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SYNOPSIS:
Digital fluid power transmissions (DFPTs) are
a promising alternative to drivetrains based on
gearboxes and power electronics. One application is
offshore wind turbines where the characteristics of
high reliability and robustness of hydraulic systems
are highly desirable.

A DFPT consists of a digital displacement pump
and motor connected to shared pressure lines,
thereby forming the transmission. The decision to
update the displacement of such machines occurs
at a number of fixed shaft positions, why for
variable-speed operation, the control rates of the
machines are both asynchronous and non-uniform
creating a multirate control problem.

To obtain a linear control model, all dynamics
are transformed to the spatial-domain. A new
multirate modelling technique is hereafter derived
by combining two existing multirate methods. From
this multirate technique, the DFPT is linearly
modelled and applicability of conventional control
and analysis tools are evaluated.

Based on this thesis’ results, it is concluded that mul-
tirate modelling and control of a DFPT is possible
both in the time-domain and spatial-domain, but
that the time-domain implementation of a spatial-
domain control law is not straight forward.
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CHAPTER 0
Resumé
Dette kandidatspeciale undersøger mulighederne for at udlede en lineær model af en di-
gital hydraulisk transmission til vindmølleapplikationer. Formålet med dette er at kunne
foretage analyse samt regulatordesign ved brug af konventionelle lineære kontrolteori-
værktøjer. Denne opgave er af en teknisk krævende natur i form af at systemet består af
dynamiske elementer beskrevet i kontinuert tid som er aktueret af dynamiske elementer
beskrevet i diskret tid. Disse diskrete tidselementer opererer ved uens samt uensartede
rater, hvilket gør det nødvendigt at finde en modelbeskrivelse der kan håndtere op til
flere rater i systemet.

For at håndtere udfordringerne i denne problemstilling individuelt er problemet blevet
opdelt i tre mindre underproblemer. De to første underproblemer håndterer henholdsvis
modellering af disse diskrete dynamiske elementer samt transformation af en uensartet
rate til en ensartet rate. Med disse to løsninger bliver det muligt at undersøge problemet
vedrørende modellering af et system med flere ensartede men uens rater, hvorefter det
til sidst er muligt at sammensætte de tre løsninger for at diskutere det endelige resultat.

Med henblik på modellering af et system med flere rater introduceres et masse-fjeder-
dæmper (MSD) system, hvortil de korrekte systemdynamikker let og intuitivt kan visu-
aliseres, hvilket tillader en accelereret evaluering af modelleringsteknikkernes potentiale.
Dette gøres da en vindmølletransmission med nominel effekt målt i MW er et højst
avanceret system, hvorfor det er uegnet som udviklingsværktøj. I forbindelse med denne
problemstilling undersøges to mulige modellingsteknikker. Der findes dog både ulemper
og fordele ved begge metoder, men da disse ikke overlapper hinanden, vurderes det at
ved at kombinere de to metoder, vil det være muligt at opstille en modelleringsteknik
der muliggør løsning af problemstillingen.

Denne modelleringsteknik præsenteres som UNMR metoden, hvor det anses som essen-
tielt for at modellen kan anvendes med konventionelle lineære kontrolteori-værktøjer at
den matematisk både er lineær og tidsinvariant (LTI). For at opfylde det tidsinvariante
krav, grupperes inputsene over en længere fælles periode kaldet BTPen. Set fra BTP til
BTP er et system med flere rater tidsinvariant. Ved yderligere at beskrive systemet som
en kombination af lineære systemdynamikker kan en LTI model opnås.

UNMR metoden anvendes på MSD systemet og findes generelt brugbar til at beskrive et
multirate system i tidsdomænet, og metoden vælges derfor til anvendelse på den hydrau-
liske transmission. For at håndtere de uensartede rater i transmissionen, transformeres
alle ligninger til et spatialt vinkeldomæne, hvor raterne er ensartede, omend stadig uens.
Ydermere introduceres en fiktiv transmission med nominel effekt målt i kW med det
formål at emulere udfordringerne ved en digital transmission designet til en vindmølle
samtidig med at accelereret evaluering kan foretages. Herefter anvendes UNMR metoden,
og simuleringsresultater fra den resulterende model sammenlignes med resultater fra en
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ulineær simuleringsmodel. På baggrund af dette konkluderes det at modelleringsteknik-
ken har potentiale for at kunne være brugbar, og videre arbejde forsættes med henblik
på muligheder for systemanalyse og regulatordesign.

Ved analyse af UNMR-modellen af MSD-systemet findes det at grupperingsteknikken
producerer ikke-kausale input-output-kombinationer, hvilket vanskeliggør analyse med
traditionelle værktøjer, da disse ikke er udledt med henblik på at håndtere sådanne
kombinationer. Ved analyse af resultater samt undersøgelse af systemets input-output-
kombinationer findes det dog stadig muligt at anvende de konventionelle værkstøjer, dog
med nogle begrænsninger vedrørende tolkning af resultaterne. Dertil bestemmes også
at design af stabile tilstandsregulatorer er muligt, hvorfor det vurderes at metoden kan
anvendes til analyse og regulatordesign til den digitale transmission.

Til den digitale transmission findes det at en vinkeldomæne-model også kan undersøges
i frekvensdomænet, dog med en skaleret frekvensakse, og at modellen viser en realistisk
respons. Regulatordesign og analyse kan derfor, efter den forudliggende afklaring vedrø-
rende grupperingsmodeller, relativt trivielt overføres til transmissionen. Den anvendte
vinkeltransformation medfører at alle kontrolsignaler styres af pumpeskaftvinklen, hvil-
ket giver anledning til en vanskelig implementering af tilstandsregulatorens kontrollov
ved varierende pumpehastighed. Forfatterne anbefaler derfor at den anvendte vinkel-
transformation videre undersøges.

Det konkluderes dog at UNMR metoden er anvendelig til at beskrive et multirate-system
med kontinuerte og diskrete elementer, som opererer ved flere forskellige rater såsom en
digital transmission til en vindmølle. Metoden muliggør analyse samt regulatordesign
til et system med flere rater, et emne som til trods for sin relative hyppighed i virkelige
systemer sjældent håndteres i lærebøger.
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CHAPTER 0
Preface
This Master’s thesis is written by group MCE4-1026 at the Department of Energy Techno-
logy at Aalborg University in the spring of 2017, and it is the result of a 4th semester
Master of Science project. The purpose of this project is to develop a linear model,
which is able to describe the multiple sampling rates occurring in a digital fluid power
transmission, and then subsequently evaluate the applicability of the developed model
for analysis and controller design.

In the project the following software has been used:

• MATLAB/Simulink - for model development and data analysis.
• Maple - for algebraic manipulation of equations.
• Adobe Illustrator - for illustrations.

Reader’s Guide: On page ix a nomenclature which lists the variables and accompanying
units used in the report is presented.

The list of literature utilised in the report can be found prior to the report appendices.
The references will be presented using the following format (where applicable):

[Main Author’s Surname Year]
[All Authors][(Year)][Title][Publisher][Edition]["Paper Title"][Journal ]

[Volume.Number][Pages][ISBN][ISSN][DOI][url]

The bibliography is alphabetically sorted by the surname of the author, and in the report
the citations are given by: (Author’s surname Year).

For referencing figures, tables and equations in the report, they are numbered in the
following manner: (x,y), where x indicates the chapter, and y indicates the equation/
figure/table number. In addition relevant captions for figures and tables can be found
directly beneath the figure/table.

For matrix and vector notation, boldface capital and boldface lowercase notation is used,
respectively.

A number of appendices are included with the report, and they can be found after the
bibliography.
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Nomenclature0.0
Acronyms

Symbol Description Unit

BDC Bottom dead center
BTP Basic Time Period
CDE Continuous Dynamic Element
DD Digital Displacement
DDE Discrete Dynamic Element
DDM Digital Displacement Machine
DFPT Digital Fluid Power Transmission
DSM ∆Σ Modulator
FPT Fluid power transmission
GCD Greatest Common Divisor
HPL High pressure line
HPV High pressure valve
ICE Internal Combustion Engine
LCM Least Common Multiple
LPL Low pressure line
LPV Low pressure valve
MIMO Multiple-input multiple-output
MR Multirate
MSD Mass Spring Damper
multi-MW Multi-megawatt
NREL National Renewable Energy Laboratory
ODE Ordinary differential equation
RGA Relative gain array
SHE Sample-and-Hold Element
SISO Single-input single-output
SM Synchronous generator
STP Short Time Period
SVD Singular value decomposition
TDC Top dead center
UNMR Unified Non-Minimal Realisation
WT Wind turbine
ZOH Zero-order Hold

Latin Variables

Symbol Description Unit

0 Zero matrix
A Area m2

A Continuous state-space A-matrix
B Continuous state-space B-matrix
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b Damping coeffcient N/(m s)
C Continuous state-space C-matrix
Cq WT torque coefficient
D Continuous state-space D-matrix
D DDE transition matrix
d DDE input transition matrix
F Force N
G Discrete state-space equivalent of A-matrix
H Discrete state-space equivalent of B-matrix
I Identity matrix
i Iteration counter
i Row counter
Jrp Combined rotor pump inertia kgm2

J Cost function
J Inertia kgm2

j Column counter
j Iteration counter
K Controller gain matrix
k Sample number
k Spring constant N/m
li Number of STP per Ti
l Iteration counter
m Mass kg
Ncr Number of cam rings
Nec Number of eccentric cams
Nl Number of pump lobes
Nmn Number of motor pressure chambers
Ni Number of Ti per BTP
N̄ Sum of Ni

N LQR input/state cross weighting matrix
N Quantity
n Sum of CDE, DDE and SHE states
P Infinite horizon Riccati equation solution
p Number of inputs or outputs
Q LQR state/output weighting matrix
Rc Controllability matrix
R LQR input weighting matrix
r radius m
S SHE transition matrix
S SHE input transition matrix
s Laplace operator
T0 STP Period s
Ti i’th time period s
ts Valve opening/closing time s
T BTP Period s

x



t Time s
U Output selection matrix
u State-space input vector
Vm0 Motor pressure chamber minimum volume m3

Vp0 Pump pressure chamber minimum volume m3

v Combined input transition matrix, Kalman and Ber-
tam equivalent to B

v Iteration counter
v Wind speed m/s
xcomb Combined vector of CDE, DDE and SHE states
x Expanded state vector
xc CDE / continuous state vector
xd DDE / discrete state vecotr
xs SHE / sample-and-hold state vector
xm,stroke Motor piston stroke length m
xp,stroke Pump piston stroke length m
x Coordinate m
y State-space output vector
y Coordinate m
z Discrete Laplace operator
dr Damping coefficient Nm s/rad
kf Valve flow coefficient

√
Pa s/m2

kl Leakage coefficient m3/(s Pa)
p Pressure Pa
Q Flow m3/s
R Radius m
V Volume m3

Greek Letters

Symbol Description Unit

α Displacement input
β Bulk modulus Pa
β Pitch angle rad
κ Vector denoting periodically varying sampling opera-

tions
Φ CDE transition matrix
Ψ Combined transition matrix, Kalman and Bertam

equivalent to A
δ Number of DDE states
∆2 Difference of 2
ε Volumetric ratio of free air
εA0 Volumetric ratio of air at atmospheric pressure
η Efficiency
γ Number of CDE states
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λ Integration variable
Λ(2) RGA of 2
µ Iteration counter
ω Rotational speed rad/s
ωn Natural frequency rad/s
φ Angle for torque calculation rad
ρ Density kg/m3

σ Number of SHE states
σ Singular value
τ Time constant s
τ Time function variable s
τ Torque Nm
θ Shaft angle rad
θHPV HPV opening / closing angle rad
θLPV LPV closing angle rad
ζ Damping ratio
lambda RGA element

Superscripts and Subscripts

Symbol Description Unit

2̄ Normalised value of 2
2′ Spatial derivative of 2
2+ Time instant after discrete calculation
2ᵀ Tranpose of 2
2D Variable or coefficient related to Araki and Yama-

moto’s method
2Ψ Variable or coefficient related to A New Unified Non-

minimal Realisation Method
2∆Σ Variable or coefficient related to ∆Σ modulator
2A Variable or coefficient related to air
2c Coefficient or variable related to CDE/continuous

states
2d Coefficient or variable related to DDE/discrete states
2H Variable or coefficient related to high pressure line
2in Model input variable or coefficient related 2
2L Variable or coefficient related to low pressure line
2mc Variable or coefficient to motor chamber
2mH Variable or coefficient related to motorHPV
2mL Variable or coefficient related to motor LPV
2mp Variable or coefficient related to motor piston
2m Motor related variable or coefficient
2pc Variable or coefficient to pump chamber
2pH Variable or coefficient related to pump HPV
2pL Variable or coefficient related to pump LPV

xii



2pp Variable or coefficient related to pump piston
2p Pump related variable or coefficient
2r WT rotor related variable or coefficient
2s Coefficient or variable related to SHE/sample-and-

hold states
2x x-coordinate of 2
2y y-coordinate of 2
2e Error signal
2̌ Minimum value of 2
2̇ Time derivative of 2
2̂ Maximum value of 2
2∗ Reference value for 2
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CHAPTER 1
Introduction
This master thesis concerns the topic of modelling and control of a digital fluid power
transmission for use in a wind turbine drivetrain. This chapter serves as an introduction,
which purpose is to present the preliminary studies conducted in the process of choosing
a thesis topic. This chapter hereby aims to answer why control of a digital fluid power
transmission is an interesting topic of study seen from an academic and commercial point
of view.

The primary objective of this thesis is to present the work conducted when studying
the topic of model based control for a wind turbine’s digital fluid power transmission.
Prior to the choosing of this topic studies within the areas of wind turbines, fluid power
transmission and control strategies for such systems have been carried out. It is the result
of these studies that have shaped the content of this thesis, why this chapter is dedicated
to summarising the important results and conclusions of these preliminary studies.

Recent Developments in the Wind Energy
Sector and Motivation for Reaseach

Reliability Of Modern 
Utility-scale Wind Turbines

Fluid Power Transmission
based Drivetrains

Digital Fluid Power Transmission
based Drivetrains

Control of a Digital
Fluid Power Transmission

Introduction to
Multirate Control

Fig. 1.1: Flowchart presenting the various areas of research studied in the process of determining
a suitable master thesis topic.

The chapter is comprised of six individual sections, each section with a different focus
area. The sections are presented in the chronological order in which they have been stu-
died according to the flowchart in figure 1.1. This means that the first section presented
in this chapter concerns the recent developments within the wind energy sector followed
by sections which becomes increasingly more specific towards fluid power transmissions
and the control thereof. As a result the chapter ends with a theoretical discussion of the
general concepts of multirate control, which is the control approach of interest for this
master’s thesis.
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For readers familiar with the recent development within the area of wind turbine reli-
ability, fluid power transmission or digital displacement machines one or several of this
chapter’s sections might be redundant and can be omitted without loss of this chapter’s
essential conclusions.

With the objective of creating a common base of knowledge between the authors and
readers of this thesis the first sections of this chapter aims to elaborate upon why fluid
power transmission based drivetrains is an emerging technology within the wind industry
sector.

Motivation1.1
During the last four decades there has been an increasing interest in renewable energy
sources as a result of an increasing demand for energy and rising oil prices. Globally and
nationally this has lead to several political initiatives, wherein the main objective has
been to reduce greenhouse gas emissions by utilising renewable energy sources. Examples
of this include the Kyoto protocol (1997), the European Union "Renewable Energy Road
Map" (2007) and the Danish "Energy Agreement" (2012) (Danish Ministry of Climate,
Energy and Building 2012; Perez et al. 2013). Common for all of these initiatives is that
they all proposes the need for harvesting wind energy as one of the primary sources for
producing renewable energy.

The wind industry have made several advances, since the first electricity-generating ho-
rizontal axis wind turbine (WT) emerged in the mid-1900s, in order to adapt to the
increasing demand for renewable energy. This is especially evident in the more recent
years where the world wide wind energy capacity has more than doubled every three
years (Global Wind Energy Council 2015).

To illustrate the rapid development in the last 17 years within the global wind industry
market figure 1.2 has been made. It presents the increase in installed wind power capacity
(blue bars) on a world wide scale from 2000 to 2016. Studying the significant increase
in wind power capacity during the most recent years it becomes evident that currently
a large economical potential in the wind industry exists. Furthermore, if the forecast of
future expected wind power capacity (seen as the red bars in figure 1.2) is taken into
account, it provides the necessary motivation for future advances in the wind industry.

A large part of the development within the wind industry has been focused on reducing
the cost of WTs and to improve the overall efficiency. To reduce the cost of generating
electricity using WTs and to supply the increasing energy demand, the state of the
art trend within the wind industry is to upscale the WT’s power rating to the multi-
megawatt (multi-MW) scale. Currently the worlds largest commercial WT is the MHI
Vestas V164 offshore WT, which has a power rating of 8MW with a rotor diameter of
164m (wind-turbine-models.com 2016d). As an alternative to upscaling, manufacturers
have put effort into utilising commercially available components in their WT designs in
the aim of reducing costs. To improve the efficiency, design changes have been made on
all levels in the WT.

2



1.2. Reliability of Modern Wind Turbines Chapter 1. Introduction

Fig. 1.2: Globally installed wind power capacity (blue) and forecast (red). Data from Global Wind
Energy Council (2015, 2016).

Many different design topologies have emerged over the years, such as vertical and ho-
rizontal axis designs, upwind and downwind rotor placement, variable- or fixed-speed
operation, multiple numbers of blades and different drivetrain constructions. The majo-
rity of the available WTs today are based on the same design principle. This includes
a horizontal axis, three blades with pitch control, variable-speed operation and either a
direct-drive drivetrain or a drivetrain utilising a gearbox. Even though the development
seen in the wind industry sector has resulted in more efficient WTs, which has made
harvesting wind energy more attractive, some future issues such as reliability must still
be addressed. (Echavarria et al. 2008)

The continued expansion of the wind industry has raised the interest for studying the
reliability of WTs installed world wide. A reason for why this has become a hot topic
is because a significant part of the WTs installed world wide have reached an age where
wear-out issues start to appear and due to more focus on the maintenance cost related
to operating a WT. This creates an interesting topic of study, specifically which parts of
the WT are more prone to failure and how the reliability might be improved. This will
be the topic of the next section.

Reliability of Modern Wind Turbines1.2
In order to study WT reliability and identifying which WT components are prone to
failure, it is beneficial to have a basic understanding of WT topologies and the general
components used to construct a modern utility-scale WT. Thus the general design of a
modern utility-scale WT will first be considered before the related reliability studies will
be presented.

3
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Wind Turbine Structure1.2.1
The parts used to comprise a WT varies depending on the design topology, although
many design configurations often remain the same independently of choice of topology.
Figure 1.3 presents the parts used to comprise one of today’s common horizontal axis
utility WT designs.

1

2

3 4

5

6

7 8 9 10

11

12

1314

Fig. 1.3: General design of common horizontal axis WT with pitch regulated blades. Elaboration
of numbers can seen in text. (Perez et al. 2013)

.

The tower (2) of an onshore WT is mounted on a foundation (1). The nacelle (4) is
mounted on the top of the tower and may be rotated by the yaw system (14) to align
the turbine blades (3) with the wind direction. The blades of the WT are mounted to
the WT’s hub (6). During operation the blades can be rotated by the pitch system (5)
in order to adjust the amount of power going to the WT. Furthermore, the pitch system
may be used as an aerodynamic brake, in the scenario where rotation of the blades must
come to a stop.

The hub and gearbox (9) are connected by the main (low speed) shaft (8), which rotates
at the speed of the blades, and is supported by the main bearing (7). The gear box
transfers the energy from the main shaft to the high speed shaft (10). The high speed
shaft drives the WT’s generator (12), which then transfers the rotational energy of the
high speed shaft to the grid. On the high speed shaft a mechanical brake (11) is installed,
which can also be used to bring the WT to a stop.

Depending on drivetrain topology some of the presented components might not be pre-
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1.2. Reliability of Modern Wind Turbines Chapter 1. Introduction

sent, just as additional components sometimes are utilised. For instance a converter (13)
can be used to connect the generator to the grid. A classification of today’s most common
WT drivetrains can be found in appendix A.1.

The topology of the drivetrain is generally defined by the type of generator utilised in the
turbine nacelle. The design choices for external components, i.e. the rotor, hub, tower
and so on, will generally remain the same independently of the choice of WT drivetrain.
Given a basic understanding of the structure of today’s modern utility-scale WT, the
next section will proceed with investigating the reliability of these WTs.

Wind Turbine Reliability1.2.2
Multiple studies have been made in the aim of determining which critical parts are more
prone to failure in a modern utility-scale WT. In order to generate reliable results in these
studies a large amount of data must be collected. However, there are not many databases
which contain the necessary data for studying the reliability of WTs (Echavarria et al.
2008). Therefore data is often voluntarily supplied by wind farms andWTmanufacturers.
These data sets can, however, often be considered as biased and caution must thus be
taken when studying such data. Furthermore, when studying reliability of data collected
from different organisations there exists the challenge of comparing data from various
WT topologies, at varying operational ages, which information is collected at different
geographical locations using diverse procedures. As a result the information available for
studying which WT components are more prone to failure is somewhat limited.

Two studies which are considered to present reliable information with regard to reliability,
failure rate and downtime are the Reliawind study by Gayo (2011) and the research thesis
by Kaidis (2013). Common for both studies is that their findings are based on the same
database, which includes data from Gayo (2011) and Hahn et al. (2006). The data
initially collected by Hahn et al. (2006) consists of information with regards to failure
rate and average downtime for different subparts of 1500 WTs. These data have been
used to create figure 1.4, which aims to identify which subparts of a WT are most prone
to failure and which subparts contribute the most to downtime.

The top bar plot (blue bars) in figure 1.4, shows the contribution to the overall failure
rate of different subparts of the WT. The numbers displayed above each bar represents
the actual failure rate [failure/WT/year] for the corresponding subpart. The top bar
plot suggest that the Power Module which include the generator and converter among
other components, are more likely to fail, specifically 0.62 time per year. Subparts such
as Electrical Control, Rotor Module and Other also have a significant failure rate which
gives incentive for improvements.

When the financial incentive for improvements must be considered it is not sufficient only
to investigate the failure rates, but the downtime and cost of each failure should also be
taken into account. The lower bar plot (red bars) shows the contribution to overall
downtime. The number above each bar displays the average downtime [days/failure] for
the corresponding subpart. It is interesting to see that the subparts which contributes
to the most downtime, do not necessarily have the largest failure rate. For instance
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Fig. 1.4: Subparts contribution of overall failure rate (blue bars) and overall downtime (red bars)
in WTs. The numbers displayed above each bar represent the failure rate [failure/WT/year] for
upper bar plot and downtime [days/failure] for lower bar plot. Data from Hahn et al. (2006).

the Rotor Module and Gearbox have failure rates that are half and less than half of the
maximum failure rate of 0.62 [failure/WT/year]. However, these two subparts account for
more than 40% of the total downtime. Considering that these two subparts furthermore
represents above 40% of the costs in a common WT design, there exists a strong financial
incentive to improve the reliability of both the Rotor Module and the Gearbox (Perez et
al. 2013). It is therefore chosen to investigate how the drivetrain of a modern utility-scale
WT, which is comprised of both the Power Module and Gearbox and others subparts,
can be improved with regards to reliability.

In recent years focus has been increased on developing alternative drivetrain designs for
WTs in the aim of improving the reliability. To investigate some of these it is deemed
necessary to further study the current drivetrain topologies. This is considered necessary
for the purpose of determining the efficiency of currently produced WTs, and to clarify
the performance requirements for potential alternative drivetrain solutions. A study
of currently installed drivetrain topologies and their efficiencies have been carried out
and can be found in appendices A.1 and A.2 respectively. The study shows an overall
efficiency of ∼95% close to rated power, and rarely efficiency at partial load below ∼80%.
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In the following section one of WT drivetrain alternatives, namely the concept of fluid
power transmission (FPT) based drivetrains will be studied.

Fluid Power Transmission1.3
One alternative to the conventional drivetrains now present in the industry is the FPT
based drivetrain. FPT is not a new concept, and has been utilised for several decades
to drive heavy machinery, where a need for converting high speed to low speed rotation
is required. Today’s usage include on- and off-road vehicles, rock crushers, paper mills
amongst others (Rampen 2006).

Fluid Power Transmission for Wind Turbines1.3.1
Even in the wind power industry utilising FPT as a gearless transmission is not an entirely
new concept. One of the first WTs with a variable FPT was developed by British engineer
Sir Henry Lawson-Tancred in the 1980s, unfortunately the developed design was never
successfully built and only serves as a proof of concept. In recent year several different
attempts have been made, some with more success than others. Common for all of them
is, however, that they are based on the same general FPT design principle, which is
depicted in figure 1.5.
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Fig. 1.5: General principle of a FPT based drivetrain for a WT.

In accordance with figure 1.5, the WT has the wind speed, v, as an exogenous input and
the pitch angle of the rotor blades, β, as an input. The pitch angle is determined by a
wind power extraction control strategy, which depends on the wind speed. The general
WT control strategy is elaborated upon in appendix B.

The hydraulic pump depicted in figure 1.5 is of the low speed high displacement type
and has the WT as the prime mover. The turbine torque, τr, drives the low speed shaft,
and together with the reactive pump torque, τp, determines the rotational WT speed,
ωr. The pump outputs a pressurised fluid flow, Qp, from the low pressure line (LPL)
into the high pressure line (HPL), which in turn is used to drive the hydraulic motor.

The motor seen in figure 1.5 is of a high speed low displacement type. The motor shares
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a high speed shaft with a synchronous generator (SM), which is connected directly to
the grid. As such, the rotational speed of both motor and generator is fixed by the
synchronous frequency of the generator i.e. the grid frequency.

The pump and motor are in figure 1.5 depicted to be of the variable displacement type,
creating two control inputs to the drivetrain. These are the displacement αp and αm
of the pump and motor respectively. Alternatively the pump or motor could have been
replaced by a fixed displacement type, and hereby reducing the complexity of controlling
the transmission.

When a FPT must be realised additional components such as pressure relief valves,
accumulators, boost circuits, filters and drains must furthermore be included, however
these have not been depicted in figure 1.5 since these are not essential for understanding
the working principle of a FPT.

Advantages of Fluid Power Transmissions in Wind Turbines1.3.2
Evidently, the FPT concept under consideration omits both gearboxes and power conver-
ters, which were in section 1.2 found to be a large source of unreliability in conventional
WTs, and thus FPT based drivetrains are a potential topology for reliability impro-
vements. In general a number of advantages can be achieved by the use of FPT based
drivetrains compared to today’s commercially available solutions. These advantages in-
clude:

• Mechanical decoupling between WT blades and generator. As a result the loa-
ding on the nacelle structure can be reduced when wind gusts and turbulence are
occurring (Carroll et al. 2014).

• The conventional fluid power systems is considered to have great robustness due to
high reliability.

• Fluid power systems have a high power to weight ratio, suggesting that the weight
of the transmission can be reduced compared to a mechanical gearbox (Rampen
2006). Furthermore, FPTs offer the possibility of placing the motor and generator
at ground level, reducing the weight of the nacelle even further (Carroll et al. 2014).
This, however, comes at the cost of a diminished efficiency.

• Including an accumulator in the FPT can reduce pressure fluctuations and furt-
hermore work as a energy storage capacity superior in power and energy density
compared to capacitor based energy storage (R. H. Hansen 2013). This is beneficial
when wind turbulence or grid loss are occurring (Rampen 2006).

• Using a variable displacement motor, the high-speed shaft speed can be maintained
constant and a synchronous generator can be utilised. Theoretically, this omits the
need for a frequency converter and transformer. (Roemer 2014)

To benefit from the presented advantages multiple attempts to successfully design a FPT
based drivetrain have in the recent years been conducted. The company ChapDrive AS
has developed a FPT based drivetrain for a 900kW WT. It consisted of a Hägglunds
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fixed displacements pump and two Bosch Rexroth variable displacement motors. The
motors were located at the tower base together with a synchronous generator. The WT
was fully operational for a three year period before the company closed down, and no
data with respect to reliability or efficiency has been presented. (Chapple et al. 2012)

Another recent attempt is described by Schmitz et al. (2013). It concerns a research pro-
ject from Institut fur angewandtes Stoffstrommanagement, where a FPT based drivetrain
is designed for a 1MW WT. The design of the FPT drivetrain seen in figure A.6 em-
ploys two low speed fixed displacement pumps connected in parallel and four hydraulic
displacement motors. For details see appendix A.3.

Disadvantages of Fluid Power Transmissions in Wind Turbines1.3.3
A general issue with conventional fluid power machines is that they only exhibit high
efficiencies at full load, since the mechanical losses in conventional fluid power pumps and
motors do not scale down with reduced power output. This is a concern in FPT based
drivetrains for WTs, which are often operated at partial load. The efficiency of FPT
based drivetrains have been studied in appendix A.4 and the findings show an overall
efficiency spanning between 50% and 80% when the majority of the operating range in
considered, the phenomena illustrated by figure 1.6. Such low efficiencies is insufficient
compared to the efficiencies of conventional WT drivetrains, which are typically above
90% in the majority of its operating range (for elaboration see appendix A.2). Thus it
must be concluded that the relatively poor efficiency at partial load makes conventional
FPT based drivetrains a poor alternative for many application including WTs.
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Fig. 1.6: Overall efficiency as a function of output speed and torque for a typical commercial
available FPT. (Rampen 2006)

In order to make FPTs more competitive, the recent years research have been concerning
the utilisation of hydraulic digital displacement machines (DDMs), which have shown to
exhibit attractive efficiencies. The next section thus concerns the study of digital fluid
power transmission (DFPT), and aims to determine if this technology can give FPT the
competitive edge needed to emerge into the wind industry market.
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Digital Fluid Power Transmission1.4
The difference between conventional variable displacement machines and digital displa-
cement machines is that DDMs utilises independently manipulated valves to control each
pressure chamber. A digital hydraulic machine is characterised by its use of on/off val-
ves in contrast to conventional servo valves, swashplates or vanes. DDMs often consist
of several pressure chambers, which can be individually controlled to either execute a
pumping, idling or motoring operation. During partial load of a DDM, selected pressure
chambers can be controlled to idle causing the chamber not to be pressurised, which
leads to improved efficiency during partial load operations compared to conventional va-
riable displacement machines. This is the primary reason why DDMs exhibits a superior
efficiency over conventional variable displacement machines. A study of the typical effi-
ciency of DDMs can be found in appendix A.4, whereas this section will continue with a
description of the DDM’s general design, operating principle and usage.

General Digital Displacement Machine Design1.4.1
A pressure chamber in a DDM is operated by the use of two independently controlled
on/off (digital) valves. Depending on how these valves are controlled three distinct
operation modes, defined as idling, pumping and motoring, can be achieved. The pressure
chamber in a DDM can be depicted as seen in figure 1.7.

HPV Actuator

LPV Actuator

HPL

LPLPiston

Pressure
Chamber

Eccentric Shaft

xp

3

Fig. 1.7: The pressure chamber in a DDM including eccentric shaft and valve configuration. The
depicted seat valves are controlled actively by the use of electromagnetic actuators and passively
by pressure differentials.

As figure 1.7 depicts, the stroke of the piston is a direct result of the rotation of the
eccentric shaft. The figure furthermore shoes two leakage-free seat valves connected to
the LPL and HPL respectively. The acronyms LPV and HPV defines the low pressure and
high pressure valves, respectively. By controlling the operation of the valves in accordance
to the piston stroke, opening and closing of the valve against high pressure forces can
be avoided (Rampen et al. 1995). As a result each valve can be directly controlled by
what can be considered as a relative weak electromagnetic actuator. These types of
digital valves, which exhibit no leakage and low power consumption are a fundamental
component in digital displacement technology, and a core element in achieving high
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efficiencies. (Rampen et al. 1995; Roemer 2014)

Different types of DDM designs exist, where figure 1.8 displays the sectional view of
two commonly used DDM designs utilised in WT DFPT based drivetrains proposed by
recent state of the art literature (Carroll et al. 2014; Kameda et al. 2014; Rampen 2006;
Sasaki et al. 2014). The left side of figure 1.8 depicts a cam ring type design, which is
ideal for the design of the digital displacement (DD) pump in a DFPT, since it offers
high displacement at low rotational speed due to its many pressure chamber activations
per revolution. The right side of figure 1.8 depicts a Calzoni type design, with tilting
cylinders. This design only offers high displacement at high rotational speed due to
relative small amount of chamber activations per revolution, which is why this design
often is proposed as the DD motor in a DFPT. Common for both designs is that the
pressure chambers are radially distributed at the circumference around the rotational
shaft. This allows for external positioning of the valve actuators and high and low
pressure manifolds.

33

Cam Ring Type DD Machine Calzoni Type DD Machine

Fig. 1.8: Sectional view of two possible DDM designs. To the left a cam ring type design and to
the right a Calzoni type design. For simplicity the valves and pressure lines have been omitted.
Designs inspired by Johansen (2014) and Kameda et al. (2014).

The design of a DDM is often constructed from several modules, where the sectional
view in figure 1.8 could represents one module. The power rating of DD machines thus
depends on the number of modules, number of chambers per module and the size of each
pressure chamber. A more detailed description of the cam ring and Calzoni type design
is presented in appendix C, where the sizing of this report’s DFPT based drivetrainss is
also presented.

Operating Principle of Digital Displacement Machines1.4.2
A variable DDM is defined by how its pressure chambers are operated, and generally
speaking two distinct operation schemes exist, namely partial and full stroke operation.
In full stroke operation, a change in operation mode to pumping, motoring or idling, can
only occur at specific piston positions, whereas in partial stroke, the operation can be
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changed independently of the piston position. The full stroke operation is considered the
simplest, but it has the drawback that the DDM only can obtain a discrete displacement
resolution, corresponding to the size of its pressure chambers. In this report only full
stroke operation is considered.

It is essential to understand the three distinctive operation modes of a DDM if an algo-
rithm for controlling a DFPT based drivetrain must be developed. Thus the full stroke
operation modes idling, pumping and motoring mode must be known and understood.
To aid the description of each operation mode the characteristics of a DDM’s pressure
chamber is visualised by figure 1.9.

Open
Closed
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pH

pL
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Vchamber LPV LPV Acuator Forcepchamber HPV HPV Acuator Force

3

Idling Pumping Motoring

TDC
BDC

BDC
TDC

BDC
BDC

TDC
BDC

BDC

Fig. 1.9: The characteristics of a DDM’s pressure chamber during the operation modes of idling,
pumping and motoring. The illustration is based on a full stroke operation, where one operation
mode is maintained for one cycle.

Idling: The idling mode operation is the simplest of the three different modes. It is
achieved by having the LPV open during an entire cycle. During the piston mo-
vement from bottom dead center (BDC) to the top dead center (TDC) a small
actuator force is required to maintain the LPV open due to opposing flow forces.
From TDC to BDC the flow from the LPL and into the chamber ensures that no
actuator force is required to maintain the LPV open. During the entire cycle no
fluid is pressurised and no effective fluid displacement occurs.

Pumping: The characteristics of the pumping operation mode is shown in the middle
of figure 1.9. At the instant where the piston is at the BDC both valves are closed.
As the piston moves from the BDC and towards the TDC, the fluid in the chamber
is pressurised. While the increasing pressure forces will maintain the LPV closed,
the HPV will passively open as the chamber pressure exceeds the pressure in the
HPL, pH. In turn fluid will be displaced from the chamber and into the HPL.

When the piston reaches the TDC the HPV is closed, which can be done both
actively or passively (as depicted in figure 1.9) depending on machine topology
(Roemer 2014). Following a positive change in chamber volume as the piston
moves towards BDC the fluid in the chamber is depressurised until the LPV will
passively open. Fluid is then withdrawn from the LPL until the LPV is actively
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closed near the BDC and the cycle is repeated.

Motoring: The motoring operation mode is the only mode that requires active closing
of both the HPV and LPV. In motoring mode fluid is displaced from the HPL and
into the chamber as the piston moves from TDC to BDC. During this time period
a small actuator force is required to maintain the HPV open due to the flow forces
acting on the valve.

As the piston approaches the BDC the HPV is actively closed. This results in the
chamber fluid being depressurised which in turn passively opens the LPV. As the
LPV is open during the piston movement from BDC towards TDC, the chamber
fluid is displaced into the LPL. In this time period a small actuator force is required
to maintain the LPV open as it is the case for the idling mode.

Near the TDC the LPV is actively closed, which causes the chamber pressure to
increase (assuming sufficient kinetic energy is stored in the eccentric shaft) and in
turn passively opens the HPV, which ends the motoring cycle. It should be noted
that if the HPV is passively opened, the motoring operation mode is not available
at zero rotational velocity of the eccentric shaft. This could be avoided by choosing
a valve design, which includes the option of actively opening the valve.

The construction of a DDM includes multiple pressure chambers. Individually choosing
the operation mode of each chamber enables high displacement control bandwidth, as-
suming a high displacement frequency. The result is a DDM which can approximate a
continuous variable displacement.

Some considerations can be made with regards to efficiency and the distinctive operation
modes of a DDM. These are listed below:

• Choosing a radial piston based design of the DDM gives the option of placing the
valves at the outer circumference (similar to what is depicted in figure 1.7), which
leads to physical space for relatively large valve opening areas. This would result
in small flow losses in all operation modes. (Rampen et al. 1995)

• By timing the opening and closing of the valves in accordance with the movements
of the piston, the electromagnetic actuators of the valves do not have to overcome
any large pressure forces. Hence small and compact actuators with little power
consumption may be utilised in the valve design. (Roemer 2014)

• The presented operations modes utilise passive openings of the valves, which means
the pressure in the chamber and manifold (HPL or LPL) are equal, why throttling
loses due to pressure equalisation can be avoided. (Roemer 2014)

• In order to achieve energy efficient operation modes, the timing of the valve mo-
vements are essential. The following should thus be true:

– In pumping mode, the LPV should be fully closed at exactly BDC. If the
valve is closed early the fluid in the chamber is depressurised to unwanted
levels and cavitation might occur. Furthermore the required pressurisation
needed to passively open the HPV will require more time. Alternatively if
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the valve is closed later, fluid displacement into the LPL will occur and the
effective displacement to the HPL will be reduced.

– In motoring mode the closing of the LPV should be timed so that the HPV
(passively opened) is fully open at exactly TDC. If the LPV is closed early,
fluid is displaced into the HPL. Alternatively a late closing will eliminate the
option of passively opening the HPV (since depressurisation starts directly
after the piston reaches TDC).

• Closing forces and opening holding forces are required for both valves’ actuator
systems (see figure 1.9). To improve efficiency, holding forces may be achieved by
passive components such as springs or permanent magnets. Furthermore, utilisa-
tion of passive components might lead to a simpler and cheaper valve design.

• Providing a passive opening holding force in the LPV would result in no power
consumption in the actuator system during the idling operation mode. (Roemer
2014)

• Passively opening the valves by pressurising or depressurising the chamber (as seen
in figure 1.9) leads to a diminished effective fluid displacement in comparison to
the ideal displacement. This is especially evident in pressure chambers with large
dead volumes.

Having acquired an understanding of the benefits and general operating principles of
DDMs, the focus changes to investigate how such machines can be utilised to create a
DFPT based drivetrain.

Utilisation of Digital Displacement Machines1.4.3
One example of a DFPT for a WT is developed by the company Mitsubishi Heavy
Industries (MHI) and Artemis Intelligent Power (AIP). They have together developed a
DPFT prototype for a 7MW offshore WT. The FPT design consists of a 7MW variable
displacement DD pump and two 3.5MW variable displacement DD motors. Each motor
is connected to a synchronous generator with a rated output of 4.2MW. A picture of
the prototype is shown in figure 1.10. The prototype drivetrain has been installed in an
offshore WT named SeaAngel. No operational data of the WT has been available, why
it is difficult to evaluate the true potential of the DFPT based drivetrain designed by
MHI and AIP. (Roemer 2014; Sasaki et al. 2014)

Currently there does not exist any DFPT commercially available for utilisation in WTs.
MHI and AIP are considered to be the pioneers with regards to developing the first
commercial available DFPT, but no deadline seem to reflect when this will be realised.

The study and developments of DFPT based drivetrains for WTs is not only limited
to the big companies within the wind industry, but during most recent years several
research projects have been conducted by universities world wide (see Carroll et al.
(2014), Rampen (2006), and Roemer (2014)). One of these research projects is the
danish HyDrive project, which concerns FPT based drivetrains for renewable energy
applications (Aalborg University 2016). This project studies many different aspects of
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Fig. 1.10: DFPT based drivetrain for a 7MW WT designed by MHI and AIP. (Roemer 2014;
Sasaki et al. 2014)

DFPTs such as dynamic modeling, design optimisation at component level, efficiency
improvements, failure diagnostics and development of control algorithms. All of these
studies could have an important impact on the design and development of future DFPT
based drivetrains.

A big part of implementing DFPT in WTs is dimensioning of the components used to
comprise the DFPT based drivetrain and the development of applicable control strategies.
This task of dimensioning the drivetrain greatly depends on the size of the WT, whether
it is onshore or offshore and sometimes on the specific geographical location. Whereas the
development of applicable control strategies for DFPT based drivetrains in WTs could
be considered as a more uniform task, which to some extent is independent on the size
and location of the WT. The development of applicable control strategies is an important
task, which has to be solved before DFPT based drivetrains can gain success within the
wind industry. The next section will consider the challenges which have to be considered
when applicable control strategies for a DFPT based drivetrain must be developed and
tries to summarise the research done within this area.

Control of a Digital Fluid Power Transmission1.5
The challenge of developing a applicable control approach for a DFPT can be addres-
sed in various ways. If a DFPT system had been available as a physical test stand, a
practical approach might be utilised, however, it often comes with the cost of stability
uncertainties. To overcome this issue, a theoretical approach, where the stability of the
system can be evaluated, is deemed a more suitable choice. The challenge of developing
an applicable control approach for the DFPT is thus viewed as a theoretical model based
control problem.

Literature describing a model based control approauch for DFPT in a WT is close to
non-existing. The company MHI have applied multiple control strategies during the de-
velopment of the DFPT based drivetrain presented in Sasaki et al. (2014) and Tsutsumi
et al. (2012). However, no test results for these strategies have been published. Expan-

15



MCE4-1026 Aalborg University

ding the scope to investigate what methods have been utilised to control DDMs, several
studies can be found (see Armstrong and Qinghui (2006), Ehsan et al. (1997), Heikkila
(2013), and Sniegucki et al. (2013)). These studies propose how torque, pressure, flow
and speed control approaches of a DDM can be developed using e.g. open loop cont-
rol or precalculated activation sequences. Common for all of them is that the DDMs
were operated under fixed speed or simplified load conditions. As a result, the proposed
strategies are not directly applicable for DFPTs in WTs. Furthermore, none of these
presented studies employ model based feedback controller design.

Two papers which studies the topic of model based feedback control for DFPT based
drivetrains in WTs have been found, which include Pedersen et al. (2016a,b). These
papers takes their starting point in a variable speed and variable pitch 5MW WT from
the National Renewable Energy Laboratory (NREL) where the conventional drivetrain
has been replaced with a DFPT based drivetrain. The papers present a dynamic model of
the entire drivetrain, which consists of a fixed DD pump, a variable DD motor (operated
at fixed speed) and a synchronous generator connected directly to the grid.

A reason for the limited literature available within the area of DFPT based drivetrains,
is partly because it is a relatively new topic of study and due to its challenging nature.
Control of a conventional FPT has been well established throughout literature (Lennevi
1993; Rajabhandharaks 2014), which indicates that the challenging nature of the DFPT
is the result of utilisation of DDMs. The next sections will thus present the challenges
arising from including DDMs in a FPT.

Input and Output of a WT’s DFPT:
Prior to model based control can be developed, the DFPT based drivetrain’s input and
output relations must be mathematically described (viewed as the control model in fi-
gure 1.11). Depending on the type of control desired to be utilised, linear or non-linear,
the mathematical system representation must be made accordingly. In this thesis the
study will concern the application of linear control theory. However, before a linear re-
presentation of the system can be developed, the DFPT based drivetrain’s input and
output must be considered.
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Fig. 1.11: The DFPT based drivetrain (Control Model) when represented as part of a model based
control problem.
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To determine an appropriate output of the DFPT based drivetrain (labeled Control
Model in figure 1.11) the overall control objective for a modern utility-scale WT must be
studied. Studies regarding this, which are elaborated upon in appendix B, determines
the overall control objective to be maximum power production of the WT. Depending on
the wind speed, maximum power production is achieved by either solely controlling the
reactive torque acting on the turbine rotor shaft or in combination with controlling the
WT’s blade pitch angle. Considering control of the WT’s blade pitch angle as a separate
control problem, the desired control output of the DFPT based drivetrain is the reactive
pump torque, τp, corresponding to controlling the torque acting on the rotor shaft.

The input to the DFPT based drivetrain depends on the DDMs used to comprise the
DFPT. Choosing a combination of one fixed and one variable DDM, e.g. fixed DD pump
and variable DD motor, will yield one control input being the motor displacement, αm.
This will result in a single-input single-output (SISO) control model as illustrated in the
left part of figure 1.12. Alternatively, the DFPT based drivetrain could be comprised of
two variable DDMs as depicted in figure 1.11. This will yield two control inputs being the
displacement of both the pump and motor, αp and αm, respectively. This furthermore
allows for a secondary control output. For instance choosing the pressure difference
between the HPL and LPL, ∆p, as the secondary control output could maximise the
efficiency of the DDMs in accordance with appendix A.4. The utilisation of two variable
DDMs results in a multiple-input multiple-output (MIMO) control model as illustrated
in the right part of figure 1.12.
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Fig. 1.12: To the left a SISO representation of the DFPT based drivetrain utilising a fixed DD
pump and a variable DD motor. Input being the motor displacement, αm, and output being the
reactive pump torque, τp. To the right a MIMO representation of the DFPT based drivetrain
utilising a variable DD pump and DD motor. Inputs being the pump and motor displacements,
αp and αm. Outputs being the reactive pump torque, τp, and an additional output freely chosen
depending on secondary control objective.

When a model based control approach is to be developed for a DFPT based drivetrain,
the system can be seen as both a SISO control problem or MIMO control problem
depending on the DDMs utilised in the drivetrain. Other combinations of DDMs, than
the two examples in figure 1.12, could also be used to comprise a DFPT based drivetrain.
However, in the next section these two examples suffices to illustrate how the control
challenges differs depending on viewing the DFPT as a SISO or MIMO control problem.
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Control Challenges and State of the Art Control Approaches1.5.1
The control challenges discussed in this section could essentially be viewed as one large
challenge, namely how to develop a control model appropriate for utilisation of model
based controller design and stability analysis. The subchallenges related to this are far
from trivial, and extensive knowledge on how a DDM is operated must be attained in
order understand the fundamental issues behind these challenges and how to potentially
solve them. As all later chapters in this thesis evolve around these challenges it is
fundamental for the reader to have good understanding of what these challenges contains.
This section aims to provide that by dividing the overall challenge of developing a control
model, into three subchallenges.

As the three challenges described next all originates from the discrete activations of a
DD machine’s pressure chamber, an explanatory figure 1.13 have been made to aid the
understanding of the three challenges. The figure depicts the activation sequence of
a DDM operated at fixed speed and variable speed respectively. The sequence is not
only shown in the spatial-domain (angle-domain), but also in the time-domain since
mathematical models often are derived here.
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Fig. 1.13: Explanatory figure depicting the activation sequence of a fixed speed and a variable
speed DDM. The top part depicts a 3-cylinder DDM operated at fixed speed and is intended
to represent the motor in a DFPT. The bottom part depicts a 5-cylinder DDM with variable
speed, which resembles the characteristics of the pump in a DFPT. The activation sequences
for pump and motor are presented in both the spatial- (angle-) and time-domain.
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Challenge I - DD Machine Modelling:
When applying a model based control approach, the first challenge arises in mathemati-
cally representing the true dynamics of the DDMs used to comprise the DFPT. This is
further complicated as the model, which must be developed, has to be linear to utilise
linear control theory. To develop such a model it is vital to understand the operating
principles of full stroke operation of the DDMs. In essence, how the pressure chamber
activations (initiation of pumping, motoring or idling) in the DDM can only be initiated
at discrete instants, corresponding to specific piston positions (the full stroke operating
principle is described in section 1.4). This is illustrated in figure 1.13.

The control challenges of the SISO system presented in figure 1.12 can be considered
under the assumption, that the DD motor, connected to a synchronous generator, is
operated at a fixed speed corresponding to the grid frequency. In this case, the time
between chamber activations will be constant (as depicted in the top part of figure 1.13),
which allows for a discrete control with constant sampling period in the time-domain.
The challenge thus remains, how to develop a linear model of a DDM with a constant
pressure chamber activation rate.

Control Approach Addressing Challenge I:
To overcome control challenge I, Pedersen et al. (2016a) proposes a discrete state space
model representation of a SISO controlled DFPT. The state space model includes the
dynamics of a fixed displacement pump, a variable DD motor, pressure lines and turbine
dynamics, where the sampling period is chosen to be the time between successive chamber
activations in the fixed speed DD motor.

A discrete representation of the DD motor dynamics is based upon a convolution sum
model of shifted impulse responses of the motor flow, which initially was proposed by
Johansen et al. (2016). To give the reader a general idea how a sum of shifted impulse
responses can be used to describe the flow of a variable DDM figure 1.14 has been made.
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Fig. 1.14: Activation sequence of chamber flows for a variable DD machine. Chamber flows being
continuous and activation sequence being discrete.

The figure depicts the flow of each successive pressure chamber in a 3-cylinder DDM. At
time zero the first pressure chamber is activated, resulting in a continuous displacement
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of fluid seen as the blue graph. In the next 3 time periods (or 2π) the flow from this
pressure chamber cannot be changed, and thus activating a pressure chamber can be
represented as an impulse response. As a DDM consists of several pressure chambers,
activated at different positions, the accumulated chamber flows (the sum of the blue, red
and yellow graphs) can be represented as a sum of shifted impulse responses. A more
detailed explanation of the concept is presented in section 5.2.2 or in Johansen et al.
(2016).

Combining the convolution sum model of shifted impulse responses with a discrete ap-
proximation of the continuous dynamics of the pressure lines, DD pump and turbine, a
control model can be formed, which can used for controller design and stability analysis.

Challenge II - Non-uniform Activation Sequence:
The utilisation of variable DD pump in a WT’s DFPT arises a second challenge. The
DD pump is attached directly to the rotor shaft, and thus has a varying speed, why a
non-uniform activation sequence of the pump’s pressure chamber exist. The scenario is
depicted in the bottom part of figure 1.13.

Without a constant activation rate a static linear model representation of the DD ma-
chine is not possible. Furthermore, a non-uniform activation sequence does not allow
for the use of convolution sum model representation of the DD pump. However, if the
activation of pressure chambers are described in the spatial-domain, a uniform activation
rate can be achieved (scenario depicted in figure 1.13), hereby allowing for the utilisa-
tion of the convolution sum model. The challenge thus remaining, is how to develop a
mathematical representation of the DFPT’s dynamics in the spatial-domain contrary to
the time-domain.

Control Approach Addressing Challenge II:
To the authors’ knowledge no published literature exists, which studies the MIMO control
approach of a DFPT, and thus the scenario of making a control model including a DDM
with varying speed. Partly due to this, a 3rd-semester M.Sc. project (see Junker et al.
(2016)) dealing with this topic was conducted prior to this master’s thesis by the authors.
This 3rd-semester project originated from the work done by Johansen et al. (2016) and
Pedersen et al. (2016a), and sought to extend the discrete model approximation of a DDM
made by Pedersen et al. (2016a) to accommodate varying rotational speeds. Hereby
making the discrete model approximation applicable for describing the dynamics of a
variable DD pump in a DFPT.

To overcome the issue of a non-uniform sampling period, Junker et al. (2016) continued
the work done by Pedersen et al. (2016a). This included utilising event driven cont-
rol theory, initially proposed by Heemels et al. (1999), to transform the mathematical
expression relating to the dynamics of the DD pump from the time-domain to the spatial-
domain. In the spatial-domain a discrete model approximation of the DD pump can be
derived with a constant sampling rate, corresponding to the rotational angle between
activation of subsequent pressure chambers. Combining this modelling approach with
linear control has shown to be sufficient for rotational speeds varying within a relative
limited operating range, as it is the case for WT’s rotor.
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The theory of event-driven control is not elaborated upon in this section, but is in
section 5.2.3 applied to transform time-domain equations into the spatial-domain. Addi-
tional literature of event-driven control includes Heemels et al. (1999) and Junker et al.
(2016).

Challenge III - Multirate Activation Sequences:
The approaches for solving challenge I and II generates challenge III, which is how to
combine the discrete models of two DDMs. The approauch presented for addressing
challenge I was to develop a discrete model of the DD motor in a DFPT using a constant
sampling time corresponding to the time between subsequent chamber activations. Chal-
lenge II was addressed by transforming the mathematical equations used to describe the
DD pump to the spatial-domain by use of event driven control theory. The new challenge
arises when the discrete models of the motor and pump must be combined.

To allow for a combined model, the fist step is to transform the model of the DD motor
to the spatial-domain, which does not pose additional challenges since the activation se-
quence will remain uniform as depicted in figure 1.13. However, inspecting the activation
sequences in the spatial-domain for the DD pump and motor depicted in figure 1.13 it
becomes evident that the machines have different activation rates. Hereby creating the
need for a multirate control model if the convolution sum model of the DD motor and
pump must be combined, as it is the case if the DFPT must be seen as a MIMO system.
Thus the essence of challenge III, is how to develop a linear MIMO representation of the
DFPT’s dynamics which accommodates the different activation rates of the DD pump
and motor.

Control Approach Addressing Challenge III:
To the authors’ knowledge there has not been presented any literature excluding Junker
et al. (2016), which directly deals with the MIMO control of a DFPT, and thus no
approaches for developing a multirate model of a DFPT have been found.

Even though the 3rd-semester M.Sc. project, Junker et al. (2016), developed a MIMO
control approach of a DFPT, it did not present a method for making a combined linear
model of the entire DFPT based drivetrain. Instead a decentralised control approach
was proposed, allowing for two separate models of the DD pump and motor. The result
was a control strategy where the DD pump was controlled in the spatial-domain and
the DD motor in the time-domain. Hereby neglecting their mutual cross couplings and
thus also limiting the ability for stability analysis. Nonetheless the presented control
strategy shows stable control performance. Herewith supporting the choice a utilising
event driven control in combination with discrete model approximations of the DDMs as
a method for controlling a DFPT.

Ending Remarks on Control of DFPT’s:
This concludes the description of DFPT control challenges and the state of the art control
approaches to address these. However, none of the presented approaches have established
a MIMO model based control approach, which allows for the use of conventional linear
analysis and control tools. What the presented control approaches have failed to address,
is a method for a combined control model of both DD pump and motor, which accom-
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modates multiple activation rates of the DD machines’ pressure chambers. Based on the
knowledge presented it is assessed that additional control theory must be introduced to
solve the challenges related to multiple activation rates. An area of control theory which
is considered most likely to hold the key to solving these challenges is multirate control,
which thus has become a topic of interest for the remainder of this thesis.

Introduction to Multirate Control1.6
This section presents the multirate control problem, while also offering a historical per-
spective on the need for multirate techniques. The multirate problem is generally defined
by considering the sampling operations as time propagates with the aim of forming a
common basis for discussion.

Computer Controlled Systems1.6.1
Modern control systems often implement various control functionalities, such as reference
commands or sensor feedback, by use of computers or embedded micro-controllers. Many
reasons for the rise of digitally controlled systems exist and amongst others the possibili-
ties for implementing various control laws and high accuracy, repeatability and reliability
of digital controllers are highly desirable characteristics. Suffice to say, the reasons for
using digital control are numerous and well covered in literature (Amit 1980; Åström and
Wittenmark 1984; Franklin and Powell 1981; Ogata 1987) and their high applicability is
proven by their near unanimous implementation in modern control systems.

The use of digital controllers necessitates quantization of continuous-time signals by
sampling them for computer processing of control commands, and subsequent signal
holding (by a zero-order hold (ZOH)1) until a new command is computed. The process
of digital control applied to an analog plant is illustrated in figure 1.15.

Sampler

Zero-order
Hold

Digital
Controller

r(t) e(kT) Analog
Plant

u(kT) u(t) y(t)
+

{

Sampler

y(kT)

r(kT)

T s

T s

T h

Fig. 1.15: Closed loop computer controlled analog plant. Signals at various points in the control
process are illustrated.

Conventional computer controlled systems typically perform the Analog to Digital (A/D)
and Digital to Analog (D/A) operations synchronously at a single uniform rate (Ts =
Th = constant). Techniques for analysis and controller design for such systems have been

1Higher orders of hold are also possible, but the work presented here is limited to the commonly
used zero-order hold.
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mature and well developed since the 1980s and many textbooks regarding the topic have
been published (Åström and Wittenmark 1984; Franklin and Powell 1981; Ogata 1987).

Single rate analysis and design adequately describe many systems, but for some systems,
such as those with both fast and slow modes, or with multiple transducers with different
bandwidths, the conventional techniques may not be applicable. This is where systems
incorporating multiple sampling and control rates start to become an interesting topic.

Historical Perspective on Multirate Systems1.6.2
Historically, multirate analysis was developed in the 1950s as a to analyse the intersample
behaviour of signals and states of conventional single rate systems. These frequency dom-
ain (transfer function based) methods were developed by introducing a fictive "phantom
sampler" operating at some integer multiple of the single rate system. A more in-depth
review of these frequency domain methods is available in Amit (1980) and Glasson (1983).

Following the early development of the frequency domain methods, Kalman and Bertram
(1959) started the development of time-domain (state-space representations) methods for
multirate systems. While the frequency domain methods were further developed to des-
cribe a number of different situations (e.g. slow input sampling with fast output sampling,
vice versa and nested loops), the time-domain approach of Kalman and Bertram was left
practically untouched until the 1970s, when the aerospace industry found use for Kalman
and Bertram’s previously unused method. (Amit 1980; Glasson 1983)

Motivated by practical implementation concerns, development of multirate methods was
propelled by the aerospace industry. High-performance aircrafts are an example of sys-
tems, which include slow and fast modes, i.e. those associated with rigid body motion
and structural vibration of the airframe, respectively, all of which must be controlled
to maintain controlled flight. Limited by the computational power of period processors,
meant that when transitioning from analog to digital flight computers, the flight cont-
rol algorithms associated with slower modes had to be implemented with slower update
rates to conserve limited computer memory. Specific examples of aircraft implementing
multirate control systems include the McDonnell Douglas/Boeing Northrop F-18 and the
former American space shuttle. (Amit 1980; Glasson 1983; Stengel and Berry 1977)

It may be argued that with the ever increasing processing power of even cheap micro-
controllers, the need for multirate techniques is rapidly diminishing, as the sampling and
control rates may simply be increased to a single common fast rate. However, such super-
sampling of the system signals and states can only alleviate the multirate problem when
computational resources are plentiful and transducer bandwidth is not the limitation.

A hitherto undescribed situation that may benefit from multirate sampling are continuous
(or discrete) systems with periodic and discrete actuation. The defining characteristic of
such a system, is the fact that actuators can only be activated at specific (and periodic)
time instants, and an example of such a system are the DDMs utilised in the DFPT.
When combining multiple of such machines, a system with multiple different actuation
rates is obtained. Thus the DFPT drivetrain with its discretely activated digital machines
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represents a different class of systems, which may not simply be handled by single rate
techniques (super-sampled or not).

The motivation for applying multirate techniques to this system is not, as previously,
limited computational power. The motivation is now the need for a combined model
structure, which can be utilised for system analysis using conventional linear control the-
ory tools, such as the Relative Gain Array (RGA) and Singular Value Decomposition
(SVD), and for controller design. To the best of the author’s knowledge, no such com-
bined model description, which is also suitable for system analysis and controller design,
regarding this type of system has previously been developed.

Multirate Systems1.6.3
To form a common basis for discussion of the multirate control problem, the definition
of the multirate system according to Kalman and Bertram (1959) is presented. Subse-
quently an example is presented and commented upon.

Definition: A multirate system is a sampled-data system which includes no less than
two quantization and hold elements. The multiple analog to digital and digital to
analog operations occur with fixed intervals, but at least two have unequal intervals.

The definition of the multirate system differs from the conventional single rate sampled-
data systems, where all sampling operations are performed synchronously and with a
fixed period between successive samples.

A system which satisfies this definition is the multiple-input multiple-output system of
figure 1.16. The analog plant contains both quickly and slowly varying signals. To
accommodate the different time-scales of the system, multiple samplers operating at
different, but fixed, rates are utilised. To generalise the problem, it is noted that the rate
of the controller output and signal holding does not necessarily need to correspond with
the sampling rates.
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Fig. 1.16: Multirate control applied to system with different time-scales, inspired by Amit (1980).

24



1.6. Introduction to Multirate Control Chapter 1. Introduction

Based on the example provided by Amit (1980), figure 1.17 illustrates a generalised
multirate sampling scheme, which could have been used in conjunction with a system
such as the one in figure 1.16. The sampling scheme contains three samplers all operating
at fixed rates of 1/T1, 1/T2 and 1/T3, where Ti is some time unit. The second sampler is
out of synchronisation by τ2.
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BTP
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T1 = 2 
=    1 = 0

T2 = 6 
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Fig. 1.17: Example of multirate sampling scheme, inspired by Amit (1980).

Some comments on the multirate system and the sampling operations which occur in it:

Remark 1.6.A: All sample and hold operations do not need to occur at different rates.
The multirate definition is still satisfied when some, but not all, operations occur
at the same rate.

Remark 1.6.B: The sampling operations do not need to be synchronised, such that
a time instant exists where signals are sampled simultaneously. Desynchronised
sampling are in many systems caused by delays. These delays are, however, often
small enough to be neglible (Amit 1980). For the DFPT, delays in the sampling
scheme can be avoided by appropriate choice of initial conditions, such that the
actuation rates of the DDMs are synchronised.

Remark 1.6.C: With fixed sampling rates, the combined sampling scheme will always
be periodic. This is readily observed by examining the bottom axis of figure 1.17,
where the periodicity of the sampling scheme is given by the Basic Time Period
(BTP). The BTP is the least common multiple of the different sampling periods,
also denoted as T , and is defined as:

BTP = T ≡ LCM(T1, T2, T3, . . . , Tn, τ1, τ2, τ3, . . . , τn) (1.1)

The basic time period can become unpractically large if the ratio of sampling
periods is irrational (or practically so) (Kalman and Bertram 1959).
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Remark 1.6.D: All sampling periods and delays in the sampling scheme can be expres-
sed as integer multiples of the Short Time Period (STP). The STP is the greatest
common divisor of the different sampling periods, also denoted as T0, and is defined
as:

STP = T0 ≡ GCD(T1, T2, T3, . . . , Tn, τ1, τ2, τ3, . . . , τn) (1.2)

The short time period, similarly to the BTP, may become unpractically small if
the ratio of sampling periods is irrational.

Remark 1.6.E: The analog plant can be linear or non-linear, although the common
control theory tools for analysis are based on linear model representations, and a
linear description would thus be preferable.

This concludes the introduction to the multirate control problem. Chapter 4 continues
the investigation of the problem and how it may be handled, such that multirate modeling
tools can be develop for the DFPT.

The next chapter in this report will clearly define the problem under investigation to-
gether with the chosen approach for attempting to derive a solution. Furthermore the
general limitations of the work in this report are also presented.
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CHAPTER 2
Problem Statement
The Digital Fluid Power Transmission (DFPT) represents a class of systems, which are
generally characterised by having continuous-time dynamics, and are actuated by multi-
ple discrete-time actuators operating with different update rates.

In DFPT operation, control challenges arise from the digital displacement pump and
motor. The displacement of such Digital Displacement machines (DDMs) can only be
changed at specific shaft positions in full stroke operation. Modelling and control of a
single fixed-speed DD machine, which exhibits uniform time steps between possible dis-
placement changes, was in literature addressed by considering the linear impulse response
of the machine. Similarly, variable-speed operation of a single DDM, which has a non-
uniform time step between possible displacement changes, has been addressed by trans-
forming the previously developed time-domain equations to the spatial-domain, where
the angle between possible displacement updates is uniform. However, the challenge of
operating multiple DDMs in a variable-speed and non-uniform setting still remains, and
thus the problem which this thesis seeks to answer can be formulated as:

How can a multirate method be used to develop a linear time-invariant model of a
utility-scale Wind Turbine Digital Fluid Power Transmission, such that conventional

linear multiple-input multiple-output control and analysis tools can be applied?

The main underlying hypothesis of this statement is: given a linear time-invariant model
on a conventional form (transfer function or state-space), then it is possible to apply the
conventional well known and well documented tools linear control theory has to offer.

The motivation for answering the presented problem is that obtaining a linear multiple-
input multiple-output DFPT model will allow the control engineer to evaluate stability
and dynamic couplings of a DFPT such that appropriate control algorithms can be used.

Problem Solving Approach2.1
A utility-scale Wind Turbine (WT) DFPT is considered a highly complex system, due to
the discrete activation of a high number of pressure chambers which is a consequence of
its multi-MW power rating. This high complexity of such a system makes it unsuitable
for development of advanced multirate methods, why this thesis will make use of three
dynamic systems to answer the above presented problem statement.

A linear double Mass Spring Damper (MSD) system, with well known dynamics, is
introduced as a tool for developing a multirate method and investigating the applicability
of conventional analysis and control design tools. Each mass in the system is defined
to be discretely actuated at different rates and together with its coupled dynamics this
resembles the main challenges with regard to modelling and control of a DFPT. Contrary
to a DFPT, a MSD model does not have to address the difficult challenge of modelling
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a DDM, why such a system is considered ideal for an accelerated evaluation of the
properties of potential multirate methods.

In addition to the MSD system, two DFPTs are considered in this thesis, a 5.4MW and
a 10 kW DFPT. The 5.4MW DFPT, shown in figure 2.1, represents a drivetrain for a
utility-scale WT and its operation and parameters are based on the 5.4MW drivetrain of
the NREL reference WT. The transmission consists of two digital displacement machines
acting as pump and motor, respectively. The pump is a low-speed high-displacement cam
ring type machine and the motor is a high-speed low-displacement Calzoni type machine.
By connecting them to shared high and low pressure lines, the transmission is formed.
The functional principle of the digital fluid power transmission is exactly the same as
described in section 1.3.1, and will therefore not be repeated here.
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Fig. 2.1: Simplified diagram of this thesis’ 5.4MW DFPT including its inputs and subsystems.

As discussed in section 1.5, the inputs are defined as being the variable displacement of
the two machines, αp and αm. Both of these inputs are in fact discrete binary sequences,
which determines whether the displacement is increased or decreased in the DDM. To
have non-binary inputs to the system, a ∆Σ-modulator is placed at the input of each
DDM (not illustrated in figure 2.1). Limiting the project to considering square systems,
two outputs can be chosen where one of these should be the reactive pump torque, τp,
as previously described. The second output is chosen as the pressure difference between
the shared pressure lines, ∆p, as the highest efficiency of the DDMs is obtained when
operated at their rated pressure.

The high power rating of the 5.4MW DFPT necessitates a large number of pressure
chambers in the transmission (100 for the pump and 42 for the motor). Although all
the chambers are identical, and thus modelling more than one chamber is relatively
trivial, describing the timing of the chambers relative to each other is complex and
quite cumbersome. For this reason, it has been decided to introduce a downscaled and
purely fictional version of the 5.4MW DFPT, where the power rating and number of
pressure chambers is reduced to 10 kW with 1 and 3 pressure chambers for the pump
and motor, respectively. The same governing equations describe both transmissions, and
thus downscaling is only a question of changing a number of constants.

The purpose of 10 kW DFPT is to serve as a qualified platform for efficient evaluation of
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the derived multirate methods applicability towards DFPT systems. Here the underlying
hypothesis is, that a multirate model successfully applied to the downscaled DFPT, also
can be expanded to the full rating 5.4MW DFPT. It is therefore considered sufficient
to apply conventional analysis and control design tools on a multirate model derived for
the 10 kW DFPT in order to answer this thesis’ problem statement.

The 5.4MW DFPT will serve as a reference system throughout this thesis and all decisi-
ons, whether it be in regard to multirate modelling, controller design or other topics, will
be made with the applicability on the 5.4MW DFPT in mind. As a result this DFPT
will be a key point in discussions and conclusions made throughout this thesis.

Methodology2.2
The topic of multirate modelling and control of a DFPT is to the authors’ knowledge a
hitherto unconsidered topic, and the work presented in thesis is therefore on a research
stage. As such, the following chapters are not limited to presenting the answers to
the problem statement, but also seeks to elaborate upon the experience gained within
the research process. An outline of the methodical approach to the research process is
presented in figure 2.2.

The methodical procedure is elaborated upon in the following:

Chp. 1 - Introduction: Initial background research regarding DFPTs in wind turbines
and the control thereof. Control challenges and state of the art for overcoming these
challenges are defined. The purpose of this chapter is to introduce the reader to the
control problem, and form a common basis for the work presented in later chapters.

Chp. 2 - Problem Statement: The system and associated challenges under conside-
ration is clearly defined together with the overall limitations of the presented work.

Chp. 3 - System Modeling: The governing equations for the Digital Fluid Power
Transmission are derived, and models for both the downscaled 10 kW DFPT and
full 5.4MW DFPT are implemented in Simulink.

Chp. 4 - Multirate Methods for Model Synthesis: A literature study is conducted
to find viable methods for describing a system containing multiple sampling rates.
A describing theory is presented and possibly modified, and its applicability is tes-
ted by applying it to the mass spring damper system. The red arrow denotes this
as an iterative process, which continues until a satisfactory result is reached.

Chp. 5 - Multirate DFPT Modelling: The chosen method from the previous chap-
ter, is here applied to the 10 kW DFPT to obtain a multirate model. To do this,
linear models describing the individual components in the DFPT are derived. All
the individual solutions to the subchallenges posed by the DFPT, as defined in
section 1.5.1, are here combined to derive a multirate model of a DFPT, and the
suitability of the individual solutions are discussed in relation to multirate DFPT
modelling. Furthermore, the hypothesis regarding expanding the multirate method
to the 5.4MW DFPT is also discussed.
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Fig. 2.2: Outline of the methodical approach to the research process posed by of multirate model-
ling and control of a Digital Fluid Power Transmission.

Chp. 6 - Multirate MSD Control: Having developed the multirate MSD model, the
task it now to determine the applicability of conventional LTI control theory tools
for MIMO systems, such as the RGA and SVD. Finally the possibilities for using
the model for controller design are considered.

Chp. 7 - Multirate DFPT Control: Based on the results from the previous chapter,
conventional control theory tools are here applied to the 10 kW DFPT where they
are found applicable. Furthermore, possibilities for applying the multirate method
and associated controller structure to the full power 5.4MW DFPT are discussed.

Discussion, Conlcusion and Future Work: The final results of the thesis are dis-
cussed along with the methodical approach utilised to solve the multirate DFPT
control problem. Furthermore, conclusions regarding the work presented in the
thesis are drawn, and suggestions toward future work are made.

As indicated in the figure, many of these steps are conducted in parallel and furthermore
they overlap. With the presented methodical approach, extensive studies have to be
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conducted to determine the multirate method’s applicability. These studies include the
derivation of multirate models for a MSD system along with the downscaled DFPT,
followed by an investigation of the applicability of standard LTI MIMO control theory
tools to the derived multirate models. Due to the extensiveness of these studies, it is
unlikely that multiple multirate methods can be tested within the time frame of this
thesis, why there is no guarantee that a multirate method which solves the problem
statement will be found.

Overall Limitations2.3
To limit the scope of the project, the overall limitations of the work presented in this
thesis are defined here:

Quantitative or Qualitative Performance Analysis: The performance of the Digi-
tal Fluid Power Transmission is not evaluated quantitatively or qualitatively. This
is not done, since the purpose of this thesis is to derive a multirate modelling
method, which can be applied to DFPTss.

Linear Control Theory: The work presented here is limited to the application of linear
control theory.

Deterministic Control: Furthermore, any developed control algorithms are limited to
only considering deterministic control, and thereby noise and disturbance terms are
generally omitted.

Theoretical Project: No test stand is available for the system under consideration,
and thus the project work presented is purely theoretical.

In general the thesis presented here deals with a highly complex system with a large
number of subelements. For this reason many simplifications are made throughout the
work, but wherever possible they are listed and commented upon, such that the reader
is familiar with the limitations of the presented work.
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CHAPTER 3
System Modelling
This chapter presents the governing equations used to form non-linear models of the
DFPTs considered in this project. Firstly, the purpose of the mathematical model is
established which leads to a description of the main assumptions made for simplifying
the modelling task. This is followed by a presentation of the main governing equations
describing the DFPT dynamics which includes modelling of the digital displacement pump
and motor.

The DFPTs considered in this thesis can be divided into several elements which can be
modelled individually and then combined by using the output from one element as the
input to other elements. Figure 3.1 presents the elements used to comprise the DFPTs
on a block diagram form.
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Fig. 3.1: Elements, comprising the DFPTs, which are to be modelled, including inputs and outputs
which connects the elements.

The inputs to the model consists of the exogenous wind speed input, v, and the user set
inputs of the blade pitch angle, β, and the non-binary displacement references for the
pump and motor, αp

∗ and αm
∗, respectively. The displacement references are used for

determining the amount of cylinders pumping/motoring or idling. The ∆Σ-modulators
then transforms the non-binary displacement references to binary ones, αp and αm, which
can be used as input to the DDMs.

The main focus of this thesis is the DFPT why a highly simplified wind turbine model,
representing the NREL reference wind turbine, is utilised. An elaboration of the wind
turbine model is presented in appendix B. The rest of the elements including their inputs
and outputs are explained throughout this chapter. Before the governing equations
describing each element are presented, the purpose of the model is established.
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Purpose of System Modelling3.1
This thesis deals with the development of a multirate model which can be used to design
control for a DFPT in a wind turbine. As described in chapter 2, two DFPTs with dif-
ferent power ratings are considered, a utility-scale 5.4 MW DFPT and a downscaled 10
kW DFPT. Before models of the DFPTs are developed, the purpose of these should be
established such that the model comprehensiveness, with regard to which contributions
should be neglected or included, resembles the intended use. The level of comprehensi-
veness of the models is determined from an engineering assessment since no test data is
available for model verification.

The 5.4 MW DFPT is, due to its high number of pressure chambers (142 in total), in
itself a highly complex system why applying advanced multirate methods is considered
a challenging task. In order to ease this task, the downscaled 10 kW DFPT (4 pressure
chambers in total), is introduced as a tool on which the applicability of the developed
multirate methods and conventional control algorithms can be evaluated prior to ap-
plying it to the 5.4 MW DFPT. This evaluation will, however, not be of qualitative or
quantitative nature since the 10 kW DFPT is a fictive system. Based on this, the pur-
pose of the 10 kW DFPT model is established. It is important to note that this thesis
does not seek to design control for the 5.4 MW DFPT why a simulation model is not
necessary. This chapter, however, takes its basis in modelling of both the 5.4 MW and
10 kW DFPT. This is done since operation and consequently modelling of the 5.4 MW
is more intuitive than the 10 kW DFPT. Furthermore, presenting the modelling of the
5.4 MW DFPT should allow for easier continuation of the work presented in this thesis.

Based on the established modelling purposes it is desired that the two models have the
same level of comprehensiveness with regard to dynamic contributions such that the
multirate methods and algorithms developed for the 10 kW DFPT can, to some extent,
be directly applied to the 5.4 MW DFPT. Thus, it is decided that the two models should
include the same dynamic contributions. This means that the only difference between the
two models will be the number of pressure chambers in each of the DDMs. Furthermore,
the multirate methods and control algorithms will not be developed with the scope of
being directly applicable in a physical WT but serves as a proof of concept. It is therefore
deemed redundant to develop highly detailed and complex models as this would primarily
complicate the modelling task and furthermore increase the simulation time.

The engineering assessment of which contributions should be included in the models is
made based on a desire of obtaining models which includes the control challenges of
a DFPT, i.e. the digital nature, coupled dynamics and unequal sampling of the two
DDMs. Furthermore, the assessment is made based on a trade off between the gain in
model accuracy versus the modelling complexity. However, some contributions might be
complex to include but are vital for describing the dynamics of the DFPT and thus they
are included in the model. Based on this engineering assessment of which contributions
should be included or not, certain assumptions have been made in order to simplify
modelling. These assumptions apply to both the 10 kW and 5.4 MW model. The
assumptions which are presented here, are those which are generally applicable to the
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entire DFPT. The more specific assumptions regarding individual components in the
DFPT are presented throughout the chapter, where the relevant element is modelled.

Simplified hydraulic circuit without pressure smoothing accumulators, pressure boost
circuits or filters, which would change system dynamics and require redesign. These
components are all common in physical implementations of hydraulic systems, ho-
wever, with the modelling purpose in mind, they only complicate the modelling
task. The omission of accumulators increases pressure ripples, which in turn also
increases speed, torque and power ripple. Thus it may be considered, that if satis-
factory control performance is achievable without accumulators, then performance
may be further increased by the addition of these to the system. The omission of
modelling a pressure boost circuit for the LPL means that the pressure is assumed
constant at pL.

Structural dynamics of the wind turbine and transmission are not included and is
thus considered completely rigid. As such excessive wear on WT components due
to torque pulsations cannot be evaluated.

Grid Connection Requirements: These have not been considered since the choice of
a suitable generator is beyond the scope of this project. Potential requirements are
assumed fulfilled by choice of suitable generator and overall WT operation strategy.

The presented main assumption all have the purpose of simplifying the modelling task of
the DFPT. The assumption are, however, made with the modelling purpose in mind and
should not remove the main control challenges of a DFPT. Thus, the model is considered
to be qualified for evaluating and validating the multirate methods and control algorithms
which are to be applied, despite these simplifications. Further modelling simplifications
are presented throughout this chapter and all fulfill the same requirement of not removing
the main control challenges of a DFPT.

Main Dynamic System Elements3.2
This section presents the main governing equations describing the DFPT based drivet-
rain. These equations consist of a mathematical description of the dynamics of motion of
the DD pump and the pressure dynamics in the HPL which connects the DD pump and
motor. The equations are valid for modelling both the 5.4 MW and the 10 kW DFPT.

DD Pump Motion Dynamics:
The dynamics of motion of the DD pump depends on the torque acting on the pump
shaft. This can be described by the rotational analogue to Newton’s second law of motion:

ω̇r =
1

Jrp

(
τr − dr ωr −

τp
ηp

)
(3.1)

where ω̇r is the angular acceleration of the pump shaft, Jrp is the total inertia of the
turbine rotor and the DD pump, dr is the viscous damping coefficient and ηp is the
mechanical efficiency of the pump. τp is the reactive pump torque generated by the
cylinder force acting on the pump cam shaft. An expression for this will be presented
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in the following. τr is the WT rotor torque generated by the wind acting on the turbine
blades which drives the pump. The rotor torque depends on the rotor dimensions and
the wind speed, v, and is modelled statically by:

τr =
1

2
RrAr ρACq v

2 (3.2)

where ρA is the air density, Ar is the rotor swept area, Rr is the rotor radius and Cq is the
WT torque coefficient. An elaboration of the turbine model is presented in appendix B.

Remark 3.2.A: Friction is included in the DD pump model by a viscous friction term
and a mechanical efficiency. The omission of Couloumb friction is considered re-
asonable, since a WT never changes direction of rotation, whereby the Coulomb
friction is merely a constant offset. Thereby omitting any concerns with regard to
start-up, which are generally not considered in this thesis.

Alternatively, friction could be modelled for each chamber which would require
applying Newton’s second law of motion to each chamber. This would also greatly
increase the simulation time which is undesired. As the purpose of the simulation
model is not to obtain a highly accurate DFPT model these assumptions are con-
sidered reasonable. Furthermore, they do not compromise the model’s ability to
simulate the main control challenges of a DFPT. The simplified friction model may
affect the efficiency of the DDMs, however, this is not a concern in this thesis.

HPL Pressure Dynamics:
The pressure, pL, in the LPL is assumed to be controlled by an external boost pump
and is thus, for simplicity, considered constant. The pressure in the HPL is modelled
as function of the pump and motor flow, Qp and Qm, and is described by applying the
continuity equation to the control volume in the HPL assuming constant volume due to
rigid pipes in the HPL (Andersen 2003):

∆ṗ =
βH

VH
(Qp −Qm − kl ∆p) (3.3)

where ∆p = pH−pL and kl is the combined motor and pump leakage coefficient. Assuming
ṗL = 0 means ∆ṗ = ṗH.

Remark 3.2.B: The volumetric efficiency of the machines is included by a pressure
dependent leakage term from the HPL to LPL. The volumetric efficiency is also
included inherently in how the DDMs are operated since passive opening of the
valves requires pressure build up which reduces the volumetric efficiency.

Remark 3.2.C: The bulk modulus, βH is assumed constant in the HPL. This is conside-
red a reasonable assumption since the pressure dependency in the bulk modulus is
relatively small for pressures above ∼40 bar. It is expected that the HPL pressure
will be controlled such that it is above 300 bar during operation.

Remark 3.2.D: The volume of the HPL is assumed constant due to the assumption
of rigid pipes in the DFPT. This simplifies modelling significantly and does not
remove the model’s ability to include the main control challenges of a DFPT.
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Table 3.1 presents the parameters used to model the HPL pressure dynamics.

Description Parameter Value

HPL Bulk modulus βH 16 000 bar
HPL control volume VH 0.816m3

Tab. 3.1: Parameters used for modelling the HPL pressure dynamics.

Having obtained the main governing equations describing the DFPT drivetrain, the next
section presents the modelling of the DD pump and motor.

Digital Displacement Machine Modelling3.3
This section presents the modelling of the DD machines utilised in the DFPT based
drivetrain. The DD pump and motor in both the 5.4 MW and 10 kW DFPTs are, as
previously described, comprised of one or multiple pressure chambers. Thus, the appro-
ach of modelling the DDMs is to model a single pressure chamber and utilise this single
chamber model in all DDMs. The chambers will, however, have different dimensions
and actuations due to the different geometry and ratings of the machines. As such, it
is important to note that the equations presented for modelling both the DD pump and
motor in the following sections will be valid for both the 5.4 MW and the 10 kW DFPT.

DD Pump Modelling3.3.1
The DD pump utilised in both the 10 kW and 5.4 MW DD pump is a cam ring type
with a multi lobe geometry in order to obtain multiple chamber activations during one
revolution. A section view of both pumps can be seen in figure 3.2.

Cam ring
Piston roller
Piston stroke axis

Rc + rc

Rc– rc

t = 0 

x
y 3r

xpp,0

Rc– rc

Rc +rc

t = 0 

x
y 3r

xpp

Fig. 3.2: To the left, section view of the cam ring in the 5.4 MW DD pump including the piston
rollers for the first module and a zoomed view showing the multiple radially distributed modules.
To the right, the 10 kW DD pump including the location of the single piston roller.
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The 5.4 MW DD pump consist of four stacked cam rings, referred to as modules, attached
to the same shaft which is also evident from figure 3.2. This geometry ensures relatively
high displacement at low angular speed. As presented in section 2.1, the 10 kW DD pump
is introduced as a development tool why its geometry is highly simplified compared to
the 5.4 MW DD pump. The result of this is a 10 kW DD pump which only consist of
a single module. The 10 kW DD pump is further simplified by only having 2 lobes and
only containing 1 cylinder. This design results in 2 cylinder activations per pump shaft
revolution. The 10 kW pump geometry can be seen in figure 3.2.

Based on figure 3.2 the equations describing the 5.4 MW and 10 kW DD pump kinematics
are presented next.

Pump Kinematics:
The angular location of the individual pump cylinders may be described by:

θpc,j =
2π j

Npc
j = {0, 1, . . . , Npc − 1} (3.4)

where Npc is the number of cylinders attached to a single cam ring, Nl is the number of
lobes on a single cam and θr is the pump shaft angle. The piston roller bearings always
lie on the cam ring, and thus the location of the cylinder’s roller bearing in the Cartesian
coordinate system may be described by:

xpc(t) =

[
xpc(t)
ypc(t)

]
=

[ Time translation of
cylinder piston︷ ︸︸ ︷

(Rc + rc cos(Nl (θpc − θr(t))))

Cylinder
location︷ ︸︸ ︷
cos(θpc)

(Rc + rc cos(Nl (θpc − θr(t)))) sin(θpc)

]
(3.5)

where the second term determines the location of the cylinder, and the first term describes
the stroke of the cylinder with regard to the global coordinate system as illustrated in
figure 3.2. As the 10 kW DD pump only contains one cylinder, θpc = 0 rad.

The pump piston stroke may be related to the location of the roller bearings, described
by equation 3.5, by the following mapping:

xpp(t) = Rc + rc − |xpc(t)| = rc (1− cos (Nl (θpc − θr(t)))) (3.6)

xpp is then defined, so that at xpp = 0 the piston is placed at the minimum stroke referred
to as TDC. For the only cylinder in the 10 kW pump, at t = 0, xpp = 0. The expression
describing the pump piston stroke will in the following be utilised for describing the
pressure chamber dynamics.

Pressure Chamber:
All pressure chambers in the DD pump are assumed identical why this section describes
the dynamics for a single cylinder only. The various variables in the following derivations
are shown without dependencies, e.g. time dependencies such as x(t), for simplicity.
Figure 3.3 shows a simplified hydraulic diagram of a single pressure chamber attached
to a lobed cam shaft and the associated High Pressure Valve (HPV) and Low Pressure
Valve (LPV). It is important to note that the number of lobes is not drawn to scale but
only to illustrate how the piston is actuated.
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Fig. 3.3: Pump pressure chamber diagram for deriving the governing equations. Variables and
directions of flows and coordinates are as defined in the diagram. Drawing not to scale.

The pressure dynamics can be described by applying the continuity equation to the
defined control volume seen in figure 3.3 and solving for the chamber pressure gradient,
ṗpc yields (Andersen 2003):

ṗpc =
β

Vpc

(
QpH −QpL − V̇pc

)
(3.7)

where Vpc is the pressure chamber volume and QpH and QpL are the flows through the
HPV and LPV, respectively. These flows are modelled using the orifice equation given
by (Andersen 2003):

QpL =
x̄pL

kf

√
|ppc − pL| sign(ppc − pL) (3.8)

QpH =
x̄pH

kf

√
|pH − ppc| sign(pH − ppc) (3.9)

where x̄pL and x̄pH are the normalised valve plunger position of the LPV and HPV,
respectively. kf is the valve flow coefficient.

The total pump flow, Qp, is defined as the sum of the flow through all HPVs given as:

Qp = −
Npc∑
j=1

QpH,j (3.10)

where the negative sign is due to the definition of direction of the valve flow. Utilising
equation 3.10 for the 10 kW DD pump does not require the sum as it only contains one
cylinder. However, the sum is included as it also applies for the 5.4 MW DD pump which
contains multiple cylinders.

The volume, Vpc, in equation 3.7, is defined as:

Vpc = xppApp + Vp0 (3.11)
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where Vp0 is the minimum chamber volume and App is the piston area. Substituting
the expression in equation 3.6 which describes the piston position as function of the
pump shaft’s angular position results in the expression describing the chamber volume
as function of θr:

Vpc =
Vpp

2
(1− cos (Nl (θpc − θr))) + Vp0 (3.12)

where Vpp = 2 rcApp. The chamber volume gradient used in equation 3.7 is given as the
derivative of equation 3.12 with respect to time:

V̇pc = −Vpp θ̇rNl

2
sin (θpc − θr) (3.13)

β in equation 3.7, is the effective bulk modulus of the oil which describes the stiffness of
the oil given by (Andersen 2003):

β =
1

1

βF
+
εA
βA

(3.14)

where εA is the volumetric ratio of free air in the oil, βF is the bulk modulus of the pure
oil and βA is the bulk modulus of the free air. Assuming the bulk modulus to be pressure
dependent only, εA can be described as (Andersen 2003):

εA =
1(

1− εA0

εA0

)(
patm

ppc

) −1
cad

+ 1

(3.15)

where εA0 is the volumetric ratio of free air in the fluid at atmospheric pressure, patm,
and cad is the adiabatic air constant. βA from equation 3.14 is given by (Andersen 2003):

βA = cad ppc (3.16)

where pc is the absolute pressure of the fluid. The parameters used to model the oil bulk
modulus can be seen in table 3.2:

Description Parameter Value

Pure oil bulk modulus βF 16 000 bar
Adiabatic air constant cad 1.4
Reference volumetric ratio of free air εA0 0.01
Atmospheric pressure patm 1 bar

Tab. 3.2: Main parameters used for modelling the bulk modulus.

The effective bulk modulus as function of pressure can be seen in figure 3.4 with the
parameters seen in table 3.2.
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Fig. 3.4: Bulk modulus as function of pressure with the parameters used in the model.

Remark 3.3.A: The bulk modulus of the oil in each cylinder chamber is modelled
dynamically as function of the chamber pressure only. The temperature and density
dependency in the bulk modulus model describing the oil stiffness in the cylinder
chambers is neglected since this dependency is considered negligible compared to
the pressure dependency (Andersen 2003). This assumption simplifies modelling
and does not remove the model’s ability to include the DFPT control challenges.

The bulk modulus is included in the simulation model by tabulating the effective bulk
modulus as function of the chamber pressure as seen in figure 3.4 and implemented as a
lookup table in order to reduce simulation time.

Valve Dynamics and ∆Σ-Modulator:
The flow through the HPV and LPV is proportional to the normalised plunger position,
x̄pL and x̄pH, seen in equations 3.8 and 3.9. As a simplification, the motion of the valve
plunger is modelled by assuming piecewise constant acceleration. This also constitutes a
reduction in simulation time compared to modelling the plunger motion by considering
the forces acting on the plunger using Newton’s second law. Furthermore, a generic model
of the plunger motion is obtained where the geometry of the plunger is not taken into
account. Figure 3.5 shows the valve plunger response as implemented in the model during
opening of the valve, including the corresponding constant acceleration and velocity.
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Fig. 3.5: Plunger position response as implemented in model including corresponding velocity and
acceleration response.
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As seen from the figure,the acceleration is constant positive for 0 ≤ t < ts/2 and constant
negative with identical magnitude for ts/2 ≤ t ≤ ts, where ts is the valve opening and
closing time. The closing of the valves is modelled to have the same response, except
the acceleration is initially negative in order to close it. The valve position response is
tabulated as function of time and implemented as a lookup table in the model.

Initiating a valve opening or closing is done by changing the valve input to 1 or 0,
respectively. As an example, a closed HPV is opened by setting αpH = 1. Similarly, can
the HPV be closed again by setting αpH = 0. The same applies for the LPV. Triggering
of the HPVs and LPVs in the DD pump is modelled by the following conditions assuming
the appropriate initial conditions in the model are set:

αpH =

{
1, if ppc ≥ pH ∧ x̄pH = 0

0, if θr = θHPV ∧ x̄pH = 1
(3.17)

αpL =

{
1, if ppc ≤ pH ∧ x̄pL = 0

0, if θr = θLPV ∧ x̄pL = 1 ∧ αp = 1
(3.18)

It should be noted that opening of the valves are initiated when the stated pressure
conditions are satisfied. This condition is utilised for obtaining passive opening since the
generic plunger motion model is used in contrary to modelling the forces acting on the
plunger. The value of the valve inputs αpH and αpL are held in the model until a new
set of conditions is satisfied which changes the value of these inputs. αp is the user-set
input which is used for modelling a pumping stroke (αp = 1) or a idling stroke (αp = 0).
As seen, the LPV can only be closed, initiating a pumping stroke, when the pump angle
is equal to the LPV closing angle, θLPV and αp = 1. Individual closing angles for the
HPV and LPV, θHPV and θLPV respectively, are set for each cylinder connected to the
pump shaft.

αp, which is used for determining the operation mode (pumping or idling) of each of the
pressure chambers in the DD pump, is a binary variable. In order to utilise a conventional
control structure which will output a non-binary displacement reference, α∗p, a first-order
∆Σ-modulator is used to transform this non-binary displacement reference to a binary
one. A block diagram of the first-order ∆Σ-modulator is shown in figure 3.6.
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Fig. 3.6: First order ∆Σ-modulator utilised for transforming a non-binary displacement reference
to a binary one.
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The ∆Σ-modulator consists of a discrete time integrator and a quantizer. The discrete
time integrator can be described by the difference equation:

v∆Σ(k) = αp
∗(k − 1)− αp(k − 1) + v∆Σ(k − 1)

= e∆Σ(k − 1) + v∆Σ(k − 1) (3.19)

The quantizer is the element which transforms the non-binary v∆Σ to a binary displace-
ment reference, αp. The output of the quantizer can be described by equation 3.20:

αp(k) =

{
0 for v∆Σ(k) < 0.5

1 for v∆Σ(k) ≥ 0.5
(3.20)

Remark 3.3.B: Utilising a generic model of the valve plunger motion constitutes re-
latively low simulation times compared to modelling the plunger motion using
Newton’s second law of motion. This assumption is considered reasonable as the
purpose of the model is not to obtain a highly accurate model but a model which
contains the main control challenges of a DFPT. This assumption mainly affects
the efficiency of the DFPT which is not a concern in this thesis.

Pump Reactive Torque:
The pump reactive torque is the result of the pressure force which is generated by the
pressure in each cylinder chamber. Figure 3.7 shows the variables which are used for
deriving an expression describing the pump reactive torque. The figure is shown for a
single module in the 5.4 MW DD pump but the equations also applies for describing the
reactive torque for the 10 kW DD pump.
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Fig. 3.7: 5.4 MW DD pump shaft with variables used for deriving reactive pump torque expression.
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The torque acting on the point c from a single cylinder can be expressed as:

τc = rc sin(φ)Fc (3.21)

where φ = Nl (θpc − θr). Equation 3.21 can be rewritten to obtain an expression for the
torque acting around the center of the pump shaft, by multiplying Nl. This is done since
the angular velocity of the piston stroke is Nl times faster than the angular velocity of
the pump shaft. Furthermore, the expression describing the pressure force from a single
cylinder, Fpc = App ppc, is inserted. This yields the following torque expression:

τpc = Nl
Vpp

2
sin(Nl(θpc − θr)) ppc (3.22)

For the 10 kW DD pump, equation 3.22 describes the total reactive pump torque since
it only contains a single cylinder. For the 5.4 MW DD pump, the total reactive pump
torque is given as the sum of the torque contribution from each cylinder:

τp = Nl
Vpp

2

Npc∑
j=1

sin(Nl(θpc,j − θr)) ppc,j (3.23)

Remark 3.3.C: In order to utilise equation 3.22 for describing the reactive pump torque
it is assumed that the cam shaft surface can be described by a sine function. This
is however not the case, as the cam shaft surface is stretched due to the lobes being
radially distributed around a round cam shaft. It should, however, be noted that
more lobes means a cam shaft surface closer to a sine wave. This also means that
utilising this torque expression for the 10 kW DD pump which only has two lobes
involves a less accurate torque expression compared to utilising it for the 5.4 MW
DD pump.

Having presented the governing equations describing the dynamics for a single cylinder,
these can be applied to each pump cylinder to obtain a mathematical model of the 10
kW and 5.4 MW DD pump. The operation of a single cylinder is verified with respect to
the DDM operation presented in section 1.4 by simulating two full strokes, one pumping
and one idling stroke. The simulation, which is illustrated in figure 3.8, is started at the
LPV closing angle, θLPV, where the LPV closes, initialising a pumping stroke. After a
full revolution, indicated by the dashed line, the LPV is kept open, yielding an idling
stroke. The simulation is performed at a pump shaft speed of 10 rpm and pH = 360 bar.

It should be noted that the chamber volume, Vpc, is plotted such that when Vpc = 0, the
volume is equal to the dead volume, Vp0. As previously explained the decision to pump
or idle is made when the pump shaft reaches the angle θLPV.

This concludes the derivation of the mathematical model for the DD pump dynamics.

DD Pump Specifications:
The specifications for the 10 kW and 5.4MW DD pump models are given in table 3.3.
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Fig. 3.8: Simulation results of single cylinder for 2 full strokes with all values shown as normalised.
Initially full pumping stroke followed by a full idling stroke. Dashed black line indicates θLPV

for the particular cylinder. The x-axis corresponds to the 10 kW DD pump.

Description Parameter 10 kW 5.4 MW

Cam rings Ncr [-] 1 4
Lobes per cam ring Nl [-] 2 16
Cylinders per cam ring Npc [-] 1 25
Piston stroke length xp,stroke [m] 12.5× 10−3 54.1× 10−3

Pump piston area App [m2] 48.9× 10−5 9.20× 10−3

Cylinder dead volume Vp0 [m3] 61.0× 10−5 4.98× 10−4

Valve actuation time ts [s] 1× 10−3 1× 10−3

Valve flow coefficient kf [
√
Pa s/m3] 0.5× 105 0.5× 105

Pump & rotor inertia Jrp [kgm2] 133 7.76× 107

Viscous damping coefficient dr [Nm s/rad] 17.2× 10−2 50× 103

Pump mechanical efficiency ηp [-] 0.95 0.95

Tab. 3.3: Main specifications of modelled 10 kW and 5.4 MW DD pump.
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DD Motor Modelling3.3.2
The 5.4 MW motor is a radial piston type motor, with multiple eccentric cams, referred
to as modules, on a common shaft. Multiple cylinders are evenly distributed radially
around the eccentric, and modules are then stacked one after another to increase the
rating of the motor. The eccentric geometry reduce torque and pressure pulsations due
to lumped activation of pressure chambers. The 10 kW motor is simplified by reducing
the number of modules to one and reducing the number of cylinders such that it only
contains three cylinders shifted by an angle of 2π

3 rad between them. The eccentric shaft
is maintained in the 10 kW such that each cylinder completes a full stroke during a single
motor shaft revolution in contrary to the pump where each cylinder is activated multiple
times per revolution due to the lobed geometry.

The stroke of the cylinder pistons is always perpendicular to the tangent of the cam at the
interface between the two. As such, the pistons must be able to tilt, and the functional
principle of the radial piston type motor is then very similar to how a crankshaft interacts
with pistons and connection rods in an ICE.

Figure 3.9 shows a section view of the 5.4 MW DD motor to the left and the 10 kW
DD motor to the right including the locations of the contact points between the cylinder
pistons and the eccentric. The left part includes a zoomed view of the even radial
distribution of the multiple modules in the 5.4 MW DD motor.

Eccentric cam
Piston contact interface
Piston stroke axis

x
y

xmp,0

x
y
rm

t = 0 

3m

Rm

Rm + rm

e
c0

x
y rm 3m

xmp,0

Rm

Rm + rm

e

c0

t = 0 

Fig. 3.9: Simple section view of the 5.4 MW DD motor to the left and the 10 kW DD motor to the
right including the location of the contact points between the piston and cam shaft for the first
module. The left part includes a zoomed view of the radial distribution of the multiple modules
in the 5.4 MW motor.

To simplify the derivations presented in this section, only the first cylinder in the motor,
denoted c0 in figure 3.9, will be considered. The general equations will still be the same
for all modules and cylinders, the only difference lies in angular shifts in the periodic
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sine and cosine functions, since the initial positions at t = 0 will differ. Furthermore, the
equations presented in the following sections applies for both the the 5.4 MW and the
10 kW DD motor as only the number of modules and cylinders differs.

Motor Kinematics:
The location of the individual cylinders may be described by:

θmc,j =
2π j

Nmc
j = {0, 1, . . . , Nmc − 1} (3.24)

where Nmc is the number cylinders in a single module of the motor.

The piston contact interface always lies on the eccentric cam, and is furthermore always
perpendicular to tangent of the cam, thus the motor piston stroke always lies along the
red piston stroke axis in figure 3.9. For this to be possible the cylinders must be able
to tilt. The motor piston stroke may be found by considering the vector between the
cylinder location (c) and cam center point location (e):

c =

[
cx

cy

]
=

[
(rm +Rm) cos(θmc)
(rm +Rm) sin(θmc)

]
e(t) =

[
ex(t)
ey(t)

]
=

[
rm cos(θm(t))
rm sin(θm(t))

]
(3.25)

where rm is the eccentric radius, Rm the radius of the cam and θm the motor shaft angle.

The magnitude of the cylinder stroke xmp may then be determined as:

|xmp(t)| = |e(t)− c| −Rm (3.26)

For the first cylinder of the motor equation 3.26 becomes:

|xmp,0(t)| =
√

(rm (cos(θm(t))− 1)−Rm)2 + (rm sin(θm(t)))2 −Rm (3.27)

xmp is then defined just like xpp, so that at xmp = 0 the piston is placed at the minimum
stroke referred to as TDC. For the first cylinder at t = 0, then xmp,0 = 0. Shown in
figure 3.9, is only one coordinate origin for the piston stroke, for the remaining pistons
the coordinate origin will be distributed radially like the cylinders. This definition of
the piston stroke, corresponds with xmp reaching TDC at the same instant the cylinder
pressure chamber attains its minimum volume. The equations presented in this section
have been verified by animating figure 3.9.

Pressure Chamber:
The equations describing the pressure dynamics are similar to those presented for the
DD pump, however, they are shown here for clarity. The presented equations will be
applicable to all cylinders in the DD motor. Figure 3.10 shows a simplified hydraulic
diagram of the motor cam shaft including the defined flows through the associated HPV
and LPV. The figure is shown for the 10 kW DD motor.
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Fig. 3.10: Motor pressure chamber diagram for deriving the governing equations. Variables and
directions of flows and coordinates are as defined in the diagram. Drawing not to scale.

Similarly to the DD pump, the continuity equation is applied to the control volume seen
in figure 3.10 in order to obtain an expression for the pressure dynamics:

ṗmc =
β

Vmc

(
QmH −QmL − V̇mc

)
(3.28)

The orifice equations used to model the flows through the LPV and HPV are given by:

QmL =
x̄mL

kf

√
|pmc − pL| sign(pmc − pL) (3.29)

QmH =
x̄mH

kf

√
|pH − pmc| sign(pH − pmc) (3.30)

The total motor flow, Qm is given as the sum of the flow through all HPVs given as:

Qm =

Nmc∑
j=1

QmH,j (3.31)

The chamber volume, Vmc in equation 3.28, is defined as:

Vmc = xmpAmp + Vm0 (3.32)

where Vm0 is the minimum chamber volume and Amp is the piston area.

Substituting equation 3.27, describing xmp(θm), into equation 3.32 yields an expression
describing Vmc(θm) for the first cylinder.

Similar to the pump, the volume gradient, V̇mc, used in equation 3.28, is found by dif-
ferentiating the expression describing Vmc(θm) with respect to time to obtain V̇mc(θm).
The volume equations are not shown here for simplicity.
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Remark 3.3.D: An identical bulk modulus model is used to model the oil stiffness in
the motor chambers as for the pump, including identical parameters. Similarly
the bulk modulus is tabulated as function of oil pressure and included as a lookup
table.

Valve Triggering and Dynamics:
The HPVs and LPVs used in the DD motor are assumed identical to those used in the DD
pump. Thus, the dynamics and characteristics are identical and are therefore modelled
in the same manner. The opening and closing characteristic can be seen in figure 3.5.

Similar to the pump, a set of conditions are utilised for triggering the opening and closing
of the HPV and LPV. These conditions are given as:

αmH =

{
1, if pmc ≥ pH ∧ x̄mH = 0

0, if θm = θHPV ∧ x̄mH = 1
(3.33)

αmL =

{
1, if pmc ≤ pH ∧ x̄mL = 0

0, if θm = θLPV ∧ x̄mL = 1 ∧ αm = 1
(3.34)

As seen, pressure conditions, similar to the pump, are utilised for modelling the passive
opening of the valves.

A first order ∆Σ-modulator, as the presented for the DD pump is utilised in the motor
for transforming a non-binary displacement reference, α∗m, to a binary reference, αm.

Remark 3.3.E: The DD motor shaft speed is assumed constant. This effectively remo-
ves the need for a generator model and the torque summation around the shared
generator and motor shaft. It also implies that it is not possible to model grid faults
that will affect the generator speed. This is considered a reasonable assumption as
the obtained model will include the main control challenges of a DFPT, i.e. the
digital nature, different sampling rates and coupled dynamics of the two DDMs.

Remark 3.3.F: Friction is not included in the DD motor model. This is considered
a reasonable simplification since the dynamics of motion for the motor are not
modelled due to the assumption of fixed generator speed.

Combining the presented governing equations yields a mathematical model of a single
DD motor chamber. The single chamber model is verified with respect to the DDM
operation presented in section 1.4, by simulating two full strokes. One motoring stroke
followed by an idling stroke. The simulation results can be seen in figure 3.11, with a
simulation performed for the first cylinder at a constant motor speed of 1500 rpm and
pH = 360 bar.
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Fig. 3.11: Simulation results of single motor cylinder for 2 full strokes with all values shown as
normalised. Initially full motoring stroke followed by a full idling stroke. Dashed black line
indicates θLPV for the particular cylinder.

The simulation is initiated at the LPV closing angle, θLPV, and performs a full motoring
stroke. It should be noted that the relatively small negative flow occurring when the
HPV opens during the motor stroke is due to the chamber pressure increasing above pH
which results in a backflow into the HPL. The same is the case for the backflow seen for
QmL when the LPV opens. Backflow is undesired as the volume of oil that flows back
into the HPL does not contribute to driving the motor. The backflow could be reduced in
several ways, e.g. by increasing the dead volume of each cylinder chamber. This project
is however not concerned with the mechanical design and as the backflow is considered
sufficiently small, no further effort is put into reducing it.

DD Motor Specifications:
The main specifications used for modelling the 10 kW and 5.4 MW DD motor are given
in table 3.4.
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Description Parameter 10 kW 5.4 MW

Eccentric cams Nec [-] 1 6
Cylinders per eccentric cam Nmc [-] 3 7
Radius of eccentric cam Rm [m] 45× 10−3 45× 10−3

Eccentric cam radius rm [m] 7.61× 10−3 25.6× 10−3

Piston stroke length xm,stroke [m] 15.2× 10−3 51.3× 10−3

Motor piston area Amp [m2] 2.62× 10−4 29.8× 10−4

Cylinder dead volume Vm0 [m3] 3.99× 10−6 1.53× 10−4

Valve actuation time ts [s] 1× 10−3 1× 10−3

Valve flow coefficient kf [
√
Pa s/m3] 0.5× 105 0.5× 105

Tab. 3.4: Main specifications of the 10 kW and 5.4 MW DD motor.

The equations presented for modelling the 10 kW DD motor and pump are implemented
in Simulink together with the equations describing the dynamics of the HPL and motion
of the pump shaft to form a non-linear model of the 10 kW DFPT. The presented
equations also applies for modelling the 5.4 MW DFPT. As such, part of the groundwork
for continuing the work of this thesis is done since further work includes the design and
implementation of a controller for the 5.4 MW DFPT. This concludes the modelling of
the 10 kW and 5.4 MW DFPT. The next chapter seeks to develop a method which can
be used for producing a multirate discrete-time model on state-space form.
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CHAPTER 4
Multirate Methods
for Model Synthesises
The purpose of this chapter is to develop a method which can be used for obtaining a
multirate DFPT model. To do this, the essential challenges of DFPT multirate modelling
will be presented together with the desirable characteristics of a solution. Furthermore,
the strategy for obtaining a solution is presented. This is followed by a description of
the considered methods and application to the DFPT emulating Mass Spring Damper
(MSD) system with different sampling ratios. Utilising the MSD system for evaluating the
methods means that the reader does not need to be familiar with a DFPT to understand
the presented methods. The chapter ends with the selection of a multirate modelling
approach, which is deemed suitable for describing the DFPT.

The DFPT Multirate Problem4.1
For the DFPT the multirate problem was generally defined in sections 1.5 and 1.6. The
problem of non-uniform sampling rates has, as described, already been solved, but the
problem regarding multiple sampling rates has so far been untreated. Considering the
DDMs of the DFPT in the spatial-domain, the challenge essentially remains how to
establish a combined MIMO model of the DFPT, wherein the DDMs utilise different
activation rates (pressure chamber activation decisions per revolution). An additional
complication of a DFPT for a utility-scale WT is that the activation rates are vastly
different for the pump and motor.

The approach for developing a method which can be used for obtaining a multirate DFPT
MIMO model, and thus also the remainder of this chapter, is to progress as:

1. Present a method for describing a multirate system.
2. Apply the method to increasingly complex emulating examples:

(a) Single rate sampled MSD system to introduce the reader to the method.
(b) Multirate sampled MSD system with similar, but different sampling rates,

corresponding to the sampling rates in the 10 kW DFPT, which will later be
utilised for evaluating the developed method on a DFPT.

(c) Multirate sampled MSD system with vastly different sampling rates corre-
sponding to the sampling ratio in the utility-scale 5.4MW DFPT.

3. Evaluate applicability of the presented method and if not satisfactory repeat from
step 1.

The desirable characteristics of the multirate model description are defined as:

1. MIMO representation with transfer characteristics being well defined for all input
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and output couplings, i.e. model separation techniques, such as two time-scale
decompositions, are not desirable as these do not allow proper analysis of mutual
system couplings.

2. Linear Time-Invariant (LTI) description, e.g. a static model description with con-
stant matrices and gains, such that conventional control theory tools, i.e. RGA
and SVD analysis, potentially can be utilised.

3. State-space description of the linear system, thereby remaining directly compatible
with previously developed linear DDM models.

The three characteristics are seen as essential and necessary for the work in this thesis
to succeed. Thus to proceed, the next section will present the simple linear double MSD
system which is utilised as a tool for developing a multirate method.

Mass Spring Damper System4.1.1
The system used for presenting, testing and developing the multirate methods in this
chapter is the simple linear double mass spring damper (MSD) system presented in
figure 4.1.

k1

k2

b2b1
m2

m1

xc1 xc2

F1

F2

Fig. 4.1: Mass spring damper (MSD) system with multiple inputs and cross couplings.

No friction acts on the carts and the system is linear, why it is both simple to understand
and easy to visualise the correct motion trajectories. In a state-space formulation, the
system may be mathematically described by:

ẋc︷ ︸︸ ︷
ẋc1

ẋc2

ẍc1

ẍc2

 =

A︷ ︸︸ ︷
0 0 1 0
0 0 0 1

−k1+k2
m1

k2
m1

− b1+b2
m1

b2
m1

k2
m2

− k2
m2

b2
m2

− b2
m2


xc︷ ︸︸ ︷
xc1

xc2

ẋc1

ẋc2

+

B︷ ︸︸ ︷
0 0
0 0
1
m1

0

0 1
m2


uc︷ ︸︸ ︷[
F1

F2

]
(4.1a)

[
yc1

yc2

]
︸ ︷︷ ︸

yc

=

[
1 0 0 0
0 1 0 0

]
︸ ︷︷ ︸

C

xc (4.1b)

where the states are given as the positions and velocities of the carts, and the system
inputs are the two forces F1 and F2, which act directly on the carts, and with the
outputs being defined as the two positions. The values of the system constants are given
in table 4.1:
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Mass 1 Mass 2 Unit

m 10 1 kg
k 1 10 N/m
b 1 0.1 N s/m

Tab. 4.1: Specifications of the mass spring damper system.

Some comments on the control related properties of the system:

1. Linear system, why linearisation techniques need not be considered.
2. Double complex conjugate poles at s = −0.05 ± j0.30 and s = −0.06 ± j3.32.

The associated natural frequencies are ωn1 = 0.30 rad/s and ωn2 = 3.32 rad/s with
damping ratios of ζ1 = 0.15 and ζ2 = 0.02, respectively. Similarly, the associated
time constants are τ1 = 1/(ζ1 ωn1) = −1/real(s) = 22 s and τ2 = 16.7 s.

3. The fast mode is associated with the lighter mass, while the slow mode is associated
with the large mass.

4. The natural frequencies are different by an order of magnitude, why the system
could benefit from multirate sampling.

5. MIMO system, wherein the positions are considered the system outputs for later
examples.

By use of this simple system, the challenges related to the DFPT, including multirate
sampling and coupled dynamics, is emulated, such that the reader may develop an un-
derstanding of the multirate modelling approach without necessarily having extensive
understanding of DDM operation.

Kalman and Bertram’s Unified Approach4.2
Kalman and Bertram (1959) presents their approach as a unified method for describing
any sampled-data system. Thus, the method is generally able to describe conventional,
multirate, random, non-synchronised and non-instantaneous sampling operations, why it
seems like an ideal choice for describing the DFPT multirate problem.

The method takes it basis in already existing closed-loop systems and can be utilised for
analysis of the sampled-data feedback system. However, for the purposes of this thesis,
the method is adapted to handle open-loop configurations as well. Furthermore, the
method is expanded from describing only SISO systems as presented by Kalman and
Bertram (1959), to also describing MIMO systems by the authors of this thesis. The
method derives a time-domain time-invariant discrete model in a state-space matrix-
vector form. The time step of this model is equal to the Basic Time Period1 (BTP) of
the entire sampling scheme. Based on figures such as figures 1.15 and 1.16 Kalman and
Bertram (1959) define three different types of system elements in a sampled-data system
being the Continuous Dynamic (CDE), Discrete Dynamic (DDE) and Sample-and-Hold
elements (SHE). Each element is associated with its own type of state, and Kalman and

1The periodicity of the entire sampling scheme as defined in section 1.6
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Bertram combine them by defining the expanded state vector:

x ≡
[
xc

ᵀ xd
ᵀ xs

ᵀ
]ᵀ [3× 1]

[n× 1]
(4.2)

Equation 4.2 presents two dimensions in the right hand side. The bold font represents
the dimension of the presented vector/matrix on block form (where applicable), while
the non-bold font represents the combined dimension of all the block vectors/matrices
or equivalently the absolute dimension of the presented vector/matrix. This notation is
utilised throughout this chapter.

The Kalman and Bertram method then produces a model of the form:

x((k + 1)T ) = Ψ(Φ,S,D)x(kT ) +

N∑
l=1

vl(Φ,S,D, s,d)u(kT + κl) (4.3a)

y(kT ) = Cx(kT ) (4.3b)

where u(kT+κl) are the external inputs acting on the system with κl being the entries of
a vector denoting the periodically varying sampling operations in the system. Ψ(Φ,S,D)
and vl(Φ,S,D, s,d) are matrices containing the combined transition characteristic of
all elements in the system, and are obtained as matrix products of the element transition
matrices. Φ being the CDE transition matrix, D the DDE transition matrix, and S the
SHE transition matrix. N = T/T0 is the number of STPs per BTP, which is also an
upper bound for the number of times an input can be given per BTP.

Before applying the Kalman and Bertram method to the MSD system some general de-
finitions necessary for applying the method will first be presented. The theory presented
in the following section is generally complex and difficult to understand, and the direct
application of the method will not be obvious from the presented matrices and equati-
ons. For this reason the theory is followed by a number of examples where the method is
applied to the MSD system in order to demonstrate the application of the Kalman and
Bertram method. First the governing equations associated with the elements and their
states are defined.

Continuous Dynamic Elements (CDE):
Otherwise denoted as Analog Plant in various figures, these elements are described by
linear ordinary differential equations, and with states denoted by xc(t) with dimension
[γ× 1]. By using a matrix formulation, these may be described as in equation 4.1a. This
only describes the state transition for an infinitesimal time change, so to calculate the
state transition for a finite change in time, the time-domain solution is necessary (Ogata
1987, pp. 538-540):

xc(t) = eA(t−t0) xc(t0) +

∫ t

t0

eA(t−τ)Buc(τ) dτ (4.4)

Assuming the plant input always to be connected to the output of a sample-and-hold
element, such that uc = xs (see section Sample-and-Hold Elements (SHE) on page 58
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for definition of xs), then the plant input is always piecewise constant between successive
sampling instances. However, no assumption regarding the uniformness, synchronisation
or periodicity of the input rate is made. Thereby two transition matrices, related to the
natural initial condition response2 and the forced external input response, can be defined:

Gc(τ) ≡ eAτ [γ × γ] Hc(τ) ≡
∫ τ

0
eAλBdλ [γ × σ] (4.5)

These matrices may be put into the context of the expanded state vector in equation 4.2,
by writing the block transition matrix, which calculates the CDE state transitions for
any finite time change:

Φ(τ) ≡

 Gc(τ) 0 Hc(τ)

0 I 0

0 0 I

} γ rows
} δ rows
} σ rows

[3× 3]
[n× n]

(4.6)

This matrix describes the CDE state transitions between two sampling instances and
similar transition matrices will also be presented for the other system elements. Generally
all transition matrices in the Kalman and Bertram method start as identity matrices, in
which the appropriate rows corresponding to the states of interest are then subsequently
modified to take the state transitions into account. Block partitioning is utilised to
separate rows and columns according to the definition of the state vector in equation 4.2.

Deriving a model is then a case of appropriately multiplying transition matrices according
to the sampling scheme, as will be illustrated by examples in section 4.2.1. The use of
modified identity matrices means that states unaffected by the transition are not affected
by the matrix product.

Discrete Dynamic Elements (DDE):
These elements are described by conventional linear difference equations, and have their
states denoted by xd(t) with dimension [δ × 1]. These elements are idealised represen-
tations of numerical computer calculations, thus the state transitions caused by these
elements occur discontinuously and instantly in tk → t+k (tk being the discrete time in-
stant where calculations are carried out), or more generally in the time needed to execute
the programming instructions. Thus, the state transition of these elements are described
by linear combinations of other states:

xi(t
+
k ) =

γ+δ∑
j=1

Dij xj(tk) +

δin∑
l=1

dil ul(tk) i = {γ + 1, . . . , γ + δ} (4.7)

where Dij and dil are constants and ul are external inputs acting on the DDE, of which
there are δin. The first summation accounts for transitions occurring due to the continu-
ous and discrete states of the model, while the second summation accounts for external
inputs affecting the system through the DDE. Equation 4.7 may be put into context

2Kalman and Bertram denote Gc(τ) as Φcc(τ)
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of the expanded state vector in equation 4.2, by writing the block transition matrices,
which calculates the DDE state transitions at a single sampling instant:

Di(i+1)≡



I 0 0

0 · · · 0
Di1 · · · Diγ

D(i+1)1· · ·D(i+1)γ

0 · · · 0

1 · · · 0
Di(γ+1) · · · Di(γ+δ)

D(i+1)(γ+1)· · ·D(i+1)(γ+δ)

0 · · · 1

0

0 0 I


← ith row
← (i+ 1)th row

[3× 3]
[n× 1]

(4.8)

di(i+1)≡



0

0 · · · 0
di1 · · · diδin

d(i+1)1 · · · d(i+1)δin

0 · · · 0

0


← ith row
← (i+ 1)th row

[3× 1]
[n× δin]

(4.9)

Di(i+1) and di(i+1) calculate the discrete state transitions of the ith and (i+ 1)th states
at discrete time instants tk. The shown matrices calculate two state transitions, but
matrices calculating only a single state transition could just as easily have been presented.
No assumptions regarding the uniformness of the time rate of tk has been made while
building the matrices.

Sample-and-Hold Elements (SHE):
These are, like the DDE, described by difference equations, and with states denoted
by xs(t) with dimension [σ × 1]. The sampling operations occur discontinuously and
instantly in tk → t+k . Generally the input and output of the SHE are identical (at least
ideally), although the input of a SHE can be a linear combination of multiple states, such
that the SHE state transition is described by:

xi(t
+
k ) =

γ+δ∑
j=1

Sij xj(tk) +

σin∑
l=1

sil ul(tk) i = {γ + δ + 1, . . . , n} (4.10)

where Sij and sil are constants and ul are external inputs acting through the SHE, of
which there are σin. The first summation accounts for sampling of the continuous and
discrete states of the model, while the second summation accounts for external inputs
affecting the system through the SHE. Equation 4.10 may be put into context of the
expanded state vector in equation 4.2, by writing the block transition matrices, which
calculates the SHE state transitions at a single sampling instant:

Si≡


I 0 0

0 I 0

0 · · · 0
Si1· · ·Siγ
0 · · · 0

0 · · · 0
Si(γ+1)· · ·Si(γ+δ)

0 · · · 0

1· · · 0
0· · · 0
0· · · 1

← ith row

[3× 3]
[n× n]

(4.11)
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si≡


0

0

0 · · · 0
sil · · · siσin

0 · · · 0

← ith row

[3× 1]
[n× σin]

(4.12)

Si and si calculate the discrete state transitions of the ith state at discrete sampling
instants tk. No assumptions regarding the uniformness of the time rate of tk has been
made while building the matrices.

Remark 4.2.A: The input matrix si is defined with σin columns, such that if the input
is generated to be a vector containing σin inputs at all points, then matrix vector
products may be utilised throughout all derivations. The same holds true for the
di input matrix.

Remark 4.2.B: The SHE and associated states may also simply be considered as a
Hold element, since no mathematical description is normally associated with the
sampling/quantization process. Therefore it is typically combined with the signal
holding process. More intuitively, the two operations should be kept separate, such
that there would be total coherence between signal types for block diagram analysis.
Exactly this has been done in various figures throughout the thesis, where the two
processes are denoted as Sampler and Zero-order Hold, respectively.

For the same reason, Kalman and Bertram also consider all DDEs to contain input
sampling operations, such that they may be directly connected to CDE outputs.

Remark 4.2.C: With the definitions of Kalman and Bertram, there is nearly no practi-
cal difference between a DDE and SHE. A more conventional definition of a SHE
would only allow a single input, and not linear combinations of multiple inputs,
which may be more logically attributed to the DDE.

Remark 4.2.D: The reason for associating the SHEs with a state is to allow for im-
perfect descriptions of the sampling operation, e.g. non-instantaneous sampling
or imperfect signal holding. However, the work presented here is limited to consi-
dering the idealised sampling operation, why there is little difference between the
SHE and DDE, as mentioned. Furthermore, the SHE states are superfluous and
result in a non-minimal description, but they may be eliminated at a later stage.

Remark 4.2.E: Kalman and Bertram do not mention it, but it is the experience of the
authors’ that there can only be one D or S matrix per sampling rate. If separate
matrices are made for each DDE or SHE then sometimes incorrect state transitions
are obtained.

The three system elements described in this section can be used to construct any kind
of system, as long as the signals are kept in coherence, e.g. the output of a DDE
cannot be directly connected to a CDE, but must be connected through a SHE. How the
mathematical descriptions of the system elements can be used to construct models is not
obvious from the previous descriptions, and for this reason the next section will present
a number of examples applying the presented method.
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Various Examples4.2.1
In the following, three different examples of increasing complexity will be presented along
with remarks and interpretations of the utilised method.

Single Rate System:
Based on the MSD system presented in section 4.1.1, the open-loop sampled-data system
of figure 4.2 is presented. To illustrate the application of the method, an example wherein
all samplers and hold elements are synchronised and operated at a single rate of T =
1/10 s is first presented.

uc(kT)
uc(t)
xs(t) xc(t) xc(kT)

Sampler

T

Analog Plant

k1

k2

b2b1
m2

m1

xc1 xc2

F1

F2T

ZOH

Fig. 4.2: Block diagram representation of the physical open-loop MSD system, with sampled
outputs and zero-order held inputs operated at a single rate.

Kalman and Bertram (1959) defines a four step procedure for establishing a model of the
sampled-data system:

1. Defining the state variables.
2. Calculating the various transition matrices as defined in the previous section.
3. Deriving transition equations for the sampling operations and sample-free time-

intervals for a BTP.
4. Combining and simplifying transition equations to obtain a time-invariant model.

In the following, the four steps will be applied to the single rate sampled MSD system:

Step 1: For the system depicted in figure 4.2, there are γ = 4 CDE states, δ = 0 DDE
states and σ = 2 SHE states. From the figure, it can be seen that the SHE states are
defined as being equal to the output of the Hold element. The expanded state vector is
defined as:

x =
[
xc

ᵀ xs
ᵀ
]ᵀ

=
[
xc1 xc2 ẋc1 ẋc2 xs1 xs2

]ᵀ (4.13)

Step 2: For the CDE, the transition matrix is given by equation 4.14, with block matrix
entries as defined in equation 4.5.

Φ(τ) =

[
Gc(τ) Hc(τ)

0 I

]
(4.14)

The transition matrix associated with the hold elements can now be defined. The inputs
to the hold elements are simply the system inputs, and thus when defining the transi-
tion matrix, there will be no dependency on the internal model states, such that the
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coefficients Si in the ith row of S56 will all be zeros:

S56 =

 I 0

0 0 0 0 0 0
0 0 0 0 0 0

} γ rows
(4.15)

The system inputs u(kT ) may be accounted for by the input matrix s56:

s56 =

 0

1 0
0 1

} γ rows
(4.16)

Step 3: To derive the transition equations, the state progression and sampling sequence
must be known, thus the top part of figure 4.3 is presented. The figure illustrates the
continuous progression of the CDE states and the discrete updates of the hold states. It
may be seen that the sampling scheme is periodic with T , which is also equal to the BTP
and STP.

Real State Progression

xs1

xs2

xc2

xc1

xc2

xc1

t
STP
BTP

0 T 2T 3T

Single Rate System:

_
_

Model State Progression

x(k)
t

0 T 2T 3T

Fig. 4.3: In the top: the real state progression of continuous and piecewise constant hold states
for a system with single rate sampling. In the bottom: the progression of the model states.

Then by examining the figure, it may be seen that within a single BTP (the successive
open intervals [kT (k+1)T [ ) the following two transitions occur. The first being related
to the sample-and-hold operation and the second being related to the sample-free interval
until the next BTP begins:

t = kT → t = kT+ x
(
kT+

)
= S56 x(kT ) + s56 uc(kT ) (4.17a)

kT < t < (k+1)T x(kT+τ) = Φ(τ)x
(
kT+

)
0 < τ < T (4.17b)

Step 4: Equations 4.17a and 4.17b may then be combined to obtain a time-invariant
model with time step equal to the BTP:

x((k + 1)T ) = Φ(T )S56 x(kT ) + Φ(T )s56 uc(kT ) (4.18a)
= Ψx(kT ) + v uc(kT ) (4.18b)
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Here Ψ and v represent time-invariant constant matrices for the state vector and input,
respectively. The state progression of this model then corresponds to the bottom part of
figure 4.3.

To test the applicability of the method, the block diagram of figure 4.2 has been im-
plemented in MATLAB Simulink and simulated. Similarly the model represented by
equation 4.18 has also been simulated using the same inputs and initial conditions. For
both models, the inputs to the analog plant are updated at a rate of T = 1/10 s. The re-
sults of these two simulations are presented in figure 4.4, where the two position outputs
are shown for each simulation.
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Fig. 4.4: Simulation results for a Matlab Simulink implementation of figure 4.2 and for the model
represented by equation 4.18, both utilising a single update rate.

For the Kalman and Bertram model, the two outputs are plotted using zero-order hold
line interpolation between subsequent data points, thereby leading to the stair-like ap-
pearance of the waveforms. Note that for simplicity only the two waveforms for the
position outputs have been shown, and not the remaining six state waveforms. Based
on the figure, it can generally be concluded that the model obtained by Kalman and
Bertram’s method is able to reproduce the results obtained using MATLAB Simulink.

This concludes the demonstration of how the method proposed by Kalman and Bertram
may be applied to a single rate MIMO system. Based on the presented equations and
their relation to each other, it should now be evident how the method may be used to
describe any kind of sampled-data system. Before proceeding to the application of the
method to a multirate system, a few remarks on the method in relation to the presented
example are made:
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Remark 4.2.F: The presented example does not include any discrete dynamical ele-
ments, why this subset block has been omitted in all matrices. For computer
controlled continuous plants, these elements will typically occur with digital imple-
mentation of integral control action, and are generally present whenever a previous
sample is used in calculations.

Remark 4.2.G: For single rate systems, the Kalman and Bertram method yields the
same results as conventional zero-order hold equivalent discretisation, which may
be found in e.g. Ogata (1987, pp. 538-540). Although the conventional method
does not typically associate states with the hold elements.

Multirate System with Similar Sampling Rates:
The system under consideration in this example is again the MSD system from section 4.1.1.
In contrast to the previous example, the system is now modified to utilise two diffe-
rent sampling rates. For this example, the first plant input is updated at a rate of
T1 = T/2 = 0.15 s and the second plant input is updated at a rate of T2 = T/3 = 0.1 s.
The BTP of this sampling system is then T = 0.3 s, and the STP is T0 = 0.05 s. The
multirate system is illustrated in figure 4.5.

uc((k+5)T)
uc(t)
xs(t) xc(t) xc((k+5)T)

Sampler

5T

Analog Plant

k1

k2

b2b1
m2

m1

xc1 xc2

F1

F2

T/3

ZOH
uc2

x5

T/2

ZOH
uc1

x6

ZOH

κ =
[
0 1

3
1
2

2
3

]

Fig. 4.5: Block diagram representation of the physical open-loopMSD system, with sampled out-
puts and zero-order held inputs operated at a multiple rates.

Step 1: The states are the same as in the previous example, why the reader is referred
there.

Step 2: The CDE transition matrix Φ(τ) is the same as in the previous example, as it is
only applied to the sample-free intervals between sampling operations. Thus this matrix
is always the same no matter which sampling scheme is employed.

With regard to the two SHEs, they now operate at different rates, why it is now necessary
to define separate matrices. Like before, the inputs to the hold elements are simply the
system inputs, why coefficients in the associated row are all zero:

S5 =

 I 0

0 0 0 0 0 0
0 0 0 0 0 1

 S6 =

 I 0

0 0 0 0 1 0
0 0 0 0 0 0

 (4.19)

The system inputs u(kT ) may be accounted for by the matrices s5 and s6:

s5 =

 0

1 0
0 0

 s6 =

 0

0 0
0 1

 (4.20)
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Step 3: For this step, the top part of figure 4.6, which illustrates the multirate sampling
scheme and state progression is presented.

Real State Progression

t
0 T STP

BTP

︸ ︷︷ ︸ ︸ ︷︷ ︸︸︷︷︸︸︷︷︸
1 432

T0
2T

T1

T2

Model State Progression

t
0 T 2T

x(k)

Multirate System:

xs1

xs2

xc2

xc1

xc2

xc1

_
_

Fig. 4.6: In the top: the real state progression of continuous and piecewise constant hold states
for a system with multirate sampling. In the bottom: the progression of the model states.

The sample-and-hold element associated with the x5 = xs1 state updates at a rate of
T1 = T/2, while the sample-and-hold element associated with the x6 = xs2 state updates
at a rate of T2 = T/3. As such, the number of sampling operations and sample-free
intervals in the BTP is greatly increased, why careful bookkeeping is necessary while
deriving the transition equations:

1

t = kT → t = kT+ x
(
kT+

)
= S6S5x(kT ) + (s6+s5)uc(kT ) (4.21a)

kT < t < kT+T2 x(kT+τ) = Φ(τ)x
(
kT+

)
0 < τ < T2 (4.21b)

2


t = kT+T2 → t = (kT+T2)

+
x
(
(kT+T2)

+
)

= S6x(kT+T2) + s6uc(kT+T2) (4.21c)

kT+T2 < t < kT+T1 x(kT+T2+τ)= Φ(τ)x
(
(kT+T2)

+
)

0 < τ < T0 (4.21d)

3


t = kT+T1 → t = (kT+T1)

+
x
(
(kT+T1)

+
)

= S5x(kT+T1) + s5uc(kT+T1) (4.21e)

kT+T1 < t < kT+2T2 x(kT+T1+τ)= Φ(τ)x
(
(kT+T1)

+
)

0 < τ < T0 (4.21f)

4


t = kT+2T2 → t = (kT+2T2)

+
x
(
(kT+2T2)

+
)

= S6x(kT+2T2) + s6uc(kT+2T2) (4.21g)

kT+2T2 < t < kT+T x(kT+2T2+τ)= Φ(τ)x
(
(kT+2T2)

+
)

0 < τ < T2 (4.21h)

Step 4: Equation 4.21 may then be combined to obtain a time-invariant model with
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time step equal to the BTP, as illustrated in the bottom part of figure 4.6:

x((k + 1)T )=Ψx(kT ) + v1uc(kT ) + v2uc(kT+T2) + v3uc(kT+T1) + v4uc(kT+2T2) (4.22)

Ψ = Φ(T2)S6︸ ︷︷ ︸
4

Φ(T0)S5︸ ︷︷ ︸
3

Φ(T0)S6︸ ︷︷ ︸
2

Φ(T2)S6S5︸ ︷︷ ︸
1

v1 = Φ(T2)S6︸ ︷︷ ︸
4

Φ(T0)S5︸ ︷︷ ︸
3

Φ(T0)S6︸ ︷︷ ︸
2

Φ(T2)(s6 + s5)︸ ︷︷ ︸
1

v3 = Φ(T2)S6︸ ︷︷ ︸
4

Φ(T0)s5︸ ︷︷ ︸
3

v2 = Φ(T2)S6︸ ︷︷ ︸
4

Φ(T0)S5︸ ︷︷ ︸
3

Φ(T0)s6︸ ︷︷ ︸
2

v4 = Φ(T2)s6︸ ︷︷ ︸
4

Again the Kalman and Bertram derived model is simulated and compared to a MATLAB
Simulink implementation and the results of this are shown in figure 4.7.
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Fig. 4.7: Simulation results for a Matlab Simulink implementation of figure 4.2 and for the model
represented by equation 4.22, both utilising similar but different update rates.

The first subplot illustrates the model inputs for both models. The second and third
subplots illustrate the response of the cart positions to the step inputs. It can be seen
that the outputs of the Kalman and Bertram model only update at a rate corresponding
to the BTP, which for the example under consideration approximates the continuous
response fairly well. It should, however, also be obvious that if the BTP becomes larger,
performing meaningful simulations may become difficult.

This concludes the demonstration of how the method proposed by Kalman and Bertram
may be applied to a multirate MIMO system. Again a few remarks on the method in
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relation to the presented example are made:

Remark 4.2.H: While Kalman and Bertram’s method is fairly simple, it does require
careful bookkeeping while deriving the state transitions.

Remark 4.2.I: It may be seen that although the method can describe almost any type
of sampled-data system, the periodicity of the sampling scheme is essential if a
finite model representation is to be obtained.

Multirate System with Vastly Different Sampling Rates:
This example is the same as the previous multirate example, it does, however, differ in one
important aspect, the rate at which the control inputs are updated. The rate of the first
input is now T1 = 0.15 s, which is sufficient for controlling the slow dynamics of the heavy
cart. The rate of the second input is lower than the first by a factor of 7 · 6/(25 · 4 · 16),
corresponding to the ratio of DDM activation rates in the 5.4MW DFPT. This results
in T2 = 0.0039 s, allowing for near continuous control of the second cart. With these
activation rates the BTP is T = 3.15 s and the STP becomes T0 = 1.88× 10−4 s.

Step 1 & Step 2: The states and transition matrices are the same as in the previous
example, why the reader is referred to those sections.

Step 3 & Step 4: The number of intervals and sampling operations which must be
considered to derive the transition equations becomes very large, why this step has been
automated by writing an algorithm in MATLAB. An upper bound on the number of in-
tervals is given by T/T0 = 16800, noting that multiple successive STPs may occur before
a sampling operation takes places (as is the case in figure 4.6), why the actual number
of intervals is less than the upper bound. Furthermore each interval is also preceded
by a sampling operation, such that the number of steps which must be considered is
upper bounded by 2T/T0. Thus setting up the transition equations by hand (as done in
equation 4.21) becomes extremely cumbersome, when the ratio T/T0 becomes large.

As done previously, models using these update rates have been constructed, and the
results of the simulations are presented in figure 4.8.

It can now be seen that while the Simulink model produces useful waveforms, the Kalman
and Bertram model, although not unstable, completely misses the fast dynamics of the
light mass. This result was not unexpected, and the presented example is here used to
highlight this problem.

This concludes the example of the method applied to a multirate system with vastly
different rates. Again a few final and general remarks are made regarding the method:

Remark 4.2.J: While the presented method produces a model using a state-space for-
mulation, the final model includes multiple input matrices, whereas a conventional
state-space formulation contains only a single input matrix. Thus a concern arises
when controller design must be considered: How can the multiple input matrices
be taken into account? A possible solution could be to see the system as time-
variant, and proceed along this path, but this violates the requirement of obtaining
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Fig. 4.8: Simulation results for a Matlab Simulink implementation of figure 4.2 and for Kalman
and Bertram model, both utilising vastly different control update rates.

a time-invariant multirate model, as defined in section 4.1.

Remark 4.2.K: Furthermore, the method produces a discrete model with a time step
equal to the BTP. If system time constants are equal or less than this, then the
derived model does not hold much use as a simulation tool. However, all state
transitions within the BTP are still contained in the model, and it might still hold
potential as a tool for controller design and system analysis. A consequence of the
BTP time step, is that control inputs can only be updated with a period corre-
sponding to the BTP, since these transitions are the only thing the model provides
analysis and design tools for. This appears rather wasteful, since technically the
control inputs can be updated with a period as low as the STP. As for the multiple
input matrices, this problem could potentially also be handled by considering a
time-variant model of the system.

These concerns remain unsolved, why the Kalman and Bertram model is considered
unsuitable. Thus it is decided to investigate a different method for deriving a multirate
model, such that a model can be obtained which meets the desirable characteristics.

Araki and Yamamoto’s Non-minimal Realisation4.3
Araki and Yamamoto (1986) presents an approach for describing a multivariable multi-
rate sampled-data system on a discrete-time state-space form. This is also achieved by
utilising Kalman and Bertram’s method as presented in the previous section, however,
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the previously described method produces a model with a time step equal to the BTP
without describing the inter-sample behaviour. This poses a problem in systems where
the BTP is greater than or equal to the system’s time constants. Ideally, a state space
model should be formulated with a time step equal to the STP. This is, however, generally
not possible without violating the requirement of obtaining a time-invariant state-space
model due to the non-uniform multirate sampling and non-uniform behaviour between
samplings. As the model formulated by Kalman and Bertram’s method does not des-
cribe the system states at steps equal to the STP it is not optimal as a simulation tool
or controller design tool.

The method presented by Araki and Yamamoto (1986), referred to as Araki and Yama-
moto’s method, is based on the method originally developed by Kalman and Bertram.
Similarly to Kalman and Bertram, the resulting state-space model has a time step equal
to the BTP, however, Araki and Yamamoto (1986) has modified Kalman and Bertram’s
method to describe the states with steps corresponding to the STP. As the time step of
the state-space model is equal to the BTP, the model remains time-invariant while des-
cribing the states at steps of the STP. This method is also known as the lifting technique.

The method presented in Araki and Yamamoto (1986) only applies to forming a model
of continuous dynamic elements and does not directly include an approach for including
potential discrete dynamic elements. As Araki and Yamamoto’s method is initially based
on Kalman and Bertram’s method it may be possible to modify Araki and Yamamoto’s
method, such that it is able to include discrete dynamic elements.

Araki and Yamamoto’s method is applied to the MSD system presented in section 4.1.1.
The method is initially presented on a general form prior to applying it to the MSD
system such that it can be commented upon in a general manner.

Expanded Discrete-time Signals:
The theory which is presented in the following is in general complex why the direct
application of the method might not be clear from the equations. Thus, the presentation
of the general theory is followed by examples where the theory is applied to ease the
understanding of the method.

Applying Araki and Yamamoto’s method for describing a system yields a state-space
model of the form:

x(k + 1) = GD x(k) +HD u(k) (4.23a)

y(k) = CD (U1 x(k + 1) +U2 x(k)) (4.23b)

where the matrices GD, HD and CD are the discrete equivalents to the A, B and C
matrices in a continuous state-space model. The block matrices U1 and U2, of equal
dimensions, are used to obtain the desired outputs and are given by:

U1 ≡
[
I 0

0 0

]
U2 ≡

[
0 0

0 I

]
} Nγ − γ rows
} γ rows

[2× 2]
[Nγ ×Nγ]

(4.24)

where γ is the number of states used to continuously describe the given system and N
defines STPs per BTP, i.e. N = T/T0 where T0 is equal to the STP.
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Remark 4.3.A: The output vector y(k) depends on both x(k) and x(k + 1). The
dependence on x(k+ 1) is unconventional in discrete state-space models, however,
this is a consequence of how the discrete states and outputs are defined.

Remark 4.3.B: The definition of the output equation makes sense when it is compared
to the discrete-time signals in figure 4.9. However, it may be noted that it may be
combined with the state equation to obtain a conventional output equation of the
form y(k) = Cx(k) +Du(k).

Remark 4.3.C: When simulating a model represented by equation 4.23, the state tran-
sition equation is normally calculated before the output equation. Thereby x(k+1)
is available when calculating the output, and thus there are no timing conflicts re-
garding availability of data.

Before the method is presented some definitions are established. The time step of the ith

component is defined as:

Ti ≡
T

Ni
i = {1, . . . , p} (4.25)

where p describes the number of inputs or outputs in the continuous representation of
the system. The constant N̄ is introduced as the sum of Ni as N̄ = N1 +N2 + ...+Np

and li defines STPs per time step for the ith component, i.e. li = Ti/T0.

Figure 4.9 illustrates a sampling scheme, where Araki and Yamamoto’s method is applied,
for a system where N1 = 2, N2 = 3 and N = 6 and which can be continuously described
with γ = 4 states and with p = 2 inputs and outputs. The figure shows the instants
where the inputs are updated including the corresponding discrete states and outputs.
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Fig. 4.9: Discrete-time signals including inputs, outputs and states for a system with γ = 4
continuous states and p = 2 inputs and outputs. Inspired by Araki and Yamamoto (1986).
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From figure 4.9 it is evident how the discrete-time state vector x(k) contains information
about each of the 4 continuous states with a time step equal to the STP. Figure 4.9
furthermore shows that the state vector x(k + 1) is given from information from the
input vector u(k) and the last subvector x6(k) of x(k). In accordance with the sampling
scheme shown in figure 4.9, equations describing the discrete states, inputs and outputs
can be presented on a general form.

Araki and Yamamoto forms an expanded discrete-time state vector, x(k), describing the
states of a sampled-data system, here shown as a block vector:

x(k) ≡


x1(k)

...
xN−1(k)
xN (k)

 =


xc((k − 1)T + T0)

...
xc((k − 1)T + (N − 1)T0)

xc(kT )

 [N × 1]
[Nγ × 1]

(4.26)

It is clear that the discrete time state vector describes the set of states, xc, with a time
step equal to the STP.

The expanded discrete-time output vector are given by the block vector:

y(k) ≡
[
y1(k)ᵀ · · · yp(k)ᵀ

]ᵀ [p × 1][
N̄ × 1

] (4.27)

where each element, yi, is given by a Ni-dimensional vector:

yi(k) ≡


yi,0(k)
yi,1(k)

...
yi,Ni−1(k)

 =


yi(kT )

yi(kT + Ti)
...

yi(kT + (Ni − 1)Ti)

 [Ni × 1] (4.28)

The input vector is not shown since it is equal to the output vector in terms of dimension
and the time instants at which they are described. It is evident that the discrete-time
input and output vectors describes the input and outputs at the Ti time steps.

Remark 4.3.D: As the state vector x(k+1) only depends on the input vector u(k) and
the last subvector xN (k) of x(k), the subvectors x1(k) to xN−1(k) could be omitted.
Including these subvectors yields a non-minimal realisation which is desired in this
case since all continuous states are then described uniformly with a time step of
the STP.

Remark 4.3.E: As evident from equation 4.26, the number of states in the discrete-time
state-space model is equal toNγ. A consequence of having vastly different sampling
rates in a system may be that the N -parameter becomes relatively large which will
thus result in a large number of discrete-time states. Thus, writing computer
algorithms is necessary when forming the model since it may not be possible to
apply the method by hand to a system with vastly different sampling rates. This
is also the reason why the method will be applied to a system with similar but
different sampling rates initially to ease the understanding of the method by being
able to visualise the resulting discrete-time state space model.
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Remark 4.3.F: Applying Araki and Yamamoto’s method yields an input and output
vector which is N̄ × 1 dimensional. Thus, discretisation using this method means
that the number of input and outputs are increased compared to the continuous
state-space model of the system. It is, however, important to note that the num-
ber of inputs and outputs are equal in the discrete state-space model, which is
considered an advantage when controller design is to be considered.

Remark 4.3.G: With reference to both figure 4.9 and equation 4.23, the relative po-
sition of the x(k), u(k) and y(k) blocks to one and another might at first seem
unintuitive, but as will be illustrated, it is logical.

Consider first a single rate example, as later illustrated by an example and with
figure 4.11. Then it may be seen that the blocks are all aligned, as is typically
the case for discrete models. This corresponds well with the model formulation in
equation 4.23, which states that both x(k) and u(k) must be available at the same
time instance to calculate x(k + 1).

Consider then again the multirate situation of figure 4.9, if u(k) is not shifted to
be semi-aligned with x(k + 1), then a number of new inputs would occur during
x(k + 1), which would not be used to calculate the transitions, and without these
it would not be possible to arrive at the correct final value x6(k + 1). Thus the
alignment of u(k), x(k) and x(k+1) could not be any other way. The first subvector
in u(k) must be aligned with the last subvector in x(k) to be able to describe single
rate systems, and u(k), must be semi-aligned with x(k + 1) to correctly arrive at
the final value.

Generally it may be stated that when the sampling rates diverge, the u(k) block
will extend to the right, and the x(k) block to the left.

The alignment of the blocks in figure 4.9 is further considered in appendix D.1,
where it is shown that if a state vector in the conventional form is to be obtained,
i.e. x(k+1) = Gx(k)+Hu(k), then the only viable alignment is the one illustrated
in figure 4.9.

Remark 4.3.H: The unconventional form, both with regard to the state vector and
output equation, of the state-space model produced by applying Araki and Yama-
moto’s method is a consequence of the states being lifted. This form is, however,
a necessity in order to obtain a linear time-invariant model which is a requirement
in this thesis, cf. requirement 2 in section 4.1. Even though the model is linear
time-invariant, controller design may not be straight forward due to this unconven-
tional form. However, several studies, including Guo and Liao (2016), Lee (2006),
and Tangirala et al. (2001), each referring to multiple other studies, considers con-
troller design for a model constructed based on lifting theory. Due to the lifting
method and subsequent controller design being well documented it is decided to
move forward with this approach.

Having presented the input, output and state vector, the next section describes how the
open-loop system matrices are formed.
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Open-loop System Matrices:
This section presents how the open-loop system matricesGD,HD andCD are calculated.
As previously stated only the last subvector, xN (k), of x(k) is used for describing the
state vector x(k + 1). Thus, the GD-matrix becomes a block matrix given by:

GD ≡

 0 · · · 0 Gc(T0)
...

. . .
...

...
0 · · · 0 Gc(N T0)

 [N ×N ]
[Nγ ×Nγ]

(4.29)

It is clear that the zero block matrices ensures that only the last subvector, xN (k), of
x(k) is used for describing the state vector x(k+1). TheGc(l T0)-matrices are calculated
as shown for the Kalman and Bertram method in equation 4.5 where τ is replaced with
l T0 such that a time step equal to the STP is obtained in this case:

Gc(l T0) = GD
l = eA l T0 l = {1, ..., N} [γ × γ] (4.30)

HD in equation 4.23 is a block matrix defined as:

HD ≡
[
HD

1 · · · HD
p

] [1× p][
Nγ × N̄

] (4.31)

Each block in the HD-matrix are block matrices given by:

HD
i =

[
hD
i,lµ

]
, i = {1, ..., p}, l = {1, ..., N}, µ = {0, ..., Ni − 1} [Nγ ×Ni] (4.32)

The subscript l defines the row number and µ + 1 defines the column number. The
variable λl is introduced to obtain a more compact expression and is defined as:

λl = lT0 − τ l = {1, ..., N} (4.33)

Each hD
i,lµ element is then given by:

hD
i,lµ =



0, if l ≤ µli∫ l T0

µ li T0

eAλlbj=i dτ, if µ li < l ≤ (µ+ 1)li∫ (µ+1)li T0

µ li T0

eAλlbj=i dτ, if (µ+ 1) li < l

[γ × 1] (4.34)

bj is the jth column of theB-matrix from the continuous state-space representation. The
three conditions presented in equation 4.34 are used to obtain elements in theHD-matrix
such that the elements in the input vector only affects the desired outputs. This will
be more clear when the method is applied to various examples in the following sections.
Comparing equation 4.34 with equation 4.5 it is seen that calculating the H-matrix in
the Kalman and Bertram method and hD

i,lµ in Araki and Yamamoto’s method is similar,
but different in the limits over which the integrals are evaluated.

72



4.3. Araki and Yamamoto’s Method Chapter 4. Multirate Methods

The CD-matrix shown in equation 4.23 is a block matrix defined as:

CD ≡
[
CD

1
ᵀ · · · CD

p
ᵀ ]ᵀ [p × 1][

N̄ ×Nγ
] (4.35)

Each block is given by Nj ×N block matrices as:

CD
j =

[
cD
j,vl

]
j = {1, ..., p}, v = {0, ..., Nj − 1}, l = {1, ..., N} [Nj ×Nγ] (4.36)

The row number of the block matrices in CD
j are described by v + 1 and the column

number by l. The blocks matrices cD
j,vl are defined as:

cD
j,vl =

{
ci=j if v = 0 ∧ l = N ∨ v lj = l

0, else
[1× γ] (4.37)

ci is the ith row of the C-matrix used for the continuous state space representation.

Remark 4.3.I: From the above presented open-loop equations it can be shown that
applying Araki and Yamamoto’s method to a single rate system corresponds to
simply performing a conventional zero-order hold discretisation to a given system.
This will be evident from the examples presented in the next section.

Remark 4.3.J: As previously stated, Araki and Yamamoto’s method is only directly
applicable for describing an open-loop system. This is, however, an advantage when
the method is to be applied to the DFPT since it is desired to perform an open-loop
system analysis with regards to potential system cross couplings. Furthermore, an
open-loop description is advantageous for controller design.

Remark 4.3.K: Araki and Yamamoto’s method does not directly present an appro-
ach for including discrete dynamic elements in the model. Further effort should
therefore be put into this method before it is applied to the DFPT.

Remark 4.3.L: Applying Araki and Yamamoto’s method yields multiple evaluations
of the integrals presented in Equation 4.34 for calculating the HD-matrix. This
might not pose a problem when applied to a system with different but similar
sampling rates as this limits the number of evaluations. However, when applied
to a system with vastly different sampling rates, the number of evaluations might
increase extensively why the relatively computational heavy operation of numerical
integral evaluations may yield problems with time consumption of the state-space
model formulation. Thus, applying Araki and Yamamoto’s method to a system
with vastly different sampling rates requires intelligent scripting to reduce the time
consumption of the model formulation.

Having presented the tools and theory necessary for applying Araki and Yamamoto’s
method to the mass spring damper system, the next section presents various examples
similar to the ones presented for Kalman and Bertram’s method.
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Various Examples4.3.1
Three examples are presented in the following where the first examples applies Araki and
Yamamoto’s method to the single rate sampled MSD system.

Single Rate System:
A single sample rate of T = 1/10 s is utilised and all samplers are synchronised. Fi-
gure 4.10 shows the open loop system which are to be discretely described by applying
Araki and Yamamoto’s method.

uc(kT) uc(t) xc(t)

Analog Plant

k1

k2

b2b1
m2

m1

xc1 xc2

F1

F2

xc(kT)
Sampler

T

T

ZOH

Fig. 4.10: Block diagram representation of the physical open-loop MSD system, with sampled
outputs and zero-order held inputs operated at a single rate.

The input is seen to be the system input sampled with a time step equal to T whereas
the output is seen to be the state vector xc(kT ). Alternatively to the state, the output
yc(kT ) could have been illustrated since the only difference between the two vectors is
the multiplication of the CD and U2 matrices. As previously presented, the system can
be continuously described by γ = 4 states. Utilising the notation presented for Araki
and Yamamoto’s method, T = T0 = T1 = T2 = 1/10 s, and N = N1 = N2 = 1. Utilising
a single sample rate in the double MSD system yields a 4× 1 state vector:

x(k) = [x1(k)] = [xc(kT )] =
[
xc1(kT ) xc2(kT ) ẋc1(kT ) ẋc2(kT )

]ᵀ (4.38)

The state vector simply contains the four continuous states sampled at the single sample
rate of T . Similarly, the input and output vectors are given by:

u(k) = uc(kT ) =
[
uc1(kT ) uc2(kT )

]ᵀ (4.39)

y(k) = yc(kT ) =
[
yc1(kT ) yc2(kT )

]ᵀ (4.40)

Figure 4.11 depicts the sampling scheme when Araki and Yamamoto’s method is applied.
The top part shows the continuous state progression, i.e. the states in the physical system
while the bottom part shows the instants at which the inputs, states and outputs are
described in the discrete state-space model. The discrete state x(k) is seen to include
the four states sampled with time steps equal to T as shown in equation 4.38.

Having determined the discrete-time states, inputs and outputs, the open-loop equations
can be applied to form a state-space model.
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Fig. 4.11: Top part shows the continuous state progression, i.e. the states in the physical system.
Bottom part shows the instants at which the inputs, states and outputs are described in the
discrete model.

As N = 1, the GD-matrix becomes a 1 × 1 block matrix where the block GD
1 is a

4× 4-dimensional matrix. Applying equation 4.30 yields the following GD-matrix:

GD =
[
GD

1

]
=
[
eAT

]
(4.41)

The HD-matrix is in this example a 1× 2 block vector where the vectors hD
1,10 and hD

2,10

are determined from equation 4.34:

HD =
[
HD

1 HD
2

]
=
[
hD

1,10 hD
2,10

]
(4.42)

=

[
T∫
0

eAλ1bj=1 dτ
T∫
0

eAλ1bj=2 dτ

]
where λ1 = T − τ . The CD-matrix is for the single rate example equal to the C-matrix
utilised in the continuous state-space model.

The presented equations for the single rate system are inserted into equation 4.23to yield
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a model on state-space form:

x(k+1)︷ ︸︸ ︷[
x1(k + 1)

]
=

GD︷ ︸︸ ︷[
eAT

] x(k)︷ ︸︸ ︷[
x1(k)

]
+

HD︷ ︸︸ ︷[
T∫
0

eAλ1bj=1 dτ
T∫
0

eAλ1bj=2 dτ

] u(k)︷ ︸︸ ︷[
uc1(kT )
uc2(kT )

]
(4.43a)[

yc1(kT )
yc2(kT )

]
︸ ︷︷ ︸

y(k)

=

[
c1
c2

]
︸ ︷︷ ︸

CD

[
x1(k)

]
︸ ︷︷ ︸

x(k)

(4.43b)

The open-loop system presented in figure 4.10 is implemented in MATLAB Simulink
and simulated in order to compare it to the discrete state-space model in equation 4.43.
Both models are applied with the same inputs with an update rate of T = 1/10 s.
Figure 4.12 shows the position of the two simulations where the first subplot illustrates
the inputs given to the two models, the second subplot shows the position response from
the Simulink model and the third subplot illustrates the response from the state-space
model. For the state-space model, the two outputs are plotted using zero-order hold line
interpolation between subsequent data points which leads to the stair-like appearance of
the waveforms. This will also be the case in the following simulation plots.
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Fig. 4.12: Simulation results for a MATLAB Simulink implementation of figure 4.10 and for Araki
and Yamamoto’s state-space model, utilising equal sampling rates.

Based on the simulation shown in figure 4.12 it is clear that applying Araki and Ya-
mamoto’s method produces a state-space model with the same response as the model
implemented in Simulink.
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Remark 4.3.M: It is evident from equations 4.41 and 4.42 that applying Araki and
Yamamoto’s method to a single rate sampled system yields a discretisation which
corresponds exactly to applying a conventional zero-order hold dicretisation to the
system. This was also shown to be the case when applying Kalman and Bertram’s
methods to a single rate system.

Multirate System with Similar Sampling Rates:
Again, the MSD system is considered. As for Kalman and Bertram’s method the system
is now modified to utilise two different sampling rates, being T1 = T/2 = 0.15 s and T2 =
T/3 = 0.1 s and a BTP of T = 0.3 s. These sampling times yields a STP = T0 = 0.05 s.
Thus, N = 6, N1 = 2 and N2 = 3. Figure 4.13 shows an open-loop block diagram of the
system described using Araki and Yamamoto’s method.

uc((k+5)T) uc(t) xc(t) xc(kT+ lT 0)
Sampler

T 0

432l =
[
1

]
65κ =

[
0 1

3
1
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2
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]

Analog Plant

k1

k2

b2b1
m2

m1

xc1 xc2

F1

F2

T 2

ZOH

T 1

ZOH

ZOH

Fig. 4.13: Block diagram representation of the physical open-loop MSD system, with sampled
outputs and zero-order held inputs operated at two different but similar rates.

Applying Araki and Yamamoto’s method results in the following 24× 1 state vector for
the given sampling rates:

x(k) =



x1(k)
x2(k)
x3(k)
x4(k)
x5(k)
x6(k)

 =



xc((k − 1)T + T0)
xc((k − 1)T + 2T0)
xc((k − 1)T + 3T0)
xc((k − 1)T + 4T0)
xc((k − 1)T + 5T0)

xc(kT )

 (4.44)

It is clear that applying Araki and Yamamoto’s method yields a state vector described
with time steps equal to the STP. The input and output are given by the 5× 1 vectors:

u(k) =


uc1(kT )

uc1(kT + T1)
uc2(kT )

uc2(kT + T2)
uc2(kT + 2T2)

 y(k) =


yc1(kT )

yc1(kT + T1)
yc2(kT )

yc2(kT + T2)
yc2(kT + 2T2)

 (4.45)
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Figure 4.14 shows the sampling scheme for the multirate MSD system.
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Fig. 4.14: Top part shows example of the real state progression while the second part shows the
instants at which the input, states and outputs are described in the discrete model.

The top part shows an example of the real state progression while the second part shows
the instants at which the input, states and outputs are described in the discrete model.
It is clear that the discrete inputs, states and outputs in figure 4.14 corresponds well with
equations 4.44 and 4.45, e.g. the input vector u(k) has five samples, two for uc1(k) and
three for uc2(k).

Next the open-loop system matrices are formed. Applying equation 4.30 yields the
following 24× 24 GD-matrix for the system:

GD =

 0

eAT0

eA 2T0

eA 3T0

eA 4T0

eA 5T0

eA 6T0

 (4.46)
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The HD-matrix is given by the following matrix where each element yields a 4 × 1
vector:

HD =



T0∫
0

eAλ1b1dτ 0
T0∫
0

eAλ1b2dτ 0 0

2T0∫
0

eAλ2b1dτ 0
2T0∫
0

eAλ2b2dτ 0 0

3T0∫
0

eAλ3b1dτ 0
2T0∫
0

eAλ3b2dτ
3T0∫
2T0

eAλ3b2dτ 0

3T0∫
0

eAλ4b1dτ
4T0∫
3T0

eAλ4b1dτ
2T0∫
0

eAλ4b2dτ
4T0∫
2T0

eAλ4b2dτ 0

3T0∫
0

eAλ5b1dτ
5T0∫
3T0

eAλ5b1dτ
2T0∫
0

eAλ5b2dτ
4T0∫
2T0

eAλ5b2dτ
5T0∫
4T0

eAλ5b2dτ

3T0∫
0

eAλ6b1dτ
6T0∫
3T0

eAλ6b1dτ
2T0∫
0

eAλ6b2dτ
4T0∫
2T0

eAλ6b2dτ
6T0∫
4T0

eAλ6b2dτ



(4.47)

The CD-matrix is for the multirate example is given by the N̄ ×N block matrix:

CD =


0 0 0 0 0 c1

0 0 c1 0 0 0
0 0 0 0 0 c2

0 c2 0 0 0 0
0 0 0 c2 0 0

 (4.48)

Inserting the open-loop system matrices,GD,HD andCD into the discrete state equation
presented in equation 4.23 yields a model on state-space form. The model is, however,
not explicitly presented here due to its size. The obtained state-space model corresponds
well with the sampling scheme presented in figure 4.14. As an example, when the state
subvector xc(kT + T0) is described, it only depends on the states x6(k) and the inputs
uc1(kT ) and uc2(kT ) due to the zeros in the GD and HD matrices.

Similar to the previous example, the position response of the obtained state-space model
is compared to the response of the open-loop system presented in figure 4.13 implemented
in MATLAB Simulink. The simulation results are shown in figure 4.15, where the first
subplot shows the inputs for the two models. The second and third subplots compares
the position response of the two blocks from the two models.
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Fig. 4.15: Simulation results for a MATLAB Simulink implementation of figure 4.13 and for Araki
and Yamamoto’s state-space model, utilising different but similar sampling rates.

It is evident from figure 4.15, that applying Araki and Yamamoto’s method yields a
state-space model which describes the positions of the two carts at time steps equal to
T/2 and T/3 for the first and second cart, respectively. This is possible since Araki and
Yamamoto’s method describes the discrete states at a time step equal to the STP.

Remark 4.3.N: As evident from equation 4.45, applying Araki and Yamamoto’s met-
hod yields a state-space model with more inputs and corresponding outputs than
the state-space model describing the system continuously. The number of inputs
and outputs are, however, as previously stated, equal. The total number of inputs
in the input vector corresponds to the number of samples occuring during the BTP
for each of the two carts. This might be a concern if the state-space model is to be
used for controller design why conventional methods for this may not be applicable.
This is investigated later in this thesis.

Multirate System with Vastly Different Sampling Rates:
This example serves to apply the Araki and Yamamoto’s method to the MSD system
where vastly different sampling rates corresponding to the 5.4MW DFPT are utilised.
Thus, in accordance with the equivalent Kalman and Bertram example, the sampling time
for the first input is T1 = 0.15 s while the sampling time for the second input is T2 =
0.0039 s. This yields a BTP of T = 3.15 s while the STP becomes T0 = 1.875× 10−4 s.
Then, N = 16800, N1 = 21 and N2 = 800.

As N is very high, all state vectors and system matrices will have very large dimensions.
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As an example, the state vector x(k) will be 67200 × 1-dimensional. Thus, this section
does not present any of the state vectors or matrices which form the state-space model. A
state space model is, however, formulated as it was done for the two previous examples.

Similar to the previous examples, a comparison is made of the simulation results from the
Simulink model and the discrete state-space model. The results are shown in figure 4.16.
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Fig. 4.16: Simulation results for a model implemented in MATLAB Simulink and for Araki and
Yamamoto’s state-space model, both utilising vastly different sampling rates.

It is clear that simulating the state-space model yields outputs which describes the po-
sition of the carts at time steps equal to T1 = 0.15 s for the first cart and T2 = 0.0039 s
for the second cart.

Based on the presented general theory and various examples it can be concluded that
applying Araki and Yamamoto’s method to the MSD system yields a time-invariant
discrete-time state-space model. Again a few final and general remarks are made regar-
ding the method:

Remark 4.3.O: Applying Araki and Yamamoto’s method to a multirate system incre-
ases the number of inputs and outputs in the resulting discrete model compared to
a continuous state-space model. This may result in conventional controller design
not being directly applicable. Furthermore, this unconventional form may also be
a concern when conventional tools for MIMO system analysis are to be applied.
This is however evaluated later in this thesis.
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Remark 4.3.P: The time step of the model produced by Araki and Yamamoto’s method
is equal to the BTP, but is in contrary to Kalman and Bertram’s method, able to
describe the system states at time steps equal to the STP. Thus, the discrete model
from Araki and Yamamoto’s method can be utilised as a simulation tool regardless
of the size of the BTP relative to the system’s time constants.

Remark 4.3.Q: The main disadvantage of Araki and Yamamoto’s method is its ina-
bility to include discrete dynamic elements. This is, however, a necessity when a
discrete multirate state-space model of the DFPT is to be formulated due to its
discrete chamber activations. Thus to make the method directly applicable for the
DFPT, Araki and Yamamoto’s method must be expanded to furthermore include
the description of discrete dynamic elements.

It can be concluded that Araki and Yamamoto’s method can be applied to a multirate
sampled system to obtain a multirate model which meets all the desirable characteristics
formulated in section 4.1, i.e. a linear time-invariant model on state-space form. It
is, however, not immediately able to include discrete dynamic elements which is also
necessary to utilise the method on the DFPT. To overcome the concerns related to the
application of both the Araki and Yamamoto’s method and the Kalman and Bertram’s
method on modelling the DFPT, the remainder of this chapter seeks to develop a new
method. Thus next section describes how the ability of Araki and Yamamoto’s method
of describing the system states at time steps equal to the STP, can be combined with
the ability of including discrete dynamic elements, as it is the case for the Kalman and
Bertram’s method.

ANewMethod: AUnifiedNon-minimalRealisation4.4
Kalman and Bertram’s unified approach can describe any type of sampling system with
any kind of system element as long as they can be described on a conventional state-space
form or difference equation form. This includes multirate and non-synchronous sampling
arrangements with various combinations of discrete and continuous elements. The main
disadvantage of the method is that the states are only updated with time steps equal to
the BTP, and thus when the BTP becomes long relative to the system sampling rates,
the model may not describe the system dynamics.

Araki and Yamamoto’s non-minimal realisation seeks to overcome this issue by the lif-
ting technique. Similarly to Kalman and Bertram’s method, this method updates the
states with time steps equal to the BTP, but a number of intermediate states are also
calculated. These intermediate states are calculated, such that they are separated by a
time step equal to the STP, thus by expanding the state vector in this fashion, the Araki
and Yamamoto model also contains transient state transitions, which are too fast to be
described at BTP time steps. The disadvantage of Araki and Yamamoto’s method is
that it only describes continuous systems, and does not take any discrete elements into
consideration.

The new method developed by the authors of this thesis and presented in this section

82



4.4. A Unified Non-minimal Realisation Chapter 4. Multirate Methods

seeks to combine the methods of Kalman and Bertram and Araki and Yamamaoto to
form a unified non-minimal realisation. The purpose of doing this, is to obtain a general
method for describing a system containing any combination of continuous and discrete
elements with any type of sampling arrangement, while still retaining the dynamic pro-
perties of the system in the model. The derived method should produce a time-invariant
discrete model in a state-space form, and should furthermore be able to describe both
open- and closed-loop type systems.

Before applying the new method to the MSD system, some general definitions used to
combine the two methods will first be presented. The theory presented in the next
section builds upon the theory of sections 4.2 and 4.3, and thus understanding these
two methods separately is essential for understanding the new method. As previously,
the direct application of the new method will likely not be obvious from the presented
definitions and equations, why the theory is followed by a few demonstrating examples.

Doubly Expanded State Vector and Model Form:
As in Kalman and Bertram’s method, a combined vector containing the continuous,
discrete and sample-and-hold states is defined:

xcomb ≡
[
xc

ᵀ xd
ᵀ xs

ᵀ
]ᵀ [3× 1]

[n× 1]
(4.49)

Then by Araki and Yamamoto’s expanded discrete-time state vector definition in equa-
tion 4.26, a doubly, or equivalently lifted, expanded state vector describing all the conti-
nuous, discrete and sample-and-hold states of the system at steps corresponding to the
STP may be defined:

x(k) ≡


x1(k)

...
xN−1(k)
xN (k)

 =


xcomb((k − 1)T + T0)

...
xcomb((k − 1)T + (N − 1)T0)

xcomb(kT )

 [N × 1]
[Nn× 1]

(4.50)

With N still being defined as the number of STPs per BTP. Using this definition of the
state vector, a model of the form given in equation 4.23 may be written:

x(k + 1) = GΨx(k) +HΨu(k) (4.51a)

y(k) = CΨ (U1 x(k + 1) +U2 x(k)) (4.51b)

where the matrices GΨ, HΨ and CΨ are the discrete equivalents to the A, B and C
matrices in a continuous state-space model. The input vector u(k) and the output vector
y(k) here are equivalent to the ones defined in equation 4.23, and the same holds true
for the two block matrices U1 and U2, why the reader is referred to the previous section.

In the following sections the transition matrices and their content are defined.
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System Elements:
The three system elements are the continuous, discrete and sample-and-hold elements,
and their transition matrices are again exactly as what was defined in section 4.2 from
Kalman and Bertram’s method.

Open-Loop System Matrices:
The definition of the GΨ-matrix is similar to the definition of GD, but it differs in that
now the last column consists of the transition matrices Ψl(Φ,D,S) where l = {1, . . . , N}:

GΨ ≡

 0 · · · 0 Ψ1
...

. . .
...

...
0 · · · 0 ΨN

 [N ×N ]
[Nn×Nn]

(4.52)

As in Kalman and Bertram’s method, the Ψl(Φ,D,S) matrices are functions of system
element matrices, and the approach for deriving them is identical to what was presented
for Kalman and Bertram.

TheHΨ-matrix distributes the inputs throughout the BTP, and ensures that the correct
inputs are given to the correct time steps. The general form of the HΦ-matrix is very
similar to that of HD:

HΨ ≡
[
HΨ

1 (vl(Φ,D,S,d, s)) · · · HΨ
p (vl(Φ,D,S,d, s))

] [1× p][
Nn× N̄

] (4.53)

where p is equal to the number of inputs in the system, such that each block in the
matrix is a submatrix, which distributes the inputs related to 1 of p inputs. To derive the
individual entries of the HΨ matrix, the approach of Kalman and Bertram for defining
the vl matrices in equation 4.3a, wherein the inputs and state transitions in the sampling
scheme are considered, is used, and how to do this is illustrated in later examples. This
has the benefit of readily allowing the inclusion of discrete elements, which the method
of Araki and Yamamoto does not directly allow.

Regarding the CΨ-matrix, it must now account for the double expansion of the state
vector, such that the DDE and SHE states are also included. This can be done by
defining the conventional continuous C-matrix with respect to the combined vector of
CDE, DDE and SHE states in equation 4.49. Then the definition of CD can be used to
calculate CΨ, and the reader is referred to the previous section for this.

Having presented the tools and theory necessary for applying the new combined method
to the mass spring damper system, the next section presents various examples similar
to the ones presented for both Kalman and Bertram’s and Araki and Yamamaoto’s
methods.

Various Examples4.4.1
This section presents two examples of applying the new unified non-minimal realisation
method to the MSD system. The application of the method to single rate systems is now
considered trivial, why only the two multirate examples are considered.
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Multirate System with Similar Sampling Rates:
The system under consideration is illustrated in figure 4.17 and is again the MSD system,
but to illustrate how discrete elements may be included, discrete first order low-pass filters
have been placed on the inputs. Such filters could emulate the discrete effects of a digital
controller or discrete chamber activations as is the case in a DFPT. The filters both have
break frequencies of 1000Hz and are for lower frequencies defined to have unity gain.
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Fig. 4.17: Block diagram representation of the physical open-loop MSD system with discrete input
dynamics, with sampled outputs and zero-order held analog plant inputs operated at multiple
rates.

The first system input is updated at a rate of T1 = T/2 = 0.15 s and the corresponding
filter also updates with the same rate. Similarly, the second input is updated at a rate
of T2 = T/3 = 0.1 s, with the second filter also operating at this rate. The BTP of this
sampling system is then T = 0.3 s, and the STP is T0 = 0.05 s, and with N = 6, N1 = 2
and N2 = 3.

To derive a model of the system, a four step procedure, similar to the one defined by
Kalman and Bertram, is defined:

1. Defining the state variables.
2. Calculating the various transition matrices (Ψ,D,S).
3. Starting from kT , then deriving transition equations for the sampling operations

and sample-free time-intervals for a BTP.
4. Combining and simplifying transition equations to obtain a time-invariant model.

Step 1: For the system depicted in figure 4.17, there are γ = 4 CDE states, δ = 2 DDE
states and σ = 2 SHE states. From the figure, it can be seen that the DDE states are
defined as being equal to the output of the filters, or equivalently the input of the hold
circuit. Similarly, the SHE states are defined as being equal to the output of the hold
circuit. The combined vector of all the system states is exactly the same as defined in
equation 4.49. Thus the doubly expanded 48×1-dimensional state vector can be defined:

x(k) =



x1(k)
x2(k)
x3(k)
x4(k)
x5(k)
x6(k)

 =



xcomb((k − 1)T + T0)
xcomb((k − 1)T + 2T0)
xcomb((k − 1)T + 3T0)
xcomb((k − 1)T + 4T0)
xcomb((k − 1)T + 5T0)

xcomb(kT )

 (4.54)
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Step 2: For the CDE, the 8 × 8 transition matrix is as defined by equation 4.6, with
block matrix entries as defined in equation 4.5, and is thus not repeated here.

The transition matrices associated with the hold elements can now be defined. The in-
puts to the hold elements are simply the discrete filter outputs, and thus when defining
the transition matrix S7, and remembering that all matrices are simply modified iden-
tity matrices, only the 5th column in the 7th row will have an entry other than zero,
corresponding to the state of the first filter. The S8-matrix is constructed in the same
fashion, but with the 6th column in the 8th row:

S7 =


I 0 0

0 I 0

0
1 0 0 0
0 0 0 1

 S8 =


I 0 0

0 I 0

0
0 0 1 0
0 1 0 0

 (4.55)

To define the transition matrices related to the discrete low-pass filters, the governing
equation for the filter must be known. Thus the first order difference equation of the
form is presented:

xdi(k + 1) = −Dxdi(k) + d udi(k) (4.56)

where the coefficients D and d together determine the gain and break frequency of the
filter, which are chosen such that the filter has unity gain and attenuates signals over
1000Hz. It may be seen that the filter depends only on its own internal state, and thus
the the matrices D5 and D6 may be defined:

D5 =


I 0 0

0
−D1 0

0
0 1

0 0 I

 D6 =


I 0 0

0
1 0

0
0 −D2

0 0 I

 (4.57)

Regarding the inputs acting through the filters, the vectors d5 and d6 may be defined:

d5 =


0

d1

0

0

 d6 =


0

0
d2

0

 (4.58)

This definition of the d input matrices is slightly different from the one used in Kalman
and Bertram’s method. Having rigorously used the definitions of Kalman and Bertram,
the matrices should have had two columns, but due to utilising the input vector definition
of Araki and Yamamoto, it is not possible to always use vector-matrix products, since
they do not consider both inputs at all sampling instances, why d is here defined as a
vector.

Step 3: For this step the top part of figure 4.18, which illustrates the real progression
of system states, is presented. By use of the figure, the individual Ψl matrices and
entries of theHΨ matrix may be derived by considering the transitions from x(k) to the
l = {1, . . . , N} xl(k + 1) vectors.
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Thus to define x1(k + 1): Examining the top part of figure 4.18 and examning the open
interval [kT kT + T0[, corresponding to examining the interval [x6(k) x1(k + 1)[ for
the model state progression in the lower part of the figure. It may be seen that the first
state transition is related to the DDE, where sampling new inputs and calculating new
outputs occurs (multiplication ofD and d to x6(k) and u(k) respectively). Subsequently
the sampling and holding of the DDE outputs by the SHEs occurs (multiplication by S),
and finally a continuous CDE state transition of length T0 happens (multiplication by
Φ(T0)):

x1(k + 1)= Φ(T0)S8S7D6D5︸ ︷︷ ︸
Ψ1

x6(k) + Φ(T0)S7d5︸ ︷︷ ︸
v1

u1(kT ) + Φ(T0)S8d6︸ ︷︷ ︸
v2

u2(kT ) (4.59a)
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Similarly for defining x2(k + 1), it may be seen that in addition to all the transitions
occuring for x1(k + 1) a continuous CDE transition of length T0 happens. Thus all the
previous transitions (contained in Ψ1) and inputs (contained in v1 and v2) are carried
over and finally multiplied by Φ(T0):

x2(k + 1)= Φ(T0)Ψ1︸ ︷︷ ︸
Ψ2

x6(k) + Φ(T0)v1︸ ︷︷ ︸
v3

u1(kT ) + Φ(T0)v2︸ ︷︷ ︸
v4

u2(kT ) (4.59b)

For x3(k + 1) all the previous transitions are again carried over. Thus starting from
where x2(k + 1) ended, it may be seen that the next state update is that of x6 = xd2

(multiplication by D6), with a subsequent update of x8 = xs2 (multiplication by S8),
and finally concluded by a continuous CDE transition of length T0. Furthermore, a new
input is also sampled, why the input u2(kT + 2T0) is introduced:

x3(k + 1)=

Ψ3︷ ︸︸ ︷
Φ(T0)S8D6Ψ2 x6(k) +

v5︷ ︸︸ ︷
Φ(T0)v3 u1(kT ) +

v6︷ ︸︸ ︷
Φ(T0)S8D6v4 u2(kT ) (4.59c)

+ Φ(T0)S8d6︸ ︷︷ ︸
v2

u2(kT+2T0)

The approach for defining x4(k + 1), x5(k + 1) and x6(k + 1) is exactly the same, why
it is not explained, and only the final result is presented:

x4(k + 1)=

Ψ4︷ ︸︸ ︷
Φ(T0)S7D5Ψ3 x6(k) +

v7︷ ︸︸ ︷
Φ(T0)S7D5v5 u1(kT ) +

v8︷ ︸︸ ︷
Φ(T0)v6 u2(kT ) (4.59d)

+ Φ(T0)v2︸ ︷︷ ︸
v4

u2(kT+2T0) + Φ(T0)S7d5︸ ︷︷ ︸
v1

u1(kT+3T0)

x5(k + 1)=

Ψ5︷ ︸︸ ︷
Φ(T0)S8D6Ψ4 x6(k) +

v9︷ ︸︸ ︷
Φ(T0)v7 u1(kT ) +

v10︷ ︸︸ ︷
Φ(T0)S8D6v8 u2(kT ) (4.59e)

+ Φ(T0)S8D6v4︸ ︷︷ ︸
v6

u2(kT + 2T0) + Φ(T0)v1︸ ︷︷ ︸
v3

u1(kT + 3T0) + Φ(T0)S8d6︸ ︷︷ ︸
v2

u2(kT + 4T0)

x6(k + 1)=

Ψ6︷ ︸︸ ︷
Φ(T0)Ψ5 x6(k) +

v11︷ ︸︸ ︷
Φ(T0)v9 u1(kT ) +

v12︷ ︸︸ ︷
Φ(T0)v10 u2(kT ) (4.59f)

+ Φ(T0)v6︸ ︷︷ ︸
v8

u2(kT + 2T0) + Φ(T0)v3︸ ︷︷ ︸
v5

u1(kT + 3T0) + Φ(T0)v2︸ ︷︷ ︸
v4

u2(kT + 4T0)

Deriving the model state transitions in this fashion results in the lower part of figure 4.18.

Step 4: The next step is to combine all the individual transition equations presented
in equation 4.59, into a single matrix-vector representation. Having already defined the
state vector in equation 4.54, a matrix- vector form may be readily obtained as:


x1(k + 1)
x2(k + 1)
x3(k + 1)
x4(k + 1)
x5(k + 1)
x6(k + 1)


︸ ︷︷ ︸

x(k+1)

=

 0

Ψ1

Ψ2

Ψ3

Ψ4

Ψ5

Ψ6


︸ ︷︷ ︸

GΨ


x1(k)
x2(k)
x3(k)
x4(k)
x5(k)
x6(k)


︸ ︷︷ ︸

x(k)

+



HΨ
1︷ ︸︸ ︷

v1 0

HΨ
2︷ ︸︸ ︷

v2 0 0
v3 0 v4 0 0
v5 0 v6 v2 0
v7 v1 v8 v4 0
v9 v3 v10 v6 v2
v11 v5 v12 v8 v4


︸ ︷︷ ︸

HΨ


u1(kT )

u1(kT + 3T0)
u2(kT )

u2(kT + 2T0)
u2(kT + 4T0)


︸ ︷︷ ︸

u(k)

(4.60a)
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where GΨ is a 48× 48 matrix, and HΨ is a 48× (2 + 3) matrix, wherein the left-right
separataion is in accordance with the sorting of the first and second input. The output
vector is given by:

y1(kT )
y1(kT + 3T0)

y2(kT )
y2(kT + 2T0)
y2(kT + 4T0)


︸ ︷︷ ︸

y(k)

=


0 0 0 0 0 c1
0 0 c1 0 0 0
0 0 0 0 0 c2
0 c2 0 0 0 0
0 0 0 c2 0 0


︸ ︷︷ ︸

CΨ

x(k) (4.60b)

where c1 and c2 are the first and second row of a C-matrix, which selects the two first
entries from a vector defined in accordance with equation 4.49.

As done previously, a Simulink implementation of the system represented by figure 4.17
has been made, and both the system and model represented by equation 4.60 has been
simulated. The results of these simulations are presented in figure 4.19.
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Fig. 4.19: Simulation results for a MATLAB Simulink implementation of figure 4.17 and for the
model represented by equation 4.60, both utilising similar but different update rates.
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Based on the second and third subplot it is evident that like Araki and Yamamoto’s
method, the new method yields a state-space model, which describes the positions of the
two carts at two different rates. The fourth subplot illustrates the DDE and SHE states,
where the form of the state progression illustrated in the bottom part of figure 4.18 is
repeated again, wherein the states are calculated for every STP, but only updated at the
correct rates.

This concludes the example regarding the application of the new unified non-minimal
realisation method to the multirate mass spring damper MIMO system with discrete
input dynamics. Again a few remarks on the method are made:

Remark 4.4.A: The new unified non-minimal realisation method can successfully des-
cribe a multirate MIMO system including continuous, discrete and sample-and-hold
elements operating at various rates. Furthermore, the presented model structure
is time-invariant and able to describe both open- and closed-loop system configu-
rations.

Remark 4.4.B: This new model structure results in the DDE and SHE states attaining
values for every step of the STP within the BTP, which is technically not correct
when considering that the real DDE states are only available at rates of T1 and
T2, as illustrated in the top part of figure 4.18. However, even though the model
calculates these extra intermediate states, they are held constant, and only updated
at the correct rates.

Remark 4.4.C: The multirate sample-and-hold elements could also be considered as a
single element with periodically varying non-uniform rate. Thus the generality of
the method with regard to describing any kind of sampling system is not lost.

Remark 4.4.D: The bottom block row in the model represented by equation 4.60a,
which calculates the BTP to BTP or kT → (k + 1)T transition, and not the
intermediate steps, is the same as the model obtained by Kalman and Bertram’s
method.

Remark 4.4.E: The remarks regarding the increased number of inputs and outputs and
usefulness of the model as a simulation made for Araki and Yamamoto’s method
also apply to this new unified non-minimal realisation, but are not repeated here.

The next task is to investigate, how the unified non-minimal realisation method handles
systems wherein the sampling and update rates are vastly different.

Multirate System with Vastly Different Sampling Rates:
This example applies the new unified non-minimal realisation to the MSD system with
discrete input dynamics, which is depicted in figure 4.17, where the vastly different
sampling rates correspond to the activations rates in the 5.4MW DFPT. Thus, the rate
of the first input and associated discrete filter is T1 = 0.15 s while the sampling time
for the second input is T2 = 0.0039 s. This yields a BTP of T = 3.15 s while the STP
becomes T0 = 1.875× 10−4 s. Then, N = 16800, N1 = 21 and N2 = 800.

As N is very high, all state vectors and system matrices will have very large dimensions.
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As an example, the state vector x(k) will be N n × 1 = 134200 × 1-dimensional. Thus,
none of the state vectors or matrices which form the state-space model are shown.

Similar to the previous examples, a comparison is made of the simulation results from
the Simulink model and the discrete state-space model, and the results is presented in
figure 4.20.
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Fig. 4.20: Simulation results for a MATLAB Simulink implementation of figure 4.17 and for the
model represented by equation 4.60, both utilising vastly different update rates.

The results are very similar to those presented in the previous example, it may, however,
now be seen that this model formulation is able to correctly simulate brief transient
events, even when the BTP becomes large.

This generally concludes the application of the new unified non-minimal realisation to
the two different examples and thus also concludes the development of a method able to
produce a model of a multirate sampled system. To conclude the section and chapter a
few general remarks on the method and its application to the DFPT are made:

Remark 4.4.F: The new unified non-minimal realisation method produces a discrete-
time state-space model, which has the following properties:
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• Linear time-invariant system descriptions for both SISO and MIMO systems.
• Handles both open- and closed-loop configurations.
• Any combination of discrete and continuous system elements can be modelled.
• The discrete and sample-and-hold elements can operate with conventional, non-

uniform or non-synchronous update rates, or any combination of these, although
the rate must be periodic if the final model should have a finite form.

• System transient events can be correctly simulated even when the BTP is significant
longer compared to system time constants, unlike Kalman and Bertram’s method.

• The number of states is greatly increased by the lifting approach, and can cause
computational issues, if intelligent algorithms are not utilised.

The method generally appears a suitable candidate for modelling the DFPT, with none
of the obvious disadvantages of either Kalman and Bertram’s or Araki and Yamamoto’s
methods, why it is decided to proceed to modelling the DFPT. The challenge of an
increased number of inputs and outputs still remains, and will be further considered in
chapter 6. Since the unified non-minimal realisation method will be used in subsequent
chapters, the abbreviation UNMR is introduced. Before the developed UNMR method
is utilised for obtaining a multirate model of the DFPT, an algorithm which can be used
for software implementation to utilise the UNMR method is presented.

Unified Non-minimal Realiasation Algorithm4.4.2
It is the intention that the developed unified non-minimal realisation method can be
applied to systems with similar as well as vastly different sampling rates. Therefore
a calculation algorithm, suitable for software implementation in e.g. MATLAB is be
developed. Ideally such an algorithm should be defined in the most general form, meaning
it should be applicable for multirate systems with any number of inputs, outputs and
sampling rates. To develop such an algorithm is an extensive and time consuming process
and may therefore also be difficult to understand and apply. Since the intention of this
section is to present an algorithm which potential readers of this thesis relatively easy
can understand and more importantly apply, it is chosen to present a simplified version
of the more general algorithm, which only is applicable for a limited range of multirate
systems. This includes systems with i = 2 inputs, o = 2 outputs, and p = 2 sampling
rates/periods.

It should be noted that many different kinds of algorithms could be developed to calculate
the required data for formulating a LTI state-space representation of the form utilised
in the UNMR method. Hence, the algorithm presented in this section is merely one of
many possible approaches why it may not be of the most compact form nor the most
computationally efficient. However, the algorithm has during this thesis proven to work
successfully, which is deemed to be sufficient and further work used on improvements is
therefore considered needless.

In contrast to the previous parts of this chapter, where relatively compact mathematical
notations have been utilised when for instance a if-statement is presented, the algorithm
presented in this section will use notations strongly inspired from MATLAB-code lan-
guage. The use of such notations should provide the reader with a more foreseeable
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algorithm, which is intended to make the algorithm easier to understand and apply.
Prior to the presentation of the algorithm some of these utilised notations are briefly
described:

• When a zero-matrix, M0, or an identity-matrix, M eye, of the dimensions [m × n]
is defined, it is written as:

M0 = 0(m,n) M eye = I(m,n)

• When the mth row, the nth column, or the entry of the mth row and the nth column
in a matrix, M , must be selected, it is done as:

M(m, :) M(:, n) M(m,n)

• When a for-loop going from h = 1 to h = k with steps of size j it is written as:
for h = 1 : j : k

Intended math− operation
end

In addition to the notations defined above, the algorithm for the UNMR method make
use of the notations defined in sections 4.2 to 4.4. The algorithm is presented in a number
of steps and remarks related to the individual steps might be included. This is done in
the aim of providing the reader with additional information to why the related step is
performed. The algorithm steps are defined as followed:

Algorithm Step 1 - Defining Sampling Period & Numbers:
Define the system parameters Th, T , T0, Nh, N and lh. Note that h = {1, ..., p}.

Algorithm Step 2 - Transition Matrices:
1. Define the length, n, of the state vector xcomb.
2. Define the transition matrix, Φ(t), and evaluate at t = T0.
3. For each sampling rate, Th, for h = {1, ..., p}, define the transition matrices Dh

and Sh.
4. For each input, uh, for h = {1, ..., i}, define either dh or sh depending on the

specific system. Furthermore for the use in proceeding calculations define the input
transition vector, uh, defined as:

if dh 6= 0
uh = dh

else
uh = sh

end
5. Define the output transition matrix, C, of size [o× n] for the state vector, xcomb.

Algorithm Step 3 - Transition Action Matrix:
Define a transition action matrix, Maction = 0, of size [p×N ], which describes at which
multiples of T0 a Th-state transitions can occur. Instances at which state transition
occurs are represented by a 1-entry in Maction, and are defined as:

for h = 1 : p
for j = 1 : lh : N

Maction(h, j) = 1
end

end
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Remark 4.4.G: The four step procedure for the UNMRmethod presented in section 4.4.1
does not define a transition action matrix. This is because the information provided
by Maction is contained in the model state progression figures presented during this
chapter, e.g figure 4.14. However, when the sampling rates of a system becomes vastly
different, it is inconvenient to make a state progressions figure and furthermore such
a figure cannot be utilised in a software algorithm, why the alternative transition
action matrix, Maction, is defined.

Algorithm Step 4 - Intermediate State & Input Matrices:
Define an intermediate state matrix ,Ψk, for each T0-transition in T (hence k = {1, ..., N}):

for k = 1 : 1 : N
Ψk = I(n, n)

end

For the lifted input vector define a intermediate input matrix, V k, of size [n × l1 + l2],
for each T0-transition in T :

for k = 1 : 1 : N
V k = 0(n, l1 + l2)

end

The intermediate input matrix, V k, is hereafter changed to include columns of 1-entries
corresponding to when a lifted input, e.g uh(kT +Tj) for h = {1, ..., i} and j = {1, ..., p},
starts to affect the state vector xk:

h = 0
for j = 1 : 1 : p

for k = 1 : lj : N
h = h+ 1
V k(:, h) = 1(n, 1)

end
end

Remark 4.4.H: The intermediate state and input matrices will later in this algorithm
include the same information as the matrix Ψ and the vectors v in the T0-transition
equation presented in step 3 in section 4.4. E.g. the Ψ1 matrix in equation 4.59a will
simply be denoted as Ψ1 in the algorithm, and v1 and v2 will in addition to some
zero-columns be included in the matrix, V 1, in the algorithm.

Algorithm Step 5 - Calculating Transition Equations Data
Calculate the data contained in the T0-transition equations by:

for h = 1 : 1 : N
if Maction(:, h) =

[
1 1

]ᵀ
Ψh = Φ(T0)S2S1D2D1Ψh

for j = 1 : 1 : l1 + l2
if V h(:, j) = 1(N, 1)

if j ≤ N1

V h(:, j) = Φ(T0)u1

else
V h(:, j) = Φ(T0)u2

end
end

end
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elseif Maction(:, h) =
[
1 0

]ᵀ
Ψh = Φ(T0)S1D1Ψh−1

for j = 1 : 1 : l1 + l2
if V h(:, j) = 1(N, 1)

V h(:, j) = Φ(T0)u1V h(:, j)
elseif j > N1

V h(:, j) = Φ(T0)V h−1(:, j)
else

V h(:, j) = Φ(T0)u1V h−1(:, j)
end

end
end

elseif Maction(:, h) =
[
0 1

]ᵀ
Ψh = Φ(T0)S2D2Ψh−1

for j = 1 : 1 : l1 + l2
if V h(:, j) = 1(N, 1)

V h(:, j) = Φ(T0)u2V h(:, j)
elseif j > N1

V h(:, j) = Φ(T0)u2V h−1(:, j)
else

V h(:, j) = Φ(T0)V h−1(:, j)
end

end
end

else
Ψh = Φ(T0)Ψh−1

for j = 1 : 1 : l1 + l2
V h(:, j) = Φ(T0)V h−1(:, j)

end
end

Remark 4.4.I: From the algorithm used to calculate the data for the T0-transition it
should be apparent, why the definitions presented in algorithm step 2-4 have been
made. More precisely the need for uh for h = {1, ..., i},Maction and the preallocation
of Ψj and V j for j = {1, ..., N}.

Algorithm Step 6 - LTI Matrix-vector Representation
By the use of the data contained in the T0-transition (Ψi and V i), the state transition
matrix, GΨ, the input transition matrix, HΨ and the output transition matrix, CΨ,
can be formulated.
1. The state transition matrix is calculated by defining a temporary matrix, Ψtemp,

of size [Nn× n] containing the data of Ψh for h = {1, ..., N}:
h = 0
for j = 1 : 1 : N

Ψtemp(h+ 1 : h+ n, n) = Ψj

h = h+ n
end

GΨ =
[
0(Nn,Nn− n) Ψtemp

]
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2. Input transition matrix:
h = 0
for j = 1 : 1 : N

HΨ(h+ 1 : h+ n, n) = V j

h = h+ n
end

3. The output transition matrix is defined by initially preallocating CΨ to be a zero-
matrix of size [l1 + l2 × Nn], and hereafter the entrance of CΨ is changed in
accordance to the following algorithm:

h = 0
for j = 1 : 1 : p

if j = 1
for k = 1 : 1 : N

for m = 0 : 1 : Nj − 1
if (m = 0 & k = N) || mlj = k

CΨ(m+ 1, h : h+ n) = C(h, :)
else

CΨ(m+ 1, h : h+ n) = 0(1, n)
end

end
h = h+ n

end
h = 0

else

for k = 1 : 1 : N
for m = 0 : 1 : Nj − 1

if (m = 0 & k = N) || mlj = k

CΨ(m+ l1, h : h+ n) = C(h, :)
else

CΨ(m+ l1, h : h+ n) = 0(1, n)
end

end
h = h+ n

end
h = 0

end
end

Remark 4.4.J: The notation & and || used in the if-statements presented in the calcu-
lations of the output transition matrix, CΨ, simply means and and or respectively.

This concludes the presentation of the software algorithm for the UNMR method. The
next chapter concerns the development of a DFPT multirate model and the UNMR
method will along with this sections presented algorithm be part of this development.
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CHAPTER 5
Multirate DFPT
Modelling
This chapter presents how a linear multirate model of the 10 kW DFPT is derived. The
chapter starts with a presentation of various continuous and discrete linear models which
each represents different subelements of the DFPT. Based on these models, the developed
unified non-minimal realisation method will be applied to create a linear multirate DFPT
model. The chapter ends with a validation of the derived model and comments upon what
challenges must be addressed before a 5.4MW DFPT multirate model can be derived.

DFPT Modelling Preface:
The problem this thesis seeks to answer is how to develop a LTI multirate model of a
utility-scale WT DFPT such that conventional analysis and control design tools can be
applied. The problem of obtaining a LTI multirate DFPT model has been divided into
three subtasks which are presented in section 1.5.1. These include how to linearly model
a full stroke operated DDM, how to address the challenge of having a non-uniform sample
rate in the time-domain and lastly how to develop a linear multirate model.

Each subtask is studied and solved individually. A linear model of a DDM, has been
studied by Johansen et al. (2016) and Pedersen et al. (2016a) and a method for handling
non-uniform sampling rate was proposed in unpublished work by Pedersen et al. (2016a)
and utilised by the authors of this thesis in Junker et al. (2016). The third and last
subtask is studied in chapter 4 where the UNMR method is developed and shown to
successfully model the multirate MSD system while fulfilling all the desired characterisi-
tics. The aim of this chapter is therefore to combine the solutions from the three subtasks
such that a linear multirate model of a DFPT can be formulated. To investigate this, the
fictive 10 kW DFPT, which is introduced exclusively as a DFPT system used to evaluate
the applicability of methods onto a DFPT, is utilised. The 10 kW DFPT is a highly
simplified version of the 5.4 MW DFPT used for a utility-scale WT. This significantly
eases the application and evaluation of various method. The main specifications of the
fictive 10 kW DFPT is reiterated here in order to ease the understanding of the linear
multirate model derivation of the 10 kW DFPT presented in this chapter.

The 10 kW DFPT consists of two DDMs, a DD pump and motor, connected by a high
and low pressure line. The pressure in the low pressure line is assumed constant. The
DD pump contains one pressure chamber which can be discretely activated twice per
pump shaft rotation (full stroke operation), due to the lobed pump shaft geometry.
The DD motor contains three pressure chambers where each chamber can be discretely
activated once per motor shaft rotation (full stroke operation). The motor is assumed to
be operated at a constant speed of 1500 rpm and the pump shaft speed is variable but
with a rated value equal to 1500 rpm. The following section presents the approach for
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applying the solutions of the subtasks to the 10 kW DFPT system.

Multirate Modelling Approach5.1
Before the UNMR method can be applied to obtain a multirate 10 kW DFPT model,
some preliminary considerations and decisions are made. These are presented in the
following.

The UNMR method offers an approach for creating a linear multirate model of a system
which elements can be described by a combination of continuous and discrete linear
models. This method was developed based on the MSD system where linear descriptions
of the system elements are well known. However, for the DFPT, linear descriptions of
the different system elements are no longer well known why linear descriptions of the
DFPT’s elements must be obtained prior to applying the UNMR method.

There is no specific requirements to which type of linear model can be used to describe
the system elements in the DFPT, other than being time-invariant and that the chosen
models should be a reasonable approximation of the true system dynamics. Thus several
different types and combinations of linear models might be utilised. The choice of which
types of models are chosen to represent the different system elements in the DFPT is
depicted in figure 5.1. The figure is made to be a linear equivalent representation of
the non-linear simulation model of the DFPT presented in figure 3.1. In addition to
presenting the different types of linear models which will be utilised to make a multirate
DFPT model, figure 5.1 furthermore aims to present how the different system elements
interact with each other.
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Fig. 5.1: Linear open loop multirate DFPT model described in the spatial-domain, which is valid
for both 10 kW DFPT and 5.4MW DFPT. Each block in the figure represents a continuous or
a discrete linear state space representation of a system element in the DFPT. Inputs for the
multirate model is the rotor torque, τr, and the displacement references αp

∗ and αm
∗ for the

pump and motor, respectively. The notation @θ1 and @θ2 specifies the sampling rate of the
pump and motor, respectively.
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A few general remarks can be made to figure 5.1.

Remark 5.1.A: All models are linear as this is a necessity in order to apply the UNMR
method. As a consequence the NREL turbine model, which describes a nonlinear
relation between the exogenous wind input, v, and the rotor torque, τr has been
omitted. Instead the rotor torque, τr, is simply seen as a disturbance input to the
rotor shaft dynamics.

Remark 5.1.B: The derived multirate DFPT model is intended to be used for a de-
terministic control approach. Thus, noise/disturbance terms cannot be included in
the linear descriptions of the respective system elements, and when such terms are
present they will therefore be neglected before the UNMR method is applied.

Remark 5.1.C: As presented in section 1.5.1 the challenge of non-uniform time-domain
activation rate of a variable-speed DDM may be solved by considering the machine
in the spatial angle-domain, where the angle between successive chamber activati-
ons is constant. Therefore all linear models presented in figure 5.1 are either derived
in the spatial angle-domain or transformed from the time-domain. This transfor-
mation from the time-domain to the spatial angle-domain means that the linear
multirate model which is developed in this chapter will be on an angle-invariant
form instead of time-invariant.

Remark 5.1.D: The challenge of choosing appropriate linear representations of the dif-
ferent system elements is limited to the DDMs of the pump and motor, as ap-
proaches for a linear descriptions of the remaining system elements (Newtons’s II
law, continuity equation and ∆Σ-modulators) are considered well established. It
is chosen to use a discrete convolution sum model to describe the dynamics of the
DDMs.

Linear DFPT System Elements:
In addition to the general remarks made to the multirate DFPT model, some elaborating
comments can be made to the individual system elements depicted in figure 5.1:

DD Pump: The DD pump is operated using full stroke operation, which effectively
means that the pump displacement only can be changed at specific pump angles
(piston positions). These positions are given by the angular distance between
cylinder chambers denoted by θ1. To include this vital characteristic, a discrete
approximation with a sampling interval of θ1 is chosen to describe the pump flow,
Qp, and pump torque, τp in the spatial angle-domain. The notation @θ1 presented
in figure 5.1 simply means that the discrete model uses the sampling interval θ1.
The discrete model of the pump is based on the convolution sum model of impulse
responses proposed by Johansen et al. (2016), which in Junker et al. (2016) has
been successfully utilised by the authors for describing the pump flow and torque.

DD Motor: Like for the DD pump, the DD motor is operated by the use of full stroke
operation, why a similar discrete modelling approach is chosen. In this case the
sampling interval is denoted θ2 and corresponds to the angular distance between
cylinders in the motor.
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∆Σ-Modulator: These system elements are included in the multirate DFPT model
in order to facilitate the use of conventional control structures where the control
output will be a non-binary displacement reference, e.g αp

∗ for the pump. The
purpose of the ∆Σ-modulator is thus to convert a non-binary displacement input
into a binary chamber activation sequence, which can be given as an input to one
of the DDMs. The dynamics of a ∆Σ-modulator are mathematically described by
equations 3.19 and 3.20, which include a discrete integrator and a non-linear quan-
tizer. The discrete representation is in this chapter linearised, and the conventional
sampling time of such a discrete model is replaced with the sampling rate θ1 or θ2

depending on which DDM the ∆Σ-modulator is connected to.

High Pressure Line: This dynamic element is modelled by the continuity equation,
which is represented in the time-domain. Thus the equation is transformed into
the spatial domain and furthermore linearised in order to be implemented in the
multirate DFPT model.

Rotor Shaft Dynamics: The rotational analogue to Newton’s II law is used to describe
the dynamics of the rotor shaft. Similar to the HPL, the dynamics of the rotor are
transformed into the spatial-domain and afterwards linearised in order to have a
feasible representation for the multirate DFPT model.

ZOH Elements: The ZOH elements in figure 5.1 are essential when DDE and CDE
must be connected and therefore a zero-order-hold approximation will be applied
for the DFPT’s flow, torque and pressure dynamics.

Multirate DFPT Modelling Procedure:
Having defined the types of linear models needed to describe the dynamics of the DFPT,
a procedure for deriving the multirate DFPT model is presented. The procedure further-
more serves as a guideline for how the remainder of this chapter progresses. The bolded
headlines depicts the remaining sections of this chapter, and the elaborating text beneath
describes the content of each section:

1. Linear System Element Representation: Deriving linear representations of the
DFPT elements presented in figure 5.1. These will be presented in a generalised
form, meaning that the linear representations will be valid for both the 5.4MW
and 10 kW DFPT.

• The linear models of the DDMs will initially be derived for the 5.4MWDFPT.
This is deemed to provide the reader with a better understanding of how
the convolution sum model works including its applicability and limitations.
However when the 10 kW multirate model later is evaluated, associated model
parameters will be presented.

• The general form of the remaining linear system elements included in the
multirate DFPT model is identical for both the 5.4MW and 10 kW power
rating.
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2. Application of the unified non-minimal realisation method:

Generalised DFPT Modelling:
Step 1: Defining the state variables. This is done in the most generalised
form when possible, thus being applicable for both 5.4MW and 10 kW DFPT.
Step 2: Calculating the various transition matrices (Ψ,D,S), once again in
a generalised form when possible.

10 kW DFPT Modelling:
Step 3: Based on the sampling rates of the 10 kW DFPT and starting from
kT , the transition equations are derived for the sampling operations and
sample-free angle-intervals for an entire BTP.
Step 4: Combining and simplifying transition equations to obtain a linear
angle-domain and angle-invariant model of the 10 kW DFPT.

3. 10 kW Model Validation: Validate the derived 10 kWmultirate DFPTmodel using
the associated simulation model derived in chapter 3. Establish if the UNMR met-
hod is applicable for the 5.4MW DFPT and identify the tasks which must be
addressed prior to the potential development of a 5.4MW multirate DFPT model.

This concludes the consideration made prior to the development of the of a multirate
DFPT model and the next section will proceed with deriving linear system element
representations.

Linear System Element Representations5.2
The content of this section takes its starting point in some of the linear models presented
in Junker et al. (2016). The work of this section, while using the same type of models
as presented in Junker et al. (2016), will generally differ in the aspect that the purpose
is now to carry out the necessary groundwork to later derive a MIMO multirate model,
whereas in the referenced work the goal was to create two decentralised SISO models.

The models of the system elements will next be presented, starting with the discrete
representations of the ∆Σ-modulators and DDMs continued by the continuous represen-
tations of the rotor dynamics and the HPL pressure dynamics.

Linear ∆Σ-Modulater Representation5.2.1
The ∆Σ-modulator is used for transforming a non-binary displacement reference to a
bianry one. A linear representation of the ∆Σ-modulator is made in accordance with
Reiss (2008), and depicted in figure 5.2, where the ∆Σ-modulator connected to the DD
pump is shown. Reiss (2008) proposes to view the first order non-linear quatizer as a
noise term, n∆Σ. This description may be used, as the linear binary output, αp, will
contain the average of the input, αp

∗, in addition to a bit stream, n∆Σ, considered as
noise.
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Fig. 5.2: Linear representation of a first order ∆Σ-modulator for the DD pump. Inspired by Reiss
(2008).

From figure 5.2 two difference equations describing the linear dynamics of the ∆Σ-
modulator can be derived:

x∆Σp(k + 1) = x∆Σp(k) + αp
∗(k)− αp(k) (5.1a)

αp(k) = x∆Σp(k) + n∆Σ(k) (5.1b)

Equation 5.1b can be viewed as an output equation, and by the definition of equation 5.1a,
this output is described by a single sample delayed input and the quantization error
represented by a digital differentiated noise term.

By defining a state variable, x∆Σp , and inserting equation 5.1b into equation 5.1a a
discrete state-space representation of the ∆Σ-modulator can be formulated as:

x∆Σp(k + 1) =

G∆Σp︷︸︸︷[
0
]
x∆Σp(k) +

H∆Σp︷︸︸︷[
1
] u∆Σp [k]︷ ︸︸ ︷
αp
∗(k)−

[
1
]
n∆Σp(k) (5.2a)

y∆Σp(k) = αp(k) =
[
1
]︸︷︷︸

C∆Σp

x∆Σp(k) +
[
1
]
n∆Σp(k) (5.2b)

An identical approach can used to derive the ∆Σ-modulator for the DD motor, where
the subscript m is used instead of p.

Remark 5.2.A: To accurately describe the noise term, n∆Σ, a non-linear description
must be utilised. As non-linear representations cannot be accommodated when the
UNMR method must be applied, and furthermore because it is the intend to apply
deterministic control, the noise term in equations 5.2a and 5.2b will be omitted in
the future model development.

Linear DDM Representations5.2.2
As evident from the previous discussion and with reference to figure 5.1, linear descrip-
tions of the DDM flows and torques are necessary to form a multirate DFPT model.
Such descriptions may be derived by considering the volumetric displacement of a single
pressure chamber as proposed in Johansen et al. (2016). Then by considering the flow
produced by a single pressure chamber as the discrete impulse response of an entire DDM,
a linear description of the DDM flow may be obtained. In the following the proposed
approach is applied to both the DD pump and DD motor. The derivation of linear DDM
models are based on the 5.4 MW DFPT as the high number of chambers in its DDMs
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significantly eases the understanding of how these are linearly modelled. The derived
type of linear DDM model are however also utilised for modelling the DDMs in the 10
kW DFPT.

Pump Flow Response5.2.2.A

Figure 5.3 illustrates the normalised volumetric displacement of a single pressure chamber
in the DD pump of the 5.4 MWDFPT. The pumping stroke is initiated by actively closing
the LPV at TDC (maximum chamber volume). This pressurises the fluid in the chamber
until the pressure is above pH which causes the HPV to passively open at θHPV, and the
pump starts producing flow. As the piston passes BDC (minimum chamber volume), the
chamber pressure starts to decrease and at a pressure level below pH, the pumping stroke
ends as the HPV is passively closed. Subsequently, at a chamber pressure below pL the
LPV passively opens.
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Fig. 5.3: Normalised volumetric displacement of a single pump pressure chamber. The upper
x-axis denotes the angular shaft position, and the bottom x-axis illustrates the corresponding
sampling instances for the 5.4 MW DFPT (Only every second instance is numbered).

The pumping stroke interval may be subdivided into a number of smaller intervals of
width equal to the angle between subsequent chambers, and thus the flow through the
HPV at any discrete instant k within the pumping stroke may be approximated by:

QHPV(k) ≈ Vpc(θ(k + 1))− Vpc(θ(k))

θ1
=
xp,strokeApp

θ1︸ ︷︷ ︸
kQp

∆Ṽpc(k) (5.3)

where Ṽpc(k) is the normalised displacement fraction at the kth position, the product
xp,strokeApp is the maximum volumetric displacement of a single chamber, and θ1 is the
distance between sampling instances. These discrete instances are aligned with physical
location of the pressure chambers, and correspond to the points at which a decision to
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initiate a pumping stroke for a single chamber can be made, and the distance between
them is given by:

θ1 =
2π

NpcNcrNl
(5.4)

Remark 5.2.B: The flow approximation of equation 5.3 effectively assumes that fluid
compressibility effects are negligible, such that the chamber pressure is constant,
which it is not.

The normalised displacement fractions may be calculated by considering the volume
change between sampling instances:

∆Ṽpc(k) =


0 for θ(k), θ(k + 1) /∈ [θHPV; 2π

16 ]

Ṽpc(θ(k + 1))− Ṽpc(θHPV) for θ(k) < θHPV < θ(k + 1)

Ṽpc(θ(k + 1))− Ṽpc(θ(k)) for θ(k), θ(k + 1) ∈ [θHPV; 2π
16 ]

Ṽpc(
2π
16 )− Ṽpc(θ(k)) for θ(k) < 2π

16 < θ(k + 1)

(5.5)

Remark 5.2.C: Ideally a full pumping stroke lasts from TDC to BDC, i.e. the interval[
π
16 ; 2π

16

]
, however, because of passive valve actuation some of the stroke must be

used to create the necessary pressure differences, why in accordance with figure 5.3
and equation 5.5 flow does not occur from sample k = 0.

In full stroke operation, the stroke cannot be interrupted, and thus when starting the
stroke at k = 0, flow is produced from k = 6 until k = 50. Thus, a total of 51 samples
are used to describe a full pumping stroke (5.4 MW DFPT). Considering the stroke as an
impulse response, and subsequent strokes as shifted impulse responses, then a convolution
sum type model may be formulated:

α̃p(k) = −
k∑

m=0

∆Ṽpc(k −m)αp(m) (5.6a)

Qp(k) = kQp ωr(k) α̃p(k) (5.6b)

Here the upper equation represents the impulse response model, with the lower equation
being the scaling of the normalised flow response. αp(m) is a binary displacement input
sequence, which determines whether subsequent pressure chambers are activated or not.

Remark 5.2.D: It has in section 3.3.1 been defined that the flow, Qp, is positive when
given a binary displacement input, αp, different from zero (note that αp cannot
be negative). Therefore a minus term in front of the summation in equation 5.6 is
included to cancel out the negative normalised volumetric displacement contained
in ∆Ṽpc(k), which is the result of the definitions made in equation 5.3.

As evident from equation 5.6, the scaling is non-linear since it is a product of the shaft
speed (a model state) and the convolution sum. Thus by use of a first order Taylor
approximation the scaling is linearised:

∆Qp,lin(k) = kQpα̃p0 ∆ωr(k) + kQpωr0 ∆α̃p(k) (5.7)
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The choice of the linearisation constants, α̃p0 and ωr0, will not be considered in this
section, but are later discussed in section 5.4.1, however one remark to equation 5.7 is
made:

Remark 5.2.E: A consequence of applying the Taylor approximation is a linearised flow
expression, which first term does not depend on the current displacement input,
αp(k), represented within α̃p(k). This effectively means that even though the input
to the pump is αp = 0(α̃p = 0), the linear flow model will output a non-zero flow
if α̃p0 6= 0. This does not bear any physical meaning, why by solely considering
equation 5.7 α̃p0 = 0 should be chosen as the linearisation constant.

The convolution sum of equation 5.6a may be written in a state-space formulation by
defining a number of states corresponding to the previous inputs:

xp(k+1)︷ ︸︸ ︷
αp(k)

αp(k − 1)
αp(k − 2)

...
αp(k − pp + 1)

 =

Gp︷ ︸︸ ︷
0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0



xp(k)︷ ︸︸ ︷
αp(k − 1)
αp(k − 2)
αp(k − 3)

...
αp(k − pp)

+

Hp︷︸︸︷
1
0
0
...
0



up(k)︷ ︸︸ ︷
αp(k) (5.8a)

α̃p(k) =
[
∆Ṽpc(1) ∆Ṽpc(2) ∆Ṽpc(3) · · · ∆Ṽpc(pp)

]
xp(k) +

[
∆Ṽpc(0)

]
up(k) (5.8b)

By combining equations 5.7 and 5.8b a new discrete output equation, which describes
the pump flow as a linear combination of other states, may be derived:

yQp
(k)= Qp,lin(k)= kQp

α̃p0 ωr(k)︸ ︷︷ ︸
xr(k)

+ωr0 kQp
∆Ṽpc(1:p)︸ ︷︷ ︸

Cp

xp(k) + ωr0 kQp
∆Ṽpc(0)︸ ︷︷ ︸
Dp

up(k)︸ ︷︷ ︸
y∆Σp(k)

(5.9)

Noting that the ∆ notation from equation 5.7 has been omitted to simplify the notation.
ωr is the state related to the rotor shaft dynamics, why it is denoted as such, and ωr0 its
corresponding linearisation point. The DD pump input up(k) = αp(k) is defined as the
∆Σ-modulator output y∆Σp(k), as illustrated in figure 5.1.

Remark 5.2.F: In the 5.4 MW DFPT, Dp = 0, but not in the 10 kW DFPT, why it has
been included in equation 5.9 for the completeness of the state-space formulation.

Remark 5.2.G: The linear combination in equation 5.9 is a combination of both purely
discrete states and sampled continuous states. This mixture is a non-issue in the
UNMR method, since a DDE, which the pump is represented as, is defined to have
sampling actions at its corresponding inputs.

To illustrate the applicability of the utilised linear DDM flow models, a model comparison
between the linear and non-linear model of the DD pump in the 5.4MW DFPT is made.
In this comparison the linear flow model is based on the operating point of α̃p0 = 0 and
ωr0 = 10.5 rpm. Similarly the non-linear model is simulated at a constant speed of ωr0

and additionally a constant pressure in the HPL of pH = 360 bar. The flow dynamics for
a single pressure chamber are for the linear and non-linear model presented in figure 5.4.
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Fig. 5.4: Comparison of linear and non-linear flow response for a single pressure chamber in the
DD pump of the 5.4MW DFPT. At θr = π

16
the decision to activate the next pressure chamber

is taken, e.g. a binary input of 1 is given as input to both the linear and non-linear DD pump.
Subsequent chambers are not activated.

From figure 5.4, it can be seen that the linear flow, Qp,lin, deviates from the non-linear
flow, Qp,non, at the angle, θHPV, where the HPV is passively opened. The cause of this
deviation is due to the omitted pressure dynamics in the linear flow model. Furthermore,
a small deviation exist when the pumping stroke ends and the piston passes BDC (difficult
to detect in figure 5.4). The deviation is the result of backflow from the HPL and into
the pressure chamber as the passive closing of the HPV does not occur instantaneously.
Despite these deviations, the discrete representation of the motor flow is seen to be a
good fit of the continuous non-linear flow in the majority of the pumping stroke, why the
presented flow modelling approach is considered valid.

Before proceeding to how the pump torque may be modelled, a final remark is made:

Remark 5.2.H: It is evident, that the greater the number of pressure chambers, the
better the resolution obtained by the discrete model is. Thus for the descaled 10 kW
drivetrain, this method will yield somewhat poor approximations of the actual flow
waveform.

Pump Torque Response5.2.2.B

By use of the previously considered DD pump flow, an expression for the torque may be
derived by considering input-output power conservation in the pump:

Pp = Qp ∆p = τp ωr ⇒ τp =
Qp ∆p

ωr
(5.10)

Combining equations 5.6b and 5.10 yields a discrete expression for the torque independent
of the shaft speed:

τp(k) =
Qp(k) ∆p(k)

ωr(k)
= kQp ∆p(k) α̃p(k) (5.11)

This is a non-linear expression, why it is linearised by a first order Taylor approximation:

∆τp,lin(k) = kQpα̃p0 ∆∆p(k) + kQp∆p0 ∆α̃p(k) (5.12)
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Remark 5.2.I: Equation 5.12 is used to calculate the torque produced by a single pres-
sure chamber. When a chamber pressurises the fluid, the pressure it is working
against is that of the HPL, pH, and not the pressure difference, ∆p, as such ∆p0

should be set equal to the linearisation value of pH.

Remark 5.2.J: In contrast to the linearised flow expression seen in equation 5.7, the
first term of the linearised torque expression has physical meaning, since the pro-
duced pump torque is dependent on the pressure in the HPL. Solely considering
the torque expression in equation 5.12 thus suggest, that choosing the linearisation
constant α̃p0 6= 0 would yield the best torque approximation.

As previously, a new discrete output equation, which now describes the pump torque as
a linear combination of other states, may again be formed by combining equations 5.8b
and 5.12:

yτp(k)= τp,lin(k)= kQp
α̃p0 ∆p(k)︸ ︷︷ ︸

xHPL(k)

+ ∆p0 kQp
∆Ṽpc(1:p)︸ ︷︷ ︸

Cp

xp(k) + ∆p0 kQp
∆Ṽpc(0)︸ ︷︷ ︸
Dp

up(k)︸ ︷︷ ︸
y∆Σp(k)

(5.13)

Noting that the ∆ notation from equation 5.12 has also been omitted to simplify the
notation. ∆pHPL is the state related to the HPL pressure dynamics, why it is denoted as
such, and like before the DD pump input up(k) = αp(k) is defined as the ∆Σ-modulator
output y∆Σp(k), as illustrated in figure 5.1.

Similarly as for the linear flow response, it is chosen to make a model comparison between
the linear and non-linear torque response. The comparison is seen in figure 5.5 and is
made under the same conditions as the previously presented flow comparison in figure 5.4.
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Fig. 5.5: Comparison of linear and non-linear torque response for a single pressure chamber in the
DD pump of the 5.4MW DFPT. At θr = π
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the decision to activate the next pressure chamber

is taken, e.g. a binary input of 1 is given as input to both the linear and non-linear DD pump.
Subsequent chambers are not activated.

Figure 5.5 shows torque deviations between the linear and non-linear model at the be-
ginning and ending of the pumping stroke. Similarly to the flow deviations, these are
explained by the omitted pressure dynamics. As the linear torque response is a function
of the linear flow response, it also is no surprise that the comparison shown figures 5.4
and 5.5 shows resemblances. The presented results are deemed sufficient to validate the
DDM modelling approach.
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Motor Flow Response5.2.2.C

Very similarly to the approach utilised for the pump, a discrete impulse response model
may be derived for the DD motor flow.

The motoring stroke is initiated at some angle θm = θLPV before the BDC, such that
when the LPV is actively closed, the chamber pressure increases above pH, which passively
opens the HPV. Then near the TDC, the HPV is actively closed and the motoring stroke
ends, such that the chamber pressure decreases, causing the LPV to passively open when
the chamber pressure is below pL.
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Fig. 5.6: Normalised volumetric displacement of a single motor pressure chamber. The upper
x-axis denotes the angular shaft position, and the bottom x-axis illustrates the corresponding
sampling instances for the DD motor in the 5.4 MW DFPT. Illustration taken from the previ-
ously presented work in Junker et al. (2016).

The sampling intervals are now simply defined by:

θ2 =
2π

NmcNec
(5.14)

The convolution type model may now be obtained as:

α̃m(k) =

k∑
m=0

∆Ṽmc(k −m)αm(m) Qm(k) = kQm ωm α̃m(k) (5.15)

It is worth noting, that for the motor, the shaft speed is constant, such that the scaling of
the convolution sum is thus linear, why linearisation like for the pump is not necessary.
kQm is defined similarly as for kQp Like before, a state-space formulation may again
be obtained, where the number of states is now 20 (5.4 MW DFPT), and the output
equation may be written as:

yQm(k)= Qm(k)= ωm kQm∆Ṽmc(1:p)︸ ︷︷ ︸
Cm

xm(k) + ωm kQm∆Ṽmc(0)︸ ︷︷ ︸
Dm

um(k)︸ ︷︷ ︸
y∆Σm(k)

(5.16)
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To make the validation of the DDM modelling approach complete, a model comparison
between the linear and non-linear flow response of the motor in the 5.4MW DFPT is
made. The simulation results of the non-linear model is made at a constant speed of
1500 rpm and additionally a constant pressure in the HPL of pH = 360 bar. The flow
dynamics for a single pressure chamber are for both models presented in figure 5.7.
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Fig. 5.7: Comparison of linear and non-linear flow response for a single pressure chamber in the
DD motor of the 5.4MW DFPT. At θLPV the decision to activate the next pressure chamber is
taken, e.g. a binary input of 1 is given as input to both the linear and non-linear DD motor.
Subsequent chambers are not activated.

From figure 5.7 it can once again be established that the linear DDM modelling approach
gives reasonable approximation of the non-linear motor flow. As for the linear DD pump,
small deviations exist between the linear and non-liner model, which primary cause is
the omitted pressure dynamics in the linear approximation. In addition to the comments
presented for validating the linear DD pump model, the following remarks are considered
valid for the linear DD motor model:

Remark 5.2.K: As expected the linear motor flow does not include the initial back
flow originating from the passive opening of the HPV valve. As a result the linear
motor model’s average intake flow is larger than that of the non-linear simulation
model. To compensate for the initial back flow, a negative displacement fraction
could have been utilised, yielding a constant back flow approximation. However,
as the back flow is pressure dependent, this would presumably still result in a poor
initial flow correspondence between the two models.

Remark 5.2.L: Evaluating the effective displacement during one motoring stroke for
the two models yields very similar volumes, with the linear discrete model being
slightly larger caused by the unmodelled behaviour of the initial back flow. If close
to identical effective displacements are desired, this could be done by changing θHPV

to the angle where the HPV starts closing or to where the HPV is in the middle
of the closing operation, as an alternative to when it is fully closed. It should be
noted that doing so comes with the cost of a decreased fit between the discrete and
continuous flow waveform.

Having derived linear descriptions of both the DD pump and motor flows, it is now
possible to consider deriving linear expressions for the pressure dynamics of the HPL
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and motion dynamics of the pump/rotor shaft.

Linear Rotor Dynamics5.2.3
The rotor and pump are connected by a mutual shaft why the following section uses the
terms rotor shaft and pump shaft interchangeably. The time-domain rotor dynamics are
described by equation 3.1. To be able to combine it with the models just derived for the
DDMs, the time-domain dynamics must be transformed to the spatial angle-domain.

Spatial Transformation:
The spatial angle-domain transformation of a time-domain differential equation, as ini-
tially proposed by Heemels et al. (1999), is defined by rewriting a time derivative as an
angular derivative of the time. Here shown for the pump shaft position:

d θr(t)

dt
= ωr(t)⇒

d t(θr)

dθr
=

1

ωr(θr)
(5.17)

Remark 5.2.M: The interpretation of this equation is that t(θr) is the point in time
at which the angular position is θ = θr. For the shaft speed, the interpretation is
similar, such that ωr(θr) is the shaft speed at position θr. (Heemels et al. 1999)

By the chain rule, the velocity derivative may be expanded, and by use of equation 5.17
a spatial derivative of the angular velocity can be written as:

dωr

dt
=
dωr

dθr

d θr

dt
⇒ dωr

dθr
=
dωr

dt

d t

dθr
= ω̇r

1

ωr
(5.18)

Remark 5.2.N: The main disadvantage of the transformation is that the shaft cannot
change its rotation from anti-clockwise to clockwise, or vice versa, since this would
result in division by zero. Although this issue is trivial for a WT drivetrain, other
applications wherein this is problematic can easily be proposed.

Remark 5.2.O: The spatial transformation’s use of equation 5.18 will result in a non-
linear spatial-domain description of an otherwise linear time-domain description
why linearisation is necessary.

Linearised Spatial Domain Dynamics:
The continuous spatial domain motion dynamics of the pump shaft can be obtained as:

dωr

dθr
=

1

Jrp ωr

(
τr − drωr −

τp

ηp

)
(5.19)

This is a non-linear equation, since the states are no longer linearly independent. Hee-
mels et al. (1999) furthermore presents a linearisation approach for the spatial domain
dynamics, when only small perturbations near a steady-state solution are considered,
which results in:

d∆ωr

dθr
= ∆ω′r =

1

Jrp ωr0

(
∆τr − dr∆ωr −

∆τp,lin

ηp

)
(5.20)
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where ωr0 is the steady state velocity used for the linearisation. ∆ terms correspond to
small perturbations near the steady state solution, and ∆τr corresponds to a disturbance
input. The mark (′) denotes the spatial state derivative.

Remark 5.2.P: This method of linearisation is somewhat unconventional compared to
the more traditional method of first order Taylor approximations. It has, however,
been shown to work well for spatial-domain equations previously in Junker et al.
(2016). A conventional linearisation would result in the damping term dr∆ωr being
cancelled, which is generally undesirable.

Equation 5.20 may then be rewritten to a more convenient state formulation:

ω′r︸︷︷︸
x′r

=− dr

Jrp ωr0︸ ︷︷ ︸
Ar

ωr︸︷︷︸
xr

− 1

Jrp ωr0 ηp︸ ︷︷ ︸
Br

τp,lin︸︷︷︸
ur

+
1

Jrp ωr0
τr (5.21)

Noting that the ∆ notation from equation 5.20 has been omitted to simplify the notation.
The input to this continuous spatial-domain rotor dynamics equation is the linearised
discrete pump torque, which according to figure 5.1 acts through a hold element.

Remark 5.2.Q: The rotor torque term, τr, which effectively describes the wind’s in-
fluence on the rotor velocity, will from this point forward be viewed as a noise
term. As a result it will be neglected since the intention to utilise a deterministic
controller approach does not allow for a model representation with noise inputs.

Linear HPL Dynamics5.2.4
To obtain the spatial-domain HPL pressire dynamics the approach is the same: Expand
the time derivative by the chain rule and then apply the transformation of equation 5.17:

d∆p

dt
=
d∆p

dθr

d θr

dt
⇒ d∆p

dθr
=
d∆p

dt

d t

dθr
= ∆ṗ

1

ωr
(5.22)

It can now be seen that the spatial HPL pressure dynamics can be obtained by dividing
the time-domain dynamics in equation 3.2 by the shaft speed to obtain:

d∆p

dθr
=

βH

VH ωr
(Qp −Qm − kl ∆p) (5.23)

This is a non-linear equation, and by using the approach suggested by Heemels et al.
(1999), the following linearised dynamics may be obtained:

d∆∆p

dθr
= ∆∆p′ =

βH

VH ωr0
(∆Qp,lin −∆Qm − kl ∆∆p) (5.24)

Equation 5.24 is rewritten to a more convenient state formulation:

∆p′︸︷︷︸
x′HPL

= − βH kl

VH ωr0︸ ︷︷ ︸
AHPL

∆p︸︷︷︸
xHPL

+
βH

VH ωr0︸ ︷︷ ︸
BHPL

(
Qp,lin︸︷︷︸
uHPLp

− Qm︸︷︷︸
uHPLm

)
(5.25)
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Noting that the double ∆ notation from equation 5.24 has been omitted to simplify the
notation. The inputs to this continuous spatial HPL pressure dynamics equation are the
linearised discrete pump flow and discrete motor flow, which according to figure 5.1 both
act through hold elements.

Remark 5.2.R: The employed spatial transformation describes all states with respect
to the pump shaft position. This does not introduce any problems in the case of
constant pump speed, but consider the case of varying pump speed, then when
seen from the time-axis, the pump shaft position axis stretches linearly, whereas
the motor shaft position axis remains fixed. When combining the different linear
descriptions of the system elements, e.g. the flows Qp,lin and Qm, the motor axis
and pump axis are in effect superimposed on one and another. From a mathema-
tical point of view this is somewhat problematic since the motor states now are
described relative to an axis which they do not belong to. However, keeping in
mind that the derived models are to serve as a linear tool for analysis and control-
ler design, and such models are often only accurate representations in the vicinity
of the linearisation point, the spatial transformation is considered applicable.

Having derived and defined linear descriptions for all the elements in the DFPT, the next
task becomes combining these subelements into a single DFPT multirate model. This
will be done by the use of the developed UNMR method, and is the topic of the following
sections.

DFPT Modelling Dimensions5.2.5
The equations derived in the previous sections are generally applicable to both the full
power 5.4MW DFPT and the 10 kW DFPT. The only changes lie in different parameter
values, linearisation points and finally a different number of pressure chambers, and thus
also different number of states in the DDM models. For this reason table 5.1 is presented,
wherein the number of states for the individual system element representations in the
two versions of the DFPT are tabulated.

5.4MW DFPT 10 kW DFPT

Continuous states, γ
HPL state 1 1
Rotor state 1 1

Discrete states, δ
DD Pump states, pp 50 1
Pump ∆Σ state 1 1
DD motor states, pm 20 1
Motor ∆Σ state 1 1

Sample-and-hold states, σ 3 3

Total, n 77 9

Tab. 5.1: The number of states in the full power 5.4MW and the downscaled 10 kW DFPTs.
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A few remarks can me made for the information presented in table 5.1:

Remark 5.2.S: As previously presented the dynamics of the rotor and HPL can be
described in a similar fashion for the 5.4MW and 10 kW DFPT as it is only the
model parameters which are different. From equation 5.20 and thus using the
notation from the UNMR method this leads to γ = 2.

Remark 5.2.T: The discrete representation of the DFPT’s DDMs are the only models
which differ for the 5.4MW and 10 kW DFPT. This is the result of a different
number of pressure chambers in the DDMs. Using the convolution sum modelling
approach described in section 5.2.2 it is found that 50 and 20 states are required
to describe the dynamics of DD pump and motor for the 5.4MW DFPT. It is
furthermore found that these numbers of states reduces to 1 for both the DD pump
and motor for 10 kW DFPT. From this it can be seen that the number of discrete
states, δ, is equal to 72 and 4 for the 5.4MW and 10 kW DFPT, respectively.

Remark 5.2.U: The sample-and-hold states are required whenever an output from a
discrete model must be used as an input to a continuous model. From figure 5.1 it
is evident that this is the case for the torque, τp, and the flows Qp and Qm. Thus
for the sample-and-hold states, σ = 3 for both the 5.4MW and 10 kW DFPT.

When the transition matrices for the different elements of the DFPT must be formed,
associated model parameters and operating (or linearisation) points must be chosen. As
this chapter only concerns the evaluation of the 10 kW DFPT, only parameters and the
operating point associated with the 10 kW DFPT will be presented. This is done in
section 5.4.1.

Generalised DFPT Modelling5.3
The work presented in the following two sections will proceed as defined in the four
step procedure outlined in section 4.4, such that first the state variables are defined,
following this the transition matrices are determined based on the previously presented
linear equations. Thereafter the transition equations may be derived by considering the
sampling operations in the system, such that they may be combined to form a lifted
time-, or more accurately, angle-invariant model. The two first steps are presented in
this section and will be derived, such that they are generally applicable to both the 10 kW
and 5.4MW DFPT, whereas the last two steps presented in section 5.4 will focus solely
on the 10 kW DFPT.

In order to derive a DFPT multirate model, the four step procedure of the UNMRmethod
makes use of all the preceding linear subelement models to define state variables and
system transition matrices. The authors are therefore well aware, that it is challenging
for the reader to follow these derivations, without going back and forth between several
of this chapter’s sections. Thus, at the end of this chapter, a multirate model validation
is presented, which serves as indication that the following sections derivations are made
correctly.
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Step 1: State Variable Definition5.3.1
The combined vector of all system states is, as always, defined as:

xcomb ≡
[
xc

ᵀ xd
ᵀ xs

ᵀ
]ᵀ [3× 1]

[n× 1]
(5.26)

The individual state vectors for the system elements may then be separately defined.

With reference to figure 5.1, it may be seen that there are two CDEs, and thus this vector
simply consists of the rotor speed state and HPL to LPL pressure difference state, such
that γ = 2:

xc =
[
xr

ᵀ xHPL
ᵀ
]ᵀ

[γ × 1] (5.27)

There are four DDEs in the system, namely the two DDMs and their associated ∆Σ-
modulators. These DDE states may be combined to form the vector:

xd =
[
xp

ᵀ x∆Σp
ᵀ xm

ᵀ x∆Σm
ᵀ
]ᵀ [4× 1]

[δ × 1]
(5.28)

where δ = pp + 1 + pm + 1, and noting that xp and xm are vectors, and not just scalars.

Regarding the three SHEs, which are used when interconnecting a DDE and SHE, the
last subvector may be formed:

xs =
[
xτp,lin

ᵀ xQp,lin
ᵀ xQm

ᵀ
]ᵀ

[σ × 1] (5.29)

Remark 5.3.A: In equations 5.27 to 5.29 both the scalars and bold vectors are trans-
posed. It would have been sufficient only to transpose the vectors. However, for
consistency, every entry in the state block vectors is transposed.

Remark 5.3.B: The lifted state vector and lifted input/output vectors, also previously
denoted as double expanded vectors, would normally have been defined in step 1.
However, their definition is specific to the system and the corresponding sampling
scheme, why it is decided to wait until step 3, when the 10 kW DFPT is considered,
to define them.

Having defined the state vectors for the system elements, and their dimensions, it is now
possible to proceed to defining the transition matrices.

Step 2: System Transition Matrices5.3.2
In the following, the transition matrices describing the dynamics of the DFPT’s system
elements are defined. First the CDEs will be considered, since these are the main dynamic
elements. Following this the DDEs are considered, and finally the SHEs.
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Continuous Dynamic Elements5.3.2.A

With reference to the continuous state vector, xc, equations 5.21 and 5.25 may be com-
bined to form a single state-space formulation of the continuous linear spatial-domain
rotor and HPL dynamics:

[
x′r
x′HPL

]
=

[
Ar 0
0 AHPL

]
︸ ︷︷ ︸

Ac

[
xr

xHPL

]
+

[
Br 0 0
0 BHPL −BHPL

]
︸ ︷︷ ︸

Bc

 ur

uHPLp

uHPLm

 (5.30)

Remark 5.3.C: It may be seen that there are no direct cross-couplings between the
two CDEs, since Ac is merely a diagonal matrix, which also makes sense, since
the elements are not physically directly connected. However, some cross-couplings
exist when considering the flows and torques produced by the DDMs.

With Ac and Bc defined, equation 4.5 may be used to calculate Gc(τ) and Hc(τ), such
that Φ(τ) may finally be formed:

Φ(τ) =

 G(τ) 0 H(τ)

0 I 0

0 0 I

} γ rows
} δ rows
} σ rows

[3× 3]
[n× n]

(5.31)

Discrete Dynamic Elements5.3.2.B

To define the DDE transition matrices, the dimensions are firstly considered. With
reference to the discrete state vector, xd, it is obvious that within the discrete section
of the block transition matrices, there should be a further four block rows. These four
block rows describe the transitions occurring at sampling rates θ1 and θ2, and thus two
DDE state transition matrices denoted Dp and Dm must be defined.

The DDE state transition matrix,Dp, will describe the transitions occurring at θ1, which
thus includes the block states transitions of x∆Σp and xp. Then starting with the DD
pump element, which is represented by the state-space form of the convolution sum
(equation 5.8a), the input must be defined with respect to the other states. The input
to a DDM is the output of the corresponding ∆Σ-modulator, and thus by considering
the ∆Σ output equation (equation 5.2b), the following can be obtained:

up(k) = y∆Σp(k) = C∆Σp x∆Σp(k) ⇒ xp(k+1) = Gp xp(k)+HpC∆Σp x∆Σp(k) (5.32)

With reference to the definition of xcomb and xd in section 5.3.1, then the transition
of equation 5.32 must be included in the first block row in the discrete section of Dp as
presented in equation 5.33.

Regarding the DD pump’s ∆Σ-modulator, it may be seen by examining equation 5.2a,
that the ∆Σ-state do not depend on any other model states, but instead on an external
sampled input, why a dp-vector must furthermore be defined. Based on the state-space
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formulation of the ∆Σ-modulator seen in equation 5.2a, the second block row in the
discrete section of Dp and dp may be written as seen in equation 5.33:

Dp =



I 0 0

0

Gp HpC∆Σp 0 0
0 G∆Σp 0 0
0 0 I 0
0 0 0 1

0

0 0 I


4 rows
δ rows dp =



0

0
H∆Σp

0
0

0

 (5.33)

Remembering that all transition matrices start as simple diagonal matrices, wherein the
rows corresponding to the states which undergoes a transition are modified, such that
the dynamics of the transitions are accounted for and that other states are unaffected.

The DDE state transition matrix, Dm, is defined in a similar manner. For the DD motor
element, the input-output relation is defined as:

um(k) = y∆Σm(k) = C∆Σm x∆Σm(k) (5.34)

This discrete dynamic transition is included in the third block row of Dm, whereas the
transitions of the DD motor’s associated ∆Σ-modulator is contained in the fourth block
row of Dm and dm as can be seen in equation 5.35.

Dm =



I 0 0

0

I 0 0 0
0 1 0 0
0 0 Gm HmC∆Σm

0 0 0 G∆Σm

0

0 0 I


← pp rows
← 1 row
← pm rows
← 1 row

dm =



0

0
0
0

H∆Σm

0

 (5.35)

In the matrices in equations 5.33 and 5.35, the dimensions of the discrete section and
the rows therein have been indicated in the right hand side, to illustrate the number of
states used for describing the different system components.

Sample-and-Hold Elements5.3.2.C

The SHE states are simply scalars, and not vectors like some of the DDE states, thus for
the SHE transition matrices, Sp and Sm, the sample-and-hold section will contain three
rows.

Defining the SHE transition matrices is done by considering the output equations, which
were derived in conjunction with the convolution sum impulse response models for the
pump and motor. The SHE transition matrix, Sp, will contain the SHE states described
by the sampling rate, θ1, which includes the pump torque and pump flow. Based on
the linearised pump torque described by equation 5.13 and the linearised pump flow
described by equation 5.9, it is possible to write row one and two in the sample-and-hold
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section in Sp:

Sp =


I 0 0

0 I 0

0 kQpαp0

kQpαp0 0
0 0

∆p0Cp ∆p0DpC∆Σp 0 0
ωr0Cp ωr0DpC∆Σp 0 0

0 0 0 0

0 0 0
0 1 0
0 0 1


 3 rows
σ rows

(5.36)

Note that Dp is the pump displacement, and not the Dp-matrix defined in the previous
section.

The SHE transition matrix, Sm, includes the SHE transition of the motor flow described
by equation 5.16 of which dynamics is written in the third row in the sample-and-hold
section as:

Sm =


I 0 0

0 I 0

0
0 0 0 0
0 0 0 0
0 0 ωmCm ωmDmC∆Σm

1 0 0
0 1 0
0 0 0

 (5.37)

Thereby transition matrices for all the elements in the system have been defined, and it
is now possible to proceed to deriving the transitions equations. However, before this is
done, some considerations regarding normalising the states are made, since deriving the
transition equations will include a large number of matrix products.

Normalisation of State Vector5.3.3
Prior to deriving and evaluating the transition equations for the 10 kW DFPT multirate
model, it is chosen to normalise the combined state vector, xcomb. This is done to reduce
potential numerical calculation issues arising from having states of different magnitudes.
E.g considering that the state vector is initially described in SI-units, why the pressure,
∆p has a magnitude in the order of 107, whereas the DDM flows, Qp and Qm, have
magnitudes in the order of 10−4.

The normalisation of the state vector is done in accordance with Phillips and Parr (2011),
which defines the general state transformation as the continuous counterpart to:

x(k) = Pv(k) (5.38)

Where v(k) is the normalised state vector and P is a diagonal transformation matrix
containing appropriate gains for normalising the state vector x(k). By inserting equa-
tion 5.38 into a general discrete state equation, a transformed state and input matrix

117



MCE4-1026 Aalborg University

can be derived.

x(k + 1) = Gx(k) +Hu(k) (5.39a)
Pv(k + 1) = GPv(k) +Hu(k) (5.39b)

v(k + 1) = P−1GP︸ ︷︷ ︸
Gv

v(k) + P−1H︸ ︷︷ ︸
Hv

u(k) (5.39c)

Here Gv and Hv represents the transformed state and input matrix, respectively.

The state normalisation on the multirate DFPT model is performed according to equa-
tion 5.39, where the transition matrices Φ, D and S can be viewed as the state matrix
G, and the d-vector can be considered as the input matrix H.

The transformation matrix for both DFPT models can be defined as:

P =



nom(ωr) 0
0 nom(∆p)

0 0

0 I 0

0 0
nom(τp) 0 0

0 nom(Qp) 0
0 0 nom(Qm)

 (5.40)

Where nom(ωr) represents a function which equals the nominal/rated value of ωr. In a
similar manner nom(∆p) represents the rated pressure difference between the HPL and
LPL and so on.

Remark 5.3.D: An identity gain matrix is used for the discrete states in the transition
matrix, P , as these states only can obtain a binary value corresponding to whether
a chamber is active or inactive.

The state transformation is performed between step 2 and 3 of the UNMR method, and
will not be elaborated upon further. For simplicity the notation change of the state
vector from x to v and proceeding notation changes from G to Gv and H to Hv is
omitted. Thus, the notation of the transition matrices defined in step 1 and 2 will not
change in step 3, even though xcomb now represents the normalised state vector and Φ,
D and S the normalised state matrices and finally d the normalised input matrix.

10 kW DFPT Modelling5.4
In the remainder of this chapter, the focus will lie on applying the UNMR method to the
10 kW DFPT with the aim of deriving a multirate model. As discussed previously, this
is done since the two sampling rates are different but similar, such that all the transition
equations become relatively simple and can be displayed for the reader. Thereby the
focus lies on the application of the method why the technical details of the computer
algorithms which are utilised for more complex sampling schemes are not presented.

This sections initially presents the model parameters needed in order to evaluate the
transition matrices derived in step 2 of the UNMR method, hereafter the section will

118



5.4. 10 kW DFPT Modelling Chapter 5. Multirate DFPT Modelling

proceed with step 3 and 4, which are the derivation of transition equations and of a
spatial-domain counterpart to an LTI multilrate model.

Model Parameters5.4.1

Operating Point:
During the development of a linear model, which makes use of linearised mathematical
descriptions, an operating point must be defined before the model can be evaluated. In
general, several approaches for defining an operating point can be made:

Remark 5.4.A: Choose the operating point as where the system is expected to operate
most frequently. A consequence of utilising linearised descriptions is that these of-
ten are only a valid description of the system’s true dynamics close to the operating
point. Thus, by defining the operating point as where the system is expected to
operate most frequently, one might achieve a model which is "most often" repre-
sentative of the system’s true dynamics. As this approach does not consider how
the stability might change within the system’s operating range, controller design
often make use of relative large stability margins (gain and phase margins). This
seeks to ensure stable system operation in the entire operating range.

Remark 5.4.B: Choose a conservative operating point with regards to stability of the
system. There exist several methods for determining the most conservative ope-
rating point, and depending on the system of interest one method might be more
suitable than the other. In general, these methods often include parameter varia-
tions while performing a measure of the system’s stability using Bode plots (or the
MIMO equivalent SVD-plot) or alternatively pole-zero mapping. Common for all
these methods is that they can get extensive and time consuming to perform as the
operating range of the system increases. Furthermore the methods does not always
provide a qualitative and definitive measure of the "most" conservative operating
point.

When an operating point for the 5.4MW DFPT multirate model must be determined
it could be beneficial to apply one of the above presented approaches. However, for
the purely fictional 10 kW DFPT these approaches are deemed somewhat unsuitable.
Firstly because the 10 kW DFPT was introduced as an evaluation platform which utilises
different but similar sampling rates of the two DDMs, and thus the system’s operating
range has not been defined, why the knowledge to choose the operating point as where
the system is expected to operate most frequently has not been defined. Secondly, if the
operating point should be based on the stability of the system, one must rely on the model
being representative. As this has not yet been concluded, effort put into determining a
conservative operating point at the current stage makes little sense.
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In essence, the method of choosing the operating point is not considered essential for the
10 kW DFPT model, as the primary objective is to evaluate if the UNMR method can
be applied to develop a multirate DFPT model. Thus, the linearisation constant have
simply been chosen as the rated operating conditions of the system:

• ωr0 = 1500 rpm
• ∆p0 = 350 bar
• α̃p0 = 0

Choosing α̃p0 based on rated system conditions does makes little sense, and is therefore
chosen based on the following remarks:

Remark 5.4.C: Defining α̃p0 = 0 will ensure that the pump flow always will be zero,
when a zero displacement is given to the pump.

Remark 5.4.D: Defining α̃p0 = 0, furthermore, provides the option of giving both the
linear and non-liner model an unit-step as input in later model comparison, without
the characteristics of the utilised ∆Σ-modulators becoming non-linear.

Remark 5.4.E: After the applicability of utilising the UNMR method to derive a multi-
rate DFPT model has been evaluated, it might be beneficial to reconsider the choice
of operating point before potential linear system analysis and controller design is
performed on the multirate model.

10 kW DFPT Multirate Model Parameters:
In addition to the operating point, the model parameters must be known before the
10 kW multirate model can be evaluated. Many of these parameters have already been
defined during the development of the 10 kW DFPT non-linear simulation model and can
be found in tables 3.1, 3.3 and 3.4. However additional parameters have to be defined for
the discrete representations of the DDMs. This is done in accordance with equations 5.3
to 5.5 for the DD pump and the equivalent counterparts for the DD motor and the
parameters are presented in table 5.2.

Lastly the normalisation gains utilised in the transformation matrix P must be defined.
As previously described, these are chosen as the rated values of the respective states in
the state vector xcomb and can furthermore be found in table 5.2.

Remark 5.4.F: Table 5.2 presents the parameter values in units deemed appropriate
for display, however, when the parameters are utilised in the model development,
values are transformed into SI-units.

With the operating point and model parameters defined, the derivations and evaluations
of the state transition equations for the 10 kW DFPT multirate model are presented
next.
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Description Parameter Value

10 kW DD Pump

Sampling rate θ1 [rad] π
Pump flow constant kQp [m3/rad] 1.942× 10−6

Normalised displacement vector ∆Vpc [-]
[
−0.892 0

]ᵀ
10 kW DD Motor

Sampling rate θ2 [rad] 2
3π

Flow constant kQm [m3/rad] 1.906× 10−6

Normalised displacement vector ∆Vmc [-]
[

0.559 0.371
]ᵀ

Transformation Gains

Rotor speed nom(ωr) [rpm] 1500
HPL & LPV pressure difference nom(∆p) [bar] 350
Rotor torque nom(τp) [Nm] 63.66
Pump flow nom(Qp) [m3/s] 2.86× 10−4

Motor flow nom(Qm) [m3/s] 2.86× 10−4

Tab. 5.2: Parameters used for modelling the 10 kW DFPT Multirate Model.

Step 3: Deriving Transition Equations5.4.2
Step 3 in the UNMR method seeks to derive the transition equations throughout a BTP
in the system. For this to be possible, the sampling scheme for the 10 kW DFPT must
be defined. As previously presented the DFPT’s pump and motor have 2 and 3 chamber
activations per revolution, respectively. This results in two discrete update rates of the
system, θ1 = π and θ2 = 2π/3, and they yield an STP of θ0 = π/3 and a BTP of
θBTP = 2π. The ∆Σ-modulators are operated at the same rate as their corresponding
DDM. The number of STPs per BTP is then N = 6, the number of θ1s per BTP is
N1 = 2 and the number of θ2s per BTP is N2 = 3.

From the above definitions it is possible to visualise the sampling scheme as it was done
for the MSD system, and the sampling scheme is depicted in figure 5.8. As previously,
the top part illustrates an example of the real state progression, while the bottom part
illustrates their progression in the model produced by the UNMR method.

The double expanded Nn× 1 = 6 · 9× 1 state vector for the 10 kW DFPT is given by:

x(k) =



x1(k)
x2(k)
x3(k)
x4(k)
x5(k)
x6(k)

 =



xcomb((k − 1)θBTP + θ0)
xcomb((k − 1)θBTP + 2 θ0)
xcomb((k − 1)θBTP + 3 θ0)
xcomb((k − 1)θBTP + 4 θ0)
xcomb((k − 1)θBTP + 5 θ0)

xcomb(kθBTP)

 (5.41)
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Fig. 5.8: Progression of real system states and model states for the 10 kW DFPT.

The lifted input and output vectors are given by:

u(k) =


u1(kθBTP)

u1(kθBTP + θ1)
u2(kθBTP)

u2(kθBTP + θ2)
u2(kθBTP + 2θ2)

 y(k) =


y1(kθBTP)

y1(kθBTP + θ1)
y2(kθBTP)

y2(kθBTP + θ2)
y2(kθBTP + 2θ2)

 (5.42)

Step 3 and 4 for developing the multirate DFPT model are very similar to when step 3
and 4 for the MSD multirate model was developed. This is the case, since the sampling
scheme is very similar and also that the structure with DDEs acting through SHEs on
CDEs is similar, why deriving the transition equations will follow the same procedure,
merely with some of the matrices exchanged.
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Defining x1(k+1) is done by examining the top part of figure 5.8 and examining the open
interval [kθBTP kθBTP +θ0[, corresponding to examining the interval [x6(k) x1(k+1)[
for the model state progression in the lower part of the figure. The first transitions are
the internal transitions related to both DDMs and the related sampling of new inputs
(multiplication of both Dp and Dm on x6(k) and dp to u1(kθBTP) and finally dm to
u2(kθBTP)). This is followed by the sampling and holding of the DDE states (multipli-
cation of Sp and Sm). Finally the first transition is concluded by a continuous CDE
transition of length θ0 (multiplication by Φ(θ0)):

x1(k+1)= Φ(θ0)SmSpDmDp︸ ︷︷ ︸
Ψ1

x6(k)+Φ(θ0)Spdp︸ ︷︷ ︸
v1

u1(kθBTP) + Φ(θ0)Smdm︸ ︷︷ ︸
v2

u2(kθBTP) (5.43a)

Similarly for defining x2(k + 1), it may be seen that in addition to all the transitions
occuring for x1(k + 1), a continuous CDE transition of length θ0 happens. Thus all the
previous transitions (contained in Ψ1) and inputs (contained in v1 and v2) are carried
over and finally multiplied by Φ(θ0):

x2(k+1)= Φ(θ0)Ψ1︸ ︷︷ ︸
Ψ2

x6(k) + Φ(θ0)v1︸ ︷︷ ︸
v3

u1(kθBTP) + Φ(θ0)v2︸ ︷︷ ︸
v4

u2(kθBTP) (5.43b)

For x3(k + 1) all the previous transitions are again carried over. Thus starting from
where x2(k + 1) ended, it may be seen that the next states updates are those of x∆Σm

and xm (multiplication by Dm), with a subsequent update of xQm (multiplication by
Sm), and finally concluded by a continuous CDE transition of length θ0. Furthermore,
a new input is also sampled, why the input u2(kθBTP + 2θ0) is introduced:

x3(k+1)=

Ψ3︷ ︸︸ ︷
Φ(θ0)SmDmΨ2 x6(k) +

v5︷ ︸︸ ︷
Φ(θ0)v3 u1(kθBTP) +

v6︷ ︸︸ ︷
Φ(θ0)SmDmv4 u2(kθBTP) (5.43c)

+ Φ(θ0)Smdm︸ ︷︷ ︸
v2

u2(kθBTP+2θ0)

The approach for defining x4(k + 1), x5(k + 1) and x6(k + 1) is exactly the same, why
it is not explained, and only the final result is presented:

x4(k+1)=

Ψ4︷ ︸︸ ︷
Φ(θ0)SpDpΨ3 x6(k) +

v7︷ ︸︸ ︷
Φ(θ0)SpDpv5 u1(kθBTP) +

v8︷ ︸︸ ︷
Φ(θ0)v6 u2(kθBTP) (5.43d)

+ Φ(θ0)v2︸ ︷︷ ︸
v4

u2(kθBTP+2θ0) + Φ(θ0)Spdp︸ ︷︷ ︸
v1

u1(kθBTP+3θ0)

x5(k+1)=

Ψ5︷ ︸︸ ︷
Φ(θ0)SmDmΨ4 x6(k)+

v9︷ ︸︸ ︷
Φ(θ0)v7 u1(kθBTP)+

v10︷ ︸︸ ︷
Φ(θ0)SmDmv8 u2(kθBTP) (5.43e)

+ Φ(θ0)SmDmv4︸ ︷︷ ︸
v6

u2(kθBTP + 2θ0) + Φ(θ0)v1︸ ︷︷ ︸
v3

u1(kθBTP + 3θ0)

+ Φ(θ0)Smdm︸ ︷︷ ︸
v2

u2(kθBTP + 4θ0)

x6(k+1)=

Ψ6︷ ︸︸ ︷
Φ(θ0)Ψ5 x6(k) +

v11︷ ︸︸ ︷
Φ(θ0)v9 u1(kθBTP) +

v12︷ ︸︸ ︷
Φ(θ0)v10 u2(kθBTP) (5.43f)

+ Φ(θ0)v6︸ ︷︷ ︸
v8

u2(kθBTP + 2θ0) + Φ(θ0)v3︸ ︷︷ ︸
v5

u1(kθBTP + 3θ0) + Φ(θ0)v2︸ ︷︷ ︸
v4

u2(kθBTP + 4θ0)
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Remark 5.4.G: The order in which the matrices are multiplied is very important if
the correct transfer matrices are to be obtained. The multiplication order must
correspond with the state update order of the actual system, otherwise the correct
result will not be obtained. It is, however, possible to change the order of the DDE
matrices, since they are not dependent upon each other. Thus, the following holds
true which is relevant in equation 5.43a: DmDp = DpDm

Having derived all the individual transition equations step 3 is concluded, and it is
possible to proceed to step 4.

Step 4: Combining The Transition Equations5.4.3

Using the definition of the state vector as given by equation 5.41, a spatial-domain
counterpart to a linear time-invariant (angle-invariant) state-space model may be formed
as:


x1(k + 1)
x2(k + 1)
x3(k + 1)
x4(k + 1)
x5(k + 1)
x6(k + 1)


︸ ︷︷ ︸

x(k+1)

=

 0

Ψ1

Ψ2

Ψ3

Ψ4

Ψ5

Ψ6


︸ ︷︷ ︸

GΨ


x1(k)
x2(k)
x3(k)
x4(k)
x5(k)
x6(k)


︸ ︷︷ ︸

x(k)

+



HΨ
1︷ ︸︸ ︷

v1 0

HΨ
2︷ ︸︸ ︷

v2 0 0
v3 0 v4 0 0
v5 0 v6 v2 0
v7 v1 v8 v4 0
v9 v3 v10 v6 v2
v11 v5 v12 v8 v4


︸ ︷︷ ︸

HΨ


u1(kθBTP)

u1(kθBTP + 3θ0)
u2(kθBTP)

u2(kθBTP + 2θ0)
u2(kθBTP + 4θ0)


︸ ︷︷ ︸

u(k)

(5.44a)

The output vector may then be calculated by:
y1(kθBTP)

y1(kθBTP + 3θ0)
y2(kθBTP)

y2(kθBTP + 2θ0)
y2(kθBTP + 4θ0)


︸ ︷︷ ︸

y(k)

=


0 0 0 0 0 c1
0 0 c1 0 0 0
0 0 0 0 0 c2
0 c2 0 0 0 0
0 0 0 c2 0 0


︸ ︷︷ ︸

CΨ

x(k) (5.44b)

Exactly which states that will be included in the lifted output vector will be decided
when the control strategy is considered.

The model represented by equation 5.44a has been constructed by combining the solutions
to the three individual challenges of DFPT modelling. For this reason great uncertainty
about the suitability of the individual solutions when combined is present, which is why
the next section focuses on validating this new model.

10 kW Model Validation5.5
Traditionally, a linear model validation aims to establish if the model’s linear repre-
sentations are a reasonable approximation of their non-linear counterparts. The linear
subelements used to comprise the multirate model have to some extent already been
validated.
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• The linear discrete models of the DDMs in the 5.4MW DFPT are validated in
section 5.2.2 and previously by Johansen et al. (2016), Junker et al. (2016), Pedersen
et al. (2016a), and Pedersen (2016).

• The use of a linearised ∆Σ-Modulator expands beyond DFPT modelling and its
successful usage in Junker et al. (2016), Pedersen et al. (2016a), Pedersen (2016),
and Reiss (2008) suffices as indication of its validity.

• The subelements models used to describe rotor and HPL dynamics is based on
the transformation approach which applicability have been established by Heemels
et al. (1999) and furthermore successfully utilised by the authors in Junker et
al. (2016), why these types of models furthermore are considered as valid linear
approximation.

Further validation of the individual linear DFPT subelement models is therefore conside-
red redundant and instead this section seeks to determine if the derived 10 kW multirate
DFPT model has successfully combined the individual solutions of the three subchallen-
ges presented in section 1.5.1 such that it can be confirmed if the challenge of multirate
DFPT modelling is solved. For convenience the three subchallenges of modelling a DFPT
are reiterated together with their solution:

Challenge I - DD Machine Modelling This challenge entails how a linear descrip-
tion of the discrete nature of operating the DDMs in full stroke operation can
be formulated. The solution of this challenge consists of describing the DDM’s
dynamics by a convolution sum model of shifted impulse responses.

Challenge II - Non-uniform Activation Sequence This challenge entails how a dis-
crete model of a DDM can be derived when the machine speed varies, creating a
non-uniform chamber activation sequence in the time-domain. This challenge is
solved by deriving all linear subelement models in the spatial-domain.

Challenge III - Multirate Activation Sequences ADFPTmodel contains two DDMs
which chamber activation sequences are not synchronised, creating a multirate mo-
delling challenge. This challenge is solved by the use of the developed UNMR
method.

Individual solutions to challenge I and II already have been presented by the authors
as well as others (Heemels et al. 1999; Junker et al. 2016; Pedersen et al. 2016a) and
a solution to challenge III is presented in section 4.4. Therefore, what remain is how
to combine these separate solutions in a multirate model describing an entire DFPT.
The derived 10 kW DFPT multirate model, includes the individual solutions to the three
DFPT modelling challenges. Thus, if simulation results from the DFPT multirate model
and its subelements can be presented, which exhibits the appropriate sampling rates of
the 10 kW DFPT and furthermore displays correct DDE, SHE and CDE transitions, the
DFPT multirate model and the UNMR method’s applicability to a DFPT are considered
validated.
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Multirate Model Validation5.5.1
To evaluate if simulation results from the DFPT multirate model exhibits the appropriate
sampling rates of the 10 kW DFPT, and if dynamic and discrete transitions occurs in the
correct order it is desired to make model comparison between the multirate model and the
non-liner simulation model. If there does not exist a reasonable correlation between the
discrete linear subelements and their continuous non-linear counterparts, it will become
exceedingly difficult to evaluate if the discrete multirate model exhibits the correct timing
of transitions. E.g. if there exist the correct delay between when an input given to a
DDM and the associated flow response starts or if the discrete representation of the
DDM flow’s described at multi-plums of θ1 and θ2 yields the correct representation of
the HPL dynamics described at multi-plums of the system’s STP. Thus, having similar
flow and torque waveforms in the multirate and non-linear simulation model is important
to complete the desired evaluation.

Unfortunately the low number of 2 and 3 chamber activations per revolution for the
pump and motor in the 10 kW DFPT, respectively, results in discrete approximations of
the DDMs’ torque and flow responses with poor resolution. To illustrate the significance
of such poor approximations, the linear discrete and non-linear continuous motor flow
responses of the 10 kW DFPT is compared in figure 5.9 and remarks are made.
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Fig. 5.9: Comparison of linear and non-linear flow response for a single pressure chamber in the
DD motor of the 10 kW DFPT. At θLPV the decision to activate the next pressure chamber is
taken, e.g. a binary input of 1 is given as input to both the linear and non-linear DD motor
model. Subsequent chambers are not activated.

Remark 5.5.A: Comparing the discrete flow response of the 10 kW DD motor in fi-
gure 5.9, with the discrete flow response of the 5.4MW DD motor previously pre-
sented in figure 5.7, it is evident that reducing the number of chamber activations
per revolution significantly diminishes the discrete flow approximation of the con-
tinuous non-linear flow waveform. This issue is a direct result of the limitations
imposed by using an impulse response modelling approach, which only describes
the flow at discrete instances where a chamber activation can occur.

Remark 5.5.B: From figure 5.9 it is apparent that the discrete model of the DD mo-
tor yields a poor fit of the continuous non-linear flow waveform, however, from
calculations it is found that the discrete linear model still exhibits a reasonable
approximation of the effective displacement during a motoring stroke operation. A
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comparison of the discrete and continuous model of the 10 kW DD pump comes
with similar conclusions.

The 10 kW DFPT model only serves as an evaluation tool, where the applicability of the
UNMR method can be investigated, why it is not considered an issue that the 10 kW
discrete DDM models are poor approximations of the actual continuous dynamics.

However, having similar flow and torque waveforms in the multirate and non-linear si-
mulation model during a multirate model validation will ease the evaluation, of whether
the multirate model’s dynamic transitions occurs in correct order and at correct rates,
significantly. Thus, in the following model comparison it is chosen to utilise the linear
discrete 10 kW DDM models in the otherwise continuous non-linear DFPT model. This
makes the model comparison ideal for determining if the multirate model is capable of
combining different subelement models correctly, and if the dynamic transitions occurs
in the right order, hereby making it possible to determine the applicability of the UNMR
method both the 10 kW and 5.4MW DFPT.

Model Comparison:
The initial 10 kW simulation model contains three non-linear dynamic descriptions. The
∆Σ-modulators’ quantizers and the DDM torque and flow expressions. Introducing the
linear discrete descriptions of the DDMs in this model, effectively means that only the
quantizers remains non-linear. However, the characteristics of the quantizer only exhibits
non-linear behaviour when given non-binary inputs, meaning that the entire simulation
model is linear if the displacements inputs, αp

∗ and αp
∗, are limited to binary values.

This makes the model comparison fairly easy as the simulation model and the multirate
model should have close to identical simulation results in the defined multirate sampling
instances. It is, however, important to note that this comparison primarily serves as a
validation with respect to if the transitions occurs at the correct instances in the multirate
DFPT model.

Remark 5.5.C: As the model comparison is performed under circumstances where both
the multirate model and the simulation model exhibits linear characteristics, it
would have been logical to expect identical simulation result. However, as previ-
ously described, the multirate model is described in the spatial-domain. The trans-
formation from the time-domain to the spatial-domain introduces a non-linear term
and thus requires linearisation. As a result some deviations between the discrete
multirate model and the simulation model in the rotor and HPL dynamics may ex-
ist if the DFPT is operated sufficiently far away from the linearisation point during
the model comparison.

Figure 5.10 depicts the model comparison with regard to the discrete and sample-and-
hold states. The first subplot depicts the displacement inputs given to both the non-
linear model and the discrete multirate model. The second and third subplot depicts
the outputs of the DFPT’s two ∆Σ-modulators. It should be noted that the non-linear
model simulation results are plotted as a continuous signal, whereas the multirate model
is plotted as discrete data points for the discrete model states and ZOH-approximations
for the SHE-states and the continuous states. Comparing subplot one to three it can be
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seen that when an input is changed, the corresponding ∆Σ-modulator’s output changes
after a sampling delay of either θ1 or θ2. E.g. the displacement input to the pump, αp

∗,
changes to 1 after π, which result in the corresponding ∆Σ-modulator’s output changing
to 1, θ1 = π later. This corresponds well with how the state transition is expected to
occur, and thus indicates that the multirate model describes the dynamics of the DFPT
correctly.

: : ::::::::
3

Fig. 5.10: Model comparison between 10 kW linear multirate model and the 10 kW non-linear
simulation model, which includes linear descriptions of DDMs. Subplot one to three shows the
non-binary displacement inputs, α∗, and binary displacement inputs, α, given to the DDMs and
subplot four and five the pump and motor flow, Qp and Qm, respectively.

Subplot four and five in figure 5.10 depicts the flow waveforms, Qp and Qm. It is no
surprise that these flow waveforms have identical magnitude and characteristics as they
are based on identical linear discrete models. However, prior to this comparison, a
concern was if the multirate model was capable of describing the SHE-state (Qp,lin and
Qm,lin) transitions at the correct angles. Subplot four and five shows that the SHE-state
transition occurs at the same angles as the non-linear model.

Figure 5.10 indicates that the multirate model’s discrete and sample-and-hold state tran-
sitions occurs at the right angle, and furthermore with the correct sampling rates. With
this established, the second part of the model validation compares simulation results
from the discrete multirate model and simulation model with regard to the continuous
states ωr and ∆p. This can be seen in figure 5.11.
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: : : ::
3

Fig. 5.11: Model comparison between 10 kW linear multirate model and the 10 kW non-linear
simulation model, which includes linear descriptions of DDMs. Subplot one shows the non-
binary displacement inputs, α∗, given to the DDMs and subplot two and three shows the angular
rotor speed ωr and the pressure difference ∆p, respectively.

The first subplot of figure 5.11 shows the displacement inputs given to the non-linear
model and the linear multirate model. In this comparison the simulation is run over a
larger change in angular position in the desire to capture larger changes in the angular
speed of the rotor shaft, ωr, and in the pressure difference between the HPL and LPL,
∆p. However studying subplot two and three in figure 5.11 shows that relatively small
changes occur. The small change in angular speed is because the inertia of the rotor
shaft is relatively large, compared to the torque the DD pump can produce, whereas the
relatively large volume in the HPL results in small pressure changes.

Examining subplot two and three in figure 5.11 it can be seen that the multirate model’s
ZOH-approximations fits the continuous waveforms produced by the non-linear model.
The ZOH-approximations changes with a step size of the multirate model’s STP, which
is in accordance with the theory presented in chapter 4. The results of figure 5.11
again confirms that the transitions occurring in the multirate model are correct. This
furthermore shows that the spatial transformation of Newton’s II law and the continuity
equation utilised in the derivations of the multirate model are correct, since they provide
the same values of ωr and ∆p as the time-domain non-linear model.

Multirate Validation Considerations:
The above presented result concludes the validation of the linear discrete multirate model
describing the 10 kW DFPT. From this validation it can be established that the 10 kW
DFPT multirate model can describe the dynamic state transition at the correct angular
positions and with the appropriate sampling rates. The derived multirate model includes
discrete convolution sum models of the two DDMs, which is the proposed solution to the
DFPT modelling subchallenge I. Furthermore these discrete models are described in the
spatial-domain, hereby creating uniform sampling rates which solves subchallenge II. As
the sampling rates of the two discrete DDM models are different, the UNMR method for
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producing a multirate model also solves subchallenge III. Hereby it can be concluded that
the multirate model successfully solves all initially proposed DFPT modelling subchal-
lenges and thus a method which is able to produce a linear time-variant (angle-invariant)
model of a DFPT on state-space form have successfully been developed.

The multirate model validation does not include a comparison where the simulation model
contains the non-linear DDM models, however, such a comparison and corresponding
validation was made for the individual DDMs prior to the mulrirate model comparison.
Therefore considering all the results presented in section 5.5, there is no indication that
the derived UNMR method cannot be successfully applied to describe the 5.4MW DFPT
as the discrete DDM models have a better fit when compared to their corresponding non-
linear DDM models due to a relatively high number of pressure chambers.

When the multirate model is to be expanded to the 5.4MW DFPT some comments can
be made:

Remark 5.5.D: With the exception of the discrete DDM models all other subelement in
the DFPT remains the same for both the 10 kW and 5.4MW DFPT. Furthermore,
the discrete DDM models of the 5.4MW DFPT have in this thesis been developed,
why only the choice of a suitable operating point remains, before step 3 of the
UNMR method can be applied to the 5.4MW DFPT.

Remark 5.5.E: Step 3 of the UNMR method consists of deriving transition equations
for each STP period within a BTP period. Doing this by hand, as presented in this
chapter is cumbersome and ill advised in the case of a large ratio between a system’s
BTP and STP, however, utilising the presented algorithm from section 4.4.2 should
simplify step 3 significantly.

Remark 5.5.F: Step 4 of the UNMR method should be straight forward to apply to the
5.4MW DFPT, where the spatial-domain’s equivalence to a linear time-invariant
state space model is defined. However, the BTP will be significantly larger than
the STP, why the dimensions of the lifted state vector, the state transition matrix
and the input transition matrix will be relatively large. This might arise a com-
putational memory issue, when step 3 and 4 must be performed for the 5.4MW
DFPT multirate model.

Results indicating that the UNMR method can be applied to the 5.4MW DFPT have
been presented. Furthermore, the tasks that have to be adressed before a 5.4MW mul-
tirate DFPT model can be derived have been presented. Related comments upon these
tasks suggest that the only potential task remaining is how to handle the relatively large
memory requirements needed to compute the necessary data for deriving the multirate
model. Thus, knowledge has been attained to answer first part of this thesis’ problem
statement, why the remainder of thesis will focus on the second part, concerning the
utilisation of conventional linear MIMO analysis and controller design tools on the deve-
loped multirate DFPT model. To simplify the investigation of applicability of such tools
on a multirate model produced by the UNMR method next chapter will take basis in the
previously derived multirate model of the MSD system.
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CHAPTER 6
Multirate Mass Spring
Damper Control
This chapter seeks to investigate the applicability of various methods for system analysis
and controller design on the Mass Spring Damper (MSD) system described by the uni-
fied non-minimal realisation method. Initially, the prerequisites necessary for controller
design are presented. This is followed by investigating the applicability of the Relative
Gain Array (RGA) and Singular Value Decomposition (SVD) on the model for analysing
system cross couplings and frequency response, respectively. Finally, a controller for the
MSD system is designed.

Lifted Multirate Analysis and Control Challenges6.1
Chapter 4 has solved the task of deriving a method which is able to produce a LTI
model describing both continuous, discrete and sample-and-hold elements on discrete-
time state-space form. This method, refereed to as the Unified Non-minimal Realisation
(UNMR) method, was in chapter 5 successfully applied on the downscaled DFPT and its
applicability towards the full power 5.4MW DFPT was confirmed. In addition to these
already solved tasks, this thesis also seeks to investigate the following remaining tasks:

• Can conventional methods such as the RGA and SVD be directly applied to the
model produced by the UNMR method in order to investigate cross couplings and
frequency response in the MIMO system?

• Is it possible to apply conventional controller design methods on a model produced
by the UNMR method to obtain a controller that is able to control the states?

• How is the additional entries in the input and output vector of the discrete model
handled with regard to system analysis, controller design and subsequent imple-
mentation of the controller?

Instead of handling these tasks based on the DFPT system it is chosen to consider the
simpler MSD system including the discrete filters as this is just as qualified a platform
for evaluating if and how these tasks can be solved. To further simplify, this chapter
mainly considers the example with different but similar sampling rates (T1 = 0.15 s and
T1 = 0.10 s) unless otherwise noted as this reduces the state-space model dimensions
significantly. It is important to note that the objective of applying conventional analysis
and controller design methods is to investigate if these methods can be directly applied to
the derived multirate model and comment upon potential limitations. Thus, this chapter
does not seek to qualitatively or quantitatively analyse the system or design a controller
that yields high performance reference tracking.
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Different methods for designing controllers exist. Due to the large number of states, pri-
marily a consequence of the large number of pressure chambers in the DFPT, it is chosen
to test the applicability of designing a Linear Quadratic Regulator (LQR). Before the
controller design method is applied, the controllability of the multirate model describing
the MSD system derived in section 4.3 is investigated.

Controllability of Multirate Model6.2
A system described by a state-space model is considered state controllable if all states
can be brought from any initial state to any final state within a finite time by its inputs.
In general this is obviously a highly desirable feature of a system.

One approach for determining this is by evaluating the rank of the controllability matrix
which is given by (Skogestad and Postlethwaite 2001):

Rc =
[
HΨ GΨHΨ GΨ2

HΨ . . . GΨNn−1
HΨ

]
(6.1)

where the product Nn describes the total number of states for the given system. State
controllability is achieved if the controllability matrix has full rank, i.e. if rank(Rc) =
Nn = 48 for the multirate MSDmodel. The rank of the controllability matrix is, however,
found to rank(Rc) = 9 and thus only 9 states are controllable.

To the best of the authors’ knowledge, no method exists for directly determining which
states are the controllable ones. As an alternative some comments and remarks are made
regarding why full state controllability cannot be achieved:

Remark 6.2.A: Due to the derived linear multirate model being a non-minimal realisa-
tion it contains states which are not necessary for describing the system dynamics.
This is due to the fact that the state vector x(k + 1) can be described only using
the state subvector x6(k). As previously stated, the states x1(k) to x5(k) are only
included such that the system dynamics can be described at time steps equal to the
STP. This also means that from a control point of view a large number of states
are redundant and thus may not be controllable.

Remark 6.2.B: The UNMR method forms an expanded state vector which describes
the continuous, discrete and sample-and-hold elements at time steps equal to the
STP. As the sample-and-hold elements are modelled as ideal, they can be described
by a direct input-output coupling, why these states are redundant.

Remark 6.2.C: Considering the input vector, it is evident that the input u1 can only
be given twice during a BTP while the input u2 can be given three times. Thus,
it makes sense that the states which are described at instants when no input can
be given are uncontrollable.

Remark 6.2.D: The state vector formulated by the UNMR method is given on a rather
unconventional form, at least in the sense of LTI systems, as several of the states
describes the same physical state, only shifted in time. Due to this unconventional
form, it can be argued that if the state subvector x6(k) (excluding the sample-
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and-hold states) is controllable, then the state subvectors x1(k) to x5(k) should
also be bounded to some extent. Thus, for a state-space model on this form, the
requirements to controllability may be relaxed.

To confirm that the uncontrollable states are a consequence of the non-minimal reali-
sation, the model is converted to a minimal realisation using the MATLAB command
minreal since this eliminates the states which are uncontrollable and unobservable. Uti-
lisation of the minreal -function requires a state-space model where the output equation
is given on the conventional form, i.e. y(k) = Cx(k) + Du(k). The state equation
is therefore combined with the output equation formulated from the UNMR method to
obtain an output equation given by:

y(k) = CΨ(U1G
Ψ +U2)︸ ︷︷ ︸

Cc

x(k) +CΨU1H
Ψ︸ ︷︷ ︸

Dc

u(k) (6.2)

Converting to a minimal realisation eliminates 42 states and thus only 6 states remain
in the state-space model. This corresponds well with the fact that the state subvectors
x1(k) to x5(k) are redundant and that the sample-and-hold elements can be described
by a direct input-output coupling. The 6 remaining states describe the 4 continuous and
2 discrete states at steps equal to the BTP.

Remark 6.2.E: As the sample-and-hold elements can be described by a direct input-
output coupling these states could have been omitted when the state-space model
was formulated using the UNMR method as the states do not contribute with
any dynamics. The reason for including the states describing the sample-and-hold
elements in the unified non-minimal realisation is that this allows for describing
imperfect sampling operations.

The redundancy of the 42 states which are eliminated can also be confirmed by consi-
dering the poles of the non-minimal realisation model, which are shown in figure 6.1.
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Fig. 6.1: Pole-zero map showing the pole and zero location for the MSD system including discrete
filters and different but similar sampling rates.
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42 poles are located in the origin corresponding to the eliminated states. A pole in the
origin corresponds to a state which does not contribute with any additional dynamics to
the system. This is exactly the case for the lifted state subvectors x1(k) to x5(k) and
the sample-and-hold states in x6(k).

Remark 6.2.F: The location of the two complex conjugate pole pairs, associated with
the continuous states in the multirate model, is the same as the poles for a conven-
tional ZOH discretisation of the MSD system.

As previously stated, the model produced by the UNMR method does not yield full rank
of the controllability matrix. This does, however, not mean that the system can not be
controlled. As an example, the behaviour of the states describing the sample-and-hold
elements is of no interest from a control point-of-view why the lack of controllability is
not considered an issue. The lack of controllability of the states describing the continuous
elements in x1(k) to x5(k) might, however, pose a problem when a controller is to be
designed. This is investigated in a later section in this chapter.

Having investigated the controllability of the multirate model, the next sections seeks to
evaluate if the RGA and SVD can be applied to the multirate model such that models
on this form can be analysed with respect to cross couplings and frequency response.

MIMO Analysis Tools6.3
Before a controller is designed for a MIMO system, the control engineer is often interested
in analysing the system. Analysis with regard to the system’s frequency response and
potential cross couplings between the system’s multiple inputs and outputs is often of
high interest as it provides valuable information with respect to determining a suitable
control structure for the given system. As an example, a decentralised control structure
may not yield the desired tracking performance if the system contains a high degree of
cross couplings.

This section investigates if the RGA and SVD are directly applicable on the model pro-
duced by the UNMR method in order to analyse cross couplings and frequency response
for the system. If these MIMO analysis tools are directly applicable on the multirate
MSD then it can be assumed that they can be utilised on the multirate DFPT model.
It is important to note that the purpose of the section is not to develop new analysis
methods, but only to apply already known methods. Thus the following section initially
investigates the applicability of the Relative Gain Array (RGA).

Relative Gain Array6.3.1
The RGA can be utilised for obtaining a measure of the degree of influence each input
has on each output, i.e. cross couplings. In addition to a cross coupling analysis, the
RGA can be utilised for pairing controlled outputs with inputs if decentralised control is
to be applied.

In order to utilise the RGA, a discrete transfer function matrix, denoted GMSD, is in-
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troduced which describes the dynamics between each of the inputs and outputs and is
calculated by (Skogestad and Postlethwaite 2001):

GMSD(z) = Cc

(
zI −GΨ

)−1
HΨ +Dc (6.3)

GMSD has dimension 5 × 5, according to the number of inputs and outputs. The 5 × 5
RGA matrix of the MSD system can be calculated by (Skogestad and Postlethwaite
2001):

RGA(GMSD) = Λ(GMSD) = GMSD × (GMSD
−1)

ᵀ
(6.4)

where× denotes element-by-element multiplication. Each RGA element, λij , in Λ(GMSD)
is a complex number why |λij | is computed and utilised for analysing the cross couplings.
As the input-output couplings depend on the frequency at which the system is excited,
the RGA elements are generally evaluated as function of frequency. Analysis of the fre-
quency response of discrete systems is limited to below the Nyquist frequency due to
aliasing effects, and for single rate systems the Nyquist frequency is simply half the sam-
pling frequency. However, for multirate systems the Nyquist frequency is not as easily
defined, and therefore it is chosen to simply denote the Nyquist frequency as half the
BTP rate for simplicity, such that:

fNyq =
fT
2

=
1/T

2
[Hz] (6.5)

For the MSD system utilising different but similar sampling rates, the input and output
vectors are repeated in equation 6.6. The vectors are shown here for clarity and the entries
will be the inputs and outputs between which the cross couplings can be investigated.

u(k) =


u1(kT )

u1(kT + 3T0)
u2(kT )

u2(kT + 2T0)
u2(kT + 4T0)

 y(k) =


y1(kT )

y1(kT + 3T0)
y2(kT )

y2(kT + 2T0)
y2(kT + 4T0)

 (6.6)

The magnitudes of the 5 · 5 = 25 RGA elements are computed and plotted as function
of the frequency for GMSD. It is, however, found that the plots were inconclusive with
regard to analysing cross couplings which is also why the plots are not shown here. Some
remarks are made upon why the RGA cannot be directly applied to GMSD for analysing
couplings:

Remark 6.3.A: A conventional MIMO state-space formulation describes the multiple
inputs and outputs at the same instant in time. The model produced by the
UNMR method, however, formulates an input and output vector where the entries
are shifted in time as seen in equation 6.6. This is a consequence of obtaining a
linear time-invariant state-space model of the multirate system. The RGA is not
formulated to account for couplings across time but only as a tool for investigating
couplings between inputs and outputs described at the same time instants.
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Remark 6.3.B: As the entries in the input and output vector are shifted in time, it
does not make physical sense to analyse certain combinations of inputs and outputs
with respect to cross couplings. This is evident if, for example, the cross couplings
between the input u1(kT +T1) and the output y2(kT +T2), as seen in equation 6.6,
are to be investigated. This does not make sense as kT + T1 occurs later in time
than kT + T2. This is also the case for other combinations of inputs and outputs
why an RGA analysis cannot be used for analysing cross couplings between all
inputs and outputs given by the state-space model.

Remark 6.3.C: In order to get meaningful information from the RGA all combinations
between inputs and outputs must make physical sense. Thus, it is not possible to
simply extract specific RGA elements, λij , which are considered to make physical
sense from Λ(GMSD) and analyse these individually with respect to cross couplings.

Considering equation 6.6, it is clear that the only input-output pair which are described
at the same instant in time is the first and third entries in the two vectors. Thus, rather
than applying the RGA to the full 5×5 GMSD transfer function matrix, the four transfer
functions describing the dynamics between the first and third entries at time kT are
extracted from GMSD to obtain a new transfer function matrix, GMSD13. The 2×2 RGA
element matrix are then computed:

Λ(GMSD13) = GMSD13 × (GMSD13
−1)

ᵀ
=

[
λ11 λ12

λ21 λ22

]
(6.7)

Remark 6.3.D: Performing a RGA analysis on the transfer function, GMSD13, does not
provide a definitive answer to all the input-output couplings present in the system,
but merely an indication of which cross coupling might be expected.

Plotting the magnitude of the computed RGA elements in equation 6.7 as function of
frequency yields the RGA plot in figure 6.2.

Some comments regarding the validity of extracting these transfer functions and perfor-
ming a RGA analysis on them are now made:

Remark 6.3.E: If the RGA is calculated for the continuous MSD system (equation 4.1)
as a function of frequency, then it has been observed that the magnitude of the
elements is exactly the same as illustrated in figure 6.2. By this argument it is
considered a valid approach to extract the BTP to BTP transfer functions for the
lifted multirate model.

The filters present in the multirate model, which are not present in the continuous
model, should not affect any cross couplings, since they are present in both input
paths. Furthermore the Nyquist frequency, which is fNyq = 1.67 Hz = 10.4 rad/s,
is two decades lower than the break frequency of the filters, meaning that the
frequency response of the discrete multirate model should be completely unaffected
by the presence of the filters.

If a quantitative cross coupling analysis were to be performed, some comments upon
figure 6.2 could be made.
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Fig. 6.2: Magnitude of RGA elements in Λ(GMSD13) as function of frequency.

• The RGA frequency response depicts two resonance peaks, one at ∼0.3 rad/s and
a second at ∼3 rad/s, which corresponds to the natural frequency of mass 1 and 2
respectively in the MSD system.

• Above frequencies of∼0.3 rad/s, u1 only affects y1 and u2 only affects y2 as |λ11| = 1
and |λ22| = 1. This also makes physical sense for the MSD system, due to the
filtering effect that is the direct result of the natural frequencies of the MSD systems
two masses.

From the RGA investigation presented in this section, it can be concluded that the RGA
cannot be directly applied to the lifted model, produced by the UNMR method, for
analysing cross couplings between all inputs and outputs described in the model. This
is due to the entries in the input and output vector being shifted in time relative to
each other. The RGA can only be applied to analyse the cross couplings between the
inputs and outputs which are described at the same instants in time, if the corresponding
transfer functions are extracted from the full transfer function matrix. In order to analyse
couplings across time another tool is needed. As this chapter seeks to investigate if
conventional methods can be applied to a model on the given form no further effort is
put into obtaining a tool which is able to analyse cross couplings across time.

Having investigated the applicability of the RGA, the next section seeks to determine the
applicability of the SVD for analysing the MIMO multirate model frequency response.

Singular Value Decomposition6.3.2
The gain of a SISO system can be investigated by considering a Bode plot as it only
depends on the input excitation frequency. When a MIMO system is considered the
gain, however, depends on the direction of the input vector in addition to the frequency.

137



MCE4-1026 Aalborg University

(Skogestad and Postlethwaite 2001)

Thus since the Bode plot is not applicable, the gain of MIMO systems can instead
be analysed by decomposing the transfer function matrix into its singular values. For
the 5 × 5 GMSD, 5 singular values are computed, denoted by σΨ

1...5, for each evaluated
frequency. Two of these singular values will correspond to a maximum and minimum
singular value, denoted by σ̂ and σ̌, respectively. σ̂ and σ̌ describes the maximum and
minimum gain of the system for any input direction. The singular values of the transfer
function matrix GMSD can be computed as function of the frequency by applying the
MATLAB function svd to GMSD.

Figure 6.3 shows the five singular values for GMSD as function of frequency. In order to
evaluate if the singular values are meaningful and can be used for analysing the system
gain, the two singular values, σ1 and σ2, of the transfer function matrix formed from the
continuous state-space model describing the MSD (equation 4.1), are also computed and
included in the plot.
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Fig. 6.3: Singular values of GMSD where σ̂ = σΨ
1 and σ̌ = σΨ

5 . Singular values of continuous
transfer function matrix, where σ̂ = σ1 and σ̌ = σ2, are also plotted.

Some comments and remarks are made upon the singular values plotted in figure 6.3:

Remark 6.3.F: Similarities exist between certain of the singular values computed from
GMSD and the continuous model. The maximum values, σ̂, of GMSD and the
continuous representation are similar, however, the minimum values, σ̌, are not
equal. For GMSD, σ̌ is significantly lower than for the continuous model. No
apparent physical interpretation of the minimum singular value of GMSD is found.

The comparison to the contiuous system is still considered valid, since the break
frequency of the discrete filters is significantly higher (1000Hz), why these should
not modify the gain of the system for inputs below the Nyquist frequency.

Remark 6.3.G: The singular values ofGMSD are calculated by considering the resulting
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system gain for all possible directions of the input vector. As previously stated
certain combinations of inputs and outputs does not make physical sense, e.g. the
input-output pairs which has relations going backwards in time. The gain of these
combinations are, however, also included when the singular values are computed,
why certain of the singular values may not make physical sense.

Remark 6.3.H: As some of the input-output pairs do not make physical sense, the
singular values computed from the full 5×5 transfer function matrix GMSD do not
immediately make sense.

Attempting to account for this by merely calculating the singluar values for the 2×2
transfer function matrix GMSD13, as was done in the RGA analysis, produces sin-
gular values which are different in DC-gain and with different break frequency than
the continuous system, why this approach is not considered valid for calculating
the SVD of lifted multirate models.

Remark 6.3.I: The increasing deviation between σ1 and σΨ
1 and σ2 and σΨ

2 at increasing
frequencies is due to the frequency response of the discrete system nearing the
Nyquist frequency (10.4 rad/s).

Based on figure 6.3 and the presented remarks it is concluded that the SVD tool is not
directly applicable to a model produced by the UNMR method. The reason for this
is similar to what was presented for the RGA, which is that the SVD is not directly
capable of accounting for the model containing entries in the input and output vector
which are shifted in time relative to each other. It is, however, still possible to determine
the maximum gain of the system, which could be useful when doing a sensitivity analysis
to determine an appropriate linearsation point.

The discrete-time multirate model on state-space form produced by the UNMR method
has been investigated with regard to controllability and the applicability of conventional
analysis tools such as the RGA and SVD. It can generally be concluded that despite
the derived multirate model being linear time-invariant, these conventional tools are not
directly applicable. The next section seek to determine a suitable control structure and
design a controller.

Optimal Control of Multirate System6.4
The control engineer is generally free to choose whatever control law he fancies, whether it
be a linear or non-linear compensation, and subsequently stability may relatively easily
be proved (at least in the linear case). However, the challenge of determining what
constitutes good or appropriate controller gains still remains.

The work in this thesis is limited to considering only linear time (or angle) invariant
multirate models, why it is also natural to consider only linear control laws. In this subset
of control theory, there are a number of different possibilities, including transfer function
based PID and lag-lead controllers or state-space based state feedback arrangements.
Having developed a multirate model in a state-space formulation it is decided to focus
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on state feedback possibilities.

Determining the controller gains for a state controller may be done by conventional pole
placement methods, such as Ackermann’s formula, or by optimisation based minimum
cost methods. Owing to the large number of states in a full scale DFPT model, the latter
method will here be used to derive a method for determining the controller gains.

Conventional State Feedback6.4.1
The conventional state feedback control law is normally written in the form:

u(k) = −Kx(k) (6.8)

Determining the controller gain matrix, K, may then be done by setting up a mini-
mum cost optimisation problem. The problem is typically formulated using a quadratic
performance index of the form (MathWorks 2017):

J(k) =

∞∑
i=k

[
x(i)

ᵀ
Qx(i) + u(i)

ᵀ
Ru(i) + 2x(i)

ᵀ
Nu(i)

]
(6.9)

where Q and R are weighting matrices for the control error and control effort, respecti-
vely. The cross term weighting matrix N is often set equal to zero, such that this term
is omitted.

This problem, also known as the discrete-time linear quadratic regulator (LQR) problem
may be solved by using the MATLAB command dlqr(G,H,Q,R,N). Alternatively the
proof is provided in appendix D.2, wherein an analytical expression for the gain matrix
and the discrete-time Riccati equation are derived under the assumption of N = 0.

The gain matrix may be calculated analytically by (MathWorks 2017):

K = (R+HᵀPH)
−1

(HᵀPG+Nᵀ) (6.10)

The expression depends on the state equation matrices G and H, as well as the effort
weighting matrices R and N . The matrix P is obtained by solving the discrete-time
algebraic Riccati equation, which is given by (MathWorks 2017):

0 = GᵀPG−P+Q−(GᵀPH +N) [R+HᵀPH]
−1

(HᵀPG+Nᵀ) (6.11)

Considering the MSD system with similar sampling rates, and solving the LQR problem
with N = 0, then a control law of the following form is obtained:


u1(kT )

u1(kT + 3T0)
u2(kT )

u2(kT + 2T0)
u2(kT + 4T0)

 =


0 0 0 0 0 K1

0 0 0 0 0 K2

0 0 0 0 0 K3

0 0 0 0 0 K4

0 0 0 0 0 K5





x1(k)
x2(k)
x3(k)
x4(k)
x5(k)
x6(k)

 (6.12)
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where K1...5 are 1× 8 vectors of the form
[
k1 k2 k3 k4 k5 k6 0 0

]
.

Some general comments may be made upon this control law:

Remark 6.4.A: All control signals for the entire BTP are calculated using only x6(k).
To reiterate the definition of how the signals in the model are arranged relative to
one and another, the lower part of figure 4.18 is presented again as figure 6.4.
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Fig. 6.4: Model signal and state progression for MSD system with similar sampling rates.

Then it may be seen that when calculating u(k), which is needed to calculate
x(k + 1), then x6(k), which corresponds to the final state value of the previous
BTP, is simply the newest available data (as seen from the model), why it is only
logical to utilise this dataset for feedback.

However, when operating the actual system, signals will not appear as full blocks
updated only at BTP time steps. The signals will appear one after another with
STP time steps. Thus when calculating the control signals, e.g. for u1(kT + 3T0)
there will be newer data available than x6(k), why it would be desirable to use the
newest available data for feedback.

While this is a non-issue for a system with similar sampling rates, and a short
BTP relative to the system time constants, it becomes problematic when the BTP
becomes long, since this results in potentially very old data being used to generate
future control signals.
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Remark 6.4.B: Implementing the lifted control law given in equation 6.12 is a question
of implementing five parallel control laws, and then shifting between them. It may
be seen that all these control laws update with a period given by the BTP, but
that they are shifted relative to each other with the periods T1 and T2. The five
control laws then have to be merged into two control laws, that update at rates of
T1 and T2, which is basically done by switching between them.

Remark 6.4.C: That the control law only utilises six of the states in x6(k) for feedback
corresponds well with only six controllable states in the minimal realisation.

Remark 6.4.D: Araki and Yamamoto (1986), whose work the lifting approach presen-
ted in this thesis is based upon, addresses this problem by presenting a control
law which utilises the output vector y(k), or equivalently x(k) and x(k + 1), for
feedback:

u(k) = −Ky(k) = −KCΨ(U1x(k + 1) +U2x(k)) (6.13a)
u1(kT )

u1(kT + 3T0)
u2(kT )

u2(kT + 2T0)
u2(kT + 4T0)

 = −


k11 0 k13 0 0
0 k22 0 k24 0

k31 0 k33 0 0
k41 0 0 k44 0
0 k52 0 0 k55




x6(k)
x3(k + 1)
x6(k)

x2(k + 1)
x4(k + 1)

 (6.13b)

The CΨ, U1 and U2 rearrange the state vector, such that the vector in equa-
tion 6.13b is obtained. Note that CΨ is defined in a manner such that all eight
states of the MSD system are presented in each block vector in the output vector
y(k). This leads to double feedback of states, which should be further considered
upon using this control law. Furthermore, it may be seen that the gain matrix,
which is presented here as it is defined in the source material, has a form which
utilises the newest available data in the output vector, without using future data,
which is not yet available.

This control law appears to be a suitable candidate for use in a lifted system.
However, no procedure for determining the controller gains is provided, why other
approaches are investigated.

The result of implementing a control law of the form given in equation 6.12 in the Simulink
simulation model of the MSD system is shown in figure 6.5. In the simulation, the system
is initialised with an initial position of 0.1m and the controller then drives the masses
back to their natural resting positions, such that all states are driven to zero. In general
it may be concluded that a control law derived based on a multirate model of the system
is able to stabilise the system. Furthermore, the control law only utilises data from the
previous BTP, which, as may be seen from the figure, poses no problem in the case of
similar sampling rates, wherein the BTP is significantly less than the time constants of
the system (BTP = 0.3 s, τ1 = 22 s and τ2 = 16.7 s). The fact that all control signals are
calculated for one BTP at a time is evident in the zooms, where the control signal fed
into the system is seen as the bold line, which is merged from the individual signals in
the lifted control vector u(k).
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Fig. 6.5: State feedback control of MSD simulation model with similar sampling rates, with control
law based on multirate model.

Considering the case of vastly different sampling rates, with a BTP of T = 3.15 s, then
compared to the time constants the BTP is still much smaller, and thus based on this,
the update rate of the control signal is fast enough to control the system. However, all
control signals are still based on data from the previous BTP, and thus upon nearing
the end of the current BTP, control signals are based on data from as much as 3.15 s
ago, which seems unnecessary when sensors could provide data rates in the hundreds or
thousands of Hertz.

Despite these considerations, a BTP update control law has been implemented on a
system with similar sampling times of T1 = 0.15 s and T2 = 0.126 s, but with a near
irrational ratio, thereby resulting in a long BTP of T = 3.15 s, and a short STP of
T0 = 0.006 s. This BTP is equal to the vastly different sampling rate examples. The
result of such a simulation, using the same initial conditions as previously, is shown in
figure 6.6, where it may be seen that the response of the continuous states is practically no
different than the case of similar sampling rates, where the BTP is significantly shorter.
In the figure, the BTP update rate of the control signals is more readily apparent than
in the previous figure. Furthermore it may be observed that while the update rate of the
signal is very low, the merged control signal is relatively smoothly varying.

Remark 6.4.E: It is chosen to use similar sampling times with near irrational ratio, as
an alternative to vastly different sampling times. This is because the use of vastly
different sampling times requires GΨ and HΨ dimensions to become exceedingly
large, why the use of sparse matrices to reduce memory consumption must be
utilised when calculating a lifted LTI model. However, the use of sparse matrices
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Fig. 6.6: State feedback control of MSD simulation model with similar sampling rates, but with a
near irrational ratio resulting in a long BTP, and with control law based on the multirate model.

excludes the use of MATLAB’s dlqr command, since it is not programmed to handle
such matrices. Thus, similar sampling times with near irrational ratio is chosen
instead, since this does not require the use of sparse matrices.

Remark 6.4.F: With regard to not having full rank in the controllability matrix, which
may normally be problematic when utilising full state feedback, the simulation
results appear to prove that the full rank requirement can be relaxed to simply
having rank equal to the number of continuous and discrete states, γ + δ, for a
minimal realiation of the lifted system.

While control with only a BTP update rate appears to work rather well for the considered
example of a deterministic model and deterministic control, there are some concerns
regarding how well BTP control works when unmodelled disturbances act on the system.

In this section, it was attempted to utilise the standard tools for LQR controller design,
which are available in MATLAB. This was done under the hypothesis that given a LTI
model, then it would be possible to derive suitable controllers using conventional methods.
While this was possible, controllers were limited to using data from the previous BTP
for feedback. Thus the next section will consider the possibilities for using a control law,
which calculates control signals with the newest available data.

Feedback with Newest Available Data6.4.2
To be able to utilise the newest available data for feedback, some different options have
been considered. The ideas generally revolve around reformulating the cost function or
general form of the control law, and adapting the proof in appendix D.2 to derive a new
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control law. To be able to do this, the proof is first summarised:

1. Given a cost function J(k) and a guess for the form of the minimum cost value
J̌(k), then the cost function may be rewritten to three terms: A quadratic term in
x(k), a quadratic term in u(k) and a cross term in x(k) and u(k) (bilinear term).

2. The control law is then derived by finding the point at which the cost gradient is
zero, and subsequently solving for u(k).

3. The control law may then be inserted into the cost function from step 1 to write it
as a quadratic form in only x(k).

4. The minimum must hold for any x(k), why this can be omitted. The remaining
matrix equation is known as the discrete-time Riccati equation, which must be
solved, such that the feedback gains can be evaluated numerically.

Two possibilities for deriving something suitable are evident. The first is to derive a
control law of the form (output feedback):

u(k) = −Ky(k) (6.14)

The second is to analytically derive a control law in the conventional form together with
an analytical expression forK, and then attempt to reconstruct and factor separate terms
for U1 x(k + 1) = x1...5(k + 1) and U2 x(k) = x6(k). In essence the two possibilities
should be equivalent, and they should both allow utilising the newest available data, such
that they reach the same end result, however, their execution differ, why both possibilities
in the following are investigated.

Output Feedback6.4.2.A

Considering the first option, the task is now to derive an output feedback control law.
Typically this is done when not all states are measured, why only some states can be
used for feedback. However, the reason for doing it in this case is that y(k) includes
information from x(k + 1), which makes it possible to use newer data for feedback.

The proof is attempted adapted by using the cost function J(k) and minimum guess
J̌(k) given as:

J(k) =

∞∑
i=k

[
y(i)

ᵀ
Qy(i) + u(i)

ᵀ
Ru(i)

]
J̌(k) = y(k)ᵀPy(k) (6.15)

The proposed cost function differs from the one in the proof, that this one weighs the
output instead of the states.

Then like in the proof, the cost function may be rewritten to:

J(k) = y(k)
ᵀ
Qy(k) + u(k)

ᵀ
Ru(k) + J(k + 1) (6.16)

When substituting the minimum guess into the cost function in step 1 of the derivation,
y(k + 1) is obtained in the right hand side:

y(k)ᵀPy(k) = y(k)
ᵀ
Qy(k) + u(k)

ᵀ
Ru(k) + y(k + 1)ᵀPy(k + 1) (6.17)
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By shifting the output equation, either in the conventional form or in the one with
x(k + 1), by one sample, y(k + 1) may be eliminated from the equation. However, this
also introduces the term u(k + 1) to the equation. Simply shifting and inserting the
control law in equation 6.14 merely reintroduces y(k + 1), why this cannot be done.
Alternatively, u(k + 1) may be eliminated by solving the output equation explicitly for
u(k) as a function of x(k). This has the effect of double defining the control law, and
furthermore it rewrites the output feedback control law to a state feedback law instead.
Generally this approach may then be concluded as being mathematically invalid.

Another possibility would be to attempt to write the cost function only in terms of y(k)
and u(k), to do this a minimum guess of y(k − 1) has been used to obtain:

y(k − 1)ᵀPy(k − 1) = y(k)
ᵀ
Qy(k) + u(k)

ᵀ
Ru(k) + y(k)ᵀPy(k) (6.18)

However, this results in u(k− 1) appearing in the left hand side, when the cost function
is rewritten to obtain the Riccati equation, why this approach also is concluded invalid.

Textbooks such as Lewis et al. (2012) also offer procedures for designing output feedback
controllers. The procedures are, however, limited to considering systems with output
equations of the form y(k) = Cx(k), why it is not directly applicable to lifted systems,
which include a direct transfer term in the output as illustrated in equation 6.2.

Reconstructing U 1 x(k + 1) and U 2 x(k)6.4.2.B

Reconstructing U1 x(k + 1) and U2 x(k) in the control law is equivalent to using an
output feedback control as illustrated in the following:

u(k) = −Ky(k) = −KCΨ (U1x(k + 1) +U2x(k)) (6.19)

However, it may be simpler to reconstruct the terms for a state feedback law, than to
derive an output feedback law.

Using the same cost function as in equation 6.15 with a minimum guess J̌(k) of the form:

J̌(k) = x(k)ᵀPx(k) (6.20)

Then step 1 of the derivation may be completed by inserting the output equation and
state equation to rewrite the cost function to:

J(k) = x(k)ᵀ[Cᵀ
cQCc+GᵀPG]x(k) + u(k)ᵀ[Dᵀ

cQDc+R+HᵀPH]u(k) (6.21)
+ 2u(k)ᵀ[Dᵀ

cQCc+HᵀPG]x(k)

Step 2 is then carried out by taking the derivative with respect to u(k) to obtain:

δJ(k)

δu(k)
= 2 [Dᵀ

cQDc+R+HᵀPH]u(k) + 2 [Dᵀ
cQCc+HᵀPG]x(k) (6.22)

Now there are two possibilities, the first is to reconstruct U1 x(k + 1) and U2 x(k) (or
y(k)), and the second is to solve directly for u(k), as is normally done.
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Consider the first option, by rearranging equation 6.22 it is possible to write the term
Dᵀ

cQy(k), and then subsequently solve for the remaining u(k) to obtain analytic ex-
pressions for the feedback gains, and a control law that utilises both the newest available
data with the y(k) term and also data from the previous BTP with the x(k) term:

u(k)=−[R+HᵀPH]
−1

HᵀPGx(k)+[R+HᵀPH]
−1

Dᵀ
c Qy(k)︷ ︸︸ ︷

[Dᵀ
cQDcu(k)+Dᵀ

cQCcx(k)] (6.23a)
= −Kxx(k)−Kyy(k) (6.23b)

Remark 6.4.G: The authors acknowledge that this control law may not be mathema-
tically valid, since y(k) is also a function of u(k). Thereby making the equation
implicit in u(k).

To use this control law, the solution to the corresponding Riccati equation P must be
obtained, such that the feedback gains can be calculated. Typically the Riccati equation
is derived by inserting the control law into the cost function, and then writing all the
terms as quadratic terms on x(k). This is, however, not possible with the above control
law, why the second option is now considered. Alternatively, and more conventionally,
the cost function derivative (equation 6.22) may be explicitly solved for u(k):

u(k) = − [Dᵀ
cQDc+R+HᵀPH]

−1

[Dᵀ
cQCc+HᵀPG]x(k) (6.24)

Remark 6.4.H: If equation 6.23 had been used, terms with y(k) would have appeared
when attempting to derive the Riccati equation. Of course, these could have been
eliminated with the output equation, however, this would merely introduce terms
with u(k) instead.

Solving the output equation explicitly for u(k) would doubly define the control law,
thereby conflicting with the definition in equation 6.23.

Using this control law (equation 6.24) and the output equation, then it is possible to
arrive at the following Riccati equation:

0 = GᵀPG− P +

Q̃︷ ︸︸ ︷
Cᵀ

cQCc (6.25)
−
(
GᵀPH+Cᵀ

cQDc︸ ︷︷ ︸
Ñ

)[
Dᵀ

cQDc+R︸ ︷︷ ︸
R̃

+HᵀPH
]−1

(Dᵀ
cQCc+HᵀPG)

It may be noted that if the Q̃, R̃ and Ñ definitions are made, then the above equation
is the same as the standard Riccati equation given in equation 6.11. The matrices Q̃,
R̃ and Ñ should be real and symmetric like their regular counterparts. This has the
advantage of making it possible to simply solve the equation by use of MATLAB’s dlqr
command using the redefinitions to obtain P , then Ky may be calculated:

Ky =[R+HᵀPH]
−1

Dᵀ
cQ =


0 k12 0 k14 k15

0 k22 0 k24 k25

0 k32 0 k34 k35

0 k42 0 k44 k45

0 k52 0 k54 k55

 (6.26)
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where each entry in the matrix is a 1× 8 vector. A comment may be made upon on the
form of Ky:

Remark 6.4.I: Remembering the definition of u(k) and y(k):

u(k) =


u1(kT )

u1(kT + 3T0)
u2(kT )

u2(kT + 2T0)
u2(kT + 4T0)

 y(k) =


y1(kT )

y1(kT + 3T0)
y2(kT )

y2(kT + 2T0)
y2(kT + 4T0)

 (6.27)

It may be seen that the form of Ky causes newer data than is available to be
used when calculating the control signals. Consider e.g. u1(kT ) then the signal
y1(kT + 3T0) is used, which occurs three STPs later in time, than the control
signal. Thus it would be impossible to actually implement this control law, which
also corresponds well with the lack of mathematical validity noted previously.

As such, it is concluded that it is difficult, if not impossible, to derive a control law, which
utilises the newest available data, for a lifted multirate system with use of the standard
LTI control theory tools available in MATLAB.

Remark 6.4.J: The control design difficulties arise from wishing to derive a control law
with an update rate equal to the STP based on a LTI model which updates at a
rate equal to the BTP. In essence, what has been attempted done, is to derive a
periodically time-varying control law from a time-invariant plant model. Achieving
this could potentially be possible by re-deriving the LQR proof, while using a STP
summation instead of the BTP summation currently used.

As mentioned in section 4.3, there appears to be a large number of papers regarding the
multirate control of lifted systems, and also papers utilising optimal control formulations.
Therefore it is concluded that it is definitely possible to obtain an optimal controller with
the desired properties, it is, however, beyond the scope of this thesis to derive these tools,
why they are not further considered.

Despite a strong desire to use a control law which calculates control signals using the
newest available data, figure 6.6 shows that a BTP control law works rather well. Furt-
hermore, the controller used for that simulation was derived by simply using MATLAB’s
dlqr command, i.e. a standard LTI controller design algorithm. Thus, while it is conclu-
ded that STP control is difficult to achieve using standard LTI design algorithms, it is
also concluded that BTP control works rather well.

This chapter set out to investigate the applicability of conventional MIMO control and
analysis tools on the multirate MSD system. It is generally found that the use of such
tools can to some extend be applied to analyse a lifted multirate system, and that optimal
control could be used to formulate a control law capable of controlling the MSD system
at a feedback update rate of the BTP. Next chapter seeks to establish if these conclusions
furthermore are valid for the 10 kW multirate DFPT model.
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CHAPTER 7
Multirate DFPT
Control
The purpose of this chapter is to investigate the applicability of the LTI control and
analysis tools, which were applied to the MSD system, to the 10 kW DFPT. This includes
a brief study of the applicability of the RGA on the DFPT multirate model and the design
of a deterministic optimal controller. The designed controller is hereafter implemented
in the 10 kW non-linear DFPT simulation model to establish if the developed control
works as a proof of concept. Lastly, the application of the unified non-minimal realisation
method to the 5.4MW DFPT and subsequent control thereof is discussed.

Applicability of MIMO Analysis to 10 kW DFPT7.1
In the previous chapter it was concluded that MIMO analysis of a lifted multirate sy-
stem is somewhat difficult to apply, because of couplings across time, which cannot
automatically be accounted, and which do not always make sense (e.g. backwards in
time). However, it still appears to be possible to extract some information by selectively
extracting relevant transfer function from the transfer function matrix.

Consider now the case of the DFPT. To obtain a linear multirate model of this system, it
is necessary to transform all time-domain equations to the spatial-domain. The question
now becomes, how does this transformation affect frequency response analysis tools.

Generally, the transformation transforms the time axis to an angle axis:

t
Spatial−−−−−−−−−→

Transformation
θ (7.1)

In fact, by investigating the transformation as used in equation 5.18 to transform the
rotor dynamics, and in equation 5.20 for the linear case. Then it may be seen that in
the linear case, the transformation is actually simply just a scaling of the coefficients by
a constant scalar. Scalar products are by definition commutative, and thereby it does
not matter if the transformation is applied before or after mathematical operations are
performed. It is merely up to the engineer to do whatever is convenient in the given
situation.

Thus, by this argument, it is argued that frequency response analysis is equally applicable
for spatial-domain models as it is for time-domain models, only that the x-axis uses a
different angular frequency as illustrated by:

f =
1

T

[
rad
s

]
Spatial−−−−−−−−−→

Transformation
fθBTP

=
1

θBTP

[
1

rad

]
(7.2)
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Remark 7.1.A: The reader should be careful to distinguish the angular frequency as
defined for frequency reponse analysis of spatial-domain models from the conven-
tional term angular frequency. As the conventional term merely represents the
angular velocity in the time-domain.

To investigate this scaling of the x-axis, the continuous linear time-domain dynamics and
linear spatial-domain dynamics of the rotor (equations 3.1 and 5.20) are considered in a
transfer function form:

Time-
domain ω̇r =

1

Jrp

(
τr − dr ωr −

τp
ηp

)
⇒ ωr =

1

s+ dr

Jrp

(
1

Jrp
τr −

1

Jrpηp
τp

)
(7.3)

Spatial-
domain ω′

r =
1

Jrp ωr0

(
τr − drωr −

τp,lin
ηp

)
⇒ ωr =

1

s+ dr

Jrp ωr0

(
1

Jrp ωr0
τr −

1

Jrp ωr0 ηp
τp,lin

)
(7.4)

Then by examining the location of the pole for either case, then it may be seen that
in the time-domain the pole is located at s = −dr/Jrp, but that in the spatial-domain
the pole has been shifted to s = −dr/(Jrp ωr0). That is to say the pole has simply been
multiplied by the factor 1/ωr0, and thus the x-axis scaling is also simply this factor. It
may be noted that this pole location is merely equal to the Ar constant in the rotor
dynamics state equation given by equation 5.21.

In chapter 5 it was concluded that the time-domain response of the multirate DFPT
model corresponded well with the simulation model. Having clarified whether or not
frequency response analysis is applicable to spatial-domain models, it now becomes inte-
resting to investigate if the model behaves correctly in the angular frequency domain. To
be able to consider the frequency response of the multirate DFPT model, it is necessary
to define which states are present in the output. Therefore the first output is chosen as
the rotor speed, such that y1 = ωr, and the second output is chosen as the pressure, such
that y2 = ∆p. Having decided upon the outputs, it is possible to form the 5× 5 transfer
function matrix G10kW by use of equation 6.3.

Cross Couplings in the DFPT:
Considering the DFPT, it has an evident cross coupling in the pump torque/flow/pressure
relationship, in that the torque affects the rotor velocity, thereby affecting the pump
flow, which subsequently affects the pressure. The control engineer may therefore be
interested in analysing the degree of these cross couplings for a DFPT such that an
appropriate control algorithm can be chosen. Therefore, this section seeks to investigate
if the RGA can be applied to the DFPT multirate model formulated by utilising the
UNMR method to yield information regarding cross couplings. As such, it is important
to note that the RGA is not applied to the 10 kWDFPT with the objective of qualitatively
or quantitatively analysing cross coupling nor is it to determine an appropriate control
structure.

To apply the RGA, the BTP to BTP transfer function are extracted from the 5 × 5
transfer function matrix G10kW and by omitting the across time transfer functions, the
matrix 2 × 2 dimensional G10kW13 may be formed. The results of calculating the RGA
for this matrix are presented in figure 7.1.
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Fig. 7.1: Magnitude of RGA elements in Λ(G10kW13) as function of frequency.

The RGA elements appear normal and similar to what would be expected for a system
with cross couplings. The magnitude of the x-axis is small, however, this is explained
by the location of the poles associated with the HPL and rotor dynamics, which in the
continuous case are at s = 8.2× 10−6 and s = 1.21.2× 10−5, meaning that all dynamics
should be in the vicinity of these locations, which corresponds very well with the figure.
The upper limit of the x-axis is given by the Nyquist frequency in the spatial-domain,
which may be found by considering BTP which in section 6.3 was defined to represent
the sampling period of the multirate model. Thus, the Nyquist frequency may then be
defined similarly as for time-domain models:

fθBTP,Nyq =
fθBTP

2
= 0.08 rad−1 (7.5)

Remark 7.1.B: To perform this analysis a new linearisation point, wherein αp0 = 0.5,
was chosen. If this had not been done, there would be no mutual correlation
between the torque and pressure, which would mean that the system would have
appeared completely decoupled.

Remark 7.1.C: The authors acknowledge that arguments with regard to a discrete
model have been made by considering properties of the continuous equations. While
not strictly correct, it is still correct in the sense that it gives some idea of the true
result, and since the purpose is not qualitative or quantitative analysis, this is
deemed sufficient.

With regard to analysis of cross couplings, it gives essential information to the control
engineer when determining an appropriate control structure. In this thesis, however, only
true MIMO optimal full state feedback control is considered why the actual information
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which can be drawn from an RGA analysis is not of interest. Based on the presented, it is,
however concluded that meaningful information regarding the degree of cross couplings
in a DFPT can be drawn from applying the RGA to the multirate DFPT model produced
by the UNMR method. The RGA is not directly applicable due to certain input-output
dynamics described by the multirate model do not make physical sense which the RGA is
not directly capable of accounting for. However, applying the RGA to the BTP to BTP
transfer functions from the given transfer function matrix makes it possible to analyse
the degree of cross couplings of a DFPT.

Gain in the DFPT:
In the previous chapter it was shown that, unlike the RGA analysis, it was not possible to
just merely extract the BTP to BTP transfer functions, and thereby obtain meaningful
results. For this reason the SVD analysis of the DFPT is omitted.

Optimal Control of 10 kW DFPT7.2
This section investigates the applicability of the conventional deterministic LQR control
problem to the 10 kW DFPT multirate model. It is important to note that the objective
of the designed full state feedback control is not to obtain high performing reference
tracking. This is due to the fact that the 10 kW DFPT is a purely fictive system why
the tracking performance is of no interest. Instead, the controller is designed as a proof-
of-concept to determine if the conventional deterministic LQR control problem can be
applied to the 10 kW DFPT multirate model produced by the UNMR method, such that,
a controller which is able to control the DFPT is obtained.

Considering full state feedback control of the DFPT, then the controllability of the sy-
stem is important. Calculating the controllability matrix for the multirate model of the
10 kW DFPT, then like for the MSD system, the rank of this matrix is equal to 9. Con-
sidering the states in the individual subvectors of the lifted state vector, then there are
γ = 2 CDE states, δ = 4 DDE states and finally σ = 3 SHE states. Given that the
SHE states describe the idealised sampling operations, then these states are generally
uncontrollable, since they describe direct input-output couplings. This leaves 6 states in
the last subvector, which is also the number of controllable states in a minimal realisation
(by MATLAB’s minreal command) of the multirate 10 kW DFPT model. Accounting for
the remaining 3 controllable states in the lifted multirate model is difficult.

However, the relaxed controllability requirement, stating that the number of controllable
states of a minimal realisation should be equal to γ+ δ, is still considered valid, why the
10 kW DFPT is considered controllable.

The following weighting matrices are defined for the LQR optimal control problem applied
to the 10 kW DFPT multirate model:

Q = diag (Q1,Q1,Q1,Q1,Q1,Q1) R = I (7.6)

where R is a 5 × 5 matrix corresponding in dimension to the lifted input vector, and
similarly Q is a 54× 54 matrix, or equivalently 6× 6 block matrix, corresponding to the
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lifted state vector. The matrices Q1 on the diagonal of Q are 9 × 9 weighting matrices
for the individual subvectors in the lifted state vector, and are defined as:

Q1 = diag (50000, 10000, 0, 0, 0, 0, 0, 0, 0) (7.7)

Thereby the rotor speed and pressure states are weighted at every time step in the lifted
vector.

Using these matrices in the conventional state feedback formulation of the optimal LQR
problem as presented in section 6.4.1 yields a BTP update control law of the form given
in equation 6.12.

Remark 7.2.A: The weighting matrices are not determined with the objective of obtai-
ning high performance reference tracking but merely as a proof of concept to con-
clude if the resulting optimal control law is able to control the HPL pressure and
rotor speed in the downscaled 10 kW DFPT.

The resulting control law is implemented in the 10 kW DFPT non-linear simulation
model in order to evaluate its applicability. The simulation is run by setting a rotor
speed reference and pressure difference reference of ωr

∗ = 1500 rpm and ∆p∗ = 350
bar, respectively. The full state feedback LQR optimal control problem is, however, by
default, designed to drive all states to zero. Thus in order to track ωr and ∆p to the stated
non-zero references, the control law is reformulated such that the ωr and ∆p states are
transformed to a rotor speed error and pressure difference error defined as eωr = ωr

∗−ωr
and e∆p = ∆p∗ − ∆p, respectively. The defined error states are multiplied with the
entries in the gain matrix K which are computed for driving the original states, ωr and
∆p, to zero. It can be shown that this reformulation is equivalent to implementing a
pre-compensator gain to the states which are to be driven to a non-zero reference.

Similar to the multirate control law implemented for the MSD system, the resulting gain
matrix K has five rows meaning that five control signals are computed. Only two inputs
(u1 = αp

∗ and u2 = αm
∗) can be given to the DFPT why the five calculated controller

outputs must be merged to two control signals. This is done in a similar manner to
the MSD system by switching between the five calculated controller outputs at specified
instants.

As presented in chapter 5, the linear multirate model of the 10 kW DFPT is developed in
the spatial-domain (DD pump angle). This also means that when the control law is to be
implemented in the simulation model, the discrete triggering must be done as function
of the DD pump angle. This discrete triggering applies to both the BTP sampling of
all states at the angular instant of θBTP and the switching between the five computed
control signals in order to obtain αp

∗ and αm
∗.

The simulation results are plotted in figure 7.2 where the simulation is initiated with a
rotor speed of ωr = 1515 rpm and a HPL to LPL pressure difference of ∆p = 360 bar.
Furthermore, the only exogenous input affecting the DFPT is the rotor torque which is
set constant to τr = 64.3 Nm corresponding to the linearisation reactive pump torque in
the linear model. As the exogenous input is constant, it is considered deterministic. The
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top plots show the rotor speed and pressure difference response and the lower plot show
the inputs to the DSMs, αp

∗ and αm
∗.

1500

1510

1520

R
ot

or
S
p
ee

d
[r
p
m

]

!r

!r
$

350

360

P
re

ss
u
re

[b
ar

] "p
"p$

0 2 4 6 8 10 12 14
Time [s]

0

0.5

1

D
S
M

In
p
u
ts

,p
$

,m
$

Fig. 7.2: Simulation results of rotor speed and HPL to LPL pressure difference from 10 kW DFPT
simulation model including DSM inputs.

αm
∗ is seen to saturate at a value of 1 which is due to a saturation block located at

both DSM inputs in the simulation model. This is done in order to avoid integrator
wind-up in the DSMs as they include a discrete-time integrator. The simulation results
show that the implemented full state feedback controller is able to track the rotor speed
and pressure difference to a steady state value. The rotor speed, however, has a steady
state error. The steady state error could potentially have been removed by introducing
an integral term but has not been done as high tracking performance is not the objective
in this thesis. It should furthermore be noted that the exogenous input τr is constant
why the controllers ability to reject stochastic disturbances is not evaluated.

Based on the simulation it can be concluded that the BTP update control law calculated
from the optimal LQR problem is able to control the 10 kW DFPT. This does, however,
not imply that the control law can also be implemented on the full scale 5.4 MW DFPT.
The 5.4 MW DFPT has significantly more chamber activation per BTP which means
that the controlled outputs may vary more within a BTP which could lead to a problem
since the state feedback is only sampled at intervals equal to the BTP. In addition to
this, the rotor torque is in the 5.4 MW DFPT a function of the exogenous wind speed
input which is highly varying which could also pose a problem due to the state feedback
BTP sampling rate. Thus the next section seeks to preliminary investigate the control
challenges regarding implementation on the 5.4 MW DFPT.
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Challenges upon Application to 5.4MW DFPT7.3
During the development of a multirate modelling method, application to the 10 kW
DFPT and control hereof, a number of challenges are identified. These challenges will in
this section be discussed, primarily, in relation to the 5.4 MW DFPT.

Deterministic Control of DFPT with Stochastic Exogenous Inputs:
Considering the task of applying the UNMR method to the full scale 5.4MW DFPT, only
deterministic control with an update rate equal to the BTP has been considered. This
has been shown to work acceptably in the case of deterministic systems, but how well
does this type of control work for systems under the influence of stochastic exogenous
inputs. A wind turbine is an example of such a system, since it has the wind speed as a
stochastic exogenous input for the drivetrain. To be able to properly discuss the potential
problems of applying a deterministic control algorithm for controlling a WT DFPT, the
reader must be familiar with the basics of WT operation why a brief introduction to this
is presented in the following. WT operation is further elaborated in appendix B.

For a WT, the objective is generally to maximise power production without exceeding
the ratings and limitations of the various subsystems (e.g. drivetrain or pitch system). A
measure for optimal power production is the Tip-Speed Ratio (TSR), which is defined as a
ratio between the wind speed and rotor speed. WT operation can be divided into several
regions which are constrained by the wind speed acting on the WT. For wind speeds
above the cut in wind speed and below the rated speed, an optimum TSR is obtained
by controlling the DD pump reactive torque. For wind speeds above the rated value,
both the blade pitch angle and reactive pump torque is used for obtaining an optimum
TSR. This thesis is not concerned with the control of the pitch system why only the
region in which an optimum TSR is obtained by controlling the reactive pump torque is
considered. An optimum TSR is in this region obtained by maintaining a combination
of optimal values of the reactive pump torque and rotor speed. This region is referred to
as region II when it is considered in the rotor speed frame and is depicted in figure 7.3.
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Fig. 7.3: Ideal reactive torque for maximum power production as a function of ωr for the 5.4MW
WT. Overlaid are the operating regions for the WT. Based on data in Jonkman et al. (2009)
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Despite that the TSR depends directly on the rotor speed, the control task of obtaining
an optimum TSR is considered as a torque control problem, as this can be shown to avoid
utilisation of the highly fluctuating wind speed as feedback. Instead a reactive torque
reference is calculated as a function of the desired rotor speed which means that the
rotor speed is indirectly controlled to obtain an optimum TSR and hereby maximising
the power production.

In addition to the controlled reactive torque, it is desired to control the pressure in
the HPL connecting the DD pump and motor to a constant reference since the highest
efficiency of the DDMs are obtained when they are operated at their rated pressure. The
concern of applying the control law which utilises state feedback only updated at intervals
equal to the BTP on the 5.4 MW DFPT is then, how much these controlled outputs can
vary during the BTP. As the the exogenous wind speed directly affects the rotor speed
which is to be indirectly controlled, by accelerating it, it is desired to investigate the
maximum acceleration of the rotor due to the wind, such that the maximum change in
speed during one BTP can be calculated.

The change in rotor speed, ∆ωr, will be calculated by the use of equation 7.8:

∆ωr = ω̇r,max Tmax (7.8)

Where ω̇r,max and Tmax are the maximum acceleration and maximum time period for a
BTP, respectively. These maximum values will be found based on an engineering asses-
sment of what changes might occur within region II operation of a WT (see figure B.5).
The results of this investigation should not be seen as conclusive, but merely as a well
founded indication on the result of implementing the BTP control on the 5.4MW DFPT.

To determine the maximum time period of a BTP, the sampling scheme of the 5.4MW
DFPT is established. The sampling rates of the DD pump and motor are determined
using equations 5.4 and 5.14 respectively.

θ1 =
2π

NpcNcrNl
=

2π

25 · 4 · 16
= 0.0039 rad θ2 =

2π

NmcNec
=

2π

7 · 6
= 0.1496 rad (7.9)

With the sampling periods for the system defined, it is now possible to define a STP of
θ0 = 1.87× 10−4 rad and a BTP of θBTP = π rad.

Remark 7.3.A: The number of STPs per BTP is then found to N = 16800, and with
a combined state vector of dimension n × 1 = 77 × 1 (for detail see table 5.1) it
should be evident that the double expanded state vector of dimension Nn× 1 will
become exceedingly large along with the lifted system matrices GΨ andHΨ. This
is why, as previously stated, sparse matrices must be utilised when forming the
discrete state-space model of the 5.4MW DFPT using the UNMR method.

In figure B.5 the operating range of the rotor speed in region II is seen to be [1.3ωr,in

0.99ωr,trd] = [8.97 11.98] rpm and from this, the BTP period initially determined in the
spatial-domain can be transformed into the time-domain. This yields a BTP range of
[Tmin Tmax] = [θBTP/ωr,in θBTP/ωr,trd] = [2.5 3.34] s.
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A measure of the maximum rotor acceleration, ω̇r,max, is estimated by considering New-
ton’s second law of rotation:

ω̇r,max =
∆τr,max

Jrp
(7.10)

where ∆τr,max = τrtd − τmin. These torques represent the maximum and minimum rotor
torque within region II operation. Defining ∆τr,max as such, assumes that the exogenous
wind speed changes instantaneously from the cut-in wind speed, vin, to the rated wind
speed, vrtd, which for the purpose of these calculation might be considered a conservative
choice. τrtd and τmin are calculated using equation B.5 and associated parameters from
table B.1, and hereby is ω̇r,max found to:

ω̇r,max =
3.28 MNm− 1.84 MNm

38.8 Mkg m2
= 0.0372 rad/s2 (7.11)

Having determined ω̇r,max and Tmax, equation 7.8 is applied to calculate the maximum
change in rotor speed and is found to ∆ωr = 1.19 rpm. Comparing this deviation with
the rotor speed within the operating range of [8.97 11.98] rpm it is significant in size,
which gives way for the following remarks:

Remark 7.3.B: The calculated maximum change in rotor speed should be considered as
the absolute maximum change which is expected to occur during a BTP, as it is ba-
sed upon the most conservative choices of BTP time period and rotor acceleration.
In fact, the calculated maximum rotor speed change is based on the assumption
that the WT is operated at the cut-in wind speed when a BTP is initiated follo-
wed by an immediate increase in the wind speed to rated its value, resulting in a
constant acceleration of ω̇r,max during the entire BTP.

Considering BTP control of a DFPT it is clear that a constant acceleration during
an entire BTP is highly unlikely, because as the rotor speed start to increase so will
the pressure in the HPL. This will effectively result in an increased reactive pump
torque creating a negative change in rotor acceleration. Thus, this confirms that
the preceding calculations are based upon most conservative assumptions.

Remark 7.3.C: A rotor speed change of ∆ωr = 1.19 rpm during a BTP, could po-
tentially result in a significant control error when the feedback control states are
updated, and depending on the magnitudes of the controller gains, this might lead
to stability issues.

Remark 7.3.D: In the preceding calculations only the exogenous wind input’s effect on
the rotor velocity has been considered, however, the second control output, ∆p will
also be affected. The effect the exogenous wind input has on ∆p should also be
investigated before the applicability of BTP control is determined for the 5.4MW
DFPT.

The preceding calculations indicate that implementing the BTP updated control law on
the 5.4 MW DFPT might pose stability issues. However, the calculations are based on
an engineering assessment why tests on a simulation model must be conducted in order
to finally conclude the applicability of the BTP control.
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Control of Uncontrollable States:
In contrast to the 10 kW DFPT, where the controlled outputs are the rotor speed and
pressure, the controlled outputs for the 5.4MW DFPT are the pump torque, τr and
the HPL to LPL pressure difference, ∆p. However, the torque is a SHE state, which for
idealised sample-and-hold operations results in the state being non-minimal and therefore
also uncontrollable, why reference tracking of this state is likely not possible. It may
therefore be necessary to reformulate the model using an integral state, where the integral
state is equal to the torque tracking error.

Including an integral state in a standard discrete state-space formulation is considered
relatively trivial, and the procedure is well established in literature, e.g. Ogata (1987).
However, when an integral state must be included in the lifted multirate state-space
model, the procedure is no longer well documented and it gives rise to the following
considerations:

Remark 7.3.E: If it is intended to apply a BTP control strategy, for the 5.4MW DFPT,
where the state feedback is only sampled at a rate equal to the BTP, it also makes
sense to define the integral state at the identical BTP update rate. Defining the
integral states at a sampling period equal to the BTP in which the multirate model
is described, should make it possible to include an integral state without reformu-
lating the UNMR method, but merely by adding an additional step. It is expected
that a textbook procedure of how to include an integral state as the one described
in Ogata (1987) should be somewhat directly applicable.

Remark 7.3.F: Alternatively, if the challenges of designing a control law which utilises
control feedback updates at a rate of the STP, it would make sense to introduce an
integral state with a STP update rate. Doing so, however requires a reformulation
of the UNMR method, as an integral state must be defined in the expanded state
vector also referred to as the combined state vector. This procedure is more time
consuming and a textbook approach will not directly be applicable, however, to
the authors knowledge there is no indication that it should not be possible.

Time-domain Implementation of Spatial-domain Control Law:
In the spatial-domain there are no challenges with regard to implementing the control
law, nor are there any problems in the time-domain when the rotor speed is constant.
But when the rotor speed changes, the time until a BTP is completed will vary. During
a BTP N1 = θBTP/θ1 and N2 = θBTP/θ2 displacement inputs to the DD pump and DD
motor can be given, respectively. In the angle-domain these are fully synchronised, but in
the time-domain, then if the pump speed is decreasing the motor will potentially require
more than N2 displacement inputs before the BTP is completed and the pump has had
N1 displacement inputs. As the BTP is described by the pump angle, the problem only
concerns inputs given to the DD motor. The issues related to updating the motor’s
control signal is attempted illustrated in figure 7.4.

Figure 7.4 is based upon how the spatial-domain control law is implemented in the 10 kW
non-linear simulation model, which is merely one of multiple implementation approaches.
The figure displays the relation between the angular position of the 10 kW DFPT DDMs,
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Fig. 7.4: The figure depicts the control update challenges related to the time-domain implemen-
tation of the spatial-domian control law. In scenario 1, depicted to the left, the DD pump is
operated at the multirate model’s operating point. In scenario 2, depicted to the right, the
DD pump speed has increased and is above the multirate model’s operating point. The figure’s
control rates and associated chamber activations are based upon the downscaled 10 kW DFPT.

and the associated control signal update rates along with the chamber activation se-
quence. In the first scenario, seen in the left part of the figure, the speed of DDMs are
operated in the multirate model’s operating point, why control updates and associated
chamber activations are synchronised. In the second scenario, seen in the right part
of the figure, the DD pump is operated above the multirate model’s operating point.
As the pump angle triggers the spatial-domain control structure, the control signal for
the pump and associated chamber activations remain synchronised. However, the DD
motor’s control signal, which are triggered by the pump angle, and associated chamber
activations are no longer synchronised. As a result the motor control signal is updated at
a faster rate than the associated chamber activations, and as a result not all calculated
displacement inputs will be given to DD motor during a BTP.

The use of a model based control approach means that the designed BTP control is limited
by the restrictions of the developed multirate DFPT model. For the 10 kW DFPT, which
exhibits similar sampling rates, this means that at each BTP update instant determined
by the pump angle, three displacement inputs for the motor are calculated regardless
of how many inputs the motor requires during the following BTP. Assuming that BTP
control is based on a model derived from the UNMR method, the issues related to
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a non-uniform number of motor displacement inputs per BTP, can only be addressed
during the time-domain implementation of the spatial-domain control law. Upon this
implementation the following considerations have been made:

Remark 7.3.G: For each BTP, N2 displacement inputs have been calculated for the
DD motor when utilising the spatial-domain control law. The challenges, however,
lies in when these displacement inputs should be updated:

• The displacement input could be updated at a rate of θ2 triggered by the DD
pump angle. This would result in the update being equally spaced within a
BTP as depicted in figure 7.4. If the pump is operated at a speed below the
multirate model’s operating point, it could result in the same displacement
input being given to the motor multiple times before the pump angle triggers
an update in the motor displacement.

• The displacement input could be updated at a rate of θ2 triggered by the DD
motor angle. If the pump is operated at a speed below the multirate model’s
operating point, this could result in more than N2 inputs being required for
the DD motor during a BTP. This, however, leads to an issue when the N2+1
input must be given as no such input has yet been calculated. An argument
could be made that above theN2 input, all displacement inputs are zero as the
utilised spatial control law is restricted to a maximum ofN2 potential chamber
activations during a BTP. Alternatively, the N th

2 displacement input could be
held for the remainder of the BTP or the displacement input sequence could
be repeated until the BTP is completed.

This concludes the discussion of the identified challenges related to the currently utilised
DFPT multirate modelling and BTP updated control law. The discussion has taken
basis in the experience acquired while working with the modelling and control of the
downscaled 10 kW DFPT. Furthermore, these challenges have been put into perspective
by considering the full scale 5.4MW DFPT in the aim of emphasising the remaining
challenges related to model based control of a utility-scale DFPT using the developed
non-minimal realisation method. The next chapter will continue the discussion, however
the focus will no longer be limited to control related challenges but aims to discuss all
aspects of the work presented in this thesis, and additionally suggest future topics of
studies within the area of model based control of a DFPT.
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CHAPTER 8
Discussion
The purpose of this discussion is to reflect on some of the choices taken throughout
the work documented in this thesis, and their possible alternatives. The discussion is
separated into three parts. Each part reflects on a different part of the thesis, such that the
first part considers the task of DFPT modelling, the second part the analysis and control
of lifted models and finally the third part considers alternative methods for deriving models
and model based controllers together with discussing the methodical approach used in the
project. This discussion should be seen as an addition to the discussions regarding results
and application of methods, which have been presented throughout the report. The final
part of the chapter is concluded with some considerations regarding the future work and
application of the UNMR method to the 5.4MW DFPT.

DFPT Modelling:
The purpose of deriving a linear multirate model of a DFPT was to obtain a tool, which
could be used for analysing system properties with regard to control and furthermore
also for designing controllers. For the model to be useful for this, three desirable charac-
teristics were defined, which may briefly be summarised as:

• MIMO representation with transfer characteristics for all input and output combi-
nations in the system.

• Linear time-invariant (or angle-invariant in the case of the DFPT).
• State-space formulation.

Generally the proposed UNMR method satisfies all of these requirements. However, the
lifting approach, which the UNMR methods makes use of, is necessary to obtain an LTI
description, increases the number of inputs and outputs of the LTI model by combining
inputs occurring at different points in time in a single vector. Thereby the lifting approach
somewhat violates the first requirement, since some of the transfer functions will be
acausal since they describe input-output combinations backward in time. The lifting
approach is, however, the only possibility for deriving a LTI model. As such, when
retrospectively considering the desirable characteristics with the experience of applying
conventional MIMO analysis tools to the model in mind, they appear conflicting to some
extent.

Despite this, the proposed UNMR method does produce a LTI model of a multirate
system, which includes both continuous, discrete and sample-and-hold elements by use of
the lifting technique. Something which hitherto appears not to be described in literature.
This is seen as a major result of this thesis.

Considering the DFPT, to apply the UNMR method, the activation rates in the DDMs
must be uniform, which they are not for variable-speed operation in the time-domain.
Obtaining uniform rates is possible by transforming all time-domain equations to the
spatial angle-domain, where the angle between chamber activations is constant. The
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employed spatial-transformation casts all states with respect to the pump shaft position.
This does not introduce any problems in the case of constant pump speed, but consider
the case of varying pump speed, then when seen from the time-axis, the pump shaft
position axis stretches linearly, whereas the motor shaft position axis remains fixed.
When combining the different linear descriptions of the system elements, the motor axis
and pump axis are in effect superimposed on one and another. From a mathematical
point of view this is somewhat problematic since now the motor states are described
relative to an axis which they do not belong to. On the other hand, the purpose of the
model is to serve as a linear tool for analysis and controller design, and such models are
often only accurate representations in the vicinity of the linearisation point, and there is
no reason that such arguments should not be applicable for the spatial-transformation
as well.

As such, it has been shown that application of the UNMR method to the DFPT is
possible, and when comparing simulation results, it may be seen that simulation results
have good coherence with a time-domain simulation model of the DFPT in the vicinity
of the linearisation point. This is seen as a major result of the thesis, as not only
has the multirate modelling challenge been solved, but the individual solutions to the
subchallenges of DFPT modelling have been combined to form a working linear angle-
invariant model of the DFPT.

Consider the desire of having a globally valid, but not necessarily globally accurate,
linear model, then the spatial-transformation must be reconsidered. The transformation
as defined in equations 5.17 and 5.18 results in non-linear equations when applied, since
all states are then divided by the pump speed. An alternative, which has not been
investigated, is to consider these fractions as the states of the equations, then as seen
from the fractions the equations are linear. This, however, appears to become problematic
when considering the spatial-domain rotor dynamics, since how can it be possible to
describe the dynamics of the pump/rotor speed state, when it is already included in all
other states. Should the global validity of the model be an absolute requirement, then it
appears that it is not merely possible to apply the spatial-transformation as done in this
thesis, and a different or additional coordinate transformation would likely be necessary.

Nonetheless, the model is accurate at the operating point, and valid in the vicinity thereof
as shown in section 5.5. Therefore the modelling approach is considered successful,
especially when considering the fact that the purpose of such a model is merely to act as
a mathematical tool for correctly describing the input-output relations of a system both
in the time-domain, or more accurately the angle-domain, and the frequency domain.

Controller Design and Linear Analysis using Lifted Model:
The task of controlling a DFPT, may be likened to the task of controlling a power
electronic back-to-back converter, which has one side connected to the grid and the
other connected to a variable-speed motor. In these situations the converters are usually
controlled in a decentralised strategy under the assumption of a stiff DC-link voltage.
The purpose of the grid-side converter is then typically to control the DC-link such that
it is maintained at some constant value, and the purpose of the motor-side converter
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is then to control the motor with respect to some control objective, typically torque or
speed. Such a decentralised control algorithm has previously been successfully utilised by
the authors wherein the pressure level, ∆p, may be likened to the DC-link voltage. The
obvious disadvantage of such a decentralised strategy is that no conclusions with regard
to stability can be made without assuming a constant pressure level. Furthermore, this
absolutely requires that the pressure level is one of the controlled outputs, which may
not necessarily be possible in the case of desiring motor torque control to satisfy grid
connection requirements. This is where this thesis takes its starting point, the desire
to analyse and control the system without making significant assumptions regarding the
controlled outputs. With the hypothesis of the general applicability of conventional, well
known and well documented tools offered by linear control theory to any LTI model, this
thesis set out to derive a model, and the results of this have just been discussed.

The model produced by the UMNR method makes no requirements with regard to what
the controlled outputs should be, and thus it is merely up to the engineer to choose
something suitable.

The aforementioned acausal input-output combinations produced by the lifting approach
limit the direct applicability of analysis tools. This limitation occurs since the tools have
been derived for non-lifted systems with only causal input-output combinations. It may
be possible to reformulate the tools to account for these couplings, however, this thesis
has been concerned with model development and application of already existing tools,
and not the derivation of new tools. As such, the application of analysis tools has been
focused on how the conventional tools may be used to extract useful information, instead
of focusing on complete re-derivations.

Determining to which extent the conventional tools may be applied to a lifted model,
required extensive investigation of the results, and did not prove to be a trivial task,
which contrasted greatly with the assumption, the conducted work was initiated by.
However, having clarified the necessary modifications and limitations in interpretation
upon application of the tools, the utilisation of them is fairly trivial in that it is exactly
like applying them to non-lifted systems.

Considering the control of a lifted model. Then by the lifting approach a conventional
discrete state-space model is produced with a single slow rate equal to the BTP. Designing
state feedback controllers using such a model obviously limits the feedback signals to
being updated once per BTP. This slow rate BTP is generally of no problem in the case
of deterministic systems, but if the system has stochastic exogenous inputs, then this
slow update rate of the feedback has potential for becoming problematic. While this was
not an unexpected issue, it has proven to be more demanding than anticipated to derive a
control law, which utilises a faster update rate, while limited to utilising standard linear
quadratic regulator algorithms available in MATLAB.

With regard to control and analysis of the DFPT. It was determined that the spatial-
transformation does not impose any limits on frequency response analysis, and subse-
quently it was determined that the derived 10 kW DFPT model appears to behave as
expected in the frequency domain. The spatial-transformation does, however, introduce
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a challenge when combined with the lifting approach. In the time-domain, the number
of chamber activations per second in the DD pump and motor is somewhat similar in
the 5.4MW DFPT, since the vastly different operating speeds compensate for the vastly
different number of chambers. However, upon transforming to the spatial-domain, the
number of activations per revolution is of different order of magnitudes for the two DD
machines. This causes the number of STPs per BTP to become very large, such that
the dimensions of the lifted vectors and matrices become excessively large, whereby the
computer memory consumption is increased to the point that it exceeds the memory
available in a state-of-the-art personal computer. The challenge of memory consumption
could potentially be handled by utilising a minimal realisation of the multirate model.
This is possible since only the continuous and discrete states in the last subvector re-
main after applying MATLAB’s minreal command, and these correspond exactly with
the states which are utilised for feedback in the control law. All remaining states simply
have a zero gain associated with them, why the gains for the minimal realisation are the
same as for the model produced by the UNMR method.

The spatial-transformation inadvertently results in all control updates being triggered as
a function of the pump shaft position. The challenges related to this and varying pump
speed were extensively discussed in the previous chapter, with regard to the time-domain
implementation of a spatial-domain control law.

Alternative Solutions and Approaches:
The objective of this thesis was to determine a suitable method for obtaining a LTI
model of a DFPT which includes both continuous and discrete elements, whereto the
conventional control theory tools may be applied. It may then be argued that while this
has been satisfied (although somewhat limited with regard to analysis), the solution to
this problem has highlighted a number of underlying issues, which indicate that obtaining
a linear time-, or angle-, invariant model is not an optimal solution with regard to DFPT
modelling and control.

Expanding this thesis’ horizon to including linear time-variant models would remove the
necessity of the lifting approach and thereby also acausal input-output combinations. The
derivation of a time-varying model would be relatively easy for a reader familiar with the
work in this thesis. Consider the transition equations derived in step 3 of the UNMR
method, here all transitions are derived starting from the last subvector in the previous
BTP. If instead a time-variant model is to be obtained, then it is simply a question of
deriving the transitions starting from the previous STP instead. While simple to derive,
time-variant models introduces the challenge of switching between periodically varying
models and their associated control laws. Furthermore, how conventional control theory
tools can be applied to periodically time-varying models must be considered. Is it merely
possible to apply them piecewise per STP in a BTP, and how to handle the possibility of a
very large number of STPs per BTP, whereby this approach quickly becomes unpractical.
Additionally, while time-variant models would be relatively simple to derive, they would
still be subject to the limitations of the spatial-domain transformation, why this would
not be more applicable than for the UNMR method.
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Hitherto unpublished work by Pedersen et al. (2016a) seems to indicate that hybrid
modelling approaches can describe the DFPT, but that the derivation of control laws
based on such models might be difficult. This is a topic which has not been considered
by the authors, since the goal was here to derive LTI type models.

Finally the methodical approach for the project has resulted in challenges related to lif-
ted LTI type models and the spatial-transformation only surfacing after already having
derived multirate models for both the MSD and DFPT. If an alternative chronologi-
cal order of conducting the presented work had been utilised, the challenges related to
analysis and control of lifted models could potentially have been revealed at an earlier
stage, which would have allowed the authors to choose a different modelling approach,
potentially changing to time-variant descriptions. However, as mentioned time-variant
descriptions would, in addition to being subject to switching challenges, still be subject
to the spatial-domain transformation. Thereby, having changed the chronological order,
the challenges related to the spatial-transformation would have remained hidden until a
later stage in the project work. So while the order could have been changed to disco-
ver some things at an earlier stage, the end result would necessarily not be significantly
changed.

Having discussed the proposed UNMR method and the challenges related to its appli-
cation, it may generally be concluded that the method does make it possible to derive
a LTI type model of a multirate system with continuous and discrete elements, which
may easily occur when multiple sensors with different bandwidths are utilised, and this
is seen as a major result of the thesis.

However, while this is possible, the limitations associated with combining the UNMRmet-
hod and the spatial-transformation are more encompassing than anticipated. Problem
free implementation of a multirate spatial-domain control law necessitates fixed-speed
operation of the two machines. This is in contrast to what the spatial-transformation
was originally intended for, which was exactly to allow variable-speed operation. Thus,
before proceeding to applying the UNMR method to the 5.4MW DFPT, it is the re-
commendation of the authors that future work should further investigate the spatial-
transformation to obtain problem free implementation of the control, and furthermore
also to perform an in-depth literature study to determine how STP rate controllers can
be designed using lifted BTP rate models.
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CHAPTER 9
Conclusion
This thesis set out to answer the problem of deriving a linear time-invariant (LTI) multi-
rate model of a utility-scale wind turbine digital fluid power transmission (DFPT) with
the purpose of analysis and controller design utilising conventional linear control tools.
The task is challenging owing to the system’s two digital displacement machines (DDMs),
which operate with unequal and non-uniform rates in the time-domain, and which act
upon the continuous time-domain pressure and rotor dynamics.

The underlying hypothesis supporting this work, was that given a LTI model, the tasks
of analysis and controller design should prove to be somewhat trivial, and easy to carry
out for any engineer accustomed to multivariable linear control theory.

To break down the problem into more manageable subtasks, a linear mass spring damper
system was introduced, and used for development of a new unified non-minimal realisa-
tion (UNMR) method for deriving a LTI multirate model. Regarding the UNMR method
for modelling multirate systems a number of conclusions are made:

• The UNMR method combines Kalman and Bertram (1959), who describe any kind
of sampled-data system with continuous, discrete and sample-and-hold elements,
and Araki and Yamamoto (1986), who describes a method for deriving an LTI
model of a multirate system with only continuous elements by the lifting approach.

• The UNMR method produces a LTI model, by lifting the individual signals into
a vector encompassing all signals in a single common time period (the basic time
period (BTP)). Thereby, the UNMR method combines multiple fast-rate signals
into a single slow-rate signal and thus it is possible to derive a LTI model of a
multirate system.

With respect to the control properties and applicability of conventional control and ana-
lysis tools, on a model produced by the UNMR method, some conclusions may be made:

• A lifted model can never attain full rank in the controllability matrix. This is
a consequence of how a lifted model per definition is not a minimal realisation.
However, it was generally found that the full rank requirement may be relaxed to
having rank equal to the number of continuous and discrete states in the minimal
realisation of the multirate model.

• For analysing cross couplings in a multiple-input multiple-output (MIMO) system
the relative gain array (RGA) is commonly used. Since the input and output vector
in the developed multirate model contain entries which are shifted in time relative
each other, then the transfer function matrix contains input-output relations des-
cribing dynamics both forward and backward in time. The functions backward in
time are acausal and do not make physical sense. Since the RGA is only defined for
conventional causal continuous or discrete systems, it is concluded that it cannot
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be directly applied.

However, it was generally found possible to extract the causal BTP to BTP transfer
functions from the matrix, and perform the analysis and obtain realistic results.

• For analysing the gain of a MIMO system the singular value decomposition (SVD)
is commonly used. For the same reason the RGA is not directly applicable, it
is concluded that the SVD cannot be directly applied. In contrast to the RGA
analysis, the causal BTP to BTP transfer functions could not be used to obtain
meaningful results from a SVD analysis.

However, it was found that calculating the SVD for the full transfer function matrix,
did yield the correct maximum singular value, while the minimum value did not
appear to have any physical meaning. Thus it is possible to determine the maximum
gain of the system.

• Designing stable optimal linear quadratic state feedback controllers based on a lifted
model for the case of a deterministic system was generally found to be possible. The
feedback signals for the control law are, however, limited to updating at the BTP
rate. This could pose a problem in systems where the BTP is significantly longer
than the sampling times in the system and furthermore the system is influences by
stochastic disturbances.

The UNMR method’s applicability on a DFPT is evaluated using a downscaled 10 kW
DFPT, which dynamic characteristics are similar to those of the full rate 5.4MW DFPT.
To apply the UNMR method to the DFPT, the non-uniform time-domain rates must be
handled. Uniform rates are obtained by transforming all equations from the time-domain
to a spatial angle-domain. Having done this, it has been shown that a multirate DFPT
model can be obtained by utilising the UNMR method, and some conclusions may be
drawn from the results:

• Frequency response analysis of spatial-domain models is possible.

• Deriving control laws and analysing BTP to BTP couplings for a DFPT is possible.

• Expansion to the full rating DFPT is difficult, because of a large number of states,
which are only further expanded when applying the UNMR method. The large
number of states necessitates the use of sparse matrices to conserve memory, which
the LTI toolbox algorithms included in MATLAB are not programmed to handle.

By these conclusions, the problem statement of this thesis is considered answered. It
is possible to derive a LTI multirate model of a utility-scale wind turbine DFPT, and
furthermore, it is possible to apply conventional LTI multivariable control and analysis
tools to the model. The tools cannot, however, be applied without taking the lifted nature
of the model into consideration, which slightly limits the applicability of conventional
tools. Thus, while it is possible to obtain LTI models, the derivation of them and sub-
sequent analysis and controller design is far from trivial. It is the opinion of the authors
that the task is sufficiently difficult, that other approaches to solving the DFPT modelling
challenge should be considered, wherein the model is not limited to being linear.
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APPENDIXA
State of the Art
Research
This appendix includes supplementary documentation on the studies conducted in order
to complete the work presented in chapter 1. The intended purpose of this appendix is
to supply the readers of this thesis with additional elaboration of some conclusions made
during chapter 1. It furthermore presents what the authors considers relevant knowledge
when a DFPT must be studied, however due to page limitations have not been allowed
space in the primary part of this thesis.

The appendix covers a variety of topics, which in some way all are connected to the
study of DFPT WT drivetrains. As a result this appendix is not intended to be read as
a single coherent chapter, but instead as separate sections, which all serves as references
to specific parts of chapter 1. This appendix includes the following sections:

WT TopologiesA.1
A. Hansen et al. (2004), L. H. Hansen et al. (2001b), Li and Chen (2008), and Singh and
Santoso (2011) generally classify the drivetrain of modern utility-scale horizontal axis
upwind WTs into four categories:

• Type A: Fixed-speed Wind Turbine
• Type B: Variable-slip Wind Turbine
• Type C: Doubly-fed Induction Generator Wind Turbine
• Type D: Full-converter Wind Turbine

Type A turbines operate with a fixed rotor speed, while types B, C andD are variable-
speed WTs. Furthermore the general drivetrain topologies may also be classified by the
power control strategy, the scale of the implemented power converter (full or partial) and
if they are geared or direct-driven. Many different variations of these WT drivetrains
and their control strategies exist, and it is beyond the scope of this work to classify every
variation (Li and Chen 2008).
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Fixed-speed and Variable-speed Topologies:
Fixed-speed turbines are generally simpler and more robust than their variable-speed
counterparts. The design of fixed-speed WTs is inherently limited to only obtain maxi-
mum aerodynamic efficiency at one wind speed, as such they operate at less than optimum
in real world conditions with varying wind speeds. Variable-speed turbines which usually
employ some form of power converter to allow for variable speed operation. They are, in
contrast to fixed-speed designs, designed to operate efficiently over a wide range of wind
speeds, by adjusting the rotor speed for optimal wind power extraction. (A. Hansen et al.
2004)

Fixed-speed WTs may either employ blade pitch control or stall control, while variable-
speed designs normally employ blade pitching mechanisms with some control algorithm
for efficient operation. Generally, WTs that employ blade pitching are able to extract
more energy from the wind, it does, however, come at the cost of additional machinery
(the pitching mechanisms) and controllers. (Singh and Santoso 2011)

Fixed-speed WTs were mostly installed in the 1980’s and 1990’s, whereas the bulk of
modern turbines currently being installed are variable-speed designs, which are able to
operate more efficiently over a larger wind speed range. (A. Hansen et al. 2004)

In the following, the components which make up the type A, B, C and D drivetrain topo-
logies will be elaborated upon. Furthermore, slight variations of the different topologies,
which do not require their own classification, will also be briefly presented.

Type A: Fixed-speed Wind Turbine:
These are the most basic utility-scale WTs in operation today. They derive their name
from the fact that they operate with less than 1% variation in rotor speed when operating,
independently of the wind speed.

The generator in these WTs is a high speed asynchronous squirrel cage induction genera-
tor (SCIG). The high speed generator shaft is connected to the low speed main shaft (the
rotor) via a multi-stage (full speed) gearbox, and the stator windings connect directly to
the grid through a transformer. As such the rotational speed of the rotor is determined
by the grid frequency, winding configuration and gear ratio of the gearbox. (Li and Chen
2008)

Figure A.1 diagrammatically shows a stall regulated fixed-speed WT topology, with
included softstarter and reactive power compensation capacitor bank.

To allow for smoother connection to the grid a softstarter is normally included, which
can reduce in-rush current and mechanical stresses from jerk during acceleration of the
rotor from standstill. Furthermore, a SCIG requires reactive power to magnetise the
stator side windings, a capacitor bank, as indicated in the figure, may be used as reactive
power compensation. (L. H. Hansen et al. 2001a)
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Fig. A.1: Stall regulated type A drivetrain, which includes a capacitor bank for reactive power
compensation. The generator connects directly to the grid, and the turbine rotor connects to
the SCIG via a gearbox. To the left, an example of the here illustrated stall regulated type A
topology, a NEG Micon NM64/1500 1.5MW wind turbine with a 64m rotor and deployed tip
brakes (wind-turbine-models.com 2016b).

Type B: Variable-slip Wind Turbine:
The variable-slip WT also utilises a high speed induction machine as the generator.
However, instead of short circuited bars in the rotor, the rotor is now constructed from
the copper windings. The rotor windings in the wound rotor induction generator (WRIG)
are normally accessible through slip rings, although other concepts exist (e.g. Vestas’
Optislip).

Like the fixed-speed WT, the high speed generator shaft is connected to the low speed
main shaft (the rotor) via a multi-stage (full speed) gearbox, and the stator windings
connect directly to the grid through a transformer. Since the WRIG stator windings
are connected directly to the grid, the synchronous speed is fixed, and the rotor speed
can thus only be varied by changing the machine slip. This allows for limited speed
control in the range of 0-10% above the synchronous speed. Furthermore, softstarters
and capacitor banks are also used in this drivetrain topology. (A. Hansen et al. 2004; Li
and Chen 2008)

The rotor windings are connected in series with a controlled resistor, variable speed ope-
ration is then obtained, by controlling the rotor currents. Increasing the rotor resistance
has the effect of flattening the speed-torque curve for the IM, which widens the other-
wise narrow operating range for power generation, and thereby operation at slip of up to
10%. The energy extracted from the rotor circuit by the variable resistance is generally
dissipated as heat, and thus the variable speed range depends on the power rating of the
resistance. (Li and Chen 2008; Singh and Santoso 2011)

Figure A.2 diagrammatically shows a pitch regulated variable-slip WT topology, with
included softstarter and reactive power compensation capacitor bank.
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Fig. A.2: Pitch regulated Type B drivetrain, which includes a capacitor bank for reactive power
compensation. The generator connects directly to the grid, and the turbine rotor connects to
the WRIG machine via a gearbox. To the left, a Vestas V66 1.65MW type B pitch regulated
wind turbine with a 66m rotor (wind-turbine-models.com 2016e).

The Opstislip concept by Vestas, incorporates the power converter into the rotor and
optically transmits control signals to vary the rotor speed. The Optislip concept does
away with brushes and slip rings, which require costly maintenance. (A. Hansen et al.
2004; L. H. Hansen et al. 2001a).

Type C: Doubly-fed Induction Generator Wind Turbine:
This drivetrain topology utilises a wound rotor induction machine as the generator, and
combines it with a multi-stage (full speed) gearbox to connect to the turbine rotor. The
stator windings are again connected directly to the grid though a transformer, while the
rotor windings are connected to the grid through a power converter, thereby the name
Double-fed Induction Generator (DFIG).

The power converter controls the rotor frequency, and thus also the rotor speed. This
allows for limited speed control, typically in the range of ±30% of the synchronous speed,
depending on the converter size. The power converter is normally rated at 30% of the
nominal generator rating. Furthermore, the addition of the rotor-side power converter
makes active compensation of reactive power consumption and smooth grid connection
possible, therefore the previously undertaken measures are no longer needed. This topo-
logy necessitates slip rings to connect the converter to the rotor windings, however, rotor
power can be fed into the grid instead of simply being dissipated as heat. (A. Hansen
et al. 2004; Li and Chen 2008)

Figure A.3 diagrammatically shows a pitch regulated DFIG WT topology.

Type D: Full-converter Wind Turbine:
This topology offers full variable speed operation of the WT. This is achieved by com-
pletely decoupling the generator from the grid by use of a full scale power converter, as
such the generator frequency can be varied in the full speed range. Similarly to type C
turbines, the power converter can perform reactive power compensation and smooth grid
connection. The topology may be realised with a single-stage (medium speed) gearbox
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Fig. A.3: Pitch regulated Type C drivetrain. The generator connects directly to the grid, and
the turbine rotor connects to the WRIG machine via a gearbox. To the left, a Senvion (formerly
REpower) 6.2M152 6.15MW type C pitch regulated wind turbine with a 152m rotor (wind-
turbine-models.com 2016c).

driven generator or by completely omitting the gearbox (a major contributor downtime)
and implementing a direct drive generator. (A. Hansen et al. 2004; Roemer 2014)

The generator utilised in this topology is typically a synchronous machine (SM), which
may either utilise electrical excitation (EESG) or permanent magnets (PMSG) to create a
rotor-side magnetic fiel. The former does, however, require an additional power converter
and slip rings. (Li and Chen 2008)

The full power converter can be realised as a back-to-back converter, and thereby the
grid can be supplied with a fixed frequency voltage, while still allowing the turbine rotor
speed to vary. (Roemer 2014)

Figure A.4 diagrammatically shows a pitch regulated permanent magnet WT topology.

 SM
Transformer

To GridGear-
box

Controls

Full Scale
Frequency Converter

Fig. A.4: Pitch regulated Type D drivetrain. The generator connects to the grid through a
full scale power converter, and the turbine rotor connects to the synchronous machine via an
optional gearbox. To the left, a Enercon E-126 7.6MW type D pitch regulated electrically
excite direct drive wind turbine with a 127m rotor, note how the large generator (�12m)
influences the nacelle design (wind-turbine-models.com 2016a). In the middle, a MHI Vestas
V164 8MW type D pitch regulated permanent magnet geared wind turbine with a 127m rotor
(wind-turbine-models.com 2016d).
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This concludes the description of WT drivetrain topologies, and slight variations thereof,
which are utilised in current production WTs. Having presented the general design and
the components used in today’s common utility WT, a basic foundation for studying the
reliability of conventional WTs and common causes of breakdowns is attained.

Conventional WT Drivetrain EfficiencyA.2
Only the efficiency of currently installed wind turbines will be considered, why the effi-
ciency study of type A and B are omitted. Liserre et al. (2011), who investigates currently
installed multi-MW WTs and their drivetrains, finds that type C turbines are the most
adopted for onshore applications owing to their lower weight and cost. However, for
offshore applications, direct drive type D turbines have been preferred, due to heighte-
ned requirements for robustness and reliability. Furthermore Liserre et al. (2011) notes
that for increasing power ratings, the generator for direct drive turbines may become too
large and heavy for commercial applications, and that type D turbines with single-stage
gearboxes become more attractive (e.g. the MHI Vestas V164).

Moreover, the use of WTs with power converters allows for control of active and reactive
power, voltage and frequency, response during transient situations, influence on grid
stability and improved power quality. All of which are important for interconnecting the
turbine to the grid, and for which there are usually requirements (Elkraft System and
Eltra 2004).

The efficiency of WTs generally improves when the generated power is close to the power
rating of the WT. Multiple studies of WT drivetrain efficiency has been performed (see
Poore and Lettenmaier (2003), Roemer (2014), and Silva et al. (2014)), the purpose
of reiterating the results of these studies, is to determine the necessary efficiency of an
alternative drivetrain design to be commercially viable.

Figure A.5 shows the efficiency of type C and permanent magnet type D, both direct
drive and geared, turbines as a function of the percentile power generation.
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Fig. A.5: Efficiency of wind turbine topologies C and D (permanent magnet, direct drive and
gear) as a function of the percentile rated power generation. Based on data for advanced models
of 1.5MW turbine topologies presented by Poore and Lettenmaier (2003).
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From the figure it can be seen that close to rated power the efficiency of type C DFIG
and type D geared and direct drive topologies is similar at ∼95%. Evident is also
the advantage of the full variable speed operation range of the type D topology, where
they are able to operate efficiently at much lower power levels. Poore and Lettenmaier
(2003) states that electrically excited type D WTs have lower efficiencies than their PM
counterparts, and as such data is not available for this variation of the type D topology.
The age of the data source should be noted, and it must be expected that efficiency
improvements have been made in recent years.

This concludes the investigation of modern utlity-scale WTs, which are currently installed
and under production. Based on the results presented in this section, there are stringent
requirements for alternative drivetrain topologies if they are to be a commercially viable.

A Intelligent FPT Design ExampleA.3
A research project from Institut fur angewandtes Stoffstrommanagement, have designed
a FPT based drivetrain is for a 1MW WT. The design of the FPT drivetrain seen in
figure A.6 employs two low speed fixed displacement pumps connected in parallel and
four hydraulic displacement motors.

 

HPL

LPL

To Grid

Generator

To Grid

Generator

 

Fig. A.6: Design proposal from Schmitz et al. (2013) for a more efficient FPT based drivetrain.

The pumps are dimensioned to account for 80 % and 20 % of the total displacement
respectively. When the drivetrain is operated at partial load, the 80 % displacement
pump can be switched off by opening a valve from the HPL to LPL. The system contains
three variable displacement motors and one fixed displacement motor. These are in pairs
connected to two separate synchronous generators. Depending on the load acting on the
drivetrain one pump and one or several of the motors can be switched off. As a result of
this design, the efficiency of the drive train can be improved significantly during partial
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load. With this intelligent design the maximum efficiency at partial load is found to be
between 70 % and 80 %. Compared to conventional drivetrains this efficiency can not be
considered impressive, and thus the presented FPT based drivetrain is not deemed as a
competitive alternative for present WT drivetrains. (Schmitz et al. 2013)

Fluid Power Efficiency MapsA.4
This section has the purpose of elaborating and supporting some of the statements made
during the introduction chapter 1 regarding the efficiency of fluid power machines, FPT
based drivetrains and DD machines.

Conventional Fluid Power MachinesA.4.1
A general issue with the FPT based drivetrains for WT are that these must be designed
for a significant higher peak than the WT’s average power output. Since the mechanical
losses in conventional fluid power pumps and motors does not scale down with reduced
power output, the FPT based drivetrains suffer from poor efficiencies at partial load. To
illustrate this phenomenon the contour plots of a commercial available variable bent axis
displacement pump (RexrothAV6M250) is depicted in figure A.7. The figure shows the
pump’s efficiency as a function of pressure and output speed at a displacement of 100 %
and 20 % respectively. At full displacement the pump has a peak efficiency of 93 % and
in more than 85 % of the operating range the efficiency is larger than 70 %. However
when the displacement of the pump is reduced to 20 % the peak efficiency reduces to 81
% while in more than 35 % of the operating range the efficiency has diminished to less
than 60 %.
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Fig. A.7: Contour plot of typical variable bent axis displacement pump. Left plot at 100 %
displacement and right plot at 20 % displacement.(Rampen 2006)

A FPT has two stages of conversion. Stage 1 converts the rotational energy from the
WT blades to a pressurised fluid in the HPL using one or several pumps. Stage 2 utilises
the pressurised fluid to drive a hydraulic motor which then in turn transfers the energy
to high speed rotational energy. Since two stages of conversion are present in the FPT,
the overall efficiency of the transmission is determined by multiplication of the pump and
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motor efficiency. If loses are present at different locations than in the pump and motor,
these must furthermore be considered. The typical overall efficiency of commercially
available FPT have the efficiency characteristic seen in figure A.8. From the figure it can
be seen that the efficiency varies depending on the output speed and the load torque. For
output speeds higher than 50 % the efficiency ranges between 60 % and 80 % depending
on the load.
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Fig. A.8: Overall efficiency as a function of output speed and torque for a typical commercial
available FPT. (Rampen 2006)

Even though more intelligent designs of FPT based drivetrains are emerging, such as
the one presented in figure A.6, the relatively poor efficiency at partial load makes FPT
based drivetrains a poor alternative for many application including WTs.

Digital Displacement MachinesA.4.2
The efficiency of a typical variable DD pump is depicted in figure A.9. The figure shows
the efficiency contour plot as a function of percentile speed and pressure for 100 % and
20 % displacement respectively.
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Fig. A.9: Contour plot of typical DD machine. Left plot at 100 % displacement and right plot at
20 % displacement.(Rampen 2006)
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At full displacement the variable DD pump exhibits an efficiency of more than 90 % for
more than 85 % of the entire working range. At a displacement of 20 % the efficiency
generally decreases, however is still maintained above 80 % in more than 85 % of the
complete working range. This can be considered as a significant improvement compared
to conventional variable displacement pumps. The efficiency maps depicted in figure A.9
shows an efficiency of 95 % in a wide range of operation, and squaring this number to
get an estimate of the overall efficiency of a DFPT yields 90 %, which is comparable to
current WT transmissions (Rampen 2006). This suggest that utilisation of DFPT based
drivetrains could be a viable solution when designing future WTs.

186



APPENDIXB
Wind Turbine
Appendix
The purpose of this chapter is to present the essential knowledge regrading WT operation
and modelling which has been utilised during this project in order to develop control of
a DFPT based drivetrain. The chapter elaborates upon the overall control objectives and
control strategies for the chosen NREL 5.4MW WT. It continues with description of the
governing mathematical equations used to describe the dynamics of the WT. The appendix
ends with a presentation of the given wind profile used when the developed control of the
DFPT is evaluated.

NREL 5 MW WT IntroductionB.1
The National Renewable Energy Laboratory (NREL) 5MW reference WT is a three-
bladed upwind variable-speed and variable-pitch design. The WT is a fictional concept
developed by the U.S. Department of Energy for the purpose of supporting studies for
assessing offshore wind technology. While purely fictional, the specifications of the NREL
5MWWT are heavily based on the real REpower 5MWT. Owing to the research oriented
purpose of the concept, the specifications of the WT are freely available, and the WT is
commonly used as a reference in academic research. (Jonkman et al. 2009)

Complete simulation packages for the entire NREL 5.4MW WT, which simulate aero-
dynamics, hydrodynamics, control & electrical servo dynamics and structural dynamics,
are available, e.g. the FAST package (NWTC Information Portal (FAST) 2016). Ho-
wever, the focus of this project lies not on the modelling of the complete WT, but on
the modelling and control of the DFPT based drivetrain. Therefore a greatly simplified
representation of the NREL 5.4MW WT is here considered, where only the torque and
power generation are included.

Figure B.1 shows a simple block diagram of the WT under consideration, with inputs
and outputs as described in section 1.3.1.

The exogenous wind speed input, v, to the WT, is an external and uncontrollable system
input. For real life conditions it depends on the location, both globally and locally, in the
sense that air currents are affected by nearby mountains, hills and vegetation. Mathe-
matical modelling of the wind speed and the WT is further considered in appendix B.2.

The control input to the rotor pitch angle, β, shown in figure B.1 is generally determined
by some wind power extraction strategy. The power extraction strategy is generally
similar for variable-speed variable-pitch WTs, but specific with regard to parameters
such as rated wind speed and so on. To fully understand the power extraction strategy,
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Fig. B.1: Inputs and outputs of the NREL 5.4MW WT.

it is first necessary to consider the overall control objective for WTs.

Control Objective:
When operating a WT, typical overall objectives for the control strategy include:

Maximise Power Production: Power extraction from the wind should be maximised,
without exceeding the maximum rating of the WT components, while still fulfilling
operational criteria such as cut-in and cut-out wind speeds.

Minimise Wear Out: Mechnical loads caused by torque pulsations should be minimi-
sed, excitation of resonant modes in the structure should be avoided and tripping
the electrical system should be avoided due to excessive loads.

Furthermore this is constrained by standards and requirements, implemented by grid
operators, for the quality of the generated power. Evidently, these overall objectives are
conflicting, as power production can hardly be maximised without stressing the compo-
nents of the WT.

Control Strategy:
Jonkman et al. (2009) defines a number of operating regions for the NREL WT as a
function of the wind speed. The four distinct regions are illustrated in figure B.2, where
only region II & III are utilised for power production.

The four regions define the operation of the WT as:

Region I: Below the cut-in wind speed, vin, where the generator torque is kept at zero
and no power is being generated by the WT. In this region the wind is used to
accelerate the rotor for start-up purposes.

Region II: Below the rated wind speed, vrtd, and above the cut-in wind speed. The
objective here is to maximise power capture from the wind, and this is done by
maintaining a constant tip-speed ratio (TSR). The TSR, which is the relative speed
of the rotor blade tip to the wind, is a measure of the fraction of power extracted
from the wind.

Maintaining an optimal TSR is done by regulating the rotational speed of the
turbine rotor by controlling the reactive pump torque. The rotor torque produced
by the wind acting on the turbine is maximised when the pitch angle of the blades
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Fig. B.2: Generated power, Pgen as a function of wind speed, v, for the NREL 5.4MW WT.
Overlaid are the four different operations regions for the WT control strategy. Based on data
in Jonkman et al. (2009).

is held constant at β = 0° (see appendix B.2.2 for explanation) and, as such region
II control is achieved solely by the turbine drivetrain without any involvement from
the blade pitch system.

Region III: Above the rated wind speed and below the cut-out wind speed, vout. The
generator power is held constant. Thus for the DFPT based drivetrain, the DD
pump torque must be held inversely proportional to the rotor speed. This is done
by a combination of reactive torque and blade pitch control.

Region IV: Above the cut-out wind speed power extraction is ceased, and the rotor is
brought to a halt to prevent damage to the turbine.

By only considering region II operation, the modelling task may be significantly simpli-
fied, since the blade pitch controller may be completely omitted. Furthermore, it may
be surmised that if torque control is possible in region II, then it will also be possible in
region III.

As described, the wind speed is exogenous and uncontrollable, as such it makes a poor
control variable. Therefore figure B.2 may be transformed to rotor torque and speed
instead of generated power and wind speed. This is done in appendix B.2.2, where
control of the WT is considered. Addtional regions and control actions may also be
added to the torque speed curve to reduce loading and aid in starting and stopping the
WT.

This concludes the description of the NREL 5.4MW reference WT. The mathemati-
cal modelling of the turbine will be presented next, where the governing equations are
presented together with the specifications and region II control considerations.
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WT ModellingB.2
This sections presents the equations used for modelling the WT. The equations are in
general valid, independent of the drivetrain topology and ability to pitch the rotor blades.
The coefficient maps are, however, only valid for the NREL 5.4MW turbine. Thus these
maps will not be utilised for the 10 kW drivetrain as it is only formed as a development
tool for forming a multirate MIMO model. It is however necessary to have a model
describing the turbine as this will be utilised for controlling the 5.4MW drivetrain.

Initially will the governing equations used for modelling the turbine be presented and
these will be followed by an explanation of the WT operation regions considered for the
NREL 5.4MW turbine.

Governing EquationsB.2.1

Aerodynamics:
The WT functions by extracting power from the wind. Therefore the available power in
the wind must be defined, and it is given by (Singh and Santoso 2011, p. 15):

Pwind =
1

2
AρA v

3 (B.1)

where A is the area acted upon by the wind, ρA is the air density and v is the wind speed.
Note that equation B.1 bears a heavy resemblance to a combination of the regular power
(P = F v) and drag/lift (F = 1/2AC ρ v2) equations.

The power that a WT is able to extract from the wind is governed by the power coefficient
Cp, which is defined as the ratio between the wind power and mechanical rotor power,
Pr (Singh and Santoso 2011, p. 17):

Cp(λ, β) =
Pr

Pwind
where Pr = τr ωr (B.2)

τr is the aerodynamic torque applied to the rotor by the wind, and ωr is the rotational
speed of the rotor. Thus Cp is a measure of the rotor efficiency.

For a variable-speed variable-pitch turbine the power coefficient depends on both the
pitch angle, as this heavily influences the torque generated by the lift and drag forces
acting on the rotor, and the tip-speed ratio. The tip-speed ratio (TSR), λ, is defined as
the ratio of the rotor tip-speed to the wind speed, thus it can be calculated by:

λ =
ωrRr

v
(B.3)

where Rr is the rotor radius. The TSR is then a measure of the fraction of power extracted
from the wind by the turbine.
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Torque and Power:
By combining equations B.1 and B.2 an expression for the mechanical rotor power may
be derived:

Pr =
1

2
Ar ρACp(λ, β) v(t)3 (B.4)

where Ar is the rotor swept area. As noted, the power coefficient depends on both the
TSR and the blade pitch angle, to illustrate this, figure B.3 shows a plot of the power
coefficient as a function of the TSR and pitch angle.
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Fig. B.3: Power coefficient, Cp(λ, β), as a function of tip-speed ratio, λ, and blade pitch-angle, β,
for the NREL 5.4MW turbine. The map is based on simulating the NREL 5.4MW turbine for
varying λ and β and tabulating the coefficient at steady state (Jonkman et al. 2009)

Here the power coefficient is limited to only being positive. It should, however, be noted
that it may be negative in the case that grid power is utilised to rotate the rotor during
possible start-up procedures, this is not considered in this project.

An expression for the rotor torque may be derived by dividing equation B.4 by the rotor
speed, and then combining the result with equation B.3 to obtain:

τr =
1

2
RrAr ρACq(λ, β) v(t)2 (B.5)

where Cq(λ, β) is the torque coefficient, which is defined as:

Cq(λ, β) =
Cp(λ, β)

λ
(B.6)

Similarly to the power coefficient, the torque coefficient is also a function both the TSR
and pitch angle.
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Figure B.4 shows a map of the torque coefficient.
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Fig. B.4: Torque coefficient, Cq(λ, β), as a function of tip-speed ratio, λ, and blade pitch-angle,
β, for the NREL 5.4MW turbine. The map is based on simulating the NREL 5.4MW turbine
for varying λ and β and tabulating the coefficient at steady state (Jonkman et al. 2009).

Both the mechanical rotor power and torque depend on the operation of the WT, thus
in the next section operation of the WT will be considered.

Region II OperationB.2.2
The overall goal for operation of the WT is to maximise power production, while keeping
component wear to a minimum. To maximise power production optimal values of reactive
pump torque and rotor speed must be maintained. These may be found by reconsidering
equation B.5 for the rotor torque. Solving for the wind speed in equation B.3 and together
with equation B.6 inserting into equation B.5, an expression which defines an optimal
reference for the reactive torque as a function of the rotor speed, such that an optimal
TSR for power production is maintained, can be written as:

τr
∗ =

1

2
Rr

3Ar ρA
Cp(λ∗, β = 0°)

λ∗3
ωr

2 = KII ωr
2 (B.7)

Plotting the optimal reference torque as a function of the rotor speed yields the red
dashed curve in figure B.5.

Figure B.5 is seen from a rotor torque and speed reference frame where only the first
three regions are shown. Additionally, the operating regions have been expanded with
the modified regions I and II, regions Ĩ and ĨI, respectively. These modified regions serve
as transitional regions, which serve to prevent step like changes in the torque command,
where region Ĩ also serves as a start-up region. Region II operation is now bounded by
rotor speeds in the range of 1.3ωr,in ≤ ωr ≤ 0.99ωr,rtd.

Only considering operation in region II is considered where the goal is to maximise power
extraction from the wind, and this is done by maintaining an optimal TSR.
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Fig. B.5: Reference reactive torque, τ∗r and ideal torque for maximum power production as a
function of rotor speed, ω∗r , for the NREL 5.4MW WT. Overlaid are the operating regions for
the WT. For operation in region II, the variable-speed variable-pitch controller reduces to a
variable-speed constant-pitch controller, since a constant pitch angle of β = 0° is maintained for
maximum power production. Based on data in Jonkman et al. (2009)

The purpose of the data presented in figure B.5 is then to act as a control reference for
the reactive pump torque. Control based on equation B.7 requires only measurement of
the rotor speed. The slow dynamics of the rotor speed will filter high frequency wind
turbulence, and power production thus follows the average wind speed component more
closely. Filtering of wind disturbance through the rotor dynamics also reduces exces-
sive fluctuations in the reactive pump torque, but this comes at the cost of suboptimal
tracking of the optimal TSR. It should be noted that curve obtained by plotting equa-
tion B.7 is only used for region II operation, since only region II seeks to maximise power
production.

Figures B.3 and B.4 reveal that the blade pitch angle should be kept at a constant β = 0°
to maximise power and torque generation. Figure B.6 reiterates the maps of figures B.3
and B.4 for a constant β = 0°.

As seen in the figure, there exists optimal TSRs for maximising the power and torque.
Since the objective in region II is to maximise the power production of the turbine, a
constant TSR of λ∗ ≈ 7.6 should be maintained.

To be able to generate power using a WT wind is obviously necessary, the presented
equations will generally be valid for the entire operating range of the WT, but since
only region II operation is considered, the wind speed should be limited to prevent the
WT from entering region III. In the following, appropriate wind data will briefly be
considered.
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with β = 0° for the NREL 5MW turbine.

Turbulent Wind Model:
Wind is a varying phenomena, that is highly dependent on the surrounding environment.
Accurate modelling of wind is thus a complex task, which requires consideration of many
parameters that are specific to the location and WT. Since no specific location for the
WT is considered, it is decided to simply model the wind with a time varying data series
generated by the NREL program TurbSim.

TurbSim can generate 3D wind profiles for the complete NREL 5MW simulation package
FAST, but these may be simplified to 1D profiles aligned with the turbine rotor axis.
Such a wind profile is illustrated in figure B.7, where the amplitude of the wind speed
has been kept below the rated wind speed to maintain region II operation.
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Fig. B.7: Time varying 1D wind speed data generated with the NREL program TurbSim.
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Specifications:
The main specifications of the turbine are given in table B.1.

Description Parameter Value

Power rating Pr,rtd 5.4MW
Torque rating τr,rtd 4.25MNm
Cut-in wind speed vin 3m/s
Cut-in rotor speed ωr,in 6.9 rpm
Rated wind speed vrtd 11.4m/s
Rated rotor speed ωr,rtd 12.1 rpm
Cut-out wind speed vout 25m/s
Rotor radius Rr 63m
Rotor swept area Ar π Rr

2 cos(2.5°) =1.246× 104 m2

Rotor inertia Jr 3.88× 107 kgm2

Air density ρA,@t=15° 1.225 kg/m3

Region II constant KII 2.086× 106 Nm/rad/s

Tab. B.1: Main specifications of NREL offshore 5.4MW baseline wind turbine (Jonkman et al.
2009, p. 2). The cosine term on the rotor swept area is included to compensate for the slight
rotor tilt, which prevents the rotor blades striking the tower.
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APPENDIXC
Digital Displacement
Machine Designs
This appendix presents the general design structure of the DD pump and motor used in
this projects 5.4MW DFPT based drivetrain. It furthermore presents some elaborations
upon the mathematical model of the 5.4MW DDMs, including some explanatory geometric
figures and a validation of utilised lookup tables. The appendix ends with a description of
the calculation made to determine the chamber sizes for the DDMs used in the 5.4MW
and 10 kW DFPT models, respectively.

DD Pump Design StructureC.1
To the authors knowledge there does not exist any commercial DD pumps in the multi-
MW category, which makes the task of choosing a suitable DD pump design structure
for the 5.4MW DFPT challenging. The DD pump design could be chosen by taking a
starting point in the relatively small DD pumps commercially available and then upsca-
ling such a design to a 5.4MW power rating. This could be a cumbersome process, and
it might not be plausible that a DD pump, designed this way, would ever become part
of a DFPT in the wind industry.

Instead an alternative approach is taken, where the design of the DD pump is based
upon the state of the art technology available within digital hydraulics. This includes
the study of the DFPT based drivetrain prototype developed for the 7MW offshore WT
by MHI and AIP. This approach is strongly inspired by the work done by Pedersen et al.
(2016a), who has dimensioned a DD pump for a potential DFPT based drivetrain for the
NREL 5.4MW WT. The work done by Pedersen et al. (2016a) is based on the drawings
by Kameda et al. (2014) and these are presented in figure C.1.

The pressure chambers depicted in the left of figure C.1 is controlled by an active LPV
and a passive HPV. Each cylinder chamber is oriented radially at the circumference
around the turbine rotor shaft. The displacement of each piston is done by a roller and
the rotational movement of the cam ring. In this design the ring cam is directly connected
to the turbine rotor shaft. External piping has been used for both the LPL and HPL,
however, axial pipes along the rotor shaft have been utilised to connect the HPV to the
HPL. The pump is build from four modules, where each module contain 32 cylinders
actuated by a ring cam with 24 lobes. This constructing enables high fluid displacement
for low speed rotational drive shafts while maintaining a good resolution as each pressure
chamber does the number of lobes (24) cycles per revolution. However using 32 cylinders
equally placed in the circumference around the rotor shaft, means that the cylinders will
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Turbine Rotor Shaft
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Fig. C.1: Variable DD pump design for the DFPT based drivetrain prototype for the SeaAngel
WT. To the left, sectional view of the individual pressure chambers. In the middle and to the
right, sectional views for the complete DD pump. Inspired by Kameda et al. (2014).

be actuated in parallel, which increases the size of the pressure ripples seen in the HPL.

The design depicted in figure C.1 has a power rating of 7.4MW, and the design is thus
not considered directly applicable for a 5.4MW DD pump

Hence work concerning the downsizing the DD pump design initially developed by MHI
and AIP is made. Similarly to the original design the downsized version contains 4
modules, however, each module now only includes 25 cylinders actuated by a cam ring
with 16 lobes. The design principle is seen in figure C.2.

Piston

Roller Cam Ring

Cylinder
Housing

Valve
Housing

Module

Turbine Rotor 
Shaft

Fig. C.2: DD pump design used in this project’s DFPT based drivetrain for a power rating of
5.4MW. To the left sectional view of an individual pressure chamber. In the middle, a sectional
view of the entire cam ring and pressure chamber assembly. To the right four stacked modules
on a shared shaft. Drawing not to scale.

The parameters used to describe the pump presented in figure C.2 are listed in table 3.3.
The calculations used to derive these parameters can furthermore be found at the end of
this appendix, see appendix C.3.

DD Motor Design StructureC.2
As for the DD pump there exists no commercially available DD motors in the multi-
megawatt category. It is thus necessary once again, to base the design structure of a
5.4MW DD motor for the DFPT based drivetrain on preliminary designs developed
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within the state of the art technology of DDMs.

MHI and AIP have developed a DD motor prototype for utilisation in the hydrostatic
drivetrain for the SeaAngel WT. This drivetrain consists of two 3.5MW DD motors, each
connected to a separate synchronous generator (Sasaki et al. 2014). If this DD motor
design should be used as basis for the DD motor used in this project’s 5.4MW DFPT
based drivetrain some modifications have to be made. These modifications could consists
of either downscaling the 3.5MW DD motor to 2.5MW and then utilise two of them, or
alternatively upscaling the 3.5MW DD motor to 5.4MW. To simplify the mathematical
modelling of the system it is chosen to utilise one DD motor with a power rating of
5.4MW.

It is not only MHI and AIP that have presented work regarding DD machines, in recent
years significant research has also addressed this topic. The PhD dissertation made by
Johansen (2014) describes among other things, a partial design proposal for a 5.2MWDD
motor. The DD motor is composed of modules, where each module has a design similar
to the Parker Calzoni radial piston motor. The motor construction of the 5.2MW DD
motor is depicted in figure C.3.

Piston

Cylinder
Housing

Module Generator
Shaft

Eccentric Shaft

HPV

LPV

Fig. C.3: DD motor design structure used in this project’s DFPT based drivetrain. To the left
sectional view of an individual pressure chamber. In the middle, a sectional view of a single
module. To the right six stacked modules on a shared shaft. Inspired by Johansen (2014).

Each module in the DD motor seen in figure C.3 consists of seven radially oriented
cylinders. The piston of each cylinder is mounted on an eccentric shaft, which’s rotation
ensures each piston’s displacement. The pressure chamber of each cylinder is connected
to a LPV and a HPV, which are controlled according to the described motoring operation
mode. For convenience the same valve characteristics will be used for LPV and HPV as
for the valves in the presented DD pump. Johansen (2014) does not describe the specific
locations of the LPL and HPL. However, the location of the LPV and HPV are placed
in the outer circumference of the module, which suggests that the LPL and HPL could
be comprised of external piping similarly to what is seen for the DD pump in figure C.1.

In the dissertation made by Johansen (2014) all relevant parameters for modelling the
DD motor are presented. Furthermore with its power rating of 5.2MW it is close to the
desired power rating of 5.4MW. Assuming that loses are present DD pump and HPL a
power rating of 5.2MW could be considered acceptable. Nevertheless for consistency the
chamber dimensions are adjusted to accommodate a 5.4MW power rating.
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The parameters required for modelling the DD motor are presented in table 3.3. The
calculations used to derive these parameters are furthermore elaborated upon at the end
of this appendix, see appendix C.3.

Chamber Sizing of DFPTC.3
This section has the purpose of presenting the calculations applied for determining the
total displacement (including chamber dimensions) of the DDMs utilised in the 5.4MW
and 10 kW DFPT models. The design of the DD pumps and motors are presented in
figures 3.3, 3.10, C.2 and C.3 respectively.

To complete this task a number of different known parameters will be utilised, these are
presented in table C.1.

NREL 5.4MW DFPT Models (5.4MW/10 kW)

Description Vari-
able

Value Description Pump/
Motor

Pump/
Motor

Wind speed vr,rtd 11.4m/s HPL pressure 360 bar 360 bar
Rotor speed ωr,rtd 1.2671 rad/s LPL pressure 10 bar 10 bar
TSR λrtd 7.0024 rad s Num. of mod. 4/6 1/1
Torque coeff. Cq,rtd 0.068 Cyl. per mod. 24/7 1/3
Rotor radius Rr 63m Lobes per mod. 16/- 2/-
Air Density ρair 1.225 kg/m3

Tab. C.1: The parameters utilised for calculating the displacements of the DDMs comprising the
5.4MW and 10 kW DFPT drivetrains.

The calculations used to determine the displacement of the DDMs are close to identical,
why only the sizing of the DD pump for the 5.4MW will be presented in the following.

Power Rating of NREL WTC.3.1
To determine the total displacement of the DD pump, the rated torque of the NREL
rotor must first be determined. Knowing that the rated power is given to be 5.4MW,
the rated torque can be calculated using the rated rotor speed. However, for thoroughness
it is chosen to calculate the rated torque using the rated wind speed. This is done using
equation equation B.5, which for convenience is presented:

τr,rtd =
1

2
RrAr ρairCq,rtd(λrtd, βrtd) vr,rtd

2 (C.1)

It should be noted that at rated wind speed the pitch angle, βrtd, is equal to zero, thus
the only unknown parameter in equation C.1 is the rotor swept area, Ar. The rotor swept
area can according to Jonkman et al. (2009) be calculated as:

Ar =
π

4
(2Rr cos (2.5◦))2 (C.2)
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Inserting equation C.2 into equation C.1 together with the parameters from table C.1
yields the rated rotor torque and power:

τr,rtd = 4.24 MNm Pr,rtd = τr,rtd ωr,rtd = 5.38 MW (C.3)

Effective Displacement and Chamber VolumeC.3.2
Knowing the rated rotor torque the total effective displacement of the DD pump, Dp,total,
and the effective displacement of a single pressure chamber, Dp,cylinder, can be determined
by:

Dp,total =
τr,rtd

pH − pL
= 761.9 L/rev Dp,chamber =

Dp,total

4· 25· 16
= 0.476 L (C.4)

where the numbers 4· 25· 16 represents the DD pump’s number of modules, cylinders and
lobes respectively.

When the volume of a single pressure chamber must be determined, the pumping ope-
ration must first be considered. Hence how the fluid inside the chamber initially is
pressurised from pL to pH and next how the HPV is opened and displacement into the
HPL is made. The only parameters known is the effective chamber displacement, which
is insufficient for determining the chamber dimensions.

Thus some restriction regarding the relation between the piston stroke length, xp,stroke,
and the cylinder diameter, dp, must be made. Inspecting the design of the 7MW DD
pump prototype developed by MHI and AIP, it is estimated that the piston diameter is
the double length of the piston stroke, why it is chosen that two times the piston stroke
length must equal the cylinder diameter. Furthermore must the dead volume, Vp0, of a
chamber also be known. This is chosen to be equal to the stroke length times the cylinder
cross sectional area (1

4 π dp
2).

With the presented relations between the chamber dimensions it is however still chal-
lenging to find the exact solution of the stroke length (or chamber dimensions). This
is because it will require the solution for the continuity equation, which is a non-linear
partial differential equation. Thus instead a numerical approach is taken. It includes de-
termining a static solution of the piston stroke length, and hereafter using the developed
non-linear model of the DD pumps pressure chamber to create a numerical optimisation
problem, where the calculated static stroke length is used as an initial guess.

Static Calculation of Chamber Dimensions::
The static calculation approauch utilises the presented relations between the chamber
dimensions, and a static version of the continuity equation (transients and valve dynamics
neglected) to create three equation with three unknowns. These are hereafter solved
simultaneously, to calculate an qualified guess of xp,stroke.

The first equation is based on a static version of the continuity equation and can with
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some mathematical manipulation be written on the form:

∆Vchamber = −∆p
Vchamber

β

∆xp
1
4 π dp

2 = −(pH − pL)
1
4 π dp

2 xp,stroke + Vp0

β

∆xp = −(pH − pL)
2xp,stroke

β
(C.5)

Here ∆xp represents the distance which the piston must be moved to allow for a pressure
increase form pL to pH and Vp0 = xp,stroke

1
4 π dp

2.

The second equation describes the relation between xp,stroke and dp:

2xp,stroke = dp (C.6)

The third equation describes the relation between xp,stroke, dp and the effective chamber
displacement Dp,cylinder:

Dp,cylinder = 1
4 π dp

2 (xp,stroke + ∆xp) (C.7)

Equation equations C.5 to C.7 are hereafter solved simultaneously to achieve the solutions
for the three unknowns xp,stroke, dp and ∆xp, which can be used to describe the initial
cylinder dimension for the optimisation problem.

Optimisation of The Cylinder Chamber Dimensions:
The optimisation algorithm applied is very simple, since the need for a complex algorithm
is not necessary due to the qualified initial chamber dimension guess. The algorithm uses
a non-linear model of the DD pump’s pressure chamber and evaluates the chamber’s ef-
fective displacement at 10 different stroke lengths varying from 95% to 105% of the initial
guess value. Afterwards the stroke length which results in the effective displacement clo-
sest to the displacement calculated by equation C.4 is chosen, and the process is repeated
until a solution converges with an error < 0.001Dp,chamber.

Comments on The Calculation Procedure:
The presented calculations applies for sizing the chamber values of all DDMs utilised in
5.4MW and 10 kW model. It should be noted that the calculations made in equation C.1
have only been applied for the 5.4MW DD pump, wheras the remaining DDMs rated
torque is found using the right side of equation equation C.3. Furthermore should it
be noted that for the DD motors the relation between the stroke length ,xm,stroke, and
the cylinder diameter, dm, is 1.2 instead of 2. This choice is based on the design from
Johansen (2014). The chamber dimensions the DD pumps and motors can be found in
tables 3.3 and 3.4. This concludes the calculations made regarding the dimensioning of
the DDMs.
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APPENDIXD
Theoretical Proofs
This appendix contains some theoretical calculations and proofs relevant to the material
presented in the thesis.

Lifted Vectors in a State-Space FormD.1
Consider the situation depicted in figure D.1, where all the lifted system vectors are
aligned in time.
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Fig. D.1: Multirate system with lifted vectors aligned.

Then to obtain the correct value for the first subvector in x(k + 1), i.e. x1(k + 1), it
would be possible to utilise a state equation of the form:

x(k + 1) = Gx(k) +Hu(k) (D.1)

Consider now how to arrive at the correct value for the last subvector in x(k + 1), i.e.
x6(k+ 1), then all inputs occurring during up till this point must be taken into account.
Thus a possible state equation would be:

x(k + 1) = Gx(k) +H1u(k) +H2u(k + 1) (D.2)

Since subsequent transitions will rely on the previous transitions it is essential that the
correct final value is obtained in each block, why a state equation like the one just
presented, must be used in the case that the blocks are chosen to be aligned. Thus the
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model would be described by a state equation, which is not in the conventional form, why
conventional control theory tools will most certainly not be directly applicable. Therefore
the model structure presented in section 4.3 is used.

Linear Quadratic RegulatorD.2
In this section, the steady state gains for a discrete state feedback controller are derived
using an optimisation based infinite horizon linear quadratic cost function. The presented
equations are based on Lewis (2012) and expanded to show some additional steps in the
derivation, which are not available in the original source material.

The is generally described by the state equation and with state feedback control law:

x(k+1) = Gx(k)+Hu(k) u(k) = −Kx(k) (D.3)

Then an infinite horizon linear quadratic cost function of the form may be used to find
the controller gains, which minimise the cost function:

J(k) =

∞∑
i=k

[
x(i)

ᵀ
Qx(i)+u(i)

ᵀ
Ru(i)

]
(D.4)

where Q and R are real symmetric matrices, such that Qᵀ = Q and Rᵀ = R.

The cost function may be rewritten to a difference equation form, by shifting the sum-
mation from k to k + 1:

J(k) = x(k)
ᵀ
Qx(k)+u(k)

ᵀ
Ru(k)+

∞∑
i=k+1

[
x(i)

ᵀ
Qx(i)+u(i)

ᵀ
Ru(i)

]
(D.5)

= x(k)
ᵀ
Qx(k)+u(k)

ᵀ
Ru(k)+J(k+1) (D.6)

Assuming that the minimum cost may be written in a quadratic form:

J̌(k) = x(k)
ᵀ
Px(k) (D.7)

where P is also a real symmetric matrix such that

Then inserting the minimum cost into equation D.6 to obtain:

J(k)=x(k)
ᵀ

Px(k)=x(k)
ᵀ

Qx(k)+u(k)
ᵀ

Ru(k)+x(k+1)
ᵀ

Px(k+1) (D.8)

Inserting the state equation, and noting that since P is real symmetric then H
ᵀ
PG =

G
ᵀ
PH, it is possible to write:

J(k)=x(k)
ᵀ

Px(k)=x(k)
ᵀ

Qx(k)+u(k)
ᵀ

Ru(k)+x(k)
ᵀ

G
ᵀ

PGx(k)+u(k)
ᵀ

H
ᵀ

PHu(k)+2u(k)
ᵀ

H
ᵀ

PGx(k) (D.9)

By taking the derivative with respect to the control input vector u(k) the optimal control
law may dervied:

δJ(k)

δu(k)
= 2Ru(k)+2H

ᵀ
PHu(k)+2H

ᵀ
PGx(k) (D.10)
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Setting δJ(k)/δu(k) = 0 and solving for u(k) gives the optimal control law as:

u(k) = −
(
R+H

ᵀ
PH

)−1
H

ᵀ
PG︸ ︷︷ ︸

K

x(k) (D.11)

The only task left is to determine the matrix P . This may be done by deriving the
discrete-time algebraic Riccati equation, which is done by substituting u(k) for the control
law in equation D.9. By doing this, the equation may be rewritten to a quadratic form
as a function of only x(k):

0 = x(k)
ᵀ
[
G

ᵀ

PG−P+Q+K
ᵀ

H
ᵀ

PHK−2K
ᵀ

H
ᵀ

PG+K
ᵀ

RK
]
x(k) (D.12)

This must be satisfied for every x(k), why it may be omitted and the following matrix
equation is obtained:

0 = G
ᵀ

PG−P+Q+K
ᵀ

H
ᵀ

PHK−2K
ᵀ

H
ᵀ

PG+K
ᵀ

RK (D.13)

0 = G
ᵀ

PG−P+Q+K
ᵀ
[(
H

ᵀ

PH+R
)
K−2H

ᵀ

PG
]

(D.14)

Inserting the algebraic definition of the controller gain K to obtain:

0 = G
ᵀ

PG−P+Q+

[(
R+H

ᵀ

PH
)−1

H
ᵀ

PG

]T[(
H

ᵀ

PH+R
)[(
R+H

ᵀ

PH
)−1

H
ᵀ

PG

]
−2H

ᵀ

PG

]
(D.15)

The symmetric term H
ᵀ
PG may be factored out of the parenthesis to obtain:

0 = G
ᵀ

PG−P+Q+G
ᵀ

PH

((
R+H

ᵀ

PH
)−1)T[(

H
ᵀ

PH+R
)(
R+H

ᵀ

PH
)−1

−2

]
H

ᵀ

PG (D.16)

A matrix multiplied by its own inverse gives an identity matrix of appropriate size, simply
resulting in a change of sign in the following equation. Furthermore, since both R and
H

ᵀ
PH are real symmetric, the transpose may be omitted without consequence to obtain:

0 = G
ᵀ

PG−P+Q−G
ᵀ

PH
(
R+H

ᵀ

PH
)−1

H
ᵀ

PG (D.17)

This is the discrete-time algebraic Riccati equation, which may be solved to obtain P
using MATLAB’s dare command, where after the controller state feedback gain K may
simply be calculated.
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