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both inter- and intra-class. Addition-
ally, variations can also be present be-
tween images. Based on this, research
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semble of Region-based Fully Convolu-
tional Networks (R-FCN) object detec-
tors. Ensemble methods explored were
firstly data sampling and selection and
secondly combination strategies. Data
sampling and selection aimed to create
different subsets of data with lowered
variance with respect to object size and
image quality such that expert R-FCN
ensemble members could be trained.
Two combination strategies were ex-
plored for combining the individual
member detections into an ensemble re-
sult. R-FCNs were trained and tested
on the PASCAL VOC benchmark ob-
ject detection dataset. Results proved
positive with an increase in AP when
ensemble members were combined ap-
propriately. The method shows poten-
tial and other object or image varia-
tions could be sampled to see if a more
robust ensemble could be made.
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1 Introduction

Object detection is a fundamental area of computer vision that has had a great amount of
research over the past decades. The general goal of object detection is to find a specific
object in an image. The specific object is typically from a pre-defined list of categories that
are of interest for a given use case. Object detection generally consists of two larger tasks;
localisation and classification. It is assumed that the objects of interest are not already
located in the image and as objects can vary in number of pixels depending on factors such
as distance and scale. Localisation is typically done with a bounding-box indicating where
a given object is in the image. However, other methods such as objects’ centres and closed
boundaries can also be used [1]. Not only is object detection an important task in localising
and classifying, it is also a necessary earlier step in larger computer vision pipelines. For
example, object detection is needed within the tasks such as activity and event recognition,
scene understanding, and robotic picking.

Object detection is a challenging problem due to both large scale issues and minute
differences. Firstly, there is the challenge of differentiating objects between classes. De-
pending on the problem at hand the number of potential categories present can be into the
thousands or tens of thousand. On top of this, separate object categories can be both very
different in appearance, for example an apple and an aeroplane, but separate categories can
also be similar in appearance, such as dogs and wolves.

Current state-of-the-art in object detection is within the realm of deep learning with
Convolutional Neural Networks (CNNs). This is exemplified with almost all leading entries
in benchmark challenges such as Pattern Analysis, Statistical Modelling and Computational
Learning Visual Object Classes (PASCAL VOC) [2], ImageNet [3], and Microsoft Common
Objects in Context (MS COCO) [4] consisting of CNN-based approaches. However, im-
provements are still needed before object detection can be used in real-world scenarios that
require a high level of precision, accuracy, and performance.

1.1 Initial Problem Statement

An initial problem statement can be formed as follows:
How is object detection performed with CNNs?

Based upon this, the following chapter will cover these challenges. On top of this, related
work into current state-of-the-art object detection will be researched.



2 Problem Analysis

This chapter will outline object detection and it’s key challenges. This includes aspects
within robustness, computational-complexity and scalability. Also covered are the key ob-
ject detection benchmarks. Once completed the current key works within object detection
will be analysed, both current state-of-the-art.

2.1 Object Detection

As mentioned in the previous chapter, object detection consists of two larger tasks; classi-
fication and localisation. Depending on the problem at hand, object detection can be split
into two categories. If only a single class is of interest, such as detecting a specific traffic
sign, the object detection task is denoted as class-specific detection. Whereas, in the more
general case when multiple classes are of interest, it is denoted as multi-class detection [1].
Key benchmarks such as PASCAL VOC, ImageNet and MS COCO are of the latter task.
This thesis will be within the multi-class detection domain and take necessary challenges
into account when analysing related works and determining the algorithm to be imple-
mented. The goal of an object detector is to output a list of labels from a predefined list
of categories indicating which objects are present and where they are located in an image.
Object detection has a number of related fields which share the common goal of categorising
objects. This can be seen in Figure 2.1. In all four instances the goal is to categorise the
two objects, person and skateboard. However, the difference lies in the level of localisation
precision. In Figure 2.1a, object categorisation aims to only classify the objects in the image
without providing any indication as to where the objects are located. Object class detection
in Figure 2.1b, localises the classified objects with the use of bounding-boxes, where ideally
the bounding-boxes are placed as tightly around the given object as possible. Figure-ground
segmentation in Figure 2.1c, indicates localisation with a lasso outline around the objects.
Finally, in Figure 2.1d, semantic-segmentation localises objects at a pixel-level classifying
each pixel that is related to the given object.

Person
Skateboard,

(a) (b) (c) (d)

Figure 2.1: Example of vision tasks related to object detection. All tasks have the common goal of
categorising predefined objects. Methods are: object categorisation (a), object class detection (b), figure-
ground segmentation (c¢), semantic Segmentation (d). Image and class labels taken from MS COCO [4].

A recent trend in the domain of segmentation has been that of instance segmentation.
Instance segmentation differs to semantic segmentation in that individual instances of ob-
jects are classified as such. If multiple instances of the same object is present, such as with
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an image of a crowd with many people, in semantic segmentation all people will be given the
same label as one large group. However, in instance segmentation the people are still given
the same label but individual instances of a person is also found. This area of research
within segmentation is relatively new, however, is beginning to become more popular in
comparison to semantic segmentation. For example, the MS COCO segmentation challenge
which has been held in 2015 and 2016 only accepts instance segmentation entries. Now
that the general definition of object detection has been defined the main challenges will be
presented.

2.2 Main Challenges

The challenges of object detection can be split into two groups as per [1]:

o Robustness-related.
o Computational-complexity and scalability-related.

The following sections will outline the above.

2.2.1 Robustness-related Challenges

Robustness-related refers to the challenges in appearance within the both of intra-class and
inter-class. Intra-class is the differences in appearance of objects which are of the same
class. For example, as seen in Figure 2.2, all of the images belong to the superclass chair,
however, vary greatly in their overall appearance.

Figure 2.2: Examples of intra-class appearance variation. All images and label are from the ImageNet
training set [3].

An object detection system must be able to learn the appearance variations that can
occur intra-class. These variations can be categorised into two types as per [5]:

e Object variations.
e Image variations.

Object variations consist of appearance differences between object instances with re-
spect to factors such as colour, texture, shape, and size. Image variations are differences
not related to the object instances themselves but rather the actual image. This can consist
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of conditions such as lighting, viewpoint, scale, occlusion, and clutter. Based upon these
differences the task of both classifying a given object as a given class but also differentiating
the potentially largely varying objects into the same class is challenging. Research into how
image distortions affected classification with CNNs was done in [6]. Multiple networks were
tested against artificially increasing the level of distortions for blur, noise, contrast, JPEG
and JP2K. It was found that for most types the classification was significantly decreased as
the level of distortion was increased.

Robustness-related challenges can also occur with inter-class appearance differences. This
refers to the differences between objects that are regarded as different categories. Chal-
lenges arise in scenarios where an object detector must decide if an instance is between
classes that are very similar. For example using images and their respective classes from
ImageNet [3], in Figure 2.3 and Figure 2.4, the object variations between the two examples
are very similar, however, their class labels are different. In Figure 2.3a and Figure 2.3b
the class labels are mini-bus and delivery truck respectively. In Figure 2.4a and Figure 2.4b
the labels are white wolf and German shepherd.

(a) (b)

Figure 2.3: Examples of inter-class appearance variation. Both images are from the ImageNet training set
[3] and have the labels mini-bus (a) and delivery truck (b).
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@) | (b)

Figure 2.4: Examples of inter-class appearance variation. Both images are from the ImageNet training set
[3] and have the labels White wolf (a) and German shepherd (b).

It should be noted that this is a task-specific if inter-class appearance similarities is a
problem or not. It can be argued that both the examples in Figure 2.3 and Figure 2.4 can be
grouped into a larger superclass label if the given task does not require training of a model
to such granularity. In both examples the classes stated are of the lowest class available
in the overall hierarchy. ImageNet has labels available for each image along a larger array
of classes and sub-classes. Figure 2.5 visualises the granularity possible where both images
belong to the superclass animal.

o o

Animal Carnivore Animal Shepherd dog

' ' ' !
Chordate Canine Domestic animal German shepherd

' ! b
ey won :

' ) '

Placental mammal White wolf Working dog
L | L |
(b) (d)

Figure 2.5: Visualisation of the hierarchy of potential classes for two examples in the ImageNet training
set [3].

2.2.2 Computational-complexity and Scalability-related Challenges

The second challenge as per [1] is related to the potential scale of object detection. When
deciding on which type of model to use, the chosen model must be complex enough to be
able to capture the previously mentioned challenges both in inter- and intra-class. Addi-
tionally, there potentially could be an extremely large number of classes the model needs
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to classify objects in. If the aim is to train a model to classify between an extreme number
of classes then naturally a large number of images are also needed for each category. The
large number of images needed is must also be representative enough in training to capture
the necessary visual features to generalise on non-training images. For example, in 2016
the ImageNet object detection challenge had a total of 200 object categories, with 456,567
images comprising the training set [1].

Issues can also arise over time when designing an object detection system. Over time
the visual appearance of an object can change, which is very difficult to take into account
when training a model. For example, the visual appearance of televisions have changed
greatly in the past century. If a system were only to be trained on images from an earlier
time period it may not be able to generalise on new instances. Therefore, it is important
that a model is able to be updated as the appearance of objects change. On top of this,
new categories of objects can come to fruition which may needed to be added to a model.

2.3 Benchmark Datasets

This section will outline some of the key object detection benchmark datasets. This will
include their purpose and the general data statistics.

2.3.1 PASCAL Visual Object Classes Challenge

The PASCAL VOC challenge [2] was held yearly between 2005 to 2012 and provided datasets
for benchmarking within computer vision tasks of visual object category recognition and
detection. Between the time period PASCAL VOC was considered the top benchmark for
the respective challenges. While being an annual competition, PASCAL VOC evaluation
in state-of-the-art literature is most often performed on data from the years 2007 and 2012.
The competition saw a large shift in the former year as the number of classes increased from
10 to 20, in turn also significantly increasing the total amount of data. Additional data was
added individually for the various recognition tasks between 2007 and 2012 and the perfor-
mance metric was altered slightly between this time period. However, the overall ecosystem
remained largely the same from 2007 until the competitions end. This section will be
largely based upon the two retrospective papers, [7] and [8], published by authors who were
involved in the challenge and for the most part will be in respect to the challenge after 2007.

Images were obtained for the dataset from the website flickr [9] with the aim in mind
to collect natural images for the recognition challenges. Ideally the dataset was to contain a
significant level of visual variability in regards to object size, orientation, pose, illumination,
position, and occlusion. The 20 classes in the detection challenge can be considered as a
part of a taxonomy with 4 main branches, where each has finer-grain objects in sub-classes.
The 20 classes and the branching taxonomy can be seen in Table 2.1.

A total of 500,000 potential images were collected randomly based upon different com-
binations of queries for a given class. For example, for class bird, potential queries were
bird, birdie, birdwatching, nest, sea, aviary, birdcage, bird feeder, and bird table. Of these
potential images the majority were discarded due to not meeting the considerations of visual
variability mentioned earlier. The annotation process was completed by a team from the
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Table 2.1: Taxonomy of the 20 classes introduced in VOC2007.

Vehicles Household Animals Other

Aeroplane Bottle Bird Person
Bicycle Chair Cat

Boat Dining table Cow

Bus Potted plant Dog

Car Sofa Horse

Motorbike TV /Monitor Sheep

Train

University of Leeds based upon strict guidelines. The aim was to ensure that the annota-
tions resulted in a consistent, accurate, and exhaustive dataset. The annotations are stored
in XML format which contains the following information:

e Class: one of the 20 shown in Table 2.1.

e Bounding box: axis-aligned bounding-box around the visual extent of the object.

e Viewpoint: viewpoint to the object.

e Truncation: whether or not object is truncated. An object is truncated when the
bounding-box does not cover the full extent of the object. Truncation can occur if the
object extends outside the image or is partially occluded.

o Difficult: A subjective evaluation on if the object is difficult to detect. This is deter-
mined based on object size, illumination, or image quality.

An example of the XML format for the object chair can be seen in Code 2.1 and its
corresponding image in Figure 2.6.

Code 2.1 Example of XML annotation for the object chair.

1: <object>

2: <name>chair</name>

3: <pose>Rear</pose>

4: <truncated>0</truncated>

5: <difficult>0</difficult>
6: <bndbox>

7: <xmin>263</xmin>
8: <ymin>211l</ymin>
9: <xmax>324</xmax>
10: <ymax>339</ymax>
11: </bndbox>

12: </object>




2. Problem Analysis

Figure 2.6: Image from the PASCAL VOC 2007 dataset. The bounding box represents the annotated
XML data shown in Code 2.1.

Of the 500,000 potential images, 9,963 were annotated for the VOC2007 challenges
based upon the annotation guidelines. PASCAL VOC datasets are split into two subsets;
trainval, consisting of training and validation data and test, consisting of the testing data.
A histogram showing the frequency of an object class in an image and the total number of
objects for the VOC2007 dataset can be seen in Figure 2.7.

10000,

I objects
[ images

5000+

3000+

20001
1500

1000

Figure 2.7: Frequency of object instances for each class in the 2007 test set [2].

Evaluation of a object detector on PASCAL VOC is based upon Average Precision
(AP) which summarises the precision and recall of detections. The metric requires for each
detection both a bounding-box and an associated confidence. By altering the threshold
corresponding to the confidence of each detection, a precision and recall curve can be cal-

10
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culated and the AP summarises the shape of the curve. Precision is the number of true
positives in relation to both true positives and false positives. Whereas, recall is the number
of true positives in relation to all detections. First, a detection must be classified as either a
true or false positive. This is determined by measuring the bounding-box overlap between
the detection and ground truth annotation. In PASCAL VOC a bounding box is a true
positive if the overlap is above 50% according to the following calculation:

_area(B, N Byt)
- area(B, U Bgt)

(2.1)

where B, By is the intersection of the predicted bounding box and the ground truth
and B, UGy is the union between the two. It should also be noted that for a given ground
truth object it is only possible to have one true positive detection. If multiple detections
satisfy Equation 2.1, the remaining will be denoted as a false positive. Now that detections
can be as classified as either a true or false positive AP can be calculated. Before 2007, in
PASCAL VOC this was calculated as the mean precision at eleven equally space recalls [0,
0.1, ..., 1] by:

1
AP = ﬁ Z pinterp(r) (22)
r€[0,0.1,...,1]

where 7 is the recall and pjnterp is the interpolated precision between spacings.

2.3.2 ImageNet Large Scale Visual Recognition Challenge

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) has been held since 2010,
with multiple challenge tasks such as image classification, scene recognition and object de-
tection. Currently, in 2017, the only challenges held are object detection in both images
and video. The aim of ILSVRC was to create an image recognition challenge on such a scale
that had not been previously seen. Before this, the main challenge was PASCAL VOC with
20 categories in the object detection challenge. ILSVRC has 200 classes, roughly 500,000
annotated positive and negative images and just under 500,000 annotated objects in the
positive examples. Once again, the goal of an algorithm is to learn to detect objects. In
this case towards 200 classes and return a bounding-box with an associated confidence.

The majority of images come from another ILSVRC challenge of single-object localisa-
tion. Where the aim was to only return a single object detection. Additional images were
supplemented from flickr queries. Examples of images from the dataset can be seen in
Figure 2.8.

11
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@) ' (b)

Figure 2.8: Example of images in the ILSVRC object detection challenge [3].

Evaluation of detections was inspired by the AP metric used in PASCAL VOC. Again
detections are determine to be correct or incorrect based on if the Intersection-Over-Union
(IoU) is above 0.5. While being a challenging dataset in terms of the number of classes
present, the object sizes and number of objects is similar to that of PASCAL VOC. Next
will be an explanation of a new benchmark that addresses such challenges.

2.3.3 Microsoft Common Objects in Context

MS COCO [4] is a relatively new dataset within the realm of object recognition appearing
in 2015 and holds challenges in object detection and segmentation. The object detection
challenge is similar to PASCAL VOC and ILSVRC, in that detections must be shown using
bounding-boxes and have associated confidences. However, for the segmentation challenge,
MS COCO requires the results to be of more challenging instance form rather than semantic.
The creators of the dataset had three core research problems they wanted to be present,
these include as per [4]:

1. Detecting non-iconic views of objects.
2. Contextual reasoning between objects.

3. Precise 2-dimensional localisation of objects.

The first problem is addressed by having object instances in images that are closer to
everyday scenarios. Iconic views of objects are when the instance is near the centre of the
image, is unobstructed and taken in a controlled scenario. Objects taken in such conditions
are much easier to detect but if used for training object detectors the practical applications
become limited. Therefore, non-iconic views of objects are used that can have background
or other objects present, objects being partially occluded and being amongst clutter. By
having a dataset of non-iconic views, the second research problem is addressed as objects
are in scenarios where context with respect to the scene can be used. Finally, a higher level
of precision is provided in the MS COCO segmentation challenge. As mentioned, results are
required to be instance and pixel-wise. Therefore, the objects in the dataset are annotated

12
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precisely at a pixel-level but also with coarser bounding-boxes. These goals resulted in a
dataset has a total of 91 object classes of which 82 have more than 5,000 labelled instances.
Considerably higher that that of PASCAL VOC. In addition to having a large number of
classes the number of object instance per image is also relatively high. On average there is
7.7 instances per image, considerably higher than PASCAL VOC with 2.3 and ImageNet
with 3.0.

The object classes chosen are similar to those in PASCAL VOC, where the categories should
represent a common objects that are relevant to practical applications. Also the categories
should be such that a high number of images that respect the core research problems can
be found. The 91 categories were chosen to be at a higher-level of taxonomy such that
they would be the commonly used label by a typical person. The categories and number of
instances in each can be seen in Figure 2.9.

Instances per categor coco
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Figure 2.9: Object categories and number of instances in each in the MS COCO dataset [4].

The image collection process was done using queries through flickr inspired by the PAS-
CAL VOC. Having only a single category as a query resulted in higher chances of iconic
views, therefore multiple categories were used to collect images. Once collected and an-
notated the total number of images in the 2015 release was 328,000, split as 165,482 for
training, 81,208 validation and 81,434 for testing.

Apart from having a larger number of categories and there being a large number of ob-
ject instances per image (7.7), there are also other items that make this dataset more
challenging. Firstly, the number of categories per image is larger than PASCAL VOC, with
3.5 compared to 1.7. Additionally, the dataset is made up of much smaller images which
are typically more difficult to detect. Roughly 65% of object instances make up only 4-6%
of the total image size. This is in comparison to PASCAL VOC at roughly 45%.

MS COCO uses 12 metrics to evaluate the performance of object detection, where 6 are
variants of AP and the remaining 6 variants of Average Recall (AR). The AP metric is
calculated in the same manner as in PASCAL VOC, however, the primary metric is also
averaged over multiple IoUs. In PASCAL VOC AP is only calculated at IoU=0.5, however,
in MS COCO AP is average in the range of [0.50, 0.95] at intervals of 0.05. The MS COCO
AP is also evaluated on detections across ground truth image scales, as the number of small
objects in the dataset is as mentioned relatively high. The scales covered is AP for small
objects that have a ground truth bounding-box are less than 322 pixels, medium objects

13
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area between 322 and 962, and large objects with area above 962. Apart from the primary
metric and the three image scales, AP is also calculated at two fixed IoUs. Firstly, at ToU
0.50 which results in the same metric as in PASCAL VOC and at relatively strict IoU of
0.75. The AR metric is also average across multiple IoUs, but also measure at a limitation
of the maximum number of detections per image. This makes up three AR metrics where
maximum detections are 1, 10 and 100 per image. Finally the remaining three metrics
evaluate the AR across the same object scales mentioned earlier.

2.4 Related Work

One of the first methods to show that CNNs could significantly improve object detection
was that of R-CNN [10]. The method obtains the name R-CNN based upon a CNN is used
on regions of the image. Many earlier object detection approaches were used in a sliding
window fashion testing all areas of an image. This can lead to a huge amount of potential
testing windows especially if the object detection is done at a multitude of different scales.
The method was heavily inspired by the AlexNet model that started the deep learning
renaissance in 2012 winning the classification challenge in the ILSVRC. The authors of R-
CNN aimed to show that the advances in classification with a model such as AlexNet could
also be done in object detection. In R-CNN the CNN model is used as a feature extractor
from which a class-specific linear Support Vector Machine (SVM) can be trained on top of.
The AlexNet-based feature extractor is firstly pre-trained on a large dataset designed for
classification, in this case the training set from ILSVRC 2012. This pre-trained model is
then adapted to the new domain of object detection by fine-tuning the model accordingly.
In this instance the authors fine-tuned warped training instances from the PASCAL VOC
dataset. The AlexNet model was also altered to classify the 20 classes present in PASCAL
VOC rather than the 1000 classes in ILSVRC. The pipeline of the R-CNN is split into 3
modules as:

1. Region proposals.
2. Feature extraction.

3. Class-specific linear SVMs.

In this first module, region proposal, there is a large number of potential methods to
produce a suitable number of windows in comparison to a sliding window approach. R-CNN
is agnostic to the region proposal method chosen, and in the original work SelectiveSearch
[11] is used. Module two, as explained earlier, is the use of a CNN as a feature extractor.
This is in the form of a 4096-dimensional feature vector from the domain-specific PASCAL
VOC trained AlexNet model. These feature vectors are used in the third module, class-
specific linear SVMs. In the case of PASCAL VOC a total of 21 SVMs are trained, one
for each of the 20 classes in the challenge and one for a background class. The training
of the SVMs is done by forward propagating a large number of both positive and negative
region proposals found with SelectiveSearch and storing each 4096-dimensional feature vec-
tor to disk. After this the appropriate labels are applied to each vector and a linear SVM
is optimised for the 21 classes. At test time, for a given image SelectiveSearch is used to
produce around 2000 proposals. Each of the proposals are propagated through the network

14
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to extract their respective feature vectors. Each feature vector is then tested against every
SVM to produce a score for each class. Finally greedy Non-maximum Suppression (NMS)
is applied to remove overlapping detections. The approach outlined in R-CNN produced a
significant improvement in object detection of roughly 13%, compared to previous state-of-
the-art methods. Similar results were also found on the PASCAL VOC 2011/12 test set.
Despite the significant improvements with a CNN-based method on region proposals there
are still issues with the R-CNN. Firstly, the testing time per image is slow, at roughly 47
seconds on an Nvidia K40 GPU. Also extracting features for each proposal to train the
SVMs takes a large amount of disk space and may not be feasible on all hardware configu-
rations. Finally, as the R-CNN is made up of 3 modules the training is done in a multi-stage
manner rather than end-to-end. Therefore, the loss calculation when optimising the SVMs
are not used to update the CNN parameters.

The R-CNN method was improved the following year with Fast R-CNN [12] and aimed
to improve speed and accuracy. One of the significant changes is that the detection training
done is now end-end rather than in the multi-stage pipeline in R-CNN. Due to this the
large requirements of disk space due to feature caching is no longer required. The Fast
R-CNN method takes both an image and a set of pre-computed object proposals, as in
R-CNN. A CNN forward propagates the entire image, rather than individual proposals in
R-CNN, through several convolutional and max-pooling layers to produce a feature map.
Features are extracted for each proposal in their corresponding location in the computed
feature map with a Region of Interest (Rol) pooling layer. The Rol feature is calculated by
splitting the h x w proposal into H x W sub-windows of size h/H x w/W. Where h and w
is the height and width respectively of a proposal. H and W are hyper-parameters speci-
fying the fixed spatial extent of the extracted feature. Each sub-window has max-pooling
applied and with the resulting value being placed in the corresponding output cell. Once
the Rol pooling layer has been applied to a pre-computed object proposal the forward pass
continues through two fully-connected layers followed by two sibling output layers. The
sibling outputs are a softmax classification layer that produces probabilities for the object
classes and another layer for bounding-box regression. These two layers replace the respec-
tive external modules in R-CNN and make it possible to train the entire detection network
in a single-stage. As in R-CNN, pre-training a CNN on a large classification dataset and
fine-tuning towards detection and a specific object classes is done in a similar fashion. In
R-CNN, the only deep network used was AlexNet [13], however, in Fast R-CNN the authors
experiment with networks of different size. It was found that the deeper network VGG-16
[14] for computing the convolutional feature map gave a considerable improvement in AP.
For a fair comparison of results against R-CNN, its CNN was the same pre-trained VGG-16
network and it was found that Fast R-CNN improves AP by 3-4% on PASCAL VOC.

However, as the name Fast R-CNN implies the main improvement is the speed in respect
to both training and testing. By computing a convolutional feature map for an entire image
rather than per object proposal the number of passes in the network is lowered significantly.
The training time is speed up 8.8x and test per image is 146x faster. While Fast R-CNN
provided improvements in both accuracy and speed, the increase in speed is only in relation
to the actual object detection and assumes that the region proposals are pre-computed.
Therefore, there is still a significant bottleneck per image as a region proposal method can
typically take a couple of seconds.
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The region proposal bottleneck was addressed in the third iteration of the R-CNN net-
work with Faster R-CNN [15]. In this method, it was shown that region proposals could
be computed as part of the network. This part is called a Region Proposal Network (RPN)
and shares the convolutional layers and feature map used for computing features with Rol
pooling in Fast R-CNN. As these layers are already computed on the entire image for the
classification pipeline, the added time for proposals using the RPN is negligible in compar-
ison to a method such as SelectiveSearch. Apart from the change in how region proposals
are computed, there is no difference in comparison to Fast R-CNN. An RPN takes the last
convolutional feature map as input and returns a number of object proposals. Each pro-
posals is fed into two sibling layers, similar to that in Fast R-CNN, one layer scoring how
likely to be an object or background and another performing bounding-box regression. The
proposals are found through a method denoted as anchors. At each sliding-window location
proposals are found with user-defined reference boxes for how an object proposal may be
formed. The anchors can be built based upon scale and aspect ratio altering the size. These
anchors are then placed on the feature map and the sibling layers calculate the likelihood
of an object and regress the anchor as necessary. Once the proposals have been found with
the RPN these are placed on the same convolutional feature map as earlier and the rest
of the pipeline is identical to Fast R-CNN, classifying and regressing bounding-boxes with
another set of sibling layers. As the only change is the addition of computing proposals in
the network with RPN, the results are similar in respect to AP. Only a slight improvement
in made on PASCAL VOC 2007 and 2012, from 66.9% to 69.9% and 65.7% to 67.0% re-
spectively. However, the main contribution to the work is the speed-up of the entire object
detection pipeline as the object proposal time is now minimal. On average processing an
image on PASCAL VOC 2007 with an Nvidia K40 with Fast R-CNN including proposals
took 2 seconds per image. While in Faster R-CNN with the same hardware takes 0.2 sec-
onds per image. A speed-up of 10x from Fast R-CNN to Faster R-CNN and 250x from
the original R-CNN. The Faster R-CNN methods has also proved to be the foundation for
the winning entry in multiple detection challenges including MS COCO. The results for
this challenge with a VGG-16 model for Fast R-CNN were 35.9% AP@0.5 IoU and 19.7%
AP@][0.5, 0.95]. Faster R-CNN improved this to 42.7% AP@0.5 and 21.9% AP@|0.5, 0.95].

Much of the recent work within object detection has been based upon the Faster R-CNN
framework. This is exemplified by looking at the MS COCO detection leaderboard [16],
with 15 of the 21 approaches being Faster R-CNN related as of early 2017. Firstly, the
winner of the MS COCO 2015 and ILSVRC 2015 detection challenge was with the use of
deep residual networks (ResNets) [17]. As is well known with CNNs, deeper networks are
able to capture richer higher-level features. The authors showed that this is also beneficial
in the object detection domain. In [17] an ensemble of three deep residual networks with
101 layers was trained for object detection and another ensemble of three used for region
proposals with the RPN while being based on the Faster R-CNN framework. In addition to
the ensemble, the winning entry also added box refinement, global context, and multi-scale
testing to the Faster R-CNN.

The current leading method on MS COCO is an extension of the previously explained
ResNets [17]. This method dubbed G-RMI on the MS COCO leaderboard [16] is an en-
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semble of five deep residual networks based upon ResNet [17] and Inception ResNet [18]
feature extractors. No work has been published yet on G-RMI at this time, however, a short
explanation of the entry is included in a survey paper from the winning authors [19]. The
approach was to train a large number of Faster R-CNN models with varying output stride,
variations on the loss function, and different ordering of the training data. Based upon the
collection of models, five were greedily chosen based upon performance on a validation set.
While performance on the models were important, the models were also chosen such that
they were not too similar. It should also be noted that apart from the ensemble of models,
G-RMI did not include any extras such as multi-scale training, box refinement, or global
context which are often used in benchmark challenge entries.

Another variant is that of MultiPath [20], placing second in MS COCO 2015. Which
aimed to address the many small objects present in MS COCO by modifying Fast R-CNN.
Firstly, rather than only having a single classification head, MultiPath has four. Each clas-
sification head observes different scaled regions around the Rol which aims to add context
around the object. The output of each of the four are concatenated for classification and
regression. Also MultiPath uses skip connections. The RPN and consequent Rol-pooling in
Faster R-CNN and Fast R-CNN is only performed once at a number of convolutional layers.
At which point the input image has been down-sampled a number of times, therefore, small
objects are potentially not represented very well any more. With the use of skip connections
higher-resolution features from earlier convolutional layers can be added giving the RPN
and classier information about smaller objects.

Inside-Outside Net (ION) [21] also adds contextual and multi-scale information on top
of Fast R-CNN. ION was the third place entry in MS COCO 2015. The multi-scale in-
formation is also added with skip connections. Whereas global context is added through
the use of Recurrent Neural Networks (RNNs) passing information about the image both
vertically and horizontally.

Global context has also been added to the Faster R-CNN framework in [22] with the use
of semantic segmentation as a form of top-down information. A segmentation module is
augmented onto the framework and is calculated using the same initial convolutional layers
as Faster R-CNN. The segmented result is then added after the RPN and Rol-pooling is
performed on both the convolutional layers and corresponding Rol segmentation area.

Additional work on adding finer details for smaller objects with Faster R-CNN was per-
formed in [23] who aimed to improve skip connections with additional top-down information.
While skip connections is useful method for finding higher-resolution features, the authors
argue that with Top-down Modulation (TDM) features are taken from an appropriate lower
layer. TDM is incorporated into the Faster R-CNN framework and can be trained along
side it.

The use of hard example mining was conducted in [24]. In this work the problem of small
objects in ILSVRC and MS COCO is also addressed. The authors present a method for
training a Fast R-CNN object detector for these objects with Online Hard Example Min-
ing (OHEM). Inspired by bootstrapping, with OHEM a modification is made to Stochastic
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Gradient Descent (SGD) training by selecting Rols that the network currently has a high
loss on and backpropagating accordingly.

The methods covered so far have all followed a region-based paradigm of first finding a
selection of object proposals and second classifying these into one of the appropriate classes,
while also regressing bounding-boxes. These methods can be computationally expensive and
therefore recent work has attempted to combine the two steps into a single feed-forward
CNN. These methods can be denoted single shot object detectors, with he most recent ap-
proach is that of Single Shot Detector (SSD) [25]. It is the first deep approach that does not
resample pixels of features to perform object detection such as Rol pooling in region-based
methods [12] [15]. Rather, convolutional feature layers are added to the end of a network
and a small filter is applied on these for simultaneous localisation and classification. The
truncated layers become progressively smaller and allow SSD to find objects at multiple
scales. The predictors used on these layers are of pre-determined size and aspect ratio sim-
ilar to the anchor boxes used in Faster R-CNN [15]. The additional layers and predictors
can be added to any classification-based CNN and SSD test using the standard VGG-16
network. Omn top of this the authors train two separate instances of the network, one
for low-resolution input SSD300 (300x300) and one for high-resolution SSD512 (512x512).
Overall the higher-resolution network performs best with 1-2% improvements in comparison
to Faster R-CNN on PASCAL VOC 2007 and MS COCO test-dev 2015. In terms of speed
there is a considerable difference, the authors found Faster R-CNN on average took 0.14
s/image, SSD300 0.02 s/image, and SSD512 0.05 s/image on PASCAL VOC 2007 testing
with a Titan X GPU.

One of the original single shot CNN-based methods for object detection was OverFeat
[26] with a sliding-window approach. Methods such as OverFeat have not recently been as
popular due to deeper and more powerful networks being too computationally expensive to
be run across the entire image at multiple scales. However, at the time OverFeat won the
ILSVRC 2013 localisation challenge using an altered AlexNet [13] CNN. The main alter-
ation was a regression layer for added accuracy in localisation.

A precursor to SSD was that of MultiBox [27] and the improved version in [28]. Again
the goal was to directly predict the bounding-box of an object directly with a CNN for a
given class. The MultiBox method was originally designed to prove that object proposals
with a CNN could be an improvement of hand-engineered methods such as SelectiveSearch
[11] in R-CNN [10] and Fast R-CNN [12]. MultiBox is similar to the RPN in Faster R-CNN
[15] where object locations are predicted on a grid with a number of default predictions of
different sizes. Additionally, MultiBox ranks the proposals according to a loss in relation to
both the confidence of being an object and location of the bounding-box. With this ranking
MultiBox is able produce and classify only 15 proposals per image while being competitive
to other methods such as R-CNN at the time.

Another CNN method that only uses a single network is You Only Look Once (YOLO)
[29] and its successor YOLOv2 [30]. In the original YOLO method, a single shot approach
was taken by producing bounding box locations and class scores from a fixed grid in an
image. Various combinations of these grids are used as potential bounding-boxes. However,
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in YOLO the accuracy of the localisation was poor and this was addressed in YOLOv2
with a number of changes. Firstly, the RPN from Faster R-CNN [15] was adapted with this
use of anchor boxes. But rather than using pre-determined anchor sizes k-means clustering
is run on the training set to determine what appropriate sizes. Also to address the issue
of small objects not being represented in the convolutional feature map in the RPN after
many convolutional operations, additional features are added from an earlier convolutional
layer. Other improvements to YOLOv2 include batch normalisation, multi-scale training,
and high-resolution inputs. Overall the method produces competitive results against ap-
proaches such as Faster R-CNN and SSD. But the main improvement is in speed, where at
inference time is up to 182x and 5x faster than Faster R-CNN and SSD respectively.

Recently, a newer approach to region-based methods has been proposed with the use of
Fully Convolutional Networks (FCNs) through the Region-based Fully Convolutional Net-
work (R-FCN) [31]. The authors argue that in region-based methods the act of cropping
features from Rols in the same layer adds an unnatural condition. There has been an issue in
the two step pipeline in region-based methods, as the classification is translation-invariant,
whereas detection in translation-variant. Due to this difference region-based methods have
been adjusted towards the invariant properties of classification by pooling features and clas-
sifying them. However, [31] argue that translation-variant representations are important in
object detection as the position of an object inside a Rol can provide meaningful informa-
tion. Therefore, [31] present their fully convolutional approach with R-FCN. The overall
approach is similar to that used in region-based methods such as [10], [12] and [15]. First
compute Rols using a region proposal method and second perform classification on these
regions. R-FCN uses the RPN from Faster R-CNN [15] for class-agnostic Rol computation.
However, rather than extracting features with Rol-pooling, fully convolutional position-
sensitive score maps are computed. The score maps are split up to represent a relative
position in a k x k grid, with each cell presenting information relative to the spatial position
of an object. For example, the upper-left cell represents scores that pixels are present at that
relative position to the object. A bank for position-sensitive score maps are found for each
class, generating a total of k?(C + 1) where C is the number of classes plus a background
class. After computing the bank, the R-FCN computes a position-sensitive Rol-pooling
layer for each class. For each Rol found with the RPN each cell aggregates the response
from the appropriate score map from the bank of maps. While the ordering and methodol-
ogy of Rol-pooling is different in R-FCN to that of Faster R-CNN the same backbone CNN
can be used. In the experiments conducted by the authors a ResNet-101 network is chosen.
Overall R-FCN is an improvement on the Faster R-CNN approach on benchmarks such as
PASCAL VOC and MS COCO. It is also competitive with the MS COCO 2015 winning
entry [17], while not having any additions such as global context or iterative box regression.
Additionally it is considerably faster in training and testing in comparison to Faster R-CNN.

The use of FCNs is currently the leading method for segmentation; both semantic [32]
and instance [33]. The latter, named Fully Convolutional Instance-aware Segmentation
(FCIS) won the 2016 MS COCO instance segmentation challenge and is also the current
second place in bounding box object detection. It uses a similar approach with position-
sensitive score maps for pixel-level likelihood for an object category to produce bounding
boxes. From these, instance segmentation is performed to produce the pixel-level classifica-
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tion. The main differences between R-FCN and FCIS is the addition of ensemble of ResNet
models, multi-scale testing and training, and horizontal flipping.

2.5 Problem Statement

As outlined in the introduction, the general goal of object detection is to find objects in
an image based upon pre-defined object categories. As mentioned in Section 2.2 Main
Challenges, the main challenges within object detection can be defined in two groups as
robust-related and computational complexity and scalability-related as per [1]. The robust-
related challenges are with respect to variations in the objects, this can include colour,
texture, shape and size. The other challenge in this group is variations in the images which
can differ in terms of lighting, viewpoint and quality. Both object and image variations can
occur intra- and inter-class. These robust-related challenges lead into the computational-
complexity and scalability-related. As object detection can be a quite difficult task the
choice of model must be sufficient to capture such large variations. Additionally, this puts
requirements on the quantity and quality of the data needed to train such a model. Based
on the the works covered in Section 2.4 Related Work, current leading methods are CNN-
based and many of them take advantage of ensemble methods. Additionally through the
use of high-quality datasets such as PASCAL VOC, ILSVRC and MS COCO research
within object detection has grown considerably within recent years. However, there is still
number of challenges present due to both object and image variations that many not have
been addressed properly yet. Many leading methods find smaller objects challenging to
detect. Additionally variations in the quality of the image is an area which not many have
addressed. Despite CNN-based methods being the current state-of-the-art and are becoming
increasingly more complex they may yet find it difficult to generalise across many of the
robust-related challenges.
Therefore, the following questions will be investigated in this work:

e How can specific robust-related challenges be addressed in CNN-based object detector
with the aid of ensemble methods?
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As covered in Section 2.4 Related Work, the current leading methods in object detection
are within the domain of deep learning. This chapter will cover the core concepts of deep
learning which will include general architecture of CNNs, typical layers and optimisation
strategies. Also covered will be aspects of deep learning that are more specific to object
detection with CNNs.

3.1 Convolutional Neural Networks

CNNs are an extension of artificial neural networks which have existed for decades. Neural
networks consist of neurons that receive inputs and have learned parameters such that the
input can be altered in some manner. In the neuron, the dot product is computed between
the input and parameters [34]. For CNNs, the key difference is the first input to the network
is an image and the parameters in the neurons are filters which are trained to activate to-
wards certain inputs. One of the first successful CNN methods was LeNet for hand-written
digit classification in 1989 [35]. However, after this point, deep learning research became
stagnant mostly due to the large amount of processing needed in training. The return of
deep learning is often attributed to AlexNet in 2012 [13], which gave significant improve-
ments in image classification on ImageNet.

The general architecture of a CNN is shown in Figure 3.1. The network takes an im-
age as input, this can be a single channel as depicted in the figure or multiple such as an
colour image. Convolutional operations with learned filters are applied to an area of the
input image dependent on the filter size to produce an output at a given layer shown by
the red dot. The size of the filters at a given layer constitutes the receptive field of that
layer. For example, a 9x9 filter has a larger receptive field than a 3x3 filter to produce
a given response. Each filter is individually trained and shown as the arrows leading to
the dots. In the second convolutional layer is where the network starts to be considered
deep. Again, convolutional operations are performed to produce an output. Depending on
the architecture of the network many convolutional layers can be present, generally deeper
networks are able to find richer abstract features for the given task. Finally the network
may have a fully-connected layer that produces confidence scores. These scores can be used
to determine how well an input image represents a given class for a classification problem.
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Figure 3.1: An example of a general CNN with convolutional and fully-connected layers.

The activation function within a convolutional layer is another key aspect to neural
networks. The activation layer is used to add non-linearity to the network and measures
how well a given convolutional operation and associated bias fires for a patch in either the
input image or a previous layer [34]. Typically activation functions output between 0 and
1 to represent this measurement. In earlier adaptations of CNNs the a sigmoid activation
function was popular to map the output of a convolutional layer between 0 and 1. However,
most current CNNs take advantage of the Rectified Linear Units (ReLUs) activation func-
tion. ReLU is a simple thresholding function that maps negative outputs to 0 and positive
outputs are kept unchanged.

In order to learn the parameters in a CNN an optimisation strategy is required. The
training process is to minimise a loss function in respect the inputs. Typically the learning
is done through gradient descent with backpropgation [34]. The intuition here is to update
parameters after each forward iteration such that the loss calculated between input samples
and their labels is decreased. Generally for each forward pass the loss is calculated as the
average loss over a mini-batch of samples. This is both more efficient and produces a less
stochastic learning process. Once the loss is found the gradient indicates which direction
to update parameters and this information is backpropagated right through to the initial
parameters.

A key aspect of training CNNs is how the parameters in a network are initialised. Poor
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initialisation of parameters can make the training process slow or impossible if the initial
operations fire the activation functions too violently. Common approaches to initialisation
include sampling the weights from a Gaussian distribution and setting all biases to zero.
Other alternative dynamic approaches do exist, such as Xavier initialisation [36]. In this
case the architecture of the network is measured, such as number of filters in a layer, and
weights are sampled according to this information. Another initialisation method is fine-
tuning parameters from a pre-trained network. A pre-trained network is typically trained
on a large set of data and has learnt parameters to that given task, then by updating the
parameters they can be changed towards a new task. This can provide a number of benefits.
Firstly, the amount of training time can be drastically reduced as strong general parameters
have already been learned. Also, if the amount of training data is sparse, fine-tuning can
aid such that the risk of overfitting is reduced.

3.2 Object Detection with Convolutional Neural Networks

This section will perform a technical analysis of some of the current leading CNN-based
object detectors. This includes Faster R-CNN [15], R-FCN [31] and YOLOv2 [30]. On
top of the analysis, results for the detectors will be discussed for PASCAL VOC and MS
COCO. This should given an indication as to which CNN-based object detector will be used
to address robustness-related challenges. Additionally, two common choices for backbones
models will be explained.

3.2.1 Faster Region-Convolutional Neural Network

A primary CNN-based object detector over the previous years has been Faster R-CNN [15]
and its predecessors, Fast R-CNN [12] and R-CNN [10]. As mentioned in Section 2.4 Related
Work, 15 of the 21 current entries in MS COCO are Faster R-CNN based [16]. The general
method of Faster R-CNN can be split into two parts, region proposals and region classifi-
cation. Region proposals aims to reduce the amount of windows that need to be tested at
inference time in comparison to the previously often used sliding window approach. Rather
than testing a plethora of potential object window locations, scales and aspect ratios, region
proposals find a lower number of windows that are likely to contain an object. Additionally,
it also allows for using more expensive classification techniques such as CNNs. There are
a large number of different methods to compute region proposals. However, the RPN in
Faster R-CNN is one of the more popular and is used in other CNN-based approaches.
The proposals are efficiently computed with the RPN, as proposals are found directly in
the network, sharing convolutional layers with the classification step. The framework of the
Faster R-CNN can be seen in Figure 3.2, where the convolutional layers are used to compute
feature maps. On the last feature map, the RPN computes region proposals. These are
then placed back onto the last feature map and Rol pooling is used to compute features for
classification.
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Figure 3.2: Faster R-CNN framework. A CNN computes a feature map from which a RPN finds region
proposals. Given these proposals and the same feature map proposals are classed accordingly [15].

There are a number of different possible CNN models that can be used the compute fea-
ture maps through the convolutional layers. In the original Faster R-CNN paper [15], VGG
nets [14] were experimented with. However, since then more efficient and accurate networks
have come forward, with one of the most popular being the ResNet [17] architecture. Both
VGG og ResNets will be covered in more depth later in this chapter. Standard practice is
to pre-train the network for classification on ImageNet followed by fine-tuning it towards
object detection. Independent of the chosen model the RPN takes as input the last feature
map from the convolutional layers of the network. The RPN traverses the feature map
which feeds the result into two sibling fully-connected layers, a box-classification layer and
a box-regression layer. The box-classification layer classifies the Rol into either an object or
background, with confidences associated to each. While the box-regression layer attempts
to fit the bounding-box to the object of interest. In order to take into account different
scales and aspect ratios of objects in the feature map, the RPN uses a set of pre-defined Rols
at each sliding window location. These pre-defined Rols are denoted as anchors. At each
sliding window location a maximum of k£ possible region proposals can be computed based
upon the k anchors. The anchors are user-defined into different sizes and aspect ratios. An
often used default setting for the anchors is £ = 9, which corresponds to all combinations of
3 scales and 3 aspect ratios. The computation of the k anchors at a sliding window location
followed by the sibling layers is visualised in Figure 3.3.
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Figure 3.3: RPN framework. The k£ anchor boxes are placed at each sliding window location on the last
feature map. The RPN uses two sibling layers to compute the classification of object or background and
perform bounding-box regression.

Given the set of region proposals from the RPN, objects are classified in the C' + 1
categories based upon the same approach as in Fast R-CNN. Where C are the total number
of object classes plus one background class. Features are cropped for each proposal are their
respective location from the same feature map given to the RPN. Features are computed
using a Rol pooling layer that uses max pooling to convert the cropped area into a pooled
map of fixed spatial extent (H x W), where H and W are hyper-parameters. In order
convert each Rol into a fixed max pooled size, the Rol of size h x w is split into a grid of
H x W, with each sub-window being of size h/H x w/W. Max pooling is then applied at
each sub-window and placed accordingly in the H x W pooled layer. Following the Rol
pooling layer, two fully-connected layers feed sibling layers into a classification layer and a
box-regression layer, similar to those in the RPN. However, in this instance the classification
layer computes the probabilities for each of the C + 1 classes.

3.2.2 Region-Based Fully-Connected Network

One of the current leading object detection methods is the R-FCN [31], which as mentioned
in Section 2.4 Related Work, takes a different approach to that of the region-based methods
such as Faster R-CNN. The authors of R-FCN were inspired by the recent advances in FCN
classification networks, such as ResNets. They argue that the addition of the Rol-pooling
layer in the Faster R-CNN pipeline is unnatural and adds computational complexity. The
hypothesis is that the reasoning behind this addition is due to the trade-off between using a
classification approach in an object detection pipeline. A defining factor in object detection
is that the method should be able to respect translation variance, that translation of an ob-
ject inside an object proposal should given a good indication as to how well the proposal fits
the object. Whereas classification is more translation invariant, as the shifting of an object
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in an image does not effect how the system returns its output. The use of the Rol-pooling
layer placed in between convolutional layers means that any convolutions after this point are
not translation invariant as it is not region specific. Rather than using this popular feature
extractor, R-FCN uses position-sensitive score maps computed by a bank of convolutional
layers. The maps add translation variance into the detection pipeline by computing scores
in relation to position information with respect to the relative spatial position of an object.
A Rol-pooling layer is added after the score-maps, however, no convolutional operations are
done after this point ensuring translation variance.

The overall approach of the R-FCN also consists of the popular two-stages of region pro-
posal and region classification. Region proposal is done using the RPN from Faster R-CNN
followed by the position-sensitive score maps and Rol pooling for region classification. The
overall architecture of the R-FCN can be seen in Figure 3.4. Similar to Faster R-CNN, con-
volutional layers are applied on the input image and the RPN computes region proposals.
After this position-sensitive score maps aid in classification.

RPN
Rols

conv

per-Rol

vote
pool @ ]‘

Figure 3.4: Architecture of R-FCN. Region proposals are found using the RPN followed by classification
based on a bank of position-sensitive score maps [31].
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The added translation variance post finding proposals with the RPN is done by pro-
ducing a bank of k? score maps for each object category. Therefore, there are a total of
k*(C +1) maps. The number of k? maps is due to a k x k spatial grid representing relative
positions. Typically k = 3, therefore, nine score maps represent position-sensitive scores for
a given object category. This is illustrated in Figure 3.5, each of the 9 coloured rectangles
on the left of the figure represent the k% score maps. Each colour represents one of the
relative positions. For example, the three shades of blue are positions in the bottom of a
Rol, where the darkest is bottom-right, then bottom-centre and lightest bottom-right. For
a given Rol placement the vote for relative position is sampled from their respective map
in the bank.
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Bottom-left Bottom-centre Bottom-right

Figure 3.5: A bank of score maps are present for each object category. For a given Rol, the score is sampled
from the respective position in the corresponding score map.

Once the bank of score maps have been computed, position-sensitive Rol-pooling is
found for region classification. Each individual k x k£ bin pools from its corresponding
location in the relevant score map. For example, the top left bin pools from that position
in the top-left score map and so on. The Rol-pool is computed using average pooling for
each bin which can be seen in Figure 3.6. The final decision for a given class is determined
by a vote where each of the bins are averaged, producing a (C + 1)-dimensional vector for
each Rol.
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Figure 3.6: Position-sensitive Rol-pooling operation for a given class [31].

3.2.3 You Only Look Once

YOLOv2 [30] is one of the current best performing single shot detectors, with results on
par with more commonly used object detectors while being considerably faster at test time.
YOLOvV2 uses a different approach than the common 2-step method of region proposal
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and region classification seen in Faster R-CNN and R-FCN by directly computing class
probabilities on each Rol. Some of the distinct difference between YOLOv2 and region-
based methods is the use of directly predicting bounding boxes, using a modified model,
and altering how the priors for anchor boxes are computed during region proposals with the
RPN. The distinct differentiator for YOLOvV?2 is that bounding boxes for a given object are
predicted directly rather than predicting offsets to anchors with the RPN. This is done by
splitting the image into S x .S grid cells, with each cell predicting B bounding boxes. Each
of the B boxes predict a total of 5 values: [ts,ty,tw,th,to]. Where t,,t, are the coordinates
of the centre of the given cell. The values t,,t; are the width and height relative to the
entire image. Finally, t, is the confidence of how well the predicted box fits the ground
truth. The location of the bounding box is determined by these values with respect to a
given cell and the offset of the cell from the top left corner of the image (c;,cy) and the
size of the anchor box is py, pp. Then the bounding box predictions are calculated by:

by =0(ty) + s
b, =0o(t,) +c
y (ty) ty (3.1)
by = pwe™

by, = pre’.

Finally, the probability that the given bounding box fitting given the probability of their
being an object is:

Pr(object) = IoU (b, object) = o(t,). (3.2)

Each of the S? cells predicts C' conditional probabilities of it containing a given class
and also being object by Pr(Class;|Object). With the predicted bounding boxes and class
probabilities calculated for each cell the final detections can be determined by adjusting a
threshold based upon the calculation:

Pr(Class;|Object) * Pr(object) » IoU (b, object). (3.3)

This process of using grid cells, bounding box prediction, cell class probabilities and
final detections can be seen in Figure 3.7.
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Final detections

S xS grid on input

Class probability map

Figure 3.7: YOLOv2 direct bounding box prediction and classification [30].

As mentioned region proposals are found using the RPN from Faster R-CNN [15]. How-
ever, instead of using hand-picked priors for the anchor boxes, YOLOv2 proposed a method
to learn more suitable sizes and aspect ratios. This is done by running k-means clustering on
the annotated bounding boxes from the training set using a custom distance measurement.
The custom measurement replaces Euclidean distance as these distances would create a bias
due to more error on likely occurring on larger anchors. The custom distance measurement
is designed for favourable IoU scores and is as follows:

d(box, centroid) = 1 - ToU (box, centroid) (3.4)

where box is the ground truth bounding box from the training set and centroid is the
predicted anchor box. By learning the priors YOLOvV2 is able to use five anchor boxes at
the same level of recall as the nine used in a typical RPN.

YOLOv2 also goes against the grain in comparison to other state-of-the-art object de-
tectors in regards to the choice of classification model. Rather than using the common
networks such as VGG or ResNets, YOLOv2 propose their own 19 layer model dubbed
Darknet-19. The model is of similar paradigm to VGG nets in that it uses mostly 3 x 3
convolutions and doubles the number of channels after pooling. But it is of considerably
lower complexity than VGG-16 which consists of 15.3 billion Floating Point Operations
(FLOPs), with only 5.58 billion FLOPs. The baseline model has competitive results on
ImageNet which can be seen in Table 3.1. The baseline can be improved using standard
data augmentations and also by initially training on 224 x224 images followed by fine-tuning
on 448, this is also shown as Darknet-19++ in Table 3.1.

To aid in the detection of small objects the Darknet-19 model is also pre-trained on high-
resolution images from ImageNet prior to training for object detection. Also fine-grained
features are passthrough from an earlier layer when performing prediction. This gives
features from a 26 x 26 feature map instead of the 13 size at the RPN. Finally multi-scale
training is also performed.
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Table 3.1: ILSVRC classification results for the Darknet-19 model.

Model Top-1 error (%) | Top-5 error (%)
Darknet-19 27.1 8.8
Darknet-19++ | 23.5 6.7

3.2.4 Benchmark Results

This section will outline the results of the aforementioned CNN-based object detectors on
leading benchmarks PASCAL VOC and MS COCO. This includes results on the methods
with different combinations of CNN models, training data, and additions such as multi-scale
training. All results are taken from the respective authors papers.

PASCAL VOC

A summary of the results on the test set of PASCAL VOC 2007 can be seen in Table 3.2.
The first column denotes which method is used while also stating the underlying CNN
model, for example VGG-16 or ResNet-101. Improvements to some of the baseline methods
are also included in the first column if relevant. The improvements are online hard example
mining (OHEM), multi-scale training (MSTR), multi-scale testing (MSTE), box refinement
(BR), and global context (GC). Training data used in the various methods include the
train set of PASCAL VOC 2007 (07), train set of PASCAL VOC 2012 (12), and trainval set
from MS COCO (COCO). In entries when COCO is included, the detector is first trained
on COCO followed by fine-tuning on 074+12. The best AP result for each combination of
training data is shown in bold.

A clear initial improvement is the use of ResNet-101 in comparison to the VGG-16
network, both with Faster R-CNN and R-FCN. ResNet-101 gives a AP improvement of 3.2%
for Faster R-CNN, from 73.2% to 76.4%. This improvement was clear to the authors of R-
FCN and therefore the only model used in their work is ResNet-101. A small improvement
of 0.2% can also been seen for R-FCN over Faster R-CNN when using ResNet-101, both
with and without OHEM. The best performing detector with 07+12 training data is R-FCN
with both OHEM and MSTR (80.5%), indicating that the addition of multi-scale training
improves the result by 1%. YOLOv2 scores slightly lower that R-FCN and Faster R-CNN.
The best performing YOLOv2 network is trained to inputs of resolution 544 x 544, resulting
in a AP of 78.6%. When using the method of training on COCO followed by fine-tuning
on 07412, Faster R-CNN with ResNet-101 and BR/GC/MSTE scores 85.6%. However, it
is difficult to directly compare methods on this set of training data as they use different
variations of additions. For example Faster R-CNN has BR, GC and and MSTE, while
R-FCN adds OHEM and MSTR. However, a general trend is that the training scheme of
COCO+07412 results in a significant improvement, with the comparable R-FCNs method
improving 3.1%.

Similar results can be seen on the PASCAL VOC 2012 testing set, shown in Table 3.3.
A general standard for training on this test set is to include both the trainval and test from
PASCAL VOC 2007 and 2012 trainval, denoted as 074++12. The Faster R-CNN is again
improved with the deeper features from ResNet-101 by 3.4%. The best result using the
training set of 07++12 is with R-FCN with OHEM /MSTR, improving upon Faster R-CNN
with ResNet-101 by 3.8%. However, again it is difficult to compare due to the additions of
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Table 3.2: PASCAL VOC 2007 test results.

Method g‘;:;ning AP (%)
S/a(igfg_[?sl\]m 07 69.9
E/aétérllgﬁgl\] 07412 73.2
El;issg\ehrefl_()clN[lfﬂ 07+12 76.4
Faster R-CNN

ResNet-101 07412 70.3
OHEM [17]

g;zl;l\cklz\‘z—ml [31] 07+12 76.6
E;l;ﬁg-ml OHEM [31] 07+12 79.5
gilgi\t]&m OHEM/MSTR [31] | V712 80.5
DorkNet 16 3] 7412 5.0
DarkNet 10 50 7412 86
ﬁiiﬁﬁﬁﬁﬁ%} JGO/MSTE [17] | COCO+07+12 | 85.6
gil\clg-wl OHEM/MSTR [31] | COCOFT0TH12 | 83.6

OHEM and MSTR. The high-resolution version of YOLOvV2 is again a number of percentage
points behind resulting in 73.4%. The best result is again of Faster R-CNN with ResNet-101
and BR/GC/MSTE when using COCO+07++12 as the training data with 83.8%. R-FCN
with ResNet-101 and OHEM/MSTR is similarly behind as in the 2007 test, scoring 1.8%

lower.

MS COCO

The results for this benchmark is more comprehensive than that shown in the PASCAL
VOC challenge as there are greater number of metrics used. However, only the results for
AP will be shown as the AR were not present in the respective authors works. Training and
testing data is conducted in two separate ways. Firstly, training is done on the train set of
MS COCO, followed by testing on the validation set val. Secondly, training can be done
on a combination of the aforementioned train and val (trainval), followed by testing on the
test-dev set. The main results for the object detectors can be seen in Table 3.4. A separate
testing set was used for the YOLOvV2 method, denoted trainval35k. Which is made up of
the same images in trainval, however, 5,000 are removed for other validation purposes.

As in the PASCAL VOC challenges, baseline R-FCN performs better than Faster R-
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Table 3.3: PASCAL VOC 2012 test results.

Training

Method data AP (%)
st
E:e};l?rg-ml OHEM/MSTR [31] | 07T 12 7o
DNt 10 (3] OT+12 o
EaétérlfgggN COCO407T++12 | 75.9
ek o | 000712 53
3;5132_101 OHEM/MSTR [31] | COCOFUTH+12 1820

CNN with ResNet-101, with AP@.5 scoring 0.5% and AP@Q[.5, .95] 0.4% higher. R-FCN with
MSTR gives the best result when using the training set of MS COCO only. Interestingly,
this best result is not consistent when comparing AP across the three object scales. For
small object R-FCN with ResNet-101 is best at 8.9%, slightly above R-FCN with ResNet-
101 and MSTR (8.8%). However, the latter is best for medium sized objects at 30.8%, 0.3%
better than the next best method. Faster R-CNN with ResNet-101 performs best for large
objects with 45.0%, 2.8% higher than the next best result, despite being considerably worse
performing in the small and medium sized objects. When using the trainval set for training
and test-dev for testing the best performing is again Faster R-CNN with ResNet-101 and
BR/GC/MSTE across all AP modes. Again comparison is difficult as the methods do not
all have the same additions to their baselines. R-FCN with ResNet-101 and MSTR/MSTE
is competitive to the best result. According to the authors of the best method [17], the
additions of box refinement gives roughly 2% improvement, while global context gives about
1%. This could account for the 2.5% difference in AP@.5. Finally YOLOv2 with DarkNet-
19 performs considerably worse on MS COCO. This is especially present on smaller objects
scoring 5.0% AP.

3.2.5 Backbone Models

This section will cover two examples of backbone models often used in CNN-based object
detectors, namely, VGG nets [14] and ResNets [17]. A discussion of the general architecture
and classification results on ILSVRC will be done for both.
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Table 3.4: MS COCO test-dev results.

Method Training | Test AP | AP AP AP AP
crRo data data @.5 | @ [.5, .95] | small | medium | large
Faster R-CNN .

VGG-16 [15] train val 41.5 21.2 - - -
Faster R-CNN .

ResNet-101 [17] train val 48.4 | 27.2 6.6 28.6 45.0
R-FCN ]

ResNet-101 [31] train val 48.9 | 27.6 8.9 30.5 42.0
R-FCN

ResNet-101 train val 49.1 | 27.8 8.8 30.8 42.9
MSTR [31]

Faster R-CNN .

VGG-16 [15] trainval test-dev | 42.7 | 21.9 - - -
Faster R-CNN

ResNet-101 trainval test-dev | 55.7 | 34.9 15.6 | 38.7 50.9
BR/GC/MSTE [17]

R-FCN ]

ResNet-101 [31] trainval test-dev | 51.5 | 29.2 10.3 324 43.4
R-FCN

ResNet-101 trainval test-dev | 51.9 | 29.9 10.8 32.8 45.0
MSTR [31]

R-FCN

ResNet-101 trainval test-dev | 53.2 | 31.5 14.3 35.5 44.2
MSTR/MSTE [31]

YOLOv2 .

DarkNet-19 [30] trainval35k | test-dev | 44.0 | 21.6 5.0 22.4 35.5

VGG

A popular model for classification and object detection tasks are the VGG nets [14]. At the
time of their creation they displayed superior results on the ILSVRC classification challenge
in 2014, largely due to their significantly deep networks compared to previous CNN-based
approaches. The network is relatively simple, having 16 or 19 convolutional weight layers,
stacked on top of each other, that only have 3x3 size filters. The overall architecture of
the 19 layer VGG-19 network can be seen in Figure 3.8. The number of channels in the
convolutional layers starts at 64 and increases by a factor of 2 after each max-pooling layer
to a maximum size of 512 channels. The convolutional layers have zero-padding added to
preserve the spatial resolution. Therefore, the volume is only decreased by the five max-
pooling layers that consist of 2x2 windows at a stride of 2. After the final max-pooling layer
there are a total of three fully-connected layers, two with 4096 outputs and a 1000 output
layer for the case of the number of classes in ILSVRC classification.
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Input Image
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Figure 3.8: General architecture of the VGG nets. In this instance the VGG-19 model is shown. Notation
for convolutional layers are conv(receptive field size)-(number of channels) and fully-connected layers are
FC(number of channels).

At the time of creation, VGG nets used smaller receptive fields in comparison to other
CNN classification networks. Rather than having larger 7x7 filters, VGG nets use multiple
3x3 filters. An advantage to this there are more functions at a reduced relative computa-
tional cost, each with their own non-linear ReLLUs. Which has the effect of creating more
discriminative functions [14].

As mentioned, the results on ILSVRC classification were amongst the top performing in
2014. The entry with VGG nets took advantage of ensemble methods by averaging the
softmax outputs of their top two best performing complimentary models. Additionally, the
networks were trained and tested at multiple scales. Multiple crops were also taken from a
given image and their softmax results averaged to give the output for each model. Using
these strategies with VGG-19 models the top-1 error was 24.4% and top-5 7.1%. Despite
these results there are a number of issues with VGG networks. Firstly, the networks are
notoriously difficult to train. The aforementioned 16 and 19 layer networks were initialised
using a shallower 11-layer network as convergence was so hard to achieve. Secondly, despite
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using smaller receptive fields the number of parameters in the networks is very large. Apart
from training difficulties, this puts a large requirement on this size of GPU needed.

Residual Networks

After the impressive advances of various challenges with ResNets in 2015, their use become
a standard for object detection systems. With many of the entries in MS COCO and
ILSVRC being based upon ResNets. The intuition of deep neural networks is that as the
model becomes deeper richer representations of the original input are found. However,
as discussed it is difficult to train deeper versions of commonly used CNN architectures,
such as VGG nets. The intuition of deeper architectures lead to better networks was
explored in [17] by stacking additional layers and creating a 56 layer CNN. It was found
that stacked deeper networks have a degradation problem and the networks converge to a
testing error higher than the corresponding shallower networks. A hypothesis was made
that this is due to a deeper network overfitting the dataset, however, it was determined
that this was not the case as deeper models also exhibit higher training error. The solution
to this degradation problem was to to construct deeper models using identity mapping and
residuals, dubbed a deep residual learning framework [17]. With this framework a given
layer learns a residual mapping between the previous layer output and operations on the
output. Using this reformulation the training error in the current layer should be no greater
that the previous. This core concept of a residual block is visualised in Figure 3.9. The
input z is passed into the block where a mapping is computed with two weight layers with
convolutional operations with a ReLLU operation between them, representing an alteration
with F'(x). After this, the original input (identity) is added through a shortcut connection
to the mapping by F(x) + 2. This formulation forces the convolutional layers to compute
weights to learn the residual mapping F(z).

weight layer

F(x
®) RelLU
X

\ identity

weight layer

\
F(x) + x C}

v RelLU

Figure 3.9: Core concept of residual blocks used in ResNets.
The formulation of F(x) + x requires that the dimensions of F' and x are equal. In
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situations where this is not the case a linear projection Wz is performed on x such that
the dimensions match. The final formulation of a residual block is:

y=F(z,W; + Wsx) (3.5)

where W; are the weights of the convolutional layers.

In the original work, experiments on a number of different architectures with residual blocks
are conducted. ILSVRC classification is evaluated using naively stacked plain networks and
ResNets. The plain networks are inspired by VGG nets [14] with two design criteria. Firstly,
for a given output feature map size the number of filters must be equal. Secondly, if the
feature maps size is halved the number of filters in the layer are doubled. The ResNets
are variants of these plain networks but with residual connections in each block. In order
to perform a fair comparison the linear projection performed in ResNets when dimensions
are altered is done with zero-padding so that no extra parameters are added. Both sets
evaluated are with 18 and 34 layers. On top of the use of residual blocks, ResNets are also
trained with scale augmentation and batch normalisation. During inference, multi-scale
testing is conducted. Results on ImageNet validation top-1 error showed that the use of
residual blocks aided in the optimisation of deeper architectures. Table 3.5 shows that
the deeper plain networks exhibited troubles in optimisation with increased error with a
deeper network. However, ResNets provided a decrease of 2.85% in error between the two
respective architectures.

Table 3.5: Top-1 error(%) on ImageNet validation set.

Plain (VGG-inspired) | ResNet
18 layers | 27.94 27.88
34 layers | 28.54 25.03

Haven shown that ResNets aid in optimisation of deep networks, the authors exper-
imented with even deeper networks of 50, 101, and 152 layers. Due to concerns in the
training time the residual blocks are altered in comparison to that shown in Figure 3.9.
The new block shown in Figure 3.10, F' consists of 3 convolutional layers of size 1 x 1,3 x 3,
and 1 x 1. The two sets of 1 x 1 layers are used to reduce complexity by reducing the input
to the 3 x 3 layer and restoring the resulting output.
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Table 3.6: Results of various deep ResNet architectures on ImageNet validation set.

Method Top-1 error (%) | Top-5 error (%)
ResNet-34 | 21.84 5.71
ResNet-50 | 20.74 5.25
ResNet-101 | 19.87 4.60
ResNet-152 | 19.38 4.49

256-d

filter size: 1x1
ouput: 64

RelLU
y

filter size: 3x3
ouput: 64

RelLU
/

filter size: 1x1
ouput: 256

ES

-

v RelLU

Figure 3.10: Residual block used in deeper ResNet architectures.

The deeper ResNets prove to give impressive results on the ImageNet validation sets as
seen in Table 3.6, with the very deep ResNet-152 providing the lowest error.

3.3 Ensemble Methods

An ensemble of classifiers is a popular method to increase the performance of many ma-
chine learning application and problems. In object detection, most current top performing
systems are ensemble-based. As mentioned in Section 2.4 Related Work, this includes the
top two performing methods on MS COCO that use Faster R-CNN ensemble with variants
of ResNets. This section will give an overview of ensemble methods in machine learning,
including some popular methodologies. The section is largely inspired on the concepts from
the comprehensive overview of ensemble methods in regards to methods and applications
in [37].

One of the main goals of an ensemble system is to reduce the variance incorporated in
the training process. This addresses a key issue that appears with the bias-variance trade-
off problem in machine learning. Bias is the error that arises from incorrect assumptions
in the learning algorithm. High bias can result in an algorithm to miss important patterns
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in the given problem. Whereas variance is fluctuations in the training data, if there is a
high amount of variance a model can overfit to random noise. Typically systems with low
bias tend to have high variance and have models that are more complicated. Therefore, in
ensemble methods a goal can be to have multiple classifiers that have a similarly low bias
but are different in regards to the variance in training data. By combining these models the
overall variance is reduced and hence accuracy improved. An example of having different
variance is to train classifiers on different subsets of the data. By doing this the assumption
is that the classifiers will make different errors on a given data point. However, by com-
bining the classifiers the errors will be cancelled out by the increased strength from lower
individual variance. Each classifier is considered an ensemble member in the overall system
and can have be used in one of two settings. Firstly a member can be used for classifier
selection. Here, each classifier is trained such that it is an expert in a local part of the
feature space. During inference one of the members are selected to answer the problem
based upon a distance measurement of the data in the feature space. Alternatively, the
members can be weighted according to their distances to the data and combined to produce
a decision. The second way in which ensemble members can be used is in classifier fusion.
With this method all members are trained over the entire feature space and fused to make
a composite classifier. Due to differences in training, such as ordering of training data, the
individual members are slightly different and fusing them leads to lower variance.

3.3.1 Building an Ensemble System

According to [37] there are three main strategies to building an ensemble system. Namely:

1. Data sampling and selection: selection of training data for individual classifiers.
2. Training member classifiers: specific procedure used for generating ensemble members.

3. Combining ensemble members: combination rule for obtaining ensemble decision.

The firstly strategy aims to increase the diversity of the individual ensemble members.
A common method as mentioned earlier, is to train the members on different subsets of
the training data. Ideally the members should not give the same output for a given data
point, otherwise the ensemble is superfluous. While important that members have their
individual strengths in producing correct predictions that are different, even more so is
that the members produce different errors. Again, if the members produce the same errors
on a data point it is not possible to reach the correct outcome. However, if members
produce different errors there is the potential that individual member error can be fixed
when combining outcomes. The second strategy is in regards to how the members are
trained. Variability in the ensemble can be reduced by using different strategies. This
could be by altering the inner parameters of a CNN such as loss functions, filter sizes
and optimisation strategies Third is the final step in an ensemble system, how to combine
the members. This step is dependent on the type of output from the classifiers. For
example, a support vector machine may only return the class label without any additional
information. In this instance the popular choice is to use a majority voting strategy where
labels with the highest sum is taken as the ensemble output. However, if the output of the
members is continuous, such as with accompanying confidence values in neural networks,
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more options are present. These can include multiple arithmetic methods such as mean,
average, minimum, maximum and median.

39



4 Design

Now that an analysis of the technical aspects of object detection with deep learning has been
conducted an overview of the design of the system will be made in this section. Multiple
choices can be made with respect to the overall architecture of the CNN-based object detec-
tor. As covered in Section 3.2 Object Detection with Convolutional Neural Networks, two of
the best performing systems are Faster R-CNN and R-FCN. The current core classification
model used in both is the ResNet architecture. As the addition of ResNets significantly
increases performance the use of these in this work is deemed crucial. However, the choice
of either Faster R-CNN or R-FCN is not immediately as clear. Both methods perform
similarly with respect to benchmarks such as PASCAL VOC and MS COCO. But as the
decision has been made to incorporate ResNets a decision on this matter was indirectly
made. The GPU available in this project while being large in regards to memory is only
available to train R-FCN with the ResNet-101 model. Unfortunately, due to the internal
architecture of Faster R-CNN the 8GB memory on the NVIDIA GPU was not able to store
all parameters while training a Faster R-CNN with ResNets. Due to the more efficient
classification module in R-FCN, a ResNet backbone could be trained.

Leading object detection systems take advantage of ensemble methods. Many of them
are trained with regards to the variations in internal architecture and not specifically train-
ing experts towards solving specific challenges. Therefore, the system in this project will
take advantage of the first point in Section 3.3.1 Building an Ensemble System, namely
data sampling and selection. The aim will be to train R-FCN with ResNet-101 on differ-
ent subsets of training data with the aim to create expert ensemble members in regards
robust-related challenges. Two separate factors will be chosen, one with respect to vari-
ations in the object and the other in terms of image variations. The first factor chosen
is object size. As covered in Section 8.2.4 Benchmark Results, in general object detection
systems find it challenging to detect and classify objects with smaller resolutions. There-
fore, if a system can be trained towards a subset of sizes in the training data, ideally the
individual ensemble members will increase their performance on the respective sizes. The
second factor chosen is image quality. As mentioned in Section 2.2 Main Challenges, the
quality of an image can be a factor in the overall performance of CNN-based classification
systems. Therefore members will also be trained towards subsets data split based upon this.

Lastly, the third strategy in building an ensemble system will be addressed. Individual
members predictions much be combined in an ensemble system. Therefore, approaches
must be taken to combine outputs. The combination strategy is greater than only voting
on which class a potential object is associated to. Bounding-boxes and the confidence of
each detection is used in the calculation of metrics in both PASCAL VOC and MS COCO.
Therefore, these must be combined in the ensemble system as well.

Based upon these issues the following design requirements are set with respect to the pre-
viously discussed items.

e Object Detector Architecture.

— CNN-based method.
— ResNets as backbone model.
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e Ensemble Data Sampling and Selection.

— Ability to measure object and image variations with respect to:

*x Object size.
* Image quality.

e Ensemble Training of Classifiers.
— Must be kept constant to measure effect of differing data sampling strategy.
¢ Ensemble Combination.

— Method to combine bounding-boxes and confidences between individual ensemble
members.

Now that the general requirements have been outlined the following sections will cover
the architectural considerations to ensure that the above requirements can be met.

4.1 Training Ensemble Members

The training of the R-FCN members will be done using Convolutional Architecture for Fast
Feature Embedding (Caffe) [38]. This was chosen due to the research being provided by the
authors of R-FCN through training code and pre-trained Caffe models. However, as there
is the requirement to combine detections between ensemble members, then the detections
must be found based upon the same input to each model. One solution to this is to use the
region proposals found using the RPN. In a standard R-FCN the RPN is an internal part
of the network and is trained end-to-end. However, as these proposals must be constant
between all ensemble members this method is not appropriate. Additionally, due to the
nature of the Caffe framework, once a network has been defined and trained it is difficult
to change it. For example, a standard R-FCN takes the entire image as inputs but in this
work the requirement is that it takes smaller region proposals. The solution to these points
is to train the networks using a method inspired by the 4-step alternating training method
presented by the Faster R-CNN authors [15]. The process can be seen in Figure 4.1.
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Stage 1 Stage 2 Stage 3
Train RPN Train RPN Train RPN
Initialise from Initialise from Intialise from

Stage 2 R-FCN Stage 2 R-FCN
ImageNet model
model model

Generate region
proposals on

Generate region
proposals on

training set training set
Train R-FCN Train R-FCN
detector with detector with
proposals proposals
Initialise from Initialise from
ImageNet model ImageNet model

Figure 4.1: Flow chart showing the alternating training method.

In this approach the overall network in trained in multiple steps rather than an end-to-
end method. In the first step, an RPN is trained to determine region proposals, the RPN is
initialised from a pre-trained ImageNet model and fine-tuned to the proposal task. Next a
R-FCN is trained based upon the proposals found in the previous step. This network is also
initialised with a pre-trained ImageNet model. In step three, another RPN is trained but
initialised using the R-FCN from step two. In this step the convolutional layers that are
shared between the R-FCN and RPN are fixed and only the layers unique to the RPN are
updated. By training a model with this approach a testing image is able to run through the
same steps as a R-FCN trained end-to-end, however, as the networks are split into different
models it is also possible to use the stages of the method individually. Creating a solution
for finding region proposals with an external RPN and having a R-FCN that can take the
proposals as inputs.

An additional benefit to training R-FCNs in this manner is that once a baseline model
has been created only one part needs to be re-trained. As the aim is to train various en-
semble members to different subsets of data only the R-FCN in stage 2 is required to be
re-purposed. The RPN in stage 3 should be kept constant based on the baseline model as
it will provide the shared proposals for test images. Therefore, once a systematic approach
has been found for splitting data for both train and test based on the data sampling and
selection requirements the detection part of the R-FCN can be trained towards its expert
area. The following sections will explain how the subsets of data will be selected.
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4.1.1 Object Size Data Sampling

The area of a region proposal found with a RPN gives an indication as to the approximate
size of a potential objects. Therefore, the area for all proposals on the training set can be
computed from the output of the second step in stage 2 shown in Figure 4.1. Once the area
of all proposals are computed an appropriate split of the data can be determined depending
on the area distribution. The main requirement in creating the subsets of data is that equal
number of ground truth samples should be present in both.

4.1.2 Image Quality Data Sampling

There are many choices for computing the quality of an image. A popular area of research
for this purpose is Image Quality Assessment (IQA). These methods aim to determine the
subjective quality of an image. There are two forms of IQA, Full-Reference Image Quality
Assessment (FR-IQA) and No-Reference Image Quality Assessment (NR-IQA). FR-IQA
approaches require the original, undistorted reference image in order to determine quality.
Whereas, NR-IQA do not have this information available [39]. As the aim is to determine
the level of image quality on one of the benchmark datasets, no reference image is present.
Therefore, an NR-IQA method is required. Current state-of-the-art within NR-IQA is also
deep learning based and works are typically trained on IQA datasets. Datasets include Lab-
oratory for Image & Video Engineering (LIVE) dataset [40] [41], TID2013 [42] and CSIQ
[43]. The datasets consist of source reference image and have artificially created counter-
parts with varying levels of distortion. Distortions include, such as in the LIVE dataset,
JPEG2000 compression, JPEG compression, additive white Gaussian noise, Gaussian blur
and bit errors from a fast fading Rayleigh channel. Models can then be trained to predict
subjective quality based on ground truth user determined quality measurement.

Based upon this, an NR-IQA method can be used to determine the level of image quality
with respect to a number of different distortions. Then as in object size training, if pos-
sible, the data will be split into different training subsets. A leading CNN-based NR-IQA
method will be used and the specific network and implementation details will be covered in
Section 5.2 Image Quality Assessment.

4.1.3 R-FCN Training

Training of the baseline R-FCN model shown in Figure 4.1 is done using SGD optimisation
with largely the same parameters across the five different training parts. The parameters
are adapted from [31] and can be seen in Table 4.1. All models start with a base learning
rate of 0.001 which is dropped by a factor of 0.1 once in the process. This is done after
80,000 iterations for the R-FCN models and after 60,000 for the RPNs. The learning rate
is controlled with a momentum of 0.9 and weight decay of 0.0005. The two R-FCN models
are trained for 120,000 iterations, while the three RPNs are trained for 80,000.

Both networks are trained with a batchsize of one example per iteration. In the RPN
models the batches are simply one ground truth example per iteration. Whereas, the
training of the R-FCNs sample 128 mini-batches from a given image. These mini-batches can
consist of both object class samples and background samples. The only data augmentation
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Table 4.1: Common SGD optimisation parameters for the 5 training parts of the baseline R-FCN model.

Parameter Value

Base learning rate 0.001

Learning rate policy | step

Gamma 0.1
Momentum 0.9
Weight decay 0.0005

used in training is horizontal flipping of images, effectively creating double the amount of
training examples.

4.1.4 Object Detection Benchmark

The choice of object detection benchmark is PASCAL VOC. A common strategy in object
detection systems is the conduct preliminary experiments on PASCAL VOC data. Then
if applicable a potential system can be trained on a larger dataset such as MS COCO. By
training on PASCAL VOC a larger number of ensemble members can be trained on the
single GPU available.

The data used will follow the leading methods for PASCAL VOC 2007 object detection.

Training will be done on the 07412 train sets and testing will be conducted on the 07 test
set.
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This chapter will cover the implementation aspects of the ensemble members outlined in
the previous chapter. This includes determining how to sample the 07+12 training data,
combination of ensemble members and overall final results detection results.

5.1 Resolution-Aware Object Detection

As determined earlier object detectors are generally more accurate on objects that cover
a larger number of pixels in an image. This is intuitive as objects with a lower resolution
objectively have less details that can describe them. The poorer performance can be seen
in Table 3.4, for all object detectors the AP is considerably lower for smaller objects in
comparison to both medium and large. The best performing detector from [17], has an AP
difference of 35.3%, from 50.9% for large objects to 15.6% for small. A potential method of
tackling this issue is to train multiple detectors on separate partitions of the training data
according to the size of the object. While deep-based CNN have millions of parameters
to generalise from training to tesitng, the difference between small and large objects may
skew the learning towards the latter. In order to test this hypothesis an initial test will
be conducted on the 07+12 train set. However, PASCAL VOC does not have the same
definition of objects sizes as in MS COCO. Therefore, the distribution of the ground truth
bounding boxes from the 07412 set must be analysed in order to determine if an appropriate
split of data based on object size can be made. This was done by parsing all of the bounding
box coordinates in the set and calculating the area. A histogram of the all of the ground
truth areas can be seen in Figure 5.1. There is a clear tendency to smaller objects in the
training set with a clear skew towards the left of the figure.

PASCAL VOC 07+12 Bounding Box Area
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Figure 5.1: Histogram of the PASCAL VOC 07+12 bounding box area.

The data in Figure 5.1 can be split into two equal subsets if the median area of 19,205.5
is used. However, as covered in Section 4.1 Training Ensemble Members, the ensemble R-
FCN members are trained with region proposal inputs of both ground truth positives and
negative examples found using a RPN.
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A potential shortcoming of using proposals as inputs to training ensemble members is a
RPN likely finds many more examples of possible objects than actually are present. For a
given image, an RPN may find hundreds of potential objects despite an image only con-
taining a couple of true positive examples. This can be solved by setting the proposals with
the highest confidence as the ground truth examples and labelling the remaining proposals
as the background class. This is a stark comparison to the end-to-end training approach as
there are now many more training examples and a large skew towards the background class.
With this approach, the total number of training examples is increased from 80,116 ground
truth object instances to 9,979,345 region proposals. The median of the almost 10 million
proposals is 4,684 pixels, significantly smaller than the threshold of 19,205.5 determined
using only ground truth boxes. This large increase in training examples and skew in data
poses a question on how to split the RPN proposals such that two networks can be trained
towards small and large objects equally. As mentioned earlier, a pre-requisite in creating
subsets of data is that the multiple sets should be roughly equal in regards to ground truth
examples. If the subsets were split by the median of the RPN proposals (4,684) the two sets
of data would have equal numbers of examples. However, the large skew in RPN proposals
to smaller objects means that there significantly more ground truth samples in the subset
of data containing larger objects. This can be seen in Table 5.1, where despite there being
an almost even split in data subsets there are significantly more ground truth annotations
in the RPNj4yg4er subset.

Table 5.1: Creating object resolution data subsets. If split by the median area of all region proposals
training samples the larger dataset has significantly more ground truth object instance samples.

Data RPNsma” RPNlarger
Ground Truth | 19,992 60,116
Background 4,969,369 | 4,929,297
Total 4,989,361 | 4,989,413

Another option is to use the median of 19,205.5 found on only ground truth boxes. The
data distribution based on this threshold can be seen in Table 5.2. In this instance there
is significantly more data in the RPNjq, g subset, however, the skew is solely due to the
many more background examples. The ground truth annotations are shared equally with
40,058 samples in each.

Table 5.2: Creating object resolution data subsets. If split by the median of area from ground truth objects
there is an equal number of ground truth instances. However, RPN;arger has significantly more background
samples.

Data RPNsmall RPNlarger
Ground Truth | 40,058 40,058
Background 3,528,370 | 6,370,859
Total 3,568,428 | 6,410,917

As the overall goal of object detectors is to find objects within the classes, the decision
was made to use the threshold of 19,205.5 to create the split in data. Despite there being
significantly more background examples in one of the datasets.
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R-FCN ensemble members were trained on the two subsets of RPN according to the design
guidelines. To evaluate how well the expert resolution members perform on the respective
subsets of data tests were performed on splits of the 07 test data. This data was split by us-
ing the same median threshold of 19,205.5 used in creating the training subsets. Firstly, the
results for small objects from 07 test can be seen in Table 5.3. Shown are R-FCNs trained
on RPNg,a1, RPNjgpger and a baseline model trained on all 07+12 data. The shows that
the model trained towards smaller object proposals on RPNy, performs best. This trend
is similarly true for large objects as seen in Table 5.4. Finally, for all ground truth objects
the baseline model is the best performing as seen in Table 5.5.

Table 5.3: Results for R-FCN models trained on three different subsets of data and tested on only small
objects from the 07 test set.

Train Data | AP
RPN 55.00%
RPNigrger 20.92%
07+12 43.80%

Table 5.4: Results for R-FCN models trained on three different subsets of data and tested on only large
objects from the 07 test set.

Train Data | AP
RPN nail 21.28%
RPNgrger 81.81%
07+12 75.14%

Table 5.5: Results for R-FCN models trained on three different subsets of data and tested on all of the 07
test set.

Train Data | AP
RPN ail 46.74%
RPNrger 62.48%
07+12 79.59%

Based upon these results it was determined that the ensemble member experts towards
object size was suitable. The following section will explain the data sampling and training
for image quality ensemble members.

5.2 Image Quality Assessment

To evaluate the amount of distortions in the dataset a method for IQA is needed. A recent
state of the art method is that of deep IQA [39]. Deep IQA is a CNN-based No-Reference
(NR) IQA method that can be trained to measure the subjective visual quality of an image.
It is deeper than previous CNN-based IQA methods with the architecture being inspired
by VGG nets [14]. Deep IQA consists of 14 convolutional layers, 5 max-pooling layers and
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2 fully-connected layers. The architecture is shown in Figure 5.2. The convolutional layers
are all 3x3 convolution kernels and activated using ReLU. Inputs to each convolutional layer
are zero-padded to ensure output size is equal to the input. Max-pooling layers consist of
2 x 2 sized kernels. The network is trained on mini-batches of 32 x 32 patches. During
inference non-overlapping patches are sampled from the image and image quality scores are
predicted for each instance. The patch scores are averaged for the final score for the entire
image.

Input Image —> conv3-256
conv3-256
conv3-32 ‘
‘ max-pool
conv3-32 ‘
‘ conv3-512
max-pool ‘
‘ conv3-512
conv3-64 ‘
‘ max-pool
conv3-64 ‘
‘ FC-512
max-pool ‘
‘ FC-1
conv3-128
conv3-128
max-pool

I

Figure 5.2: Architecture of the deep IQA network. Notation for convolutional layers are conv(receptive
field size)-(number of channels) and fully-connected layers are FC(number of channels).

Training deep IQA requires a database of annotated images with both reference images
and distorted counterparts. The following section will outline the database used in this
project for IQA training.

5.2.1 LIVE Image Quality Database

Deep IQA assesses three different datasets for this purpose. These are LIVE which consists
of 5 different distortions [40], TID2013 [42] with 24 different distortions and CSIQ [43] with
5 types. For simplicity purposes the only LIVE dataset is chosen for this project. The
dataset was made for the purposes of evaluating the subjective visual quality of images in
regards to the five distortion types. The distortions are generated from 29 colour reference
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images that are of both high-resolution and high quality. An example of images from the
dataset can be seen in Figure 5.3. The references image were collected to have a wide variety
in different content, this includes faces, people, animals, nature and man-made objects.

Figure 5.3: Examples of reference images from the LIVE dataset.

The five distortions generated from the reference images are Gaussian blur, white noise,
JPEG compression, JPEG2K compression and fast fading. By varying the parameters used
in creation of the distortions a larger database is created for each type. The total number
of images is 982 where 174 are for Gaussian blur, white noise and fast fading. JPEG and
JP2K compression have 233 and 227 images respectively. The distorted images were created
as follows:

Gaussian blur: blur is added to the images using a circular-symmetric Gaussian kernel
of standard deviation op. The values of g, are sampled between the range of 0.42 to
15 pixels.

White noise: Gaussian white noise of standard deviation oy is added to all RGB
pixels. Firstly, pixel values are scaled to between 0 and 1. oy varying between 0.012
and 2.0 is added, afterwards pixel values are rescaled back between 0 and 255.
JPEG compression: compression artefacts are added to the reference bitmap images
with JPEG at bit rates between 0.15 Bits per Pixel (BPP) to 3.34 BPP.

JP2K compression: artefacts added ranging between 0.028 BPP to 3.15 BPP.

Fast fading: this distortion represents errors that can occur when a JP2K bitstream
is transmitted over a wireless channel. The receiver signal-to-noise-ratio is varied
between 15.5 to 26.1dB for bit errors.

Subjective image quality values were calculated by showing human subjects all images,
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including reference images, and asking them to rate the image as either bad, poor, fair,
good, or excellent. The rating was done using a slider on a graphical interface with the five
possibilities being evenly spaced. A value between [1, 100] was then found depending on
where the subject paced their rating. Difference Mean Opinion Score (DMOS) were calcu-
lated for each image and averaged between all users for the final image quality annotation
for an image. A low DMOS represents high image quality and a high DMOS is a low quality
image. Figure 5.4 shows an example of an image with four varying levels of Gaussian blur
and their DMOS values.

(c) DMOS: 40.40 (d) DMOS: 75.92

Figure 5.4: Four example images from the Gaussian blur distortion set. Respective DMOS scores are
shown on the image and below.

Given the annotated DMOS values a system can be trained to predict the image quality
of an image. The following section will outline how to train deep IQA for this purpose.

5.2.2 Training Deep IQA

In the original work the deep IQA model [39] is trained for all five distortion types present
in LIVE [40] [41]. While this can provide insights into general image quality, individual
models are needed to create a potentially more powerful ensemble. The NR-IQA model
was provided by the authors and by taking advantage of the fine-tuning technique, models
for each of the individual distortions can be trained in a timely manner. The model was
provided for the Chainer framework [44] and fine-tuning of individual models were done
using this. Fine-tuning takes a previously trained model and uses these parameters as a
starting point, rather than other commonly used initialisation techniques such as using a
Gaussian distribution. As the model is already trained towards all distortions the assump-
tion can be made that only a shorter training cycle is necessary to the new task. The five
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fine-tuned models are trained in a similar manner to that of the provided model following
the guidelines in the original work [39].

In the LIVE dataset there are 29 reference images from where the respective distortions
have been created. When training deep IQA, the reference images are randomly split into 17
training images, 6 validation images and 6 test images. The deep IQA models are trained
using mini-batches consisting of a total of 128 patches per forward/backward pass. The
patches are sampled from four randomly selected images from the training split and each
image accounts for 32 of the 128 patches in the mini-batch. This process is continued until
no more patches are available for mini-batch sampling. This constitutes a completed epoch
and all patches are again available for the next epoch. The model provided by the authors
was trained for 3,000 epochs, however, as mentioned fine-tuning can drastically reduce the
number of epochs required. Therefore, the models for the five distortions are trained for
only 500 epochs each. The optimisation method for parameter updates is Adam [45]. The
optimisation settings for Adam are unchanged to that of those used in training the original
model. They are as 81 = 0.9, f2 = 0.999, ¢ = 1078 and a = 107, A total of 10 models are
trained for each distortion type, each on their individual random split of the 29 reference
images. After each of the 500 epochs the model is evaluated on the validation set and the
epoch with the best performance is chosen as the final model for testing. The evaluation
metrics used for both the validation and test set is Pearson Linear Correlation Coefficient
(LCC) and Spearman Rank Order Coefficient (SROCC). LCC is used for prediction accu-
racy as it is a measure of the linear correlation between two sets of data. SROCC evaluates
the prediction monotonicity by measuring the rank correlation between the two sets. For
both metrics a value of +1 indicates a positive correlation, 0 is no correlation, and -1 is a
negative correlation.

The mean results for each of the distortion types from their 10 models can be seen in
Table 5.6. Each best performing model on the respective validation sets are run on the
testing sets and averaged. The results showed that well-performing deep IQA models were
successfully trained towards the individual distortion types. The following section will cover
how the PASCAL VOC data will be split in subsets based upon these deep IQA models.

Table 5.6: Average results from 10 trained deep IQA models for each distortion type.

Distortion Type | LCC | SROCC
Gaussian Blur 0.9750 | 0.9681
White Noise 0.9957 | 0.9887
JPEG 0.9805 | 0.9523
JP2K 0.9788 | 0.9600
FF 0.9679 | 0.9505

5.2.3 PASCAL VOC Data Split

Each model for the five distortion types and run through the 07412 dataset in order to
give an indication to the respective distributions, as done for the object sizes in Sec-
tion 5.1 Resolution-Aware Object Detection. The distributions can been seen in the his-
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tograms

in Figure 5.5.
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Figure 5.5: Histograms representing the distribution of image quality for the five distortions trained from
The distortions shown are white noise (a), Gaussian blur (b), JPEG
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compression (c), JP2k compression (d), fast fading (e).

The distribution for white noise and Gaussian blur is skewed towards a higher image
quality as seen in Figure 5.5a and Figure 5.5b and also to a lesser extent in fast fading
in Figure 5.5e. Whereas the image quality for compression distortions is somewhat of a
Gaussian nature in Figure 5.5¢ and Figure 5.5d. For determining an appropriate manner to
split the data the same constraints are made as in that for object sizes, namely that both
subsets of data should have an equal number of ground truths to train on. Again by taking
the median for each of the five distributions can satisfy this. The respective medians can
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be seen in Table 5.7.

Table 5.7: Threshold values used for each distortion type to create even subsets of training data from
07+12.

Distortion Type | Median
White Noise 0.599
Gaussian Blur 5.607
JPEG Compression | 15.660
JP2K Compression | 11.747
Fast Fading 13.373

A skewed distribution of data was also present for object sizes, however, creating two
subsets of data for high and low white noise image quality does not appear to be feasible.
The combination of both the heavy skew and half of the data lying below 0.599 indicates
that a minimal amount of white noise distortion is present in the 07412 dataset. Therefore,
this distortion is not considered for part of the ensemble. While the Gaussian blur image
quality is also skewed it is similar to that of the the object sizes and therefore is deemed
appropriate to split based upon its median of 5.607. The remaining distributions are much
less skewed and a total of eight R-FCN models will be trained for the high and low levels
of image quality for the distortions Gaussian blur, JPEG compression, JP2K compression
and fast fading. Therefore, in total there will be ten R-FCN models trained including the
two for smaller and larger object sizes.

The 07+12 dataset has a total of 16,551 images and as this data is to be distributed into
eight different subsets there is a possibility that there is a high level of overlap between the
sets. As the aim of the ensemble is to learn to detect objects based upon different informa-
tion, if subsets are two similar there may be potentially no advantage gained between two
or more models. Therefore, a comparison matrix is used to evaluate how much the different
combinations of 07+12 match. This can be seen for higher quality subsets in Table 5.8,
lower quality in Table 5.9 and between lower and higher quality in Table 5.10.

Table 5.8: Comparison matrix for the percentage of matching data for image quality data for higher quality.

Gaussian Blur | JPEG | JP2K | FF
Gaussian Blur 74.14% | 70.78% | 83.12%
JPEG 74.14% 80.62% | 77.98%
JP2K 70.78% 80.62% 72.75%
FF 83.12% 77.98% | 72.75%

For the subsets of data for both higher and lower quality there are a few instances of
relatively high overlap in images. The largest is between Fast Fading (FF) and Gaussian
blur with 83.12% and 83.11%. Other instances of overlap also appears between JPEG and
JP2K compression which could be intuitively explained due to their similarities in their
distortions.

Finally, Table 5.10 shows the comparison matrix between factors for all eight data
subsets. There is much less overlap between these sets as much of the overlaps are present
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Table 5.9: Comparison matrix for the percentage of matching data for image quality data for lower quality.

Gaussian Blur | JPEG | JP2K | FF
Gaussian Blur 74.14% | 70.78% | 83.11%
JPEG 74.14% 80.62% | 77.98%
JP2K 70.78% 80.62% 72.75%
FF 83.11% 77.98% | 72.75%

Table 5.10: Lower / Upper

Gaussian BlurLoweT JPEGLower JPZKLower FFLoweT
Gaussian Blurggpe, | 0% 25.86% 29.22% 16.88%
JPEG yigher 25.86% 0% 19.38% 22.02%
JP2K yigner 29.22% 19.38% 0% 27.25%
FF yigher 16.88% 22.02% 27.25% 0%

in respective higher and lower configurations as seen in Table 5.8 and Table 5.9. In general
it is deemed that enough difference is present between the splits to train variants of R-FCN
networks. The following section will cover the performance of individual members with
respect to their respective image quality subsets.

5.2.4 Evaluating Image Quality Experts

As in the resolution-aware R-FCN networks individual tests are run to evaluate whether or
not the models trained on the above data are candidate experts. Firstly, using the same
measures as in Section 5.1 Resolution-Aware Object Detection, the 07 test set is split into
lower and upper subsets for each distortion type according to their respective medians. The
two respective experts trained on each of their subset and the baseline R-FCN model are
evaluated on their respective subsets.

Firstly, the results for the Gaussian blur experts can be seen in Table 5.11. Unfortunately,
the models trained on each of the subsets of data do not appear to give any advantage over
training on all of the 07412 data. Regardless of the test data the best performing model
is that trained on all of the data, outperforming by 3-5%. Similar results can be seen in
Table 5.12, Table 5.13 and Table 5.14 for each the remaining models trained on subsets of
JPEG, JP2K, and fast fading distortions. This seems to indicate that the distortions are
not as apparent for the R-FCN models such that it is possible to train expert members to
either subset.

Regardless of this result the following section will present a method to ensemble these
members and the models trained for smaller and larger object sizes. Future methods may
still be able to benefit from an ensemble where a clearer factor that the four distortions
covered here.
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Table 5.11: Results for the Gaussian blur experts on the various subsets of 07 test data.

Train Data

Test Data AP (%)

07+12 Gaussian Blur;gyer

07 Gaussian Blurjye, | 75.76%

07412 Gaussian Bluryyper

07 Gaussian Blurgper | 74.75%

07-+12

07 Gaussian Bluryper | 79.08%

07412 Gaussian Bluryer

07 Gaussian Blurypper | 76.33%

07412 Gaussian Blurypper

07 Gaussian Bluryppe, | 76.50%

07+12

07 Gaussian Bluryppe, | 80.22%

07+12 Gaussian Bluryer | 07 76.25%
07412 Gaussian Bluryppe, | 07 75.39%
07412 07 79.59%

Table 5.12: Results for the JPEG compression experts on the various subsets of 07 test data.

Train Data

Test Data AP (%)

07-+12 JPEG pwer

07 JPEGpwer | 74.33%

07+12 JPEG upper

07 JPEGpwer | 73.46%

07+12

07 JPEGpwer | 78.51%

07+12 JPEGower

07 JPEG upper | 76.69%

07412 JPEG ypper

07 JPEC pper | 76.27%

07+12

07 JPEG pper | 80.05%

07-+12 JPEG oper | 07 76.01%
07+12 JPEG pper | 07 75.26%
07+12 07 79.59%

Table 5.13: Results for the JP2K compression experts on the various subsets of 07 test data.

Train Data

Test Data | AP (%)

07412 JP2Kower

07 JP2K pwer | 74.75%

07412 JP2K pper

07 JP2K pwer | 74.65%

07-+12

07 JP2K pwer | 79.18%

07412 JP2Kywer

07 JP2K upper | 75.86%

07412 JP2K pper

07 JP2K ypper | 76.66%

07+12

07 JP2K ypper | 80.01%

07-+12 JP2K ger | 07 75.69%
07+12 JP2K ypper | 07 75.64%
07+12 07 79.59%
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Table 5.14: Results for the fast fading experts on the various subsets of 07 test data.

Train Data Test Data | AP (%)
07412 FFioper | 07 FFipwer | 75.94%
07+12 FFypper | 07 FFjppey | 74.56%
07412 07 FFiower | 79.02%
07+12 FFpoper | 07 FFypper | 77.18%
07+12 FFypper | 07 FFypper | 76.26%

07+12 07 FFypper | 80.79%
0712 FFjguer | 07 76.40%
07-+12 FFypper | 07 74.93%
07+12 07 79.59%

5.3 Ensemble

A number of different strategies for combining the ensemble members will be described in
this section. This includes averaging and weighted averaging the detections. The method
for inferring each test image will be the same apart from the combination step. This is
shown in Figure 5.6. For a given object proposal in an image found with the RPN each
network will infer a bounding box and associated confidence for all classes. After this the
given ensemble combination method determines the final detection.

Member Detections Combine Final Detection

Figure 5.6: General overview for combining detections from different ensemble members. For a given
proposal each member produces their respective detections. Then using a combination strategy they are
combined for the final detection.

A number of different combination strategies will be presented and evaluated in the
remainder of this section.
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5.3.1 Average Ensemble

One of the combination strategies is similar to that used when evaluating the expert member
results earlier in this chapter. Each of the five ensemble factors are weighted evenly in the
overall ensemble. Within each ensemble factor pair, the detection for one of the pairs will
be chosen and the other discarded. This is determined by where the given factor lies for the
given test image in relation to the training data distribution. For example, if for the given
test image it is measured with a deep IQA to have JPEG compression below the threshold
used to split the data, then the detection found using the model trained on that data will be
used. This results in five detections that will be weighted equally to find the final detection
by:

1 n
Ej==) pi; (5.1)
n =1

where n is the number of detections found by the n ensemble factor, p is the detection
result to be averaged and i represents one of the ensemble factors. Finally, j is one of the
five values found by each detection, namely the four corners of the bounding-box and the
associated confidence.

5.3.2 Weighted Average Ensemble

Each of then 10 trained networks will be used on all object proposals found using the RPN.
Weights will be distributed evenly across each of the five different types of factors as in the
average ensemble. The weighted average ensemble is determined for each bounding-box and
the associated confidence by:

1
Ej = — Zwipi,j (52)
ni=1

w; is the weight for a given detection.Weights are determined in pairs for each of the 5
ensemble factors, where the total sum of weights is equal to n. If each detection were to
be weighted equally all w would be equal to 1. As the weights are calculated in pairs each
ensemble factor is overall weighted equally as the pair of weights can at most be equal to 2.
By using this tactic in between the two sets of ensembles for a given factor can be weighted
differently but overall each factor is weighted equally. Weights for a given factor is found
according to where the the test image lies for that factors training data distribution. For
example, the subsets of training data for Gaussian blur was determined according to the
line shown in Figure 5.7.
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PASCAL VOC 07++12 Gaussian Blur Distribution
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Figure 5.7: Distribution on the 07+12 train set for Gaussian blur found using a trained deep IQA.

The quality, g; with respect to blur for a given image is determined using the appropriate
deep IQA model, if the quality is below the value used to split the data the weights are
calculated for the detection found with the given lower network by:

median; — q;

WLower = 2 — X ; (53)
median; — ming;
and the weight for the upper network wyppe, by:
Wy pper = 2 — Wrower (54)

where median; is the value used to split the training data and ming; is the minimum
quality for the given factor in the training set.
However, if the quality is above split the wypper is calculated by:

maxrq; — q;
w =2- 5.5
Upper maxq; — median; (5:5)
and lower weight wrower:
Wower =2 = Wy pper- (56)

It should also be noted that outliers are removed for the calculation of ming; and maxg;
by removing the values below the 1% and above the 99% percentile. This ensures that the
weighing of factors is not too heavily affected by large or small outlier values.
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5.3.3 Ensemble Results

In this section the results for the two aforementioned ensemble combinations strategies will
be presented. Each presentation will be accompanied with the result for the baseline R-FCN
ResNet-101 model trained on all of the 07412 training data and will be dubbed as baseline.
The results presented will be on the 2007 PASCAL VOC test set as also shown in earlier
preliminary results in this report.

The results for both combination strategies can be seen in Table 5.15.

Table 5.15: Results for the two ensemble combination strategies and for the baseline model on the 2007
test set.

Method AP (%)
Average 79.21%
Weighted Average | 79.13%
Baseline 79.59%

While neither of the combinations provide an improvement over the baseline method
both provide an increase in performance in comparison to the image quality expert results
shown in Section 5.2./ FEvaluating Image Quality Fxperts. Here, individual members were
3-4% worse in performance in comparison to the baseline model on their trained expert
areas. Additionally, the weighted average only performs slightly worse than that of the
non-weighted version. This is interesting as the intra-factor experts for the image quality
factors are similar in performance, however, while disregarding this and weighing models
still provides a performance increase.

To the evaluate the contribution of both the eight quality factor ensemble members and the
two resolution members these were combined separately based on the two strategies. The
results for the average ensemble can be seen in Table 5.16 and the weighted ensemble in
Table 5.17.

Table 5.16: Results for the the image quality ensemble members and resolution members individually
combined using average strategy on the 2007 test set.

Ensemble Members | AP (%)
Image Quality 78.15%
Resolution 78.13%

Table 5.17: Results for the the image quality ensemble members and resolution members individually
combined using the weighted average strategy on the 2007 test set.

Ensemble Members | AP (%)
Image Quality 78.44%
Resolution 75.00%

By separating the quality and resolution members Table 5.16 shows that the performance
decreases by over 1% for both in comparison the the average ensemble result of 79.21%. This
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appears to indicate that the two complement each other well and have their own expertises
for this problem. Table 5.17 also shows a decrease in performance when separating the
members based on their expertise factors. The weighted average combination strategy
does not show as large of a decrease in performance for only image quality as the average
combination does, however, there is still a performance drop from 79.13% to 78.44%. There
is a significant decrease in performance for the two resolution members showing an AP
of 75.00% on the test set. This seems to show that the addition of weighing individual
detections based on proposal size as a poorer approach. Comparing the two tables seems
to indicate that image quality members are well suited to adding a weight to detection.
Whereas, the resolution members are better suited to simply taking the detection from the
appropriate model. Therefore, combinations of average and weighted average ensembles
could be of interest. The results for these can be seen in Table 5.18. The two strategies
are shown as either Image Quality or Resolution followed by the subscript aug Or 1w aug
indicating the combination strategies of average or weighted average respectively.

Table 5.18: Results for the the image quality ensemble members and resolution members with both
combinations of average and weighted average on the 2007 test set.

Ensemble Members AP (%)
Image Qualityw avg / Resolution ., | 79.90%
Image Quality 4,4 / Resolutiony g | 78.71%
Baseline 79.59%

Results in Table 5.18 show that by using separate strategies where image quality mem-
bers are weighted and when resolution members are averaged only increases the perfor-
mance. Additionally, the performance surpasses the baseline model. The increase is slight
from 79.59% to 79.90%. However, again it appears that the members of the ensemble
compliment each other well both intra-factor and inter-factor. As suspected the opposite
strategy of average combination for image quality and weighted average for resolution does
not surpass previous results.

The results so far have only been with different combinations of the expert ensemble mem-
bers. However, another strategy is to include the baseline model trained on all of the 07412
data. As the baseline model performs well by itself the other ensemble members will act
as support, as ideally there are parts of the PASCAL VOC data that they perform better
on due to the reduced training variance. The methods for ensemble are used as earlier,
except that there is an additional member in the ensemble. Also it should be noted that as
there is no complementary member to the baseline. Therefore, its detections are weighted
by 1.0 regardless of ensemble combination strategy. Firstly, the results for the average and
weighted average ensemble, both with the baseline model can be seen in Table 5.19. The
inclusion of the baseline model is shown by the subscript puse. The table shows that in
both strategies the inclusion increases the overall performance. Using the weighted average
the performance is increased by 0.22%. While the average strategy is increased above the
baseline result by 0.65% to 79.86%.

Next the addition of the baseline model with respective to each ensemble factor using
the average ensemble strategy can be seen in Table 5.20. Both factors have a significant
increase in AP performance with the extra ensemble member. The image quality experts
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Table 5.19: Results for the two ensemble combination strategies and for the baseline model on the 2007
test set. Shown is both the results with the expert ensemble members only and experts plus the baseline
model.

Method AP (%)
Average 79.21%
Averagepgse 79.86%

Weighted Average 79.13%
Weighted Averagepqse | 79.35%
Baseline 79.59%

gain 0.77%, while the two resolution members have their performance increased by 1.96%.
The result of 80.09 is higher than the result shown in Table 5.18 even without having
members trained towards image quality factors.

Table 5.20: Results for the the image quality ensemble members and resolution members individually
combined using average strategy on the 2007 test set. Shown is both the results with the expert ensemble
members only and experts plus the baseline model.

Ensemble Members | AP (%)
Image Quality 78.15%
Image Qualitypgse 78.92%
Resolution 78.13%
Resolutionygse 80.09%
Baseline 79.59%

Adding the baseline model to the factors and using the weighted average strategy does
not result in an improvement over the baseline result as shown in Table 5.21. However,
both factors see a larger increase in performance than that of the average combination
in Table 5.20. Image quality performance is increased by 0.71% and resolution members
increase by 3.21%. Clearly regardless of ensemble strategy the addition of the baseline
model aids in overall object detection on PASCAL VOC.

Table 5.21: Results for the the image quality ensemble members and resolution members individually
combined using weighted average strategy on the 2007 test set. Shown is both the results with the expert
ensemble members only and experts plus the baseline model.

Ensemble Members | AP (%)
Image Quality 78.44%
Image Qualitypgse 79.15%
Resolution 75.00%
Resolutionygse 78.21%
Baseline 79.59%

While improvements are seen for both strategies with the addition of baseline, the
tendency is still that the resolution members perform best with the average ensemble and
image quality with weighted average. Therefore, the two combinations of ensembles with
the addition were tested. This is shown in Table 5.22 and shown is that this provided the
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best result of any ensemble combination. Image quality with the weighted average and
resolution with average ensemble results in 80.15%, an increase of 0.56% in comparison to
the baseline R-FCN.

Table 5.22: Results for the the image quality ensemble members and resolution members with both
combinations of average and weighted average on the 2007 test set. Shown is both the results with the
expert ensemble members only and experts plus the baseline model.

Ensemble Members AP (%)
Image Qualityw A,y / Resolution g, 79.90%
Image Qualityy avg / Resolutiongvg pase | 80.15%
Image Quality 4oy / Resolutionyy a,g 78.71%
Image Quality anq / Resolutionw g pase | 79-10%
Baseline 79.59%

The AP results for each categories for best performing ensembles are shown in Table 5.23
and Table 5.24. The tables show results for the baseline model, the given ensemble method
and the difference between the two for a given class. For the Resolutiong,s. ensemble, which
had an overall increase of 0.5%, 13 of the 20 classes had an improvement compared to the
baseline model. As seen in Table 5.23 the largest increases were for the TV class with
2.77%, train 2.53% and sofa 1.64%. The classes with the largest decrease in performance
were horse falling by 2.21% and cow with 1.04%

Table 5.23: Results for the individual classes in the 2007 test set. Shown are the results for the baseline
model and Resolutionyse. Additionally the difference between the two methods are presented for a given
class.

Model aero | bike bird boat bottle | bus car cat chair | cow
Baseline 80.53 | 84.59 | 79.89 | 71.52 67.54 87.22 | 87.59 | 87.98 | 65.15 | 87.11
Resolutionp,s. | 82.04 | 84.21 | 80.14 | 72.08 | 69.05 87.86 | 87.56 | 89.28 | 66.01 | 86.07
Difference +1.51 | -0.58 | 40.25 | +0.56 | +1.51 +0.64 | -0.03 +1.30 | +0.86 | -1.04
Model table | dog horse | mbike | person | plant | sheep | sofa train | tv
Baseline 73.66 | 88.61 | 87.83 | 83.21 79.87 54.60 | 84.07 | 80.03 | 83.60 | 77.17
Resolutiony,,. | 73.04 | 89.10 | 85.62 | 83.59 | 79.95 54.30 | 83.63 | 81.67 | 86.13 | 80.47
Difference -0.62 | +0.49 | -2.21 | +0.38 | 4+0.08 -0.30 | -0.44 +1.64 | +2.53 | +2.77

Table 5.24 shows that for the Image Qualityy 4,4 / Resolution Avgbase €nsemble again 13
of the classes increased in performance. The largest increase were again train and TV with
2.77% and 2.48% respectively. Interestingly, the third largest winner with Resolutionggse,
sofa, decreased in performance in this instance. Giving an indication that object detection
does not improve for all classes with the addition of image quality ensemble members. The
worse performers in this instance were table and horse, decreasing by 1.63% and 0.87%
respectively.

Finally, two examples of detections can be seen in Figure 5.8 and Figure 5.9. For both
figures, on the left is the full size image and right a zoomed version of the object and detec-
tions. The detections shown are for the ground truth annotation, baseline, Resolutiony,se
(Res) and Image Qualityw avg / Resolution ayghase (IQ / Res). Additionally, shown in paren-
theses in the legend is the IoU between the ground truth and detection for the given method.
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Table 5.24: Results for the individual classes in the 2007 test set. Shown are the results for the baseline
model and Image Qualityw avg / Resolutionaygpase . Additionally the difference between the two methods
are presented for a given class

Model aero | bike bird boat bottle | bus car cat chair | cow
Baseline 80.53 | 84.59 | 79.89 | 71.52 67.54 87.22 | 87.59 | 87.98 | 65.15 | 87.11
Image Qualityw avs / | g1 41 | 85.79 | 81.09 | 72.87 | 69.09 | 88.00 | 87.42 | 89.12 | 66.71 | 86.72
Resolution gy gbase

Difference +0.88 | +1.20 | +1.20 | +1.35 +1.55 +0.78 | -0.17 +1.14 | +1.56 | -0.39
Model table | dog horse | mbike | person | plant | sheep | sofa train | tv
Baseline 73.66 | 88.61 87.83 | 83.21 79.87 54.60 | 84.07 | 80.03 | 83.60 | 77.17
Image Qualityw vy / | 79 03 | 58.69 | 86.96 | 84.24 | 80.09 | 53.74 | 83.28 | 79.88 | 86.28 | 79.65
Resolution gy gbase

Difference -1.63 +0.08 | -0.87 +1.03 | +0.22 -0.86 -0.79 -0.15 +2.68 | +2.48

Additional examples of detections can be seen in Section A.2 Detection Examples. For the
boat detection in Figure 5.8, both ensemble methods increase the IoU significantly compared
to the baseline detection. The IoU with the Resolutiony,se is 0.045 higher at 0.845. The
Image Qualityw avg / Resolution gygpase detection matches even better with 0.061 higher
intersection. The difference in the results seems to be largely due to the closer bounding
box towards the right side of the boat, with the Image Qualityw g / Resolutiongygpase
fitting especially well.

. =] Ground truth
Boat Detections =1 Baseline (0.800)

3 Res (0.845)
1Q / Res (0.861)

=1 Ground truth

Boat Detections 1 Baseline (0.800)
— =1 Res (0.845)
T 1Q / Res (0.861)

Figure 5.8: Detections for the boat class from an image in the 2007 test set. Shown are the bounding boxes
for the ground truth annotation, baseline, Resolutionyqse (Res) and Image Qualityw avg / Resolution avgpase
(IQ / Res). The IoU between the ground truth and bounding box is shown in parentheses for each method.

Figure 5.9 is an example of a relatively small object in an image. In this instance the
best fitting detection is from the Resolutiong,s. ensemble with an IoU of 0.825. An increase
of 0.071 compared to the detection with the baseline model. The Image Qualityw 4vg /
Resolution g4,gpqse also has a better fitting detection with an IoU of 0.803. The improvement
for both ensembles seem to be towards to top of the train where both bounding boxes fit
the ground truth better than the baseline detection. Again, both models had significant
improvements for the train class compared to the baseline model.
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Train Detections
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Figure 5.9: Detections for the train class from an image in the 2007 test set. Shown are the bounding boxes
for the ground truth annotation, baseline, Resolutionyqse (Res) and Image Qualityw avg / Resolution avgpase
(IQ / Res). The IoU between the ground truth and bounding box is shown in parentheses for each method.
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6 Discussion

This chapter will include the discussion of the key areas of this thesis. This includes the
choice of ensemble factors and object detector and how the ensemble was trained and
combined.

6.1 Choice of Ensemble Factors

The choice of object size and image quality as the deciding factors on how to create different
ensemble members was made to address both challenges in object detection within object
and image variations. The decision to use object size was clear as detector results on bench-
marks such as MS COCO showed that smaller objects are more difficult to detect. However,
limited work has been done on image quality factors and object detection. Therefore, this
was a more experimental part of the ensemble design. In regards to object size, the use of a
trained RPN is a strong and easy approach to use. However, the RPN was trained to detect
objects of all sizes. Rather it could have been possible to train an RPN towards object
sizes using the ground truth annotations such that each of the network ensemble were fed
with region proposals from a better starting point. This could of course lead to issues in
the ensemble as it would put a challenge on ensuring the ensemble members are combining
results on the same object at test time. The choice of IQA for the measurement of image
quality may have a number of drawbacks. Firstly methods within IQA attempt to estimate
the subjective quality rather than objective. If image quality is a factor in object detection
it would be due to the objective distortions present in an image, not that subjective eval-
uation of a person. Therefore, a method an objective method for measuring distortions in
an image may be more appropriate. However, as the goal is ensemble methods is to reduce
the variance in training the use of IQA methods can still be suitable. Especially, if used in
a systematic method as in this work.

6.2 Choice of Object Detector

The requirements set out in this work for the choice of the object detector was that it
should be state-of-the-art CNN-based. Three options were found, namely, Faster R-CNN,
R-FCN and YOLOv2. Through both an analysis of the technical aspects and results it was
determined that a detector with ResNets as the backbone model should be used. Due to
GPU limitations, the decision was made to use the R-FCN, however, any of the three could
have been used. The overall goal of the work was to see if a CNN-based object detector
could be aided by ensemble methods chosen by robust-related challenges. Therefore, any
of the detectors could have been used, as an assumption can be made that the benefits or
limitations of the ensemble is equally applicable regardless of the choice.

6.3 Training the Ensemble

This section will discuss the process of training the ensemble members. This includes
creating the data subsets for each member and training of the R-FCNs.
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6.3.1 Creating the Data Subsets

As mentioned, the aim of training multiple R-FCNs on different subsets of data was to
decrease the overall variance in comparison to a model trained on all of the training data.
Therefore, by measuring both object size and image quality factors on the 07412 dataset
the distributions of the data was the leading reason for how the subsets would be created.
In all cases, apart from JPEG and JP2K compression, the distribution was heavily skewed
towards lower numbers. As the requirement in the splitting of data was the subsets should
have even number of ground truth examples, this created uneven datasets. This choice leads
to models within an ensemble factor which could vary greatly in terms of variance. There
are potential positives and negatives to this. Firstly, by training two models the variance is
already decreased as each model covers their own subset. However, one of these models has
minimal variance and has to potential to be a powerful expert member. Issues with this are
that the models are not trained under the same conditions which could lead to problems
in the ensemble process. Which was attempted to be addressed by the weighted averaging
combination process.

Another issue when creating the datasets is ground truth examples for a given class may be
skewed towards one of the two models. This can be seen in the examples of object size for
the classes car (class 7) and cat (class 8) in Figure 6.1. The distribution of ground truth
object sizes is very different between the two classes. Cars in 07+12 tend to be of much
smaller object size and is similar to the size distribution for all objects. Whereas, the cat
class sizes are much more evenly distributed. However, the threshold for determining the
split in data of 19,205.5 was found using the median size across all object sizes. Therefore,
the number of cat training examples is much larger in this subset of larger ground truth
examples. This could lead to the smaller resolution model not being able to generalise well
towards images of this class.

PASCAL VOC 07++12 Bounding Box Area Class 7 PASCAL VOC 07++12 Bounding Box Area Class 8
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Figure 6.1: Differences in distribution of ground truth object sizes for the classes car (a) and cat (b) in
07+12.
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A potential solution to both issues in the creation of the data subsets is to use augmented
data. The use of such data is a common strategy in training CNNs, with horizontal flipping
of ground truths being used in this project. Data could however be augmented towards

66



Discussion 6.

evening the differences in distributions in both cases. For example, by interpolating smaller
ground truth objects to larger resolutions. However, an issue with this example is that
interpolation methods can produce additional distortions in the form of artefacts if images
are scaled to a large degree.

6.3.2 Training R-FCN Members

The training of the individual R-FCN ensemble members was kept constant such that the
effect of different data sampling and selection could be evaluated. However, as seen in other
works, CNN-based object detectors can be trained with different architectural considerations
and after combined in an ensemble [17]. Therefore, another option could have been to vary
the R-FCNs such as with different filter sizes, loss functions or depth of the networks. These
networks could then be tested on a validation set to find complementary networks for an
ensemble.

6.4 Ensemble Combination

The two combination strategies of averaging and weighted averaging proved to be suitable
to their own extent. For image size members, the use of averaging provided best results,
whereas for image quality members performed best with weighted averaging. It was a
challenge to determine how to set weights in the weighted average approach. The choice of
adjusting the weight based on how a given sample compared to the training distribution was
chosen to take into account the difference in variance between sets of ensemble members.
Again, this could also be addressed by augmenting the training data and the difference in
scaling weights between sets could be removed. An alternative to finding weights could be
to test each ensemble member on a validation set and chosen depending on the performance.

The calculation of weights were also chosen such that each set of the 5 ensemble factors
had equal weight. However, this meant that when using all four image quality factors and
the size factor in the ensemble, the effective weight to the final decision is 80% decided by
image quality factors and only 20% by resolution. Further tests are required to determine if
resolution should be weighted higher at the compromise of image quality weights. Addition-
ally, tests could be made within image quality factors to see if one is more important than
another. For example, the models trained towards Gaussian blur may be more powerful
than the JPEG members.

6.5 Image Quality Distortions

The image distortion types chosen was based upon the labelled data available in the LIVE
image quality database. Other distortions could be have learnt with deep IQA if datasets
such as TID2013 [42] or CSIQ [43] were used. However, due to the training requirements of
CNN methods it was decided to only train towards the five distortions in LIVE. Future work
could be made towards determining if other distortion types, such as the level of contrast,
could be used in data sampling.

There is the question if the distortions are at all present in the PASCAL VOC dataset.
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While the distributions shown in Section 5.2 Image Quality Assessment, showed that the
deep IQA models found levels of distortion of each type apart from white noise some of these
seem less likely than others. The distortion types of Gaussian blur, JPEG compression and
JP2K compression are all plausible. Blur in images are quite common and the images were
of JPEG type. However, the fast fading bit errors seems less probable, especially as many
images in PASCAL VOC are collected from flickr. However, as mentioned earlier as long as
the data sampling is consistent between training and testing the method can still be useful,
despite the distortion possibly not being present.

6.6 Ensemble Member Experts

The intuition when determining how to train the R-FCNs were that each network would
become an expert on their respective subset of the training data. While it was found that
this was the case for object sizes, this did not prove to be the case for the image quality
members. Generally the members trained towards to quality distortions performed 3-4%
worse in AP in comparison to the model trained on all of the data. This could indicate
the the learned image quality distortions are not as large of a factor in detection as object
size is. Interestingly, when the image quality members were combined in an ensemble the
performance increased by roughly 3%, showing that the 8 models complement each other
well.

While the individual object size networks performed well on their own testing subsets, when
combined into an ensemble the performance was worse than the baseline model, regardless
of the combination strategy. This is a curious result and may have something to do with
potential inaccuracies in region proposals with the RPN. The combination strategy is based
upon the area of the given region proposal. However, this split of the data was found using
the ground truth annotations. Therefore, if the region proposals do not fit the object well
the incorrect model may be weighed higher. This is a possibility as bounding-box regression
is performed in the latter stages of the R-FCNs, potentially fixing poor proposals.

6.7 Additional Future Work

It could also be of interest to train the same ensemble members towards another CNN-
based object detector such as Faster R-CNN. This could show if similar results are present
regardless of the detector or not.
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7 Conclusion

This work addressed the problem of robust-related challenges in object detection. As CNN-
based ensemble object detection methods are the current leader on multiple benchmarks the
decision was made to analysis this further. This lead to the following problem statement:

e How can specific robust-related challenges be addressed in CNN-based object detector
with the aid of ensemble methods?

A technical analysis of object detection using CNNs lead to the choice of R-FCN with
ResNet-101 as the backbone architecture. An analysis of ensemble methods aided design
choices towards building a system towards data sampling and selection to reduce the vari-
ance of individual R-FCN ensemble members. The sampling was done with respect to the
robust-related variations in object resolution and image quality. Two combination strate-
gies were analysed to combining detection results of the differently data-sampled ensemble
members. RPN proposals were used to estimate potential object size and a deep IQA
models were used to measure the subjective image quality. It was found that the overall
performance could be increased by 0.56% AP in comparison to a baseline R-FCN if the
detections were combined appropriately.

A suitable training procedure that aided in the combination of R-FCNs was also presented.
Using multi-step training for the networks, ensemble members could be given the same
object proposals inputs so that their individual detections were able to be combined.

It was also found that it is not necessary for an ensemble member to be an expert for
its given factor compared to the baseline model. The image quality members performed
3-4% worse than the baseline model. However, when combined appropriately with both
object resolution members and the baseline model the overall performance was increased.

The work determined that there are indications that a robust-related ensemble can aid
in object detection. A number of items need to addressed, as mentioned in previous chap-
ter, such as the heavily skewed data present for both object resolution and image quality
distortions.
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A Appendix A

A.1 Deep IQA Models

This appendix has the results for the 10 individual trained deep IQA models for each
distortion type.

Table A.1: Gaussian Blur

Model | Best Epoch | LCC SROCC | Mean Difference
1 5 0.9879 | 0.9825 2.218
2 1 0.9552 | 0.9547 2.395
3 1 0.9872 | 0.9750 2.499
4 6 0.9767 | 0.9772 2.266
5 23 0.9864 | 0.9913 2.103
6 6 0.9633 | 0.9216 2.875
7 10 0.9914 | 0.9807 2.785
8 7 0.9686 | 0.9756 2.188
9 6 0.9807 | 0.9807 4.013
10 2 0.9528 | 0.9415 3.389
Table A.2: White Noise

Model | Best Epoch | LCC SROCC | Mean Difference
1 50 0.9958 | 0.9900 1.387
2 44 0.9935 | 0.9817 0.862
3 93 0.9940 | 0.9875 1.2946
4 8 0.9952 | 0.9862 1.312
5 96 0.9953 | 0.9886 1.3604
6 5 0.9953 | 0.9896 1.5867
7 5 0.9976 | 0.9952 0.9822
8 3 0.9953 | 0.9856 1.728
9 129 0.9981 | 0.9897 1.412
10 286 0.9968 | 0.9945 1.196
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Table A.3: JPEG

Model | Best Epoch | LCC SROCC | Mean Difference
1 4 0.9861 | 0.9584 3.025
2 44 0.9766 | 0.9523 2.094
3 14 0.9766 | 0.9374 3.067
4 46 0.9838 | 0.9565 2.716
5 8 0.9783 | 0.9304 2.415
6 31 0.9761 | 0.9560 1.986
7 14 0.9927 | 0.9553 3.023
8 10 0.9771 | 0.9728 2.981
9 6 0.9834 | 0.9500 3.165
10 16 0.9732 | 0.9539 2.580
Table A.4: JP2K
Model | Best Epoch | LCC SROCC | Mean Difference
1 36 0.9823 | 0.9624 3.819
2 32 0.9879 | 0.9703 2.822
3 1 0.9658 | 0.9525 3.243
4 26 0.9861 | 0.9775 4.011
5 17 0.9790 | 0.9792 3.552
6 48 0.9885 | 0.9804 2.720
7 25 0.9836 | 0.9675 2.916
8 51 0.9871 | 0.9654 3.345
9 25 0.9714 | 0.9447 2.953
10 4 0.9567 | 0.9597 2.265
Table A.5: Fast Fading
Model | Best Epoch | LCC SROCC | Mean Difference
1 2 0.9611 | 0.9379 2.585
2 17 0.9528 | 0.9343 2.740
3 10 0.9692 | 0.9521 2.341
4 2 0.9627 | 0.9585 3.004
5 3 0.9764 | 0.9487 3.620
6 39 0.9848 | 0.9748 3.121
7 0.9504 | 0.9376 3.445
8 1 0.9772 | 0.9668 4.188
9 59 0.9747 | 0.9477 2.578
10 2 0.9697 | 0.9467 3.105

A.2 Detection Examples

This appendix shows a number of examples detections on the 07 test set. Detections shown
are the ground truth annotation, a baseline model trained on all of the 07+12 data, the
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Resolutiony,s. ensemble (Res) and The Image Qualityw avg / Resolution 4ygpase (IQ / Res).
Additionally, the IoU for each detection compared to the ground truth is shown in paren-
thesis in each image.
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