
Exploring Crowd-sourced Music
Tagging for Explorative

Playback: a Prototype and a User
Study

HCI - Software P10

Group IS101F17

Aalborg University
SICT

Selma Lagerlöfsvej 300
DK-9220 Aalborg



Copyright © Aalborg University 2017



SICT
Selma Lagerlöfsvej 300

DK-9220 Aalborg
http://moodle.aau.dk

Title:
Exploring Crowd-sourced Music Tagging for Ex-
plorative Playback: a Prototype and a User Study

Theme:
Music exploration

Project Period:
10th semester, Spring 2017

Project Group:
IS101F17

Participant(s):
Michel Laden
Mike Nellemann Gregersen
Sean Skov Them

Supervisor(s):
Jesper Kjeldskov

Page Numbers: 36

Date of Completion:
June 15, 2017

Abstract:

Exploring new music on mainstream music ser-
vices can be a tedious task. Their recommenda-
tion system might be inaccurate in their results,
and many services require specific searches on
songs. We use an already existing concept and
create a digital solution of it, constructing it with
focus on exploring new music with the help of
music tags. In our research of this project we
conduct two user studies, one in the lab and one
in the field. We achieve useful information re-
garding Muse as a tool for music exploration.
One disadvantage of our studies has proven to be
the limitations of our dataset, which only con-
tains 1 million songs, all from 2010 and prior.
However, this dataset is able to match with Spo-
tify, allowing for both online and offline usage
of the application. In the light of the obsolete
dataset, our test participants find high value in
discovering and rediscovering music.

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement with
the author.

http://moodle.aau.dk




v

Table of Abbreviations

Acronym Full word
AI Artificial Intelligence
AAU Aalborg University
HCI Human-Computer Interaction
IxD Interaction Design
MIR Music Information Retrieval
RFID Radio-frequency identification
UI User Interface
GUI Graphical User Interface

Table 1: Table of abbreviations



vi



Contents

I Prelude 1

1 Introduction 3
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

II Article 5
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Academic Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Commercial Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Muse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Research Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

First Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Second Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

User Study 1: Lab Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

User Study 2: Field Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Implications of Tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Implications of Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
User Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

III Project Development 17

3 Implementation 19
3.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Application features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Music player . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Scanning local music . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.3 Tag Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.1 The Million Song Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.2 Local database for local music . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vii



viii Contents

3.4.1 Tag Search Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.2 Fill TagCloud Tables Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.3 Tags For Tag Cloud Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Usability Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Conclusion 27

5 Process 29

Bibliography 31

Appendix A Assignment for User Study in Lab 32

Appendix B Interview for User Study in Lab 33

Appendix C Interview for User Study in Field 34

Appendix D Affinity Diagram from Lab 35

Appendix E Affinity Diagram from Field Study 35



Part I

Prelude

1





1. Introduction

Music has always been a part of human society and have increasingly filled in people’s daily life [6].
The availability of music has increased as more music has been uploaded to the internet. Streaming
services have access to tens of millions of songs [7, 8], and uses recommender systems to help the users
choose among the music, as the selection can be overwhelmed [8, 9, 10]. These recommender systems
are based on metadata and information regarding the user’s music preferences. In the field of Music
Information Retrieval (MIR) there has been conducted research on collecting music, generate its data,
and how to recommend music. This resulted in research through artificial intelligence that extract
more data from the music, for instance genre and mood [1].

Other approaches have been to crowd-source data collection, where websites like last.fm use social
tags to help tagging the music. The idea is the users provide tags on each song as they think the song
should be tagged. These tags are what could be interesting to be able to scout music from.

Muse is a proof-of-concept created by a 5th semester Interaction Design (IxD) students group in 2016
at Aalborg University (AAU) [2], thought up a physical design where the user takes up to three tags
and from these are introduced to music matching those tags. Last.fm have introduced an interactive
Venn diagram working with music based on tags, much like Muse. However, last.fm limits their search
to two tags, decade and genre only [13]. Providing the user with a broad result compared to the Muse
concept, where the user can narrow it further by being more specific using these "loose" tags, like
moods (fun, sad), language (Spanish, Danish), meaningful (male/female vocalist) and feelings (sexy,
awesome), which last.fm does not take into consideration at all.

This project uses the concept of Muse, convert if from its physical form into a digital one, and explore
what is possible to do in practice. To be able to see how tags are works on a larger scale than the
limited dataset used for Muse. We develop an application and used it in two studies for exploring and
get the experience of music in different manner. To find these results, we conduct user studies both in
the lab and in the field. That way it is possible to get controlled environment with valuable feedback
and how the application will impact the user over time.

This project holds an article, which is written as if it was to be presented at a CHI conference, upholding
all the guidelines required from CHI. Other than the article, this projects holds our problem statement,
implementation, process, usability issues found, final conclusion and appendix.

3



4 Chapter 1. Introduction

1.1 Problem Statement
In this project we answer the following problem statement:

"How can Muse be build as a digital version of the original concept and used in practice?"

We want to build a digital version of the Muse concept which was made by a group of Interaction
students on their 5th semester. This is an exploratory and ambiguous way of interacting and playing
music. Furthermore, with the goal of investigating the concept it lead to these more specific questions:

1. What implications there are when using ambiguous tags?

2. How does the amount of tags affect the playlist?

3. What is the overall user experience?



Part II

Article

5





7



8



9



10



11



12



13



14



15



16



Part III

Project Development

17





3. Implementation

This section was created to give a better insight on how we implemented different parts of the appli-
cation. We have divided it into four different sections consisting of Design, Application Features,
Database, and Queries. Design contains the overall design idea for the visual part of the applica-
tion, Application Features about some of the main features the application has, Database about
the structure of the database and how it was used, and Query explain some of the important SQLite
queries that we made.

3.1 Design
As explained the in the article the general design was based on the original Muse concept and through
iterations additional elements were added to make full use of the concept and dataset. We did not
have focus on creating a unique or great design as we only focused on the concept and functionality.
The design could be recreated and could be improved in many ways. It was build in Windows Forms,
which is outdated and gives limitations for the design. It would be better to make an implementation
in Windows Presentation Foundation (WPF) if it should be a Windows application again. Otherwise
implementing it as a web application would optimize as it makes it available for other devices than
Windows PCs. A web interface would also make it easier to use the web APIs provided by music
streaming services, as they do not have an SDK for all languages and platforms.

3.2 Application features
During the development we added features to our prototype, some of which got changed or replaced.
Some of these features needed external libraries. What libraries and what additional work we did for
each feature will be explained below.

3.2.1 Music player

One of the most essential parts of an application for playing music was the music player. As we both
wanted the ability to play music on Spotify and locally stored music, we had to make a player for
each. They both worked in a similar ways, but uses different libraries. The music player to use for a
song was identified by looking at the source path to see if it was a Spotify link or not.

Spotify

At the beginning we tried to have Deezer as our source for music streaming, but we encountered a
problem with only being allowed to play 30 second previews. To fix this we would have needed to use
their official music player implemented in JavaScript which was complicated to implement in a C#
application. Instead we found an unofficial Spotify API and combined it with data from the official
Spotify API, which allowed us to play the full track.

The unofficial Spotify API, is called SpotifyAPI-NET [11], and works by sending request directly to
the Spotify application. This was also why it was required that Spotify was running in the background
while using our application. When starting our application, the user needs to allow our application

19



20 Chapter 3. Implementation

to connect through their Spotify account, which was why it opens the web browser and redirects to
Spotify’s web page. After the user have agreed, information like the access token will be passed to
the API. This was an issue as having a web browser open each time the user start the application
can confuse users. A potential fix could be having a web browser inside the application which handles
these request through a special window. After the API had the information needed it was possible to
play music by sending requests to the Spotify application. For this the API has a few standard calls
like play, pause, volume control.

The official Spotify API was used to look up songs to get the playback path needed to start playing
them through the player. The request were handled through rests calls. For the playback path request
the songs name, artist and album was required.

Local Music

To play music stored locally on the computer, we used a library called NAudio [3]. It can use both
local files and streaming. Most music streaming services does however limit the streaming to a 30
second preview for non-official players, which made NAudio unsuitable for that purpose. For playing
a local file it needs the its path. We have tested the library on MP3, WAV, and MP4 files, but other
music formats were also supported. The player allows for standard playback control like the Spotify
API like play, pause, and volume control, but also support skipping to specific points in a song.

3.2.2 Scanning local music

In order to be able to search in the local music, we had to scan them for metadata and use that data
to find tags for that song from The Million Song Dataset and last.fm. The scanning was done by
having the user select what folder they want scanned. Each file was then first checked up against The
Million Song Dataset to find all possible entries that might fit. For this we use the title of the song
with different modifications like changing a "&" into "and". The varies results was then compared to
the original metadata for the file using the Levenshtein Distance. If any of them beneath a threshold
of 50% difference on the title and artist, the one closest was chosen. This was not the perfect solution,
but it allow us to find most songs and also reduce the amount of false positives. If a song matched
the data, it was gathered and stored in the database inside the application. The database will be
described in more detail later.

If the song was not found in this first step, we look it up using the last.fm API. Last.fm have more
songs available, making it possible to find most songs. The reason this was the second option, was it
only returned up to five tags attached to it, while songs in The Million Song Dataset could have up
to a hundred. The procedure for this lookup was almost the same, where we search using different
variations on the title and if we found the song we add it to the database for local music. All songs
not found in this step will be skipped as we did not have any other options for finding tags.

We made tests with a collection of 4000+ songs, where we were able to find more than 95% of the
songs. This collection contained a lot of known songs and the metadata was precise, making them
easier to find. It was possible to get a lower hit rate for a collection of lesser known songs and songs
with poor metadata.

3.2.3 Tag Cloud

In the beginning we used drop down lists for navigating the available tags. To improve on this we
made a tag cloud that gives a better overview and allows for more tags to be shown at the same time.
We found a library called Word Cloud [5]. It was a Word Cloud (Tag Cloud) Generator Control for
.NET Windows.Forms in C# which takes a strings as input, count all the re-occurrences of each word,
and display them in the cloud with varies sizes depending on how many times the word occurred. The
library had an object called IWord, which contains a words and a count. The cloud uses a list of these



3.3. Database 21

to determine what to display in the cloud and what size. We used this object and filled it up with our
tags, and then replaced the count with the number of results the tag was expected to return.

While working with the library we found that it had one error in it. The error was that if there ever
were a case where all IWords had the same count for them, the application would crash because the
size of the text would be set to zero. Luckily the source code for the library were available and we
could fix the code ourselves. The code we modified can be see in Listing 3.1. The changes we made
was that we added line 4 and 5. It checks if the error was present and if that was the case the text
size was set to the maximum size allowed.

1 private Font GetFont(int weight)
2 {
3 float fontSize = (float)(weight − m_MinWordWeight) / (m_MaxWordWeight − m_MinWordWeight)

∗ (MaxFontSize − MinFontSize) + MinFontSize;
4 if (m_MaxWordWeight == m_MinWordWeight)
5 fontSize = MaxFontSize;
6

7 if (m_LastUsedFont.Size!=fontSize)
8 {
9 m_LastUsedFont = new Font(this.FontFamily, fontSize, this.FontStyle);

10 }
11 return m_LastUsedFont;
12 }

Listing 3.1: Code modified in the Word Cloud library

3.3 Database
For the application we had two SQLite databases. A small one for local music, which were inside the
application, and a large one with all the data from The Million Song Dataset with some modifications.
For a future version of the application the large database would have to be accessed through a server
rather than on the computer itself.

3.3.1 The Million Song Dataset

As mentioned in the article we used The Million Song Dataset [4] for our data, where we used infor-
mation about songs and tags. At first we implemented a subset of the dataset consisting of 10.000
songs and it worked we implemented the full dataset. We added a few extra tables to the dataset
for some features in the application and the modified version can be seen on Figure 3.1. The dataset
originally only had the tables: songs, tids, tid_tag, and tags, where songs had information on songs,
tids had entries pointing at the track_id in songs, tid_tag a pointer to the rows in tids and tags, and
tags with all the tags in the dataset.

We used all data in all tables except from the songs table where we only use track_id, title, artist_name,
release, year, and duration. The rest were of no use at for our application.

For the modifications we first added the three tables TagCloud1, TagCloud2, and TagCloud3. These
were used to find what tags to show in the tag cloud given what other tags were already selected.
They were build using the tid_tag table and store the amount of result a tag combination will give,
if all tags have a confidence of a 100%. The reason we choose a 100% was that it guarantees that
there will always be results, even if the confidence is set to max, and also because it reduced the size
of these tables, making the search for what tags to show faster.
Table TagRelGenre and TagRelDec were added after, as a way to add extra control to what tags to show
in the tag cloud. TagRelGenre have a relation between genres and their sub-genres, like "rock", with a



22 Chapter 3. Implementation

sub-genres like "pop rock", "alternative rock" or other. The same apply for the TagRelDec table, but
with decades instead. The RelId value is the main genre/decade, while TagId is the sub-genre/decade.

Figure 3.1: Entity model for the modified version of The Million Song Dataset

3.3.2 Local database for local music

The local dataset was similar to the modified version of The Million Song Dataset, with a few changes
to make it easier to work with. The entity model for this dataset can be seen on Figure 3.2. The
song table only have the necessary entries and have a path for where the song was located on the
computer. The man in the middle between song and tid_tag has also been removed by having tid_tag
link directly to song. All tables also use an ID as the primary key, while the tables from The Million
Song Dataset all used the row id to find songs. Other than these few differences the table works the
exact same way.

Figure 3.2: Entity model for the local dataset



3.4. Queries 23

3.4 Queries
Our queries were one of the major parts of the application because it couples the The Million Song
Dataset with the application, and ensures that we can get songs through searching with tags.

3.4.1 Tag Search Queries

First we had two ideas for how searching for songs using a tag could be done. One was to search
using all the selected tags at the same time and then only returning the intersection between them
all. The other was to search on each tag individual and then take care of the intersection locally. The
advantage of the first one was that it was faster as all was done in one single search compared to up
to three searches like the second one. The second one has the advantage that a tag can be removed
without having to redo the search, that it allows for more local control, and more detailed information
about intersections between the results for each tag. We decided to use the second one because it
provide the extra information which can be used for better user feedback, and because the search does
not have to be redone each time a tag was removed.

When a tag was selected it did not immediately start the search. First there was a check on whether
the tag selected was a decade. In this case a sub-query will be made for the decade to be used in the tag
search and the application will restart the search for all selected tags. The sub-query makes a check for
whether a song was released inside the given decade and works as an extra filter. This was also the rea-
son all tags have to be searched on again, as they have not used this new filter for their original search.

When the check on the decade was done the actually search on the tag starts. The query for this
checked for all songs that has this tag associated with them and then filters out the ones that have
a lower confidence than the minimum specified by the user. The sub-query for decade will also be
included in this search if any of the selected tags are a decade. The result was then returned as a list
of songs that can later be compared with the other searches.

3.4.2 Fill TagCloud Tables Queries

There are three tables that contains information about how many results different tag combinations
give, namely TagCloud1/TagCloud1Local, TagCloud2/TagCloud2Local, and TagCloud3/TagCloud3Local.
The first was for a single tag search, the second for two tags, and the third for three tags. This also
means there has to be three different methods to fill out these tables. They all follow the same prin-
ciple, but the complexity varies.

We start by explaining how the table with a single tag works, as this was the most simple one and the
method that the others build upon. The table get its data from a query on the tid_tag table. This
query looks at all the rows and filter out those that does not have a confidence value above a specified
threshold. The results are then grouped by the tag ids with a count on how many occurrences there
were of each tag id. These two values are inserted into the table for result count on a single tag. The
query for the first tag can be seen in Listing 3.2

1 INSERT INTO TagCloud1 (Tid, Result) SELECT tag, COUNT(∗) FROM tid_tag WHERE val >=
[CONFIDENCE_LIMIT] GROUP BY tag ORDER BY COUNT(∗) DESC

Listing 3.2: Code for interting tag result counts into TagCloud1

The second one was a little more complex as it has to take two tags into consideration at the same
time. Like the first one it finds all entries and filters out those that does not have a confidence value
above a specified threshold. It differs by considering a unique combination of two tag ids. For each
possible tag combination in the entries it has to filter out all that does not both match the same song.
Afterwards it grouped the entries on the tag combinations and counted how many occurrences there
were of each tag combination. The two tag ids and the count for the occurrences were then inserted



24 Chapter 3. Implementation

to the table for result count on two tags.

The third one was a expansion on the second one where the only difference was that it consider the
unique combination of three tags instead of two. This means it ends up with three tag ids and a count
for the occurrences of the combination.

3.4.3 Tags For Tag Cloud Queries

When the tag cloud had to be filled with tags, a look up was made in the database, in order to find the
tags, that makes sense when compared with the ones already selected. As there were three different
tables depending on how many tags to consider, there also had to be three different methods for this.
All of these methods follow the same procedure that can be summarized like this:

• Find the IDs for the already selected tags.
• Check if any of them is a genre
• Check if any of them is a decade
• If any of them is a genre find the top 20 sub-genres for it
• Find the top 20 genres
• If any of them is a decade find the top 20 sub-decade for it
• Find the top 20 decades
• Search for additional tags, excluding: genre, decade, sub-genre, and sub-decade.
• Combine all results into a list ordered by number of results and return them

3.5 Usability Issues
During user study in the lab, a few usability issues were encountered. The usability issues found are
gathered in Figure 3.3. These issues were collected during the five evaluations in the lab that had
three test participants in each, amounting to a total of 15. We will address each of these usability
issues below.

Error Encountered Level of error
Cloud disappears 2 Cosmetic
Race condition on tags 3 Serious
Socket error 1 Serious
Spotify would not play music 18 Critical
Player stopped (local) 2 Critical
Total crash 1 Critical

Figure 3.3: Usability errors found during lab evaluation

The issue we encountered the
most, was Spotify stopped play-
ing music. It was an critical is-
sue when a music service does
not play music. We do not really
know why the player in the API
stops and it happens irregularly,
which makes it difficult to track
the source of the problem. One
of our test participants from the
user study in the field said that
he encountered this issue, by closing and then opening Spotify and then our application was able
to continue working again. We have potentially fixed the source for the issue, but it has not been
thoroughly tested and there were still other factors that triggers the problem. This issue can have
an impact on the user experience of the application making it a critical problem, which needs to be
resolved as soon as possible.

A similar issue we encountered was, the player stopped (local), which was from a test participants
who used his own music during the lab evaluation. When this issue was encountered it was first
thought of a player issue again, but it seems more accurate to believe that it was because the external
hard drive used during the evaluation turned off, as this was observed once during the session. This
still have to be tested though as there still could be other factors that could course this problem,
like when Spotify stops playing. A warning if the local files were missing, could sort this issue. If
the connection to the hard drive was the issue, then it was not as critical as the previous mentioned one.



3.5. Usability Issues 25

We were able to fix the issues of the cloud tag disappearing and the race conditions on tags, but it
has not been tested thoroughly. The issue with the tags in the tag cloud disappearing happened at
random when selecting a tag. At times the shown tags would not be cleared and the text would still be
shown, but they would update as soon as the mouse hovered over them, making them disappear. The
race condition happened when a user clicked on multiple tag circles in a short time span. They would
each start a thread and the tags shown in the tag cloud after would be the tread that finished last,
making it possible that the tags would not match the selected tag circle. This was fixed by making a
mutex that only let one thread run the code at a time, and a ID for the thread that was known to be
the last one started. The last one started would run the code for updating the tags shown, but the
others would skip, both to avoid the race condition, but also to save CPU usage.

Total crash of the application happened once during the test period. We do not know if it was a
random Windows "Program has stopped working"-error, or if it was a critical issue in the application.
We have not been able to reproduce the error and not been able to solve it.

The socket error was when the application tries to login to Spotify multiple times simultaneously on
the same port. This was not allowed and crashes the program. This was encountered when clicking on
a tag circle before the program had connected to Spotify, triggering the call again. A mutex around
the connection code, which only allows one connection at a time, solved the problem.



26 Chapter 3. Implementation



4. Conclusion

This has been an interesting project to experience and also raised new questions for further studies
in the area of music exploration, music listening and general engaging with music. We developed a
digital application of an already existing concept called Muse, which interaction students from AAU
developed on their 5th semester. The application was a functional prototype that is able to play music
and gives new ways and thoughts of how to explore music.

When working on this project we analyzed a lot of data from the user studies, which gave us the
opportunity to provide findings in the field of HCI and music-experience. These findings could also
open up for new projects and further studies. An example is to create a study that would confirm
the hassle of creating a playlist in Muse is absent, in contrast to using other music services. Another
could be how to use a multi-tagging music application with more than one user.

We have managed to answer the problem statement, with data from the two user studies.
The word tag was introduced at the start, but was called a category by all test participants except for
one. The "loose" tags were more attractive than the rest, but were also more difficult to understand.
Tags were split into five types of understanding: intersection, union, an overlap between decades, in-
strumental classification, and artist activity. The understanding of what a tag was were different from
user to user. In general they had an idea of what kind of music that would be presented and played,
but their expectations were not always met. They also had a hard time understanding, identifying,
and classifying genres and decades.

The precision of tags were increased when having three tags, but with popular tags that can poten-
tially return a playlist of 409 song, it would be great to have the option to select a fourth tag to further
increase the precision. The test participants did in general find that three tag circles were sufficient.

A good playlist depend on how the tags were combined. The possibility to switch between intersection
and union would give more opportunities for customizing tag searches. Having a history or saving
searched tracks would also help.

The general user experience of Muse was that it was an interesting way of exploring unknown music.
They found it entertaining, but they wanted the opportunity to search for specific and new music.

For further developing on the application it would need to expanded to a larger audience, and also
have added the standard music player features like Spotify has (fast forward, repeat etc.). The further
features like reversing the search process to search for music, and retrieve a playlist based on the songs
tag. As it is still a prototype there were many things as described in the article and usability issues
sections that could make it more stable and valuable for future use.

Acknowledgements
We would like to thank Dimitrios Raptis and Lefteris Papachristos for their help working out the tags
in the database, allowing Muse become what it is today. We would also like to thank all our test
participants in both user studies for their time and their valuable input. Finally we would like to
thank Jesper Kjeldskov for his priceless guiding, without him we would not be able to get this far.

27



28 Chapter 4. Conclusion



5. Process

Figure 5.1: Codes from lab evaluation

In the beginning of this project we planned how
to develop this original Muse concept as an dig-
ital application. It was an very straight-forward
process in the beginning, but it ended up be-
ing a more exploratory process, where we had a
few bumps on the road to the goal. We read
the article from the 5th semester IxD students
project where they described the concept in de-
tails and how it should work in practice. We in-
cluded the PhD thesis by Danial Boland ’Engaging
with music retrieval’ [1] that looks into the prob-
lem with ’too much choice’ that is the term of
too much music, which makes it harder to choose
between the music when having all music avail-
able.

We build the application as a Windows Forms appli-
cation, and used visual studio online with team foun-
dation server as version control. One of the problems
when developing this application was the music. Spo-
tify and Deezer which we were interested in using, were
closed. In order to have access to their music, you need
to implement their official player, or you can only lis-
ten to songs as previews (30s). A solution we found was an unofficial Spotify API which connects the
application to the Spotify windows application [11]. Another ting was the The Million Song Dataset
which was limited from songs to 2010 and earlier.

Figure 5.2: Data analysis from lab evaluation

When we analyzed our findings we used
grounded theory and affinity diagram
method. When we used grounded theory
we identified codes in the statements given
by our test participants during the inter-
views. These codes were then classified into
concepts, giving a more broad meaning of
the codes. The codes that were coupled to-
gether had to show some similarity, see Fig-
ure 5.1. When the concepts where created,
these were summed up into a category from
which we found our general areas. How we
searched for similarities can be seen in Fig-
ure 5.2. The yellow post-it notes showed
the collected codes, the orange the concepts,
the green the categories (themes), and the
purple the general areas. After multiple it-

29



30 Chapter 5. Process

erations, where the different codes and con-
cepts were moved around until they were in their right places, we constructed an affinity diagram,
which can be viewed in Appendix D.1 and Appendix E.1. This diagram is showing Figure 5.2 in a
more readable and understandable manner [14, 15].

When we ended the user studies we also corrected some errors and added features that was found in
the first user study.

If the application should be rebuild it would be kind to build it as a WPF (Windows Presenta-
tion Foundation) application, which is a newer technology than Windows Forms, or even build as a
phone/table/webapplication with a responsive design. This will also make the application be available
to a lager audience. From the studies we found that participants wanted to use the application it on
their phone, which could be an newsworthy project in itself.

It has been a very interesting project to explore and get results from, especially on the findings part
from the user studies, but also the road from having a concept, to bringing it into the world as a
prototype. It has been time consuming for weeks when we were developing the application, but the
results and our interest drove our motivation. We hope that future studies would dig into our project
and get even more findings or other perspecdtives for a music application.



Bibliography

[1] Engaging with music retrieval, Author Boland, Daniel, Year 2015, University of Glasgow Visit:
27-05-2017
http://theses.gla.ac.uk/6727/

[2] Dong Hyun Kim Tobias Jacobsen Jimmi Bagger Anders Pajbjerg, Kathrine Hansen and Tobias
Jørgensen. 2016. Muse: An Interactive Physical Explorative Music Device. Device. 5. semester IxD
(2016)

[3] Naudio: Documentation, Visit: 01-06-2017
https://naudio.codeplex.com/documentation

[4] The Million Song Dataset, Visit: 01-06-2017
https://labrosa.ee.columbia.edu/millionsong/

[5] Word Cloud (Tag Cloud) Generator Control for .NET Windows.Forms in C#, Visit: 01-06-2017
https://www.codeproject.com/Articles/224231/Word-Cloud-Tag-Cloud-Generator-Control-for-NET-Win

[6] A general history of music: from the earliest ages to the present period, Author Burney, Charles,
Year 1789, Visit: 10-06-2017
https://play.google.com/store/books/details?id=G-9CAAAAcAAJ&rdid=book-G-9CAAAAcAAJ&
rdot=1

[7] Spotify About, Author Spotify, Visit: 10-06-2017
https://press.spotify.com/us/about/

[8] Find your flow. Press play, Author Deezer, Visit: 10-06-2017
https://www.deezer.com/features

[9] Discover, Author Spotify, Visit: 10-06-2017
https://support.spotify.com/dk/using_spotify/discover_music/discover/

[10] Last.fm, Author Varies people, Visit: 10-06-2017
https://en.wikipedia.org/wiki/Last.fm

[11] SpotifyAPI-NET, Author Jonas Dellinger, Visit: 10-06-2017
https://github.com/JohnnyCrazy/SpotifyAPI-NET

[12] Circular ProgressBar for WinForm [.Net3.5+], Author Soroush, Visit: 10-06-2017
https://github.com/falahati/CircularProgressBar

[13] last.fm, Visit: 15-06-2017
https://www.last.fm/

[14] Affinity Diagram Process, Author Chauncey Wilson, 2016. Visit: 15-06-2017
http://www.usabilitynet.org/tools/affinity.htm

[15] The discovery of grounded theory: Strategies for qualitative research, Author Glaser, Barney G
and Strauss, Anselm L, Publisher Transaction publishers, 2009. Visit: 15-06-2017

31



A. Assignment for User Study in Lab

Figure A.1: Assignments for given during lab evaluation

32



33

B. Interview for User Study in Lab

Figure B.1: Questions for the joint interview in lab



Figure B.2: Questions for the joint interview in lab

C. Interview for User Study in Field

Figure C.1: Additional questions for field, also using same questions from lab

34



D. Affinity Diagram from Lab

App Stability
Profiling
Extra Tag-circle
List instead of Cloud

App improvements New features Discover while listening to music
Search field for music and tags
Display features (show current song, duration, fast forward, release year)
Include more services (Mix local with service)
Remove duplicate songs and tags
Exclude artist and (loose) tags

Application App usage
App Understanding Confidence understanding and misunderstanding

App target group
Intersection, Union & Overlap
Bad user interface

App interface Introduction
Editable interface

UI Understanding Responsive design and mobile integration
Larger playlist size, playlist paging, larger music display
Intuitive user interface
Tag cloud understanding
Intuitive Venn Diagram
Favorite playlist
Rated playlist

Collection Playlist Save playlist
Shuffle, anti-shuffle and mix albums
View artist albums
Interaction with Venn Diagram

Context Venn Diagram Information and percentage on Venn Diagram
Amount of tags in Cloud

Interaction Clusters in Cloud
Cloud Year with sub-year

Cloud always visible
Empty Cloud issue
Cloud tags size and color
Rediscovery issue

Discovery New way to interact with tags
Playlist makes sense of tags

Music Understanding Music flow
Music Experience Unknown and known music

Button for Union and Intersection
Music Lyrics

Song Improvement Similar songs
Music videos
1 mio. songs limitations, newer library, bigger library
Tag history

Music Categories Tag Tag understanding and misunderstanding
Combination of tags, subtags and tailoring tags
More tags, more information and improved precision

Figure D.1: Findings from user study 1 interviews using affinity diagram

35



36 Appendix E. Affinity Diagram from Field Study

E. Affinity Diagram from Field Study

Search field for music and tags
Features Display features (fast forward, repeat, shuffle, sorting)

Queue for songs
App improvements More song/artist information

Add service to increase library
Library Issue Change service for specific music

Application Include new releases and mainstream music as choices
Improved design
Access MUSE from mobile, like a remote
List instead of cloud

UI understanding UI Confidence bar issues
Easy understandable design
Playlist sizes
Used between 2-5 days
Used like a radio

Field usage Time of use (Afternoon)(evening)
Used in the background

Context Current context Target group Issue when used by more than one person
Music is easily tailored for one’s mood
Unique way to combine tags than other services - Standalone

Functionality Exploring new and old music
Differ between known and unknown
No hassle when creating playlist and easy to use application
Likes / dislikes ’Loose’ tags
’Loose’ tags tempts the user

’Loose tags’ Language tags
Good to discover new tags/genres
Collect tags in a more broad sense
Tag precision issue

Knowledge Tag Issues Identical tags
Tag cloud
Union
Intersection

Tag Understanding Overlap end 80s, start 90s
Songs that holds instruments fitting for the chosen genres (intersection)
Artist was active in the period (Intersection)
Tag understanding/misunderstanding

Figure E.1: Findings from user study 2 interviews using affinity diagram


	Front page
	English title page
	Contents
	I Prelude
	1 Introduction
	1.1 Problem Statement


	II Article
	Abstract
	Introduction
	Related Work
	Academic Work
	Commercial Application

	Muse
	Research Prototype
	First Prototype
	Second Prototype

	User Study 1: Lab Evaluation
	Method
	Findings

	User Study 2: Field Evaluation
	Method
	Findings

	Discussion
	Implications of Tag
	Implications of Ambiguity
	User Experience

	Future Work
	Conclusion
	Acknowledgment


	III Project Development
	3 Implementation
	3.1 Design
	3.2 Application features
	3.2.1 Music player
	3.2.2 Scanning local music
	3.2.3 Tag Cloud

	3.3 Database
	3.3.1 The Million Song Dataset
	3.3.2 Local database for local music

	3.4 Queries
	3.4.1 Tag Search Queries
	3.4.2 Fill TagCloud Tables Queries
	3.4.3 Tags For Tag Cloud Queries

	3.5 Usability Issues

	4 Conclusion
	5 Process
	Bibliography
	Appendix A Assignment for User Study in Lab
	Appendix B Interview for User Study in Lab
	Appendix C Interview for User Study in Field
	Appendix D Affinity Diagram from Lab
	Appendix E Affinity Diagram from Field Study


