
DriveLaB: A Speeding Reductive Mobile
Crowd Sensing Platform
Dennis Rasmussen, Kasper F. Pedersen, Thomas F. Olsen

Ma
ste
r T
he
sis

P10 Master Project
DriveLaB
MSc. Computer Science (IT)
Aalborg University
2017

Title DriveLaB
Semester: 10th semester at MSc. Computer Science (IT)
Semester theme: DriveLaB
Project period: 01/02/17 to 09/06/17
ECTS: 30
Supervisor: Kristian Torp
Project group: Group dpt107f17

Dennis Rasmussen

Kasper Fromm Pedersen

Thomas Frisk Olsen

Abstract:

In this report, a speeding reductive
Mobile Crowd Sensing platform is de-
signed, implemented and evaluated.
The platform includes a client applica-
tion available for Android and iOS with
speeding reductive measures incorpo-
rated. The server performs real-time
map matching, data calculations, and
provides real-time feedback. The data
is stored in a data warehouse which
enables the platform to offer a public
API with anonymised data. Users are
encouraged to participate through the
client application by offering traffic re-
lated feedback, calculate driving scores
and displaying a competitive leader-
board.

Pages: 75 pages
Appendix: 9 pages

By signing this document, each member of the group confirms participation
on equal terms in the process of writing the project. Thus, each member of
the group is responsible for all contents in the project.

Summary

Road traffic accidents carry significant economic consequences for the society and grief
for relatives in case of severe accidents. Speeding is the main contributor to the cause of
accidents, as it is solely or partly responsible for 41% of all accidents. The Danish Road
Safety Commission has set ambitious goals of reducing road traffic accidents and identifies
technology as an enabler to achieve these goals.

In this report, a speeding reductive Mobile Crowd Sensing platform is designed,
implemented and evaluated. The platform includes a client application available for
Android and iOS with speeding reductive measures incorporated, which communicates
in real-time with a server. The server performs real-time map matching, data calculations,
and provides real-time feedback. The data is stored in a data warehouse which enables
the platform to offer a public API. This API puts anonymised data collected by the client
application at disposal for everyone to use. Users are encouraged to participate through the
client application by offering traffic related feedback, calculate driving scores and displaying
a competitive leaderboard.

The platform seeks to solve a contextual issue regarding missing knowledge of the Danish
road speed limits in Open Street Map. The solution is to implement a heuristic algorithm
to deduce speed limits from OSM road classifications. Additionally, users can report speed
limits using speech recognition, which are processed by a reputation system.

The platform is evaluated through controlled and uncontrolled experiments to investigate
system stability, system performance, behaviour change in users, an automatic tracking
solution, and scoring fairness.

v

Preface

This report extends a series of student publications [1][2][3] conducted at Department of
Computer Science, Aalborg University. However, only [3] is composed by the same authors
as this report. As in the previous projects, a collaboration with a Danish insurance
company Lærerstandens Brandforsikring (LB) benefits the research in respect to data
collection and business insight.

The previous report [3] aimed to develop a full stack software system that should be able
to monitor road users in real-time as well as provide driving-related feedback in a safely
manner. The system consisted of three important components.

• A smartphone client application, targeting the Android operating system using Ionic
2, a web-based framework for developing cross-platform smartphone applications.
• A middle-end server application, using ASP.NET Core framework, making the server

side software cross platform.
• A back-end server, running the freely available PostgreSQL database, to avoid

licensing concerns.

Additionally, it was deemed necessary to collect GPS information without requiring the
user to interact with the system. To solve this, two devices at two different price levels
were introduced. The expensive one, a Garmin GLO [4], which provides a 10 Hz external
GPS receiver accessible over a Bluetooth classic connection. The cheapest one, a Kontakt.io
beacon [5] which supports both the iBeacon and Eddystone protocol. To ensure continuous
system use, incentives to keep the drivers using the smartphone application was also
considered. Among these incentives, a scoring system solely based on the speed provided
by the GPS receiver was suggested to render a competitive leaderboard possible. Finally,
an experiment was conducted in collaboration with LB, involving 23 participants, covering
6455 km of road in total.

The report concludes that GPS receivers provided by modern smartphones are uniform
enough for the scoring algorithm presented.

Future work presented in [3] will be the underlying basis for this report. This includes
improvements, architectural changes, and feature additions to the full stack software
system previously presented. Furthermore, adjustments will be made to incorporate a
crowd sourced reporting system for digital speed limits, as the partial lack of these has
shown to influence the user experience negatively. The smartphone application presented
in previous work [3], and worked exclusively for Android. This constrained the extent of
which LB could offer participation in the experiment as iPhone is the most representative
phone in that company. Therefore, an iPhone application will also be developed, even
though the scope of cross platform development is not relevant for the overall project
subject.

LB have decided to remain in the field of facilitating Corporate Social Responsibility

vii

Group dpt107f17 Preface

(CSR). Therefore, this is still considered an important aspect of the full stack software
solution presented.

Reading Guide

This report consists of six chapters. The first chapter, Introduction, describes the problem
attempted to be solved and the context of this project.

Chapter two, Related work, presents previous work which this project uses as basis or
inspiration to solve the challenges at hand.

Chapter three, Analysis & Design, describes the five-layer model and its use in this
project. The model consists of the following five components: Mobile Crowd Sensing,
Data Transmission, Data Collection and Real-time Processing, Crowd Data Processing,
and Application, which each have their purpose in the system.

Chapter four, Implementation, presents implementation details for each of the components
in the system.

Chapter five, Evaluation, subjects the system to evaluation through both controlled and
uncontrolled experiments. Data analysis is performed on the data gathered throughout
the experiments performed.

Chapter six, Reflections, discusses the findings during this project. Furthermore, a
conclusion will be presented alongside suggestions for further work.

viii

Contents

Preface vii

1 Introduction 1

2 Related Work 3

3 Analysis & Design 9
3.1 Mobile Crowd Sensing (Client Application) 11
3.2 Data Transmission . 13
3.3 Data Collection and Real-Time Processing 14

3.3.1 Incentive Mechanisms . 14
3.3.2 Map Matching . 15
3.3.3 Data Quality Maintenance . 16
3.3.4 Data Storage . 16

3.4 Crowd Data Processing . 22
3.4.1 Reputation System . 22
3.4.2 API . 23

3.5 Applications . 24

4 Implementation 27
4.1 Crowd Sensing . 28

4.1.1 Client Application . 28
4.2 Bidirectional Real-time Data Transmission 37
4.3 Data Collection and Real-time Processing 39

4.3.1 Client Application Real-time API . 40
4.3.2 Client Application API . 44
4.3.3 Data Warehouse . 45

4.4 Crowd Data Processing . 46
4.4.1 Public API . 47
4.4.2 Reputation System . 47

4.5 Application . 50
4.5.1 DriveLaB.dk . 50

5 Evaluation 53
5.1 Controlled Experiments . 53

5.1.1 Android and iOS . 53
5.1.2 System Performance Testing . 56

5.2 Uncontrolled Experiments . 58
5.2.1 Speed Limits . 63
5.2.2 Notifications . 66
5.2.3 Driver Score Evolvement . 66

ix

Group dpt107f17 Contents

5.2.4 Men vs. Women . 67
5.3 User Feedback . 69

6 Reflections 71

Bibliography 77

A Data Warehouse Schema 83
A.1 Fact Tables . 84
A.2 Dimension Tables . 87

A.2.1 View Tables . 92

x

Introduction 1
In 2015, 11.105 traffic accidents were registered on Danish roads. 3.334 of these accidents
included person injury, and 178 of these had a fatal exit [6]. Each of the 11.105 accidents
cost 600.000-700.000 DKK on average [7], as few accidents conflicting severe personal injury
drives up the costs. One example of such, created by the National Road Directorate, is
based on a real accident where the treatment of one person’s costs exceeded 11 million
DKK for the first five years after the accident, followed by 2.2 million per year for the
rest of the injured person’s life [8]. In 2012, the average society economic cost, per person
injury, was calculated to be 4,6 million DKK. This cover treating the person injuries, the
cost of material damage and loss in welfare by the person not being able to contribute to
society after the accident.

The Danish Road Safety Commission (RSC) works to improve the road safety in Denmark
by formulating a plan of action and setting goals for road safety. The plan of action laid
down for the years 2001 to 2012 accomplished the traffic safety goals, and the number of
injured and killed in traffic was halved. The amount of injured and killed people in traffic
is in fact at an all-time low since 1930, where accident registering started [9]. However,
working under the vision "Every Accident is one too many – a shared responsibility", the
road safety goals for 2013 to 2020 is even more ambitious. The goals are set for a maximum
of 120 killed, 1000 severely injured and 1000 minor injured in traffic by 2020 [9].

The severity of traffic accidents makes the area of traffic safety an attractive opportunity
for companies to display Corporate Social Responsibility (CSR) within. A well-known
example hereof is the Danish company Tryg, which includes the Tryg foundation. This
foundation explicitly has fewer injuries and casualties in traffic as one of their focus points
[10] and have contributed significantly in Denmark [11]. The Tryg foundation is working
with the Council for Safe Traffic in Denmark and taught minors about safety in traffic [12].

Problem Analysis

The RSC states that technology plays an important role in reaching the goals set in the
plan of action for 2020. Technology development in the domain of road safety assistance
can be divided into three categories [9]:

• Technology that prevents people willing to take risks in traffic intentionally in doing
so.
• Technology that aids the road user in acting correctly in traffic.
• Technology that lessens the severity of the accident.

Examples of technology that constraints risk takers in traffic could be the alcohol-breath

1

Group dpt107f17 1. Introduction

car lock or equipment forcefully disabling people in speeding. Technology that aids people
in traffic could be speed limit alerts, automatic emergency breaks and tiredness detection.
Airbags, strong bodywork and cabinet stabilisers are examples of passive technology that
lessens the severity of an accident. This project aims to contribute to road safety in the
category of aiding the road user to act correctly in traffic. In the 2020 plan of action by
the RSC, there are ten prioritized focus areas whereas speeding is a top priority. Speeding
is the main factor of fatal incidents in 20% of all traffic accidents and partly responsible
for another 21% of accidents in conjunction with both or one of driving under influence
and inattentive driving [9]. Due to the severe impact of speeding, the project group sees
an opportunity to leverage the user’s smartphones and aid the driver in lowering speeding.

Regarding creating technology that aids drivers in traffic to avoid speeding, it is critical to
have a road map containing speed limits. Unfortunately, such thing has not been created
by the Danish government; only a few municipalities have published the data for their
regions, e.g. København Kommune [13]. Commercial maps supplied by e.g. Google, have
a significant barrier in their pricing, which excludes them from consideration. Furthermore,
Google does not allow their Roads API to be used for insurance risk assessment as stated
in 10.4 Restrictions on Unfair Exploitation of the Service and Content [14] unless an
applicable expensive enterprise license is purchased. Open Street Map [15] (OSM) on the
other hand, provides a complete road map of Denmark, but with incomplete speed limit
data. However, OSM is still considered the most viable solution where the absence of said
mapped speed limits must be taken into consideration when designing the technology. This
could be countered by crowdsourcing e.g. letting users report speed limits. This further
increases the complexity of the system, as validation would be needed to prevent abuse.

Problem Statement

This project seeks to investigate and document how to create a real-time Mobile Crowd
Sensing (MCS) platform with driver related feedback loops aiming to reduce speeding.
The platform should provide the following abilities:

• Speeding notification - Notify users in a meaningful way when speeding.
• Automatic Tracking - Support automatic tracking, i.e. start and stop trips without

user involvement.
• Speed limit reporting - Enable users to report road speed limits.
• App value - Provide value for the user in the form of driving-related information and

a competition aspect.
• Non-distractive – The smartphone application must not pose as a distraction while

driving.
• Privacy - The user’s location data is privacy sensitive; therefore, security must be

incorporated.
• Availability - Available to all drivers with a modern smartphone and internet

connection

Furthermore, the platform should support the incorporation of CSR initiatives. The data
used to create CSR value must be published in an anonymised, aggregated, and informative
format.

2

Related Work 2
Mobile Crowd Sensing

MCS is a sensing paradigm [16] based on two pillars. The first pillar is the online
community, which revolves around collecting valuable knowledge from crowds, forming
trustworthy answers. The second pillar is the physical community which consist of mobile
sensors that produce valuable information for the system to collect and process. A formal
definition of MCS is provided by Bin Guo et al. [16].

"A new sensing paradigm that empowers ordinary citizens to contribute data
sensed or generated from their mobile devices, aggregates and fuses the data in
the cloud for crowd intelligence extraction and people-centric service delivery."
- Bin Guo et al. [16]

The degree of involvement required by the participant can either be participatory,
opportunistic or anything in between. Participatory involvement requires interaction to
participate in contrast to opportunistic, which revolves around automating the sensing
task, easing the participation [17].

Figure 2.1: A Reference Framework for MCS [16, p.596]

3

Group dpt107f17 2. Related Work

Bin Guo et al. [16] presents Figure 2.1, a proposed MCS architecture consisting of
five layers. The layers are crowd sensing, data transmission, data collection, crowd data
processing and applications. The arrows in the figure visualises data flow, which origins
from the crowd sensing layer from IoT devices, mobile phones or vehicles. The generated
data flows through a data transmission layer to the data collection layer, enabled by
network technologies. Several tasks can be undertaken in this layer, such as incentive
mechanisms and task allocations which result in data sent back to the crowd sensing layer.
Other tasks like storage and data anonymization prepare the data for the crowd data
processing layer. This layer applies machine intelligence or logic-based inference strategies
to extract high-level intelligence usable by the application layer.

DriveLaB will benefit from the MCS paradigm, by facilitating a speech to text based
reporting system for speed limits alongside automatic positioning sensing. Such system
will be in the opportunistic range regarding user involvement, which is believed essential
for the DriveLaB client application.

Serval systems utilise the MCS paradigm for solving different tasks in different domains.
In the domain of monitoring road networks, CarTel [18] and Nericell [19], are two popular
proposals.

CarTel makes use of a custom mobile embedded computer running Linux equipped with
various sensors alongside a WiFi module. Such device is named a CarTel node and is
used for transmitting the measured sensor data to a central server where it can be queried
for traffic related usage. Instead of utilising a self-manufactured device as the CarTel
node, DriveLaB makes use of the various branded smartphones already in the pocket of an
average driver. Even though the two projects differ on multiple aspects, they both have
the domain of tracking road users in common.

Nericell aims to monitor traffic conditions of developing regions by utilising sensors already
integrated into smartphones. Besides collecting data regarding speed and congestion levels,
Nericell can detect honking, potholes, bumps and breaking. Finally, the Nericell system
is used in an experiment in Bangalore, India, to reveal the overall performance. Utilising
the built-in smartphone sensors is common to both Nericell and DriveLaB. Where Nericell
uses multiple sensors such as the microphone, accelerometer, and GPS receiver, DriveLaB
centres on utilising only the GPS receiver. Additionally, Nericell scopes their experiment
to one city in a developing country, where the system presented in this report will conduct
an experiment on a national scale, in a developed country.

Reputation System

Trusting blindly that high quality data will always be supplied by the online communities
is not viable [16, p.595]. Therefore, each participant should not be trusted equally, but
rather build up trust throughout using the system. To solve this problem, a reputation
system will be implemented to judge the validity of the contributed speed limit reports.

Adler and Alfaro [20] presents a reputation system with the purpose of evaluating the
trustworthiness of the authors editing Wikipedia, which relies on user-generated content.
The reputation system is content-driven, meaning the evaluation is solely based on how

4

Aalborg University

the authors’ contributions fare over time, whereas a user-driven reputation system takes
input from other users to evaluate how trustworthy a specific user is.

The entire editing history on Wikipedia is available, which is useful to examine how well
a contribution has been preserved throughout time. One of the parameters measured is
text life. This indicates how much of the text contributed by author A is still present after
author B has contributed to the same page. The other parameter measured is edit life,
which indicate how much of the text reorganisation made by author A is unchanged after
author B’s edit.

Mashhadi and Capra [21] focuses on a real-time ubiquitous crowd-sourced system where
data is not exclusively generated from sensors in a passive manner but also generated by
users actively providing opinions and perspectives. The context is public transportation
where users can contribute with information regarding their trip in real-time, such as
traffic accidents, congestions or other dynamic variables that can influence the trip. The
usefulness of such application relies on the amount and quality of data generated by the
users. While the open nature is a necessity, it is also a threat that can impact the
correctness if malicious users pollute the data. The problem is tackled by looking at
the users’ mobility patterns and the correctness of their past contributions. The mobility
pattern for a user is calculated based on where the user normally travels in public places,
thereby a report on a location from a user who regularly travels there, has a higher
credibility. Additionally, the usefulness of the report’s information is evaluated by other
users in real-time with gamification techniques. These two factors together form an overall
credibility score.

Kantarci et al. [22] focus on the evaluation of users’ credibility in the context of
MCS systems. The paper discusses existing approaches to quantify crowd-sensed data
trustworthiness based on statistical and vote-based user reputation scores. A new metric
called collaborative reputation scores is proposed, which draws from the strength in the
statistical and vote-based user reputation scores. The statistical reputation based MCS
calculates the users’ credibility in a centralized manner, as it is the platform itself which
evaluates each user. This is done by statistically looking at the percentage for which a user
has provided a correct reading. The vote-based approach calculates user reputation in a
decentralized way. The users who are assigned to common sensing tasks form a network,
where they can vote for each other, to build up their reputation.

The reputation system implemented in this project apply elements from the papers
described in this section. However, as the context is speed limits on road networks,
the system also considers road properties, which can influence the credibility of a speed
limit report. Additionally, information regarding the geographical location of where users
typically drive is taken into account.

Map Matching

As this project uses speed limits to calculate the score of a trip, it is necessary to know
which stretch of road the driver is currently on. Therefore, it is vital to map the raw GPS
input to a virtual representation of the road segments. Furthermore, the system presented
in this report will focus on real-time map matching, since feedback based on their current

5

Group dpt107f17 2. Related Work

road segment location is provided. Therefore, literature concerning post processing map-
matching (MM) algorithms are not considered.

Over time, numerous MM algorithms have been developed to improve accuracy and
efficiency leaving behind an extensive collection of MM algorithms. Therefore, articles
such as [23] have been written to supply a quick overview of this field. It is worth
mentioning that [23], solely focuses on real-time MM algorithms, however, this fits the
project’s use case. The article groups the MM algorithms into three categories, namely,
simple, weight based and advanced. It is argued that simple MM algorithms do not
provide the necessary accuracy where advanced MM algorithms add too many calculations,
increasing the processing power requirements as well as decreasing the readability of the
algorithm. However, weight based MM algorithms are found to perform well regarding
accuracy and efficiency.

Bristow et al. [24] have developed one of the weight based algorithms presented in [23]
showing promising results. The algorithm consists of the three steps, initial MM, MM on
a link, and MM at a junction.

• Initial MM – Calculates a total weight for each segment intersecting an area
represented by an ellipse which radius is equal to the accuracy of the GPS point
in metres. In this step, two different weights are used to assess the probability of a
road segment. Firstly, the closer the heading of a GPS point is to a road segment’s
bearing, the more likely it is to be the right road segment. Secondly, the closer a
road segment is to the GPS point, the more likely it is to be the right road segment.

• MM on a link – Since a road change can only happen at a junction, it is not necessary
to consider other road segments than the previous mapped, as long as a certain
distance to the downstream junction is present. Therefore, this step only keeps track
of the distance to the downstream junction, as well as if the car has turned.

• MM at a junction – If the car is near a junction or has turned, a procedure similar
to the initial MM, will be executed, but with two additional weights. These are both
topological weights, where the first considers if a road segment is directly connected
to the previous mapped road segment. If it is directly connected, it is more likely
to be the right road segment. The second weight considers if a transition from the
previous road segment to each of the candidates is legal to make. If not, it is less
likely to be the right road segment.

The value of both heading and distance weights can be any real R in the interval [0, 1] with
0 and 1 inclusive where the two topological weights must evaluate to either 0 or 1. The
degree of how well a point maps to a road segment regarding heading, distance, linkage
and turn restrictions is determined by the magnitude of the weight. Furthermore, each
weight can be multiplied by a weight coefficient, regulating the importance of the weight
given certain environmental properties. [24] adjusts these weight coefficients based on the
operational area in respect to the three categories, urban, suburban and rural.

Performance Testing

As an MCS system is developed in this project, the value of the system is correlated with
the amount and quality of data gathered. To gather a high quantity of data, a sizeable

6

Aalborg University

user base is required. This place demands on the system’s performance and its ability
to scale when the user base grows. Therefore, ideas for testing system performance and
scalability is investigated through related work.

Weyuker and Vokolos [25] discuss an approach to performance testing. They mention the
importance of having testing goals in mind when designing the tests. Examples of testing
goals can be, the number of users the system can handle or identifications of hardware or
software bottlenecks. They also outline the typical steps of a performance test, which are
described in the following [25, p.1155]:

1. Identify the software processes that directly influence the overall performance of the
system.

2. Select essential input parameters that influence the performance of the system.
3. Provide realistic values for these parameters by collecting and analysing existing

usage data.
4. If there are not historical data available for some parameters, then make reasonable

estimations of values based on requirements for developing the system.
5. If a range of values for a given parameter exist, then choose values from the range

that can expose useful information about the performance of the system.

Predic and Stojanovic [26] evaluates the performance of their system using crowdsourcing
by simulating numerous car trips concurrently and measuring the amount of data
transferred between the smartphone and server. Parts of the heaviest computational
tasks are offloaded to the smartphone, which might require a lot of CPU power from
the smartphone, therefore battery usage tests are conducted as well.

This report does not contribute to the topic of performance testing. However, the work
described in this section serves as inspiration for how performance tests are conducted in
this project, which is presented in Section 5.1.2 - System Performance Testing.

Usage Based Insurance

Usage Based Insurance (UBI) is considered related work as it is a significant promoter of
systems like the one in this project. The landscape, parties involved and benefits of UBI is
described in [3, p.2-5]. An interesting new initiative has emerged since, as Tryg Insurance
is launching UBI in Denmark in the summer of 2017 [27]. The initiative, however, received
negative publicity by the public and the press which has named the initiative “surveillance”.

“I think it is really positive, for example younger people has the opportunity to
get much cheaper car insurance while getting aware of how to drive and the
risks involved with driving” - Morten Hübbe, Tryg Group Executive.

Baecke and Bocca recently published an article [28], investigating the value of vehicle
telematics that leads to UBI. The article is based on data from 6984 customers at a
European car insurance company in the years of 2011 until 2015. These customers all
accepted having an In-Vehicle Data Recorder (IVDR) installed in their car, which tracked
their everyday driving. The IVDRs sensed more than 230 million kilometres in total. A

7

Group dpt107f17 2. Related Work

literature overview is included with studies that investigate different methods to analyse
driving in terms of risk. They compare by research scope, sample data, observation period,
predictors and analytical techniques, revealing their article as most ambitious regarding
predictors included, thus being complex.

The interesting part of the article is that besides well-known insurance premium related
standard parameters in Denmark like driver’s age, driving experience, the make, model
and age of the car, and data of past claims, they also consider telematics data. This data
includes kilometres driven which are subdivided based on time and location and is cross-
examined with expert-based data, e.g. experts know that night trips in weekends have a
significant impact on accident risk. The article processes the collected data using different
machine intelligence methods to find the optimal model to perform a risk assessment.

The study finds that combining traditional insurance risk calculation with the telematics
data is the most optimal as they capture different risk elements, however when initiating
UBI in an insurance company, it is advisable to first focus on Pay-As-You-Drive plans
where the premium is based on kilometres driven. This is due to the risk of an accident
being highly correlated with amount of time spend on the road. As data start accumulating,
the company can improve their risk assessment by including time and location as the next
step. Lastly, the study found that only 3 months of customer data is enough to assess the
accident risk factor [28, p.19].

8

Analysis & Design 3
The analysis and design process of the MCS system DriveLaB are based on the related
work of MCS presented in Chapter 2 - Mobile Crowd Sensing. Namely, the five layer
architecture shown in Figure 2.1 is adopted with minor differences.

Figure 3.1: DriveLaB MCS Architecture

The most significant difference is the extension of the Data collection layer also to include
real-time processing. This processing is needed to supply real-time driving information
feedback to the client application crowd sensing layer. Furthermore, the Crowd Data
Processing layer sends data back to the data collection and real-time processing layer,
indicated by the arrow. This is to update the data storage with updated speed limits

9

Group dpt107f17 3. Analysis & Design

reported by users and processes by the reputation system.

The design decisions are grounded in the project group’s experience in designing and
experimenting on the system presented in [3], along with feedback from real world users.
Section 3.5 - Applications is an added component to visualise the data collection usage,
demonstrate the CSR value and it is an integrated MCS component. Table 3.1 emphasises
the evolution from the work conducted in [3] to the new and enhanced design presented
in this report.

Design element Previous system New system

Client technology Ionic 2 using JavaScript,
Typescript and Java

Utilise Microsoft Xamarin and
rewrite code to C#

Client platform Android Android and iOS

Handling missing
speed limits

Show speed limit as missing
and omit the segment in score
calculation

Use a heuristic algorithm and
allow user-driven speed limit
correction by utilising speech
recognition

Speed limit reporting No option to report wrong or
missing speed limits

Users can report speed limit
corrections

Data transfer en-
cryption No encryption Encryption

Map matching Naive simple "Nearest-Road"
approach

Weight and topological based
algorithm from literature [24]

Automatic tracking Garmin GLO and Kontak.io
Beacon device

Generic utilisation of Blue-
tooth units pre-owned by
drivers

Scoring system Based on speed exceedance Similar approach but more
efficient calculation

Short feedback loop Speed, speed limit and speed
exceedance sound notification.

Speed, speed limit, speed ex-
ceedance sound notification,
road name, score, trip length
and average speed

Medium feedback
loop No feedback. Auditory acknowledgement of

good driving.

Sound notification
data

Notification type and sound
settings

Notification type, sound set-
tings and speaker volume

Leaderboard Based on all data Filter by active users

APIs Private API Private and Public API

API versioning No versioning Header versioning

Table 3.1: DriveLaB System Version Comparison

10

3.1. Mobile Crowd Sensing (Client Application) Aalborg University

Comparing Table 3.1 to the future work section of [3, p.57], reveals that every point of
future work is being considered directly or indirectly in the new system design. Besides the
quick overview of improvements, each subject is further elaborated in the MCS component
to which they belong. The improvements contribute to stability, performance, and user
experience.

A significant change in the functionality that spans across several components is to handle
the lack of speed limit data in the road network differently. In [3], a score calculation was
based strictly on road segments driven where the speed limit was known, thus disregarding
speed exceedance where the speed limit is unknown. Users expressed frustration when
facing lacking speed limits and it had a significant negative impact on the feedback loop.
Especially as only 49% of the data collected was on roads with known speed limit [3,
p.57]. Instead, the intention is to use a heuristic algorithm where speed limits are not
available and allow users to report adjustments, hereby improving the dataset of speed
limits. This design change impacts all layers of the architecture and is described in the
respective sections.

Three aspects in [3] are retained in the new system with no changes applied as no feedback
or experience revealed dissatisfaction. These are auditory speeding notifications, speed
exceedance scoring system and driving rating smileys.

3.1 Mobile Crowd Sensing (Client Application)

The entire client technology used to create the client smartphone application is switched
from Ionic 2 [29] to Microsoft’s Xamarin platform [30]. This is a consequence of the
experience gained with Ionic 2 as platform specific features like services on Android [3,
p.56] are exceptionally hard to debug in the Ionic 2 platform. The asynchronous nature of
non-OOP JavaScript in combination with synchronous OOP Java further complicated the
intercommunication between the languages. Also, the lack of a native design look and feel
due to it essentially being a browser rendered web page raised concerns about the viability.
It was moreover also to accommodate the feedback received from LB Insurance stating that
an iPhone version of the application is a necessity for future tests, which would require
the use of the Objective-C language. Switching from Ionic to Xamarin means switching
programming languages from Javascript, Typescript, and Java to C# and switching mark-
up languages from HTML to XAML. However, it eliminates the necessity to learn the
Objective-C language to develop the iPhone version of the application and enables one
code-base for multiple mobile platforms.

Abstracting away the fact that the road network dataset is incomplete in terms of speed
limits and use a heuristic algorithm as conducted in Section 3.3 - Data Collection and
Real-Time Processing, entails the functionality for the users to report wrong speed limits
when encountered. This poses a challenge as any physical phone interaction is illegal, and
therefore, speech recognition is considered the only viable option. Unfortunately, [3, p.57]
do not state if auditory feedback does have a reductive effect on speeding as the smartphone
volume is not tracked. This is a necessity to include in the current application.

Automatic tracking was named the biggest technological challenge in the feedback
from users, and the usage of multiple devices proved a substantial task to support

11

Group dpt107f17 3. Analysis & Design

programmatically. Therefore, the idea described in [3, p.56] is to utilise common Bluetooth
devices already present in users vehicles, which represents a major but necessary change
to accommodate automatic tracking. In [3], an underlying process is always running in
the background while scanning for the external devices. The new logic is depicted on
Figure 3.2.

Figure 3.2: New Automatic Tracking Flowchart

Utilising Broadcast Receivers [31] to receive a signal when a device connects via the
Bluetooth protocol [32] enables the application to wake and take action, and thereby
eliminating the need to be permanently running as a service. The device connected can
then be compared to what the user has chosen as their car-installed device. The Stored
device? decision point checks if the connecting device and chosen automatic tracking
matches. If not, the execution should stop, and on the contrary, if it matches, the
foreground service [33] should be started and commence tracking. Similarly, if the system
is in a tracking state, devices disconnecting from the phone via the Bluetooth protocol is
compared to the stored device. If it is the stored device that disconnects, the tracking is
stopped, and the foreground service is terminated. The comparison of the connected or
disconnected device to the stored device is the same functionality. However, the reaction
differs depending on if the service is already tracking or not. Hence, the two decision points
named stored device in Figure 3.2. There are four conditions to this approach of automatic
tracking:

1. This solution only applies to Android smartphones as this is highly platform specific
and a similar solution has not been discovered for Apple smartphones.

2. The stored Bluetooth device must be mounted in the car and power on and off with
the car.

3. The stored Bluetooth device must automatically connect to the smartphone when
powered on.

4. Bluetooth and GPS on the smartphone must always be enabled.

12

3.2. Data Transmission Aalborg University

Conditions two and three often applies for Bluetooth devices meant to be installed in a
car. Condition four is considered a substantial threat against the logic, as smartphone
users might turn off these functionalities to preserve battery.

3.2 Data Transmission

Similar to [3], the new system needs to facilitate real-time updates of information regarding
the user’s driving, which means that a bi-directional real-time data transmission technology
is needed. To improve code transparency, control over events and reduce communication,
the framework SignalR [34] utilised in [3] is not implemented. Also, SignalR for ASP.NET
Core is yet in a development state and to date has no stable releases. However, the
experience of SignalR utilising the Websocket protocol for data transmission proved
effective.

Websockets are a TCP-based [35] protocol, which is preferable over UDP [36] that do not
provide any guarantee of delivery nor ordering. These guarantees are needed to ensure
that locations are received and arriving chronological.

Therefore, the bare WebSocket [37] technology is used, which leaves coding tasks like
handling connections, disconnections, message parsing up to the coders. Furthermore, the
sensitive data is to be encrypted in the transport as specified in Table 3.1. Figure 3.3
illustrates the data transportation design.

Figure 3.3: Data Transmission in DriveLaB

The Client Application and Real-time API communicates through a Websocket commu-
nication protocol using data transfer objects (DTOs) [38]. The communication is bidirec-
tional, as depicted by the dotted line. The transmitted data is in the format of a one-digit
prefix message type encoding followed by the actual data as a JSON formatted object.
This structure enables the receiving platform to identify what type of data is hiding be-
hind the encrypted string and to decode properly. Naturally, the one-digit prefix indicating
the message type entails a restriction in the number of message types available. This is
sufficient as the system is not designed to exceed the ten available message types. Fur-
thermore, the addition of message types carry a significant amount of code both on the
client and server side besides just defining the new message type, and it would be trivial

13

Group dpt107f17 3. Analysis & Design

to alter the logic to look at several digits or something more complex when exceeding the
message type limit.

3.3 Data Collection and Real-Time Processing

This layer receives the mobile sensor data, which includes GPS locations and audio
configurations of the smartphone as well as speed limit reports contributed by users as
described in Section 3.1 -Mobile Crowd Sensing (Client Application). As seen in Figure 3.1,
four components reside in this layer:

• Incentive Mechanisms describes how users are encouraged to participate by
processing the data in real-time, thereby providing driving related feedback during
the trip.

• Map Matching deals with detection of where users are located to further enhance the
data.

• Data Quality Maintenance helps filter away polluted data.
• Data Storage saves the data once it has been processed where further analysis can

be conducted.

These components will be further elaborated in their respective sections.

3.3.1 Incentive Mechanisms

Users can be motivated by different incentives, such as monetary, entertainment, social,
ethical or interest [16, p.595] where this project features the last three. The ethical
motivation aspect is expressed in the concept of the application, which essentially attempts
to help users drive safely, thereby avoid putting themselves and others in danger.

To address users who are interested in driving-related information, an implementation of
real-time feedback throughout the trip is provided. As shown in Table 3.1, the design
element Short feedback loop only consisted of speed and speed limit information. In this
project, this feedback loop is extended by road name, score, trip length and average speed.
Furthermore, [3] only involved the short feedback loop, which notifies the users when they
are exceeding the speed at certain percentages, and the long feedback loop, which provides
detailed information about the trip afterwards. As design element Medium feedback loop
shows, this project provides the addition of a medium feedback loop. This is intended to
provide positive feedback to the users, whenever they have not exceeded the speed limit
for a specified distance.

The social aspect manifests in the design element Leaderboard, where users can compete
to become the best driver, based on a total trip rating assigned to each user. Ideally, it
should be possible to form private leaderboards where users can compete against friends
and family, however, this is not the focus of this report. A leaderboard is implemented
in [3]. However, it does not account for inactive users, which is a problem. This needs to
be solved since it does not motivate users to keep using the system and improving once
a satisfactory performance score has been reached. An approach to this issue is to have
seasons where the leaderboard gets reset. Depending on how often the leaderboard resets,
it is mostly active users who are present. Another approach to address this problem is

14

3.3. Data Collection and Real-Time Processing Aalborg University

by implementing a sliding window, which only considers active users. Whether a user is
active, is based on the distance driven within a certain number of days. It is only the score
of trips within a recent time interval which are considered. This avoids punishment and
unnecessary discouragement of people who have performed badly in the past. It is decided
to implement the sliding window, instead of leaderboard seasons, as it is believed to be
superior in this context since it captures the active users at any given point compared to
seasonal leaderboards where inactivity might occur before leaderboard resets.

3.3.2 Map Matching

As seen in Table 3.1, the design element Map matching handles the detection of which
road the user is driving on. A simple approach assuming that the user is always driving
on the road nearest to the GPS point is utilised by [3]. The MM algorithm presented
in Chapter 2 - Map Matching is used in this project, which improves the detection and
thereby enhancing the correctness of feedback sent to the user. Specifically, it partially
solves a problem from the last project where a user was map matched to the wrong lane
going in the opposite direction. It handles this by using the GPS heading which indicates
in which direction the user is travelling. Additionally, the GPS locations are projected
onto the map matched road, which allows much easier debugging of the map matching
algorithm in addition to a more precise real-time calculation of distance driven for the
users.

Even with a more accurate MM algorithm, it is not always possible to tell the speed limit
of a road, due to the partial lack of speed limits posed. As seen in design element Handling
of missing speed limits, this issue is dealt with in the last project by not displaying a speed
limit to the users and omitting using that road segment in the calculation of performance
score. In this project, it is approached differently by implementing a heuristic algorithm
that calculates the speed limit of a road where it lacks, based on the road type. There are
three main types of roads in Denmark, which is a motorway, rural road, and city. They
have the speed limits 130, 80 and 50 km/h respectively[39]. The advantages of using this
approach is the possibility of providing a performance score to the user, which is based
on the entire trip, including roads where the speed limit is not contained in the dataset.
Additionally, the application appears more functional to the user, as it will for the most
part display a speed limit, even when it is unknown. The disadvantage of this approach, is
the possibility of irritating users by punishing their performance score wrongly or playing
a sound notification at an undeserved time.

An important design choice is the decision of where the digital map containing speed
limits should be located, as it heavily influences both functionality and performance of the
system.

15

Group dpt107f17 3. Analysis & Design

Map server-side Map client-side

Easy propagation of speed limit changes Faster feedback response time

Less battery consumption Better scalability

No additional data storage usage

Simpler to implement

Table 3.2: Advantages of Storing the Map Server-side or Client-side

Table 3.2 shows the advantages of storing the digital map containing the speed limits on
the server-side and client-side respectively. The advantages of storing the map, or chunks
of it, client-side is the faster response time, since MM can be done on the phone. This
removes network delay and the need to accumulate GPS locations before sending to the
server for processing of GPS locations. Additionally, this ensures that most features related
to tracking still works without internet connection. The system becomes more scalable as
the heaviest processing is off-loaded to the smartphone.

Storing the map server-side makes it overall simpler to implement, as changes made to
the map will take effect immediately. This is more difficult when it is stored client-side,
as changes made to the map needs to be synchronised across all users. This also requires
the application on the smartphone to use a lot more data storage. Having the map server-
side will also entail performing the heaviest processing on the server. While this makes
the system less scalable, it potentially makes the smartphone application less battery
consuming. It was decided to store the map server-side, because it provides simplicity and
creating a system able to support a huge user base has not been the focus of this project.

3.3.3 Data Quality Maintenance

In an MCS system, the sensed data received should be filtered, as some of it may
be redundant or sensed under inappropriate conditions [16, p.595]. This challenge is
approached by removing all data related to a trip which is deemed invalid. A trip is
considered invalid if it is under 500 metres, this helps ensure that trips started by e.g.
accident are not stored in the database. To filter out GPS locations which are of too
low quality, the map matching algorithm ignores GPS locations if it is map matched to a
road segment, where the distance between the GPS location and road segment is over 160
metres. The 160 metres origins from empirical investigation implying that the algorithm
must have identified a wrong link at this distance [24, p.676]. Other methods to filter
away low-quality GPS locations should be implemented as environmental factors such as
sky blockage and atmospheric effects can affect the quality of GPS locations [40, p.817],
however, this has not been a focus in this project.

3.3.4 Data Storage

To accommodate the new system goals outlined in Table 3.1, the Data Warehouse model
presented in this report has only few similarities to the one presented in [3]. A complete
exposition of the new and improved database schema is provided in Appendix A - Data

16

3.3. Data Collection and Real-Time Processing Aalborg University

Warehouse Schema. This section aims to highlight and discuss the most significant design
alterations.

Dimension Tables

The application developed in [3] autogenerated a user when the application opened for
the first time. Unfortunately, this signified, acquiring a new phone would entail the data
accumulated with that profile is lost. To solve this problem, it is decided to enable the user
to create a profile with credentials such as username, email, and password. Logging in on
an arbitrary phone with the right credentials will then display the associated data. Date
of birth (dob), gender, time of creation are metrics included to permit a more detailed
view of the target group as well as when users tend to sign up (after campaigns, weekends,
after broadcasted traffic accident, etc.).

Figure 3.4: User Dimension Table

In accordance to [40] environmental variables such as weather, is pinpointed as UBI
fundamentals. Furthermore, as mentioned in Section 3.3.3 - Data Quality Maintenance,
the weather may have a negatively impact on the GPS quality. Also, meteorology data
allows investigating if weather has an impact on road users’ behaviour. Based on these
three arguments, it is decided to include a weather table, depicted in Figure 3.5.

17

Group dpt107f17 3. Analysis & Design

Figure 3.5: Weather Dimension Table

Only two device types (Garmin GLO and Kontak.io Beacon) are supported by the
system developed in [3]. As mentioned in Section 3.1 - Mobile Crowd Sensing (Client
Application), it is decided to support multiple devices commonly found in vehicles.
Therefore, a new table is introduced, replacing the car table presented in [3]. This
table aims to reveal the diversity of devices that are used for the DriveLaB application.
The different aspects are device_type_id (Bluetooth Low Energy, Bluetooth classic or
both combined), mac_address, class_of_device (hands-free, wearable headset, headphones
etc.), and device_uuid (often include brand and model details).

Figure 3.6: Device Dimension Table

The MM algorithm presented in Chapter 2 - Map Matching and discussed in Section 3.3.2

18

3.3. Data Collection and Real-Time Processing Aalborg University

- Map Matching is, besides distance and heading, based on two additionally topological
properties. These properties are connectivity and turn restrictions. Figure 3.7 depicts the
table responsible for storing the necessary topological information.

Figure 3.7: Road Vertex Dimension Table

It would be inefficient to consider all GPS points when drawing paths to a map. Therefore,
a route dimension table is added, considering only road segments. The seq column will
make sure the correct road segment sequence is never lost, where kmh and km will store the
speed limit and the distance of the road segment respectively. This way, if the speed limit
changes over time or the road segment gets altered, it will not influence old trips utilising
said road segments. Avg_speed, max_speed, gps_points are all aggregations potentially
based on multiple GPS points.

Figure 3.8: Route Dimension Table

Fact Tables

Telling the sequence of two GPS points measured in the same second if only the time
dimension table is used, is not possible. This problem is not handled by the schema
presented in [3]; however, the new schema solves this by adding a milliseconds column.

19

Group dpt107f17 3. Analysis & Design

Additionally, the projected points mentioned in Section 3.3.2 - Map Matching is stored in
the GPS fact table. Accuracy, heading and orientation is also data not previous stored,
which allows the MM algorithm to iterate through trips multiple times which is beneficial
for debugging purposes.

Figure 3.9: GPS Fact Table

It is in [3] inconclusive whether the auditory speeding notifications got heard or not. This
is due to not tracking the smartphone volume when playing the sounds. The sound level
will, among other parameters, be stored in the sound fact table for later analysis.

20

3.3. Data Collection and Real-Time Processing Aalborg University

Figure 3.10: Sound Fact Table

Figure 3.11 shows the table containing all the speed limit reports contributed by the users.
The column correct_report is used to indicate whether the speed limit report is determined
to be correct or incorrect. This table also tracks which reports have influenced the decision
to change the speed limit for a road, which the column road_history_id manages.

Figure 3.11: Speed Limit Report Fact Table

The table depicted in Figure 3.12 stores all speed limit changes made to the roads. This
includes the dates when the changes happened and what specifically the speeds were
changed from and to. This allows for tracking of how the speed limit has evolved for
a given road.

21

Group dpt107f17 3. Analysis & Design

Figure 3.12: Road History Fact

3.4 Crowd Data Processing

This section revolves around utilising the data collected and stored in Section 3.3 - Data
Collection and Real-Time Processing to deduce new valuable information. The Reputation
System will evaluate the trustworthiness of speed limit reports contributed by users where
APIs can be used to support data interchange between the data warehouse represented in
Section 3.3.4 - Data Storage and the applications discussed in Section 3.5 - Applications.

3.4.1 Reputation System

As described in Section 3.1 - Mobile Crowd Sensing (Client Application), the smartphone
application provides the functionality for users to report speed limits. This is intended
to be utilised if the users encounter incorrect speed limits. However, users may report an
incorrect speed limit due to an accident or malicious intent. This can pollute the dataset
with incorrect data and thereby affect the performance score for other users driving on
that road segment inappropriately.

To approach this challenge, the speed limit reports are processed to determine if the road
speed limit should be changed. As described in Chapter 2 - Reputation System, elements
from those contributions are used in the design of the reputation system implemented.
Specifically, the system presented in this report base the reputation of users on how their
speed limit reports fare over time. This works similarly to the proposed reputation system
by Mashhadi and Capra [21], which bases the reputation of users on how their Wikipedia
contributions fare over time.

Users who have contributed with speed limit reports for a road segment which has caused
a change in speed limit will receive a better reputation. However, if new speed limit
reports for that same road segment is submitted, the speed limit will change again. The
time interval between these two changes determines if the first group of people should be
punished by having their reputation score changed negatively, if it is within a short time
interval or leave them unpunished if the time interval is long.

It is both the latest and past submitted reports which are used in the calculation of users’
reputation score, similar to the way Kantarci and Mouftah determine user reputation [41,
p.362]. As described in Chapter 2 - Reputation System, [21] uses the mobility pattern of

22

3.4. Crowd Data Processing Aalborg University

a user to influence the reputation score. This element is applied in this system, where
the credibility of a speed limit report is influenced by not only the reputation of the user
but also the geographical location of where the speed limit report was captured. If the
geographical location of the speed limit reports is placed within the area where the user
normally drives, the credibility of the report is affected positively.

The road type is also considered as it influences what speed limit ranges are possible e.g.
a speed limit report suggesting changing a motorway road from 130 km/h to 50 km/h is
unlikely.

Another approach that could have been used instead to detect the correct speed limit for
the roads, is to observe the speed at which users drive. Based on the speed of how users
drive in general, it might be possible to deduce the correct speed limit for that road. This
has the advantage of not requiring users to report a speed limit manually. Instead, the
GPS data collected by tracking with the client application can be used to determine this.
However, it has the disadvantage of requiring a sizeable amount of data to implement,
which has not been a possibility for this project.

Bin Guo et al [16] mentions the combination of human and machine intelligence where
the system DietSense is referred to, which utilises both image processing techniques and
manual image review by humans [16, p.596]. It might be interesting to investigate in the
future, how the same approach could be applied in this context where speed limit reports
from humans are used together with machine learning techniques that can derive the speed
limit of roads based on GPS data.

3.4.2 API

APIs are used as an interface for communication between system components. In this
report, three different API exposure levels are presented, namely public, protected, and
private. These levels can be used to enforce policies in regards of sharing person identifiable
data. Furthermore, different techniques for API versioning is outlined.

Access Levels

Public Protected Private

This access level should be
open for the general public
and precautions to deny ac-
cess to person identifiable
data should, therefore, be
enforced.

Offering an interface for
partners has many use
cases. Therefore partner
credentials should be pro-
vided to receive the desired
data. If data is exchanged
in accordance with the
terms of use, anonymity
should not be an issue

An API for internal use
only can be applicable
for transferring data be-
tween system components.
This denotes that the API
should not be available for
the public nor should it be
for partners, to avoid pri-
vacy concerns.

Table 3.3: API Access Levels

23

Group dpt107f17 3. Analysis & Design

In this project, both a public and private REST API is implemented to facilitate a website-
and smartphone application respectively. Implementing these two API access levels should
prove the viability of the protected API. The public API is elaborated further in Section 3.5
- Applications where the private API is designed almost identical to the one presented in
[3].

Versioning

Different methods are used for versioning REST APIs, where the most common ones are
displayed in Table 3.4.

Name Type Example

URI path URI domain.com/2.0/resource

Domain name URI apiv2.domain.com/resource

Query parameter URI domain.com/resource?apiversion=2.0

Media type Header Accept: application/apiv2.0+json

Custom header Header X-API-Version: 2.0

Table 3.4: API Versioning Methods

Even though implications regarding versioning methods are well known [42][43][44], the
impact of these implications are more biased. Therefore, a thorough discussion of pros
and cons is deemed out of scope for this project. However, both [45] and [43] argues that
using URIs to implement versioning in REST APIs, violates the “one resource, one URI”
concept, and is therefore not used in this project. Additionally, it is assessed that header
fields should offer a clear and narrow set of options which is why using the Accept header
field for versioning is deemed not optimal. This leaves the custom header option, which is
also the one chosen for versioning the public and private REST API in this project.

3.5 Applications

In accordance to [16], MCS can leave a variety of applications and services open for
development. This section will be investigating CSR related opportunities hiding among
these software solutions. To narrow the scope, it is decided to focus on three fields, namely
Map Contribution, Improvement of Road Safety and Improvement of Road Infrastructure.

24

3.5. Applications Aalborg University

Map Contribution

Speed Limit Map - Google and Microsoft both own commercial online map services
[46] [47] that lacks a 100% speed limit coverage. Therefore, producing a map with
speed limits which are made freely available to benefit the community of open data
could benefit a company by producing positive press coverage.

Improvement of Road Safety

Speeding Visualisation - Offering free access to a map that highlights road segments
where speeding is common. This information can be used by the police to better
assess where to place speed controls, and thereby improve road safety.

Danger Zone Detection - Locating areas with harsh breaking could also be an
example of providing valuable information. The road authorities could place e.g.
chicanes or roundabouts in these areas to improve the road safety.

Driver Feedback - As done in [3], the client application itself could contain features,
such as speeding notifications and scoring for keeping within the speed limit. This
may prevent accidents related to speeding and thereby improve road safety.

Improvement of Road Infrastructure

Congestion Level Visualisation - A heatmap showing heavily trafficked road segments
can help road authorities visualising where to expand the road network or placing
bypass roads to relieve stress. This will help improve the traffic flow and eventually
reduce the travel time for road users.

Table 3.5: CSR Ipportunities in MCS

Speeding Visualisation is one of two elements in Table 3.5 that will be implemented in this
report. However, Speeding Visualisation is the only new contribution compared to [3], a
reimplementation of Driver Feedback is also included. Development of Speed Limit Map,
Danger Zone Detection and Congestion Level Visualisation is thereby not included in this
report, avoiding too broad a scope.

Speeding Visualisation is designed to be an API offering the possibility of querying the
database through HTTP GET requests. It follows the public API policy presented in
Table 3.3 and consists of a finite set of predefined constructions, which will ensure the
control of data access. All data is returned in the GeoJSON format [48], which is a widely
supported encoding for geographic data structures (leaflet [49], Google Maps API [50] and
Bing Maps API [51]). Additionally, a website using the Speeding Visualisation API is
developed, as a showcase.

25

Implementation 4
This chapter contains the implementation details of the DriveLaB system. It is structured
similarly to Chapter 3 - Analysis & Design, except that the layers contain application
components providing functionality, instead of just functionality terms. To further
illustrate this, compare Figure 3.1 to Figure 4.1 below.

Figure 4.1: MCS DriveLaB Architecture

Eight different applications are running as part of the DriveLaB system, spread across the
layers of the MCS framework. Starting from the bottom, the Client Application resides in
the Crowd Sensing layer which communicates through the Data Transmission layer to two
out of three applications in the Data Collection and Real-time Processing layer, namely the
Client Application Real-Time API using Websockets and the Client Application API using

27

Group dpt107f17 4. Implementation

REST. These applications utilise the Data Warehouse in the same layer. There are two
applications in the Crowd data processing layer: Reputation application which process data
from the data warehouse and stores back the results, and Public API exposing anonymised
data to the Application layer. In this layer, the example application www.drivelab.dk
presents data collected in the system to the public eye.

4.1 Crowd Sensing

The Crowd Sensing layer contains the client application, which is presented in this section.
The presentation includes screenshots of the application, an explanation of the Xamarin
project structure, and an exposition of the application architecture.

4.1.1 Client Application

The client application available for Android and iOS is presented in this section, including
screen dumps, and a few selected implementation sections containing details of solutions
to essential problems. The application is implemented largely based on the assumption
that an internet connection is always available even though that is a naive assumption.
The only functionality implemented with measures to handle internet connection loss is the
tracking and websocket server connection, as these parts are vital to avoid data corruption.
Supporting loss of internet connection in all aspects of the system would be a significant
time-consuming task and increase code complexity but would, on the other hand, enhance
the user experience.

(a) Sign Up Page (b) Login Page

Figure 4.2: Access Pages

The application is available for download today on Google Play Store for Android and App
Store for iPhone. The Figure 4.2a is opened upon launching the application, if not already
logged in. The user can create an account by providing a username, email, password,

28

www.drivelab.dk

4.1. Crowd Sensing Aalborg University

gender and lastly the date of birth. When signed up, the user has acknowledged the terms
of service, as known from many other applications requiring account creation. There is a
button in the upper right corner of this page which navigates to Figure 4.2b. This page is
for already registered users, enabling account migration across smartphones, which were
not possible for the application presented in [3].

(a) Tracking Inactive (b) Tracking Active

Figure 4.3: Trip Page (Landing Page)

After either creating an account or logging in, the user is presented to Figure 4.3a
which presents the options to open the menu at the upper right corner button with the
conventional menu icon. Further, the user can utilise the menu tabs to navigate to their
trip history or the leaderboard. Lastly, the page offers to start a trip by pressing the
button or text in the middle of the screen. This will navigate to Figure 4.3b and start the
tracking using a foreground service, as denoted by the car icon in the status bar on top.
This service is application independent in the sense that closing the visual application will
not affect the service and tracking will continue. Similarly, the service is spawned when
using automatic tracking without opening the actual application.

The tracking page in Figure 4.3b displays real-time driving information with the driving
speed, road speed limit, road name, score, trip length and average speed. A red button at
the bottom presents the ability to stop the trip when arriving at the destination. A hint
is shown on top of the speed and speed limit when the page is loaded, which states that
the covered area can be pressed to report a faulty speed limit.

29

Group dpt107f17 4. Implementation

(a) Speed Limit Speech
Recognition Page

(b) Cancel Timer Page

Figure 4.4: Speed Limit Report Pages

Falsely assigned speed limits can be reported by navigating to Figure 4.4a which uses
speech recognition. The large microphone icon depicted on this screen is white when the
device is not listening and green as shown when the device is ready to listen to user speech.
The implementation details on parsing speed limits from user speech are further elaborated
in Section 4.1.1 - Crowdsourcing Speed Limits. If the speech recognition parses the word
“stop”, the reporting is aborted. If it instead parses a valid Danish speed limit, Figure 4.4b
is presented with the parsed speed limit, gratitude for contributing text and a button to
cancel the report. A timer set to 5 seconds is visualised by a progress bar and indicates
the time available to click cancel. Otherwise, the report is submitted.

30

4.1. Crowd Sensing Aalborg University

Figure 4.5: About Page

An about page has been implemented for people to seek information about the project
and what they contribute to by participating. Likewise, Android requires apps that use
privacy-sensitive permissions, like locations and audio, to have a Privacy Policy available.
This policy contains an explanation of which permissions the app uses and a reasoning for
using these permissions. A direct link (http://drivelab.dk/privacy_policy.php) to the
privacy policy associated with this application is implemented on top of the about page.
Like in [3], this application also contains pages for trip history, leaderboard, automatic
tracking settings and sound settings. These serve mostly the same purpose as in [3], and
a description is therefore omitted in this report.

Xamarin Application Architecture

The primary advantage of using Xamarin for cross-platform development is sharing code
in the business layer across platforms. However, Xamarin Forms [52] makes code sharing of
user interface possible too, contingent on using universal interface features. The DriveLaB
application is created using Xamarin Forms with a shared project [53] containing the shared
code. A shared project is a project without any output; rather the project is copied into
projects referencing them. In this case, the Android and iOS projects as seen on Figure 4.6.

31

http://drivelab.dk/privacy_policy.php

Group dpt107f17 4. Implementation

Figure 4.6: DriveLaB Xamarin Project Architecture

The platform specific code in each platform project is code related to the following parts
of the application:

• Locations - Extracting locations from the device GPS
• Audio – Extracting device volume and playing sounds
• Speech Recognition – Enabling speech recognition and parsing of speed limits
• Bluetooth – Extracting paired Bluetooth devices and subscribing to connections

(Android only)
• Lifecycle Events – Utilising services (Android only)

These features equivalents roughly into 350 lines of code which are platform specific. That
is a relatively small amount of code and represents only a fraction of the entire code in
the client application, which is a result of efforts towards achieving as much code sharing
as possible.

Xamarin maintains a GitHub repository [54] of officially supported plugins which enable
further code sharing. However, the maturity and support of these plugins vary in
quality and the group made several efforts towards improving the project relevant plugins.
Especially the GeoLocator plugin [55] received issue descriptions about location precisions
[56], new beta package errors [57] and plugin bugs when used on a Huawei smartphone [58],
which led to a plugin update. The location related features are yet implemented platform
specific, despite the efforts to contribute and gain more code sharing, as the plugin did not
reach an acceptable state regarding the precision of locations.

32

4.1. Crowd Sensing Aalborg University

Figure 4.7: DriveLaB Android Internal Architecture

Figure 4.7 shows the internal component architecture of the DriveLaB Android version.
The boxes represent components, and the arrows represent the main purpose or usage. The
Android depicted in the upper left corner acts as the Android OS component responsible
for sending intents, in this case to the DriveLaB Broadcast Receiver. The receiver can start
and stop the Foreground Service as later elaborated in details in Section 4.1.1 - Automatic
Tracking. The GeoTracker component is implemented using the Singleton pattern [59]
to ensure object sharing between the service and Application UI. The service can toggle
tracking in the GeoTracker, and the UI displays the real-time information available: speed,
speed limit, road name, score, trip distance and average speed. The UI can start and
stop the service similar to the broadcast receiver, thus enabling manual tracking. The
UI also communicates with the Section 4.3.2 - Client Application API through the data
transmission layer.

As mentioned and illustrated, the GeoTracker handles extracting locations from the
LocationManager and sends these and the user’s speed limit corrections through the Real-
time API. The API returns the information which is then drawn to the UI display.

33

Group dpt107f17 4. Implementation

Figure 4.8: DriveLaB iOS Internal Architecture

Figure 4.8 bears significantly resembling in the components common to Android. However,
iOS does not expose similar functionality as Android in Figure 4.7, which is the current
obstacle to supply iOS with a similar solution of automatic tracking. This is because there
are no equivalent for a broadcast receiver in iOS. The iPhone Application UI can directly
toggle the tracking in the GeoTracker and thus, enables manual tracking. Otherwise, the
GeoTracker and WebsocketManager is identical to Android due to the shared project code.

Automatic Tracking

The utilities to facilitate automatic tracking on Android is specified in Figure 4.7 as a
Broadcast Receiver (BR) and a Foreground Service (FS). The BR provide the functionality
to detect Bluetooth devices connecting and disconnecting to the smartphone, whereas
the FS is a service that facilitates the continuous tracking in the background of the
smartphone. As the solution to automatic tracking only applies to Android, the code
for both components resides in the Xamarin Android project. Listing 4.1 presents the
implementation of the BR.

34

4.1. Crowd Sensing Aalborg University

1 [BroadcastReceiver(Enabled = true)]
2 [IntentFilter (new[] { "android.bluetooth.device.action.ACL_CONNECTED",

"android.bluetooth.device.action.ACL_DISCONNECTED" })]
3 public class DriveLabBluetoothReceiver : BroadcastReceiver
4 {
5 public override void OnReceive(Context context, Intent intent)
6 {
7 BluetoothDevice device = ExtractDeviceFromIntent(intent);
8

9 if (device.Address != Settings.AutoTrackDeviceMacAddress)
10 return;
11

12 Intent serviceIntent = new Intent(context, typeof(DriveLabService));
13

14 if (intent .Action == "android.bluetooth.device.action.ACL_CONNECTED")
15 {
16 serviceIntent .SetAction("start_foreground");
17 serviceIntent .PutExtra("device", device);
18 context.StartService(serviceIntent) ;
19 }
20 else if (intent .Action == "android.bluetooth.device.action.ACL_DISCONNECTED")
21 {
22 context.StopService(serviceIntent) ;
23 }
24 }
25 }

Code Snippet 4.1: Bluetooth Connectivity Broadcast Receiver

The code lines are explained in chronological order:

• Line 1 – The BroadcastReceiver attribute is a feature in Xamarin to specify the
broadcast receiver in the Android Manifest [60] automatically.
• Line 2 - The IntentFilter attribute adds to the Android Manifest the intents that the

broadcast receiver should receive. The ACL_CONNECTED and ACL_DISCONNECTED
intents denote a Bluetooth device connection and disconnection, respectively.
• Line 3 - The DriveLabBluetoothReceiver class is defined and inherits from

BroadcastReceiver to enable registering the class as a broadcast receiver.
• Line 5 - The inherited OnReceive method is overridden, which is the method

executed upon receiving an intent.
• Line 7 - Extracts the Bluetooth device object from the intent. The object contains

the name, type, UUID, etc.
• Line 9 - This comparison is the stored device? decision depicted on Figure 3.2

- New Automatic Tracking Flowchart. The AutoTrackDeviceMacAdress holds the
user chosen paired Bluetooth device MAC address.
• Line 12 – A new intent is instantiated, used to either start or stop the service
• Line 14 – A comparison of the intent’s action property reveals whether a Bluetooth

device connected. If so, lines 16-18 set an action and attach the Bluetooth device to
the intent, which is used to start the service.

35

Group dpt107f17 4. Implementation

• Line 20 – Contrary, if the intent’s Action indicates a device disconnection, line 22
stops the service. The service can close the tracking mechanism properly upon being
shut down.

The intents are received reliably but occasionally with a slight delay (<2 sec). There are
found one issue in the implementation that is addressed further in Section 5.1.1 - Automatic
Tracking.

Crowdsourcing Speed Limits

Knowledge of speed limits is a significant part of the DriveLaB system, and the absence
thereof poses a threat against user experience and system viability. The creation of
functionality to support user contribution is carefully considered to be as little distracting
as possible due to the context of driving. As noted in Section 3.1 - Mobile Crowd
Sensing (Client Application) any physical phone interaction is illegal, so the project group
attempted to implement continuous speech recognition. There are several obstacles as to
why this solution did not succeed:

• Android User Experience – Implementing continuous speech recognition on Android
resulted in significant gaps in registering for user’s voice and sounds would play to
indicate both starts and stops listening often. Measures to avoid the sounds were
not accordance with Android design guidelines.

• Apple Limits – Apple offers their speech recognition capabilities free of charge,
however continuous use of this results in Apple requiring payment due to excessive
use.

• Battery Drain – Listening to voice continuously involve constant use of microphone
and processing power which drains the battery substantially.

• Data consumption – The data transfer would increase a considerable amount as every
microphone input is sent to either Google or Apple for speech recognition.

The selected solution consists of a physical touch on the majority of the tracking page,
which then activates speech recognition in a short period. The physical interaction is
comparable to a physical interaction with the car stereo and is intended to be possible
without distraction from the driving task.

36

4.2. Bidirectional Real-time Data Transmission Aalborg University

Figure 4.9: Speed Limit Parsing Logic Flowchart

The speech recognition APIs on Android and iOS is continually evaluating the speech
input, and the resulting partial string is equally often inspected for valid speed limits. The
approach of parsing partial results increases user experience as the application promptly
reacts to legal speed limits instead of waiting a fixed amount of time before parsing the
full text.

Figure 4.9 depicts the logic to parse the partial results returned by the API and starts at
the Speech to text result state. At first, the text is searched for the word “stop” as this
enables the user to cancel the reporting. If it is not present, all numbers are extracted
from the text which prepares for the detection of the number 100. This number represents
a particular case when utilising speech recognition in partial result mode. In Danish and
English, speaking the number 130 is pronounced “one hundred and thirty”, which would
lead to the speech recognition parsing the speed limit report incorrectly as 100. A delay of
1.5 seconds counters this issue. By delaying the acceptance of 100, the text “130” retrieved
next from speech recognition has enough time to be parsed and accepted as the correct
speed limit.

Reported speed limits goes through the reputation system for validation as described in
Section 4.4.2 - Reputation System

4.2 Bidirectional Real-time Data Transmission

Data Transfer Objects (DTOs), used for the communication between the client and API,
are defined in a shared project and referenced by both the client and API project transpired
to be a beneficial development oriented advantage by providing a common structure.
Altering a DTO to support a new feature on the client application reveals the impact on
the API upon next build of the code, which reduced bugs and heightened the development
speed. The DTOs and their purpose in this project are:

• ErrorDto – Contains an error code and message. The API sends an ErrorDto to the
client as a response to an erroneous REST API request.

37

Group dpt107f17 4. Implementation

• LeaderboardEntryDto – Contains the name and total score of an active user on the
leaderboard.
• GpsPointDto – Contains the location data received from the smartphone GPS.
• LocationInfoDto – Contains a trip id and a list of GpsPointDtos. The clients send

the DTO to the API in a fixed interval while tracking.
• LoginDto – The client sends a LoginDto with credentials upon attempting to log in.
• RoadDto – The API sends a RoadDto containing the street name and speed limit to

users that are tracking.
• SpeedLimitReportDto – This DTO is sent from the client to the API when a correction

of speed limit has been reported.
• StartInfoDto – The user initiates a trip on the API by sending a StartInfoDto,

which contains the details of the Bluetooth device if the tracking was initiated
automatically.
• TotalScoreDto – The total score of a user is presented in the side menu of the client

application. This is requested upon application launch and trip stop, and arrives in
a TotalScoreDto
• TripDto – Contains full trip information and is used to display the users trip history.
• TripStatusDto – The TripStatusDto is sent from the API to the client continuously

while the user is tracking. It includes real-time calculated score, trip distance and
average speed.
• UserCreateDto – A UserCreateDto is sent to the API when the user signs up in the

client application and includes the username, hashed password, gender, email, and
date of birth.

The DTOs are either used in the request or response of the REST API or as part of a
websocket message type previously presented in Section 3.2 - Data Transmission. The real-
time message types are introduced in Table 4.1 with their id, name, purpose, and DTOs
included. The DTOs from the above list which are not included in any of the message
types are utilised in the REST API.

38

4.3. Data Collection and Real-time Processing Aalborg University

Id Name Purpose DTOs included

1 StartTrip Client initiates a trip to the
server StartTripDto

2 Locations Client sends a batch of loca-
tions to the server

LocationInfoDto, GpsPoint-
Dto

3 Received Server response to a web-
socket message from the client None

4 SpeedLimitReport Client speed limit correction
report SpeedLimitReportDto

5 RoadInfo
Server sends the road informa-
tion of which the user is cur-
rently drives on

RoadDto

6 TripStatus Server sends trip information
to the user TripStatusDto

7 UserFeedback
Server sends an acknowledge-
ment message of good driving
to the user

None

9 StopTrip Client signals the server to
stop the trip None

Table 4.1: Real-time Message Types

The message types Received, UserFeedback, and StopTrip includes no DTOs. Received
and StopTrip act as signals without accompanying data, whereas UserFeedback has the
appraisal text string included, which is so simple that adding a dedicated DTO would
increase complexity unnecessarily. All messages are AES encrypted and sent through the
websocket protocol as outlined in Figure 3.3.

4.3 Data Collection and Real-time Processing

As described in Section 3.3 - Data Collection and Real-Time Processing, this layer has
the purpose of retrieving, processing and storing data contributed by the users during
their trips. Additionally, mechanisms are implemented to filter away low-quality data and
provide incentives for users to participate.

The component Client Application Real-time API has the task of receiving GPS data,
the audio configuration of users’ smartphones, and speed limit reports with the use
of the WebSocket protocol as described in Section 4.2 - Bidirectional Real-time Data
Transmission. Additionally, GPS data is processed to provide real-time driving related
information to users during their trips and stored in the data warehouse afterwards.

Client Application API is a RESTful API handling the creation, login, and validation
of users. It also provides information and details about the users’ previous trips and a
leaderboard that displays the performance of active users.

39

Group dpt107f17 4. Implementation

ASP.NET Core[61] was used to develop these components in the last project, and it is
decided to preserve this choice of technology since the project group has had mainly
positive experiences with it and saw no reason to change. The real-time API is rewritten
from scratch due to the abandonment of SignalR, described in Section 3.2 - Data
Transmission, and the need for implementation of new features which require architectural
changes. Additionally, the Object-relational mapper (O/RM), Entity Framework Core (EF
Core)[62], is used to handle database interaction, which also influences the decision to build
a new real-time API application.

The Data Warehouse handles storage of all data and trip processing which enables the
users’ routes to be displayed through the Public API described in Section 4.4.1 - Public
API in addition to validation of users in the creation process.

4.3.1 Client Application Real-time API

This section presents the Client Application Real-time API component where it will
be described how it handles the trips and communication with the Client Application
described in Section 4.1.1 - Client Application.

Figure 4.10: Real-time API Architecture

40

4.3. Data Collection and Real-time Processing Aalborg University

In Figure 4.10, the text in the blue boxes are objects, and the text in the white boxes
are tasks related to those objects. The arrows indicate the data flow between them.
The WebSocket Middleware handles data received from the Client Applications where it
decrypts and deserializes the JSON strings as described in Section 4.2 - Bidirectional Real-
time Data Transmission.

Trip Management

The messages are passed on to the Trip Handler, which has the job of managing the trips’
lifecycle. Depending on the message passed by the Client Applications, the Trip Handler
either creates a new trip, request an ongoing trip to finish and thereafter removes it or
passes a speed limit report or GPS locations to a trip. A dictionary is used to store
the Trips with the GUID as the entry key. This GUID is generated upon creation for
each Trip by the Client Application. The risk of two identical GUIDs being generated is
astronomically low. However, this scenario is currently not handled and could cause an
exception to occur if identical GUIDs are generated for users within the same timeframe
of driving.

Trip Timeout Handling

During a trip, the websocket connection for some trips might end abruptly due to loss
of internet connection. The Client Application will therefore not send a stop signal,
which leaves the server responsible for making sure that the trip gets finished. This is
accomplished by marking trips with a timestamp of when they last received GPS locations.
The server will have an event which triggers every five minutes where the timestamp of
each trip is checked. Trips that have not received any GPS locations within five minutes
are then finished and removed from the dictionary. If a trip reconnects within five minutes,
the new websocket connection will be assigned to the corresponding Trip object, which
allows the tracking to go on.

Map Matching

As mentioned, the real-time map matching algorithm outlined in Chapter 2 -Map Matching
is implemented. The algorithm consists of the three states, Initial MM, MM on a link, and
MM at a junction, as explained earlier. Both Initial MM and MM at a junction collects
a list of candidate roads by drawing a circle with the GPS point accuracy as the radius.
This is done by using the two PostGIS functions ST_Buffer to construct a border box and
ST_Intersects, finding roads intersecting the border box. The approach is performed for
each GPS point processed in the two modes Initial MM and MM at a junction, including
a network overhead to the database each time.

All three modes project the GPS point on to a road. Even though, orthogonal projection
is achievable in PostGIS by utilising the two functions ST_Line_Interpolate_Point and
ST_Line_Locate_Point, it is decided to embed such feature in the client application real-
time API. Embedding the projection feature reduces the database interaction, which should
lead to better performance.

41

Group dpt107f17 4. Implementation

Figure 4.11: GPS Point Projection

Figure 4.11 - GPS Point Projection visualises the two possible projection scenarios. Line
A and B both represent roads where the fine dotted lines illustrate that roads are treated
as infinite lines. Point a, b1, and b2 illustrate the projections used in the two scenarios
elaborated in the following list.

• Scenario A – The GPS point can be directly projected to A such that, the line from
the GPS point to point a is perpendicular to the road line A.

• Scenario B – The GPS point cannot be directly projected to B. However, a point
b1 can be found such that, a line between the GPS point and b1 is perpendicular to
the infinite version of B. Finally, the endpoint of B, with the lowest distance to b1
will represent the projected point b2.

The distance from the GPS point to the road is in Scenario A defined as ‖GPSpoint− a‖
and in Scenario B it is ‖GPSpoint− b1‖+ ‖b1 − b2‖. The Euclidean distance is used due
to its arithmetic simplicity, even though it does not account for the curvature of the earth.
The curvature is ignored as GPS points are often accurate within a few metres, which
should minimise the overall relevance.

42

4.3. Data Collection and Real-time Processing Aalborg University

Continuous Trip Processing

Figure 4.12: Continuous Trip Processing

As seen in Figure 4.12, once a batch of GPS locations has been map matched, the latest
GPS location is used to determine whether the user is driving on a new road, or the speed
limit has changed. If that is the case, then the information is transmitted to the Client
Application.

Hereafter, the beeline distance between the GPS locations is calculated using the Haversine
formula [63] as it takes the earth’s spherical shape into account. The implementation of
the formula made by Veness [64] is adopted for better performance.

The distances between the GPS locations are used to update the performance score, which
is calculated in the same manner as in [3]. It is the ratio between the total distance driven
and the punishment value received by driving above the speed limit, which determines
the score. The punishment value is based on the distance driven above the speed limit in
addition to how much the speed limit is exceeded in percentage. The more a user exceeds
the speed limit, the higher punishment value is added.

The medium feedback loop, described in Section 3.3.1 - Incentive Mechanisms, has the
purpose of providing positive feedback to the user. This is done by praising the user

43

Group dpt107f17 4. Implementation

whenever the speed limit has not been exceeded on a continuous road section by a certain
number of kilometres. The user can receive praise several times throughout a trip, however,
it becomes increasingly harder. Praise is received for the first time after four kilometres,
which doubles each time hereafter. If a user is eligible to praise, the string "You have driven
X kilometres under the speed limit, well done!" is transmitted to the Client Application
and played through audio with the use of text to speech.

The updated performance score, trip length, and average speed, which are all part of the
short feedback loop, gets transmitted to the Client Application after the processing of
every GPS location batch. The trip temporarily stores the processed GPS locations and
inserts them into the database when 50 have accumulated.

Finish trip

Once the trip is over, the Client application transmit a stop signal. The overall statistics
of the trip are updated, such as performance score, start/stop location, start/stop time,
weather information, and trip length. As mentioned in Section 3.3.3 - Data Quality
Maintenance, the validity of the trip is determined by considering its length. If it is
less than 500 metres, it is removed from the database. This is done to ensure that trips
started by accident are removed to avoid storing polluted data.

4.3.2 Client Application API

The client application API has many similarities to the REST API presented in [3]. Firstly,
the URL and port number is unchanged and is therefore still http://stream.cs.aau.dk:9220.
Secondly, similarly to the REST API presented in [3], the API is accessed by appending
/api to the URL. Table 4.2 gives an overview of the API calls possible to perform.

API path Method Input Response

/user/create POST UserCreateDto UserCreateDto

/user/login POST LoginDto LoginDto

/user/totalScore/guid/#1 GET #1 - GUDI (string) TotalScoreDto

/trip/guid/#1/start/#2/amount/#3 GET
#1 - GUID (string)
#2 - List offset (integer)
#3 - Limit (integer)

TripDto list

/trip/latest/guid/#1 GET #1 - GUID (string) TripDto

/leaderboard/rollingwindow GET - LeaderboardEntryDto

Table 4.2: API Layout

An example of utilising one of the API calls presented in Table 4.2 could be http:
//stream.cs.aau.dk:9220/api/leaderboard/rollingwindow. Three out of the six
presented URLs requires a GUID before testing the API call is possible. Therefore, a
working GUID f730c8ca-0c95-4aa3-9917-4e6dbd5d2de0 is made available.

44

http://stream.cs.aau.dk:9220/api/leaderboard/rollingwindow
http://stream.cs.aau.dk:9220/api/leaderboard/rollingwindow

4.3. Data Collection and Real-time Processing Aalborg University

Versioning

As mentioned in Section 3.4.2 - Versioning it is decided to use custom header fields for
REST API version control. The implementation makes use of the Microsoft.AspNetCore-
.Mvc.Versioning NuGet package provided by Microsoft. The package is set to recognise
an Api-Version header field, accepting versions in the format major.minor (e.g. 0.1). If
no version header is set, the API will default to a prespecified version. However, it is
encouraged to always specify the version header to avoid compatibility issues should the
prespecified version number be increased.

4.3.3 Data Warehouse

As mentioned, weather data is deemed valuable in a UBI context to assess both GPS quality
and responsible driving. To collect the weather data OpenWeatherMap API [65] is used,
which offers 60 API calls for free each minute. Furthermore, the free subscription plan only
guarantees the weather data update interval to be less than 2 hours. This signifies that
only every second hour, one can be sure to retrieve newly measured data. Therefore, due
to the low update rate of the weather data, duplicates would often be stored. Additionally,
since every user performs insertions in the gps_fact table each second, 60 API calls will not
be sufficient. The assumption in this project is that significant weather changes will not
normally take place within a radius of 50 km. User’s between 30 and 59 years of age are
the most frequent travellers, and their travel distance is 34.9 km on average each day [66].
It is in this project believed that associating weather data for a whole trip is sufficient.
At the current state, the system does not utilise the collected weather data; however, it is
possible to incorporate in future feature implementations. As the data is already collected
and associated with trips, new weather-related features may function retroactively.

For the new user registration feature to be useful, some level of authentication is
required. Figure 4.13 and Figure 4.14 are two different approaches to prevent user account
duplications.

(a) Successful User Creation (b) Unsuccessful User Creation

Figure 4.13: User Authentication Approach with Transaction

The transaction-based approach presented in Figure 4.13, requires two separate database
requests in the worst case. As the client application API and the database runs on two
separate servers, a network overhead for each request is included.

45

Group dpt107f17 4. Implementation

(a) Successful User Creation (b) Unsuccessful User Creation

Figure 4.14: User Authentication Approach with Database Trigger

The database trigger approach presented in Figure 4.14, however, requires one request
at most. This is possible by triggering a database routine before any insert statement is
performed on the user_dim table. The database routine checks if an email, username, or
GUID already exists, and throws an exception if it is the case. Different exceptions are
raised depending on which duplicate is in question. Hereby, it is possible to provide
information about what went wrong. The logic depicted in Figure 4.14 is the one
implemented in this project, because of its simplicity and the limited use of network
communication.

A database trigger is also used to populate the route_dim table. A routine is called
whenever a row in the trip_fact table is updated. It starts by deleting all instance of
road segments associated to the specific trip id. If the processed column is True, it will
repopulate the route_dim table with road segments based on an aggregation of associated
GPS points found in the gps_fact table. If the processed column is False, however, the
routine will simply return, leaving the route_dim table unchanged.

The leaderboard is implemented as a view table, which bypasses the need to schedule
updates for a persistent leaderboard table. However, this implementation may not scale
well with a fast-growing user base, it is a simple implementation which does perform well
enough for the small experiment presented in this paper.

The Danish map offered by Geofabrik [67] is now used in combination with the OSM2PO
tool [68]. OSM2PO is primarily used to transform Open Street Map (OSM) data into
routable maps. In this project, OSM2PO is mainly used for splitting road segments in
such a way that no road segment goes through and beyond a junction node. Visualising a
trip on a graphical map can thereby be done by drawing the visited road segments directly
onto the map. Furthermore, the road_vertex_dim mentioned in Section 3.3.4 - Dimension
Tables, is autogenerated by the OSM2PO tool, facilitating the topological analysis done
in the MM algorithm.

4.4 Crowd Data Processing

The most important implementation details regarding the public API and the reputation
system will be covered by this section. It is clarified which API calls are currently
available through the public API as well as a quick demonstration of how to apply them.
Furthermore, a brief walkthrough of the components that constitute the reputation system
and formalisations of the various equations is provided.

46

4.4. Crowd Data Processing Aalborg University

4.4.1 Public API

Contrary to the client application API, the public API is designed to be used by
third party institutions. Allowing the institutions to combine search terms, is a high
priority as the public API should apply to a variety of traffic related applications. To
accommodate this goal, it is decided to utilise the query string available through the
URL. The public API runs as a new application, independent of the application API.
Therefore, the public API is accessed through the same domain, yet assigned a different
port http://stream.cs.aau.dk:9250/api.

API path Method Query parameter Input

/heatmap GET age
- (integer, integer)
integer>
integer<

/heatmap GET gender male
female

/soundwarning GET - -

Table 4.3: API Layout

Table 4.3 - API Layout show the different constructs offered by the public API. To give
an example of use, the following URL http://stream.cs.aau.dk:9250/api/heatmap?
age=(18,25)&gender=male returns all data available concerning males in the range of
18 to 25 years. As mentioned in Section 3.5 - Applications the public API will return all
geographically related data in the GeoJSON format to ease utilising the API in third party
applications.

4.4.2 Reputation System

The implementation of the reputation system for validating speed limit reports is based on
the design considerations described in Section 3.4.1 - Reputation System. The programming
language Python3 [69] is used to implement the system. This eases the porting to a
database routine written in PL/Python [70], which enables scheduling the processing of
reports to be conducted at times where the server load is minimal with the use of pgAgent
[71]. However, due to time constraints, this was not completed.

Figure 4.15: Speed Limit Validation Process

As depicted in Figure 4.15, the unprocessed speed limit reports are organised in such way
that reports for the same road segment, and speed limit proposals are grouped together

47

http://stream.cs.aau.dk:9250/api
http://stream.cs.aau.dk:9250/api/heatmap?age=(18,25)&gender=male
http://stream.cs.aau.dk:9250/api/heatmap?age=(18,25)&gender=male

Group dpt107f17 4. Implementation

forming a partition. Hereafter, the reputation score is calculated for each partition.

This is done by first calculating a reputation score for each user in each partition.

total_erroru = irp_within_60u ∗ α+ irp_beyond_60u ∗ β+
locs_outside_regionu ∗ γ | α, β, γ >= 0, α + β + γ = 1 (4.1)

Equation (4.1) shows how the error rate of a user is calculated, where u denotes a user.
irp_within_60 and irp_beyond_60 denote the incorrect report percentage within and
beyond 60 days respectively. The reputation of users at different points in time has
different weights because it is believed that the way a user has acted in recent time is
a better indication of the quality of future contributions, therefore it should weight more.
The number 60, which is roughly two months, is used to separate what is considered recent
and past behaviour. This number is chosen because it is assessed that the average user
contributes 2 reports a week resulting in a total of eight reports each month. However,
eight reports are believed to be too few to estimate the validity of a user, therefore more
than one month worth of data is needed. Furthermore, using data from more than two
months could punish the user’s reputation for too long, if incorrect speed limit reports are
submitted. This may be demotivating and make the user stop contributing. If a user is
new and has not made any reports yet, the value 0.5 i assigned, as it is unsure whether
the user is trustworthy or not.

locs_outside_region denotes the percentage of GPS locations outside the region where the
new speed limit is proposed. This is found by placing a boundary box with a radius of
one kilometre around the GPS location where the speed limit report is conducted. The
percentage of GPS locations outside this boundary box indicate whether the user is local
in the area. α, β, and γ are all weight coefficients where their respective values are 0.8,
0.0, and 0.2 in this project.

The weight coefficient β is 0.0 because there is no point in considering the reputation of
a user beyond 60 days since the user experiment described in Section 5.2 - Uncontrolled
Experiments only lasts three weeks. The weight coefficients 0.8 and 0.2 are chosen because
of the correctness of a user’s previous reports is assumed to be a significantly stronger
quality indicator of their future contributions compared to their local area.

OSM road class Default (km/h) Speed limit report
constraint (km/h)

41, 51, 63 50 <60

13, 14, 15, 16, 21, 22, 31, 32, 42, 43 80 <100

11, 12 130 ≥100 or ≤130

Table 4.4: Deviation from Default Speed Limit

In Table 4.4, the column OSM road class shows the grouping of road classes that has the

48

4.4. Crowd Data Processing Aalborg University

same default speed limit, which has been acquired with the OSM2PO tool, described in
Section 4.3.3 - Data Warehouse. Column Default (km/h) indicate the default speed limit
for the corresponding road classes. The last column, Speed limit report constraint (km/h),
shows a constraint used to influence the credibility of a partition. If the proposed speed
limit does not satisfy the constraint, then the credibility of the speed limit partition is
influenced negatively by evaluating the weight speed_credibility to 0.5. If it does satisfy
the constraint, it evaluates to 1.0. These values are chosen because reports that do not
satisfy these constraints are deemed more unlikely and should have a harder time making
an impact. For example, if a group of users reports 70 km/h on a road segment with OSM
class 11, then the reputation score for that partition will be influenced negatively as it is
classified as a motorway segment with a default speed of 130.

partition_reputation = (1−
∏
u∈U

total_erroru)∗δ+speed_credibility∗θ | δ, θ >= 0, δ+θ = 1

(4.2)

As seen in Equation (4.2), the error rate of all users, where the collection of users within
a partition is denoted by U, is applied in the calculation of the total credibility score
for a partition. Additionally, the speed_credibility, which considers the comparison of
default and proposed speed limit is weighted into the calculation. δ and θ are both weight
coefficients assigned to 0.7 and 0.3 respectively. The two values for these weight coefficients
are chosen because reputable users are assumed to be more trustworthy than the OSM
road classification and should therefore weight significantly more in the partition score.
This will also help prevent potentially malicious users from reporting a speed limit which
differs a lot from the default speed, as their reputation score will be heavily punished
by both weights. Once the reputation score has been calculated for each partition, it is
determined which speed limits are going to be changed.

partition_reputation > κ (4.3)

If the partition_reputation has a reputation score that satisfies the threshold denoted by
κ in Equation (4.3) and the partition has the highest reputation score of all partitions for
the road segment, then the speed limit will be changed. The value for κ is 0.7 in the user
experiment, described in Section 5.2 - Uncontrolled Experiments. This is chosen because it
allows new users to single handily change the speed limit of a road segment which does not
deviate a lot from the default speed limit. A slightly lower value for κ would not provide
this behaviour. Making it possible for new users to alter speed limits would probably
not be wise under normal circumstances. However, since this is a short experiment with
relatively few users that are most likely not malicious, it is decided to give them more
impact.

49

Group dpt107f17 4. Implementation

4.5 Application

As mentioned in Section 3.5 - Applications it is decided to publish a website to showcase
the Speeding Visualisation CSR opportunity. To ease the process of deploying a website
and domain management, the UNOEURO [72] webhotel is used. The website is available
through www.drivelab.dk.

Figure 4.16: The DriveLaB Website

4.5.1 DriveLaB.dk

A stack of technologies is used to build the DriveLaB website. PHP is used as the server
language; however, no application logic is written in this language. The Leaflet JavaScript
library [73] is in conjunction with OSM used to handle the graphical map. It supports
GeoJSON by default and therefore able to display the data returned from the public API
described in Section 4.4.1 - Public API. A CSS framework named Materialise [74] is utilised
to allow mobile users to navigate the website with ease. Also, the JQuery JavaScript library
[75] is used to lighten the Document Object Model (DOM) manipulation process.

(a) Aggregated Heat-map (b) Road Information Popup

Figure 4.17: Heat-map Implementation

Figure 4.17a illustrates how a red to green Hue Saturation Lightness (HSL) colour scale
is used to visualise the degree of average speeding. To limit the HSL colour scale to only

50

www.drivelab.dk

4.5. Application Aalborg University

red and green, the saturation and lightness are set to 100% and 50% respectively, while
adjusting the hue [76] between 0◦ (red) and 120◦ (green).

HueV alue =

0, if AverageSpeed−SpeedLimit

SpeedLimit ≥ 0.3

120, if AverageSpeed−SpeedLimit
SpeedLimit ≤ 0

120− AverageSpeed−SpeedLimit
SpeedLimit∗400 , Otherwise

(4.4)

Equation (4.4) shows the hue value calculation by considering the degree of speeding. The
popup screen shown in Figure 4.17b can be triggered by clicking a coloured path, should
one require additional information.

Figure 4.18: Notification Map

Where speeding notifications have been triggered can also be shown on the map as depicted
in Figure 4.18. The police batch represents a speeding percentage from 10% to 30%. The
white and red ticket indicates speeding higher than 31% and lower or equal to 60% where
the siren represents either a speed exceedance over 60% or a speed higher or equal to 160
km/h.

51

Evaluation 5
This chapter presents controlled and uncontrolled experiments which serve as an evaluation
of the implemented system. Controlled experiments are experiments conducted by the
authors with a specific evaluation goal. In the uncontrolled experiment, the application is
made public for anyone to use where the collected data is analysed.

5.1 Controlled Experiments

In this section, the client application is subject to an experiment regarding the fairness
of utilising two platforms, and the automatic tracking solution on Android is evaluated.
Additionally, the performance of the real-time API system is tested.

5.1.1 Android and iOS

Fairness is an important aspect of the DriveLaB application. A controlled experiment to
investigate the inter-platform fairness was conducted by tracking a trip by both a OnePlus
Two Android smartphone and an Apple iPhone 7 smartphone.

Figure 5.1: Trip Route

Figure 5.1 shows the 45-minute trip which is about 30 km. The trip started by going
south on the left-hand side through Skalborg and Svenstrup, and then turning onto the
E45 highway northbound.

53

Group dpt107f17 5. Evaluation

Figure 5.2: Map Matched GPS Locations (Green is Android, blue is iPhone)

Figure 5.2 shows the map-matched GPS point spread on the E45 highway from the Android
and iPhone smartphones, depicted by green and blue dots, respectively.

Figure 5.3: Trip Route with Notifications (Green is Android, blue is iPhone)

Figure 5.3 shows the route with dots now representing notifications from either the Android
or iPhone smartphone using the same colour coding. Behind several green dots hides a
blue dot, indicating both applications are alerting the user of speeding simultaneously.
However, several notifications also happened individually due to wrong map matching or
the speeding barely topping 10% on one application while the GPS’es are having slight
differences in registered km/h.

54

5.1. Controlled Experiments Aalborg University

Figure 5.4: Trip Route Segments (Orange is common, green is Android, blue is iPhone)

Figure 5.4 shows the segments which GPS points was commonly and individually map
matched onto. 245 road segments are in common (93.5%), Android was matched to 10
segments exclusively, and iPhone was matched to 7 exclusively. Off-line map matching
would solve this issue and decrease the deviants.

Data Android iOS Difference

Trip length 29856 metres 29995 metres 139 metres

Trip score 7.88 7.71 0.17

Average speed 39 km/t 40 km/t 1 km/t

Peak speed 139 km/t 139 km/t 0 km/t

GPS points 2638 1808 803

Sound notifications 15 x level 1
1 x level 2

10 x level 1
2 x level 2

5 x level 1
1 x level 2

Road segments 255 257 2

Battery consumption 15% 8% 7%

Table 5.1: Comparison of Trip Data

Table 5.1 presents data generated from the trip. The two platforms tracking the same trip
are remarkably similar in all parameters, except for GPS points and Sound notifications.
Trivial calculations reveal the Android smartphone to deliver GPS points at 0.98 Hz as
opposed to the iPhone providing 0.67 Hz. The faster GPS position reading from the
Android can be the reason for the sound notification differences, as the Android smartphone

55

Group dpt107f17 5. Evaluation

registered five more level 1 warnings. The faster refresh on locations could detect the
speed exceeding 10% above the speed limit before dropping again while the iPhone missed
this due to the lower refresh rate, as stated above. However, the calculated scores are
remarkably similar, even though the two parameters GPS points and sound notifications
seems significant in the score calculation. This experiment suggests that the inter-platform
client application performs fairly towards the different platform users.

The battery consumption is tested under the worst-case scenario with tracking enabled,
and the smartphone screen is displaying real-time updated data. The results are that
Android consumes around 1% per 3rd minute and iPhone consumes 1% every 5.5 minutes
which are considered acceptable.

Automatic Tracking

One issue is identified and emerges under rare conditions related to the context of Bluetooth
devices mounted in the car. Cars having the accessories mode (often the first step when
starting the car with a key), which many cars have as this mode is also responsible for
pre-heating the engine and preparing it for ignition, turns on the Bluetooth device. If the
device adheres to the conditions of automatic tracking described in Section 3.1 - Mobile
Crowd Sensing (Client Application) it automatically connects to the smartphone. Igniting
the engine from this state has been observed to restart the Bluetooth device and thereby
disconnect and reconnect to the smartphone.

Figure 5.5: Automatic Tracking Issue

Figure 5.5 visualises the flow of the rare Bluetooth connectivity issue. Due to the occasional
delay of the device disconnect, the connect intent (C2) can arrive ahead of the first
disconnection (D1). In this case, C2 is disregarded as the tracking service is already running
which D1 immediately after stops. The trip is not tracked under these circumstances as
depicted by the dotted bar. Measures to counter this issue is delayed for further work.
Otherwise, the implemented way of achieving automatic tracking is considered a viable
solution for Android.

5.1.2 System Performance Testing

As mentioned in Chapter 2 - Performance Testing, it is important to have testing goals in
mind. The testing goals in this project, are the following:

56

5.1. Controlled Experiments Aalborg University

• Determine the maximum number of users able to track at the same time, while not
experiencing a severe delay due to overload on the server. As the users transmit
every three seconds, the response time should be within this time interval.
• Identify if there are any bottlenecks in the architecture.
• Assess whether the smartphone application’s data usage is reasonable.

The approach to form the performance tests described in section Chapter 2 - Performance
Testing, is applied in this project. In the context of tracking the users, it is mostly the
process of map-matching users to the correct road as well as database interaction related
to continually storing all the GPS locations. As done by Predic and Stojanovic [26],
simulations of numerous vehicles were performed at the same time. GPS points from a
real trip provides realistic values as input to the simulations. The length of the trip used in
the simulation is 25 km. The client application sends approximately three GPS locations,
using a 1 Hz GPS receiver, to the server every three seconds. The simulations replicate
this to come as close to reality as possible. The performance tests were conducted on a
Virtual Private Server (VPS) running Ubuntu 16.04 server with 2 GB RAM and 2 cores
of an Intel(R) Xeon(R) CPU E5-2630L v2 @ 2.40 GHz. Both the server software handling
the client connections and the PostgreSQL database were running on this machine. It is
important to note that the performance test is conducted on the development server and
not on the production server where the experiment will take place. This is done since
the performance test is done alongside the user experiment and thereby could make the
production server unstable, if performed in this period. The two servers are assessed to
have similar specifications with the database running on a separate server in the production
environment as the greatest discrepancy which may influence the performance testing
results. However, they are believed to still highlight the system components that requires
the most CPU power.

Figure 5.6: Average Server Processing Time

As seen in Figure 5.6, the total processing per data transmission from client to server is

57

Group dpt107f17 5. Evaluation

satisfiable up until 150 user, which is the maximum number able to track concurrently.
Thereafter, the total processing time becomes significantly slower, with 3.5 seconds at 200
users, which will cause the users to experience a severe delay. The two most performance
intensive operations on the server are map matching and database insertion time, which
seem to be the causes of the slower processing time as the number of users increase. The
reason why the performance worsens considerably after 150 users is most likely due to the
CPU bottleneck.

The data usage for communication between the client- and server application can influence
both the scalability of the system and make the application unattractive for users.
Wireshark, which is a network protocol analyser [77], is applied for the data usage
analysis. The analysis are based on the trip from the previous experiments. Most of
the communication from client to server consists of transmitting GPS locations, where
each packet has the size of 750-850 bytes. The entire trip accumulated 844 KB of data.
Doing a similar trip two times every workday for a month will yield a 33.76 MB data
usage, which is somewhat negligible considering the amount of data available with phone
subscriptions nowadays. As described in Figure 4.10, the server sends information back to
the client regarding current trip status, update of the speed limit and positive feedback
regarding the user’s driving. Most of the data send from the server to the client consists of
trip status information where each packet has the size of 100-125 bytes. The server sends
in total 180 KB of data to the client for this trip, which is also negligible.

5.2 Uncontrolled Experiments

The DriveLaB client application has been available on Apple’s App Store, and Google
Play Store since 10/05 – 17. The results in this section are based on the data collected
from the experiment start 11/05- 17 and until 03/06 – 17. The experiment is considered
uncontrolled since data contribution has been open to everyone and the project group has
not had any influence on the data collected, other than encouraging people to participate.
The following Table 5.2 contains an overview of the collected data along with a comparison
of similar data gathered in the experiment presented in [3, p.43]:

58

5.2. Uncontrolled Experiments Aalborg University

Data Value Last exp. value Percentage

Experiment days 23 days 32 days -28%

Users 18 users 23 users -22%

Trips 405 trips 435 trips -7%

Distance 7846 km 6455 km +22%

GPS points 534.492 points 2.764.610 points -81%

Trips per user 22.5 trips 19 trips +18%

Distance per user 436 km 281 km +55%

Distance per user per
day 19 km 9 km +111%

Table 5.2: Comparison of General Data Gathered in Experiments

table 5.2 shows a decline in Experiment days, Users, Trips and GPS points, and a progress
in Distance of 22%. The progress in distance despite a decline in all other comparable
measures mainly ascribes to the increase in client application stability, as trips were being
stopped prematurely in the last experiment according to user feedback. The decision
to stop supporting external devices providing 10 Hz location data is accountable for the
decrease of 81% in collected GPS points as only smartphones delivering 1 Hz is used in this
project. Average trips and distances per user have increased and indicated more engaging
users.

The distribution of trips and kilometres regarding automatic tracking are:

• Automatic tracking: 114 trips and 1151 km (-77%)
• Manual tracking: 291 trips and 6695 km (+403%)

Five users applied automatic tracking with five different Bluetooth devices registered. The
percentage in parenthesis shows the kilometre difference from the experiment conducted
in [3]. The proportion of trips initiated automatically to manually is not consistent with
the original thesis of the project group. However, the reason can be the few Bluetooth
devices, which can be due to not enough efforts to advertise this functionality in the
client application. Furthermore, invitations to participate in the uncontrolled experiment
happened through personal requests, which increases the chance of users willingness to
please authors and thus, make an extraordinary effort to track manually.

59

Group dpt107f17 5. Evaluation

Figure 5.7: Accumulated Trips Over Experiment Days

Figure 5.8: Accumulated Kilometres Over Experiment Days

60

5.2. Uncontrolled Experiments Aalborg University

Figure 5.9: Users Tracking Over Experiment Days

Figure 5.7, 5.8 and 5.9 shows the trip, kilometre and active users over the experiment days,
respectively. These figures represent the user activity throughout the experiment.

Figure 5.10: Contribution Map

Figure 5.10 illustrates the total national tracking contributions whereas four users operate
in or near the Danish capital, Copenhagen. The remaining participants origins from the
mainland, Jylland, and primarily in the northern part.

61

Group dpt107f17 5. Evaluation

Figure 5.11: Collected Data in Aalborg

A significant part of Aalborg infrastructure has been travelled while tracking as depicted
by Figure 5.11.

Figure 5.12: Collected Data in Copenhagen

System stability while tracking has previously been a critical issue [3] as prematurely
stopping trips results in both data loss and user frustration. The DriveLaB system
consist of several reliant real-time components, which increases the list of potential issues.
However, the data gathered contains indications of system stability as long distance trips
has been tracked flawlessly.

62

5.2. Uncontrolled Experiments Aalborg University

Figure 5.13: Longest trip in experiment

In Figure 5.13, the longest trip recorded is shown, ranging 301 km and lasted 2 hours and
40 minutes, which is a testimony to the system stability.

5.2.1 Speed Limits

Results of the contributed speed limit reports from the uncontrolled experiment are
presented in this section.

63

Group dpt107f17 5. Evaluation

Figure 5.14: Speed Limit Reports and Their Impact

Figure 5.14 shows a map where speed limits have been altered due to speed limit reports
conducted by users. There have been 11 different users providing speed limit reports,
however, two users have contributed with the vast majority. Almost all changes have
occurred within the vicinity of Aalborg.

Figure 5.15: Distribution of Speed Limit Reports and Changes

64

5.2. Uncontrolled Experiments Aalborg University

The distribution of speed limit changes made in total and to unique road segments in
addition to the number of total speed limit reports is shown in Figure 5.15. Most changes
made to a road have been permanent throughout the test. This is expected as the
experiment is only two weeks and there are relatively few participants. Additionally,
the participants in the experiment do most likely not have malicious intents so there is
no incentive to report incorrect speed limits that would need to be reverted. The ratio
between speed limit changes made to a road segment and number of speed limit reports
contributed is 1

1.56 . This might be explained by the reputation system being fairly lax
on new users in addition to the low number of participants contributing with most of the
speed limit reports, thereby gaining a good reputation score.

New speed limit

P
re
vi
ou

s
sp
ee
d
lim

it

20 30 40 50 60 70 80 90 100 110 130
20 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 4 0 0 0 0 1 0 0
40 0 0 0 1 0 0 1 0 0 0 0
50 2 17 20 0 2 0 3 0 0 0 0
60 0 0 2 6 0 1 4 0 0 0 0
70 0 0 0 3 2 0 2 0 0 0 0
80 0 1 32 247 89 10 0 0 0 2 0
90 0 0 0 0 0 0 0 0 0 1 0
100 0 0 0 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 1 0 0 0
130 0 0 0 0 0 0 0 0 0 9 0

Table 5.3: Speed Limit Change Matrix

The matrix in Table 5.3 shows what speed limits have been changed from and to. The
blue boxes with a number indicate the number of occurrences, where the speed limit
have changed from a higher speed to a lower speed, thereby requiring the users to drive
slower to get a good performance score. The red boxes indicate the number occurrences
where speed limits have been changed from a lower to a higher speed limit. Surprisingly
an overwhelming majority of changes have been from a higher to a lower speed limit,
in particular from 80 km/h down to 50 and 60 km/h. This is due to the OSM road
classifications, as most of those roads are tagged with road class 31 that translates to
tertiary roads, which have a default speed limit of 80 km/h. This shows that some of the
road classifications cover too many different speed limits, thus it becomes unreliable to
use and another way of classifying should be considered. There have been very few speed
limits on the motorways, which could indicate that the contributors either have driven less
on that road type or the speed limits for those road segments are already well mapped in
OSM. The speed limit change from 30 to 100 km/h is most likely an error, as the road
is looked up through Google Street View where there is no traffic sign indicating a speed
limit of 100 km/h. Other conspicuous road changes are those changing from 80 to 110 and
90 to 110, these are however all correct.

65

Group dpt107f17 5. Evaluation

5.2.2 Notifications

Speeding notifications are implemented to improve the drivers’ awareness and thereby,
hopefully improve road safety. Whether the driver reacts to these notifications in a positive
manner, is what will be investigated in this section. In [3], phone volume was not tracked,
rendering it impossible to guarantee if notifications got played through the speaker or not.
However, phone volume is only one out of many variables needed to be considered, to
give credible results. Therefore, the following list of criteria is followed, to accommodate
unbiased results

• Sound level must be 5 or higher.
• Notifications near junctions are discarded as de-acceleration is already expected.
• Notifications triggered by incorrect speed limits are disregarded.

Contextual information such as congestion levels and road obstacles are also relevant
variables to include, however, such data is not available for this project and therefore
not considered.

Figure 5.16: Speed Trend After Notifications

Figure 5.16 shows seven selected trips, meeting the aforementioned requirements. Trip
433, 481, 550, 568, and 398 all de-accelerates within 30 seconds where trip 564 remains
unchanged and 203 increases in velocity. All trips with decreasing velocity end up near
the displayed speed limit, which could indicate that contextual implications are absent.
Based on the data presented in Figure 5.16, notifications seems to decrease the speed in
the 30 seconds period. A greater sample size should be evaluated to establish a stronger
conclusion.

5.2.3 Driver Score Evolvement

It is decided to look at the involvement of trip scores to find if drivers improve over time.
Each score is calculated, such that the 11th of May is the first possible data entry used
for the score calculation. Furthermore, only a history of three days prior the measured

66

5.2. Uncontrolled Experiments Aalborg University

element is used to form the score. This way, the score is less sensitive to sudden changes
and thereby better outlines trending patterns. The three-day evaluation resembles the
leaderboard logic of active users, which achieves a more general perspective on the question
of user driving improvement. However, increasing the day count is not ideal because of
the short experiment period.

Figure 5.17: Score Evolvement

Unfortunately, no significant sign of improvement can be deduced from Figure 5.17.
Monitoring a longer period may return different results as 23 days may not be enough
to affect driver habits acquired over a long period. Additionally, more convincing rewards
associated with the score could lead to a greater effort regarding improving the score. As
Figure 5.17 use three historical days to base the score on, the individual days cannot be
used to pinpoint events.

5.2.4 Men vs. Women

Gender is specified by the user upon signing up to an account in the client application.
This knowledge can be used to investigate driving performance between the genders. There
has been 10 men and 8 women signed up for DriveLaB during the experiment period.

67

Group dpt107f17 5. Evaluation

User Id Gender Total Score Kilometres
tracked

25 Male 9.94 130 km

13 Male 9.68 216 km

11 Male 9.61 790 km

32 Female 9.29 54 km

18 Female 9.24 937 km

34 Female 9.15 16 km

15 Female 9.10 309 km

19 Female 8.95 164 km

14 Male 8.62 2.318 km

1 Male 8.56 437 km

33 Male 8.54 747 km

28 Male 8.45 420 km

27 Female 7.97 353 km

31 Male 7.89 220 km

30 Female 6.34 735 km

26 Female 4.32 466 km

22 Male 3.85 57 km

21 Male 2.28 88 km

Table 5.4: Contributers specified with gender, score and kilometres tracked

A gender total score can be calculated by adopting the same logic as the one to calculate
each person’s total score, which means that a person’s score is affecting the total gender
score relational to kilometres driven. This results in the following total scores:

1. Male: 8.65
2. Women: 7.59

68

5.3. User Feedback Aalborg University

5.3 User Feedback

This section relies solely on informal statements received by test participants. Therefore,
these statements are used as an indication of the system impression in general.

Incorrect Speed Limits

User 11, 25, 26, 27, 28, and 34 all mentions that the application often displays incorrect
speed limits. One user experienced getting an undeserved penalty point notification,
where another states how the incorrect speed limits decrease the trustworthiness of the
application. Additionally, user 11 remarks that the application displays a wrong street
name and speed limit at some locations.

Obscure Speed Limit Reporting System

User 26, 27, and 34 are confused by speed limit reports not causing changes immediately.
They experience this as an error in the system.

User 11 points out that the reporting instruction overlay blocks functionalities, which
causes frustration. Furthermore, user 25 argues that the reporting system requires too
much attention during a drive. This is due to the combination of touching the smartphone
screen and commanding speed limit changes through voice. The speech recognition has
difficulties capturing the commands in some circumstances, noticed by both user 11 and
25.

Incorrect Driving Distance

User 25 highlights how identical routes gets different distance readings. This causes
confusion as it is unexpected behaviour.

Automatic Tracking

User 14 deactivates Bluetooth and GPS while not using the Client Application to save
battery power on work. The user elaborates that the car is already running before
remembering to turn back on the Bluetooth and GPS, resulting in automatic tracking
not being utilised. Both user 14 and 27 concludes that automatic tracking is reliable when
used as prescribed.

69

Reflections 6
Discussion

An initial objective of the project was to identify a solution to enable automatic tracking.
The implemented solution offers a quite reliable approach to automatic tracking. However,
as pointed out by user 14 in Section 5.3 - User Feedback, having Bluetooth and GPS
enabled at all times is unappealing due to the potential battery drainage. This needs to
be investigated further, as it questions the viability of the solution. However, it can be
argued that the target group of frequent drivers for the client application are inclined to
have their smartphones docked and powered while driving, rendering the issue of minimal
impact.

Speed limits play a central role in the system and currently dominates the user feedback
in Section 5.3 - User Feedback. Seven users mention the incorrect display of speed limits
where several potential causes to this issue are possible:

• Map matching - The user is mapped to an incorrect road segment. The map matching
could be more cautious of announcing a road segment change.
• Incorrect road splitting - Road segments are divided inappropriately in relation to

speed limits. Road segments could be divided into smaller portions to relieve this
problem.
• Slow response time - The user only receives new speed limit updates every 3

seconds which can cause some delay when a road segment with the new speed
limit is encountered. This could be improved by storing the map client-side,
thereby providing much faster response time and better scalability as described in
Section 3.3.2 - Map Matching.
• Wrong road classification - Unknown speed limits are evaluated by a heuristic

approach, which often delivers an incorrect speed limit, as indicated by the results in
Section 5.2.1 - Speed Limits. A better approach might be to use a map that divides
Denmark into city, rural, and holiday neighbourhoods to deduce speed limits.

Transparency in the speed limit report processing could also provide a positive experience
for users and increase the understanding of how speed limits are verified and not
instantaneously accepted. Also, the reporting includes minimal, but still illegal,
smartphone interaction which questions the moral viability of this functionality.

71

Group dpt107f17 6. Reflections

Conclusion

This study set out to investigate and implement a speeding reductive MCS platform.
Throughout this report, solutions to several prespecified platform requirements have been
designed, with their implementation documented. Exposing the driver to auditory speeding
notifications shows promising results, and could be worthwhile exploring further.

The presented solution to enable automatic tracking on Android using Bluetooth devices
commonly found in vehicles performs well, however, is threatened by user initiatives to
conserve battery consumption. Unfortunately, it is unknown whether iPhone supports an
implementation of automatic tracking, utilising generic Bluetooth devices. The approach
of allowing users to report speed limit corrections seems to function as intended. However,
feedback indicates that evaluating the reports must take place more often.

The DriveLaB smartphone application did perform equally well on both the Android and
iPhone platform supporting the viability of developing a cross-platform application using
the Xamarin platform. Also, encryption is implemented to obfuscate the personal data
interchanged. This offers a more secure overall system as the transferred data is now
unusable for malicious users.

The system has been subject to both controlled and uncontrolled experiments and has
through these been used to track over 7800 km of driving distance. The results of these
experiments indicate:

• Inter-platform fairness.
• Acceptable client application battery consumption.
• Possible system performance bottlenecks.
• A limit of 150 simultaneously tracking users with adequate system responsiveness.
• That OSM road classifications are insufficient in regard to deduce speed limits.
• Males drive slightly less above the speed limit than women.
• Speeding notifications decrease speeding.

The system also enables CSR opportunities through a public API, whereas an application
consuming the API is developed as a demonstration. It shows speed related information
and proves the usefulness of the public API.

Future work

This section presents the suggestions of future work with the perspective of turning
DriveLaB into a commercial platform. In this setting, there are three categories of future
work identified; Scalability, Viability and Data Analysis.

Scalability is an important issue for commercialisation of the platform and focuses should
primarily be directed at increasing the amount of simultaneously tracking users. Relocating
the road map and calculations of map matching and driving information from the server to
the client application is considered the most influential scalability factor. This introduces
the complex task of keeping client application databases synchronised always to have an
updated roadmap.

72

Aalborg University

Viability includes investigating stronger user incentives besides offering driving related
information which is considered only to attract the enthusiast users. The development of
key partner protected APIs to enable CSR initiatives on behalf of socially aware companies
could provide sustainability to the system. Lastly, a solution to provide automatic tracking
on iOS is necessary to sustain regular user participation.

Data analysis has the potential to deduce valuable information from the data collected
given the complexity of the driving domain. Further research should be undertaken to
investigate the possibility of extracting speed limits using machine intelligence to avoid
the illegal user smartphone interaction while driving. Another path is maintaining the
report system, which would then include testing, and researching improvements, for the
reputation system.

73

Acknowledgement

Thanks to all the 18 drivers that participated in the 23-day long experiment, rendering
the system evaluation possible. Also thanks to Center for Data-Intensive Cyber-Physical
Systems www.dicyps.dk for applying the necessary prerequisites for the project. AAU IT
Services (ITS) must also be thanked for supplying a MacBook rendering iOS development
possible. Lastly, the project group is grateful for the valuable guidance offered throughout
the project by Kristian Torp.

75

www.dicyps.dk

Bibliography

[1] Casper Holst Laustsen Morten Møller Jacobsen and Johan Leth Gregersen. Aalborg
university report: An advanced usage based insurance and privacy-secure pricing
model. 2015-2016.

[2] Casper Holst Laustsen Morten Møller Jacobsen and Johan Leth Gregersen. Aalborg
university report: Drive-lab: An experimental platform for usage-based car
insurance. 2016.

[3] Kasper Fromm Pedersen Dennis Rasmussen and Thomas Frisk Olsen. Aalborg
university report: Drivelab - a driver behavioral information system. 2016-2017.

[4] GloTM | garmin. https://buy.garmin.com/da-DK/DK/p/109827. (Accessed on
08/06/2017).

[5] Double battery beacon.
https://store.kontakt.io/our-products/30-double-battery-beacon.html.
(Accessed on 08/06/2017).

[6] Vejdirektoratet Årsstatistik. URL http://vejdirektoratet.dk/DA/viden_og_
data/statistik/ulykkestal/%c3%85rsstatistik/Sider/default.aspx.
(Accessed on 08/06/2017).

[7] Dr article - price of a road traffic accident. URL
https://www.dr.dk/nyheder/indland/pris-et-trafikuheld-600000-kroner.
(Accessed on 08/06/2017).

[8] Safe traffic - accidents cost the society big time. URL https:
//www.sikkertrafik.dk/media/2868/ulykker-koster-samfundet-kassen.pdf.
(Accessed on 08/06/2017).

[9] Road safety commission - plan of action. URL
http://www.faerdselssikkerhedskommissionen.dk/sites/kombelt.dev2.
1508test.dk/files/filer/Handlingsplan%202013-2020%20Hver%20ulykke%20er%
20%C3%A9n%20for%20meget%20-%20et%20f%C3%A6lles%20ansvar.pdf. (Accessed on
08/06/2017).

[10] Tryg fonden - sikker i trafikken, . URL
https://www.trygfonden.dk/fokus/sikkerhed/sikker-i-trafikken. (Accessed
on 08/06/2017).

[11] Tryg fonden - donations, . URL https://www.trygfonden.dk/searchresultpage#
!npt=donation¤tPage=1&Sort=-year&FocusArea=SikkerITrafikken.
(Accessed on 08/06/2017).

77

https://buy.garmin.com/da-DK/DK/p/109827
https://store.kontakt.io/our-products/30-double-battery-beacon.html
http://vejdirektoratet.dk/DA/viden_og_data/statistik/ulykkestal/%c3%85rsstatistik/Sider/default.aspx
http://vejdirektoratet.dk/DA/viden_og_data/statistik/ulykkestal/%c3%85rsstatistik/Sider/default.aspx
https://www.dr.dk/nyheder/indland/pris-et-trafikuheld-600000-kroner
https://www.sikkertrafik.dk/media/2868/ulykker-koster-samfundet-kassen.pdf
https://www.sikkertrafik.dk/media/2868/ulykker-koster-samfundet-kassen.pdf
http://www.faerdselssikkerhedskommissionen.dk/sites/kombelt.dev2.1508test.dk/files/filer/Handlingsplan%202013-2020%20Hver%20ulykke%20er%20%C3%A9n%20for%20meget%20-%20et%20f%C3%A6lles%20ansvar.pdf
http://www.faerdselssikkerhedskommissionen.dk/sites/kombelt.dev2.1508test.dk/files/filer/Handlingsplan%202013-2020%20Hver%20ulykke%20er%20%C3%A9n%20for%20meget%20-%20et%20f%C3%A6lles%20ansvar.pdf
http://www.faerdselssikkerhedskommissionen.dk/sites/kombelt.dev2.1508test.dk/files/filer/Handlingsplan%202013-2020%20Hver%20ulykke%20er%20%C3%A9n%20for%20meget%20-%20et%20f%C3%A6lles%20ansvar.pdf
https://www.trygfonden.dk/fokus/sikkerhed/sikker-i-trafikken
https://www.trygfonden.dk/searchresultpage#!npt=donation¤tPage=1&Sort=-year&FocusArea=SikkerITrafikken
https://www.trygfonden.dk/searchresultpage#!npt=donation¤tPage=1&Sort=-year&FocusArea=SikkerITrafikken

Group dpt107f17 Bibliography

[12] Rådet for sikker trafik. URL
https://www.sikkertrafik.dk/samarbejde/trygfonden. (Accessed on
08/06/2017).

[13] København open data trafikhastigheder. URL
http://data.kk.dk/dataset/trafikhastigheder. (Accessed on 08/06/2017).

[14] Google roads api terms, . URL https://developers.google.com/maps/terms.
(Accessed on 08/06/2017).

[15] Open street map. URL https://www.openstreetmap.org. (Accessed on
08/06/2017).

[16] Bin Guo, Zhiwen Yu, Xingshe Zhou, and Daqing Zhang. From participatory sensing
to mobile crowd sensing. In Pervasive Computing and Communications Workshops
(PERCOM Workshops), 2014 IEEE International Conference on, pages 593–598.
IEEE, 2014.

[17] Raghu K Ganti, Fan Ye, and Hui Lei. Mobile crowdsensing: current state and future
challenges. IEEE Communications Magazine, 49(11), 2011.

[18] Bret Hull, Vladimir Bychkovsky, Yang Zhang, Kevin Chen, Michel Goraczko, Allen
Miu, Eugene Shih, Hari Balakrishnan, and Samuel Madden. Cartel: a distributed
mobile sensor computing system. In Proceedings of the 4th international conference
on Embedded networked sensor systems, pages 125–138. ACM, 2006.

[19] Prashanth Mohan, Venkata N Padmanabhan, and Ramachandran Ramjee. Nericell:
rich monitoring of road and traffic conditions using mobile smartphones. In
Proceedings of the 6th ACM conference on Embedded network sensor systems, pages
323–336. ACM, 2008.

[20] B Thomas Adler and Luca De Alfaro. A content-driven reputation system for the
wikipedia. In Proceedings of the 16th international conference on World Wide Web,
pages 261–270. ACM, 2007.

[21] Afra J Mashhadi and Licia Capra. Quality control for real-time ubiquitous
crowdsourcing. In Proceedings of the 2nd international workshop on Ubiquitous
crowdsouring, pages 5–8. ACM, 2011.

[22] Maryam Pouryazdan, Burak Kantarci, Tolga Soyata, Luca Foschini, and Houbing
Song. Quantifying user reputation scores, data trustworthiness, and user incentives
in mobile crowd-sensing. IEEE Access, 5:1382–1397, 2017.

[23] Mahdi Hashemi and Hassan A Karimi. A critical review of real-time map-matching
algorithms: Current issues and future directions. Computers, Environment and
Urban Systems, 48:153–165, 2014.

[24] Nagendra R Velaga, Mohammed A Quddus, and Abigail L Bristow. Developing an
enhanced weight-based topological map-matching algorithm for intelligent transport
systems. Transportation Research Part C: Emerging Technologies, 17(6):672–683,
2009.

78

https://www.sikkertrafik.dk/samarbejde/trygfonden
http://data.kk.dk/dataset/trafikhastigheder
https://developers.google.com/maps/terms
https://www.openstreetmap.org

Bibliography Aalborg University

[25] Elaine J Weyuker and Filippos I Vokolos. Experience with performance testing of
software systems: issues, an approach, and case study. IEEE transactions on
software engineering, 26(12):1147–1156, 2000.

[26] Bratislav Predic and Dragan Stojanovic. Enhancing driver situational awareness
through crowd intelligence. Expert Systems with Applications, 42(11):4892–4909,
2015.

[27] Vejdirektoratet Årsstatistik, . URL http://nyheder.tv2.dk/business/
2017-04-08-tryg-indforer-overvagning-af-sine-bliforsikringskunder.
(Accessed on 08/06/2017).

[28] Philippe Baecke and Lorenzo Bocca. The value of vehicle telematics data in
insurance risk selection processes. Decision Support Systems, pages –, 2017. ISSN
0167-9236. doi: https://doi.org/10.1016/j.dss.2017.04.009. URL
http://www.sciencedirect.com/science/article/pii/S0167923617300763.

[29] Ionic 2. URL http://ionicframework.com/docs/intro/installation/. (Accessed
on 08/06/2017).

[30] Xamarin platform. URL https://www.xamarin.com/platform. (Accessed on
08/06/2017).

[31] Android Documentation. Broadcast receivers, . URL https://developer.android.
com/reference/android/content/BroadcastReceiver.html. (Accessed on
08/06/2017).

[32] Android Documentation. Bluetooth devices, . URL https://developer.android.
com/reference/android/bluetooth/BluetoothDevice.html. (Accessed on
08/06/2017).

[33] Android Documentation. Services, . URL
https://developer.android.com/guide/components/services.html. (Accessed
on 08/06/2017).

[34] Microsoft. Signalr, . URL http://signalr.net/. (Accessed on 08/06/2017).

[35] Jon Postel. Transmission control protocol. 1981.

[36] Jon Postel. User datagram protocol. Technical report, 1980.

[37] I. Fette and A. Melnikov. The websocket protocol. RFC 6455, RFC Editor,
December 2011. URL http://www.rfc-editor.org/rfc/rfc6455.txt.
http://www.rfc-editor.org/rfc/rfc6455.txt.

[38] Microsoft. Msdn - data transfer objects, . URL
https://msdn.microsoft.com/en-us/library/ms978717.aspx. (Accessed on
08/06/2017).

[39] Fartgrænser i bil. URL
http://www.fdm.dk/biler/love-regler/fartgraenser-bil.

79

http://nyheder.tv2.dk/business/2017-04-08-tryg-indforer-overvagning-af-sine-bliforsikringskunder
http://nyheder.tv2.dk/business/2017-04-08-tryg-indforer-overvagning-af-sine-bliforsikringskunder
http://www.sciencedirect.com/science/article/pii/S0167923617300763
http://ionicframework.com/docs/intro/installation/
https://www.xamarin.com/platform
https://developer.android.com/reference/android/content/BroadcastReceiver.html
https://developer.android.com/reference/android/content/BroadcastReceiver.html
https://developer.android.com/reference/android/bluetooth/BluetoothDevice.html
https://developer.android.com/reference/android/bluetooth/BluetoothDevice.html
https://developer.android.com/guide/components/services.html
http://signalr.net/
http://www.rfc-editor.org/rfc/rfc6455.txt
http://www.rfc-editor.org/rfc/rfc6455.txt
https://msdn.microsoft.com/en-us/library/ms978717.aspx
http://www.fdm.dk/biler/love-regler/fartgraenser-bil

Group dpt107f17 Bibliography

[40] Siniša Husnjak, Dragan Peraković, Ivan Forenbacher, and Marijan Mumdziev.
Telematics system in usage based motor insurance. Procedia Engineering, 100:
816–825, 2015.

[41] Burak Kantarci and Hussein T Mouftah. Trustworthy sensing for public safety in
cloud-centric internet of things. IEEE Internet of Things Journal, 1(4):360–368,
2014.

[42] Restful api versioning insights.
http://blog.restcase.com/restful-api-versioning-insights/. (Accessed on
08/06/2017).

[43] Api versioning methods, a brief reference. https:
//www.3scale.net/2016/06/api-versioning-methods-a-brief-reference/, .
(Accessed on 08/06/2017).

[44] Api versioning methods, a brief reference - dzone integration.
https://dzone.com/articles/api-versioning-methods-a-brief-reference, .
(Accessed on 08/06/2017).

[45] Apigility. https://apigility.org/documentation/api-primer/versioning.
(Accessed on 08/06/2017).

[46] Bing maps. https://msdn.microsoft.com/en-us/library/dd877180.aspx.
(Accessed on 08/06/2017).

[47] Google maps apis | google maps apis | google developers.
https://developers.google.com/maps/documentation/, . (Accessed on
08/06/2017).

[48] Geojson. http://geojson.org/, . (Accessed on 08/06/2017).

[49] Documentation - leaflet - a javascript library for interactive maps.
http://leafletjs.com/reference-1.0.3.html#geojson. (Accessed on
08/06/2017).

[50] Data layer | google maps javascript api | google developers. https://developers.
google.com/maps/documentation/javascript/datalayer#load_geojson.
(Accessed on 08/06/2017).

[51] Geojson module examples.
https://msdn.microsoft.com/en-us/library/mt750522.aspx, . (Accessed on
08/06/2017).

[52] Xamarin. Xamarin forms - build ui with xaml, . URL
https://www.xamarin.com/forms. (Accessed on 08/06/2017).

[53] Xamarin. Documentation on shared projects, . URL https://developer.xamarin.
com/guides/cross-platform/application_fundamentals/shared_projects/.
(Accessed on 08/06/2017).

80

http://blog.restcase.com/restful-api-versioning-insights/
https://www.3scale.net/2016/06/api-versioning-methods-a-brief-reference/
https://www.3scale.net/2016/06/api-versioning-methods-a-brief-reference/
https://dzone.com/articles/api-versioning-methods-a-brief-reference
https://apigility.org/documentation/api-primer/versioning
https://msdn.microsoft.com/en-us/library/dd877180.aspx
https://developers.google.com/maps/documentation/
http://geojson.org/
http://leafletjs.com/reference-1.0.3.html#geojson
https://developers.google.com/maps/documentation/javascript/datalayer#load_geojson
https://developers.google.com/maps/documentation/javascript/datalayer#load_geojson
https://msdn.microsoft.com/en-us/library/mt750522.aspx
https://www.xamarin.com/forms
https://developer.xamarin.com/guides/cross-platform/application_fundamentals/shared_projects/
https://developer.xamarin.com/guides/cross-platform/application_fundamentals/shared_projects/

Bibliography Aalborg University

[54] GitHub. Xamarin github official plugins, . URL
https://github.com/xamarin/XamarinComponents. (Accessed on 08/06/2017).

[55] GitHub. James montemagno official xamarin geolocator plugin, . URL
https://github.com/jamesmontemagno/GeolocatorPlugin. (Accessed on
08/06/2017).

[56] GitHub. Geolocator plugin issue #54, . URL
https://github.com/jamesmontemagno/GeolocatorPlugin/issues/54. (Accessed
on 08/06/2017).

[57] GitHub. Geolocator plugin issue #76, . URL
https://github.com/jamesmontemagno/GeolocatorPlugin/issues/76. (Accessed
on 08/06/2017).

[58] GitHub. Geolocator plugin issue #75, . URL
https://github.com/jamesmontemagno/GeolocatorPlugin/issues/75. (Accessed
on 08/06/2017).

[59] Microsoft. Singleton pattern, . URL
https://msdn.microsoft.com/en-us/library/ff650316.aspx. (Accessed on
08/06/2017).

[60] Android. Android manifest documentation, 2016. URL https:
//developer.android.com/guide/topics/manifest/manifest-intro.html.

[61] Rick-Anderson. Introduction to asp.net core | microsoft docs, 2016. URL
https://docs.microsoft.com/en-us/aspnet/core/.

[62] rowanmiller. Entity framework core | microsoft docs, 2016. URL
https://docs.microsoft.com/en-us/ef/core/.

[63] C Carl Robusto. The cosine-haversine formula. The American Mathematical
Monthly, 64(1):38–40, 1957.

[64] www.movable-type.co.uk Chris Veness. Calculate distance and bearing between two
latitude/longitude points using haversine formula in javascript. URL
http://www.movable-type.co.uk/scripts/latlong.html.

[65] Current weather and forecast - openweathermap. https://openweathermap.org/.
(Accessed on 08/06/2017).

[66] Bil | trafiktypen.dk. http://www.trafiktypen.dk/bil. (Accessed on 08/06/2017).

[67] Geofabrik // home. http://www.geofabrik.de/. (Accessed on 08/06/2017).

[68] osm2po - openstreetmap converter and routing engine for java. http://osm2po.de/.
(Accessed on 08/06/2017).

[69] 2017. URL https://www.python.org/.

[70] Postgresql: Documentation: 9.4: Pl/python - python procedural language.

81

https://github.com/xamarin/XamarinComponents
https://github.com/jamesmontemagno/GeolocatorPlugin
https://github.com/jamesmontemagno/GeolocatorPlugin/issues/54
https://github.com/jamesmontemagno/GeolocatorPlugin/issues/76
https://github.com/jamesmontemagno/GeolocatorPlugin/issues/75
https://msdn.microsoft.com/en-us/library/ff650316.aspx
https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/ef/core/
http://www.movable-type.co.uk/scripts/latlong.html
https://openweathermap.org/
http://www.trafiktypen.dk/bil
http://www.geofabrik.de/
http://osm2po.de/
https://www.python.org/

Group dpt107f17 Bibliography

[71] pgagent — pgadmin iii 1.22.2 documentation.

[72] Unoeuro - webhoteller og domæner. https://www.unoeuro.com/. (Accessed on
08/06/2017).

[73] Leaflet - a javascript library for interactive maps. http://leafletjs.com/.
(Accessed on 08/06/2017).

[74] Documentation - materialize. http://materializecss.com/. (Accessed on
08/06/2017).

[75] jquery. https://jquery.com/. (Accessed on 08/06/2017).

[76] Mark D Fairchild. Color appearance models. John Wiley & Sons, 2013.

[77] Wireshark · go deep, 2017. URL https://www.wireshark.org/.

82

https://www.unoeuro.com/
http://leafletjs.com/
http://materializecss.com/
https://jquery.com/
https://www.wireshark.org/

Data Warehouse Schema A

Figure A.1: Entity relationship diagram using Crow’s Foot notation representing the
DriveLaB database structure

83

Group dpt107f17 A. Data Warehouse Schema

A.1 Fact Tables

Figure A.2: GPS Fact Table

Figure A.3: Sound Fact Table

84

A.1. Fact Tables Aalborg University

Figure A.4: Speed Limit Report Fact Table

Figure A.5: Road History Fact Table

85

Group dpt107f17 A. Data Warehouse Schema

Figure A.6: Trip Fact Table

86

A.2. Dimension Tables Aalborg University

A.2 Dimension Tables

Figure A.7: User Dimension Table

Figure A.8: Gender Type Dimension Table

87

Group dpt107f17 A. Data Warehouse Schema

Figure A.9: Weather Dimension Table

Figure A.10: Weather Type Dimension Table

Figure A.11: Device Dimension Table

88

A.2. Dimension Tables Aalborg University

Figure A.12: Device Type Dimension Table

Figure A.13: Route Dimension Table

89

Group dpt107f17 A. Data Warehouse Schema

Figure A.14: Road Dimension Table

Figure A.15: Road Vertex Dimension Table

90

A.2. Dimension Tables Aalborg University

Figure A.16: Date Dimension Table

Figure A.17: Time Dimension Table

Figure A.18: Sound Configuration Dimension Table

Figure A.19: Sound Type Dimension Table

Figure A.20: Traffic Information Dimension Table

91

Group dpt107f17 A. Data Warehouse Schema

A.2.1 View Tables

Figure A.21: Leaderboard View Table

92

	Preface
	Table of contents
	Introduction
	Related Work
	Analysis & Design
	Mobile Crowd Sensing (Client Application)
	Data Transmission
	Data Collection and Real-Time Processing
	Incentive Mechanisms
	Map Matching
	Data Quality Maintenance
	Data Storage

	Crowd Data Processing
	Reputation System
	API

	Applications

	Implementation
	Crowd Sensing
	Client Application

	Bidirectional Real-time Data Transmission
	Data Collection and Real-time Processing
	Client Application Real-time API
	Client Application API
	Data Warehouse

	Crowd Data Processing
	Public API
	Reputation System

	Application
	DriveLaB.dk

	Evaluation
	Controlled Experiments
	Android and iOS
	System Performance Testing

	Uncontrolled Experiments
	Speed Limits
	Notifications
	Driver Score Evolvement
	Men vs. Women

	User Feedback

	Reflections
	Bibliography
	Appendix
	Data Warehouse Schema
	Fact Tables
	Dimension Tables
	View Tables

