-closed sets of markings, such that at iteration i, all markings
from which it is possible to cover the target marking in i or fewer steps, are found.
Termination of the algorithm is ensured by a well-quasi ordering among the existential
zones. A reflexive and transitive binary relation (a quasi ordering) � on a set A is a
well-quasi ordering if for all infinite sequences a0, a1, a2, . . . ∈ A there exists i, j ∈ N0

such that i < j and ai � aj . This ordering ensures that the iteration will eventually
reach a fixpoint and it allows them to represent the upwards-closed sets of markings in
a finite way. Coverability from the initial marking then amounts to checking whether
the initial marking is included in the fixpoint.

Abdulla et al. [4] proved that boundedness is decidable for TdPN. They use the
notion of regions for TdPN. The notion of regions for TdPN is similar to the notion of
regions for TA (see [5, 6]). They provide an algorithm similar to the coverability tree
algorithm by Karp and Miller [32], where each node in the coverability tree is labelled
by a region instead of a marking. Starting from the root node (labelled with a region
satisfied by the intial marking) they successively build the tree by adding child nodes
for each possible successor region. The algorithm by Karp and Miller [32] could also
be used to decide boundedness by checking whenever we reach a new marking M if
there exists a marking M ′ on the path from the root to M such that M ′(p) ⊂ M(p)
for each place p (in this case the net is unbounded). The regions are used in a similar
way to determine when the net is unbounded, i.e. whenever we reach a new region R
we check if there exists another region R′ on the path from the root to R such that

1Technically, they work with an extended two-counter machine that empties both registers before
performing the halt instruction.
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R is ”smaller” than R. The algorithm is guaranteed to terminate due to a well-quasi
ordering among the regions.

Hack [23] showed that the boundedness problem for untimed Petri nets with in-
hibitor arcs and untimed Petri nets with priorities on transitions is undecidable. They
introduce the notion of a counter automaton which is essentially a generalized version
of a two-counter machine that contains a finite set of counters and some additional
instructions. They show that adding inhibitor arcs to an untimed Petri net allows
them to simulate the counter automaton in the Petri net correctly, since an inhibitor
arc allows them to test for zero (which is not possible in TAPN). Since a counter
automaton is basically a generalization of a two-counter Minsky machine, it follows
that the halting problem for counter automata is undecidable, which in turn implies
undecidability of boundedness. They require only a small modification to obtain the
same result using priorities (this is not surprising, given that the author also shows
how to encode inhibitor arcs using priorities and vice versa). Though not explicitly
mentioned by the author, this also implies the undecidability of coverability, because
the simulation can easily be used to show that a marking is coverable iff the automaton
halts.

Dufourd et al. [21] proved that boundedness is undecidable for untimed Petri nets
with reset arcs. A reset arc is an arc from a place to a transition which upon firing
the transition will remove all tokens in the place. Reset arcs do not influence the
enabledness of transitions but only have an effect when firing transitions. They provide
a reduction from Hilbert’s Tenth Problem to boundedness for Petri nets with reset arcs.

4.3 Timed-Arc Petri Nets with Invariants

In this section we will prove the undecidability of place-boundedness and coverabil-
ity for the TAPN(inv) model by reduction from the halting problem for 2-CM. The
contents of this section appeared in the paper [28].

We will now describe the reduction from 2-CM to TAPN(inv). Given a 2-CM
(I1 : Ins1; I2 : Ins2; . . . Ie−1 : Inse−1; Ie : HALT ) we construct a TAPN(inv)
(P, T, F, c, ι) where

• P = {pj , qj | 1 ≤ j < e} ∪
{
pr1 , p

reset
r1 , pr2 , p

reset
r2

}
∪ {pcount} ∪ {pe, phalt}

• T =
{
tresetr1 , tresetr2

}
∪
{
tj , t

goto
j | Insj is of type increment

}
∪{

telse1j , telse2j , tthenj | Insj is of type test and decrement
}
∪ {te}

The number of tokens in pr1 and pr2 correspond to the values of r1 and r2, the number
of tokens in pcount remembers the number of computation steps which have been
simulated in the net and p1, . . . , pe corresponds to the instructions Ins1, . . . , Inse such
that the place pj contains one token if and only if the current instruction is Insj . For
the flow relation we will split it into 4 parts.
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pri

≤ 1

presetritresetri

[1, 1] [0, 0]

(a) Simulation of a register.

pe

phalt

pcount
te

[1, 1]

(b) Simulation of Halt instruction.

pj

presetr1

qj

presetr2

pri

≤ 1

pk

pcount
tj

[1, 1]

tgotoj

[0, 0]

[0, 0]

[0, 0]

(c) Simulation of Ij : ri := ri + 1; goto Ik.

pj

pri

≤ 1

qj

presetr3−i

p`

pcount

pk

telse1j
[1, 1]

telse2j

[0, 0]

[0, 0]

tthenj

[0, 0]

[0, 0]

(d) Simulation of Ij : if ri > 0 then ri := ri−1; goto Ik; else goto I`.

Figure 4.1: TAPN(inv) models for 2-CM simulation.

• F1 contains the arcs for the registers. For each register ri, i ∈ {1, 2}, we add the
following arcs to F1

(pri , t
reset
ri ), (tresetri , pri), (presetri , tresetri ), (tresetri , presetri ) where

c((pri , t
reset
ri )) = [1, 1], c((presetri , tresetri )) = [0, 0] and ι(pri) = [0, 1] .

This is illustrated in Figure 4.1a. The number of tokens on pri indicates the
value of the register. Notice the invariant on the register which disallows tokens
with an age greater than 1. Placing a token on presetri allows us to reset the age
of all tokens of age 1 in the register.

• F2 contains the arcs for the increment instructions. For each increment instruc-
tion Ij : ri := ri + 1; goto Ik;, we add the following arcs to F2

(pj , tj), (tj , p
reset
r2 ), (tj , qj), (tj , p

reset
r1 ), (presetr2 , tgotoj ), (qj , t

goto
j ),

(presetr1 , tgotoj ), (tgotoj , pcount), (tgotoj , pk), (tgotoj , pri) where c((pj , tj)) = [1, 1],

c((presetr2 , tgotoj )) = [0, 0], c((qj , t
goto
j )) = [0, 0] and c((presetr1 , tgotoj )) = [0, 0] .
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This is illustrated in Figure 4.1c. Notice that we require a delay of one time
unit before firing tj . Because of this, we allow tokens in each register to be reset
(by placing tokens on presetr1 and presetr2 ). Following this, by firing tgotoj a token is
added to pcount, register ri is incremented by adding a token to pri and control
is given to the next instruction Ik by placing a token on pk.

• F3 contains the arcs for the test and decrement instructions. For each test and
decrement instruction Ij : if ri > 0 then ri := ri − 1; goto Ik; else goto I`;, we
add the following arcs to F3

(pj , t
else1
j ), (pj , t

then
j ), (pri , t

then
j ), (telse1j , qj), (telse1j , presetr3−i ), (qj , t

else2
j ),

(presetr3−i , t
else2
j ), (telse2j , p`), (telse2j , pcount), (tthenj , pcount), (tthenj , pk) where

c((pj , t
else1
j )) = [1, 1], c((pj , t

then
j )) = [0, 0], c((pri , t

then
j )) = [0, 0],

c((presetr3−i , t
else2
j )) = [0, 0] and c((qj , t

else2
j )) = [0, 0] .

This is illustrated in Figure 4.1d. Notice that when we follow the else branch
(firing transition telse1j ), we can only reset the ages of tokens in the register on
which we are not testing for emptiness.

• F4 contains the arcs for the HALT instruction. Formally it is defined as

F4 = {(pe, te), (te, pcount), (te, phalt)} where c((pe, te)) = [1, 1] .

This is illustrated in Figure 4.1b. Again we require a time delay of one time unit
before te can be fired and a token placed at phalt.

• The flow relation F can then be defined as the union of the four parts, i.e.
F = F1 ∪ F2 ∪ F3 ∪ F4 and we let ι(p) = [0,∞) for all p ∈ P \ {pr1 , pr2} .

We define the initial marking M0 such that M0(p1) = {0} and M0(p) = ∅ for all
p ∈ P \ {p1}.

Let (N,M0) be the marked TAPN(inv) simulating a given 2-CM. Notice that every
place in the net except for pr1 , pr2 , pcount is 1-safe (i.e. contains at most one token).
In a correct simulation of the 2-CM by our net, a configuration (j, v1, v2) of the 2-CM
corresponds to any marking M where

M(pj) = {0}, M(pri) = {0, 0, . . . , 0}︸ ︷︷ ︸
vi times

for i ∈ {1, 2}, (4.1)

|M(pcount)| = n where n ∈ N0 and M(p) = ∅ for all p ∈ P \ {pj , pr1 , pr2 , pcount}.

We will now describe how to simulate the three types of instructions of a 2-CM in a
correct way. Assume there is a token of age 0 in pj .

If Ij is an increment instruction, we need to delay for one time unit in order to
enable tj (see Figure 4.1c). Because we delayed one time unit, all tokens in the registers
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are now of age 1. In a correct simulation, we fire repeatedly transitions tresetr1 and tresetr2
until all tokens in pr1 and pr2 are of age 0. Note that it is possible to cheat in the
simulation, as it is possible to leave some tokens of age 1 in pr1 or pr2 when firing tgotoj .

If Ij is a test and decrement instruction there are two possibilities (see Figure 4.1d).
If there is a token of age 0 at pri , we fire tthenj in order to decrement the number
of tokens in register ri, and hand over the control to Ik by placing a token on pk.
Otherwise, in the correct simulation we delay one time unit before firing telse1j . Then
we reset the age of all the tokens in the other register, pr3−i to 0. We then proceed

by firing telse2j . This will hand over control to instruction I` by placing a token on p`.
Again note that it is possible to cheat in the simulation, either by leaving tokens of
age 1 at pr3−i when proceeding to the next instruction or by taking the else-branch
even though there is a token at pri (because the net does not force us to fire transition
tthenj when it is enabled).

If Ij is the halt instruction, we delay one time unit before we fire the last transition
te and add a token to phalt.

After every instruction one token is added to pcount. We will now prove a lemma
detailing what happens if we cheat.

Lemma 15 Let (j, v1, v2) be the current configuration of a 2-CM CM, (N,M0) the
associated TAPN(inv) and M a marking corresponding to (j, v1, v2) (see Equation
4.1). If the net cheats then during the simulation of CM in the next computation step
it is not possible to simulate an increment instruction, go to the halt state, nor to take
the else-branch of a test and decrement instruction. Further, the net can do at most
v1 + v2 decrements before getting stuck. ♦

Proof We can perform an incorrect simulation in two ways:

• If all tokens in pr1 and pr2 are not reset to age 0 in an increment or test and
decrement instruction before going to the next instruction.

• In a test and decrement instruction, the net can fire the transition telse1j even if
there is a token of age 0 in pri . This is possible by delaying 1 time unit to enable
the transition. However, this will result in the tokens in pri having age 1 and
these can not be reset before going to the next instruction.

In both cases we end up in a marking M ′ where there is at least one token of non-zero
age in either pr1 or pr2 . Observe that the simulation of increment, halt and the else-
branch of a test and decrement instruction all require a delay of 1 time unit (see Figure
4.1) which would violate the invariants ι(pr1) or ι(pr2). Thus, the only possibility is
to take the then-branch of a test and decrement instruction. However, this is only
possible as long as there are tokens of age 0 in pr1 or pr2 . There are v1 and v2 tokens
in pr1 and pr2 , repectively. Thus, the net can do at most v1 + v2 decrements before
getting stuck. �
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4.3.1 Undecidability Results

First we prove the undecidability of the place-boundedness problem.

Lemma 16 Given a 2-CM CM and the associated TAPN(inv) (N,M0), CM halts if
and only if N is place-bounded. ♦

Proof We start by proving that if N is place-bounded then CM halts. Assume that
N is place-bounded for some k. Further, assume by contradiction that CM does not
halt. After simulating k + 1 computational steps of CM correctly, the net will be in a
marking M where |M(pcount)| = k+ 1. This is a contradiction to the assumption that
N is place-bounded for k.

Now we prove the implication in the other direction. Assume that CM halts in
n steps. We will show that N is place-bounded for 2n. If we simulate CM correctly,
there will be at most n tokens at the registers, and exactly n tokens at pcount. Hence,
the net must cheat in order to become unbounded. In the worst case, it cheats at the
last step, when there are at most n − 1 tokens in the registers and n − 1 tokens at
pcount. Then we have that the net is place-bounded for 2n since there will be at most
2(n− 1) tokens at pcount by Lemma 15. �

From Lemma 16 we conclude the following theorem.

Theorem 17 The place-boundedness problem is undecidable for TAPN(inv). ♦

We now prove the undecidability of the coverability problem.

Lemma 18 Let M be a marking such that M(phalt) = {0} and M(p) = ∅ for all
p ∈ P \ {phalt}. Given a 2-CM CM and the associated marked TAPN(inv) (N,M0),
as defined above, CM halts if and only if M is coverable from M0. ♦

Proof First we prove that if CM halts then M is coverable from M0. Assume that
the CM halts. By simulating CM correctly in N , we can easily see that we reach a
marking M ′, with a token in phalt, hence M ′(p) ⊇M(p) for all p ∈ P .

Now we prove that if M is coverable from M0 then CM halts. Assume that M
is coverable from M0. By assumption there exists a reachable marking M ′ such that
M ′(p) ⊇ M(p) for all p ∈ P . By definition of coverability, it holds that 0 ∈ M ′(phalt)
and by Lemma 15 this is only possible if we simulate CM correctly in the net, hence
CM halts. �

From Lemma 18 we conclude the following theorem.

Theorem 19 The coverability problem is undecidable for TAPN(inv). ♦
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4.4 Conjectures

There are still open problems for some TAPN extensions and in this section we will
present conjectures for these problems. Let us start by considering coverability for
TAPN(reset) (TAPN extended with reset arcs).

Dufourd et al. [21] showed that coverability is decidable for so-called Reset Post
G-nets, which are basically untimed Petri nets with reset arcs and the ability to have
polynomials as weights on output arcs. Thus, untimed Petri nets with reset arcs are
a subclass of Reset Post G-nets where all output arcs have weight 1.

The addition of reset arcs does not break the monotonicity property of TAPN,

i.e. for two markings M and M ′ where M ⊆ M ′, if M
t−→ for some transition

t then M ′
t−→. In other words, it is not possible to disable transitions by adding

additional tokens to a marking. This is easy to see since reset arcs does not influence
the enabledness of transitions but only have an effect when firing a transition. This
means that it should be possible to use the concept of existential zones to describe
upward-closed sets of markings. Thus, it should be possible to prove the decidability
of coverability for TAPN(reset) by extending the concepts and proofs in [3] to support
reset arcs.

Conjecture 20 The coverability problem is decidable for TAPN(reset). ♦

Bouyer et al. [15] proved that coverability is decidable for TAPN extended with so-
called read arcs which allow for testing for the presence of tokens without consuming
any tokens when a transition is fired. The proof is an extension of the proof by Abdulla
and Nylén [3]. Transport arcs are a generalization of read arcs and as for reset arcs
they do not break the monotonicity property of TAPN. Thus, it should be possible to
extended the proof in [3] to support transport arcs.

Conjecture 21 The coverability problem is decidable for TAPN(tarc). ♦

It should be possible to use the algorithm by Abdulla et al. [4] (which is an extension
of the coverability tree algorithm by Karp and Miller [32]) to decide boundedness for
TAPN(tarc).

Conjecture 22 The boundedness problem is decidable for TAPN(tarc). ♦

4.5 Summary

Table 4.1 shows a summary of the undecidability results mentioned in this chapter.
Decidable problems are indicated by X and undecidable problems are indicated by 5.
Further, our results are marked with ∗ and conjectures are marked with ?.
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Chapter 4 – Undecidability Results for Timed-Arc Petri Nets

Reachability Coverability Boundedness

TAPN 5[38] X[3] X[4]

TAPN(inv) 5[38] 5∗ 5∗

TAPN(tarc) 5[38] X? X?

TAPN(inhib) 5[38] 5[23] 5[23]

TAPN(prio) 5[38] 5[23] 5[23]

TAPN(reset) 5[38] X? 5[21]

Table 4.1: Decidability Results
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Chapter 5

Timed Computation Tree Logic

In this chapter, we shall explain the syntax and semantics of Timed Computation Tree
Logic (TCTL) inspired by Penczek and Pólrola [36]. However, unlike [36] which only
consider infinite maximal runs, we treat TCTL in its full generality, including finite
maximal runs in which the computation gets stuck. We shall focus on TCTL formulae
interpreted over continous time models.

We assume a set AP of atomic propositions. A TCTL formula is given by the
abstract syntax:

ϕ ::= ℘ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | A(ϕ1UIϕ2) | E(ϕ1UIϕ2) |
A(ϕ1RIϕ2) | E(ϕ1RIϕ2),

where ℘ ∈ AP is an atomic proposition and I ∈ I is a time interval as defined on
page 9. We denote the set of all TCTL formulae over the set of atomic propositions
AP as Φ(AP). Note that if we remove the operators E(ϕ1RIϕ2) and A(ϕ1UIϕ2) from
the above syntax we get the so-called safety fragment of TCTL.

A run in a TTS (S,−→,AP, µ) is a (finite or infinite) alternating sequence of time

delays and discrete transitions of the form ρ = s0
d0−→ s′0 −→ s1

d1−→ s′1 −→ s2
d2−→ . . .

such that si, s
′
i ∈ S for all i ≥ 0. For completeness, let us state the intuition behind

the operators. The U stands for Until and the R stands for Release.

• A(ϕ1UIϕ2): On all runs ϕ2 must eventually hold within the interval I, and until
it does, ϕ1 must hold continuously.

• E(ϕ1UIϕ2): There exists a run such that ϕ2 eventually holds within the interval
I, and until it does, ϕ1 holds continuously.

• A(ϕ1RIϕ2): On all runs either ϕ2 always holds within the interval I or ϕ1

occurred previously.

• E(ϕ1RIϕ2): There exists a run such that either ϕ2 always holds within the
interval I or ϕ1 occurred previously.
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Chapter 5 – Timed Computation Tree Logic

We shall now define the semantics of TCTL formulae. Let T = (S,−→,AP, µ) be
a TTS. A run ρ is said to be a maximal run if it cannot be extended any further
by time delays or discrete transitions. Formally, there are three ways a run ρ can be
maximal:

(i) ρ is an infinite alternating sequence of the form

ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ s2
d2−→ s2[d2] −→ s3

d3−→ . . .

(ii) ρ is a finite alternating sequence of the form

ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ . . . −→ sn
∞−→

where
∞−→ means that sn

d−→ sn[d] for all d ∈ R≥0, or

(iii) ρ is a finite alternating sequence of the form:

ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ . . . −→ sn
d≤n−→

Alternatively the run can be of the form

ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ . . . −→ sn
d<n−→

such that for any d ∈ R≥0 where d > dn (resp. d ≥ dn for the alternate form), we

have that sn 6
d−→ and for any d′ ∈ R≥0 where d′ ≤ dn (resp. d′ < dn), whenever

sn
d′−→ sn[d′] then sn[d′] 6−→.

Intuitively, the three conditions above describe the possible ways in which a run
can be maximal. The first case is an infinite alternating sequence of time delays and
discrete transitions. In the second case the run ends in a state where time can diverge,
that is a state where any time delay is possible. Finally, the third case describes a run
which end in a state from which it is not possible to do a discrete transition after any
time delay. Note that there are two different forms for such a run: the final time delay
dn can either be included or not (d≤n and d<n respectively). This case differs from the
second case in that time cannot diverge for these runs (any time delay greater than
dn is not possible), however, whenever a time delay is possible we are certain that
no discrete transition is possible afterwards. Let the set of all maximal runs ρ in T
starting from s be denoted by Runs(T, s).

Figure 5.1 illustrates part of the maximal run ρ = s0
1−→ s0[1] −→ s1

2.5−→
s1[2.5] −→ s2

2−→ s2[2] −→ s3
1.3−→ s3[1.3] −→ s4

5.2−→ . . .. The x-axis indicates
elapsed time. Note that discrete transitions take zero time units (which is why dis-
crete transitions are drawn as vertical lines) and that, although not shown in this
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s0 s0[1]

s1 s1[2.5]

s2 s2[2]

s3 s3[1.3]

s4
. . .

1

2.5

2

1.3

5.2

time

Figure 5.1: An illustration of the concrete run ρ = s0
1−→ s0[1] −→ s1

2.5−→ s1[2.5] −→
s2

2−→ s2[2] −→ s3
1.3−→ s3[1.3] −→ s4

5.2−→ . . ..

example, time delays can be zero. Hence, it is possible to do multiple discrete tran-
sitions in succession without any time progression in between. Further, there is no
special meaning as to whether the arrow for a discrete transition goes up or down, this
is simply to keep the figure small.

For a maximal run ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ s2
d2−→ . . ., an index

i ∈ N and a non-negative real d ∈ R≥0 we let

r(i, d) =

 i−1∑
j=0

dj

+ d.

Intuitively, r(i, d) denotes the total time elapsed from the beginning of the run up to
some delay d after the i-th discrete transition.

Definition 23 For each maximal run ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ s2
d2−→

. . ., we define a predicate validρ : N× R≥0 × I → {true, false} as follows:

validρ(i, d, I) =


d ≤ di ∧ r(i, d) ∈ I if di ∈ R≥0
r(i, d) ∈ I if di =∞
d < dn ∧ r(i, d) ∈ I if di = d<n
d ≤ dn ∧ r(i, d) ∈ I if di = d≤n ♦

Intuitively, the arguments, i, d together describe a possible state si[d] in the run

ρ and this state lies within the interval I. Figure 5.2 illustrates a run ρ = s0
d0−→

s0[d0] −→ s1
d1−→ s1[d1] −→ s2

d2−→ s2[d2] −→ . . . and three points (marked with ×).
Note that although time delays appear identical in the figure they can be of different
length (even zero). We see in Figure 5.2 that validρ(1, d, I) is false because s1[d] lies
outside the interval I. Similarly, validρ(2, d

′′, I) is false because s2[d
′′] is not a part of

the run (since d′′ > d2). Finally, validρ(2, d
′, I) is true because s2[d

′] is a part of the
run and within I.

Finally, we define a function denoting the history of a run at some specified point.
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s0 s0[d0]

s1 s1[d1]

s2 s2[d2]

s3 s3[d3]

s4
. . .

I

s1[d]

d0

d1

s2[d′]

d2
s2[d′′]

d3

d4

time

Figure 5.2: An illustration of a run ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ s2
d2−→

s2[d2] −→ s3
d3−→ s3[d3] −→ s4

d4−→ . . ..

Definition 24 For a run ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ s2
d2−→ . . ., we let

historyρ : N × R≥0 → N × R≥0 be a function which given an index i and a delay d,
returns the pairs (j, d′) that constitute all previous states sj [d

′] in the run:

historyρ(i, d) = {(j, d′) | j < i ∧ d′ ≤ dj} ∪ {(i, d′) | d′ < d} ♦

The satisfaction relation s |= ϕ is defined inductively for a state s ∈ S in a TTS T
and a formula ϕ as follows:

s |= ℘ iff ℘ ∈ µ(s)

s |= ¬ϕ iff s 6|= ϕ

s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 and s |= ϕ2

s |= ϕ1 ∨ ϕ2 iff s |= ϕ1 or s |= ϕ2

s |= A(ϕ1UIϕ2) iff ∀ρ ∈ Runs(T, s) .
∃i ≥ 0 .∃d ∈ R≥0 . [validρ(i, d, I) ∧ si[d] |= ϕ2 ∧
∀(j, d′) ∈ historyρ(i, d) . sj [d

′] |= ϕ1

]
s |= E(ϕ1UIϕ2) iff ∃ρ ∈ Runs(T, s) .

∃i ≥ 0 .∃d ∈ R≥0 . [validρ(i, d, I) ∧ si[d] |= ϕ2 ∧
∀(j, d′) ∈ historyρ(i, d) . sj [d

′] |= ϕ1

]
s |= A(ϕ1RIϕ2) iff ∀ρ ∈ Runs(T, s) .

∀i ≥ 0 .∀d ∈ R≥0 . validρ(i, d, I)⇒[
si[d] |= ϕ2 ∨ ∃(j, d′) ∈ historyρ(i, d) . sj [d

′] |= ϕ1

]
s |= E(ϕ1RIϕ2) iff ∃ρ ∈ Runs(T, s) .

∀i ≥ 0 .∀d ∈ R≥0 . validρ(i, d, I)⇒[
si[d] |= ϕ2 ∨ ∃(j, d′) ∈ historyρ(i, d) . sj [d

′] |= ϕ1

]
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s0 |= E(ϕ1UIϕ2)

s0
s′0

s1 s′1

s2 s′2

s3 s′3

s4
. . .

ϕ2
ϕ1

I

time

Figure 5.3: Illustration of a run satisfying an until formula.

s0 |= E(ϕ1RIϕ2)

s0
s′0

s1 s′1

s2 s′2

s3 s′3

s4
. . .

ϕ1

s0 |= E(ϕ1RIϕ2)

s0
s′0

s1 s′1

s2 s′2

s3 s′3

s4
. . .

ϕ2

s0 |= E(ϕ1RIϕ2)

s0
s′0

s1 s′1

s2 s′2

s3 s′3

s4
. . .

ϕ1 ∧ ϕ2
ϕ2

s0 |= E(ϕ1RIϕ2)

s0
s′0

s1 s′1

s2

s′2

ϕ2

I

time

Figure 5.4: Illustration of runs satisfying an release formula. Notice that there are
four ways a release formula can be satisfied.
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A:

s0
{p, q}

s1

{p, q}

s2

{p}

s3

{p}

s4

{q}

s5

∅

s6

{p}

s7

{p}

s8

{p, q}

1.2

2.1

1.2

B:
t0

{q}

t1

{q}

t2

{p}

t3

{p}

t4

∅

t5

{q}

t6

{q}

t7

{q}

t8

{q}

1.5

1

2 0.5

1.2

Figure 5.5: Two example TTSs.

Figure 5.3 illustrates the satisfaction of an until formula and Figure 5.4 illustrates
the satisfaction of a release formula. The figure illustrates where the two subformulae
ϕ1 and ϕ2 must hold.

In particular, notice that there are four possible ways for a release formula to be
satisfied. First, ϕ1 may have occurred in the past (outside the interval), which releases
ϕ2, effectively ensuring that ϕ2 need not hold in the interval I at all. Secondly, ϕ2

may not be released, which means that it must hold continuously within the entire
interval I. Thirdly, ϕ2 can hold continuously in the interval I, until some point in the
interval where ϕ1 ∧ ϕ2 holds, thereby releasing ϕ2. Finally, ϕ2 can hold continuously
in the interval I until the run deadlocks.

As a concrete example consider the two TTSs in Figure 5.5. For both TTSs we

have a set of atomic propositions AP = {p, q}. Consider the maximal run ρ = s0
1.2−→

s1 −→ s2
2.1−→ s3 −→ s4

0≤−→ in A. This run witnesses the property E(pU[2,4] q) and
thus we have that s0 |= E(pU[2,4] q). For B, the two maximal runs

ρ = t0
1.5−→ t1 −→ t2

1−→ t3 −→ t4
0≤−→

ρ′ = t0
2−→ t4 −→ t5

0.5−→ t6 −→ t7
1.2−→ t8 −→ t7

1.2−→ · · ·

means we have that t0 |= A(pR[2,3] q).
Penczek and Pólrola [36] mention that for CTL the operators R and U are dual.

However, they do not say if this is the case for TCTL. Thus, we will now show that
they are infact still dual for TCTL.

Lemma 25 Let T = (S,−→,AP, µ) be a TTS and let s ∈ S. Then

s |= A(ϕ1RIϕ2) if and only if s |= ¬E(¬ϕ1UI¬ϕ2) ♦
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Proof (⇒): Assume s |= A(ϕ1RIϕ2). We will show that s |= ¬E(¬ϕ1UI¬ϕ2).
Assume by contradiction that s |= E(¬ϕ1UI¬ϕ2). This means that there exists a
maximal run ρ starting from s such that there exists an i ≥ 0 and a d ∈ R≥0 such
that validρ(i, d, I) is true, si[d] |= ¬ϕ2 and for all (j, d′) ∈ historyρ(i, d) it holds that
sj [d

′] |= ¬ϕ1.
This is a contradiction to the assumption that s |= A(ϕ1RIϕ2) which by definition

means that for all maximal runs ρ′ starting from s, all i ≥ 0 and all d ∈ R≥0 it
holds that validρ′(i, d, I) implies that either si[d] |= ϕ2 or there exists a (j, d′) ∈
historyρ′(i, d) such that sj [d

′] |= ϕ1. Thus, it follows that s |= A(ϕ1RIϕ2) implies
s |= ¬E(¬ϕ1UI¬ϕ2).

(⇐): Assume that s |= ¬E(¬ϕ1UI¬ϕ2). This means that for all maximal runs
ρ starting from s, all i ≥ 0 and all d ∈ R≥0 it holds that either validρ(i, d, I) is not
true or si[d] 6|= ¬ϕ2 or there exist a (j, d′) ∈ historyρ(i, d) such that sj [d

′] 6|= ¬ϕ1.
By removing the double negations we see that this matches exactly the definition of
s |= A(ϕ1RIϕ2) which says that for all maximal runs ρ starting from s, all i ≥ 0 and
all d ∈ R≥0 it holds that if validρ(i, d, I) is true, then either si[d] |= ϕ2 or there exists
a (j, d′) ∈ historyρ(i, d) such that sj [d

′] |= ϕ1. Thus, we have ¬E(¬ϕ1UI¬ϕ2) implies
s |= A(ϕ1RIϕ2). �

Lemma 26 Let T = (S,−→,AP, µ) be a TTS and let s ∈ S. Then

s |= A(ϕ1UIϕ2) if and only if s |= ¬E(¬ϕ1RI¬ϕ2) ♦

Proof (⇒): Assume s |= A(ϕ1UIϕ2). We will show that s |= ¬E(¬ϕ1RI¬ϕ2).
Assume by contradiction that s |= E(¬ϕ1RI¬ϕ2), this means that there exists a
maximal run ρ starting from s s.t. for all i ≥ 0 and for all d ∈ R≥0 if validρ(i, d, I)
is true, then it holds that si[d] |= ¬ϕ2 or there exist a (j, d′) ∈ historyρ(i, d) s.t.
sj [d

′] |= ¬ϕ1.
This is a contradiction to the assumption that s |= A(ϕ1UIϕ2), which by definition

means that for every maximal run ρ′ starting from s there exists and i ≥ 0 and a
d ∈ R≥0 such that validρ′(i, d, I) is true, si[d] |= ϕ2 and for all (j, d′) ∈ historyρ′(i, d)
it holds that sj [d

′] |= ϕ1. Then it follows that s |= ¬E(¬ϕ1RI¬ϕ2) and thus s |=
A(ϕ1UIϕ2) implies s |= ¬E(¬ϕ1RI¬ϕ2)

(⇐): Assume by contraposition that s 6|= A(ϕ1UIϕ2). By definition this means
that there exists a maximal run ρ starting from s s.t. for all i ≥ 0 and all d ∈ R≥0
either validρ(i, d, I) is not true or si[d] |= ¬ϕ2 or there exist a (j, d′) ∈ historyρ(i, d)
s.t. sj [d

′] |= ¬ϕ1. This matches exactly the definition of s |= E(¬ϕ1RI¬ϕ2) which
says that there exists a maximal run ρ starting from s s.t. for all i ≥ 0 and all d ∈ R≥0
if validρ(i, d, I) is true then either si[d] |= ¬ϕ2 or there exists (j, d′) ∈ historyρ(i, d)
s.t. sj [d

′] |= ¬ϕ1 . Thus we have that s |= ¬E(¬ϕ1RI¬ϕ2) implies s |= A(ϕ1UIϕ2). �
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Chapter 6

TCTL-Preserving Framework

There are several examples in the literature of translations from one time-dependent
framework to another, see e.g. [15, 17, 18, 20, 29]. Usually, a time-dependent system
A (e.g. a TAPN) and a formula ϕ are translated into another time-dependent system
B (e.g. an NTA) and a translated formula ϕ′ such that A |= ϕ iff B |= ϕ′ or the
two systems are shown equivalent up to some equivalence relation (e.g. bisimulation).
However, the correctness of each of these translations requires a distinct proof.

Our goal is to generalize this by introducing a framework, in the form of a one-
by-many correspondence, which is a relation between the states of TTSs A and B.
Intuitively, when the states of A and B are related by a one-by-many correspondence
we can simulate one step in A by a number of steps in B. If we can establish such a
relation between states of A and B, then that will allow us to conclude that the trans-
lation from A to B preserves the full TCTL (or only the safety fragment depending
on the requirements fulfilled by the relation).

Our framework can be seen as a generalization of the ideas by Cassez and Roux
[18]. While their idea solely concerns a translation from time Petri nets to networks of
timed automata, our framework works at the level of timed transition systems, making
it independent of the modeling formalisms used. Moreover, the details of TCTL and
runs are incomplete in [18]. Our framework handles TCTL in its full generality, as used
in state-of-the-art verification tools like UPPAAL [2], making it directly applicable to
tool developers.

In the rest of this chapter, we shall use A and B to refer to the original and
translated system, respectively.

6.1 Stable Proposition

As mentioned, B is simulating a single step of A by a sequence of steps. Therefore,
A and B are only comparable in the states before and after this sequence has been
performed. We say that B is stable in these states.

Formally, we introduce an atomic proposition stable in the system B as a distin-
guished atomic proposition. We will refer to states in B which satisfy the proposition
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stable as stable states and the other states as intermediate states.

We will now define three properties that B should possess in order to fit into our
framework.

Definition 27 (TTS Properties) A TTS (S,→,AP, µ) where stable ∈ AP is said
to be

• a no-delay-in-intermediate-state TTS if s
d−→ for some d > 0 implies s |= stable

for all s ∈ S,

• a delay-preserves-stable TTS if for any state s ∈ S such that s |= stable, if

s
d−→ s[d] then s[d] |= stable for all d ∈ R≥0, and

• an eventually-stable TTS if for any infinite sequence of discrete transitions of
length at least one

ρ = s0 −→ s1 −→ s2 −→ s3 −→ s4 −→ . . .

where s0 |= stable, there exists an i ≥ 1 such that si |= stable, and for any finite
sequence

ρ = s0 −→ s1 −→ · · · −→ sn 6−→

where s0 |= stable, there exists an i ≤ n such that si |= stable. We refer to such
sequences as maximal discrete sequences. ♦

Observe that in a no-delay-in-intermediate-state TTS, it is only possible to do
time delays of 0 in any intermediate state. Further, notice that in an eventually-stable
TTS, whenever an intermediate state is reached from a stable state, we will eventually
return to a stable state.

We will now define a shorthand for the notion of a sequence of intermediate states
between two stable states.

Definition 28 Let (S,→,AP, µ) be a TTS such that stable ∈ AP. For states s, s′ ∈ S
we write s; s′ if

• s |= stable and s′ |= stable, and

• s = s0 −→ s1
0−→ s1 −→ s2

0−→ · · · 0−→ sn−1 −→ sn = s′

such that sj 6|= stable for 1 ≤ j ≤ n− 1. ♦

We have included zero delays in the definition of ; in order to preserve the alter-
nating nature of the sequence. This allows us to construct alternating runs using ;

which is needed when dealing with maximal runs.
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6.2 One-By-Many Correspondence

We will now define the notion of one-by-many correspondence, which is a relation
between states in two TTSs.

Definition 29 Let A = (S,→A,APA, µA) and B = (T,→B,APB, µB) be two TTSs,
where stable ∈ APB. We say that a relation R ⊆ S × T is a one-by-many corre-
spondence if B is a no-delay-in-intermediate-state and delay-preserves-stable TTS and
there exists a function trp : APA −→ APB such that whenever sR t then

1. t |= stable,

2. s |= ℘ iff t |= trp(℘) for all ℘ ∈ APA,

3. if s −→ s′ then t; t′ and s′R t′,

4. if s
d−→ s[d] then t

d−→ t[d] and s[d]R t[d] for all d ∈ R≥0,

5. if t; t′ then s −→ s′ and s′R t′, and

6. if t
d−→ t[d] then s

d−→ s[d] and s[d]R t[d] for all d ∈ R≥0.

If B is moreover an eventually-stable TTS, then we say that R is a complete one-
by-many correspondence .

We write s �= t (resp. s �=c t) if there exists a relation R such that sR t and R is
a one-by-many correspondence (resp. complete one-by-many correspondence). ♦

Remark 30 Notice that if all states in B are stable, Definition 29 defines a strong
timed bisimulation between states in A and B, since all ; transitions are of length
one. ♦

Consider Figure 6.1. The set of propositions for the TTS A is APA = {p, q} and
the sets of propositions for the TTSs B and C are APB = APC = {p, q, stable}.
We assume that consecutive discrete actions are separated by a 0 time delay. Then
{(s0, t0), (s1, t1), (s2, t4), (s3, t6), (s2, t7)} is a complete one-by-many correspondence re-
lating the states of A and B. The relation {(s0, u0), (s1, u1), (s2, u4), (s3, u7)} is a
one-by-many correspondence for the systems A and C. Notice that system C is not
an eventually-stable TTS since both of the maximal sequences

ρ = u1 −→ u2 −→ u3

ρ′ = u1 −→ u5 −→ u6 −→ u6 −→ u6 −→ · · ·

break this property.

Let us now introduce some notation for relating runs in the two systems.
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A:

s0
{p, q}

s1

{p, q}

s2

{q}

s3

{p, q}

4.4

B:

t0

{stable, p, q}
t1

{stable, p, q}

t7

{stable, q}

t2

{q}

t3

{p, q}

t5

∅

t4

{stable, q}

t6

{stable, p, q}

4.4

C:

u0

{stable, p, q}
u1

{stable, p, q}

u2

∅

u3

∅

u4
{stable, q}

u5

∅
u6 ∅ u7

{stable, p, q}

4.4

Figure 6.1: Three example TTSs.

Definition 31 Let A = (S,→A,APA, µA) and B = (T,→B,APB, µB) be two TTSs,
where stable ∈ APB.

For two finite alternating runs ρ in A and ρ′ in B of the form

ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ · · · −→ sn
dn−→ sn[dn]

ρ′ = t0
d0−→ t0[d0] ; t1

d1−→ t1[d1] ; · · ·; tn
dn−→ tn[dn]

we write ρ �= ρ′ if si[d] �= ti[d] for all i ≤ n and all d ≤ di. ♦

We can generalize this notion of related runs to maximal runs.

Definition 32 Let A = (S,→A,APA, µA) and B = (T,→B,APB, µB) be two TTSs,
where stable ∈ APB. For two maximal runs ρ in A and ρ′ in B we write ρ �= ρ′ if

• ρ is an infinite maximal run

ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ s2
d2−→ s2[d2] −→ . . . ,

ρ′ is an infinite maximal run

ρ′ = t0
d0−→ t0[d0] ; t1

d1−→ t1[d1] ; t2
d2−→ t2[d2] ; . . . ,

and si[d] �= ti[d] for all i ≥ 0 and all d ≤ di, or

• ρ is a finite maximal run of the form

ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ s2
d2−→ s2[d2] −→ . . . −→ sn

δ−→,
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ρ′ is a finite maximal run of the form

ρ′ = t0
d0−→ t0[d0] ; t1

d1−→ t1[d1] ; t2
d2−→ t2[d2] ; . . . −→ tn

δ−→,

for some δ ∈ {∞, d≤n , d<n } such that,

– si[d] �= ti[d] for all i < n and all d ≤ di,
– sn[d] �= tn[d] for all d ∈ R≥0 if δ =∞,

– sn[d] �= tn[d] for all d ≤ dn if δ = d≤n and

– sn[d] �= tn[d] for all d < dn if δ = d<n . ♦

Let us now establish a relationship between finite non-maximal runs in systems A
and B.

Lemma 33 Let A = (S,→A,APA, µA) and B = (T,→B,APB, µB) be two TTSs,
where stable ∈ APB. Further let s0 ∈ S and t0 ∈ T be such that s0 �= t0. Then there
exists a finite run

ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ · · · −→ sn
dn−→ sn[dn]

in A if and only if there exists a finite run

ρ′ = t0
d0−→ t0[d0] ; t1

d1−→ t1[d1] ; · · ·; tn
dn−→ tn[dn]

in B such that ρ �= ρ′. ♦

Proof (⇒): Assume that there exists a run ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→
· · · −→ sn

dn−→ sn[dn] in A. By induction on i and using condition 3 and 4 of Defini-

tion 29 we can construct a run ρ′ = t0
d0−→ t0[d0] ; t1

d1−→ t1[d1] ; · · ·; tn
dn−→ tn[dn]

in B.
(⇐): Assume that there exists a run ρ′ = t0

d0−→ t0[d0] ; t1
d1−→ t1[d1] ; · · · ;

tn
dn−→ tn[dn] in B. By induction on i and using condition 5 and 6 of Definition 29 we

can construct a run ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ · · · −→ sn
dn−→ sn[dn] in

A. �

Notice that Lemma 33 requires the run in B to have a specific form. Thus, there
may exist runs in B for which no related run in A exists.

Let us now introduce a lemma that is a direct consequence of the definition of a
complete one-by-many correspondence.

Lemma 34 Let A = (S,→A,APA, µA) and B = (T,→B,APB, µB) be two TTSs,
where stable ∈ APB. Further let s0 ∈ S and t0 ∈ T be such that s0 �=c t0. Then
there exists a maximal run ρ ∈ Runs(A, s0) if and only if there exists a maximal run
ρ′ ∈ Runs(B, t0) such that ρ �=c ρ

′. ♦
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Proof (⇒): We shall prove this lemma in two steps, first for infinite maximal runs
and then for finite maximal runs. Let

ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ s2
d2−→ s2[d2] −→ . . . ,

be any infinite maximal run in A. Since s0 �=c t0, we have by induction on the index
i of states and using condition 3 and 4 of Definition 29 that there exists an infinite
maximal run ρ′ in B of the form

ρ′ = t0
d0−→ t0[d0] ; t1

d1−→ t1[d1] ; t2
d2−→ t2[d2] ; . . . ,

where si[d] �=c ti[d] for all i ≥ 0 and all d ≤ di. Thus, ρ �=c ρ
′.

Now let

ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ s2
d2−→ s2[d2] −→ . . . −→ sn

δ−→,

be any finite maximal run in A where δ ∈ {∞, d≤n , d<n }.
Since s0 �=c t0, we shall construct a finite maximal run in B of the form

ρ′ = t0
d0−→ t0[d0] ; t1

d1−→ t1[d1] ; t2
d2−→ t2[d2] ; . . .; tn

δ−→ .

Using Lemma 33 and noticing that the lemma also works with runs ending with
a discrete action, it follows that from the prefix of ρ up to and including sn (referred
to as ρprefix ), we can construct the prefix of ρ′ up to and including tn (referred to as
ρ′prefix ) such that ρprefix

�=c ρ
′
prefix .

We shall now handle the final part of ρ′ according to the value of δ in ρ.

δ =∞ In this case, sn
d−→ sn[d] for all d ∈ R≥0. It follows from condition 4 of Def-

inition 29 that tn
d−→ tn[d] such that sn[d] �=c tn[d] for all d ∈ R≥0. Hence

ρ �=c ρ
′.

δ = d≤n In this case, sn
d−→ sn[d] and sn[d] 6−→ for all d ≤ dn. It follows from condition

4 of Definition 29 that tn
d−→ tn[d] such that sn[d] �=c tn[d] and from condition

5 of Definition 29 that tn[d] 6; for all d ≤ dn. Moreover, by the no-delay-in-
intermediate-state and eventually-stable properties of B, it follows that tn[d] −→
iff tn[d] ;, hence tn[d] 6−→ for all d ≤ dn. Finally, since sn 6

d−→ for d > dn, it

follows from condition 6 of Definition 29 that tn 6
d−→ for d > dn. Hence ρ �=c ρ

′.

δ = d<n In this case, sn
d−→ sn[d] and sn[d] 6−→ for all d < dn. It follows from condition

4 of Definition 29 that tn
d−→ tn[d] such that sn[d] �=c tn[d] and from condition

5 of Definition 29 that tn[d] 6; for all d < dn. Moreover, by the no-delay-in-
intermediate-state and eventually-stable properties of B, it follows that tn[d] −→
iff tn[d] ;, hence tn[d] 6−→ for all d < dn. Finally, since sn 6

d−→ for d ≥ dn, it

follows from condition 6 of Definition 29 that tn 6
d−→ for d ≥ dn. Hence ρ �=c ρ

′.
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(⇐): Assume that there exists a (finite or infinite) maximal run in B of the form

ρ′ = t0
d0−→ t0[d0] −→ t1

d1−→ t1[d1] −→ t2
d2−→ t2[d2] −→ · · ·

where intermediate states are also indexed.
Let j1 < j2 < j3 < . . . be all the indices such that tji |= stable for all i > 0

(follows from the eventually-stable property of B). Moreover, since B is a no-delay-in-
intermediate-state TTS, it follows that if ti 6|= stable then di = 0 for all i > 0. Finally,
because B is also a delay-preserves-stable TTS, it follows that whenever ti |= stable
then ti[di] |= stable for all i ≥ 0.

These properties in turn imply that we can write ρ′ in the form

ρ′ = t0
d0−→ t0[d0] ; tj1

dj1−→ tj1 [dj1 ] ; tj2
dj2−→ tj2 [dj2 ] ; · · ·

Now, following the same strategy as (⇒) case, we can conclude that for any ρ′,
there exist a maximal run ρ ∈ Runs(A, s0) such that ρ �=c ρ

′. �

6.3 Main Theorem

We will now describe how to translate TCTL formulae for A to formulae for B.

Definition 35 Let APA and APB be sets of atomic propositions with stable ∈ APB
and let trp : APA −→ APB be a function translating atomic propositions in APA to
atomic propositions in APB. We define a TCTL translation function tr : Φ(APA)→
Φ(APB) in the following manner:

tr(℘) = trp(℘)

tr(¬ϕ1) = ¬tr(ϕ1)

tr(ϕ1 ∧ ϕ2) = tr(ϕ1) ∧ tr(ϕ2)

tr(ϕ1 ∨ ϕ2) = tr(ϕ1) ∨ tr(ϕ2)

tr(E(ϕ1UIϕ2)) = E((tr(ϕ1) ∨ ¬stable)UI(tr(ϕ2) ∧ stable))

tr(A(ϕ1UIϕ2)) = A((tr(ϕ1) ∨ ¬stable)UI(tr(ϕ2) ∧ stable))

tr(E(ϕ1RIϕ2)) = E((tr(ϕ1) ∧ stable)RI(tr(ϕ2) ∨ ¬stable))

tr(A(ϕ1RIϕ2)) = A((tr(ϕ1) ∧ stable)RI(tr(ϕ2) ∨ ¬stable)) ♦

As an example consider Figure 6.1. The maximal run ρ = s0
4.4−→ s1 −→ s2

0≤−→ in
system A witnesses the property E(pU[3,5]q). Similarly, one possible witness in system

B for the formula E((p ∨ ¬stable)U[3,5](q ∧ stable)) is ρ′ = t0
4.4−→ t1 ; t4

0≤−→.
We are now ready to prove the main theorem of this chapter.

Theorem 36 Let A = (S,→A,APA, µA) and B = (T,→B,APB, µB) be two TTSs
such that stable ∈ APB. Further, let s0 ∈ S and t0 ∈ T be such that s0 �=c t0. Then
for any TCTL formula ϕ,

s0 |= ϕ if and only if t0 |= tr(ϕ) . ♦
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Proof We shall prove this theorem by structural induction on ϕ. By Lemma 25 and
Lemma 26 it is sufficient to handle the operators ℘, ¬ϕ, ϕ1 ∧ϕ2, ϕ1 ∨ϕ2, E(ϕ1UIϕ2)
and E(ϕ1RIϕ2).

• ϕ = ℘, ϕ = ¬ϕ1, ϕ = ϕ1 ∧ ϕ2 and ϕ = ϕ1 ∨ ϕ2: Follows trivially from the
induction hypothesis and the definition of �=c.

• ϕ = E(ϕ1UIϕ2):

(⇒) : Assume that s0 |=A E(ϕ1UIϕ2). Thus, there exists a maximal run ρ ∈
Runs(A, s0) that witnesses ϕ. This implies that there exists a prefix of ρ of the
form

ρprefix = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ · · · −→ sn−1
dn−1−→ sn−1[dn−1] −→ sn

d−→ sn[d],

where validρ(n, d, I), sn[d] |=A ϕ2 and sk[d
′] |=A ϕ1 for all (k, d′) ∈ historyρ(n, d).

By Lemma 33 there exists a run ρ′prefix in B of the form

ρ′prefix = t0
d0−→ t0[d0] ; t1

d1−→ t1[d1] ; · · ·; tn−1
dn−1−→ tn−1[dn−1] ; tn

d−→ tn[d],

such that ρprefix
�=c ρ

′
prefix .

We want to show that t0 |=B E((tr(ϕ1) ∨ ¬stable)UI(tr(ϕ2) ∧ stable)). Be-
cause sn[d] �=c tn[d] and sn[d] |=A ϕ2, we have by the induction hypothe-
sis that tn[d] |=B tr(ϕ2) and from condition 1 of Definition 29 we have that
tn[d] |=B stable. Let j be the index corresponding to the occurrence of tn in
the alternating sequence which unfolds the ; steps. Because time delays are
equivalent in the two runs, it follows that validρ′(j, d, I) and moreover, for any
pair (k, d′) ∈ historyρ′(j, d) either,

– tk[d
′] is an intermediate state and thus tk[d

′] |=B ¬stable, or

– tk[d
′] is a stable state. From the construction of ρ′prefix it follows that

there exists a pair (k′, d′) ∈ historyρ(n, d) such that sk′ [d
′] �=c tk[d

′]. By
the induction hypothesis and the fact that sk′ [d

′] |=A ϕ1, it follows that
tk[d

′] |=B tr(ϕ1).

This means that tk[d
′] |=B tr(ϕ1) ∨ ¬stable.

Thus, any maximal run ρ′ ∈ Runs(B, t0) that extends ρ′prefix witnesses tr(ϕ),
meaning t0 |=B E((tr(ϕ1) ∨ ¬stable)UI(tr(ϕ2) ∧ stable)).

(⇐) : Assume t0 |=B E((tr(ϕ1)∨¬stable)UI(tr(ϕ2)∧ stable)). Thus, there exists
a maximal run ρ′ in B that witnesses tr(ϕ). By the fact that B is a no-delay-
in-intermediate-state and delay-preserves-stable TTS there exists a prefix of ρ′
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of the form

ρ′prefix = t0
d0−→ t0[d0] ; t1

d1−→ t1[d1] ; · · ·; tn−1
dn−1−→ tn−1[dn−1] ; tn

d−→ tn[d],

such that validρ′(j, d, I), tn[d] |=B tr(ϕ2) ∧ stable and tk[d
′] |=B tr(ϕ1) ∨ ¬stable

for all (k, d′) ∈ historyρ(j, d) where j is the index corresponding to the occurrence
of tn in the alternating sequence which unfolds the ; steps as before.

By Lemma 33 there exists a run ρprefix in A of the form

ρprefix = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ · · · −→ sn−1
dn−1−→ sn−1[dn−1] −→ sn

d−→ sn[d],

such that ρprefix
�=c ρ

′
prefix .

We want to show that s0 |=A E(ϕ1UIϕ2). Because sn[d] �=c tn[d] and tn[d] |=B

tr(ϕ2) ∧ stable, we have by the induction hypothesis that sn[d] |=A ϕ2. Since
time delays are equivalent in the two runs, it follows that validρ(n, d, I). Fur-
ther, for any pair (k′, d′) ∈ historyρ(n, d), it follows that there exists a (k, d′) ∈
historyρ′(j, d) such that sk′ [d

′] �=c tk[d
′]. By the induction hypothesis, it follows

that sk′ [d
′] |=A ϕ1 because tk[d

′] |=B tr(ϕ1) and tk[d
′] |=B stable.

It then follows that any maximal run ρ ∈ Runs(A, s0) starting with ρprefix wit-
nesses ϕ, thus s0 |=A E(ϕ1UIϕ2).

• ϕ = E(ϕ1RIϕ2):

(⇒) : Assume that s0 |=A E(ϕ1RIϕ2). By assumption, there exists a maximal
run (infinite or finite)

ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ s2
d2−→ s2[d2] −→ · · ·

in A that witnesses ϕ. This means that for all i ≥ 0 and all d ∈ R≥0 if
validρ(i, d, I) is true then either si[d] |=A ϕ2 or there exist a (k, d′) ∈ historyρ(i, d)
s.t. sk[d

′] |=A ϕ1.

By Lemma 34 it follows that there exists a maximal run

ρ′ = t0
d0−→ t0[d0] ; t1

d1−→ t1[d1] ; t2
d2−→ t2[d2] ; · · · (6.1)

in B such that ρ �=c ρ
′ (see Definition 32).

We want to show that t0 |=B E((tr(ϕ1) ∧ stable)RI(tr(ϕ2) ∨ ¬stable)). For all
k ≥ 0 and all d ∈ R≥0, if validρ′(k, d, I) is true then either

– tk[d] is an intermediate state and then tk[d] |=B ¬stable, or
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– tk[d] is a stable state. This means that tk[d] has a distinguished index in
Equation (6.1). Let h be the index of tk[d] in Equation (6.1). It follows
from the construction of the ρ′ that sh[d] �=c th[d]. There are two cases to
consider.

∗ Either sh[d] |=A ϕ2 and then by the induction hypothesis it follows that
th[d] |=B tr(ϕ2), or

∗ there exists (`′, d′) ∈ historyρ(h, d) such that s`′ [d
′] |=A ϕ1. From the

construction of ρ′ it follows that there exists a (`, d′) ∈ historyρ′(k, d)
such that s`′ [d

′] �=c t`[d
′]. By the induction hypothesis, it follows that

t`[d
′] |=B tr(ϕ1) ∧ stable.

This in turn means that t0 |=B E((tr(ϕ1) ∧ stable)RI(tr(ϕ2) ∨ ¬stable)).

(⇐) : Assume that t0 |=B E((tr(ϕ1) ∧ stable)RI(tr(ϕ2) ∨ ¬stable)). Since B
is a no-delay-in-intermediate-state, delay-preserves-stable and eventually-stable
TTS, there exists a maximal run (infinite or finite)

ρ′ = t0
d0−→ t0[d0] ; t1

d1−→ t1[d1] ; t2
d2−→ t2[d2] ; · · ·

in B that witnesses tr(ϕ). This means that for all i ≥ 0 and all d ∈ R≥0
if validρ′(i, d, I) is true then either ti[d] |=B tr(ϕ2) ∨ ¬stable or there exists a
(k, d′) ∈ historyρ′(i, d) s.t. tk[d

′] |=B tr(ϕ1) ∧ stable.

By Lemma 34 it follows that there exists a maximal run

ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ s2
d2−→ s2[d2] −→ · · ·

in A such that ρ �=c ρ
′.

We want to show that s0 |=A E(ϕ1RIϕ2). For all k ≥ 0 and all d ∈ R≥0, we
have that sk[d] �=c tk[d] and whenever validρ(k, d, I) is true then

– Either tk[d] |=B tr(ϕ2) and then by the induction hypothesis we have that
sk[d] |=A ϕ2, or

– there exists some (`′, d′) ∈ historyρ′(j, d) where j is the index corresponding
to the occurrence of tk in the alternating sequence which unfolds the ;

steps, such that t`′ [d
′] |=B tr(ϕ1) ∧ stable. From the construction of ρ, it

follows that there exists a pair (`, d′) ∈ historyρ(k, d) such that s`[d
′] �=c

t`′ [d
′]. By the induction hypothesis, it follows that s`[d

′] |=A ϕ1.

This in turn means that s0 |=A E(ϕ1RIϕ2). �

Observe in the proof above that for the case of E(ϕ1UIϕ2) (dually for the case
A(ϕ1RIϕ2)), we only used Lemma 33 which requires only a one-by-many correspon-
dence. On the other hand, to prove the case of E(ϕ1RIϕ2) (dually, A(ϕ1UIϕ2)) we
used the eventually-stable property and Lemma 34, which requires a complete one-by-
many correspondence. Hence, we may conclude the following corollary.
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Corollary 37 Let A = (S,→A,APA, µA) and B = (T,→B,APB, µB) be two TTSs
such that stable ∈ APB. Further, let s0 ∈ S and t0 ∈ T be such that s0 �= t0. Then
for any formula ϕ from the safety fragment of TCTL

s0 |=A ϕ if and only if t0 |=B tr(ϕ) ♦

The reason we need a complete one-by-many correspondence to preserve the full TCTL
can be illustrated by considering systems A and C in Figure 6.1 where {(s0, u0),
(s1, u1), (s2, u4), (s3, u7)} is a one-by-many correspondence between states in A and
C. In this particular example, s0 |=A A(pU[3,5]q) but u0 6|=B tr(A(pU[3,5]q)) = A((p ∨
¬stable)U[3,5](q ∧ stable)). Both of the following maximal runs

ρ = u0
4.4−→ u1 −→ u2

0−→ u2 −→ u3
0≤−→

ρ′ = u0
4.4−→ u1 −→ u5

0−→ u5 −→ u6
0−→ u6 −→ u6

0−→ u6 −→ u6
0−→ · · ·

in C are counter examples to tr(A(pU[3,5]q)). Moreover, there exists no run ρ′′ in A
such that ρ′′ �= ρ or ρ′′ �= ρ′.

6.4 Overall Methodology

This section will describe what is needed to apply our framework to actual translations.
The following list outlines the steps needed.

1. Give an algorithm that for a given system A constructs a system B with the
notion of stable states in B.

(a) Show that B is a no-delay-in-intermediate-state and delay-preserves-stable
TTS (and optionally an eventually-stable TTS).

2. Define the proposition translation function trp : APA −→ APB.

3. Define the relation R and show that it fulfills condition 1-6 of Definition 29.

4. Conclude that the translation preserves TCTL (or only the safety fragment if R
is only a one-by-many correspondence).

6.5 Applications

In Chapter 8 and Chapter 9, we shall present two novel translations from arbitrary
bounded TAPN to NTA and apply our framework to show that they preserve the full
TCTL. To show the applicability of our framework, we shall apply our methodology
to translations from the literature.

Cassez and Roux [18] give a translation from Timed Petri Nets (TPN) to networks
of timed automata with integer variables which preserves TCTL. They create a timed
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automaton for every transition, as well as a supervisor automaton. A transition au-
tomaton can be in one of three states: enabled, disabled or firing. A global integer
array represents the current marking: the integer at index i gives the number of to-
kens in place pi. We shall refer to this array as the marking array. Let us briefly
describe how the constructed NTA works. Assume that we want to simulate the firing
of transition ti and it is enabled. First the supervisor synchronizes with transition au-
tomaton Ai on the channel pre (naturally, the interval associated with the transition
is checked here). This removes any consumed tokens from the marking array. Next,
the supervisor broadcasts on the channel update. By construction, all automata will
participate in this synchronization. This changes the current location of all transition
automata to match the enabledness/disabledness in the TPN (remember the transition
automata has a location representing enabled and one representing disabled). Next,
automaton Ai can synchronize with the supervisor automaton on the channel post.
This adds produced tokens to the marking array. Again, the supervisor broadcasts
on the update channel. As before, this involves all automata and the locations of all
transition automata are updated to reflect the enabledness/disabledness of the corre-
sponding transition. Moreover, due to the use of committed locations, no time can
elapse during this sequence.

Our framework can be applied to this translation as follows. First, a state is
stable whenever the supervisor can synchronize on a pre channel. Further, the no-
delay-in-intermediate-state property is satisfied, since time delays (except 0) are not
possible in intermediate locations. Time delays do not change the current location,
hence the delay-preserves-stable property is satisfied. The authors show that any finite
run ends in a stable state. This generalizes to maximal runs (for infinite maximal
runs, a stable state appears infinitely often) which means that the eventually-stable
property is satisfied. Finally, they present a theorem that shows condition 3 − 6 of
our definition, thus it follows that our framework can be applied to show that their
translation preserves the full TCTL.

Byg et al. [17] defines a translation from k-bounded TAPN to NTA that preserves
the safety fragment of a subset of Computation Tree Logic (CTL). First they translate
the k-bounded TAPN to a TAPN of degree 2 (a net where all transitions have two
incoming and two outgoing arcs). The idea is that a transition in the original net is
simulated by a number of degree 2 transitions in the degree 2 net, such that input
tokens are first removed one-by-one after which the tokens are put into the respective
output places one-by-one. During the simulation of a transition, delays cannot occur
due to the use of invariants. A special place called plock acts as a mutex, ensuring
that the simulations of two transitions cannot interleave. However, extra deadlocks
are introduced because it is possible to start the simulation of a transition and get
stuck midways (e.g. if a token of an appropriate age is not present in one of the input
places). Thus, this translation preserves only safety. A TAPN of degree 2 is simulated
in an NTA via handshake synchronizations between two automata (each representing
a token). The TAPN of degree 2 is shown strongly timed bisimilar to the NTA.

Our framework also applies to these translations. First, a marking in the de-
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gree 2 net is stable whenever a token is in plock . Because time cannot elapse dur-
ing the simulation of a transition, it follows that the underlying TTS is no-delay-
in-intermediate-state. Similarly, the delay-preserves-stable property is fulfilled since
delays do not change the placement of tokens. We cannot show that the translated
system is eventually-stable, since extra deadlocks are introduced. The authors prove
condition 3-6 of Definition 29 in the paper. Finally. since atomic propositions follow
the same style as ours, it follows that our framework can be applied to show that the
safety fragment of TCTL is preserved, improving on the result of the paper. Since
their second translation preserves strong timed bisimulation, all states are stable and
hence, as noted in Remark 30, it follows that we can apply our framework to show that
it preserves the full TCTL. In Chapter 9 we extend the translation from k-bounded
TAPN to NTA such that it preserves the full TCTL.

In theory, our framework should apply to any translation that has been shown
to preserve strong timed bisimulation, as noted in Remark 30 (see e.g. [15, 20, 29]
for examples of strong bismulation preserving translations where our framework ap-
plies). However, some papers (e.g. [22]) use a non-standard definition of strong timed
bisimulation, which means our framework may not apply to their translations.

Cortés et al. [19] presents a translation from 1-safe PRES+ models (essentially,
a generalization of time Petri nets) to timed automata. While they do not show
any relationship between the two models (though they implicitly claim that formal
TCTL model checking is possible on 1-safe PRES+ models using the translation), their
translation actually preserves strong timed bisimulation, and hence our framework
could be applied to prove the correctness of the translation.
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Chapter 7

Networks of Timed Automata
with Integer Variables

Timed automata were first introduced by Alur and Dill [5, 6] and have become one of
the most well-studied formalisms for the modeling and verification of real-time systems.
While there exists a number of tools for real-time model checking and verification of
timed automata, this report will focus on the tool UPPAAL [2], as the UPPAAL is
a state-of-the-art verification tool and it is used behind-the-scenes in the verification
tool TAPAAL [1].

7.1 Clocks

Before we can introduce the syntax and semantics of a timed automaton, we need
to define some of the main concepts in the formalism. Because timed automata, as
the name implies, allow for modelling of timing constraints, we need a way to model
time. This is done via a finite set of real-valued clocks C = {c1, c2, . . .} whose elements
represent names of clocks.

A clock constraint (or guard) is a boolean expression defined by the abstract syntax:

g1, g2 ::= true | c1 ./ n | c1 − c2 ./ n | g1 ∧ g2

where c1, c2 ∈ C, n ∈ N0 and ./ ∈ {<,≤,=,≥, >}. The set of all clock guards over
the set of clocks C is denoted CG(C). For our purposes, invariants follow the same
syntax as guards with the one exception that ./ ∈ {≤, <}. We denote the set of all
clock invariants over a set of clocks C as CI (C).

A (clock) valuation of C is a function v : C → R≥0, which for every clock c ∈ C
returns the value of c. In order to allow time to pass, we define a delay operation as
follows. Let v be a valuation and d a non-negative real. We let v+ d be the valuation
such that (v + d)(c) = v(c) + d for every c ∈ C. Similarly, we need to be able to reset
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clocks. For a subset of clocks r ⊆ C, we let v[r] be the valuation such that

v[r](c) =

{
0 if c ∈ r
v(c) otherwise.

A clock valuation v over C satisfies a clock guard g ∈ CG(C) or a clock invariant
g ∈ CI inv(C) (written v |= g) if the clock constraint evaluates to true under the clock
assignments of v. Formally, v |= g is defined inductively on the structure of g as
follows.

v |= true

v |= c1 ./ n iff v(c1) ./ n

v |= c1 − c2 ./ n iff v(c1)− v(c2) ./ n

v |= g1 ∧ g2 iff v |= g1 and v |= g2

where c1, c2 ∈ C, n ∈ N0 and ./ ∈ {<,≤,=,≥, >}. If v does not satisfy g we write
v 6|= g as expected.

7.2 Integer Variables

We will now define the concept of integer variables in timed automata. Let X be
a finite set of integer variables. The set of arithmetic variable expressions over X
(denoted VE (X)) is defined according to the following abstract syntax

expr1, expr2 ::= m | x | expr1 ⊕ expr2

where m ∈ Z, x ∈ X and ⊕ ∈ {+,−}. A variable guard is a boolean expression
defined by the following abstract syntax

ϕ1, ϕ2 ::= true | expr1 ./ expr2 | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2

where expr1, expr2 ∈ VE (X) and ./ ∈ {<,≤,=,≥, >}. We denote the set of all
variable guards over the set of variables X by VG(X). Variable assignments are
defined according to the following syntax

x := expr

where x ∈ X and expr ∈ VE (X). We denote the set of all variables assignments over
X by VA(X). A set of non-conflicting variable assignments A is a finite subset of
VA(X), where for every x ∈ X whenever (x := expr1) ∈ A and (x := expr2) ∈ A then
expr1 = expr2.

Finally, we will define a variable valuation as a total mapping z : X −→ Z which
given some variable x ∈ X returns the current value of x. We will extend this mapping
to support expressions in VE (X) as follows

z(m) = m if m ∈ Z
z(e1 ⊕ e2) = z(e1)⊕ z(e2) if e1, e2 ∈ VE (X)
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where ⊕ ∈ {+,−}.
A variable valuation z satisfies a variable guard ϕ ∈ VG(X) (written z |= ϕ) if

the variable guard evaluates to true under the valuation z. Formally, z |= ϕ is defined
inductively on the structure of ϕ as follows

z |= true

z |= e1 ./ e2 iff z(e1) ./ z(e2)

z |= ϕ1 ∧ ϕ2 iff z |= ϕ1 and z |= ϕ2

z |= ϕ1 ∨ ϕ2 iff z |= ϕ1 or z |= ϕ2

where e1, e2 ∈ VE (X) and ./ ∈ {<,≤,=,≥, >}.
Given a set of non-conflicting variable assignments A we let z[A] denote a variable

valuation such that

z[A](x) =

{
z(expr) if (x := expr) ∈ A
z(x) otherwise.

7.3 Timed Automata with Integer Variables

We can now define the notion of a timed automaton.

Definition 38 (Timed Automaton) A Timed Automaton (TA) is a tuple
(L,Act, C,X,−→, IC , IX , `0), where

• L is a finite set of locations,

• Act is a finite set of actions,

• C is a finite set of clocks,

• X is a finite set of integer variables,

• −→ ⊆ L×CG(C)×VG(X)×Act× 2C × 2VA(X)×L is a finite set of edges such
that whenever (`, g, ϕ, a, r,A, `′) ∈−→ then A is a finite non-conflicting set,

• IC : L→ CI (C) is a function assigning clock invariants to locations,

• IX : L→ VG(X) is a function assigning variable invariants to locations, and

• `0 is the initial location.

We write `
g,ϕ,a,r,A−−−−−→ `′ instead of (`, g, ϕ, a, r,A, `′) ∈−→, where ` is the source location,

g is the clock guard, ϕ is the variable guard, a is the action, r is the set of clocks to be
reset, A is the set of non-conflicting variable assignments and `′ is the target location.♦
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Note for notational convenience, we shall sometimes conjunct the clock invariant
and the variable invariant when drawing TA.

Let us now turn our attention to networks of timed automata. A network of timed
automata is basically a parallel composition of timed automata. Besides handshake
synchronization, UPPAAL also supports broadcast channels. Thus, our network of
timed automata will support both handshake synchronization in which two timed
automata can synchronize, as well as a notion of broadcast synchronization which
allows for more than two timed automata to participate in a synchronization. In
order to handle synchronizations, we assume the existence of a finite set of channel
names Chan (for handshake synchronizations), a finite set of channel names Broad
(for broadcast synchronizations) and a finite set of ordinary actions, denoted by N ,
which includes the internal action τ , such that Chan ∩Broad ∩N = ∅. We then define

Act = {c!, c? | c ∈ Chan} ∪ {a

!

, a
?
| a ∈ Broad} ∪N.

The intuition is that c! indicates output, i.e. that an automation sends a hand-
shake synchronization request on the channel c, and c? is used for input, i.e. that an
automaton is prepared to receive a handshake synchronization request on the channel
c. Further, a

!

indicates broadcasting on channel a and a
?

indicates that an automaton
is prepared to receive a broadcast synchronization request on channel a.

We can now define a network of timed automata.

Definition 39 (Network of Timed Automata) Let n ∈ N and let Ai = (Li, Act,
C,X,−→i, I

i
C , I

i
X , `

i
0) be timed automata for all 1 ≤ i ≤ n, over a fixed set of actions

Act, clocks C and integer variables X. A Network of Timed Automata (NTA) is a
parallel composition of A1, A2, . . . , An denoted by A = A1 ‖ A2 ‖ . . . ‖ An. ♦

The semantics of a network of timed automata is given in terms of a TTS. A
configuration of an NTA is a tuple (`1, `2, . . . , `n, z, v) where `i ∈ Li for all 1 ≤ i ≤ n,
z is a variable valuation over X and v is a clock valuation over C such that for every
1 ≤ i ≤ n it holds that z |= IiX(`i) and v |= IiC(`i). In other words, the configuration
specifies which location each automaton in the network is in, and the value of every
variable and clock in the network (with the requirement, that the invariants of all
locations are satisfied by the variable and clock valuations). We will denote the set of
all configurations of a given NTA A by Conf (A).

We can now define the precise semantics of networks of timed automata.

Definition 40 Let A = A1 ‖ A2 ‖ . . . ‖ An where Ai = (Li, Act, C,X,−→i, I
i
C , I

i
X , `

i
0)

for all 1 ≤ i ≤ n, be an NTA over a fixed set of actions Act, clocks C and integer
variables X. The TTS generated by A, is defined as T (A) = (S,−→,AP, µ), where

• S = Conf (A),

• the transition relation −→ consists of
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– Ordinary transitions:
(`1, . . . , `i, . . . , `n, z, v) −→ (`1, . . . , `

′
i, . . . , `n, z

′, v′) if there exists an a ∈ N
such that there is an edge `i

g,ϕ,a,r,A−−−−−→i `
′
i in the i’th automaton such that

v |= g, z |= ϕ, v′ = v[r], z′ = z[A], v′ |= IiC(`′i) ∧
∧
j 6=i I

j
C(`j) and z′ |=

IiX(`′i) ∧
∧
j 6=i I

j
X(`j),

– Handshake synchronization transitions:
(`1, . . . , `i, . . . , `j , . . . , `n, z, v) −→ (`1, . . . , `

′
i, . . . , `

′
j , . . . , `n, z

′, v′) if

i 6= j and there are edges `i
gi,ϕi,a!,ri,Ai−−−−−−−−→i `

′
i and `j

gj ,ϕj ,a?,rj ,Aj−−−−−−−−−→j `
′
j such

that a ∈ Chan, v |= gi ∧ gj , z |= ϕi ∧ ϕj , v′ = v[ri ∪ rj ], z′ = (z[Ai])[Aj ],
v′ |= IiC(`′i)∧I

j
C(`′j)∧

∧
k 6=i,j I

k
C(`k) and z′ |= IiX(`′i)∧I

j
X(`′j)∧

∧
k 6=i,j I

k
X(`k),

– Broadcast synchronization transitions:
(`1, . . . , `n, z, v) −→ (`′1, . . . , `

′
n, z
′, v′) if there exists an a ∈ Broad such that

∗ there exists an i, 1 ≤ i ≤ n such that there is an edge

`i
gi,ϕi,a

!

,ri,Ai−−−−−−−−→i `
′
i in the i’th automaton where v |= gi and z |= ϕi,

∗ let J be the set of all j, 1 ≤ j 6= i ≤ n where there is an edge

`j
gj ,ϕj ,a

?
,rj ,Aj−−−−−−−−−→j `

′
j in the j’th automaton such that v |= gj and z |= ϕj ,

∗ for all j ∈ J we set `′j , Aj and rj according to the edge

`j
gj ,ϕj ,a

?
,rj ,Aj−−−−−−−−−→j `

′
j (note that there may be multiple edges to choose

from),

∗ for all j 6∈ J , 1 ≤ j 6= i ≤ n we let `′j = `j , Aj = ∅ and rj = ∅,
∗ z′ = (. . . ((. . . (s[Ai])[A1])[A2]) . . . [Ai−1])[Ai+1]) . . . [An] and
z′ |=

∧n
k=1 I

k
X(`′k), and

∗ v′ = v[R] where R =
⋃n
k=1 rk and v′ |=

∧n
k=1 I

k
C(`′k),

– Delay transitions:

(`1, . . . , `n, z, v)
d−→ (`1, . . . , `n, z, v + d) for all d ∈ R≥0 such that v + d |=∧n

i=1 Ii(`i),

• AP def
= {(#` ./ m) | ` ∈ ∪ni=1Li,m ∈ N and ./ ∈ {<,≤,=,≥, >}}, and

• µ : S −→ 2AP is a function assigning sets of true atomic propositions to states.
A proposition (#` ./ m) is true in configuration s if and only if the number of
parallel components that are currently in the location ` satisfies the proposition
with respect to m.

The initial state is (`10, `
2
0, . . . , `

n
0 , z0, v0) where z0(x) = 0 for all x ∈ X and v0(c) = 0

for all c ∈ C. We assume z0 and v0 always satisfy the invariants of `i0 for all 1 ≤ i ≤ n,
i.e. z0 |=

∧n
i=1 I

i
X(`i0) and v0 |=

∧n
i=1 I

i
C(`i0). ♦

Remark 41 Note that for handshake and broadcast synchronizations, variable as-
signments are always evaluated in a specific order. First any assignments on the edge
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of the sender are evaluated and following this the assignments of any receivers are
evaluated in the order from A1 to An. ♦

7.4 Complexity and Computability

In the following, we will briefly discuss the decidability and complexity of reachability
and TCTL model checking of timed automata and timed automata with integer vari-
ables. We shall focus on the problems for TA, as an NTA can be viewed as a single
product automaton.

Even though the state space is infinite, the reachability problem for a TA was
shown decidable and PSPACE-complete in [5, 6]. The basic idea is to construct a
region graph, which represents the behaviour of a TA in a finite way. Intuitively, a
region is a collection of states with the same behaviour. From this abstraction the
reachability problem is reduced to checking reachability in a finite graph.

The construction of the finite region graph also has other applications. In [7], this
construction is used to prove the decidability of TCTL model checking for TA. The
authors also prove that this problem is PSPACE-complete.

In Definition 38, the TA is extended with integers variables. If we restrict TA to
use only bounded integer variables, then it is still possible to construct a finite region
graph. This is because the bounded range of integer variables only result in finitely
many extra states. However, if use unbounded integers, the region abstraction is no
longer capable of representing the state space in a finite way. Thus, both reachability
and TCTL model checking become undecidable in this case.
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Broadcast Translation

In this section, we will present a translation from k-bounded TAPN to NTA. The
basic idea in the translation is to create a TA for each token in the TAPN. Since
we cannot dynamically instantiate new TA during the verification process, we need to
have a constant number of tokens in the net at all times. Since the translation works
for bounded TAPN, we can assume that we know the bound of the TAPN. Thus,
if we know the TAPN is k-bounded we construct k TA to simulate the tokens. In
each of these TA there is a location for each place in the TAPN. A TA in one of
these locations simulates a token in the corresponding place in the TAPN. We refer to
these TA as token automata. Further, each TA has a clock which simulates the age of
the token. All the token automata have the exact same structure, the only difference
being their initial location, which corresponds to the initial marking of the TAPN,
and the name of their clock. As there may not be k tokens in the initial marking, an
additional place `capacity is introduced where automata representing currently unused
tokens are waiting. Initially, there are k − |M0| token automata in `capacity . When
simulating a transition t where |•t| > |t•|, we can move |•t| − |t•| token automata
to `capacity . Similarly, when simulating a transition t where |•t| < |t•|, we can move
|t•| − |•t| token automata out of `capacity . Note that there is only one `capacity location
in each automaton.

In addition to these token automata, we create a single control automaton. The
purpose of this TA is to simulate the firing of transitions and move tokens around by
synchronizing with some of the token automata. This TA has a location `stable which
acts as a mutex, in the sense that the control automaton moves out of this location
once the simulation of a transition begins and only returns once the simulation of
the transition ends. Further, each time the control automaton is in this location, the
locations and the clock values of the token automata correspond to a marking in the
TAPN.

We will begin by demonstrating the translation on an example.

53



Chapter 8 – Broadcast Translation

p0

#4

{1.2, 2.5, 3.3, 5.5}

p1

t
[0, 4]

(a) A simple TAPN model.

Control:

`stable `(t)
inv:
c == 0 ∧
count1 ≥ 1

ttest

!

c := 0

count1 == 1tfire

!

count1 := 0

Token 1:

p0 `(tp0p1)

p1

0 ≤ c1 ≤ 4 count1++

ttest
?

count1−−
τ

count1 > 1

tfire
?

c1 := 0

Token 2:

p0 `(tp0p1)

p1

0 ≤ c2 ≤ 4 count1++

ttest
?

count1−−
τ

count1 > 1

tfire
?

c2 := 0

Token 3:

p0 `(tp0p1)

p1

0 ≤ c3 ≤ 4 count1++

ttest
?

count1−−
τ

count1 > 1

tfire
?

c3 := 0

Token 4:

p0 `(tp0p1)

p1

0 ≤ c4 ≤ 4 count1++

ttest
?

count1−−
τ

count1 > 1

tfire
?

c4 := 0

c = 0.0

c1 = 1.2

c2 = 2.5

c3 = 3.3

c4 = 5.5

(b) The NTA resulting from translation of the TAPN in Figure 8.1a. The box in the rightmost
side of the picture shows the clock valuation of the NTA. Notice that the values of ci, 0 ≤ i ≤ 4,
correspond exactly to the ages of the tokens in p0.

Figure 8.1: Broadcast translation example.
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8.1 Example

Figure 8.1a shows a very simple TAPN with a single transition and four tokens, and
the translated NTA is shown in Figure 8.1b. The NTA consists of five automata: one
control automaton with a distinguished clock c and four token automata, one for each
token in the TAPN. Intuitively, the value of c can be understood as the time that has
elapsed since the last transition was executed. Notice that for the sake of this example
we have refrained from adding the `capacity location because it is not needed.

We shall now explain how the translated NTA works. When we want to simulate
the firing of a transition t in the NTA, the control automaton will broadcast on the ttest

channel. Any token automaton whose clock has a value within the interval [0, 4] will
be forced to participate in the broadcast. In our case, this means that token automata
1-3 will participate in the broadcast synchronization. Token automaton 4 will not
participate since its clock has the value 5.5 and hence the guard prohibits it from
participating. We will use integer variables to count the number of token automata
which participate in the transition when broadcasting on the ttest channel. Because
the preset and postset of t has size 1, we only need one counter variable. Thus, when
these automata participate in the synchronization, they will move to the intermediate
`(tp0p1) location thereby incrementing the counter variable count1, resulting in the value
3. This means that the invariant on `(t) is satisfied in the control automaton. In other
words, we know that there are enough tokens with appropriate ages in the input places
of t to fire it (in this case there are more than needed). Notice that if there were not
enough tokens in some of the input places, then the invariant on `(t) would not be
satisfied when broadcasting on the ttest channel and thus this broadcast would not be
possible. This is one of the crucial aspects to realize in order to see why this translation
preserves liveness properties, as we will show later.

However, because the value of count1 is 3, the control automaton cannot broadcast
on the tfire channel, since the guard ensures that this is only possible when exactly one
token automaton remains in its intermediate location for each input place. Therefore,
we are forced to move two of the token automata back to p0 via the τ -transitions. No-
tice that this is only possible as long as count1 > 1, which means one token automaton
has to remain in its intermediate location. When all the extra token automata have
been moved back to the original location, the control automaton can broadcast on
the tfire channel. The token automata remaining in the intermediate locations (in our
case, a single automaton) must participate in this synchronization (because they have
no guards), and thus the token automata move to the output places, which ends the
simulation of firing transition t.

We shall now show how the translation works on a slightly more elaborate example
using all of the features of the TAPN model. Figure 8.2a shows a TAPN model that
uses transport arcs, invariants and inhibitor arcs. The translated NTA created by our
algorithm is shown in Figure 8.2b. Note that Figure 8.2b only shows a template for
one token automaton. This template is repeated three times, once for each token. The
only difference between the templates is the initial location (p1, p2 and p3 respectively)
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p3p1 p2

t
t′

p4

inv: ≤ 3

[0, 4][1, 5]

[0,
2]

[0,∞)

3.02.8 1.4

(a) A TAPN model.

`stable `(t)
inv:
c == 0 ∧
count1 ≥ 1 ∧
count2 ≥ 1 ∧
count3 == 0

`(t ′)
inv:
c == 0 ∧
count1 ≥ 1

t′test

!

c := 0

count1 == 1

t′fire

!

count1 := 0

ttest

!

c := 0

count1 == 1 ∧
count2 == 1 ∧
count3 == 0

tfire

!

count1 := 0,
count2 := 0,
count3 := 0

Template repeated three times:

p3
0 ≤ ci ≤ 2
ttest

?

count3++

p1

`(tp1p4)

p4

inv:
ci ≤ 3

1 ≤ ci ≤ 3

ttest
?

count1++

count1−−
τ

count1 > 1

tfire
?

p2

`(tp2`capacity
)

`capacity

0 ≤ ci ≤ 4

ttest
?

count2++

count2−−
τ

count2 > 1

tfire
?

ci := 0

`(t′
p3
p4)

t′test
?

count1++

count1−−
τ

count1 > 1

t′fire
?

ci := 0

(b) The NTA resulting from translation of the TAPN in Figure 8.2a. c is a distinguished clock
for the control automaton. Note that the lower TA is a template which is repeated three times
with different initial locations (p1, p2 and p3 resp.) and with different clock names (c1, c2 and
c3 resp.)

Figure 8.2: A more elaborate broadcast translation example.
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and the name of the clock (c1, c2 and c3 respectively).

We see that the control automaton has a test-fire loop for every transition in the
TAPN model, in this case there are two of them. There are some special cases that
are worth mentioning in NTA. First of all, consider the inhibitor arc from p3 to t.
We see that this arc is encoded using a self-loop participating in the ttest broadcast
synchronization. Again, we use a counter variable to count the number of automata
that take this transition. We simply encode the requirement of the inhibitor arc
(that is, that no token satisfies the interval) in the invariant of `(t), namely that
count3 == 0. In other words, the control automaton can only broadcast on the ttest

channel if there are no token automata in the location p3 that can synchronize on the
ttest channel, since this is the only way for count3 to maintain the value 0.

A second observation is the guard on the transition from p1 to `(tp1p4). Specifically,
it is evident that this does not match the interval [1, 5] located on the arc from p1 to
t in the TAPN model. This guard has been changed according to the invariant on p4
to avoid deadlocks. Since the arc from p1 to p4 is a transport arc, we need to test the
invariant of the target location when we fire ttest also to avoid deadlocks. Thus, we
make an intersection of the guard on the transport arc and the invariant on the target
place which is then used as the guard on the ttest edge.

Remark 42 One would think that it was enough to simply add the invariant from p4
to the intermediate location `(tp1p4), however, this will result in incorrect behavior, in
the sense that it will block ttest if e.g. there are two tokens in p1 with ages 4 and 2,
because invariants block the entire broadcast transition if a single automaton with a
satisfied guard cannot participate due to its target location invariant. ♦

For this specific example, we need at least one token of age [1, 3] in p1, at least
one token of age [0, 4] in p2 and zero tokens of age [0, 2] in p3 in order for t to be
enabled which is precisely the invariant on `(t). Notice that simulating transition t
will move the token automaton in p2 to `capacity , since |•t| > |t•|. We also see that
transitions share counter variables. The variable count1 is used in the simulation of
both transitions. This is perfectly acceptable, because it is used in a non-conflicting
way, in the sense that we are never simulating t and t′ at the same time.

Finally, it is clear that simulating transition t′ will move a token automaton from
p3 to p4. Notice that in this case, there is no guard on the t′test transition in the token
automata, because the interval does not restrict the ages in the TAPN model. Further,
we do not take the invariant of the target location into account since the arc t′ to p4
is a normal arc and produces a token of age zero which always satisfies any invariant.
This concludes our introduction to the translation.

8.2 Translation Algorithm

We will now describe the translation formally. We will adopt the set Pairing(t),
introduced by Byg et al. [17], which for a given transition t pairs input and output
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places,

Pairing(t) = {(p, I, p′, tarc) | (p, t, p′) ∈ Ftarc ∧ I = ctarc(p, t, p′)} ∪
{(p1, I1, p′1, normal), . . . , (pm, Im, p′m, normal) |
{p1, . . . , p`} = {p | (p, t) ∈ F}, {p′1, . . . , p′`′} = {p | (t, p) ∈ F},
m = max(`, `′), Ii = c(pi, t) if 1 ≤ i ≤ `, Ii = [0,∞) if ` < i ≤ m,
pi = `capacity if ` < i ≤ m, p′i = `capacity if `′ < i ≤ m}

The intuition behind Pairing(t) is that it pairs input and output places in order
to fix the paths on which tokens will travel when firing t as well as remember the time
interval on the input arc and the type of the arc (normal for normal arcs and tarc for
transport arcs). Note that Pairing(t) is chosen a priory (there may be multiple choices
for how to pair input and output places of a transition) and pairing a transition is
always possible. Because inhibitor arcs do not consume tokens when firing a transition,
they are not included in Pairing(t). As a concrete example of this set consider the
TAPN in Figure 8.2b. The pairing used in this example for transition t is Pairing(t) =
{(p1, [1, 5], p4, tarc), (p2, [0, 4], `capacity ,normal)}. Note that this is the only possible
pairing for this transition.

Let us define the number integer variables needed by the translation for a given
TAPN.

Definition 43 Given a TAPN N = (P, T, F, c, Ftarc , ctarc , Finhib , cinhib , ι), the
number of integer variables needed by the translation is

NumVars(N)
def
= max({|Pairing(t)|+ |{(p, t) | (p, t) ∈ Finhib}| | t ∈ T}) ♦

To present the algorithm, we shall first introduce some notation. Given an interval
I and a clock c, we let c ∈ I denote a guard that is satisfied if the value of c belongs
to the interval I. For example, if I = [3, 5) then c ∈ I would correspond to the guard
c ≥ 3 ∧ c < 5. We let c ∈ ∅ denote the guard false, i.e. a guard that is never satisfied.

Algorithm 1 shows how to convert intervals to guards. As mentioned previously,
we need to make sure the guard also encodes the invariant of the target location in
case the arc is a transport arc to avoid deadlocks. Thus, if the arc in question is a
transport arc, the clock value must lie in the intersection of the arc interval and the
invariant interval. Otherwise, it must simply satisfy the arc interval. Notice that it is
incorrect to create the guard c ∈ I ∩ ι(p′) in the case where type indicates a normal
arc, since ages of tokens are reset when firing the transition. Restricting the interval
to include the invariant in this case could disallow certain tokens to be used to fire the
transition in the NTA even though they can be used in the TAPN model.

Algorithm 2 shows how to convert invariants for TAPN to invariants for NTA.
Algorithm 3 gives the translation. Note that for a k-bounded TAPN we will pro-

duce an NTA consisting of k + 1 components in parallel (one automaton for each of
the k tokens and a control automaton). Further, we will assume that the control
automaton is always the first automaton in the network.
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Algorithm 1: Translation of intervals to guards.

Name: CreateGuard(c, I, p′, type)
Input: A clock c, an arc interval I, a target location p′ and an arc type type.
Output: A guard g for a timed automaton.
begin

if type 6= tarc then
g := c ∈ I

else
g := c ∈ I ∩ ι(p′)

end

Algorithm 2: Translation of invariants for TAPN to invariants for NTA.

Name: CreateInvariant(c, I)
Input: A clock c and an interval I of the form I = [0, a] or I = [0, b) for a ∈ N0, b ∈ N ∪ {∞}.
Output: A invariant inv for a timed automaton.
begin

if I = [0, a] then
inv := c ≤ a

else
inv := c < b

end

Observe that because at most k token automata can participate in a broadcast
synchronization, we have that the value of any counter variable will be less than or
equal to k.

8.3 Correctness

For notational convenience, we will in this section sometimes write
t−→ for a discrete

transition t. To prove the correctness of this translation, we will follow the methodol-
ogy described in Section 6.4. We let (N,M0) be a marked k-bounded TAPN and let
PTA be the NTA constructed by Algorithm 3 with initial configuration s0.

We define the stable proposition as (#`stable = 1). Recall that (#`stable = 1) is
true whenever there is one TA in the `stable location. Thus (`, `1, `2, . . . , `k, z, v) |=
(#`stable = 1) if and only if ` = `stable .

We will first show that PTA possesses the three properties required by a complete
one-by-many correspondence. Recall that T (PTA) is the TTS generated by PTA.

Lemma 44 Let PTA be an NTA constructed by Algorithm 3. Then T (PTA) is a
no-delay-in-intermediate-state TTS. ♦

Proof Since all locations in the control automaton except `stable have the invariant
c ≤ 0, it follows that only 0 delays are possible in intermediate states. �
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Algorithm 3: Translation from k-bounded TAPN to NTA.

Input: A k-bounded TAPN N = (P, T, F, c, Ftarc , ctarc , Finhib , cinhib , ι) with initial marking M0.
Output: An NTA PTA = A||A1||A2|| . . . ||Ak where A = (L,Act, C,X,−→, IC , IX , `0) and

Ai = (Li,Act, C,X,−→i, I
i
C , I

i
X , `

i
0).

begin
for i := 1 to k do Li := P ∪ {`capacity}
L := {`stable}
Act := {ttest

!

, ttest
?
, tfire

!

, tfire
?
| t ∈ T} ∪ {τ}

C := {c, c1, c2, . . . , ck}
X := {count i | 1 ≤ i ≤ NumVars(N)}
forall t ∈ T do

j := 0
varInv t := true; varGuard t := true
while |Pairing(t)| > 0 do

j := j + 1
Remove some (p, I, p′, type) from Pairing(t)
for i := 1 to k do

Li := Li ∪ {`(tpp′)}
g := CreateGuard(ci, I, p

′, type)

Add p
g,true, ttest

?
, ∅, countj++

−−−−−−−−−−−−−−−−→i `(t
p
p′)

Add `(tpp′)
true, true, tfire

?
, R, ∅

−−−−−−−−−−−−−→i p
′ s.t. R = {ci} if type = normal else R = ∅

Add `(tpp′)
true, countj>1, τ, ∅, countj−−−−−−−−−−−−−−−−−−−−−→i p

varInv t := varInv t ∧ countj ≥ 1
varGuard t := varGuard t ∧ countj == 1

forall p ∈ P where (p, t) ∈ Finhib do
j := j + 1

for i := 1 to k do Add p
ci∈cinhib(p,t), true, ttest

?
, ∅, countj++

−−−−−−−−−−−−−−−−−−−−−−−−→i p
varInv t := varInv t ∧ countj == 0
varGuard t := varGuard t ∧ countj == 0

L := L ∪ {`(t)}

Add `stable
true, true, ttest

!

, {c}, ∅−−−−−−−−−−−−−−→ `(t) and `(t)
true, varGuardt, tfire

!

, ∅, {counti:=0|1≤i≤j}
−−−−−−−−−−−−−−−−−−−−−−−−−−−→ `stable

for i := 1 to k do

IiC(p) :=

{
CreateInvariant(ci, ι(p)) if p ∈ P
true if p ∈ Li \ P

IiX(p) := true for p ∈ Li

IC(p) :=

{
true if p = `stable

c ≤ 0 if p ∈ L \ {`stable}

IX(p) :=

{
varInv t if p = `(t) for t ∈ T
true if L \ {`(t) | t ∈ T}

i := 0; forall p ∈ P do forall Token ∈M0(p) do `i0 := p; i := i+ 1
for i := |M0|+ 1 to k do `i0 := `capacity

`0 := `stable

end
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Lemma 45 Let PTA be an NTA constructed by Algorithm 3. Then T (PTA) is a
delay-preserves-stable TTS. ♦

Proof Since time delays do not change the current location of any automaton, it
follows that any time delay from a stable configuration will result in another stable
configuration. Thus, T (PTA) is a delay-preserves-stable TTS. �

Lemma 46 Let PTA be an NTA constructed by Algorithm 3. Then T (PTA) is an
eventually-stable TTS. ♦

Proof We must show that for any (finite or infinite) maximal discrete sequence of
length at least 1

ρ = s0 −→ s1 −→ s2 −→ s3 −→ · · ·

where s0 |= (#`stable = 1), there exists an i ≥ 1 such that si |= (#`stable = 1).
Because s0 is stable, it follows that the control automaton is in location `stable in

s0. We will show that by construction any maximal discrete sequence starting in s0
contains a prefix of the form

s0
ttest−−→ s1 −→ s2 −→ · · · −→ sn−1

tfire−−→ sn

such that n ≤ k + 1 and sn |= (#`stable = 1).
If any discrete transition is enabled in s0 then by construction, it is a broadcast

transition on some channel ttest . Assume that s0
ttest−→ s1. In s1 there are only two

possibilities for discrete transitions, which are mutually exclusive and by construction
one of them is always possible (due to the use of integer guards and invariants). Either
there is an τ -transition enabled in some token automaton in case there are more than
one token automata currently in the same intermediate location `(tpp′) or a broadcast
on the tfire channel is enabled when there is exactly one token automaton in each of
the required `(tpp′) locations.

In the first case, the only possibility is to keep taking τ -transitions, which move
the extra token automata back to their original locations. This must continue until
some configuration sn−1 is reached where there are no more τ -transitions enabled. By
construction, this will always happen. It follows by construction that tfire will be the
only enabled discrete transition in sn−1. In the worst case, all k TA participated in the
ttest broadcast synchronization and only a single TA is required to synchronize on the
tfire broadcast channel. Thus, we must move k− 1 TA back to their original location.

In the second case, only the tfire broadcast synchronization is enabled and we have
by construction of PTA that the invariants on the target location of all tfire broadcast
receivers will be satisfied. Since synchronizing on the tfire channel brings the control
automaton back to `stable , it follows that sn |= (#`stable = 1). Hence, T (PTA) is an
eventually-stable TTS. �

Remark 47 By Lemma 44 and Lemma 46 we also have that for any stable configura-
tion s with an enabled discrete transition, it holds that s; s′ for some configuration
s′. ♦
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We now define the proposition translation function trp. An atomic proposition for
the TAPN always have the form (p ./ n) where p is a place, n ∈ N and ./ ∈ {<,≤,=
,≥, >}. Such a proposition is translated into (#p ./ n).

Let us now define a correspondence relation R between markings and configura-
tions. The goal is to show that this relation is a complete one-by-many correspondence.
Let M = {(p1, r1), (p2, r2), . . . , (pn, rn)} be a marking of N where n ≤ k and (pi, ri) is
a token located in the place pi with age ri ∈ R≥0. Further, let s = (`, `1, `2, . . . , `k, z, v)
be a configuration of PTA, where v is a clock valuation over the clocks {c, c1, c2, . . . , ck}
and z is a variable valuation over the variables {counti | 1 ≤ i ≤ NumVars(N)}. We
write M R s if there exists an injection h : {1, 2, . . . , n} −→ {1, 2, . . . , k} such that
` = `stable , `h(i) = pi and v(ch(i)) = ri for 1 ≤ i ≤ n, and `j = `capacity for all
j ∈ {1, 2, . . . , k} \ range(h). Intuitively, whenever M R s, it means that for every to-
ken in M , there is a distinct TA location and clock valuation in the configuration s
matches exactly that token and the remaining k−n token automata are in the `capacity

location.
We shall now prove that R is a complete one-by-many correspondence.

Theorem 48 R is a complete one-by-many correspondence. ♦

Proof Let (N,M0) be a marked k-bounded TAPN and PTA be the NTA generated by
Algorithm 3. We will show thatR satisfies all requirements of Definition 29 and thus is
a complete one-by-many correspondence. From Lemma 44, Lemma 45 and Lemma 46
it follows that T (PTA) is a no-delay-in-intermediate-state, delay-preserves-stable and
eventually-stable TTS.

Let M be a marking and let s be a configuration, such that M R s. We shall now
prove that R satisfies conditions 1-6 of Definition 29 on page 35.

1. s |= (#`stable = 1) follows from the definition of R.

2. From the definition of R it follows that M |= ℘ iff s |= trp(℘).

3. Assume M −→M ′. This means that there exists a transition t such that M
t−→

M ′. We must show that s; s′ such that M ′R s′. We will start by showing that
ttest is enabled in s. Since ttest is a broadcast channel, the first requirement is that
the ttest sender has to be enabled. There are no guards on the sender transition,
so only the invariant on `(t) may block the ttest sender. The second requirement
is that every possible receiver (i.e. any receiver whose guard is satisfied) must
participate in the broadcast synchronization. Due to the construction of PTA,
there are no invariants on the intermediate locations `(tpp′). Thus, any receiver
with a satisfied guard can participate in the broadcast synchronization. By the
fact that M R s, it follows that enough TA will participate in the broadcast

synchronization to satisfy the invariant on `(t). Thus, s
ttest−→.

Since s |= (#`stable = 1) and s
ttest−→ we have by Lemma 46 that

s
ttest−→ s1 −→ s2 −→ · · · −→ sn = s′
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such that si 6|= (#`stable = 1) for 1 ≤ i < n and sn |= (#`stable = 1). By
construction, this sequence has the form

s
ttest−→ s1 −→ s2 −→ · · · −→ sn−1

tfire−→ sn

where n ≤ k + 1. Thus, since M
t−→ M ′ we can use the sequence above and

Lemma 44 to get the sequence s ; s′. Observe that if |•t| > |t•| then |•t| − |t•|
token automata will have moved to `capacity after simulating t from s and if
|•t| < |t•| then |t•| − |•t| token automata will have moved out of `capacity after
simulating t from s. Since M R s, we get M ′R s′ by matching the changes in M
when firing t to the changes in s when executing the sequence above.

4.,6. Time delays can only be restricted by invariants. By Lemma 44 and the fact
that the invariant on place p in N is carried over to location p in PTA, we have
that it is always possible to do the same time delays in M and s. By Lemma 45,

it follows clearly that if M
d−→ M ′ then s

d−→ s′ such that M ′R s′ and vice
versa.

5. Assume s; s′. This implies that

s −→ s1
0−→ s1 −→ s2

0−→ s2 −→ · · · −→ sn−1
0−→ sn−1 −→ sn = s′

such that si 6|= (#`stable = 1) for 1 ≤ i < n and sn |= (#`stable = 1). By
construction of PTA, we have that n ≤ k and that this sequence must be of the
form (leaving out 0 delays)

s
ttest−→ s1 −→ s2 −→ · · · −→ sn−1

tfire−→ sn.

Since s
ttest−→ s1 we know that the invariant on `(t) is satisfiable. By the construc-

tion of PTA, this in turn means that there are enough token automata that can
synchronize on ttest in such a way that for each input place p ∈ •t there is at
least one automaton whose current location is p and the clocks of these automata
satisfy the guards on the ttest transitions. Further, for each place p′ such that
there is an inhibitor arc from p′ to t, there is no automaton in location p′ with a
clock satisfying the guard on ttest . This is exactly what is needed to fire t from

M , and because M R s, then M
t−→M ′.

If any token automaton moves out of `capacity when s; s′ then additional tokens
will be produced when firing transition t from M and if any token automaton
moves into `capacity when s; s′ then t will consume more tokens than it produces
when fired from M . Since M R s, we clearly get M ′R s′ by matching the changes
in s when simulating t to the changes in M when firing t. �

Since R is a complete one-by-many correspondence, Theorem 36 allows us to con-
clude the following corollary.

63



Chapter 8 – Broadcast Translation

Corollary 49 Let (N,M0) be a k-bounded TAPN and let PTA be the NTA con-
structed by Algorithm 3. For any TCTL formula ϕ we have that

N |= ϕ if and only if PTA |= tr(ϕ) ♦

As an example of this corollary, consider the TAPN N and translated NTA PTA

in Figure 8.2b on page 56. The TAPN model satisfies the query ϕ = E((p4 =
0)U[0,∞) (p4 = 1)) which asks whether it is possible to put a token in p4. Let
M = {(p1, 2.8), (p2, 1.4), (p3, 3.0)} denote the marking illustrated in the figure. The
maximal run

ρ = M
0.5−→M1

t−→M2
1−→M3

t′−→M4
2≤−→

in T (N) witnesses the property ϕ. Thus, we have M |= E((p4 = 0)U[0,∞) (p4 = 1)).
In PTA, we can construct a witness for the translated query tr(ϕ) = E(((#p4 =
0)∨¬(#`stable = 1))U[0,∞)((#p4 = 1)∧ (#`stable = 1))). Let s be a configuration such
that M R s. The maximal run

ρ′ = s
0.5−→ s1

ttest−→ s2
0−→ s3

tfire−→ s4
1−→ s5

t′test−→ s6
0−→ s7

t′fire−→ s8
2≤−→

in T (PTA) witnesses tr(ϕ). Thus, we have

s |= E(((#p4 = 0) ∨ ¬(#`stable = 1))U[0,∞)((#p4 = 1) ∧ (#`stable = 1))).
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Degree 2 Broadcast Translation

We will now present an alternative translation using broadcasts. Byg et al. [17] pre-
sented a translation from TAPN with invariants and transport arcs to NTA. However,
their translation preserves only the safety fragment of CTL. We incorporate the idea
of using broadcast synchronizations into their algorithm to achieve a translation that
preserves the full TCTL and also handles inhibitor arcs. It turns out that on some
models, this translation is more efficient than the translation in the previous section,
as will be demonstrated in Chapter 12.

We will again have a timed automaton for each token in the TAPN and one control
automaton. Thus, a k-bounded TAPN will be translated to an NTA with k+1 parallel
components. Token placement and age will be simulated in the same manner as in the
translation in Chapter 8 and since the TAPN may not always contain k tokens in its
current marking, we will again use the location `capacity where automata representing
currently unused tokens are waiting.

The basic idea is still to test if a transition t is enabled by broadcasting on the
channel ttest

!

, in order to ensure that we cannot get stuck during the simulation of
t. However, this time the token automata will stay in the same location instead
of moving to intermediate locations. Because of this, we do not need to move any
”extra” tokens back via τ -transitions after executing ttest. Thus, we only use ttest
as a mechanism to count the number of tokens (using integer variables, as before) of
appropriate age from each input place of the transition . To simulate the production
of tokens at the output places, we replace the tfire broadcast with a sequence of
handshake synchronizations. We still use the intermediate locations while executing
the handshake synchronizations, however, the intermediate locations will now function
more as temporary holding locations while tokens are moved out of the input places.
Because we remove input tokens one-by-one in a sequence, these holding locations
are needed to ensure that a produced token is not consumed by the next step in the
sequence.
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9.1 Example

Let us illustrate the translation on an example. We will demonstrate how the trans-
lation works on the TAPN from the second example of Chapter 8. The TAPN is
reproduced in Figure 9.1a and the NTA resulting from the translation is presented in
Figure 9.1b.

Note that the token automata are presented as a template which should be repeated
three times with different initial locations (p1, p2 and p3, respectively) and different
clock names (c1, c2 and c3, respectively). We will now explain how the NTA simulates
the TAPN. Consider the transition t which has an inhibitor arc, a transport arc and
a normal arc as input. We start simulating t when the control automaton broadcasts
on the ttest

!

channel. As in the previous translation, this is only possible when there
are tokens of appropriate ages in all input places due to the invariant of `(t) (i.e. zero
tokens of appropriate age in any input place with an inhibitor arc to t and at least
one token of appropriate age otherwise). However, as mentioned above, we do not
move the token automata to intermediate locations when executing the ttest broadcast
synchronization. Instead, we use self-loops that increment a counter as illustrated in
Figure 9.1b. As before, we intersect the guard and the target location invariant for
transport arcs to avoid additional deadlocks.

To complete the simulation of t we need to move one token of appropriate age from
each input place in •t to an output place. In this case, t consumes two tokens and
produces one so we will move the token automaton in p2 to `capacity . Moving tokens to
output places is done by executing a sequence of handshake synchronizations on the
channels t1in, t

2, t1out. We start by moving a token from p1 to the intermediate location
`(tp1p3) by synchronizing on the t1in channel. Following this we will move a token from
p2 directly to the output location `capacity (because this is the last input token to
be moved) by synchronizing on t2 and finally we move the token in the intermediate
location `(tp1p3) to the output place p3 by synchronizing on t1out, whereby the control
automaton also returns to `stable .

9.2 Translation Algorithm

We will now describe the translation formally. Recall the definition of the set Pairing(t)
from Section 8.2 which we will use in the algorithm here as well.

Pairing(t) = {(p, I, p′, tarc) | (p, t, p′) ∈ Ftarc ∧ I = ctarc(p, t, p′)} ∪
{(p1, I1, p′1, normal), . . . , (pm, Im, p′m, normal) |
{p1, . . . , p`} = {p | (p, t) ∈ F}, {p′1, . . . , p′`′} = {p | (t, p) ∈ F}
m = max(`, `′), Ii = c(pi, t) if 1 ≤ i ≤ ` else Ii = [0,∞),

pi = `capacity if ` < i ≤ m, p′i = `capacity if `′ < i ≤ m}

Further, we will also use the CreateGuard(ci, I, p
′, type) function from Algorithm 1

and the CreateInvariant(ci, ι(p)) function from Algorithm 2. We shall also reuse
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p3p1 p2

t
t′

p4

inv: ≤ 3

[0, 4][1, 5]

[0,
2]

[0,∞)

3.02.8 1.4

(a) A simple TAPN model.

`stable `(t) inv:
c == 0 ∧
count1 ≥ 1 ∧
count2 ≥ 1 ∧
count3 == 0

`(t1in)

inv:

c ≤ 0

`(t1out)

inv:

c ≤ 0

`(t ′)

inv:
c == 0 ∧
count1 ≥ 1

count1 := 0,
count2 := 0,
count3 := 0,
c := 0

ttest

!

c := 0

t1in!

t2!c := 0

t1out!

c := 0t′test

!c := 0

t′1!
count1 := 0, c := 0

Template repeated three times:
p2p1 p3

p4

inv:

ci ≤ 3

`(tp1p3 )

`capacity

0 ≤ ci ≤ 2
ttest

?

count3++

t′test
?

count1++

1 ≤ ci ≤ 3
ttest

?

count1++

0 ≤ ci ≤ 4

t2?

ci := 0

0 ≤ ci ≤ 4
ttest

?

count2++

1 ≤ ci ≤ 3

t1in?

t1out?

t′1?

ci := 0

(b) The NTA resulting from translation of the TAPN in Figure 9.1a. Note that the token automata
are illustrated by a template which is repeated three times with different initial locations (p1, p2
and p3 resp.) and different clock names (c1, c2 and c3 resp.).

Figure 9.1: Degree 2 broadcast translation example.
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NumVars(N) from Definition 43 of the previous chapter. Finally, for a transition t,
we define max(t) = max(|•t|, |t•|). This will allow us to calculate how many tiin (resp.
tiout) channels we need.

The degree 2 translation is given formally in Algorithm 4.

9.3 Correctness

We shall now prove the correctness of the translation. For notational convenience,

we will sometimes write
t−→ for a discrete transition t as before. We will also follow

the methodology outlined in Section 6.4. Again, we define the stable proposition as
(#`stable = 1). Recall that (#`stable = 1) is true whenever there is one TA in the `stable

location.
We will first show that PTA possesses the three properties required by a complete

one-by-many correspondence.

Lemma 50 Let PTA be an NTA constructed by Algorithm 4. Then T (PTA) is a
no-delay-in-intermediate-state TTS. ♦

Proof Similar to the proof for Lemma 44. �

Lemma 51 Let PTA be an NTA constructed by Algorithm 4. Then T (PTA) is a
delay-preserves-stable TTS. ♦

Proof Similar to the proof for Lemma 45. �

Lemma 52 Let PTA be an NTA constructed by Algorithm 4. Then T (PTA) is an
eventually-stable TTS. ♦

Proof We must show that for any (finite or infinite) maximal discrete sequence of
length at least one

ρ = s0 −→ s1 −→ s2 −→ s3 −→ · · ·

where s0 |= (#`stable = 1), there exists an i ≥ 1 such that si |= (#`stable = 1).
Because s0 is stable, it follows that the control automaton is in location `stable in

s0. We will show that by construction any maximal discrete sequence starting in s0
contains a prefix of the form (we omit naming the intermediate states)

s0
ttest−−→

t1in−−→
t2in−−→ · · ·

t
max(t)−1
in−−−−−−→ tmax(t)

−−−−→
t
max(t)−1
out−−−−−−→

t
max(t)−2
out−−−−−−→ · · ·

t1out−−→ s′

such that s′ |= (#`stable = 1).
If any discrete transition is enabled in s0 then by construction, it is a broadcast

transition on some channel ttest . Assume that s0
ttest−→. This implies that the invariant

in location `(t) is satisfied. This invariant uses the counter variables to encode exactly
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Algorithm 4: Translation from k-bounded TAPN to NTA.

Input: A k-bounded TAPN N = (P, T, F, c, Ftarc , ctarc , Finhib , cinhib , ι) with initial marking M0.
Output: An NTA PTA = A||A1||A2|| . . . ||Ak where A = (L,Act, C,X,−→, IC , IX , `0) and

Ai = (Li,Act, C,X,−→i, I
i
C , I

i
X , `

i
0).

begin
for i := 1 to k do Li := P ∪ {`capacity}
L := {`stable} ∪ {`(t) | t ∈ T} ∪ {`(tiin), `(tiout) | t ∈ T, 1 ≤ i < max(t)}
Act := {ttest

!

, ttest
?
, tmax(t) | t ∈ T} ∪ {tiin, tiout | t ∈ T, 1 ≤ i < max(t)} ∪ {τ}

C := {c, c1, c2, . . . , ck}; X := {count i | 1 ≤ i ≤ NumVars(N)}
forall t ∈ T do

j := 0; m := 0; varInv t := true
while |Pairing(t)| > 1 do

j := j + 1; m := m+ 1; varInv t := varInv t ∧ countj ≥ 1
Remove some (p, I, p′, type) from Pairing(t)
for i := 1 to k do

Li := Li ∪ {`(tpp′)}; g := CreateGuard(ci, I, p
′, type)

Add p
g,true, ttest

?
, ∅, countj++

−−−−−−−−−−−−−−−−−→i p

Add p
g,true, tmin?, R, ∅
−−−−−−−−−−→i `(t

p
p′) s.t. R = ∅ if type = tarc else R = {ci}

Add `(tpp′)
true,true, tmout?, R, ∅−−−−−−−−−−−−−→i p

′ s.t. R = ∅ if type = tarc else R = {ci}

j := j + 1; varInv t := varInv t ∧ countj ≥ 1
Let {(p, I, p′, type)} := Pairing(t); g := CreateGuard(ci, I, p

′, type)
for i := 1 to k do

Add p
g, true, ttest

?
, ∅, countj++

−−−−−−−−−−−−−−−−−→i p

Add p
g, true, tmax(t), R, ∅−−−−−−−−−−−−−→i p

′ s.t. R = ∅ if type = tarc else R = {ci}
forall p ∈ P where (p, t) ∈ Finhib do

j := j + 1; varInv t := varInv t ∧ countj == 0

for i := 1 to k do Add p
ci∈cinhib(p,t), true, ttest

?
, ∅, countj++

−−−−−−−−−−−−−−−−−−−−−−−−→i p

Add `stable
true, true, ttest

!

, {c}, ∅−−−−−−−−−−−−−−→ `(t)
if max(t) = 1 then

Add `(t)
true, true, t1!, {c},A−−−−−−−−−−−−−→ `stable s.t. A = {count i := 0 | 1 ≤ i ≤ j}

else

Add `(t)
true, true, t1in!, {c},A
−−−−−−−−−−−−−→ `(t1in) s.t. A = {count i := 0 | 1 ≤ i ≤ j}

Add `(ti−1
in )

true, true, ti−1
in !, {c}, ∅

−−−−−−−−−−−−−−→ `(tiin) for all 2 ≤ i < max(t)

Add `(t
max(t)−1
in )

true, true, tmax(t)!, {c}, ∅−−−−−−−−−−−−−−−−→ `(t
max(t)−1
out )

Add `(tiout)
true, true, tiout!, {c}, ∅−−−−−−−−−−−−−−→ `(ti−1

out ) for all 2 ≤ i < max(t)

Add `(t1out)
true, true, t1out!, {c}, ∅−−−−−−−−−−−−−−→ `stable

for i := 1 to k do

IiC(p) :=

{
CreateInvariant(ci, ι(p)) if p ∈ P
true if p ∈ Li \ P

; IiX(p) := true for p ∈ Li

IC(p) :=

{
true if p = `stable

c ≤ 0 if p ∈ L \ {`stable}
; IX(p) :=

{
varInv t if p = `(t) for t ∈ T
true if p ∈ L \ {`(t) | t ∈ T}

i := 0; forall p ∈ P do forall Token ∈M0(p) do `i0 := p; i := i+ 1
`0 := `stable ; for i := |M0|+ 1 to k do `i0 := `capacity

end
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the requirements needed for the control automaton to return to `stable . In other words,
the invariant being satisfied implies that for every channel

t1in, t
2
in, . . . , t

max(t)−1
in , tmax(t)

there exists at least one distinct TA that can synchronize on the channel with the
control automaton. Moreover, if ttest is enabled then we cannot reach a deadlock by
firing this sequence of transitions. In fact, if a deadlock could be reached during this
sequence, then ttest would not have been enabled (due to the invariant).

By construction, it follows that if we can synchronize on the channels t1in, t
2
in,

. . . , t
max(t)−1
in , tmax(t), then it is possible to synchronize on the channels t

max(t)−1
out ,

t
max(t)−2
out , . . . , t1out, and no deadlock can be reached during this sequence. This fol-

lows from the fact that the automaton synchronizing on channel tiin will also be the
one to synchronize on channel tiout for all 1 ≤ i ≤ max(t)− 1.

In turn, this means that any maximal discrete sequence starting in s0 contains a
prefix of the form (again, omitting the intermediate states)

s0
ttest−−→

t1in−−→
t2in−−→ · · ·

t
max(t)−1
in−−−−−−→ tmax(t)

−−−−→
t
max(t)−1
out−−−−−−→

t
max(t)−2
out−−−−−−→ · · ·

t1out−−→ s′.

It follows from the construction that synchronizing on the t1out channel brings the
control automaton back to `stable which implies that s′ |= (#`stable = 1).

Thus, we will always return to a stable state and hence T (PTA) is an eventually-
stable TTS. �

Remark 53 By Lemma 52 we get that for any stable configuration s with an enabled
discrete transition, it holds that s; s′ for some configuration s′. ♦

As for the previous translation, the proposition translation function trp translates
propositions of the form (p ./ n) to propositions of the form (#p ./ n) for some
./ ∈ {<,≤,=,≥, >}.

We define the correspondence relation R as before. That is, let M = {(p1, r1),
(p2, r2), . . . (pn, rn)} be a marking of a k-bounded TAPN N where n ≤ k such that
(pi, ri) denotes a token located in the place pi with age ri ∈ R≥0. Further, let s =
(`, `1, `2, . . . , `k, z, v) be a configuration of the NTA resulting from translating N by
Algorithm 4, where z is a variable valuation over the set of variables {counti | 1 ≤ i ≤
NumVars(N)} and v is a clock valuation over the set of clocks {c, c1, c2, . . . , ck}. We
write M R s, if there exists an injection h : {1, 2, . . . , n} −→ {1, 2, . . . , k} such that
` = `stable , `h(i) = pi and v(ch(i)) = ri for all i where 1 ≤ i ≤ n, and `j = `capacity for
all j ∈ {1, 2, . . . , k} \ range(h).

We shall now prove that conditions 1-6 of Definition 29 are satisfied by R.

Theorem 54 The relation R is a complete one-by-many correspondence. ♦
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Section 9.3 – Correctness

Proof Let (N,M0) be a marked k-bounded TAPN and PTA be the NTA generated by
Algorithm 4. We will show thatR satisfies all requirements of Definition 29 and thus is
a complete one-by-many correspondence. From Lemma 50, Lemma 51 and Lemma 52
it follows that T (PTA) is a no-delay-in-intermediate-state, delay-preserves-stable and
eventually-stable TTS.

Let M be a marking and let s be a configuration, such that M R s. We shall now
prove that R satisfies conditions 1-6 of Definition 29 on page 35.

1. s |= (#`stable = 1) follows from the definition of R.

2. From the definition of R it follows that M |= ℘ iff s |= trp(℘).

3. Assume that M −→ M ′. This means that there exists a transition t such that
M

t−→ M ′. We must show that s ; s′ such that M ′R s′. We will start by
showing that the ttest broadcast synchronization is enabled in s. Since ttest is a
broadcast channel, the first requirement is that the ttest sender has to be enabled.
There are no guards on the sender transition, thus only the invariant on `(t) may
block the ttest sender. The second requirement is that every possible receiver
(i.e. any receiver whose guard is satisfied) must participate in the broadcast
synchronization. Since a self-loop is used for all receivers (with counter updates
only), the target invariants will be satisfied for all of them. Thus, any receiver
with a satisfied guard can participate in the broadcast synchronization. Further
by the fact thatM R s, it follows that enough TA will participate in the broadcast

synchronization to satisfy the invariant on `(t). Thus, s
ttest−→.

By Lemma 52 and the fact that s
ttest−→, we can conclude that

s
ttest−→ s1 −→ s2 −→ · · · −→ sn−1 −→ sn = s′

such that sn |= (#`stable = 1) and si 6|= (#`stable = 1) for 1 ≤ i < n. By
construction, this sequence of transitions must be of the form

ttest , t
1
in, t

2
in, . . . , t

max(t)−1
in , tmax(t), t

max(t)−1
out , t

max(t)−2
out , . . . , t1out

as this is the only sequence available in the control automaton involving ttest .

This implies that n = 2 · max(t). Hence, since M
t−→ M ′, we can use the

sequence above and Lemma 50 to get the sequence s ; s′. Observe that by
construction of PTA, we know that if |•t| > |t•| then |•t| − |t•| token automata
will be moved to `capacity when simulating the firing of transition t and if |•t| < |t•|
then |t•|− |•t| token automata will be moved out of `capacity when simulating the
firing of transition t. By matching the changes in M when firing t to the changes
in s when executing the sequence above, we get that M ′R s′.

4., 6. Time delays can only be restricted by invariants. By Lemma 50 and the fact
that the invariant on place p in N is carried over to location p in PTA, we have
that it is always possible to do the same time delays in M and s. By Lemma 51,
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Chapter 9 – Degree 2 Broadcast Translation

it follows clearly that if M
d−→ M ′ then s

d−→ s′ such that M ′R s′ and vice
versa.

5. Assume s; s′. This implies

s −→ s1
0−→ s1 −→ s2

0−→ s2 −→ · · · −→ sn−1
0−→ sn−1 −→ sn = s′

such that s′ |= (#`stable = 1) and si 6|= (#`stable = 1) for all 1 ≤ i < n. By
construction of PTA, we have that this run must be of the form (leaving out 0
delays)

s
ttest−→ s1

t1in−→ · · ·
t
max(t)−1
in−−−−−−→ smax(t)

tmax(t)

−−−−→ smax(t)+1
t
max(t)−1
out−→ · · ·

t1out−→ sn = s′

which is a simulation of some transition t and thus n = 2 ·max(t).

Since s
ttest−→ s1 we know that the invariant on `(t) is satisfiable. By the con-

struction of PTA, this in turn means that there are enough automata that can
synchronize on the ttest channel in such a way that for each input place p ∈ •t,
there is at least one automaton whose current location is p and the clocks of all
these automata satisfy the guards on the ttest transitions. Further, for each place
p′ where there is an inhibitor arc from p′ to t, there is no automaton in location
p′ with a clock satisfying the guard on the ttest transition. This is exactly what

is needed to fire t, and because M R s, then M
t−→M ′.

If any token automaton moves out of `capacity when s; s′ then additional tokens
will be produced when firing transition t from M and if any token automaton
moves into `capacity when s; s′ then t will consume more tokens than it produces
when fired from M . Since M R s, we clearly get M ′R s′ by matching the changes
in s when simulating t via the sequence above to the changes in M when firing
t. �

Since R is a complete one-by-many correspondence, Theorem 36 allows us to con-
clude the following corollary.

Corollary 55 Let (N,M0) be a k-bounded TAPN and let PTA be the NTA con-
structed by Algorithm 4. For any TCTL formula ϕ we have that

N |= ϕ if and only if PTA |= tr(ϕ) ♦

As a concrete example, consider the TAPN N and translated NTA PTA in Fig-
ure 9.1on page 67. Let M = {(p1, 2.8), (p2, 1.4), (p3, 3.0)} be the marking illustrated
in the figure. The maximal run

ρ = M
0.5−→M1

t−→M2
1−→M3

t′−→M4
2≤−→

in T (N) witnesses the property ϕ = E((p4 = 0)U[0,∞) (p4 = 1)). Thus, we have
M |= E((p4 = 0)U[0,∞) (p4 = 1)). In PTA we can construct a witness for the translated
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query tr(ϕ) = E(((#p4 = 0)∨¬(#`stable = 1))U[0,∞)((#p4 = 1)∧ (#`stable = 1))). Let
s be a configuration such that M R s. The maximal run

ρ′ = s
0.5−→ s1

ttest−→ s2
0−→ s3

t1in−→ s4
0−→ s5

t2−→ s6
0−→ s7

t1out−→ s8

1−→ s9
t′test−→ s10

0−→ s11
t′1−→ s12

2≤−→

in T (PTA) witnesses tr(ϕ). Thus, we have that

s |= E(((#p4 = 0) ∨ ¬(#`stable = 1))U[0,∞)((#p4 = 1) ∧ (#`stable = 1))).
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Chapter 10

Timed-Arc Petri Nets with
Integers

In this section, we will extend TAPN model by letting tokens carry integer values
besides their age. This feature is often referred to as a color. Our approach is rather
simple compared to other notions of colors in Petri Nets [30, 31, 41], however our
approach preserves decidability of reachability for bounded models. Before we formally
define this model, we need to introduce some notation.

We define arbitrary intervals in the form [(a, b)] where [(∈ { [, ( }, )] ∈ { ], ) } and
a, b ∈ Z. We let the set of all arbitrary intervals be denoted by Iall . Note that some
intervals are not well-formed, e.g. [2, 2) or [3,−1]. Such intervals are interpreted as
the empty interval. The predicate r ∈ I is defined for I ∈ Iall and r ∈ R≥0 in the
expected way.

In the TAPN with integers model, we can use the value of a token as a parameter
to the time interval on input arcs. Therefore we introduce age guards as extended time
intervals with linear functions as bounds, which are defined according to the abstract
syntax

Iext ::= [(a · val⊕ b, c · val⊕ d)],

where [(∈ { [, ( }, )] ∈ { ], ) }, ⊕ ∈ {+,−}, a, b, c, d ∈ N0 and val is the special keyword
referring to the value of the token used. We denote the set of all age guards by
Iext . Further, we let I inv

ext ⊂ Iext be the set of all intervals of the form [0, c · val ⊕ d)].
We will write expressions of the form 0 · val + b simply as b. We define a function
eval : Iext ×N0 −→ Iall that evaluates extended intervals according to a specific value.
For example, eval([1 · val− 4, 3 · val + 5), 3) evaluates to the interval [−1, 14).

We let VG = {〈I1, I2, . . . , In〉 | n ∈ N and Ii ∈ I for 1 ≤ i ≤ n} be the set of all
finite sets of value guards. For some 〈I1, I2, . . . , In〉 ∈ VG and some v ∈ N0 we write
v ∈ 〈I1, I2, . . . , In〉 if v ∈ Ii for some 1 ≤ i ≤ n. Note that even though elements of VG
are finite, they can represent infinite sets of values, e.g. 〈[1, 4], [7, 7], [10,∞)〉 ∈ VG
represents the infinite set {1, 2, 3, 4} ∪ {7} ∪ {v | v ≥ 10}.

We further define the following sets:
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• AU = {0, preserve} is the set of possible age updates on output arcs, and

• V U = {N0} ∪ {preserve} is the set of possible value updates on output arcs.

Output arcs will always update the age of a token to 0, except in the case of
transport arcs which may preserve the age. Further, output arcs can set the value of
the newly produced token. If an output arc is part of a transport arc it may preserve
the value or the age of the consumed token. This is the reason for the inclusion of the
keyword preserve in the age and value update sets. This further means that we have
four slightly different types of transport arcs: they can preserve either nothing, the
age, the value or both.

From this notation we can now formally define TAPN with integers.

Definition 56 A TAPN with integers is a 7-tuple (P, T, IA,OA,Transport , Inhib, ι),
where

• P is a finite set of places,

• T is a finite set of transitions s.t. P ∪ T = ∅,

• IA ⊆ P × Iext ×VG × T is a finite set of input arcs s.t.

((p, I, vg, t) ∈ IA ∧ (p, I ′, vg′, t) ∈ IA)⇒ (I = I ′ ∧ vg = vg′) ,

• OA ⊆ T ×AU × V U × P is a finite set of output arcs s.t.

((t, au, vu, p) ∈ OA ∧ (t, au′, vu′, p) ∈ OA)⇒ (au = au′ ∧ vu = vu′) ,

• Transport : IA×OA→ {true, false} is a function defining transport arcs s.t.for all
(p, I, vg, t) ∈ IA and (t′, au, vu, p′) ∈ OA if Transport((p, I, vg, t),(t′, au, vu, p′))
then t = t′ and for all α ∈ IA and all β ∈ OA

(Transport(α, (t′, au, vu, p′))⇒ α = (p, I, vg, t)) ∧
(Transport((p, I, vg, t), β)⇒ β = (t′, au, vu, p′)) ,

• Inhib : IA −→ {true, false} is a function defining inhibitor arcs, s.t. if Inhib(α)
for some α ∈ IA then for all β ∈ OA we have ¬Transport(α, β),

• ι : P → I inv
ext × VG is a function assigning age invariants and value invariants

to places, and

• for all α ∈ IA and all β ∈ OA if ¬Transport(α, β) then β = (t, 0, vu, p) for some
t ∈ T , vu ∈ N0 and p ∈ P . ♦

The preset of a transition t ∈ T is defined as •t = {p ∈ P | (p, I, vg, t) ∈ IA}.
Similarly, the postset of t is defined as t• = {p ∈ P | (t, au, vu, p) ∈ OA}. Like the
TAPN defined in Chapter 3, we do not allow multiple input arcs (resp. output arcs)
between the same place and transition (resp. transition and place).

76



Section 10.1 – Example

p0#1

{(3.4, 1)}

p2#1

{(3.4, 1)}

p4#1

{(3.4, 1)}

p6#1

{(3.4, 1)}

p1 p3 p5

inv: val ∈ 〈[5, 5]〉

p7

t1 t2 t3 t4

age ∈ [2 · val+ 1, 7]

val ∈ 〈[1, 1], [5, 9]〉

age := preserve

val := preserve

age ∈ [2 · val+ 1, 7]

val ∈ 〈[1, 1], [5, 9]〉

age := 0

val := preserve

age ∈ [2 · val+ 1, 7]

val ∈ 〈[1, 1], [5, 9]〉

age := preserve

val := 5

age ∈ [2 · val+ 1, 7]

val ∈ 〈[1, 1], [5, 9]〉

age := 0

val := 5

Figure 10.1: Four small TAPN with integers demonstrating the semantics of integers.

10.1 Example

Figure 10.1 shows four small TAPN with integers, each with a single transition. As
evident, tokens are now pairs (x, v) where x ∈ R≥0 indicates the age of the token and
v ∈ N0 indicates the value of the token. In all four models, the age of the token must lie
between 2 · val+ 1 (in this case 3 since the value of all tokens is 1) and 7 and moreover
the value of the token must belong to the set 〈[1, 1], [5, 9]〉. For transport arcs, the
information on the output arc indicates which part of the tokens data is preserved.
Thus, the leftmost TAPN has a transport arc that preserves both the age and value
of a token, whereas the second and third TAPN from the left preserves only the value
and the age of the token, respectively. Notice that when only the age of the token
is preserved (the third TAPN from the left), we assign a specific value to the output
token, in this case 5. The invariant on p5 ensures that tokens may only have the value
5 in this place. The fourth TAPN demonstrates the semantics of normal arcs. Like
a TAPN without integers, the age of the token is reset by the normal arcs. However,
we must assign a value to the output token, as demonstrated on the output arc (in
this case, the value 5). Figure 10.2 shows the same four TAPN after firing transition
t1, t2, t3 and t4.

Finally, let us demonstrate the integer version of inhibitor arcs. Figure 10.3 shows
two simple TAPN. In the left most TAPN, both the age and value of the token in
p0 satisfy their respective guards on the inhibitor arc. Thus, transition t1 is blocked.
Looking at the rightmost TAPN, we see that the age of the token in p3 satisfies the age
guard on the inhibitor arc whereas the value does not satisfy the value guard. Thus,
transition t2 is not blocked by the inhibitor arc because not all guards are satisfied.
Similarly, if the value guard was satisfied but the age guard was not, then t2 would
not be blocked. This concludes our introductory example to the various features of
TAPN with integers.
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p0 p2 p4 p6

p1#1

{(3.4, 1)}

p3 #1

{(0, 1)}

p5

inv: val ∈ 〈[5, 5]〉

#1{(3.4, 5)} p7#1

{(0, 5)}

t1 t2 t3 t4

age ∈ [2 · val+ 1, 7]

val ∈ 〈[1, 1], [5, 9]〉

age := preserve

val := preserve

age ∈ [2 · val+ 1, 7]

val ∈ 〈[1, 1], [5, 9]〉

age := 0

val := preserve

age ∈ [2 · val+ 1, 7]

val ∈ 〈[1, 1], [5, 9]〉

age := preserve

val := 5

age ∈ [2 · val+ 1, 7]

val ∈ 〈[1, 1], [5, 9]〉

age := 0

val := 5

Figure 10.2: The models from Figure 10.1 after firing transitions t1, t2, t3 and t4.

10.2 Semantics

We will now define the semantics of the TAPN with integers model. This entails
redefining the concepts from Section 3.3 with support for integers.

Definition 57 (Marking) Let N = (P, T, IA,OA,Transport , Inhib, ι) be a TAPN
with integers. A marking M on N is a function M : P −→ B(R≥0 × N0), such that
for every place p ∈ P , every token (x, v) ∈ M(p) and the invariant ι(p) = (Iinv, vi)
it holds that x ∈ eval(Iinv, v) and v ∈ vi. The set of all markings over N is denoted
M(N). ♦

Note that we shall also sometimes use the convention (p, x, v) to refer to a token
in the place p with age x ∈ R≥0 and value v ∈ N0. Likewise, we shall sometimes write
M = {(p1, x1, v1), (p2, x2, v2), . . . , (pn, xn, vn)} for a marking M with n tokens located
in places pi and with age xi and value vi for 1 ≤ i ≤ n. Further, we shall sometimes
index tokens by a place, such as (pi, xpi , vpi). We shall use this notation only when
there is a unique token in the set from any particular place.

A marked TAPN with integers is defined as a pair (N,M0) where N is a TAPN with
integers and M0 is the initial marking on N . Note that we only allow initial markings
where all tokens have age 0. There are no restrictions on the values of tokens in the
initial marking.

Definition 58 (Enabledness) Let N = (P, T, IA,OA,Transport , Inhib, ι) be a
TAPN with integers. We say that a transition t ∈ T is enabled in a marking M by
tokens In = {(p, xp, vp) | p ∈ •t} and Out = {(p′, xp′ , vp′) | p′ ∈ t•} if

• for all input arcs except inhibitor arcs, there is a token in the input place with an
age and a value satisfying the age guard and value guard on the arc respectively,
i.e.

∀(p, I, vg, t) ∈ IA . ¬Inhib((p, I, vg, t))⇒ (xp ∈ eval(I, vp) ∧ vp ∈ vg) ,
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p0#1

{(2.4, 6)}

p1#1

{(1, 7)}

p3#1

{(2.1, 3)}

p4#1

{(1, 7)}

p2 p5

t1 t2

age ∈ [2, 3]

val ∈ 〈[5, 9]〉
age ∈ [1, 3]

val ∈ 〈[0,∞)〉

age := 0

val := 3

age ∈ [2, 3]

val ∈ 〈[5, 9]〉
age ∈ [1, 3]

val ∈ 〈[0,∞)〉

age := 0

val := 3

Figure 10.3: Two small TAPN demonstrating the semantics of integers and inhibitor
arcs.

• for all inhibitor arcs, there is no token in the input place of the arc with an age
and a value satisfying the age guard and value guard on the arc respectively, i.e.

∀(p, I, vg, t) ∈ IA . Inhib((p, I, vg, t))⇒
(¬∃(x, v) ∈M(p) . x ∈ eval(I, v) ∧ v ∈ vg) ,

• for all input arcs and output arcs which constitute a transport arc, if the arc is
age-preserving, then the age of the output token must match that of the input
token and likewise for the value if the arc is value-preserving, i.e.

∀(p, I, vg, t) ∈ IA . ∀(t, au, vu, p′) ∈ OA .

Transport((p, I, vg, t), (t, au, vu, p′))⇒(
au = preserve ⇒ xp = xp′) ∧ (vu = preserve ⇒ vp = vp′)

)
• for all output arcs, the age and the value must satisfy the invariants of the output

locations, i.e.

∀(t, au, vu, p′) ∈ OA .

(au 6= preserve ⇒ xp′ = 0) ∧ (vu 6= preserve ⇒ vp′ = vu) ∧
xp′ ∈ eval(Iinv , vp′) ∧ vp′ ∈ vi

where ι(p′) = (Iinv , vi). ♦

Definition 59 (Firing Rule) Let N = (P, T, IA,OA,Transport , Inhib, ι) be a
TAPN with integers, M some marking on N and t ∈ T some transition of N . If
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t is enabled in the marking M by tokens In = {(p, xp, vp) | p ∈ •t} and Out =
{(p′, xp′ , vp′) | p′ ∈ t•} then it can be fired, whereby we reach a marking M ′ defined as

M ′ = (M \ In) ∪Out

where \ and ∪ are operations on multisets. ♦

Let us now define the notion of a time delay in our model. To do so, we shall introduce
an addition operator on multisets. For a multiset B = (R≥0×N0, f) and a non-negative
real d ∈ R≥0, we define the addition operator in the following manner,

• (B + d)(x, v) =

{
f(x− d, v) if x− d ≥ 0

0 otherwise

where x ∈ R≥0 and v ∈ N0.

Definition 60 (Time Delay) Let N = (P, T, IA,OA,Transport , Inhib, ι) be a
TAPN with integers and M some marking on N . A time delay d ∈ R≥0 is allowed if
(x + d) ∈ eval(Iinv , v) where ι(p) = (Iinv , vi) for all p ∈ P and all (x, v) ∈ M(p), i.e.
by delaying d time units no token violates the invariants. By delaying d time units we
reach a marking M ′ defined as M ′(p) = M(p) + d for all p ∈ P . ♦

The semantics of a TAPN with integers is given by a timed transition system.
Specifically, a TAPN with integers N = (P, T, IA,OA,Transport , Inhib, ι) generates a
TTS T (N) = (M(N),−→,AP, µ) where the set of states are the markings on N , and
the transition relation −→ is defined such that M −→M ′ if by firing some transition

t in marking M we get to marking M ′ and M
d−→ M ′ if by delaying d time units in

marking M we get to marking M ′. The set of atomic propositions AP is the same as

for TAPN without integers. Thus, AP def
= {(p ./ n) | p ∈ P, n ∈ N0 and ./ ∈ {<,≤

,=,≥, >}} and the labeling function is defined as µ(M)
def
= {(p ./ n) | |M(p)| ./ n, ./

∈ {<,≤,=,≥, >}}.

10.3 Translation and Correctness

We will now extend the translations from Chapter 8 and Chapter 9 to support TAPN
with integers. However, as the extension is not substantial, we will only argue infor-
mally that the addition of the integers is a straightforward extension of the translations.
We will do this in terms of the Broadcast translation in Chapter 8. The extension lies
solely in changing the guards, updates and invariants of the constructed NTA.

Recall that our notion of an NTA already supports integer variables as these are
used as counters in the two translations. Further, since the translation adds a TA for
each token in the net, we can simply add an integer variable for each token automaton
which will serve as the token’s value. Note that in the syntax and semantics we have
used unbounded integers, which will obviously not work for verification purposes.
However, since we can only update the value of tokens by constants on output arcs
(e.g. val := 5), we are using integers in a bounded way.
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Value guards

Value guards are represented as a set of integer intervals. This can easily be translated
into a disjunction of the elements. For instance, the value guard 〈 [1, 5], [7, 7], [10,∞) 〉
is translated to 1 ≤ x ≤ 5∨x = 7∨x ≥ 10 where x is the integer variable representing
the value of the token. This is added to the guard of the corresponding ttest edge in
the NTA.

Value updates

Value updates are also straightforward to translate. For example, a value update
of 4 on some output arc will be translated to the variable update x := 4 on the
corresponding tfire

?
edge in the NTA where x is the integer variable representing the

value of the token. If the value update is preserve, then no value update is added to
the corresponding edge in the NTA.

Invariants

For every output arc which has an update of the form val := n for some n ∈ N0, we
must check whether n belongs to the value invariant of the target place. If this is not
the case, the transition can never fire in the TAPN model, and we must ensure that
the simulation of the transition is always disabled in the NTA. We achieve this by
setting the invariant on the `(t) location to x < 1 ∧ x > 1, which is always false.

Intersection of guards and invariants

In order to avoid deadlocks, we must intersect the guards and the target invariants
when creating the guard for the ttest

?
edge, whenever the paired input and output

places are connected by a transport arc. However, since we now have four different
types of transport arcs, we must be careful to handle them correctly. Let us first
describe how to intersect the guards and invariants and then explain how to handle
the different types.

When intersecting value guards and value invariants, we must intersect the individ-
ual intervals. For example, given the value guard 〈[1, 1], [5, 7], [10,∞)〉 and the value
invariant 〈[1, 3], [6, 20]〉 we get the intersected guard {[1, 1], [6, 7], [10, 20]} containing
precisely the elements that appear in both sets.

Age guards are more tricky since bounds are given as linear functions, which may
have different slopes. Because of this, we cannot intersect them in the same way as
in Chapter 8 (because it is not well-defined which is larger, since it depends on the
value of the token). Instead, we make a conjunction of the functions. For instance,
assume that an arc contains an age guard of the form [1 · val + 1, 3 · val + 3) and
the target place contains an age invariant of the form [0, 2 · val + 2]. The guard we
create in the NTA will look like the following (assuming c1 is the name of the clock):
c1 ≥ 1 · val + 1 && c1 < 3 · val + 3 && c1 ≤ 2 · val + 2.

Now, let us handle the four types of transport arcs.
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• Preserve nothing : equivalent to normal arcs.

• Preserve age: intersect the age guard and the age invariant of the target place
only. Check the value update and the value invariant of the target place, as
described above.

• Preserve value: intersect only the value guard and the value invariant of the
target place.

• Preserve age and value: intersect age guard and the age invariant of the target
place, as well as the value guard and the value invariant of the target place.

Summary

Thus, the small addition of integers to TAPN only requires a straightforward extension
of the translation in Chapter 8. Further, the definition of the complete one-by-many
correspondence for these translations could be extended such that it also requires that
the value of tokens in a marking matches the values of the corresponding variables in
a configuration of the NTA. As there is nothing in the addition of the integers which
would break the properties of a complete one-by-many correspondence, it would still
preserve the full TCTL. Note the Degree 2 Broadcast translation from Chapter 9 can
be extended in a similar fashion to support integers.

10.4 Decidability

In this section we will look into the decidability of reachability for bounded TAPN
with integers.

We have already sketched a translation to timed automata in Section 10.3. The
use of integers should not cause problems as we are using the integers in a bounded
way, since we only allow value updates using constant values.

Note that the expressions used in age guards may become negative as they are of
the form age ∈ [(a · val ⊕ b, c · val ⊕ d)], where [(∈ { [, ( }, )] ∈ { ], ) }, ⊕ ∈ {+,−} and
a, b, c, d ∈ N0. However, tokens can only carry non-negative integers and thus some
age guards may not be satisfiable. For instance, we could have an arc with a guard
age ∈ [−6,−2] which can never be satisfied by any token. However, this should not be
a problem as it just prevents certain transitions from firing. Thus, we get the following
theorem.

Theorem 61 Reachability is decidable for bounded TAPN with integers. ♦

Let us now consider a variant of the TAPN with integers model in which we allow
value updates to be of the form val := a ·val⊕ b where ⊕ = {+,−}. Let us denote this
model by TAPN(±updates). By allowing these types of value updates we can simulate
of a 2-CM. Although the TAPN model is bounded in terms of the number of tokens,
there is no bound on the values of tokens. Thus, we can use a single token to simulate
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a single register, where the value of the token represents the value of the register. This
is possible because we can use value updates to both increase and decrease the values
of tokens. Further, it is possible to test for zero on the value guards by using the value
guard 〈 [0, 0]〉. Thus, with two tokens we are able to simulate the two registers of a
2-CM and we get the following theorem.

Theorem 62 Reachability is undecidable for bounded TAPN(±updates). ♦
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TAPAAL

In this chapter, we will present an overview of the verification tool TAPAAL [1],
which can be used to perform modeling, simulation and verification of TAPN models.
As already mentioned, TAPAAL translates TAPN models into networks of timed au-
tomata, thereby leveraging the UPPAAL verification engine for the actual verification.
Note that this section discusses a prototype of TAPAAL (not publicly available) which
include additional features not found in the current version 1.3 release.

11.1 Overview

We will now give a short overview of the features of the tool.

Main Window

Figure 11.1 shows a screenshot of the application. In TAPAAL, it is possible to draw
TAPN models using tools found in the toolbar. Each tab contains a drawing surface
on which TAPN models can be drawn, hence each tab contains a model. Models in
different tabs cannot communicate in any way. For each model, TAPAAL maintains a
list of queries specified by the user and a list of integer constants in the left-hand pane.
It is possible to save any number of queries for each model. Verification of a query is
possible via the Verify button. It is possible to define integer constants which can be
used in invariants and guards in the model. This is useful if we need to use the same
integer in multiple places. For example, we might specify a delay constant which need
to be included in multiple guards. Without integer constants, it would be necessary
to change the value of the constant in multiple places if we were to, say, change the
delay from 5 to 3. With an integer constant, we can simply change the value of the
constant, and it is automatically updated in every place where the constant is used.
TAPAAL also allows for simulation of TAPN models. Clicking the flag in the toolbar,
puts TAPAAL into simulation mode, in which changes to the model cannot be made.
In this mode, it is possible to simulate the net by performing time delays and transition
firings. This is useful for debugging models during the modeling process.
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Figure 11.2: The query dialog from TAPAAL.

Query Dialog

Figure 11.2 shows the query dialog which is used when creating or editing queries. In
this dialog it is, among other things, possible to check whether the net is k-bounded.
One can specify the extra number of tokens to use (besides the tokens already in the
model), and then check, whether the net is bounded for this number of tokens. If the
net is bounded for the specified number of extra tokens, it is possible to ask TAPAAL
to optimize the number of extra tokens needed. TAPAAL will then use UPPAAL to
find the supremum (least upper bound) on the number of extra tokens needed for a
faithful verification.

Not all reduction options in TAPAAL can verify liveness properties (EG and AF).
Specifically, the translation by Byg et al. [17] introduces additional deadlocks into the
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system which means it does not work for liveness in general (only when there are no
inhibitor arcs and the model is already degree 2). As proved in the previous chap-
ters, the two translations relying on broadcast transitions work for arbitrary bounded
models for the full TCTL (and hence for all for operators supported by TAPAAL).

The predicate of a formula is expressed as a series of conjunctions and disjunctions
of propositions. In the propositions, we can talk only about the number of tokens in
a place, not their age. For example, we can formulate a query asking whether we can
place more than 1 token in P2 in the following manner: EF(P2 > 1). Similarly, we can
ask whether it always holds that there is a token in P1 and at most 3 tokens in P3 by
using the query: AG(P1 == 1 &&P3 <= 3). The query dialog allows us to express
such properties, and it will automatically generate a corresponding logic property to
verify, when translating the TAPN model to a network of timed automata.

When TAPAAL translates a model to a network of timed automata, there are
basically two reduction strategies, standard and symmetry reduction (with various
optimizations). If we use standard reduction, we can ask UPPAAL for a trace in
the positive case, showing us how the property is satisfied. A current limitation of
UPPAAL means that sometimes it is not possible to obtain a timed trace (e.g. a trace
with both transition firings and time delays). TAPAAL will in these cases obtain an
untimed trace from UPPAAL, in which we have to fill in time delays ourselves. In
either case, TAPAAL allows us to simulate this trace in the simulation mode. If we
use symmetry reduction, we cannot obtain a trace from UPPAAL, but verification will
in many cases be much faster.

11.2 Implementation

Since TAPAAL was mainly developed by Byg et al. [16], we shall list our contributions
to the tool in this section. Our work has mainly revolved around:

1. Optimization of extra tokens needed in case the net is bounded,

2. Integer constants,

3. Export to TikZ,

4. Redesigned query list,

5. Inhibitor arcs (modeling, simulation and verification),

6. Implementation of translations detailed in Chapter 8 and Chapter 9, and

7. TAPN with integers as detailed in Chapter 10 (modeling, simulation and verifi-
cation).

The first four are available in version 1.3 of TAPAAL, whereas the rest is not yet
publicly available. We shall only briefly comment on item 6 and 7.
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11.2.1 Translations

The algorithms in Chapter 8 and Chapter 9 have been implemented in TAPAAL
and are available from the query dialog. The following optimizations apply to both
translations.

Degree 2 Optimization

Our implementation contains optimizations, as presented in [17]. Specifically, if we
encounter transitions in the original net, which are already degree 2 and contains no
inhibitor arcs, then we simulate the transition in a single handshake synchronization
in the timed automata, instead of using broadcast synchronizations. To ensure inter-
leaving cannot occur when such transitions are present, we include a boolean variable
lock which we set to true whenever the control automaton moves out of `stable , and
we set it to false whenever the control automaton returns to `stable . Any transition
which is already degree 2 (and has no inhibitor arcs) will then simply be simulated by
a single handshake synchronization in the timed automata with the additional guard
that lock == false. This prohibits interleaving of simulations of different transitions.

Symmetry reduction

Symmetry reduction is a way to combat the state space explosion problem (see e.g.
[26] for an explanation of how to apply symmetry reduction to timed automata). As
a simple example, imagine two identical communicating servers A and B. The state
where A wants to send a message to B and B wants to receive a message is equivalent
to the state in which B wants to send a message to A and A wants to receive a message.
Thus, if we know how the system behaves in the case where A is the sender, then we
also know how the system behaves when B is the sender. Therefore, we can simply
explore one of these states during verification and disregard the others. We say that
A and B are in the same equivalence class. We only need to explore one state from
each equivalence class.

In UPPAAL, symmetry reduction is enabled via a special datatype called scalarset
(denoted scalar in the UPPAAL specification language) [25]. Essentially, a scalarset
of size n is a subrange [0, n− 1] of natural numbers, which supports only assignment,
equality/inequality testing and array indexing [26]. Templates instantiated with a
scalarset type is considered by UPPAAL to be symmetric.

Symmetry reduction is particularly useful for our purposes, since we generate a
timed automaton for each token. Each of these automata are structurally equivalent
except for the initial states. In order to exploit symmetry reduction, these automata
have to be identical. Therefore, we shall introduce additional initialization synchro-
nizations in our timed automata that puts token in the initial states (according to the
initial marking).

For instance, assume we have the model from Figure 9.1 on page 67 and that degree
2 optimizations as described above are turned on. We shall show how to extend the
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inv: c == 0 inv: c == 0 inv: c == 0

`stable

init1! init2! init3!

lock := false

Figure 11.3: The additional initialization edges for the control automaton.

`capacity

p1 p2 p3

init1?

init2?

init3?

Figure 11.4: The additional initialization edges for the token automaton.

NTA to make it eligible for symmetry reduction. Specifically, we shall create a single
token automaton template, and use the scalarset datatype to instantiate this template
k times, where k is the number of tokens. Further, we initially set the lock boolean to
true (meaning degree 2 transitions cannot fire).

Because we need a common initial location for the token automata, we shall use the
location `capacity for this purpose. We augment the control automaton with additional
initialization edges, which put the tokens in the correct initial locations. For the
NTA in Figure 9.1, the additional edges are illustrated in Figure 11.3. Similarly, we
augment the token automaton template with additional initialization edges that move
the automaton out of `capacity , as illustrated in Figure 11.4. Note that for both these
figures, the entire TA is not shown and that the final initialization edge will set the
lock boolean to false.

11.2.2 TAPN with Integers

We shall briefly comment on the implementation of integers in TAPAAL. The capa-
bilities are derived from those outlined in Chapter 10. Each place may contain an age
invariant of the form [0, a·val+b] where a, b are non-negative integers and a value invari-
ant. The value invariant is given as a set of ranges, e.g. {1, 3, 5−8, 10−} which means
that tokens in that place must have a value included in the set {1, 3, 5, 6, 7, 8} ∪ {v |
v ≥ 10}. Input arcs (that is, arcs from places to transitions), regardless of type, can
contain an age guard and a value guard. Age guards are of the form [(a·val+b, c·val+d)]
where a, b, c, d are non-negative integers and value guards follow the same style as the
value invariants, that is, they are given as a set of integers to which the token’s value
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must belong.
Normal output arcs contain an update expression indicating the value to assign to

the produced token. For transport arcs, there are three possibilities: preserve both
the age and value, preserve only the value and preserve only the age. If only the age
is preserved, a transport arc also carries an update expression to indicate the value to
assign to the consumed token upon firing the transition.

The GUI of TAPAAL has been extended to allow the manipulation of all these
features and the simulator has been extended to function correctly when the model is
a TAPN with integers. Naturally, save/load support has also been added to TAPAAL
for these models.

Finally, the broadcast translations detailed in the previous chapters have both been
extended to support integers, thereby allowing for verification using UPPAAL.

91





Chapter 12

Experiments

In this chapter, we present a series of experiments comparing the verification time of
TAPAAL using the translations from Chapter 8 and Chapter 9 and the translation by
Byg et al. [17] on some small case studies. Further, we will explore how the addition
of integers to the TAPN model, as described in Chapter 10, impacts the verification
time. We shall use the following conventions.

• Unless stated otherwise, a dash (−) means that the verification time exceeded
five minutes.

• We will refer to the translation by Byg et al. [17] as the Standard translation,
the translation in Chapter 8 as Broadcast and the translation from Chapter 9
as Deg-2-Broadcast.

• When we say that optimizations (resp. symmetry) are turned on or off we are
referring to the degree 2 optimizations (resp. symmetry reduction) mentioned
in Section 11.2.1.

Note that there might be slight inaccuracies in the verification time measurements
when the verification times are small (i.e. around 0.1 seconds) and that all experiments
have been run only once using breadth-first search (except liveness experiments which
are always done with depth-first search in UPPAAL).

All experiments in this chapter were performed on a Dell Optiplex 755 with an
Intel Core2 Duo 2.66 GHz processor and 8 GB RAM running Ubuntu 10.04. Note
that UPPAAL only utilizes one of the cores and it uses at most 4 GB of RAM.

12.1 TAPN

We will now present the experiments for TAPN using the translations from Chapter 8
and Chapter 9. Two small case studies have been selected for these experiments. The
first case study will be Alternating Bit Protocol [8], which is modeled as a TAPN of
degree 2 [17]. We will use this to demonstrate how the performance of our translations
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Alternating Bit Protocol:
Safety, Symmetry off, optimizations off

# Messages Standard Broadcast Deg-2-Broadcast

2 0.25s 0.12s 0.13s

3 3.91s 1.42s 1.39s

4 54.15s 18.78s 16.7s

5 - 3m 36.53s 2m 54.42s

6 - - -

Table 12.1: Comparison of the verification times for ABP with both symmetry and
optimizations turned off.

compares to that of the Standard translation when optimizations are turned off. Recall
that when optimizations are turned on transitions of degree 2 will be translated to a
handshake synchronization in the NTA. Thus, if optimizations were turned on in a
degree 2 net we would not use the broadcast features of our translations at all (as all
transitions would be translated to handshake synchronizations).

The second case study is called Soccer Field Grass Cutting which we have invented
for these experiments. The case study involves three workers tasked with keeping a
number of soccer fields in shape. The grass on each field must be cut within a certain
period after it was last cut to prevent the grass from becoming too long. One, two
or three workers can cut a field, however, the less workers the longer it takes to cut
the field. This case study will be used to compare the verification times of the three
translations when optimizations are turned on. The net contains transitions with
a degree greater than 2. Because of this, we know that some transitions will use
broadcasts, even with optimizations turned on. Our experiments for this case study
involve both safety and liveness properties.

12.1.1 Alternating Bit Protocol

Our first experiment is the verification of Alternating Bit Protocol (ABP) [8]. ABP
is a network protocol for communication between a sender and a receiver over a lossy
communication channel. In the event that messages are lost, the protocol will retrans-
mit messages. The TAPN model for this protocol was taken from [17] and it is included
as an example in TAPAAL. We use a query that checks whether the synchronization
between the sender and the receiver can be violated. Since the protocol is correct, the
query is not satisfied.

Table 12.1 presents the verification times for ABP with both symmetry and op-
timizations turned off. The parameter “number of messages” represents the total
number of messages in transit. Observe that although verification is only possible for
small instances of the problem (due to the absence of symmetry), both our transla-
tions outperform the Standard translation. Since the query is not satisfied, we are
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Alternating Bit Protocol:
Safety, Symmetry on, optimizations off

# Messages Standard Broadcast Deg-2-Broadcast

12 2.22s 9.06s 4.51s

14 4.75s 21.96s 9.53s

16 9.43s 48.56s 18.77s

18 17.58s 1m 38.85s 34.28s

20 30.96s 3m 10.87 59.74s

22 52.39s - 1m 39.88s

24 1m 24.86s - 2m 40.29s

26 2m 14.09s - 4m 9.57s

Table 12.2: Comparison of the verification times for ABP with symmetry turned on
and optimizations turned off.

essentially searching the whole state space during the verification. The reason that
our translations are faster seems to be that the state space is smaller for our trans-
lations. This follows from the fact that the translated system cannot get stuck while
simulating a single transition of the original system.

Table 12.2 presents the verification times for ABP with symmetry turned on and
optimizations turned off. Interestingly, we observe that now the standard translation is
faster than both our translations. We believe the reason is connected to the updating of
shared integer variables as mentioned by Bengtsson and Yi [9]. Specifically, Bengtsson
and Yi notes that because integer variables are updated in a specific order (sender first
and then receivers in the order they are defined), the symmetry of input and output
actions is essentially destroyed in the event that one of the participating TA updates
a value which is used by another participating TA. This is exactly what we are doing
with the counter variables, when synchronizing on the ttest broadcast channel.

Further, it is interesting to note that the Deg-2-Broadcast translation performs
much better than the Broadcast translation in this experiment. This seems to be
connected to the size of the state space. Specifically, for 12 messages the number of
states explored for Broadcast is roughly two times that of Deg-2-Broadcast which fits
well with the fact that Deg-2-Broadcast is roughly two times faster than Broadcast.
Likewise for 20 messages the number of states explored for Broadcast is roughly three
times higher than for Deg-2-Broadcast and the Deg-2-Broadcast is also roughly three
times faster than Broadcast. Note that in this experiment Deg-2-Broadcast is roughly
50% slower than the Standard translation although this number seems to be increasing
slowly. This slowdown is the price we pay to support liveness checking.
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Soccer Field Grass Cutting:
Safety, Symmetry off, optimizations on

# Fields Standard Standard Opt. Broadcast Deg-2-Broadcast

3 6.07s 17.29s 0.21s 0.21s

4 13.22s 1m 27.93s 0.45s 0.48s

5 25.41s - 0.98s 1.10s

6 43.77s - 2.75s 2.64s

7 1m 11.58s - 7.82s 7.55s

8 1m 54.89s - 29.59s 24.45s

9 3m 12.08s - 1m 44.18s 1m 19.98s

10 - - - 4m 25.72s

Table 12.3: Comparison of the verification times for the soccer field grass cutting case
study with symmetry turned off and optimizations turned on.

12.1.2 Soccer Field Grass Cutting

We will now present the results for the soccer field grass cutting case study. The model
can be found in Appendix B. We will explore verification times for both safety and
liveness queries for this case study.

Safety

For safety, we will use a query that explores the whole state space. Table 12.3 presents
the verification times for the soccer field grass cutting problem with symmetry turned
off and optimizations turned on.

Note that we have included Standard translation both with and without optimiza-
tion. The reason for this is that the unoptimized one performs much better than with
optimizations turned on. This is surprising and counter-intuitive, however, the same
phenomenon was noticed by [17]. Further, observe that just as for ABP, our transla-
tions outperform the Standard translation when symmetry is turned off. The reason
also appears to be the same as before, namely that the state space is smaller for our
translations because we cannot get stuck while simulating a transition.

Table 12.4 presents the verification times for the soccer field grass cutting prob-
lem with both symmetry and optimizations turned on (again, Standard translation is
included both with and without optimizations).

Observe that for Broadcast, this experiment gives the same picture as ABP, namely
that when symmetry is turned on, it performs worse than the Standard translation.
However, this is not true for Deg-2-Broadcast which is still a little faster than the
Standard translation (although the verification times are rather similar). The reason is
that for Standard, Standard Opt. and Deg-2-Broadcast, the number of states explored
are comparable and generally smaller than for Broadcast.
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Soccer Field Grass Cutting:
Safety, Symmetry on, optimizations on

# Fields Standard Standard Opt. Broadcast Deg-2-Broadcast

20 0.33s 0.27s 0.56s 0.28s

30 0.99s 0.84s 2.95s 0.85s

40 2.73s 2.45s 12.18s 2.40s

50 6.57s 6.07s 39.41s 5.94s

60 14.86s 13.27s 1m 46.80s 13.01s

70 29.05s 27.37s 3m 11.12s 20.02s

Table 12.4: Comparison of the verification times for the soccer field grass cutting case
study with both symmetry and optimizations turned on.

Soccer Field Grass Cutting:
Liveness, Symmetry on, optimizations on

# Fields Broadcast Deg-2-Broadcast

4 5.99s 5.81s

5 26.08s 24.83s

6 1m 43.88s 1m 33.22s

7 6m 17.09s 5m 20.49s

8 - -

Table 12.5: Comparison of the verification times for the soccer field grass cutting case
study with both symmetry and optimizations turned on.

Liveness

For liveness, we will use a query that checks whether the three workers can keep all
soccer fields in perfect shape. The workers are at most able to keep three fields in
shape. Thus, the query is not satisfied in the experiments below. The verification
times are presented in Table 12.5. Note that we allow the liveness tests to use up to
ten minutes. Thus, a dash (−) means the verification did not finish in ten minutes.
This only applies to Table 12.5. Note that we have not compared these results to
the Standard translation, as the net contains transitions greater degree 2 and for such
nets, their translation does not support liveness. As before, the results indicate that
the Deg-2-Broadcast translation outperforms the Broadcast translation.

In all our experiments, the Deg-2-Broadcast translation has been faster than the
Broadcast translation. It seems to be more expensive to simulate a transition in
Broadcast. When the ttest transition has been executed, we must move additional
token automata back to their original location via τ -transition, before executing the
tfire transition. This is not necessary in the Deg-2-Broadcast translation, because
executing the ttest transition does not move any token automata out of their respective
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locations. Moreover, the sequence of τ -transitions and the subsequent tfire broadcast
synchronization in the Broadcast translation appears to be more expensive than the
sequence of handshake synchronizations in Deg-2-Broadcast.

12.2 TAPN with Integers

We now demonstrate how the use of integers can model the Viking case study in a
more efficient way. This case study is included as an example in UPPAAL. We shall
compare verification of a TAPN model, a TAPN with integers model and a UPPAAL
model. The idea is that a number of vikings need to cross a damaged bridge in the
middle of the night (the number of vikings can be scaled). They only have a single
torch, which they need to cross the bridge safely. Further, the bridge can support
at most two of them at once and the vikings move at different speed and thus take
different amounts of time to cross the bridge. The goal is to get everyone across the
bridge safely. We can imagine one viking carrying the torch back and forth while
taking the others across the bridge. The used query checks whether it is possible to
get all the vikings across the bridge safely.

We performed verification on different instances of the problem. Two parameters
are used to define these. The first parameter is the number of viking types, where each
viking type takes a different amount of time to cross the bridge (i.e. the first type
takes 5 time units, the second type takes 10 time units, etc.). The second parameter
is the number of vikings of each type. Note that for this experiment, we are interested
in exploring how the addition of integers to the TAPN model impacts the verification
times. Thus, we will only use the Broadcast translation. The models presented in
Appendix A.

The verification times are presented in Table 12.6. Table 12.7 presents the ratio
between the verification times of the Broadcast translation with and without integers
for each instance of the problem. This ratio is calculated as TAPN

TAPN with integers on each
instance of the problem. Thus, a ratio greater than one means the verification of
the TAPN with integers model was faster (higher means faster). The light gray cells
indicate instances that could only be solved within five minutes on the TAPN with
integers model.

As indicated by the ratios, the verification times is consistently faster when using
integers. We believe this is connected to the fact that the these models are much
smaller compared to the TAPN models. One of the contributing reasons for this is
that adding a new type of viking when using integers is only a matter of adding a
new token to the net with a distinguished initial value representing the time it takes
to cross the bridge, whereas without integers, we need to change the static structure
of the net and add a new token to accommodate a new viking type.

Another contributor to the slower verification of the TAPN models is the use of
inhibitor arcs. The transitions with inhibitor arcs are always translated to the structure
using ttest and tfire transitions, regardless of whether the transition is degree 2 or not.
There are no inhibitor arcs in the TAPN with integers models.
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TAPN
# each type

2 3 4 5 6 7

#
ty

p
e
s

2 0.02s 0.04s 0.05s 0.07s 0.08s 0.13s
3 0.05s 0.11s 0.23s 0.45s 0.86s 1.54s
4 0.12s 0.48s 1.71s 4.79s 11.62s 25.33s
5 0.47s 3.16s 14.78s 51.98s 2m 31.97s -
6 1.97s 20.14s 2m 3.09s - - -
7 8.48s 2m 3.95s - - - -
8 36.51s - - - - -

TAPN with integers
# each type

2 3 4 5 6 7

#
ty

p
e
s

2 0.02s 0.02s 0.03s 0.04s 0.05s 0.06s
3 0.02s 0.04s 0.09s 0.20s 0.38s 0.71s
4 0.05s 0.19s 0.71s 2.10s 5.40s 12.22s
5 0.16s 1.23s 6.35s 23.70s 1m 12.82s 3m 9.96s
6 0.72s 8.37s 54.26s 4m 9.50s - -
7 3.19s 52.01s - - - -
8 14.08s - - - - -

UPPAAL
# each type

2 3 4 5 6 7

#
ty

p
e
s

2 0.01s 0.01s 0.02s 0.03s 0.04s 0.06s
3 0.01s 0.05s 0.18s 0.67s 2.13s 6.32s
4 0.04s 0.50s 5.08s 35.93s 3m 26.84s -
5 0.23s 7.39s 2m 23.80s - - -
6 1.41s 1m 37.67s - - - -
7 8.83s - - - - -
8 51.81s - - - - -

Table 12.6: Comparison of the verification times for the Vikings example modeled
with TAPN and TAPN with integers (using Broadcast translation with symmetry and
optimizations turned on) and UPPAAL.
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# each type
2 3 4 5 6 7

#
ty

p
e
s

2 1.00 2.00 1.67 1.75 1.60 2.17
3 2.50 2.75 2.56 2.25 2.26 2.17
4 2.40 2.53 2.41 2.28 2.15 2.07
5 2.94 2.57 2.33 2.19 2.09 -
6 2.74 2.41 2.27 - - -
7 2.66 2.38 - - - -
8 2.59 - - - - -

Table 12.7: The ratio TAPN
TAPN with integers of the verification times in Table 12.6. The

higher the number, the faster the TAPN with integers model was in terms of verifica-
tion time. The light gray cells indicate instances which could only be solved on TAPN
with integers.

# each type
2 3 4 5 6 7

#
ty

p
e
s

2 0.50 0.50 0.67 0.63 0.80 1.05
3 0.65 1.18 1.97 3.34 5.61 8.89
4 0.80 2.64 7.15 17.11 38.30 -
5 1.45 6.01 22.65 - - -
6 1.95 11.67 - - - -
7 2.77 - - - - -
8 3.68 - - - - -

Table 12.8: The ratio UPPAAL
TAPN with integers of the verification times in Table 12.6. The

higher the number, the faster the TAPN with integers model was in terms of verifica-
tion time. The light gray cells indicate instances which could only be solved on TAPN
with integers.

Table 12.8 presents the ratio between the verification times of UPPAAL and
TAPN with integers for each instance of the problem. This ratio is calculated as

UPPAAL
TAPN with integers . Thus, the higher the number, the faster the TAPN with integer
model was in terms of verification time. As before, the light gray cell indicate in-
stances that could only be solved within five minutes on the TAPN with integers
model.

Interestingly, the results show that on a large set of the experiments, TAPAAL is
actually faster than UPPAAL and there are even some instances which can only be
solved by TAPAAL within five minutes. It seems the NTA constructed by TAPAAL
for verification is a more efficient encoding of the Vikings case study compared to the
one included in UPPAAL.
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Conclusion

In this thesis, we have investigated the timed-arc Petri net model with invariants,
inhibitor arcs and transport arcs, abbreviated TAPN. The semantics of such a model
is a natural extension of ordinary timed-arc Petri nets.

We have defined the timed computation tree logic (TCTL) and its safety fragment.
In much of the work on TCTL, maximal runs are not handled completely. Often, only
infinite maximal runs are considered (see e.g. [36]). However, in tools like UPPAAL,
maximal runs can also be finite (e.g. a run ending in a deadlock is maximal because
it cannot be extended further). We have shown how to handle maximal runs in its
entirety, including both infinite and finite maximal runs.

By introducing a one-by-many correspondence, which is a relation between the
states of timed transition systems (TTS) A and B, we provide a generalized framework
which can be used to show that a translation from A to B preserves the full TCTL
(or only the safety fragment depending on the requirements fulfilled by the relation).
Intuitively, when A and B are related by a one-by-many correspondence, we can
simulate one step in A by a number of steps in B.

We have presented two novel translations from TAPN models to NTA, both of
which preserve the full TCTL. To the best of our knowledge, these are the first ef-
ficient translations from bounded TAPN to NTA that preserve the full TCTL. The
translations allow us to perform verification of TAPN models using the UPPAAL
verification engine.

The first translation uses broadcast channels to first check the enabledness condi-
tion of the transition and then use another broadcast channel to simulate the firing
of the transition. Due to the semantics of broadcast synchronizations, there are addi-
tional steps that must be taken in between checking enabledness and simulating the
firing of a transition. Since each token is simulated by a timed automaton, too many
automata may have participated in the enabledness check, and any extra timed au-
tomata must be moved back to their original location before simulating the firing of
the transition.

Our second translation incorporates the idea of using broadcast synchronizations
to check the enabledness conditions into the translation by Byg et al. [17]. Again each
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token is simulated by a timed automaton. The translation works by converting the
TAPN model to a degree 2 net, meaning that every transition has exactly two input
arcs and two output arcs. The idea is that since each transition is degree 2, every
transition firing corresponds to two tokens moving to new places, which is exactly
what happens when two automata (each representing a token) performs a handshake
synchronization on a channel. While their translation introduced additional deadlocks
into the model and hence only preserve safety properties, we overcome this problem
by checking the enabledness of the transition using broadcast synchronization.

We have also extended the TAPN model with integers, in the sense that each
token is allowed to carry an integer beside its age. This integer can then be used in
age guards. Further, we allow value guards and value invariants on arcs and places,
respectively. We argue about the decidability of reachability for bounded TAPN with
various forms of integer extensions.

In order to compare the performance of our two translations and the translation by
Byg et al. [17], we ran a number of experiments on some small case studies. In these
experiments, the translations by Byg et al. [17] was generally faster on safety queries
when symmetry reduction was turned on. However, our translations were faster when
symmetry reduction was turned off. The reason seemed to be that the state space was
smaller for our translations. Further, we found that the degree 2 broadcast translation
was faster than the broadcast translation. Additionally, we also ran some experiments
with liveness queries using our translations (on the chosen model, the translation by
Byg et al. [17] did not support liveness). Lastly, we explored how the addition of
integers to the TAPN model impacted the verification times and found that in certain
cases the integers allows us to create smaller models which improved performance.

All translations in this thesis have been implemented in a prototype of the verifi-
cation tool TAPAAL.

Finally, we provided an overview of known undecidability results for various ex-
tensions of TAPN. We answered two open problems and provided conjectures about
the decidability of other open problems.

13.1 Future Work

Going forward, there are several interesting directions we could take.

Our TCTL-preserving framework is not general enough to handle certain transla-
tions (see e.g. [10, 11, 14, 22]). Common for these translations seems to be the fact
that the translated system must perform additional internal transitions when simulat-
ing a time delay. Thus, we would like to extend our framework to allow for this type
of behavior also. Doing so would improve on the generality of our framework, making
it more widely applicable.

To improve TAPAAL, we have discussed the possibility of creating our own ver-
ification engine for TAPN models. There are several benefits to this. First of all, it
would make TAPAAL independent as it would no longer rely on UPPAAL for the
verification. Second, it would allow us to decide coverability for unbounded TAPN
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models (without inhibitor arcs and invariants), using the techniques described by Ab-
dulla and Nylén [3]. Because the UPPAAL verification engine is hard to extend, e.g.
for multicore or distributed architectures, it would make it easier to experiment with
such things if we made our own engine.

Another possible direction is to add more features akin to what is seen in colored
Petri nets. Our extension of integers provide a very small step towards including the
power of colored Petri nets. Allowing the definition of types (as opposed to forcing
integers) would be an interesting approach, as well as allowing arithmetic expressions
in guards and updates. However, such extensions often make reachability undecidable,
which means compromises would have to be made. Either to focus on extensions that
preserves decidability (of bounded nets) or allow all forms of extensions and investigate
possible over-approximation techniques.
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Appendix A

Vikings Case Study Models

The Vikings case study is one of the small examples inluded in UPPAAL. The idea is
that a number of vikings (4 in the UPPAAL example, but this can be scaled) need to
cross a damaged bridge in the middle of the night. The catch is that they only have 1
torch which they need, in order to find their way across the bridge. Since the bridge is
damaged, it can support at most two of them at once. Further, the vikings are moving
at different speeds so they take different amounts of time to cross the bridge. Thus,
in order to get everyone across the bridge one can imagine a viking carrying the torch
back and forth while the others are taken across the bridge one by one. Let us now
look at how this is modeled in TAPAAL and UPPAAL. For this discussion, we will
present a small instance of the example (i.e. with a small number of vikings), whereas
in the experiments we will use instances with varying size.

A.1 UPPAAL Model

We will start by introducing the UPPAAL model which we have modified slightly to
accomodate symmetry reduction. The idea is that we have (up to) eight different
viking types. The difference lies in the time it takes to cross the bridge. This delay
is not a parameter of the template anymore, but rather a locally declared variable.
The delay is 5 for the first type, 10 for the second type, 15 for the third type and so
on. The viking template is presented in Figure A.1. Each of the eight viking types
are identical to this template, except for the value of the local variable delay. This
allows us to declare a global type typedef scalar[N] id t where N denotes the number
of vikings of each type. A viking type template simply takes a parameter of type id t
when it is instantiated (which allows symmetry reduction). For example, if we have
eight different types and set N to 2, then we would get a total of 16 vikings, two of
each type.

A viking starts in the state unsafe indicating he is at the wrong side of the bridge
and thus needs to cross over to the safe side. He starts by synchronizing with the torch
on the take channel indicating that he picks up the torch. Note that this transition is
guarded by a variable L which denotes which side of the bridge the torch is on (0 for
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unsafe

safe

take!

L == 0 y := 0

release!

y ≥ delay

take!

L == 1y := 0

release!

y ≥ delay

Figure A.1: The UPPAAL template for the vikings.

free

U

one

twotake? take?

release?release?L := 1− L

Figure A.2: The UPPAAL template for the torch.

unsafe side, 1 for the safe side). Then the viking starts walking and after delay time
units he reaches the other side. Once a viking reaches the safe side, he will release the
torch by synchronizing on the release channel with the torch. He can then travel back
by taking the torch again, i.e. taking the take transition in the location safe. Note
that this transition is guarded by the expression L == 1 meaning the torch must be
on the safe side for the viking to take it. Finally, the viking can release the torch once
he has crossed the bridge back to the unsafe side.

Let us now look at the template for the torch. The template is illustrated in
Figure A.2. As mentioned above, at most two vikings can be crossing the bridge at
any time. Thus, the torch allows up to two synchronizations on the take channel. After
synchronizing on the take channel once, the torch moves to an urgent state which must
be exited immediately (i.e. no time can pass). From here it is possible to synchronize
with another viking on the take channel or just move on alone. Likewise, the torch
allows up to two synchronizations on the release channel, depending on the number
of vikings who moved across the bridge.

A.2 TAPN Model

We will now look at the TAPAAL model which is more complicated since we have to
represent both the vikings and the torch in one big TAPN. Since this model is more
complicated, we will start with a general overview of the model (see Figure A.3).

In this simple overview there are two types of vikings, represented as the two gray
boxes in the middle of the figure. The two gray boxes at the left and right side of the
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unsafevi 0.0

crossingsafe
vi

inv: ≤ 5

crossingunsafe
vi

inv: ≤ 5

safevi

takeunsafe
vi releasesafe

vi

releaseunsafe
vi takesafe

vi

[0
,∞

)

[5,
5]

[0
,∞

)

[5,
5]

Figure A.4: The part of the TAPN model simulating a viking with delay 5. The
dashed arcs are the ones which are shown in Figure A.3.

secondunsafe
viking

0.0

torchunsafe
ready

inv: ≤ 0

torchunsafe
handin

inv: ≤ 0

firstunsafe
viking 0.0

oneunsafe
crossedtwounsafe

crossed

firstunsafe
ready

secondunsafe
ready

secondunsafe
handin
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Figure A.5: The part of the TAPN model simulating the torch on the unsafe side. The
dashed arcs are the ones which are shown in Figure A.3.
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figure represent the torch on the unsafe and safe side, respectively. The idea is that
the part of the TAPN which is within these boxes (we will see in a bit how these look)
will simulate the vikings and the torch, respectively. Let us look at how these different
components of the TAPN are connected.

Consider the first viking in the figure. We can see that this viking has a takeunsafe
v1

transition which denotes that the viking takes the torch on the unsafe side and starts
walking across the bridge. When he gets to the end of the bridge, the releasesafe

v1
transition can be fired which signifies that he puts down the torch on the safe side.
Similarly, he can now choose to pick-up the torch and go back to the unsafe side by
the takesafe

v1 and releaseunsafe
v1 transitions.

The torches are also connected. Consider the place secondunsafe
viking , which denotes if

one or two vikings crossed the bridge. Imagine that two vikings cross the bridge from
the unsafe side. When the torch is released on the unsafe side, the place secondunsafe

viking

would be empty, signifying that two vikings were crossing the bridge. We need to
remember how many were crossing the bridge, since the vikings moves at different
speeds across the bridge and thus we have to wait for the second viking to get across
before anyone can move back. Thus, the transition onesafe

crossed denotes that only one

viking crossed the bridge from the unsafe side and the transition twosafe
crossed denotes

that two vikings crossed the bridge from the unsafe side. Similar connections exist for
the case where the vikings are walking back.

Now that we have an idea about the overall picture of the TAPN model of this
case study, let us look at what is inside the gray boxes in Figure A.3. We will start
with the part of the net which models a viking, since this is pretty straightforward.
This part is illustrated in Figure A.4.

For this particular type of viking, it takes 5 time units to cross the bridge. We
could make a similar structure for a viking type which takes 10 time units to cross by
copying the structure and replacing each 5 with a 10 in the intervals and invariants.
If we want, say, two vikings both of which takes 5 time units then we can simply put
two tokens in the place unsafevi in the initial marking. If we want all vikings to use a
different amount of time for crossing the bridge then we have to create such a structure
for each viking. Initially, there is a token in the place unsafevi indicating the viking is
on the unsafe side. The viking can pick up the torch and start walking by firing the
takeunsafe

vi transition provided that the torch is ready (the dashed arrow going into the

transition is connected to the torchunsafe
ready place, see Figure A.3). Now we have to wait

for 5 time units before we can fire the releasesafe
vi transition indicating the viking has

reached the safe side (the dashed arc going out of the transition is connected to the

place torchsafe
handin). The construction works similarly when the viking is moving back

to the unsafe side.

Now we will look at the part of the net simulating the torch on the unsafe side.
The construction for the torch is illustrated in Figure A.5.

The basic idea of this construction is that we will initially have a token in each of
the places firstunsafe

viking and secondunsafe
viking (this is only on the unsafe side, these are empty
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initially on the safe side). We can fire the transition firstunsafe
ready to put a token in the

place torchunsafe
ready and thus make the torch ready for any viking wanting to cross the

bridge. Once the first viking picks up the torch, we have the opportunity to fire the
secondunsafe

ready transition to put another token in torchunsafe
ready , signifying that two vikings

can now cross the bridge (note that no time can pass before this transition is fired).
However, the first viking can also cross the bridge alone. When the bridge has been
crossed and the torch released, a token will be put in the torchunsafe

handin place (here we
assume that vikings are crossing from the safe side). If two vikings crossed the bridge,

then when the first one releases the torch, we can fire the transition twounsafe
crossed to put

a token in the place firstunsafe
viking . Note that we cannot make the torch ready before

the second viking has crossed the bridge also. When this happens, we can fire the
secondunsafe

handin transition, after which we can make the torch ready again for one or two

vikings. If only one viking crossed the bridge, we can fire the transition oneunsafe
crossed after

which the torch can be made ready again. The part of the net simulating the torch on
the safe side is identical, except for the fact that initially there are no tokens in the
places firstsafe

viking and second safe
viking .

A.3 TAPN with Integers Model

The viking example, modeled as a TAPN with integers, is illustrated in Figure A.6.
The token in the place torch represents the torch and the value of the torch token
represents the state of the torch as follows.

1. torch is on the unsafe side and no vikings are moving,

2. one viking is moving from the unsafe to the safe side,

3. two vikings are moving from the unsafe side to the safe side,

4. one viking has reached the safe side,

5. the torch is on the safe side and no vikings are moving,

6. one viking is moving from the safe side to the unsafe side,

7. two vikings are moving from the safe side to the unsafe side, and

8. one viking has reached the unsafe side.

Each viking will be represented by a token, which is initially in the unsafe place, where
the value of a the token represents the time it takes for this viking to cross the bridge.
Thus, to scale the number of vikings we just add tokens to or remove tokens from the
unsafe place.

When a viking wants to start moving across the bridge (from unsafe to safe side),

he picks up the torch by firing the firstunsafe
viking transition. It is now possible for a second
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Meaning of torch token values:

1: torch is on the unsafe side and no vikings are moving.
2: one viking is moving from the unsafe side to the safe side.
3: two vikings are moving from the unsafe side to the safe side.
4: one viking has reached the safe side.
5: the torch is on the safe side and no vikings are moving.
6: one viking is moving from the safe side to the unsafe side.
7: two vikings are moving from the safe side to the unsafe side.
8: one viking has reached the unsafe side.

Figure A.6: A TAPN with integers model of the vikings example.
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viking to tag along by firing the secondunsafe
viking transition or the viking can move across

the bridge alone by doing time delays. Once the time it takes a viking to cross the
bridge has passed, he can reach the safe side by firing either the firstunsafe

crossed transition (if

he is the first of two vikings currently crossing the bridge) or the finalunsafe
crossed transition

(if he either crossed the bridge alone or is the second of two vikings currently crossing
the bridge to arrive). The net works similarly for vikings crossing from the safe to the
unsafe side.
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Soccer Field Grass Cutting Case
Study

The soccer field grass cutting case study is illustrated in Figure B.1. The model
depicts three workers who are tasked with keeping a number of soccer fields in shape.
The number of tokens in the in shape place denotes the number of soccer fields. The
workers must cut the grass of the soccer fields within a certain period since they
were last cut, in order to keep them in shape. Otherwise, they will degrade into an
unacceptable state. For the purpose of this model, we will assume that degraded soccer
fields cannot be restored. The workers can divide the work between them or help each
other out. Thus, one, two or three workers can cut a soccer field at once. However, the
more workers helping out, the quicker they can cut the field. It takes a single worker
4 time units to cut a soccer field, whereas two workers can cut a soccer field in 3 time
units and all three of them can cut it in 2 time units. The cut transitions denote the
various possibilites for cutting a soccer field. For instance, the cutw1 transition denote
that worker 1 cuts a soccer field alone, while cutw2w1 denotes that worker 1 and 2 cuts
a soccer field together. Naturally, the cutall transition denotes that all three workers
cut a soccer field.
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Figure B.1: The soccer field grass cutting model.

118



Appendix C

Summary

Time-dependent formalisms have been extensively studied due to increasing demands
on the reliability and safety of embedded software systems. Timed automata [6] and
various time-extensions of Petri nets (e.g.[13, 34]) are among the most studied time-
dependent formalisms. Over the years, significant effort has been devoted to estab-
lishing formal relationships between different formalisms. In this respect, many trans-
lations between different formalisms (see e.g. [15, 17, 18, 20, 29]) have been proposed.
Usually, the goal is to establish some equivalence (e.g. bisimulation) between the orig-
inal system and the translated system, or show that the translation preserves some
logic.

In this thesis, we study formal verification, specifically model checking, of Timed-
Arc Petri Nets (TAPN), a time extension of Petri nets in which tokens are assigned a
real number indicating its age and arcs from place to transitions are guarded by time
intervals restricting which tokens can be used to fire a transition. We extend the basic
TAPN model with transport arcs, inhibitor arcs and invariants. Further, we prove
that invariants alone make the coverability and boundedness problems undecidable.

In respect to model checking, formal queries are expressed in the Timed Computa-
tion Tree Logic (TCTL), which is a popular temporal branching-time logic. Much of
the work on TCTL, however, do not handle maximal runs in all details (e.g. [18, 36]).
We treat the semantics of TCTL in its full generality, taking into account finite maxi-
mal runs that appear in the presence of deadlocks and invariants (strict and non-strict).

We identify a class of translations that preserve TCTL and propose a framework
for proving correctness of translations with respect to TCTL formulae. We achieve
this via a one-by-many correspondence. Intuitively, when systems A and B are related
by a one-by-many correspondence we can simulate one step in A by a number of steps
in B. If we can establish such a relation between the states of A and B, then that
will allow us to conclude that the translation from A to B preserves the full TCTL
(or only the safety fragment depending on the requirements fulfilled by the relation).
Our framework can be seen as a generalization of the ideas in [18]. While their idea
solely concerns a translation from time Petri nets to networks of timed automata, our
framework works at the level of timed transition systems, making it independent of the
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modeling formalisms used. Since our framework handles TCTL in its full generality,
as used in state-of-the-art verification tools such as UPPAAL (www.uppaal.com), it
is directly applicable to tool developers. We give examples of translations from the
literature that fit our framework and argue that there are also translations which do
not fit our framework.

To illustrate the applicability of our framework, we develop two novel translations
from TAPN to networks of timed automata. Using our framework, we prove that both
of them preserves the full TCTL. Our translations are motivated by the recent work
on the verification tool TAPAAL [17], which could only handle liveness properties on
a subclass of TAPN models where all transitions have two incoming and two outgoing
arcs. To the best of our knowledge, our translations are the first efficient translation
to preserve the full TCTL for arbitrary bounded TAPN models. Experiments show
that the translations are rather efficient in practice.

We also add integer variables to the extended TAPN model. This allows tokens
to carry an integer value which can be used in time intervals on the arcs and time
invariants on places. Moreover, we introduce value guards and value invariants in the
model. We sketch how to extend our translations to handle integers and conclude that
the correctness of the translations still apply.

We have implemented our translations as well as support for inhibitor arcs and
integers in a prototype of the verification tool TAPAAL (www.tapaal.net), as well as
a number of improvements.
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