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SYNOPSIS:

In this thesis a model predictive control scheme of a

discrete displacement hydraulic power take-off sys-

tem is developed. The thesis takes offset in the

Wave Star wave energy converter for which a dis-

crete fluid power power take-off system has been

proposed. No optimal control structure of such sys-

tem has yet been developed, why this work investi-

gates the potential of model predictive control. A

model of the PTO system is developed and vali-

dated by measurements performed on a hydraulic

test bench. A model predictive control scheme

maximising the harvested energy of the system in-

cluding system losses is formulated. The control

scheme requires a discrete optimisation problem to

be solved in real time. Differential evolution is used

as optimisation solver and is modified to fit the dis-

crete optimisation problem and effort in lowering

the computational time has been done by model

simplifications and loss approximation. The pro-

posed control scheme is implemented on the test

bench and is compared to previous developed re-

active control scheme. Tests show that the devel-

oped model predictive control may be implemented

and executed in real time. Tests performed on the

test bench suggest that the model predictive control

scheme can outperform the reactive control scheme

with respect to the average harvested power from

the ocean waves.
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Preface

This Master’s thesis is written by student group MCE4-1027 in the spring semester of
2017 at Aalborg University at the Department of Energy Technology, Mechatronic Control
Engineering. The thesis concerns development of a Model Predictive Control scheme for a
discrete displacement hydraulic power take-off system for a wave energy converter. A case
study of the Wave Star wave energy converter is done, as a hydraulic test bench located
at AAU is available. The test bench is designed such that a power take-off system may
be subjected to motion equal to the float arm of the Wave Star wave energy converter.
This allows for test of model predictive control algorithms in a controlled environment.

Reader’s Guide
A nomenclature containing symbol declaration and their respective units is found on page
ix. All citations used can be found in the bibliography on page 90. The bibliography is
sorted by numeration as they appear in the report. Equations, tables and figures are
numbered as: (Chapter.Number).
Matrices are denoted with bold upper case letters and vectors are denoted with bold lower
case letters. A list of selected terms used in the report is shown below:

Terminology

� Absorbed Power - Defined as the instantaneous produced mechanical power on the
point absorber.

� Harvested Power - Defined as the instantaneous power going out of the PTO system.

� Time Horizon - Time interval over which the MPC optimises for control inputs.

� Horizon Length - Number of samples forward in time for which the MPC optimises
for control inputs.

Abbreviations

PTO Power Take-Off BnB Branch and Bound
MPC Model Predictive Control WEC Wave Energy Converter
EMPC Explicit Model Predictive Control SS Sea State
PSD Power Spectral Density DDC Discrete Displacement Cylinder
WPEA Wave Power Extraction Algorithm FSA Force Shifting Algorithm
DE Differential Evolution DFCU Discrete Fluid Control Unit
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Summary

In this thesis, a model predictive control scheme for a discrete displacement hydraulic
power take-off system utilised in a wave energy converter is developed and tested. The
thesis takes offset in the Wave Star point absorber wave energy converter, for which
a discrete fluid power system has been proposed as power take-off system. Through
literature survey it is found that model predictive control of wave energy converters has
emerged as a leading control topology for wave energy conversion, but has yet to be tested
for a discrete fluid power PTO system.

To develop a model predictive control algorithm, a model of the Wave Star WEC has
been developed, along with a model of the discrete fluid power PTO system. Losses in
the PTO system are addressed and modelled with the goal of including these in the MPC
formulation. The model of the PTO system is validated from measurements performed
on a hydraulic PTO test bench of the Wave Star WEC, located at Aalborg University.

A MPC controller is formulated based on a linear model of the point absorber, with the
objective function of maximising the harvested energy over a finite time horizon. An anal-
ysis of the MPC performance assuming continuous PTO force is performed. This allows
for confirmation of the optimality obtained by the MPC, and preliminary requirements
regarding MPC time horizon and sample time. A wave forecasting scheme based on an
autoregressive model is developed and tested. It is shown that wave forecasting may be
obtained for 2-3 seconds forward in time, and it is shown that close to ideal performance
may be obtained with the developed wave forecasting scheme.
A discrete optimisation routine based on a differential evolution algorithm is utilized to
handle the discrete nature of the discrete fluid power PTO system. Losses associated with
force shifting, and valve flow throttling is included in the pursuit of increasing the effi-
ciency of the PTO transmission. Emphasis in optimising the DE algorithm with respect
to execution time is done, to obtain convergence time allowing real time implementation
of the MPC scheme.

Experimental evaluation of the developed MPC is done. The MPC is implemented and
tested in a LabVIEW RT environment. Three MPC formulation are tested, with different
loss mechanisms included in the MPC cost function. Depending on the amount of losses
included in the MPC cost function, sample times of 0.2s and 0.3s of the MPC was obtained
with the chosen implementation of the MPC code. The MPC was tested for several test
waves, and the performance was compared to the previous used reactive control scheme.
Based on the experimental evaluation it was found that the MPC was able to increase
the harvested energy compared to the reactive control scheme. In smaller wave the MPC
was seen to yield less harvested energy than the reactive control. The trends obtained
from the experimental evaluation is backed up by simulations, where it is shown that
additional performance may be obtained by including more accurate computation of the
losses in the PTO transmission, or by increasing the time horizon. However it is shown
by simulation that increasing the time horizon beyond 4 seconds does not result in better
performance of the MPC.

It is concluded that MPC may be applicable for a discrete displacement hydraulic PTO
system, and it may increase the amount of harvested energy compared to the reactive
control scheme previously utilised.

vii





Nomenclature

Symbol Description Unit

Ai Piston area of i’th cylinder chamber of the PTO cylinder [m2 ]

Bpto Reactive control damping parameter
[

Ns
m

]
Cil Internal leakage coefficient

[
m3

sPa

]
da Moment arm of absorber [m]
Fpto PTO cylinder force [N ]
Hm Significant wave height [m]

Jtot Total moment of inertia of float arm [kgm2 ]

J∞ Added moment of inertia from water acceleration [kgm2 ]

kpto Reactive control spring parameter
[

N
m

]
kres Restoring torque coefficient [Nm

rad ]

kv Valve flow gain
[

m3

s
√

Pa

]
Li Length of the i’th line element [m]
m Mass [kg ]
N Horizon length of MPC [–]
ni Number of valve used in DFCU [–]
pA Wave cylinder chamber A pressure [Pa]
pB Wave cylinder chamber B pressure [Pa]
pi Pressure in the i’th chamber of the PTO cylinder [Pa]
PS Wave cylinder supply pressure [Pa]
PT Wave cylinder tank pressure [Pa]
Pabs Absorbed power [W ]
Phar Harvested power [W ]

Qi Flow into the i’th chamber of the PTO cylinder [m3

s ]
xc PTO cylinder position [m]
xv Normalised equivalent valve spool position [±1 ]
Twp Peak wave period [s]
Ts Sample time of MPC [s]
Tp Pressure development time [s]

V0,i Dead volume of i’th PTO cylinder chamber [m3 ]
vc PTO cylinder velocity [m

s ]
β Bulk modulus [Pa]
η PTO transmission efficiency [–]
ηw Wave height [m]
θarm Angular position float arm [rad ]
λ Fluid friction factor [–]
µ Dynamic viscosity [Pa s]

ρ Fluid density [ kg
m3 ]

τext Excitation torque [Nm]
τpto PTO torque [Nm]
τrad Radiation torque [Nm]

ωarm Angular velocity of float arm [ rad
s ]
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1 | Introduction

The environmental impact of large scale use of fossil fuels combined with the world’s
increasing demand of energy has augmented research within renewable energy sources.
Many years of research have lead to well-established technologies for conversion of re-
newable energy sources such as wind and solar power. Wave energy is another renewable
energy source with great potential which has not yet been fully exploited. As an example,
a rough estimate is given in [1], where it is stated that a practical upper limit for wave
energy production could supply 1/3 of the Danish electricity demand in 2009.

The conversion of ocean waves into electricity is an old idea. Earliest recorded interest of
wave energy conversion dates to a patent from 1799[2]. Wave energy conversion has yet to
make a commercial break through, as existing technologies are still too costly compared
to well-developed technologies within solar and wind power. Thus, an unused potential
of wave ocean energy exists. For wave energy to become a reliable and feasible renewable
energy source in the future, optimisation of wave energy conversion is necessary. Most
commonly wave energy converters are designed as oscillating bodies moving with the
vertical motion of the ocean surface level. The energy associated with the oscillating
motion of the body is converted into electricity by the system referred to as the power
take-off (PTO) system. The oscillating body and the PTO system combined forms a
device referred to as a wave energy converter (WEC).

Several topologies for WECs are seen, however they may all be categorized using terms
such as terminators, attenuators, and point absorbers. An example of a WEC of the
terminator type is shown in Figure 1.1a and 1.1d. The WEC is named Oyster and is
restrained to the seabed, and oscillating flaps are moved by the ocean waves. A PTO
system is positioned between the flaps and the structure on the seabed. An attenuator
type of WEC is the Pelamis WEC shown in Figure 1.1b and 1.1e. Several oscillating body
parts are linked in universal joints which allows both vertical and horizontal motion. A
PTO system is placed in the joints converting the relative motion between the body parts
into electricity. A point absorber type of WEC is the PowerBuoy shown in Figure 1.1c
and 1.1f. Here the heaving(vertical) motion relative to a fixed body is converted into
electricity by a PTO system dampening the relative motion. Common for these WECs is
that they are in a development phase.

The many different ideas and technologies of wave energy conversion still being tested
and designed, is an indication of the immature state of wave energy conversion.
Another example of a WEC is the Wave Star C5 point absorber prototype deployed in
Hanstholm, DK. The Wave Star WEC consists of a buoyant body point absorber attached
to a lever arm. The oscillating motion of the point absorber creates a rotational motion
with respect to the joint of the lever arm and a PTO system is positioned between the
oscillating lever arm and the fixed structure of the WEC. Through the history of Wave
Star, several WEC prototypes has been deployed. The latest prototype was deployed in
2009 and is a 110kW test machine connected to and feeding the Danish grid. The Wave
Star prototype uses a hydraulic PTO system to exert a force opposing the motion of the
point absorber, such that energy is extracted from the float arm motion. The prototype
deployed in Hanstholm has two absorbers while the final concept is based on having
multiple absorbers on one platform that may be installed associated with an offshore
wind turbine, or as a standalone instalment. The Wave Star C5 prototype is shown in
Figure 1.2 and technical data for the prototype is shown in Table 1.1. To contribute to the
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(a) Oyster terminator type
WEC.

(b) Pelamis attenuator type
WEC.

(c) PowerBuoy point absorber
type WEC.

(d) Oyster terminator type
WEC.

(e) Pelamis attenuator type
WEC.

(f) PowerBuoy point absorber
type WEC.

Figure 1.1: Figures of different wave energy converters[3],[4][2].

research within wave energy this thesis will focus on Model Predictive Control (MPC) of
the PTO system with the goal of increasing the energy captured by the WEC. The Wave
Star WEC is used as a case study. The hydraulic PTO system of the Wave Star WEC is
presented in the next section, along with the Wave Power Extraction Algorithm(WPEA)
previously used in the control of the PTO system.

 
 

 
 

Fig. 1  Wavestar prototype. Top: Location of site (Google Earth). Bottom left: Photo of installation by barge. 
Bottom centre: Photo of storm protection. Bottom Right: Photo of normal operation 

 

 
Fig. 2  View of Wavestar prototype from the beach. The distance to the prototype from the beach is 300 m 

Gangway Footbridge 4 m above top of pier 

Wavestar Hanstholm prototype 

Figure 1.2: Picture of the Wavestar
C5 prototype deployed in Hanstholm,
DK.

Wavestar C5 prototype

Location Hanstholm, DK

Float diameter Ø5m

Arm length 10m

Water depth 5 to 8m

Number of floats 2

Weight 1000 tons

Nominal electrical power 110kW

Deployment 2009-2016

Table 1.1: Technical data for the
Wave Star C5 prototype deployed
in Hanstholm, DK[5].
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1.1. Hydraulic Power Take-Off System Chapter 1. Introduction

1.1 Hydraulic Power Take-Off System
The PTO system is an essential part of the WEC as it is the part extracting energy from
the wave motion. Due to the relative slow oscillation of ocean waves, high torque/force
is needed for high power transfer. For this reason, hydraulic PTO systems are often pre-
ferred as these provides high force density and great controllability. The PTO system
previously used for the Wave Star WEC consisted of a symmetric cylinder connected to a
bidirectional variable displacement axial piston motor/pump. The pressures in the cylin-
der chambers, hence the produced cylinder force, is controlled by varying the motor/pump
swash plate angle. In [6] it was shown that this configuration yields low efficiency due to
large variations in the motor loading. For this reason a discrete fluid power system has
been proposed. Using a discrete fluid power system as PTO system restricts the applied
force to quantised values which reduces the controllability. As a consequence the control
strategies used to compute the control input may increase in complexity as the control
input cannot be chosen freely. A general introduction to discrete fluid power system is
given in the next section, along with a description of the discrete fluid power system
proposed for the Wave Star WEC.

1.1.1 Discrete Fluid Power Systems
Discrete fluid power systems are characterized by using control units which only take
discrete values. Control units such as fast switching on/off valves, characterised by either
being fully opened or closed during operation, are used in discrete fluid power systems.
By proper selection of the valve opening area the throttling loss is reduced, hence higher
efficiency may be obtained when compared to systems utilising traditional proportional
valves. A subclass of discrete fluid power systems is secondary controlled systems where
on/off valves are used to connect each chamber of a hydraulic actuator to common pressure
lines. Effectively a Discrete Displacement Cylinder(DDC) is obtained which can exert a
number of discrete forces. The number of cylinder chambers and pressure lines determines
the number of forces available. Two examples of such systems are shown in Figure 1.3. The
first example is a cylinder with two chambers connected to three common pressure lines
yielding 3 2 = 9 discrete forces. The other is a cylinder with three chambers connected
to three pressure lines yielding 3 3 = 27 discrete forces. A disadvantage of secondary
controlled systems is that the cylinder force cannot vary freely, but can only take a
number of discrete forces. Hence the system is a system with quantised inputs. Due to
the fast switching of the valves, shifting between the available forces imposes a near step
input to the system at each force shift. This may excite the natural frequency of low mass
systems, why this can cause both mechanical fatigue problems and difficulties in motion
control of the cylinder piston.
Efficient control of the hydraulic cylinder may be obtained by secondary control. Ideally
flow throttling loss is avoided, however losses associated with the switching between the
discrete force levels due to oil compressibility are present[7]. Despite losses, high efficiency
of the discrete fluid power system shown in Figure 1.3 may be obtained why it is an
attractive PTO topology for wave energy converters.
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A1

A2

F

A1

A2

A3

F

Figure 1.3: Examples of secondary controlled systems with 200bar on the high pressure
line, 107.5bar on the intermediate pressure line and 20bar on the low pressure line. The
sign of the area indicates the direction of the resulting force.

1.1.2 Wave Star Power Take-Off System
An illustration of the Wave Star WEC along with the layout of the hydraulic PTO system
is shown in Figure 1.4.

G

PgridPTO

FPTO

A1

A2

A3

FPTO

A1

Figure 1.4: Illustration of the Wavestar WEC prototype and the discrete fluid power
PTO system.

The hydraulic PTO cylinder is a multi chamber cylinder, where three of the chambers
are utilized. Combined with three common pressure lines, 27 discrete forces are available
for opposing the motion of the point absorber. The disadvantage of secondary controlled
systems yielding large acceleration of the system between force shifts is minimised due the
relatively large mass of the point absorber. A hydraulic motor between the high- and low
pressure line is used to convert the fluid energy into rotational energy driving an electrical
generator, feeding the grid. In [8] a comprehensive investigation of WPEAs for the Wave
Star prototype is performed. Through simulation and scaled model testing, a reactive
control scheme was chosen as the WPEA extracting most energy. The reactive control
generates a continuous force trajectory to be tracked by the PTO cylinder. The simplest
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1.1. Hydraulic Power Take-Off System Chapter 1. Introduction

method of tracking the continuous force reference is to choose the closest discrete force
available, however this may not be optimal energy-wise due the aforementioned shifting
losses associated to each force shift. A Force Shift Algorithm(FSA) described in[9] is used
to switch between forces. The energy cost associated with each force shift is estimated
and force shifts are chosen as a compromise between force tracking and shifting losses.
This approach takes a part of the system losses into account but may be sub optimal
considering the harvested energy, as the utilised FSA only considers the current cost of
shifting and does not take future states into account. The reactive control scheme along
with the FSA was developed by use of a PTO test bench located at AAU. The test bench
is designed to exert a PTO system to a motion equal to the float arm of the Wave Star
WEC. The hydraulic PTO test bench is presented in the next section.

1.1.3 PTO Test Bench at AAU
The test bench is equipped with a full-scale version of the proposed discrete displacement
hydraulic PTO cylinder of the Wave Star WEC. A symmetric cylinder (250mm/180mm x
3000mm) is used to load the PTO cylinder, and is controlled to emulate the motion of a
single C5 point absorber of the Wave Star WEC interacting with the ocean waves, hence
the cylinder is denoted as the wave cylinder. The wave cylinder is able to exert a force
of 840kN onto the PTO cylinder. By appropriate motion control of the wave cylinder,
the test bench may be used to test different PTO control strategies in large variety of
emulated ocean waves in a controlled environment. Pictures of the test bench are shown
in Figure 1.5 and 1.6.

Figure 1.5: Picture of the
PTO test bench.

Figure 1.6: Picture of the
PTO test bench.

Given a wave time series as input, the position and velocity reference of the wave cylinder
is computed based on an online simulation of the C5 point absorber dynamics using
position, velocity and force feedback of the PTO cylinder. A diagram of the test bench
is illustrated in Figure 1.7.
Each chamber of the PTO cylinder is connected to the three pressure lines through three
digital flow control units(DFCU). The DFCUs consist of a set of fast switching on/off
valves in parallel, which combined operate as a proportional valve with quantised opening
area. Valve opening trajectories are utilized to minimise pressure oscillations in the
cylinder chambers. The total opening area of the DFCUs are matched according to the
connected chamber piston area, why different number of valves are utilised, depending on
which chamber is connected to the DFCU. The wave- and PTO cylinder are mechanically
linked by a sliding mass where position, velocity and force transducers are placed. The

5



MCE4-1027 Aalborg University

ps

FPTO

Power Take Off

pT

Wave Cylinder
PTO Cylinder

FPTO
ηw

FPTO

Wave cylinder control
xc

vcu

xc,ref vc,ref

Point absorber 
dynamics

xc, vc Sliding Mass

Figure 1.7: Diagram of the PTO test bench at AAU.

WPEA used to compute the PTO cylinder force reference is presented in the next section.

1.2 Reactive Control for Test Bench

In [8] reactive control was found as the best suited WPEA for the discrete fluid power PTO
system developed for the Wave Star test bench. The reactive control strategy computes
a continuous force reference for the PTO cylinder as shown below:

Fpto = kptoxc + Bptovc (1.1)

Where xc is the cylinder piston position and vc is the cylinder piston velocity. The
parameters for the reactive control, Bpto and kpto, were found by optimising the output
power for different sea states defining the characteristics of ocean waves. Optimal choice of
control parameters exist for different sea states, why the parameters are changed according
to the sea state to maximise harvested energy. As the force applied by the PTO system
is restricted to a number of force levels the continuous force reference from the reactive
control is transformed to a discrete level by the aforementioned FSA. The FSA works by
defining a maximum allowed tracking error that the PTO force may deviate from the force
reference. Within that range, the FSA may choose the available force shift associated with
the lowest shifting loss found from a lookup table. Further a fixed time limit is used to
decide how often a force shift is allowed. In Figure 1.8 the FSA is sketched with the
governing equations in Equation (1.2), (1.3) and (1.4)[9].

Fpto(t) = F (k), k = argmink
k∈{k–,x ,k–}

{Fref – F (k)} (1.2)

k+ = argmink
k∈S+

{E (xc, k)}, S+ = {k |Fref < F (k) < Fref + Fb} (1.3)

6
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2Fb

Tmin

FPTO

Time

Fref

Flevel
k+

k+ k+

k-

k-

k-

Figure 1.8: Illustration of the force shifting algorithm.

k– = argmink
k∈S–

{E (xc, k)}, S– = {k |Fref – Fb < F (k) < Fref } (1.4)

Where F is a vector of availabe forces, Fref is the force reference calculated from (1.1)
and Fb is the allowed deviation from the force reference. E is the loss associated with
the force shift in a given position. k+ and k– are the force shifts associated with lowest
loss contained in the sets, S+ and S–. S+ and S– contains all the force levels inside the
allowed deviation from the reference above and below the reference respectively.

Shifting the force level is thus based on some force tracking error and information re-
garding the losses associated with different force shifts. The disadvantage of the reactive
control scheme with the described FSA is that it only considers the current state of the
system. It is unknown if the chosen compromise between tracking and losses is optimal
considering harvested energy over a longer time horizon. It may be possible to choose
more expensive force shifts that accumulated over a time period yields more harvested
energy. To increase the amount of harvested energy from point absorbers MPC has been
proposed. MPC rely on a model of the system and calculates the control input based
on estimated future states of the system. This is done by optimising the control inputs
subject to a cost function over a finite time horizon. MPC may have the potential of
finding the optimal control input, taking future control inputs into account, why this
may be an attractive control scheme for the PTO system of the Wave Star WEC. Some
research regarding MPC for WECs have already been done which is reviewed in the next
section.

1.3 MPC for WECs and Systems with Quantized Inputs
The basic idea of MPC is to compute the current control input by solving an open loop
finite horizon optimal control problem by solving an optimisation problem online at each

7
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time step. A model of the plant is used to estimate future states subject to future
control inputs, possible future disturbances and initial conditions. The solution of the
optimisation problem is a sequence of future control input over the finite time horizon,
where the first control input is applied to the plant. Once new information regarding the
plant states are obtained, the process is repeated where the time horizon is shifted one
sample period forward in time. A block diagram of a MPC scheme is shown in Figure
1.9. The notation (k + i |k) denotes the future values forward in time at time k over a
given horizon where i = 1 ...N and N is the horizon length.

Optimizer

Model

u(k+i|k)
Plant

u(k) x(k)

x(k+i|k)

d(k+i|k)

Cost ConstraintsMPC

Future

 inputs
Current state(s)

Future

 disturbance

Future

 states

Figure 1.9: A block diagram of a MPC scheme.

The number of design variables in the optimisation problem, for a system with a single
input, is determined by the horizon length. The computational demand of MPC is higher
compared to other WPEAs as an optimisation problem is to be solved at every time step.
As a consequence, the models used for MPC are often relatively simple to reduce the
computational demand.

MPC has been applied for WEC systems in papers such as [10][11][12]. In the papers
linear MPC with continuous control inputs is applied. It is shown that the MPC scheme
can potentially perform better than the reactive control scheme with respect to harvested
energy. In [12] a MPC scheme developed for the Wave Star WEC is presented assuming
that the PTO force can take continuous values. Here it was shown that the MPC was
able to harvest more energy than the commonly used reactive controller in a wide range
of sea states. Even when the future wave is estimated and not fully known the MPC
showed better performance than the reactive controller. In [12] it is further shown that
the losses in the PTO transmission needs to be modelled properly and included in the
MPC cost function to increase the harvested energy.

In found literature MPC for WEC systems is only carried out for continuous control in-
puts. The PTO system of the Wave Star test bench may only apply discrete forces on the
float arm. To take this into account discrete control inputs needs to be implemented in
the MPC which makes the optimisation problem a discrete variable optimisation problem.
Discrete optimisation problems are in general known of being harder to solve than contin-
uous problems which may complicate MPC for the Wave Star WEC. As a consequence,
MPC with discrete control inputs may need to compromise between the complexity of the
model and the computational power available. Feasibility of MPC algorithms for WEC
systems with a discrete fluid power PTO system still needs to be investigated.
MPC applied for a system with quantized inputs is performed in [13]. Here a pneumatic
clutch actuator is controlled by using on/off valves. The scheme is a system with quan-
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tized input in the sense that the on/off valves are either fully opened or closed. Fast
dynamics of the systems requires a fast solution of the MPC algorithm, why an Explicit
MPC (EMPC) method is used. EMPC is based on computing the solution to the opti-
misation problem offline for every expected operating point. The solution is then used to
compute the control input as an explicit function of the states and reference, why solving
an online optimisation problem is avoided. To be applicable for a WEC, a complete so-
lution to all possible future wave elevations is required. Due to the inherently stochastic
behaviour of ocean waves, this seems impractical, why it is assumed that EMPC is not
suitable as WPEA. Arbitrary wave elevations should be incorporated in the MPC, why
an online solving of the optimisation algorithm seems unavoidable.

In most literature MPC in only investigated from a theoretical point of view and not
implemented in practice why this still may be a topic of interest. Some experimental
evaluation of MPC applied as WPEA is reported in [14]. Here a nonlinear MPC scheme
is applied for a scale version of a point absorber WEC with a permanent magnet linear
generator in the PTO stage. The MPC algorithm is solved offline for a pre-recorded wave
time series, and the solution is then applied in a wave tank for the same wave time series.
However the used PTO system allows for continuous control variables. Especially when
using discrete control inputs it may be interesting to investigate if MPC may be practically
implemented for a fluid power system such as the Wave Star WEC, as a discrete variable
optimal control problem is to be solved online at each time step. This thesis will address
MPC with discrete control inputs for a discrete fluid power system. Both development of
the MPC scheme and the implementation will be done as a preliminary feasibility analysis
of MPC for discrete fluid power systems.
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2 | Problem Statement

Based on a literature review the most used WPEA is determined as the reactive control
scheme. However, literature suggest that MPC is an attractive algorithm for wave power
extraction and may potentially outperform reactive control in terms of energy harvested
by the WEC. Effort in utilizing discrete fluid power systems has been successfully done
and it has been shown that the overall PTO efficiency can be increased using discrete
fluid power systems compared to conventional fluid power. The combination of MPC and
a discrete fluid power system seems to combine the identified advantages of high wave
energy conversion potential and high PTO efficiency. Hence the problem statement is
formulated as:

“How may a Model Predictive Control scheme be formulated and implemented for a
discrete displacement hydraulic power take-off system?”

2.1 Project Scope
The main focus of this thesis is divided into sub-problems as elaborated below:

� Formulation of a MPC algorithm suitable for a discrete displacement hydraulic PTO
system.

� Implementation of the MPC algorithm for online computation. Analysis of needed
model complexity and development of efficient discrete variable optimisation algo-
rithm.

� Practical performance evaluation of the MPC with respect to the common reactive
control scheme.

To answer the problem statement a solution strategy is formulated and is elaborated
below.

2.2 Solution Strategy
To test MPC of a discrete displacement hydraulic PTO system the test bench located
at Aalborg University described in Section 1.1.3 is used as a case study to evaluate
MPC experimentally. The sub objectives that needs to be solved to answer the problem
formulation are listed below:

� Absorber and Test Bench Model
To test and design a MPC scheme a model of the PTO system is developed. The
model will be of suitable complexity to capture dominating dynamics of the system
and is to be validated with experimental data. A linear model of the Wave Star
point absorber and a non-linear model of the PTO system and test bench is to be
presented. A model of the test bench is developed in order to validate the model
of the PTO cylinder. Losses is the PTO cylinder are identified and included in the
model and a comparison between simulated and measured PTO efficiency is to be
performed. The losses are to be incorporated in the MPC formulation.

� Formulation of the MPC & Parameter Study

11
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The control law for the MPC strategy will be formulated based on the linear point
absorber model. An appropriate MPC formulation should be chosen to allow max-
imisation of harvested energy over a finite time horizon. An analysis of MPC pa-
rameters is done with respect to the harvested energy. Suitable sample time and
horizon length is to be chosen as these values heavily influence the performance of
the MPC, but also the computational load. The analysis is based on model simula-
tions. A wave forecasting scheme is formulated as well, and the significance of wave
forecasting accuracy is to be addressed.

� Choice of Optimisation Algorithm
Different optimisation algorithms able of handling discrete variables are to be com-
pared, and tested subject to different model complexities. The goal is to develop
an efficient MPC algorithm suitable for real time implementation, why fast con-
vergence of the MPC algorithm is necessary. A test scenario is formulated where
the true optimum is known. The performance of the optimisation algorithms are
evaluated based on convergence time and sensitivity to initial starting point. The
computational time of the optimisation algorithm should be minimised to run the
MPC online.

� MPC Performance Evaluation
Once a suitable formulation of the MPC algorithm is chosen, the MPC performance
is evaluated in terms of harvested energy subject to model complexity and time
horizon. The evaluation is performed by simulations. This eliminates practical
limitations such as limited computational power, why the significance of horizon
length and MPC sample time may be studied fully. The evaluation allows for
preliminary indications regarding suitable time horizon and model complexity and
general MPC feasibility.

� Experimental Evaluation
The designed MPC will be implemented on the test bench for experimental evalu-
ation. For the implementation, computational time and other practical challenges
should be considered and solved. After implementing the control strategy at the test
bench an experimental evaluation will be performed to evaluate the performance of
MPC and compare it to the reactive control scheme.

12



3 | System Model

In this chapter a model of the Wave Star WEC system is derived. The system considered
is a single point absorber of the Wave Star C5 prototype which is sketched in Figure 3.1.
The model will be used to develop and test MPC algorithms. The system consists of a
point absorber attached to an arm connected to a hydraulic cylinder noted as the PTO
cylinder as shown in Figure 3.1. The model will describe the dynamics of the absorber,
the PTO cylinder and losses in the PTO system. As MPC algorithms are to be imple-
mented and tested on the PTO test bench described in Section 1.1.3, a model of the test
bench is derived. This enables the possibility of validating the PTO cylinder model, and
further to use the model for MPC feasbility studies. Thus both an absorber model and a
test bench model are derived.

3.1 Absorber Model
In this section a model of the C5 Wave Star point absorber is derived. A sketch of the
point absorber along with relevant definitions are shown in Figure 3.1.

ηw [m]

0Mean water level

PTO Cylinder

θarm

{R0} {Rw}

τgτwτpto

Fpto

xcCylinder stroke 

Figure 3.1: Sketch of the Wave star C5 point absorber.

The point absorber are modelled as one rigid body as shown below:

Jtotθ̈arm = τwave – τpto – τg (3.1)

Where Jtot is the total moment of inertia of the float and float arm, θ̈arm the angular
acceleration of the float arm, τwave the moment applied by the wave on the absorber,
τg the moment due to gravity and τpto the moment applied by the PTO cylinder. The
different terms in Equation (3.1) will be described in the following sections.
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3.1.1 Float and wave interaction
A model of the float and wave interaction of the C5 point absorber using linear wave
theory has been derived in [15]. The following model is based on this work. The float
and wave interaction may be described by three different effects:

� Excitation torque

� Buoyancy torque

� Radiation torque

To describe the excitation torque produced by the incoming waves a model of the waves
is necessary. To reproduce realistic ocean waves, a model based on filtering Gaussian
white noise is used. The underlying assumption of the model is that the incoming waves
may be given by a Power Spectral Density (PSD). By some general characteristics of the
incoming wave, the PSD of the waves may be approximated by the Pierson-Moskowitz
(PM) spectrum given in Equation (3.2). For a single sided spectrum the parameters A
and B may be given by the significant wave height Hm and the wave peak period Twp

as given in Equation (3.3) and (3.4)[16]. Given the parameters Hm and Twp, the average
power in the wave at a specific frequency may be described. The significant wave height
is the mean height of the one-third highest waves of the desired wave signal. The peak
period is the wave period where the most power is concentrated[9]. To generate a wave
signal with the desired PSD a filter may be designed such that the output of the filter,
with Gaussian white noise as input, has the desired PSD. Such a filter has been provided
for this thesis and referred to as “wave generator”. A wave may then be generated based
on the wave characteristics Hm and Twp. Different sea states(SS) are defined by different
values of Hm and Twp. The PM spectrum for three sea states are shown in Figure 3.2.
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Figure 3.2: PM spectra for different sea
states.
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The excitation torque is defined as the torque applied to the float arm, from the incoming
wave, for the float arm being fixed in neutral position, where the neutral position is
defined as the position of the point absorber in calm water. The wave torque is derived
from the pressure acting on the surface of the submerged float. In [15] the fluid mechanics
involved with this process is solved using a numerical wave simulation tool. From this a

force filter is derived as
τext(s)
ηw(s)

, where ηw is the wave height. The force filter has been
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provided for this thesis. For an irregular wave profile shown in Figure 3.4, with significant
wave height Hm and peak wave period Twp, the corresponding excitation torque on the
float arm derived from the force filter is shown in lower Figure of 3.4.

Twp

Hm
WaveGenerator

ηw

ηw(s)

τext(s) τext(s)

Figure 3.3: Diagram of the ex-
citation torque computation, given
Hm and Twp.
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106

Figure 3.4: Wave height profile
and corresponding wave excitation
torque.

The buoyancy torque may be derived from Archimedes’ principle which states that a body
submerged in a fluid is exerted to a force in an upwards direction equal to the mass of
the displaced fluid. The buoyancy torque for the point absorber may described by the
non-linear function τb(θarm):

τb(θarm) = Vsub(θarm)ρwater g da(θarm) (3.5)

Where Vsub is the volume of the submerged part of the float, ρwater is the density of
water, g is the gravitational constant and da is the moment arm of the float arm. The
hydrostatic restoring torque may be defined as the balance between the buoyancy torque
and the gravitational torque as:

τres = τb – τg (3.6)

Assuming calm water, τres may be linearised in the position where τb = τg, hence the
restoring torque may be described as:

∆τres ≈
∂τres

∂θ

∣∣∣∣
θarm=0

∆θarm = –kresθarm (3.7)

Thus the linearised restoring torque may be seen as an equivalent spring effect from the
buoyancy and gravitational torque, where the spring constant may be found as: kres =
ρwater g da(θ)Aw, where Aw is the cross sectional area of the of submerged float in the
water surface level[15].
The radiation torque is the torque applied to the float due to waves being radiated from
the motion of the float. The radiation torque due to waves being radiated in calm water
may be described by an inertia term and a convolution term as:

τrad = –J∞θ̈arm – kr(t) ∗ωarm (3.8)

The inertia term may be seen as an additional mass added to the point absorber due
to the water around the float is accelerated when the float is in motion. kr(t) is the
impulse response from the absorber velocity to the radiation torque. In [15], kr(t) ∗ωarm

is approximated by a 5th order transfer function given as:

τrad,kr(s)

ωarm(s)
= Kr(s) =

b0s5 + · · ·+ b4s + b5

s5 + · · ·+ a4s + a5
(3.9)
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Thus the torque equilibrium of the point absorber may be stated as:

Jtotθ̈arm = τext – kresθarm – J∞θ̈arm – τrad,kr – τptom
θ̈arm =

1

Jtot + J∞
(
τext – kresθarm – τrad,kr – τpto

)
By transforming Equation (3.9) to observable canonical form the system may be repre-
sented on state space form with the arm position as output:

θ̈arm

θ̇arm

τ̇rad,kr

ẋkr,1

ẋkr,2

ẋkr,3

ẋkr,4


︸ ︷︷ ︸

ẋ

=



0 –kres
Jtot+J∞ –1

Jtot+J∞ 0 0 0 0

1 0 0 0 0 0 0
b1 – a1b0 0 –a1 1 0 0 0
b2 – a2b0 0 –a2 0 1 0 0
b3 – a3b0 0 –a3 0 0 1 0
b4 – a4b0 0 –a4 0 0 0 1
b5 – a5b0 0 –a5 0 0 0 0


︸ ︷︷ ︸

A



θ̇arm

θarm

τrad,kr

xkr,1

xkr,2

xkr,3

xkr,4


︸ ︷︷ ︸

x

+



1
Jtot+J∞

0
0
0
0
0
0


︸ ︷︷ ︸

B

(
τext – τpto

)︸ ︷︷ ︸
u

(3.10)

y = Cx =
[
0 1 0 0 0 0 0

]
x (3.11)

The frequency response of the point absorber from the resulting torque u to the arm
position θarm is shown in Figure 3.5. The resonance frequency of the point absorber is
found to 0.285Hz, thus having a natural period of approximately 3.5s.

kres = 14 · 106
[

Nm
rad

]
a5 = 9184

Jtot = 2.46 · 106
[
kgm2

]
b0 = 0

J∞ = 1.32 · 106
[
kgm2

]
b1 = 14 · 106

a1 = 93 b2 = 62.3 · 107

a2 = 1665 b3 = 8.156 · 109

a3 = 6305 b4 = 1.3143 · 1010

a4 = 13277 b5 = 1.4359 · 109

Table 3.1: Model parameter val-
ues used to model the point ab-
sorber [15].
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Figure 3.5: Frequency response of
Equation (3.10) with the arm position
θarm as output.

The torque applied by the PTO system is described in the following section starting with
the absorber and cylinder kinematics.
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3.1.2 Absorber and Cylinder Kinematics
The moment applied by the PTO cylinder is dependent on the force applied by the cylinder
and the moment arm which is varying with θarm. The relation between the cylinder stroke
and the float arm angle may be described by geometric relations. Relevant definitions of
the geometry are shown in Figure 3.6 with the used geometric constants are listed to the
right.

b

a

c0

da
θarm θc

xc

Figure 3.6: Geometric sketch of float arm and PTO cylinder.

a 3.68 [m]

b 2.54 [m]

c0 1.6 [m]

xc,0 1.94 [m]

θarm is defined as the angular displacement away from the neutral position, hence θarm =
0 in calm ocean level. From Figure 3.6 the geometric relation between the angle of the
float arm, θarm, and the cylinder stroke, xc, may be stated as:

xc =
√

a2 + b2 – 2ab cos(θc) – c0 (3.12)

Where θc is defined as:
θc = θc,0 – θarm (3.13)

Where θc,0 is the angle of θc when θarm = 0 described by the cosine relation:

cos
(
θc,0

)
=

a2 + b2 – (c0 + xc,0)2

2ab
(3.14)

Where xc,0 is the cylinder stroke at θarm = 0 . The moment arm, da, may be stated as
shown below:

da =
ab sin(θc)

xc + c
(3.15)

The cylinder stroke and moment arm as function of the arm angle θarm are shown in
Figure 3.7 and 3.8 respectively.
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Figure 3.7: Cylinder stroke as func-
tion of the arm angle.
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Figure 3.8: Moment arm as function
of the arm angle.

The Wave Star WEC is designed with a cylinder stroke of 3m, where only 2m of the
stroke, centred around xc = 2m, is used in power production. Retraction to a stroke of
0m is performed in extreme sea states as a storm protection. As the DDC utilized on the
AAU PTO test bench only has a stroke of 2m, the relation given in Equation (3.12) is
shifted 1m, such that a neutral position results in a cylinder stroke of 1m. The torque
applied by the PTO cylinder on the float arm may then be described as:

τpto = da(θarm)Fpto (3.16)

Where Fpto is the resulting force from the PTO cylinder described in the following section.

3.2 PTO Model
The PTO system consists of a multi chamber cylinder, a primary side consisting of a valve
manifold switching the pressure in each chamber between three pressure levels supplied
by the secondary side. The pressure in each chamber is determined by controlling three
DFCUs connected to each pressure line giving nine DFCUs in total. A diagram of the
hydraulic PTO system can be seen in Figure 3.9. For simplicity the secondary side is
considered ideal, hence the line pressures are assumed constant.

A1AidleA2
A3b

A3a

xc

Q3

Q1

V3H

V3M

V3L

V2H

V2M

V2L

V1H

V1M

V1L

Q2

Primary Side
PTO Cylinder

pM

pH

pL

Secondary Side

patm

Figure 3.9: Hydraulic diagram of PTO system containing valve manifold and multi
chamber cylinder.

The cylinder used in the PTO system is shown in Figure 3.10 where a cross sectional
view is shown. As seen the cylinder has five chambers where one is vented to atmospheric
pressure. Chamber 3a and 3b are considered as one single chamber as they are operated
in parallel as shown in Figure 3.9.
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A1Aidle
A2

A3b

A3a

xc

A3

0

Figure 3.10: Sketch of the multi chamber cylinder used in the PTO system.

Disregarding friction force the resulting force, defined positive in the x-direction, applied
by the cylinder may be described as a sum of the forces from each chamber as shown
below:

Fpto = –p1A1 + p2A2 + p3A3 + PatmAidle (3.17)

Where Patm is atmospheric pressure and pi is the pressure in the i’th cylinder chamber.

As the pressure of the three PTO cylinder chambers can obtain three different pressure
levels a total of 27 forces is available. In Figure 3.11 the 27 different force levels and the
corresponding valve configuration are shown, with a high pressure of 180bar, a medium
pressure of 100bar and a low pressure of 20bar.
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Figure 3.11: 27 possible force levels and corresponding force applied by the PTO cylin-
der.

In Figure 3.11 the state of each chamber {v1, v2, v3} is denoted with a capital letter
{H , M , L} indicating which pressure line the chamber is connected to.

The pressure inside each chamber of the PTO cylinder may be described by the continuity
equation as shown below for each chamber assuming no leakage:

ṗ1 = (Q1 + vcA1)
β(p1)

V0,1 – xcA1
(3.18)

ṗ2 = (Q2 – vcA2)
β(p2)

V0,2 + xcA2
(3.19)
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ṗ3 = (Q3 – vcA3)
β(p3)

V0,3 + xcA3
(3.20)

Where β is the effective bulk modulus, vc is the cylinder velocity, xc the stroke of the
cylinder, Ai the piston area of the chambers, V0,i is the volume of the chambers for xc = 0 ,
Qi the flow into the chambers where the subscript i indicates the cylinder chamber. The
cylinder stroke is defined in positive direction as shown in Figure 3.10 with xc = 0 at the
end stop of the cylinder. The effective bulk modulus is modelled as shown below assuming
the stiffness of the fluid sufficiently higher than the stiffness of air.

0 20 40 60 80 100

0

5000

10000

15000

Figure 3.12: Bulk modulus model with
βF = 16000 [bar ] and εA(patm) = 0 .01 .

β(p) =
1

1
βF

+ εA
βA

(3.21)

εA(p) =

(
patmεA(patm)Cad

p

) 1
Cad

(3.22)

Where βF is the stiffness of the pure fluid, βA = Cad · p the stiffness of air and εA the
volumetric ratio of free air in the fluid found from Equation (3.22). The parameter βF also
represents the maximum value of Equation (3.21). The value is used as a soft parameter
to compensate for model uncertainties and finite hose stiffness, and will be used to fit the
model with experimental measurements.
Each DFCU consists of multiple on/off valves as shown in Figure 3.13.

   

VnV2V1
DFCU

 
 
 

UVeq

UV1

UVn

UV2
Signal 

mapping

Figure 3.13: Visualisation of DFCU consisting of multiple on/off valves.

The flow through each DFCU shown in Figure 3.9 is modelled as one equivalent valve by
the orifice equation shown below:

Qij = ni kv xv ,ij

√∣∣pj – pi

∣∣sign(pj – pi )
i =
{

1 , 2 , 3
}

j =
{

H , M , L
} (3.23)

Where the subscript i and j represent the corresponding cylinder chamber and pressure
line respectively. xv is the equivalent valve spool position and is assumed to take contin-
uous values. The number of valves ni connecting the i ’th chamber are n1 = 18 , n2 = 10 ,
n3 = 8 . The on/off valves used in the DFCUs are of the WS22GDA series manufactured
by Bucher Hydraulics. The valve gain kv is a fitted value found from measured flow
characteristics provided by Bucher Hydraulics. The kv value used is the average of two
calculated valve gains depending on the flow direction through the valve and is found to
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be approximately 1 · 10 –6

[
m3 /s√

Pa

]
.

The opening of the DFCUs are controlled such the pressure development in the chambers
follows a chosen pressure trajectory. To achieve this the valv opening trajectories are
based on an algorithm described in [7]. The valve opening trajectories used are not
included in the modelling of the PTO cylinder, but are included when considering losses
in the PTO transmission and for design of the MPC. For simplicity the valve opening is
modelled by a ramp function defined by a opening time, Tv as shown below:

Tv-1

uv

xv
1

Time

Tv

Figure 3.14: Sketch of the valve open-
ing.

ẋv =


1

Tv
for uv = 1 ∧ xv < 1

–1
Tv

for uv = 0 ∧ xv > 0

0 else

(3.24)

Where xv is the normalised equivalent opening of the DFCU and uv the control input for
the DFCU being either one or zero. The opening of the DFCUs is timed such one valve
is closed before another is opened to avoid short circuiting two pressure lines. The timing
of a pressure shift from medium to high pressure is sketched in the figure below:

Tclose
Tv

Tp

p(t)

xvH(t)xvM(t)1

0

pH

pM

Timetp,s tp,e

Figure 3.15: Sketch of the valve timing with pressure development indicated.

The closing time, Tclose, for the valves are chosen as fast as possible to reduce shifting
time. The valve bandwidth allows for a closing time of approximately 12ms. The opening
time, Tv, are chosen as a compromise between rise time of the pressure and the oscillations
of the pressure. The time Tp indicates the time of the pressure development.
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3.2.1 Transmission Line Model
The pressure line dynamics are expected to be excited by the fast switching of the valves
why the line dynamics are included in the model. The transmission line is modelled by
dividing the hose into n elements as shown in Figure 3.16.

Qi QnQi-1 pi ... pn...p1Q0,p0

Q

Li

A

Figure 3.16: Model of a transmission line.

The flow dynamics may then be described by the momentum equation assuming each
hose element as a single mass as shown below, neglecting, pressure losses in the hoses:

Q̇i = (pi – pi+1) Ai
1

ρLi
∀ i = 1 , 2 , ..., n (3.25)

The pressure dynamics for the i th line element may be described by the continuity equa-
tion shown below:

ṗi = (Qi–1 – Qi )
βi (pi )

Ai Li
∀ i = 1 , 2 , ..., n (3.26)

Q0 is the combined flow from the valves into the respective transmission line and pn+1

is the pressure in the respective cylinder chamber. The bulk modulus for each element is
modelled as shown in Equation (3.21).
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3.3 Test Bench Model
A model of the test bench is used to validate the PTO cylinder model. The test bench
consists of the PTO system and a wave emulator system used to emulate the motion of
the float arm. The wave emulator system consists of a symmetrical cylinder controlled by
two proportional valves in parallel as shown in Figure 3.17. A control algorithm generates
inputs for each valve from a wave reference and the force applied from the PTO cylinder
to emulate the motion of the float arm. The control is developed in [8] and will be used
to test control strategies on the test bench.

ps

FPTO

Power Take Off

pT

Wave Cylinder

PTO Cylinder

uP

xc, vc

uM

QB,P

QA,P

QA

QB

QB,M

QA,M

Ap
pB

pA

Figure 3.17: Overview of the PTO test bench at AAU.

The motion of the wave cylinder piston may be described as shown below:

ẍc =
(pB – pA)Ap – Ffric(vc) + Fpto

mtot
(3.27)

Where Ap is piston area of the wave cylinder, mtot is the total mass and pA and pB are
the pressure inside chamber A and B of the wave cylinder. The total friction force is
modelled by coulomb, viscous and stribeck friction as shown below:

Ffric(vc) =

(
Bse–

|vc|
α + Bv|vc|+ Kc

)
tanh

(
vc

γ

)
(3.28)

Where Bs is a stribeck friction coefficient, Bfric a viscous friction coefficient, Kc a Coulomb
friction coefficient and γ a coefficient determining the rate of change around zero. In
Figure 3.18 the friction force as a function of cylinder piston velocities may be seen with
the friction coefficients to the right found from an earlier semester project[17].

23



MCE4-1027 Aalborg University

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-30

-20

-10

0

10

20

30

Figure 3.18: Friction force as a function of cylinder ve-
locity.

Bs 47·103 [N]

Bv 51·103 [N s
m ]

Kc 2 ·103 [N]
γ 0.02 [-]
α 0.05 [m

s ]

The wave cylinder chamber pressure dynamics are modelled as:

ṗA = (QA + vcAp + (pB – pA)Cil)
βA

VA,0 – xcAp
(3.29)

ṗB = (QB – vcAp – (pB – pA)Cil)
βB

VB,0 + xcAp
(3.30)

Where the effective bulk modulus, β, is modelled as shown in Equation (3.21). The
dead volumes V0,A and V0,B are defined as the chamber and hose volume when the
cylinder piston is in centre position. Cil is an internal leakage coefficient. The dynamics
of the transmission line from pump to valve manifold is neglected. The valves used are
a Parker servo valve(D111FP NG32) and a Moog servo valve(D634-P) where the Parker
valve is used as the main operating valve and the Moog is utilized at lower flow demands.
The combined flow from the two valves into the chambers of the wave cylinder may be
described as shown below:

QA = QA,P + QA,M (3.31)

QB = QB,P + QB,M (3.32)

Where the subscript P and M indicates which valve is providing the flow. Each flow may
be described by the orifice equation shown below:

QA,P =

{
kv,P(xv,P)

√
|Ps – pA|sign(Ps – pA) for xv,P ≥ 0

kv,P(xv,P)
√
|pA – PT|sign(pA – PT) for xv,P < 0

(3.33)

QA,M =

{
kv,M(xv,M)

√
|Ps – pA|sign(Ps – pA) for xv,P ≥ 0

kv,M(xv,M)
√
|pA – PT|sign(pA – PT) for xv,P < 0

(3.34)

QB,P =

{
kv,P(xv,P)

√
|Ps – pB|sign(Ps – pB) for xv,M ≥ 0

kv,P(xv,P)
√
|pB – PT|sign(pB – PT) for xv,M < 0

(3.35)

QB,M =

{
kv,M(xv,M)

√
|Ps – pB|sign(Ps – pB) for xv,M ≥ 0

kv,M(xv,M)
√
|pB – PT|sign(pB – PT) for xv,M < 0

(3.36)

Where Ps and PT is the supply and tank pressure which is assumed constant. kv,P(xv)
and kv,M(xv) is in an earlier semester project[17] mapped as a function of the valve input
which is described in the following subsection.
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3.3.1 Valve Modelling
The valve dynamics are modelled by a second order transfer function and a slew rate
limiter defining the opening time of the valves. The data sheets for the Parker and the
Moog valve indicate a step time for 100% stroke which is used as the rate limit. Further
a frequency response for a 5% stroke for the Parker and 10% stroke for the Moog is given
which is shown in Figure 3.19 and 3.20.

Figure 3.19: Frequency response for
Parker valve[18]. Figure 3.20: Frequency response for

Moog valve[19].

The transfer function is chosen as an estimate of the frequency response for a 1% stroke
for both valves. In Table 3.2 the coefficients for the Parker and Moog valve are shown.

ωn[ rad
s ] ζ[-] Rate Limit[s–1 ]

Parker Valve 300 0.9 2222%
Moog Valve 550 0.55 4000%

Table 3.2: Valve coefficients for the Parker and Moog valve.

In the figure below the structure of the valve model for both the Parker and Moog valve
is illustrated.

uv xvωn2

s2 + 2ζωn +ωn2

ωn2

s2 + 2ζωn +ωn2

xv

kv
kv

Rate LimiterTransfer Function Kv map

Figure 3.21: Diagram of the valve model.

The kv map for the Parker and Moog valve is given in Equation (3.37) and (3.38) respec-
tively.

kv,P =

{
(P1 sin(P2u + P3) + P4) sgn(u) for –10 ≤ u < –0 .95 ∧ 10 ≥ u > 0 .91

0 for –0 .95 ≤ u ≤ 0 .91
(3.37)

kv,M = M1u5 + M2u4 + M3u3 + M4u2 + M5u + M6, for – 10 ≤ u ≤ 10 (3.38)
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The function for the Parker valve is set to 0 between -0.95 and 0.91 due to an overlap of
the Parker valve. Both functions are shown in Figure 3.22 and 3.23 and the coefficients
for each fit are shown in Table 3.3.
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Figure 3.22: kv map for Parker
valve[17].
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Figure 3.23: kv map for Moog
valve[17].

Parker Fit Coefficients Moog Fit Coefficients

P1 = 2.57 · 10–4
[

m3

s
√

Pa

]
M1 = –8.98 · 10–11

[
m3

s
√

PaV 5

]
P2 = 2.77 · 10–1

[
1
V

]
M2 = –1.15 · 10–10

[
m3

s
√

PaV 4

]
P3 = 1.58 [–] M3 = 1.89 · 10–8

[
m3

s
√

PaV 3

]
P4 = –2.49 · 10–4

[
m3

s
√

Pa

]
M4 = 1.48 · 10–8

[
m3

s
√

PaV 2

]
M5 = –2.63 · 10–6

[
m3

s
√

PaV

]
M6 = –5.36 · 10–7

[
m3

s
√

Pa

]
Table 3.3: Valve fit coefficients for the Parker and Moog valve[17].

Piston areas of the cylinder, dead volumes of the cylinder along with the remaining
parameters used for the model are shown in Table 3.4.

A1 235 [cm2] V0,1 48.1 [L] L1 4.35 [m] εA 0.01 [%]

A2 122 [cm2] V0,2 1.1 [L] L2 1.35 [m] βF 16e3 [bar]

A3 87 [cm2] V0,3 2.3 [L] L3 1.69 [m] Cad 1.4 [-]

Aidle 236.4 [cm2] VA,0 39.6 [L] AL 11.4 [cm2] mtot 2750 [kg]

Ap 236.4 [cm2] VB,0 39.6 [L] ρ 860 [ kg
m3 ] µ 26e6 [Pa s]

Table 3.4: Valve coefficients for the Parker and Moog valve.

After modelling the system the losses will be considered in the following sections.

3.4 Losses in the PTO Transmission
In this section the losses in the PTO cylinder is investigated. A simple model of the losses
is desirable, such that these may be included in the MPC formulation. For a pressure
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change in a cylinder chamber, loss associated with fluid compression will be present. A
general analysis of the loss in a chamber due to changing the pressure is desired. The
analysis is done for both a fixed volume and a changing volume. Throttling losses in the
valve manifold is included as well.

3.4.1 Shifting Losses for Fixed Chamber Volume
In Figure 3.24 a sketch of a fixed chamber connected to a pressure source through an
orifice is shown.

Q

VC,pC

pL

Figure 3.24: Model of a fixed volume connected to a pressure source

The loss due to the compressibility of the fluid is in [7] for a fixed volume stated as:

Eloss,β =
1

2
∆p2 V

β
(3.39)

Where ∆p is the pressure change in the volume, V is the volume and β is the effective
bulk modulus assumed constant for this analysis. In general the bulk modulus varies with
the fluid pressure but for pressures above 20bar, which is the pressure in the low pressure
line, the variation is low. Equation (3.39) may be proven by considering the energy loss as
the difference between energy from the pressure line and into the fixed volume as shown
below:

Eloss,β = Ein – Eout =

∫∞
0

(pLQ(t)) –

∫∞
0

(pc(t)Q(t)) (3.40)

Where Ein is the energy from the pressure line, Eout is the energy into the volume, pL
is the constant line pressure, pc the chamber pressure and Q the flow into the cylinder
chamber. The amount of flow needed to change the pressure from pc to pL may be
described by the flow continuity equation:

ṗc =
β

V
Q(t) (3.41)

Where β is the effective bulk modulus and is assumed fixed. From Equation (3.41) the
pressure of the volume may be described as:

pc =
β

V

∫
Q(t)dt + pc,0 (3.42)

As the pressure in the volum will go towards the line pressure, lim
t→∞pc(t) = pL, the

following may be stated:

pL =
β

V

∫∞
0

Q(t)dt + pc,0 (3.43)
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The volume of flow needed to change the pressure in the volume from pc to pL may be
described as shown below:

Vβ =

∫∞
0

Q(t)dt =
(
pL – pc,0

) V

β
(3.44)

Inserting Equation (3.42) and (3.44) into Equation (3.40), Equation (3.39) may be derived.
As it can be seen the loss is dependent on the pressure difference squared and the volume
of the chamber. In Figure 3.25 a map showing the energy loss for a pressure change in
each chamber of the PTO cylinder is shown for a cylinder stroke of xc = 1m.

pH pM pL

pH

pM

pL

pH pM pL pH pM pL
0

1

2

3

4

40.90

1.100.9

01.14

2.20.50

0.600.5

00.62.2

1.80.40

0.500.4

00.51.8

Figure 3.25: Energy loss associated with switching between pressure lines for each
chamber at xc = 1m, pH = 180bar, pM = 100bar, pL = 20bar and β = 10000bar.

The losses for cylinder chamber one is higher compared to the other chambers. The reason
for this is the higher volume of this chamber for the given position. As it can be seen in
Equation (3.39) the loss is proportional to the chamber volume. In Figure 3.26 the loss
for each chamber as function of the cylinder stroke, for a pressure change from 100 [bar ]
to 180 [bar ], is shown.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

1.5

2

Chamber 1

Chamber 2

Chamber 3

Figure 3.26: Energy loss as a function of the cylinder stroke with β = 10000 [bar ] and
∆p = 80 [bar ].

3.4.2 Shifting Losses for Changing Chamber Volume
A changing volume during pressure change is considered, as the effect of a changing
volume influences the energy loss. In Figure 3.28 a model of a chamber with changing
volume is shown.
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Qv

Ahose,Lhose

VC(x),pC

QC

x

Figure 3.27: Model of a changing volume with a fixed pressure source.

In [7] the energy loss associated with the pressure change for a changing volume is stated
as:

Eloss,β =
1

2
∆p2 V

β
+

1

2
∆pV̇ Tp +

13

70
∆p2 V̇

β
Tp (3.45)

The proof of Equation (3.45) is shown in [7] under the assumptions that the volume change
of the chamber is constant and that the chamber pressure dynamics may be described by
a third order function as shown below, where Tp is the pressure development time shown
in Figure 3.15.

pc(t) =
–2∆p

T 3
p

t3 +
3∆p

T 2
p

t2 + pc,0 for tp,s < t < tp,e (3.46)

Where tp,s and tp,s are respectively the start and end time of the pressure development
as shown in Figure 3.15. To illustrate the loss as a function of both piston position and
velocity the energy loss is calculated for each chamber when changing from medium to
high pressure, which is shown in the figure below.
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Figure 3.28: Energy loss for each chamber for different positions and velocities for a
pressure shift from 100bar to 180bar, Tp = 50ms and β = 10000bar.

As it can be seen in Figure 3.28 the energy loss is varying with the position and velocity.
From Figure 3.28 it is evident the volume change is heavily influencing the loss associated
with a pressure change. For high velocities and negative volume gradient, energy may even
be recovered by changing pressure. This is evident from the energy loss being negative
for some operating points in Figure 3.28.
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3.4.3 Throttling Losses
A loss due to throttling the flow through each of the DFCUs is inevitable. Assuming
infinitely fast switching, each of the cylinder chambers will always be connected to a
DFCU with the same opening area. Thus the total power loss due to flow throttling may
be described by the total flow and pressure drop across each active DFCU as:

Ploss,t =
3∑

i=1

Qi∆pi =
3∑

i=1

|Ai vc |
3

(ni kv )2
(3.47)

Where Ai is the piston area of the i ’th chamber, ni is the number of valves in the DFCU
connecting the i ’th chamber and kv is the valve gain for the valves used in the DFCUs.
As evident the throttling loss is dependent on the piston velocity cubed, and independent
of the chamber pressures. The throttling losses from the resulting flow for each chamber
and the total loss as function of the piston velocity are shown in the figures below.
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Figure 3.29: Throttling loss contribu-
tion from DFCU connected to chamber
1, 2 and 3.
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Figure 3.30: Combined throttling
losses as function of the cylinder veloc-
ity.

From Figure 3.30 it is seen that the throttling loss is low for piston velocities under
0 .2m/s. It may be expected that the throttling loss has a low influence on the PTO
efficiency for lower sea states, but could become more dominant for higher sea states.

3.5 Validation
A validation of the PTO cylinder model and the estimated losses is done. In Figure 3.31
an overview of the test bench and the placement of the different sensors used for the
validation is shown:
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Wave 
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PTO 
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PTO Valve 
Manifold

Ps
PT

Parker Moog

Figure 3.31: Overview of the test bench with indication of sensor placement.

As it can be seen the pressure transducers measuring the chamber pressures are placed
close to the inlet of the chambers. Both the model and the loss estimation will be validated
starting with the model.

3.5.1 Model Validation
To validate the model of the PTO system a number of tests is carried out on the Wave
Star test bench. For a given test the valve input for both the wave cylinder and the PTO
cylinder is logged and given as input for the model. The validation routine is performed
according to Figure 3.32.

Test Bench Model

Logged Fpto,ref

Logged Moog Command

Logged Parker Command

xc, vc

p1

p2

p3

Figure 3.32: Validation routine

For validation of the pressure change inside each chamber a test is conducted where the
cylinder is kept in a fixed position and the PTO force reference is changed such each
chamber alternately is changed from medium to high pressure. In Figure 3.33 the line
pressure connected to each cylinder chamber is shown and in Figure 3.34 the chamber
pressures under each force change is shown.
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Figure 3.33: Line pressures.
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Figure 3.34: Pressure for each chamber of the PTO cylinder.

As shown the line pressures are oscillating during a pressure change. These oscillations
may influence the chamber pressures and may explain some of the simulation deviation
compared to the measurement. The model is seen to yield higher oscillating response
compared to the measured response for chamber one. This may be due to the modelling
of the opening trajectory of the valves which is simplified compared to the actual opening
trajectory. As shown the pressure dynamics in each chamber is deviating from the mea-
surements but is for model purposes considered sufficient. To validate the motion of the
cylinder a test is carried out with the wave cylinder subjected to a sinusoidal motion with
an amplitude of 0.2m/s and a frequency of 0.1Hz. In addition the PTO force reference
is changed during the test. In Figure 3.35 the PTO force reference can be seen and in
Figure 3.37 the position and velocity of the cylinder may be seen for both simulation and
measurement.
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Figure 3.35: Force reference for PTO cylinder given as force level.
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Figure 3.36: Line Pressures.
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Figure 3.37: Position and velocity for of cylinder.

0 5 10 15 20

0

50

100

150

200

0 5 10 15 20

0

50

100

150

200

0 5 10 15 20

0

50

100

150

200

Figure 3.38: Cylinder chamber pressures for a sinusoidal cylinder motion.

As shown the line pressures are fluctuating which may explain the deviations in the
chamber pressures. The velocity of the cylinder piston is in general seen to fit the mea-
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surements. The oscillations of the cylinder piston velocity after a force shift are due to the
low inertia of the system and would be smaller for the actual point absorber. The model
deviation is expected as only the primary side of the PTO transmission is included in the
model. The secondary side includes pumps, accumulators, and line pressure control and
is obviously influencing the line pressures on the primary side. However, for the model
purpose it is considered sufficient to neglect the dynamics of the secondary side of the
PTO system.

3.5.2 Validation of Losses
It is desired to validate the assumed losses described in Section 3.4. The purpose of
the validation is to investigate how the estimated losses corresponds to the measured
efficiency of the discrete PTO transmission. The efficiency of the PTO transmission is
calculated as the ratio between the input power to the PTO system, and the output
power after the switching valve manifold. The input power is calculated as the PTO force
multiplied with the piston velocity. The output power is defined as the sum of the power
in the three pressure lines after the switching valve manifold. To calculate the output
power, the flow and pressure transducers positioned on the test bench as shown in Figure
3.31 are utilised. The positioning of the flow transducers imposes different methods of
calculating the output power, as the flow in the low pressure line is not measured directly.
By the defined positive direction of the flow measurements as shown in Figure 3.31, the
flow in the high and medium pressure lines may be calculated based on the three flow
measurements as:

Qph = Qm2 – Qm1 (3.48)

Qpm = Qm3 – Qm2 (3.49)

From the calculated flow rates in the high and medium pressure line, two different methods
to calculate the output power are used, and the calculated output power based on flow
and pressure measurements is an average of the two methods presented below.

Power Calculation Method 1

Taking the low pressure line as reference, the total output power may be calculated as:

Ph,1 = Qph (ph – pl)

Pm,1 = Qpm (pm – pl)

}
Pout,1 = Ph,1 + Pm,1 (3.50)

The output power of method 1 is thus calculated as the sum of the power in the medium
and high pressure line with respect to the low pressure line.

Power Calculation Method 2

The second method is based on estimating the flow in the low pressure line based on
measured cylinder velocity. The flow in the low pressure line is calculated as the volume
gradient in each chamber, when the low pressure line is connected to the given volume,
hence compression flow is neglected and only the steady state contribution is calculated.
The flow in the low pressure line is thus calculated as shown below, where vi,l = 1 denotes
that the valve connecting the chamber to the low pressure line is open.
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QA1,pl =

{
A1vcyl if v1,l = 1

0 else
QA2,pl =

{
A2vcyl if v2,l = 1

0 else
QA3,pl =

{
A3vcyl if v3,l = 1

0 else

The total flow in the low pressure line in the defined positive direction may be calculated
as:

Qpl = QA1,pl – QA2,pl – QA3,pl (3.51)

Where QA1,pl is defined as flow from the cylinder to the pressure line and QA2,pl and
QA3,pl are defined as flow from the pressure line to the cylinder. The output power is
then given as:

Pout,2 = Qphph + Qpmpm + Qplpl (3.52)

Efficiency Calculation

The efficiency of the PTO transmission based on pressure and flow measurement is cal-
culated as:

ηmes =
Eout,mes

Ein
=

∫ (
1
2 Pout,1 + 1

2 Pout,2

)
dt∫

vcFptodt
(3.53)

The estimated efficiency of the test bench is calculated based on the estimated shifting
loss for each force shift and throttling losses according to Equation (3.45) and Equation
(3.47) as:

ηest =
Ein – Eloss,β – Eloss,t

Ein
=

∫
vcFptodt –

∑nshifts
i=1 Eloss,β,i –

∫
Ploss,tdt∫

vcFptodt
(3.54)

To validate the estimated losses, the test bench is operated in four different operation
cycles and the estimated efficiency is compared to the measured efficiency. For two of the
operating cycles the wave cylinder is configured to emulate irregular waves for sea state
1 and 2, and the remaining two are for regular sine waves with a frequency of 0.1Hz and
0.3Hz respectively both with a velocity amplitude of 0.2[m/s]. In Table 3.5 the measured
average power input and power output along with measured and estimated efficiencies
for the four test are shown. In the tests a reactive controller is used along with the FSA,
described in Section1.2, to determine the applied discrete force level. The same controller
is used for all the tests.

Test wave SS1 SS2 sine 1 sine 2

Pin,avg,mes[kW ] 6.97 11.65 9.73 12.87
Pout,avg,mes[kW ] 5.33 9.06 7.71 10.33

ηmes 0.76 0.77 0.79 0.80
ηest 0.85 0.88 0.9 0.89

Table 3.5: Measured and estimated PTO efficiency for different test waves.
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From the table it is evident that the estimated efficiency is 9-11 percentage points above
the measured efficiency. The difference may be due to friction and other loss mechanism
which are not included in the efficiency calculation and . From the losses included in
the loss estimation, the throttling loss is seen to contribute to approximately 18% of the
total loss in average over the four different tests. As the deviation of the estimated and
measured efficiency is similar for all operation cycles the estimated efficiency may be used
to compare efficiency of different control strategies.

3.6 Part Conclusion
A linear model of the Wave Star point absorber was derived, with the purpose of utilizing
the model in MPC. A nonlinear model of the PTO cylinder was derived as well. To
validate the model of the PTO cylinder, a model of the PTO test bench at AAU was
developed to allow validation of the model by practical tests. Measurement performed
on the test bench showed acceptable correlation with simulated response, why the PTO
cylinder model is used to evaluate the MPC performance by simulations. Simple loss
mechanisms were modelled as well, with the purpose of including the losses in the MPC
formulation. Estimated and measured efficiency of the test bench was seen to deviate
from each other. An offset of 9-11 percentage points between measured and estimation
efficiency was seen.
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In this chapter the MPC scheme is derived. MPC computes the control input by solving
an optimisation problem based on future predicted states and disturbances such that the
harvested energy is maximised. Generally, MPC is used as a tracking controller where
a desired state trajectory is to be tracked. The MPC derived in the next section is
based on computing the PTO torque to yield maximum harvested energy over a finite
time horizon. As the MPC is to be implemented online, linear MPC is used. Linear
MPC permits to formulate the state predictions as simple static matrix calculations, why
linear MPC in general offers lower computational demand compared to e.g. nonlinear
MPC. Initially a MPC scheme computing a continuous PTO torque reference is developed
for simplicity and to allow comparison against optimal control in regular waves. Well-
established techniques and efficient solvers for such MPC problems exist. This allows a
comprehensive simulation study, and the MPC performance may be evaluated in a wide
range of control parameters. A MPC scheme able to handle discrete inputs is developed
in Chapter 5.

4.1 MPC Formulation
The formulation of the MPC is based on the linear model of the point absorber, as the
linearity offers the aforementioned advantages. The linear time invariant model of the
point absorber in discrete time domain, may be described by:

xk+1 = Axk + Buk (4.1)

yk = Cxk (4.2)

Where xk is the state vector, A and B are system matrices dependent of the model
discretisation, and yk is the output vector. The advantage of linear MPC is that the
problem over a finite time horizon may be ”lifted” such that the future states χk+ is
explicitly formulated in terms of the initial states xk and the future control inputs uk+.
The state space model of Equation (4.1) may be used as a prediction of the states one
step ahead. Equation (4.1) may be written at the time k + 1 as:

xk+2 = Axk+1 + Buk+1 (4.3)

xk+2 = A2xk + ABuk + Buk+1 (4.4)

This relation may be used to formulate the prediction of the future state over a horizon
N as[20]:

xk+1
xk+2
xk+3

...
xk+N


︸ ︷︷ ︸
χk+

=


A

A2

A3

...

AN


︸ ︷︷ ︸

P

xk +


B 0 0 · · · 0

AB B 0 · · · 0

A2B AB B · · · 0
...

...
...

. . .
...

AN-1B AN-2B AN-3B · · · B


︸ ︷︷ ︸

H


uk

uk+1
uk+2

...
uk+N-1


︸ ︷︷ ︸

uk+

(4.5)

Where 0 is a zero matrix of appropriate size. χk+ is a vector of the predicted future
states over the time horizon of length N subject to the initial states xk at time k and the
control inputs over the horizon contained in the vector uk+. The matrices P and H are
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defined as the prediction matrices, and contains the system matrices of Equation (4.1).
The predicted future outputs is given as:

yω = Cωχk+ , Cω =


C 0 0 · · · 0
0 C 0 · · · 0
0 0 C · · · 0
...

...
...

. . .
...

0 0 0 · · · C

 (4.6)

Considering the point absorber model, the prediction of future states may be formulated
as:

χk+ = Pxk + Hτext,v – Hτpto,v (4.7)

With:

τext,v =
[
τext,k τext,k+1 τext,k+2 · · · τext,k+N-1

]T
(4.8)

τpto,v =
[
τpto,k τpto,k+1 τpto,k+2 · · · τpto,k+N-1

]T
(4.9)

Where τext is a vector containing future wave excitation torques, and τpto is a vector
containing the applied PTO torque over the time horizon. The goal of the MPC is to
maximise the harvested energy over a given horizon. If only considering maximising the
mechanical power transferred to the point absorber, the absorbed energy may be given
from the integral of the instantaneous absorbed power over the time horizon as:

Eabs =

∫ t+TsN

t
Pabs(τ)dτ =

∫ t+TsN

t
ωarm(τ)τpto(τ)dτ (4.10)

Where Ts is the MPC sample time. The discrete approximation of Equation (4.10) may
be formulated as:

Eabs ≈ Ts

k+N∑
i=k

ωarm,i+1 τpto,i = Ts(Cωχk+)Tτpto,v (4.11)

As evident the discrete approximation of Equation (4.10) resembles a backward euler
integration method, which is a first order integration method. If the PTO torque dynamics
are neglectable, hence the PTO dynamics are much faster than the absorber dynamics,
the approximation to the integral is considered fair if the sample time is chosen in the
order of 10 times faster than the absorber dynamics.
Inserting Equation (4.7) into (4.11) yields:

Eabs = Ts

[[
Cω

(
Pxk + Hτext,v – Hτpto,v

)]T
τpto,v

]
(4.12)

= Ts

[
xT

k PT CT
ωτpto,v + τT

ext,vHT CT
ωτpto,v – τT

pto,vHT CT
ωτpto,v

]
(4.13)

= Ts

–τT
pto,v HT CT

ω︸ ︷︷ ︸
Q

τpto,v +
(
xT

k PT CT
ω + τT

ext,vHT CT
ω

)
︸ ︷︷ ︸

f

τpto,v

 (4.14)

= Ts

[
–τT

pto,vQτpto,v + fτpto,v

]
(4.15)
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Only considering maximisation of the absorbed energy over a finite time horizon the
optimisation problem may be formulated as:

Min
τpto,v∈RN

(
Ts

[
τT

pto,vQτpto,v – fτpto,v

])
(4.16)

s.t . τpto,min ≤ τpto ≤ τpto,max

Where τpto,max and τpto,min are the upper and lower bound of τpto and is chosen to
±1MNm. The objective function in Equation (4.15) may be seen to have quadratic and
linear terms of τpto,v, why the minimisation problem is a quadratic programming prob-
lem. The problem may be solved by standard quadratic solvers, e.g the solver quadprog
in Matlab. Identifying Q as the Hessian of the problem, the quadratic programming for-
mulation of the MPC is convex, as Q is found to be positive definite.

4.1.1 Constraints
One of the advantages of using MPC is that constraints can be included in the control
algorithm. Contraints may arrise from physical limits of the system such as cylinder stroke
or a maximum allowed cylinder velocity. Constraints may be introduced in different ways
dependent of how strictly the constraints have to be fulfilled. Hard constraints does not
allow the solution to violate the constraints and may be included in the optimisation
problem by extending it as shown below:

Min
τpto,v∈R

(
Ts

[
τT

pto,vQτpto,v – fτpto,v

])
s.t .

bounds : τpto,min ≤ τpto ≤ τpto,max

inequality constraints : γm(x ) ≤ 0 for m = 1 , 2 , ..., M

equality constraints : ϕl (x ) = 0 for l = 1 , 2 , ..., L

Where M and L is the number of inequality and equality constraints respectively. Con-
straints regarding cylinder position and velocity may be necessary due to the limited
stroke of the cylinder. This may be included by inequality constraints as shown below:

γmax,m(x ) = Xk+ – xmax for m = 1 , 2 , ..., M

γmin,m(x ) = –Xk+ + xmin for m = 1 , 2 , ..., M

Where Xk+ is the system states in cylinder coordinates. xmin and xmax are vectors
containing the constraints of the cylinder position and velocity. The physical constraints
may also be implemented by soft constraints. Soft constraints are formulated by penalising
the cost function if the constraints are violated. This can be done by introducing slack
variables in the form of a scalar p and a vector S defined as:

S =
[
sm · · · sM

]
for m = 1 , 2 , ..., M (4.17)
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The optimisation problem may then be changed to:

Min
τpto,v∈R

(
Ts

[
τT

pto,vQτpto,v – fτpto,v

]
+ p‖S‖

)
s.t .

τpto,min ≤ τpto ≤ τpto,max

γm(x ) + sm = 0 for m = 1 , 2 , ..., M

sm ≥ 0 for m = 1 , 2 , ..., M

By doing this a violation of the constraints is allowed, but by choosing p sufficiently high
violations will only occur if no feasible solution exist. The scalar p is thus a parameter to
be tuned determing the ”softness” of the constraints. By choosing p = 0 an unconstrained
problem is obtained and by choosing p = ∞ the original hard constrained problem is
obtained. For the system considered in this thesis constraints may turn the optimisation
infeasible as the system is driven by the ocean waves. This means that infeasibility may be
inevitable at instances with relatively large incoming waves and hard constraints on e.g.
the point absorber velocity as the generated PTO torque may not be sufficient to brake
the system. For this reason it is concluded that including constraints in the optimisation
may turn out irrelevant and is therefore omitted.

4.2 MPC Analysis
An analysis of the MPC performance subject to model complexity and parameter sensi-
tivity is done. The analysis is performed assuming that the PTO torque is continuous for
simplicity. This also allows for comparison of the MPC and analytical derived optimal
power extraction in regular waves. The purpose of the analysis is to obtain indications
of the necessary MPC time horizon and sample time, as well as the influence of consid-
ering non ideal PTO effenciency, why simple damping losses are included in the MPC
formulation. Lastly a forecasting of the excitation torque is developed to evaluate the
performance of MPC with unknown future waves compared to perfect knowledge of the
future wave of the finite time horizon. Only the point absorber dynamics are considered
for the following analysis, hence the PTO dynamics are considered infinitely fast. The
following simulations are performed according to the figure below. For the analysis ideal
wave estimation is assumed if nothing else is stated.
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x

Figure 4.1: Digram of simulation routine performed for the MPC analysis.

4.2.1 Optimal Power Extraction
To test the MPC algorithm it is compared to a reactive control scheme subject to a sine
wave excitation. This allows identification of reactive control parameters which yields
optimal wave power extraction. The mechanical system may be described as an equivalent
electrical circuit as shown in Figure 4.2, where the float arm velocity corresponds to the
current, and torque corresponds to the voltage.

zs

zLτext

Absorber PTO
ωarm

t

τext[Nm]

A

T

Tω = 2π 

Figure 4.2: Equivalent electrical circuit of the mechanical absorber and PTO system.

The mechanical system may be interpreted as being driven by a excitation torque, with
the dynamics given by the mechanical absorber impedance and the mechanical PTO
impedance. The analogue to the electrical system may be interpreted as inductance
corresponding to inertia J , capacitance to inverse of spring constant 1

k , and resistance
being damping B [16]. Thus the source and load impedance shown in Figure 4.2 may be
described in terms of mechanical parameters as:

Zs = Rs + jXs = Brad + jω(Jtot + J∞) – j
kres

ω
(4.18)

ZL = RL + jXL = Bpto + jωJpto – j
kpto

ω
(4.19)

Where ω is the frequency of τext. Brad is the radiation damping torque coefficient,
and is constant for a regular wave excitation. Maximum power is dissipated in the load
impedance, hence power being delivered to the PTO system, if ZL = Z ∗s , where ∗ denotes
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the complex conjugate. According to Ohm’s law in the mechanical analogy it follows that:
τpto = ZLωarm. If it is assumed that the PTO torque is applied as τpto = Bptoωarm +
kptoθarm, the reactive control law that yields optimal wave power extraction for a sine
wave excitation with position and velocity feedback may be found by solving:

ZL = Z ∗s
τpto = kptoθarm + Bptoωarm

} ⇒ kpto = (Jtot + J∞)ω2 – kres

Bpto = Brad
(4.20)

The optimal control for a regular wave is thus defined by system parameters and the
incoming wave frequency. To test the MPC against the optimal control case, an arbitrary
wave may be chosen. For the comparison, a sine wave with a frequency of 0.2Hz and an
amplitude of 0.3m is chosen. For this specific wave, the optimal control parameters for
the reactive control are identified as:

kpto = –8.03 · 106
[

Nm
rad

]
Bpto = 8.16 · 105

[
Nms
rad

] (4.21)

The MPC parameters to be tuned are the time horizon and the sample time. It is expected
that the MPC solution will approach the optimal solution as the time horizon and sample
frequency goes towards infinity. The MPC is tested in the simulation model, and the
time horizon is iteratively tuned until the MPC solution converges to the optimal reactive
control solution. The MPC was seen to approach the optimal reactive solution with a
sample time of Ts = 0 .025s and a horizon length of N = 265 corresponding to a time
horizon of 6.625 seconds. The simulation results are shown in the figures below.
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From Figure 4.4 it is seen that the excitation torque and absorber velocity are in phase
for both the reactive controller and the MPC, thus optimal power extraction occurs. Due
to the inherently discrete computation of the PTO torque of the MPC, the instantaneous
power also becomes piecewise constant as evident from the zoom shown in Figure 4.5.
As elaborated in Section 4.1, the discrete approximation of the absorbed energy over the
MPC time horizon in Equation (4.11) resembles a backward euler integration method,
which may also be seen in the zoom of Figure 4.5. From this it may be concluded that
the MPC solution go towards the optimal PTO trajectory if the sample frequency and
the time horizon go towards infinity. For the two simulations shown in the figures above
the average absorbed power is 15.7kW for the reactive control and 15.2kW for the MPC.

To test the performance of the MPC scheme against the reactive control scheme, they
are tested in irregular waves as well, and a parameter study of the sample time and time
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horizon of the MPC is performed. In order to simplify the MPC algorithm, a truncated
model formulation is investigated to lower the computational demand and to avoid the
necessity of state estimation.

4.2.2 Truncated Model Formulation

The virtual radiation damping states of the model in Equation (3.10) are not available for
measurement. However as the model is formulated in observer canonical form, the states
may be estimated by design of an observer. The states may be estimated by[21]:

˙̂x = (A – LC)x̂ + Bu + Ly (4.22)

Where L is the observer gain matrix and y are the measured states; the arm angle and
angular velocity. The poles of L are placed such the estimation error dynamics are ten
times faster than the open loop poles of the system shown in Equation (3.10).
In regard to the MPC formulation, using the full order model may introduce higher
computational demand as the prediction matrices H and P rapidly increases in size with
the horizon length N . For this reason it is desired to investigate a truncation of the model
in order to obtain a MPC formulation with smaller prediction matrices. The model given
in Equation (3.10) may be simplified by having the radiation damping filter expressed in
a single damping coefficient Bdamp. Thus the truncated model is given as:[

θ̈arm

ωarm

]
︸ ︷︷ ︸

ẋs

=

[
–Bdamp

Jtot+J∞ –kres
Jtot+J∞

1 0

]
︸ ︷︷ ︸

As

[
ωarm

θarm

]
︸ ︷︷ ︸

xs

+

[ 1
Jtot+J∞

0

]
︸ ︷︷ ︸

Bs

(
τext – τpto

)︸ ︷︷ ︸
u

(4.23)

Another advantage of formulating the MPC on this form is that the state estimation is
avoided as only the measured states, arm angle and angular velocity, are needed for the
MPC. To test if the truncation is reasonable, the full order MPC is compared to a MPC
formulation with the truncated model. To determine the best choice of the damping
coefficient Bdamp, the MPC is evaluated with different values of Bdamp and sea states
with respect to average harvested power for wave series containing 100 wave periods. The
comparison of the full order formulation and the truncated formulation for three different
sea states and different values of the damping coefficient are shown in Figure 4.6-4.8
where the dashed line indicates the average absorbed power for the MPC with the full
order model. The simulations are performed in a simulation model of the full order model
shown in Equation (3.10), and with either the truncated model or full order model in the
MPC formulation.
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From the figures it is evident that an optimal choice of the damping coefficient exist. It is
seen that the maximum average harvested power for all three sea states for the truncated
MPC formulation is close to a damping coefficient of 1 .5 Nms

rad for the three sea states.
For the three sea states the average harvested power for the truncated formulation with
the best damping coefficient are in average only 0.1% below the average harvested power
obtained by the full order MPC formulation. By this it is regarded as fair to use the
truncated MPC formulation if the damping coefficient Bdamp is chosen to the optimal
value for the given sea state. The optimal choice of Bdamp is seen to slightly vary with
the horizon length N as well. This is addressed by tuning the constant damping coefficient
once the horizon length is chosen.

4.2.3 Parameter Study
A parameter study on the sample time Ts and horizon length N is performed to investigate
the MPC performances’ sensitivity to these values. In the first part of the parameter
study the efficiency of the PTO system is not considered, as only the influence of the
MPC parameters is desired.
Initially the PTO moment trajectory is investigated based on the sample time and horizon
length. The PTO moment trajectory for the reactive control scheme is included for
comparison. The comparison is performed on the wave signal showed in Figure 4.9, which
is a wave signal generated for sea state 2.
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Figure 4.9: Wave signal used in the following comparison.

For the given wave signal the MPC is tested for different time horizons. The simulation
results are shown in Figure 4.11-4.13. A simulation for the same wave signal with reactive
control is shown in Figure 4.10.
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Figure 4.10: Simulation result for re-
active control.
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Figure 4.11: Simulation result for
MPC with Ts = 0 .1s and N = 10 .
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Figure 4.12: Simulation result for
MPC with Ts = 0 .2s and N = 10 .
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Figure 4.13: Simulation result for
MPC with Ts = 0 .05s and N = 100 .

From the simulation results it is evident that increasing the time horizon also results in
four quadrant power operation. From Figure 4.11, where the time horizon is 1s, the power
transfer only occurs in one direction. This may be explained by the relatively short time
horizon compared to the peak period of the waves which is 5.57s for sea state 2. From
Figure 4.12 it is evident that increasing the time horizon imposes reactive power for the
PTO system. For the simulation with a sample time of 0.2s and a horizon length of 10 the
PTO torque is seen to jump between the saturation limits of the PTO torque. Further
increasing the time horizon to 5s as shown in Figure 4.13 is seen to change the PTO
torque trajectory to jump between the saturation limits faster.
To assess the MPC performance’s sensitivity to the sample time and time horizon, the
MPC is evaluated with respect to average absorbed power for a wave series containing
100 wave periods for three different sea states. The results are shown in Figure 4.14 and
Figure 4.15. From Figure 4.14 it is evident that a time horizon beyond 6 seconds does
not influence the average absorbed power. The time horizon could be chosen to 3 or 4
seconds without significant influence on the average absorbed power. The influence of
varying the sample period is shown in Figure 4.15. Here the time horizon is chosen to 6s
to only see the influence of the sample period. From the simulations, a similar decrease
in absorbed power is seen with increasing sample period for all sea states. For sea state 1
a sample time of 0.4s results in a negative average absorbed power. This suggest that a
upper bound of the sample time must be formulated. A maximum sample time of 0.35s
is imposed due to the natural period of the point absorber of approximately 3.5 seconds.
With a sample period 0.35s approximately ten samples during one natural period of the
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Figure 4.14: Average absorbed
power for different time horizons
and sea states.
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Figure 4.15: Average absorbed
power for different sample periods
and sea states.

system is performed. From Figure 4.15 it may be concluded that the MPC sample time
should be chosen as low as possible considering infinitely fast PTO dynamics.

4.2.4 MPC including PTO Efficiency
So far, the efficiency of the PTO system has not been considered. It is desired to investi-
gate the influence of a non-ideal PTO system with respect to the MPC performance. A
simple case is investigated, where a damping friction loss is included in the PTO system.
The simple friction loss is given by Ploss = bfω

2
arm. From the simulation results shown

in Figure 4.11-4.13 a longer time horizon of the MPC is seen to force the point absorber
to higher velocities. With friction losses present it may be expected that this is not the
optimal solution, as the power delivered to the grid will be affected by the friction losses
in the PTO system.
The energy harvested including the damping friction loss over the time horizon may be
stated as:

Ehar =

∫ t+TsN

t
Pabs(τ) – Ploss(τ)dτ =

∫ t+TsN

t
ωarm(τ)τpto(τ) – bfω

2
arm(τ)dτ (4.24)

The discretized approximation may be given as:

Ehar ≈ Ts
∑k+N

i=k ωarm,i+1 τpto,i – bfω
2
arm,i+1 = Ts

[
(Cωχ)Tτpto,v – (Cωχ)T bf(Cωχ)

]
(4.25)

By writing out Equation (4.25) and neglecting terms without the future control inputs,
the quadratic programming problem can be formulated as:

Ehar = Ts

–τT
pto,v

(
HT CT

ωbfCωH + HT Cω

)
︸ ︷︷ ︸

Qf

τpto,v +
(
xT

k PT CT
ωτ+ τT

ext,vHT CT
ω + 2

(
xT

k PT CT
ωbfCωP

)
+ 2

(
τT

ext,vPT CT
ωbf CωP

))
︸ ︷︷ ︸

ff

τpto,v

 (4.26)

Which in compact form is given as:

Ehar = Ts

[
–τT

pto,vQfτpto,v + ffτpto,v

]
(4.27)

In [22] the reactive controller is designed with an assumed PTO efficiency of ηpto = 0 .7 .
The reactive controller found in [22] is utilised in the model, and the damping friction
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coefficient is chosen such that a PTO efficiency of 0.7 is obtained for sea state 2. This

resulted in a friction coefficient of bf = 1.1 · 106
[

Nms
rad

]
. To evaluate the significance of

the inclusion of PTO efficiency simulations with and without the PTO efficiency included
in the MPC formulation are performed. Hence Equation (4.15) and Equation (4.27) are
used as the MPC cost function in the two simulations respectively. The results of the
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Figure 4.16: Simulation without
losses in cost for MPC with Ts = 0 .1s
and N = 20 .

100 110 120 130 140 150 160 170 180

-0.2

0

0.2

0.4 PTO
 [MNm  10-1]

arm
 [rad/s]

100 110 120 130 140 150 160 170 180

0

200

400
P

abs
[kW]

P
har

[kW]

Figure 4.17: Simulation with losses in
cost for MPC with Ts = 0 .1s and N =
20 .

two simulations are shown in Figure 4.16 and 4.17. The average absorbed and harvested
power for the simulation, is shown in Table 4.1.

MPC type Pabs,avg[kW ] Phar,avg[kW ]

MPC without losses in cost 31.8 17.4
MPC with losses in cost 29.9 22.9

Table 4.1: Comparison of the MPC performance with and without losses in the cost
function.

From Figure 4.16 and 4.17 the damping friction losses are seen to penalise the reactive
power. Significantly less reactive power is seen for the MPC with losses included in the
cost function. When including losses in the cost function the absorbed power is lower
but the harvested power is higher compared to the MPC without loss included in the
cost function. This may indicate that loss should be included in the MPC formulation to
increase the average harvested power.

4.2.5 Wave Forecasting
Until now the wave forecasting has been assumed ideal, meaning perfect knowledge of the
future waves has been assumed. It is beyond the scope of this thesis to develop an accurate
wave forecasting scheme. The wave forecasting presented next is included to indicate the
necessary forecasting accuracy, and the significance of forecasting errors.The forecasting
is based on an autoregressive (AR) model as proposed in [23], and an excitation torque
estimation based on a disturbance observer.
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AR Model

A forecast of the incoming wave excitation torque is necessary for the MPC. If it is assumed
that the excitation torque may be described by a linear combination of the past values
and the parameters ai , an AR model of the wave excitation torque may be formulated as:

τext(k) =
n∑

i=1

aiτext(k – i) (4.28)

Where n is the order of the AR model, and ai are the model parameters. The given
sea state determines the model parameters of the AR model. This means that the AR
model needs to be trained to a given wave data set, and is only valid if the training data
represents the current sea state. Thus, if the sea state changes significantly, the AR model
needs to be trained on a new data set. The training set is obtained from a time series
of estimated wave excitation torque, obtained from the output of a disturbance observer
elaborated in Section 4.2.5 over approximately 100 wave periods, as it is expected to
reflect the entire frequency range of the given sea state. The trained AR model is thus
assumed to represent the sea states for the next 100 wave periods as it is assumed that
the sea state does not change significantly during this period. The model parameters
are obtained with use of the ar function in Matlab, which minimises the sum of squared
prediction error.
The future excitation torque may be predicted N steps ahead as:

τ̂ext(k + N |k) =

n∑
i=1

ai τ̂ext(k + N – i |k) (4.29)

Where τ̂ext (k + N – i |k) = τext (k) if k + N – i ≤ k , meaning that the estimate at instant k
is known, and the future estimates are based on a mixture of known values and predicted
values. For a second order AR model, a two step ahead forecast of the excitation torque
may be ”lifted” in the same manner as the MPC approach:

τ̂ext(k + 1 |k) = a1 τ̂ext(k |k) + a2 τ̂ext(k – 1 |k) (4.30)

τ̂ext(k + 2 |k) = a1 τ̂ext(k + 1 |k) + a2 τ̂ext(k |k)

= (a2
1 + a2 )τ̂ext(k |k) + a1 a2 τ̂ext(k – 1 |k) (4.31)

This may be given in matrix notation as:[
τ̂ext(k + 1 |k)
τ̂ext(k + 2 |k)

]
=

[
a1 a2

a2
1 + a2 a1 a2

] [
τ̂ext(k |k)

τ̂ext(k – 1 |k)

]
(4.32)

Following this relation the N step ahead forecast may be written as:

τ̂ext,v(k + N |k) = Υτ̂ext,v(k – n |k) (4.33)

with:

Υ =


CτBar

CτB
2
ar

...

CτB
N –1
ar

 Bar =


a1 a2 · · · an–1 an

1 0 · · · 0 0

0 1
. . .

. . .
...

...
...

. . . 0 0
0 0 · · · 1 0

 Cτ =
[
1 0 · · · 0

]
(4.34)

48



4.2. MPC Analysis Chapter 4. Model Predictive Control

τ̂ext,v(k + N |k) =
[
τ̂ext(k + 1 |k) τ̂ext(k + 2 |k) · · · τext,k+N

]T
(4.35)

τ̂ext,v(k – n |k) =
[
τ̂ext(k |k) τ̂ext(k – 1 |k) · · · τ̂ext(k – n |k)

]T
(4.36)

As the excitation torque is unmeasurable it needs to be estimated. The estimation of the
excitation torque is elaborated in the next section.

Excitation Torque Estimation

The estimation of the wave excitation torque is formulated as a linear disturbance ob-
server, as proposed in [24]. Using the linear point absorber model, a disturbance observer
may be configured as shown in Figure 4.18.

Plant L

B

1
s

A – LC

C

L BT

BTB
1

τs+1

u = τext – τpto

τpto

y

+

–

+

+

ŷ

– τ̂ext

Observer

Figure 4.18: Diagram of disturbance observer.

An observer may be formulated with only the PTO torque as input. The estimation of
the excitation torque may then be driven by the error between measured outputs and
observed outputs with only the PTO torque as input. The observer state equation with
only the PTO torque as input may be formulated as[21]:

ˆ̇x = Ax̂ – Bτpto + L(y – ŷ) (4.37)

Where L is the observer gain matrix. As the excitation torque act as an additional input
to the system, the ”true” state equation may also be written as:

ˆ̇x = Ax̂ – Bτpto + Bτ̂ext (4.38)

From Equation (4.37) and (4.38) the estimated excitation torque may be formulated as:

τ̂ext =
BT

BT B
L(y – ŷ) (4.39)

Where BT

BTB
is imposed to obtain the inverse value of each element of B. From Equation

(4.39) the excitation torque estimation is given by the error dynamics, y – ŷ . The observer
gain matrix L is designed with use of the kalman function of Matlab. The gain matrix
is designed such the dynamics of Equation (4.39) is dominated by the plant dynamics in
y , hence the poles of Equation (4.37) is much faster than the plant dynamics. As high
frequency content may be present in y at each force shift of the PTO cylinder, τ̂ext is
low pass filtered with a first order low pass filter with a cut off frequency such that the
dominating frequency content in τext is ensured.
In Figure 4.19 the estimated excitation torque is shown for a simulation for sea state 1,
with MPC applied as WPEA.
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Figure 4.19: Actual and estimated wave excitation torque.

In Figure 4.20 forecasting of the wave torque at three instants is shown. Here the AR
model is trained on the observed excitation torque for the same sea state sampled with
the same sample time as the MPC. An order of n = 40 is used meaning that the forecast
is based on 40 previous samples. The wave is forecasted 5 seconds forward in time. As
evident from the figure the wave prediction may be used for forecasting of approximately
2-3 seconds. Other methods for forecasting the wave torque may be possible, however
better wave forecasting is out of the scope for this thesis, and serves just as an indicator
of what might be achievable with unknown wave torque. An accurate forecast of the wave
far into the horizon may not be necessary as these have lower impact on the optimal PTO
torque applied at time t = k .
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Figure 4.20: Actual and predicted wave excitation torque. At each prediction instant
the future wave torque is predicted based on previous 40 observations.

To measure the accuracy of the wave forecasting the following ”goodness of fit” at every
prediction instant k is used, where a normalised root mean square error is calculated as:

σ(k) = 1 –
‖τext(k + n |k) – τ̂ext(k + n |k)‖
‖τext(k + n |k) – E {τext(k + n |k)}‖

(4.40)

σ(k) is the goodness of fit indicator and is a number in the region [–∞ : 1 ]. σ(k) = –∞
is a bad fit and σ(k) = 1 is a perfect fit. ‖‖ indicates the euclidean norm of a vector, E {}

indicates the mean of a vector and n = 1 ...N where N is the horizon length. A histogram
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of the goodness of fit for a forecast of ten steps for a waves series is shown in Figure 4.21.
To give a visual example of the goodness of fit two examples with a goodness of fit with
0.86 and -1.95 respectively are shown in Figure 4.22.
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Figure 4.21: Histogram of σ(k) for a
10 step ahead forecasting at every pre-
diction instant k.
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Figure 4.22: Visual example of σ(k)
with the values 0.86 and -1.95 respec-
tively.

In general the AR forecasting method shows good performance. For the example shown
above an average goodness of fit of 0 .56 is obtained. To investigate the significance of the
forecasting accuracy a simulation is performed with wave forecasting included in the MPC
formulation for three different sea states. In Figure 4.23-4.25 the difference in average
harvested power with respect to ideal wave prediction, and wave forecasting based on the
AR model is shown. The simulations are performed with a MPC sample time of 0.1s.
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erage harvested power
with ideal and esti-
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Figure 4.24: Av-
erage harvested power
with ideal and esti-
mated future excita-
tion torque forecasting
for SS2.
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Figure 4.25: Av-
erage harvested power
with ideal and esti-
mated future excita-
tion torque forecasting
for SS3.

As evident from the figures, the AR model can provide acceptable performance with
respect to average harvested power compared to ideal forecasting. Even at longer horizon
lengths the difference between perfect knowledge and estimation is small with only a
reduction in average harvested power of approximately 4%.
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4.3 Part Conclusion
It was found that for regular waves the MPC solution approaches the analytical optimal
solution as the sample frequency and horizon length goes towards infinity. This indicates
that MPC of the point absorber may provide optimal power extraction of the waves.
No significant improvement of the MPC was found past horizon length of approximately
4s, however the MPC sample time should be reduced as much as possible. To lower
the computational demand of the MPC, a truncated model for the MPC formulation
was found suitable if the damping coefficient is chosen appropriately. Simple losses were
imposed in the PTO system to investigate the significance with respect to harvested
energy. It was found that losses should be included in the MPC formulation to increase
the average harvested energy. A simple AR model was proposed for forecasting the
future excitation torque and it was shown. The AR forecasting may provide close to ideal
performance, with only a reduction in average harvested power of 4%.
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As explained in Section 1.1 the discrete displacement PTO system for the Wave Star WEC
is effectively a system with quantized inputs. So far the MPC has been formulated with the
assumption of the PTO system able of applying continuous forces on the point absorber.
In this chapter, a MPC scheme able of handling the discrete nature of the PTO system
is developed. Considerations regarding the control formulation is done, as well as the
formulation of cost functions including the losses described in Section 3.4. It is desired to
use the linear point absorber model in the MPC, why a suitable transformation from PTO
cylinder space to absorber space will be considered. The choice of cost function variable
is presented next, as the discrete displacement PTO system allows different formulations.

5.1 Cost Function Variable
The PTO force is obtained by connecting the cylinder chambers to either a low, medium,
or high pressure line through a manifold of nine DFCUs. The configuration allows different
system input formulations. Choosing the pressure level in each chamber as input, the
system is effectively a multiple input single output (MISO) system, where the inputs are
the pressure level in each chamber of the PTO cylinder. By formulating the MPC with
the MISO approach, the cost function variables would be the pressure level in each of the
three cylinder chambers.
A second approach is to formulate it as a SISO system with the PTO cylinder force as
input. Thus, the output of the MPC is a force belonging to the set of available forces.
An additional mapping from force level to required chamber pressures is thus required by
this choice of MPC formulation.
It is chosen to formulate the MPC using the SISO approach with the cost function variable
being an integer between 1 and 27 corresponding to a PTO cylinder force. The SISO
approach results in fewer design variables in the cost function formulation, as only one
variable is to be computed at each time step compared to three with the MISO approach.
However, it is not believed that any advantage is gained from this formulation as the
number of possible solutions at each time step remains the same for the two approaches.
The SISO approach is chosen for simplicity of the cost function formulation and easy
incorporation of estimated losses by lookup tables which will be utilised to decrease the
computational demand of the MPC cost function.

5.2 Absorber to Cylinder Space
So far, the MPC has been investigated in the point absorber space, computing the op-
timal PTO torque at each time step. It is desired to base the MPC on the linear point
absorber model, why a transformation from torque to cylinder force is required for the
MPC formulation. As shown in Section 3.1.2 the moment arm of the point absorber is
a nonlinear function of the cylinder stroke xc . As a simple MPC formulation is desired,
the relation is evaluated in the middle position of the PTO cylinder, yielding a constant
moment arm. The deviation of the approximation from the true value as function of the
cylinder stroke is shown in the figure below.
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From simulations it is seen that the cylinder stroke mostly operates within 0.5m to 1.5m.
With a cylinder stroke of 1.5m a deviation from the true moment arm is only 6.5% why
the approximation is regarded fair.

With a constant moment arm, a 1D lookup table containing the discrete PTO torques
available for the optimisation algorithm is formulated. The discrete PTO forces obtained
from shifting between the chamber pressures are calculated and sorted in ascending order
as shown in Figure 3.11 and converted to resulting torques by means of the constant
moment arm. The force level output from the MPC is then mapped to corresponding
valve signals by a mapping function as shown in Figure 5.3.

MPC
Valve 

Mapping

A
1

V1,signal

V9,signal

Flevel,ref Fpto

[1..27]

PTO dynamics

Figure 5.3: Force level reference to valve position mapping. Red dashed line indicates
force dynamics which are not included in the MPC formulation.

Formulating the MPC as shown in chapter 4, the PTO and valve dynamics are not
included in the MPC formulation. This imposes delays from the force reference computed
by the MPC to the actual force which is not explicit considered in the MPC formulation.
The delays are addressed in Section 5.3. In Figure 3.7, the kinematics describing the
transformation from absorber space to PTO cylinder is shown. The kinematics may be
linearised without large deviation as the relation shown in Figure 3.7 is almost linear,
why the relation is linearised for simplicity. . The transformation is thus approximated
with a maximum deviation of 2% from the true relation of Equation (3.12) as:

xc ≈
dxc

dθarm

∣∣∣∣
θarm=0

∆θarm + xc,0 = –kd2xθarm + xc,0 (5.1)
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5.3 MPC Sample Time
In this section, the sample time of the MPC is considered. At each force shift, the
PTO cylinder chamber pressures are controlled such that a constant pressure gradient is
obtained during a pressure shift. This is obtained by shaping the valve opening trajectories
as described in[7]. The valve opening trajectories impose delays from the force reference
computed by the MPC to the actual force applied by the PTO cylinder. The valve
opening trajectories are introduced to reduce pressure oscillation, why short delays in the
PTO force may be seen as a trade off to higher pressure oscillations. As the PTO force
delays are not explicitly accounted for in the MPC formulation, these are addressed in
the following.

5.3.1 Pressure Dynamics
To consider the delays a simple model from the pressure line to the cylinder chamber is
investigated. Considering a fixed volume and hose, the pressure dynamics in the volume
may be described as:

Qv

VC,pC
ps

Vl=LhAh

pl Ql

Figure 5.4: Model of a fixed volume
chamber and hose.

Qv = xv,eqnikv
√

ps – pl (5.2)

Q̇l =
(pl – pc) Ah

ρLh
(5.3)

ṗl =
β

Vl,0
(Qv – Ql) (5.4)

ṗc =
β

Vc,0
Ql (5.5)

The characteristics of the simple model are defined by the chamber volume, hose length
and diameter and the bulk modulus. Fast switching between the pressure lines results
in excitation of the system dynamics, why pressure oscillations may occur. To avoid
pressure oscillations, slower switching may be applied, however as mentioned this imposes
delays in the PTO force. Different switching times are tested on the model to test how
fast the switching may be chosen to obtain acceptable oscillations. The valve opening
trajectories are computed based on the shifting algorithm described in [7]. The simulations
are performed for a cylinder stroke of xc = 1m, fixed volume and a pressure shift from
100bar to 200bar. The simulation results are shown in Figure 5.5 and 5.6 for the pressure
shift performed in chamber one of the PTO cylinder, as this yields the highest pressure
oscillations due to the hose connected to this chamber is approximately four times longer
than the other hoses. As evident from the simulation of the simple fixed chamber model,
a faster switching results in higher pressure oscillations. From the simulations it may be
seen that smooth pressure transition without oscillations may be obtained by choosing
pressure development times of 150ms and 200ms. Slower switching may also be shown to
increase switching losses [7]. The pressure development time is chosen as a compromise
between force delay, pressure oscillations and switching losses. As the pressure shifting
is desired as fast as possible, a pressure development of 50ms is chosen, as this only
introduces small oscillations when shifting.
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Figure 5.6: Simulated chamber pres-
sure for a shift from 100bar to 200bar
for different valve opening trajectories.

From this it is may be concluded that a minimum switching time between each chamber
pressure shift must be formulated, to allow the PTO force to fully develop before the next
MPC sample, and must be considered when designing the MPC. A minimum switching
time between each force of 0.1s, corresponding to a MPC frequency of 10Hz. By this the
requested force from the MPC is obtainable within half of the minimum switching period.
The minimum switching time could be obtained by imposing a constraint in the MPC
formulation, or by choosing the sample time of the MPC to 0.1s. The second approach
is chosen. From Figure 4.15 it is seen, that a sample time of 0.1s may be chosen without
significant reduction in performance of the MPC. Given the complexity of the MPC cost
function, a MPC sample time of 0.1s may not be realisable. For this reason an upper limit
on the MPC sample time is formulated as well. Based on the MPC analysis performed in
Section 4.2 the maximum MPC sample time is chosen as 0.35s. Thus it is desired to run
the MPC with a sample time as close to 0.1s as possible, however if this is not possible a
maximum sample time of 0.35s is set as a requirement.

5.4 Cost Functions
In this section, four cost functions for the MPC is formulated. It is desired to evaluate
the harvested energy subject to different model complexities used in the MPC. The model
complexity will be expressed in the amount of losses included in the cost function. Com-
mon for the different cost functions is that they are minimised with no constraints on the
state variables for the reasons discussed in Section 4.1.1.

5.4.1 No Loss
Including no losses in the cost function corresponds to maximising the absorbed energy
of the point absorber over the time horizon of the MPC. Using the same approach as in
Section 4.1 the cost function that maximises the absorbed energy over the time horizon
is given as:

Min
τpto,v∈τavailable

(
Ts

[
τT

pto,vQτpto,v – fτpto,v

])
(5.6)

Where τavailable is the set of 27 PTO torques which may be applied by the PTO cylinder.
Q and f are derived in the same manner as in Section 4.1.
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5.4.2 Static Shifting Losses
A simple form of loss inclusion in the cost function is by adding an additional term in
the cost function approximating the force shifting losses in a lookup table. As shown
in Section 3.4 the shifting losses are a function of the chamber pressures and volumes.
To avoid having the MPC predicting the future chamber volumes, the shifting loss may
be approximated by a lookup table evaluated in a cylinder position xc,0. By summation
of the compression loss in each chamber according to Equation (3.39), the energy loss
associated with a single force shift is calculated as:

Eloss,β =
1

2
(p1,new – p1,old)2 V1 (xc,0)

β

+
1

2
(p2,new – p2,old)2 V2 (xc,0)

β
+

1

2
(p3,new – p3,old)2 V3 (xc,0)

β
(5.7)

As 27 different PTO forces may be produced, a 27x27 lookup table containing the com-
pression loss from every possible force shift is computed and is denoted Eloss,β(i , j ), where
i is the current force level and j is the new force level. The lookup table is computed
for a cylinder stroke of xc,0 = 1m. Due to the choice of cost function variable as an in-
teger between 1 and 27, the lookup table can be included without the need of additional
transformation. The cost function may thus be formulated as:

Min
τpto,v∈τavailable

(
Ts

[
τT

pto,vQτpto,v – fτpto,v

]
+

N∑
i=1

Eloss,β

(
τpto,v(i – 1 ), τpto,v(i)

))
(5.8)

Where τpto,v(0 ) is the force level from the previous iteration.

5.4.3 Static Shifting Losses and Throttling Loss
To include throttling losses in the cost function an additional term is added to Equation
(5.8) describing the throttling loss over the time horizon. The instantaneous power loss
from flow throttling is given in Equation (3.47), thus the cost function with throttling
losses may be written as:

Min
τpto,v∈τavailable

(
Ts

[
τT

pto,vQτpto,v – fτpto,v + (|yωkd2x|)
T Γ(|yωkd2x| ◦ |yωkd2x|)

]
+

N∑
i=1

Eloss,β

(
τpto,v(i – 1 ), τpto,v(i)

))
(5.9)

Where yω = Cωχk+ is the future predicted angular velocity of the float arm, Γ =∑3
i=1

A3
i

(nikv)2
is the throttling loss coefficient, ◦ denotes the component wise multiplica-

tion and kd2x is the linearisation coefficient computed from Equation (5.1) mapping the
predicted absorber angular velocities to predicted PTO cylinder velocities.

5.4.4 Complete Losses
A complete loss model is investigated to compare with the other cost functions. Both
the static and dynamic shifting loss and throttling loss are included based on future
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estimated states. Thus according to the losses elaborated in Section 3.4 the cost function
that maximises the harvested energy over the MPC time horizon may be formulated as:

Min
τpto,v∈τavailable

(
Ts

τT
pto,vQτpto,v – fτpto,v +

k+N∑
i=k

3∑
j =1

∣∣Aj vc(i)
∣∣3(

nj kv
)2


+

k+N∑
i=k

3∑
j =1

(1

2
(pj,new – pj,old)2 Vj (i)

β
+

1

2
(pj,new – pj,old)V̇j (i)Tp

+
13

70
(pj,new – pj,old)2 V̇j (i)

β
Tp
))

(5.10)

A drawback of the cost function including complete losses is that the future system states
has to be computed to calculate the complete loss. Compared to the cost functions
estimating the loss by a lookup table additional computations has to be done which
increases the computational time.

5.5 Optimisation Algorithm
After formulating the discrete MPC an optimisation algorithm capable of handling dis-
crete design variables is required. As the design variables of the optimisation are no
longer continuous, strictly gradient based optimisations algorithms can no longer be used
to solve the MPC problem. In order for real time implementation of the MPC to become
feasible, a fast and efficient optimisation algorithm needs to be incorporated in the MPC.
To choose a suitable optimisation algorithm, a comparison of two optimisation algorithms
able of handling discrete variables is done. The first algorithm is based on the Branch
and Bound principle. The second algorithm is a genetic algorithm called differential evo-
lution. Branch and Bound is a well known method for discrete optimisation but may
have certain drawbacks such as dealing with nonlinearities. Differential evolution is an
algorithm based on evolutionary principles which can handle complex problems such as
discrete optimisation problems. In section 5.3 it was found that the sample time of the
MPC should be chosen as close to 0.1s as possible but no larger than 0.35s. A requirement
for the optimisation algorithm is thus to converge to a solution within 0.35s. Ideally the
optimisation algorithm finds the optimal solution for all instances but this may not be
possible if the requirement for the computational time should be met. It may be necessary
to compromise with the consistency of the optimisation algorithm to obtain lower sample
time. In the following the comparison of the two algorithms are elaborated.

5.5.1 Optimisation Algorithm Evaluation
The performance of the optimisation algorithm will be based on the time spend to find
the optimum and how often the true optimum is found. For this purpose, a scenario
where the true optimum is known is established. Thus, if a problem formulation for the
optimisation is setup where true optimum is known, the optimisation algorithms may
be benchmarked against each other. The optimisation algorithms are benchmarked for
a scenario, where the time horizon for the MPC control is one second, and the sample
time is 0.1s. Thus, for the given scenario 10 design variables is to be found which should
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yield the maximum harvested energy during the given time span. The simplified point
absorber model described in Equation (4.23) is utilised for simplicity.

To further simplify the scenario, the PTO force is assumed to only take 9 discrete values,
evenly distributed between±420kN . This corresponds to a PTO torque evenly distributed
between ±1MNm when choosing a constant moment arm of 2 .4m. The simplified point
absorber model is subjected to an arbitrary chosen excitation torque generated with the

provided wave generator, and an initial condition of x0 =
[
0 0

]T
is chosen.

To find the combination of PTO torques which yields the maximum harvested energy, the
simplified model is simulated over 1 second subject to every possible combination of PTO
moments, where the PTO moment can take 9 discrete values, and may shift every 0.1
second. This gives in total 9 10 ≈ 3 .48 · 10 9 possible combinations, which is brute forced
in Matlab. The brute force routine was performed on a desktop PC with a i5 Intel core
CPU with a clock frequency of 3.4GHz and took approximately 37 hours and 13 minutes.
A diagram of the brute force routine is shown in Figure 5.7.

τpto

τext

Point absorber 
dynamics

Brute Force iteration

Post Proces

τpto

θarm

ωarm

Eabs

Ehar,1

Ehar,2

Ehar,3

Figure 5.7: Diagram of the performed brute force routine. Every combination of PTO
torques during 1s with a sampling period of 0.1s is simulated and post processed to find
combination of PTO torques which yields maximum energy harvested.

For the incoming excitation torque and each combination of PTO torques the point ab-
sorber position and velocity is saved for post-processing. The post-processing consist of
calculation of harvested energy. To compare different loss mechanism influence of the
optimal PTO torque trajectory, four different scenarios are compared. The four scenarios
are listed below including different losses in the PTO system.

� Eabs: No loss included, only absorbed energy

� Ehar,1: Static shifting loss included

� Ehar,2: Static and dynamic shifting loss included

� Ehar,3: Static and dynamic shifting loss and throttling loss

For the four scenarios the harvested energy is calculated based on the brute force solution
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as:

Eabs = Ts

Tsim
Ts∑

k=1

ωarm(k)τpto(k) (5.11)

Ehar,1 = Eabs –
2∑

n=1

Tsim
Ts∑

k=1

1

2
∆pn(k)2 Vn

β
(5.12)

Ehar,2 = Ehar,1 –
2∑

n=1

Tsim
Ts∑

k=1

(
1

2
∆pn(k)V̇nTp –

13

70
∆pn(k)2 V̇n

β
Tp

)
(5.13)

Ehar,3 = Ehar,2 –
2∑

n=1

Tsim
Ts∑

k=1

|Anvc(k)|3

(nnkv)2
(5.14)

Where Ts is the sample period chosen as 0.1s, Tsim is the simulation time chosen as 1s,
∆pn(k) is the pressure difference in the n’th chamber after each sample period. ∆pn

is computed from a lookup table with current and previous force levels as input for a
secondary controlled asymmetric cylinder configuration shown in Figure 1.3. Tp is the
pressure development time in the cylinder chambers, and is chosen to 50ms. An is the
piston area of the n’th chamber, nn is the number of valves used in the DFCU connected
to the n’th chamber, kv is the fitted valve gain of the valves used in the DFCUs and
vc(k) is the cylinder velocity at sample time k. The geometry and chamber volumes are
assumed equal to chamber one and two of the PTO cylinder of the test bench modelled
in Section 3.3.

The combinations of PTO torques is ranked against most harvested energy. In Figure 5.8
the three best solutions of PTO torques with respect to harvested energy is shown along
with point absorber velocity and excitation torque for each loss scenario.

From Figure 5.8 it may be seen that introducing losses yields fewer force shifts compared
to the case with no losses included.
Introducing the dynamic compression losses at each force shift according to Equation
(5.13), does not change the optimal PTO torque trajectory compared to the scenario
only including static shifting losses. The optimal solution for the case with throttling
losses included is seen to have a lower absorber velocity compared to the solutions of the
other scenarios. In Figure 5.9 the ten highest ranked scenarios which yielded the most
harvested energy are shown. The harvested energy for the four different loss scenarios
are normalised to the maximum absorbed energy for easier comparison. From the figure
it is evident that when no losses is included, the difference in harvested energy for the
ten best trajectories is relatively low. This may suggest that finding the best solution
when no losses are included are of less importance due to the relatively low difference
in the ten best solution. Finding the best solution when losses are included in the cost
function is shown to be important, as the difference between the ten best solution are
larger compared to no losses.
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Figure 5.8: PTO torque trajectories which yields the three highest amounts of harvested
energy for the four different loss scenarios.
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Figure 5.9: Ten highest normalised harvested energy for the four different loss scenar-
ios.
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As the ten best PTO torque trajectories for different loss scenarios are known, the opti-
misation algorithms may be tested to investigate if the optimum is found, how often it is
found, and the time to find the optimum.

5.5.2 Comparison of Optimization Algorithm Performance
Two optimization algorithms suited for discrete variables are compared. The first is
an optimization algorithm based on Branch & Bound (BnB), the other is a Differential
Evolution (DE) which is a genetic algorithm. The BnB algorithm is a modified version
of the BNB20 algorithm accessible from the Mathworks file exchange library[25]. The
BNB20 algorithm solves a mixed integer problem by first solving the relaxed problem,
then searching for the optimal solution by estimating upper and lower bounds of the
optimal solution and then enumerating candidate solutions between the bounds. DE
is based on a ”survival of the fittest” approach, where an initial population is evolved
through generations.

It is desired to test the optimization algorithms’ sensitivity to the initial guess of the
PTO torques for the optimization problem, why the initial guess is chosen randomly. An
optimization problem is set up for the same scenario as the brute force scenario, and the
four different loss scenarios are included as well. For all loss scenarios the static shifting
loss described in equation 5.12 is estimated by a lookup table where the shifting loss is
calculated for a cylinder stroke of xc = 1 .

The optimization may be seen equivalent to a MPC calculation at t = 0 with perfect
knowledge of the future excitation torque. As in the brute force scenario, the PTO
torque may shift every 0.1s, hence the model of Equation (4.23) is discretized with a zero
order hold with a sample period of 0.1s.
The optimization problem is then solved with BnB and DE respectively. To test the
performance, the problem is solved 1000 times, with a random generated initial guess for
each iteration. The performance of the two algorithms are summarized in Table 5.1. The
performance test is performed on a laptop PC with an i7 2.70GHz processor. The time
to solve the optimization problem is obviously depended on the hardware used to solve
the problem, why the time shown in the table should be reviewed relative to each other.

Algorithm # Best found # 2nd best found Average Time Max Time

Branch & Bound
Eabs 1000 0 0.627s 1.876s
Ehar ,1 803 9 0.711s 2.161s

Ehar ,2 724 9 0.681s 2.215s

Ehar ,3 787 10 0.776s 2.310s

Differential Evolution
Eabs 1000 0 0.146s 0.210s
Ehar ,1 994 0 0.286s 0.695s

Ehar ,2 929 0 0.627s 1.029s

Ehar ,3 941 0 0.648s 0.996s

Table 5.1: Comparison of the two optimization algorithms.

Based on the results shown in Table 5.1 it is concluded that the DE algorithm performs
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better than the BnB algorithm. The lowest success rate of the DE is 92.9% compared
to the lowest success rate of the BnB algorithm which is 72.4%. A reason for the low
success rate for BnB may be the discontinuities introduced by the lookup table for the
static shifting loss. Inconsistency in the BnB algorithm is expected with lookup tables,
since a gradient based search algorithm is used to solve the relaxed problem. The relaxed
solution found by the gradient based optimization algorithm is dependent of the initial
guess why the optimal solution is not found at all times. This may also indicate that BnB
is not suited for solving the optimisation problem when introducing losses by a lookup
table.

The most crucial parameter for the performance is the time to find the optimum, as
the optimization algorithms are to be implemented in an online MPC scheme. The DE
algorithm also outperforms the BnB algorithm on this parameter for the cases where the
objective function are Eabs and Ehar,1. The high success rate of the DE algorithms also
suggest that it is not as sensitive to initial guess as the BnB algorithm. A drawback
for both algorithms is that the optimal solution cannot be guaranteed. The brute force
analysis indicates that multiple solutions are close to the optimal solution. Due to this it
may not be necessary to find the actual optimum and may be sufficient to find one of the
best solutions as long as the first control input is the same, as this is the actual applied
control input. The benchmark of the optimisation algorithms suggests however that DE
is capable of finding the optimal solution 92.9% of the time in the worst case scenario,
which may indicate that DE is suitable for the MPC algorithm. Further it may be seen
that the cost functions with no loss or loss included as a lookup table is significant faster
to solve compared to the cost functions with calculated loss. This may indicate that losses
should be included by lookup tables to minimise the computational time. DE is chosen
as optimisation algorithm and will be used in the MPC for the remaining thesis. The
convergence time of the DE algorithm is considered next subject to the horizon length.

5.6 Convergence time
The sensitivity of the DE algorithm with respect to the horizon length is addressed. As
the DE is not based on gradient based search direction, the convergence time of the
DE algorithm is expected to increase exponentially with the horizon length N, as the
solution space increases with F N

n , where Fn is the number of force levels. To test the
significance of the horizon length the DE is solved with different horizon lengths for the
same scenario as the brute force scenario. In the scenario only static shifting loss is
included by a lookup table. Thus, the MPC is solved with a time horizon of 1s, and 9
force levels available, but with different sample times to increase the number of design
variables for the optimization algorithm. The true optimum for other sample times is
unknown, however the DE algorithm is tuned in terms of number of population members
until a solution that resembles the solution with a sample time of 0.1s is found. In Figure
5.10 the solutions found with different horizon lengths is shown, and the corresponding
convergence times are shown in Table 5.2. For each horizon length, the number of members
in each population is increased to ensure that the DE does not converge prematurely.
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Figure 5.10: Solution of DE subject to dif-
ferent horizon lengths N .

Horizon Convergence Time

N = 10 T = 0 .31s
N = 15 T = 9 .48s
N = 20 T = 107s
N = 25 T = 1473s

Table 5.2: Convergence time for
DE for multiple horizon lengths.

As evident the convergence time increase significantly with the horizon length N . From
this it may not be practically possible to run the MPC with a horizon length above
N = 10 , if the requirement of a maximum sample time 0.35s should be fulfilled.
Modifications of the DE is done to optimise its performance. The standard differential
evolution algorithm used is presented in the next section, to allow clarification of what
modifications is done to the algorithm to obtain faster convergence time.

5.7 Differential Evolution Algorithm
Differential evolution is an evolutionary algorithm capable of performing global optimi-
sation of non differentiable objective functions. DE was first developed in [26].

Xr2

Xr3

Xnew

Xr1

Xr2-Xr3

F(Xr2-Xr3)

x1

x2
Solution 

Space

Figure 5.11: Illustration of the procedure for a basic variant of differential evolution.

The general idea is to generate a population of candidate solutions called members and
then relocate the members in the solution space by generating new members from existing
members by mutation. In Figure 5.11 the generation of a new member is illustrated. The
new member is found from the function shown in the equation below:
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Xnew = Xr1 + F · (Xr2 – Xr3) (5.15)

Where Xr1, Xr2 and Xr3 are randomly selected members of the original generation and
F is a mutation factor. After generating a new candidate population from the current
population a selection of the best members are made to create the final new population.
The population is then iterated through generations until a stop criteria is met and the
best solution of the final generation is selected as the solution. The procedure can be
stated by four steps listed below:

Step 1 - Initialisation:
A population of NP designs is generated as shown below by generating a random integer
for each design variable, xj, where N is the horizon length:

Xi =
[
xj xj +1 · · · xN

]
∀ i = 1 , 2 , ..., NP (5.16)

Step 2 - Mutation:
NP number of trial designs are generated from three randomly selected designs from the
current population, as shown below:

Xnew = Xr1 + F (Xr2 – Xr3) (5.17)

Where F is a mutation coefficient.
Step 3 - Crossover:
Individual elements of the new solution may be taken directly from the previous as:

if ri ,j > CR, Xnew,i ,j = Xi ,j ∀i = 1 , 2 , ...NP j = 1 , 2 ...N (5.18)

Where ri ,j is a random number between 0 and 1 and CR is a crossover coefficient.
Step 4 - Selection:
Designs are chosen for the new population by comparing the trial generation with the
current generation as shown below.

if f (Xi ) > f (Xnew,i ), Xi = Xnew,i ∀i = 1 , 2 , ..., NP (5.19)

Step 2-4 are then repeated until the convergence criteria is met and the algorithm termi-
nates and the best design is then chosen as the final solution. Typically the stop criteria is
based on the variance of the population. The different steps may all influence convergence
time and the solution and each step may be changed to fit the problem.

5.8 Differential Evolution Modification
To reduce the computational time of the DE some modifications are done. The modifica-
tion is done in the mutation step of the algorithm. Five different mutation methods were
tried but one including the current best solution of the population performed best com-
pared on computational time. This modification of the differential evolution algorithm is
developed in [27], and differs from the original in the mutation step, which is carried out
as shown below:

Xnew = Xr1 + F (Xbest – Xr1) + F (Xr2 – Xr3) (5.20)

Where Xbest is the best solution of the current population, with respect to the cost
function evaluation. All the remaining steps are similar to the original algorithm. To
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see the effect of this modification a simulation comparing the original and the modified
algorithm is done. As for the benchmark the algorithms are compared on how often the
optimal solution is found and the computational time which is shown in Table 5.3. The
comparison is performed for the same scenario as the benchmark scenarios as elaborated
in Section 5.5.2. The comparison is only shown for the loss scenario, including static
shifting loss, shown in Equation (5.12) but the same trends where seen for the other loss
scenarios.

Algorithm # Best found # 2nd best found Average Time Max Time

Branch & Bound
DEoriginal 999 0 0.252s 0.367s

DEmodified 998 0 0.166s 0.238s

Table 5.3: Comparison of the original DE and the modified DE algorithm.

As shown the modified DE algorithm is significantly faster compared to the original. For
the given example the average time to find the optimum is decreased with approximately
34%. The faster convergence is obtained without compromising with the consistency, as
the optimum is found 99.8% of the time. Based on this the modified DE is chosen as the
optimisation algorithm.

To further decrease the computational time a ”warm start” may be used in the initialisa-
tion of the population. The warm start procedure is based on starting the optimisation
algorithm in a point close to the solution from the previous sample instant. The warm
start may cause the optimisation algorithm to converge faster under the assumption that
the new solution is in the neighbourhood of the previous solution. The initial population
is slightly perturbed from the previous solution as shown below:

Xi = XPreviousSolution + Xrandom ∀ i = 1 , 2 , ..., NP (5.21)

Where XPreviousSolution is the previous solution and Xrandom is a vector with random
generated integers from -1 to 1. To analyse the effect of the warm start the model is used
to simulate the system for sea state 1 with and without the warm start. The sample time
is chosen as 0.2s with a time horizon of 2s, and the objective function for the optimisation
algorithm is only including static shifting loss. A histogram of the computational time of
the optimisation algorithm are shown in Figure 5.12 for both warm and normal start.
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Figure 5.12: Histogram of the computational time with and without warm start with
groups of 2ms.

As it may be seen the warm start decreases the computational time for the majority
of the iterations. A significant reduction in maximum time for the DE to converge is
seen. For the example given in Figure 5.12 an average convergence time of 0.304s for the
”normal start” obtained, and 0.112s for the ”warm start”. The warm start procedure is
also seen to be more consistent in convergence time. The average power harvested for the
two simulations where found approximately equal. The simulations may indicate that the
warm start does not compromise with average harvested power while being significant
faster, why the warm start is utilised.
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6 | MPC Simulation Evaluation

The performance of the MPC in Chapter 5 will be evaluated subject to different time
horizons and cost functions. Initially a performance evaluation of the MPC based on the
simulation model is desired. This is done to verify the preliminary results obtained in
Chapter 4 based on the continuous MPC. For the simulations a MPC sample time of
0.2s is chosen to compare the simulations with measurements as 0.2s was found realisable
for implementation. Using the model for simulation allows for investigation of increased
horizon length, as limitations regarding the computational time is not a concern in the
simulation model. The MPC performance is based on the point absorber model. A
diagram showing the evaluation procedure is shown in the figure below. To verify the
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Figure 6.1: Diagram showing the MPC evaluation procedure.

developed MPC schemes, the model is simulated for test wave 3 given in Table 6.1 for the
four different cost functions given in Section 5.4. The MPC is simulated with a horizon
length of 10 and with the assumption of ideal wave forecasting. The simulation results
are shown in Figure 6.2, where the piston velocity and PTO force for the four different
cost functions are shown. From the figure it is evident that introducing force shifting
losses to the MPC cost functions significantly reduces the amount of force shifts. The
MPC with losses included in the cost function is seen to only utilise 4-6 force steps when
going from the minimum PTO force to maximum force. This may indicate that a system
design with fewer force levels may be utilised without compromising with the performance.
However, this is not addressed in this thesis. A slight difference between the PTO force
trajectories are seen for the three MPC formulation with losses included. As elaborated
in the following sections, the cost functions with more losses performs better with respect
to harvested energy, with the drawback of higher computational demand.

In the following section the MPC performance is evaluated based on average harvested
power in different sea states. The harvested energy for a given simulation is calculated
as:

Ehar = Eabs – Eloss,β – Eloss,t =
∫Tsim

t0
vc(t)FPTO(t)dt –

∑nshifts
i=1 Eloss,β,i –

∫Tsim
t0

Ploss,t(t)dt (6.1)

The average harvested power is calculated as Phar,avg = Ehar
Tsim

. Tsim is the time length of
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Figure 6.2: Visual example of PTO force trajectories for: (1) No loss Eq. (5.6), (2)
Lookup Eq. (5.8), (3) Lookup and throttle Eq. (5.9), (4) Complete loss Eq. (5.10).
Ts = 0 .2s, N = 10 .

the simulation, Eloss,β is the shifting loss and Ploss,t is the throttling loss. The shifting
losses and the throttling losses are calculated according to Equation (3.45) and (3.47)
respectively.

6.1 Model Complexity and Time Horizon
To investigate the harvested energy subject to different cost functions, simulations with
the four different cost functions described in Chapter 5 are performed for five different
sea states. The parameters for the sea states used in the simulations are shown in Table
6.1.

Wave 1 2 3 4 5

Hm 0.75m 1m 1.25m 1.75m 2.25m
Twp 3.5s 4.5s 4.5s 5.5s 5.5s

Table 6.1: Test waves parameters.

This analysis should indicate how the average harvested power is affected by the model
complexity and the time horizon of the MPC scheme. In Figure 6.3 the average harvested
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power is shown for simulations of approximately 100 wave periods for the different test
waves given in Table 6.1 and the four different cost functions described in Chapter 5. For
the simulations shown in Figure 6.3 a constant time horizon of 4s is chosen such only the
influence of the MPC cost function is obtained.
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Figure 6.3: Average harvested power for different cost functions and different ocean
waves with N = 20 and Ts = 0 .2s.

As evident from the figure the average harvested power increases with the complexity of
the MPC cost function. Imposing losses in the PTO transmission according to Equation
(3.45) and (3.47) it is evident that including these in the MPC formulation results in
higher energy output. This shows that if the actual losses in the PTO is modelled ap-
propriately, the MPC scheme allows to include these for better performance. The cost
function including shifting loss computed from estimated cylinder states further increased
the average harvested power as cheaper force shifts may be taken at cylinder strokes with
lower chamber volumes.

The MPC is evaluated for different values of N to obtain the horizon length at which the
average harvested power saturates. In Figure 6.4 the average harvested power is shown
for the cost function only including static loss by a lookup table. As evident from the
simulations the average harvested power does not increase beyond a time horizon of 4
seconds. The same trend were also seen for the continuous MPC in Chapter 4. This
shows that it is unnecessary to increase the time horizon beyond 4 seconds as this only
complicates the optimisation problem in terms of additional design variables.

6.2 Evaluation of MPC Computational Time
As the computational time may be a main issue for discrete MPC it is analysed how
the computational time is affected by the complexity of the cost function and the time
horizon. This is shown in Figure 6.5 where the average computational time for different
cost functions and increasing time horizon is shown. All simulations are done for test
wave number four.
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Figure 6.4: Average harvested power for different ocean waves and different time hori-
zon with Ts = 0 .2s.
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Figure 6.5: Average computational time of MPC for different cost functions and dif-
ferent time horizon. (1) No loss Eq. (5.6), (2) Lookup Eq. (5.8), (3) Lookup and throttle
Eq. (5.9), (4) Complete loss Eq. (5.10).

The computational time increases significantly as more losses are included in the cost func-
tion. A reduction in computation time compared to the original DE algorihm is obtained.
Table 5.2 shows a convergence time of approximately 1400s with a horizon length of 25 for
the original DE algorithm. The difference may be due to modifications of the algorithm,
and the utilised warm start procedure. The results indicates that losses estimated from
computed states as stated in Equation (5.10) may be impractical to implement due to
the computational demand. Further high horizon lengths may be difficult to implement
if losses are to be included. The computational times shown is for a MATLAB function
and not a final implemented algorithm. The computational time should therefore only be
seen relatively to each other.
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6.3 Part Conclusion
It is shown that if losses are modelled appropriately these may be included in the MPC
formulation to obtain increased performance. Increasing the amount of losses in the
cost function also increases the computational time of the MPC, potentially making it
impractical for real time implementation. Further it may be seen that the time horizon
of the MPC influences the amount of harvested power, however the average harvested
power does not increase beyond a time horizon of approximately 4 seconds. For real time
implementation a compromise between model complexity, time horizon and computational
time has to be made.
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7 | Experimental Evaluation

The implementation of the developed MPC scheme is performed on the test bench de-
scribed in Section 1.1.3. The control of the test bench, data logging etc. is performed on
a LabVIEW Real-Time target(RT target) as shown in Figure 7.1. The RT target com-
municates with a host PC from which a HMI displays relevant states of the test bench in
real time. In Appendix B the implementation of the MPC in LabVIEW is elaborated.

Wave 
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PTO 
Cylinder

pBpA

pA3pA2pA1

Test BenchLabVIEW RT Target

Force Level 
Reference Valve Signals

Measurements

Future 
Wave

5 Hz 1000 Hz

System ControlMPC

Figure 7.1: Overview of the control of the test bench.

The RT target executes the control of the PTO and wave system with 1000Hz. The
frequency of the MPC is chosen dependent of which cost function that is used and will
be addressed later in this chapter. The MPC sets up the optimisation problem after each
sample instance of the MPC, based on the point absorber model and the future excitation
torque and executes the DE algorithm to generate the force level reference for the PTO
system.

The MPC is formulated such the solution for the PTO force is assumed to be applied
at time k = t , thus not considering the delay in the applied PTO force reference due to
computational time. To visualise the delay of Fpto,ref a timeline of the MPC execution is
shown in Figure 7.2.
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applied
DE

startτext,v
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Computational 
delay

x(k+1)
sampled

...

Figure 7.2: Timeline of the MPC execution as implemented.

At time t the cylinder position and velocity is sampled and converted into equivalent
point absorber coordinates. The wave forecasting described in Section 4.2.5 is executed
to generate the future excitation torque, τext,v, used in the MPC cost function. If wave
forecasting is disabled τext,v is taken from the known excitation torque. The optimisation
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problem is then initialised by generating f, as shown in Equation (4.15), of the cost
function. After formulating the optimisation problem the DE algorithm is executed.
This implies that the force reference is delayed by the computational time as shown
in Figure 7.2. The execution time of the wave forecasting and the formulation of the
optimisation problem is seen to be insignificant compared to the computational time of the
DE algorithm. Due to the stochastic behaviour of the DE algorithm the computational
time may vary and may even exceed the sample time Ts. If the computational time
exceeds the sample time, Ts, the next MPC execution is skipped, why it is desired to
avoid computational times above the sample time. To account for this a restriction of
allowed generations of the DE algorithm is utilised to ensure that the DE algorithm
finishes before the next sample instant. . This may affect the solution of the optimisation
problem as the DE algorithm is not allowed to converge for all instants.

Simulation including a fixed delay in the applied PTO force reference has shown that
the influence with respect the harvested power is insignificant. The computational delay
is thus assumed neglectable for the tests why the implementation of the MPC scheme
is considered appropriate. However some effort has been put into formulating the MPC
to compute the next force reference instead of the current, such the delays of the DE
execution may be handled. The alternative approach of executing the MPC scheme
addressing the computational delay is considered in Appendix B.1.1 but is not evaluated
experimentally.

The MPC code is partly implemented as LabVIEW code and as custom defined shared
libraries which allows to execute the developed DE algorithm on the RT targets. The DE
code implementation is elaborated in the following section.

7.1 DE Code Implementation
The DE algorithm is implemented by creating a shared library which may be executed
on the RT target. This is done by translating the MATLAB code into C code by the
MATLAB application ”MATLAB Coder”. The C code is used to generate a shared library
with the software package ”LabWindows CVI” from National Instruments. ”LabWindows
CVI” is used to ensure that the generated shared library is compatible with the RT target.

MATLAB Coder LabWindows CVI RT Target

MATLAB 
Script

C Code
Shared 
Library

Figure 7.3: Overview of the generation of shared library.

For the cost function with static shifting loss, given in Equation (5.8), approximated by
look up table and with a horizon length of N = 10 , the DE algorithm was able to converge
with an average of approximately 50ms, why it is chosen to run the MPC with this cost
function with a sample time of 0.2s.
For the cost function with throttling losses included, given in Equation (5.9), and with
a horizon length of N = 10 , the DE algorithm was able to converge with an average of
approximately 150ms, why it is chosen to run the MPC with this cost function with a
sample time of 0.3s.
It was not able to obtain convergence time within the requirement of 0.35s for the MPC
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with the cost function computing the complete losses given in Equation (5.10). For this
reason the cost function is omitted in the experimental evaluation of the MPC. The
MATLAB script for the implemented DE algorithm is given in Appendix B.2. In the
following the implemented MPC will be evaluated on the test bench.

7.2 Evaluation
The developed MPC is to be evaluated and compared with the reactive control scheme.
The control parameters for the reactive control is optimised for each sea state with respect
to maximum harvested power. The average absorbed power and average harvested power
of a given test is calculated based on flow and pressure measurements in the PTO valve
manifold according to the method elaborated in Section 3.5.2.
Initially the consistency of the test results is analysed to indicate how the harvested power
is varying from each test.

7.2.1 Measurement Consistency
To analyse the consistency of the test results, ten measurements are conducted under the
same conditions. The tests are conducted for a MPC including static shifting loss and
throttle loss in the cost function, and with a sample time of 0.3 and a time horizon 3s. Test
wave 3 from Table 6.1 is utilised for the tests. Each test is performed for approximately
500s. The average harvested power for each test is shown in Figure 7.4 along with the
average for the ten tests.

1 2 3 4 5 6 7 8 9 10

8.9

9

9.1

9.2

9.3

Measurement

Mean Value

Deviation From Mean

Figure 7.4: Five measurements conducted under the same conditions.

The maximum deviation from the average value is 0.22kW, however the 7’th test is seen
to deviate significantly more than the others. Based on the result shown in Figure 7.4 it
is concluded that one test for each wave is sufficient for evaluation.

First the MPC is evaluated with loss and no loss in the cost function. The performance
is evaluated with respect to harvested energy and efficiency.

7.2.2 Comparison of Loss and no Loss Formulation
To investigate the effect of including losses in the cost function a test comparing the MPC
with and without losses is performed. This is done to indicate whether losses should be
included in the MPC cost function. The cost functions given in Equation (5.6) and (5.8)
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are used. The comparison is performed for the same test wave of approximately 500
seconds. The measured average absorbed power and harvested power for the two tests
are shown in Table 7.1.

MPC type Pabs,avg[kW ] Phar,avg[kW ] η

MPC without losses in cost 8.73 1.20 0.14
MPC with losses in cost 6.16 4.44 0.72

Table 7.1: Comparison of the MPC performance with and without losses in the cost
function.

As evident from the table, a higher average harvested power is obtained by including the
static shifting losses in the cost function. The absorbed power is higher for MPC without
losses included but the low efficiency results in less harvested power. It may be concluded
that losses should be included in the MPC formulation to increase the average harvested
power. The low efficiency of the MPC without losses included is caused by more frequently
and energy expensive force shifts. In Figure 7.5 and 7.6 a comparison of the MPC with
loss and without loss is shown. As evident from the MPC including static shifting losses
in the cost function, the force is always shifted with use of the medium pressure line. The
MPC without shifting losses is seen to not always make use of the medium pressure line
when shifting chamber pressure, and are often shifting multiple chambers simultaneously.

105 110 115 120 125
-500

-250

0

250

500

v
c
[mm/s]

F
PTO

[kN]

105 110 115 120 125
0

100

200

[b
a
r]

p
1

p
2

p
3

105 110 115 120 125
600

800

1000

1200

1400

[m
m

]

x
c

x
c,ref

Figure 7.5: MPC with sample time of 0.2s and horizon length of N=10, with no losses
in cost and ideal wave forecasting.
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Figure 7.6: MPC with sample time of 0.2s and horizon length of N=10, with static
shifting losses in cost and ideal wave forecasting.

It is seen that the wave cylinder control yields good tracking performance, why the PTO
cylinder is subjected to motion equal to the Wave Star point absorber. To evaluate the
execution of the MPC the computational time is logged. A histogram of the execution
time of the two tests are shown in the Figure 7.7.
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Figure 7.7: Computation time of MPC for the cases shown in Figure 7.5 and 7.6
respectively.

From Figure 7.7 it is evident that the MPC without losses is significantly faster than the
MPC with losses. This imposes that the computational delay is reduced compared to the
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MPC with losses. The tests have shown that the fast execution of the MPC without losses
does not compensate for the lower amount of harvested power, caused by not penalising
energy expensive force shifts in the cost function. As a consequence it is chosen only to
evaluate MPC schemes including loss in the following.

7.2.3 Comparison of MPC and Reactive Control
Both reactive control and MPC will be evaluated subjected to several waves series, to
investigate the performance for different test waves. Five different waves are used in the
performance evaluation, with the wave parameters given in Table 7.2.

Wave 1 2 3 4 5

Hm[m] 0.75 1 1.25 1.75 2.25

Twp[s] 3.5 4.5 4.5 5.5 5.5

kpto

[
N
m

]
–8.8 · 105 –8.8 · 105 –1.1 · 106 –1.1 · 106 –1.1 · 106

Bpto

[
Ns
m

]
5 · 105 5 · 105 8.8 · 105 1.4 · 106 1.6 · 106

Table 7.2: Test waves parameters and reactive control parameters used for each test
wave.

The reactive control parameters used in the evaluation are optimised for each test wave
with respect to average harvested power. The reactive controller is used along with the
force shift algorithm explained in Section 1.2.
For the following comparison ideal wave forecasting is assumed for the MPC. To give
a visual comparison of the reactive controller and the MPC, the cylinder velocities and
PTO force along with instantaneous absorbed power for test wave 4 are shown in Figure
7.8. Here a time horizon of 3s and a sample period of 0.3s is chosen for the MPC only
including shifting loss.
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Figure 7.8: Comparison of reactive controller optimised to test wave 4, and MPC with
Ts = 0 .3s and N = 10 .

From the measurements it is evident that the MPC imposes more reactive power in the
PTO transmission. In addition it may be seen that the instantaneous absorbed peak
power is significantly higher for the MPC. As a consequence the MPC generally imposes
higher cylinder piston velocities for the same test wave. The PTO system of the Wave Star
WEC is designed to utilize intermediate energy storage by use of hydraulic accumulators
between the primary and secondary stage of the PTO system. Thus, the high fluctuating
power absorption of the MPC is not of concern, as the intermediate energy storage allows
the hydraulic motor to operate at optimal operating conditions[22]. The higher amount of
reactive power and cylinder piston velocity with the MPC may suggest that more power is
dissipated in the PTO system. The possible fatigue associated with this is not addressed
in this thesis, however just noted as an observation.

For the evaluation of the MPC, different parameters and cost functions of the MPC is
tested. A MPC with horizon length of N = 5 is included to emphasise the significance
of increasing N . The following configurations of the MPC are shown:

� MPC1: Ts = 0 .2s, N = 5 , Static shifting loss: Equation (5.8).

� MPC2: Ts = 0 .2s, N = 10 , Static shifting loss: Equation (5.8).
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� MPC3: Ts = 0 .3s, N = 10 , Static shifting loss: Equation (5.8).

� MPC4: Ts = 0 .3s, N = 10 , Static shifting loss and throttle loss: Equation (5.9).

For the different test waves and control schemes the absorbed power, harvested power
and efficiency is shown in Figure 7.9, 7.10 and 7.11 respectively.
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Figure 7.9: Average absorbed power for different control schemes and wave series.
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Figure 7.10: Average harvested power for different control schemes and wave series.

As evident the MPC with a sample time of 0.2s and a time horizon of 1s harvests signifi-
cantly less power compared to the remaining control schemes. This indicates that MPC
should have a certain time horizon to perform sufficient compared to the reactive control
scheme. Further it may be seen that MPC with a sample time of 0.3s and a time horizon
of 3s performs slightly better compared to MPC with a sample time of 0.2s and a time
horizon of 2s. From this it may be seen that the additional second in the time horizon
is more significant than the increased sample time. It is expected that the influence of
increasing the time horizon to 4s would increase the average harvested power. Thus if
more computational power is available, simulations shows that the performance of the
MPC may be increased. Figure 7.10 shows that the MPC scheme including throttling
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Figure 7.11: Efficiency for different control schemes and wave series.

losses, with a sample time of 0.3s and a horizon length of 10 was able of increasing the
average harvested power of 14% to 25% for 4 out 5 tested waves, compared to the reac-
tive control scheme. The results indicate that MPC is a suitable control topology for a
discrete displacement hydraulic power take-off system. In Appendix C the exact values
of the measurements shown in Figure 7.9, 7.10 and 7.11 are given.

In general the MPC schemes performs better than reactive control, with respect to har-
vested power, when having a sufficient time horizon. For the smallest test wave the
reactive control scheme performs better with respect to harvested power. Without defi-
nite conclusions one potential reason for the poor performance of the MPC for the small
wave series is discussed. The explanation comes from practical observations during test-
ing. The MPC was seen to “get stuck” in a force level, and due to a relative short time
horizon the energy cost of shifting to a new force level may be too high compared to the
harvested power over the time horizon. For this reason the MPC was seen to give the
same force reference for 10-15 seconds during testing. An example of this is shown in the
figure below. Here the MPC sample time is 0.2s, and the horizon length is 10 for test
wave 1.
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Figure 7.12: MPC with Ts = 0 .2s, N = 10 for test wave 1. An example of MPC
getting ”stuck” in a force level.

To overcome this problem it is suggested that the pressure levels in the high and medium
line is lowered in small sea states to allow less expensive force shifts to be made.

In general the reactive control scheme has higher efficiency. Even though the harvested
power is higher for the MPC, the lower efficiency may indicate higher fatigue in the PTO
transmission as more energy is dissipated in the process. It has further been shown that
discrete MPC may be implemented for a discrete displacement fluid power PTO system
and increase the average harvested power for most test waves compared to the reactive
control scheme.

7.3 MPC with Wave Forecasting
To investigate how the wave estimation described in Section 4.2.5 affects the harvested
power, tests are conducted with and without wave excitation torque forecasting. The order
of the AR model used for wave forecasting is chosen to 40, thus the wave forecasting is
depended on the 40 previous estimates of the wave excitation torque. As no samples are
available at the beginning, the first 40 MPC iterations are performed with ideal wave
forecasting for the comparison. Both strategies are tested with the MPC including static
loss and throttling loss in the cost function and with a sample time of 0.3s and a horizon
length of N = 10 . The tests are conducted for the five test waves shown in Table 6.1.
In Figure 7.13 the average harvested power for each test wave with and without wave
estimation is shown.
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Figure 7.13: Average harvested power with and without wave estimation for MPC with
static shifting loss and throttling losses, Ts=0.3s and N=10.

As shown in the figure the MPC using the forecasted excitation torque performs slightly
worse than the MPC using the ideal future torque. The reduction is between 0.27kW and
0.62kW in average harvested power for the five test waves. For test wave 2-5 the MPC
using forecasting has a higher average harvested power compared to the reactive control
scheme.

The results may indicate that the future torque applied by the wave can be estimated
sufficiently without compromising significantly on the performance. For the tests, ideal
wave excitation torque estimation is assumed, why the excitation torque used in the
forecasting is directly fetched from the input torque given to the point absorber model
computing the position and velocity reference for the wave cylinder piston.

7.4 Part Conclusion
In this chapter it has been shown that MPC for a discrete fluid power system may be
implemented in real time and increase the average harvested power compared to a reactive
control scheme. Further it has been shown that losses should be included in the MPC to
increase the amount of harvested power for the majority of the tested waves. The reactive
control was found to yield higher average harvested power for the smallest test wave. It
may complicate the MPC to include complex loss calculations and it has not been possible
to include more than static shifting loss and throttling loss for the implementation. In
general more reactive power is imposed in the PTO system compared to the reactive
control scheme. This resulted in higher average harvested power, however with lower
PTO transmission efficiency. This may result in higher fatigue of the PTO system but
this is not addressed in this thesis. Forecasting of the excitation torque is possible and
have been implemented assuming ideal estimation of the excitation torque. Using the
proposed forecasting scheme resulted in a reduction between 0.27kW and 0.62kW in
average harvested power.
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8 | Conclusion

In this thesis, a model predictive control scheme has been developed for a discrete dis-
placement hydraulic power take-off system. A case study of the Wave Star wave energy
converter was taken. The main objective for the thesis has been to investigate if a model
predictive control scheme may be formulated and implemented in real time for a discrete
displacement hydraulic power take-off system. A second objective has been to investigate
if a model predictive control scheme may increase the performance of the power take-off
system compared to the previous used reactive control scheme.

A MPC has been formulated based on a linear point absorber model of the Wave Star
WEC. The optimisation of the MPC was formulated as an energy maximisation prob-
lem over a finite time horizon including losses of the PTO system in the cost function.
Two different optimisation algorithms were tested and a modified differential evolution
algorithm was chosen as the solver over a Branch and Bound inspired algorithm.

Four cost functions including different combinations of force shifting- and flow throttling
losses were formulated. Simulations showed that the energy harvested from the waves
may be improved by increasing the amount of losses included in the MPC cost function.
Increasing the time horizon of the MPC was also seen to increase the harvested energy,
however no significant improvement beyond a time horizon of 4 seconds was seen. The
increase of losses and horizon length comes with an increased computational demand,
why a compromise should be chosen to allow real time implementation.

The developed MPC scheme was implemented on a LabVIEW RT target and tested on
the Wave Star PTO test bench. Three out of the four cost functions evaluated in the
simulations were found possible to execute within the required maximum time limit of
0.35s. A cost function maximising the absorbed power over the time horizon including
no losses were found to yield bad performance, why it was concluded that losses must be
included in the cost function to obtain acceptable efficiency of the PTO transmission. A
cost function with the energy loss associated with force shifting approximated by a lookup
table evaluated for a fixed position, and a cost function including flow throttling losses as
well were evaluated and compared to the reactive control scheme. A cost function with
position depending force shifting losses was found too computational demanding why it
was not evaluated experimentally.

The MPC with only shifting losses were evaluated with a sample time of 0.2s, and the
MPC including throttling losses as well were evaluated with a sample time of 0.3s. The
MPC was tested for five different test waves, subject to different time horizons. It was
found that a time horizon of 1 second yielded significantly lower harvested power compared
to the reactive control scheme. MPC schemes with a time horizon of 3s and a sample time
of 0.3s had higher average harvested power compared to the MPC scheme with a sample
time 0.2s and a time horizon of 2s. The tested MPC with highest average harvested power
was a MPC scheme with shifting losses and throttling losses included in the cost function,
with a sample time of 0.3s and a horizon length of 10. This MPC was able of increasing
the average harvested power of 14% to 25% for 4 out 5 tested waves, compared to the
reactive control scheme.

To address the required precision of wave forecasting, a simple wave forecasting scheme
based on an autoregressive model was developed. The AR model was designed to compute
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the equivalent wave excitation torque over the MPC time horizon. The used method
showed that it was possible to forecast incoming waves with acceptable accuracy 2-3
seconds forward in time. Simulations showed that the obtained accuracy was sufficient to
allow close to ideal performance. The forecasting scheme was evaluated experimentally,
and it was shown that the MPC with non-ideal future wave knowledge could outperform
the reactive control scheme. A reduction between 0.27kW and 0.62kW for the tested
waves for the case with wave prediction was seen compared to the case with ideal wave
forecasting.

In general, it is concluded that model predictive control is a suitable control topology for a
discrete displacement hydraulic power take-off system. Based on experimental evaluation,
a MPC scheme may increase the average harvested power for a wave energy converter
utilizing a discrete PTO system compared to a reactive controller.
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A | Branch and Bound Algorithm

In this chapter a general explanation of the branch and bound optimisation algorithm
used is elaborated.

The Branch and Bound Method (BnB) is an optimisation method developed for solv-
ing integer programming problems. The BnB is one of the earliest and most common
algorithms used to solve discrete variable optimisation problems[28].

The implementation of the BnB is based on the concepts “branching”, “bounding” and
from that creating a so-called solution tree of subspaces containing candidate solutions
and searching for candidate solutions in the branches of the solution tree in a systematic
manner. The systematic approach mainly consist of cutting off parts of the search three,
often called fathoming a branch of the search tree, if it is possible to conclude that a
branch of the search tree does not contain the optimal solution. The enumeration starts
from the solution of the relaxed problem, and the initial subspace is the entire solution
space. In general, a BnB algorithm has three main components listed below:

� Bounding : Find a lower bound of the best possible solution of a subspace of the
entire solution space.

� Selection: A strategy of selecting the next subspace to investigate.

� Branching : If a subspace cannot be fathomed, a strategy of creating new subspaces
by imposing constraints on the design variables.

Many different strategies for a BnB algorithm exist, and different strategies suits different
problems. The BnB algorithm used in this thesis is a modified algorithm available from
the Mathworks file exchange library[25]. A visual example of how the used BnB algorithm
solves the integer problem is shown in the figure below, where some of the first steps in the
enumeration of the search tree is explained. The example is taken from a MPC routine
with a horizon length of N = 10 , hence ten design variables in the optimisation problem.
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Figure A.1: Visual example of how the BBM algortihm solves the integer problem. The
number of each subspace indicates the iteration number of the algorithm.
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A simplified step by step procedure of the used algorithm is elaborated below:

Step 1:
A stack of candidate solution is initialized with an initial size of one. The first candidate
solution is found from the initial guess and constraints provided by the user.

Initialize : zincumbent =∞ c = 1 (A.1)

Step 2 - Update candidate solution:
Update constraints from stack:

xl = xl,stack(c) (A.2)

xu = xu,stack(c) (A.3)

Lower stack counter by one:
c = c – 1 (A.4)

Step 3 - Relaxation:
Solve relaxed problem of candidate solution.

(z , x ) = min{F (x )} (A.5)

st . xl ≤ x ≤ xu (A.6)

Step 4 - Fathoming:
Set selection = 1

if z ≥ zincumbent : Fathoming branch set selection = 0 (A.7)

elseif integer solution : zincumbent = z , xincumbent = x , set selection = 0 (A.8)

Step 5 - Selection and branching:
if selection = 1:

1. Select variable to impose constraint: Round variables which are not integer
one at a time, and select variable which yields lowest objective function to
branch from.
2. Create branches based on branching strategy and store in stack.
3. Update stack counter, c, by number of new branches created.

Step 2-5 of the BnB algorithm is repeated until all branches are explored, hence all
branches are fathomed. This corresponds to the stack counter is 0 of the step by step
procedure above.

The BnB algorithm is only guaranteed to find the optimum solution if the problem formu-
lation is linear or convex. This is evident from Table 5.1 when no losses is included in the
objective function. When no losses is included the problem is a quadratic programming
problem and is convex, why the BnB algorithm finds the optimum with a success rate of
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100%. When losses are included the problem is no longer convex, and the BnB algorithm
is sensitive to the solution of the relaxed problem. Since a derivative based algorithm is
used to solve the relaxed problem, the relaxed global optimum is not guaranteed to be
found, and a branch may be fathomed prematurely.
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B | LabVIEW Program

This appendix chapter describes the implementation of the LabVIEW program developed
for the MPC. A LabVIEW Real time target has already been setup for the AAU PTO
test bench where the already existing datalogging, safety measures, fault handling, wave
cylinder control and PTO manifold control is reused for this thesis. The MPC is incor-
porated as a sub VI, to fit the structure of the already existing LabVIEW program. A
simplified of structure the Labview program is shown in the figure below:

Manifold

PTO
Wave

control

Datalog

MPC

Flevel,ref

τext, vc, xc

1000Hz
5Hz

RT-targetDesktop target

HMI TCP/IP

Figure B.1: Simplified structure of the LabVIEW program.

Control of the wave cylinder is performed in the Wave control VI. The force control of
the PTO cylinder is done by the Manifold VI, and the line pressure control is performed
in the PTO VI. The MPC VI calculates a force level reference which is send to the PTO
manifold control VI. The LabVIEW project consist of two targets, a HMI is executed on
a desktop PC, and the signal handling and process algorithms are executed on the RT
target. To share variables between the two, “Network-Published” shared variables are
used. Data variables which are passed from the MPC VI to other VI’s are also saved as
shared variables, and without the use of buffering. The timed loop incorporated in the
LabVIEW RT program is shown in the figure below.

Figure B.2: Picture of the MPC VI as implemented in LabVIEW.

The MPC VI is placed in a flat sequence structure to allow measuring the execution
time of the MPC calculation. The MPC VI is programmed to execute specific tasks in a
sequence as follows:

1. If wave estimation is set to true, the wave predictor is given the current excitation
torque fetched from the same excitation torque input given to the online simulation
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of the point absorber computing the position reference for the wave cylinder. If ideal
wave forecasting is used the future excitation torque is fetched from the excitation
torque array, with a pointer offset corresponding to the time horizon of the MPC.

2. The optimisation problem is formulated. This is done by sampling the position and
velocity of the PTO cylinder, and the Q matrix and the f vector is formulated. The
prediction matrices used in the optimisation formulation are initialized at LabVIEW
startup and saved in memory as local variables.

3. The DE algorithm is executed. The DE algorithm is placed in a case structure,
such that different cost functions may be tested without having to reprogramming
the MPC VI. The DE algorithm is executed in LabVIEW by configuration of a user
library based on the shared library created with the LabWindowsCVI tool made
by National Instrument. The solution of the DE is saved in memory through a
feedback node, and used in the next iteration as “warm start”. The first entry in
the solution from the DE is updated to the MPC Force variable as shown in Figure
B.2, and passed to the PTO manifold control VI.

Figure B.3: Picture of the MPC VI structure as implemented in LabVIEW.

The whole process is repeated once the timed loop starts executing the code again after
the sampling interval is passed.

B.1 Timing and Finish Late Handling
The timing of the MPC sub VI is performed with a use of the timed loop structure in
LabVIEW to ensure that the MPC runs at the desired frequency. The execution of the
MPC VI is started at a fixed interval, and the new force reference obtained from the
solution of the MPC is send to the PTO control VI as fast as possible. A delay in this
process is inevitable, and the MPC execution time may even exceed the frequency of the
MPC loop if the MPC execution time is not handled in some manner. To ensure that
finish late of the MPC VI does not occurs, the DE algorithm is set to terminate after
approximately 100ms. This is done by setting the maximum number of generations in the
DE algorithm to approximately correspond to an execution time of 100ms. The weakness
of this approach is that the DE algorithm may be terminated before the optimum is
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found. The solution given if the MPC terminates by exceeding the time limit is thus the
best solution found during that time span. Another weakness is that the delay is varying,
why the applied control input is not applied with a fixed interval.

B.1.1 Alternative Timing Handling Proposal
An alternative approach to the MPC execution shown in Figure 7.2 is proposed. In the
implemented MPC scheme, elaborated in Chapter 7 the sample time of the MPC is chosen
with a margin to the average convergence time of the DE algorithm to ensure that the
DE always converges within the sample period. If the DE should not converge nothing is
implemented to ensure that a control input is applied, and the LabVIEW program handles
this as a finish late, hence the next iteration is skipped in order to obtain synchronization.
To ensure that a solution is available at a fixed time interval the MPC may be formulated
to calculate the next PTO force reference instead of the current. A timeline of the
alternative MPC execution is shown in Figure B.4.

Initialise DE

Execute DE

Time 

Wave forecasting

DE
startτext,v

ready
x(k)

sampled

t
t+Ts

x(k+1)
sampled

...

Fpto,ref

applied
Fpto,ref(k+1)

applied
Previous 
solution

Figure B.4: Timeline of an alternative approach of executing the MPC algorithm.

By this approach the entire sample interval is available for the DE algorithm to converge.
Thus the margin between the DE convergence time and MPC sample time could be
lowered. This allows for including more members of each population in the DE algorithm
to ensure that the DE algorithm converges to the true optimum. It may also be possible
to increase the horizon length as effectively more time is allowed for the optimisation.
If the DE algorithm has not converged within the sample interval the previous MPC
solution may be utilised by taking the next sample. This approach ensures that the PTO
force reference is applied with a fixed interval and allows to get rid if varying time delays
due to the inconsistent convergence time of the DE. A disadvantages of this approach is
that the computed control input is applied based on the next predicted states.

For the alternative approach the state prediction may formulated as shown below:

χk+ = Pxk + H(τext,v – τpto,v) + F(τext,k – τpto,k) (B.1)

Where an additional term is added compared to the state prediction utilised in Equation
(4.7). The additional term is the control input applied just before the state sampling has
occurred. The prediction matrices is thus given as:
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P =


A

A2

A3

...

AN

 H =


0 0 · · · 0
B 0 · · · 0

AB B · · · 0
...

...
. . .

...

AN-2B AN-3B · · · B

 F =


B

AB

A2B
...

AN-1


Where the future excitation torques and future control inputs to be solved for in the
optimisation is shifted one sample period, and is for the same time horizon one less in
length than the method implemented in Chapter 7.

τext,v =
[
τext,k+1 τext,k+2 · · · τext,k+N-1

]T
(B.2)

τpto,v =
[
τpto,k+1 τpto,k+2 · · · τpto,k+N-1

]T
(B.3)

The proposed formulation of the MPC given in this section allows for better timing
handling of the control input. Secondly more time is allowed for the optimisation problem
as the entire sampling period is available to compute the next control input. the proposed
formulation has not been evaluated experimentally, why it is left for future work.
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B.2 MATLAB Code

DE Algorithm

1 function [xmin,fmin,dur,G] = de(objective,init)
2 %% Declare options
3 D = 10; % Number of design variables
4 NP = 350; % Population size
5 CR = 0.8; % Crossover factor
6 F = 0.8; % Mutation factor
7 Gmax = 150; % Maximum Generations
8 Tol = 1e–8; % Tolerance for stop criteria
9 Tf = 5; % Length of history for stop criteria

10 history = rand(1,Tf); % History for the objective values in the ...
population

11

12 %% Initialization and evaluation of first population
13 pop.x = randi([–1 1],NP,D)+init; % Initialise population
14 pop = feval(objective); % Evaluate initial population
15 new.x = zeros(NP,D); % Initialise new population
16 new.f = zeros(NP,1); % Initialise new population evaluation
17 G = 0; % Initialise generation counter
18

19 %% The loop through generations
20 while (std(history) ≥ Tol && G ≤ Gmax)
21

22 %% Mutation
23 % Select three random members for each member
24 ind = randi([1 NP],NP,3);
25 % Find best solution in current population
26 best = find(pop.f==min(pop.f),1);
27 % Generate new poulation
28 new.x = pop.x(ind(:,1),:) + F * ( pop.x(best(1),:) – ...

pop.x(ind(:,1),:)) + F * ( pop.x(ind(:,2),:) – pop.x(ind(:,3),:));
29

30 %% Crossover
31 % Generate random number
32 temp = rand(NP,D);
33 % Check if random number higher than CR
34 ind = (temp > CR);
35 % Keep old member if random number higher than CR
36 new.x(ind) = pop.x(ind);
37 % Evaluate trial population
38 new = feval(objective);
39

40 %% Selection
41 % Is child 1 worse than member 1
42 ind = (new.f(:,end) > pop.f(:,end));
43 % Is child 1 worse than member 1 then keep member
44 new.x(ind,:)= pop.x(ind,:);
45 % Is child 1 worse than member 1 then keep member
46 new.f(ind,:)= pop.f(ind,:);
47

48 % Preparation for the next generation
49 pop = new; % Population ...

for next generation initialization
50 temp = sum(pop.f);
51 history(mod(G,options.Tf)+1) = temp; % Update history
52 G = G + 1; % Update ...

generation number
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53 end % end loop through generations
54

55 %% Final Solution
56 ind = find(pop.f==min(pop.f)); % Find mimimum ...

cost evaluation of final generation
57 xmin = pop.x(ind(1),1:D); % Final solution
58 fmin = pop.f(ind(1),:); % Final

Cost Function without losses

1 %% Cost function without loss included
2 function [ f ] = Cost(x,NP,ff,Tau0,H)
3 % Compute cost evaluation with no loss included
4 % Initialise vector of cost evaluations
5 f = zeros(NP,1);
6 % Declare vector of PTO moments to translate from force level to ...

applied torque
7 F = 1e5 * 2.36.*...
8 [–3.812 –3.116 –2.836 –2.420 –2.140 –1.932 –1.860 –1.444 –1.236...
9 –1.164 –0.956 –0.540 –0.468 –0.260 –0.052 0.020 0.436 0.644...

10 0.716 0.924 1.340 1.412 1.620 1.900 2.316 2.596 3.292];
11 % Translate from forcelevel to applied torque
12 tau = F(x);
13 % Calculate absorbed energy
14 for i = 1:NP
15 f(i,1)= 0.2*(tau(i,:)*H*tau(i,:)' + ff'*tau(i,:)');
16 end
17 end

Cost Function with Shifting Losses

1 %% Compute cost evaluation with loss included as lookup table
2 function [ f ] = Cost(x,NP,ff,Tau0,H,E,Ts,N)
3 % Initialise variables
4 f = zeros(NP,1); % vector of cost evaluations
5 Eloss = zeros(NP,10); % matrix of static shifting loss
6 % Declare vector of PTO moments to translate from force level to ...

applied torque
7 F = 1e5 * 2.36.*...
8 [–3.812 –3.116 –2.836 –2.420 –2.140 –1.932 –1.860 –1.444 –1.236...
9 –1.164 –0.956 –0.540 –0.468 –0.260 –0.052 0.020 0.436 0.644...

10 0.716 0.924 1.340 1.412 1.620 1.900 2.316 2.596 3.292];
11 % Translate from forcelevel to applied torque
12 tau = F(x);
13 % Declare lokkup table of static shifting loss
14 Etot = E; % Fetch lookup table containing shifting losses
15 % Calculate shifting loss based on lookup table, Etot
16 for jj = 1:NP
17 Eloss(jj,1) = Etot(Tau0,x(jj,1));
18 for ii = 2:N
19 Eloss(jj,ii) = Etot(round(x(jj,ii–1)),round(x(jj,ii)));
20 end
21 end
22 % Translate from forcelevel to applied torque
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23 tau = F(x);
24 % Calculate absorbed energy static shifting loss and throttle loss
25 for i = 1:NP
26 f(i,1)= Ts*(tau(i,:)*H*tau(i,:)' + ff'*tau(i,:)' + ... % absorbed energy
27 sum(Eloss(i,:)); % static shifting loss from lookup table
28 end
29 end

Cost Function with Shifting and Throttle Losses

1 %% Compute cost evaluation with loss included as lookup table and ...
throttle losses

2 function [ f ] = Cost(x,NP,ff,Tau0,H,AA,BB,CC,tauk,xk,thro co,E,Ts,N)
3 % Initialise variables
4 f = zeros(NP,1); % vector of cost evaluations
5 Eloss = zeros(NP,10); % matrix of static shifting loss
6 % Declare vector of PTO moments to translate from force level to ...

applied torque
7 F = 1e5 * 2.36.*...
8 [–3.812 –3.116 –2.836 –2.420 –2.140 –1.932 –1.860 –1.444 –1.236...
9 –1.164 –0.956 –0.540 –0.468 –0.260 –0.052 0.020 0.436 0.644...

10 0.716 0.924 1.340 1.412 1.620 1.900 2.316 2.596 3.292];
11 % Translate from forcelevel to applied torque
12 tau = F(x);
13 % Declare lokkup table of static shifting loss
14 Etot = E; % Fetch lookup table containing shifting losses
15 % Calculate shifting loss based on lookup table, Etot
16 for jj = 1:NP
17 Eloss(jj,1) = Etot(Tau0,x(jj,1));
18 for ii = 2:N
19 Eloss(jj,ii) = Etot(round(x(jj,ii–1)),round(x(jj,ii)));
20 end
21 end
22 % Translate from forcelevel to applied torque
23 tau = F(x);
24 % Calculate absorbed energy static shifting loss and throttle loss
25 for i = 1:NP
26 f(i,1)= Ts*(tau(i,:)*H*tau(i,:)' + ff'*tau(i,:)' + ... % absorbed energy
27 abs((CC*(AA*xk + BB*(tauk–tau(i,:)'))*2.36)')*(thro co)*abs((CC*(AA*xk ...

+ BB*(tauk–tau(i,:)'))*2.36).ˆ2)) + ... % throttle loss
28 sum(Eloss(i,:)); % static shifting loss from lookup table
29 end
30 end

Cost Function with Complete Losses

1 %% Compute cost evaluation with shifting loss and throttle loss calculated
2 function [ f ] = Cost(x,NP,ff,tau0,H,tauk,x0,N)
3 % Initialise variables
4 f = zeros(NP,1); % vector of cost evaluations
5 Eloss = zeros(NP,10,3); % matrix of static shifting loss
6 xx = zeros(NP,20); % system states
7 p = zeros(3,27); % pressure lookup table
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8 % Declare vector of PTO moments to translate from force level to ...
applied torque

9 F = 1e5 * 2.36.*...
10 [–3.812 –3.116 –2.836 –2.420 –2.140 –1.932 –1.860 –1.444 –1.236...
11 –1.164 –0.956 –0.540 –0.468 –0.260 –0.052 0.020 0.436 0.644...
12 0.716 0.924 1.340 1.412 1.620 1.900 2.316 2.596 3.292];
13 % Translate from force level to applied torque
14 tau = F(x);
15 % Calculate system states
16 for k = 1:NP
17 xx(k,:) = A * x0 + B * (tau(k,:)–tauk')';
18 end
19 % Convert point absorber states to cylinder states
20 xx(:,1:2:options.N*2–1) = –xx(:,1:2:options.N*2–1)*2.36;
21 xx(:,2:2:options.N*2) = –xx(:,2:2:options.N*2)*2.36 + 1;
22 % Declare line pressure constants
23 pL = 20e5;
24 pM = 100e5;
25 pH = 180e5;
26 % Declare pressure lookup table
27 p(1,:) = [pH pH pH pH pH pM pH pH pM pH pM pM pH pM pL pM pM pL pM pL ...

pL pM pL pL pL pL pL];
28 p(2,:) = [pL pL pM pL pM pL pH pM pL pH pM pL pH pM pL pH pM pL pH pM ...

pL pH pM pH pM pH pH];
29 p(3,:) = [pL pM pL pH pM pL pL pH pM pM pL pH pH pM pL pL pH pM pM pL ...

pH pH pM pL pH pM pH];
30 % Declare system parameter
31 A = [–0.0235 0.0122 0.0087];
32 Beta = 7000e5;
33 V0 = [0.04814 0.00114 0.000228];
34 T = 50e–3;
35 kv = 1.005116102984629e–06;
36 n = [18 10 8];
37 for j = 1:NP
38 for i=1:3
39 Eloss(j,1,i) = 0.5 *(p(i,x(1))–p(i,tau0))ˆ2 * (V0(i) + (x0(2))*A(i) ...

)/Beta + abs(A(i)*x0(1))ˆ3 / (n(i)*kv)*Ts;
40 for ii = 2:N
41 Eloss(j,ii,i) = 0.5 *(p(i,x(j,ii))–p(i,x(j,ii–1)))ˆ2 * (V0(i)+ ...

(xx(j,2*ii–1))*A(i) )/Beta + abs(A(i)*xx(j,2*ii–1))ˆ3 / ...
(n(i)*kv)*0.2 ;

42 end
43 end
44 end
45 Elosstot = sum(sum(Eloss,2),3);
46 % Calculate absorbed energy minus the energy loss
47 for i = 1:NP
48 f(i,1)= f(i,1)= Ts*(tau(i,:)*H*tau(i,:)' + ff'*tau(i,:)' + ... % ...

absorbed energy
49 abs((CC*(AA*xk + BB*(tauk–tau(i,:)'))*2.36)')*(thro co)*abs((CC*(AA*xk ...

+ BB*(tauk–tau(i,:)'))*2.36).ˆ2)) + ... % throttle loss
50 sum(Eloss(i,:)); % static shifting loss from lookup table
51 end
52 end

102



C | Results

In this appendix the experimental results are summarised in tables. The following MPC
schemes are shown:

� MPC1: Ts = 0 .2s, N = 5 , Static shifting loss: Equation (5.8).

� MPC2: Ts = 0 .2s, N = 10 , Static shifting loss: Equation (5.8).

� MPC3: Ts = 0 .3s, N = 10 , Static shifting loss: Equation (5.8).

� MPC4: Ts = 0 .3s, N = 10 , Static shifting loss and throttle loss: Equation (5.9).

� MPC4 est: Same as MPC4, but evaluated with wave forecasting.

In Table C.1 the average absorbed power for different MPC schemes and the test waves
given in Table 6.1 is shown.

Wave 1 2 3 4 5

Pabs,avg [kW ]

Reactive 3.06 5.97 9.87 17.60 25.80
MPC 1 1.45 2.17 4.28 7.00 11.99
MPC 2 2.61 7.45 11.28 21.88 29.52
MPC 3 3.27 8.65 12.47 22.64 30.47
MPC 4 3.17 8.02 12.43 22.92 31.13
MPC 4 est 2.73 7.52 11.71 22.02 30.48

Table C.1: Average absorbed power for different control schemes and test waves.

In Table C.2 the average harvested power for different MPC schemes and the test waves
given in Table 6.1 is shown.

Wave 1 2 3 4 5

Phar ,avg [kW ]

Reactive 2.11 4.56 8.09 15.38 22.96
MPC 1 1.00 1.64 3.52 5.89 10.38
MPC 2 1.37 4.65 8.11 17.88 24.62
MPC 3 1.86 5.65 9.13 18.64 25.71
MPC 4 1.94 5.64 9.19 19.28 26.77
MPC 4 est 1.36 5.23 8.88 18.65 26.49

Table C.2: Average harvested power for different control schemes and test waves.

In Table C.3 the efficiency for different MPC schemes and the test waves given in Table
6.1 is shown.
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Wave 1 2 3 4 5

Effeciency
Reactive 0.69 0.76 0.82 0.87 0.89
MPC 1 0.69 0.75 0.82 0.84 0.86
MPC 2 0.52 0.62 0.72 0.82 0.83
MPC 3 0.57 0.65 0.69 0.82 0.84
MPC 4 0.61 0.70 0.74 0.82 0.84
MPC 4 est 0.49 0.69 0.76 0.84 0.87

Table C.3: Efficiency for different control schemes and test waves.
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