
Master thesis in Mathematics-Economics: Schedule

Robustness of UAV Operations in Indoor

Environments

Mads Kammer Christensen

Master Thesis in Mathematics-Economics

Department of Mathematical Sciences

Aalborg University, Aalborg, Denmark

Supervised by Peter Nielsen

February 5, 2018

Abstract

Producing robust plans for any industrial task has been of import since

the dawn of modern industry, where people are dependent on each other for

making ends meet. When employing UAVs for various indoor tasks, the need

for robustness is not any less. In this paper the effect of introducing time

buffers to UAV task plans to increase stability is examined under conditions of

varying stochastic influences. A problem configuration with varying stochastic

influences is presented, and an algorithm for simulating the resulting delays

is presented. The presented algorithm and related planning heuristic allows

for the implementation of time buffers, and the effect of these on expected

production delay under pre-set stochastic conditions is examined.

1 Introduction

The use of Unmanned Aerial Vehicles (UAVs) is becoming increasingly popular in

many modern industrial endeavours, both outdoors and inside production plants.

Uses in fields relating to search and rescue missions, crop monitoring at large agri-

cultural expanses, and widespread military applications are some of the outdoor

uses for UAV technology (Kristiansen et al., 2012). Indoor applications include, but

are not limited to, production supervision, quality inspection, and transport of light

production components or tools.

While reasonably accurate positioning for outdoor UAV operations is available through

GPS, a number of issues arise when considering using UAVs in indoor environments.

Among the sources of uncertainty in indoor environments are: speed of the positi-

oning signal, unforeseen path obstructions, UAV propulsion performance, and dis-

turbances in air currents. In situations with a large number of UAVs operating

simultaneously in a confined space, the issue of planning for stochastic flight times

is prudent to consider.

Various articles concerning dealing with these issues using an engineering are avai-

lable, e.g., (Bachrach et al., 2009; Oh et al., 2011). In the absence of sufficient

mitigation by technology, publications considering mitigating the uncertainties re-

lating to indoor aerial conveyance by modifying an underlying task plan also exist

(Dadkhah and Mettler, 2011). Scheduling UAVs when considering stochastic flight

times, gives rise to the question of when to expect delay, and how large of a time

buffer is necessary to reduce nervousness to an acceptable level. Inclusion of time

buffers is shown to have at mitigating effect on the nervousness of schedules (Elshaer

and Yamamoto, 2012). The equilibrium between nervousness of the schedule and

improvement of makespan, i.e., the time difference between commencing the first

task in a sequence and finishing the last, is one of the major issues to consider when

managing many different kinds of production schedules, and becomes ever more rele-

vant in the absence of the ad hoc decision-making capabilities associated with direct

human interaction.

The placement of aforementioned equilibrium is largely an arbitrary matter, depen-

dent on external considerations. The more slack allowed for in a UAV production

schedule, the more stable it becomes, thus, allowing for more precise planning of

adjoining activities, potentially including the hand-off of the finished product.

1

A mathematical model incorporating the stochastic nature of the conveyance ti-

mes found in UAV operations, is desirable in order to, with even a slight degree

of certainty, control the equilibrium between stability and make-span. This paper

concerns the development of such a novel mathematical model, which accounts for

the cascade effect of delays throughout a drone network, thereby providing a useful

addition to (Khosiawan and Nielsen, 2016).

To estimate the total delay throughout a set of interdependent tasks performed by

UAVs it is relevant to consider how these delays stack, i.e., how arriving late at one

task propagates through the entire task schedule. To this end we are interested in

answering the following problem statement:

How does separate UAV transport delays aggregate throughout a set of tasks, and

what is the effect of introducing a mitigating time buffer?

2 Problem definition

We consider a manufacturing environment with U UAVs available to perform T

tasks at N different location nodes. Our interest is in determining the influence of

stochastic flight times between locations, and how the resulting nervousness in the

schedule realisation can be allayed by introducing a fixed time buffer B between

tasks. In this paper we consider a manufacturing floor layout which allows for

UAV movement between nodes, while considering any delays from intersecting flight

paths covered by the stochastic delays. The task times differ for each task, but

are considered to be identical among the UAVs in question. Multiple tasks may

be located at the same location node, and that node is blocked while a task is in

progress. Tasks are subject to precedence constraints defining which tasks must

be completed before others as illustrated in Figure 1, allowing for various types of

assignments to be considered.

Figure 1: An illustration of the concept of precedence constraints.

The location nodes have a predetermined flight time between them, with stochastic

2

delays being applied to these. In order to allow for a better adaptation of our

model to the variations in surroundings inside a production hall, we introduce the

concept of stochasticity zones to describe different areas of a production hall, with

differing stochastic influences. The stochastic delays of the flight between nodes

are dependent on which stochasticity zones the UAV is travelling through, Figure

2 provides an example of how different transport delay types D∗ are applicable

between different nodes N∗, dependent on between which stochasticity zones Z∗

the UAV is moving.

Figure 2: The placement of the task nodes for the small numerical example, including

the three delay zones and the corresponding types of delay for flight between nodes.

UAVs are considered identical in terms of flight characteristics and stochastic influ-

ences. Battery life considerations are outside the scope of this paper, as initial route

planning is assumed to include recharging requirements.

Figure 3: An illustration demonstrating the use of time buffers B placed prior to

commencing tasks T1, . . . , T5.

The assumption is that, time buffers can be added to the start time of each task in

order to mitigate the negative impact of the unforeseen delays which may otherwise

cascade through the task plan. In Figure 3 the concept of time buffers is illustrated

by the light blue blocks labelled B being inserted to absorb any late arrival to the

location of the following task. The use of time buffers is a well known method to

absorb variance in process, or travel times and is widely used in a large variety

3

of planning and scheduling approaches (Jacobs et al., 2011).In this paper we seek a

description of the relation between time buffer size and unforeseen schedule timespan

increases, in order to make a qualified estimation of the optimal time buffer size.

2.1 Assumptions

To model the problem we rely on a number of assumptions aimed at mimicking

actual conditions, while still leaving the problem manageable. Assumptions A.1,

A.2, A.3, A.4, and A.5 are similar to those presented in (Khosiawan and Nielsen,

2016), and (Park et al., 2015), while Assumptions A.6, A.7, A.8, and A.9 are

implemented to accommodate the circumstances relating specifically to the problem

presented in this paper.

A.1 The tasks cannot be subdivided, and have precedence constraints as listed in

Table 1.

A.2 Task completion time is deterministic.

A.3 Multiple tasks can be performed at each location node.

A.4 A task must be completed before the next task at the same node can commence

execution.

A.5 Flight times between nodes are deterministic and identical for all UAVs, sto-

chastic behaviour is implemented as delays afterwards.

A.6 Any stochastic delay is fully described by the pdfs associated with the sto-

chastic zones demonstrated in Figure 2.

A.7 UAVs cannot overtake each other, the task plan fully describes the task se-

quence.

A.8 UAVs are never ahead of their schedule, only delays occur.

A.9 The time buffer is identical for all nodes.

A.1 is a basic assumption allowing for the task planning, as the management of par-

tially completed tasks is beyond the scope of this paper. A.2 is based on a set up

of identical UAVs performing well defined tasks with high accuracy. A.3 provides a

means of considering the physical location of a UAV, in order to account for delays

4

introduced by multiple UAVs working in the same environment simultaneously. A.4

prevents UAVs from crashing while performing their tasks. A.6 renders the problem

manageable, while conditioning the validity of the estimated delay on the estimation

of delay zones. A.7 leaves the task plan as a valid process description, and maintains

a semblance of order in our world. A.8 relies on the conditions that flight times bet-

ween nodes are based on UAV top speed, or that the UAV automatically slows down

to avoid arriving early. A.9 is implemented to facilitate the presentation of system

delays as a function of time buffer size. A.5 is the prerequisite for constructing a

deterministic task schedule, while still allowing for subsequent stochastic influences.

The pdf s associated with the different route types seen in Figure 2 are listed in

Table 4, and will be used for all examples throughout this paper. If a configuration

with more or different stochasticity zones is prudent for other problems, addition

and exchange of pdf s to the delay simulation is a trivial matter provided that they

are in accordance with the above assumptions.

3 Methodology

The UAVs are scheduled in a manner similar to the scheduling procedure of (Chris-

tensen et al., 2017), with feasibility restrictions modified to consider transport times,

node occupancy, and time buffers, while only considering single task execution. This

scheduling procedure is chosen for its ease of implementation and modification, al-

ternate scheduling procedures are readily found in the literature, e.g., (Khosiawan

and Nielsen, 2016), but beyond the scope of this paper, as any planning method

consistent with previous assumptions is applicable to the delaying algorithm pre-

sented. With a task plan set, we focus on determining the delays caused by the

stochastic influence of the flight times, and what effects the introduction of a time

buffer has. The route planning is performed using integer steps to limit computa-

tional cost, while the delays are generated by continuous distributions to allow for

greater realism. As the time buffer is incorporated in the route planning, this too is

in integer steps.

5

3.1 Stochastic delays

Stochasticity of the process is handled by assigning different probability distributions

to different flight paths, depending on which stochasticity zones the UAVs move in.

An example of flight paths with different probability distributions is given in Figure

2, and the delays resulting from considering these stochasticity zones are elaborated

on in Section 4.

6

3.2 Mathematical Formulation

Indices

t Index of assignable tasks t = 1, 2, . . . , T .

u Index of UAVs u = 1, 2, . . . , U .

nt Index of task nodes n = 1, 2, . . . , N , each associated

with a task t.

utu Tasks t assigned to a specific UAV ut =

1, 2, . . . , UTu∀u.

tnt Node at which task t is performed tnt ∈ N, t =

1, 2, . . . , T .

tut UAV u to which task t is assigned tut ∈ U, t =

1, 2, . . . , T .

ntn Task performed at node n.

Parameters

Prc T × T binary matrix of precedence relations between

tasks.

trs,t Transport time between location nodes for task s and

t.

ttt Time needed to carry out task t.

stt Start time of task t.

ftt Finish time of task t.

delutu−1,utu Stochastic delay between two consecutive tasks assig-

ned to UAV u.

B Time buffer.

Decision variables

xt,u 1 if task t is assigned to UAV u.

udu,t Delay of UAV u at time t.

ndn,t Delay of node n at time t.

Equations for the planning algorithm shown in Algorithm 2:

Objective:

minC =
T∑
t=1

U∑
u=1

xt,u · (trs,t + ttt + B) (1)

7

Subject to:

U∑
u=1

xs,u −
U∑

u=1

xt,u ≤ 0 ∀s ∈ Prc(t), (2)

U∑
u=1

xt,u = 1, ∀t ∈ T, (3)

xt,u ∈ {0, 1} (4)

(1) concerns the minimization of cycle time, i.e., the time required for each task in

T to be executed once, by considering transport time between tasks, task execution

time, and a fixed time buffer. (2) describes the precedence constraints for each task.

(3) ensures that each task is only assigned once. (4) defies the entry types in the

assignment matrix.

Equations for the delay algorithm shown in Algorithm 3:

Objective:

Total delay = max
u∈U

(udu) , (5)

Subject to:

udu =
UTu∑
utu=1

(
max

(
ftutu−1 + trutu−1,utu + delutu−1,utu − stutu −B, ndnnt−1

))
, (6)

ndtnt = max
(
ndnnt−1 , udu

)
, (7)

Here (5) equates the total delay with the delay of the most delayed UAV. (6) concerns

the delay of each UAV, with the delay of each task in the UAV task sequence being

weighed against its corresponding node delay to determine which is the defining

element. (7) manages the delay of the nodes by checking if the node is already too

delayed to be affected by the delayed UAV. The various indices in Table 3.2 are

intermingled in order to track which criteria which item is selected from.

3.3 The algorithm

The total delay is coded according to Algorithm 1, with Algorithm 2 supplying the

task plan to be delayed, and Algorithm 3 outputting the relevant stochastic delay,

as seen in Figure 4.

8

Figure 4: The overall procedure of simulating the total delay of a set of UAV tasks.

The algorithmic procedure outlined in Figure 4, functions by taking as input; task

times and at which location they are each performed, transport times between the

location nodes, the delay types associated with the transport paths, the precedence

constraints for scheduling the tasks, the size of the time buffer, and the number

of UAVs used for performing the tasks. Initially a task plan is generated by the

TaskPlanner function, this task plan is then passed to the TotalDelayer function,

which handles the accumulation of individual delays of flight between nodes. The

individual delays are simulated by the Delayer function which is called for each task,

and returns a delay based on which route it is called for, these routes are shown in

Figure 2. The output of the TotalDelayer function is the total planned time, and

the simulated accumulated delay when considering propagation through the tasks.

The algorithms are shown and described in the proceeding part.

9

Algorithm 1 UAV delay simulator

function TotalDelayer(TransportTimes, TaskTimes, TaskLocations, Delay-

Types, PrecedenceConstraints, Buffer, UAVs)

Import route plan from RoutePlanner function

Construct sequence of tasks for each UAV from route plan

for First UAV task index,. . ., last UAV task index do

for First UAV,. . ., last UAV do

Update which UAV task is ”current”

Update which UAV task is ”previous”

Import delay of the current path from Delayer function

if UAV is more delayed than task node delay then

Update UAV delay with time exceeding planned start time

if UAV delay is less than or equal to Buffer then

Set UAV delay to 0

end if

if UAV delay exceeds Buffer then

Subtract Buffer from UAV delay

end if

Set task node delay to UAV delay

end if

if Task node delay exceeds UAV delay then

if Task node delay is less than or equal to Buffer then

Set task node delay to 0

end if

if Task node delay exceeds Buffer then

Subtract Buffer from task node delay

end if

Set UAV delay to task node delay

end if

end for

end for

return Planned total time and Total delay

end function

10

Algorithm 1 TotalDelayer is the main function supplying the outputs for Section 4.1,

taking as input; transport times, task times, task locations, delay types, precedence

constraints, time buffer size, and number of UAVs. The algorithm makes use of

RoutePlanner to construct a route plan for the delays to apply to, a fully external

route plan of the correct format could be imported here instead. Afterwards the task

plan is divided into lists of tasks for each UAV, in order to track UAV movement.

The algorithm then cycles through all tasks, for all UAVs, in order to determine

how the delays stack. For each UAV for each task a stochastic delay, dependent

on which route the UAV traverses, is returned by Delayer and added to any pre

existing UAV delays. If the UAV is then more delayed than the node, the delay of

the node is set to be that of the UAV, and the time buffer is subtracted from the

delay of both, while still requiring all delays to be non negative to avoid violating

Assimption A.8. If the node is more delayed than the UAV, the UAV delay is set

to be that of the node, and the time buffer is subtracted, as the UAV delay is now

dominated by the pre existing queue at the node. After the delays of all tasks of

all UAVs have been addressed, and the UAV- and node delays have been updated

accordingly, the total delay is chosen to be that of the most delayed UAV, as the set

of tasks is not finished till the last UAV is done. This, along with the planned finish

time, becomes the output of the function, in order to allow for later representation

of total completion time.

11

Algorithm 2 Route planning heuristic

function RoutePlanner(Transport times, Task times, Task locations, Buffer)

while All tasks are not assigned do

Increment time

for First task,. . ., last task do

for First UAV,. . ., last UAV do

if Precedence criteria met then

if Both task node and UAV can finish task within time then

Update task plan with UAV and time of completion

Update UAV occupancy

Update node occupancy

Update UAV task sequence

Update task assignment counter

end if

end if

end for

end for

end while

return Task plan

end function

Algorithm 2 RoutePlanner provides the deterministic route plan as input to Total-

Delayer, by gradually incrementing a time counter, and assigning an unassigned task

at an unoccupied node to an unoccupied UAV, provided the task, including trans-

portation, execution, and buffer time, can be completed within the time counter.

The task plan and UAV task sequences are returned from the function.

12

Algorithm 3 Stochastic delay generator

function Delayer(Task plan, Task locations, UAV task sequences, Delay types,

Current task, Current UAV)

if Current task is assigned to Current UAV then

if Current task is first task for the UAV then return Delay for the path

from UAV origin to Current task node

end if

if Current task is not first task for the UAV then return Delay for the

path from previous to current task for the UAV

end if

end if

return 0

end function

Algorithm 3 Delayer is the source of the stochastic delays for the system. By

reading the entry of the delay type matrix with the [previous, current] tasks as

coordinates, the delay distribution for the current path is chosen, and from this a

delay is returned. The delay distributions used in this paper are listed in

The algorithms 1, 2, and 3 are implemented in C++, and the related .cpp files are

attached.

4 Numerical examples

To illustrate the validity and usefulness of Algorithm 1, we first present a small

example constructed using performance data as presented in (Park et al., 2015), and

reiterated in Tables 1, and 2. We additionally make use of a matrix representation

of the different delay types shown in Figure 2, which are also displayed in Table 3.

The delay type distributions from which the delays are attained are listed in Table

4. The lognormal distribution type is chosen for the non-negativity property, and for

not having the bulk of mass at zero, which would make the effects of delay stacking

hard to discern.

13

Task Duration Node Precedence

1 2 6 -

2 2 3 -

3 6 4 -

4 5 5 1

5 2 6 2

6 2 4 2

7 4 1 4

8 3 2 4,5

9 3 5 7

10 3 3 8

Table 1: Data for the tasks in the small numerical example.

Node 1 2 3 4 5 6

1 0 4 4 5 6 6

2 4 0 4 5 6 6

3 4 4 0 4 5 5

4 5 5 4 0 4 4

5 6 6 5 4 0 4

6 6 6 5 4 4 0

Table 2: Flight time between nodes in the small numerical example.

Node 1 2 3 4 5 6

1 0 1 4 4 6 6

2 1 0 4 4 6 6

3 4 4 0 2 5 5

4 4 4 2 0 5 5

5 6 6 4 4 0 3

6 6 6 5 5 3 0

Table 3: Delay types between positions in the small numerical example.

14

Path Distribution

0 0

1 Lognormal(0, 0.1)

2 Lognormal(0, 0.3)

3 Lognormal(0, 0.2)

4 Lognormal(0, 0.4)

5 Lognormal(0, 0.5)

6 Lognormal(0, 0.6)

Table 4: Probability distributions with varying variance, for delays throughout this

paper.

The parameters used for the examples containing more than ten tasks have been

generated automatically by using the statistical programming language R, the code

for these generations is found in Appendix A.

4.1 Results

The numerical results of applying the algorithms presented in Section 3.3 to a system

with the above parameters, are attained by executing a C++application through

Rstudio. The effects of buffer size on planned completion time, expected delay, and

total production time, are presented in Figure 5.

15

Figure 5: Ten tasks at six nodes performed by three UAVs.

The buffer size is clearly seen to have an obvious, but gradually diminishing, effect

on the average delay of the system. The benefits of this delay reduction is eventually

offset by the increase in planned cycle time, which leads to the establishment of an

assumed optimal time buffer size of three time units. With a time buffer large enough

to absorb any transport delays, the total and planned times become identical. To

demonstrate the broader applicability of the algorithms, a broader set of different

production parameters are randomly generated in Rstudio, and the C++program is

applied. By varying the number of tasks, nodes, and UAVs, the general tendencies

of increasing the time buffer, regardless of problem size are demonstrated. The

resulting times are seen in figures 6, 7, 8, and 9.

16

Figure 6: 20 tasks at six nodes performed by four UAVs.

Figure 7: 30 tasks at seven nodes performed by four UAVs.

17

Figure 8: Forty tasks at eight nodes performed by five UAVs.

Figure 9: 50 tasks at eight nodes performed by six UAVs.

These figures all display the same tendencies as seen in Figure 5, with some slight

irregularities at certain buffer sizes. Irregularities such as these are expected from

the stochastic nature of the delays. Furthermore, the convergence of the delay to

zero as the time buffer increases, is clearly evident in all figures, but the nature of

the pdf s, as listed in Table 4, excludes complete certainty of no delays throughout

the system, regardless of buffer size.

18

5 Conclusion

The algorithms presented in this paper provide a stable approach to assess the

effects of implementing a time buffer in a production environment modelled with

different stochasticity zones. The possibility of easily changing the type, number,

and segmentation of the stochasticity zones considered, makes the algorithms in

Section 3.3 applicable to a wide range of problems related to stochastic behaviour

of conveyance in production environments. Assigning different types of stochastic

influences to different sections of an area of operations for a UAV, and tracking how

these stochastic influences affect each other, makes for a versatile way to mirror

the conditions of UAV application in an indoor production environment, and thus

ought to be of use to production planners working in such. An advantage of our delay

simulating algorithm is the compatibility with different route planning approaches,

which allows for almost seamless integration into pre-existing planning systems.

Application of the algorithms in this paper adds an additional step to any planning

procedure, but may in many cases result in greater planning stability.

References

Bachrach, A., R. He, and N. Roy (2009). Autonomous flight in unknown indoor

environments. International Journal of Micro Air Vehicles 1, 217–228.

Christensen, M. K., M. N. Janardhanan, and P. Nielsen (2017). Heuristics for

solving a multi-model robotic assembly line balancing problem. Production &

Manufacturing Research 5, 410–424.

Dadkhah, N. and B. Mettler (2011). Survey of motion planning literature in the

presence of uncertainty: Considerations for uav guidance. Journal of Intelligent

& Robotic Systems 65, 233–246.

Elshaer, R. and H. Yamamoto (2012). New proactive time buffer heuristics for

robust project scheduling. Journal of Advanced Mechanical Design, Systems,

and Manufacturing 6, 559–571.

Jacobs, F. R., W. L. Berry, D. C. Whybark, and T. E. Vollmann (2011).

Manufacturing Planning and Control for Supply Chain Management.

McGraw-Hill Education.

19

Khosiawan, Y. and I. Nielsen (2016). A system of uav application in indoor

environment. Production & Manufacturing Research 4, 2–22.

Kristiansen, R., E. Oland, and D. Narayanachar (2012). Operational concepts in

uav formation monitoring of industrial emissions. In 3rd IEEE International

Conference on Cognitive Infocommunications.

Oh, H., D.-Y. Won, S.-S. Huh, D. H. Shim, M.-J. Tahk, and A. Tsourdos (2011).

Indoor uav control using multi-camera visual feedback. Journal of Intelligent &

Robotic Systems 61, 57–84.

Park, Y., Y. Khosiawan, I. Moon, M. N. Janardhanan, and I. Nielsen (2015).

Scheduling system for multiple unmanned aerial vehicles in indoor environments

using the csp approach.

20

A Example parameter generating R-code

The R-code used to generate parameters fot the examples in Section 4.

Delays <− matrix (rep (0 , BufferRange∗ T r i a l s) , nrow = BufferRange , ncol =

T r i a l s)

CycleTimes <− vector ()

TotalTime <− vector ()

MeanDelay <− vector ()

Precedence20 <− rbinom(Tasks , c (0 , 1) ,c (0 . 9 , 0 . 5))

Matrix20 <− matrix (Precedence20 , nrow = Tasks∗Tasks , ncol = Tasks)

for (i in 1 : Tasks) {

Matrix20 [i , 1] <− 0

Matrix20 [i , i] <− 0

}

Precedence <− as . vector (Matrix20)

TaskTime <− sample (x = 2 : 8 , s i z e = Tasks , replace = T)

TaskLocation <− sample (x = 0 : (Nodes−1) , s i z e = Tasks , replace = T)

TransportVec6 <− sample (x = 5 :15 , s i z e = Nodes∗Nodes , replace = T)

Transport6 <− matrix (TransportVec6 , nrow = Nodes , ncol = Nodes)

Transport6 [upper . t r i (Transport6)] = t (Transport6) [upper . t r i (Transport6)

]

diag (Transport6) = 0

TransportTimes = as . vector (Transport6)

DelayVec6 <− sample (x = 1 : 6 , s i z e = Nodes∗Nodes , replace = T)

Delay6 <− matrix (DelayVec6 , nrow = Nodes , ncol = Nodes)

Delay6 [upper . t r i (Delay6)] = t (Delay6) [upper . t r i (Delay6)]

diag (Delay6) = 0

DelayType = as . vector (Delay6)

for (i in 1 : BufferRange)

{

for (j in 1 : T r i a l s)

{

Delays [i , j] <− TotalDelayer (TransportTimes , TaskTime , TaskLocation

, DelayType , Precedence , Nodes , Buf f e r = i −1, Tasks , UAVs) [2]

}

MeanDelay [i] <− sum(Delays [i ,]) /T r i a l s

CycleTimes [i] <− TotalDelayer (TransportTimes , TaskTime , TaskLocation ,

DelayType , Precedence , Nodes , Buf f e r = i , Tasks , UAVs) [1]

TotalTime [i] <− CycleTimes [i] + MeanDelay [i]

}

21

	Contents
	Introduction
	Problem definition
	Assumptions

	Methodology
	Stochastic delays
	Mathematical Formulation
	The algorithm

	Numerical examples
	Results

	Conclusion

	Appendix
	Example parameter generating R-code

