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Abstract

Increasing inflexible electricity from volatile renewable
energy sources (RES) poses new challenges to fast dispat-
chable energy sources to balance the market. Combined heat
and power (CHP) plants are highly efficient and considera-
bly fast dispatchable. This work looks into flexibilizing the
production of electricity using flex-offers. CHP operators
make production bids for the day ahead market which have
a fixed length and production capacity. These bids are static
and this work extents the flexoffer concept by a duration
flexibility to cover CHP plants.
An experimental evaluation has shown that there is an
opportunity to trade with flexi orders.

1. Introduction

Traditionally, the generation of electricity followed the
demand of all parties connected to the grid[29]. This was
possible due to flexible power sources mainly based on
fossil fuels. In the past decades, however, there has been an
increasing investment in volatile renewable energy sources
(RESs) like wind turbines and photovoltaic systems (PV).
As a result, the generation of electricity is becoming more
and more inflexible due to the dependency on uncontrollable
weather situations.
The trend towards more inflexible power generators presents
new challenges for fast dispatchable production to keep
energy demands satisfied. In order to keep the grid stable
and to avoid outages, the production and consumption of
energy needs to be balanced at all times. Imbalances in the
grid could lead to blackouts due to congestion. The potential
effects of flexible electricity consumption and production
on the stability of the power grid have already been widely
investigated. Starting with an explicit modelling of the flex-
ibility of power consumers and producers[2], the creation
of an electricity market framework for flexibility[11] and
analysis of the social constraints of everyday life electricity
usage[30].
Flexible power generators are necessary to supplement the
power production in periods of low supply from inflexible
RESs to make up for shortage in the grid.

Combined heat and power plants (CHPs) are one type
of flexible production units and are a potential solution
to balance the energy production[25]. CHPs are power
plants which usually use an engine (e.g. gas combustion)
to power an alternator for electricity production while
recovering thermal energy from the excess heat. The
energy efficiency of modern CHPs is higher than traditional
power plants which only produce electricity[25] which
makes CHPs popular power generators, e.g. in Denmark
and the United Kingdom[16]. Due to their high energy
efficiency, the European Union is promoting CHPs to
become more independent from external power sources
and to reduce emission of greenhouse gases[3]. Figure 1
shows a schematic structure of a CHP. Here, a gas engine
is powering an alternator to generate electrical energy.
Heat exchangers convert the excess heat from the engine
and the exhaustion gases to hot water, e.g. to be used for
district heating. Apart from an engine to co-generate heat
and electricity, CHPs often also have a boiler (electric or
gas powered) which can be used to generate heat energy
only. The boilers are used when it is not economical to
run the engine, for example because of low electricity prices.

Figure 1. Schematics of a common CHP using a gas turbine. Source:
https://www.mwm.net/mwm-chp-gas-engines-gensets-cogeneration/mwm-
competencies/cogeneration-trigeneration-plants/



Figure 2. Basic flexoffer with time and amount flexibility

Depending on the type of technology used to generate
power, the start-up time of the engine can vary a lot[25],
from a couple of minutes up to over one hour. Thus, the
scheduling of the power plants is vital in order to satisfy
the market needs. High start-up costs can make it infeasible
to run a CHP for only a short period of time.
CHPs generate heat and electricity in a cogeneration pro-
cess, meaning that there is a requirement to fulfill on both
ends, the electricity demand and the heat demand. Many
CHPs also have thermal storage units attached to the plant.
This allows a timely decoupling of electricity and heat
supply, i.e. it is possible to generate electricity and store the
cogenerated heat for later usage. The amount of flexibility
gained by storage and delayed deployment is constrained by
the storage capacity of the unit.

In this work we make an attempt to model the flexibility
of CHPs by using and extending the flex-offer concept
of Boehm, Dannecker, and Doms[2]. A flex-offer in its
most basic form covers time and amount flexibility. Time
flexibility is the possibility to shift the flex-offer within a
predefined time interval and amount flexibility describes
the variable amount that could be consumed or produced by
the flex-offer. In addition, we extend the flex-offer concept
with a duration flexibility The duration flexibility defines
the possibility to keep the flex-offer activated for a longer
or short time period. A common use case for a flex-offer
is modeling the consumption and production of electricity
by so-called prosumers. A prosumer is a party which is
both able to consume and supply electricity. This could be
for example household with an electric vehicle (EV) or a
photovoltaic cell.

Example 1. The owner of a dishwasher wants to run the
dishwasher after 21:00 and wants to have the dishes cleaned
on the following morning at 6:00. The dishwasher takes 2
hours to run and requires 4kWhe. Ergo, the dishwasher can
start running between 21:00 and 4:00.

Figure 2 shows an example of a basic flex-offer. It
could for example represent the charging of an EV. The
battery takes 4 hours to be charged between 80% and 100%
depending on the amount charged at each time slice.

CHPs are heavily restricted when it comes to time and
amount flexibility. Due to the start-up delay, it is more cost

effective to run an engine for several consecutive time slices.
Furthermore, gas fired engines perform more fuel efficient
when running on full load[19, 12]. The engines observed in
this work are all gas fired engines restricted to run on full
load only[26]. For CHPs with only one engine, this means
there is no amount flexibility. For CHPs with more engines,
each engine can be modeled as its own flex-offer and can be
scheduled separately by adhering to the common constraint
of the thermal storage unit.

Example 2. A CHP operator has an engine with a capacity
of 2.5 MWe. Based on the heat consumption forecast the
engine should run between 3 to 5 hours, providing either 7.5,
10 or 12.5 MWhe electrical energy. Based on the storage
capacity and the current charge of the thermal storage the
engine can run between 5:00 an 13:00. Thus the engine starts
producing energy earliest at 5:00 and latest at 8:00, 9:00 or
10:00, respectively, according to the assigned duration.

In periods of high wind, that is high supply from
wind turbines, or periods of low consumption, the prices
for electricity may drop and it can become uneconomical
for a CHP operator to run the engines, as low prices for
electricity can not cover the cost to produce electricity and
heat from the engine. In this case, the CHP operators use
only the boilers in order to provide thermal energy.
To determine whether an engine should run or not, the CHP
operator makes production bids to a balance responsible
party (BRP) for fixed specified intervals one day in advance.
The price for a bid is chosen by the operator in a way
that running the engine would be more profitable than
producing the heat by other means, e.g. boilers or heat
pumps[28]. When the offered prices of the bids are too
high, they will get rejected. Traditionally, bids are made
in so-called block orders. Block orders are specified by an
amount, a start and end time, and a price. In 2016, a new
type of order was introduced to the day-ahead market of
Nord Pool, the flexi order. Flexi orders are similar to block
orders with the difference that it is possible to specify
an flexibility interval by specifying an earliest and latest
start time. An algorithm then determines the starting time
automatically by choosing the time which provides the
best social welfare. Usually these are the times with the
highest prices[27]. Introducing explicit time flexibility to
the runtime of a CHP could lead to an increase in profits
and help balance the electrical grid.

This work focuses on CHPs with one or more gas
combustion engines, electric or gas powered boilers and a
thermal storage unit. The contributions of this paper are

1) the modeling CHPs with thermal storage units as
flexoffers,

2) the evaluation of benefits of flexibilizing production
bids from CHP operators,

3) analyzing the the benefits of generating flexi orders
instead of block orders.

The remainder of the thesis is structured as follows.
Section refsec:background provides a brief overview of the



current electricity market. Section 3 covers related work.
Section 4 formally defines models to use describe the ope-
ration of a CHP plant as a flex-offer, and in Section 5
we evaluate the performance of the models and discuss
the findings. Finally, Section 6 concludes the thesis and
discusses future work.

2. Background

In this section, we give a brief introduction of energy
markets, the participating parties, and of the different trading
strategies within different time frames. The focus lies mainly
on renewable energy sources (RES) such as wind and solar
energy. However, this introduction is not intended as a
complete overview of energy markets and only covers the
aspects that are most relevant to this work.

2.1. Liberalization of the European Power Markets

The European Commission argues that for more secure,
reliable and cost-effective supplies of energy throughout
the European Union (EU), it is important that there are
integrated EU energy markets[4]. Having open borders to
transport energy across country borders opens the markets
to competition and increases effectivity of the markets.
Legislation and rules from the EU provide a guarantee for
fair trading on wholesale markets and prevent manipulation
of prices.
The liberalization of the energy markets within the EU
began in 1996 with Directive 96/92/EC1 which has
been replaced in 2003 by Directive 200354EC2[22]. The
directive regulates market opening, third party access,
and the system operators. This liberalization ended the
earlier manifested local monopolies of energy providers,
by reducing obstacles for competitors to enter the market.
Opening markets increased the competitiveness and the
size of the markets themselves. It is a part of successful
liberalization of the markets, that they are well-functioning.
That is, the services provided by the various parties
need to make energy supply as reliable as possible[22].
Furthermore, open markets encourage participating parties
to invest in Research and Development, capital formation,
and more usage awareness of the energy by consumers[5].

2.2. Danish Electricity Markets

The liberalization of the Danish Power market was
established in 1996 and took effect in 1998 [14]. Denmark
is divided into two balancing or bidding areas: (1) DK-West
(also DK1), covering roughly Jutland and Funen, and (2)
DK-East (also DK2), covering mainly Zealand and Lolland.
In 1999 DK1 and later in 2000 DK2 joined the common

1. Directive 96/92/EC aimed at big energy consumers making it possible
to negotiate the purchase and sale of energy.

2. Directive 2003/54/EC opened the markets to non-household (2004)
and later all consumers (2007).

Nordic electricity market Nord Pool.
The commodities traded on the energy markets are MWhs of
Energy at a given time slot. Nord Pool is the joint electricity
market of the Nordic and Baltic countries. Nord Pool allows
trade on two different markets: (1) the day-ahead market
(Elspot) and (2) the intraday market (Elbas). In the Nordic
countries, the electricity is traded on hourly intervals[36].
Additionally, for trades more than one day ahead there
is the forward or futures market (FM). In the FM, the
time frame for trading is usually between one week and
one year, though it can differ under some circumstances [5].

The Day Ahead Market. On the day-ahead or spot mar-
ket (DAH), participants place production and consumption
bids one day before delivery. The DAH closes at 12:00
CET/CEST the day before delivery, meaning that all partici-
pants have to have given their production and consumption
bids before that. All bids are processed by the trading system
which will return the clearing price for each hour of the
following day. Simplified, these prices are chosen so that
there is a balance between consumption and supply of elec-
tricity. Trade bids, which are below the hourly price, are then
getting settled. The physical delivery of the electricity then
begins the following day from 0:00 CET/CEST onwards.
Most of the Energy on Nord Pool is traded on the DAH.
In 2016, the total traded volume by the 380 participants,
such as power plant operators, industrial consumers and
distributors, were 391 TWhe in the Nordic and Baltic
countries[23].

The Intraday Market. The intraday market is the market
for trades on the day of delivery. In Nord Pool, electricity
can be traded up to one hour before physical delivery[24].
Imbalances that occur due to unforeseen incidents, like a po-
wer plant outage or inaccurate wind power forecasts, can be
evened out through trade on this market, so that there is less
need for regulating interference by the transmission system
operator (TSO)[].In 2016 the traded volume in the whole
area of the Nord Pool intraday market were 5 TWhe[23].

2.3. Participants in the market

In the following subsections, there are brief introductions
to some participants of the Electricity Market.

Transmission System Operator. The transmission system
operator (TSO) is a regional/national regulation entity to
oversee the energy market. The TSOs are ultimately respon-
sible to maintain the balance between supply and consump-
tion of energy, and to supervise the availability of a reliable
energy supply[22, 36]. Due to high investment costs, the
TSO holds a natural monopoly and is responsible to provide
equal access to the grid to all other parties involved in the
market[5].
In Europe, the grid operates on an alternating current fre-
quency of 50 Hertz and the TSO is responsible to keep
the frequency stable at all times. The TSO has different



regulatory reserves which are activate to balance the demand
and supply at real time.

In Denmark the position of TSO is held by Energinet
which is owned by the Danish Ministry of Climate and
Energy.

Balance Responsible Party. A balance responsible party
(BRP) is an institution which actively participates in the
energy markets through trading. Production, consumption
and trade activities are assigned to BRPs. BRPs can have
a multitude of customers, e.g. power plants or industrial
customers. A BRP has the financial responsibility for im-
balances in the energy markets which they might cause[9,
8]. This means, if a BRP fails to balance their portfolio,
they are held financially responsible and are penalized by a
regulation price[36].
On the DAH, a BRP has to have a balanced portfolio, whe-
reas on the intraday market, it is possible to take imbalances.
Imbalances are taken in anticipation of deviations in pro-
duction or consumption of energy, e.g. through inaccurate
wind power forecasts. Imbalances, which help the system,
can benefit the BRP and generate profit.
The BRP takes the role of a middle man for

3. Related Work

This section is dedicated to related work in the domains
of smart grids, demand response, flex-offers, and modelling
of CHPs.

3.1. Smart Grid

Research on smart grids has the purpose of optimizing
the usage of power generation and consumption supported
by ICT. The main goal is to optimize the energy usage from
RESs [10].
The MIRABEL [2] and TotalFlex[33] smart grid projects,
are two recent projects which explore flexibility in the
electricity market. In the MIRABEL project flex-offers were
invented as a way to model the inherent flexibility given by
the domain. These projects have the goal to increase the
share of energy from RESs in the total energy production.

3.2. Demand Side Management

Demand Side Management (DSM) refers to the active
management of the consumption of energy. It covers energy
efficiency, demand response, and dynamic demand. The
energy efficiency works with the reduction of the energy
usage, e.g. through improved technology[1]. The energy
efficiency is also picked up with the CHP technology which
convert, in our case, energy from gas into electricity and
thermal energy.
Demand response (DR) describes the action to adapt the
demand of energy according to the market situation, e.g.
energy availability or energy prices. Consumption can be
shifted to hours of less overall consumption or higher energy

availability from RESs. Another possibility is on-site power
generation, which would result in a demand reduction on
the grid. There are two main classifications for DR: (1) in-
centive based programs (IBP) and (2) price based programs
(PBP)[1].
Higher energy efficiency and demand response mechanisms
provide a possibility to increase the share of energy from
RESs which leads to environmental benefits[13].

3.3. Flexibility in Energy Demand and Supply

The volatile nature of RES suggests an increase of
flexible on-demand energy sources to balance the fluctua-
tions[25]. There is a high flexibility in the energy demand
of private households[15] which can be used to establish
DR system. This could help a higher usage of energy from
RES.
Energy storage in general can enable a higher share of
RES. Being able to shift the load by only a few hours can
reduce the curtailment of RES significantly. This suggests
that the advancement of storing technologies is a key point
to increase flexibility in the power system on the supply
side[6].
Furthermore, in order to successfully integrate variable ge-
neration, there is a need for a well interconnected power
system with a low start up and ramp up time[20].

3.4. Flex-offers

In a smart grid scenario like the MIRABEL project,
the number of flex-offers is huge and will increase more
in the future. Thus, this renders the optimal scheduling
infeasible to compute with regular hardware. In addition,
there is a lower limit for the minimal capacity being able
to be traded at each hour. In this subsection, there will be
an overview of state-of-the-art approaches for aggregating,
scheduling, and disaggregating flex-offers. In general, the
goal, when aggregating flex-offers, is to retain as much
flexibility as possible and to schedule the flex-offers to use
energy optimally from RES under constraints. Flex-offers
cover both sides, DR and CR, as they can be modeled to
represent demand and supply of Energy.

Aggregation and Disaggregation. There has been introdu-
ced several techniques to aggregate and disaggregate flex-
offers in order to reduce the amount of variables within the
scheduling problem. When aggregating flex-offers, there are
three conflicting requirements which one has to consider:
Compression, Flexibility and Efficiency. In [32], the authors
introduced the start alignment (SA) aggregation based on
time and amount flexibilities which aggregates flex-offers
with similar flexibility properties. The aggregation is split
in two stages, (grouping) and bin-packing. In the grouping
stage, similar flex-offers are grouped based on similarity
thresholds. In the bin-backing stage, constraints are applied
to the groups, e.g. no more than 10 flex-offers in one bin.
The second stage is important to retain as much flexibility
as possible. If for example hundreds of flex-offers have the



same properties, it would not be possible to schedule them
at different times anymore. More recent approaches include
grid constraints when scheduling and (dis-)aggregating flex-
offers. The constraint specifies a minimum and maximum
capacity for the grid which should not be violated at any
given point of time[35, 34]. Two algorithms were introdu-
ced, an simple greedy (SG) and an exhaustive greedy (EG).
Dependency-based flex-offers expand the regular flex-offer
concept by adding dependency properties between time-
slices[31]. This means that the amount of energy consumed
in later timeslices is dependent on the scheduled amount in
preceding time slices. This could for example be heat pumps
which can have different production patterns giving comfort
levels of the user, or an EV which can charge at an higher
rate in the beginning and a lower rate in the end compared
to a regular charging rate.

Scheduling. The scheduling of flex-offers is independent
from the sort of flex-offers it is presented with, i.e. whether
they are aggregated or not. The raw scheduling problem is
a linear programming problem which tries to minimize the
imbalance between supply and demand of energy. This could
for example mean to schedule the consumption flex-offers
at times of high winds so there is a lot of energy produced
by wind turbines. In [2] and [7], there are two algorithms
introduced for scheduling a randomized greedy search (GS)
and an evolutionary algorithm (EA).

3.5. Modelling of CHP plants

Several case studies have investigated the optimal opera-
tion of a CHP over the course of a year. Evidence has shown
that the attachment of a thermal energy unit increases the
efficiency and profitability of the CHP operation. The three
strategies to run a CHP are (1) heat demand driven, (2)
electricity demand driven or (3) a combination of (1) and
(2). A combined heat and electricity led strategy has shown
to be most cost effective during winter months[17].
The effects of heat storage to the optimal power generation
plans of CHP plants have been investigated. Also, the influ-
ence of operating a CHP with a thermal storage has been
widely investigated. The addition of a storage unit to a CHP
has shown to be increasing the profitability on the German
spot market [21] and the return of investment of a plant in
the United Kingdom has shown to highly increase with a
storage unit attached[12].
Hellmers et al.[18] modeled a combined portfolio a CHP
and a wind turbine park. They have shown that there is a
good possibility for CHP plants to keep the balance in the
portfolio to reduce penalties through imbalance. The focus
here is on a portfolio optimization for plants under the same
operator instead of a portfolio handled by a BRP..

4. Model

In this section, it is explained in detail how the
flex-offer concept can be used to model the production of
CHPs. First, we formally define flex-offers and how we

TABLE 1. DESCRIPTION OF ALL UNITS

Variable Description Unit
C CHP -
e Engine -

ec
the electricity capacity of the en-
gine kW

ewu/cd warm up and cool down time seconds
eru/rd ramp up and ramp down time seconds
esu total start up times ewu + eru seconds
est total stop time erd + ecd seconds

eeff,g
total energy efficiency factor
of the engine -

eeff,p power efficiency factor of engine -
eeff,h heat efficiency factor of engine -
eh the the heat capacity of the engine kWth

euc
the energy produced
during ramp up kWhe

edc
the energy produced
during ramp down kWhe

e
the energy produced
during ramp down kWhe

b Boiler -
bc maximum heat production capacity -
bht heat produced by boiler at time t -
beff,h heat efficiency factor of engine -
s the storage unit attached to CHP -
slt the filling of the storage at time t kWhth

smin/max
the upper and lower boundary
the filling sl has to be within these
boundaries

kWhth

sin
maximum feed in rate
of the storage unit kWth

sout
maximum feed out rate
of the storage unit kWth

hdt heat demand in hour t kWhth
hpt heat produced by CHP in hour t kWhth
F set of all feasible flex offers -
f flex-offer -
pe electrical energy production profile -
ph thermal energy production profile -
tes earliest start time of flex-offer -
tls latest start time of flex-offer -
r(i) timeslice of flex-offer -
amin minimum amount of a slice r(i) -
amax maximum amount of a slice r(i) -
dmin minimum duration of flex-offer -
dmax maximum duration of flex-offer -
pdur(f) duration of flex-offer f -
fmax flex-offer which maximizes the profit -
λst

estimated spot price electricity
at time t

e/MWhe

λh estimated price for thermal energy e/MWhth
µgt gas price at time t e/MWhg

µoe
operation and maintenance cost
of the engine e/MWhe

µob operation and maintenance cost
of the boiler

e/MWhth

are going to extend them. Secondly, we describe how to
model the operation of a CHP. Finally, we define how the
CHP model can be translated into flex-offers. We focus
on CHP plants with one gas engine, a gas boiler and
a thermal storage unit. The gas engines are operated as
running always on full load. This means the CHPs modeled
in this work have a fixed output. In Table 1, there are
descriptions of all variables introduced throughout the paper.



TABLE 2. RUNNING EXAMPLE

Variable Value
ec 2500 kW
eru & erd 240 sec
ewu 360 sec
ecd 150 sec
eeff ,g 0.95
eeff ,p 0.37

4.1. Flexoffer

A basic flex-offer is defined in [32] as follows

Definition 4.1. Basic Flex-offer [Defintion 1 in [32]] A flex-
offer f is a tuple f = ([tes, tls], p) where [tes, tls] is the start
time flexibility interval, and p is the amount profile. The
time is discretized into equal-sized units, e.g., 15 minute
intervals. Thus, we use tes ∈ N to specify the earliest start
time and tls ∈ N to specify the latest start time. The p is
a sequence of slices < r(1), . . . , r(m) >, where a slice r(i)
is a continuous range [amin, amax] defined by a minimum
amount amin and a maximum amount amax. The extent of
r(i) in the time dimension is 1 unit. Hence, a flex-offers
profile duration is computed as pdur(f) = |f.p|, its earliest
end time as tee(f) = f.tes+pdur(f), and its latest end time
as tle(f) = f.tls + pdur(f).

This however is not sufficient to completely model the
flexibility and constraints given by a CHP. We now define
how we extend the basic flex-offer concept by adding anot-
her layer of flexibility, the duration flexibility.

Definition 4.2. Extended Flex-offer [Defintion 1 in [32]]
An extended flex-offer f is a tuple f = ([tes, tls], p

e, pth),
where [tes, tls] is the start time flexibility interval defined
as before, pe is the electricity amount profile, and pth is the
thermal amount profile. All other properties are defined as
seen in Definition 4.1

In the following, f refers to an extended flex-offer unless
mentioned otherwise.

Definition 4.3. Meta Flex-offer A meta flex-offer m is a
sequence of extended flex-offers < f (1), , f (r) >, where a
flex-offer f (i) has a different duration pdur(f1

(i)) within
a discrete interval [durmin, durmax], defined by minimum
flexoffer duration durmin and a maximum duration durmax.

4.2. CHP Model

A CHP C is a tuple C = (e, b, s) where e denotes a
gas combustion engine, b a gas fired boiler and s a thermal
storage unit.

Engine. The engine is defined by a power capacity ec, start
up and stop parameters, and efficiency factors.

Ramping. There is a warm-up time ewu between
sending the start signal to the engine and the engine
becoming productive. In this time, the environment is
setup, for example the ventilation is started[26]. Following

Figure 3. Start up time for a CHP

this, the ramp-up and ramp-down times, eru and erd,
respectively, are the times the engine needs to go from zero
load to full load and vice versa. The cool down time ecd is
the time which the engine needs to fully cool down.
As an example, consider a CHP with one gas engine and
the properties shown in Table 2. Then, the total start up
time esu is defined as the sum of warm-up and ramp-up
time, esu = ewu+eru. This means it takes 360+240 = 600
seconds (10 minutes) for the engine from activation to
100% load. The total stop down time on the other hand is
given by est = erd + ecd, in this case 240 + 150 = 390
seconds.

The ramping times do in fact contribute to the total
heat and electricity amount produced and therefore have to
be taken into account when scheduling. The ramping rate
can be assumed to be linear[26] and the amounts produced
during the ramping up euc and down edc phases are defined
as:

euc =
eru · ec

2
, (1)

edc =
erd · ec

2
. (2)

Figure 3 shows the amount produced during both ram-
ping phases. The amount produced in these phases is getting
averaged on the whole traded time interval. For example, we
look at the example engine from above again. Then during
ramp-up an additional 240sec·2500kW

2 /3600 = 83.33kWh of
electricity is produced. The same amount is produced in this
example during the ramp-down phase.

Efficiency. Furthermore, in order to describe the
dependency between heat and electricity production, each
engine has (1) a total efficiency factor eeff ,g and (2) a
power efficiency factor eeff ,p . The factor eeff ,g describes the
conversion rate from the input commodity, here gas, to both
electrical and thermal energy. The power efficiency factor
describes the partial conversion rate of the input commodity
to electrical power. The partial conversion rate for thermal
power eeff ,h and the heat production eh are then defined as
follows, recall that ec denotes the engines total electricity
capacity:

eeff ,h = eeff ,g − eeff ,p , (3)

eh =
ec · eeff ,h

eeff ,p
. (4)



In our example, this means that the thermal efficiency factor
is eeff ,h is 0.58 and the total thermal power output of the
engine is about 3919kWth (2500kWe · 0.58/0.37).

Boilers. Boilers can be either powered by electricity or gas.
In contrast to the engines, the boilers only produce heat and
are able to run on variable loads. A boiler b is characterized
by a heat production capacity bc and an efficiency factor
beff ,h , defining the rate at which the input commodity, i.e.
gas or electricity, is converted into heat. Similar to the
engines, the boilers have ramping times bru and brd. The
heat produced by the boiler b at time t is defined as bht with
bht ∈ [0, bc

Thermal Storage. Formally, a thermal storage unit s is
specified by a storage capacity sc and a continuous filling
interval [smin, smax] that consists of a lower boundary smin

and an upper boundary smax. The feed in and feed out
capacities are sin and sout. The energy content of the storage
at time t is defined as slt: Equation 5 specifies that the load
has to be within the upper and lower boundary of the storage
unit.

slt ∈
[
smin, smax

]
, (5)

Equation 6 specifies that the produced heat cannot be higher
than the maximum feed in rate and Equation 7 specifies that
the demanded heat cannot be higher than the feed out rate
of the storage unit at any point in time.

0 ≤ hpt−j ≤ sin (6)

0 ≤ hdt−j ≤ sout∀j ∈ {1, 2, ..t− 1} (7)

.
Here, the heat demand hd of CHP C is defined as a

sequence < hd0, ..., hdn−1 > where each hdt defines the
heat demand for the following hour starting at t. Respecti-
vely, the heat production hp of CHP C is also defined as
a sequence < hp0, ..., hpn−1 > where each hpt defines the
heat produced in the hour starting at t.

hpt = bht + eht (8)

with eht being the amount of heat produced by the engine
at time t.

4.3. Flex-offer Generation

Due to the localized nature and well defined production
levels of CHPs, it is possible to optimize the usage of a CHP
locally, solely based on the market price situation given in
the spot price forecasts. The duration range boundaries are
chosen as follows:

durmin{argminx∃λs :

0 ≤
t+x∑
t=i

λsi − (euc + (x− 2) ∗ ec + edc) ∗ µg
t }

(9)

for i ∈ [0, n− x].

durmax = d sum
n
t=0hdt

heatcapacity
e (10)

Equationr̃efeq:dmin defines that the minimum duration
is the duration so that there exists a long enough consecutive
time period so that the costs of running the engine is
matched by the forecasted prices.
Equationr̃efeq:dmax defines that the maximum duration is
exactly so long as there the complete forecasted heat demand
covered.
The filling level slt is defined as in Equation 14.

slt = slt−1 + bht−1 + fht−1 − hdt−1 (11)

slt = slt−2 + bht−2 + fht−2 − hdt−2 + bht−1 + fht−1 − hdt−1

(12)
... (13)

slt = sl1 +

t−1∑
j=2

bhj + fhj − hdj (14)

with sl1 being the rest capacity from the day before.
Equation 14 adheres to the constraints defined in Equati-
ons 5, 6, and 7.

f ti =


0, if t /∈ {i, i+ 1, ..., i+ fl}
euc, if t = i

edc, if t = i+ fl
ec otherwise

(15)

with t ∈ 1, 2, ..., n

The earliest start time fes of the flex-offer is then defined
as the minimum starting time i so that the constraints 5 are
satisfied. As the heat from a CHP is traded on a daily basis,
the gradient of loss is negligible[26].

The cost of operating a CHP is depends on fuel costs,
and costs for operation and maintenance. The costs of
running the engine c(e) and the the boiler c(b), respectively,
are defined as follows:

c(e) =

n−1∑
i=0

µg
t · e

gas
t + (µoe · eht (16)

where egast is the amount of gas used by the engine at time
t

c(b) =

n−1∑
i=0

µg
t ∗ b

gas
t + µob ∗ bht (17)

where bgast is the amount of gas used by the boiler at time
t
The sales of the CHP plant are defined as:

sales =
n−1∑
i=0

eet · λst + hdt · λh (18)



profit = sales− c(a)− c(b) (19)

Scheduling. The scheduling for a single flexoffer per time
interval is defined by iterating through all flex-offers of
the meta-flexoffer checking all possible combinations and
choosing the flexoffer configuration which maximizes the
profit.

maximize19 (20)

When we have multiple flex-offers f (i) there are some
more constraints on the scheduling.

f
(i)
start + pdur(f

(i))) < f
(i+1)
start (21)

where fstart ∈ [fes, fls].
For the planning of five days ahead we used a greedy

algorithm with a steadily growing time frame and dynami-
cally created flexoffers. Below,there are three algorithms in
pseudo code to give a intuition on how flex-offers are gene-
rated and the optimization is done. Algorithmr̃efalg:create
create flex-offers based on the heat forecast and the en-
gine and storage specifications. Algorithm 2 explains how
the most profitable flex-offer configuration is found. Algo-
rithm 3 shows how the greedy algorithm is working.

Algorithm 1: Creat flex-offers
Data: Engine e, Storage s, Heat demand hd
Result: meta-flex

1 durmin = 3 durmax = d|hd|/ece fmax = Null
2 foreach dur in [durmin, durmax] do
3 f.pe = [euc, ec ∗ (dur − 2), edc]

f.ph = f.pe · effh/effp foreach
starttimein[0, len(hd)− dur)] do

4 foreach j in range(0, dur) do
5 S[starttime+ j + 1] =

s[i+ j] + f.ph[i+ j]− hdx[i+ j]
6 if s[i+ 1 + j] > smax then
7 reject
8 end
9 starttimes.add(starttime)

f.tes = min(starttimes)
10 end
11 f.tls = max(starttimes)
12 end
13 meta-flex.add(f)
14 end

5. Evaluation

The Evaluation covers three aspects of using flex-offers
as an optimization method for the trading of CHPs. First,
in Section 5.1 the experimental framework is described.
In Section 5.2, covers an evaluation of the performance
and flexibility of the day ahead trading with the use of

Algorithm 2: Scheduling of flex-offers
Data: flexoffer f
Result: fmax

1 profitmax = −∞ foreach starttime in [t.es, t.ls]
do

2 cost += startupcost if f overlaps with previous
then

3 f.pe[0] = ec f.ph[0] = eh

cost− = startupcost
4 end
5 foreach hour in range(n) do
6 heatb = max(0, hd[hour]− (heate +

(s[hour]− smin))) s[hour + 1] =
s[hour] + (heate + heatb)− hd[hour] if
s[hour + 1] < smin or
s[hour + 1] > smax then

7 reject
8 end
9 cost+ = c(f) + c(b) sales+ = sales(f)

10 end
11 profit = sales-cost if profit > profitmax then
12 profitmax = totalprofit fmax = f
13 end
14 end

Algorithm 3: Five day ahead scheduling
Data: engine, storage, hd, days
Result: schedule

1 start=0 foreach day in days do
2 meta-flex = createflex(engine, storage,

hd[start:end])
3 foreach flexoffer in meta-flex do
4 fmax = scheduler.schedule(flexoffer)

Schedule.add(fmax)
5 end
6 end

flex-offers. Section 5.3 compares the trading performance
of using a single flex-offer or two flex-offers to plan the
production for a day. In Section 5.4, a comparison is made
between a day to day planning strategy and a five day ahead
trading planning strategy.

5.1. Experimental Framework

In the following two subsections, there will be a short
description of the data, the software and the hardware used
to conduct the experiments.

Data. In this work, we consider a total of 33 CHP plants
in the balance areas DK1 (3) and DK2 (30). Each CHP is
equipped with one gas combustion engine, one gas boiler
and one storage unit. The power capacity of the engines
range from 288 kW to 3.14 MW and the total efficiency
from 83.3% to 96.85%. All experiments were conducted on
three closed intervals of each five days in the late year 2016:



3-7 October, 7-11 November, and 23-27 December. These
time intervals have been chosen to analyze the performance
under different market circumstances and different weather
conditions. Table 3 shows the operational data for the ex-
perimental simulations. The values are estimated based on
the conversation with a CHP plant operator[27]. The start
up cost is estimated based on previously placed bids. Due
to the similar size of the observed CHP engines and boilers,
the same values can be used for every plant.

TABLE 3. DATA USED FOR THE EXPERIMENTAL SIMULATIONS

Value
O&M Gas Engine 7 Euro/MWhe
Start Up Cost 50 Euro
O&M Gas Boiler 0.3 Euro/MWhth
Price for Heat Energy 24.5 Euro/MWhth

Price for Gas daily spot price from
Gaspoint Nordic

Price for Electricity hourly spot price from
Elspot

Software & Hardware. All experiments were conducted
on a standard computer with an Intel i5 2.6GHz processor,
8GB RAM and a 420 GB hard disc drive. The software is
implemented in Python 3.6 using the Anaconda 4.4.0 dis-
tribution and is running on Windows 10 Home. In Table 4,
there is a short list of python modules used which are not
part of the standard python distribution.

TABLE 4. THE VERSION OF THE NON-STANDARD PYTHON MODULES
USED IN THE CODE

module version
numpy 1.13.1
pandas 0.20.1
pymongo 3.4.0

When conducting the experiments, we assume the
storage to be the storages minimum in the beginning and
having a maximum rest filling of up to 0.1MWhth above the
storages minimum in order to get a baseline for the profit
generated. When looking only on a single day, there will
not be made any assumptions about following days. The
problem is optimized locally. Then, based on the optimal
solution, block orders are placed at cost for the optimal
solution.

5.2. Day Ahead Trading with single flex-offers

In this section, we analyze the results when optimizing
the heat and electricity production one day ahead, and what
influence there could be if a flexi order was traded instead
of a block order.

There are 495 different instances to plan a day ahead.
In Table 5, there is an overview of how often the optimal
solution includes the usage of the engine or only relying on
the boiler, respectively. Roughly half of the time (241), the
most economical variant to operate the CHP on the DAH
is to use the engine to cogenerate electricity and thermal

energy. The distribution over the three time periods is diffe-
rent for each time period. In October, the distribution is the
most uniform. In November, the engine is activated in more
than 95%. On the contrary, in December, the engine is only
used eight times in total. The low engine usage in December
can be explained through extremely low electricity prices,
reaching even negative prices. This would increase the costs
of running the engine instead of generating revenue.

Table 6 shows the difference between the forecasted
profits and the actual profit from the production plan that
was optimal according to the forecasts. On average, the
actual profit is about 4 Euro lower than what was projected.
There are 133 instances where the actual profit is lower, and
111 instances where the actual profit is higher than what was
prognosed. The mean absolute difference between forecast
and realized profit is 11.96 Euros with a standard deviation
of 9.39 Euros.

Flexi Order. For this analysis, we compare the chosen
configuration of the flex-offer with the possibility of placing
a flexi order instead of a block order. Therefore, we look into
the accepted flex-offer duration and compare how a flexible
start time could affect the trading performance.
In the 244 instances where a flex-offer is accepted, the
optimal start time for the chosen duration is 188 times equal
and 56 times different. Table 7 shows the occurrences of the
offset between the scheduled start time and the start time of
the actual optimal solution based on the actual market prices.
The profit, when scheduling at the start time deemed optimal
by the forecasts, is about 82104 Euros. Adding flexibility
of one hour before and after the scheduled time, where,
possible, holds an additional benefit of 355 Euros. This is an
increase of less than half a percent. Increasing the flexibility
to 2 hours before and after the scheduled time yields an
additional profit of 419.57 Euro. This, however, is only the
case when the flexi orders are placed at the most lucrative
timeslot.
In case the least lucrative time slot is chosen, under a start
time flexibility of one hour before and after the scheduled
time, there is a massive decrease in profit of 34583 Euro.
This is an equivalent of more than 42% decrease in profit.

5.3. Day ahead trading with 2 flex-offers

Here, we compare the trading performance from plan-
ning the following days heat and electricity production with
using one flex-offer for the day compared to using two flex-
offers. Figure 4 shows the average hourly spot prices for
the year 2016. We can clearly see that there are 2 local
maxima, one in the hour after 8:00 oclock and the other
around 17:00 to 19:00. This suggests that there might be
a higher value achievable when splitting flex-offers up into
two separate flexoffers. It also might provide the possibility
to run the engine for more hours without reaching the
storage maximum filling.

Of the 244 accepted flex-offers there are 184 times also
accepted when scheduling with 2 flex-offers. However, in
147 times the projected profit is higher when scheduling



TABLE 5. DISTRIBUTION OF FLEXOFFER ACTIVATION AND THEIR DURATION IN EACH OF THE 3 TIME INTERVALS

Duration 0 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
October 73 0 0 3 15 11 16 8 5 9 9 3 1 2 1 0 1 1 1 3 1 3
November 22 3 0 0 2 8 7 11 11 4 4 9 5 4 1 6 5 5 11 9 7 31
December 156 0 0 1 1 1 0 0 0 0 0 0 0 2 1 0 0 1 1 0 0 0
Total 251 3 0 4 18 20 23 19 16 13 13 12 6 8 3 6 6 7 13 12 8 34

TABLE 6. MY CAPTION

mean min 25% 50% 75% max
forecast 340.58 41.04 143.21 233.18 412.47 2774.01
actual 336.49 35.16 140.56 226.30 410.14 2697.61
delta -4.08 -466.63 -25.78 -2.99 22.51 192.64
percentage -0.69 -54.04 -10.33 -1.57 9.23 68.22

TABLE 7. START TIME OFFSET BETWEEN THE SCHEDULED SOLUTION
AND THE ACTUAL OPTIMAL SOLUTION

Offset -9 -4 -3 -2 -1 0 1 2 3 4 8
Occurrences 1 3 1 1 10 188 25 6 4 4 1

with only one flex offer during a day. This is most likely
due to the start up costs when starting the engine again.
This is despite the fact that in around 65% of the cases the
engine is running more hours when scheduled with two flex
offers.

5.4. Longterm planning

We also compared the trading performances for the
planning of one day ahead and a five days ahead planning
scheme. The actual profit made varies greatly on the accu-
racy of the price forecasts.
A longer time horizon when scheduling yields in total
around 9865 Euros more than scheduling from day to day.
66% of the long term schedules are more profitable than a
day to day scheduling and the profit is on average about 100
Euro higher per 5 day period.

Figure 4. Mean average spot prices per MWh in DK1 in 2016

6. Conclusion and Future Work

In this section we conclude on the findings and give a
brief outlook on possibilities to further use flex-offers in the
electricity market.

6.1. Conclusion

We have extended the basic flex-offer concept. First, we
extended the basic flexoffer by an additional amount profile
in order to be able to adhere to multiple constraints. Then,
we added an additional layer in form of a duration interval.
By adding a duration flexibility, the possibility to perform an
activity for a flexible amount of time, we are able to model
dispatchable, i.e. flexible, power generators as flex-offers.
We have shown that there is a possibility for flexi orders to
increase the profits generated by operating a CHP over the
traditional block offer model. However, we have also shown
that there could be great risks if the flexi order bid is to low.
Furthermore, we have shown that in the majority of the cases
a uninterrupted operation of the engine is more profitable
than a simple method when splitting up the production into
two flex-offers.
We have shown that flex-offers can also be used for a
planning multiple day ahead. However the algorithm used
has a naive greedy approach. A more adaptive algorithm
might yield better results.

6.2. Future Work

In the future it would be interesting to investigate the
possibility to use CHPs explicitly to balance the portfolio of
a BRP in the intraday market. In times of high fluctuations of
wind, a CHP flexoffer could be rescheduled or the duration
could be extended or reduced to make up for changing
external conditions.
This work focused only on a small subset of available CHP
plants. In the future the model shown here could be extended
to cover CHP plants with multiple engines. Also the CHP
plants with electrical boilers could be interesting to look at,
as those can both, consume and produce electricity. Many
CHPs also have other heat sources like solar panels or heat
pumps which would contribute to a much more complex
model.
Future directions for integrating flex-offers into the trading
of the market could be the modeling of cross border ca-
pacities. Cross border capacities can be used to balance a
shortage in one country with the surplus of another country.
In the future it might also be interesting to look into other
power generators to be modeled as flex-offers.



Especially pumped-storage hydro power plants have the
advantage of being able to both produce and consume
energy; consuming when pumping water into the storage and
producing when water is flowing through the turbines. This
property is very interesting to introduce further flexibility
in balancing the power market with an increasing amount
of volatile producers. Under this consideration, modeling
electricity production from wind turbine parks and solar
plants as flex-offers is compelling.
Wind belongs to the class of volatile variable energy sour-
ces. These energy sources are inherently dependent on the
current weather situation and for scheduling purposes, we
rely on the accuracy of forecasts. When modeling wind
production as flex-offers, the earliest start time tes and the
latest start time tls are set to the same time, i.e. there is
no time flexibility. However, for trading purposes we can
model an amount flexibility. The amount flexibility could be
defined as a confidence interval around the forecast. Values
above the forecasted value can be interpreted as risk values
and values below it can be interpreted as safety measures.
Solar power plants also belong to the group of volatile
inflexible energy sources. Here as well the production fo-
recasts rely on weather forecasts. Especially clouds, which
cover PV plants, can reduce the production by a magnitude
in a short timeframe. Clouds can often appear in smaller
numbers and make it hard to predict if a PV plant is
(partially) covered in a given timeslot.
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